
Fundamentals of Persistence 2

Abstract

This chapter is the heart of the book. It explains algorithms, technical details and

programming tricks of various approaches to implementation of persistent

data—binary and ASCII serialization, memory paging, disk paging and smart

pointers. The last section presents QSP (Quasi-Single-Page), a new design of

persistent data which, besides other languages, also works in Objective-C and

with iPhone applications.

Keywords

Algorithm • Hidden pointer • Object graph • Pointer mask • Regular pointer •

Reference • Smart pointer • Swizzling pointers • Traversing objects

Some algorithms and implementation techniques presented in this chapter have

never been published. All the examples in this Chapter are coded in C++, yet many

of these ideas are also applicable to other languages. We’ll start with the concept of

the pointer mask which, for each class, stores the information about the location of

its pointers.

Pointer Mask is an object that is used to capture the structure of a class, focusing

specifically on where its pointer members are located. You can think of it as a

singleton instance of the class which is first filled out with zeros and then all its

pointers are set to small positive integers, either 1 (just to identify the pointer

location) or to a number specifying the pointer type.

This chapter describes several different approaches to the implementation of

persistent objects, including algorithms and implementation techniques some of

which may not have been published. We start with the concept of pointer mask

which, for each class, stores the information about the location of its pointers.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_2, # Springer-Verlag Berlin Heidelberg 2014

37

Pointer masks have many uses and advantages:

– They tell us instantly (both in code and visually) where we have all the pointers.

– They make it easier to code and debug algorithms.

– They are easy to generate automatically.

– Other representation such as the list of pointers and their offsets within the object

can be easily derived from the mask.

– By comparing the masks, we can see whether the old/new classes are different.

Another way of looking at the pointer mask is to start with the fact that, within any

object, pointers always start on a 4-byte boundary.1 Imagine any object broken down

into 4-byte sections of potential pointer locations. Instead of some valid pointer, the

mask stores an integer in each of these four bytes, so naturally it has the same size as

any instance of this class. These integers are 0 for those object members that represent

just numbers or text, and are set to non-zero value for pointers.

When constructing a pointer mask, it is important to know that, at the setup time,

just before the program starts to run, the persistent system assigns to each class an

integer index. It is the same code as if you wanted to find out how many application

classes are involved:

class Utill {

static int classesCount;

};

class Library {

static int classIndex;

};

class Book {

static classIndex;

);

class Author {

static classIndex;

};

int Util::classCount=0;

int Library:classIndex=classCount++;

int Book:classIndex=classCount++;

int Author:classIndex=classCount++;

1 On a 64-bit architecture, it is 8-bytes.

38 2 Fundamentals of Persistence

POINTER MASK (Example)

class Book { class Author {

int numPages; . . .
char *title; . . .

char category static int classIndex;

Author *authors; };

Book *next;

static int classIndex;

};

The compiler may keep internal table that looks like this

Book [int char* char Author* Book*]

where each of these members takes 4 bytes of the object, 8 bytes on a 64-bit

architecture. Pointers, integers and floats all start on a 4-byte boundary, and

even the single character takes 4 bytes including the 3 bytes of padding the

compiler inserts. Note that the static members (here classIndex) are not

stored inside these objects.

In the persistence systems which store pages of objects as blocks of bytes,

we are interested only in the locations of pointers, but if we want to traverse the

object graph - as in a typical serialization, we need to know the pointer types.

For this purpose, we create a mask, specific for each class, which has

exactly the same number of bytes as one instance of that class. Each 4-byte

location which is a potential location of a pointer is treated as an integer,

which is 0 for locations that do not store pointers. For pointer locations, it

stores the pointer type as the classIndex of its target object. Pointers to built-in

types have fixed numbers, for example char* may be recorded as -1. If we

assign Book::classIndex¼17 and to Author::classIndex¼18, then the masks

are:

17180-10Book mask with types

110-10Book mask without types

2 Fundamentals of Persistence 39

Pointer masks will get more interesting when we will discuss composite objects

involving structure-members, inheritance (especially multiple inheritance) and

hidden pointers inserted by the compiler.

2.1 Algorithms and Techniques

2.1.1 Adding Members and Methods to a Class

Both when making objects persistent and when building intrusive data structures

(see Chap. 3), we need to add capabilities to the existing classes. That implies

additional methods and members to support these capabilities. There are four ways

to do it: from below, from above, inserting them inside, and using a linked storage.

Examples in this book mostly inside the required methods and members, but keep in

mind that this is not the only way. In some situations one of the other options may

be a better solution.

2.1.1.1 Adding from Below
If we want to add certain methods and members to every allocated object, we can

derive all application classes (and all library classes) from the same base class. For

example

class PersistBase {

int counter;

int mySize(); // ??? see Note1

static int mode; // ??? see Note2

};

class Employee : public PersistBase {

int ID;

Employee *next;

};

Note1: Unless mySize() could reach into the allocation record, which may depend

on the compiler and OS, or unless counter keeps the size from the time the object

was allocated, this would not work.

This chapter describes how to add, automatically and transparently, members

and methods to a class. It discusses regular pointers, hidden pointers inserted by

the compiler, smart pointers, references, and pointer swizzling. discusses two

algorithms (recursive and stack based) which traverse the pointer network and

collect all active objects – the critical step in every serialization.

40 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_3

Note2: This value would be the same for all classes and all objects, an interesting

implementation of “global” variable—see bk\chap2\fromBelow.cpp.

2.1.1.2 Inserting Inside
If we want to add more than one member or method to a class,2 we can insert them

with a macro. In the following example each class has an index, and even from the

base class we can determine the size of the allocated object. The program prints
size¼16 which is the size of Manager.3

#define Persist(T) \

public: \

virtual int mySize(){ return sizeof(T); } \

static int classIndex

class Employee {

Persist(Employee);

int ID;

Employee *next;

};

class Manager : public Employee {

Persist(Manager);

Employee *secretary;

};

int main(){

Manager *m=new Manager;

Employee *e=m;

printf(“size=%d\n”,e->mySize());

Useful Trick No. 2

Macros, especially long ones, complicate debugging, because compilers and

debuggers treat each macro as a single line, but sometimes there is no other

choice. The way to minimize the negative impact of a long macro is to insert,

with a macro, a short function which calls another function outside of the

class.4 For example, in Listing 2.9 - far below, p.60, macro INH_REC(T)

inserts a line with a call to Util::iRep(). This does two things: (1) it allows
us to insert the function yet code it, or most of it, as normal code, not as a
macro and (2) it allows the outside function to use class parameters which are
private and normally not available outside.

2 The difference from adding to an object from below becomes apparent when inheritance is

involved.
3 Two 4-byte members in Employee, one in Manager plus one hidden pointer as will be explained

in Sect. 2.1.2.
4 This coding style was recommended by Sean Yixiang when coding the Objective-C persistence

in Chap. 7.

2.1 Algorithms and Techniques 41

http://dx.doi.org/10.1007/978-3-642-39323-5_7

Here is a simpler example, where we are adding a long function foo() to class

Book. The function needs the value of member ISDN, which is private. We can do it

with a long macro, which is not nice and is difficult to debug:

#define FOO \

void foo(){ \

.. long code using value of ISDN \

}

class Book {

private:

int ISBN;

public:

FOO

};

Instead of using a long macro, we can code the main part of foo() outside of

Book, either as a plain C function, or as a static function of some utility class:

class Utility {

friend class Book;

static void foox(int isbn){

. . . bulk of the function, using the private Book::ISDN

}

}

#define FOO \

void foo(){Book::foox(ISBN);}

class Book {

private:

int ISBN;

public:

FOO

};

2.1.1.3 Adding from Above
As from below, this method allows one to expand object, not class. We derive a

special class from the class we want to expand and add the members and methods

there. The disadvantage is that in calls to new() and possibly other methods you

have to cast to the expanded class (starting with Exp_. . .). For example:

42 2 Fundamentals of Persistence

class Employee {

int ID;

Employee *next;

};

class Exp_Employee : public Employee {

public:

Exp_Employee *nextFreeList;

static Exp_Employee *freeListStart;

static void addFreeList(Employee *e){

Exp_Employee *ee=(Exp_Employee*)e;

ee->nextFreeList=freeListStart;

freeListStart=ee;

}

static void delFreeList(Exp_Employee *e){…}

};

Exp_Employee* Exp_Employee::freeListStart=NULL;

int main(){

Employee* e=new Exp_Employee;

Exp_Employee::addFreeList(e);

2.1.2 Hidden Pointers

The first step to implementing any style of persistence is to understand the internal

representation of objects. In the early years of C++ there was a multitude of

compilers, each with its own quirks and representation of objects. Writing portable

C++ persistence used to be a pain.5

The C++ standard does not specify the internal implementation of objects, but

most compilers today use the model shown in Fig. 2.1.6 If neither the class itself nor

the classes from which it inherits have virtual functions, the memory image consists

of all the members (fields) in the same order as they are hierarchically listed in the

class definition.7 If there are virtual functions, then there is a hidden pointer at the
beginning of the object.8 In the case of multiple inheritances, there are additional

hidden pointers inside the object. Hidden pointers point into the internal table of

virtual functions, and are identical for all instances9 of the same class. Application

programmers have no access to these hidden pointers and tables, and often are not

even aware of their existence.

5 The code of DOL library (Data Object Library 2013) still has ifdef statements for Borland,
Watcom, Microsoft, Mac, Linux, Zortec, DEC, VMS, Sun, Lucid, GNU, IBM, Solaris, Liant,
Amdahl, Coherent, Apollo, Saber and HP compilers.
6 For the program which generates this information, go online to bk/chap2/dispPtrs
7 As in plain C.
8 In most OO languages including Java and C# the internal object representation is probably

similar.
9 Terms object of classA, A-object, or instance of A mean the same thing.

2.1 Algorithms and Techniques 43

On a 32-bit architecture, pointers and 4-byte numbers always start on a 4-byte

boundary. On 64-bit architecture, pointers and 8-byte numbers usually start on an

8-byte boundary.10 The sizeof() function returns the true size of the object,
including the hidden pointers.

A convenient tool for detecting and manipulating these pointers is operator new
()which can be controlled by an outside variable, static pointer objBuf, to do three
things11:
(1) When objBuf¼NULL, new()allocates a new object as usual.
(2) When objBuf points to a block of memory, new() adds hidden pointers to it,

thus turning it into a valid object.
(3) When objBuf¼(char *)(1), new() allocates a 0-filled object, then sets the

hidden pointers to
Case (1) is used for allocation of objects during the program run.

Case (2) is useful when retrieving persistent objects from the disk.

Case (3) creates a mask similar to Fig. 2.1.

The algorithm recognizes a valid pointer by having a value which is amultiple of 4.

class C {...};
class B : public C {...};
class D : public C {...};
class A : public B, public D {…};
class E : public B {…};

B-members E-members

H-ptr C-members B-members E-members

E-object, with virt.func�ons

H-ptr C-members B-members H-ptr C-members D-members A-members

A-object, with virt.func�ons

C-members

E-object, no virt.func�ons.

Fig. 2.1 Examples of hidden pointers in C++ objects (Visual Studio 2010). Note that an A-object

includes two different instances of the C-class

10 The lowest two bits of any pointer are always 0 and, temporarily, they may store flags or other

information during some algorithms.
11 See Listing 2.1.

44 2 Fundamentals of Persistence

Listing 2.1 Overloaded operator new() which works in three different modes:

normal, updating hidden pointers, and generating a mask. [For the explanation of

how this relates to so called “placement new”, see the Note after the listing.]

class A {

. . . private members, no pointers

public:

static void *objBuf; // controls what new() does

static void *mask; // for

void* operator new(size_t size){

unsigned long u=(unsigned long)objBuf;

if(u==0) return malloc(size); // normal operation

else if(u&3) return mask=calloc(1,size); // create mask

else return(objBuf); // insert hidden pointers

}

};

void* A::objBuf=NULL;

Note:

Placement new gets a section of memory and turns it into a valid object by filling

in the hidden pointers. For example for class Book,

void *v=calloc(sizeof(Book),1);

Book *bp=new Book(v);

or on one line

Book *bp=new Book(calloc(sizeof(Book),1));

If we wanted to control the allocation of objects by calloc or some custom

allocation function the application would have to change all the calls to new() to

this ugly and potentially error-prone syntax.12

Overloading new() as we did in Listing 2.1 hides all this, and the application can

create objects as usual. No change of calls to new() is required:

Book *bp=new Book();

However, the last line of operator new in Listing 2.1

else return(objBuf); // insert hidden pointers

is really nothing else than placement new, which we use in a special case when we

just want to set or update hidden pointers. The difference from the normal place-

ment new is that the memory is not supplied as the function parameter, but as the

static class member objBuf.

12 Note that this is similar to what you have to do when using ObjectStore (c) PSE Pro for C++.

2.1 Algorithms and Techniques 45

2.1.3 Regular Pointers

Regular pointers are the pointers the application inserts into classes. After you write

objects to disk and then read them back to memory, the new objects are in different

locations, and all the regular pointers must be replaced (swizzled) to the new addresses

of their target objects. If you read the object back within the same program run, hidden

pointers are the same, but for a different run even hidden pointers usually change.

How to detect all these pointers is one of the key tasks every persistent system

must tackle.

For example, if a company hierarchy is described by classes Manager and

Employee, we can represent the internal structure of each class by a mask—see

Listing 2.2 and Fig. 2.2. Such masks are useful when planning algorithms or

debugging code, and we will use them extensively throughout this book.

Note that it is reasonably fast to traverse a mask when swizzling pointers.

However, a small performance improvement can be achieved by keeping, in addition

to the mask, a list of non-zero entries in the mask. Note that mask in Fig. 2.2 does not

have any hidden pointers because the two classes have no virtual functions.

Listing 2.2 Another version of Manager/Employee classes (online listed only as

list2_2.txt)

template< class T> class Ring {

T *tail;

int colSZ;

};

class Employee {

float salary;

char *name;

Employee *next;

};

class Manager : public Employee {

int deptID;

Employee *secretary;

Ring<Employee> myPeople;

};

0 2 10 0 10 10 0

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

MASK:

LIST FOR FAST TRAVERSAL: 1,2,4,5,-1

Fig. 2.2 Mask for the

Manager class from

Listing 2.2. Each box

corresponds to a potential

pointer location (4B or 8B

depending on the system

architecture). Pointer

locations are marked by the

index of the target class, here

2 ¼ text string,

10 ¼ Employee

46 2 Fundamentals of Persistence

2.1.3.1 Detecting Pointers with Reflection
When reflection is available, we don’t need a mask. And even if we had one it

would not help much. Languages with reflection usually work with references, and

objects and their parts cannot be accessed by their memory addresses.

When we need to traverse references of an object, the reflection allows us to

traverse members and, for each member, it tells us whether the member is a

reference and what is the type of its target. Listing 2.3 shows how this is done in

Java, and Listing 2.4 shows the C# implementation.

It may not be obvious from this code, but it traverses pointers all through the

inheritance hierarchy, e.g. for the Manager object from Listing 2.2, the code visits
Employee::name,

Employee::next,

Ring::tail,

Manager::secretary.

