
Serialization
and Persistent
Objects

Jiri Soukup
Petr Macháček

Turning Data Structures
into E� cient Databases

Serialization and Persistent Objects

.

Jiri Soukup • Petr Macháček

Serialization and
Persistent Objects

Turning Data Structures
into Efficient Databases

Jiri Soukup
Code Farms Inc
Richmond, ON
Canada

Petr Macháček
Image Code
Brloh
Czech Republic

ISBN 978-3-642-39322-8 ISBN 978-3-642-39323-5 (eBook)
DOI 10.1007/978-3-642-39323-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934301

Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book takes new directions in several situations where the existing software has

reached a dead end and, for this reason, it should be of interest to programmers at all

levels of experience.

It does not matter in what language you program, but it will help if you have a

basic knowledge of the C++ syntax because most examples are written in C++.

The book covers a wide range of subjects in great depth. It is quite concentrated

and could scare a beginner if he/she attempted to read it front to cover. Using this

guide, you may start with a few selected chapters, and even if you are an expert who

has designed his/her own persistent system, you may return to it many times after

the first reading.

The book tackles several major issues:

Issue 1: Persistency

We all have been preconditioned to the notion that, when we want to store data,

especially a lot of data, it is best to use a database. In many cases this is not true, and

using persistent objects greatly simplifies the code and can improve performance by

an order of magnitude.

Note that serialization (or archiving) is only one of several ways to implement

persistent objects, and the book will show you that its existing implementations in

various languages have flaws and an unnecessarily complicated interface.

If you are a beginner you should be aware of the opportunities persistent objects

provide; you will need them sooner than you think. If you are currently using

serialization, this book will be an eye-opener for you. And if you have designed

your own persistent data, you may find little tricks that will improve their

performance.

We believe that an automatic persistence for Objective-C would greatly simplify

the design of iPhone applications, and the book provides a special solution for this

purpose.

v

Issue 2: Bi-directional and Intrusive Data Structures

Data structures and their libraries are closely related to persistence because both

revolve around references (or pointers). Well-designed libraries simplify imple-

mentation and use of persistence, and, in order to make your data persistent, any

library you use must be persistent.

Existing “standard” libraries are a major hindrance to progress in software

engineering. They cannot store bi-directional associations such as graph or aggre-

gate; yet about half of the relations in real-live applications are bi-directional. Also,

these libraries ignore a multitude of pointer-based (intrusive) data structures devel-

oped over the past 2 decades.

The big advantage of intrusive data structures is that they can automatically

catch many otherwise hard-to-find errors. They also are natural sets, and they can be

sorted just as fast as array-based collections. Libraries of intrusive data structures

can even store design patterns.

Issue 3: Pointers (or References) as Members of Application
Classes

If you think about it, the only purpose of using references as class members1 is to

create data structures, and it is not good practice for your application to create its

own data structures. All data structures should come from a well-tested library.

Leaving raw references in your classes is an architectural error that increases code

complexity, muddles the architecture, and creates the potential for nasty errors.

In the existing practice, raw pointers are mostly used as implicit one-to-one

relations or as a complement to a collection when you need a bi-directional one-to-

many relation (Aggregate) not available from the standard libraries.

Reference members may create a hard-to-manage network—a situation similar

to the reasons for introducing structured programming2, where networks of goto
statements were removed from code as a potential hazard. For the same reason, we

recommend that explicit references in the application classes are banned. All

references should be managed transparently by class libraries, not by the

application.

If we accept this design concept, the implementation of persistence also becomes

much cleaner and simpler. Pointer management is now removed from the applica-

tion and is handled by a library.

1 Variables in Objective-C.
2 Dijkstra (1976).

vi Preface

Issue 4: Visibility of the Relations

The essential part of the program architecture is the overall data organization or

framework, which consists of classes and their relations. This is the information

provided by the UML class diagram. The problem with the existing programming

style and integrated environments is that they focus on classes, while relations are

buried and spread through the classes, and are generally hard to find. Understanding

a code written by someone else with 20+ classes and 30 relations is a nightmare.

When using our new libraries, you declare all the relations in a short block of

statements, one line per relation. The concept is reversed. Instead of classes

implementing the relations, relations connect classes, and they have the same

visibility as the classes.

This, again, simplifies the implementation and use of persistence. Persistent

objects replace a database, and this block of statements that declare relations

becomes a database schema. We handle our data structures as if they were a

database.

Issue 5: UML Class Diagram Driving the Code

Line by line, the block of statements that declare relations (the database schema)

corresponds to the UML class diagram. That could greatly simplify code generators

such as Rational Rose which generate a code skeleton implementing the frame-

work. With our new style of libraries, all these generators would have to do would

be to generate the appropriate block of statements that declare the relations.

However, we believe3 that the process should be reversed. UML class diagram is

a useful visual aid, but it is more practical to drive the architecture by the block of

statements from within the code. This completely removes the problems with the

synchronization between the diagram and the code, and a high quality UML class

diagram can be automatically produced with each compilation.

Richmond, ON, Canada Jiri Soukup

Brloh, Czech Republic Petr Macháček

3 This is discussed at length in Soukup (2007).

Preface vii

ThiS is a FM Blank Page

Suggested Reading Paths
(Based on Reader’s Experience)

Level 1: Beginner Able to Use Basic Collections

Start with Chap. 1, but skip Sect. 1.5. Its purpose is to show how difficult it is to use

the built-in serializations, and it would be over your head.

Chapters 2 and 3 are the essential parts of this book, so work through them

bit-by-bit. It will be a steep learning curve, but it will be worth it. Conceptually, it

may move you ahead of many already “experienced” programmers.

Download the examples from the website and play with them as you read. The

critical concepts to understand are the pointer masks, how we collect all active

objects, the bitmap for memory blasting, persistent pointer class, the QSP algorithm

(Sect. 2.5) which is completely new, and the block of statements that declare the

data structures like a database schema.

Browse through Chaps. 4 and 5, not dwelling long on parts you don’t under-

stand. You will return to these chapters later. Skip Chap. 6 unless you are program-

ming in Objective-C, and even then this chapter is mostly about implementing

persistence for Objective-C, not about using it. For an example of how to use the

new Objective-C persistence, experiment with the source of the benchmark (under

chap6 or iPhone). By the time this book is published there should be more

information and documentation on the website, plus a book blog.

You may find Chap. 7 useful for your decision as to what existing software

would be most appropriate for your future projects.

Skip Chap. 8, which is beyond your interest and knowledge.

Level 2: Practitioner Already Using Serialization

Start with Chap. 1. Don’t attempt to understand all the details in Sect. 1.5. Just note

all the work you have to do when using the built-in serialization, and how convo-

luted some internal formats are.

Chapters 2 and 3 are the essential parts of this book, and you should read them

carefully. Many parts are completely new and have not been published before.

Download the examples from the website and play with them as you read. The

ix

http://dx.doi.org/10.1007/978-3-642-39323-5_1
http://dx.doi.org/10.1007/978-3-642-39323-5_1#Sec5_1
http://dx.doi.org/10.1007/978-3-642-39323-5_2
http://dx.doi.org/10.1007/978-3-642-39323-5_3
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_2
http://dx.doi.org/10.1007/978-3-642-39323-5_4
http://dx.doi.org/10.1007/978-3-642-39323-5_5
http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_8
http://dx.doi.org/10.1007/978-3-642-39323-5_1
http://dx.doi.org/10.1007/978-3-642-39323-5_1#Sec5_1
http://dx.doi.org/10.1007/978-3-642-39323-5_2
http://dx.doi.org/10.1007/978-3-642-39323-5_3

critical concepts to understand are the pointer mask, how we collect all active

objects, the bitmap for memory blasting, persistent pointer class, the QSP algorithm

(Sect. 2.5), and the block of statements that declare the data structures (the “data-

base schema”).

Browse through Chaps. 4 and 5; they provide additional considerations you may

not be familiar with. Skip Chap. 6 unless you are programming in Objective-C, and

even then this chapter is mostly about implementing persistence for Objective-C,

not about using it. For an example of how to use the new Objective-C persistence,

experiment with the source of the benchmark (under chap6 or iPhone). By the time

this book is published there should be more information and documentation on the

website, plus a book blog.

You may find Chap. 7 extremely interesting and useful.

Skip Chap. 8 which is beyond your interest and knowledge.

Level 3: Software Architect

This book is mostly about the implementation of persistence and about the new

style of implementing (and using!) class libraries. You may not be interested in

technical details, but the book describes many new concepts that relates to your

work and thinking.

Start with Chap. 1, and without going into the details in Sect. 1.5, note all the

work required for the built-in serialization, and how convoluted some internal

formats are.

Chapters 2 and 3 are the essential parts of this book, and you may find them

interesting because of the algorithms they describe. Many parts are completely new

and have not been published before. The critical concepts are the pointer mask, how

to collect all active objects, the bitmap for memory blasting, persistent pointer class,

the QSP algorithm (Sect. 2.5), and the block of statements that declare the data

structures (the database schema).
The new handling of data structures (Chap. 3) leads to a major improvement in

the cooperation between architect and coders. By controlling the database schema,

the architect controls the architecture. The coders cannot deviate from it, but the

database schema becomes the key communication tool between the two parties.

Chapters 4 and 5 provide additional details you should consider. Unless you are

programming in Objective-C, skip Chap. 6, but even when you use Objective-C,

this chapter is more about implementing persistence than about using it. However,

Sect. 6.4 is about the importance of NS classes and difficulties with their conver-

sion and it may be of interest to you.

You may find the performance benchmarks of different persistent systems in

Chap. 7 most interesting and useful.

Browse quickly through Chap. 8 just to acquaint yourself with this proposal.

x Suggested Reading Paths (Based on Reader’s Experience)

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_2
http://dx.doi.org/10.1007/978-3-642-39323-5_4
http://dx.doi.org/10.1007/978-3-642-39323-5_5
http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_8
http://dx.doi.org/10.1007/978-3-642-39323-5_1
http://dx.doi.org/10.1007/978-3-642-39323-5_1#Sec5_1
http://dx.doi.org/10.1007/978-3-642-39323-5_2
http://dx.doi.org/10.1007/978-3-642-39323-5_3
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_2
http://dx.doi.org/10.1007/978-3-642-39323-5_3
http://dx.doi.org/10.1007/978-3-642-39323-5_4
http://dx.doi.org/10.1007/978-3-642-39323-5_5
http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://dx.doi.org/10.1007/978-3-642-39323-5_6#Sec13_6
http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_8

Please join the book blog, especially if you have any comments to make about

Chap. 9.

Level 4: Expert or Someone Building Class Libraries or Persistent
Systems

Read the book from front to back, paying special attention to all Useful Tricks and
Chaps. 2 and 3. Chapters 4 and 5 provide additional details. Chapter 6 is important

if you are using Objective-C, otherwise you can skip it. Chapter 7 has a wealth of

information about the performance of different styles of implementing persistence.

Chapter 8 is important for designers of class libraries and compilers.

Please join the book blog, especially if you have any comments to make about

Chap. 9.

Suggested Reading Paths (Based on Reader’s Experience) xi

http://dx.doi.org/10.1007/978-3-642-39323-5_9
http://dx.doi.org/10.1007/978-3-642-39323-5_2
http://dx.doi.org/10.1007/978-3-642-39323-5_3
http://dx.doi.org/10.1007/978-3-642-39323-5_4
http://dx.doi.org/10.1007/978-3-642-39323-5_5
http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_8
http://dx.doi.org/10.1007/978-3-642-39323-5_9

ThiS is a FM Blank Page

Book Website

The book website is at http://www.codefarms.com/book, with a blog and other

information. It also allows you to download a zip file with source of all the Listings

that are longer than just a few lines—usually expanded so that you can compile and

run them. We highly recommend that you play with these programs and modify and

evolve them. Besides these programs, which are usually in a single file such as

List2_3.cpp, multi-file examples are stored as subdirectories that may even include

tt.bat which compiles them, and rr.bat which runs them. All this is organized by

chapter, as you would expect.

When you extract this zip file, you get directory bk with all the examples

organized by chapter. When we refer to directory bk anywhere in the text, for

example recommending you to look at bk\chap1\javaSerialization\readme.txt, we

refer to this directory.

The website also provides access to Code Farms libraries: DOL, PTL, PPF,

InCode, ObjcLib, Layout. They are open source subject to a simple, no-nonsense

license which allows commercial use.

xiii

http://www.codefarms.com/book

ThiS is a FM Blank Page

Acknowledgements

This book is the result of a truly international cooperation. Authors Jiri Soukup and

Petr Macháček are from Canada and the Czech Republic, respectively. The pub-

lisher is a global corporation, but the editor Ralf Gerstner works from Germany.

James Noble, David Pearce, and Steve Nelson—all from New Zealand—helped us

with J-Aspects, while Olaf Spinczyk from Norway wrote the C++ Aspect example.

The help with Objective-C came from Sean Yixiang Lu4 in Singapore, and Raj

Lokanath from California became a co-author of two chapters. Cay Horstmann

from California helped us with advanced features of both Java and C++, including

the format of Java serialization. We owe a lot to our pre-release expert reviewers

Mark Bales (California) and Naresh Bhatia (Massachusetts), and to our contact in

ObjectStore (Don White, Massachusetts). The author of the BOOST persistence,

Richard Ramey from California, helped us with the BOOST implementation of the

benchmark.

Most of all, we want to thank our wives Hana and Vera, both engineers and

programmers like us, for their support and patience. This project took much more

time than we anticipated.

4Who in the meantime relocated to Seattle.

xv

ThiS is a FM Blank Page

Contents

1 Introduction . 1

1.1 Starting with an Example . 1

1.2 Definition of Persistent Objects and the Scope of this Book 4

1.3 Pointers and References . 8

1.4 Persistent Objects as a Light-Weight Database 11

1.5 Languages with Built-In Persistence . 16

2 Fundamentals of Persistence . 37

2.1 Algorithms and Techniques . 40

2.2 Memory Paging . 70

2.3 File Mapping . 81

2.4 Persistent Pointers . 86

2.5 Quasi-Single Page (QSP) . 95

3 Data Structures, Patterns, and UML . 109

3.1 Basic Facts About Data Structures . 110

3.2 Inserting Pointers with Inheritance . 138

3.3 Library of Design Patterns . 142

3.4 Complexity and Errors . 147

3.5 DB Schema and UML Class Diagram . 154

3.6 Intrusive Data Structures with Aspects . 156

3.7 Conclusion . 161

4 Advanced Features, Schema Migration . 163

4.1 Schema Migration . 163

4.2 Extensible Property . 167

4.3 Multi-user Access, Data over Networks 169

4.4 Address Space Layout Randomization (ASLR) 170

4.5 Flash Memories, Smart Phones . 172

5 Languages, Their Features and Limitations 175

5.1 Plain Old C Language . 176

5.2 C++ Language . 182

5.3 Java Language . 187

xvii

5.4 C# Language . 188

5.5 Objective-C Language . 189

5.6 Errors and Debugging . 198

6 Automatic Persistence for Objective-C . 201

6.1 Practical Guide to QSP Persistence . 202

6.2 Technical Notes on Objective-C Implementation 206

6.3 Testing QSP on iPhone . 217

6.4 Converting Existing Libraries . 217

7 Benchmark . 223

7.1 History of this Benchmark . 223

7.2 Persistent Systems Tested . 225

7.3 Description of the Benchmark . 227

7.4 Monitored Data . 228

7.5 Specifics of Individual Technologies . 229

7.6 Benchmark Rules . 231

7.7 Testing Details . 231

7.8 Results . 235

7.9 Improvements . 241

8 Proposal to Add a Keyword to All OO Languages 245

8.1 The New Keyword . 246

8.2 Generic Design Patterns . 247

8.3 Example of Using the New Features for Generic

Data Structures . 248

8.4 Associations and Existing Class Libraries 249

9 The Future . 251

9.1 New Programming Paradigm . 251

9.2 What Can Be Improved . 254

9.3 Unfinished Business . 254

References . 257

Index . 261

xviii Contents

Introduction 1

Abstract

We start with the definition of persistent objects and, as an example, we show

how they relate to data structures, class libraries, allocation and UML class

diagrams. Everything revolves around pointers or references, depending on

which language you use. After this, we discuss the flaws of serializations built

into different languages.

Keywords

Persistent systems • Serialization format • Archiving format • C++ • Java • C# •

Objective-C • Definitions • Persistent objects • Persistent data structures • UML

generation • Pointerless programming • Pointers • References • Intrusive data

structures • Persistent pointers • Built-in persistence • Smalltalk • Formatter •

Serialize • BOOST serialization •

1.1 Starting with an Example

This may be hard for you but, for a while, forget everything you know about

class libraries, serialization, databases, SQL and UML, and imagine that you want

to design software that would keep records of books in a library. It doesn’t matter

whether this is a home collection of your personal favourites or a public library with

many thousands of books—with possible searches and records of customers and

loans this could quickly turn into a major project.

If you are reading this book, you must be a programmer. And there is no better

way to tell a programmer what this book is about than to show an example.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_1, # Springer-Verlag Berlin Heidelberg 2014

1

You could start with the core of this problem and code classes Library, Book,

Author and Publisher with the basic data that should be stored, but without any

pointers or data structures, not even any attached strings. Something like this:

class Library {

Persist(Library);

int bookCount;

};

class Book {

Persist(Book);

int location; // rack, shelf, index

int year;

};

class Author {

Persist(Author);

};

class Publisher {

Persist(Publisher);

int bookCount;

};

Then, in a separate block of statements or in a special file, you would declare

what data structures (associations) connect these classes. For example:

Association Hash<Library,Book> books;

Association Hash<Library,Author> authors;

Association LinkedList<Library,Publisher> publishers;

Association ManyToMany<Book,WrittenBy,Author> writtenBy;

Association SingleLink<Book,Publisher> publisher;

Association String<Book> title;

Association String<Author> authorName;

Association String<Publisher> publisherName;

ManyToMany requires one additional class for the relation, so you would add

class WrittenBy {

Persist(WrittenBy);

};

SingleLink<Book,Publisher> is essentially a pointer from Book to Publisher.1

Everything involving pointers is treated as a data organization.

1 Transparently implemented as a member of class Book: Publisher *publisher.

2 1 Introduction

This would automatically connect everything together and, after you add main(),

you would have a program which would already compile and run:

int main(){

Book *bk; Author *auth; Library *lib; WrittenBy *wb;

. . .

bk=new Book(); // create new Book

books.add(lib,bk); // add Book bk to Library lib
2

wb=new WrittenBy; // relational object needed for ManyToMany

writtenBy.add(bk,wb,auth); // connect bk with Author auth

. . .

auth=authors.next(auth); // move auth to the next author

publisher.remove(bk); // remove link from bk to its publisher

. . .

Persist::save(lib,"myfile"); // for root lib, save in "myfile"

return 0;

}

At the end of the run, the call to Persist::save()would simply save all the data to

disk, and if you called Persist::open() at the beginning of the next run, you would

start running with the same data back in memory—no serialization, no SQL and no

confusion about the data structures spread through the classes. The resulting program

would also be as fast as you can possible achieve in a careful, hand-crafted design.

To top it all, each time you compile it you will automatically get a UML class

diagram as shown in Fig. 1.1.

Publisher
String:publisherName

Book
String: title

Author
String:authorName

WrittenBy

publishers
LinkedList

books
Hash

publisher
SingleLink

authors
Hash

writtenBy
ManyToMany

* * *

* *

1 1 1

11

Library

Fig. 1.1 With each compilation you would get an updated UML class diagram as an auxiliary

diagram to guide you in debugging and evolving your program

2On the 4th line of main(), note the different order of the parameters compared to the usual

containers where you would have lib->books.add(bk); Reflecting the importance of the

data structures which we place at the same visibility level as classes, our notation starts with the ID

of the data structure.

1.1 Starting with an Example 3

This may sounds like fantasy or science fiction but it is not. There are already

several systems that work like this, and a few more are close to this ideal. This book

will tell you everything you need to know about how they can be built and what they

do, and even if you don’t want to design a system like this, it will arm you with the

knowledge of how to select the system which is best for your application.

1.2 Definition of Persistent Objects and the Scope of this Book

In many applications, computers perform tasks that cannot be finished in a single

session. Such situations are common in any type of application:

• We are typing this book using a text editor, and every so often we click on ‘save’.

Then, after a few hours, we save the result, exit and continue the next day.

• Any design which requires more than one session to complete is done in this

way—think about designing an automobile or electronic circuit with millions of

transistors.

• When biochemists analyze a sample of protein, be it fish liver or beer, a typical

mass spectrometer gives them 2 GB of data. The software which crunches this

data first eliminates noise, then calculates the spectrum of the substance,

compares it with a library of known protein spectra and stores the results in a

way that will allow additional evaluation later.

• Imagine a business system which collects news from the 12 major stock

exchanges around the globe via high speed communication links. It runs contin-

uously and builds sophisticated data structures that support fast queries 24 hours

a day. The data collected over the past few days live in the virtual memory but

are periodically saved to disk while the system is running.

You can find countless applications that save not only objects such as automo-

bile parts with their dimensions and costs, but also the relations between them: their

subparts (bolts, braces, gaskets and springs that form the given part), manufacturer,

and compatibility with other car models.

In many applications, the performance of the data storage is critical.

– When editing text, you don’t want to wait 2 min every time you hit ‘save’, and if

the resulting file is too big you may have problems getting it sent through email.

– If you are not careful about the speed, traversing a VLSI design or even just

displaying the chip layout on the screen may take minutes, even hours.

– The mass spectrometer produces new data every 3 min, and the data must be

processed and stored before the next sample arrives.

– Most smartphone applications must be designed economically with high perfor-

mance in mind.

The term persistent objects has multiple meanings, and this chapter explains

which one of these is the subject of this book and how it relates to serialization
and archiving. It also shows the relations among persistence, allocation, data

structures, class libraries and the UML class diagram, and how integration of

these may lead to a new programming paradigm.

4 1 Introduction

– The conversion and transfer of data between the internal data structures and the

database may require a significant amount of code and runtime—to the point

where, in some applications such as in electronic CAD, using the traditional

database is not acceptable.

– The additional code implies longer development time and more expensive

maintenance.

It would be ideal if we had some magic which, in a single command, would

move all the objects and data structures to the disk, and then again, in a single

command, would load it all back to memory. Such magic could be considered to be

the persistent objects which are the subject of this book.

Replacing a database by persistent objects is a good idea even on many small

projects where performance is not important, simply because persistent objects are

much simpler to use. This of course does not completely eliminate the use of the

traditional databases, which are useful in situations where many users access the

data simultaneously, or where the security of both access and storage is important.

If you Google ‘what is persistent object’ (or persistent data or persistent data

structures), you get a variety of conflicting answers such as:

(A) Persistent data denotes information that is infrequently accessed and not likely to
be modified. The opposite of this is dynamic data (also known as transactional
data) where information is asynchronously changed as further updates to the
information become available.

(B) Persistent data exists from session to session. Persistent data are stored in a
database on disk or tape.

(C) Persistent data structure is a data structure which always preserves the
previous version of itself when it is modified; . . . is not a data structure
committed to persistent storage, such as a disk . . .

(D) Object persistence and Java: Object durability, or persistence, is the term you
often hear used in conjunction with the issue of storing objects in databases.
Persistence is expected to operate with transactional integrity, and as such it is
subject to strict conditions.

Definition: PERSISTENT OBJECTS

Throughout this book, we define persistent objects as objects which, during the
program run, work as if there was no persistency, but between program runs they

are stored on disk. Their prime location can be in virtual memory or on disk, but

theirmovement between these two locations is transparent and it does not involve

a database.We also assume that this persistency is automatic in that the user does
not have to write serialization/deserializaiton functions for every class.

Persistent data is synonymous with persistent objects, especially in

computer languages which are not object oriented like C.

Persistent data structures are data structures which persist between

program runs. They are synonymous with persistent objects.

Serialization is one of several possible approaches to implementing

objects which are persistent but not fully automatic.

1.2 Definition of Persistent Objects and the Scope of this Book 5

http://en.wikipedia.org/wiki/Dynamic_data#Dynamic%20data
http://en.wikipedia.org/wiki/Transactional_data#Transactional%20data
http://en.wikipedia.org/wiki/Transactional_data#Transactional%20data
http://en.wikipedia.org/wiki/Data_structure#Data%20structure
http://en.wikipedia.org/wiki/Persistent_storage#Persistent%20storage

Writing serialization and deserialization functions for every class is tedious and

error prone, especially for large projects and in changing environments, which is the

reason why we eliminate this type of persistence from our consideration.3

Persistent objects discussed in this text are intended for massive use, and thus the

main objectives are:

1. Performance (high speed and small data footprint)

2. Easy and elegant to use

3. Automatic and transparent to the user

If the computer language does not support features required for these objectives,

we will not hesitate to use any dirty technique such as macros or code generators to

achieve these objectives.

You don’t have to be an expert programmer to appreciate this book. If you have a

basic knowledge of C++, Java or Objective-C you will enjoy numerous algorithms

and programming tricks that help to implement persistent objects. If you don’t plan

to implement your own persistent objects, this book will arm you with the knowl-

edge of how it all works and why persistent objects are often better than a database.

This book also invites you to take part in an intellectual adventure. You will be

exploring not only persistent objects but also how to build data-structure librarieswhich

are far more general than the existing standard libraries. You will be writing your own

allocation schemes, code generators and overloading operators. You will discover a

new rapid yet reliable and high-performing software design style. Your data structures

will automatically become a database, but youwillmanage them as a database andwith

every compilation your program you will generate its UML class diagram.

Wait a minute, you may say. Why are we going to talk about allocation, data

structures and UML? Isn’t this a book about Persistent Objects?!

Traditionally these four areas (persistence, data structures, allocation and UML)

are considered orthogonal—in the sense that each of them can be (and should be)

designed as an independent module.

In reality these areas are NOT independent. They have a common culprit—the

pointers or references4 connecting related objects. In persistence everything

revolves around pointers because they change between the program runs. The

values of the pointers depend on the allocation of the objects; the data structures

are built with pointers and UML works with relations implemented with data

structures. Thinking at the UML level, the sole purpose of pointers is to build

relations, and therefore application classes should have no visible pointer/reference

members. Only the data structures stored in a library should use pointers which are

transparent to the application.

The key task of any persistent system is to find all the pointers—where they are

and what their values are. This information is available inside the compiler which

also controls how the objects will be allocated. One has to wonder: Why isn’t the

3We had an opportunity to review a recognized business management system with a million lines

of C++ code, which was impossible to maintain. Serialization and deserialization functions

represented one-third of the entire code.
4 Depending on which language you use.

6 1 Introduction

persistence a part of C++ language—it could be completely transparent and simple

to implement? Why Objective-C uses Archiving with the cumbersome serialization

functions that the user must provide?Why serializations in Java, C#, and Objective-

C cannot handle long chains of objects as we will be discussed in this book?

Existing class libraries are mostly array-based and not pointer-list-based. They

cannot support bi-directional associations and do not cover many useful pointer-

based data structures. They were designed without any plan for persistence,5 and

converting them now would be a major programming task.6

This book will eventually lead you to Pointerless Programming7—see Fig. 1.2.8

Pointerless Programming (Integrated Approach as Described in This Book)

• Uses persistent objects instead of a database.

• Removes pointers/references from application classes.

• Manages data structures as if they were a database.

• With every compilation, creates the UML class diagram.

• Includes structural patterns in data structure libraries.

Data structures (DB)
[Libraries]

Alloca�on

Persistence needs access
to all pointers.

When all pointer mem-
bers come from a library,
the application does not
have to identify them.

With a control to alloca-
tion, persistence can be

automatic and fast.

UML
class diagram

Auxilliary library
objects must allo-
cate as persistent.

?

Persistence

Fig. 1.2 Persistence, class libraries and allocation are generally considered to be independent

(orthogonal) parts of software design. However, their cooperation can create a powerful design

environment. We also question whether it is better to drive the architecture with the UML class

diagram or to derive it from the code, thus demoting the UML class diagram to a passive visual aid

5Accepting STL as a standard without making a provision for persistency was a mistake. In 1993,

persistency was a known concept, and early versions of Code Farms DOL library and of what is

now called ObjectStore # PSE Pro for C++ were commercially available.
6When working on Chap. 7 we explored the possibility of making the Objective-C Foundation

classes persistent. For a person not familiar with the library it would be an extremely difficult task.

It is a big and complex library, pointers are often disguised through typedef, and all allocation calls
should be located, analyzed and possibly replaced.
7 This applies even to Java which claims to be “pointerless” but really isn’t, because its references

are only more intelligent pointers. In Java, this means no references are explicitly used as members

of application classes.
8 This may be considered a heresy, but this book takes a non-orthodox view on many subjects.

1.2 Definition of Persistent Objects and the Scope of this Book 7

http://dx.doi.org/10.1007/978-3-642-39323-5_7

1.3 Pointers and References

The notion of a pointer has been the basic concept of C programming for over

30 years. Storing C structures or C++ objects to disk would be trivial if they did not

include any pointers.

A pointer stores the address of some object in the virtual memory. A reference

not only stores the object address but also maintains, on the target object, a counter

of how many references point to it. When the counter on some object decreases to

0, it means that no reference leads to this object. In other words, the program does

not know about this object any more, and it can be destroyed.

This feature, which is often hailed as a great advantage of Java, can easily be

added to C++ as a smart pointer class, Reference<T>, which assumes that all

classes are derived from class RefCount<T>. Listing 1.2 shows the idea,9 including

how to overload operators -> and ¼, which is something we will need later in

different situations. A similar class has been used by the Data Object Library10

since the mid-1990s.

Listing 1.1 Comparing pointers and references

// C++ // JAVA

// next and ap are pointers // has only references,

// a is an instance of A // even a comes from heap

class A { class A {

A *next; A next;

}; }

int main(){ int main(){

A *ap, a; A ap,as; // a not allowed

ap=new A; ap=new A;

a.next=ap; as=new A;

ap->next= &a; // footnote (1) ap.next=as;

.
} }

The concepts of pointer and reference are essential when implementing

persistent objects. When storing internal data of a program to disk and then

restoring it for another run, the data is loaded into a different place of memory,

thus making all pointers or references invalid. How to reset the pointers to new

correct values is the main topic of this book.

9As with most listings in the book, the full source is available under directory bk, in this case as

bk/chap1/list1_2.cpp.
10 http://www.codefarms.com/dolclasses

8 1 Introduction

http://www.codefarms.com/dolclasses

Listing 1.2 Generic Reference class in C++

template<class T> class Reference {

T *ptr;

void updCount(T* p1,T *p2){

if(p1==p2)return;

if(p2)(p2->count)++;

if(p1){

(p1->count)--;

if(p1->count==0)delete p1;
}

}

public:

Reference(){ptr=NULL;}

Reference& operator=(const Reference& rhs){

updCount(ptr,rhs.ptr); ptr=rhs.ptr; return *this;}

Reference& operator=(T *rhs){

updCount(ptr,rhs); ptr=rhs; return *this;}

T* operator->(){return ptr;}
};

template<class T> class RefCount {
friend class Reference<T>;

int count;

public:

RefCount(){count=0;}
};

// Application program

class Car : public RefCount<Car> {

public:

int seatNum;

void prt(){. . .}
};

int main() {

Reference<Car> ref1,ref2; //instead of: Car *ref1,*rf2;

ref1=new Car;

ref2=new Car;

ref2->seatNum=4;

ref1=ref2; // first Car automatically destructed

ref2=NULL; // count for the second Car reduced to 1

ref1->prt();

return(0); // when going out of scope, second Car is destructed
}

Figure 1.3 shows thememory representation of twoobjects such as car instances from

Listing 1.2. They are not allocated right next to each other. The allocator keeps several

values—usually 16 or 12 bytes—for each object. One of these values is usually the size

of the object. In languages like Java orObjective-C this space also includes the reference

counter. When using our Reference<T> template, the counter is inside the object. It

seems like aminor difference but itmakes a differencewhen allocating primitive objects

such as text strings, which normally would not be derived from any base class.

Regardless of whether pointers or references are used, the fact that they store

addresses is a major obstacle in making objects persistent. In each program run,

objects are loaded into different memory locations, making the original pointers

invalid. How to convert (or swizzle) these pointers is the main topic of Chap. 2.

1.3 Pointers and References 9

http://dx.doi.org/10.1007/978-3-642-39323-5_2

Note that only pointers used as class members (in C++ jargon) or references used

as class fields (in Java jargon) need such a conversion—not the temporary pointers

declared in your methods.11 For example, in class A from Listing 1.1, ptr must be

converted for every A object (every instance of class A), but ap from main() there

does not require any conversion.

Another interesting fact is that we have all been taught—and are accustomed—

to the notion that chains of objects should end with a NULL pointer:

for(p¼start; p; p¼p->next){. . .}

It may come as a shock that using a ring is much better.12 The functionality is the

same, but the ring allows a simple integrity check which prevents nasty runtime

errors against which even Java is not protected. When using a ring, a NULL pointer

may flag a disconnected object, while a pointer which is not NULL indicates that

the object is already connected in some chain. Figure 1.4 shows what may happen

with NULL-ending chains.

Example: Ring of Books, with method append() which prevents the corruption

class Book {

Book *next;

public:

Book(){next=NULL;}:w

};

class Ring {

// append b2 after b1 in the ring of Books

// returns the new tail

static Book* append(Book *tail,Book *b1,Book *b2){

if(b2->next){

printf("cannot append Book which is already in a ring\n");

return tail;

}

b2->next=b1->next;

b1->next=b2;

if(b1==tail)tail=b2;

return tail;

}

}

C C

C C

Reference<T>:

reference in the language:

S

SS

S

Fig. 1.3 Comparing memory representation of objects when using Reference<T>with objects in

languages with built-in reference counting. White space is managed by the allocator, C is the

reference counter and S stores the size of the object

11 In other words, only pointers from the heap must be converted, not pointers from the stack.
12 Since the mid-1980s, Mikael Palczewski convinced Jiri about this (he had a hard time), Jiri is

using rings and not NULL-ending lists.

10 1 Introduction

1.4 Persistent Objects as a Light-Weight Database

Let us assume that you are designing software which will keep a record of

university departments, lecturers, the courses they give, and the students who enrol

in those courses. You may start with an UML class diagram such as shown in

Fig. 1.5, where symbols on connecting lines express multiplicity (* means many)
and directionality. Lines without arrows represent bi-directional associations.

A1 A2 A3 A4 A5

0

A1 A2

A3

A4 A5 0

B1 B2 B3 B4 B5 0

When you insert B4 a�er B1 without disconnec�ng it first, B5 is lost
and an a�empt to traverse the chain ends in an infinite loop.

B4B1 B2 B3 B5

0

Two NULL - ending chains:

B3B1 B4 B2 B5 0

If you insert A3 after B3 without first disconnecting it from chain A,
chains are mixed up, and Java destroys A4and A5:

A1 A2 A4 A5

Rings never use NULL pointers:

A3

B1 B2 B4 B5B3

Fig. 1.4 Rings are better than NULL-ending chains, both in C++ and in Java. When using a ring

(dashed arrow), method append() can check for next!¼NULL and avert the disaster—see

example

Instead of connecting your program to an external database, it is often more

practical to make your data structures (or framework) persistent and use them as

a fast internal database.

1.4 Persistent Objects as a Light-Weight Database 11

If you decide to use a database, this diagram would allow you to generate,

automatically or manually, the database schema, and your program would consist

mostly of the user interface and the database interface. However, if you had a utility

that would make all the objects persistent, you would have a second alternative.

You could implement all the objects and their relations (¼associations) as a

memory resident data structure (you may call it a framework), and then store/restore
it from disk by this magical13 utility—see Listing 1.3. Note that Associations R3

and R5 are bi-directional and cannot be implemented without inserting members

into several classes. The description in the bracket is the implementation choice.14

Department

Lecturer

Course Student

A�ends

*

* *
* *

1

1

1

1

R3

R5

Faculty

*

R2

R1

R4
(Hash)

(Aggregate)

(Collec�on)

(Collec�on)

(ManyToMany)

Fig. 1.5 UML class diagram

for the Faculty problem

13You will have to wait until Chap. 2 to see how this really works.
14 This is only a hypothetical implementation. The listing is on the website, but it would not run

without converting it to a specific collection library.

Because the collection library does not have bi-directional associations, adding Course crs to

Lecturer lect requires two steps:

courses.add(lect,crs);
crs->taughtBy¼lect;
Leaving them like that would be error prone; they should be encapsulated under a single

function which we may call addCourseToLecturer(), but where would you place it and other

similar functions? It would spread the association to even more places.

12 1 Introduction

http://dx.doi.org/10.1007/978-3-642-39323-5_2

Listing 1.3 Implementing Faculty framework with collections

class Faculty {

Collection<Department> depts; // R1

HashTable<Student> students; // R4

};

class Department {

Collection<Lecturer> lecturers; // R2

};

class Lecturer {

Collection<Course> courses; // R3

};

class Course {

Lecturer *taughtBy; // R3

Collection<Attends> atts; // R5

};

class Student {

Collection<Attends> atts; // R5

};
class Attends {

Course *toCourse; // R5

Student *toStudent; // R5

int mark;

int attendance;

};

int main(int argc,char *v[]){ // call with c to create,with o to open
Faculty *f;

if(argv[1][0]==’c’){

f=new Faculty;

d=new Department;

f->depts.add(d);
.. generate initial data

}

if(argv[1][0]==’o’){

f=utility.open(“facultyFile”);

}

.. add, remove, modify data

utility.save(“facultyFile”,f);

return 0;

}

Instead of spreading the data structures through the individual classes as we did

in Listing 1.3, it would be much nicer to code the same problem as shown in

Listing 1.4, which assumes that all the required data structures are available from a

library which is, however, different from the container libraries used today. Chap-

ter 3 will show how such new libraries can be built.

In Listing 1.4, relations (data structures) have the same importance and visibility

as classes; we say they are first class entities. The block of DataStructure

statements is equivalent to the database schema, but is used to declare data

1.4 Persistent Objects as a Light-Weight Database 13

http://dx.doi.org/10.1007/978-3-642-39323-5_3

structures. Note that all pointers have disappeared from the application classes; they

are transparently managed by the library.
The only difference between Fig. 1.5 and Listing 1.4 is that the listing uses the

specific implementation. The notion of general association is lost. This can be

corrected in two ways:

(a) Data structures that implement the same association may know each other, and

allow an easy exchange when required.

(b) In addition to the individual data structures, the library may have a

general association which automatically uses one of the implementations as a

default.

Listing 1.4 Hypothetical (ideal) implementation of the Faculty problem, with

relations defined separately and given meaningful names: R1¼depts, R2¼lecturers,

R3¼courses, R4¼students, R5¼atts

class Faculty {

};

class Department {

};

class Lecturer {

};

class Course {

};

class Student {

};

class Attends {

int mark, attendance;

};

// Definition of data structures = database schema

DataStructure Collection<Faculty,Department> depts;

DataStructure Collection<Department,Lecturer> lecturers;

DataStructure Aggregate<Lecturer,Course> courses;

DataStructure Hash<Faculty,Student> students;

DataStructure ManyToMany<Course,Attends,Student> atts;

int main(int argc,char *v[])

… // same as in Listing 1.2

}

Existing standard libraries,15 both in all the C languages and in Java, conceptually

cannot support important data structures such as Aggregate, ManyToMany, Graphs,
or the Finite State Machine. They support only uni-directional Collections,

Vectors, Trees and Lists, and cannot represent data structures which require adding

members (usually pointers) to more than one class. They cannot support

bi-directional relationships, and they do not treat relations as first class entities.

15 Boost library is an extension of the STL library, and will soon become the C++ standard. It

supports graphs and has tuplets which are the heart of many-to-many associations, but the interface

is less elegant and less user friendly than the intrusive implementation; there is also a performance

hit both in speed and required space. This will be discussed in Chap. 3.

14 1 Introduction

http://dx.doi.org/10.1007/978-3-642-39323-5_3

If you attempt to implement the Faculty problem (Fig. 1.5) with existing

standard libraries, you will run into the following problems:

(a) Standard collections allow the same object to be several times in the same

collection, and implementing a set with these collections is costly. On the other
hand, intrusive list which is a natural set is not supported—see Fig. 1.6.

(b) Aggregate is bi-directional, thus not supported by standard libraries.

(c) Bi-directional ManyToMany is not supported by standard libraries.

We will discuss this in more detail in Chap. 3.

The requirement of inserting members into multiple classes resembles Aspects

(Laddad 2003) which will be briefly discussed in Sect. 4.5.

There is yet another, completely different approach to managing pointers. Instead

of allocating objects in virtual memory, we can allocate them on disk. Then, when

the program needs to access the data, the sections of disk are paged to virtual

memory, and pointers are swizzled any time they are dereferenced (invoked). In

order to make this smooth and transparent, all pointers in the applications code must

be replaced by a smart pointer which does all of this automatically. This approach is

used by the Persistent Pointer Factory (PPF) and is described in Sect. 2.4.

Listing 1.5 Replacing pointers with a PersistPtr<T>. All pointer declarations

must change, but operator -> is overloaded

// original code // using persistent pointers

class Book { class Book {

public: public:

int ISBN; int ISBN;

}; };

class Author { class Author {

Book *book; PersistPtr<Book> book;

void prtISBN(){ void prtISBN(){

printf(“%d”,book->ISBN); printf(“%d”,book->ISBN);

} }

}; };

Swizzling pointers whenever accessing them may seem like a major performance

overhead, but the benchmark results in Chap. 8 show it is not significant, as long as

D D

D D

D

L
L

L

L

L

LIST
INTRUSIVE LIST

L

L

L

L

L

L

L

L

D

COLLECTIONFig. 1.6 Comparing

implementation of the

standard Collection and List
with Intrusive List. D stands

for Department, L for

Lecturer. Collection uses an

array of pointers, List uses
auxiliary link objects and

Intrusive List links directly
the Lecturers

1.4 Persistent Objects as a Light-Weight Database 15

http://dx.doi.org/10.1007/978-3-642-39323-5_3
http://dx.doi.org/10.1007/978-3-642-39323-5_4#Sec5_4
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec4_2
http://dx.doi.org/10.1007/978-3-642-39323-5_8

we set up the parameters of the paging in such a way that all the active pages remain

in memory simultaneously. The method also has several advantages including unlim-

ited data space and good performance when accessing small subsets of data

(transactions).

1.5 Languages with Built-In Persistence

In this chapter we will look at how to use the built-in persistence in some

languages, and what format they use to store the objects. The purpose is not to

teach you how to use these different implementations of serialization. We only want

you to get a gut feeling for how easy/difficult they are to use, and what representa-

tion (format) they use for disk storage.

We will not discuss individual internal implementations because they are pro-

prietary and are continuously changing. Nevertheless, from the disk record and

overall behaviour we can sometimes deduce what they are likely to hide under

the hood.

Regarding the format of the disk storage, again, we do not expect you to analyze

or understand all the gory details. Just look for the overall concept and how verbose

these files can be.

1.5.1 Persistence in Early Smalltalk

In an early version of Smalltalk it took a relatively long time to start or close a

program, but when you re-started it you were exactly at the point where you stopped

before. The internal data (its heap) was automatically persistent. However, at odd,

unexpected moments, the program would pause for a long time, sometimes for

minutes,16 before continuing to run. From this behaviour, one could guess what was

happening inside:

Before discussing persistence which we could add to existing languages, we

should look at the built-in serialization some of them provide. We do not

recommend any of these solutions, but you have to see the complexity of

their user interface and of their file format in order to appreciate what’s coming

in Chap. 2.

16 In those days computers were much slower than today.

16 1 Introduction

http://dx.doi.org/10.1007/978-3-642-39323-5_2

Smalltalk reserved a block of memory for the heap, and then allocated all objects

from it. When you allocated more objects than the size of the block, Smalltalk

paused the application, allocated a bigger block and copied the old block into this

new heap.

We don’t know whether, internally, references stored offsets within the heap and

not the addresses as pointers usually do. If it stored offsets, then swizzling of

references was not required, and the pause was caused just by copying a large

block of virtual memory.

If the references stored addresses, it would work as follows. On exit, the raw

image of the heap was copied to disk. On re-entry, the heap was read to memory and

references swizzled. When the block was not large enough and the program

increased the heap, references were also swizzled. Swizzling references was simple

because Smalltalk knew where they were, and they had to be swizzled by the same

increment—see Fig. 1.7.

1.5.2 Java Serialization17

It was a wise decision to add serialization to Java language. Java is much more

protected (and thus more restricted) than C++. As you will see later, many pro-

gramming features and tricks that help us to implement persistent objects in C++ do

not work in Java. Without providing its own serialization, Java would be signifi-

cantly disadvantaged. Also, as we said earlier, adding persistence directly to the

71858

59832

50256old memory block new memory block

34034

22008

12432Fig. 1.7 Example of

converting references in early

Smalltalk

59,832 ¼ 22,008 + (50,256 � 12,432);

71,858 ¼ 34,034 + (50,256 � 12,432)

17With the permission of the authors, most of this chapter is based on examples from Cornell &

Horstmann (2011), pp 39–51.

1.5 Languages with Built-In Persistence 17

language is easy. The compiler already knows everything about classes, objects and

the embedded references (pointers).

Nothing has been published about the internal workings of Java serialization.

However, Cornell & Horstmann (2011) provide excellent instruction on how to use

Java persistence, including a commented sample of the serialization file. Note that

the definition of the serialization format is not a part of Java language, and it may

change with each version of Java. Indeed, if you compare the second edition of

Cornell and Horstmann (1997) with the 2011 edition, all the internal codes and

headers are different.

Using Java serialization is easy. If you want your objects to be persistent, all you

have to do is make sure that they are implemented, directly or indirectly, with

interface Serializable—see Listing 1.6.

Listing 1.6 Example of making classes persistent

class Employee implements Serializable {

private String name;

private double salary;

private Date birthday;

}

class Manager extends Employee {

private Employee secretary; // reference

public Employee getSecretary(){return secretary;}

public void setSecretary(Employee e){secretary = e;}

}

References, such as member secretary, form a graph connecting objects. When

you invoke serialization on an object, it saves not only the object itself but,

recursively, also all the objects it can reach via references.

Real-life problems usually have one object that represents the entire problem—

we call it root object, from which all other objects can be reached. Listing 1.7 shows

a simple problem of two managers, Carl and Tony, who share the same secretary,

Harry. In this case, there isn’t a single root; you have to give Java the two managers

in order to reach all objects.

18 1 Introduction

Listing 1.7 Example storing the data space reachable from the root objects18

(for full running example, see bk\chap1\javaSerialization\readme.txt)

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

Employee harry = new Employee();

Manager carl= new Manager();

carl.setSecretary(harry);

Manager tony = new Manager();

tony.setSecretary(harry);

// serialization to file store.dat

Manager[] staff = new Manager[2];

staff[0] = carl;

staff[1] = tony;

ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream("employee.dat"));

out.writeObject(staff);

out.close();

// retrieve the data including harry

ObjectInputStream in = new ObjectInputStream(

new FileInputStream("employee.dat"));

Manager []newStaff = (Manager[]) in.readObject();

in.close();

// newStaff[] now has the two new roots

carl=newStaff[0];

tony=newStaff[1];

harry=carl.getSecretary();

If we change Listing 1.7 so that Carl has secretary Harry, Harry has secretary

Tony, and Tony has secretary Carl, the objects are connected into a loop. It does not

make a meaningful example, but it allows us to test that Java serialization can

handle such loops, and it does. To run this example, go to bk\chap1\javaSeria-

lization\src and copy ObjectStreamTest.4 to ObjectStreamTest.java.

Nevertheless, there are situations when Java serialization may crash with stack

overflow.

Situation 1: A long chain of references may cause stack overflow, but not

always. If the LinkedList in Listing 1.8 is a Java container, everything works fine.

However, for LinkedList from another library, for more than just a few books Java

serialization will crash. The online example19 crashes for more than 1,000 books.

18 For full running example, see bk\chap1\javaSerialization\readme.txt.
19 Look at custom coded linked list of Books in bk/chap1/javaSerialization/stackOverflow1, where

build.bat compiles it, and run.bat runs it. In order to run it for 2000 books, type: run 2000.

1.5 Languages with Built-In Persistence 19

Listing 1.8 Example where, for 50,000 Books, serialization ends in stack overflow.

The behaviour depends on the origin of LinkedList

import java.util;

class Book implements Serializable {

}

class Library implements Serializable {

// when LinkedList is from Java library, serialization runs fine

// For a custom LinkedList, serialization triggers stack overflow

LinkedList<Book> books;

}

Situation 2:When two classes have containers holding objects of the other class,

Java serialization may crash even when Java containers are used; see Listing 1.9,

first. This happens even if these are Java containers. The online example20 runs fine

up to 1,000 books, but for more books it crashes with stack overflow.

Listing 1.9 Examples of implementing ManyToMany with two containers; some

may cause stack overflow

import java.util;

// (1) Implementation which causes a stack overflow

class Book implements Serializable {

NotJavaContainer<Author> authors;

}

class Author implements Serializable {

NotJavaContainer<Book> books;

}

// (2) Java container which causes a stack overflow //

class Book implements Serializable {

ArrayList<Author> authors;

}

class Author implements Serializable {

ArrayList<Book> books;

}

// (3) Desperate man’s ManyToMany does not crash,

// but is neither clean nor efficient

class Book implements Serializable {

}

class Author implements Serializable {

}

class Library implements Serializable {

HashMap<Book,Container<Author>> booksToAuthors;

HashMap<Author,Container<Book>> authorsToBooks;

}

It is interesting to compare cases (2) and (3) in Listing 1.9. In case (2) there is

just a reference between Book and Container<Author>. In case (3) the

20 If you want to experiment with this example, go to bk/chap1/javaSerialization/stackOverflow2,

where build.bat compiles it, and run.bat runs it. In order to run it for 2000 books, type: run 2000.