Listing 2.3 Using Java reflection to traverse references13

import java.lang.*;

import java.lang.reflect.*;

Field[] fields = cls.getDeclaredFields();

Object val; Class targetClass;

for(Field field : fields){

if(field.getType().isPrimitive())continue;

val=field.get(this);

if(field.getType() == String.class){

. . . // create or find new val

field.set(this,val);

}

else {

targetClass=field.getType();

. . . // create or find new val

field.set(this,val);

}

}

13 For full source, see bk/chap2/reflectJava.

2.1 Algorithms and Techniques 47

Listing 2.4 Using C# reflection to traverse references14

//flags: which members we want to enumerate

System.Reflection.BindingFlags flags =

System.Reflection.BindingFlags.Public |

System.Reflection.BindingFlags.NonPublic |

System.Reflection.BindingFlags.Instance;

Object val; Type targetClass;

foreach (System.Reflection.FieldInfo field in

this.GetType().GetFields(flags)){

if(!field.FieldType.IsClass)continue; // not a reference

val=field.GetValue(this);

if(val==null)continue; // no conversion for null references

if(field.FieldType == typeof(string)){ // string

. . . // create or find new val

field.SetValue(this,val);

}

else {

targetClass=field.FieldType;

. . . // create or find new val

field.SetValue(this,val);

}

}

2.1.3.2 References Registered for Each Class
All C++ and Objective-C persistent systems must get the information about

pointers externally, and one possibility is to assume that the user registers all

persistent classes by listing their pointers.

In C++, our favourite method is to use macros PTR and STR15 in the default

constructor. It has the advantage that it automatically traverses the inheritance

hierarchy, and the result is a mask which is a flat view of even highly composite

object. Here is an example of how to use these macros:

class Employee {

static void **mask; // not persistent

float salary;

char *name;

Employee *next;

public:

Employee(){

salary=0.0;

STR(name); PTR(next,Employee);

}

};

Listing 2.5 shows how this syntax can generate the mask. The listing may appear

long, but note that there is a lot of repetition: the same functions and static variables

are added to all three classes.

14 For full source, see bk/chap2/reflectCs.
15 A similar method to register pointers is also used by POST++.

48 2 Fundamentals of Persistence

At the setup time, before the program starts to run, each class gets its unique

index. Automatic assignment of class indexes happens at the setup time, before the

application program even starts to run—look at the last line just before main().

Inside createMask(), the call to new() with objBuf¼1 creates a 0-filled instance

of Manager and inserts hidden pointers. Then, through PTR() and STR(), the default

constructor Manager() marks the pointer locations in the mask.

Figure 2.3 has two numbers in the box for the hidden pointer: 1 or 6054. In most

environments, hidden pointers are large numbers which are easy to distinguish from

the class index stored for regular pointers. In environments, where the system stores

index(!) into the virtual function table, we mark hidden pointers by using 1 in the

mask, and storing the value of the hidden pointer in a separate, additional mask.

objBuf must be either a global variable or a static variable of a special Utility
class.

0 2 10 0 10 10 0

sizeof(Manager) = 8x4 = 32 bytes

hidden

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

0 5 21 0 21 21 06054 phase 1

phase 2 1
or

6054

Fig. 2.3 Generating mask for the Manager class. Listing 2.5 produces directly the phase2 mask

with true value of the hidden pointer (6054). The online version at bk/chap2/list2_5.cpp generates

first the phase1 mask and then converts it to phase2 with 1 marking positions of hidden pointers.

Mask codes: 0 ¼ invariable members, 1 ¼ hidden pointer, 2 ¼ char*, 10 ¼ Employee*

2.1 Algorithms and Techniques 49

Listing 2.5 Generating mask with both hidden and regular pointers (for full,

slightly modified source, see bk/chap2/list2_5.cpp)

#define PTR_SZ sizeof(char*)
int totIndex=9; // index of application classes will start from 10
void *objBuf=NULL; // global allocation control

#define PTR(P,T) \
if(objBuff==NULL || objBuf==(void*)1)P=NULL; \
else P=(T*)(T::getIndex())

#define STR(P) \
if(objBuff==NULL || objBuf==(void*)1)P=NULL; \
else P=(char*)(2)

class Employee {
float salary;
char *name;
Employee *next;

public:
// . . . static members and methods, new()as for Manager
Employee(){STR(name); PTR(next,Employee);}
int virtual trueClass(){return classIndex;}

};
// . . . initialize static members as for Manager

class Ring {
Employee *tail;
int colSZ;

public:
// . . . static members and methods,new()as for Manager
Ring(){PTR(tail,Employee);}
int virtual trueClass(){return classIndex;}

};
// . . . initialize static members as for Manager

class Manager : public Employee {
static void *mask;
static int classIndex; // app.classes start from 10
static int mySize;
int deptID;
Employee *secretary;

public:
Ring myGroup;
static int getIndex(){return classIndex;}
void* operator new(size_t size){

unsigned long u=(unsigned long)objBuf;
if(u==0) return malloc(size); // normal operation
else if(u&3){ return mask=calloc(1,size); } // mask
else return(objBuf); // insert hidden pointers

}
static void createMask(){

int i; char *s; int *ip;
objBuf=(void*)1;
new Manager; // phase one of setting the mask

}
static void prtMask(){ … }
Manager(){PTR(secretary,Employee);}
int virtual trueClass(){return classIndex;}

};
void* Manager::mask=NULL;
int Manager::mySize=sizeof(Manager);
int Manager::classIndex=totIndex=totIndex+1;

int main() {
Manager::createMask();
Manager::prtMask();

50 2 Fundamentals of Persistence

When we replace the statements that repeat for every class by macro
PERSIST(T), this complex code turns into nice and crisp Listing 2.6.

Macro INIT_STAT(T) initializes static variables for each class, and macros PTR

(P,T) and STR(P) are as before. The parameters of all these macros are types; they
are just like templates/generics except that they represent a block of code—not a
class or a function.

Listing 2.6 Code from Listing 2.5, where generic-like macros replace code that

repeats for every class

class Employee {

PERSIST(Employee);

public:

float salary;

char *name;

Employee *next;

Employee(){ STR(name); PTR(next,Employee); }

};

INIT_STAT(Employee);

class Ring {

PERSIST(Ring);

public:

Employee *tail;

int colSZ;

Ring(){ PTR(tail,Employee); }

};

INIT_STAT(Ring);

class Manager : public Employee {

PERSIST(Manager);

public:

int deptID;

Employee *secretary;

Ring myGroup;

Manager(){ PTR(secretary,Employee); }

};

INIT_STAT(Manager);

int main() {

Manager::createMask();

Manager::prtMask();

printf(

"classIndex: Employee=%d Ring=%d Manager=%d\n",

Employee::getIndex(),Ring::getIndex(),

Manager::getIndex());

return 0;

}

Useful Trick No. 3

Macro PTR(P,T) can set member pointer to 1, or generate the pointer name

and type as text strings.

2.1 Algorithms and Techniques 51

#define PTR(P,T) \

(P)=(T *)1; \

printf(“pointer name=%s targetType-%s\n”, #P, #T);

For the strings the macro could be replaced by a method, possibly static method

of the class; setting the pointer to a value must be through a macro if you want it that

simple.

For the strings, the macro could be replaced by a method, possibly static method

of the class; setting the pointer to a value must be through a macro if you want this

simple interface.

2.1.3.3 Smart Pointer that Registers Itself
Another way to generate the mask is to replace pointer members that we want to be

persistent by an instance of a special smart-pointer class, see Listing 2.7. Such a

smart pointer does not take more space than a normal pointer and is used just as a

normal pointer, but it can record itself in the mask.

Listing 2.7 Mask generation with smart pointer (code sketch only, no program

online)

template<class T> PersistPtr {

T *ptr;

public:

PersistPtr(){

ptr=NULL;

. . . // mark the mask at the position of ‘this’

}

T* operator->() const{ return ptr; }

. . . // other operators

};

class Employee {

PERSIST(Employee);

public:

float salary;

PersistPtr<char> name; // <<<<<<

PersistPtr<Employee> next; // <<<<<<

Employee(){}

};

INIT_STAT(Employee);

/* similar syntax for classes Ring and Manager */

int main() { // remaing exactly as before

Manager::createMask();

Manager::prtMask();

return 0;

}

So far we have been working with pointers leading to a single object or to a

single text string. However, there can also be pointers to various types of arrays:

52 2 Fundamentals of Persistence

class B;

class C {

B *bArr; // to array of B objects

B **bpArr; // to array of (B*)

int *iArr; // to array of int

char *cArr; // to array of characters

char **cpArr; // to array of (char*)

int aSize; // assume all arrays have this size

};

To register all these situations, calls to PTR() and STR() are not sufficient. We
also need to register the size of the array which in most cases is already a member
of the class which stores the pointer. If it is not, we always can set up special
macros for such situations: ARR() for an array of objects and ARP() for an array of
pointers are handy to register such situations. For example, the pointers used
by class C in the last example can be registered by the following default
constructor:

class C(){ARR(bArr,A,aSize); ARP(bpArr,B,aSize); ARR(iArr,int,aSize);

ARR(cArr,char,aSize); ARP(cpArr,char,aSize);
}

Note that aSize is the name of the member, not a numerical value!

2.1.3.4 Smart Library Registering Pointers
The problem with registering pointers is that if you miss even a single one, it will

not be swizzled,16 and your program will crash on loading the data from disk. Also,

as will be explained in Sect. 2.1.6, if a pointer is missing in the mask, the object to

which it leads and perhaps many other objects may be missing on the disk file.

Registering pointers is not something application programmers should do in their

everyday work.

The idea of registering pointers opens another Pandora’s box. What is the true

purpose of these dangerous pointers inhabiting our classes, and why are they

allowed to live there with all the mischief they can cause? And could we hide

and isolate them in some place where they would be under better control?

That goes far beyond persistence, but the problem with registration of pointers

only adds to the many reasons why we should avoid raw-pointer members in

application classes.

The purpose of pointers is to implement data structures and relations. For

example, instead of using raw pointers tail and next in Listing 2.6, it is better to
replace these pointers by a generic data structure consisting of classes Ring<T> and
RingPart<T> that comes from a library which takes complete care of these
pointers including their registrations, and these pointers are transparent to the
application code.

16 As introduced in Chap. 1, swizzle is a commonly used term for the process of updating pointers

when the objects move to a different memory location.

2.1 Algorithms and Techniques 53

http://dx.doi.org/10.1007/978-3-642-39323-5_1

When following this strategy, we end up with no pointer-members in our

application classes. However, the necessary condition for all this is that the

library must support bi-directional data structures, which also is the prime

reason we always use DOL or InCode libraries and not the standard containers.

Compare the following three implementation of the same class:

class Project { // Code with raw pointers

char *name; // bad choice, raw pointer

Manager *mgr; // bad choice, raw pointer

};

class Project : public OneToOne<Manager>,

public String { // better code, Style 1

};

class Project { // best code, Style 2

String name; // better choice, pointer handled by library

OneToOne<Manager> mgr; // library class, better choice

};

Styles 1 and 2 remove pointers from the application code but, in more complex

situations, Style 2 ends up using multiple inheritance and, in our experience, it is

more difficult to manage.

The format in which we record pointers in the library classes does not have to be

particularly efficient or easy to use, because you register the class when you add it to

the library, and, from that moment on, many people use it but nobody is even aware

that there is any registration.

For example, Data Object Library (Data Object Library 2013) is a C++ library of

bi-directional intrusive data structures which are also persistent. Each data structure is

represented by a class which does not have any attributes, and its methods (operations

of the association) have access to pointers and other attributes of the application

classes that participate in the data structure. For an example, see Doubly Linked

Aggregate in Fig. 2.4. When you want to set up an aggregate between classes Room

and Students, you declare
Association Doubly_Linked_Aggregate<Room,Student> students;

The pointers are registered in a library files registry and zzmaster which essen-

tially contain this record17:

Doubly_Linked_Aggregate 2

1: child 2

2: next 2, prev 2, parent 1

which means that in our Room/Student example we will have

17 Line1: two participating classes, Line2: pointers in the first class with the index of their target

class, Line3: pointers in the second class with the index of their target class.

54 2 Fundamentals of Persistence

class Room {

Student *child;

. . .

}:

class Student {

Student *next;

Student *prev;

Room *parent;

. . .
};

Pointers can come only from the library, so the library can determine what the

mask of the two classes will be. All this is transparent and the user does not have to

worry about registration of pointers.

2.1.3.5 Detecting Pointers with a Code Generator
Until now we have assumed that the persistence would be added to the application

program as additional source or library. However, applying a code generator to

some of the tasks, such as detecting pointers, can significantly simplify the user

interface. It is not considered a “pure” programming technique, because it may

complicate debugging, use of debuggers and IDE, and using software designed in

this way as a part of a larger system, but it leads to a more elegant interface.

We can think of many ways to detect pointers with a code generator. Let’s

explore one possible approach which we have never used on a real application, but

which would be fairly simple to implement. Assume that for every class in the

application source, e.g. class Employee, we create a twin, Twin_Employee, which

index=1 class C {...};
index=2 class B : public C {...};
index=3 class D : public C {...};
index=4 class A : public B, public D {…};

C constructor under B1/C1/C 0 0 0 0 0

B constructor2/B2/B 2/B 0 0 0 0

C constructor under D2/B2/B 2/B 1/C 1/C 0 0

D constructor 2/B2/B 2/B 3/D 3/D 3/D 0

A constructor 4/A4/A 4/A 4/A 4/A 4/A 4/A

Fig. 2.4 Evolution of tMask when allocating a new A-object. This is a dynamic process which

takes the advantage of default constructors for all the classes being called bottom up. Any time a

non-zero location or a hidden pointer is overwritten, it is an indication of inheritance—see the

arrows

2.1 Algorithms and Techniques 55

has the same members and thus the same mask. We discard all its methods, but add

a default constructor with PTR() and STR() statements as in Listing 2.6. This allows

us to generate simple code which, for each of the Twin-. . . classes, finds it mask. If

we can link together the original class with its twin, it is as if we added the mask to

the original class without providing any information about its pointers members.

class Employee { // application class

float salary;

char *name;

Employee *next;

public:

float getSalary(){return salary;}

void setSalary(float sal);

Employee(){salary=10000;}

};

class Twin_Employee { // twin class

float salary;

char *name;

Employee *next;

public:

Employee(){STR(name); PTR(next,Employee);}

};

What we proposed includes some logical leaps, and we have to explore the idea

step by step in order to verify that it will really work. We do not have to make a

complete syntax analysis.

Let’s assume that, as the first pass, we convert the code to a stream of tokens

while implementing all the name substitutions encoded by typedef or #define

statements and removing comments and access indicators.18 We get

class Employee { float salary ; char * name ; Employee * next ;

float getSalary () { return salary ; } void setSalary (float sal)

; Employee() { salary = 10000 ; } } ;

In the second pass, we add the twin underscore (__) prefix to the class name and

monitor the depths of {}, (), [] and<> brackets (each separately) as we traverse the

tokens. We throw away any token for which the depth of {} is not 1 or the depth of

any other bracket is more than 0. That gives us

float salary ; char * name ; Employee * next ; float getSalary () {

} void setSalary () ; Employee () { }

This allows us to identify statements which end with one of three ways:

{ } or () or; or just ;

18 Public, private or protected.

56 2 Fundamentals of Persistence

Eliminate statements that do not end just with “;” and we have the list of

members

float salary;

char * name ;

Employee * next ;

This allows the code generator to create the twin class

class Twin_Employee { // added Twin_

// next part is the list of members after pass 3

float salary ;

char * name ;

Employee * next ;

// remaining part is all generated, using members with *

public:

Employee(){STR(name); PTR(next,Employee);}

};

This allows us to generate mask for class Twin_Employee as described in

Sect. 2.1.3.2. The last missing piece of this puzzle is how, for an object of class

Employee, we could quickly find the mask of Twin_Employee.

Let’s assume that the code generator also creates class derived from class

Employee, which adds methods and possibly members.19 We will use prefix

Exp_ for this class in order to show that it is an expansion of the original class.

If we do not add any non-static members, the class will have the same original size.

class Exp_Employee : public Employee {

void *getMask(){ return Twin_Employee::mask;}

};

The result is elegant. If you want to make any application code or library

persistent you run the code generator on their classes and the only change you

have to make in the code is to replace all calls to the new() operator:

int main() {

Employee *e12, *e2; void *mask;

e1=new Exp_Employee;

e2=new Exp_Employee;

mask=(Exp_Employee*)e1->getMask();

// otherwise use e1 and e2 as if there is no persistence

This is not necessarily better than using PTR() and STR() in your application

classes. You may have many new() statements spread through your code, while PTR

() and STR() statements are localized in the class definitions and may be much fewer.

However, making an existing class library persistent with a code generator may be

easier, since a typical container library may not have many, if any, new() statements.

19 This is the method of adding from above as described in Sect. 2.1.1.3. It adds to each allocated

object, not to the class.

2.1 Algorithms and Techniques 57

All this works even when some application classes inherit from other classes,

assuming that the code generator converts all the classes to their twin classes. For

example, if we have

class Employee {

. . .

};

class Manager : public Employee {

. . .

};

it converts it to

class Twin_Employee {

. . .

};

class Twin_Manager : public Twin_Employee {

. . .
};

2.1.4 Arrays

When you come across a pointer while reading C++ code, you cannot tell whether it

leads to a single object or to an array of objects. And even if you know that it leads to

an array, you have no clue about its size. That can lead to nasty surprises. The

program in Listing 2.8 writes outside of its memory space, and that results in strange

behaviour. It compiles on our laptops,20 but then it we attempt crashes when we

attempt to run. However, when we uncomment the printf() statements, it compiles

and runs without crash. Yet there is nothing wrong with the printf() statement.

20 Using Visual Studio 2010.

58 2 Fundamentals of Persistence

Listing 2.8 A pointer can lead to a single object or to an array, which is a potential

source of errors

class A {

public:

int weight;

};

class B {

A *ap;

A arr[8];

public:

void foo(){

ap=new A;

ap->weight=123;

ap[0].weight=234; // OK even though ap is not an array

// printf(" before the first potential problem\n");

ap[2].weight=567; // wrong, possible crash

ap=new A[60];

// printf(" before the second potential problem\n");

ap[60].weight=789; // possible crash, index overflow

ap->weight=999; // OK, really gets ap[0].weight

// printf(" before the third potential problem\n");

arr[62].weight=789; // possible crash, index overflow

}

};

In order to save an array properly to disk, we need to know when the pointer

represents an array, and the size of that array. This is the reason why all persistent

systems and languages with built-in persistence assume that pointer members

always point to a single object, and that arrays are implemented through a special

Array class, which stores the pointer, the size of the array, and the number of used

entries. This class is usually one of the special types, and has a pre-assigned internal

index just like char, int, or float.

2.1.5 Extracting Inheritance

An interesting feature of what we have done so far is that we have achieved

persistency without extracting any information about inheritance among application

classes. Virtual function PersistObj::trueClass() does everything we need.
However, there are situations when the information about inheritance may be

useful or even essential, for example when generating UML class diagram.21 In

languages with reflection this information is readily available. In C++, there are two

ways to extract this information, and both are simple and straightforward.

METHOD 1: Partial syntax analysis (using a code generator).

21We will discuss this in more detail in Sect. 4.4.

2.1 Algorithms and Techniques 59

http://dx.doi.org/10.1007/978-3-642-39323-5_4#Sec4_4

– Concatenate all the source with definitions of all application classes into one file.

This usually means all the *.h files; for small programs it may be just one *.cpp

file with the entire program.

– Make pass eliminating comments and lines starting with #. At the same time,

break the source into tokens separated by one space. Monitor the depths of {}, (),

[] and <> brackets (each separately) and throw away any token for which at

least one of these depths is not 0. After you do this, Listing 2.6 is reduced to

class Employee { } ; INIT_STAT () ; class Ring { } ; INIT_STAT () ;

class Manager : public Employee { } ; INIT_STAT () ; int main () {

}

– Make another pass searching for token class. When you find it, look for two
possible patterns:

class A { A does not inherit from another class
class A : A inherits from one or more classes In the second case, the continuation
must be

X B , … , X D {

where X is anything or missing, and B . . . D are names of the classes from which A

inherits.

METHOD 2: Evolving tMask (no code generator).

Let’s write a program which watches how default constructors visit their parts of

the object. The algorithm is similar to how we created the pointer mask in

Sect. 2.1.3.2, but instead of recording pointers we will let all default constructors

to write in it the index of the class to which they belong. The constructors are

invoked bottom up, and when the areas overlap it implies inheritance—see Fig. 2.4.

Listing 2.9 shows the implementation of the algorithm which is a bit tricky to

debug. It produces the following output:

Inheritance of A:
----- 2 inherits from 1
----- 3 inherits from 1
----- 4 inherits from 2
----- 4 inherits from 3

A=4
B=2
C=1
D=3
E=5

How does it work:

Utility::tMask stores the mask as it is built, and because it is static and public, it
is essentially a global variable.

Operator new() which is under Persist(T) catches the initial mask before the
constructors start to add to it, but only when inhFlg¼1. For inhFlg¼0, operator
new() allocates normal objects as expected.

Under INH_REC(T), a call to Utility::iRep() is inserted to every default
constructor. This function fills the appropriate section of the mask with the class
signature.

60 2 Fundamentals of Persistence

Listing 2.9 Extracting inheritance without using code generator (Fig. 2.5)22

typedef unsigned long UL; // unsigned integer as long as a pointer
#define HP_LIMIT 1000; // lower limit on hidden pointers

class Utility {
public:

static int totIndex;
static int inhFlg; // 0=normal, 1=detecting inheritance
static UL *tMask;
static void reportInheritance(int a,int b){

printf("----- %d inherits from %d\n",a,b);
}
static void iRep(int sz,UL *localMask,int cIndex){

int i,report;
sz=sz/sizeof(char*);
for(i=0; i<sz; i++){
if(localMask[i]>0 && localMask[i]<1000){

if(i+1>=sz)report=1;
else if(localMask[i+1]!=localMask[i])report=1;
else report=0;
if(report)reportInheritance(cIndex,(int)localMask[i]);

}
localMask[i]=cIndex;

}
}

};
int Utility::totIndex=1; // we want it to strat from 1, not from 0
UL* Utility::tMask=NULL; // allocated by new()
int Utility::inhFlg=0;

#define PERSIST(T) \
public: \
static int classIndex; \
static int inhFlg; /* 1 when searching for inheritance */ \
void* operator new(size_t size){ \

void *r=malloc(size); /* normal operation */ \
if(Utility::inhFlg)Utility::tMask=(UL*)r; \
return r; \

} \
static void reportInheritance(){ \

Utility::inhFlg=1; \
Utility::tMask=(UL*)(new T); \
delete Utility::tMask; \
Utility::tMask=NULL; \
Utility::inhFlg=0; \

}

#define INH_REC(T) if(Utility::inhFlg) \
Utility::iRep(sizeof(T),(UL*)((T*)this),classIndex)

#define INIT_STAT(T) \
int T::classIndex=Utility::totIndex=Utility::totIndex++

class C {
PERSIST(C);

int c;
public:

C(){INH_REC(C);}
};
INIT_STAT(C);

. . . other classes coded in the same style

class A : public B, public D{
PERSIST(A);
int a;

public:
A(){INH_REC(A);}

};
INIT_STAT(A);

int main(){
A::reportInheritance();

22 Running source is in bk\chap2\list2_9.cpp

2.1 Algorithms and Techniques 61

2.1.6 Collecting All Active Objects

In serialization, and only in serialization,23 we have to find all objects in our data

space and save them to disk. There are three possible approaches:

(A) If the data structures are simple, the application can include a function which

traverses all the objects and writes them to disk. That is efficient, but difficult to

manage for complex projects, and certainly not automatic.

(B) For each class we can maintain a list of its active objects. Operator new() adds
an entry to this list, and destructor moves it to the free list. Both lists use the
same two24 references per object. This is fast, efficient, the list of active objects
is ready when we need it and, as a bonus, we get the free lists for the reuse of
discarded objects. The price is the space of two references per object, and the
potential problem with objects that were not properly destroyed remaining on
the active list.

(C) Objects and references form a directed graph — see Fig. 2.5. Usually, in this

graph, there is one or a few root objects from which we can reach all the other

objects by traversing the references. If there isn’t such a root or roots, you can

always add a class that will serve this purpose. This is the method used by most

existing serializations, and it deserves more discussion. There are two basic

approaches to its implementation, and if you are not careful there may be

unpleasant side effects.

R2

1

1

1

1

1

1

2

2

2

3

7

4

3

3

6
5

4

2

4 53

6 7 8 9 x

R1

Fig. 2.5 Visiting objects by traversing pointers from roots R1 and R2. Nodes marked 1 are direct

neighbours of the roots, nodes marked 2 are their direct neighbours, and so on until there are no

unvisited neighbours. The numbers express the depth from the roots

23When the persistence is built on memory pages we do not need to do this.
24When using a doubly-linked list, removing an object is instant; removing it from a singly-linked

list requires a search.

62 2 Fundamentals of Persistence

When traversing a general graph like this, we can proceed in two ways—depth

first or breadth first. The depth-first search is usually coded as a recursive function

which we call with obj¼root. This is a pseudo-code:

void depthSearch(void *obj){

for(all references ref of obj){

if(ref not stored yet){

depthSearch(ref);

}

store(obj);

}

}

The breadth-first search is best implemented with a FIFO25 queue, and the

implementation is not recursive:

void breadthSearch(void *obj){

queue.in(obj); // add obj to the queue;

while(queue not empty){

obj=queue.out(); // get next object from the queue

save(obj);

for(all references ref of obj){

if(ref has not been in queue yet){

queue.in(ref);

}

}

}

}

Both implementations need one bit on every object, in order to mark whether the

object has been stored (depth-first) or whether it has entered the queue (breadth-first).

Both implementations need additional storage, stack or queue, which may grow

to the size proportional to the number of objects. There is an important difference

though: the system stack used by the recursive function usually has a fixed limit, but

you can code the FIFO queue so that it increases its size when needed. If you have

many objects the implementation with the fixed-sized queue may crash. That is the

reason why Java serializations and some C# serializations crash for long chains of

references.26

In order to traverse the graph of references, regardless which algorithm we use,

we need three things:

(a) Location of all the pointers embedded in each object; this information is in the

mask we described in Sect. 2.1.3.

(b) Type (and size) of the target object as allocated. When inheritance is used, this

type may not agree with the type of the pointer.

(c) Additional bit or some other way to mark objects that have been recorded;

otherwise the traversal may end up in an infinite loop.

25 First In First Out.
26 DOL and QSP persistence for Objective-C in Chap. 7 use the breadth-first implementation.

2.1 Algorithms and Techniques 63

http://dx.doi.org/10.1007/978-3-642-39323-5_7

The standard way of solving item 2 is to have a virtual function which returns the

type of the allocated object, either directly or through class Reflect—see online

listing list2_9x.cpp.

There are three ways to provide the additional bit needed under item 3:

1. We can add a member from below or from above (Sects. 2.1.1.1 and 2.1.1.3).

2. We can keep a dictionary, for example a hash table, of references to all objects

that have been stored (depth-first) or were admitted to the queue (breadth-first).

This requires both additional storage and processor cycles at the part of code

which repeats many times.

3. If you aim for ultimate performance, you can use the following, a rather dirty

trick to store the required bit.

Useful Trick No. 4

All references and object sizes are multiples of four, with two lower bits

never used.

One of these bits can record whether an object was already visited. If you have

any control over the allocation, the obvious candidate is the field storing the size of

the object. This field usually precedes the memory image of the object.27

Example of how this could be applied to a member28:

#define flagMask (size_T)3;

#define sizeMask ~(size_T)3;

class Book {

size_t size; // always multiple of 4

void setFlag(int flg){

size=size&sizeMask;

if(flg)size=size | 1;

}

int getFlag(){ return size&flagMask; }

void setsize(int flg){

size=size&sizeMask;

if(flg)size=size | 1;

}

size_t getFlag(){ return size&flagMask; }

Now we have everything ready for the algorithm which collects all objects—see

Listing 2.10. Function getAllObj() lives under the Utility class, and it builds a
chain of UtilLink objects that point to recorded active objects.

Functions setBit(), clearBit(), and getBit() provide access to the special
bit. The mask of regular pointers has been converted into a more convenient
format—a table where each entry gives the offset of the next regular pointer.

27 For more details see Chap. 6 where this trick is used in the QSP persistence for Objective-C.
28size_t is the same as unsigned int for 32-bit compiler, but 64-bit compiler it is unsigned
long long, which is 8 byte long.

64 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_6

For example, if the mask is [H, int, R, R, float, R, int], where H is the hidden pointer,
and R is the regular pointers, then tab[]¼{8,12,20,�1}.