20 1 Introduction

reference is replaced by index search in a hash table, which certainly takes more

time to execute, and requires additional internal data space.
It works because there are fewer references and the networks splits into smaller

pieces.We call it a desperateman’s implementation because Java serialization crashes
in case (2), which is the only proper, logical, simple and efficient solution in this case.

Useful Trick No.1.

When replacing references by hash tables, we can build bi-directional

associations without inserting references into the participating objects. That

can be useful in some situations, but it obscures the true purpose of what we

are building, and requires more memory space and time to traverse.

As a result of the recursive process in which Java traverses the data, the disk data

have a hierarchical nature, which isn’t easy to read visually. The concept is

explained in Fig. 1.8.

In addition to the individual objects, the disk record must also include a

description of all participating classes. Some persistent systems store the descrip-

tion of the classes at the beginning of the file, but Java stores it when encountering

the first object of that particular type.

class A
descript.

obj #1

class C
descript.

A1

class B
descript.

cost value #2

b=obj #2

ax = #1

ay = 0

az= obj #3

class A

b = 0

num value #3

num value #1

C2

A3

ax
0

az

0

b

class A {
B b;
int num;

}
class B {

float cost;
}
class C extends B
{

A ax;
A ay;
A az;

}

Fig. 1.8 The concept of Java

serialization

1.5 Languages with Built-In Persistence 21

In C-based languages, object address can be used as its unique ID. In Java we

don’t have access to addresses, so the serialization uses the order of the objects in

the file as their IDs when recording references.

The serialization file is byte-encoded, and Fig. 1.921 shows the serialization file

for Manager Carl Cracker and his secretary Harry Hacker annotated by Horstmann C.

The record is full of cryptic headers and special codes22 which are not a part of

Java language; they may and often change from one version of Java to another.

Fig. 1.9 Section of the Manager-Employee serialization file from Cornell and Horstmann (2011);

shaded area describes classes. With the permission of the authors

21We had to re-type the original in order to make it readable here.
22 For the description of these codes, look at pp 39–59, Vol. II of Cornell & Horstmann (2011).

22 1 Introduction

Figure 1.8 is from the 2011 version of Core Java. A similar listing is in the 2012

version (Horstmann and Cornell 2012) starting on p. 49.

With wide industry participation, the JAXB23 project is developing and evolving

Java serialization with XML output, including the specification, reference imple-

mentation and the Technology Compatibility Kit (TCK). The goal is a production-

quality implementation that is used directly in a number of products by Oracle and

other vendors.

1.5.3 C# Serialization

C# and Java are similar languages. They use references and not pointers, do not

support multiple inheritance and both have reflection. One would expect that the

serialization in both languages would be similar but it is not. Only the user interface

is similar—see Listing 1.10.

Listing 1.10 Invoking serialization in C#, binary output format24

[Serializable] class Employee {

private string name;

private double salary;

private DateTime birthday;

}

[Serializable] class Manager : Employee {

private Employee secretary;

public void setSecretary(Employee e){secretary = e;}

public Employee getSecretary(){return secretary;}

}

static void Main(string[] args) {

Manager m = new Manager();

Employee s = new Employee(); // s for secretary

m.setSecretary(s);

// for root m, write all data to file manager.bin

Stream fileOut = new FileStream(“manager.bin”, FileMode.Create);

BinaryFormatter formatter = new BinaryFormatter();

formatter.Serialize(fileOut, m);

fileOut.Close();

// read the data from the file, nm will be the new manager

fileIn = new FileStream(filename, FileMode.Open);

m = (Manager)formatter.Deserialize(fileIn, null);

fileIn.Close();

return 0;

}

C# serialization with the binary format is equivalent to Java serialization.

However, C# serialization also supports several XML formats.

The advantage of the XML format is that it can read the stored data even if the

structure of the serialized classes has changed, for example if we add or remove

23 http://jaxb.java.net
24 Full code which also generates Figs. 1.10 and 1.11 is in bk/chap1/CSharpSerialization/

SerializeToBin/Program.cs bk/chap1/CSharpSerialization/SerializeToXml/Program.cs.

1.5 Languages with Built-In Persistence 23

http://jaxb.java.net/

members. The disadvantage of the XML format is a larger data file and longer time to

save/restore the data. InListing 1.10 the format is selected by the choice of the formatter:

BinaryFormatter generates binary format as shown in Fig. 1.10. Binary serializa-

tion is typically used for .NETRemoting,25 and is unsuitable for long-term storage. The

disk format may depend on the version of .NET Framework. We have no explanation

for the binary serialization being slower26 than the XML serialization, especially for

large data sets—it defies any logic and could be a result of poor implementation. We

have not seen any problems with circular references or large reference chains.

XmlSerializer can serialize only public classes and public members. It must

have a default constructor, and if several references point to the same object,

multiple copies of the object appear on the file. It also cannot handle circular

references and objects of type ArrayList or List<T>.
SoapFormatter uses the SOAP format, which makes XML hard to read visu-

ally. It handles correctly circular references and multiple references to the same

object. Objects and members can be serialized even if they are not public. However,

it cannot serialize generic classes such as Dictionary<T>.
DataContractSerializer is the most sophisticated formatter. It does everything

that SoapFormatter does, but it also handles generic classes. When using this

formatter, every serialized class must be decorated with the attribute

DataContract, and every serialized member must have the attribute

DataMemeber. In order to handle circular and multiple references, all classes

with at least one instance referred more than once must be decorated not only with

DataContact but also with DataContract(IsReference¼true).
Figure 1.10 provides clues to the organization of the binary file, such as shown in

Fig. 1.11:

In Fig. 1.10b, assembly info describes dll or exe files where the serialized objects

are stored.

assembly info

class1 info

class1 instances

class2 info

end record 0x0B

record type

data

member count

member names

member type flags

member types

assembly info

record type

object ID

class name

header

member value

reference3

object ID

reference1 class2 instances

a b c

d

Fig. 1.10 C# binary

serialization: (a) basic record,
(b) overall file organization,
(c) class info record, (d)
instance record

25 For more information on .NET Remoting, see MSDN.
26 For experimental results, see the benchmark in Chap. 8.

24 1 Introduction

http://dx.doi.org/10.1007/978-3-642-39323-5_8

Fig. 1.11 (continued)

1.5 Languages with Built-In Persistence 25

Fig. 1.11 (continued)

26 1 Introduction

In Fig. 1.10c, class ID is identical with the ID of its first instance. Names of

inherited members include the base class name, e.g. baseName+memberName.

Fig. 1.11 C# binary format as generated by Listing 1.10. For more details see MSDN pages

(http://msdn.microsoft.com/en-us/library/cc236844(v¼prot.10).aspx), or Lluis Sanchez Goal’s

web pages (http://primates.ximian.com/~lluis/dist/binary_serialization_format.htm) for the older

format

1.5 Languages with Built-In Persistence 27

http://msdn.microsoft.com/en-us/library/cc236844(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236844(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236844(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236844(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236844(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236844(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236844(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236844(v=prot.10).aspx
http://primates.ximian.com/~lluis/dist/binary_serialization_format.htm
http://primates.ximian.com/~lluis/dist/binary_serialization_format.htm
http://primates.ximian.com/~lluis/dist/binary_serialization_format.htm
http://primates.ximian.com/~lluis/dist/binary_serialization_format.htm
http://primates.ximian.com/~lluis/dist/binary_serialization_format.htm

One byte flags identify basic types such as int or char in MSDN,27 and assembly

info provides basic metadata about the assembly—full name, version, etc.

In Fig. 1.10d, the record of the first object does not include any ID—its ID is the

same as the class ID. References and member values must be in the same order as

listed under (c).

Observations:
The comparison of the three XML serializer formats in Fig. 1.12 is interesting:

You can see that XmlSerializer format is similar to Java—it is the result of a recursive

function call, and is also the reason why this serializer cannot handle long reference

chains and circular references—Java serialization also runs into this problem.

The organizations of the other XML files and of the binary file are more linear,

easier to read visually and clearly results of a better algorithm which we will

describe in Chap. 2.

XML files do not store types of individual members. Serializer gets them from the

assembly (dll) through reflection. For this reason, it is essential that the program

which reads the data from the disk uses exactly the same application classes. To

change the type of a member while keeping its name will likely crash your program.

The binary serialization stores the type for each member, even though it could

get around it in the same way as the XML serialization does. We can only guess the

reason: Binary serialization is designed for .NET Remoting where applications send

serialized data over the network, and the stored types can be used for checking that

the classes are identical.

1.5.4 Objective-C Archiving

Objective-C has two mechanisms to make objects persistent: Core Data28 framework

and Archiving. Core Data is a layer that manages entity-relationships and stores all

the objects either in the SQLite database or in a file. This is a more complex

environment than the simple and fast storage which is the subject of this book.

Archiving is the Objective-C term for serialization. In Objective-C lingo, seri-
alization is used for the process of recording a single object, while archivingmeans

storing the entire object graph. This may confuse someone used to serialization in

other languages.

From observing limitations of Archiving and its behaviour and interface, we can

guess that it traverses through the object graph using a recursive function just like Java

does. It requires the user to write functions that identify members and provide instruc-

tion how to reach the adjacent objects—see Listing 1.11. This clearly is not the

automatic persistence we are seeking in this book. It requires a lot of manual work to

make application classes persistent. Nevertheless, we show it here for comparison with

the new, more efficient, and easier to use persistence which we will develop in Chap. 6.

Depending on which Coder is used, Archiving can produce either a binary or an

XML file. The XML output for the Manager/Employee pair is in Listing 1.12, and the

27 http://msdn.microsoft.com/en-us/library/cc236866(v¼prot.10).aspx
28 See (Core Data 2013).

28 1 Introduction

http://dx.doi.org/10.1007/978-3-642-39323-5_2
http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://msdn.microsoft.com/en-us/library/cc236866(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236866(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236866(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236866(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236866(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236866(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236866(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc236866(v=prot.10).aspx

Fig. 1.12 Comparing outputs of the three serializers

1.5 Languages with Built-In Persistence 29

binary file for the same problem is in bk/chap1/objcArchiving/boss.plist and has

380 bytes.29

Listing 1.11 Archiving Manager-Employee objects in Objective-C. Compared to

other languages, using this serialization is a programer’s nightmare. [Most readers may

not be familiar with the Objective-C syntax, so we reduced this listing to comments

which explain the logic.] [For full running code see bk/hap1/objcArchiving/list1_11.m]

// The class definitions similar to C++, C# or Java,

// each class must have two custom coded methods.

// coder is the object which controls XML or binary recording

@interface Employee : NSObject<NSCoding>

{
NSString* name; // pointer to a separate object

double salary;

NSDate* birthday; // pointer to a separate object
}

-(id)initWithCoder:(NSCoder*)coder;

-(void)encodeWithCoder:(NSCoder*)coder;

@end

@interface Manager : Employee<NSCoding>

{
Employee* secretary;

}

-(id)initWithCoder:(NSCoder*)coder;

-(void)encodeWithCoder:(NSCoder*)coder;

@end

// lets look inside one of these methods

@implementation Employee

-(void)encodeWithCoder:(NSCoder*)coder {

[coder encodeObject:name]; // encode another object

// instruction to encode ‘salary’ value

[coder encodeValueOfObjCType:@encode(double) at:&salary];

[coder encodeObject:birthday]; // encode another object

} @end

// User also has to supply another C-style function for each class.

// This function is simple for binary storage, for example

void archiveBossToBinaryPlist(Manager* boss, NSString* filename) {

[NSKeyedArchiver archiveRootObject:boss toFile:filename];
}

// but for XML storage, it again gets quite involved

void archiveBossToXmlPlist(Manager* boss, NSString* filename) {

NSMutableData *data = [NSMutableData data];

NSKeyedArchiver *archiver =

[[NSKeyedArchiver alloc] initForWritingWithMutableData:data];

[archiver setOutputFormat:NSPropertyListXMLFormat_v1_0];

[archiver encodeObject:boss];

[archiver finishEncoding];

[data writeToFile:filename atomically:YES];

[archiver release];
}

29 All this for two simple objects is ridiculous. The file has about five times as many lines as XML

files produced by C# serializer.

30 1 Introduction

Listing 1.12 XML file for the Manager-Employee pair, produced by objC

archiving. [See also bk/chap1/objcArchiving/boss.xml]

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//GNUstep//DTD plist 0.9//EN"

"http://www.gnustep.org/plist-0_9.xml">

<plist version="0.9">

<dict>

<key>$archiver</key>

<string>NSKeyedArchiver</string>

<key>$objects</key>

<array>

<string>$null</string>

<dict>

<key>$0</key>

<dict>

<key>CF$UID</key>

<integer>2</integer>

</dict>

<key>$1</key>

<real>120000</real>

<key>$2</key>

<dict>

<key>CF$UID</key>

<integer>3</integer>

</dict>

<key>$3</key>

<dict>

<key>CF$UID</key>

<integer>4</integer>

</dict>

<key>$class</key>

<dict>

<key>CF$UID</key>

<integer>8</integer>

</dict>

</dict>

<string>Hugo Boss</string>

<date>1962-07-24T16:00:00Z</date>

<dict>

<key>$0</key>

<dict>

<key>CF$UID</key>

<integer>5</integer>

</dict>

<key>$1</key>

<real>22000</real>

<key>$2</key>

<dict>

<key>CF$UID</key>

<integer>6</integer>

</dict>

1.5 Languages with Built-In Persistence 31

<key>$class</key>

<dict>

<key>CF$UID</key>

<integer>7</integer>

</dict>

</dict>

<string>Judy</string>

<date>1980-07-01T16:00:00Z</date>

<dict>

<key>$classes</key>

<array>

<string>Employee</string>

<string>NSObject</string>

</array>

<key>$classname</key>

<string>Employee</string>

</dict>

<dict>

<key>$classes</key>

<array>

<string>Manager</string>

<string>Employee</string>

<string>NSObject</string>

</array>

<key>$classname</key>

<string>Manager</string>

</dict>

</array>

<key>$top</key>

<dict>

<key>$0</key>

<dict>

<key>CF$UID</key>

<integer>1</integer>

</dict>

</dict>

<key>$version</key>

<integer>100000</integer>

</dict>

</plist>

1.5.5 BOOST Serialization in C++

Boost.org provides free peer-reviewed portable C++ source libraries. These

libraries are used worldwide, and were included in several reports of the C++

Standards Committee. The BOOST serialization30 was designed by Richard

Ramey between 2002 and 2004, and has been recently proposed as the serialization

standard for C++. Ramey is still the key person on this project.

30 http://www.boost.org/doc/libs/1_52_0/libs/serialization/doc/index.html (BOOST library serial-

ization 2013).

32 1 Introduction

http://www.boost.org/doc/libs/1_52_0/libs/serialization/doc/index.html

Because C++ does not have reflection, the user interface must help the serializa-

tion to identify pointer members in all the application classes—either by listing

their names or locations. Boost serialization requires more. The user must provide

function serialize(), which not only lists the members to be stored (usually all

the members again), but must also invoke serialize() for the base class—see

Listing 1.13.

BOOST documentation uses the term serialization for what we call persistence,
and unlike in Objective-C, archiving in the BOOST terminology means the format
of the disk data. Thus BOOST has three archiving styles:

(a) Binary

(b) ASCII text

(c) XML

Compared to the built-in serialization of other languages, the disk file is very

compact—see Fig. 1.13. The penalty is that the serialization does not check whether

the classes and the data model of the programs that read and write the data are

identical.31

Fig. 1.13 BOOST serialization: comparing output files for the different styles of archiving

31 Code in bk/chap1/boostSerialize also has options for other styles of archiving.

1.5 Languages with Built-In Persistence 33

Listing 1.13 BOOST serialization applied to the Manager/Employee (secretary)

problem using the binary archiving style. Code added for serialization is in bold

class Employee {

private:

friend class boost::serialization::access;

template<class Archive>

void serialize(Archive & ar, const unsigned int version) {

ar & name;

ar & salary;

}

public:

string name;

double salary;

};

class Manager : public Employee {

private:

friend class boost::serialization::access;

template<class Archive>

void serialize(Archive & ar, const unsigned int version) {

// serialize base class

ar & boost::serialization::base_object<Employee>(*this);

// serialize own members

if(secretary != NULL){ ar& secretary; }

}

Employee *secretary;

public:

Employee *getSecretary(){return secretary;}

void setSecretary(Employee *s){secretary = s;}

};

int main() {

Manager *m = new Manager();

Employee *s = new Employee();

m->addSecretary(s);

//save to file

std::ofstream ofs("manager.bin",

std::ios_base::out|std::ios_base::trunc|std::ios_base::binary);

boost::archive::binary_oarchive oa(ofs);

ofs.close();

//load from file

std::ifstream ifs("data.bin",

std::ios_base::in|std::ios_base::binary);

boost::archive::binary_iarchive ia(ifs);

ifs.close();

m = new Manager();

s = m->getSecretary();

return 0;

}

34 1 Introduction

The XML file and the program that generates it are available from bk\chap1

\boostXML.

An interesting feature of Boost serialization is that it allows an alternative—a

non-intrusive interface which makes the class persistent. Instead of adding method

serialize() to class Employee as we did above, we can leave class Employee

completely unchanged and only add a separate template:

// intrusive version, as above

class Employee {

template<class Archive>

void serialize(Archive & ar, const unsigned int version) {

ar & name;

ar & salary;

}

. . . // as before adding persistence

};

// non-intrusive version

class Employee {

. . . // as before adding persistence

};

template<class Archive>

void serialize(Archive & ar, Employee & e,const unsigned int version)

{

ar & e.name;

ar & e.salary;

}

This looks like a silver-bullet solution to the problem of making existing

libraries persistent. However, there is a catch: If the members to be serialized are

not public, and they usually are not, then this does not work.
We do not recommend this method, and we agree with Mark Bales who observed

that separating persistence from the base class leads to potential problems when

classes change. One of his engineers implemented this approach when Mark wasn’t

looking, and it’s been a performance and maintenance nightmare.

1.5 Languages with Built-In Persistence 35

Fundamentals of Persistence 2

Abstract

This chapter is the heart of the book. It explains algorithms, technical details and

programming tricks of various approaches to implementation of persistent

data—binary and ASCII serialization, memory paging, disk paging and smart

pointers. The last section presents QSP (Quasi-Single-Page), a new design of

persistent data which, besides other languages, also works in Objective-C and

with iPhone applications.

Keywords

Algorithm • Hidden pointer • Object graph • Pointer mask • Regular pointer •

Reference • Smart pointer • Swizzling pointers • Traversing objects

Some algorithms and implementation techniques presented in this chapter have

never been published. All the examples in this Chapter are coded in C++, yet many

of these ideas are also applicable to other languages. We’ll start with the concept of

the pointer mask which, for each class, stores the information about the location of

its pointers.

Pointer Mask is an object that is used to capture the structure of a class, focusing

specifically on where its pointer members are located. You can think of it as a

singleton instance of the class which is first filled out with zeros and then all its

pointers are set to small positive integers, either 1 (just to identify the pointer

location) or to a number specifying the pointer type.

This chapter describes several different approaches to the implementation of

persistent objects, including algorithms and implementation techniques some of

which may not have been published. We start with the concept of pointer mask

which, for each class, stores the information about the location of its pointers.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_2, # Springer-Verlag Berlin Heidelberg 2014

37

Pointer masks have many uses and advantages:

– They tell us instantly (both in code and visually) where we have all the pointers.

– They make it easier to code and debug algorithms.

– They are easy to generate automatically.

– Other representation such as the list of pointers and their offsets within the object

can be easily derived from the mask.

– By comparing the masks, we can see whether the old/new classes are different.

Another way of looking at the pointer mask is to start with the fact that, within any

object, pointers always start on a 4-byte boundary.1 Imagine any object broken down

into 4-byte sections of potential pointer locations. Instead of some valid pointer, the

mask stores an integer in each of these four bytes, so naturally it has the same size as

any instance of this class. These integers are 0 for those object members that represent

just numbers or text, and are set to non-zero value for pointers.

When constructing a pointer mask, it is important to know that, at the setup time,

just before the program starts to run, the persistent system assigns to each class an

integer index. It is the same code as if you wanted to find out how many application

classes are involved:

class Utill {

static int classesCount;

};

class Library {

static int classIndex;

};

class Book {

static classIndex;

);

class Author {

static classIndex;

};

int Util::classCount=0;

int Library:classIndex=classCount++;

int Book:classIndex=classCount++;

int Author:classIndex=classCount++;

1 On a 64-bit architecture, it is 8-bytes.

38 2 Fundamentals of Persistence

POINTER MASK (Example)

class Book { class Author {

int numPages; . . .
char *title; . . .

char category static int classIndex;

Author *authors; };

Book *next;

static int classIndex;

};

The compiler may keep internal table that looks like this

Book [int char* char Author* Book*]

where each of these members takes 4 bytes of the object, 8 bytes on a 64-bit

architecture. Pointers, integers and floats all start on a 4-byte boundary, and

even the single character takes 4 bytes including the 3 bytes of padding the

compiler inserts. Note that the static members (here classIndex) are not

stored inside these objects.

In the persistence systems which store pages of objects as blocks of bytes,

we are interested only in the locations of pointers, but if we want to traverse the

object graph - as in a typical serialization, we need to know the pointer types.

For this purpose, we create a mask, specific for each class, which has

exactly the same number of bytes as one instance of that class. Each 4-byte

location which is a potential location of a pointer is treated as an integer,

which is 0 for locations that do not store pointers. For pointer locations, it

stores the pointer type as the classIndex of its target object. Pointers to built-in

types have fixed numbers, for example char* may be recorded as -1. If we

assign Book::classIndex¼17 and to Author::classIndex¼18, then the masks

are:

17180-10Book mask with types

110-10Book mask without types

2 Fundamentals of Persistence 39

Pointer masks will get more interesting when we will discuss composite objects

involving structure-members, inheritance (especially multiple inheritance) and

hidden pointers inserted by the compiler.

2.1 Algorithms and Techniques

2.1.1 Adding Members and Methods to a Class

Both when making objects persistent and when building intrusive data structures

(see Chap. 3), we need to add capabilities to the existing classes. That implies

additional methods and members to support these capabilities. There are four ways

to do it: from below, from above, inserting them inside, and using a linked storage.

Examples in this book mostly inside the required methods and members, but keep in

mind that this is not the only way. In some situations one of the other options may

be a better solution.

2.1.1.1 Adding from Below
If we want to add certain methods and members to every allocated object, we can

derive all application classes (and all library classes) from the same base class. For

example

class PersistBase {

int counter;

int mySize(); // ??? see Note1

static int mode; // ??? see Note2

};

class Employee : public PersistBase {

int ID;

Employee *next;

};

Note1: Unless mySize() could reach into the allocation record, which may depend

on the compiler and OS, or unless counter keeps the size from the time the object

was allocated, this would not work.

This chapter describes how to add, automatically and transparently, members

and methods to a class. It discusses regular pointers, hidden pointers inserted by

the compiler, smart pointers, references, and pointer swizzling. discusses two

algorithms (recursive and stack based) which traverse the pointer network and

collect all active objects – the critical step in every serialization.

40 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_3

Note2: This value would be the same for all classes and all objects, an interesting

implementation of “global” variable—see bk\chap2\fromBelow.cpp.

2.1.1.2 Inserting Inside
If we want to add more than one member or method to a class,2 we can insert them

with a macro. In the following example each class has an index, and even from the

base class we can determine the size of the allocated object. The program prints
size¼16 which is the size of Manager.3

#define Persist(T) \

public: \

virtual int mySize(){ return sizeof(T); } \

static int classIndex

class Employee {

Persist(Employee);

int ID;

Employee *next;

};

class Manager : public Employee {

Persist(Manager);

Employee *secretary;

};

int main(){

Manager *m=new Manager;

Employee *e=m;

printf(“size=%d\n”,e->mySize());

Useful Trick No. 2

Macros, especially long ones, complicate debugging, because compilers and

debuggers treat each macro as a single line, but sometimes there is no other

choice. The way to minimize the negative impact of a long macro is to insert,

with a macro, a short function which calls another function outside of the

class.4 For example, in Listing 2.9 - far below, p.60, macro INH_REC(T)

inserts a line with a call to Util::iRep(). This does two things: (1) it allows
us to insert the function yet code it, or most of it, as normal code, not as a
macro and (2) it allows the outside function to use class parameters which are
private and normally not available outside.

2 The difference from adding to an object from below becomes apparent when inheritance is

involved.
3 Two 4-byte members in Employee, one in Manager plus one hidden pointer as will be explained

in Sect. 2.1.2.
4 This coding style was recommended by Sean Yixiang when coding the Objective-C persistence

in Chap. 7.

2.1 Algorithms and Techniques 41

http://dx.doi.org/10.1007/978-3-642-39323-5_7

Here is a simpler example, where we are adding a long function foo() to class

Book. The function needs the value of member ISDN, which is private. We can do it

with a long macro, which is not nice and is difficult to debug:

#define FOO \

void foo(){ \

.. long code using value of ISDN \

}

class Book {

private:

int ISBN;

public:

FOO

};

Instead of using a long macro, we can code the main part of foo() outside of

Book, either as a plain C function, or as a static function of some utility class:

class Utility {

friend class Book;

static void foox(int isbn){

. . . bulk of the function, using the private Book::ISDN

}

}

#define FOO \

void foo(){Book::foox(ISBN);}

class Book {

private:

int ISBN;

public:

FOO

};

2.1.1.3 Adding from Above
As from below, this method allows one to expand object, not class. We derive a

special class from the class we want to expand and add the members and methods

there. The disadvantage is that in calls to new() and possibly other methods you

have to cast to the expanded class (starting with Exp_. . .). For example:

42 2 Fundamentals of Persistence

class Employee {

int ID;

Employee *next;

};

class Exp_Employee : public Employee {

public:

Exp_Employee *nextFreeList;

static Exp_Employee *freeListStart;

static void addFreeList(Employee *e){

Exp_Employee *ee=(Exp_Employee*)e;

ee->nextFreeList=freeListStart;

freeListStart=ee;

}

static void delFreeList(Exp_Employee *e){…}

};

Exp_Employee* Exp_Employee::freeListStart=NULL;

int main(){

Employee* e=new Exp_Employee;

Exp_Employee::addFreeList(e);

2.1.2 Hidden Pointers

The first step to implementing any style of persistence is to understand the internal

representation of objects. In the early years of C++ there was a multitude of

compilers, each with its own quirks and representation of objects. Writing portable

C++ persistence used to be a pain.5

The C++ standard does not specify the internal implementation of objects, but

most compilers today use the model shown in Fig. 2.1.6 If neither the class itself nor

the classes from which it inherits have virtual functions, the memory image consists

of all the members (fields) in the same order as they are hierarchically listed in the

class definition.7 If there are virtual functions, then there is a hidden pointer at the
beginning of the object.8 In the case of multiple inheritances, there are additional

hidden pointers inside the object. Hidden pointers point into the internal table of

virtual functions, and are identical for all instances9 of the same class. Application

programmers have no access to these hidden pointers and tables, and often are not

even aware of their existence.

5 The code of DOL library (Data Object Library 2013) still has ifdef statements for Borland,
Watcom, Microsoft, Mac, Linux, Zortec, DEC, VMS, Sun, Lucid, GNU, IBM, Solaris, Liant,
Amdahl, Coherent, Apollo, Saber and HP compilers.
6 For the program which generates this information, go online to bk/chap2/dispPtrs
7 As in plain C.
8 In most OO languages including Java and C# the internal object representation is probably

similar.
9 Terms object of classA, A-object, or instance of A mean the same thing.

2.1 Algorithms and Techniques 43

On a 32-bit architecture, pointers and 4-byte numbers always start on a 4-byte

boundary. On 64-bit architecture, pointers and 8-byte numbers usually start on an

8-byte boundary.10 The sizeof() function returns the true size of the object,
including the hidden pointers.

A convenient tool for detecting and manipulating these pointers is operator new
()which can be controlled by an outside variable, static pointer objBuf, to do three
things11:
(1) When objBuf¼NULL, new()allocates a new object as usual.
(2) When objBuf points to a block of memory, new() adds hidden pointers to it,

thus turning it into a valid object.
(3) When objBuf¼(char *)(1), new() allocates a 0-filled object, then sets the

hidden pointers to
Case (1) is used for allocation of objects during the program run.

Case (2) is useful when retrieving persistent objects from the disk.

Case (3) creates a mask similar to Fig. 2.1.

The algorithm recognizes a valid pointer by having a value which is amultiple of 4.

class C {...};
class B : public C {...};
class D : public C {...};
class A : public B, public D {…};
class E : public B {…};

B-members E-members

H-ptr C-members B-members E-members

E-object, with virt.func�ons

H-ptr C-members B-members H-ptr C-members D-members A-members

A-object, with virt.func�ons

C-members

E-object, no virt.func�ons.

Fig. 2.1 Examples of hidden pointers in C++ objects (Visual Studio 2010). Note that an A-object

includes two different instances of the C-class

10 The lowest two bits of any pointer are always 0 and, temporarily, they may store flags or other

information during some algorithms.
11 See Listing 2.1.

44 2 Fundamentals of Persistence

Listing 2.1 Overloaded operator new() which works in three different modes:

normal, updating hidden pointers, and generating a mask. [For the explanation of

how this relates to so called “placement new”, see the Note after the listing.]

class A {

. . . private members, no pointers

public:

static void *objBuf; // controls what new() does

static void *mask; // for

void* operator new(size_t size){

unsigned long u=(unsigned long)objBuf;

if(u==0) return malloc(size); // normal operation

else if(u&3) return mask=calloc(1,size); // create mask

else return(objBuf); // insert hidden pointers

}

};

void* A::objBuf=NULL;

Note:

Placement new gets a section of memory and turns it into a valid object by filling

in the hidden pointers. For example for class Book,

void *v=calloc(sizeof(Book),1);

Book *bp=new Book(v);

or on one line

Book *bp=new Book(calloc(sizeof(Book),1));

If we wanted to control the allocation of objects by calloc or some custom

allocation function the application would have to change all the calls to new() to

this ugly and potentially error-prone syntax.12

Overloading new() as we did in Listing 2.1 hides all this, and the application can

create objects as usual. No change of calls to new() is required:

Book *bp=new Book();

However, the last line of operator new in Listing 2.1

else return(objBuf); // insert hidden pointers

is really nothing else than placement new, which we use in a special case when we

just want to set or update hidden pointers. The difference from the normal place-

ment new is that the memory is not supplied as the function parameter, but as the

static class member objBuf.

12 Note that this is similar to what you have to do when using ObjectStore (c) PSE Pro for C++.

2.1 Algorithms and Techniques 45

2.1.3 Regular Pointers

Regular pointers are the pointers the application inserts into classes. After you write

objects to disk and then read them back to memory, the new objects are in different

locations, and all the regular pointers must be replaced (swizzled) to the new addresses

of their target objects. If you read the object back within the same program run, hidden

pointers are the same, but for a different run even hidden pointers usually change.

How to detect all these pointers is one of the key tasks every persistent system

must tackle.

For example, if a company hierarchy is described by classes Manager and

Employee, we can represent the internal structure of each class by a mask—see

Listing 2.2 and Fig. 2.2. Such masks are useful when planning algorithms or

debugging code, and we will use them extensively throughout this book.

Note that it is reasonably fast to traverse a mask when swizzling pointers.

However, a small performance improvement can be achieved by keeping, in addition

to the mask, a list of non-zero entries in the mask. Note that mask in Fig. 2.2 does not

have any hidden pointers because the two classes have no virtual functions.

Listing 2.2 Another version of Manager/Employee classes (online listed only as

list2_2.txt)

template< class T> class Ring {

T *tail;

int colSZ;

};

class Employee {

float salary;

char *name;

Employee *next;

};

class Manager : public Employee {

int deptID;

Employee *secretary;

Ring<Employee> myPeople;

};

0 2 10 0 10 10 0

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

MASK:

LIST FOR FAST TRAVERSAL: 1,2,4,5,-1

Fig. 2.2 Mask for the

Manager class from

Listing 2.2. Each box

corresponds to a potential

pointer location (4B or 8B

depending on the system

architecture). Pointer

locations are marked by the

index of the target class, here

2 ¼ text string,

10 ¼ Employee

46 2 Fundamentals of Persistence

2.1.3.1 Detecting Pointers with Reflection
When reflection is available, we don’t need a mask. And even if we had one it

would not help much. Languages with reflection usually work with references, and

objects and their parts cannot be accessed by their memory addresses.

When we need to traverse references of an object, the reflection allows us to

traverse members and, for each member, it tells us whether the member is a

reference and what is the type of its target. Listing 2.3 shows how this is done in

Java, and Listing 2.4 shows the C# implementation.

It may not be obvious from this code, but it traverses pointers all through the

inheritance hierarchy, e.g. for the Manager object from Listing 2.2, the code visits
Employee::name,

Employee::next,

Ring::tail,

Manager::secretary.

Listing 2.3 Using Java reflection to traverse references13

import java.lang.*;

import java.lang.reflect.*;

Field[] fields = cls.getDeclaredFields();

Object val; Class targetClass;

for(Field field : fields){

if(field.getType().isPrimitive())continue;

val=field.get(this);

if(field.getType() == String.class){

. . . // create or find new val

field.set(this,val);

}

else {

targetClass=field.getType();

. . . // create or find new val

field.set(this,val);

}

}

13 For full source, see bk/chap2/reflectJava.

2.1 Algorithms and Techniques 47

Listing 2.4 Using C# reflection to traverse references14

//flags: which members we want to enumerate

System.Reflection.BindingFlags flags =

System.Reflection.BindingFlags.Public |

System.Reflection.BindingFlags.NonPublic |

System.Reflection.BindingFlags.Instance;

Object val; Type targetClass;

foreach (System.Reflection.FieldInfo field in

this.GetType().GetFields(flags)){

if(!field.FieldType.IsClass)continue; // not a reference

val=field.GetValue(this);

if(val==null)continue; // no conversion for null references

if(field.FieldType == typeof(string)){ // string

. . . // create or find new val

field.SetValue(this,val);

}

else {

targetClass=field.FieldType;

. . . // create or find new val

field.SetValue(this,val);

}

}

2.1.3.2 References Registered for Each Class
All C++ and Objective-C persistent systems must get the information about

pointers externally, and one possibility is to assume that the user registers all

persistent classes by listing their pointers.

In C++, our favourite method is to use macros PTR and STR15 in the default

constructor. It has the advantage that it automatically traverses the inheritance

hierarchy, and the result is a mask which is a flat view of even highly composite

object. Here is an example of how to use these macros:

class Employee {

static void **mask; // not persistent

float salary;

char *name;

Employee *next;

public:

Employee(){

salary=0.0;

STR(name); PTR(next,Employee);

}

};

Listing 2.5 shows how this syntax can generate the mask. The listing may appear

long, but note that there is a lot of repetition: the same functions and static variables

are added to all three classes.

14 For full source, see bk/chap2/reflectCs.
15 A similar method to register pointers is also used by POST++.

48 2 Fundamentals of Persistence

At the setup time, before the program starts to run, each class gets its unique

index. Automatic assignment of class indexes happens at the setup time, before the

application program even starts to run—look at the last line just before main().

Inside createMask(), the call to new() with objBuf¼1 creates a 0-filled instance

of Manager and inserts hidden pointers. Then, through PTR() and STR(), the default

constructor Manager() marks the pointer locations in the mask.

Figure 2.3 has two numbers in the box for the hidden pointer: 1 or 6054. In most

environments, hidden pointers are large numbers which are easy to distinguish from

the class index stored for regular pointers. In environments, where the system stores

index(!) into the virtual function table, we mark hidden pointers by using 1 in the

mask, and storing the value of the hidden pointer in a separate, additional mask.

objBuf must be either a global variable or a static variable of a special Utility
class.

0 2 10 0 10 10 0

sizeof(Manager) = 8x4 = 32 bytes

hidden

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

0 5 21 0 21 21 06054 phase 1

phase 2 1
or

6054

Fig. 2.3 Generating mask for the Manager class. Listing 2.5 produces directly the phase2 mask

with true value of the hidden pointer (6054). The online version at bk/chap2/list2_5.cpp generates

first the phase1 mask and then converts it to phase2 with 1 marking positions of hidden pointers.

Mask codes: 0 ¼ invariable members, 1 ¼ hidden pointer, 2 ¼ char*, 10 ¼ Employee*

2.1 Algorithms and Techniques 49

Listing 2.5 Generating mask with both hidden and regular pointers (for full,

slightly modified source, see bk/chap2/list2_5.cpp)

#define PTR_SZ sizeof(char*)
int totIndex=9; // index of application classes will start from 10
void *objBuf=NULL; // global allocation control

#define PTR(P,T) \
if(objBuff==NULL || objBuf==(void*)1)P=NULL; \
else P=(T*)(T::getIndex())

#define STR(P) \
if(objBuff==NULL || objBuf==(void*)1)P=NULL; \
else P=(char*)(2)

class Employee {
float salary;
char *name;
Employee *next;

public:
// . . . static members and methods, new()as for Manager
Employee(){STR(name); PTR(next,Employee);}
int virtual trueClass(){return classIndex;}

};
// . . . initialize static members as for Manager

class Ring {
Employee *tail;
int colSZ;

public:
// . . . static members and methods,new()as for Manager
Ring(){PTR(tail,Employee);}
int virtual trueClass(){return classIndex;}

};
// . . . initialize static members as for Manager

class Manager : public Employee {
static void *mask;
static int classIndex; // app.classes start from 10
static int mySize;
int deptID;
Employee *secretary;

public:
Ring myGroup;
static int getIndex(){return classIndex;}
void* operator new(size_t size){

unsigned long u=(unsigned long)objBuf;
if(u==0) return malloc(size); // normal operation
else if(u&3){ return mask=calloc(1,size); } // mask
else return(objBuf); // insert hidden pointers

}
static void createMask(){

int i; char *s; int *ip;
objBuf=(void*)1;
new Manager; // phase one of setting the mask

}
static void prtMask(){ … }
Manager(){PTR(secretary,Employee);}
int virtual trueClass(){return classIndex;}

};
void* Manager::mask=NULL;
int Manager::mySize=sizeof(Manager);
int Manager::classIndex=totIndex=totIndex+1;

int main() {
Manager::createMask();
Manager::prtMask();

50 2 Fundamentals of Persistence

When we replace the statements that repeat for every class by macro
PERSIST(T), this complex code turns into nice and crisp Listing 2.6.

Macro INIT_STAT(T) initializes static variables for each class, and macros PTR

(P,T) and STR(P) are as before. The parameters of all these macros are types; they
are just like templates/generics except that they represent a block of code—not a
class or a function.

Listing 2.6 Code from Listing 2.5, where generic-like macros replace code that

repeats for every class

class Employee {

PERSIST(Employee);

public:

float salary;

char *name;

Employee *next;

Employee(){ STR(name); PTR(next,Employee); }

};

INIT_STAT(Employee);

class Ring {

PERSIST(Ring);

public:

Employee *tail;

int colSZ;

Ring(){ PTR(tail,Employee); }

};

INIT_STAT(Ring);

class Manager : public Employee {

PERSIST(Manager);

public:

int deptID;

Employee *secretary;

Ring myGroup;

Manager(){ PTR(secretary,Employee); }

};

INIT_STAT(Manager);

int main() {

Manager::createMask();

Manager::prtMask();

printf(

"classIndex: Employee=%d Ring=%d Manager=%d\n",

Employee::getIndex(),Ring::getIndex(),

Manager::getIndex());

return 0;

}

Useful Trick No. 3

Macro PTR(P,T) can set member pointer to 1, or generate the pointer name

and type as text strings.

2.1 Algorithms and Techniques 51

#define PTR(P,T) \

(P)=(T *)1; \

printf(“pointer name=%s targetType-%s\n”, #P, #T);

For the strings the macro could be replaced by a method, possibly static method

of the class; setting the pointer to a value must be through a macro if you want it that

simple.

For the strings, the macro could be replaced by a method, possibly static method

of the class; setting the pointer to a value must be through a macro if you want this

simple interface.

2.1.3.3 Smart Pointer that Registers Itself
Another way to generate the mask is to replace pointer members that we want to be

persistent by an instance of a special smart-pointer class, see Listing 2.7. Such a

smart pointer does not take more space than a normal pointer and is used just as a

normal pointer, but it can record itself in the mask.

Listing 2.7 Mask generation with smart pointer (code sketch only, no program

online)

template<class T> PersistPtr {

T *ptr;

public:

PersistPtr(){

ptr=NULL;

. . . // mark the mask at the position of ‘this’

}

T* operator->() const{ return ptr; }

. . . // other operators

};

class Employee {

PERSIST(Employee);

public:

float salary;

PersistPtr<char> name; // <<<<<<

PersistPtr<Employee> next; // <<<<<<

Employee(){}

};

INIT_STAT(Employee);

/* similar syntax for classes Ring and Manager */

int main() { // remaing exactly as before

Manager::createMask();

Manager::prtMask();

return 0;

}

So far we have been working with pointers leading to a single object or to a

single text string. However, there can also be pointers to various types of arrays:

52 2 Fundamentals of Persistence

class B;

class C {

B *bArr; // to array of B objects

B **bpArr; // to array of (B*)

int *iArr; // to array of int

char *cArr; // to array of characters

char **cpArr; // to array of (char*)

int aSize; // assume all arrays have this size

};

To register all these situations, calls to PTR() and STR() are not sufficient. We
also need to register the size of the array which in most cases is already a member
of the class which stores the pointer. If it is not, we always can set up special
macros for such situations: ARR() for an array of objects and ARP() for an array of
pointers are handy to register such situations. For example, the pointers used
by class C in the last example can be registered by the following default
constructor:

class C(){ARR(bArr,A,aSize); ARP(bpArr,B,aSize); ARR(iArr,int,aSize);

ARR(cArr,char,aSize); ARP(cpArr,char,aSize);
}

Note that aSize is the name of the member, not a numerical value!

2.1.3.4 Smart Library Registering Pointers
The problem with registering pointers is that if you miss even a single one, it will

not be swizzled,16 and your program will crash on loading the data from disk. Also,

as will be explained in Sect. 2.1.6, if a pointer is missing in the mask, the object to

which it leads and perhaps many other objects may be missing on the disk file.

Registering pointers is not something application programmers should do in their

everyday work.

The idea of registering pointers opens another Pandora’s box. What is the true

purpose of these dangerous pointers inhabiting our classes, and why are they

allowed to live there with all the mischief they can cause? And could we hide

and isolate them in some place where they would be under better control?

That goes far beyond persistence, but the problem with registration of pointers

only adds to the many reasons why we should avoid raw-pointer members in

application classes.

The purpose of pointers is to implement data structures and relations. For

example, instead of using raw pointers tail and next in Listing 2.6, it is better to
replace these pointers by a generic data structure consisting of classes Ring<T> and
RingPart<T> that comes from a library which takes complete care of these
pointers including their registrations, and these pointers are transparent to the
application code.

16 As introduced in Chap. 1, swizzle is a commonly used term for the process of updating pointers

when the objects move to a different memory location.

2.1 Algorithms and Techniques 53

http://dx.doi.org/10.1007/978-3-642-39323-5_1

When following this strategy, we end up with no pointer-members in our

application classes. However, the necessary condition for all this is that the

library must support bi-directional data structures, which also is the prime

reason we always use DOL or InCode libraries and not the standard containers.

Compare the following three implementation of the same class:

class Project { // Code with raw pointers

char *name; // bad choice, raw pointer

Manager *mgr; // bad choice, raw pointer

};

class Project : public OneToOne<Manager>,

public String { // better code, Style 1

};

class Project { // best code, Style 2

String name; // better choice, pointer handled by library

OneToOne<Manager> mgr; // library class, better choice

};

Styles 1 and 2 remove pointers from the application code but, in more complex

situations, Style 2 ends up using multiple inheritance and, in our experience, it is

more difficult to manage.

The format in which we record pointers in the library classes does not have to be

particularly efficient or easy to use, because you register the class when you add it to

the library, and, from that moment on, many people use it but nobody is even aware

that there is any registration.

For example, Data Object Library (Data Object Library 2013) is a C++ library of

bi-directional intrusive data structures which are also persistent. Each data structure is

represented by a class which does not have any attributes, and its methods (operations

of the association) have access to pointers and other attributes of the application

classes that participate in the data structure. For an example, see Doubly Linked

Aggregate in Fig. 2.4. When you want to set up an aggregate between classes Room

and Students, you declare
Association Doubly_Linked_Aggregate<Room,Student> students;

The pointers are registered in a library files registry and zzmaster which essen-

tially contain this record17:

Doubly_Linked_Aggregate 2

1: child 2

2: next 2, prev 2, parent 1

which means that in our Room/Student example we will have

17 Line1: two participating classes, Line2: pointers in the first class with the index of their target

class, Line3: pointers in the second class with the index of their target class.

54 2 Fundamentals of Persistence

class Room {

Student *child;

. . .

}:

class Student {

Student *next;

Student *prev;

Room *parent;

. . .
};

Pointers can come only from the library, so the library can determine what the

mask of the two classes will be. All this is transparent and the user does not have to

worry about registration of pointers.

2.1.3.5 Detecting Pointers with a Code Generator
Until now we have assumed that the persistence would be added to the application

program as additional source or library. However, applying a code generator to

some of the tasks, such as detecting pointers, can significantly simplify the user

interface. It is not considered a “pure” programming technique, because it may

complicate debugging, use of debuggers and IDE, and using software designed in

this way as a part of a larger system, but it leads to a more elegant interface.

We can think of many ways to detect pointers with a code generator. Let’s

explore one possible approach which we have never used on a real application, but

which would be fairly simple to implement. Assume that for every class in the

application source, e.g. class Employee, we create a twin, Twin_Employee, which

index=1 class C {...};
index=2 class B : public C {...};
index=3 class D : public C {...};
index=4 class A : public B, public D {…};

C constructor under B1/C1/C 0 0 0 0 0

B constructor2/B2/B 2/B 0 0 0 0

C constructor under D2/B2/B 2/B 1/C 1/C 0 0

D constructor 2/B2/B 2/B 3/D 3/D 3/D 0

A constructor 4/A4/A 4/A 4/A 4/A 4/A 4/A

Fig. 2.4 Evolution of tMask when allocating a new A-object. This is a dynamic process which

takes the advantage of default constructors for all the classes being called bottom up. Any time a

non-zero location or a hidden pointer is overwritten, it is an indication of inheritance—see the

arrows

2.1 Algorithms and Techniques 55

has the same members and thus the same mask. We discard all its methods, but add

a default constructor with PTR() and STR() statements as in Listing 2.6. This allows

us to generate simple code which, for each of the Twin-. . . classes, finds it mask. If

we can link together the original class with its twin, it is as if we added the mask to

the original class without providing any information about its pointers members.

class Employee { // application class

float salary;

char *name;

Employee *next;

public:

float getSalary(){return salary;}

void setSalary(float sal);

Employee(){salary=10000;}

};

class Twin_Employee { // twin class

float salary;

char *name;

Employee *next;

public:

Employee(){STR(name); PTR(next,Employee);}

};

What we proposed includes some logical leaps, and we have to explore the idea

step by step in order to verify that it will really work. We do not have to make a

complete syntax analysis.

Let’s assume that, as the first pass, we convert the code to a stream of tokens

while implementing all the name substitutions encoded by typedef or #define

statements and removing comments and access indicators.18 We get

class Employee { float salary ; char * name ; Employee * next ;

float getSalary () { return salary ; } void setSalary (float sal)

; Employee() { salary = 10000 ; } } ;

In the second pass, we add the twin underscore (__) prefix to the class name and

monitor the depths of {}, (), [] and<> brackets (each separately) as we traverse the

tokens. We throw away any token for which the depth of {} is not 1 or the depth of

any other bracket is more than 0. That gives us

float salary ; char * name ; Employee * next ; float getSalary () {

} void setSalary () ; Employee () { }

This allows us to identify statements which end with one of three ways:

{ } or () or; or just ;

18 Public, private or protected.

56 2 Fundamentals of Persistence

Eliminate statements that do not end just with “;” and we have the list of

members

float salary;

char * name ;

Employee * next ;

This allows the code generator to create the twin class

class Twin_Employee { // added Twin_

// next part is the list of members after pass 3

float salary ;

char * name ;

Employee * next ;

// remaining part is all generated, using members with *

public:

Employee(){STR(name); PTR(next,Employee);}

};

This allows us to generate mask for class Twin_Employee as described in

Sect. 2.1.3.2. The last missing piece of this puzzle is how, for an object of class

Employee, we could quickly find the mask of Twin_Employee.

Let’s assume that the code generator also creates class derived from class

Employee, which adds methods and possibly members.19 We will use prefix

Exp_ for this class in order to show that it is an expansion of the original class.