Listing 2.10 The heart of the algorithm that expands, breadth-first, from the root to

all other objects via their pointers. This sample program works only with pointers to

single objects. It handles neither strings nor arrays

class PersistObj {
public:

virtual Reflect *trueClass(){return NULL;};
virtual void createMask(){};

};
// when we remember head and tail, this list works as a queue
class UtilLink {
public:

PersistObj *obj;
UtilLink *next;
UtilLink(PersistObj *rt,UtilLink *last){

obj=rt; if(last)last->next=this;

next=NULL;}
};

UtilLink* Utility::getAllObj(PersistObj *root){
UtilLink *u,*unew,*tail; PersistObj *p,*regPtr;
int i,*tab,*code; Reflect *ref; void **locRegPtr; char *msk;
createAllMasks(); // until this time they may not been needed

ref=root->trueClass(); // get reflection for the target object
root=ref->trueObj; // replace root by the true object
allObj=new UtilLink(root,NULL); // root is first on the list
for(u=tail=allObj; u; u=u->next){

p=u->obj; // object to expand, it is a true object

already
Utility::clearBit(p); // before reflection, clear the

bit
ref=p->trueClass(); // reflection on the target object
tab=ref->ptrOff; // offsets for pointers on p
for(i=0; tab[i]>=0; i++){ // walk through regular pointers

locRegPtr=(void**)((char*)p+tab[i]); //location of

regPtr
regPtr=(PersistObj *)(*locRegPtr);
if(regPtr==NULL)continue; // do not follow, NULL

pointer
// skip when target on the list or when p==target
if(Utility::getBit(regPtr) || p==regPtr)continue;

ref=regPtr->trueClass(); // reflection on the target
regPtr=ref->trueObj; // replace regPtr by true object
unew=new UtilLink(regPtr,tail); // add to the chain
tail=unew; // remember the new tail of the chain
Utility::setBit(regPtr); // mark new object as expanded

}
Utility::setBit(p); // give p the "used" status again

}
// make all objects valid again by removing the bit
for(u=allObj; u; u=u->next){

p=u->obj;
Utility::clearBit(p);

}
return allObj; // beginning of the chain

}

Note that in C and C++ (but not in C#. Objective-C or in Java) pointers can lead

into the middle of an object. This can be result of multiple inheritance or of an

2.1 Algorithms and Techniques 65

improper use of an embedded object as shown in Listing 2.11, where d spans over

56 bytes, between addresses 6044696 and 6044751, and pointers a, b, c, and x

point to various locations inside this span.
The objects that we want to save should include only full, allocated objects, not

their parts possibly overlapping or incomplete. In Listing 2.11 the virtual function
trueObj() takes care of pointers such as a and b (it replaces them by d), but
unfortunately it cannot correct pointers such as c or x. However, if such a pointer
exists anywhere in your design,29 there must also be a pointer to the entire D object
which contains the small part.

Such duplications are easy to eliminate. Before writing the object to disk, do this:

ALGORITHM 2.1: Eliminate Embedded Objects from the List

1. Sort the objects by two keys:

Priority 1: Increasing starting address

Priority 2: Decreasing address of the last byte

2. Traverse the list while dropping embedded objects.

Assumingwe have an array of pointers to the objects, arr[], we do it like this:

for(i¼0,k¼1; k<numObj; k++){

if(arr[k]->start[k] <¼ arr[k]->end[i])continue;

//remove k

else {i++; arr[i]¼arr[k];}

}

Listing 2.11 In C++, there are three situations when a pointer can lead inside an

object—in case of multiple inheritance, when pointing to an embedded object or

pointing inside an array of objects

class A {int a; };

class B { int b; };

class C {int c; };

class D : public A, public B {

public:

int d;

C cObj;

C arr[10];

};

int main(){

D* d=new D;

A* a=(A*)d;

B* b=(B*)d;

C* c= &(d->cObj); // bad practice, but it can happen

C* x=(&(d->arr[7])); // bad practice, but it can happen

printf("sizeD=%d d=%d a=%d b=%d c=%d x=%d\n",sizeof(D),d,a,b,c,x);

// PRINTS sizeD=56 d=6044696 a=6044696 b=6044700 c=6044708 x=6044740

29 It should not – it would be a poor design.

66 2 Fundamentals of Persistence

2.1.7 Java-Style Collecting Objects

As we can deduce from the output of Java serialization in Fig. 1.6, Java uses the

depth-first algorithm which calls recursive function serializeObj(root)—this is a
pseudo code30:

void serializeObject(Object obj){

if(class.myClass is not serialized)writeClass(obj.myClass);

mark obj as serialized;

for all members m of obj do {

if(m is a reference){

if(object m already serialized){write reference;}

else {serializeObject(m)};

}

else write m;

}

writeObject(obj);

}

where serializeObject() recursively traverses inheritance hierarchy.
As we explained before, besides the performance penalty for calling a recursive

function, this approach is vulnerable to stack overflow. For example, if you have a

linked list of 100,000 objects, you may need 100,000 stack frames, and your

program will crash with StackOverflowError.

2.1.8 Binary Serialization

We use the term binary for the serialization in which the byte images of the objects

are written to the disk as they are. This is quite different from the binary Java

serialization or the binary serialization in C# which creates and expands the

description of each object and stores this description in a binary format.

Of all the approaches to persistence described in this book, only the binary

option of the DOL library has used31 this method. Yet it is simple, and as the

benchmark in Chap. 8 shows, it is highly efficient.

DOL is based on the idea of integrating a library of data structures with

persistence.32 The application classes are not allowed to use members which are

raw, plain pointers. All pointers are pre-registered in the library, so there is no need

to detect them in the application classes.

When collecting active objects, the breadth-first approach is used, and when

writing objects to disk, each object or array or objects is written in two records:

30 The underlined functions are pseudo code. There are no functions with these names in Java.
31 Since 1989.
32 The idea was introduced in Chap. 1 and is discussed more in Sect. 2.1.3.4.

2.1 Algorithms and Techniques 67

http://dx.doi.org/10.1007/978-3-642-39323-5_1#Fig6_1
http://dx.doi.org/10.1007/978-3-642-39323-5_8
http://dx.doi.org/10.1007/978-3-642-39323-5_1

1. Header, as a block of bytes:

struct ObjectHeader {

unsigned long objAddress; // starting address

int objSize; // size of single object

int numObjects; // 1 if single object

int typeCode;

};

2. The object as the block of bytes.

Note that there are no generated object IDs. The original object address is used as

its ID.

The pointers are swizzled when reading the data from the disk. Pairs

(oldAddress, newAddress) are stored in a hash table, with the oldAddress used as

the key. The table is used both as a container of all objects that were read from the

disk and also for the conversion of the pointers to these objects.

With buffered IO, the disk access is reasonably fast. Figure 2.6 shows the typical

format of the output file.

2.1.9 ASCII Serialization

The serialization which stores objects as blocks of bytes is highly efficient in both

speed and data footprint. However, when transferring data from one operating

system to another, for example between MS Windows and UNIX or Apple, binary

data is meaningless unless you provide an automatic format translation. However,

an ASCII text file usually works without a special conversion. This is one of the

reasons why C# and Java provide XML serialization. ASCII format also allows

visual reading of the file, which helps debugging.

The problem with generating ASCII representation of objects is that, especially

in C languages, some types may need a different representation depending on the

context. A byte can be a true ASCII character or a small integer; representing

characters as numbers is inefficient and misleading when debugging, and if the

character represents a number, some values will be unprintable characters. With

float numbers there may be a question of accuracy. My experience is that pointers

can be safely stored as (unsigned int) or hex, but that for other fields it is better to let

the application programmer decide about their storage format.

That brings us to the problem we encountered with a large business system

where serialization and deserialization functions represented one-third of the

code—see footnote 3 in Chap. 1. Maintaining separate serialization functions for

writing/reading is dangerous. If the two functions do not match, everything

breaks down.

ASCII serialization in DOL33 (Data Object Library 2013) has complete control

of both hidden and regular pointers, and it stores/restores them transparently and

33 In DOL, some macros have different names, but for the sake of clarity we use macros that we

have been using so far.

68 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_1

automatically. The user supplies only the format for the remaining fields such as

characters, floats, and signed/unsigned integers, and a simple code generator creates

pairs of serialization functions that are guaranteed to match. Here is how Employee

and Manager objects are managed in the application code, and what is the resulting

disk image:

// PERSIST(T) manage pointers such as next,tail,secretary

class Employee {

PERSIST(Employee);

float salary;

int phone;

};

FORMAT(Employee,”%6.2f %d”,salary,phone);

class Manager : public Employee {

PERSIST(Manager);

char deptID[4]; // string of up to 3 characters

};

FORMAT(Manager,”%3s”,deptID);

// Invocations of the data structures from a library

RELATION_RING(Manager,Employee) myEmployees;

RELATION_ONE_TO_ONE(Manager,Employee) toSecretary;

++++++++++++++ GENERAL INFO (block of 28 bytes)
style = style of persistence
time = time stamp (8 bytes)
numClasses = number of classes
++++++++++++++++ NEXT CLASS +++++++++++++++++++++
ClassHeader (block of 12 bytes)
mask1 = mask of pointers (objSize bytes)
mask2 = mask of inheritance (objSize bytes)
nameString (size defined in the header)
++++++++++++++++ NEXT CLASS +++++++++++++++++++++
ClassHeader (block of 12 bytes)
mask1 = mask of pointers (objSize bytes)
mask2 = mask of inheritance (objSize bytes)
nameString (size defined in the header)
++++++++++++++++ NEXT CLASS +++++++++++++++++++++

..... repeats numClasses -times
++++++++++++++++ NEXT OBJECT ++++++++++++++++++++
ObjectHeader (block of 12 bytes);
Object ... raw block of bytes
++++++++++++++++ NEXT OBJECT ++++++++++++++++++++
ObjectHeader (block of 12 byte s);
Object ... raw block of bytes
++++++++++++++++ NEXT OBJECT ++++++++++++++++++++

..... repeats until the end of file

Fig. 2.6 Format of the DOL binary serialization file. All records are binary

2.1 Algorithms and Techniques 69

Image of a Manager object on the disk file:

Line 1 (address, class, how many): 6044696 13 1

Line 2 (automatic pointers—next, tail, secretary): 6045012 6044540 6045084

Line 3 (user controlled—salary, phone, deptID): 10450.50 6133885211 A23

2.1.10 Deallocation and Garbage Collection

The great advantage of serialization is that it does not require any garbage collec-

tion or special deallocation techniques. During the program run, objects are

dynamically allocated and deallocated through calls to malloc() and free()

which are hidden under the operator new() and delete(). And because only active
objects are written to the disk, the serialization itself works as a space-cleaning
mechanism.

2.2 Memory Paging

2.2.1 Bitmap

The mask which we used in serialization clearly identified pointers inside any

object, without paying attention to inheritance and embedded objects. It gave us a

flat view with positions of the pointers clearly visible.

Perhaps we can apply a similar idea to the entire data space, and instead of

saving individual objects, we could save the entire data space, in one shot, as a large

block of bytes. The only thing we would need would be a mask that would show us

where are the pointers that we have to swizzle. If that mask uses one bit for each

potential location of a pointer with addresses divisible by 4 (or 8), the mask would

add the overhead of only 1/32 (or 1/64) of the data space—a quite reasonable price

to pay for the service we’ll get—see Fig. 2.7.

For example, assume that we have an address space of 65536 bytes, from 52004

to 117539 and at address 70104 we allocate a 20-byte object with 3 pointers offsets

Persistence based on memory paging is a good alternative to serialization. We

allocate objects from pages of memory, and when storing the data we move

entire pages between the memory and the disk, without looking at individual

objects. This method is fast and space efficient, but it must take over both

allocation and reuse of the free space including arrays. Since we are not saving

individual objects, we need a different mechanism to identify pointers and, for

this purpose, a special bitmap can be handy.

70 2 Fundamentals of Persistence

{0,8,16}. The address space has 65536/4 ¼ 16384 potential pointer locations, so

the bitmap needs 16384 bits ¼ 16384/8 ¼ 2048 bytes.

When allocating the new object at address 70104, the pointer locations are

70104, 70112 and 70120, and the following bits must be set: (70104 � 52004)/

4 ¼ 4525, (70112 � 52004)/4 ¼ 4527, and (70120 � 52004)/4 ¼ 4529.

We have to mark both the hidden and the regular pointers because both must be

swizzled, each using a different algorithm.

Note that when using smart pointer PersistPtr<T> explained in Sect. 2.1.2,
updating of the bitmap is especially efficient. The default constructor of this pointer
can automatically set the appropriate bit in the bitmap.

template<class T> PersistPtr {

T *ptr;

public:

PersistPtr(){

ptr=NULL;

. . . // mark the bitmap at the position of ‘this’

}

T* operator->() const{ return ptr; }

. . . // other operators

};

When swizzling pointers during serialization, we had to swizzle only regular

pointers. We knew the type of each object, so we could just copy34 hidden pointers

from the mask of its class.

When we work with a block of memory, swizzling is more difficult. We have to

distinguish between hidden and regular pointers, and we cannot copy hidden

pointers from the mask because we have no clue which mask would apply.

A hidden pointer can be recognized by its value—it must be in a narrow address

range of the virtual function table for the old data.

Since the introduction of C++ in the early 1990s, all C++compilers used the

same convention. If two programs shared the same *.h files and listed them in the

same order, the virtual function tables were identical, except for usually being in a

different memory location. The conversion of hidden pointers was easy: after we

object space (4 bytes per pointer)

……….. pointer ……………………..

bitmap (8 bits per byte)

Fig. 2.7 Mapping potential pointer locations from the object space into the bitmap

34 This was done by a special operator new().

2.2 Memory Paging 71

detected a hidden pointer, we added an offset which was the same for all the hidden

pointers.

This year some applications using DOL memory blasting35 occasionally crashed

with a mysterious error, which sometimes did not repeat. After a week of detective

work we found that Microsoft Visual C++ 2010 usually maintains the same

v.f. table but, for unknown reasons,36 it may change the order in which the classes

are listed in that table. Usually, the table entries are uniformly spaced, but we

encountered one case when they were not—by mere 4 bytes, but enough to confuse

our original, simple algorithm. Replacing it was not trivial, because swizzling of

hidden pointers is typically performed for every active object, so the performance

matters.

The new DOL algorithm first checks whether all the old/new pairs fit the

uniform-offset pattern. If they do, it uses the offset. If they do not, it uses an

algorithm which is easiest to explain by an example:

Let’s assume that we have four classes and that we know the values of their

hidden pointers—both the old ones (before saving to disk) and the new ones (when

reading the data from disk).37 Assume that the old values are sorted38:

i class olddif new

0 Publication 3359488 8799040

1 Journal 3359504 16 8799008

2 Book 3359536 32 8799056

3 Report 3359572 36 8799024

In this case, the range of the original pointers is 335572 � 3359488 ¼ 84,

which is different from the new pointers 8799008 � 8799060 ¼ 48. Also, the old

pointers are not uniformly spaced.

We make a sparse table sTab[] with (3359572 � 3359488)/16 + 1 ¼ 6 entries,
where 16 is the smallest value in the dif column. Then for each i we set sTab[old
[i]-old[0])/16]¼new[i], which gives us the following table:

k sTab

0 8799040

1 8799008

2 0

3 8799056

4 0

5 8799024

The conversion is instant. For example, when converting old hidden pointer

3359536, we calculate k ¼ (3359536 � 3359488)/16 ¼ 3, and the new value is

35 DOL binary and DOL ascii do not use bitmap.
36 This could be because of the incremental compilation in VS2010.
37 These values can be found from masks derived in Sects. 2.1.1 and 2.1.2.
38 In order to demonstrate the algorithm, we disturbed the numbers more than when we encoun-

tered them in real situations.

72 2 Fundamentals of Persistence

sTab[3]¼8799056. In real applications, we have not encountered a case where sTab

[i]¼0 for more than one i.

2.2.2 Pages of Memory

The bitmap allows us to build simple yet highly efficient persistent data. We can

allocate a large block of memory, and we set aside an additional, 32-times smaller

block, for the bitmap. We modify the new() operator so that it allocates new objects

from this block, and we make sure that all default constructors mark the bitmap for

all the pointer members. When saving objects to disk, we simply dump the entire

block to disk, together with the old address and type of the root object and the table

of old hidden pointers.

When reading the data from the disk we allocate the same amount of memory,

copy the disk content in it and swizzle all the pointers recorded in the bitmap. If

there is only one block, all pointers are swizzled by the same increment. The bitmap

is persistent—no swizzling is required.