If we do not add any non-static members, the class will have the same original size.

class Exp_Employee : public Employee {

void *getMask(){ return Twin_Employee::mask;}

};

The result is elegant. If you want to make any application code or library

persistent you run the code generator on their classes and the only change you

have to make in the code is to replace all calls to the new() operator:

int main() {

Employee *e12, *e2; void *mask;

e1=new Exp_Employee;

e2=new Exp_Employee;

mask=(Exp_Employee*)e1->getMask();

// otherwise use e1 and e2 as if there is no persistence

This is not necessarily better than using PTR() and STR() in your application

classes. You may have many new() statements spread through your code, while PTR

() and STR() statements are localized in the class definitions and may be much fewer.

However, making an existing class library persistent with a code generator may be

easier, since a typical container library may not have many, if any, new() statements.

19 This is the method of adding from above as described in Sect. 2.1.1.3. It adds to each allocated

object, not to the class.

2.1 Algorithms and Techniques 57

All this works even when some application classes inherit from other classes,

assuming that the code generator converts all the classes to their twin classes. For

example, if we have

class Employee {

. . .

};

class Manager : public Employee {

. . .

};

it converts it to

class Twin_Employee {

. . .

};

class Twin_Manager : public Twin_Employee {

. . .
};

2.1.4 Arrays

When you come across a pointer while reading C++ code, you cannot tell whether it

leads to a single object or to an array of objects. And even if you know that it leads to

an array, you have no clue about its size. That can lead to nasty surprises. The

program in Listing 2.8 writes outside of its memory space, and that results in strange

behaviour. It compiles on our laptops,20 but then it we attempt crashes when we

attempt to run. However, when we uncomment the printf() statements, it compiles

and runs without crash. Yet there is nothing wrong with the printf() statement.

20 Using Visual Studio 2010.

58 2 Fundamentals of Persistence

Listing 2.8 A pointer can lead to a single object or to an array, which is a potential

source of errors

class A {

public:

int weight;

};

class B {

A *ap;

A arr[8];

public:

void foo(){

ap=new A;

ap->weight=123;

ap[0].weight=234; // OK even though ap is not an array

// printf(" before the first potential problem\n");

ap[2].weight=567; // wrong, possible crash

ap=new A[60];

// printf(" before the second potential problem\n");

ap[60].weight=789; // possible crash, index overflow

ap->weight=999; // OK, really gets ap[0].weight

// printf(" before the third potential problem\n");

arr[62].weight=789; // possible crash, index overflow

}

};

In order to save an array properly to disk, we need to know when the pointer

represents an array, and the size of that array. This is the reason why all persistent

systems and languages with built-in persistence assume that pointer members

always point to a single object, and that arrays are implemented through a special

Array class, which stores the pointer, the size of the array, and the number of used

entries. This class is usually one of the special types, and has a pre-assigned internal

index just like char, int, or float.

2.1.5 Extracting Inheritance

An interesting feature of what we have done so far is that we have achieved

persistency without extracting any information about inheritance among application

classes. Virtual function PersistObj::trueClass() does everything we need.
However, there are situations when the information about inheritance may be

useful or even essential, for example when generating UML class diagram.21 In

languages with reflection this information is readily available. In C++, there are two

ways to extract this information, and both are simple and straightforward.

METHOD 1: Partial syntax analysis (using a code generator).

21We will discuss this in more detail in Sect. 4.4.

2.1 Algorithms and Techniques 59

http://dx.doi.org/10.1007/978-3-642-39323-5_4#Sec4_4

– Concatenate all the source with definitions of all application classes into one file.

This usually means all the *.h files; for small programs it may be just one *.cpp

file with the entire program.

– Make pass eliminating comments and lines starting with #. At the same time,

break the source into tokens separated by one space. Monitor the depths of {}, (),

[] and <> brackets (each separately) and throw away any token for which at

least one of these depths is not 0. After you do this, Listing 2.6 is reduced to

class Employee { } ; INIT_STAT () ; class Ring { } ; INIT_STAT () ;

class Manager : public Employee { } ; INIT_STAT () ; int main () {

}

– Make another pass searching for token class. When you find it, look for two
possible patterns:

class A { A does not inherit from another class
class A : A inherits from one or more classes In the second case, the continuation
must be

X B , … , X D {

where X is anything or missing, and B . . . D are names of the classes from which A

inherits.

METHOD 2: Evolving tMask (no code generator).

Let’s write a program which watches how default constructors visit their parts of

the object. The algorithm is similar to how we created the pointer mask in

Sect. 2.1.3.2, but instead of recording pointers we will let all default constructors

to write in it the index of the class to which they belong. The constructors are

invoked bottom up, and when the areas overlap it implies inheritance—see Fig. 2.4.

Listing 2.9 shows the implementation of the algorithm which is a bit tricky to

debug. It produces the following output:

Inheritance of A:
----- 2 inherits from 1
----- 3 inherits from 1
----- 4 inherits from 2
----- 4 inherits from 3

A=4
B=2
C=1
D=3
E=5

How does it work:

Utility::tMask stores the mask as it is built, and because it is static and public, it
is essentially a global variable.

Operator new() which is under Persist(T) catches the initial mask before the
constructors start to add to it, but only when inhFlg¼1. For inhFlg¼0, operator
new() allocates normal objects as expected.

Under INH_REC(T), a call to Utility::iRep() is inserted to every default
constructor. This function fills the appropriate section of the mask with the class
signature.

60 2 Fundamentals of Persistence

Listing 2.9 Extracting inheritance without using code generator (Fig. 2.5)22

typedef unsigned long UL; // unsigned integer as long as a pointer
#define HP_LIMIT 1000; // lower limit on hidden pointers

class Utility {
public:

static int totIndex;
static int inhFlg; // 0=normal, 1=detecting inheritance
static UL *tMask;
static void reportInheritance(int a,int b){

printf("----- %d inherits from %d\n",a,b);
}
static void iRep(int sz,UL *localMask,int cIndex){

int i,report;
sz=sz/sizeof(char*);
for(i=0; i<sz; i++){
if(localMask[i]>0 && localMask[i]<1000){

if(i+1>=sz)report=1;
else if(localMask[i+1]!=localMask[i])report=1;
else report=0;
if(report)reportInheritance(cIndex,(int)localMask[i]);

}
localMask[i]=cIndex;

}
}

};
int Utility::totIndex=1; // we want it to strat from 1, not from 0
UL* Utility::tMask=NULL; // allocated by new()
int Utility::inhFlg=0;

#define PERSIST(T) \
public: \
static int classIndex; \
static int inhFlg; /* 1 when searching for inheritance */ \
void* operator new(size_t size){ \

void *r=malloc(size); /* normal operation */ \
if(Utility::inhFlg)Utility::tMask=(UL*)r; \
return r; \

} \
static void reportInheritance(){ \

Utility::inhFlg=1; \
Utility::tMask=(UL*)(new T); \
delete Utility::tMask; \
Utility::tMask=NULL; \
Utility::inhFlg=0; \

}

#define INH_REC(T) if(Utility::inhFlg) \
Utility::iRep(sizeof(T),(UL*)((T*)this),classIndex)

#define INIT_STAT(T) \
int T::classIndex=Utility::totIndex=Utility::totIndex++

class C {
PERSIST(C);

int c;
public:

C(){INH_REC(C);}
};
INIT_STAT(C);

. . . other classes coded in the same style

class A : public B, public D{
PERSIST(A);
int a;

public:
A(){INH_REC(A);}

};
INIT_STAT(A);

int main(){
A::reportInheritance();

22 Running source is in bk\chap2\list2_9.cpp

2.1 Algorithms and Techniques 61

2.1.6 Collecting All Active Objects

In serialization, and only in serialization,23 we have to find all objects in our data

space and save them to disk. There are three possible approaches:

(A) If the data structures are simple, the application can include a function which

traverses all the objects and writes them to disk. That is efficient, but difficult to

manage for complex projects, and certainly not automatic.

(B) For each class we can maintain a list of its active objects. Operator new() adds
an entry to this list, and destructor moves it to the free list. Both lists use the
same two24 references per object. This is fast, efficient, the list of active objects
is ready when we need it and, as a bonus, we get the free lists for the reuse of
discarded objects. The price is the space of two references per object, and the
potential problem with objects that were not properly destroyed remaining on
the active list.

(C) Objects and references form a directed graph — see Fig. 2.5. Usually, in this

graph, there is one or a few root objects from which we can reach all the other

objects by traversing the references. If there isn’t such a root or roots, you can

always add a class that will serve this purpose. This is the method used by most

existing serializations, and it deserves more discussion. There are two basic

approaches to its implementation, and if you are not careful there may be

unpleasant side effects.

R2

1

1

1

1

1

1

2

2

2

3

7

4

3

3

6
5

4

2

4 53

6 7 8 9 x

R1

Fig. 2.5 Visiting objects by traversing pointers from roots R1 and R2. Nodes marked 1 are direct

neighbours of the roots, nodes marked 2 are their direct neighbours, and so on until there are no

unvisited neighbours. The numbers express the depth from the roots

23When the persistence is built on memory pages we do not need to do this.
24When using a doubly-linked list, removing an object is instant; removing it from a singly-linked

list requires a search.

62 2 Fundamentals of Persistence

When traversing a general graph like this, we can proceed in two ways—depth

first or breadth first. The depth-first search is usually coded as a recursive function

which we call with obj¼root. This is a pseudo-code:

void depthSearch(void *obj){

for(all references ref of obj){

if(ref not stored yet){

depthSearch(ref);

}

store(obj);

}

}

The breadth-first search is best implemented with a FIFO25 queue, and the

implementation is not recursive:

void breadthSearch(void *obj){

queue.in(obj); // add obj to the queue;

while(queue not empty){

obj=queue.out(); // get next object from the queue

save(obj);

for(all references ref of obj){

if(ref has not been in queue yet){

queue.in(ref);

}

}

}

}

Both implementations need one bit on every object, in order to mark whether the

object has been stored (depth-first) or whether it has entered the queue (breadth-first).

Both implementations need additional storage, stack or queue, which may grow

to the size proportional to the number of objects. There is an important difference

though: the system stack used by the recursive function usually has a fixed limit, but

you can code the FIFO queue so that it increases its size when needed. If you have

many objects the implementation with the fixed-sized queue may crash. That is the

reason why Java serializations and some C# serializations crash for long chains of

references.26

In order to traverse the graph of references, regardless which algorithm we use,

we need three things:

(a) Location of all the pointers embedded in each object; this information is in the

mask we described in Sect. 2.1.3.

(b) Type (and size) of the target object as allocated. When inheritance is used, this

type may not agree with the type of the pointer.

(c) Additional bit or some other way to mark objects that have been recorded;

otherwise the traversal may end up in an infinite loop.

25 First In First Out.
26 DOL and QSP persistence for Objective-C in Chap. 7 use the breadth-first implementation.

2.1 Algorithms and Techniques 63

http://dx.doi.org/10.1007/978-3-642-39323-5_7

The standard way of solving item 2 is to have a virtual function which returns the

type of the allocated object, either directly or through class Reflect—see online

listing list2_9x.cpp.

There are three ways to provide the additional bit needed under item 3:

1. We can add a member from below or from above (Sects. 2.1.1.1 and 2.1.1.3).

2. We can keep a dictionary, for example a hash table, of references to all objects

that have been stored (depth-first) or were admitted to the queue (breadth-first).

This requires both additional storage and processor cycles at the part of code

which repeats many times.

3. If you aim for ultimate performance, you can use the following, a rather dirty

trick to store the required bit.

Useful Trick No. 4

All references and object sizes are multiples of four, with two lower bits

never used.

One of these bits can record whether an object was already visited. If you have

any control over the allocation, the obvious candidate is the field storing the size of

the object. This field usually precedes the memory image of the object.27

Example of how this could be applied to a member28:

#define flagMask (size_T)3;

#define sizeMask ~(size_T)3;

class Book {

size_t size; // always multiple of 4

void setFlag(int flg){

size=size&sizeMask;

if(flg)size=size | 1;

}

int getFlag(){ return size&flagMask; }

void setsize(int flg){

size=size&sizeMask;

if(flg)size=size | 1;

}

size_t getFlag(){ return size&flagMask; }

Now we have everything ready for the algorithm which collects all objects—see

Listing 2.10. Function getAllObj() lives under the Utility class, and it builds a
chain of UtilLink objects that point to recorded active objects.

Functions setBit(), clearBit(), and getBit() provide access to the special
bit. The mask of regular pointers has been converted into a more convenient
format—a table where each entry gives the offset of the next regular pointer.

27 For more details see Chap. 6 where this trick is used in the QSP persistence for Objective-C.
28size_t is the same as unsigned int for 32-bit compiler, but 64-bit compiler it is unsigned
long long, which is 8 byte long.

64 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_6

For example, if the mask is [H, int, R, R, float, R, int], where H is the hidden pointer,
and R is the regular pointers, then tab[]¼{8,12,20,�1}.

Listing 2.10 The heart of the algorithm that expands, breadth-first, from the root to

all other objects via their pointers. This sample program works only with pointers to

single objects. It handles neither strings nor arrays

class PersistObj {
public:

virtual Reflect *trueClass(){return NULL;};
virtual void createMask(){};

};
// when we remember head and tail, this list works as a queue
class UtilLink {
public:

PersistObj *obj;
UtilLink *next;
UtilLink(PersistObj *rt,UtilLink *last){

obj=rt; if(last)last->next=this;

next=NULL;}
};

UtilLink* Utility::getAllObj(PersistObj *root){
UtilLink *u,*unew,*tail; PersistObj *p,*regPtr;
int i,*tab,*code; Reflect *ref; void **locRegPtr; char *msk;
createAllMasks(); // until this time they may not been needed

ref=root->trueClass(); // get reflection for the target object
root=ref->trueObj; // replace root by the true object
allObj=new UtilLink(root,NULL); // root is first on the list
for(u=tail=allObj; u; u=u->next){

p=u->obj; // object to expand, it is a true object

already
Utility::clearBit(p); // before reflection, clear the

bit
ref=p->trueClass(); // reflection on the target object
tab=ref->ptrOff; // offsets for pointers on p
for(i=0; tab[i]>=0; i++){ // walk through regular pointers

locRegPtr=(void**)((char*)p+tab[i]); //location of

regPtr
regPtr=(PersistObj *)(*locRegPtr);
if(regPtr==NULL)continue; // do not follow, NULL

pointer
// skip when target on the list or when p==target
if(Utility::getBit(regPtr) || p==regPtr)continue;

ref=regPtr->trueClass(); // reflection on the target
regPtr=ref->trueObj; // replace regPtr by true object
unew=new UtilLink(regPtr,tail); // add to the chain
tail=unew; // remember the new tail of the chain
Utility::setBit(regPtr); // mark new object as expanded

}
Utility::setBit(p); // give p the "used" status again

}
// make all objects valid again by removing the bit
for(u=allObj; u; u=u->next){

p=u->obj;
Utility::clearBit(p);

}
return allObj; // beginning of the chain

}

Note that in C and C++ (but not in C#. Objective-C or in Java) pointers can lead

into the middle of an object. This can be result of multiple inheritance or of an

2.1 Algorithms and Techniques 65

improper use of an embedded object as shown in Listing 2.11, where d spans over

56 bytes, between addresses 6044696 and 6044751, and pointers a, b, c, and x

point to various locations inside this span.
The objects that we want to save should include only full, allocated objects, not

their parts possibly overlapping or incomplete. In Listing 2.11 the virtual function
trueObj() takes care of pointers such as a and b (it replaces them by d), but
unfortunately it cannot correct pointers such as c or x. However, if such a pointer
exists anywhere in your design,29 there must also be a pointer to the entire D object
which contains the small part.

Such duplications are easy to eliminate. Before writing the object to disk, do this:

ALGORITHM 2.1: Eliminate Embedded Objects from the List

1. Sort the objects by two keys:

Priority 1: Increasing starting address

Priority 2: Decreasing address of the last byte

2. Traverse the list while dropping embedded objects.

Assumingwe have an array of pointers to the objects, arr[], we do it like this:

for(i¼0,k¼1; k<numObj; k++){

if(arr[k]->start[k] <¼ arr[k]->end[i])continue;

//remove k

else {i++; arr[i]¼arr[k];}

}

Listing 2.11 In C++, there are three situations when a pointer can lead inside an

object—in case of multiple inheritance, when pointing to an embedded object or

pointing inside an array of objects

class A {int a; };

class B { int b; };

class C {int c; };

class D : public A, public B {

public:

int d;

C cObj;

C arr[10];

};

int main(){

D* d=new D;

A* a=(A*)d;

B* b=(B*)d;

C* c= &(d->cObj); // bad practice, but it can happen

C* x=(&(d->arr[7])); // bad practice, but it can happen

printf("sizeD=%d d=%d a=%d b=%d c=%d x=%d\n",sizeof(D),d,a,b,c,x);

// PRINTS sizeD=56 d=6044696 a=6044696 b=6044700 c=6044708 x=6044740

29 It should not – it would be a poor design.

66 2 Fundamentals of Persistence

2.1.7 Java-Style Collecting Objects

As we can deduce from the output of Java serialization in Fig. 1.6, Java uses the

depth-first algorithm which calls recursive function serializeObj(root)—this is a
pseudo code30:

void serializeObject(Object obj){

if(class.myClass is not serialized)writeClass(obj.myClass);

mark obj as serialized;

for all members m of obj do {

if(m is a reference){

if(object m already serialized){write reference;}

else {serializeObject(m)};

}

else write m;

}

writeObject(obj);

}

where serializeObject() recursively traverses inheritance hierarchy.
As we explained before, besides the performance penalty for calling a recursive

function, this approach is vulnerable to stack overflow. For example, if you have a

linked list of 100,000 objects, you may need 100,000 stack frames, and your

program will crash with StackOverflowError.

2.1.8 Binary Serialization

We use the term binary for the serialization in which the byte images of the objects

are written to the disk as they are. This is quite different from the binary Java

serialization or the binary serialization in C# which creates and expands the

description of each object and stores this description in a binary format.

Of all the approaches to persistence described in this book, only the binary

option of the DOL library has used31 this method. Yet it is simple, and as the

benchmark in Chap. 8 shows, it is highly efficient.

DOL is based on the idea of integrating a library of data structures with

persistence.32 The application classes are not allowed to use members which are

raw, plain pointers. All pointers are pre-registered in the library, so there is no need

to detect them in the application classes.

When collecting active objects, the breadth-first approach is used, and when

writing objects to disk, each object or array or objects is written in two records:

30 The underlined functions are pseudo code. There are no functions with these names in Java.
31 Since 1989.
32 The idea was introduced in Chap. 1 and is discussed more in Sect. 2.1.3.4.

2.1 Algorithms and Techniques 67

http://dx.doi.org/10.1007/978-3-642-39323-5_1#Fig6_1
http://dx.doi.org/10.1007/978-3-642-39323-5_8
http://dx.doi.org/10.1007/978-3-642-39323-5_1

1. Header, as a block of bytes:

struct ObjectHeader {

unsigned long objAddress; // starting address

int objSize; // size of single object

int numObjects; // 1 if single object

int typeCode;

};

2. The object as the block of bytes.

Note that there are no generated object IDs. The original object address is used as

its ID.

The pointers are swizzled when reading the data from the disk. Pairs

(oldAddress, newAddress) are stored in a hash table, with the oldAddress used as

the key. The table is used both as a container of all objects that were read from the

disk and also for the conversion of the pointers to these objects.

With buffered IO, the disk access is reasonably fast. Figure 2.6 shows the typical

format of the output file.

2.1.9 ASCII Serialization

The serialization which stores objects as blocks of bytes is highly efficient in both

speed and data footprint. However, when transferring data from one operating

system to another, for example between MS Windows and UNIX or Apple, binary

data is meaningless unless you provide an automatic format translation. However,

an ASCII text file usually works without a special conversion. This is one of the

reasons why C# and Java provide XML serialization. ASCII format also allows

visual reading of the file, which helps debugging.

The problem with generating ASCII representation of objects is that, especially

in C languages, some types may need a different representation depending on the

context. A byte can be a true ASCII character or a small integer; representing

characters as numbers is inefficient and misleading when debugging, and if the

character represents a number, some values will be unprintable characters. With

float numbers there may be a question of accuracy. My experience is that pointers

can be safely stored as (unsigned int) or hex, but that for other fields it is better to let

the application programmer decide about their storage format.

That brings us to the problem we encountered with a large business system

where serialization and deserialization functions represented one-third of the

code—see footnote 3 in Chap. 1. Maintaining separate serialization functions for

writing/reading is dangerous. If the two functions do not match, everything

breaks down.

ASCII serialization in DOL33 (Data Object Library 2013) has complete control

of both hidden and regular pointers, and it stores/restores them transparently and

33 In DOL, some macros have different names, but for the sake of clarity we use macros that we

have been using so far.

68 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_1

automatically. The user supplies only the format for the remaining fields such as

characters, floats, and signed/unsigned integers, and a simple code generator creates

pairs of serialization functions that are guaranteed to match. Here is how Employee

and Manager objects are managed in the application code, and what is the resulting

disk image:

// PERSIST(T) manage pointers such as next,tail,secretary

class Employee {

PERSIST(Employee);

float salary;

int phone;

};

FORMAT(Employee,”%6.2f %d”,salary,phone);

class Manager : public Employee {

PERSIST(Manager);

char deptID[4]; // string of up to 3 characters

};

FORMAT(Manager,”%3s”,deptID);

// Invocations of the data structures from a library

RELATION_RING(Manager,Employee) myEmployees;

RELATION_ONE_TO_ONE(Manager,Employee) toSecretary;

++++++++++++++ GENERAL INFO (block of 28 bytes)
style = style of persistence
time = time stamp (8 bytes)
numClasses = number of classes
++++++++++++++++ NEXT CLASS +++++++++++++++++++++
ClassHeader (block of 12 bytes)
mask1 = mask of pointers (objSize bytes)
mask2 = mask of inheritance (objSize bytes)
nameString (size defined in the header)
++++++++++++++++ NEXT CLASS +++++++++++++++++++++
ClassHeader (block of 12 bytes)
mask1 = mask of pointers (objSize bytes)
mask2 = mask of inheritance (objSize bytes)
nameString (size defined in the header)
++++++++++++++++ NEXT CLASS +++++++++++++++++++++

..... repeats numClasses -times
++++++++++++++++ NEXT OBJECT ++++++++++++++++++++
ObjectHeader (block of 12 bytes);
Object ... raw block of bytes
++++++++++++++++ NEXT OBJECT ++++++++++++++++++++
ObjectHeader (block of 12 byte s);
Object ... raw block of bytes
++++++++++++++++ NEXT OBJECT ++++++++++++++++++++

..... repeats until the end of file

Fig. 2.6 Format of the DOL binary serialization file. All records are binary

2.1 Algorithms and Techniques 69

Image of a Manager object on the disk file:

Line 1 (address, class, how many): 6044696 13 1

Line 2 (automatic pointers—next, tail, secretary): 6045012 6044540 6045084

Line 3 (user controlled—salary, phone, deptID): 10450.50 6133885211 A23

2.1.10 Deallocation and Garbage Collection

The great advantage of serialization is that it does not require any garbage collec-

tion or special deallocation techniques. During the program run, objects are

dynamically allocated and deallocated through calls to malloc() and free()

which are hidden under the operator new() and delete(). And because only active
objects are written to the disk, the serialization itself works as a space-cleaning
mechanism.

2.2 Memory Paging

2.2.1 Bitmap

The mask which we used in serialization clearly identified pointers inside any

object, without paying attention to inheritance and embedded objects. It gave us a

flat view with positions of the pointers clearly visible.

Perhaps we can apply a similar idea to the entire data space, and instead of

saving individual objects, we could save the entire data space, in one shot, as a large

block of bytes. The only thing we would need would be a mask that would show us

where are the pointers that we have to swizzle. If that mask uses one bit for each

potential location of a pointer with addresses divisible by 4 (or 8), the mask would

add the overhead of only 1/32 (or 1/64) of the data space—a quite reasonable price

to pay for the service we’ll get—see Fig. 2.7.

For example, assume that we have an address space of 65536 bytes, from 52004

to 117539 and at address 70104 we allocate a 20-byte object with 3 pointers offsets

Persistence based on memory paging is a good alternative to serialization. We

allocate objects from pages of memory, and when storing the data we move

entire pages between the memory and the disk, without looking at individual

objects. This method is fast and space efficient, but it must take over both

allocation and reuse of the free space including arrays. Since we are not saving

individual objects, we need a different mechanism to identify pointers and, for

this purpose, a special bitmap can be handy.

70 2 Fundamentals of Persistence

{0,8,16}. The address space has 65536/4 ¼ 16384 potential pointer locations, so

the bitmap needs 16384 bits ¼ 16384/8 ¼ 2048 bytes.

When allocating the new object at address 70104, the pointer locations are

70104, 70112 and 70120, and the following bits must be set: (70104 � 52004)/

4 ¼ 4525, (70112 � 52004)/4 ¼ 4527, and (70120 � 52004)/4 ¼ 4529.

We have to mark both the hidden and the regular pointers because both must be

swizzled, each using a different algorithm.

Note that when using smart pointer PersistPtr<T> explained in Sect. 2.1.2,
updating of the bitmap is especially efficient. The default constructor of this pointer
can automatically set the appropriate bit in the bitmap.

template<class T> PersistPtr {

T *ptr;

public:

PersistPtr(){

ptr=NULL;

. . . // mark the bitmap at the position of ‘this’

}

T* operator->() const{ return ptr; }

. . . // other operators

};

When swizzling pointers during serialization, we had to swizzle only regular

pointers. We knew the type of each object, so we could just copy34 hidden pointers

from the mask of its class.

When we work with a block of memory, swizzling is more difficult. We have to

distinguish between hidden and regular pointers, and we cannot copy hidden

pointers from the mask because we have no clue which mask would apply.

A hidden pointer can be recognized by its value—it must be in a narrow address

range of the virtual function table for the old data.

Since the introduction of C++ in the early 1990s, all C++compilers used the

same convention. If two programs shared the same *.h files and listed them in the

same order, the virtual function tables were identical, except for usually being in a

different memory location. The conversion of hidden pointers was easy: after we

object space (4 bytes per pointer)

……….. pointer ……………………..

bitmap (8 bits per byte)

Fig. 2.7 Mapping potential pointer locations from the object space into the bitmap

34 This was done by a special operator new().

2.2 Memory Paging 71

detected a hidden pointer, we added an offset which was the same for all the hidden

pointers.

This year some applications using DOL memory blasting35 occasionally crashed

with a mysterious error, which sometimes did not repeat. After a week of detective

work we found that Microsoft Visual C++ 2010 usually maintains the same

v.f. table but, for unknown reasons,36 it may change the order in which the classes

are listed in that table. Usually, the table entries are uniformly spaced, but we

encountered one case when they were not—by mere 4 bytes, but enough to confuse

our original, simple algorithm. Replacing it was not trivial, because swizzling of

hidden pointers is typically performed for every active object, so the performance

matters.

The new DOL algorithm first checks whether all the old/new pairs fit the

uniform-offset pattern. If they do, it uses the offset. If they do not, it uses an

algorithm which is easiest to explain by an example:

Let’s assume that we have four classes and that we know the values of their

hidden pointers—both the old ones (before saving to disk) and the new ones (when

reading the data from disk).37 Assume that the old values are sorted38:

i class olddif new

0 Publication 3359488 8799040

1 Journal 3359504 16 8799008

2 Book 3359536 32 8799056

3 Report 3359572 36 8799024

In this case, the range of the original pointers is 335572 � 3359488 ¼ 84,

which is different from the new pointers 8799008 � 8799060 ¼ 48. Also, the old

pointers are not uniformly spaced.

We make a sparse table sTab[] with (3359572 � 3359488)/16 + 1 ¼ 6 entries,
where 16 is the smallest value in the dif column. Then for each i we set sTab[old
[i]-old[0])/16]¼new[i], which gives us the following table:

k sTab

0 8799040

1 8799008

2 0

3 8799056

4 0

5 8799024

The conversion is instant. For example, when converting old hidden pointer

3359536, we calculate k ¼ (3359536 � 3359488)/16 ¼ 3, and the new value is

35 DOL binary and DOL ascii do not use bitmap.
36 This could be because of the incremental compilation in VS2010.
37 These values can be found from masks derived in Sects. 2.1.1 and 2.1.2.
38 In order to demonstrate the algorithm, we disturbed the numbers more than when we encoun-

tered them in real situations.

72 2 Fundamentals of Persistence

sTab[3]¼8799056. In real applications, we have not encountered a case where sTab

[i]¼0 for more than one i.

2.2.2 Pages of Memory

The bitmap allows us to build simple yet highly efficient persistent data. We can

allocate a large block of memory, and we set aside an additional, 32-times smaller

block, for the bitmap. We modify the new() operator so that it allocates new objects

from this block, and we make sure that all default constructors mark the bitmap for

all the pointer members. When saving objects to disk, we simply dump the entire

block to disk, together with the old address and type of the root object and the table

of old hidden pointers.

When reading the data from the disk we allocate the same amount of memory,

copy the disk content in it and swizzle all the pointers recorded in the bitmap. If

there is only one block, all pointers are swizzled by the same increment. The bitmap

is persistent—no swizzling is required.

This is so simple and efficient that you must be wondering why anybody would

bother to use serialization. The weakness of this approach is the fixed size of the

block. In real life applications, you rarely know how much space your data might

require, and allocating a bigger block of memory, copying the old image in it and

swizzling all the pointers may pause your program for long enough to make this

approach prohibitive. After all, this is essentially the early-Smalltalk model from

Chap. 1, only improved by the bitmap.

What we need is an arrangement which would use not one block of data but

pages of virtual memory, with system pages still working behind the scene as usual.

The following scheme was proposed by Mark Kraemer from Zycad Corp. in

1993, was implemented as memory blasting in DOL, and was first published on

pp. 379–386 in Soukup (1994).

The DOL implementation assumes that the size of these pages is a power of

2. This is only a minor performance improvement which allows frequently used

division to be replaced by logical shift, and modulus operation by logical AND. The

following description assumes that the page size, pgSz, can have any size which is
A multiple of 4 bytes (or 8 bytes on 64-bit hardware).

The problem with this entire approach is that, for a given pointer, we need fast

access to the page in which its target object is located. For this purpose, we keep

array pageStart[], where pageStart[i] stores the starting address of the page
which starts anywhere between i*pgSz and (i+1)*pgSz-1>. In other words, page
starting on address p is recorded in pageStart[p/pgSz], using integer division. For
any allocated page there is only one corresponding entry in pageStart[], and some
pageStart[] entries may be 0; see Fig. 2.8. The best way to learn how this works is to
go step by step through a simple example.

2.2 Memory Paging 73

http://dx.doi.org/10.1007/978-3-642-39323-5_1

Example39:

As shown in Fig. 2.8, assume we allocated four pages that start at 12304, 13584,

15248, and 16404, and we record them by dividing their starting address by the

page size, for example 13584/1024 ¼ 13.

Question: Where is pointer 15372?

Answer: 15372/1024 ¼ 15, pageStart[15]¼0, it is on page 14 (one step down).

Address inside page ¼ 15372 � 15248 ¼ 124, bit number 124/4 ¼ 31

Question: Where is pointer 15260?

Answer: 15260/1024 ¼ 14, pageStart[14]<¼15260, it is on page 14.

Address inside page ¼ 15260 � 15248 ¼ 12, bit number 12/4 ¼ 3

Question: Where is pointer 15208?

Answer: 15208/1024 ¼ 14, pageStart[14]>1508, it is on page 13 (step down).

Address inside page ¼ 15208 � 14204 ¼ 1004, bit number 1004/4 ¼ 251

Example40:

Assume that data from Fig. 2.8 was stored on disk, and we are restoring the data.

Typically, the pages are allocated to completely different locations—they may not

be in the same order. Let’s see how we swizzle regular pointers if the new pages are

as shown in Fig. 2.9.

Question: Convert old pointer value 14228.

Answer: 14338/1024 ¼ 13, 14228 > 14202, old page is 13.

Address within the page is 14228 � 14204 ¼ 24

From Fig. 2.9, old page 13 corresponds to new page 52

New address is 53748 + 24 ¼ 53772

map 11

map 12

map 13

map 14

map 15

map 16

page 11

page 12

page 13

page 14

page 15

page 16

map 0 page 0

page star�ng at 15248

page star�ng at 16404

each page 1024 B

bitmap

each bitmap 32 B

bitmap

bitmap

map 17 page 17

pageStart[]mapStart[]

0

0

.

0

0

page star�ng at 14204

page star�ng at 12304

Fig. 2.8 Persistent memory consisting of pages pgSz¼1024

39 This is the same example as used in Soukup (1994) on pp. 381–382.
40 This example is not in Soukup (1994).

74 2 Fundamentals of Persistence

Potential improvements and interesting details

1. The beginning of arrays pageStart[] and mapStart[] is usually unused, for

example entries 0–11 in Fig. 2.9, and entries 0–51 for the new pageStart[] in

Fig. 2.9. The idea is to start the array from the index corresponding to the first

page, and be ready to shift the assignment if some page has a lower address.

2. There is no need to store on disk the unused entries –those with pageStart[i]¼0.

You can either store the used section (heavy frame in Fig. 2.8) as it is, or store the

array as a sparse array.

3. Bitmaps are persistent; they do not need any swizzling.

4. The size of arrays mapStart[] and pageStart[] depends on the original estimate of

the total expected data space. If this estimate is exceeded, we do not have to

reallocate the existing pages, only these arrays. In order to make this fast, we

recommend to select the page size close to the realistic estimate of the required

space—without any safety. That way you end up with one or a few pages, and

even if the arrays have to be re-allocated, it is fast.

Useful Trick No. 5

If your objects have many non-structural members, detecting pointers by

traversing the bitmap is not efficient, because the algorithm walks through

many 0s before it hits a pointer. We can speed up this search significantly by

treating the bitmap as an array of integers. Only if an integer is not 0 do we

examine its bytes, and only if a byte is 0 do we examine its bits.

page 52

page 53

page 54

page 55

page 56

page 57

page 0

star�ng at 57300

star�ng at 60008page 58

new pageStart[]

0

star�ng at 55312

page 11

page 12

page 13

page 14

page 15

page 16

page 0

star�ng at 15248

star�ng at 16404

page 17

old pageStart[]

star�ng at 14204

star�ng at 12304

star�ng at 53748

Fig. 2.9 Assignment of pages when reading data from disk can be random (example)—see heavy
arrows. Page size must remain the same, here 1024 bytes

2.2 Memory Paging 75

2.2.3 Dynamic Allocation and Garbage Collection

Any of these techniques work quite well until you start to destroy objects. Unless

you manage free space, the memory and disk footprints may grow out of control.

Real life story

One of our consulting appointments was to examine the core of a telephone
switch and try to improve its speed. Telephone switch is a computer which pro-
cesses human voices converted to a stream of numbers, multiplexed and transferred
in packages. The system was written in a special object-oriented language (not C++),
and each telephone call created hundreds of objects which, often within seconds,
were again deleted.

We suspected that the creation and especially destruction of all these objects
took a long time, so we made the following experiment. We requested a block of
memory at the beginning of each phone call, and allocated all the objects from it.41

Instead of the destruction of individual objects at the end of call, we simply freed the
entire block of memory. It made the switch 30 % faster!

Then we tried a different strategy. For each class, we kept a linked list of free
objects. Instead of allocating new objects, we picked the ready-made objects from
this list and, instead of destroying them, we hooked them to the list by resetting two
pointers. It was even faster!

We learned two lessons: (a) When looking for high performance, do not under-
estimate the time needed for creation and destruction of objects. (b) Keeping free
lists of objects by class is very efficient.

The problem with building persistence on pages of memory is that you must take

overmemorymanagement including the disposal and reuse of objects.And thismemory

management must be persistent. For example, the disk file must record the beginning of

each list, and the pointers connecting the free list must be marked in the bitmap.

A highly effective and simple to implement method of reusing objects is to keep,

for each class, a list of discarded objects. If the list is empty, operator new()

allocates the next object from the last, not completely used page. When it is not

empty, it just picks up an object from the beginning of the list. Operator delete()

always attaches the unwanted object to the list.

If you want to be able to mix non-persistent objects with persistent ones, you

need new() and delete() for persistent objects, and a set of different functions, say

npNew() and npDelete(), for non-persistent objects which are managed outside

your memory pages, directly from the heap.42

41 This is sometimes called arena allocation.
42 You can override delete() but you cannot overload it with different parameters.

76 2 Fundamentals of Persistence

When an object is discarded, we believe it is not a dirty technique to use its first

4 bytes for the pointer that forms the free list.When the object is being reused, we only

have to correct the first 4 bytes if there is a hidden pointer. The free list works like this:

class Book {

Book *freeList;

void addFree(Book *b){

*((Book**)b)=freeList;

freeList=b;

}

Book *getFree(){

Book* b=freeList;

if(b)freeList=(*((Book**)b);

return b;

}

There are several ways to make free lists persistent, but only the following

method is both conceptually correct and has the ultimate runtime performance.

Whenmoving an object to the free list, we reflect the change of its status by changing

its fingerprint in the bitmap to 100...00, essentially registering only one pointer at the

beginning of the object. When reusing an object (and removing it from the free list),

its bitmap record will go back to the fingerprint of the particular class. This way, the

free list pointers will be automatically swizzled with other pointers.

Note that if every object starts with a hidden pointer as happens in DOL, the first

four bites of any object are already marked as a pointer in the bitmap. Thus without

any special action, the free list is automatically persistent. However, some of the old

pointers that may still be in the object image will go through the swizzling uselessly

and will make it slower.

Listing 2.12 shows the implementation.

2.2 Memory Paging 77

Listing 2.12 Keeping chains of free objects for each class43

// first 4 bytes of the object represent the ’next’ pointer

#define NEXT(P) (*((void**)P))

class A {

static void *objHead; // first 4 bytes of the prototype

static void *freeTail;

// . . .

public:

void* operator new(size_t sz){

void *p;

. . .

if(!freeTail) p=allocateFromPage(sz);

else {

p=NEXT(freeTail); // from the chain of free objects

if(p==freeTail)freeTail=NULL;

else NEXT(freeTail)=NEXT(p);

NEXT(p)=objHead;

}

restoreBitmap(p); // restore bitmap to valid obj.

return (A*)p;

}

void operator delete(void *p){ // does not destroy the object

setFirstBit(p); //set bitmap to 100..0 for this object

if(!freeTail){NEXT(p)=p;} // puts it on the free chain

else {NEXT(p)=NEXT(freeTail); NEXT(freeTail)=p;}

freeTail=p;

}

int main(){

A* ap=new A;

delete(ap);

Note that this handles the reuse of single objects but not of arrays.

Note also that memory paging and serialization do not exclude each other.

Serialization can traverse all objects regardless of how they were allocated; it is a

handy tool which cleans the memory pages of any non-active objects that may be

accidentally left there. When deserializing the data we only have to make sure that

the new objects are allocated from our pages.

This can be arranged by overloading operator new() for all the application

classes and controlled by a global switch, pgAlloc:

class Book {

void* Book::operator new(size_t sz){

if(pgAlloc) … // allocate from pages

else … //allocate with malloc() or as char[sz]

}

43 The online code does not show the adjustments to the bitmap.

78 2 Fundamentals of Persistence

The purpose of pgAlloc is to allow serialization to operate in two modes:

standalone or alternating with memory paging. Alternating memory paging with

serialization is a good practice, because serialization automatically removes free

lists, all garbage, and it defragments the data space.

So far, we have not discussed allocation and free storage of arrays. In C++ there

are two types of operators new() and delete(): the static operators which are

associated with some class and usually allocate/delete individual objects and the

global operators which allocate/delete arrays.

Allocation of arrays brings the following challenges:

1. Can we allocate arrays that are larger than our page?

2. How to reuse arrays? Could we merge or split them?

3. A fast algorithm for finding a free array of the required size is instrumental.

When an array is larger than one page, we can allocate several abutting pages as

one large block memory, and allocate the array across the page boundaries. All

pages of this set must be marked so that when reading them from disk, they will be

again adjacent to each other. Their bitmaps work as usual.

These problems have been well researched, and it depends on you and your

application how fancy a management of the free space you chose. Because serializa-

tion provides defragmentation and cleanup, we are in favour of a simple free storage.

One possible way to manage free arrays is to use another bitmap,44 which marks

both ends of each free array—see Fig. 2.10.45 When freeing an array, the bitmap

tells us whether the new array butts to a free space on either end, and the record in

the adjacent field tells us how large that free space is. Without any search or

expensive calculation, we can combine adjacent free spaces.

The assumption for all this is that arrays are allocated from a different part of

memory than single objects—always an array abutting on an array, which is a

common practice today. Arrays must be at least 16 bytes long, because they have to

be doubly linked—when reusing an array we may select an array from the middle of

the chain. These arrays must be persistent, which affects the bitmap maintenance

while moving arrays to/from the free list.

A more elaborate approach is shown in Fig. 2.11. Single free objects are stored

by class, short arrays and strings by size, and large arrays are stored in a height-

balanced binary tree, which is O(log n) for lookup, insertion, or removal. For

specific differences see Wikipedia. (Knizhnik, POST++, 1999) uses AVL tree;

DOL keeps chains of free objects but does not reuse arrays.

A frequently used improvement is an array of entries for short, frequently

occurring arrays such as text strings, where entry for index i¼(sz/4-1) leads to a
chain of short objects of size sz; see Fig. 2.11.

Short arrays including short text strings are allocated and reused in the same way

as single objects, without recombining them.

44 This means an additional bitmap which is different from the one we used to mark pointer

locations.
45 Ending beyond the page border.

2.2 Memory Paging 79

nxt pre -16 512 nxt

one box represents 4 bytes, dark is the new free array (16 bytes)

bitmap shows that the new array can combine with a 16-byte space on the le�

16

nxt pre -32 5
12

nxt

situa�on a�er the two arrays merged

32

Fig. 2.10 Merging abutting free arrays: we start with two free arrays, one 16 bytes long, the other

512 bytes long, ends marked by light colour in the bitmap. Boxes shown in dark colour represent
the free array which we want to add. Bits in the bitmap tell us that we have an abutting array on its

left, 16 bytes long. This allows us to merge the two arrays. Pointers nxt and pre form a doubly
linked list of free arrays

class B 5120

64 20020

10048

Large arrays - AVL tree

Short arrays/strings

4

8

12

16

512

1

0

1

2

3

127

class A

Fig. 2.11 Free storage for arrays including text strings. Short arrays of each size form a singly-

linked chain and are allocated from the same part of memory as simple objects. Long arrays are

allocated from a different part of memory, and arrays of the same size form a linked list. Their ends

are marked by their size and are recorded in the bitmap, and they can recombine with abutting free

arrays

80 2 Fundamentals of Persistence

2.3 File Mapping

Before we dive into the programming details, let’s look at the main concept which

is simple. We establish a mapping between a section of virtual memory and a disk

file, and then allocate all objects from this section of memory. When the application

stops, all the objects are stored on the file. Then when we start the application with

the same mapping, the objects magically move back to memory again!

One little detail, though. All this would work if, when reading the data from the

disk, we could use the same section of virtual memory. Most of the time, this is not,

and We really should swizzle all the pointers by the offset between starting

addresses of the old and new memory section.

That again is not trivial. The data does not move between the disk and memory

as one block, but as system pages. We could go through the disk data and swizzle

the pointers there, but that would not be very efficient. Instead, we have to swizzle

the pointers as they are loaded into memory.

It works like this. When the application traverses a pointer, the system checks

whether the page with the address stored in the pointer (the address of the target

object) is already loaded in memory. If it is not, it triggers a page fault which results

in loading the page.

At this point we must swizzle the pointers before the control is returned to the

application. For example, we can catch the page fault, copy the page from the disk

without leaving this to the system, swizzle the pointers on the page, and return the

control back to the application.

That assumes that we can find where the pointers are in the new page, and we have

already discussed that at length. Pages may also move in and out of the memory, so it

may happen that the page, which re-enters on the page fault already has the pointers

swizzled. Swizzling them the second time would make them incorrect. One method

to prevent that, is to allow each page to store its own starting address. If this address

agrees with the address to which the page is being loaded, swizzling is not required.

Many operating systems including Windows and UNIX provide a function

which maps a selected section of virtual memory to a disk file. Instead of

implementing persistent objects with our own pages, as we did in Chap. 2.2, we

can implement it with system pages of the file mapping function—essentially

keeping a mirror image between the two entities. However, the data is not

transferred as one block, it moves back and forth in system pages. The advan-

tage is that these pages will naturally support transactions. The disadvantage is

that you need some knowledge of system programming.

2.3 File Mapping 81

Figure 2.12 demonstrates the idea. We start with the root page loaded and the

28800 pointer swizzled by the offset of 1024 to 29824. Traversing this pointer

triggers page fault because page P3 is not yet loaded. After is it loaded, all its

ORIGINAL MEMORY & DISK FILE

root

P1 (26624) P2 (27648) P3 (28672)

28220

28800

NEW MEMORY – root page loaded

root

P1 (27648) P2 (28672) P3 (29696)

28220

29824

offseet 1024

NEW MEMORY – page P3 loaded

root

root

P1 (27648) P2 (28672) P3 (29696)

29244

29824

NEW MEMORY – page P2 loaded

root

P1 (27648) P2 (28672) P3 (29696)

29244

29824

28900

28900

28900

29924

27648

27648 27648

27648 27648 27648

26624 26624 26624

26624 26624

26624

Fig. 2.12 Persistence based on file mapping (the concept). Every page remembers the P1 address

(bold) at the time of its last pointer swizzling (upper-right corner of the page box)

82 2 Fundamentals of Persistence

pointers are swizzled by the offset, including the original 28220 which becomes

29244. When traversing this pointer, it triggers page fault for page P2, which is then

loaded and its pointers swizzled. The original 28900 is now 29924. That pointer

leads to page P3. If it is loaded, there is no page fault and everything runs smoothly

and fast. If P3 is not loaded, we get a page fault, we load it, but we do not have to

swizzle its pointers because we see that the beginning of the current memory

section, 27648, agrees with the number recorded for this page—it is the number

recorded at the right upper corner of the page.

The actual implementation is more complicated. File Mapping pages the disk file

to file views which are in the virtual memory of individual processes.46 Several

processes may map to the same disk file simultaneously. A view can mirror the

entire file or only its section.

This entire feature was clearly designed to facilitate a design of true databases,

which may store large amounts of data and be accessed by multiple processes, often

simultaneously. The purpose of View is to allow access to only a small part of an

otherwise large collection of data, for example in bank or airline reservation

transactions.

As explained in Sect. 1.1, this book is about persistent data that are accessed by

only a single process at any given time, and for this reason all the following

discussion will assume a single process accessing a disk file, and Listing 2.13

shows in code what we explained in Fig. 2.12.

Listing 2.13 is an excerpt from programs List2_13a.cpp and List2_13b.cpp

which are online under bk/chap2. Read it without worrying about the numerous
parameters that make the use of these functions a bit tricky. It is in the call to
MapViewOfFileEx() that you can specify the address where you would prefer the
data to start. As we explained, the function may not satisfy the request, but, if it does,
there is no need for pointer swizzling.

Listing 2.13 Example of File Mapping under Windows. I order to time and test

parts of the algorithm separately, the online version of this program consists of three

source files: List2_13a.cpp, List2_13b.cpp, and List2_13c.cpp

46 Each process has its own independent virtual memory.

2.3 File Mapping 83

http://dx.doi.org/10.1007/978-3-642-39323-5_1#Sec1_1

HANDLE fh; // file handle as for normal disk IO
unsigned baseAddr; // requested address for the beginning of the data
void *newBase; // beginning of the data in the virt.memory
char *p;
unsigned vmSZ; // size limit of the data

// Instead of using create() or open() we have to use CreatFile(),
// otherwise CreateFileMapping() does not work.
// Use OPEN_ALWAYS or OPEN_EXISTING when creating or openning file.
fh=CreateFile(fName,GENERIC_READ|GENERIC_WRITE,0,NULL, OPEN_ALWAYS,

FILE_FLAG_WRITE_THROUGH|FILE_FLAG_RANDOM_ACCESS, NULL);

// create a mapping object for the file, 0=offset on the disk
md=CreateFileMapping((HANDLE)fh,NULL,PAGE_READWRITE,0,vmSZ,NULL);

// Attempt to create a view starting at baseAddr
newBase=MapViewOfFileEx(md,FILE_MAP_ALL_ACCESS,0,0,0,baseAddr);

// If not successful, let the system to chose the new base address
if(newBase==NULL){

newBase=MapViewOfFileEx(md,FILE_MAP_ALL_ACCESS,0,0,0,0);
}

// Examples of use:
p=(char*)newBase;
((int)(p+20032))=1937; // insert 1937 at address (newBase+20032)

float f=(*((float*)(p+11996))); // get float from (newBase+11996)

// flush all remaining pages to the disk
FlushViewOfFile(newBase,totSpace);

// without this, the file remains open
UnmapViewOfFile(newBase);

UNIX (and Linux) has a similar set of functions.47 Using parameter names as in

Listing 2.13, they are

// combines CreateFileMapping()and MapViewOfFileEx()

newBase=mmap(baseAddr,vmSZ,protect,flags,fh,offset);

// equivalent of UnmapViewOfFile()

munmap(newBase,vmSZ);

// change size of mapping (Linux specific)

newBase=mremap(newBase,vmSz,newSize,flags);

// equivalent of UnmapViewOfFile()

msync(newBase,vmSZ,flags);

Figure 2.13 shows where UNIX maps the file. If you want to play with the

Windows functions, beware: possible interaction between processes makes their

use trickier and it is, in our opinion, poorly chartered territory. The online rating of

47 For details, see UNIX man pages or http://my.safaribooksonline.com/book/operating-systems-

and-server-administration/linux/0596009585/advanced-file-i-o/mapping_files_into_memory

84 2 Fundamentals of Persistence

http://my.safaribooksonline.com/book/operating-systems-and-server-administration/linux/0596009585/advanced-file-i-o/mapping_files_into_memory
http://my.safaribooksonline.com/book/operating-systems-and-server-administration/linux/0596009585/advanced-file-i-o/mapping_files_into_memory

Microsoft documentation ranges from 4/4 to 1/4. Mykhailo Oksenenko recently

posted48 several screens of errors and potential problems in their use, and even the

Microsoft documentation for Reading and Writing from a File View warns that an

attempt to use File Mapping of a sparse file of an NTFS partition may result in an

I/O error.