This is so simple and efficient that you must be wondering why anybody would

bother to use serialization. The weakness of this approach is the fixed size of the

block. In real life applications, you rarely know how much space your data might

require, and allocating a bigger block of memory, copying the old image in it and

swizzling all the pointers may pause your program for long enough to make this

approach prohibitive. After all, this is essentially the early-Smalltalk model from

Chap. 1, only improved by the bitmap.

What we need is an arrangement which would use not one block of data but

pages of virtual memory, with system pages still working behind the scene as usual.

The following scheme was proposed by Mark Kraemer from Zycad Corp. in

1993, was implemented as memory blasting in DOL, and was first published on

pp. 379–386 in Soukup (1994).

The DOL implementation assumes that the size of these pages is a power of

2. This is only a minor performance improvement which allows frequently used

division to be replaced by logical shift, and modulus operation by logical AND. The

following description assumes that the page size, pgSz, can have any size which is
A multiple of 4 bytes (or 8 bytes on 64-bit hardware).

The problem with this entire approach is that, for a given pointer, we need fast

access to the page in which its target object is located. For this purpose, we keep

array pageStart[], where pageStart[i] stores the starting address of the page
which starts anywhere between i*pgSz and (i+1)*pgSz-1>. In other words, page
starting on address p is recorded in pageStart[p/pgSz], using integer division. For
any allocated page there is only one corresponding entry in pageStart[], and some
pageStart[] entries may be 0; see Fig. 2.8. The best way to learn how this works is to
go step by step through a simple example.

2.2 Memory Paging 73

http://dx.doi.org/10.1007/978-3-642-39323-5_1

Example39:

As shown in Fig. 2.8, assume we allocated four pages that start at 12304, 13584,

15248, and 16404, and we record them by dividing their starting address by the

page size, for example 13584/1024 ¼ 13.

Question: Where is pointer 15372?

Answer: 15372/1024 ¼ 15, pageStart[15]¼0, it is on page 14 (one step down).

Address inside page ¼ 15372 � 15248 ¼ 124, bit number 124/4 ¼ 31

Question: Where is pointer 15260?

Answer: 15260/1024 ¼ 14, pageStart[14]<¼15260, it is on page 14.

Address inside page ¼ 15260 � 15248 ¼ 12, bit number 12/4 ¼ 3

Question: Where is pointer 15208?

Answer: 15208/1024 ¼ 14, pageStart[14]>1508, it is on page 13 (step down).

Address inside page ¼ 15208 � 14204 ¼ 1004, bit number 1004/4 ¼ 251

Example40:

Assume that data from Fig. 2.8 was stored on disk, and we are restoring the data.

Typically, the pages are allocated to completely different locations—they may not

be in the same order. Let’s see how we swizzle regular pointers if the new pages are

as shown in Fig. 2.9.

Question: Convert old pointer value 14228.

Answer: 14338/1024 ¼ 13, 14228 > 14202, old page is 13.

Address within the page is 14228 � 14204 ¼ 24

From Fig. 2.9, old page 13 corresponds to new page 52

New address is 53748 + 24 ¼ 53772

map 11

map 12

map 13

map 14

map 15

map 16

page 11

page 12

page 13

page 14

page 15

page 16

map 0 page 0

page star�ng at 15248

page star�ng at 16404

each page 1024 B

bitmap

each bitmap 32 B

bitmap

bitmap

map 17 page 17

pageStart[]mapStart[]

0

0

.

0

0

page star�ng at 14204

page star�ng at 12304

Fig. 2.8 Persistent memory consisting of pages pgSz¼1024

39 This is the same example as used in Soukup (1994) on pp. 381–382.
40 This example is not in Soukup (1994).

74 2 Fundamentals of Persistence

Potential improvements and interesting details

1. The beginning of arrays pageStart[] and mapStart[] is usually unused, for

example entries 0–11 in Fig. 2.9, and entries 0–51 for the new pageStart[] in

Fig. 2.9. The idea is to start the array from the index corresponding to the first

page, and be ready to shift the assignment if some page has a lower address.

2. There is no need to store on disk the unused entries –those with pageStart[i]¼0.

You can either store the used section (heavy frame in Fig. 2.8) as it is, or store the

array as a sparse array.

3. Bitmaps are persistent; they do not need any swizzling.

4. The size of arrays mapStart[] and pageStart[] depends on the original estimate of

the total expected data space. If this estimate is exceeded, we do not have to

reallocate the existing pages, only these arrays. In order to make this fast, we

recommend to select the page size close to the realistic estimate of the required

space—without any safety. That way you end up with one or a few pages, and

even if the arrays have to be re-allocated, it is fast.

Useful Trick No. 5

If your objects have many non-structural members, detecting pointers by

traversing the bitmap is not efficient, because the algorithm walks through

many 0s before it hits a pointer. We can speed up this search significantly by

treating the bitmap as an array of integers. Only if an integer is not 0 do we

examine its bytes, and only if a byte is 0 do we examine its bits.

page 52

page 53

page 54

page 55

page 56

page 57

page 0

star�ng at 57300

star�ng at 60008page 58

new pageStart[]

0

star�ng at 55312

page 11

page 12

page 13

page 14

page 15

page 16

page 0

star�ng at 15248

star�ng at 16404

page 17

old pageStart[]

star�ng at 14204

star�ng at 12304

star�ng at 53748

Fig. 2.9 Assignment of pages when reading data from disk can be random (example)—see heavy
arrows. Page size must remain the same, here 1024 bytes

2.2 Memory Paging 75

2.2.3 Dynamic Allocation and Garbage Collection

Any of these techniques work quite well until you start to destroy objects. Unless

you manage free space, the memory and disk footprints may grow out of control.

Real life story

One of our consulting appointments was to examine the core of a telephone
switch and try to improve its speed. Telephone switch is a computer which pro-
cesses human voices converted to a stream of numbers, multiplexed and transferred
in packages. The system was written in a special object-oriented language (not C++),
and each telephone call created hundreds of objects which, often within seconds,
were again deleted.

We suspected that the creation and especially destruction of all these objects
took a long time, so we made the following experiment. We requested a block of
memory at the beginning of each phone call, and allocated all the objects from it.41

Instead of the destruction of individual objects at the end of call, we simply freed the
entire block of memory. It made the switch 30 % faster!

Then we tried a different strategy. For each class, we kept a linked list of free
objects. Instead of allocating new objects, we picked the ready-made objects from
this list and, instead of destroying them, we hooked them to the list by resetting two
pointers. It was even faster!

We learned two lessons: (a) When looking for high performance, do not under-
estimate the time needed for creation and destruction of objects. (b) Keeping free
lists of objects by class is very efficient.

The problem with building persistence on pages of memory is that you must take

overmemorymanagement including the disposal and reuse of objects.And thismemory

management must be persistent. For example, the disk file must record the beginning of

each list, and the pointers connecting the free list must be marked in the bitmap.

A highly effective and simple to implement method of reusing objects is to keep,

for each class, a list of discarded objects. If the list is empty, operator new()

allocates the next object from the last, not completely used page. When it is not

empty, it just picks up an object from the beginning of the list. Operator delete()

always attaches the unwanted object to the list.

If you want to be able to mix non-persistent objects with persistent ones, you

need new() and delete() for persistent objects, and a set of different functions, say

npNew() and npDelete(), for non-persistent objects which are managed outside

your memory pages, directly from the heap.42

41 This is sometimes called arena allocation.
42 You can override delete() but you cannot overload it with different parameters.

76 2 Fundamentals of Persistence

When an object is discarded, we believe it is not a dirty technique to use its first

4 bytes for the pointer that forms the free list.When the object is being reused, we only

have to correct the first 4 bytes if there is a hidden pointer. The free list works like this:

class Book {

Book *freeList;

void addFree(Book *b){

*((Book**)b)=freeList;

freeList=b;

}

Book *getFree(){

Book* b=freeList;

if(b)freeList=(*((Book**)b);

return b;

}

There are several ways to make free lists persistent, but only the following

method is both conceptually correct and has the ultimate runtime performance.

Whenmoving an object to the free list, we reflect the change of its status by changing

its fingerprint in the bitmap to 100...00, essentially registering only one pointer at the

beginning of the object. When reusing an object (and removing it from the free list),

its bitmap record will go back to the fingerprint of the particular class. This way, the

free list pointers will be automatically swizzled with other pointers.

Note that if every object starts with a hidden pointer as happens in DOL, the first

four bites of any object are already marked as a pointer in the bitmap. Thus without

any special action, the free list is automatically persistent. However, some of the old

pointers that may still be in the object image will go through the swizzling uselessly

and will make it slower.

Listing 2.12 shows the implementation.

2.2 Memory Paging 77

Listing 2.12 Keeping chains of free objects for each class43

// first 4 bytes of the object represent the ’next’ pointer

#define NEXT(P) (*((void**)P))

class A {

static void *objHead; // first 4 bytes of the prototype

static void *freeTail;

// . . .

public:

void* operator new(size_t sz){

void *p;

. . .

if(!freeTail) p=allocateFromPage(sz);

else {

p=NEXT(freeTail); // from the chain of free objects

if(p==freeTail)freeTail=NULL;

else NEXT(freeTail)=NEXT(p);

NEXT(p)=objHead;

}

restoreBitmap(p); // restore bitmap to valid obj.

return (A*)p;

}

void operator delete(void *p){ // does not destroy the object

setFirstBit(p); //set bitmap to 100..0 for this object

if(!freeTail){NEXT(p)=p;} // puts it on the free chain

else {NEXT(p)=NEXT(freeTail); NEXT(freeTail)=p;}

freeTail=p;

}

int main(){

A* ap=new A;

delete(ap);

Note that this handles the reuse of single objects but not of arrays.

Note also that memory paging and serialization do not exclude each other.

Serialization can traverse all objects regardless of how they were allocated; it is a

handy tool which cleans the memory pages of any non-active objects that may be

accidentally left there. When deserializing the data we only have to make sure that

the new objects are allocated from our pages.

This can be arranged by overloading operator new() for all the application

classes and controlled by a global switch, pgAlloc:

class Book {

void* Book::operator new(size_t sz){

if(pgAlloc) … // allocate from pages

else … //allocate with malloc() or as char[sz]

}

43 The online code does not show the adjustments to the bitmap.

78 2 Fundamentals of Persistence

The purpose of pgAlloc is to allow serialization to operate in two modes:

standalone or alternating with memory paging. Alternating memory paging with

serialization is a good practice, because serialization automatically removes free

lists, all garbage, and it defragments the data space.

So far, we have not discussed allocation and free storage of arrays. In C++ there

are two types of operators new() and delete(): the static operators which are

associated with some class and usually allocate/delete individual objects and the

global operators which allocate/delete arrays.

Allocation of arrays brings the following challenges:

1. Can we allocate arrays that are larger than our page?

2. How to reuse arrays? Could we merge or split them?

3. A fast algorithm for finding a free array of the required size is instrumental.

When an array is larger than one page, we can allocate several abutting pages as

one large block memory, and allocate the array across the page boundaries. All

pages of this set must be marked so that when reading them from disk, they will be

again adjacent to each other. Their bitmaps work as usual.

These problems have been well researched, and it depends on you and your

application how fancy a management of the free space you chose. Because serializa-

tion provides defragmentation and cleanup, we are in favour of a simple free storage.

One possible way to manage free arrays is to use another bitmap,44 which marks

both ends of each free array—see Fig. 2.10.45 When freeing an array, the bitmap

tells us whether the new array butts to a free space on either end, and the record in

the adjacent field tells us how large that free space is. Without any search or

expensive calculation, we can combine adjacent free spaces.

The assumption for all this is that arrays are allocated from a different part of

memory than single objects—always an array abutting on an array, which is a

common practice today. Arrays must be at least 16 bytes long, because they have to

be doubly linked—when reusing an array we may select an array from the middle of

the chain. These arrays must be persistent, which affects the bitmap maintenance

while moving arrays to/from the free list.

A more elaborate approach is shown in Fig. 2.11. Single free objects are stored

by class, short arrays and strings by size, and large arrays are stored in a height-

balanced binary tree, which is O(log n) for lookup, insertion, or removal. For

specific differences see Wikipedia. (Knizhnik, POST++, 1999) uses AVL tree;

DOL keeps chains of free objects but does not reuse arrays.

A frequently used improvement is an array of entries for short, frequently

occurring arrays such as text strings, where entry for index i¼(sz/4-1) leads to a
chain of short objects of size sz; see Fig. 2.11.

Short arrays including short text strings are allocated and reused in the same way

as single objects, without recombining them.

44 This means an additional bitmap which is different from the one we used to mark pointer

locations.
45 Ending beyond the page border.

2.2 Memory Paging 79

nxt pre -16 512 nxt

one box represents 4 bytes, dark is the new free array (16 bytes)

bitmap shows that the new array can combine with a 16-byte space on the le�

16

nxt pre -32 5
12

nxt

situa�on a�er the two arrays merged

32

Fig. 2.10 Merging abutting free arrays: we start with two free arrays, one 16 bytes long, the other

512 bytes long, ends marked by light colour in the bitmap. Boxes shown in dark colour represent
the free array which we want to add. Bits in the bitmap tell us that we have an abutting array on its

left, 16 bytes long. This allows us to merge the two arrays. Pointers nxt and pre form a doubly
linked list of free arrays

class B 5120

64 20020

10048

Large arrays - AVL tree

Short arrays/strings

4

8

12

16

512

1

0

1

2

3

127

class A

Fig. 2.11 Free storage for arrays including text strings. Short arrays of each size form a singly-

linked chain and are allocated from the same part of memory as simple objects. Long arrays are

allocated from a different part of memory, and arrays of the same size form a linked list. Their ends

are marked by their size and are recorded in the bitmap, and they can recombine with abutting free

arrays

80 2 Fundamentals of Persistence

2.3 File Mapping

Before we dive into the programming details, let’s look at the main concept which

is simple. We establish a mapping between a section of virtual memory and a disk

file, and then allocate all objects from this section of memory. When the application

stops, all the objects are stored on the file. Then when we start the application with

the same mapping, the objects magically move back to memory again!

One little detail, though. All this would work if, when reading the data from the

disk, we could use the same section of virtual memory. Most of the time, this is not,

and We really should swizzle all the pointers by the offset between starting

addresses of the old and new memory section.

That again is not trivial. The data does not move between the disk and memory

as one block, but as system pages. We could go through the disk data and swizzle

the pointers there, but that would not be very efficient. Instead, we have to swizzle

the pointers as they are loaded into memory.

It works like this. When the application traverses a pointer, the system checks

whether the page with the address stored in the pointer (the address of the target

object) is already loaded in memory. If it is not, it triggers a page fault which results

in loading the page.

At this point we must swizzle the pointers before the control is returned to the

application. For example, we can catch the page fault, copy the page from the disk

without leaving this to the system, swizzle the pointers on the page, and return the

control back to the application.

That assumes that we can find where the pointers are in the new page, and we have

already discussed that at length. Pages may also move in and out of the memory, so it

may happen that the page, which re-enters on the page fault already has the pointers

swizzled. Swizzling them the second time would make them incorrect. One method

to prevent that, is to allow each page to store its own starting address. If this address

agrees with the address to which the page is being loaded, swizzling is not required.