There is also a catch: You can map the disk to the entire virtual memory, but

when you open a View, you have to request a certain size. You cannot exceed or

increase this size later,49 so you typically request more memory than you need.

However, only the used portion of your data is saved to the disk.

Programs available online (List2_13a.cpp, List 2_13b.cpp, and List2_13c.

cpp) compare the speed of storing 300 MB of data for File Mapping and regular read
() and write() with these results in ms50:

Changes on every page Write Read51 Total

File mapping 194 2682 3008 5884

Read/write 149 2763 2815 5727

It is important to understand that you cannot compare numbers in the first three

columns, because the two approaches do different things at different times. When

making a change on every page, file mapping loads page by page, while read/write
only changes a memory location. On the other hand, when writing to disk, file
mapping writes only the remaining pages, while read/write writes the entire data

space. When starting a program, file mapping only has to set up itself without

moving any data, while read/write reads all the data to memory.

Fig. 2.13 File mapping

under UNIX

48 http://mikelaud.blogspot.ca/2010/01/shm-hints-windows.html
49 Under Linux you can, but it may stall the program execution for a while.
50 Timed on the computer which was used for the benchmark in Chap. 7.
51 After restarting the computer. If you read immediately after you wrote, the data is still in the

system cache, and you get only 80 and 228 ms.

2.3 File Mapping 85

http://mikelaud.blogspot.ca/2010/01/shm-hints-windows.html
http://dx.doi.org/10.1007/978-3-642-39323-5_6

The speed of processing clearly is not the reason to use File Mapping for

persistent data, but if we need to access only a few pages from an otherwise large

amount of data, File Mapping will move only those pages and will definitely be

more efficient than serialization.

Both ObjectStore (c) PSE Pro for C++ and POST++ are based on File Mapping.

As in the old Smalltalk model, when using POST++, the user must supply an

estimate of the data size. If the task exceeds this size, the program will crash or it

may pause for a long time.52

PSE does not require any initial size estimate, and we do not know what is under

the hood. One can only guess that when PSE needs more the data space, it perhaps

generates multiple Views—in the same style as whenweworkedwith pages of virtual

memory in Sect. 2.2.2. Listing 2.13 opens only one File Mapping and one View, but

the online version of this program53 tests opening several Views simultaneously.

This approach has been used for two decades. Singhal (1992) reported on a

university project called Texas, to which we did not find any references after 2000.

Soukup (1994)54 showed four pages of code that demonstrated the idea in UNIX.

QuickStore was described in White and DeWitt (1995). Free55 software (Knizhnik,

POST++, 1999) also uses this approach and is free to download from their website.

For more information on these projects see Sect. 4.2. For more information on

ObjectStore look at Lamb et al. (1991), Zikari (2010) and Haradhvala and

Weinreb (1991).

2.4 Persistent Pointers

Until now, we assumed that the prime location of data was in memory and

the pointers in the disk image stored the original memory addresses, and we had

to swizzle pointers after we loaded the data into memory. This section assumes

that the prime location of the data is on disk, and the pointers store the disk

addresses. This implies a few arithmetic operations when dereferencing a

pointer, but no pointer swizzling is required. The secret is a smart pointer

class that makes all this transparent.

52 The latter happens specifically under Linux.
53 bk\chap2\list2_13a.cpp.
54 pp. 386–392.
55 POST++ comes in source from which all comments have been removed, and it is rather difficult

and time consuming to figure out its inner workings.

86 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_4#Sec2_4

2.4.1 The Main Idea

Imagine what would happen if, for every class, we would pre-allocate a large array

of its instances, and when we would need an object or an array of that class, we

would bypass allocation and simply pick it up from this array—see Listing 2.14.

Normally, pointer stores the starting address of the object to which it is pointing,

but if we stored the index into this array, it would be persistent. It would not require

swizzling, and we still could access the object very quickly.56 For the implementa-

tion of the smart pointer which does this, see Listing 2.15.

Listing 2.14 Allocating an array of objects for each class

class Book {
static Book *myArr; // preallocated array
static size_t pool; // next available index
void* operator new(size_t size){ // for a single object

if(!myArr)return (void*)calloc(1,size);
void* v=(void*)(myArr+pool);
pool=pool+size/sizeof(Book);
return v;

}
void* operator new[](size_t size){ // for an array of objects

// . . .identical with new()
}
static void start(size_t sz){

myArr=new Book[sz];
pool=1; // index=0 corresponds to pointer==NULL

}
};
Book* Book::myArr=NULL;
size_t Book::pool=0;

int main(){
Book::start(1000);
Book* bp=new Book();

56 The first object in the array could be unused, thus making index 0 equivalent with NULL pointer.

2.4 Persistent Pointers 87

Listing 2.15 Persistent pointer storing the index

template<class T> class PersistPtr {

unsigned index;

public:

T* operator->() const{

if(index)return (T::myArr+index); return NULL;

}

T* operator*() const{

if(index)return (T::myArr+index); return NULL;

}

PersistPtr& operator=(T *rhs){

if(rhs)index=((size_t)rhs-(size_t)(T::myArr))/sizeof(T);

else index=0;

return *this;

}

size_t getIndex(){return index;}

void setInex(size_t i){index=i;}

};

class Book {

public:

int id;

PersistPtr<Book> next; // note no * in the syntax

. . . same as in Listing 2_12

};

Book* Book::myArr=NULL;

size_t Book::pool=0;

int main(){ // examples of different use

PersistPtr<Book> bp1,bp2; // persistent pointers, no *

Book *br; // regular pointer, use *

Book::start(100); // start the allocator array for 100 Books

bp1=new Book; bp1->id=1; // reg. to pers.conversion, use ->

bp2=new Book; bp2->id=2;

bp1->next=bp2; // use persistent pointers like reg.pointers

br= *bp1; // persistent to regular pointer conversion

printf(“%d %d\n”,br->id,bp1->next->id);

Using a pre-allocated array of objects has many advantages:

(a) Elimination of unused objects requires reference swizzling but, in this case,

such swizzling is simple and fast.

(b) If we want to visit all the objects (as in serialization), instead of traversing the

network of pointers, we can traverse these arrays which is much simpler and faster.

(c) Serialization to disk for an array is more economical than for individual objects:

it needs only one header.

(d) If we want to move entire pages of data between memory and disk, we don’t

need a bitmap to locate the pointers. For each class, we can visit the first pointer

of all objects, then the second pointer of all objects, and so on.

(e) Page size can automatically adjust to a multiple of the object size, thus reducing

problems with large arrays that cross page boundaries.

88 2 Fundamentals of Persistence

There are only two issues we have not discussed yet:

(1) Could unstructured, passive57 objects—with the wide variety sizes such as text

strings or arrays of integers—fit this scheme?

(2) When the preallocated array is all used up, can we enlarge it without copying

the old array into the new one?58

Let’s start with implementing each allocation array as a set of pages, which are

treated as a “virtual” array. The smart pointer has to perform several arithmetic

operations in order to dereference a pointer. That may not have a big impact on the

overall performance, but you should be aware of it.

Even if we manage free space for potential reuse, it may be useful to be able to

clean up all unused objects and to compress the memory—for example, when

ending a session or when we save the data to disk. The following algorithm

shows how to do that. After we shrink the arrays for all the classes, we have to

swizzle59 all their pointers, using array conv[] from this algorithm:

Alogrithm: Removal of Unused Objects by Shrinking the Array

Just before saving the data to disk, Book::myArr has free spaces xxxx
0 1 2 3 4 5 6 7 8

myArr[] ¼ obj1 obj2 xxxx xxxx obj3 xxxx obj4 obj5 xxxx

We shrink Book:: myArr[] and create a temporary conversion array,
size_t Book::conv[]

0 1 2 3 4 5 6 7 8

myArr[] ¼ obj1 obj2 obj3 obj4 obj5 xxxx xxxx xxxx xxxx

conv[] ¼ 0 1 -1 -1 2 -1 3 4 -1

We do this for all classes, and then traverse all objects and convert their

pointers. When pointer ptr points to a Book object, we convert it like this:
PersistPtr<Book> ptr; // persistent pointer to Book

size_t k¼ptr.getIndex(); // the old index

ptr.setIndex(conv[k]); // index conversion

Each object is visited only once, and no search is required

The key to managing the free space is having all free pieces doubly-linked so we

can quickly insert and remove both objects and arrays. The key to defragmentation

is being able to combine butting free spaces into a single larger space.60 The

following example shows one of many possible implementations.

57 Objects that do not harbour any pointers.
58 Copying would trigger changes in all objects pointing into this array.
59 Remember that, in this case, pointers store the integer index into the array, not the object

address.
60 The difference from the normal memory management is that here we deal with arrays of objects

that have the same size.

2.4 Persistent Pointers 89

Example: Let’s assume that:

(a) Free object is a segment of memory which we can temporarily use for storing

any information such as its size or pointers linking it to other free memory

segments.

(b) We can keep a bitmap of our memory space, with one bit per object - see

Fig. 2.14.61

(c) We allocate all objects so that their space can accommodate at least two

integers—at least 8 bytes on 32-bit hardware.

(d) Unstructured memory as text strings will be allocated in chunks of 8 bytes

Figure 2.14 shows the representation of one array and one object. Note that even

though nxt and pre form a doubly linked list, they are not pointers but integer
indexes—thus they are persistent.

Typically, all single free objects are in one list, and free arrays in another.

Another variation is to keep multiple lists, each for certain array size or range of

sizes. There can also be a special class for non-structured data, with one object

8 bytes long. Any text, arrays of integers, etc. would be represented as objects or

arrays of this class.

Figure 2.15 shows how this data organization detects abutting objects and allows

one to combine them into a larger array. It also allows fast splitting of arrays or

pulling a single objects from the free array, depending on your allocation strategy.

Until now, we assumed that we pull individual objects from an array of

preallocated objects. But what are we going to do if we run out of preallocated

objects? Allocating a bigger array and copying the original array in it would not

work, because the existing objects would move and pointers to them would become

invalid.

Instead, we can use a virtual array which is composed of pages, each a shorter

array by itself, but all managed together and indexed as a single array—see

sz
nxt

-sz
pre

nxt
PRE

|----------------- free array of 6 objects --------------------| free object

bitmap marks the ends of each free segment, or a single free object

size sz=6
PRE=pre+1

Fig. 2.14 Space representation of free objects and arrays. For a single object, the bitmap is 1, and

PRE is an odd number. Left end of the array stores the positive size, right hand stores the negative

size. Indexes nxt (¼next) and pre (¼previous) implement the doubly-linked lists

61 Note that bitmaps used in previous chapters kept one bit for every 4-byte location. Here the

bitmap is even smaller—how much smaller depends on the size of the object. Object must be large

enough to store at least two values: SIZE and PRE, i.e. at least 8 bytes, but is usually much larger.

90 2 Fundamentals of Persistence

Fig. 2.16. This is similar to what we discussed in Sect. 2.2.2, except that now we

need such a paging system for every application class. That may appear compli-

cated, but the overhead—both in the lines of code and in the required space—is

practically the same as when we paged the entire memory.

INITIAL SITUATION: pool=17, free objects=13, free arrays=4
base[] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
size x 1 x 4 -4 x x x x 1 1 x x x
next x 12 x 0 x x x x 0 2 x x x
prev x x 0 0 x x x x x x x
bitmap
……. 1 1 1 1 1

AFTER FREEING ARRAY 8-11, it combines with array 4-7 and single 12 and
single 13, resulting in pool=17, free objects=2, free arrays=4

base[] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
size x 1 x 10 -10 x x x
next x 0 x 0 x x x
prev x 0 x 0 x x x
bitmap
……. 1 1 1 1

AFTER FREEING ARRAY 14-16, it combines with free array 4-13, and thus re-
duces pool to 4, with free objects=2 and free arrays=0
base[] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
size x 1 x - - - - - - - - - - - - -
next x 0 x - - - - - - - - - - - - -
prev x 0 x - - - - - - - - - - - - -
bitmap
……. 1 - -

Fig. 2.15 Allocation and free storage of objects: Array base[] for each class . x marks currently

active objects. Index 0 is reserved for NULL pointer, and object at that location is never used.

“pool” is the index of the first so far unused location; the bitmap is the same bitmap as in Fig. 2.14

startPage[0]

startPage[1]

startPage[2]

startPage[3]

pg=0 pg=1 pg=2

MEMORY

DISK: array of A-objects

0

0

SLOTS

Fig. 2.16 Paging an array of objects from disk to memory. Pages move in and out of a few

pre-assigned slots

2.4 Persistent Pointers 91

2.4.2 Array on Disk, Paged to Memory on Demand

An example of this approach is the Persistent Pointer Factory (PPF).62 PPF assumes

that the primary storage of the data is an array of objects on a disk file, with a

separate file for each class. This array is paged to memory as needed—see Fig. 2.16.

There is a limited number of slots to where pages can move. A page is not assigned

any slot permanently. This removes the problem with increasing the size of the

preallocated array without moving existing objects. We can expand the file gradu-

ally by adding pages without any limitation.

Smart generic pointer, PersistPtr<T>, stores the disk address of the target
object, and its operator -> calculates the address each time it is invoked. For
example, if we want to dereference the pointer which stores index 103 in
Fig. 2.17, the program does the following calculation:

Page size is 30, so the object is on page 103/30 ¼ 3, and at position 13 within

this page (103 � 30*3 ¼ 13). At this moment, this page starts at the address

3745648. Figure 2.18 does not say how large one object is; if it were, for example,

24 bytes, then the memory address at which the object resides at this moment is

3745648 + 13*24 ¼ 3745860

class Book

to page 0

to page 1

to page 2

to page 3

to page 4

to page 5

to page 6

array for all
disk pages

limited number of
pages in memory

pg.0: 0-29 pg.1: 30-59 pg.2: 60-89 pg.3: 90-119 pg4:120-149

file book.ppf divided into pages with the same number of objects:

pg.2: 60-89

pg.3: 90-119

pg6:150-179

3745648

3745696

3745780

Fig. 2.17 Disk as the prime data storage. Pages store the same number of objects (here 30), and

are paged to memory as needed

62A commercial product distributed since 1997; the full source is now available on this book’s

website.

92 2 Fundamentals of Persistence

An interesting question is whether it is better to store the disk address or the

object index in the virtual disk array. Listing 2.16 shows the implementation of

operator -> for both cases, and storing disk address results in a slightly faster

access.63 However, storing index makes it possible to handle larger data, potentially

many times64 the size of the virtual memory.

Listing 2.16 Disk as the prime storage—what to store in PersistPtr

// When storing disk address, the dereferencing is faster

template<class T> class PersistPtr {

undisgned diskAddr; // disk address in bytes

T* operator->() const{

if(index)return pageArray[diskAddr/pageSz]+diskAddr%pageSz;

return NULL;

}

};

// When storing disk index, the disk size may exceed virtual memory

// but dereferencing includes additional multiplication

template<class T> class PersistPtr {

undisgned diskIndex; // object index on disk

T* operator->() const{

if(index)return pageArray[diskInd/numOnPage]

+(diskInd%numOnPage)*sizeof(T);

return NULL;
}

};

0 1 1 0 1 1 0

hidden

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

6054 a

2 3 5 6 0 0 06054 b

Fig. 2.18 Compared to Fig. 2.2, each class in Objective-C can keep just one mask (a). The hidden

pointer inserted by the compiler is always in the first field, and pointers of any kind are marked by

1. For faster access, the same information can be converted to format (b), with hidden pointer in

position 0 followed by the list of indexes for the pointer locations

63 PPF stores disk addresses.
64 The factor increases with the size of the object size.

2.4 Persistent Pointers 93

This is all simple and straightforward if the application classes do not use

inheritance. The mask tells us the type of the target object for each pointer, in

other words in which file to look for the object. The persistent pointer then stores the

address or index in this file.

If the application class uses inheritance, the type recorded in the mask may have

multiple meanings. For example:

class Shape {. . .}; // class index=7

class Rectangle : public Shape {. . .}; // class index=8

class Circle : public Shape {. . .}; // class index=9

class Twin { // class index=4

Shape *s1;

Shape *s2;

};

If all these classes are persistent with the PERSIST_CLASS() statements, then the
mask for the Twin class is [7,7]. However, pointers s1 and s2 can lead to a Rectangle
or Circle, and these are stored in different files!!! When inheritance is involved, in
addition to the disk address, the smart pointer must also store the true target type.

For this reason, PPF uses two types of pointers:

– PersistPtr<T> which stores only the disk address, and can be used only when
class T is not using inheritance.65 It has the same size as regular pointer.

– PersistVPtr<T> stores the target type and the disk address, and can be used
under all circumstances. It is the only choice when class T is involved in
inheritance. It takes the space of two pointers.
In PPF, user selects the page size and how many pages should be resident in

memory for each specific class. Listing 2.17 shows the overall setup and the

interface. Macro PERSIST_CLASS(T) overloads operator new() for each class.
Allocating one object simply means adding 1 to the pool, and then asking the
pager assigned to this class for the memory address. For allocating arrays, we need
operator new[], which does the same thing except that it derives the number of the
objects from the given size.

Note that pool starts from 1, not from 0. Index 0 is the equivalent of a NULL

pointer.

65 Typically when no class is using inheritance.

94 2 Fundamentals of Persistence

Listing 2.17 Persistent pointers storing the object index

#define PERSIST_CLASS(T) \

friend PersistPtr<T>; \

void* operator new(size_t size){ \

unsigned u=pool; pool++;

return pgr->getAddress(u);} \

void* operator new[](size_t size){ \

unsigned u=pool; pool=pool+size/sizeof(T);

return pgr->getAddress(u);}\

static unsigned pool; \

static Pager *pgr

#define INIT(T,N) \

T* T::pool=1; \

Pager* T::pgr=NULL

// ——

class Library {

PERSIST_CLASS(Library);

. . .

}

INIT(Library,1);

class Book {

PERSIST_CLASS(Book);

. . .

}

INIT(Book,10000);

// ——

int main() {

PersistPtr<Library> lib = new Library;

PersistPtr<Book> bk = new Book[250];

After a long journey we reached yet another variation of mapping a file to

memory. The difference from the mapping discussed in Sect. 2.3 is that all objects

there were saved in one file. Now each class has its own data file, but there is no

fixed limit on the size of the data.

2.5 Quasi-Single Page (QSP)

When designing a new persistent system that would work with Objective-C, we

combined the best ideas from all the existing approaches. The result is simple

and efficient. It starts with one page of memory which expands to more pages if

more space is required. During the run, discarded objects are reused, and when

saving the data to disk, the memory space is all collapsed to a single page, with

all unused space eliminated. This is the only completely automatic persistent

system—pointer locations are retrieved through reflection, and calls to new()

does not require any modifications.

2.5 Quasi-Single Page (QSP) 95

In some chapters we tell you that they are not critical and that you can skip

them or skim through them quickly. This chapter is just the opposite. It includes

new ideas and algorithms, and we recommend you read it carefully and consider

every detail.

Objective-C is the language used by Apple and is thus important for iPhone

applications. Under the label of “archiving” it has serialization which requires more

manual input than most other languages, and its main flaw—just like in Java and C#

serializations—is the recursive internal algorithm which walks through all active

objects. If the data includes a long chain of pointers, the system stack overflows

easily and the program crashes. The workaround is to maintain a collection of all

active objects and to write them individually to disk, which complicates the matters

and is a potential source of errors.

The purpose of this chapter is to develop a new approach to automatic persis-

tence which would be simpler to implement yet be as fast, if not faster, than the

existing persistent systems. It should run in Objective-C, but the idea should be

applicable to C++, C# and possibly other languages.

The method is new, and we believe that it will be highly competitive in

performance, flexibility66 of use, and simplicity of internal design—not only in

Objective-C, but also in C++ and other languages.

For the benefit of the majority of readers, this chapter uses code samples mostly

in C++. Final implementation in Chap. 6 is written entirely in Objective-C.

This design is a good example of how persistence, data structures, and

allocation—when not treated as orthogonal, can be most efficient while working

jointly toward the same objective.

BUILDING BLOCK 1: Pointer Mask For each class, we can generate the mask

showing pointer locations, either by using the approach described in Fig. 2.2 and

Listing 2.3, or through reflection as will be explained in Chaps. 5 and 6.

However, this mask will be simpler than that shown in Fig. 2.2. Objective-C is a

dynamically typed language and, once we have a pointer, we can determine the type

of the target object. We do not need to give ID to each class; we simply mark the

pointer locations by 1—see Fig. 2.18. Objective-C uses only one hidden pointer at

the beginning of the object. We do not have to record it in the mask but, for

convenience, we can keep its value there.

BUILDING BLOCK 2: Making Classes Persistent We will use the simple

interface at which we arrived in Sect. 2.1.2, with two statements added to each class67:

PersistInterface; will insert additional methods68 needed for the persistence.
PersistImplementation; will insert static members and the implementation of

the added functions.

66 It supports both storing entire pages and serialization, including the existing Objective-C format.
67 The names are slightly changed to fit Objective-C terminology.
68Mostly static, “messages” in Objective-C lingo.

96 2 Fundamentals of Persistence

http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://dx.doi.org/10.1007/978-3-642-39323-5_5
http://dx.doi.org/10.1007/978-3-642-39323-5_6

These two statements will be macros, but clean macros, simply a section of code

that repeats for every class. All pointer members will be registered as a PTR()

statement which, in Sect. 2.2, was in the default constructor:

class Library {

PersistInterface;

Book *books;

Library *next;

int telephone;

char *libName;

public{

Library(){

PTR(books,Book); PTR(next,Library); PTR(libName);

. . . anything else you want here

}

};

PersistImplementation;

Some things are simpler in Objective-C. For example, PersistInterface and
PersistImplementation do not need the class parameter.69 Also, we can use PTR()

for any kind of pointer, while in C++ we were using PTR() for object pointers and
STR() for strings.

Other things are more complicated in Objective-C. There is no equivalent to the

C++ default70 constructor, which automatically invokes default constructors of its

superior (base) classes. In Objective-C, any method can serve as a constructor, but

the traversal of the superior classes must be introduced explicitly.71

BUILDING BLOCK 3: Replacing Allocation The simplest and most efficient

memory management for persistent data is one block (or page) of virtual memory,

from which we allocate all the objects. Storing data to disk is reduced to dumping the

entire page to the disk, and loading the data back to memory is also very fast. Pointer

conversion (swizzling) requires only to add the same offset to all pointers on the page.

We described this method in Sect. 1.4.1 (Old Smalltalk Model), and we pointed

out its main weakness—if the data grows beyond the page size, allocation of a

larger page and copying of the old page into it would be as complicated operation as

storing data to disk. If we move any objects, we have to swizzle all the pointers!

In our new algorithm we will replace one page by a set of pages, but will control

these pages and their sizes in such a way that all the data will be on a single page

most of the time. We will also collapse multiple pages into a single page any time

we’ll be saving the data to disk.

Figure 2.19 shows the architecture. Typically, there is only one or a few pages;

multiple pages are only a temporary measure for additional data. All pages have the

69 The equivalent from Sect. 2.2 would be PersistInterface(Library).
70 Constructor without parameters, e.g. Library(){. . .}.
71We will show in Chap. 7 how you do that.

2.5 Quasi-Single Page (QSP) 97

http://dx.doi.org/10.1007/978-3-642-39323-5_7

same size pgSz, but different fill. Before saving to disk, pages are sorted by their
starting address and converted to a single page.

Before each object or array, the allocation inserts a 12-byte header,72 which

includes the retain count that Objective-C expects to be there. Field addr is a
temporary variable that QSP needs in some algorithms. For example, when travers-
ing all active objects, it takes the role of the “next” pointer which builds the queue.
Later on, when merging all pages into one, it stores the new address of the object
before it actually moves there.

Instances of classes derived from NSObject start with a hidden pointer at the

beginning of the actual object. The overhead is 12 bytes per object,73 which is less

than 16 bytes in the standard Objective-C heap.

class
Persist

pages
pgSz

fill

addr sz count 0 1 ……........ sz/4-1

alloca�on of one object in 4-byte sec�ons:

12 bytes ahead of the object object itself

2-bit flag

Fig. 2.19 QSP allocation usually involves one or a few pages, which are converted to one page

while storing to disk. The lowest two bits of the sz field are used as a type flag: 0 ¼ object or array
with no pointers, 1 ¼ object/array of objects with a hidden pointer, 2 ¼ array of pointers. Field
addr is a temporary space for internal algorithms

72 Note that this is still less than the 16-byte header Objective-C uses when allocating from

the heap.
73 Temporarily, while tArr is used, the overhead is 20 bytes.

98 2 Fundamentals of Persistence

Field (sz) stores the size of the object, except for its two lowest bits which are used

as a special flag. Sizes of objects are always multiples of 4, so the two lowest bits in

this field are unused, and we can use them for this flag with values between 0 and 3.

We will allocate all objects—both instances of application classes and large,

irregular objects such as blocks of text or pictures from the same data space.

Using one large page instead of smaller multiple pages has a potential flaw.

Quoting Mark Bales: One of our systems worked this way but as designs grew, it
required a *very* large block of memory. When we tried to re-load the data back
from disk, the read operation failed. This was because there wasn’t enough space
between various smaller blocks still in use. As a result, I have become convinced
that page-based techniques should remain page-based even on re-read.

Note that this problem can occur for very large data (VLSI design in Mark’s

case) and for programs that re-read the data within the same run. A simple cure is to

provide a smart-read function, which in cases of read failure breaks the data into

multiple pages. That by itself is simple but, for multiple pages, pointer swizzling

becomes more complicated and time consuming. Instead of applying the same

offset to all pointers, we must first find the proper page, and then apply the offset.

Representation of Arrays

The representation of arrays is critical and deserves more explanation. We have

three possible styles of arrays. In all three cases, sz stores the overall size of the

array in bytes.

(a) Arrays that do not include any pointers are stored and represented in the same

way as a block of text, with flg¼0.

(b) Arrays of objects that are instances of persistent classes, each object starting

with a hidden pointer, are stored with flg¼1. A single object derived from

NSObject is a special case—an array of objects with only one object.

(c) Arrays of pointers are special, because they do not need any mask. We know

that every 4 bytes represent a pointer, and their signature is flg¼2.

Listing 2.18 shows the differences in how we use or allocate these different arrays,

and what we do with them when we either traverse all objects or swizzle the pointers.

2.5 Quasi-Single Page (QSP) 99

Listing 2.18 Using various types of arrays

class Chapter;

class Author;

class Store;

class Book {

PersistInterface(Book); // registration of the class

char *name;

int ISBN;

Book *next;

Chapter **chapters; // array of pointers to Chapters

Author *authors; // array of Author objects

Book(){

PTR(next); PTR(chapters); PTR(authors); PTR(stores);

. . . anything else you want here

}

};

// Different ways of allocation store the object differently.

// Persist is the persistent utility

bk->name=Persist.palloc(sz); // text or other no-pointer data

bk->next=new Book; // overloaded new() for a single object

bk->chapters=Persist.allocPtrArr(sz); // pointer array

bk->authors=Book.allocArr{sz); // method automatically added to B

SPECIAL RULE FOR ARRAYS OF OBJECTS:

If you stop using any elements of an array, for example when reducing the

number of elements, you must set all the pointers in the released elements to NULL

or, safer and easier, simply overwrite these elements with 0s.

The program that controls the persistency has no information about how big a part

of the array is actually used. If you don’t follow the Special Rule, the program may

crash when swizzling or traversing pointers.We recommend that raw arrays of objects

such as shown in Listing 2.16 are not used, but instead that they are encapsulated in a

special Array class that takes care of overwriting discarded objects with 0.

There are two situations when the algorithms have to traverse pointers of all

objects: when we traverse the pointer graph starting from the root in order to find all

the active (connected) objects, and then when we are swizzling74 the pointers of

these objects. Assume that we have object obj, and that we want to report all
pointers that lead to other objects. The following code which finds all pointers ptr

74 Resetting pointer values after all the objects move to a different place in memory.

100 2 Fundamentals of Persistence

in obj and calls fun(ptr) has interesting logic,75 which works particularly well in
Objective-C76:

int i,k,mySz; char *obj,**ptr,**msk;

int ptrSz=sizeof(char*);

int flg=getFlg(obj); // get the flag from the allocation record

if(flg==0)return; // there are no pointers in obj

int sz=getAllocatedSize(obj); // get the allocated size of obj

if(flg==1){

mySz=getClassSize(obj); else mySz=0;

char *mask=getMask(obj);

}

for(i=k=0; i<sz; i=i+ptrSz, k=k+ptrSz){ // i for obj, k for mask

ptr=(char**)(obj+i); // *ptr is the value at location i

if(flg==2){fun(*ptr); continue;} // every location is a pointer

// k is used only in the next part

if(k>=mySz)k=0; // repeat the mask for the next section

if(k==0)continue; // hidden pointer, we exclude them

msk=(char**)(mask+k};

if(*msk)fun(*ptr); // if mask is not 0

}

BUILDING BLOCK 4: Algorithms A and B The following two algorithms are

the heart of this entire approach.

Algorithm A traverses all active objects without recursion. It uses field addr as
the “next” pointer when building two stacks: One for the objects still to be expanded,
the second for those already expanded. A simple check whether addr¼¼0 prevents
the same object expanding again.

Algorithm A can be used for two purposes:

(a) To serialize the data in any of the existing Objective-C formats, simply calling

function writeSingleObject(void* ptr) which saves the object without
expansion.

(b) To set up the data for Algorithm B which eliminates dead space and collapses

the data space into a single page. Condition addr¼¼0 marks an object as a dead
space.
For all application classes, the standard allocation is replaced77 by allocation

from our special pages, regardless whether we store the data with QSP or serializa-

tion. Being able to alternate between the two styles of saving the data has many

advantages.

75 This is more an algorithm description than a functional code.
76 You will see this in Chap. 7.
77 The new alloc() method is hidden under PersistInterface.

2.5 Quasi-Single Page (QSP) 101

http://dx.doi.org/10.1007/978-3-642-39323-5_7

The Purpose of Algorithm B Is:

– To concatenate all the pages into one.

– To remove discarded or lost objects.

If, after running Algorithm A, we have a single page and the total space is equal

to the active space, there is no need to call Algorithm B (Fig. 2.20).

It also does not make any sense to do a big cleanup if there are just a few unused

objects. Algorithm B has a flexible, user defined cutoff—for example, it can be

102 2 Fundamentals of Persistence

bypassed if there is only one page and the dead space is not more than 10 % of the

allocated space (cutoff specified as 0.1 for 10 %).

Algorithm B allocates a new, single page to store all the data without the dead

space. Then it traverses the list of active objects that Algorithm A left behind, and

calculates the future address of each object in this new page. Because the objects are

already sorted, this calculation involves only a gradual accumulation of the memory

shift for the dead space and gaps between pages. In the second pass, the algorithm

traverses the active objects again, and swizzles their pointers to the values stored in
addr of the target object. There are no searches or dictionaries. In the third pass all
the active objects are copied into the new page.

The second and third pass could be combined into a single pass, but we would

not gain much. Leaving them separate allows one to copy the data into an existing

page without allocating a new one, assuming that the old page is large enough to

receive the data.78

Algorithm C stores the single page to disk, and it is trivial. It first writes the

header with the overall parameters:
fill ¼ total space required to receive the data,

root ¼ old address of the root,

pageAddress ¼ address on which the old page started and then the table of

registered classes, each entry
class name

size of each instance

pointer mask (includes the value of the hidden pointer)

The hidden pointer is needed for the conversion when loading the data back to

memory, and the mask is for a rough check that the class has not changed.

The page size is not passed; the receiving program can chose any size which is

not smaller than fill.
Finally, there is a binary dump of the entire data space79 and of the bitmap.

Algorithm D allocates a large-enough page and bitmap, and fills both with the

data from the disk. Without looking at individual objects, it runs through the bitmap

looking for pointer locations, and swizzles them including the root pointer by the

same offset (startOfNewPage – startOfOldPage). When the original pointer does
not fit the old page, it must be a hidden pointer, and it is replaced using the old-to-
new conversion table of hidden pointers. Note that if there are any dead objects,

pages sorted by star�ng address

Removing dead space and crea�ng one larger page

Fig. 2.20 Pass 3 of

Algorithm B

78 This option is not in the first version of this code.
79 As a single page.

2.5 Quasi-Single Page (QSP) 103

converting their pointers does no harm, and because there should not be many of
them, it may be faster to traverse bitmap than to analyze individual objects.

The conversion allows for some changes of the schema:

(a) If the new data contain additional classes, it does not matter. We can still read

the old data.

(b) If some old classes are missing in the new set, but there are no instances of these

classes in the old set, that is also fine, but this may require an additional check

during the swizzling of pointers.

104 2 Fundamentals of Persistence

BUILDING BLOCK 5: Special Arrays So far we have been working with single

instances of application classes. What are we going to do with arrays? Arrays of

characters or of other basic types such as int or long long, or even arrays of

structures (struct) as long as they do not include any pointers are no problem. We

allocated each array as an object of the appropriate size, and other objects can refer

to it with a pointer. The bitmap corresponding to such an array will be full of 0s, so

we do not have to do anything special for these arrays except that we have to make

sure they get allocated with the allocator from our Utility class.

Objective-C does not allow arrays of instances, only arrays of pointers. For

example:

class A {

int id;

A *next;

}

int main(){

A *arr=new A[100]; // array of A instances, not in Objective C

A **pArr=new (A*)[100]; // array of pointers to A instances

for(int i=0; i<100; i++){

pArr[i]=new A;

{

printf(“arr=%d pArr%d\n”,arr[17].id,pArr[35]->id);

Instead of calls such as

A **pArr=new (A*)[100];

the application code will have to call a special function which will not only allocate

the appropriate memory from our pages but also fill its assigned area of bitmap

with 1s.

BUILDING BLOCK 6: Managing Free Objects Any saving of data to disk,

even if we don’t exit our program after that, will remove all unused objects. We can

even call Algorithm B without saving to disk, and the unused objects will be

removed and all the data will be compacted to a single page. That, however, may

cause a pause in the execution of the program, which in some applications may not

be acceptable. Also, some applications continuously destroy objects and create new

ones, and being able to reuse destroyed objects would help significantly.

It would80 be easy to arrange chains of free objects organized by size—for sizes

corresponding exactly to the application classes, and approximate sizes of all

powers of 2—see Fig. 2.21. Any field in the allocated space can be used for the

temporary pointer that creates the chain; the beginning of the object seems most

appropriate.

In real-life applications, large blocks of memory that are freed and reused are

usually in a relatively small range of sizes. Remembering this range leads to the

following performance optimization.

80 This feature may not be in the first release of this Objective-C persistence.

2.5 Quasi-Single Page (QSP) 105

Useful Trick No. 6

When moving larger blocks to free storage or reusing them (see Fig. 2.21) we

need to find the right slot for the given size. The binary search seems to be the

best choice here, but remembering the range of the stored values makes it

super-fast.

Example

slot value
0 512
1 1024
2 2048
3 4096
4 8192
5 16384

....
22 214748364

minRange
maxRange

We start the run with minRange>maxRange.
This is a signal of empty free storage.

When block of size 1048 enters free storage,
minRange=1024, maxRange=2044.

When allocating block of size 5000, we do
search for a free object, because it is out of range.

When entering the 5000 block to free storage,
we search in range 1024-214748364, then adjust
maxRange to 8188.

When taking the 1048 block out of the free
storage, the range remains 1048-8188; removal
from free storage does not change the range.

U�li�ty
class

large objectssmall objects

4 2**9+

8

12

16

20

2**10+

24

2**11+

2**12+

2**13+

2**14+

508 2**31

Fig. 2.21 Chains of free

objects organized by size. The

picture assumes instances of

all application classes are not

more than 24 bytes in size,

and all free objects up to that

size can be picked up with

appropriate size. Larger

objects which can only be

arrays or long strings, are

organized by power of 2

106 2 Fundamentals of Persistence

BUILDING BLOCK 7: Persistent Libraries In general, persistent data is only as

useful as the data structures it supports. This is truer for Objective-C than for other

languages, because the NextStep (NS) library is essentially part of the core lan-

guage. You cannot program in Objective-C without it.

Making a library class persistent is just as easy as making an application class

persistent:

STEP 1: Modify *.h by adding PersistInterface.
STEP 2: Modify *.m by adding PersistImplementation and method prtList which

registers all the pointers using the PTR() statement.

STEP 3: Search all methods in *.m for any calls that allocate arrays or unstructured

memory, and replace them by allocArr, allocPtrArr, or palloc. (Allocations of
single objects with new() require no changes.)

Section 6.2 will describe implementation details specific to Objective-C, NS

classes, and to the conversion of the InCode library to Objective-C.

Note that a program may run with persistent application classes, while using NS

classes that are not persistent and are allocated from the Objective-C heap. The

serialization algorithm (Algorithm A) will save both parts seamlessly. When

reading such data from disk, the application classes will automatically allocate

from persistent pages of memory, while the NS classes will allocate from the

Objective-C heap.

BUILDING BLOCK 8: The Main() The main() program has to start the persis-

tent utility and all the persistent classes.

int main() {

PersistStart(pageSize);

myClass1.start();

myClass2.start();

. . . etc. for all application classes

where you normally use pageSize¼0 which uses a good default. Selecting this

parameter may slightly improve the speed of saving the data to disk especially for

very large data sets, but has no impact on the speed of traversing the data. As you

save and open the data, the internal algorithms convert all the data to one page

anyway, and then the original choice of the page size is irrelevant.

2.5 Quasi-Single Page (QSP) 107

Data Structures, Patterns, and UML 3

Abstract

An essential part of every persistent system are persistent class libraries. Existing

class libraries have two flaws: They cannot store bi-directional associations, and

they do not treat associations (relations) as first class entities. We need a new

paradigm for the proper design of these libraries. We will treat data structures as

a database, and implement databases as data structures. The architecture will be

controlled by a textual schema, not by the UML class diagram. However, this

diagram will be automatically generated from the textual schema. This is just the

opposite to what probably expect.

Keywords

Dataless class • Data structures • Class libraries • Associations • Relations •

Design patterns • UML • Class diagram • Implementation • Intrusive •

Array-based • Pointer-based • Composite • Flywheel • Finite state machine

Why do we include generic data structures in a book on persistent objects? Because,

in both cases, the key issue is the safe and transparent handling of pointers.1 If we

design class libraries in the right way, persistency can be more efficient and easier

to use. Also, the fact that existing “standard” libraries do not support bi-directional

data structures is a disgrace—it complicates programming, makes it more error

prone, contradicts UML thinking and often leads to code with inferior performance.

The idea that with the speed and storage capacity of modern computers we do

not have to worry about performance is an urban myth. Look at the farms of

computers Google is running, or at the problems with the human genome.

Let’s establish a few basic facts about building data structures.

1 In this chapter, we use the term pointer for both pointers and references.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_3, # Springer-Verlag Berlin Heidelberg 2014

109

3.1 Basic Facts About Data Structures

We can build data structures with array or pointers.2 Array-based data structures

are essentially the 40-year-old Fortran technology which surprisingly still survives

in relational databases. Its advantages are:

1. If the data do not change, they takes smaller space—no pointers are needed to

create a list.

2. Such data are persistent, indexes are valid even when moving arrays do different

addresses.

The disadvantages are severe, especially when the data structures change or

grow:

3. If the arrays grow, we have to allocate a larger space than required, which takes

away the advantage of the original smaller space.

4. Removing an element from the middle of the array has a major performance

penalty.

5. When working with indexes, it is very easy to make an error. Data structures

coded in this style are less reliable and harder to debug and maintain.

Object oriented programming combines functions (control) with data, adds

inheritance, emphasizing individual objects and their access by pointers. It

removes all the disadvantages of arrays but, at the same time, we lose the

persistence.3

Pointer-based data structures often use lists, either singly or doubly linked.

These lists can be either NULL-ended or form a ring. In Chap. 1 (Fig. 1.3) we

established that rings are better because they permit inexpensive yet efficient

integrity checking, but the for() loop traversing a ring is slightly more complex

than the common for(p¼start; p; p¼p->next){ . . . }

With a few exceptions, in this book we are always assuming that rings are used.

Many programmers are not aware that linked lists can be sorted with an

efficiency comparable to qsort, and that the same algorithm can merge or split

lists. We will explain the algorithms with examples. For full running code, look at

bk\alib\lib\llist1.cpp (C++), bk\jlib\lib\llist1.jt (for Java), or bk\benchmark\objcLib

\lib\llist1.m (Objective-C).

2 Or with a combination of both, but let’s keep it simple for now.
3Here we have another connection between persistence and data structures.

Most of currently used generic containers are based on arrays, while pointer

based data structures have been neglected. This section discusses the

differences between the two approaches, and it shows what you can do with

pointer chains, including sorting, merging, and splitting them.

110 3 Data Structures, Patterns, and UML

http://dx.doi.org/10.1007/978-3-642-39323-5_1
http://dx.doi.org/10.1007/978-3-642-39323-5_1#Fig3_1

Algorithm: Sorting a List (Example)
27 3 2 3 5 8 12 7 19 30 6 3 80 79 13 22 40 1 11 2 41 31 32 39

Walking through the list and reversing descending sections4 gives us the starting

set of sorted sublists:

2 3 27, 3 5 8 12, 7 19 30, 3 6, 79 80, 13 22 40, 1 11, 2 41, 31 32 39

When neighbours decrease, it implies a new boundary section. There may be

fewer sections now, for example 3 6 becomes automatically one section.

Walk through and merge subsequent pairs of sections

2 3 3 5 8 12 27, 3 6 7 19 30 79 80, 1 11 13 22 40, 2 31 32 39 41

Merging of two sections A and B is a linear process—a parallel walk through

them and always selecting the smaller number. For example, for the first two

sublists of the starting set

A: 2 3 27 result: 2 3 27 result: 2 3 27 result: 2 3 3 27 result: 2 3 3 5
B: 3 5 8 12 3 5 8 12 3 5 8 12 5 8 12
A: 27 result: 2 3 3 5 8 27 result: 2 3 3 5 8 12 27 result: 2 3 3 5 8 12 27
B: 8 12 12

Repeat this until only one section is left

2 3 3 3 5 6 7 8 12 19 27 30 79 80, 1 2 11 13 22 31 32 39 41 49

1 2 2 3 3 3 5 6 7 8 11 12 13 19 22 27 30 31 32 39 41 49 79 80

Notes:Sortworks perfectly for singly-linked list.We can sort doubly-linked list using

only the next pointer. When finished, in one pass set the prev pointer—see Fig. 3.1.

Algorithm: Splitting or Merging Singly-Linked Rings The same algorithm can

be used to merge or split rings—see Fig. 3.1. When a and b are in the same ring, the

algorithm splits the ring into two. When a and b are in different rings, it splices

(merges) them together.

// a and b are given elements

c=a->next;

d=b->next;

a->next=d;

b->next=c;

3.1.1 Working with Lists

It is important to understand the inside workings of lists in various libraries, as

shown in Fig. 3.2.

Pointer Array corresponds to the use of STL Vector

class D {

std::vector<L*> ptrArray; // declaration line

};

D* dp=new D;
. . .

L* lp=dp->ptrArr[17];

int sz=dp->ptrArr.size(); // size of the array

4 The breaks between sections are shown as a comma here but not recorded during the calculation.

3.1 Basic Facts About Data Structures 111

a c b d
R1

a c b d R2

b d b d R3

Fig. 3.1 The same reconnection of two pointers splits the ring into two when both objects are on

the same ring (R1), or it combines two rings into one (R1 + R2) when each object is on a

different ring

L

L

L

L

L

POINTER LIST
(INTRUSIVE LIST)

L

L

L

L

L

L

L
p

L
p

POINTER ARRAY

L

L

L

L

L

D

OBJECT ARRAY

a
L

L

L

L

EMBEDDED LIST

D
D

D

D

D

D

D

D

D

dataless
class

(interface)

D

Java, C#, ObjC

Fig. 3.2 Different implementations of lists. White boxes D and L are objects of application

classes, shaded boxes are objects of library classes. Lightly shaded boxes store pointers and other

data required for the implementation. Darker boxes provide the implementation of the List

interface. Intrusive List has its interface implemented in a separate, dataless class. This data

structure representation is used only in Code Farms libraries (DOL and InCode)

112 3 Data Structures, Patterns, and UML

Here ptrArray is a member of D and contains both data (pointer to the array, its

size, etc.) and the implementation of the data structure interface. Nothing is inserted

into L. The array (shaded in Fig. 3.2) is transparent to the user.

In other languages, the declaration line would be

L[] ptrArray; // in Java

ArrayList<L> ptrArray; // a better Java implementation

NSMutableArray *ptrArray; // in ObjectiveC

L[] ptrArray; // in C#

List<L> ptrArray; // a better C# implementation

but those languages do not include an instance of the ptrArray object, only a reference.

Both the data and the controls become a separately allocated object—see Fig. 3.2.

Object Array corresponds to the use of STL Vector when the array stores entire L

objects:

class D {

std::vector<L> ptrArray; // declaration line

};

D* dp=new D;

. . .
L* lp= &(dp->ptrArray[17]);

int sz=dp->ptrArray.size(); // size of the array

This style of array is not allowed in Java or Objective-C. It could exist in C#, but

only if L is a structure, not a class.

Pointer List corresponds to STL List using a reference

class D {

std::list<L*> myList; // declaration line

};

D* dp=new D;

. . .

L* lp=dp->myList.front(); // head of the list

Objective-C library does not have a List class.5 In Java and C# the declaration

line would be:

LinkedList<L> myList; // in Java

LinkedList<L> myList; // in C#

5 GitHub website offers one https://github.com/mschettler/NSLinkedList

3.1 Basic Facts About Data Structures 113

https://github.com/mschettler/NSLinkedList

Embeded List corresponds to STL List using an instance

class D {

std::list<L> myList; // declaration line

};

D* dp=new D;

. . .
L* lp= &(dp->myList.front()); // head of the list

This is not a recommended type of list because the existence of the application

object L is controlled by a transparent object that cannot be accessed by the application.

Intrusive List is often needed in real-life projects, but standard libraries do not

provide it. Here is how you invoke it if you use the InCode library:

Association LinkedList2<D, L> myList; // declaration line

class D {

ZZ_D ZZds;

};

class L {

ZZ_L ZZds;

};

D* dp=new D;

. . .
L* lp= myList.head()); // head of the list

We will be discussing this library later in this chapter. The data structure is

controlled by a self-standing dataless class, myList, which also inserts6 pointers or

other variables into participating classes D and L. The declaration line is the same in

C++, Java, and in Objective-C.

Why do we claim that this type of list is often needed in real life projects? Look

again at Fig. 3.2—Object Array and Embedded List are not suitable for practical

use, and both Pointer Array and Pointer List are collections. L objects may appear

several times under the same D or under several different Ds.

In real life, however, we more often encounter a set, where any L can appear

only once: Department has Employees, and one Employee normally cannot be

member of two Departments. Two customers cannot purchase the same TV screen

with the same serial number. A train has ten cars. These cars cannot be, at the same

time, in another train. A paragraph in a text document consist of lines. The same

line cannot be there twice—it would need a different line number.7

Standard libraries have a set class, but because they only work with collections

they have to do a lot of calculations to make sure that nobody can enter an object

more than once. A set is either implemented as a balanced tree which requires

O(log N) search for each insertion, or a hash table which needs a constant time but

still has an overhead both in the space and time.

6How to perform this insertion is the prime subject of his chapter.
7 If the same text appears twice, one of the lines is a copy of the other.

114 3 Data Structures, Patterns, and UML

On the other hand, Intrusive List implemented with rings is a natural set, where a
simple check whether a pointer is 0 tells you whether the object is free to be

inserted.

If you find it surprising how the standard set is usually implemented, this is only

a beginning. All the lists in Fig. 3.2 are uni-directional associations: from any D

object you can reach its L objects, but these L objects do not know to what D object

they have been assigned. In real life application about half the time we need

associations that are bi-directional. Teachers have students, and they know who

their teachers are. A person has several accounts, and the bank knows, for each

account, to whom it belongs. The book may have several authors, and each author

knows8 what books he wrote.

And no standard library supports bi-directional associations! Is that possible, and

why?

The reason is that the existing object-oriented languages do not provide a

mechanism that would automatically insert the required pointers into more than

one class. By definition, class L needs a pointer which would directly or indirectly

lead to a D object—see Fig. 3.3.

The left part of Fig. 3.3 shows how using a collection (which is not a set)
we can build Aggregate (which is a set). When adding an L-object, we check

whether its parent pointer is NULL. If it is not, it is already member of this or

another Aggregate, and must not be added second time.

Imagine that in Fig. 3.3, we are adding L-objects to D1 and D2 from the top

down. When adding L1 the second time to D1 (dashed line), the operation is not

accepted. Addition of L2 to D2 is also not accepted because L2 is already under D1.