Many operating systems including Windows and UNIX provide a function

which maps a selected section of virtual memory to a disk file. Instead of

implementing persistent objects with our own pages, as we did in Chap. 2.2, we

can implement it with system pages of the file mapping function—essentially

keeping a mirror image between the two entities. However, the data is not

transferred as one block, it moves back and forth in system pages. The advan-

tage is that these pages will naturally support transactions. The disadvantage is

that you need some knowledge of system programming.

2.3 File Mapping 81

Figure 2.12 demonstrates the idea. We start with the root page loaded and the

28800 pointer swizzled by the offset of 1024 to 29824. Traversing this pointer

triggers page fault because page P3 is not yet loaded. After is it loaded, all its

ORIGINAL MEMORY & DISK FILE

root

P1 (26624) P2 (27648) P3 (28672)

28220

28800

NEW MEMORY – root page loaded

root

P1 (27648) P2 (28672) P3 (29696)

28220

29824

offseet 1024

NEW MEMORY – page P3 loaded

root

root

P1 (27648) P2 (28672) P3 (29696)

29244

29824

NEW MEMORY – page P2 loaded

root

P1 (27648) P2 (28672) P3 (29696)

29244

29824

28900

28900

28900

29924

27648

27648 27648

27648 27648 27648

26624 26624 26624

26624 26624

26624

Fig. 2.12 Persistence based on file mapping (the concept). Every page remembers the P1 address

(bold) at the time of its last pointer swizzling (upper-right corner of the page box)

82 2 Fundamentals of Persistence

pointers are swizzled by the offset, including the original 28220 which becomes

29244. When traversing this pointer, it triggers page fault for page P2, which is then

loaded and its pointers swizzled. The original 28900 is now 29924. That pointer

leads to page P3. If it is loaded, there is no page fault and everything runs smoothly

and fast. If P3 is not loaded, we get a page fault, we load it, but we do not have to

swizzle its pointers because we see that the beginning of the current memory

section, 27648, agrees with the number recorded for this page—it is the number

recorded at the right upper corner of the page.

The actual implementation is more complicated. File Mapping pages the disk file

to file views which are in the virtual memory of individual processes.46 Several

processes may map to the same disk file simultaneously. A view can mirror the

entire file or only its section.

This entire feature was clearly designed to facilitate a design of true databases,

which may store large amounts of data and be accessed by multiple processes, often

simultaneously. The purpose of View is to allow access to only a small part of an

otherwise large collection of data, for example in bank or airline reservation

transactions.

As explained in Sect. 1.1, this book is about persistent data that are accessed by

only a single process at any given time, and for this reason all the following

discussion will assume a single process accessing a disk file, and Listing 2.13

shows in code what we explained in Fig. 2.12.

Listing 2.13 is an excerpt from programs List2_13a.cpp and List2_13b.cpp

which are online under bk/chap2. Read it without worrying about the numerous
parameters that make the use of these functions a bit tricky. It is in the call to
MapViewOfFileEx() that you can specify the address where you would prefer the
data to start. As we explained, the function may not satisfy the request, but, if it does,
there is no need for pointer swizzling.

Listing 2.13 Example of File Mapping under Windows. I order to time and test

parts of the algorithm separately, the online version of this program consists of three

source files: List2_13a.cpp, List2_13b.cpp, and List2_13c.cpp

46 Each process has its own independent virtual memory.

2.3 File Mapping 83

http://dx.doi.org/10.1007/978-3-642-39323-5_1#Sec1_1

HANDLE fh; // file handle as for normal disk IO
unsigned baseAddr; // requested address for the beginning of the data
void *newBase; // beginning of the data in the virt.memory
char *p;
unsigned vmSZ; // size limit of the data

// Instead of using create() or open() we have to use CreatFile(),
// otherwise CreateFileMapping() does not work.
// Use OPEN_ALWAYS or OPEN_EXISTING when creating or openning file.
fh=CreateFile(fName,GENERIC_READ|GENERIC_WRITE,0,NULL, OPEN_ALWAYS,

FILE_FLAG_WRITE_THROUGH|FILE_FLAG_RANDOM_ACCESS, NULL);

// create a mapping object for the file, 0=offset on the disk
md=CreateFileMapping((HANDLE)fh,NULL,PAGE_READWRITE,0,vmSZ,NULL);

// Attempt to create a view starting at baseAddr
newBase=MapViewOfFileEx(md,FILE_MAP_ALL_ACCESS,0,0,0,baseAddr);

// If not successful, let the system to chose the new base address
if(newBase==NULL){

newBase=MapViewOfFileEx(md,FILE_MAP_ALL_ACCESS,0,0,0,0);
}

// Examples of use:
p=(char*)newBase;
((int)(p+20032))=1937; // insert 1937 at address (newBase+20032)

float f=(*((float*)(p+11996))); // get float from (newBase+11996)

// flush all remaining pages to the disk
FlushViewOfFile(newBase,totSpace);

// without this, the file remains open
UnmapViewOfFile(newBase);

UNIX (and Linux) has a similar set of functions.47 Using parameter names as in

Listing 2.13, they are

// combines CreateFileMapping()and MapViewOfFileEx()

newBase=mmap(baseAddr,vmSZ,protect,flags,fh,offset);

// equivalent of UnmapViewOfFile()

munmap(newBase,vmSZ);

// change size of mapping (Linux specific)

newBase=mremap(newBase,vmSz,newSize,flags);

// equivalent of UnmapViewOfFile()

msync(newBase,vmSZ,flags);

Figure 2.13 shows where UNIX maps the file. If you want to play with the

Windows functions, beware: possible interaction between processes makes their

use trickier and it is, in our opinion, poorly chartered territory. The online rating of

47 For details, see UNIX man pages or http://my.safaribooksonline.com/book/operating-systems-

and-server-administration/linux/0596009585/advanced-file-i-o/mapping_files_into_memory

84 2 Fundamentals of Persistence

http://my.safaribooksonline.com/book/operating-systems-and-server-administration/linux/0596009585/advanced-file-i-o/mapping_files_into_memory
http://my.safaribooksonline.com/book/operating-systems-and-server-administration/linux/0596009585/advanced-file-i-o/mapping_files_into_memory

Microsoft documentation ranges from 4/4 to 1/4. Mykhailo Oksenenko recently

posted48 several screens of errors and potential problems in their use, and even the

Microsoft documentation for Reading and Writing from a File View warns that an

attempt to use File Mapping of a sparse file of an NTFS partition may result in an

I/O error.

There is also a catch: You can map the disk to the entire virtual memory, but

when you open a View, you have to request a certain size. You cannot exceed or

increase this size later,49 so you typically request more memory than you need.

However, only the used portion of your data is saved to the disk.

Programs available online (List2_13a.cpp, List 2_13b.cpp, and List2_13c.

cpp) compare the speed of storing 300 MB of data for File Mapping and regular read
() and write() with these results in ms50:

Changes on every page Write Read51 Total

File mapping 194 2682 3008 5884

Read/write 149 2763 2815 5727

It is important to understand that you cannot compare numbers in the first three

columns, because the two approaches do different things at different times. When

making a change on every page, file mapping loads page by page, while read/write
only changes a memory location. On the other hand, when writing to disk, file
mapping writes only the remaining pages, while read/write writes the entire data

space. When starting a program, file mapping only has to set up itself without

moving any data, while read/write reads all the data to memory.

Fig. 2.13 File mapping

under UNIX

48 http://mikelaud.blogspot.ca/2010/01/shm-hints-windows.html
49 Under Linux you can, but it may stall the program execution for a while.
50 Timed on the computer which was used for the benchmark in Chap. 7.
51 After restarting the computer. If you read immediately after you wrote, the data is still in the

system cache, and you get only 80 and 228 ms.

2.3 File Mapping 85

http://mikelaud.blogspot.ca/2010/01/shm-hints-windows.html
http://dx.doi.org/10.1007/978-3-642-39323-5_6

The speed of processing clearly is not the reason to use File Mapping for

persistent data, but if we need to access only a few pages from an otherwise large

amount of data, File Mapping will move only those pages and will definitely be

more efficient than serialization.

Both ObjectStore (c) PSE Pro for C++ and POST++ are based on File Mapping.

As in the old Smalltalk model, when using POST++, the user must supply an

estimate of the data size. If the task exceeds this size, the program will crash or it

may pause for a long time.52

PSE does not require any initial size estimate, and we do not know what is under

the hood. One can only guess that when PSE needs more the data space, it perhaps

generates multiple Views—in the same style as whenweworkedwith pages of virtual

memory in Sect. 2.2.2. Listing 2.13 opens only one File Mapping and one View, but

the online version of this program53 tests opening several Views simultaneously.

This approach has been used for two decades. Singhal (1992) reported on a

university project called Texas, to which we did not find any references after 2000.

Soukup (1994)54 showed four pages of code that demonstrated the idea in UNIX.

QuickStore was described in White and DeWitt (1995). Free55 software (Knizhnik,

POST++, 1999) also uses this approach and is free to download from their website.

For more information on these projects see Sect. 4.2. For more information on

ObjectStore look at Lamb et al. (1991), Zikari (2010) and Haradhvala and

Weinreb (1991).

2.4 Persistent Pointers

Until now, we assumed that the prime location of data was in memory and

the pointers in the disk image stored the original memory addresses, and we had

to swizzle pointers after we loaded the data into memory. This section assumes

that the prime location of the data is on disk, and the pointers store the disk

addresses. This implies a few arithmetic operations when dereferencing a

pointer, but no pointer swizzling is required. The secret is a smart pointer

class that makes all this transparent.

52 The latter happens specifically under Linux.
53 bk\chap2\list2_13a.cpp.
54 pp. 386–392.
55 POST++ comes in source from which all comments have been removed, and it is rather difficult

and time consuming to figure out its inner workings.

86 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_4#Sec2_4

2.4.1 The Main Idea

Imagine what would happen if, for every class, we would pre-allocate a large array

of its instances, and when we would need an object or an array of that class, we

would bypass allocation and simply pick it up from this array—see Listing 2.14.

Normally, pointer stores the starting address of the object to which it is pointing,

but if we stored the index into this array, it would be persistent. It would not require

swizzling, and we still could access the object very quickly.56 For the implementa-

tion of the smart pointer which does this, see Listing 2.15.

Listing 2.14 Allocating an array of objects for each class

class Book {
static Book *myArr; // preallocated array
static size_t pool; // next available index
void* operator new(size_t size){ // for a single object

if(!myArr)return (void*)calloc(1,size);
void* v=(void*)(myArr+pool);
pool=pool+size/sizeof(Book);
return v;

}
void* operator new[](size_t size){ // for an array of objects

// . . .identical with new()
}
static void start(size_t sz){

myArr=new Book[sz];
pool=1; // index=0 corresponds to pointer==NULL

}
};
Book* Book::myArr=NULL;
size_t Book::pool=0;

int main(){
Book::start(1000);
Book* bp=new Book();

56 The first object in the array could be unused, thus making index 0 equivalent with NULL pointer.

2.4 Persistent Pointers 87

Listing 2.15 Persistent pointer storing the index

template<class T> class PersistPtr {

unsigned index;

public:

T* operator->() const{

if(index)return (T::myArr+index); return NULL;

}

T* operator*() const{

if(index)return (T::myArr+index); return NULL;

}

PersistPtr& operator=(T *rhs){

if(rhs)index=((size_t)rhs-(size_t)(T::myArr))/sizeof(T);

else index=0;

return *this;

}

size_t getIndex(){return index;}

void setInex(size_t i){index=i;}

};

class Book {

public:

int id;

PersistPtr<Book> next; // note no * in the syntax

. . . same as in Listing 2_12

};

Book* Book::myArr=NULL;

size_t Book::pool=0;

int main(){ // examples of different use

PersistPtr<Book> bp1,bp2; // persistent pointers, no *

Book *br; // regular pointer, use *

Book::start(100); // start the allocator array for 100 Books

bp1=new Book; bp1->id=1; // reg. to pers.conversion, use ->

bp2=new Book; bp2->id=2;

bp1->next=bp2; // use persistent pointers like reg.pointers

br= *bp1; // persistent to regular pointer conversion

printf(“%d %d\n”,br->id,bp1->next->id);

Using a pre-allocated array of objects has many advantages:

(a) Elimination of unused objects requires reference swizzling but, in this case,

such swizzling is simple and fast.

(b) If we want to visit all the objects (as in serialization), instead of traversing the

network of pointers, we can traverse these arrays which is much simpler and faster.

(c) Serialization to disk for an array is more economical than for individual objects:

it needs only one header.

(d) If we want to move entire pages of data between memory and disk, we don’t

need a bitmap to locate the pointers. For each class, we can visit the first pointer

of all objects, then the second pointer of all objects, and so on.

(e) Page size can automatically adjust to a multiple of the object size, thus reducing

problems with large arrays that cross page boundaries.

88 2 Fundamentals of Persistence

There are only two issues we have not discussed yet:

(1) Could unstructured, passive57 objects—with the wide variety sizes such as text

strings or arrays of integers—fit this scheme?

(2) When the preallocated array is all used up, can we enlarge it without copying

the old array into the new one?58

Let’s start with implementing each allocation array as a set of pages, which are

treated as a “virtual” array. The smart pointer has to perform several arithmetic

operations in order to dereference a pointer. That may not have a big impact on the

overall performance, but you should be aware of it.

Even if we manage free space for potential reuse, it may be useful to be able to

clean up all unused objects and to compress the memory—for example, when

ending a session or when we save the data to disk. The following algorithm

shows how to do that. After we shrink the arrays for all the classes, we have to

swizzle59 all their pointers, using array conv[] from this algorithm:

Alogrithm: Removal of Unused Objects by Shrinking the Array

Just before saving the data to disk, Book::myArr has free spaces xxxx
0 1 2 3 4 5 6 7 8

myArr[] ¼ obj1 obj2 xxxx xxxx obj3 xxxx obj4 obj5 xxxx

We shrink Book:: myArr[] and create a temporary conversion array,
size_t Book::conv[]

0 1 2 3 4 5 6 7 8

myArr[] ¼ obj1 obj2 obj3 obj4 obj5 xxxx xxxx xxxx xxxx

conv[] ¼ 0 1 -1 -1 2 -1 3 4 -1

We do this for all classes, and then traverse all objects and convert their

pointers. When pointer ptr points to a Book object, we convert it like this:
PersistPtr<Book> ptr; // persistent pointer to Book

size_t k¼ptr.getIndex(); // the old index

ptr.setIndex(conv[k]); // index conversion

Each object is visited only once, and no search is required

The key to managing the free space is having all free pieces doubly-linked so we

can quickly insert and remove both objects and arrays. The key to defragmentation

is being able to combine butting free spaces into a single larger space.60 The

following example shows one of many possible implementations.

57 Objects that do not harbour any pointers.
58 Copying would trigger changes in all objects pointing into this array.
59 Remember that, in this case, pointers store the integer index into the array, not the object

address.
60 The difference from the normal memory management is that here we deal with arrays of objects

that have the same size.

2.4 Persistent Pointers 89

Example: Let’s assume that:

(a) Free object is a segment of memory which we can temporarily use for storing

any information such as its size or pointers linking it to other free memory

segments.