D2

D1 D

D

L

AGGREGATE (bi-direc�onal one-to-many)
(Pointer List) (Intrusive List)

L1

L2

L3

L4

L

L

L

L

Fig. 3.3 Aggregate is a bi-directional association, even when built with a collection which is uni-

directional. This mae disadvantage of this implementation is a possibility of an error: D2 thinks that

L2 belongs to it, but L2 and D1 think that L2 belongs to D1. In Aggregate, a child can belong to only

one parent. Intrusive Aggregate (on the right) is Intrusive List with an additional parent pointer

8 Unless he is very very old.

3.1 Basic Facts About Data Structures 115

3.1.2 Separating Data and Interface

Let’s see what happens in the code when we implement Aggregate in the style

shown on the left side of Fig. 3.3.

Listing 3.1 Implementing Aggregate with std::list<T>

#include <stdio.h>

#include <list>

template<class P,class C> class Aggregate : public std::list<C*> {

public:

void add(P *p,C *c){

if(c->myPar)return;

std::list<C*>::push_back(c);

c->myPar=p;

}

. . .

};

// ------ library classes above this line, application below ------

class Lecturer;

class Department {

public:

Aggregate<Department,Lecturer> lecturers; // <<<<<<<

};

class Lecturer{

friend class Aggregate<Department,Lecturer>; // <<<<<<<<

Department *myPar; // <<<<<<<<<

public:

Lecturer():myPar(NULL){}

};

int main(){

Department* dp=new Department;

Lecturer* lp=new Lecturer;

dp->lecturers.add(dp,lp);

return 0;

}

Here Aggregate inherits std::list<> and with it both its interface and data—the

pointer to the beginning of the list plus possibly the size of the list and other

numbers. It also expects that pointer myPar has been inserted into Lecturer.

Maintaining such data for possibly many data structures is a recipe for disaster.

This section will lead you to a new style of representing data structures and

associations, a style which is much better than the existing containers:

Participating classes will store the required pointers or arrays, but the overall

control—methods such as add() or sort()—will be in a separate dataless class.

116 3 Data Structures, Patterns, and UML

Fortunately, if the application inserts myPar into a wrong class or uses a wrong

name, the Aggregate will not compile, and the compiler tells you where the

problem is. That makes this design style relatively safe though a bit tedious.

Besides the Aggregate being a public member of Department, this design has three

flaws:

1. The fixed name myPar for the member inserted into Lecturer can cause a name

collision. For example, if Lecturer can also be a Union member, we have

Aggregate<Department,Lecturer> lecturers;

Aggregate<Union,Lecturer> members;

class Lecturer {

Department *myPar;

Union *myPar;

};

2. The call to the add() method at the bottom of Listing 3.1 requires dp to be

mentioned twice, with a potential for introducing an error.

3. Declarations of data structures are spread through the classes, buried in them,

and, especially with every class having a separate *.h file, there is no central

place where you can see the overall architecture.

We will now address each of these issues separately.

Case 1. We need to use different names for myPar, or parametrize it by something

typical for each case. For example, we could have

class Lecturer {

Department *Department_Lecturer_myPar;

Union *Union_Lecturer_myPar;

};

but that still may lead to a collision as in this situation

Aggregate(Company,Employee) employees;

Aggregate(Company,Employee) retirees;

The best parameter to use is the instance name of the data structures, such as

Department *lecturers_myPar;

Union *unionMembers_

Company *employees_myPar;

Company *retirees_myPar;

That sounds like a good idea, but templates (or generics) do not allow us to

parameterize variable and member names. In C based languages we can use macros;

in other languages we can use a preprocessor which would provide the substitution:

3.1 Basic Facts About Data Structures 117

Listing 3.2 Implementing Aggregate with std::list<T> and using a macro for

additional parameterization

#include <stdio.h>
#include <list>

#define Aggregate(P,C,X) \

class X##_Aggregate : public std::list<C*> { \

public: \

void add(P *p,C *c); \

}

#define AggregateImplement(P,C,X) \

void X##_Aggregate::add(P *p,C *c){ \

if(c->X##_myPar)return; \

std::list<C*>::push_back(c); \

c->X##_myPar=p; \

}

// ------ library include above this line, application below ------

class Lecturer;

class Department;

Aggregate(Department,Lecturer,lecturers);

class Department {

public:

lecturers_Aggregate lecturers;

};

class Lecturer {

friend class lecturers_Aggregate;

Department *lecturers_myPar;

};

int main(){

Department* dp=new Department;

Lecturer* lp=new Lecturer;

dp->lecturers.add(dp,lp);

return 0;

}

AggregateImplement(Department,Lecturer,lecturers);

Note how the name lecturers becomes the ID of the data structure. This is still

not the ideal way of doing it, only the first step.

In Listing 3.2, two characters ## are used to concatenate names. For example:

A##B creates AB.

Cases 2 and 3. The problem with relations spread through the classes is typical for

the current way of designing software with STL and other container libraries, but it

is still a major problem. Relations (associations, data structures) should have the

same visibility in the code as classes. We need associations (relations) to become

first class entities, as we have them in the UML class diagrams.

Both this and the problem with dp being mentioned twice can be fixed by

separating data and interface. The data will reside in the application classes, and

the interface will be implemented in a special, dataless class.

118 3 Data Structures, Patterns, and UML

Rather than evolving the example based on std:list<>, this is easier to explain

on the design of the intrusive Aggregate. Let’s start with the Aggregate designed in

the same style as the popular container classes, i.e. inserting an instance of Aggre-

gate into class Department.9 In order to make Aggregate generic, we will use a

macro, because that is the only way to prevent collision of names.

Listing 3.3 is not easy to read, but it would be useful if you grasp its essence.

Note what happens in the application code. In the beginning you declare what

Aggregate you are going to need. This statement creates two classes, lecturers_

AggregateChild and lecturers_Aggregate. These are the types of members you

add to classes Department and Lecturer. In both cases you name the member
lecturers, which is the common name for everything associated with this Aggregate;

see the call to add() in the main.

Statement AggregateImplement(. . .) which is at the end of the code contains

implementation of all the methods the Aggregate needs. You could also compile it

separately.

This implementation is already usable, and it solves two of the problems that we

previously mentioned: It avoids the collision of names, and it declares Aggregate as

a separate entity,10 which is just as visible as the application classes.

The disadvantages are themassive use ofmacroswhich are always difficult to debug,

the need to repeat the relation ID (here lecturers) many times, and the fact that dp occurs

twice in the call to add().Alsowe have not touched upon the issue that a library of data

structures should derive more complex data structures from simpler ones.

The next improvement11 of this code is in Listing 3.4. It removes the problem with
dp and it makes the implementation much more logical. There are three classes now:

1. Aggregate—a dataless class which implements the Aggregate’s interface, essen-

tially providing the control of the data structure.

2. AggregateParent—which has no methods (it could even be just a structure) which

must be inserted into the parent of the Aggregate, in this example into Department.

3. AggregateChild—which inserts the data into the child of the Aggregate, in this

example into Lecturer.

Even though the library file aggregate.h is quite different, the application code

remains practically the same (only the bold sections changed), and the problem with

the double use of dp is solved. Note that this time we named the inserted members

differently (_lecturers instead of lecturers). Since lecturers now has a global

visibility, using the same name may lead to a collision.12

9 This is not the aimplementation style we recommend for intrusive Aggregate, but watch what will

happen.
10 See the line marked with // <<<<.
11 This is the implementation style we prefer and highly recommend.
12We tested that, in this example, using the same name works, but it a general case it may cause

problems.

3.1 Basic Facts About Data Structures 119

Listing 3.3 Intrusive Aggregate in the style of existing containers

FILE: aggregate.h

#define Aggregate(P,C,X) \

class X##_AggregateChild { \

friend class X##_Aggregate; \

P *par; \

C *next; \

C *prev; \

public: \

X##_AggregateChild(){ \

par=NULL; next=prev=NULL; \

} \

}; \

class X##_Aggregate { \

C *first; \

public: \

void add(P *p,C *c); \

X##_Aggregate(){first=NULL;} \

}

// list implemented as doubly-linked ring

#define AggregateImplement(P,C,X) \

void X##_Aggregate::add(P *p,C *c){ \

C* f=first; \

first=c; \

c->_##X.par=p; \

if(f){ \

c->_##X.prev=f->_##X.prev; c-_##_X.next=f; \

f->_##X.prev->_##X.next=c; f->_##X.prev=c; \

} \

else {first=c->_##X.next=c->_##X.prev=c;} \

}

\

APPLICATION:

#include <aggregate.h>

class Department;

class Lecturer;

Aggregate(Department,Lecturer,lecturers); // <<<<<<<<

class Department {

public:

lecturers_Aggregate lecturers;

};

class Lecturer {

public:

lecturers_AggregateChild lecturers;

};

int main(){

Department* dp=new Department;

Lecturer* lp=new Lecturer;

dp->lecturers.add(dp,lp);

return 0;

}

AggregateImplement(Department,Lecturer,lecturers);

120 3 Data Structures, Patterns, and UML

Listing 3.4 Intrusive Aggregate with the separation of separated data and interface

FILE: aggregate.h

#define Aggregate(P,C,X) \

class X##_AggregateChild { \

friend class X; \

P *par; \

C *next; \

C *prev; \

public: \

X##_AggregateChild(){ \

par=NULL; next=prev=NULL; \

} \

}; \

class X##_AggregateParent { \

friend class X; \

C *first; \

public: \

X##_AggregateParent(){first=NULL;} \

}; \

class X { \

public: \

static void add(P *p,C *c); \

}

// list implemented as doubly-linked ring

#define AggregateImplement(P,C,X) \

void X::add(P *p,C *c){ \

C* f=p->X.first; \

p->X.first=c; \

c->X.par=p; \

if(f){ \

c->X.prev=f->X.prev; c->X.next=f; \

f->X.prev->X.next=c; f->X.prev=c; \

} \

else {c->X.next=c->X.prev=c;} \

}

APPLICATION:

class Department;

class Lecturer;

Aggregate(Department,Lecturer,lecturers); // <<<<<<<

class Department {

public:

lecturers_AggregateParent _lecturers;

};

class Lecturer {

public:

lecturers_AggregateChild _lecturers;

};

int main(){

Department* dp=new Department;

Lecturer* lp=new Lecturer;

lecturers::add(dp,lp);

return 0;

}

AggregateImplement(Department,Lecturer,lecturers);

3.1 Basic Facts About Data Structures 121

3.1.3 Generalized Templates—Code Generator

The main problem with Listing 3.4 is the use of macros. They are difficult to

understand and debug. Even the simple examples in Listings 3.3 and 3.4 took us a

while to debug.

Think what we need to do and what templates and macros provide. We want to

parameterize the library classes with types of participating classes just as when you

use templates. The only exception is that we also want to manipulate class and

member names using one more additional parameter.

Think then what is the compiler doing with templates. Compilers first find for

what parameters the templates are instantiated, and expand the templates. For

example, if you have an error in

Template < class P,class C> class Aggregate {. . .}

and you are using this class for P ¼ Department and C ¼ Lecturer, the compiler

tells you that you have an error in class

Department_Lecturer_Aggregate

After this, the compiler proceeds with the normal compilation.

We can do the same thing, but we can make it simpler and faster by tuning it to

what we really need. We can use our expanded templates, and prepare the code for

the compiler in the same way as the compiler prepares it with the normal

templates. We will use a code generator but will not change the existing code.

We will only create files with the expanded templates that can be compiled

separately and linked with the application code. This is the method used in the

InCode library today.

It uses the special keyword Association, which has the same effect as the //

comment—the remaining code on this line is removed. However, the code which

follows is the instruction for parameterization of templates. We will add this

keyword to the lines that invoke the data structure. In Listings 3.3 and 3.4 those

are the lines marked with // <<<<<<. Because these lines will be ignored by

the compiler, we can change their syntax to look more like templates.

Most of the parameterization we need for our data structures can be done with

templates, but we also need to parameterize names of certain members—

something that templates cannot do but a code generator can. However, if we

already use the code generator, we can let it also to expand the templates, and

that takes us to new, more general type of templates.

122 3 Data Structures, Patterns, and UML

For example, for this original line

Aggregate(Department,Lecturer,lecturers);

we can use syntax

Association Aggregate<Department,Lecturer> lecturers;

which better portrays the meaning of this expression, except that lecturers is

still the id of the interface, and method add() is static

lecturers::add(dp,lp)

see Listing 3.4.

The next question is how the code generator finds these special lines. You

can feed it all the application code, but we recommend placing all these lines

into a special small file, which in the InCode library is called ds.def (data

structure definitions). The advantage of having them in a single file is not only

simple processing. This file becomes a textual form of the UML diagram, the

central place that stores the architecture. It further elevates the visibility of

relations.

Inside the library, the templates are coded with parameters $$, $0, $1, $2, . . .
where $1, $2, . . . are the types of the participating classes, and $$ is the name of

the association and $0 is the same as _$$. For example, in line

Association Aggregate<Department,Lecturer> lecturers;

we have $$ ¼ lecturers, $1 ¼ Department, $2 ¼ Lecturer. As a shortcut, inter-

nally, $0 is used for _$$ or, in this example, for _lecturers. This makes the library

encoding simple and readable. For example, the macros from Listing 3.4 become

what are in Listing 3.5. The application code remains the same, except for the line

starting with the Association keyword.

3.1 Basic Facts About Data Structures 123

Listing 3.5 Intrusive Aggregate with generalized templates

FILE: aggregate.h

class $$_AggregateChild {

public:

$1 *par;

$2 *next;

$2 *prev;

$$_AggregateChild(){

par=NULL; next=prev=NULL;

}

};

class $$_AggregateParent {

public:

$2 *first;

$$_AggregateParent(){first=NULL;}

};

class $$ {

public:

static void add($1 *p,$2 *c);

};

typedef $$_Aggregate $$;

#define Association /##/

FILE: aggregate.cpp

// list implemented as doubly-linked ring

void $$::add($1 *p,$2 *c){

$2* f=p->$0.first;

p->$0.first=c;

c->$0.par=p;

if(f){

c->$0.prev=f->$0.prev; c->$0.next=f;

f->$0.prev->$0.next=c; f->$0.prev=c;

}

else {c->$0.next=c->$0.prev=c;}

}

APPLICATION:

Association Aggregate<Department,Lecturer> lecturers;

// <<<< marks automatically inserted lines

class Department {

friend lecturers; // <<<<

lecturers_AggregateParent _lecturers; // <<<<

};

class Lecturer{

friend lecturer; // <<<<

lecturers_AggregateChild _lecturers; // <<<<

};

int main(){

Department *dp; Lecturer *lp;

lecturers::add(dp,lp);

124 3 Data Structures, Patterns, and UML

Generated code is the normal C++ source which can be debugged as usual. The

generated code (lecturers.h and lecturers.cpp) has the same number of lines as the

library files (Aggregate.h and Aggregate.cpp) in this example. You can either debug

lecturers.cpp and transfer each correction to Aggregate.cpp, or you can debug

directly Aggregate.cpp.

Note that there is a simple mechanism which allows a quick manual conversion

of DOL data structures to InCode.13

3.1.4 Transparent Insertion

Now when you are familiar with the Association statements, it is much easier to

explain some things. For example, from this

Association Aggregate<Faculty,Student> students;

Association Aggregate<Faculty,Teacher> teachers;

Association Aggregate<Teacher,Course> courses;

Association Aggregate<Teacher,Student> advisorOf;

Association Aggregate<Student,Book> booksOnLoan;

Association ManyToMany<Student,Takes,Course> takes;

Association Name<Student> studentName;

you immediately see that we have classes Faculty, Student, Teacher, Course, Book

and Takes, and you also see the data structures (Associations) that connect them. The

only thing we have to add is that even a text string is represented as a special

association, called Name.

This block of Association statements is a good example of how complex it would

be to insert manually all the required parts. In this case, for example, class Student

would look like this:

Listing 3.6 Insertion required for class Student14

class Student {

friend class students;

friend class advisorOf;

friend class booksOnLoan;

friend class takes;

friend class studentName;

students_AggregateChild _students;

advisorOf_AggregateChild _advisorOf;

booksOnLoad_AggregateParent _booksOnLoan;

takes_ManyToManySource _takes;

studentName_Parent _studentName;

. . . whatever else

};

13 This was the way the InCode library was populated.
14 This is just a code snippet, with no code on the website.

3.1 Basic Facts About Data Structures 125

To handle this on large projects would be a nightmare, but don’t worry. These

insertions can be performed automatically and transparently. Chapter 5 will show a

proposal how, by adding one keyword to existing object oriented languages, this

could be done in a simple command. Until this proposal is accepted and

implemented, however, we have to find some other way.

Since we were already forced to accept the use of code generator, and the code

generator already analyzes the Association statements, we have a great opportunity

there. The code generator can easily assemble these statements, and set them up so

that Listing 3.6 is reduced to

class Student {

ZZ_Student ZZds;

. . . whatever else

};

This is exactly what the InCode generator does. ZZ prefix was chosen for

historical reasons,15 and ds stands for data structure.
The library expects that when entering a new association (data structure) you

register it in a special registry file. For each association, there is one line which

describes its design—see Fig. 3.4.

This record has a little more information than we discussed so far. InCode has

two aggregates: Aggregate1 derived from the singly-linked list and Aggregate2

which is derived from the doubly-linked list. Otherwise, Fig. 3.4 is self-

explanatory. The directionality and multiplicity record will be needed later for

automatic generation of the UML class diagram.

The purpose of $1 and $2 parameters in this line is to connect parameters of the

base and derived classes. For example, line

Association Aggregate2<Faculty,Student> students;

will trigger generation of files for Aggregate2<Faculty,Student>, but also for
List2<Faculty,Student>, and the $.. parameters refer to the Aggregate2 definition.

In this case $1 ¼ Faculty, $2 ¼ Student. There are situations where the base class has

a different order or fewer parameters than the derived class.

If this appears too laborious, consider that this is done only once when entering

the association into the library, and it is well worth it for the simple user interface,

the prevention of errors in the application and the ability to generate the UML class

diagram about which we will be talking later on.

Besides expanding the classes coded with the $ codes, the code generator also

creates files gen.h and gen.cpp. File gen.h provides a mechanism which transpar-

ently inserts all the required members. This can have two forms: a macro or

involving another level of indirection.

15 All library-related expressions in DOL have prefix ZZ.

126 3 Data Structures, Patterns, and UML

http://dx.doi.org/10.1007/978-3-642-39323-5_5

The DOL library uses a macro:

// FILE: gen.h

#define ZZ_EXT_Student

fri class students; \

friend class advisorOf; \

friend class booksOnLoan; \

friend class takes; \

friend class studentName; \

students_AggregateChild _students; \

advisorOf_AggregateChild _advisorOf; \

booksOnLoad_AggregateParent _booksOnLoan; \

takes_ManyToManySource _takes; \

studentName_Parent _studentName;

// Application

class Student {

ZZ_EXT_Student

. . . anything else

};

The InCode library uses an intermediary class:

// FILE: gen.h

class ZZ_Student {

friend class students;

friend class advisorOf;

friend class booksOnLoan;

friend class takes;

friend class studentName;

students_AggregateChild _students;

advisorOf_AggregateChild _advisorOf;

booksOnLoad_AggregateParent _booksOnLoan;

takes_ManyToManySource _takes;

studentName_Parent _studentName;

};

// Application

class Student {

public:

ZZ_Student ZZds;

. . . anything else

};

data structure
name

Aggregate2 is derived from
LinkedList2 though inheritance

Aggregate2 has
Iterator

classes
to insert

files with $ codes
are aggreg2.h, aggreg2.cpp

b1-* Aggregate2<Aggregate2Parent,Aggregate2Child> aggreg2

:LinkedList2<$1,$2> Iterator;

direc�onality,
mul�plicity

Fig. 3.4 Record of the Aggregate2 class in the InCode registry file

3.1 Basic Facts About Data Structures 127

In this case, the $0 code is not converted to

_associationName,

but to

ZZds._associationName

3.1.5 Big and Small, STL

Using this style, you can build data structures of any complexity and involving

any number of classes in this style - each as easy to use as Aggregate or List that we

just discussed. You can create these data structures using pointers and arrays, or you

can use simpler data structures to build the more complicated ones. Details of how

you do that are beyond the scope of this book, but you can grasp the main idea by

analyzing classes from the InCode library.16

Since our objective is to remove all pointer members from the application

classes, the library includes

SingleLink ¼ equivalent of a single pointer, or uni-directional 1to1,

DoubleLink ¼ two objects mutually linked via pointer, bi-directional 1to1,

Name ¼ Null ending String attached to the object, an equivalent of char*.

Listing 3.7 shows how these classes are used.

Listing 3.7 Company–Manager–Employee example, InCode style

class Employee {

ZZ_Employee ZZds;

int phone;

int salary;

};

class Manager : public Employee {

ZZ_Manager ZZds;

};

class Company {

ZZ_Company ZZds;

};

Association Aggregate<Company,Employee> employees;

Association Aggregate<Manager,Employee> subordinates;

Association Name<Employee> employeeName;

Association SingleLink<Manager,Employee> secretary;

Examples of how the data structures coded in this style are useful for projects

of any size, and a discussion on how to convert STL classes into this

representation.

16 On the website at incode/alib/lib for C++, incode/jlib/lib for Java.

128 3 Data Structures, Patterns, and UML

The important question is whether the InCode style library can include STL classes

with their original interface, so that programmers who are used to them could still work

with them while enjoying the benefits of the additional intrusive data structures.

As an example, let’s look at how to represent std::list<> in the InCode style

while keeping its original interface.

The standard way to use std::list<> to store Books in a Library is

class Library {

std::list<Book*> myList;

};

In order to use the same class with our new interface, we will place myList in the

same place, but we will get it there indirectly:

class NewListParent {

std::list<Book*> myList;

};

class Library {

NewListParent myPar;

};

This inserts not only the data that we want to be in Library, but also the STL

interface—quite a bit of code which we don’t want there but can tolerate it in this

special case. Then we code the new dataless class—see Listing 3.8—which consists

of short, usually one-line conversions of the old method to the new interface. Note

that, compared to the STL interface, the new methods have typically one more

parameter—a pointer to the class which holds the STL container. We can use the

same method names as in STL, or replace them by new names.

This is more than just the Adaptor Design Pattern, because it combines insertion

of data with the conversion of the interface.

Listing 3.8 stl_list coded in the InCode style, the concept of keeping the same

interface (general idea, not a generic implementation yet)

class NewList { // stl_list, new style

public:

static void push_back(Library *lp, Book *bp)

{lp->myPar.myList.push_back(bp);

}

. . . // all other methods

};

int main(){

Library* lp=new Library;

Book* bp=new Book;

NewList::push_back(lp,bp); // or add()

3.1 Basic Facts About Data Structures 129

The generic $-encoding of NewList is simple and clean:

using namespace std;

class $$_NewListParent {

std::list<$2*> oldList;

};

class $$_NewList {

public:

static void push_back($1 *lp, $2 *bp)

{lp->$$.oldList.push_back(bp);}

. . . // all other methods

};

This conversion is safe17 and works fine, but it is tedious because STL containers

have quite many of methods.

Example: Airlines, Flights and Airports It’s time to show a complete, more

realistic example coded in this style. The code is in bk\chap3\list_3-9.cpp, tt9.

bat compiles it, rr9.bat runs it.

17We did not make any changes in the code of stl_list.h.

130 3 Data Structures, Patterns, and UML

Listing 3.9 Flights of different Airlines connect Airports, while distinguishing

between the arrival and departure flights

#include "gen.h" // file generated by incode/codegen.exe

class Flight {

ZZ_Flight ZZds;

int flightNo;

};

class Airline {

ZZ_Airline ZZds;

}; // attached name treated as a data structure

class Arrivals {

ZZ_Arrivals ZZds;

};

class Departures {

ZZ_Departures ZZds;

};

class Airport {

ZZ_Airport ZZds;

char code[4]; // 3-letter airport code

Airport(){Departures* d=new Departures; toDept::add(this,d);

Arrivals* a=new Arrivals; toArr::add(this,a);

}

};

/* ++++++++++ next lines stored in file ds9.def ++++++++++++++++++

Association 3XtoX<Flight,Airline,Departures,Arrivals> flights;

Association DoubleLink<Airport,Arrivals> toArr;

Association DoubleLink<Airport,Departures> toDept;

Association Name<Airline> airlineName;

+++ */

int main(){

Flight *fg; Airline *line; Arrivals *arr; Departures *dpt;

Airport *dPort,*aPort;

flights_Iterator it;

. . .

// print all flights that depart airport ‘dPort’

dpt=toDept::fwd(dPort);

for(fg=it.from2(dpt); fg; fg=it.next2()){

line=flights::entity1(fg);

arr =flights::entity3(fg);

aPort=toArr::bwd(arr);

printf("%s %d departs at %2d:%2d for %s\n",

airlineName::get(line), fg->flightNo,fg->depTime/100,

fg->depTime%100,aPort->code);

}

return 0;

}

Airport::Airport(){

Departures* d=new Departures; toDept::add(this,d);

Arrivals* a=new Arrivals; toArr::add(this,a);

}

#include "gen.cpp" // generated by incode/codegen.exe

3.1 Basic Facts About Data Structures 131

3.1.6 Code Generator and IDE

It used to be that using a preprocessor or a code generator was considered

inappropriate. There were two practical reasons:

1. If preprocessor changed your code, debugging was difficult, especially when line

numbers changed.

2. Integrated environments, such as Microsoft’s Visual C++, did not integrate well

with preprocessors and code generators.

Note also the difference between preprocessing and code generation. Preproces-

sor changes your original code, while code generator creates additional source files

which compile separately and link to your original code.

Code generators are clearly better and they are frequently used today. Many

programs quoted in this book use code generators but never a preprocessor.18

One of the reasons why code generators are not frowned upon any more is that

development environments allow the programmer to register a code generator in

such a way that you compile as if there were no code generation. The code

generator is invoked automatically and transparently whenever you compile.

If you have never worked with a code generator, here is instruction on how to

integrate the code generator for InCode library into VS2010.19 Don’t be

discouraged by the fact that ten steps are required. We are trying to explain every

detail so that even a complete beginner could do it. Also, remember that once you

register the code generator, you compile as if it wasn’t there.

1. We assume that the InCode library is stored in c:\InCode , with the code

generator in c:\InCode\alib\codegen.exe20 and the library in c:\InCode\alib\lib

2. Create a project, with or without any source files

3. Create file codeg.bat:

mkdir tmp

c:\InCode\alib\codegen.exe ds.def c:\InCode\alib\lib gen

and move it to the directory where you have your new project.

4. In the same directory, create file environ.h, which may even be empty. You

don’t have to add this file to the project, but the generated files may need it.

5. At the top of main() you need

Today, programming with a code generator is not considered a bad practice as it

was a decade ago, but if you don’t know how to set up your IDE properly, it can

be a serious deterrent. This chapter describes how to set up a project so that the

code generator is called automatically any time you recompile.

18With the exception of the built-in C preprocessor (macros).
19 The steps are similar in VS2008, and probably in VS2012.
20 Subdirectory alib is for C++, c:\InCode\jlib is for Java.

132 3 Data Structures, Patterns, and UML

#include “gen.h”.

This file still does not exist; the code generator will create it.

6. Display Properties of your project by Alt + Enter, or right click in the Solution
Explorer on your project, and then Properties.

7. Using the screen from Fig. 3.5, select Configuration, All Configurations, then
Debug or Release.

8. Select All Platforms, as in Fig. 3.5.

9. Select Configuration Properties, Build Events, Pre-Built Event.

10. Select Command Line, type the name of the bat file you created, codeg.bat, and

click OK.

From now on, you can compile as usual, but before every compilation, codeg.bat

will be executed.

As we explained earlier, the full source for most of the examples is available as

one large zip file. It unzips into directory bk, which is organized by chapter. More

complex examples may be stored in separate subdirectories, with their own readme.

txt and files tt.bat to compile and rr.bat to run it in the black CMD window.

As an example, let’s take Listing 3.9 which uses the InCode code generator and

library. The entire program is in list3_9.cpp, and the block of associations is in

file ds9.def:

Fig. 3.5 Setting up VS2010 for a project using a code generator

3.1 Basic Facts About Data Structures 133

File tt.bat:

mkdir tmp

c:\incode\alib\codegen ds9.def c:\incode\alib\lib gen

cl list3_9.cpp

File rr.bat

list3_9

If you are working with Unix or Linux, you may prepare a makefile or bash file

which invokes the code generator only if file ds.def has changed, e.g. if ds.def is

younger than get.h. For example21

#!/bin/bash

#if tmp dir doesn’t exist then create it

if [! -d tmp]; then

mkdir tmp

fi

run_cg=0

#if gen.h exists

if [-f ’gen.h’]; then

#if ds.def is newer then gen.h

if [ds.def -nt gen.h]; then

run_cg=1

fi

else

run_cg=1

fi

if [$run_cg -eq 1]; then

/opt/incode/alib/codegen ds.def /opt/incode/alib/lib gen

fi

gcc myprogram.cpp

3.1.7 Arrays (Vectors)

Arrays are important in many data structures, for example when building hash

tables, and so far we have completely avoided them. As explained in Sect. 2.1.4, in

order to make an array persistent, it has to be implemented through a special library

class. In the DOL, InCode and PTL libraries this class is called Array and in the

STL library it is called Vector. PPF includes class Vector as an example of how to

make a STL class persistent. The array class usually represents a dynamic array,

21 Full source bk\chap3\cg.sh.

This section compares arrays of pointers with arrays of objects, and show how

to build an Array class in the new style.

134 3 Data Structures, Patterns, and UML

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec13_2

which automatically increases its size when needed. In Objective-C, it is called

MutableArray.

The InCode Array can be invoked in the same way as the pointer-based data

structures:

Association Array<Parent,Child> name;

where Parent is the class to which the array is attached, and the Child is the type of

object which forms the array. Child can be an entire object or just a pointer to it, for

example:

Association Array<Library,Book> books; // array of Books

Association Array<Library,Book*> bookPtrs; // Book pointers

This association does not insert anything into the Child class, but it inserts a

pointer to a special Header (or a pointer to such Header) into the Parent class— see

Fig. 3.4. The Header stores a pointer to the array itself, and the size of the array.

When making an array persistent, the Header object is stored to disk in the same

way as the instances of the application classes.

The advantage of this arrangement is that, if there is no array attached to the

Parent object, only one NULL pointer is wasted—see Fig. 3.6.

Here is an example of using the Array class. Method form() forms the initial

array:

Array::form(Parent *par, int initialSize, int increment);

Parent Header

Child *array

int allocSize

int usedSize

int increment

Child 0

Child 1

Child allocSize-1

Array of
objects or
references

Header *header

Fig. 3.6 Internal implementation of the Array class. In Java, arrays of objects are not allowed

3.1 Basic Facts About Data Structures 135

where increment ¼ 0 specifies an array of fixed size, increment > 0 indicates how

many items to add to the array if its size is not sufficient and increment < 0 gives a

multiplication factor22 to increase the size.

class Library {

ZZ_Library ZZds;

. . .
};

class Book {

ZZ_Book;

int ID;

. . .

};

Association Array<Library,Book> books;

int main(){

Library *lib; Book bk, *bp; int i;

lib=new Library;

// form array with initial size 10, increase 2x when needed

books.form(lib,10,-2);

for(i=0; i<32; i++){

bk=books.get(lib,i); // equivalent of bk=a[i]

bk.ID=300-i; // some number

books.set(lib,i,bk); // equivalent of a[i]=bk

}

books.sort(lib);

It is much faster to get a pointer to the object inside the array and change the ID

directly there, using function ind() which, for a given index, returns the pointer to

the object- for example, DOL Array class has such a function. However, this

function must be used with extreme care, and only before any other command

accesses the array. If the array automatically reallocates, bp becomes invalid:

for(i=0; i<32; i++){

bp=books.ind(lib,i); // equivalent of bk= &(a[i])

bp->ID=300-i; // immediate use is OK

}

Can you figure out what happens with the allocSize and usedSize in this loop?

When reaching i ¼ 10 the array reallocates to 20, because the form() method

specifies the multiplication factor of 2. Then when i ¼ 20 it reallocates to 40.

When the loop is finished, allocSize ¼ 40 and usedSize ¼ 32. When storing the

array to disk, only 32 objects are stored.

22 After discarding the negative sign.

136 3 Data Structures, Patterns, and UML

3.1.8 Make Them Persistent

There are three important factors when thinking about persistence:

1. When we stick to the rule that application classes must not have any

explicit pointer members, the application data are persistent as long as

the library classes23 are persistent.

2. Each data structure is represented by a dataless class. Since these classes

keep no data, it is guaranteed that they do not keep any pointers, and these

classes do not need any conversion to become persistent.

3. Remaining library classes are easy to make persistent because we know

the pointers they store.

Classes storing the data to be inserted into the application classes are simple,

because they typically include a few values and a constructor, no additional methods.

As an example, to make Aggregate from Listing 3.5 persistent is to add default

constructors to AggregateParent and AggregateChild as shown in Listing 3.10.

Listing 3.10 Making class Aggregate persistent

class $$_AggregateParent {

$2 *first;

public:

$$_AggregateParent(){PTR(first,$2);}

};

class $$_AggregateChild {

$1 *par;

$2 *next;

$2 *prev;

$$_AggregateChild(){PTR(par,$1); PTR(next,$2); PTR(prev,$2);}

};

When creating a new object with new(), unless other constructors are explic-

itly called, C++ calls default constructors for all base classes and their members.

This guarantees that the PTR statements mark properly the position of all these

pointers even in very complex composite objects—see example in Listing 3.11.

This is specific in C++, but it does not work in Objective-C.

23 Classes that represent data structures in the style described here.

Data structures designed in the new style are easy to make persistent, and

by moving all the pointers from application classes to library classes, the

application classes also become persistent.

3.1 Basic Facts About Data Structures 137

Listing 3.11 Automatic invocation of default constructors in C++

#include <stdio.h>

class A {

int a;

public:

A(){printf("A\n");}

};

class B {

A b;

public:

B(){printf("B\n");}

};

class C : public B {

int c;

public:

C(){printf("C\n");}

};

int main(){

C *c=new C;

A *a=new A[5];

return 0;

}

// It prints ABC and them AAAAA

For arrays of pointers we need to use macro ARP() as explained in Listing 2.17.

3.2 Inserting Pointers with Inheritance

The basic idea of what we did so far was to have dataless class to represent the

data structure and to implement its interface. Fpr example

template<class P,class C> Aggregate { . . . };

implemented interface, and classes AggregateParent and AggregateChild stored

the data to be inserted into the application classes as their members. We used macros

for additional parameterization, but this is still the essence of what we did:

Until now, the pointers and other variables that formed the data structures were

alway inserted as members of participating classes. Interestingly, we can

achieve the same objective with inheritance, at least in C++.

138 3 Data Structures, Patterns, and UML

template<class P,class C> class AggregateParent{

C *first;

};

template<class P,class C> class AggregateChild{

P *parent;

C *next;

C *prev;

};

However, there is another way to insert data into a class—using inheritance.24

The main idea is instead of coding as we did so far:

class Library {

AggregateParent<Library,Book> _books;

. . .

};

class Book {

AggregateChild<Library,Book> _books;

. . .

};

to do this:

class Library : public AggregateParent<Library,Book> {

. . .

};

class Book : public AggregateChild<Library,Book> {

. . .

};

So far, it is not clear how we will access the data, but let’s continue. It is clear

that this approach will lead to a massive use of multiple inheritance, so it will be

possible only in C++, not in Java, C# or Objective-C. For example, consider class

Book which participates in three Aggregates—see Listing 3.12.

Listing 3.12 Class Book participating in three Aggregates

Association Aggregate<Library,Book> books;

Association Aggregate<Author,Book> published;

Association Aggregate<Book,Page> pages;

// that implies Book has to inherit from three classes:

class Book : public AggregateChild<Library,Book>,

public AggregateChild<Author,Book>,

public AggregateParent<Book,Page> {

. . .

};

24 This is how the Code Farms’ Pattern Template Library (PTL) works.

3.2 Inserting Pointers with Inheritance 139

Considering that aggregate may be derived from LinkedList, and Link can be

derived from Ring2, and Ring2 from Ring1, the use of inheritance is truly massive,

we believe beyond what the creators of the language expected.

The advantage of this entire approach is that we don’t need any parameterized

names. The parameterization is by type. For example, the InCode style aggregate

from Listing 3.5

class $$_Aggregate {

void add($1 *p,$2 *c){

C* f=p->$0.first;

p->$0.first=c; c->$0.par=p;

if(f){

c->$0.next=f; c->$0.prev=NULL;

f->$0.prev=c;

}

else {c->$0.next=c->$0.prev=NULL;}

}

};

now becomes

template<class P,class C> class Aggregate {

typedef AggregateParent<P,C>* pType;

typedef AggregateChild<P,C>* cType;

void add(P *p,P *c){

C* f=(cType)p->first;

(pType)p->first=c; (cType)c->par=p;

if(f){

(cType)c->next=f; (cType)c->prev=NULL;

(cType)f->prev=c;

}

else {(cType)c->next=(cType)c->prev=NULL;}

}

};

Without using the typedef statements, the long templates would make this code

unreadable, but in this form it is crisp and manageable.

The code would work without casting with cType and pType, but if we don’t

cast, we open door to a potential error of using a member with the right name but

from a wrong class.

There is still one situation though in which this design fails. If there are two

associations of the same type, for example aggregates, between the same two

classes, then the casting cannot differentiate between the two aggregates:

Association Aggregate<Company,Employee> employed;

Association Aggregate<Company,Employee> onVacation;

Fortunately, C++ templates allow an int parameter which can be used in such

situations. The template is declared as

template<class P,class C,int i> class Aggregate { . . .

140 3 Data Structures, Patterns, and UML

and is normally used without the last parameter which is 0 by default:

Association Aggregate<Library,Book> books;

Association Aggregate<Author,Book> published;

Association Aggregate<Book,Page> pages;

but when two Aggregates connect the same classes, we use either

Association Aggregate<Company,Employee> employed;

Association Aggregate<Company,Employee,1> onVacation;

or

Association Aggregate<Company,Employee,1> employed;

Association Aggregate<Company,Employee,2> onVacation;

If we assemble manually the multiple inheritance statements such as in List-

ing 3.12, this library can be used without any code generator which is a definite

advantage compared to the approach from Sect. 3.1. However, programming with

the library is much easier if, in the fashion similar to the InCode approach, we

place all Association declarations into one little file and let the code generator read

it and create macros with the inheritance statements.25 The application code from

Listing 3.7 then looks like Listing 3.13:

Listing 3.13 Company–Manager–Employee example, PTL style (compare with

Listing 3.7, which is in the InCode style)

class Employee : ZZ_Employee {

int phone;

int salary;

};

class Manager : ZZ_Manager, public Employee {

};

class Company : ZZ_Company {

};

// ----- either here or in a separate file ds.def -------------

Association Aggregate<Company,Employee> employees;

Association Aggregate<Manager,Employee> subordinates;

Association Name<Employee> employeeName;

Association SingleLink<Manager,Employee> secretary;

// -----–----–----–----–----–----–----–----–----–----–----–---

int main(){

Employee *e=new Employee;

Manager *m=new Manager;

secretary::add(m,e);

25 The use of code generator in PTL is optional.

3.2 Inserting Pointers with Inheritance 141

http://dx.doi.org/10.1007/978-3-642-39323-5_3#Sec1_3

As we were writing this chapter, we realized that Code Farms missed a great

opportunity to make PTL persistent. All that is needed is to include PTR(), STR()

and ARP() statements into the default constructor. For example, adding the two bold

lines shown in the following code makes the class Aggregate persistent in the PPF

environment:

template<class P,class C, int i> class AggregateParent {

C *first;

public:

AggregateParent(){ PTR(first,C); }

};

template<class P,class C, int i> class AggregateChild {

P *parent;

C *next;

C *prev;

public:

AggregateParent(){ PTR(parent,P); PTR(next,C); PTR(prev,C); }

};

The only known library using this approach is Pattern Template Library26 (PTL),

which was coded as a proof that a generic library of intrusive data structures can be

implemented without a code generator. The library has been available on Code

Farms website since 1996, but was the only library never used on a serious, real-life

project. It was originally designed as a framework for generic design patterns, and it

has the following classes, some of them quite unusual and unique: Aggregate,
Array, Pointer Array, Collection, pattern Composite, pattern Flyweight and Finite
State Machine which can reset its settings while it is running. It would be relatively
simple to transfer remaining classes from the InCode and DOL libraries to PTL,

because these libraries are coded in the same style.

3.3 Library of Design Patterns

Christopher Wolfgang Alexander is an architect noted for over 200 building

projects around the world. He was born in Austria, grew up in England and studied

at Cambridge and Harvard. For many years, he taught at the UC Berkeley, and he is

now retired in Switzerland.

Structural design patterns are data structures which, besides pointers and arrays,

also involve inheritance. This section shows how such patterns can be stored in

a class library just like containers or other associations.

26 www.codefarms.com/ptl

142 3 Data Structures, Patterns, and UML

http://www.codefarms.com/ptl

In his search27 for “quality without a name”, he began to record patterns that

made buildings pleasant to live in or around. Things such a layout of rooms, doors,

windows and stairs, and their specifics depend on the climate and culture and

interaction with objects around them. For example, when discussing a street café,

we should consider the possible desires of the guests, the working environment of

the café owner, but also the people who just walk by.

Alexander’s patterns are catalogued in a uniform fashion. They consist of

a short name, a rating, a sensitizing picture, the context description, the

problem statement, a longer part of text with examples and explanations, a

solution statement, a sketch and further references. Patterns recorded in this

style are a great communication and teaching tool, and Alexander used them

successfully when discussing his projects with the future occupants of his

buildings.

Around 1994 a group of software designers began to develop software patterns

that would be independent of the programming language and the application

domain. The first conference on Pattern Languages of Program Design (PLoP)

was in 1994,28 and the “bible”29 of this movement by the “Gang of four” was

published the same year.

For example, the methodology we are using for bi-directional generic

associations in this chapter could be considered a design pattern, and the

following example shows the categories that should be recorded. In most

situations, individual categories would be much longer; here we assume you

understand the subject.

Name: Separation of interface from the attributes that form the data structure

(or association).

Motivation: Containers buried in the application classes confuse the architec-

ture, and do not allow the building of generic bi-directional associations as single

entities.

Forces: Associations should have the same visibility and importance as appli-

cation classes. Programming languages limit the implementation. Simple code

generation is a practical solution, but is frown upon by purists.

Applicability: Any data structures, structural design patterns.30

Participants: The dataless class representing the data structure, and several

application classes that store data. Instances of these classes get inserted into

appropriate application classes.

27 See his book “The timeless way of building”, published by Oxford University Press in 1979.
28 Proceedings edited by J.O. Coplien and D.C. Schmidt, and published by Addison-Wesley

in 1995.
29 Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-

oriented software. Addison-Wesley.
30 The pattern part will be explained later in this chapter.

3.3 Library of Design Patterns 143

http://en.wikipedia.org/wiki/Erich_Gamma#Erich%20Gamma
http://en.wikipedia.org/wiki/Ralph_Johnson_(computer_scientist)#Ralph%20Johnson%20(computer%20scientist)
http://en.wikipedia.org/wiki/John_Vlissides#John%20Vlissides

Description: . . . <detailed description>
Diagram: see Fig. 3.7
Dynamic behaviour: This is a static pattern, but may be applied to dynamic data

organizations such as FSM.

Implementation: . . . <detailed description>
Variants: Insertion can be either as members or through inheritance.

Consequences: Significant improvement in the clarity and quality of the

software. Easier to maintain and evolve. UML class diagram matching

implementation.

Limitations: Simple code generator is required.

See also: Separate interface pattern, Reflection in certain OO languages.

Sample code: Listing 3.10.

Known uses: This approach has been supported by Code Farms Inc. since 1989

and was successfully applied to hundreds of projects, some over 100,000 lines

of code.

Structural design patterns are a special category of software patterns that can be
considered an extension of the classical data structures by adding inheritance to the

usual network of pointers and arrays. We have shown already in 199431 that these

patterns can be implemented in a generic form and stored in a library with other data

structures such as Aggregate or HashTable.

For an advanced reader, Listing 3.14 shows the complete implementation of the

PTL pattern Composite. Composite is the mechanism that allows one to build a

system from bigger and bigger parts. Listing 3.15 demonstrates how to create

graphics from lines, text, pictures and smaller sub-designs, we build mechanical

designs from plates, bolts, nuts and pre-built parts, and we design silicon chips from

transistors, wires, and contacts that connect different layers of wiring. In these and

many other applications we design hierarchically, creating larger and more com-

plex designs from smaller and simpler ones—see Listing 3.14.

class A

insertA

class B

insertB

Interface

Fig. 3.7 Pattern “Separate interface and data of generic associations”, where Interface has the

same visibility as application classes A and B manages inserted data, usually pointers or

references

31 Soukup J (1994) Implementing patterns. PLoP conference, pp. 395–412.

144 3 Data Structures, Patterns, and UML

Listing 3.14 Internal implementation of class Composite in the PTL library.
Composite is derived from Collection, which is equivalent to Intrusive List

32

from Fig. 3.2

// file composite.h in directory ptl\lib

// ======================================
template<class P,class C,int i> class CompositeChild :

public CollectionChild<P,C,i>{

};

template<class P,class C, int i> class CompositeParent :

public CollectionParent<P,C,i>{

};

template<class P,class C, int i> class Composite :

public Collection<P,C,i>{

// all methods of Collection are inherited

};

#define CompositeInherit1(id,par,chi,i) \

public chi, public CompositeParent<par,chi,i>

#define CompositeMember1(id,par,chi,i) \

virtual int isComposite(Composite<par,chi,i> *c){ return 1;}

#define CompositeInherit2(id,par,chi,i) \

public CompositeChild<par,chi,i>

#define CompositeMember2(id,par,chi,i) \

virtual int isComposite(Composite<par,chi,i> *c){ return 0;}

// file pattern.h produced by code generator ptl\mgr\mgr.exe

// ===

#define pattern_Part \

CompositeInherit2(comp,Graphics,Part,1) { \

CompositeMember2(comp,Graphics,Part,1) PTL_COMMENT

#define pattern_Graphics \

CompositeInherit1(comp,Graphics,Part,1) { \

CompositeMember1(comp,Graphics,Part,1) PTL_COMMENT

//file mgr.h from ptl\lib that all application source includes

// ==

#define Pattern(A) pattern_##A

#define PTL_COMMENT /##/

32 If you want to traverse Composition both up and down, then deriving it from Aggregate would

make more sense.

3.3 Library of Design Patterns 145

Listing 3.15 Applying Composite to a graphics design

class Part : Pattern(Part) {

int x1,y1,x2,y2; // overall dimensions

};

class Graphics : Pattern(Graphics) {

};

class Line : public Part{ // see footnote33

};

class Text : public Part { // see footnote

char *txt;

};

class Picture : public Part { // see footnote

char *fileName;

};

Association Composite<Graphics,Part> parts;

int main(){

int main(){

Graphics *g1,*g1; Line *L1,*L2; Text *t; Picture *p1,*p2;

. . .

parts.add(g1,L1);

parts.add(g1,t);

parts.add(g1,p1);

parts.add(g2,g1);

parts.add(g1,L2);

parts.add(g1,p2);

Useful Trick No. 7

Macro Pattern(Graphics) on line
class Graphics : Pattern(Graphics) {

adds not only a base class; it also adds a virtual function to class
Graphics(!)

#define Pattern(T) \

public Part{ZZ_##T; virtual int isComposite(. . .){. . .}; //

where the end comment wipes out the brace at the end of the original
line:

class Graphics : public Part{ZZ_##T; virtual int isCompsite(. . .)

{. . .};//{

which really is
class Graphics : public Part{

ZZ_##T; virtual int isCompsite(. . .){. . .};

g1

L1

L2
p1

p2

t: Some text 2012

g2

33 If class Line participates in some other data structures or patterns, the statement would take this

form:

class Line : public Part, public Pattern(Line){

146 3 Data Structures, Patterns, and UML

WARNING:

Listing 3.15 can mislead you, because it does not show the key idea of how PTL can

access its subparts. This is easier to explain on the Composite34 class designed from

scratch. Note that the types of internal pointers are CT* and PT*, and not C* and P*

as one could expect:

typedef CompositeChild<P,C> CT;

typedef CompositeParent<P,C> PT;

template<class P,class C,int i> class CompositeChild{

CT *next;

PT *parent;

};

template<class P,class C, int i> class CompositeParent{

CT *first;

};

template<class P,class C, int i> class Composite}

C *nxt(CT *cp){return (C*)(cp->next); } // <<<<<<<<<<<<

. . . other methods

};

Association Composite<Graphics,Part> parts;

int main(){

Part *p; Text *t;

p=parts.nxt(t);

The function finds the right subpart through automatic casting. It is as if writing

cp=(CT*)(Part*)t;

3.4 Complexity and Errors

The prime purpose of the new approach to building data structures is to increase

the productivity of software development and simplify its maintenance, while

producing code with the ultimate performance.

These are hard and controversial things to measure. The abilities of

programmers vary widely, so letting two people do the same project in different

styles may not tell us much. Letting one programmer to do the same project twice

34 This example is for the singly-linked, bi-directional Composite.

This section explains why the new style of data structures reduces complexity,

eliminates errors, and allows rapid software development from a simple proto-

type that already works like a production-quality product.