(b) We can keep a bitmap of our memory space, with one bit per object - see

Fig. 2.14.61

(c) We allocate all objects so that their space can accommodate at least two

integers—at least 8 bytes on 32-bit hardware.

(d) Unstructured memory as text strings will be allocated in chunks of 8 bytes

Figure 2.14 shows the representation of one array and one object. Note that even

though nxt and pre form a doubly linked list, they are not pointers but integer
indexes—thus they are persistent.

Typically, all single free objects are in one list, and free arrays in another.

Another variation is to keep multiple lists, each for certain array size or range of

sizes. There can also be a special class for non-structured data, with one object

8 bytes long. Any text, arrays of integers, etc. would be represented as objects or

arrays of this class.

Figure 2.15 shows how this data organization detects abutting objects and allows

one to combine them into a larger array. It also allows fast splitting of arrays or

pulling a single objects from the free array, depending on your allocation strategy.

Until now, we assumed that we pull individual objects from an array of

preallocated objects. But what are we going to do if we run out of preallocated

objects? Allocating a bigger array and copying the original array in it would not

work, because the existing objects would move and pointers to them would become

invalid.

Instead, we can use a virtual array which is composed of pages, each a shorter

array by itself, but all managed together and indexed as a single array—see

sz
nxt

-sz
pre

nxt
PRE

|----------------- free array of 6 objects --------------------| free object

bitmap marks the ends of each free segment, or a single free object

size sz=6
PRE=pre+1

Fig. 2.14 Space representation of free objects and arrays. For a single object, the bitmap is 1, and

PRE is an odd number. Left end of the array stores the positive size, right hand stores the negative

size. Indexes nxt (¼next) and pre (¼previous) implement the doubly-linked lists

61 Note that bitmaps used in previous chapters kept one bit for every 4-byte location. Here the

bitmap is even smaller—how much smaller depends on the size of the object. Object must be large

enough to store at least two values: SIZE and PRE, i.e. at least 8 bytes, but is usually much larger.

90 2 Fundamentals of Persistence

Fig. 2.16. This is similar to what we discussed in Sect. 2.2.2, except that now we

need such a paging system for every application class. That may appear compli-

cated, but the overhead—both in the lines of code and in the required space—is

practically the same as when we paged the entire memory.

INITIAL SITUATION: pool=17, free objects=13, free arrays=4
base[] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
size x 1 x 4 -4 x x x x 1 1 x x x
next x 12 x 0 x x x x 0 2 x x x
prev x x 0 0 x x x x x x x
bitmap
……. 1 1 1 1 1

AFTER FREEING ARRAY 8-11, it combines with array 4-7 and single 12 and
single 13, resulting in pool=17, free objects=2, free arrays=4

base[] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
size x 1 x 10 -10 x x x
next x 0 x 0 x x x
prev x 0 x 0 x x x
bitmap
……. 1 1 1 1

AFTER FREEING ARRAY 14-16, it combines with free array 4-13, and thus re-
duces pool to 4, with free objects=2 and free arrays=0
base[] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
size x 1 x - - - - - - - - - - - - -
next x 0 x - - - - - - - - - - - - -
prev x 0 x - - - - - - - - - - - - -
bitmap
……. 1 - -

Fig. 2.15 Allocation and free storage of objects: Array base[] for each class . x marks currently

active objects. Index 0 is reserved for NULL pointer, and object at that location is never used.

“pool” is the index of the first so far unused location; the bitmap is the same bitmap as in Fig. 2.14

startPage[0]

startPage[1]

startPage[2]

startPage[3]

pg=0 pg=1 pg=2

MEMORY

DISK: array of A-objects

0

0

SLOTS

Fig. 2.16 Paging an array of objects from disk to memory. Pages move in and out of a few

pre-assigned slots

2.4 Persistent Pointers 91

2.4.2 Array on Disk, Paged to Memory on Demand

An example of this approach is the Persistent Pointer Factory (PPF).62 PPF assumes

that the primary storage of the data is an array of objects on a disk file, with a

separate file for each class. This array is paged to memory as needed—see Fig. 2.16.

There is a limited number of slots to where pages can move. A page is not assigned

any slot permanently. This removes the problem with increasing the size of the

preallocated array without moving existing objects. We can expand the file gradu-

ally by adding pages without any limitation.

Smart generic pointer, PersistPtr<T>, stores the disk address of the target
object, and its operator -> calculates the address each time it is invoked. For
example, if we want to dereference the pointer which stores index 103 in
Fig. 2.17, the program does the following calculation:

Page size is 30, so the object is on page 103/30 ¼ 3, and at position 13 within

this page (103 � 30*3 ¼ 13). At this moment, this page starts at the address

3745648. Figure 2.18 does not say how large one object is; if it were, for example,

24 bytes, then the memory address at which the object resides at this moment is

3745648 + 13*24 ¼ 3745860

class Book

to page 0

to page 1

to page 2

to page 3

to page 4

to page 5

to page 6

array for all
disk pages

limited number of
pages in memory

pg.0: 0-29 pg.1: 30-59 pg.2: 60-89 pg.3: 90-119 pg4:120-149

file book.ppf divided into pages with the same number of objects:

pg.2: 60-89

pg.3: 90-119

pg6:150-179

3745648

3745696

3745780

Fig. 2.17 Disk as the prime data storage. Pages store the same number of objects (here 30), and

are paged to memory as needed

62A commercial product distributed since 1997; the full source is now available on this book’s

website.

92 2 Fundamentals of Persistence

An interesting question is whether it is better to store the disk address or the

object index in the virtual disk array. Listing 2.16 shows the implementation of

operator -> for both cases, and storing disk address results in a slightly faster

access.63 However, storing index makes it possible to handle larger data, potentially

many times64 the size of the virtual memory.

Listing 2.16 Disk as the prime storage—what to store in PersistPtr

// When storing disk address, the dereferencing is faster

template<class T> class PersistPtr {

undisgned diskAddr; // disk address in bytes

T* operator->() const{

if(index)return pageArray[diskAddr/pageSz]+diskAddr%pageSz;

return NULL;

}

};

// When storing disk index, the disk size may exceed virtual memory

// but dereferencing includes additional multiplication

template<class T> class PersistPtr {

undisgned diskIndex; // object index on disk

T* operator->() const{

if(index)return pageArray[diskInd/numOnPage]

+(diskInd%numOnPage)*sizeof(T);

return NULL;
}

};

0 1 1 0 1 1 0

hidden

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

6054 a

2 3 5 6 0 0 06054 b

Fig. 2.18 Compared to Fig. 2.2, each class in Objective-C can keep just one mask (a). The hidden

pointer inserted by the compiler is always in the first field, and pointers of any kind are marked by

1. For faster access, the same information can be converted to format (b), with hidden pointer in

position 0 followed by the list of indexes for the pointer locations

63 PPF stores disk addresses.
64 The factor increases with the size of the object size.

2.4 Persistent Pointers 93

This is all simple and straightforward if the application classes do not use

inheritance. The mask tells us the type of the target object for each pointer, in

other words in which file to look for the object. The persistent pointer then stores the

address or index in this file.

If the application class uses inheritance, the type recorded in the mask may have

multiple meanings. For example:

class Shape {. . .}; // class index=7

class Rectangle : public Shape {. . .}; // class index=8

class Circle : public Shape {. . .}; // class index=9

class Twin { // class index=4

Shape *s1;

Shape *s2;

};

If all these classes are persistent with the PERSIST_CLASS() statements, then the
mask for the Twin class is [7,7]. However, pointers s1 and s2 can lead to a Rectangle
or Circle, and these are stored in different files!!! When inheritance is involved, in
addition to the disk address, the smart pointer must also store the true target type.

For this reason, PPF uses two types of pointers:

– PersistPtr<T> which stores only the disk address, and can be used only when
class T is not using inheritance.65 It has the same size as regular pointer.

– PersistVPtr<T> stores the target type and the disk address, and can be used
under all circumstances. It is the only choice when class T is involved in
inheritance. It takes the space of two pointers.
In PPF, user selects the page size and how many pages should be resident in

memory for each specific class. Listing 2.17 shows the overall setup and the

interface. Macro PERSIST_CLASS(T) overloads operator new() for each class.
Allocating one object simply means adding 1 to the pool, and then asking the
pager assigned to this class for the memory address. For allocating arrays, we need
operator new[], which does the same thing except that it derives the number of the
objects from the given size.

Note that pool starts from 1, not from 0. Index 0 is the equivalent of a NULL

pointer.

65 Typically when no class is using inheritance.

94 2 Fundamentals of Persistence

Listing 2.17 Persistent pointers storing the object index

#define PERSIST_CLASS(T) \

friend PersistPtr<T>; \

void* operator new(size_t size){ \

unsigned u=pool; pool++;

return pgr->getAddress(u);} \

void* operator new[](size_t size){ \

unsigned u=pool; pool=pool+size/sizeof(T);

return pgr->getAddress(u);}\

static unsigned pool; \

static Pager *pgr

#define INIT(T,N) \

T* T::pool=1; \

Pager* T::pgr=NULL

// ——

class Library {

PERSIST_CLASS(Library);

. . .

}

INIT(Library,1);

class Book {

PERSIST_CLASS(Book);

. . .

}

INIT(Book,10000);

// ——

int main() {

PersistPtr<Library> lib = new Library;

PersistPtr<Book> bk = new Book[250];

After a long journey we reached yet another variation of mapping a file to

memory. The difference from the mapping discussed in Sect. 2.3 is that all objects

there were saved in one file. Now each class has its own data file, but there is no

fixed limit on the size of the data.

2.5 Quasi-Single Page (QSP)

When designing a new persistent system that would work with Objective-C, we

combined the best ideas from all the existing approaches. The result is simple

and efficient. It starts with one page of memory which expands to more pages if

more space is required. During the run, discarded objects are reused, and when

saving the data to disk, the memory space is all collapsed to a single page, with

all unused space eliminated. This is the only completely automatic persistent

system—pointer locations are retrieved through reflection, and calls to new()

does not require any modifications.

2.5 Quasi-Single Page (QSP) 95

In some chapters we tell you that they are not critical and that you can skip

them or skim through them quickly. This chapter is just the opposite. It includes

new ideas and algorithms, and we recommend you read it carefully and consider

every detail.

Objective-C is the language used by Apple and is thus important for iPhone

applications. Under the label of “archiving” it has serialization which requires more

manual input than most other languages, and its main flaw—just like in Java and C#

serializations—is the recursive internal algorithm which walks through all active

objects. If the data includes a long chain of pointers, the system stack overflows

easily and the program crashes. The workaround is to maintain a collection of all

active objects and to write them individually to disk, which complicates the matters

and is a potential source of errors.

The purpose of this chapter is to develop a new approach to automatic persis-

tence which would be simpler to implement yet be as fast, if not faster, than the

existing persistent systems. It should run in Objective-C, but the idea should be

applicable to C++, C# and possibly other languages.

The method is new, and we believe that it will be highly competitive in

performance, flexibility66 of use, and simplicity of internal design—not only in

Objective-C, but also in C++ and other languages.

For the benefit of the majority of readers, this chapter uses code samples mostly

in C++. Final implementation in Chap. 6 is written entirely in Objective-C.

This design is a good example of how persistence, data structures, and

allocation—when not treated as orthogonal, can be most efficient while working

jointly toward the same objective.

BUILDING BLOCK 1: Pointer Mask For each class, we can generate the mask

showing pointer locations, either by using the approach described in Fig. 2.2 and

Listing 2.3, or through reflection as will be explained in Chaps. 5 and 6.

However, this mask will be simpler than that shown in Fig. 2.2. Objective-C is a

dynamically typed language and, once we have a pointer, we can determine the type

of the target object. We do not need to give ID to each class; we simply mark the

pointer locations by 1—see Fig. 2.18. Objective-C uses only one hidden pointer at

the beginning of the object. We do not have to record it in the mask but, for

convenience, we can keep its value there.

BUILDING BLOCK 2: Making Classes Persistent We will use the simple

interface at which we arrived in Sect. 2.1.2, with two statements added to each class67:

PersistInterface; will insert additional methods68 needed for the persistence.
PersistImplementation; will insert static members and the implementation of

the added functions.

66 It supports both storing entire pages and serialization, including the existing Objective-C format.
67 The names are slightly changed to fit Objective-C terminology.
68Mostly static, “messages” in Objective-C lingo.

96 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://dx.doi.org/10.1007/978-3-642-39323-5_5
http://dx.doi.org/10.1007/978-3-642-39323-5_6

These two statements will be macros, but clean macros, simply a section of code

that repeats for every class. All pointer members will be registered as a PTR()

statement which, in Sect. 2.2, was in the default constructor:

class Library {

PersistInterface;

Book *books;

Library *next;

int telephone;

char *libName;

public{

Library(){

PTR(books,Book); PTR(next,Library); PTR(libName);

. . . anything else you want here

}

};

PersistImplementation;

Some things are simpler in Objective-C. For example, PersistInterface and
PersistImplementation do not need the class parameter.69 Also, we can use PTR()

for any kind of pointer, while in C++ we were using PTR() for object pointers and
STR() for strings.

Other things are more complicated in Objective-C. There is no equivalent to the

C++ default70 constructor, which automatically invokes default constructors of its

superior (base) classes. In Objective-C, any method can serve as a constructor, but

the traversal of the superior classes must be introduced explicitly.71

BUILDING BLOCK 3: Replacing Allocation The simplest and most efficient

memory management for persistent data is one block (or page) of virtual memory,

from which we allocate all the objects. Storing data to disk is reduced to dumping the

entire page to the disk, and loading the data back to memory is also very fast. Pointer

conversion (swizzling) requires only to add the same offset to all pointers on the page.

We described this method in Sect. 1.4.1 (Old Smalltalk Model), and we pointed

out its main weakness—if the data grows beyond the page size, allocation of a

larger page and copying of the old page into it would be as complicated operation as

storing data to disk. If we move any objects, we have to swizzle all the pointers!

In our new algorithm we will replace one page by a set of pages, but will control

these pages and their sizes in such a way that all the data will be on a single page

most of the time. We will also collapse multiple pages into a single page any time

we’ll be saving the data to disk.

Figure 2.19 shows the architecture. Typically, there is only one or a few pages;

multiple pages are only a temporary measure for additional data. All pages have the

69 The equivalent from Sect. 2.2 would be PersistInterface(Library).
70 Constructor without parameters, e.g. Library(){. . .}.
71We will show in Chap. 7 how you do that.

2.5 Quasi-Single Page (QSP) 97

http://dx.doi.org/10.1007/978-3-642-39323-5_7

same size pgSz, but different fill. Before saving to disk, pages are sorted by their
starting address and converted to a single page.

Before each object or array, the allocation inserts a 12-byte header,72 which

includes the retain count that Objective-C expects to be there. Field addr is a
temporary variable that QSP needs in some algorithms. For example, when travers-
ing all active objects, it takes the role of the “next” pointer which builds the queue.
Later on, when merging all pages into one, it stores the new address of the object
before it actually moves there.

Instances of classes derived from NSObject start with a hidden pointer at the

beginning of the actual object. The overhead is 12 bytes per object,73 which is less

than 16 bytes in the standard Objective-C heap.

class
Persist

pages
pgSz

fill

addr sz count 0 1 ……........ sz/4-1

alloca�on of one object in 4-byte sec�ons:

12 bytes ahead of the object object itself

2-bit flag

Fig. 2.19 QSP allocation usually involves one or a few pages, which are converted to one page

while storing to disk. The lowest two bits of the sz field are used as a type flag: 0 ¼ object or array
with no pointers, 1 ¼ object/array of objects with a hidden pointer, 2 ¼ array of pointers. Field
addr is a temporary space for internal algorithms

72 Note that this is still less than the 16-byte header Objective-C uses when allocating from

the heap.
73 Temporarily, while tArr is used, the overhead is 20 bytes.

98 2 Fundamentals of Persistence

Field (sz) stores the size of the object, except for its two lowest bits which are used

as a special flag. Sizes of objects are always multiples of 4, so the two lowest bits in

this field are unused, and we can use them for this flag with values between 0 and 3.

We will allocate all objects—both instances of application classes and large,

irregular objects such as blocks of text or pictures from the same data space.

Using one large page instead of smaller multiple pages has a potential flaw.

Quoting Mark Bales: One of our systems worked this way but as designs grew, it
required a *very* large block of memory. When we tried to re-load the data back
from disk, the read operation failed. This was because there wasn’t enough space
between various smaller blocks still in use. As a result, I have become convinced
that page-based techniques should remain page-based even on re-read.

Note that this problem can occur for very large data (VLSI design in Mark’s

case) and for programs that re-read the data within the same run. A simple cure is to

provide a smart-read function, which in cases of read failure breaks the data into

multiple pages. That by itself is simple but, for multiple pages, pointer swizzling

becomes more complicated and time consuming. Instead of applying the same

offset to all pointers, we must first find the proper page, and then apply the offset.

Representation of Arrays

The representation of arrays is critical and deserves more explanation. We have

three possible styles of arrays. In all three cases, sz stores the overall size of the

array in bytes.

(a) Arrays that do not include any pointers are stored and represented in the same

way as a block of text, with flg¼0.

(b) Arrays of objects that are instances of persistent classes, each object starting

with a hidden pointer, are stored with flg¼1. A single object derived from

NSObject is a special case—an array of objects with only one object.

(c) Arrays of pointers are special, because they do not need any mask. We know

that every 4 bytes represent a pointer, and their signature is flg¼2.

Listing 2.18 shows the differences in how we use or allocate these different arrays,

and what we do with them when we either traverse all objects or swizzle the pointers.

2.5 Quasi-Single Page (QSP) 99

Listing 2.18 Using various types of arrays

class Chapter;

class Author;

class Store;

class Book {

PersistInterface(Book); // registration of the class

char *name;

int ISBN;

Book *next;

Chapter **chapters; // array of pointers to Chapters

Author *authors; // array of Author objects

Book(){

PTR(next); PTR(chapters); PTR(authors); PTR(stores);

. . . anything else you want here

}

};

// Different ways of allocation store the object differently.

// Persist is the persistent utility

bk->name=Persist.palloc(sz); // text or other no-pointer data

bk->next=new Book; // overloaded new() for a single object

bk->chapters=Persist.allocPtrArr(sz); // pointer array

bk->authors=Book.allocArr{sz); // method automatically added to B

SPECIAL RULE FOR ARRAYS OF OBJECTS:

If you stop using any elements of an array, for example when reducing the

number of elements, you must set all the pointers in the released elements to NULL

or, safer and easier, simply overwrite these elements with 0s.

The program that controls the persistency has no information about how big a part

of the array is actually used. If you don’t follow the Special Rule, the program may

crash when swizzling or traversing pointers.We recommend that raw arrays of objects

such as shown in Listing 2.16 are not used, but instead that they are encapsulated in a

special Array class that takes care of overwriting discarded objects with 0.

There are two situations when the algorithms have to traverse pointers of all

objects: when we traverse the pointer graph starting from the root in order to find all

the active (connected) objects, and then when we are swizzling74 the pointers of

these objects. Assume that we have object obj, and that we want to report all
pointers that lead to other objects. The following code which finds all pointers ptr

74 Resetting pointer values after all the objects move to a different place in memory.

100 2 Fundamentals of Persistence

in obj and calls fun(ptr) has interesting logic,75 which works particularly well in
Objective-C76:

int i,k,mySz; char *obj,**ptr,**msk;

int ptrSz=sizeof(char*);

int flg=getFlg(obj); // get the flag from the allocation record

if(flg==0)return; // there are no pointers in obj

int sz=getAllocatedSize(obj); // get the allocated size of obj

if(flg==1){

mySz=getClassSize(obj); else mySz=0;

char *mask=getMask(obj);

}

for(i=k=0; i<sz; i=i+ptrSz, k=k+ptrSz){ // i for obj, k for mask

ptr=(char**)(obj+i); // *ptr is the value at location i

if(flg==2){fun(*ptr); continue;} // every location is a pointer

// k is used only in the next part

if(k>=mySz)k=0; // repeat the mask for the next section

if(k==0)continue; // hidden pointer, we exclude them

msk=(char**)(mask+k};

if(*msk)fun(*ptr); // if mask is not 0

}

BUILDING BLOCK 4: Algorithms A and B The following two algorithms are

the heart of this entire approach.

Algorithm A traverses all active objects without recursion. It uses field addr as
the “next” pointer when building two stacks: One for the objects still to be expanded,
the second for those already expanded. A simple check whether addr¼¼0 prevents
the same object expanding again.

Algorithm A can be used for two purposes:

(a) To serialize the data in any of the existing Objective-C formats, simply calling

function writeSingleObject(void* ptr) which saves the object without
expansion.

(b) To set up the data for Algorithm B which eliminates dead space and collapses

the data space into a single page. Condition addr¼¼0 marks an object as a dead
space.
For all application classes, the standard allocation is replaced77 by allocation

from our special pages, regardless whether we store the data with QSP or serializa-

tion. Being able to alternate between the two styles of saving the data has many

advantages.

75 This is more an algorithm description than a functional code.
76 You will see this in Chap. 7.
77 The new alloc() method is hidden under PersistInterface.

2.5 Quasi-Single Page (QSP) 101

http://dx.doi.org/10.1007/978-3-642-39323-5_7

The Purpose of Algorithm B Is:

– To concatenate all the pages into one.

– To remove discarded or lost objects.

If, after running Algorithm A, we have a single page and the total space is equal

to the active space, there is no need to call Algorithm B (Fig. 2.20).

It also does not make any sense to do a big cleanup if there are just a few unused

objects. Algorithm B has a flexible, user defined cutoff—for example, it can be

102 2 Fundamentals of Persistence

bypassed if there is only one page and the dead space is not more than 10 % of the

allocated space (cutoff specified as 0.1 for 10 %).

Algorithm B allocates a new, single page to store all the data without the dead

space. Then it traverses the list of active objects that Algorithm A left behind, and

calculates the future address of each object in this new page. Because the objects are

already sorted, this calculation involves only a gradual accumulation of the memory

shift for the dead space and gaps between pages. In the second pass, the algorithm

traverses the active objects again, and swizzles their pointers to the values stored in
addr of the target object. There are no searches or dictionaries. In the third pass all
the active objects are copied into the new page.

The second and third pass could be combined into a single pass, but we would

not gain much. Leaving them separate allows one to copy the data into an existing

page without allocating a new one, assuming that the old page is large enough to

receive the data.78

Algorithm C stores the single page to disk, and it is trivial. It first writes the

header with the overall parameters:
fill ¼ total space required to receive the data,

root ¼ old address of the root,

pageAddress ¼ address on which the old page started and then the table of

registered classes, each entry
class name

size of each instance

pointer mask (includes the value of the hidden pointer)

The hidden pointer is needed for the conversion when loading the data back to

memory, and the mask is for a rough check that the class has not changed.

The page size is not passed; the receiving program can chose any size which is

not smaller than fill.
Finally, there is a binary dump of the entire data space79 and of the bitmap.

Algorithm D allocates a large-enough page and bitmap, and fills both with the

data from the disk. Without looking at individual objects, it runs through the bitmap

looking for pointer locations, and swizzles them including the root pointer by the

same offset (startOfNewPage – startOfOldPage). When the original pointer does
not fit the old page, it must be a hidden pointer, and it is replaced using the old-to-
new conversion table of hidden pointers. Note that if there are any dead objects,

pages sorted by star�ng address

Removing dead space and crea�ng one larger page

Fig. 2.20 Pass 3 of

Algorithm B

78 This option is not in the first version of this code.
79 As a single page.

2.5 Quasi-Single Page (QSP) 103

converting their pointers does no harm, and because there should not be many of
them, it may be faster to traverse bitmap than to analyze individual objects.

The conversion allows for some changes of the schema:

(a) If the new data contain additional classes, it does not matter. We can still read

the old data.

(b) If some old classes are missing in the new set, but there are no instances of these

classes in the old set, that is also fine, but this may require an additional check

during the swizzling of pointers.

104 2 Fundamentals of Persistence

BUILDING BLOCK 5: Special Arrays So far we have been working with single

instances of application classes. What are we going to do with arrays? Arrays of

characters or of other basic types such as int or long long, or even arrays of

structures (struct) as long as they do not include any pointers are no problem. We

allocated each array as an object of the appropriate size, and other objects can refer

to it with a pointer. The bitmap corresponding to such an array will be full of 0s, so

we do not have to do anything special for these arrays except that we have to make

sure they get allocated with the allocator from our Utility class.

Objective-C does not allow arrays of instances, only arrays of pointers. For

example:

class A {

int id;

A *next;

}

int main(){

A *arr=new A[100]; // array of A instances, not in Objective C

A **pArr=new (A*)[100]; // array of pointers to A instances

for(int i=0; i<100; i++){

pArr[i]=new A;

{

printf(“arr=%d pArr%d\n”,arr[17].id,pArr[35]->id);

Instead of calls such as

A **pArr=new (A*)[100];

the application code will have to call a special function which will not only allocate

the appropriate memory from our pages but also fill its assigned area of bitmap

with 1s.

BUILDING BLOCK 6: Managing Free Objects Any saving of data to disk,

even if we don’t exit our program after that, will remove all unused objects. We can

even call Algorithm B without saving to disk, and the unused objects will be

removed and all the data will be compacted to a single page. That, however, may

cause a pause in the execution of the program, which in some applications may not

be acceptable. Also, some applications continuously destroy objects and create new

ones, and being able to reuse destroyed objects would help significantly.

It would80 be easy to arrange chains of free objects organized by size—for sizes

corresponding exactly to the application classes, and approximate sizes of all

powers of 2—see Fig. 2.21. Any field in the allocated space can be used for the

temporary pointer that creates the chain; the beginning of the object seems most

appropriate.

In real-life applications, large blocks of memory that are freed and reused are

usually in a relatively small range of sizes. Remembering this range leads to the

following performance optimization.

80 This feature may not be in the first release of this Objective-C persistence.

2.5 Quasi-Single Page (QSP) 105

Useful Trick No. 6

When moving larger blocks to free storage or reusing them (see Fig. 2.21) we

need to find the right slot for the given size. The binary search seems to be the

best choice here, but remembering the range of the stored values makes it

super-fast.

Example

slot value
0 512
1 1024
2 2048
3 4096
4 8192
5 16384

....
22 214748364

minRange
maxRange

We start the run with minRange>maxRange.
This is a signal of empty free storage.

When block of size 1048 enters free storage,
minRange=1024, maxRange=2044.

When allocating block of size 5000, we do
search for a free object, because it is out of range.

When entering the 5000 block to free storage,
we search in range 1024-214748364, then adjust
maxRange to 8188.

When taking the 1048 block out of the free
storage, the range remains 1048-8188; removal
from free storage does not change the range.

U�li�ty
class

large objectssmall objects

4 2**9+

8

12

16

20

2**10+

24

2**11+

2**12+

2**13+

2**14+

508 2**31

Fig. 2.21 Chains of free

objects organized by size. The

picture assumes instances of

all application classes are not

more than 24 bytes in size,

and all free objects up to that

size can be picked up with

appropriate size. Larger

objects which can only be

arrays or long strings, are

organized by power of 2

106 2 Fundamentals of Persistence

BUILDING BLOCK 7: Persistent Libraries In general, persistent data is only as

useful as the data structures it supports. This is truer for Objective-C than for other

languages, because the NextStep (NS) library is essentially part of the core lan-

guage. You cannot program in Objective-C without it.

Making a library class persistent is just as easy as making an application class

persistent:

STEP 1: Modify *.h by adding PersistInterface.
STEP 2: Modify *.m by adding PersistImplementation and method prtList which

registers all the pointers using the PTR() statement.

STEP 3: Search all methods in *.m for any calls that allocate arrays or unstructured

memory, and replace them by allocArr, allocPtrArr, or palloc. (Allocations of
single objects with new() require no changes.)

Section 6.2 will describe implementation details specific to Objective-C, NS

classes, and to the conversion of the InCode library to Objective-C.

Note that a program may run with persistent application classes, while using NS

classes that are not persistent and are allocated from the Objective-C heap. The

serialization algorithm (Algorithm A) will save both parts seamlessly. When

reading such data from disk, the application classes will automatically allocate

from persistent pages of memory, while the NS classes will allocate from the

Objective-C heap.

BUILDING BLOCK 8: The Main() The main() program has to start the persis-

tent utility and all the persistent classes.

int main() {

PersistStart(pageSize);

myClass1.start();

myClass2.start();

. . . etc. for all application classes

where you normally use pageSize¼0 which uses a good default. Selecting this

parameter may slightly improve the speed of saving the data to disk especially for

very large data sets, but has no impact on the speed of traversing the data. As you

save and open the data, the internal algorithms convert all the data to one page

anyway, and then the original choice of the page size is irrelevant.

2.5 Quasi-Single Page (QSP) 107

	2: Fundamentals of Persistence
	2.1 Algorithms and Techniques
	2.1.1 Adding Members and Methods to a Class
	2.1.1.1 Adding from Below
	2.1.1.2 Inserting Inside
	2.1.1.3 Adding from Above

	2.1.2 Hidden Pointers
	2.1.3 Regular Pointers
	2.1.3.1 Detecting Pointers with Reflection
	2.1.3.2 References Registered for Each Class
	2.1.3.3 Smart Pointer that Registers Itself
	2.1.3.4 Smart Library Registering Pointers
	2.1.3.5 Detecting Pointers with a Code Generator

	2.1.4 Arrays
	2.1.5 Extracting Inheritance
	2.1.6 Collecting All Active Objects
	2.1.7 Java-Style Collecting Objects
	2.1.8 Binary Serialization
	2.1.9 ASCII Serialization
	2.1.10 Deallocation and Garbage Collection

	2.2 Memory Paging
	2.2.1 Bitmap
	2.2.2 Pages of Memory
	2.2.3 Dynamic Allocation and Garbage Collection

	2.3 File Mapping
	2.4 Persistent Pointers
	2.4.1 The Main Idea
	2.4.2 Array on Disk, Paged to Memory on Demand

	2.5 Quasi-Single Page (QSP)