3.4 Complexity and Errors 147

does not give meaningful results either, because the programmer learns from the

first exercise and is then more efficient the second time.

However, over 2 decades of using this approach on many complex projects, our

users reported a two to four times faster development and maintenance for projects

without persistence, and three to ten times for projects with persistence. Small

groups of developers often outperformed large departments of prestige companies.

The larger and more complex the project, the greater was the productivity

improvement.

Another personal experience. The author experienced exasperating frustrations

when forced to develop without these libraries. Projects that he expected to take a

few days, went on for weeks and required extensive debugging.

Everybody offering software tools claims improvements of productivity, and our

numbers may appear exaggerated. Why such a large improvement?

The secret is in reducing the code complexity, letting the compiler find errors

that we are now debugging in the run time and eliminating hard-to-find run-time

errors. It makes it fun to develop software in this new style; it is less stressful.

Let’s examine the individual features that, together, have this remarkable effect.

3.4.1 Reducing Complexity

It is now generally accepted that class libraries reduce code complexity and

improve productivity. However, about half the data structures needed in real-life

applications are bi-directional, and thow are not supported by the existing container

libraries. Having generic classes for bi-directional data structures makes a big

difference.

The complexity is also reduced, because the Association statements provide a

concise description of the entire data organization, especially if they are

together, as a block of code or in a special file (ds.def). You can also say that

this block of statements defines your framework, or that it is a textual form of the

UML class diagram.35 If you get a program written by someone else, and you look

at its Association statements, you know instantly what it is all about. Try yourself:

Listing 3.16 Can you see what data is used in this project

Association Collection<Library,CD> cds;

Association Hash<Library,Composer> composers;

Association Hash<Library,Performer> performers;

Association Aggregate<CD,Track> tracks;

Association Aggregate<Composer,Work> works;

Association Aggregate<Work,Track> tracksOn;

Association ManyToMany<Track,Link,Performer> playedBy;

35 Section 3.5 expands on this subject.

148 3 Data Structures, Patterns, and UML

This is a non-trivial organization—a library of CDs that can be efficiently

searched by Composer or Performer. Composer composed Works (songs). CD has

Tracks and several Performers may participate on one Track. A Work can be

recorded several times, with different Performers and on tracks of different CDs.

The block of Associations is also extremely useful when analyzing a section of

the code. For example, if you see this line:

works_Iterator wit;

you know immediately that wit will iterate over the Works of a Composer. Or

w=trackOn.parent(t);

tells you that w is a Work that is on Track t, even if you are not sure what are the

types of w and t.

The block of Associations is also useful, when you want to see which sections

of code are using certain data structures. For example, if looking for the

ManyToMany relation between Track and Performer, simply search the code

for “playedBy”.

Reduced complexity increases the size of the problem you can keep in your mind

with all its details, without keeping written records and pictures to guide you when

you revisit the program. This is the mode of operation when you are most efficient.

Once you reach the point when you don’t remember all the parts, the project

suddenly takes much more time, and the probability of making a mistake dramati-

cally increases.

When working in a team, a clear communication is essential and, again, the

block of Association statements is invaluable: it instantly clears any possible

confusion related to the data organization.

3.4.2 Leaving More Work to the Compiler

All the data structures in the new libraries are strictly typed, so mistakes such as

placing objects into a wrong data structure are caught by the compiler.36 For example,

Composer *c; Track *t;

performers.add(t,c); //compiler error

You can also change, remove or add data structure without analyzing your

old code, and the compiler will tell you precisely which lines will need a

modification.

36 For InCode, this is true not only in C++, but also in Java and Objective-C.

3.4 Complexity and Errors 149

The Association statements in Listing 3.16 describe the Library of popular music,

where eachWork is really a song that is always recorded as a CD track. Let’s assume

that we already have a program running with this data organization, and we want to

expand it so it would also support recordings of classical music, where a Work is a

composition which usually has several Parts (movements) that are recorded on

separate tracks. A CD may have tracks with only some Parts of the Work.

So in Listing 3.16, we replace

Association Aggregate<Work,Track> tracksOn;

by

Association Aggregate<Work,Part> parts;

Association Aggregate<Part,Track> onTracks;

Without even looking at the code, you attempt to compile, and the compiler tells

you about all places where tracksOn was used and which have to be redesigned

manually. The new data organizations parts and onTrack will pass the compilation.

They are now empty, and you will likely need them when redesigning the places

that compiler picked up.

When replacing an organization it is always safer to use different names, as we

did here with tracksOn and onTrack. However, even if we used the same name,
onTrack, the compiler would produce the same errors because of the type

differences: <Work,Track> in the original source and <Part,Track> in the new

version. For example the original source

onTrack::add(w,t);

would not compile in the new version because w is not (Part*).

3.4.3 Preventing and Catching Runtime Errors

Pointer (or reference) errors are a potential source of treacherous errors, and we

have eliminated all pointer members from the application. These pointers are in

libraries that were carefully designed and extensively tested. All pointer chains in

our libraries are coded as rings, and the basic rule is that unused pointers are

always NULL.

Therefore if an object has a pointer-member which is not NULL, it indicates that

the object is connected in some data structure. That provides a protection in two

situations:

1. If an object is already in a pointer chain, you cannot move it by mistake to

another chain. For example

150 3 Data Structures, Patterns, and UML

Association Aggregate<A,B> aggr;

A *a1,*a2; B *b;

. . .

aggr.add(a1,b);

aggr.add(a2,b); // error message, will not execute

If you really want to move the object, you have to disconnect it from the old

chain and then add it to the new one:

aggr.add(a1,b);

aggr.del(b); // dow not need del(a1,b),aggregate knows parent

addr.add(a2,b);

2. An object cannot be destroyed until it is completely disconnected

aggr.add(a1,b);

delete b; // error message

In this case the program may still crash later, but you will know exactly where

and which pointer (and organization) was the culprit.

A better solution would be to prevent the destruction and continue in the

program run. Unfortunately, once you are in the destructor, you cannot prevent

the destruction. Or can you?

We could throw an exception, but then making a try{ } block around every
delete call would make an ugly code. However, if we hide all this in a macro, we

can use safeDelete(b); instead delete b; for any class; see Listing 3.17.

But wait a minute! If we are replacing delete by another call, wouldn’t this be

simpler:

class Book {

Book *next;

public:

Book(){next=NULL;}

void safeDelete(){if(next!=NULL)delete this

};

int main() {

Book *b=new Book;

b->safeDelete();

The difference is that using exception works for all classes, while method
safeDelete() has to be coded for every class.

3.4 Complexity and Errors 151

Listing 3.17 Bypassing destruction when object is not disconnected

#define safeDelete(x) \

try { \

delete x; \

} \

catch (BypassDestruction& bd){ \

printf("bypassed destruction\n"); \

}

class BypassDestruction {

};

class B;

class A {

public:

B *toB;

A(){toB=NULL;}

~A(){if(toB)throw BypassDestruction();}

};

class B {

public:

A *toA;

B(){toA=NULL;}

~B(){if(toA)throw BypassDestruction();}

};

int main(){

A *a=new A;

B *b=new B;

b->toA=a;

a->toB=b;

safeDelete(a);

safeDelete(b);

3.4.4 Interface: Less May Be More

In order to benefit fully from a data structure stored in a library, its interfaces must

be simple enough to remember without constantly searching the documentation.

For example, InCode and DOL libraries use a much shorter list of commands than

STL, where class list has more than a page of methods.37 Listing 3.18 shows the

methods of the InCode class comparable to stl::list.

37 Plauger PJ, Stepanov AA, Lee M, Musser DR (2000) The C++ standard template Library.

Prentice Hall, pp 290–292.

152 3 Data Structures, Patterns, and UML

Listing 3.18 DOL and InCode class similar to stl_list needs fewer methods

Child* tail(Parent *p); // get the tail of the list

Child* head(Parent *p); // get the head of the list

void addHead(Parent *p, Child *c); // add c as the head

void addTail(Parent *p, Child *c); // add c as tail

void append(Parent *p,Child *c1, Child *c2); // c2 after c1

void insert(Child *c1, Child *c2); // insert c2 before c1

void remove(Parent *p, Child *c); // remove c from the list

Child* next(Parent *p, Child *c); // returns NULL at the end

Child* prev(Parent *p, Child *c); // returns NULL at beginning

void sort(ZZsortFun cmpFun, Parent *p); // efficient merge sort

void merge(Child *s,Child *t,Parent *p); // merge two sublists

// special commands for ring control, infrequently used

Child* nextRing(Child *c); // wrap around at the end

Child* prevRing(Child *c); // wrap around beginning

void setTail(Parent* p,Child* c,int check); // set c as tail

plus there is an iterator which you use like this:

Association LinkedList2<A,B> myList;

A *ap; B *bp;

myList_Iterator mit;

. . .

mit.start(ap);

ITERATE(mit,bp){ // bp traverses B objects

. . .

}

mit.start(ap);

RETRACE(mit,bp){ // reverse traversal

. . .

}

The iterators are smart enough to permit removal and destruction of objects

while traversing the list without causing a crash or other malfunction.

3.4.5 True Rapid and Agile Development

With data structures designed in this style, you can start with skeleton classes and the

Association statements, and your “program” can already compile and run. You plan in

code. You evolve and experiment, and with every compilation you can print the new

UML class diagram. You can change, remove or add Associations statements, and the

compiler guides you as to what changes are needed. All this time you are working with

a safe, running code unless, of course, you make an error in your algorithms. There

should be no chasing of pointers, no mysterious low-level errors. It takes longer to clear

the compiler errors, but then the program runs solid.

3.4 Complexity and Errors 153

3.5 DB Schema and UML Class Diagram

When working with persistent objects you may treat your data structures as a

simple but highly efficient object-oriented database. And if you implemented the

data structures as we described it, then the block of Associations statements

becomes a schema of this database.

You can also look at the block of Associations from a different angle. Except for

the inheritance, it contains the same information as the UML class diagram. You

can consider this block as a textual form of the UML class diagram, and that leads to

interesting ideas.

Today, tools like Rational Rose allow one to create, in graphics, the UML class

diagram. Then a code generator creates a skeleton of classes and relations you

entered in graphics. If the libraries of data structures such as we recommend were

commonly used, the UML tool would not need a code generator—it could simply

generate the block of Association statements!

Another idea is whether it wouldn’t be better to have the UML class diagram

directly in the code, in a textual form, which would be an integral part of the code.

It would be easy and safe to introduce changes, and the diagram and the code would

not need any synchronization. It is also much faster to change a few words in the

block of the Association statements than to manipulate graphics on the screen. On

the other hand, most of us like a diagram when it comes to relations that form a

complex network. Note that the idea of entering the information in the textual form

is also used by Timothy Lethbridge in the programming environment called

UMPLE—see UMPLE (2012).

We prefer to use Association statements to enter and control the relations. At the

same time, perhaps with every compilation, we can automatically produce the UML

class diagram in a graphical form. This reverses the control flow. Until now, the UML

class diagram controlled the data organization. Now the data organization is controlled

by the Association statements, and the graphical diagram is demoted to a visual aid.

This arrangement has several advantages: fast and easy initial entry, easy

modifications, code and the diagram tightly synchronized, control of the data

organization directly in the code—independent of any outside tools.

All38 Code Farms libraries use a block of Association statements, each library

with a slightly different syntax, and they can invoke program called Layout, which
generates the UML class diagram.

38DOL, InCode, PTL and the PPF/InCode combination.

We are treating data structures as a memory-resident database, where the block

of Association statements works like a database schema. This block of

statements directly maps to/from the UML class diagram, and program called

Layout can read this schema and generate the UML diagram.

154 3 Data Structures, Patterns, and UML

For example, Association statements fromListing 3.19 create Fig. 3.8. Listing 3.19

is Listing 3.16 expanded for classical music. Also, in order to make the example more

interesting, we added two classes derived from class Work, Popular and Classical.

Listing 3.19 Example for UML class diagram

Association Collection<Library,CD> cds;

Association Collection<Library,Composer> composers;

Association Collection<Library,Performer> performers;

Association Aggregate<CD,Track> tracks;

Association Aggregate<Composer,Work> works;

Association Aggregate<Work,Part> parts;

Association Aggregate<Part,Track> onTracks;

Association ManyToMany<Track,Link,Performer> playedBy;

class Classical : public Work

class Popular : public Work

How does the Layout program work? In order to draw the diagram, all data

structures in the library must be registered in a special registry file, which was

described earlier in Fig. 3.4. For example, the data structures which we are using in

this example are listed with these codes:

u1-* LinkedList2 ¼ uni-directional 1 to many

b1-* Aggregate2 ¼ bi-directional 1 to many

R*2* 2XtoX ¼ bi-directional ManyToMany

In addition to the code required for the data structures and persistence, the code

generators of the Code Farms libraries39 combine the Association statements with the

registry file, add the information about inheritance and, as a byproduct, generate file

layout.inp, which is the input required for the Layout program; see Listing 3.20.

Fig. 3.8 UML class diagram generated automatically from Listing 3.19

39 InCode, DOL, and PTL.

3.5 DB Schema and UML Class Diagram 155

Listing 3.20 Input file for program Layout which generates the UML diagram on

the screen40

Inherits Popular Work ;

Inherits Classical Work ;

u1-* LinkedList2 Library CD cds ;

u1-* LinkedList2 Library Composer composers ;

u1-* LinkedList2 Library Performer performers ;

B1-* Aggregate2 CD Track tracks ;

B1-* Aggregate2 Composer Work works ;

B1-* Aggregate2 Work Part parts ;

B1-* Aggregate2 Part Track onTrack ;

R*2* M_TO_N Track Link Performer playedBy ;

Because C++ does not have reflection, the code generator must retrieve the

information about inheritance by searching through all the *.h files for the follow-

ing test pattern: “class something :” outside the scope of all (), [] and {} brackets,

and after removing comments and lines starting with #, which is straightforward

and fast.

The Layout program applies algorithms traditionally used in the design of silicon

circuits, which is mathematically a similar problem to the one we have here—boxes

connected with lines. However, we modified the original objective of the smallest

overall area and wires not crossing each other to getting a display which would be

pleasing to the human eye. The diagram must reflect the flow of the relations from

the root class which is automatically detected. The program first places the boxes in

rows, connecting each row before proceeding to the next row. Two labels are added

to each line: name of the organization (e.g. works) above the line, and the name of

the data structure (e.g. Aggregate2) below the line.

3.6 Intrusive Data Structures with Aspects

In 2007–2009, two workshops discussed how to implement associations as first

class entities:

1. OOPSLA 2007 in Montreal, workshop “Implementing Reusable Associations/

Relationships41”.

40 Certain permutations of rows in this listing may cause a crash of the Layout program. This is a

reported bug scheduled for repair.
41 Sometimes referred to by the former title “The Popularity Cycle of Graphical Tools, UML, and

Libraries of Associations.”

We have discussed data structures where pointers were inserted as members or

with inheritance, but we did not mention Aspects. The key idea behind Aspects

is a controlled insertion of code or members, and they can be used for the data

structure design we are exploring.

156 3 Data Structures, Patterns, and UML

2. ECOOP2009 in Genova, workshop “Relationships and Associations in Object-

Oriented Languages” (RAOOL’09).

About half of the papers in these workshops were based on Aspects.42

Aspects provide another language layer above Java or C++, with their own

compiler—AspectJ for Java programs, and AspectC++ for C++ programs.

An aspect is similar to a breakpoint in the debugger. It interrupts the program

run at chosen points, allows you to examine or change application data and call a

function, and then it returns to the program run. As in the debugger, no code is

added to the program. The definition of where to stop and what to do is written

on the side in a form resembling a class definition, and that is called aspect.
Unlike the debugger, the aspect does not stop when interrupting the program. It

executes the required actions and returns to the program run.

This type of aspect is called dynamic aspect, and its obvious application is a

debugging layer with many printouts and checks which may be invoked in a single

command but which are transparent to the ordinary user. There are also static
aspects, which modify the structural part of the program—they can add inheritance

or members to application classes.

In general, aspects can simplify programs with objects that combine several

independent concerns. For example, an Employee object may store information

about the employee, be persistent, and participate in an Aggregate between classes

Department and Employee. If the Aggregate is implemented as an aspect, the

participation of the Employee is completely transparent. The application code is

very similar to what we have been doing, but there isn’t even the ZZ_Employee ds

statement which we have used. In case you are not familiar with aspects, we will

analyze Listing 3.21 line by line, and explain how it works.

The overall approach is surprisingly similar to the PTL library described in

Sect. 3.2 (inserting pointers with inheritance) and, because aspects can insert

inheritance, this approach can also be used to implement a library of design patterns

as described in Sect. 3.3.

001: Aggregate is designed as an abstract aspect, because it does not have any

data, only methods that control the use of this association.

002–003: The data (references implementing the aggregate) is stored in classes

AggregateParent and AggregateChild just as we did before. Java does

not support multiple inheritance, but it supports multiple inheritance of

interfaces. This is critical—otherwise Employee could not participate in

more than one association.

004–005: If classesDepartment andEmployee forman aggregate, thenEmployeemust

inherit AggregateChild, and Department must inherit AggregateParent, just

as in Sect. 3.2.

006–008: Definition of references that form the Aggregate. This is the most tricky

part of the Aggregate design. From the syntax of these lines, one would

think that they insert head, next and parent into interfaces AggregateChild

and AggregateParent, and thus head, next and parent must be

42Aspect implementation for Java; different implementation for C++ is also available.

3.6 Intrusive Data Structures with Aspects 157

static—which is not what we need. However, these lines perform inter-type
member insertion,43 which inserts head, next and parent into the classes

which inherit from AggregateChild and AggregateParent, in this case into

classes Employee and Department. As a result, head, next and parent are

not static.

009–016: The code of method addHead () is as you would expect.

020–022: The same definition of Associations as we have been using.

023–024: Application coded in the style we have been recommending.

Listing 3.21 Implementing Aggregate with AspectJ (code obtained from the

Victoria University, New Zealand)44

// Aggregate itself is an aspect.

001 public abstract aspect Aggregate<Parent,Child> {

002 public static interface AggregateParent {}

003 public static interface AggregateChild {}

004 declare parents : Child implements AggregateChild;

005 declare parents : Parent implements AggregateParent;

006 private Child AggregateParent.head = null;

007 private Child AggregateChild.next = null;

008 private Parent AggregateChild.parent = null;

009 public static void addHead(Parent p, Child c) {

010 if(p.AggregateParent.head!=null){

011 c.AggregateChild.next=p.AggregateParent.head;

012 }

013 else c.AggregateChild.next=NULL;

014 c.AggregateChild.parent=p;

015 p.AggregateParent.head=c;

016 }

017 . . .

018 }

// Application using the Aggregate

019 public class Department {. . .}// same as if not using Aggregate

// Declaration of data structures, just like our Associations

020 aspect departments extends Aggregate<Company,Department> {};

021 aspect employees extends Aggregate<Department,Employee> {};

022 aspect boss extends OneToOne<Department,Employee> {};

// Using the Aggregate

023 Department d; Employee e;

024 employees.addHead(d,e);

43 http://www.eclipse.org/aspectj/doc/next/progguide/language-interType.html
44 Stephen Nelson, David J. Pearce and James Noble.

158 3 Data Structures, Patterns, and UML

http://www.eclipse.org/aspectj/doc/next/progguide/language-interType.html

The drawback of this code is that if the class Employee was a Child in two

Aggregates, for example

aspect employees extends Aggregate<Department,Employee> {};

aspect inUnion extends Aggregate<Union,Employee> {};

then Aggregate::addHead() would not know how to access each part. AggregateChild

and AggregateParent really should be generics just like Aggregate:

001 public abstract aspect Aggregate<Parent,Child> {

002 public static interface AggregateParent<Parent,Child> {}

003 public static interface AggregateChild<Parent,Child> {}

but this version has not been tested.

Nelson, Pearce and Noble developed a library (Nelson et al. 2007; Pearce

and Noble 2006) of generic associations with AspectJ, but it did not work in

some special cases due to the bugs in 2007 versions of AspectJ, and these

authors have not continued in this research since 2009. We also discussed with

Olaf Spinczyk (Spinczyk and Lohmann 2007), author of AspectC++, how to

implement Aggregate with AspectC++; see Listing 3.22, where AggregateChild,

AggregateParent and Aggregate are generic classes, not interfaces. Because

AspectC++ does not have inter-type insertion, the declaration of the Aggregate

aspect takes four lines, where the line advice—slice—. . . inserts the required

pointers into participating classes. However, we can hide these four lines under

a macro—see Listing 3.22, and then the invocation of the Aggregate is the same

as it was in AspectJ, or all the other libraries we have discussed throughout

Chap. 3

3.6 Intrusive Data Structures with Aspects 159

http://dx.doi.org/10.1007/978-3-642-39323-5_3

Listing 3.22 Aggregate implemented with AspectC++

// reusable part

//-----–----–----–---

template <typename Aggregation> class AggregateChild {

public:

typename Aggregation::Child *next;

typename Aggregation::Parent *parent;

AggregateChild () : next (0), parent (0) {}

};

template <typename Aggregation> class AggregateParent {

public:

typename Aggregation::Child *head;

AggregateParent () : head (0) {}

};

template <typename Aspect, typename _Parent, typename _Child> class

Aggregation {

public:

typedef _Parent Parent;

typedef _Child Child;

static void addHead (Parent *p, Child *c) {

typedef AggregateParent<Aspect> P;

typedef AggregateChild<Aspect> C;

if(p->P::head) c->C::next = p->P::head;

else c->C::next = 0;

c->C::parent = p;

p->P::head = c;

}

};

#define AGGREGATION(Name, Parent, Child) \

aspect Name : public Aggregation<Name, Parent, Child> { \

advice #Child : slice class : public AggregateChild<Name>; \

advice #Parent : slice class : public AggregateParent<Name>; \

}

// application specific part

/ -----–----–----–----–----–---

class Employee;

class Department;

class Union;

AGGREGATION(inDepartment, Department, Employee);

AGGREGATION(inUnion, Union, Employee);

class Employee {};

class Department {};

class Union {};

int main () {

Department *dp; Union *up; Employee *ep1,*ep2;

dp=new Department; up=new Union;

ep1=new Employee; ep2=new Employee;

. . .

inDepartment::addHead (dp,ep1);

inDepartment::addHead (dp,ep2);

inUnion::addHead (up, ep2);

}

160 3 Data Structures, Patterns, and UML

3.7 Conclusion

Aspects lead to the same simple use of associations as we obtained through other

methods, but we are not in favour of adding a complex programming layer just for

implementing associations. In our opinion, associations are part of the core pro-

gramming and we believe they should be supported from within that environment.

3.7 Conclusion 161

Advanced Features, Schema Migration 4

Abstract

Advanced features involve both persistence and data structures. Schema migra-

tion deals with changes of classes and their relations when storing data to disk.

Extensible property allows one to add class members without changing the class

declaration. We also discuss multi-user access to persistent data, ASLR and

storing objects in flash memories and smart phones.

Keywords

Schema • Migration • Extensible property • ASLR • Flash memory • Smart

phone • iPhone • ZZ_FORMAT • Multi-user • Networks • Aspects • AspectJ •

AspectC++

4.1 Schema Migration

Over several decades we have met customers from a great variety of

applications—coal mining, silicon circuits, telephone switches, networks and stock

exchange data—and the most typical customer was a programmer who brought a big,

totally messed up program and wanted to clean it up and add persistence to it. Why

didn’t they use the persistence right from the beginning? Because it had looked so

simple! They had thought they’d never need to store the data.

We have not seen real-life software that would not eventually require changes of

its classes and data structures. We see software design as a learning process, in

which the customer gradually learns what he or she wants, and the programmer

When classes and/or data structures in your application change—and

face it, all software eventually reaches this point—you still may want to

access the old data stored on disk before the change was introduced. This

chapter discusses how to tackle this difficult task.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_4, # Springer-Verlag Berlin Heidelberg 2014

163

gradually grasps the essence of the problem until, usually after some experimenta-

tion, a suitable solution is found.

Whether you are developing a new program or supporting software already used

by numerous customers, it is most annoying if you have to change the existing

classes and/or data structures and all the storage files suddenly become unusable.

We have already said that the block of Association statements is an equivalent

of the database schema. It describes the entire data organization1 and the data

structures from which it is composed. When working with persistent data we face

the same problem database designers do: we need to handle, as transparently and

automatically as possible, the changes in the schema, and this is called schema
migration.

Association statements not only describe the data structures; they also give us the

participating classes. However, data structures are not the complete schema. Inheri-

tance and individual members of the classes may also change, be added or removed.

Let’s follow an example of how DOL ASCII serialization does it. The key for the

entire process is that the persistence is integrated with the data structure library. The

library provides the information about all the pointers it uses—their names, types and

locations—the same information other languages provide through reflection.

DOL ASCII serialization does not write out this information for every pointer as

does Java serialization. Instead, it writes the description of all the classes at the

beginning of the file, and when writing an object, it refers to its class by an index,

followed by the values of all members including the pointers. When reading

pointers from the file, only pointers with matching name and type move into the

target object—see Fig. 4.1. All this happens during the reading process, before

swizzling the pointers, and is probably similar to what happens inside Java seriali-

zation. As in Java, DOL does this totally transparently and automatically.

Storage and retrieval of members which are integers, floats or characters is

controlled by the ZZ_FORMAT statements—see Listing 4.1. This format controls

both the read and write functions, so if the classes do not change, the match is

always guaranteed.

When some classes change, and some of their members are new or missing, you

use the old ZZ_FORMAT to read the old data in the ASCII mode, and then save it in

the DOL binary mode which saves entire objects without breaking them into

individual members.2 After that, you can open the data in the binary format and

save them with a new ZZ_FORMAT, which reflects the updated situation.

The disk record of old object from Fig. 4.1 may look like this:
11 340100 1 6 ¼ class A, addr. 340100, 1 object, 6 pointers
3205688 4084300 0 3695724 3205636 3302004 ¼ all pointers
18.99 6138362327 ¼ cost, phone

1 Sometimes the term framework is used for this.
2 In this, DOL binary mode is different from Java or C/# binary modes, which do break objects into

their members as in their ASCII/XML modes.

164 4 Advanced Features, Schema Migration

Listing 4.1 shows a problem with three simple classes participating in several

data structures, using DOL syntax.

Listing 4.1 Original data organization

class Library {
ZZ_EXT_Library;

};
ZZ_FORMAT(Library,””);
class Book {

ZZ_EXT_Book;
int pages;
float cost;

};
ZZ_FORMAT(Book,”%d %f”,pages,cost);
class Author {

ZZ_EXT_Author;
};
ZZ_FORMAT(Author,””);

// see note(3) about the syntax of these statements
typedef LinkList<Library,Book> books;
typedef LinkList<Library,Author> authors;
typedef singleLink<Book,Author> toAuthor; // equivalent of pointer
typedef Name<Book> bookName;
typedef Name<Author> authName;

The website version of Listing 4.1 creates some test data and stores them in the

ASCII mode in file1—see bk\chap4\list4_1.cpp and rr1.bat.

new schema

class A
A *next;
F *parent;
D *dPar;
E *clone;
G *last;
B *first;
C *name;
float cost;
int phone;
int year;

old object

3205688
4084300 x

0 x
3695724
3205636
3302004

new object

3205688
0 x

3205636
0 x

3302004
0 x

3695724

old schema

class A
A *next;
B *parent;
A *prev;
C *name;
D *dPar;
E *clone;
float cost;
int ID;
int phone;

Index of old classes: A=11, B=12, C=13, D=14, E=15, F=16
ZZ_FORMAT(A,”%5.2f %d,cost,phone”);

Fig. 4.1 Schema migration in DOL—reading pointers. Pointers marked with x did not find a match

3 For the definition of the associations on the next few lines, we use syntax compatible with the

previous text; it is slightly different from the DOL syntax on the book website.

4.1 Schema Migration 165

We want to make serious changes to this design:

• Remove pages from Book.

• Replace4 LinkList books by Hash allBooks.
• Add phone number to the Author.

• Add a new class Publication, and derive Book from it.

• Add LinkList<Library,Publication>.

This is a bigger change than most of us would trust a computer to handle

automatically. Listing 4.2 shows the original design with marked up changes.

Listing 4.2 Intermediate data organization includes all additions, but uses the old

ZZ_FORMAT statements

class Library {
ZZ_EXT_Library;

};
ZZ_FORMAT(Library,””);
class Publication { // introducing new class

ZZ_EXT_Publication;
public:

int year; // new member
};
ZZ_FORMAT(Publication,”%d,year”);

class Book : public Publication { // adding inheritance
ZZ_EXT_Book;
int pages; // remove it
float cost;

};
ZZ_FORMAT(Book,”%d %f”,pages,cost);
class Author {

ZZ_EXT_Author;
int phone; // new member

};
ZZ_FORMAT(Author,””);

typedef LinkList<Library,Book> books; // remove it
typedef LinkList<Library,Publication> publications; // remove it
typedef Hash<Library,Book> allBooks; // add this
typedef LinkList<Library,Author> authors;
typedef singleLink<Book,Author> toAuthor;
typedef Name<Book> bookName;
typedef Name<Author> authName;

With DOL, you convert the old file in three simple steps:

1. Expand your source with all the features you want to add but, temporarily, still

retain the features you eventually want to remove. Open the data in the ASCII

4 Replacing something by something else while keeping the same name creates potential problems.

When using DOL you must remove the old organization (here LinkList books) and add a new

association with a new name (Hash allBooks).

166 4 Advanced Features, Schema Migration

format, using the old ZZ_FORMAT, then save them in the binary5 format

(bk\chap4\list4_2.cpp, rr.bat).

2. Open the data in binary and save them in ASCII using the new ZZ_FORMAT

statements (bk\chap4\list4_3.cpp, rr3.bat).

3. Remove the features you do not want, and open in ASCII using the new

ZZ_FORMAT statements. Both data and your source have been converted;

you can save the data in any format you want (bk\chap4\list4-4.cpp, rr4.bat).

IMPORTANT:

In steps 1 and 2 you have in memory both the old and the new data organizations,

but the new one is still unused and empty. This allows you to add a custom

conversion which cannot be done automatically. For example, in this case you

can traverse the old LinkList, and load the same objects to the Hash table. Here is

the snippet from the online file Listing4_2.cpp:

Library *lib; Book *bk;
books_iterator bit;

// transfer LinkList to Hash
allBooks.form(lib,100); // form hash table with 100 buckets
bit.start(lib);
ITERATE(bit,bk){

allBooks.add(lib,bk); // add bk to Hash
books.del(lib,bk); // remove it from LinkList

}

For the online version of the entire conversion sequence, look at listings

\list4_1_4\readme.txt and the source files in the same directory.

It is much harder to implement schema migration while storing binary images of

objects, as in file mapping or persistent pointers. From all the systems discussed in this

book, ObjectStore (c) PSE Pro for C++ is the only memory mapping system that does

this. All systems thatwe know that support schemamigration are based on serialization.

The penalty PSE is paying for this feature is the use of a code generator.

4.2 Extensible Property

This is a simple but most useful data structure which allows to expand

your classes without even recompiling the code or changing the format of

the disk storage. It is also useful for efficient storage of sparse data.

5We have to do this because, in DOL, classes cannot have more than one ZZ_FORMAT in one run.

4.2 Extensible Property 167

It is most interesting that something so useful as Extensible Property (EP) isn’t

more popular. It deserves to be in any class library.

It is most interesting that something so useful as Extensible Property (EP) isn’t

more popular. It deserves to be in any class library.

When evolving a project, the data structures usually stabilize fairly fast. How-

ever, as programmers keep adding logic, they need to add members which store

various values, flags and names. Unless you use serialization for storing the data,

any new member makes the old disk files invalid.

EP is a perfect tool to circumvent this problem. For the cost of a single pointer

you can add any number of labelled values that act like additional members without

making the old disk file invalid. These values are added to an object, not to its class,

and for sparsely used values adding this pointer actually saves memory. DOL

library provides such EP as a data structure called Property—see Fig. 4.2.

If you add such a Property to every class, developing a project is much smoother

and better organized. Individual programmers can add values to any class without

affecting other team members. The data structures do not change, the software does

not have to be recompiled and old disk files are still valid. The only disadvantage is

that using a property value is not as efficient as using a true member, but that does not

matter much when you are still evolving the code. Once in a while you pause the

development and change these values from properties to members, recompile, convert

the disk file and continue evolving the software while possibly adding new properties.

For example, in Sect. 4.1, class Book had two members—int pages, and float

cost. If we invoke Property on this class by

typedef Property<Book> prop;

it creates one NULL pointer on each Book. Then for those books that have an ISBN

number, you may add it as property named “ISBN”:

object

1 pointer 3 pointers

name

value

EPheader

3 pointers

name

arrayHeader=ptr+sz

EPheader

value

value

value

0

Fig. 4.2 Implementation of the extensible property. Value can be int, float, char or an array

of these

168 4 Advanced Features, Schema Migration

Book *bk; int inp=321699947;
bk->prop.setProp(“int”,”ISBN”,&inp,1);

and when you want to retrieve the ISBN number, you call

int isbn,size,*ip; char *type;
ip=(int*)bk->prop.getProp(”ISBN”,&type,&size);
isbn= *ip;

Besides the value of ISBN, getProp() also returns type and size, which tells you

whether it is an array and how large it is.

Then later, when someone needs to store number of pages for each chapter with

different number of chapters in each book, you can enter it under name chapPages

Book *bk;inp pages[]={30,55,15,7};
bk->prop.setProp(“int”,”chapPages”,pages,4);

It is intentional, that DOL Property cannot store pointers. Application should not

handle raw pointers; all pointers should be introduced through library data structures.

The fact that named properties are added to objects, not to the class, means that if

only a few objects need to store additional information, we do not have to enlarge

all objects of their class. In other words, Property is useful not only as a temporary

storage for future members, but also as a permanent storage for sparse information.

4.3 Multi-user Access, Data over Networks

The persistent data as defined at the beginning of this book do not include multi-

user access. Their primary purpose is to store internal data to disk in such a way that

you can re-activate the data in the next run. However, once you have such persistent

data you can do many things with them.

The persistent data as defined at the beginning of this book do not include multi-

user access. Their primary purpose is to store internal data to disk in such a way that

you can re-activate the data in the next run. However, once you have such persistent

data you can do many things with them.

For example, assume that you have a program for star gazing, which has the data

about the positions of all stars and planets, and the program displays the view you

should have depending on your date, time, latitude and longitude. Anybody on the

same computer, or even on the Internet, can get a copy of the file in which you saved

the data, and run the same program to display his or her own view of the sky. For

this purpose, the file acts as a read-only database. It is not even necessary that

Persistent objects discussed in this book are not required to support these

advanced features, but some of the products can support them to a degree.

This chapter provides a brief review.

4.3 Multi-user Access, Data over Networks 169

everybody would run the same program. For example, the same data file could be

used for celestial navigation.

To expand this further, the applications using the same data do not even need

identical classes and association. It is enough, if they share the classes and

associations which are on the file, and the additional classes and associations satisfy

one of the following two conditions:

1. They are temporary and are not to be stored.

2. They are linked to the common classes by a few links that can be temporarily

disconnected, allowing one to store the additional classes and associations in a

separate file.

We have used this model successfully on CAD systems for the design of silicon

chips. The common data held the basic data about components such as transistors,

wires, layers, and contact windows that connect these layer, and this data were

shared by all the subprojects: graphical display, interactive layout, automatic

layout, rule checking and simulation.

The usability of this model is influenced by the type of persistence. When the

serialization is used,6 the program which generates the common file creates it in a

short burst, and after that anybody can use it. With persistence based on file

mapping or persistent pointers, the program keeps changing the file continuously

during its run, and nobody can take a copy of the file until the first run stops.

There is nothing that prevents you from sending the file with persistent data over

a network, and we often do that between us—one of us being in Canada and the

other in the Czech Republic, and only when sending files over a network do you

fully appreciate the importance of the small data footprint. If you are not careful,

data from a mass spectrometer can easily overflow the 32-bit address space.

When both the sender and the receiver use the same operating system and

compiler, any style of persistence works. When moving data files between different

environments, ASCII or XML data are the choice. Generally there is no problem

with transferring data from a 32-bit to a 64-bit architecture, but the reverse transfer

runs into the problem with numbers, usually pointers, that are too large to read into

one 32-bit word.

4.4 Address Space Layout Randomization (ASLR)

Some persistent systems provide their own memory allocation, and it is

important to understand whether this could interfere with ASLR which is

performed by all modern operating systems.

6Memory blasting also falls into this category.

170 4 Advanced Features, Schema Migration

The purpose of ASLR is to improve the security of the computer system against

hackers and viruses. When executing a program, we need three sets of virtual

memory pages: one set for the executable, one for the stack which stores frames

of temporary variables of individual functions and one for the heap which keeps the

dynamically allocated data. Each thread gets its stack, but there is only one heap per

application.

Typical attacks use one of the following strategies:

1. If the location of the sensitive part of the executable or data is known, they try to

alter those locations.

2. They randomly alter many memory locations, hoping that it will hit some

sensitive spot.

Strategy 1 aims directly at the destruction of the system. Strategy 2 will most

likely crash the run, with a low probability of causing a serious harm.

Without going into detail of how the memory is assigned, the obvious defence

against strategy 1 is, with each program load, to use different (random) memory

locations both for the executable and the data.

The defence against strategy 2 is not to load executables and data in clusters near

a specific location but randomly within the given space. Neither defence is 100 %

proof, but they significantly decrease the probability of the random attack hitting a

sensitive spot.

ASLR typically generates new space distribution for each load. For example,

ARL, the Apple version of ASLR, is performed7:

– Per execution: for executable, data, heap, stack, linker.

– Per boot: for libraries.

As long as the data location does not change while the program is running,

ASLR should not affect persistence with only one minor performance exception:

methods based on memory paging (POST++, ObjectStore (c) PSE Pro) may attempt

to load the data to its original location and bypass pointer swizzling, and ASLR will

not allow that. However, this is only a matter of occasional performance boost. Our

experience with testing POST++ is Windows 7 and Vista which have ASLR but

often do not accept the requested location, while Windows XP which does not have

ASLR usually accepts it.

There seems to be a similarity between ASLR and persistence. In both cases

we have blocks of numbers where some numbers are references to other

numbers within the block. In the case of data these references are pointers; in

the case of executable the references are either jumps or address locations.

7 Under iOS 4.3 when compiled with PIE; see Zino (2012).

4.4 Address Space Layout Randomization (ASLR) 171

We are not experts on ASLR, but this similarity may be worth exploring.

Perhaps using a bitmap8 for these references could make relocation of the execut-

able so fast that it could potentially be done in a brief interruption while a program

is running. On the other hand, perhaps, some of the ASLR techniques may be

applicable to the implementation of persistence.

4.5 Flash Memories, Smart Phones

Flash memories are storage devices which, due to their construction, have a

peculiar behaviour. Information can be stored/restored very fast, but it cannot be

overwritten. In order to write into an already filled location the content has first to

be erased (zero-filled), but memory can be erased only in large blocks and not in

individual bits, bytes or even single objects.

Flash memories are now used to store files and persistent data in mobile phones,

handheld computers, digital cameras, portable music players and many other devices.

The speed of USB 2.0 flash drives commonly used today is, according to the

specification,9 up to 35 MB/s. This is the speed of the network; the storage device is

much faster. The USB speed limit hides the fact that reading flash memory is faster

than writing to it—something that may be important in applications such as smart

phones.

Typical flash memory includes a memory management software which allows

the user to work with it as if it were another hard drive. The prime purpose of the

USB flash drive is to store files, and the software is optimized for this purpose.

Another technical peculiarity of flash drives is that a location may be overwritten

only a certain number of times, after which it wears out and becomes unreliable.

The software which manages the flash memory must minimize the number of

erasures and the level of wear. For more on this see Gal and Toledo (2005),

Ku (2011), and Riley (2012).

The failure of a typical flash drive may happen after writing between 10,000 and

1,000,000 times into the same locations, which poses no danger if you only store

songs or your MS Word files of your manuscript, but it may become a problem if

8 Such as described in Sect. 2.2.1.
9 http://en.wikipedia.org/wiki/Universal_Serial_Bus#USB_2.0_.28High_Speed.29

Persistent objects are of special interest for small devices such as smart phones or

video cameras that require high speed processing and for which using a database

would be an overkill. Compared to hard drives from desktop computers, flash

drives used in these devices have different characteristics that are important

when working with persistent objects.

172 4 Advanced Features, Schema Migration

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec21_4
http://en.wikipedia.org/wiki/Universal_Serial_Bus#USB_2.0_.28High_Speed.29

you attempt to use the flash drive as a secondary storage device for a miniature

computer system such as a smart phone.

Clearly, all the persistent systems which we discuss in this book can store their

data on a flash drive as if it were a hard disk. However, papers (Saxena et al. 2012;

Shasha and Toledo 2007) describe persistent systems that keep data structures on a

flash drive and move them, on a transactional basis, to memory. Such systems allow

a recovery in case of a crash or a sudden shutdown of the device, but their

implementation is quite complicated because their main concern is to avoid

repeated modifications of the same flash drive location.

We think that a more practical alternative would be to use one of the persistent

systems described in Chap. 2 and save the entire data space periodically, for

example any time the user interacts with the system. DOL memory blasting

saves 80 MB of highly structured data to a standard hard drive in 630 ms,10 or

8 MB in 63 ms—fast enough not to affect a typical application.

For example, when considering such alternatives for developing iPhone

applications, it would be useful to know their data-space limit and the internal

speed of sequential writing to SSD, but this information is not available.

A Web search produced this quote11: It’s very difficult to give hard numbers
because Apple knows and isn’t telling. If your app uses say under 10 MB you are
probably OK. If it hits 20 MB it could be a problem. I worked with a memory leak in
an app lately and it was killed only when it reached somewhere over 40 MB.

As a rough guess for the speed of the SSD storage, we can take a big commercial

drive, for example Plextor PX-256M5P,12 with speed of sequential read 520 MB/s

and sequential write 442 MB/s.

Considering these numbers, storing the entire data structure used in an iPhone

application should be well under 0.1 s. Pointer swizzling is always done when

opening the data, thus saving data is relatively fast. Repeated storage of the entire

space without potential for a corruption in the incremental saving would provide an

ultimate safety, especially when data stored at a few recent time points would

provide additional backups.

Let’s look at how suitable are the various persistent systems for saving the

program data space repeatedly, each time to a different disk location:

– All serialization including DOL binary and DOL ASCII convert internal data to

some special format, and write it to disk, object by object. For every object there

is additional information, at least the object type and size.

10 These numbers come from the benchmark in Chap. 7, Table 7.4.
11 http://iphonedevsdk.com/forum/iphone-sdk-development/6606-limit-on-ram-usage.html
12 http://www.techradar.com/news/computing-components/storage/best-ssd-10-of-the-top-ssds-on-

test-994095

4.5 Flash Memories, Smart Phones 173

http://dx.doi.org/10.1007/978-3-642-39323-5_2
http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_7#Tab4_7
http://iphonedevsdk.com/forum/iphone-sdk-development/6606-limit-on-ram-usage.html
http://www.techradar.com/news/computing-components/storage/best-ssd-10-of-the-top-ssds-on-test-994095
http://www.techradar.com/news/computing-components/storage/best-ssd-10-of-the-top-ssds-on-test-994095

– DOL mb writes the data space with the bitmap (overhead of 1/32 of the data) as a

block of bytes, straight to disk.

– SQLite moves constantly between the external storage and memory; it is not

suitable for this type of storage.

– QSP reduces the data space to one page and writes it to the external storage,

which is very fast. If the page size exceeds the data-space limit, the speed of

saving should be comparable to DOL mb - still fast enough for this purpose.

– The systems based on memory paging (PPF, POST++, QSP, PSE) would have to

run in a mode, in which all the data space would be in memory. QSP always

fulfills this condition. In PPF, we have control over the page size and over the

number of pages in memory, so this is not a problem. We believe that PSE has

controls that can do this, but we are not sure about POST++ which uses the page

size 512 - a fixed value derived from the size of the system pages.

174 4 Advanced Features, Schema Migration

Languages, Their Features and Limitations 5

Abstract

The implementation of persistence and class libraries depends on features

provided by the programming language. Even though C, C++, C#, Objective-

C and Java are quite similar in many aspects, they are significantly different in

what they allow us to do about persistence and class libraries.

Keywords

Laguages • Persistence • Limitation • C • C++ • C# • Objective-C • Java

Figure 5.1 sums up the features required for the basic styles of persistent objects:

A: When saving object-by-object, we can use normal allocation, but when

saving entire blocks of memory, we have to replace the allocator.

B: Regardless of how we save the objects, we need to know the locations of all

pointers.

C: When saving object-by-object, we need to know the type (the class) of the

target object. Without this information, the algorithm could not collect all objects

by following the pointers.

D: Members other than pointers are needed only when saving in the

ASCII mode.

The first four chapters explored various approaches to implementing

persistent objects and bi-directional associations, including tricks that make

the persistence more efficient and make it easy to use. This chapter looks

at individual languages and their features that may help to develop such

systems.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_5, # Springer-Verlag Berlin Heidelberg 2014

175

E: When collecting all objects by traversing the pointer links, we need virtual

functions that detect the true type of each object. When saving blocks of memory,

inheritance is transparent (irrelevant).

F: The library of intrusive associations requires coordinated insertions into

participating classes, regardless of how the data is stored to disk.

5.1 Plain Old C Language

The first version of DOL was released in 1989, and it worked only in C. It

included a library of intrusive associations such as described in Chap. 3 Today,

DOL supports persistent C++ objects, but most of its internal design is still the

original C code. Code Farms does not support the C version any more; if you

wanted to use it, you would have to back several years to some earlier version. The

new InCode library uses the same data structures with only improved parameteriza-

tion and avoiding macros. The main difference from C++ is that we work with

structures, not classes, and the generic functions which control the data structures

are macros parametrized by the association ID, not class methods.

Figure 5.2 shows the information (chequered boxes) that cannot be obtained

automatically, and must somehow be entered by the user. In C we do not have to

worry about inheritance and virtual functions, there is no problem with writing our

own allocator and we can insert members with macros. If we plan to implement

persistence based on a block of memory, all we need are the pointer locations. Binary

serialization also needs the type of target objects, and for ASCII serialization we need

information about all the members, not just for the pointers. DOL provides all three

types of persistence, and you can switch between them within one program run.

pointer
loca�on

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D E
F

special
allocator

A

B
C

Fig. 5.1 Features required for the basic three types of persistency

This section describes the internal design of Data Object Library (DOL). This

library is a proof that we can implement a full fledged persistence in plain C, but

we have to be smart about it and use a code generator with a lot of macros.

176 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_2

OVERALL CONCEPT

DOL comes with an extensive library of generic intrusive data structures, and its

persistence assumes the strategy which we still recommend and which was described

in Chap. 3, namely that application classes have no pointer members; if there are any

pointers that are a part of a data structure, they are transparently inserted by the library.

The generic library classes are implemented with macros, and, besides the types

of participating classes, they are also parameterized by the data structure ID.

For example, if you declare1

ZZ_ORG_SINGLE_AGGREGATE(books,Library,Book);

and then use it like this

struct Library *lib;

struct Book *bk;
. . .

ZZ_ADD(books,lib,bk);\

Note that the parameters are not only Library and Book, but also books.

the parameters are not only Faculty and Student, but also students.

The code generator called zzprep creates short segments of code that pull it all

together. This preprocessor creates additional code. It does not modify the applica-

tion code, so you use a debugger as usual.

When you program with DOL, you do not have to identify pointers because there

are none in the application classes, at least not explicitly. Pointers are controlled by the

library, and they were identified and described when the class was added to the library.

pointer
loca�ons

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D
N/A F

allocate

A

B
C

Fig. 5.2 In C, we do not need virtual functions, but pointer locations and target class are more

difficult to obtain. Checkered information must be provided by the user; it cannot be obtained

automatically. However, areas B and C are needed only when you are constructing the library.

When you program with DOL, only D must be supplied by the user. Information from checkered

boxes cannot be obtained automatically

1 This corresponds to the syntax we have been using in this book: Association SingleAggregate

<Library,Book> books; Note that DOL includes the directory “test” with many programs that test

all the features of this library. Tests that use ZZ_ORG_¼ are the C tests; C++ tests use

ZZ_HYPER_¼ instead. For example, test0a.c is a C test.

5.1 Plain Old C Language 177

http://dx.doi.org/10.1007/978-3-642-39323-5_3

Most users may never create new library classes. Because that is done only once,

such registration of data structure and its pointers does not have to be particularly

efficient or elegant. DOL The library keeps a master2 file, where all the data

structures (associations) and their pointers must be manually registered.

Listing 5.1 shows a section of this file, and what we have to do to register new

data structure SINGLE_AGGREGATE, which works with pointers from 4 to 6:

they are ZZp (from child to parent), ZZt (tail of the children ring) and ZZs (from

child to its next sibling). In the C version of DOL, associations or data structures are

called “organizations”.

The last section3 of the Listing 5.1 records methods of each association and the

file where their source is stored.

Listing 5.1 Adding SINGLE_AGGREGATE to the master file where associations

DOUBLE_LINK and DOUBLE_RING are already recorded

ZZorganization {

0 DOUBLE_LINK 0 1

1 DOUBLE_RING 2 3

2 SINGLE_AGGREGATE 4 6

}

/* ind usedOn pointTo type ptrName, type=a means a pointer */

ZZpointer {

0 0 2 a ZZf /* forward link */

1 0 1 a ZZr /* reverse link */

2 1 2 a ZZf /* forward ring */

3 1 1 a ZZb /* reverse ring */

4 2 1 a ZZp /* parent aggregate */

5 1 2 a ZZt /* tail aggregate */

6 2 2 a ZZs /* sibling aggregate */

}

/* function organization fileName */

ZZfunction {
add 0 adddlink

del 0 deldlink

fwd 0 fwddlink

rev 0 revdlink

addTail 1 addtdrin

next 1 nextdrin

prev 1 prevdrin

. . .

addTail 2 addtsagg

next 2 nextsagg

parent 2 parsagg

. . .
}

2 In DOL, it is file macro/zzmaster.
3 This section shows the concept, not the exact format.

178 5 Languages, Their Features and Limitations

For example, when the code generator reads these definition of these associations

ZZ_ORG_SINGLE_AGGREGATE(books,Library,Book);

ZZ_ORG_SINGLE_AGGREGATE(published,Author,Book);

it retrieves the names of all the structures and it gives them an index: 0 ¼ Library,

1 ¼ Book and 2 ¼ Author. It also combines this information with the master file,
makes a list of pointers that have to be inserted into these structures and creates file

zzincl.h with ZZ_EXT_.. macros that insert the required pointers:

#define ZZ_EXT_Library \

Book *_books_ZZt

#define ZZ_EXT_Book \

Library *_books_ZZp; \

Book *_books_ZZs; \

Author *_published_ZZp;\

Book *_published_ZZs

#define ZZ_EXT_Author \

Book *_published_ZZt

Note that this arrangement always positions all the pointers at the beginning

of the object. When swizzling them or writing them to disk, we do not need a

bitmap to identify their locations—we only need to know how many pointers

we have at the beginning of the object.

5.1 Plain Old C Language 179

The following code is an example of using DOL in a C application:

#include “zzincl.h” /* generated by the code generator */

struct Library {

ZZ_EXT_Library;

. . . other members as usual

};

struct Author {

ZZ_EXT_Author;

. . . other members as usual

};

struct Book {

ZZ_EXT_Book;

. . . other members as usual

};

ZZ_ORG_SINGLE_AGGREGATE(books,Library,Book);

ZZ_ORG_SINGLE_AGGREGATE(published,Author,Book);

int main(){

Library *lib; Author *auth; Book *bk1,*bk2;
ZZ_PLAIN_ALLOC(Library,1,lib);

ZZ_PLAIN_ALLOC(Book,1,bk1);

ZZ_PLAIN_ALLOC(Book,1,bk2);

ZZ_PLAIN_ALLOC(Author,1,auth);

ZZ_ADD(books,lib,bk1);

ZZ_ADD(books,lib,bk2);

ZZ_ADD(published,auth,bk1);

. . .

}

#include “zzfunc.c” /* generated by the code generator */

where ZZ_PLAIN_ALLOC (T, 1, p) is the C equivalent of p=new T() in C++,

ZZ_PLAIN_ALLOC(T, n, p) is the C equivalent of p=new T[n] in C++,

ZZ_ADD(org, p1, p2) is the C equivalent of org.add (p1, p2) in C++.

The code generator prepared the definitions of macros ZZ_PLAIN_ALLOC and

ZZ_ADD so that they are readily available through the include file, zzincl.h. The

internal implementation is rather complex, but the following code samples show the

general idea how it all works. In order to understand the concatenations (##), look

above for the example of ZZ_EXT_.. statements:

180 5 Languages, Their Features and Limitations

/* macro from the library */

#define ZZ_PLAIN_ALLOC(TYPE,N,PTR) \

PTR=(TYPE*)calloc(sizeof(TYPE),N);

/* line generated specifically for this project */

#define ZZ_ADD_books ZZ_ADD_SINGLE_AGGREGATE

/* prepared by the code generator, ## concatenates */

#define ZZ_ADD(ID,PAR,CHI) \

ZZ_ADD##ID(ID,PAR,CHI,_##ID##_ZZp,_##ID##_ZZt, _##ID$$_ZZs)

/* macro from the library, parent and child */

#define ZZ_ADD_SINGLE_TRIANGLE(id,par,chi, \

parent,tail,sibling) \

if((chi)->parent!=NULL || (chi)->sibling!=NULL){\

. . . error exit or do nothing

}\

else {\

if((par)->tail==NULL){\

(par)->tail=(chi);\

(chi)->parent=(par);\

(chi)->sibling=(chi);\

}\

else {\

(chi)->sibling=((par)->tail)->sibling;\

((par)->tail)->sibling=(chi);\

(chi)->parent=(par);\

}\

}\

}

We do not need to know any details about other members (see box E in Fig. 5.2)

if we want to run an ASCII serialization. We only need to know how to write and

read back these members from the disk.

For that DOL has an elegant solution. For each class the user has to supply a

ZZ_FORMAT statement. For example:

class Book {

ZZ_EXT_Book

int ISBN;

float cost;

};

ZZ_FORMAT(Book,"%d %6.2f,ISBN,cost");

This statement contains enough information for the code generator to create the

write and read functions that will always match, yet it has the flexibility to handle

any interpretation of numbers and text.

5.1 Plain Old C Language 181

5.2 C++ Language

Over the past 2 decades, most of the work on persistency was done in C++, and

the history details of all these projects are interesting. Under the name of Organized

C (orgc), DOL has been commercially distributed since 1989. Pointer swizzling at

the page fault was first proposed byWilson (1990). Singhal et al. (1992) reported on

a university project called Texas, to which we could not find any references after

2000. Soukup (1994)4 introduced memory blasting. Free5 software (Knizhnik,

POST++, 1999) is available for download. The Boost persistence was designed

during 2002–2004 without its author being aware of the Code Farms libraries

(DOL, PPF, InCode). Figure 5.4 shows the time progress of these projects.6

File mapping has been used in the ObjectStore line of products since the

inception of the company as described in Lamb et al. (1991). Recently, Zikari

(2010) confirmed the company still uses the same methodology. When using

ObjectStore (c) PSE Pro for C++, the user must replace all calls to new() throughout

the application.7 The user does not have to identify pointer members, and neither

published papers nor the documentation explain how PSE does it. Our guess is that

the PSE code generator performs a partial syntax analysis of the application

classes—essentially what you get through reflection in languages like Objective-

C or Java. To verify this hypothesis is difficult because the PSE code generator

produces a binary file, not a source you could examine visually.

Figure 5.3 shows the information (chequered boxes) that cannot be obtained

automatically in C++ and must somehow be entered by the user.

Data Object Library (DOL) supports three styles of persistence (binary serial-
ization, ASCII serialization and memory blasting). The serialization is automatic

and supports schema migration. DOL combines persistence with an extensive

library of data structures (associations) which include bi-directional associations

not supported by STL—see Fig. 5.5. It provides a more extensive protection against

pointer errors than Java, and all classes have iterators which allow to delete objects

while iterating the containers. The total space for its executables (code generator

and compiled library) is under 400 kB.

C++ is excellent for implementing persistent data except for one thing: It does

not support reflection. Since Chaps. 2 and 3 were built on C++ examples, we do

not have to discuss the capabilities of the language itself, but we can look at the

different approached used in the available C++ products.

4 pp. 386–392.
5 POST++ comes in source from which all comments have been removed, and it is rather difficult

and time consuming to figure out its inner workings.
6 Code Farms were incorporated in 1988 and ObjectStore in 1989.
7 Compare this to PPF which re-defines operator new() and makes this transparent.

182 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_2
http://dx.doi.org/10.1007/978-3-642-39323-5_3

DOL assumes that application classes do not store any raw pointers and partici-

pate only in data structures (associations) from DOL. DOL includes some unusual

classes, for example classPagerwhich stores nonstructural information such as text,

pictures or tables of numbers in a separate file, and pages it to memory as needed.

Class Property is useful in two situations. (1)When youmay need, sometimes in the

future, to add members to applications classes without adjusting the schema.

(2) When some members are only sparsely used. For more details, see Sect. 4.2.

Persistent Pointer Factory (PPF) uses a completely different style of persis-

tence, see Sect. 2.4.2. It is based on persistent pointers which page disk to memory

on demand. Because these pointers store the disk address and not the memory

address, they are persistent and do not require swizzling when moving the data to or

from the disk. This library being written is proof that C++ persistence can be

implemented in pure C++ without any code generation or using system specific

pointer
loca�ons

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D
E F

allocate

A

B
C

Fig. 5.3 In C++, virtual functions that we may need when inheritance is involved can be inserted

with a macro. Otherwise the situation is similar to C, where the main problems are boxes B, C

and D. Information from checkered boxes cannot be obtained automatically

year DOL ObjSt. Texas PPF POST Boost
1989 S
1990 S M
1991 S M M
1993 SB M M
1997 SB M M P
1998 SB M M P M
2000 SB M P M
2004 SB M P M X

Fig. 5.4 History of persistent systems, commercial projects in bold.Legend: S ¼ automatic

serialization, both binary and ASCII, M ¼ memory mapping, B ¼ memory blasting, P ¼ persis-

tent pointers, X ¼ binary, ASCII and XML serialization. Information from checkered boxes

cannot be obtained automatically

5.2 C++ Language 183

http://dx.doi.org/10.1007/978-3-642-39323-5_4#Sec2
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec27

functions such as file mapping. It has been offered on the web for over a decade, but

in spite of being elegant and compact,8 it did not become popular, probably because

it originally did not include any data structures, and programmers looking for

persistence chose DOL with its extensive library.

While writing this book, we paired PPF with InCode library,9 which is a modern

library of bi-directional associations, but does not have persistence. The result is the

PPFIC library. For the performance comparison with other libraries, see Chap. 7

(Benchmarks).

The main difference between PPF and POST or PSE is that PPF works with soft

pointers which require a short arithmetic calculation on each pointers access, while

PSE and POST use hard pointers which are swizzled when the page is loaded to

memory.

Boost is an open source library of data structures which also includes serializa-

tion. The serialization requires too much user input to qualify, in our terms, to be

considered an automatic persistence, yet it was recently proposed as a C++ stan-

dard. Because of that, and because of its massive use worldwide, we treat it as one

of the serializations that are part of the language, such as Java serialization or C#

serialization. For more on Boost, see Sect. 1.5.5.

ring (singly and double linked; sort, merge, and split functions)
collection (singly and double linked; sort, merge, and split functions)
aggregate (singly and double linked; OneToMany association)
trees (singly and double linked)
name (variagle length string)
single and double link (pointer link, or OneToOne association)
LIFO and FIFO queues
reference (similar to Java reference)
array (array of object or array of pointers, also binary heap)
hash table (use default or your own hashing)
graphs (directed, not directed, singly or doubly linked)
ManyToMany (including two iterators)
type (essentially a form of reflection)
pager (persistent storage of large non-structural information, texts)
property (run-time expansion of objects by any number of named members)

Fig. 5.5 Persistent data structures supported by DOL

8Based on C++ templates, total source 2700 lines including comments, executable 164 kB.
9 See Sect. 3.1.3.

184 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_3#Sec4_3

Just for your curiosity, let’s look at how much the syntax of working with DOL

improved when moving from C (Sect. 5.1) to C++ here:

#include “zzincl.h” /* generated by the code generator */

class Library {

ZZ_EXT_Library;

. . . other members as usual

};

class Author {
ZZ_EXT_Author;
. . . other members as usual

};
class Book {

ZZ_EXT_Book;
. . . other members as usual

};

ZZ_HYPER_SINGLE_AGGREGATE(books,Library,Book);
ZZ_HYPER_SINGLE_AGGREGATE(published,Author,Book);

int main(){
Library *lib; Author *auth; Book *bk1,*bk2;
lib=new Library;
bk1=new Book;
bk2=new Book;
auth=new Author;

books.add(lib,bk1);
books.add(lib,bk2);
published.add(auth,bk1);
. . .

}
#include “zzfunc.c” /* generated by the code generator */

In file zzincl.h, code generator prepared ZZ_EXT_... statements the same way as it

did in C, but it added the friend statements which allow the relevant interface

classes to reach inside class Book. It also replaces operator new() depending on

whether the persistence uses memory blasting or serialization. MB_ALLOC(Block)

is a macro which not only allocates the object from special pages, but it also updates

the corresponding bitmap with the location of pointers embedded in each Book.

#define ZZ_EXT_Book \

friend class ZZHbooks;\

friend class ZZHpublished;\

Book * _published_ZZs;\

Book * _book_ZZs;\

Author * _published_ZZp;\

Library * _books_ZZp;\

public:\

void * operator new(size_t size){\

if(memoryBlasting) return MB_ALLOC(Book);\

else return calloc(size,1); /* serialization */\

}\
. . .

5.2 C++ Language 185

Internally, the interface class is renamed, using the association name. For example

ZZ_HYPER_SINGLE_AGGREGATE(books,Library,Book) becomes ZZHbooks

ZZ_HYPER_SINGLE_AGGREGATE(published,Author,Book) becomes ZZHpublished

Internally, individual methods can either call the original C macro (STYLE 1), or

be fully coded in C++ (STYLE 2):

// STYLE 1: new interface hiding the macro design

#define ZZ_HYPER_SINGLE_AGGREGATE(id,pType,cType) \

class ZZH##id { \

public: \

void add(pType *p,cType *c){ ZZ_ADD(id,p,c); } \

... all the other methods \

} id;

// STYLE 2: true C++ code

#define ZZ_HYPER_SINGLE_AGGREGATE(id,pType,cType) \

class ZZH##id { \

typedef tail _##id##_ZZt; \

typedef sibling _##id##_ZZs; \

typedef parent _##id##_ZZp;\

public: \

void add(pType *par,cType *chi){\

if(chi->parent!=NULL || ch)->sibling!=NULL){\

... error exit or do nothing

}\

else {\

if(par->tail==NULL){\

par->tail=chi;\

chi->parent=pa);\

chi->sibling=chi;\

}\

else {\

chi->sibling=(pa)->tail)->sibling;\

(par->tail)->sibling=ch);\

chi->parent=par;\

}\

}\

}\

... other the other methods \

} id;

Note that the syntax in which application uses this interface can be set up in two

ways. When it is as we just described, the application calls are

books.add(lib,bk);

published.add(auth,bk);

which is the style used in DOL.

If we set up the interface class like this

#define ZZ_HYPER_SINGLE_AGGREGATE(id,pType,cType) \

class id { \

... \

};

186 5 Languages, Their Features and Limitations

the application calls would be

books::add(lib,bk);

published::add(auth,bk);

5.3 Java Language

From the viewpoint of data structures and persistence, Java is significantly simpler

than C++, and very much like C#:

• It does not have pointers, only references.

• A member can be a reference, but not an object (instance of some class).

• Multiple inheritance is not allowed.

• It has reflection which solves the problem with finding reference members.

• There is no equivalent of C macros.

Internally, references store object addresses, but their values are not available to the

application programmer, and operator new() cannot be overloaded. From Fig. 5.6 we

can conclude that implementing serialization should be easy, but persistence based on

the block of memory would be difficult or impossible to design.

It’s not surprising that Java has built-in serialization which saves the data in a

special byte-encoded format; see Sect. 1.5.2 What is surprising is that the

ObjectStore company now has PSE Pro for Java.

Blog (Weinreb 2007) describes how the original PSE Pro for Java was

implemented, but the past tense is being used—perhaps meaning that the existing

implementation is different: The PSE Pro for Java had its own storage engine
which is used just for object-level faulting with a specialized lightweight, small
footprint, storage engine. However, it did not support concurrent access between
separate Java processes. The idea of injecting JVM instructions into Java class files

is also mentioned.10

Besides Java built-in serialization—see Sect. 1.5.2, there are several systems

that store Java objects in a database which is not the type of persistence we cover in

this book. An example of such a system is Hibernate.

UMPLE (2012) is a model-programming technology which resembles the

InCode library in that it represents associations as first class objects, includes a

library of data structures (associations) and alternates between controlling them

with a textual schema which is in the code or controlling them with the UML class

diagram—see Sect. 3.5. It runs with Java, PHP and Ruby, but it does not support

persistence.

10 JVM—Java Virtual Machine; this is an equivalent of inserting machine code instructions into an

object file.

5.3 Java Language 187

http://dx.doi.org/10.1007/978-3-642-39323-5_3#Sec18

5.4 C# Language

From the viewpoint of data structures and persistence, C# is significantly simpler

than C++, and very much like Java—see Fig. 5.6:

• It does not have pointers, only references.

• A member can be a reference but not an object (instance of some class).11

• Multiple inheritance is not allowed.

• It has reflection which solves the problem with finding reference members.

• There is no equivalent of C macros.

Internally, references store object addresses, but their values are not available to

the application programmer, and operator new() cannot be overloaded. From

Fig. 5.6 we can conclude that implementing serialization should be easy except

for the insertion of pointers required for intrusive data structures. However, persis-

tence based on the block of memory would be difficult if not impossible to design.

C# has a built-in serialization which supports both binary and XML formats.

The advantage of the XML format is that it can read the stored data even if the

pointer
loca�ons

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D
E F

A

F

allocate

B C

Fig. 5.6 C# and Java are similar. Their reflections allow one to identify references, their target

types and other members, but you cannot overload operator new() or get the address stored inside

the reference. Inserting members is difficult, there are no macros and instances cannot be inserted

as members. Information from checkered boxes cannot be obtained automatically

11 This is easiest to explain on a C++ example:

class A {...};

class B {

A *ap; // corresponds to reference in Java

A aa; // is not allowed in Java

};

Note that ap leads to an object allocated separately, but aa is allocated as a part of any B object.

188 5 Languages, Their Features and Limitations

structure of the serialized objects are changed, for example if we add or remove

members from some classes. The disadvantage of the XML format is a larger size of

the data file. For more details see Sect. 1.5.3.

The C# library of associations (Osterby 2000) is not persistent, but it is interest-
ing because it inserts the references that form the association without using a code

generator or Aspects. It uses runtime type instantiation, which is not available in Java.

This was a university research project which is not active anymore. The C# version of

Java Hibernate is called NHibernate. Commercial product DevXPress also provides

persistency which is using a database.

5.5 Objective-C Language

Of all the languages discussed in this book, Objective-C is the most suitable for

building persistence.12 It has all the advantages of C and C++ including access to

addresses of objects and pointers, but it also has reflection which can identify

pointers and their locations without any user input.

There are no chequered boxes in Fig. 5.7 because all the steps are easy. You cannot

replace operator new() but you can code your own method alloc. The reflection gives
you all the members, and tells you what the types are. You do not need information

about the pointer target type, because each object, in this case the target object, can

tell you its type. All methods in Objective-C are virtual, so there is no special problem

with virtual methods. You cannot insert an object instance as a member, but a member

can be a struct—which is all we need when we built intrusive data structures.

We know only one implementation of persistent objects for Objective-C, the

built-in serialization called Archiving, which generates XML, ASCII or binary

output as we explained in Sect. 1.5.4. To support archiving, a class has to imple-

ment the NSCoding protocol which has methods to encode (to archive) and decode

(to unarchive) instances of that class which, as we said at the beginning of this book,

is something we want to eliminate. Also quoting13 the Apple documentation:

Cocoa archives can hold Objective-C objects, scalars, arrays, structures and strings. They
do not hold types whose implementation varies across platforms, such as union, void*,
function pointers, and long chains of pointers.

If it cannot handle long chains of pointers it cannot handle intrusive data structures.

12 It is also a young language only about 10 years old which has little in common with Objective-C

from the 1990s.
13 http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Archiving/Articles/

archives.html

5.5 Objective-C Language 189

http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Archiving/Articles/archives.html
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Archiving/Articles/archives.html

The following chapter (Chap. 6) will take us through the implementation of fully

automatic persistence for Objective-C, with code examples in Objective-C only.

Objective-C syntax is quite different from the C++ or Java, and not all readers will be

familiar with it. The remaining part of this chapter will introduce Objective-C

syntax, just enough that you should be able to read the code samples in Chap. 6. It

will also show some algorithms that are conceptually different from C++.

You can compile Objective-C programs with gcc under Windows or Linux, or

with iOS on any Apple hardware, e.g. Mac. Look at Listing 5.2 for the comparison

of the C++ and Objective-C syntax.

Normally all application classes are derived, directly or indirectly, from class

NSObject. For example, in Listing 5.2, class Publication might have been derived

from it:

@interface Publication : NSObject

Reserved keyword id, usually written as (id) means “pointer to any Objective-C

object”, not just “pointer to any object derived from NSObject”. The advantage of

deriving object from NSObject is that NSObject implements support methods

required by runtime. In Listing 5.2, method init returns (id).

pointer
loca�on

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D E
F

special
allocator

A

B
C

Fig. 5.7 Of all the languages discussed in this book, Objective-C is the most suitable for building

persistence—in addition to all the useful features of C++, it also supports reflection. Its weak point

is the NextStep (NS) library. Note that all the information can be obtained automatically (there

are no checkered boxes)

190 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://dx.doi.org/10.1007/978-3-642-39323-5_6

Listing 5.2 Comparing syntax of C++ and Objective-C

Objec�ve-C file: Book.h
@class Author;
@interface Book : Publication
{
@private
int pages;

@public
char *title;
Book *next;

}
- (id) init;
- (int) getPages;
- (void) setBook: (int) pg

title: (char*) tit;
+ (int) getID; //size of object
@end

Objec�ve_C file: Book.m
@implementation Book
static int ID=13; // class ID
-(id) init {
self=[super init];
pages=0; title=NULL;
return self;

}
-(int) getPages {
return pages;

}
-(void) setBook: (int) pg

title: (char*) tit {
pages=pg;
title=tit;

}
+ (int) getID {return ID;}
@end

Objec�ve-C file: main.m
int main(){
Book *bk1,*bk; int sz;
char *t="C++Manual";
bk1=[[Book alloc] init];
[bk1 setBook: 120 title: t];
sz=[Book getID];
// ...more books form a chain
for(bk=bk1; bk!=nil;

bk=bk->next){
printf("%s\n",bk->title);

}
return 0;

}

C++ file: Book.h
class Author;
class Book : public Publication {
int pages;

public:
char *title;
Book *next;
static int ID; // class ID
Book();
int getPages();
void setBook(int pg,char *tit);
static int getID();

};

C++ file: Book.cpp
int Book::ID=13;
Book::Book(){pages=0;title=NULL;}
int Book::getPages(){
return pages;

}
void Book::setBook(

int pg,char *tit){
pages=pg;
title=tit;

}
int Book::getID(){return ID; }

C++ file: main.cpp
int main(){
Book *bk1,*bk; int sz;
char *t="C++ Manual";
bk1=new Book(;
bk1->setBook(120,t);

sz=Book:getID();
// ...more books form a chain
for(bk=bk1; bk!=NULL;

bk=bk->next){
printf("%s\n",bk->title);

}
return 0;

}

The main difference from C++ is that classes are not abstract, untouchable

entities: they are objects. You can examine them during the program run or pass

them as function or method parameters. Keyword Class (without *) means “pointer

5.5 Objective-C Language 191

to a class”. This concept opens magical possibilities about which you could not

dream in C++, for example:

Book *bk=[[Book alloc] init];

(id) v=bk;

Class cls=[v class];

const char* className = class_getName(cls);

NSLog(@"yourObject is a: %s", className);

An instance of a class cannot be used as a member of another class. This is

similar to Java; however, unlike Java, Objective-C allows members which are

instances of a structure. Compare the rules with this C++ code:

class A {. . .};

typedef struct myStruct {

void *mask;

int maskSize;

} myStruct;

class B {

A a; // not allowed in Objective-C

myStruct ms; // works in Objective-C

A *ap; // works in Objective-C

};

For any Objective-C object, its hidden pointer (first 4 or 8 bytes) points to the

class object. Keyword self, when used in an object method, has the same meaning as

this in C++. For example, see the return of method init in Fig. 5.1. However, inside a
class method14 it represents theclass.

Unlike in C++, Objective-C programmers often use C-style, free floating

functions. The following example demonstrates this style of design where self
represents the class. This is a situation where we want to add the same simple

method

createMask to every application class and let all these methods call one C-style

function which actually does the job. The example is shown for application class

Book:

14Method that would be static in C++ and in Objective-C starts with ‘+’.

192 5 Languages, Their Features and Limitations

Listing 5.3 C-style function implementing multiple methods, with self

representing a class, not an object

(id) createMaskGeneral(Class cls);

@interface Book : NSObject

// . . .

+ (void) createMask; // one line added to every application class15

+ (void) checkMask;

@end

// C-style function which actually creates the mask

void *createMaskGeneral(Class cls){

(id) obj=[[cls alloc] init];

// . . . more code

return obj;

}

@implementation Book

static Book *mask=nil;

+ (void) createMask {

mask=createMaskGeneral(self); // <<<<<<<<

}

+ (void) checkMask {

if(mask==nil) printf("error: Mask remains unset\n");

else {

Class cls=[mask class];

printf("mask is an instance of class=%s\n",

class_getName([cls class]));

}

}

@end

int main(){

[Book createMask];

[Book checkMask];

return 0;

}

The penalty for the dynamic typing and all the magic we can do with the classes

is that programs coded in Objective-C are more error prone and more difficult to

debug. We will discuss that at the end of this chapter.

An important part of Objective-C is the NextStep (NS) library, which provides

NSObject that all the application classes should inherit, basic arrays and

collections, and also the Objective-C version of the String class NSString, which

can store either C-style text or Unicode:

char *s¼“abcd”; // C-style string

NSString *ns¼ @“abcd”; // Objective-C type string

char *c¼[ns cString]; // conversion from NSString to C-string

printf(“%s %s\n”, s, [ns cString]);

15 This method can be added at runtime through a utility which uses reflection.

5.5 Objective-C Language 193

Objective-C also has reference counting which is similar to Java. Each object

keeps the count of pointers that lead to it. If the count drops to 0, it means nobody

refers to it, and it can be discarded or reused. Compared to Java where this counting

is completely transparent and is an integral part of a complex memory management

scheme, Objective-C permits custom allocation and a manual control of this count.

If you wonder where objects keep this count, it is part of the memory used by the

allocator, outside of the object, just before the address where the object starts—see

Fig. 6.2.

For more on the garbage collection in Java which was introduced to simplify

programming, and now “its tuning is a long exercise which requires lot of profiling
and patience to get it right”; see Javin (2011).

The Automatic Reference Counting (ARC) was introduced to Objective-C in

2001. It does static code analysis, and automatically inserts retains and releases for

objects created by the code.

Note that Objective-C ARC does not provide a cycle collector; users must

explicitly manage the lifetime of their objects, breaking cycles manually or

with weak or unsafe references.

ARC may be explicitly enabled with the compiler flag -fobjc-arc, or disabled

with the compiler flag -fno-objc-arc.

The key issue when designing persistence for Objective-C is how to use intro-

spection (reflection) to detect pointers, and then convert this information into the

pointer mask. Listing 5.4 shows the trick.

The mask is one of the pieces of information about the class that we keep in

structure persist_params. CreateMask creates one instance of the class and calls

assignIvarValue with 1. This 1 is the value we want to use to mark the pointers in

the mask. Call to class_copyIvarList returns an array with one entry for each

variable16 of the class. With it, we get encoded Type, and its first character tells

us whether it is or isn’t a pointer. If it is a pointer we set its value to 1, if not then

under default we set it to 0.

This loop does not affect the value of the hidden pointer which is already there. It

is not considered to be a variable.

16 variable is Objective-C lingo for C++ member

194 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_6#Fig2_6

Listing 5.4 Automatic generation of the pointer mask through reflection

// Copyright (c) 2013 Raj Lokanath. All rights reserved.

// Modified by Jiri Soukup, 2013

@implementation Util

+ (void) createMask: (Class) klass params: (persist_params*) data {

data->mask = [[klass alloc] init];

[self assignIvarValue:1 inObject:data->mask];

}

+ (void)assignIvarValue:(int) value inObject:(id)object {

unsigned int ivarCount = 0; int ivarIndex;

Class cls = [object class];

Ivar *alliVars = class_copyIvarList(cls,&ivarCount);

for (ivarIndex = 0; ivarIndex < ivarCount; ivarIndex++) {

Ivar ivar = alliVars[ivarIndex];

const char *encodedType = ivar_getTypeEncoding(ivar);

// NSLog(@"%s type %s",ivar_getName(ivar),encodedType);

switch (encodedType[0]) {

case ’@’:// reference of object

case ’*’:// pointer to native type

case ’^’://pointer to type

object_setIvar(object, ivar, (void*)value);

break;

default:

object_setIvar(object, ivar, 0);

break;

}

}

free(alliVars);

}

@end

Note that the code in Listing 5.4 does not detect pointers which are inside struct

instances. In the following sample, pointers name and itemwill not show in the mask

for class Produce. This is something that is feasible to do; it just needs more code.

On the other hand, since ARC does not allow object references (pointers)

inside struct, it is questionable whether the persistence should support it.

5.5 Objective-C Language 195

typedef struct bunch {

int cost;

char *name;

(id)item;

} Bunch;

@interface Produce

{

float weight;

Bunch myBunch;

}

@end

The other thing missing in Listing 5.4 is that it records only pointers at the level

of the given class—and no pointers of its superior classes. If we need all the

pointers, we have to go through the entire inheritance hierarchy—see the recursive

implementation in Listings 5.5 and 5.6.

Listing 5.5 shows the C++ implementation, in which each application has

method createMask which creates the mask but only at the level of this class. The

code is taking advantage of the default constructor automatically invoking all

superior default constructors. The Util class holds flag allocControl which is

essentially a nicer form of a global variable. If this flag is 0, default constructors

perform normal allocation. When it is 1, createMask is invoked.
Listing 5.6 shows the Objective-C implementation,17 in which not only the mask

generation but also the recursion is extracted to a common C-style function (you

could use the word “generic”) createMaskGeneric(). The main concept is the use of

the superior class18 from which this class inherits.

Note the different order in which the inheritance levels are traversed. The order

makes no difference when constructing a mask.

Listing 5.5 output Listing 5.6 output

Before creating the mask Create mask for C

Create mask for A Create mask for B

Create mask for B Create mask for A

Create mask for C

Create mask for D

17 In Objective-C, method init is used as a constructor, but init does not automatically traverse the

inheritance hierarchy. Even if we wanted to use the C++ approach, we cannot use it. It would

not work.
18 Keyword or class method super.

196 5 Languages, Their Features and Limitations

Listing 5.5 Recursive mask generation, C++ style

class Util {

public:

static int allocControl;

};

int Util::allocControl=0; // 0=normal allocation, 1=mask generation

class A {

static void createMask(){ printf("create mask for A\n");}

public:

A(){if(Util::allocControl) createMask(); /* …other code… */}

};

class B : public A {

static void createMask(){ printf("create mask for B\n");}

public:

B(){if(Util::allocControl) createMask(); /* …other code… */}

};

class C {

static void createMask(){ printf("create mask for C\n");}

public:

C(){if(Util::allocControl) createMask(); /* …other code… */}

};

class D : public B, public C {

static void createMask(){ printf("create mask for D\n");}

public:

D(){if(Util::allocControl) createMask(); /* …other code… */}

};

int main() {

D *d=new D;

printf("before creating the mask\n");

Util::allocControl=1;

d=new D;

return 0;

}

5.5 Objective-C Language 197

Listing 5.6 Recursive mask generation, Objective-C style

void createMaskGeneric(Class cls){

printf("create mask for %s\n", class_getName(cls)); // see 19

Class superClass = class_getSuperclass(cls);

if([superClass isEqual: [NSObject class]]) return;

createMaskGeneric(superClass);

}

@interface A : NSObject

+ (void) createMask;

@end

@implementation A

+ (void) createMask{ createMaskGeneric(self); }

@end

@interface B : A

+ (void) createMask;

@end

@implementation B

+ (void) createMask{ createMaskGeneric(self); }20

@end

@interface C : B

+ (void) createMask;

@end

@implementation C

+ (void) createMask{ createMaskGeneric(self); }

@end

int main() {

[C createMask];

return 0;

}

5.6 Errors and Debugging

In a more sophisticated language, the errors will also be more sophisticated, and

some of them will show up at the run time instead of the compile time. That means

more difficult debugging, and safety issues with software which simply must not

fail (space shuttle, computer driven surgery, control of nuclear reactor).

A typical example iswhat happened to uswhenwe began to test QSPpersistence on

the benchmark example from Chap. 7. The program crashed in the middle of the run

withmemory fault on a line which looked quite normal and was coded by all the rules.

Only after several days (!) we realized that we did not include<objc/runtime.h> at the

19 If this line is placed at the end of the function, the order in which the sub-masks are created

would be the same as in the C++ version.
20 Instead of doing this, Objective-C allows one to inject this method at runtime through reflection,

without any need to modify the application class.

198 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_7

top of one source file.21 Compiler in C++ or Java would catch the problem, and we

could corrected it within seconds, but Objective-C did not complain about it because

there, with its relaxed rules, there was some (remote) possibility of using the particular

function even without objc/runtime.h.

Another thing to watch for is that Objective-C classes cannot have an equivalent

of C++ static class member—a value associated with the class, not with any object.

Variable data->mask which we use all through this Chap. 5, is a member of static

struct persist_params with the scope of the given *.m file. Program using such

variables must strictly maintain a separate *.m file for each class.

The Apple variety of Objective-C22 supports associated object, which is another

alternative to this type of object, but it must be created dynamically, unlike the

static member in C++.

21When a method is not declared or imported, Objective-C assumes a return type id, and that was

likely the cause of the crash in this case.
22 The Windows/gcc variety of Objective-C does not support it yet.

5.6 Errors and Debugging 199

http://dx.doi.org/10.1007/978-3-642-39323-5_5

Automatic Persistence for Objective-C 6
Jiri Soukup, Raj Lokanath, and Martin Soukup

Abstract

This chapter describes the implementation details of the QSP persistence. It

starts with a single page from which all the objects are allocated. When more

space is needed, additional pages are automatically allocated. When storing data

to disk, all data are collapsed into a single page, and the unused objects are

eliminated. During each program run a temporary management of free objects is

used.

Keywords

QSP • Quasi Single Page • Objective-C • Persistence • NS Foundation class •

Reflection • Memory management • Paging • Allocation • Reference count •

Retain count

J. Soukup (*)

Code Farms Inc., Richmond, ON, Canada

e-mail: jiri@codefarms.com

R. Lokanath

Tata Consultancy Services, Santa Clara, CA, USA

M. Soukup

Irdeto Canada corp., Ottawa, Canada

e-mail: the.martin.soukup@gmail.com

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_6, # Springer-Verlag Berlin Heidelberg 2014

201

mailto:jiri@codefarms.com
mailto:the.martin.soukup@gmail.com

All code samples in this chapter are in Objective-C. If you are not used to this

language, the basic information about it is in Sect. 5.4. If you are interested only in

the main idea or the algorithms, read Sect. 2.5 again.

Note that the two phases differ only in the initial setup and how the information

about references is recovered, and thus there is no difference in their runtime

performance. The persistent algorithms are identical.

For the record, the benchmark tests on Apple/Mac reported in Chap. 7 used the

Phase 1 version of QSP.

6.1 Practical Guide to QSP Persistence

The implementation of both phases is light and simple. You don’t have to install

anything – you only download two files Persist.h and Persist.m then compile and

link with them. They are small, 100 and 800 lines of code1 (5 kB and 45 kB). QSP

was tested on the Chap. 7 benchmark with more than a million objects and six

intrusive associations, but it is still only a prototype that has not been used on real-

life projects and should be used with caution.

The source of the Phase 1 implementation of the benchmark from Chap. 7,

including files Persist.h and Persist.m, is in bk/chap6/bench. It uses the InCode

library where only the classes required for the benchmark are converted to

Objective-C; see bk/chap6/objcLib.

This library includes a code generator (codegen), which works both for C++ and

for Objective-C. For Objective-C, use

codegen –objc . . .

The templates of individual data structures are in bk/chap6/objcLib/oclib.

The QSP persistence was implemented in two phases:

1. Using Objective-C syntax but C++ design style, where all classes must be

derived from the same PersistObject class with all pointers registered

through the PTR() statements.

2. Taking the advantage of the Objective-C features and reflection, the two

restrictions are removed, arriving to a remarkably automatic and efficient

persistent system.

We will start with a practical instruction how to use QSP persistence. The

next part will provide technical notes on implementation details, focusing on

the more tricky parts of the Objective-C implementation. The last part will

discuss how to make existing class libraries persistent, with emphasis on the

NextStep (NS) Foundation classes.

1 These counts exclude blank lines and comments.

202 6 Automatic Persistence for Objective-C

http://dx.doi.org/10.1007/978-3-642-39323-5_5#Sec4_5
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_5
http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_7

Files *.h and *.m are templates for the converted classes, files*.h and *.cpp are

still the original, uncoverted C++ data structures.

6.1.1 QSP Phase 1

In Phase 1, QSP persistence was implemented in Objective-C but using what we could

call the “C++ coding style”, which assumes that references embedded in all classes are

registered with PTR() statements. This is the technique described in Sect. 2.1.3.2.

All application classes must be derived from class PersistObject, which is

derived from NSObject.2 That class has no members, so it does not increase the

size of the application classes.

@interface Book : PersistObject

{

int salary;

Book * next;

char *name;

}

Persist Interface;

@end

@implementation Book

Persist Implementation:

Book_ptrList

-(id) ptrList(){ PTR(next); PTR(name); return self;}

@end

When using InCode library, its code generator prepares the prtList line for you,

so instead of

-(id) ptrList(){ PTR(next); PTR(name); return self;}

you code

ptrList_Book

Note that the format of the additions required to make a class persistent is

simpler in Objective-C than it is in C++. Persist Interface and Persist Implementa-
tion are not parameterized by the name of the class; the PTR() statement is used for

all pointer types—for pointers to objects, pointers to strings and pointers to arrays

(now shown in this example). The persistence is transparent and easy to use. All you

have to do is to call

[Persist save: myFile root: myRoot]; // to save data in myFile

root = [Persist open: myFile]; // to load data back to memory

2 This requirement is specific for Objective-C; it would not be required in the C++ implementation.

6.1 Practical Guide to QSP Persistence 203

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec9_2

In this manner you can register even pointers embedded in a struct, for example,

strict info {

char *name; // see
3

int phone;

};

@interface Student

Student *next;

struct Info info;

@end

@implementation Student

- (id) ptrList {

PTR(next);

PTR(info.name);

return self;

}

@end

Allocation. Single objects of classes coded in this style are allocated as usual, for

example,

Book *bk = [[Book alloc] init];

Blocks of data without embedded pointers, text, numbers or arrays of number

must be allocated with [Persist palloc]

size_t sizeInBytes = 50;

char *name = [Persist palloc: sizeInBytes];

Array of pointers must be allocated with [Persist allocPtrArr]

size_t NumOfPointers = 50;

char *name = [Persist allocPtrArr: numOfPointers];

You can even allocate an array of objects from the heap,4 using allocArray for

the appropriate class

size_t numOfObjects = 50;

char *name = [Persist allocArray: numOfObjects];

6.1.2 QSP Phase 2

In Phase 2, application classes do not have to be derived from the same class, and

the registration of pointers is not required. However, in the current implementation

of Phase 2, a line with an empty prtList is required:

3 This should be avoided because ARC does not work with struct that hides a pointer.
4 This is an addition to the standard Objective-C, which has no mechanism for this. The established

way of doing this is to use class NSArray.

204 6 Automatic Persistence for Objective-C

@interface Book : NSObject

{

int salary;

Book * next;

char *name;

}

Persist Interface;

@end

@implementation Book

Persist Implementation:

-(id) ptrList { return self; }

@end

This is a truly automatic and persistent system, which requires to add only one,

always the same line to the *.h file, and another, again always the same line to the *.

m file. The use is the same as for Phase 1:

[Persist save: myFile root: myRoot]; // to save data in myFile

root = [Persist open: myFile]; // to load data back to memory

Allocation. Allocation is identical to Phase 1, using methods alloc, palloc,

allocPtrArr, and allocArray.

The advantage of keeping ptrList even if we normally don’t need it is that we can

manually supplement pointers which the automatic detection would miss, for

example pointers embedded through a struct.5 For example,

struct BookInfo {

int pageCount;

Font *font;

};

PersistInterface;

BookInfo bkInfo;

Author *author;

Book *nextBook;

@end

@implementation Book

PersistImplementation;

-(id) prtList{ PTR(bkInfo.font); return self; }

@end

5 The line with prtList may be eventually removed, assuming the automatic pointer detection

proves reliable and covering all possible situations.

6.1 Practical Guide to QSP Persistence 205

6.2 Technical Notes on Objective-C Implementation

The implementation of QSP allocation and persistence follows the algorithms from

Sect. 2.5. It is essentially a C-code disguised as class methods of the Persist class.
There isn’t anything Objective-C specific, and class Persist has only 29 methods,

less than a typical class in the NS library. The code is short (under 800 lines, with

comments and references to Sect. 2.5).

6.2.1 Notes to Phase 1

6.2.1.1 Creating Pointer Mask from PTR Statements
The implementation follows exactly the algorithms described in Sect. 2.5. We used

that Section as the master plan for coding, and the QSP always refers to its

individual steps and lines. It would make boring reading to describe this code,

which is essentially a C++ code in an Objective-C disguise, and class Persist

encapsulating all the persistence logic.

The only exception is the conversion of the PTR() statements into the masks. For

each class we have to walk through all its superior classes and merge the

corresponding masks—see Fig. 6.1.

In C++, we could do this:

#define PTR(P) \

if(Persist::aFlg == 0)((size_t)P=0; else (size_t)P=1;

class Employee {

float salary;

char *name;

Employee *next;

public:

Employee(){PTR(name); PTR(next);}

};

class Manager : public Employee {

static int mySize;

int deptID;

Employee *secretary;

public:

Manager(){PTR(secretary);}

};

int main(){

aFlg=1;

Manager *mask=new Manager; // mask of for the Manager class

aFlg=0;

Manager *aManager=new Manager; // Manager object

The default constructor automatically traverses all the ascendants; thus when

creating a new Manager with aFlg ¼ 1 (generating a mask, not a normal object),

this happens not only for the Manager but also for the Employee from which the

Manager is derived.

206 6 Automatic Persistence for Objective-C

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_2
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_2
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_2

Objective-C does not support default constructors that would behave like that,

but it has a mechanism that allows us to reach the super class, e.g. from class

Manager we can get to class Employee—see Fig. 6.1. When using this recursively,

we can traverse all the inheritance levels and get the complete mask.

Listing 6.1 shows the recursive function that does it.6 This listing is long, but you

may look only at the critical part—the highlighted method create Mask. The rest of
the code is needed in case you want to see how it all works together.

This code is also another example of Useful Trick No. 2 from Sect. 2.1.1.

Macros PersistInterface and PersistImplementation inject only a few lines. The

mask and the main info about the class (struct persist_params) are set outside by the
methods of Persist class.

This listing is far too long for this book, but its core, which is worth reading, is

the highlighted method to create Mask.

After all this, we wondered whether there would be a performance penalty for

additional function calls that make the macro shorter. We ran the benchmark7 from

0 1 1 0 1 1 0

hidden

salary name next

deptID secretary

tail colSZ

Manager

Employee Ring

6054

2 3 5 6 0 0 06054

// Employees working for a Manager form a Ring
@interface Employee

int salary;
char *name;
Employee *next; // next on Ring

@end
@interface Manager : Employee

int deptID;
Employee *secretary;
Employee *tail; // tail of the Ring
int colSZ; // collection size

@end

a

b

Fig. 6.1 (a) Mask for the Manager class. (b) The list derived from it. Note the hidden pointer in

the beginning of the object, and the regular pointers marked by 1. Hidden pointers are always

multiples of 4. This figure is a copy of Fig. 2.18 from Sect. 2.5

6 For another interesting example, see bk\chap6\testinit.m.
7 One million books, without abstracts, five runs for each coding style.

6.2 Technical Notes on Objective-C Implementation 207

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec2_2
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Fig18_2
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_5

Chap. 7 with persistence implemented in long and short macros. With the shorter

macro (Useful Trick No. 2), the creation of all objects took about 10 % more time.

Listing 6.1 Generating mask from PTR() statements

FILE: Persist.h

// important class info ready for fast access

typedef struct persist_params {

void* mask;

u_int mySz;

} persist_params;

// all persistent classes must be derived from this class

@interface PersistObject : NSObject

-(id) ptrList;

+(void) start;

+(id) alloc;

@end

// Utility that controls everything related to persistence.

// What you see here is only its small part, it is a big class.

@interface Persist

+ (void) outsideStart: (id) klass params: (persist_params*) data;

+ (void) create Mask: (id) klass params: (persist_params*) data;

@end

// no need for aFlg, PTR() is never used in constructing an object

#define PTR(P) (P)=(void*)1

// +++

// Useful trick No.2: only two short sections inserted by macros

// +++

#define Persist Interface \

- (id) ptrList; \

+ (void) start; \

+ (id) alloc ;

#define Persist Implementation \

static struct persist_params params= { nil, 0 }; \

+ (void) start{ [Persist outsideStart: self params: ¶ms];}

// +++

FILE: Persist.m

@implementation Persist

+ (void) outsideStart: (id) klass params: (persist_params*) data {

if(data->mask != NULL) return;

data->mySz=class_getInstanceSize(klass);

[Persist create Mask: klass params: data];

const char *cName=class_getName([klass class]);

[Persist reportClass: cName sz: data->mySz mask: data->mask];

208 6 Automatic Persistence for Objective-C

http://dx.doi.org/10.1007/978-3-642-39323-5_7

+ (void) create Mask: (id) klass params: (persist_params*) data {

void *sMask; Class superClass,*p; int i,sz,sSz; char *m,*s;

// if the mask exists, this method was already called

if(data->mask != NULL) return;

data->mySz=sz=class_getInstanceSize(klass);

// allocate mask as a true object

p = (Class*)calloc(sz,1);

*p = klass;

data->mask= (void*)p;

// prtList is a constructor, sets pointers but not for ascendents

[(id)data->mask ptrList];

superClass = class_getSuperclass([klass class]);

if(superClass != nil &&

! [superClass isEqual:[PersistObject class]])

{

// recursive call to the next base class

[superClass start];

/* merge the two masks */

sMask=[superClass getMask];

sSz=class_getInstanceSize(superClass);

s=(char*)sMask;

m=(char*)data->mask;

for(i=sizeof(char*); i<sSz; i++) {m[i]=m[i] | s[i];}

}

}

. . .
@end

// FILE B.h – application class

// +++++++++++++++++++++++++++++++

@interface B : PersistObject

{

NSString *p1;

NSString *p2;

B *ptr;

int val1;

int val2;

}

PersistInterface;

@end

// FILE B.m – application class

// +++++++++++++++++++++++++++++++

@implementation B

Persist Implementation;

- (id) ptrList { PTR(p1); PTR(p2); PTR(ptr);}

@end

Note that in the C++ implementation of the same algorithm (Sect. 2.1.3.2,

Listing 2.5), the user had to supply more information about the pointers. We did not

use PTR for all pointers. We had PTR for pointers to single objects, STR for strings,

ARR for arrays of objects and ARP for arrays of pointers. In these statements

we also had to supply the type of pointer, for example PTR(Employee, secretary),

not just PTR(secretary).

6.2 Technical Notes on Objective-C Implementation 209

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec9_2

In Objective-C we do not have to supply the type. By dereferencing the pointer

we get to the target object which, as every object in Objective-C, can tell us its own

type. Also, as we allocate objects8 we store the information whether it is an object,

string or array in a two-bit flag in the space preceding the object—see Fig. 6.2.

6.2.1.2 Allocating Objects from Pages of Memory
Serialization and persistence based on memory paging are generally considered as

two completely different approaches to storing objects, yet combining them brings

mutual benefits:

• Memory pages are faster to store and restore, but serialization allows data

transfer between different operating systems or environments. They complement

each other in different situations.

• It is easier to implement schema migration for serialization than it is for memory

pages.

• If you allocate from pages of memory and then save with serialization, the

algorithm of collecting active objects is much simpler: you can walk through

the memory9 and collect objects that way rather than using recursive functions,

searches and other complex algorithms. The result is a faster serialization.

• Saving objects by serialization automatically removes all dead space and re-formats

the pages, thus helping the memory management which otherwise is a problem.

QSP is primarily a page-based system, but we added to it a function which walks

through the memory, collects all active objects, and allows one to save them using

the standard formats of Objective-C Archiving, including XML.

Listing 6.2 shows the basic idea of how to reserve a larger page and then allocate

individual objects from it. A running version of this code is in bk.chap6/testallo.c.

Note that a system like this takes over the memory management, bypassing the

retain counting and managing free objects fully automatically. Nevertheless, we

reserve the field required for Objective-C for retaining counting—if we used the

field for something else, some unexpected interaction could overwrite that field and

damage our records.

addr sz count 0 1 ……........ sz/4-1

alloca�on of one object in 4-byte sec�ons:

12 bytes ahead of the object object itself

2-bit flag

Fig. 6.2 QSP allocation: the lowest two bits (the size of objects is always a multiple of 4) of the

sz field are used as a type flag: 0 ¼ object with no pointers, 1 ¼ object/array of objects with a

hidden pointer, 2 ¼ array of pointers. Field addr is a temporary space for internal algorithms, and

count is reserved for the Objective-C reference counting. Pointers in the unused section of any

array must be set to nil. This figure is a section of Fig. 2.19

8 This is our allocation scheme, not a part of standard Objective-C.
9 As QSP does.

210 6 Automatic Persistence for Objective-C

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Fig19_2

The highlighted section allocates an instance of class A. The class (here A) is

never explicitly mentioned in this method; if you copy this code into another class it

will work without any modifications. The key trick in it is the line

*p = self;

which copies self into the beginning of the object or, in other words, it is setting the

hidden pointer and thus turning the section of the memory into a valid object.

Listing 6.2 Basic idea of allocating objects from a private page of memory. Real

systems use multiple pages

@interface Persist : NSObject

+ (char *) palloc: (int) sz;

+ (void) start: (int) pgSz;

@end

@implementation Persist

static char *page = (char*)nil;

static int pgSz = 0;

static char *pool = (char*)nil; // next free address

+ (char *) palloc: (int) sz {

printf("start: pgSz=%d page=%u pool=%u\n",pgSz,page,pool);

pool=pool+sz;

return (pool-sz);

}

// start allocation, set up pageSz

+ (void) start: (int) pageSz {

pool=page=calloc(1,pageSz);

pgSz=pageSz;

}

@end

// Example of the application class

@interface A : NSObject {

int val;

}

+ (id) alloc; // replacing system allocation

- (id) init; // constructor

@end

@implementation A

- (id) init { val=0;}

+ (id) alloc {

int sz=class_getInstanceSize(self);

Class *p = (Class *)[Util palloc: sz];

*p = self; // replace the beginning of the object <<<<<<<

return (id)p;

}

@end

int main()

{

[Persist start: 1024]; // start with page size =1024

A *ap = [[A alloc] init]; // allocate a new object

return 0;

}

6.2 Technical Notes on Objective-C Implementation 211

6.2.1.3 Main Part of the QSP Algorithm
The key to quick and safe debugging is a function which prints memory pages and

the images of individual objects in a human-readable format. Figure 6.3 shows such

a printout for the benchmark problem from Chap. 7, with relations from Fig. 7.1

and reduced to a small number of objects (five books and one author). The classes

are Library, Author, Book and a “link” class BooksToAuthors which is needed for

the ManyToMany relation between Book and Author.
The printout shows everything you may possibly want to know about allocation,

object types, pointers and how the objects connect.

Each object mask starts with the hidden pointer, which is a unique class

signature. The printout then shows the memory space as in Fig. 2.19, page by

page, and within each page object by object.

The image of each object is

+ (0)aux (0)[flg]sz (0)count [addr] = (0)hidPtr (1)regPtr (0)number

where

aux is the auxiliary address,

flg ¼ 0 no pointers, 1 ¼ embedded ptrs, 2 ¼ pointer array

sz is the size of the allocated area without header (2 bits used for flg)
count is the retain count (not used),

addr is the starting address of the object

hidPtr is the hidden pointer

regPtr is a regular pointer
number is numerical value or text, no pointers

If you analyze the first object, [1]12 tells you that it has embedded pointers, and

its size is 12 bytes. It starts at address 6565700 and it is an instance of Library.

The first pointer leads to address 6566148 which, judging by the hidden pointer

4249696, is a Book. The second pointer leads to address 6565724 which, judging by

the hidden pointer 4250528, is an Author.

This Author (the second object) is 20 bytes, and its fourth field 6565756 points to

the third object, with [0] which means no pointers, 12 bytes long. It is probably one

of the strings, most likely author’s name.

If you compare the difference between fill and pagewith pageSz you will see that
most pages are almost full, except for the last page,

Note that when you add PersistInterface to some class, say X, it automatically

adds two allocation methods:

[X alloc] allocates a single object of this class,

[X allocArr] allocates an array of objects of this class.

Arrays of pointers and unstructured blocks of memory including text must also

be allocated through class Persist:

[Persist palloc] allocates a block of memory without embedded pointers,

[Persist allocPtrArr] allocates an array of pointers.

Internally, all these methods just call palloc but then set the 2-bit flag differently.

212 6 Automatic Persistence for Objective-C

http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_7#Fig1_7
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Fig19_2

DEBUGGING PRINT: Alg.b finished
=====================================
format: (mask bit) [flag] value_or_size
flg=0 unstructured, =1 obj with ptrs, =2 array of ptrs

root=6565700
class records:
i=0 class=BooksToAuthors sz=28 mask=4251360 1 1 1 1 1 1
i=1 class=Author sz=20 mask=4250528 1 1 1 1
i=2 class=Book sz=28 mask=4249696 1 1 1 1 1 0
i=3 class=Library sz=12 mask=4248896 1 1

pgSz=128 pgArrSz=50 objCount=18

Page[0] page=6565688 fill=6565808 pageSz=128
+(0)7357532 (0)[1]12 (0)0 [6565700]=(0)4248896 (1)6566148 (1)6565724
+(0)7357556 (0)[1]20 (0)0 [6565724]=(0)4250528 (1)6565724 (1)6565724

(1)6565756 (1)6566380
+(0)7357588 (0)[0]12 (0)0 [6565756]=(0)1629503824 (0)1869116533

(0)3219570
+(0)7357612 (0)[1]28 (0)0 [6565780]=(0)4249696 (1)6566284 (1)6565900

(1)6565836 (1)0 (1)6565860 (0)26502

Page[1] page=6565824 fill=6565952 pageSz=128
+(0)7357652 (0)[0]12 (0)0 [6565836]=(0)1646282575 (0)543911791 (0)49
+(0)7357676 (0)[1]28 (0)0 [6565860]=(0)4251360 (1)6565860 (1)6565860

(1)6565780 (1)6565972 (1)6566380 (1)6565724
+(0)7357716 (0)[1]28 (0)0 [6565900]=(0)4249696 (1)6565780 (1)6566148

(1)6565940 (1)0 (1)6565972 (0)30090
+(0)7357756 (0)[0]12 (0)0 [6565940]=(0)1646284615 (0)543911791 (0)50

Page[2] page=6565960 fill=6566064 pageSz=128
+(0)7357780 (0)[1]28 (0)0 [6565972]=(0)4251360 (1)6565972 (1)6565972

(1)6565900 (1)6566108 (1)6565860 (1)6565724
+(0)7357820 (0)[1]28 (0)0 [6566012]=(0)4249696 (1)6566148 (1)6566284

(1)6566052 (1)0 (1)6566108 (0)15706
+(0)7357860 (0)[0]12 (0)0 [6566052]=(0)1646287448 (0)543911791 (0)51

Page[3] page=6566096 fill=6566200 pageSz=128
+(0)7357884 (0)[1]28 (0)0 [6566108]=(0)4251360 (1)6566108 (1)6566108

(1)6566012 (1)6566244 (1)6565972 (1)6565724
+(0)7357924 (0)[1]28 (0)0 [6566148]=(0)4249696 (1)6565900 (1)6566012

(1)6566188 (1)0 (1)6566244 (0)3722
+(0)7357964 (0)[0]12 (0)0 [6566188]=(0)1646282568 (0)543911791 (0)52

Page[4] page=6566232 fill=6566336 pageSz=128
+(0)7357988 (0)[1]28 (0)0 [6566244]=(0)4251360 (1)6566244 (1)6566244

(1)6566148 (1)6566380 (1)6566108 (1)6565724
+(0)7358028 (0)[1]28 (0)0 [6566284]=(0)4249696 (1)6566012 (1)6565780

(1)6566324 (1)0 (1)6566380 (0)18741
+(0)7358068 (0)[0]12 (0)0 [6566324]=(0)1646286155 (0)543911791 (0)53

Page[5] page=6566368 fill=6566408 pageSz=128
+(0)7358092 (0)[1]28 (0)0 [6566380]=(0)4251360 (1)6566380 (1)6566380

(1)6566284 (1)6565860 (1)6566244 (1)6565724

Fig. 6.3 Debugging print shows the pages and the images of individual objects

6.2 Technical Notes on Objective-C Implementation 213

6.2.2 Notes to Phase 2

6.2.2.1 Creating Pointer Mask with Reflection
Would it be possible to detect pointers without using PTR() statements? If we could

do that, the interface would be much simpler. We would have to use some features

of Objective-C which are not available in C++, because we know that in C++ we

had to use these statements.

Listing 6.3 shows how Objective-C reflection allows us to create array alliVars
with information about individual variables (members) of the class. The loop traverses

these variables and uses the first character of encodedType to decide whether it is a

pointer and what kind of pointer it is. Object object here is the mask, and we set its

pointers to 1. The remaining variables (members) are set to 0.

Listing 6.3 Object mask by an automated detection of pointers10

@implementation Persist

+ (void) createOneMask: (Class) klass params: (persist_params*) data

{

data->mask = [[klass alloc] init];

[self assignIvarValue: 1 inObject:data->mask];

}

+ (void)assignIvarValue:(int) value inObject:(id)object {

unsigned int ivarCount = 0; int ivarIndex;

Class cls = [object class];

Ivar *alliVars = class_copyIvarList(cls,&ivarCount);

for (ivarIndex = 0; ivarIndex < ivarCount; ivarIndex++) {

Ivar ivar = alliVars[ivarIndex];

const char *encodedType = ivar_getTypeEncoding(ivar);

switch (encodedType[0]) {

case ’@’:// reference to object

case ’*’:// pointer to native type

case ’^’://pointer to type

object_setIvar(object, ivar, (void*)value);

break;

default:

object_setIvar(object, ivar, 0); // <<<<<<

break;

}

}

free(alliVars);

}

@end

This code works, but it has two limitations:

1. It gets pointers only at the inheritance level of the given class.

2. It does not get pointers that are embedded in a struct.

Problem (1) is easy to correct. In method create Mask, we replace the following
call to ptrLinks which generates the mask with PTR statements

10 For a running example see directory bk\chap6\autoPtrs

214 6 Automatic Persistence for Objective-C

[(id)data->mask ptrLinks];

by call to a new method

[self assignIvarValue:1 inObject:(id)data->mask];

see the first highlighted section in Listing 6.4.

Listing 6.4 Generating the pointer mask automatically

@implementation Persist

+ (void) createMask: (id) klass params: (persist_params*) data {

void *sMask; Class superClass,*p; int i,sz,sSz; char *m,*s;

// if the mask exists, this method was already called

if(data->mask != NULL) return;

data->mySz=sz=class_getInstanceSize(klass);

// allocate mask as a true object

p = (Class*)calloc(sz,1);

*p = klass;

data->mask= (void*)p;

// [(id)data->mask ptrList];

[self assignIvarValue:1 inObject:(id)data->mask];

superClass = class_getSuperclass([klass class]);

if(superClass != nil &&

! [superClass isEqual:[PersistObject class]])

{

// recursive call to the next base class

[superClass start];

/* merge the two masks */

sMask=[superClass getMask];

sSz=class_getInstanceSize(superClass);

s=(char*)sMask;

m=(char*)data->mask;

for(i=sizeof(char*); i<sSz; i++) {m[i]=m[i] | s[i];}

}

}

We know the solution to Problem (2), but we may not have the code before the

book goes to print. The workaround, and actually a good solution, is not to

comment out the call to ptrList in Listing 6.4, but to leave both the highlighted

lines active and comment out line marked // <<<<<< in Listing 6.3. That way,

not only can the mask be created by either method, but prtList may add11 pointers

that automatic detection would miss, such as pointers embedded in a struct.

Useful Trick No. 8.

Creation of the pointer mask has no effect on the overall performance, and

doing it twice—first automatically and then with PTR() statements—opens

possibilities for handling unusual cases such as pointer members embedded in

a struct.

11With this arrangement, ptrList may provide only some pointers, or no pointers if no struct is used.

6.2 Technical Notes on Objective-C Implementation 215

6.2.2.2 Removing Dependency on PersistObject
The requirement of deriving every class from a new base class is a major obstacle

when converting existing library classes. However, the only reason why we

introduced PersistObject in Phase 1 was that, when we compiled without it, we

got a screen full of warnings related to NSObject not having method start. However
the second highlighted place in Listing 6.5 prevents calling this method on

NSObject. If we can live with these warnings, then we can go back to NSObject

as shown in Listing 6.5, and the benchmark works flawlessly.

Listing 6.5 Critical section of Listing 6.1 where PersistObject was replaced by

NSObject

@implementation Persist

+ (void) createMask: (id) klass params: (persist_params*) data {

void *sMask; Class superClass,*p; int i,sz,sSz; char *m,*s;

// if the mask exists, this method was already called

if(data->mask != NULL) return;

data->mySz=sz=class_getInstanceSize(klass);

// allocate mask as a true object

p = (Class*)calloc(sz,1);

*p = klass;

data->mask= (void*)p;

// [(id)data->mask ptrList];

[self assignIvarValue:1 inObject:(id)data->mask];

superClass = class_getSuperclass([klass class]);

if(superClass != nil

//&& ! [superClass isEqual:[PersistObject class]])

&& ! [superClass isEqual:[NSObjectt class]])

{

// recursive call to the next base class

[superClass start];

/* merge the two masks */

sMask=[superClass getMask];

sSz=class_getInstanceSize(superClass);

s=(char*)sMask;

m=(char*)data->mask;

for(i=sizeof(char*); i<sSz; i++) {m[i]=m[i] | s[i];}

}

}

. . .
@end

// FILE B.h – application class

// +++++++++++++++++++++++++++++++

// @interface B : PersistObject

@interface B : NSObject

{

NSString *p1;

NSString *p2;

B *ptr;

int val1;

int val2;

}

216 6 Automatic Persistence for Objective-C

6.3 Testing QSP on iPhone

We first tested the QSP version of the benchmark program on Mac, with the results

and technical details reported in Chap. 7, Table 7.6. Then, because iPhone Apps

cannot write directly to disk, we converted all the file I/O code to read/write from

the documents folder, and added a user interface that allows to input the test

parameters – see the screenshot of iPhone 5 in Fig. 6.4. This interface allowed us

to set number of Books and the run number.

You can download the source of this App from www.codefarms.com/book.

6.4 Converting Existing Libraries

6.4.1 Libraries Available in Source

Assuming that library classes are derived from NSObject and their full source is

available, such classes are just as easy to make persistent as application classes12

using the following steps. For each newClass we do this:

STEP 1: Modify newClass.h by adding PersistInterface.
STEP 2: Modify newClass.m by adding PersistImplementation.

Fig. 6.4 Shot of the iPhone

screen shows the interface

12 See Sect. 6.1.

6.4 Converting Existing Libraries 217

http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_7#Tab6_7

STEP 3: Add prtList which is normally empty; only in special13 situations not

covered by the automatic handling must you provide PTR() statements.

STEP 4: Search methods in newClass.m for any calls that allocate arrays or

unstructured memory, and replace them with allocArr, allocPtrArr or palloc.14

(Allocations of single objects with new() require no changes.)

This was the way we converted the InCode classes required for the benchmark.

The conversion was simple and straightforward because we had access to its source.

6.4.2 Difficulties with NS Classes

The NS classes are an essential part of Objective-C, and unless we can convert

them, our QSP persistence will not be very popular. The problem is that the full

source of NS classes is not public. That means not only no access to important

classes such as NSString.m, but also that NSString.h which you include with

Foundation.h may not be the same NSString.h which is used when compiling the

system library. This is something Objective-C specific. For example, a String class

in C++ stores a pointer to the actual string, and you can see that pointer if you look

at String.h. If you look at NSString.h, there are no variables (or members in C++

lingo).

Before we dig into the complexities of the NSString class, let’s explore its

behaviour by experimenting. Perhaps that could help us to guess what is under

the hood.

After allocating two NSString objects with some strings, we got the memory

layout shown in Fig. 6.5. NSString objects are true objects complete with their

hidden pointers, but the allocator left no space for the retain counter! The same

happened to strings themselves, which are allocated on a 2-byte boundary!

This raises many questions. Is NS library allocating and reusing NSString

objects and strings in a different way than other objects? Where does NSString

store the information whether the string is Unicode or ordinary ASCII? Can it store

strings that are not ending with \0? What is the minimum length of a string?

Some of the answers are on the Stackoverflow website.15 NSString is one of the

cluster classes,16 and its conversion will not be trivial.

The Apple source of the NSString class is not public, but the GNU version of the

class is an open source, and we retrieved NSString.h and NSString.m from there.

The source is under bk/chap6.

13 At the moment we believe that pointers embedded in a struct are the only situation not covered.
14 It does not matter where the call is, it only matters what it allocates.
15 http://stackoverflow.com/questions/7376261/are-nsstrings-stored-on-the-heap-or-on-the-stack-

and-what-is-a-good-way-to-initi
16 http://developer.apple.com/library/ios/#documentation/general/conceptual/CocoaEncyclopedia/

ClassClusters/ClassClusters.html

218 6 Automatic Persistence for Objective-C

http://stackoverflow.com/questions/7376261/are-nsstrings-stored-on-the-heap-or-on-the-stack-and-what-is-a-good-way-to-initi
http://stackoverflow.com/questions/7376261/are-nsstrings-stored-on-the-heap-or-on-the-stack-and-what-is-a-good-way-to-initi
http://developer.apple.com/library/ios/#documentation/general/conceptual/CocoaEncyclopedia/ClassClusters/ClassClusters.html
http://developer.apple.com/library/ios/#documentation/general/conceptual/CocoaEncyclopedia/ClassClusters/ClassClusters.html

Only when you look at this code do you understand the complexity and size of

these classes. NSString.h has 885 lines of code and comments, with over

300 methods and no variables (no members)!

NSString is an intelligent class which can handle any text including

non-European alphabets, but compare it with the Name class in InCode library

where Name.h has 33 lines of code, with 7 methods and 1 pointer member as you

would expect. It is not as intelligent as NSString, but it allows one to work

comfortably with C-like strings, and its methods are easy to remember and use. It

is also easy to make it persistent.

As a cluster class, NSString may hide additional classes – and it probably does

hide them – that are invisible to the application programmer but share the NSString

interface. It works like this:

@interface NSString : NSObject

. . .

+ (id) stringWithCharacters: (const unichar*)characters

length: (NSUInteger)length;

+ (id) stringWithCString: (const char*)byteString

length: (NSUInteger)length;

+ (id) stringWithCString: (const char*)byteString;

+ (id) stringWithFormat: (NSString*)format,. . .;
+ (id) stringWithContentsOfFile: (NSString*)path;

@end

@interface GSMutableString : NSString

{ ??? } // unknown pointers of integers

@end

where each of these methods creates an object of some hidden class, possibly of a

different class for each method. In this case all the methods create an object of

GSMutableString. So in order to make NSString persistent, we have to make

GSMutableString and possibly other classes persistent. And these classes are likely

to be at least as large and complex as NSString.

172777008

4211028

3

172777008

4211032

5

NSString objects

hidden ptr

to string

string size

hidden ptr

to string

string size

4211028 = x
4211029 = y
4211030 = 3
4211031 = \0
4211032 = y
4211033 = z
4211034 = 3
4211035 = 4
4211036 = 5
4211037 = \0

Fig. 6.5 Example of the layout for two NSString objects. Note contiguous strips of memory, one

for NSStrings and one for the strings “xyz” and “yz345”. Strings always start on even address

6.4 Converting Existing Libraries 219

And even if we detect all the classes hidden under NSString, and we insert

PersistInterface and PersistImplementation in them, we still would at least have to

examine all the places where any allocation is performed.

Note that the implementation of NSString as we just described it explains the

memory image of NSStrings as observed in Fig. 6.5. When creating a string object

which stores a literal—a string defined in the compile time and thus allocated from

stack, NSString probably uses a different, simpler implementation than it does for

strings allocated from the heap. Literals will not change or be destroyed, and they

do not need the retain count. The string itself is allocated in a compact way from a

special section of the stack.

There is no way around making the NS library persistent.

It is possible to do it, and the method is simple and clear. However, it will be a

tedious job considering the size of these classes, and it should be attempted

only by someone thoroughly familiar with the internal design of the

library. And that probably is the reason why the full source of this class

is not available to public.

6.4.3 Pointer Detection

We do not suggest that a conversion of a library should be performed automatically,

but Listing 6.6 is an interesting example of how powerful Objective-C is. It allows

us to detect pointers in an object of any class, without adding anything to the class

itself, not even the PersistInterface and PersistImplementation statements.

Look again at how the pointer mask is assembled in Listing 6.4. In the first part

of this listing we create the mask for class klass and we fill its pointers for this class
with the call to assignIvarValue. After that we find the super class of klass,

superClass, and call

[superClass start];

sMask = [superClass getMask];

These two calls form the recursion which assembles the mask, but they are also

the reason why all classes so far needed the PersistInterface and

220 6 Automatic Persistence for Objective-C

PersistImplementation statements. We have to code this part in a way which avoids

additional methods.

Listing 6.6 A better recursion of creating the mask. First call (msk ¼ NULL)

allocates the mask, and returns the finished mask. Subsequent calls just keep

recording the pointers17

+ (void*) createMask:(Class) klass mask:(void*) msk {

Class superClass,*mask; int sz;

if(msk == NULL){

sz=class_getInstanceSize(klass);

// allocate mask as a true object

mask = (Class*)calloc(sz,1);

}

else mask=(Class*)msk;

*mask = klass; // make it the object of this class

[self assignIvarValue:1 inObject:(id)mask];

superClass = class_getSuperclass([klass class]);

if(superClass != nil){

// recursive call to the next base class

[Util createMask:superClass mask:(void*)mask];

}

*mask = klass; // reset hidden pointer back to what it was

return (void*)mask;

}

If we have class LibClass to which we don’t have the source, and we want to get

its pointer mask, we can now do it using the approach from Listing 6.6 (for a full

running code see bk/chap6/possible). We derive class PerClass from LibClass

@implementation PerClass : LibClass

PersistInterface;

@end

@implementation PerClass

PersistImplementation;

@end

and then use it like this which makes a persistent LibClass object:

int main() {

LibClass *lib = [PerClass alloc];

[lib foo];

The mask for PerClass is the same as for LibClass, except for the hidden pointer.

17 For a running example, see directory bk/chap6/possible

6.4 Converting Existing Libraries 221

Unfortunately, this would not help us to detect pointers used in the implementa-

tion of the NSString objects. As we explained, there are no pointers in NSString as

such. We can do this though:

@implementation PRString : NSString

PersistInterface;

@end

@implementation PRString

PersistImplementation;

@end

and we get an empty mask with just the hidden pointer as we would get for an

NSObject. A similar thing happens if we apply the same approach to the NSArray

class.

222 6 Automatic Persistence for Objective-C

Benchmark 7

Abstract

All authors of persistent systems claim that their systems are super fast. This

chapter compares the performance of ten major persistent systems on a bench-

mark which involves up to one million books and a many-to-many relation

between books and their authors. The books can be with or without abstracts.

The results are most interesting and intriguing.

Keywords

Performance • Testing • Persistence • Benchmark • Persistent system • Persistent

data structures • DOL • Memory blasting • PPF • Boost • PSE Pro • SQLite • Java

serialization • C# serialization • QSP • Post++

7.1 History of this Benchmark

We, the authors, met for the first time at the Department of Biochemistry, South

Bohemia University, Nové Hrady, Czech Republic, when discussing the architec-

ture of software1 for processing the output of liquid mass spectrometers.2 In this

project, 2 GB of data must by restructured, stored and analyzed by complex

algorithms on standard PC hardware within 3 minutes. The calculation involves

removal of random noise and conversion of the raw data into a spectrum of peaks.

The work is supported by E.U. and is still in progress at the time of writing.3

Each of us comes from an opposite corner of the programming profession. Petr is a

young application programmer who is always on lookout for new, better ways of

WARNING: Comparing times shown in this chapter without considering features of each system

as discussed in the previous chapters may lead to a wrong conclusion about what is the “best”

persistent system—if there is such a thing.

1 Urban et al. (2009, 2012).
2 http://en.wikipedia.org/wiki/Liquid_chromatography-mass_spectrometry
3 E.U. grant CENAQUA CZ1.05/2.1.00/01.0024.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_7, # Springer-Verlag Berlin Heidelberg 2014

223

http://en.wikipedia.org/wiki/Liquid_chromatography-mass_spectrometry

programming and Jiri spent the past 24 years designing tools for a new, more efficient

software design, with emphasis on automatic persistence and advanced class libraries.

Later on, when we began to work on this book, we discussed how to compare the

performance of the various persistent systems, and we decided that Jiri should not

be involved in their evaluation; it would be difficult for him to remain unbiased. All

the code, testing, and most of the text in this chapter, was produced by Petr.

Our first benchmark was based on the mass spectrometer project, which used

numerous bi-directional associations (one-to-many and many-to-many) that are not

supported by any standard library. Except for DOL and PPF, running this bench-

mark with the existing persistent system required extensive custom modifications—

essentially replacing all the bi-directional associations by several containers or

pointers. We planned to test about ten typical persistent system, and doing every-

thing ten times was not only beyond our capacity—the testing would depend very

much on how we would modify each system.

We eventually decided to strip the benchmark to the bare bones as described in

Sect. 7.2 and Fig. 7.1, using class names that would be more familiar to the average

reader. We believe that the ManyToMany association should be in the benchmark

in order to reflect the complexity of real-life projects, and that blocks of unstruc-

tured text (here book abstracts) often occur in practical problems.

We also added a step in which one quarter of the objects is removed.We believe that

removal of objects is critical inmany applications, and should be part of any benchmark.

The steps which we observed are the same as in our original benchmark. We test

the time to build the data organization, traverse and sort them, search, remove data,

store them to disk, and then—in a separate run, retrieve them from the disk. We also

observe the size of the disk file and check the integrity of the data.

When displaying the results graphically, we ran into the problem of numbers

falling into a wide range where linear graphs show clearly which programs are the

worst rather than which are the best. In such cases, we use logarithmic scale. When

analyzing the results, always watch for what type of scale is used! It may appear

that one system is twice as fast as another, but when you interpret the scale correctly

you see it is ten times faster.

Fig. 7.1 ER diagram of the

benchmark. Except for small

aesthetic differences, also the

UML class diagram

224 7 Benchmark

7.2 Persistent Systems Tested

In alphabetic order:

• Boost C++ library with STL containers or Boost data structures

• C# serialization, as implemented in .NET

• DOL (Data Object Library) library of persistent data structures (Code Farms)

• Java serialization, as implemented in java.io

• Java serialization combined with InCode data structures

• ObjectStore # PSE Pro for C++ combined with InCode data structures

• POST++ (Persistent Object Storage for C++) with STL containers

• PPF (Persistent Pointer Factory) with InCode data structures (Code Farms)

• QSP (Quasi Single Page) persistence for Objective-C4 combined with InCode

• SQLite database for both persistence and data relations (no data structures used)

In graphs and tables, we abbreviate the names of some technologies, for example

P++ stands for POST++, J for Java, B for BOOST or PSE for “PSE Pro”

Since persistent objects are an alternative to using a database, we included

SQLite in our testing. It is a relational database which requires one either to

match the benchmark data structures to the database format or to forget about

object-oriented programming and remain in the realm of relational thinking—

essentially to replace all the data structures by the database.5

The InCode library includes bi-directional associations, and we used it in

environments where the persistent system does not support such associations.

Using the same library helps to reduce dependency of the results on the implemen-

tation of the data structures.

We find the tables and graphs presented below most interesting. However, when

comparing individual technologies, it would be a grave mistake to look just at the

speed of the processing or the size of the output files. The performance is important,

but sometimes the flexibility to support evolving software or the ability to transfer

data between different operating systems may outweigh the performance. For the

features of individual products see Tables 7.1 and 7.2.

The value of measuring performance is twofold:

1. It tells us how the different approaches to persistence, rather than the individual

products compare to each other: serialization vs. workingwithmemory pages,XML

serialization vs. binary serialization or primary data storage in memory vs. on disk.

2. If you choose any particular product because of the features it offers, the

performance results tell you what penalty you are going to pay for those features.

Notes

– We also wondered whether there should be a column for integrity checking, but

then we decided not to include it. Integrity checking is usually performed by the

4 The prototype described in Sects. 2.5 and 6.5.
5 This is what we did when testing with SQLite.

7.2 Persistent Systems Tested 225

Table 7.1 Persistent systems and the features they offer—look for more explanation in the text

Change

or add

to class/

alloc

(a)

Persistence

needs code

generator

(b)

Reuse of

free

objects

(c)

Schema

evolution/

portable data

(d)

Pointers

soft/hard

(e)

Loads only

data actually

needed

(f)

Trans-

actions

(g)

DOL

(3 modes)

+class Y free list Y/Y hard

OS

PPF

+InCode

+class free list soft Y

Java

+InCode

+class OS hard

POST++ +class memory

manager

limited/N hard Y Y

Java

serialization

+class OS Y/Y hard

C#

serialization

+class OS Y/Y hard

PSE Pro +alloc Y memory

manager

Y/N hard Y ACID

Boost +class OS Y/Y hard

SQLite DB OS Y/Y soft Y ACID

Objective-C

QSP

+class memory

manager

hard

Table 7.2 Persistent systems and class libraries

Data structure libraries

DOL (3 modes) Integrated with an extensive library of intrusive and bi-directional associations

Other libraries: would have to be re-coded

PPF Has no special library, works with InCode (only some classes so far)

Other libraries: replace pointers by the PPF smart pointer

Java serialization Designed to work with Java Collections

Other libraries: may be used without conversion

POST++ Integrated with JudyLibrary, STL with serious limitations

Other libraries: pointers must be registered by a special statement

C# serialization Designed to work with Java Collections

Other libraries: may be used without conversion

PSE Pro Has its own collection classes and a version of STL

Other libraries: all allocation calls must be converted

Boost Integrated with the extensive Boost libraries and STL

Other libraries: user must code serialization methods

SQLite Does not have data structures, only a limited choice of relations

Other libraries: cannot be used

Objective-C QSP Has no special library, works with InCode (only some classes so far)

Other libraries: register pointers as in POST

226 7 Benchmark

data structure library, not by the persistence. Libraries that come with DOL and

InCode do provide integrity checking.

– We did not test Objective-C with Archiving because it would take too much

work to prepare the benchmark in that style.

Columns in Table 7.1

Column (a) When making a program persistent, most systems require the applica-

tion to add something to its classes (to make classes persistent). That

does not apply to SQLite which is a database. PSE Pro does not require

any additions to the classes; instead, all allocation calls within the

application code must be modified.

Column (b) Usually when code generator is used it implies a simpler user interface.

InCode library always uses a code generator, but that is for data

structures, not for the persistence.

Column (c) Serializations usually leave the management of free objects to the

operating system. All the systems based on memory paging manage

free objects, but we suspect that sophistication and performance differs

significantly from one system to another. The benchmark only checks

whether the removal of some objects will reduce the disk file which is

an indication that some memory management is in place.

Column (d) This column combines two related features: support for schema evo-

lution6 and the ability to transfer data between different environments,

e.g. between Windows and Unix. In DOL, it is the ASCII mode that

supports schema evolution. In Java serialization and C# serialization

the XML format supports it.

Column (e) Hard pointers are traversed at the same speed as if you don’t use

persistent objects. Soft pointers perform some arithmetic on each

dereference. Note, however, that the benchmark results for PPF later

in this chapter are surprisingly good in spite of using soft pointers.

Column (f) When processing certain types of data, for example in reservation systems,

we need the ability to work with only a small subset of the data. In other

situations such as VLSI CAD systems, all the data is needed in memory.

Column (g) As defined in Chap. 1, the scope of this book does not include multi-

user systems. However, in some application, support of transactions is

a bonus. ACID stands for Atomicity, Consistency, Isolation,
Durability.

7.3 Description of the Benchmark

The benchmark includes classes Library, Book, Author and BooksToAuthors; see

Fig. 7.1.

6 Sometimes also called schema migration.

7.3 Description of the Benchmark 227

http://dx.doi.org/10.1007/978-3-642-39323-5_1
http://en.wikipedia.org/wiki/Atomicity_(database_systems)#Atomicity%20(database%20systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)#Consistency%20(database%20systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)#Isolation%20(database%20systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)#Durability%20(database%20systems)

Class Book has three non-structural members7:

– name is randomly generated title of the book in format “XX book N”, where XX

are two random ASCII characters and N is a random number.

– vote is the number of votes by the readers, random integer.

– abstract is a text of random length, max. 512 characters.

Class Author has one non-structural member:

– name is randomly generated similar name of the author, in format “XX author N”.

Class BooksToAuthors represents the link in the ManyToMany relation, and it

has only structural members.

There are 5-times fewer Authors than Books. A Book can have up to three Authors,

an Author can have any number of Books. The Books in the Library are sorted by vote.

In real application, Books would likely be stored in a dictionary indexed by the Book’s

name. Considering the tests we performed, this was not necessary.

As we expected, participants questioned the usefulness of the benchmark and

whether it reflects the characteristics of real life projects. The fact that the perfor-

mance of several products were significantly improved (more than an order of

magnitude) as the result of this competition—see Sect. 7.9, we believe, is the

ultimate proof of its value.

7.4 Monitored Data

We monitored time needed for individual tasks performed in the benchmark. For

each number of books, we repeated the run five-times and recorded minimum,

maximum and average values. As can be seen from the graphs, the difference

between the runs was insignificant (Sects. 7.4, 7.5, 7.7 and Figs. 7.3 and 7.9).

We tested three sizes of problem:

N ¼ 50,000, 250,000 and 1,000,000 books

all three with/without book abstracts.

We did not perform any monitoring or processing involving abstracts. We only

wanted to see their influence on the size of the disk file, and possibly on the times of

individual tasks due to increased system paging.

Each tests consisted of two runs:

– The first run executed tasks 1–4.

– The second run executed tasks 5–10.

We tested separately the performance for the data with/without abstracts.

Checksums were used to make sure that the data was stored and retrieved

without corruption and in full size.

Hardware used for the testing:

– CPU—AMD Phenom II, X4 965 3.4 GHz (4 cores), 64 bit;

– RAM—KINGSTON DDR3 2000 MHz CL9, 6 GB (3 � 2 GB);

7Numbers or text, anything but references (or pointers).

228 7 Benchmark

– HDD—MAXTOR DiamondMax 23, SATA II NCQ 7200 rpm 32 MB,

1000 GB;

– OS—Windows 7 Home Premium, 64 bit.

The programs were compiled for �86 architecture (32 bit). The C++ and C#

programs were compiled with VS2010, the Java programs with JDK 1.7.0_02.

Objective-C programs were compiled with GNUstep under Windows 7. Additional

details will be discussed later.

During testing the benchmark was always the only program running, with all the

RAM and CPU at its disposal. Each output file had a unique name combining the

technology with the number of books and the repetition index; for example
library_ppf_50000_1.dat.

7.5 Specifics of Individual Technologies

The performance of a persistent system depends on the implementation of the data

structures. We had two choices:

1. To enforce identical data structures for all the persistent systems we tested. [That

could produce misleading results for the systems where special data structures

are a part of the solution.]

2. To measure each persistent system with the data structures it normally uses.

[This is a more realistic overall evaluation.]

We favour approach 2, and for those persistent systems that do not have any

specific library of data structures we used the InCode library which, in our opinion,

provides the best performance for this type of the problem.

The main issue was the implementation of the ManyToMany association. DOL

and InCode libraries already have a generic ManyToMany class. In environments to

which InCode has not yet been ported, we implemented ManyToMany as two

containers, and tested various combinations as shown in Listing 7.1. Only the

best implementation for each technology is shown in the final results.

Table 7.3 Monitored tasks

No. Task Description

1 Create Time to create the library of N books

2 Sort Time to sort books by votea

3 Save Time to save the data to disk

4 FileSize 1 Size of the disk file

5 Open Time to read the data from disk, swizzle pointers

6 TopVoted Time needed to find five books with the top votes

7 Traverse Time to search all books for a substring in their name

8 Delete Time to remove every fourth book

9 Save 2 Time to save the reduced data

10 FileSize 2 Size of the disk file after the data reductionb

aCollections in the InCode library are mostly based on intrusive linked lists. Sorting a linked list is

a massive and random pointer exercise
bSome persistent systems do not reduce the data space

7.5 Specifics of Individual Technologies 229

Note the difference between implementations A and B. Under A there are no

references between classes Book and Author in either direction. Under B, such

references are used. As we began to test, we quickly found that the B-style is

unusable with Java and with C# exporting to XML. We were getting stack overflow

caused by the recursive implementation of Java serialization. This was discussed in

Sects. 1.5.2, 1.5.3 and 1.5.4 including examples demonstrating the problem.

Listing 7.1 Tested implementations of ManyToMany. Names of containers are

generic. For example HashMap<> used here is Dictionary<> in C#, HashMap in

Java and std::map<> in C++

(A1) class Library {
HashMap<Book, Vector<Author>> booksToAuthors;
HashMap<Author, Vector<Book>> authorsToBooks;

}
(A2) class Library {

HashMap<Book, LinkedList<Author>> booksToAuthors;
HashMap<Author, LinkedList<Book>> authorsToBooks;

}
(A3) class Library {

HashMap<Book, HashSet<Author>> booksToAuthors;
HashMap<Author, HashSet<Book>> authorsToBooks;

}
(B1) class Book {

Vector<Author> authors;
}
class Author {

Vector<Book> books;
}

(B2) class Book {
LinkedList<Author> authors;

}
class Author {
LinkedList<Book> books;
}

(B3) class Book {
HashSet<Author> authors;

}
class Author {

HashSet<Book> books;
}

230 7 Benchmark

7.6 Benchmark Rules

1. When coding the benchmark, we asked each author or person responsible for the

product (participant) to review our design.

2. Participants could submit their own implementations in source so that we could

check it and run it on our testing hardware.

3. When several implementations using the same product8 were available, the best

results would be used in the final tables and graphs.

4. When a participant improved his/her system beyond the official version, the

improved results would be accepted only if the participant revealed technical

details of the improvement.

5. Participants would be continuously informed about the results of others, and

about the improvements others decided to share.

6. The competition ran for several months, and there was no time limit. In order to

prevent incorrect or inefficient use of the tested systems we encouraged their

authors or their support groups to cooperate with us on coding the benchmark.

7.7 Testing Details

7.7.1 Java Serialization

In Java, the best performing implementation used pattern A3. The tables also show

the results for the combination of Java serialization with the Java version of InCode

library.

The serialization used objects ObjectInputStream and ObjectOutputStream from

package java.io.

Many containers in the InCode library are intrusive and create long chains of

references. As discussed in Sect. 1.4.2, Java serialization cannot handle this type of

data and crashes with stack overflow. As a workaround we expanded InCode

containers with a method that explicitly writes to disk all its objects, which is

essentially the method whereby Java handles its own containers.

When running on Java virtual machine (JRE) we used parameter Xmx1000m,

which allows Java to use 1 GB of RAM.

7.7.2 C# Serialization

The implementation of ManyToMany used pattern A3.

Tests show that C# binary serialization is very slow, especially the

de-serialization where the time increases rapidly with the number of books. We

have already mentioned in Sect. 1.4.3 that its prime use is in .NET Remoting. It is

8 For example, using different class libraries or different data structures.

7.7 Testing Details 231

unsuitable for the type of data we have in the benchmark. The results are not

included in the book but they are on the website.

Besides the binary serialization, we also tested the XML serialization which, to

our surprise, proved to be much faster. We used two styles of formatting the disk

data:

– Binary format, invoked by object BinaryFormatter in namespace System.

Runtime.Serialization.Formatters.

– XML format, invoked by object DataContractSerializer in namespace
System.Runtime.Serialization.

Serialization based on DataContractSerializer is not fully automatic. The user

must add attribute DataContract() to every class, and attribute DataMember()to

every member to be serialized. In order to minimize the disk space we exported all

members with one-character names. For example, class Library was exported as

XML element L.9

7.7.3 DOL (C++)

DOL has its own library of persistent data structures which includes ManyToMany.

For the relation between Library and Book we used DoubleCollect, which is a

doubly-linked intrusive linked list which protects data integrity.

The benchmark tested all three persistent modes supported by DOL:

– Binary serialization, each object storing its binary image—fast and space

efficient.

– ASCII serialization member by member, in a portable format which also

supports class changes. The disk file is larger than for the binary serialization.

– Memory blasting10 which allocates objects from memory pages, which are then

stored without looking at individual objects, and is super fast.

7.7.4 PPF (C++)

Originally PPF did not have its own library, but now there is a version of InCode

which works with PPF. Note that the prime data storage in PPF is not memory but

disk; the data is paged to memory on demand. Pointers are swizzled any time they

are dereferenced. This naturally leads to a longer traversal time, but very short time

for open and save. Each class has its own file, so there are as many output files as

there are classes in the application.

9 This is done by using attribute DataContract(Name¼“L”).
10 See Sect. 2.2.2; for more details (Soukup 1994, p. 379); how to use it

http://www.codefarms.com/docs/dol/index.htm, Sect. 13.2, Memory management.

232 7 Benchmark

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec22_2
http://www.codefarms.com/docs/dol/index.htm

7.7.5 POST++ (C++)

POST++ library allocates data from one large block of memory, and it does not

come with data structures required for this benchmark. It can store STL containers

but under a rather restricting condition: when opening the disk file, the block must

be stored at the same base address where it was before saving to disk. In other

words, values of all pointers must remain the same. No swizzling required.

We did not find this approach very practical. For data using 100 MB of memory

or more, the mapping to the same address often did not work, and we had to restart

the program several times.

The author11 of POST++ recommends use of an address which is not occupied

by other DLLs. It sounds simple, but starting from Windows Vista, operating

systems randomize locations of DLLs. This also would not work when transferring

data between two different computers that use different DLLs.

ManyToMany was implemented using pattern B3.

7.7.6 SQLite (C++)

Code of this benchmark is quite different from all the other technologies. Instead of

data structures such as List or Array, it uses the relational database, with the schema

from Fig. 7.2. SQLite supports many features including transactions.12

SQLite was set to work as fast as possible by using:

PRAGMA journal_mode ¼ MEMORY13

PRAGMA synchronous ¼ OFF14

7.7.7 PSE Pro for C++ from ObjectStore (c)

Our benchmark would not be complete without this well established commercial

product from the company which on their website claims “performance beyond

reach”, “world’s highest performance” and “fast, instant access”. PSE Pro is a

single-process, small footprint object database management solution based on

memory paging. PSE stands for Personal Storage Edition, and it is a light comple-

ment of the main ObjectStore product, which is a full-fledged OODBS, ObjectStore

Enterprise.

11 Konstantin Knizhnik, Russia.
12 http://www.sqlite.org/features.html
13 http://www.sqlite.org/pragma.html#pragma_journal_mode
14 http://www.sqlite.org/pragma.html#pragma_synchronous

7.7 Testing Details 233

http://www.sqlite.org/features.html
http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_synchronous

As with the other products, we aimed for the best results PSE Pro can produce,

and we coded the benchmark jointly with the PSE Pro support group, which

guaranteed that PSE Pro was used properly. The PSE Pro license does not allow

users to publish results of any benchmarks, but we received a special permit from

the company to include PSE Pro in this chapter. Do not confuse PSE Pro with the

main product of ObjectStore company, the ObjectStore Enterprise (TM).

7.7.8 BOOST (C++)

We tested both the binary serialization and the text serialization. The text serializa-
tion is somewhat similar to DOL ASCII mode, but requires more manual input. The

binary serialization isn’t similar to binary DOL though. BOOST binary stores

member by member using binary format, while DOL binary stores binary images

of entire objects without breaking them into members.

As one could expect, binary BOOST was faster than text BOOST. Under

“BOOST”, graphs and tables in this book show the results of binary serialization.

The book website shows results for both serialization styles.

Fig. 7.2 Benchmark schema

when using SQLite

234 7 Benchmark

We used BOOST persistence version 1.52.2, and ManyToMany was implemented

using pattern A3.

7.7.9 QSP (Objective-C)

Objective-C and its NS library provide a built-in serialization called Archiving,
which requires so much manual input that it does not fit our definition of automatic

persistence—see Sect. 1.4.4.

In Sect. 2.5 we explained new, not previously published persistence based on

memory pages, called Quasi-Single-Page persistence, and in Chap. 6 we explained

how this new approach can be used for truly automatic persistence in Objective-C.

The QSP benchmark used a prototype15 of this persistence combined with

InCode data structures.

7.8 Results

From the book website www.codefarms.com/book, you can download complete

results of the benchmark, with more details than it was possible to show in this

chapter. You can view these results either with MS Excel 322 (files with type xls)

or with OpenOffice, LibreOffice 325 (files with type ods). You can also download

the benchmark implementation with various products and languages, including

batch files which compile and run them.

Most of the results that follow are for one million books without abstracts. We do

not show results for C# binary serialization because it was so slow that the results

were completely out of the range for the other technologies.

Some tables show total times for several tasks, for example for 2(sort) + 6

(topVoted) + 7(traverse). The total is more meaningful when individual

technologies use different data structures.

Observation: PPF, and POST++ page disk to memory on demand. PPF is using

soft pointers, POST++ uses hard pointers. One would expect that, in traversal, PPF

would be slower. Why is it significantly faster in Table 7.4? The only explanation

we can think of is that the softness of the PPF smart pointer is only a few arithmetic

operations, which may be less overhead than the paging and transaction manage-

ment performed in P++.

15 The source is available on the website, but be aware that, except for this benchmark, it has not

been used on any serious project yet.

7.8 Results 235

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_2
http://dx.doi.org/10.1007/978-3-642-39323-5_6

We also tested the benchmark on Mac16 and on iPhone17. The results are for

general interest only; we cannot compare with Tables 7.3 and 7.4 because of the

differences in the hardware:

MacBookPro10.2 with Intel Core i5, 2.5 GHz.

APPLE SSD SM128E with 121.33 GB

Observation: In Tables 7.3 and 7.4, as expected, traversal time for technologies

based on memory paging is longer. The result is that for intensive algorithms the

overall time will become more favourable for technologies that, between open and
save, keep the data in the same memory location.

Konstantin Knizhnik ran the benchmark with POST++ under Linux, using a

computer with an SSD which is faster than normal HDD. His result for “Top voted

Table 7.4 Overall results for one million books without abstract

Technology/

test

Create

(s)

Open

(s)

Sort+

TopVoted+

traverse (s)

Save

(s)

Delete

(s)

FileSize

1 (MB)

FileSize

2 (MB)

Total

mean time

(s)

DOL (bin) 1.34 18.7 2.17 4.72 0.32 112.71 84.99 31.11

DOL (mb) 2.31 1.20 2.17 0.48 0.20 78.51 78.51 6.85

DOL

(ASCII)

1.32 25.09 2.19 11.40 0.33 196.85 152.94 49.29

PPFa 3.07 1.30 2.73 0.53 0.54 88.07 88.07 8.67

P++(set) 3.26 3.67 0.65 3.37 0.58 320.26 320.26 14.89

J (set) 14.49 50.12 1.34 33.67 3.79 81.47 63.63 127.63

J (InCode) 11.24 29.51 3.48 22.01 0.32 43.84 34.41 82.05

C# XML

(set)

11.92 30.73 5.80 15.19 0.58 644.15 496.23 76.13

SQLite 6.88 0.03 45.69 <0.01 159.48 131.72 131.72 212.08

PSE Pro 2.99 1.51 1.52 1.46 1.39 106.48 106.48 10.65

Boost (bin)b 5.63 6.45 0.39 8.86 0.79 84.46 65.48 28.35

ObjC (QSP) 2.66 2.08 1.99 6.98 1.10 133.72 103.39 21.16

Follow footnotes for the stories of products that were significantly improved during the benchmark

competition—this table already shows the improved results
aThe overall time for PPF was reduced 12.5 times by taking advantage of the cache on the modern

hard drives. The information was shared with other participants. For full story and technical

details, see Sect. 7.9.1
bThe overall time for Boost was reduced 7.5 times by correcting a performance bug in Boost

serialization. For full story and technical details, see Sect. 7.9.2

16 For the full source see directory bk/chap7/benchApple.
17 For more information, see Sect. 6.3.

236 7 Benchmark

books” and 1 M books with abstracts was 5.6 sec compared to 27 sec in Table 7.5.

This can be a rough indication of how much the performance can be improved by

using different hardware and operating system (Figs. 7.3, 7.4, 7.5, 7.6, 7.7, 7.8 and

7.9; Tables 7.6 and 7.7).

Table 7.5 Overall results for one million books with abstracts

Technology/

test no

Create

(s)

Open

(s)

Sort+

TopVoted+

traverse (s)

Save

(s)

Delete

(s)

FileSize

1 (MB)

FileSize

2 (MB)

Total

mean time

(s)

DOL (bin) 2.17 29.83 2.21 6.38 0.39 380.44 285.78 46.00

DOL (mb) 2.71 3.74 2.49 2.72 0.23 343.01 343.01 14.38

DOL

(ASCII)

2.14 38.50 2.21 16.29 0.39 489.48 368.22 72.73

PPF 5.88 4.12 2.86 1.90 0.63 359.29 359.29 16.22

P++(set) 4.40 7.59 6.10 6.90 1.08 679.18 679.18 32.98

J (set) 17.62 59.17 1.47 42.95 6.09 212.04 161.53 157.66

J (InCode) 17.74 35.66 3.62 29.89 0.25 301.59 227.76 105.57

C# XML

(set)

13.39 32.57 5.99 15.48 0.60 762.83 585.25 80.30

SQLite 23.64 0.02 50.08 <0.01 182.85 452.42 452.42 256.59

PSE Pro 4.96 4.22 1.52 6.87 2.18 371.40 371.40 28.72

Boost (bin) 6.52 8.15 0.41 9.35 0.82 337.41 255.20 31.97

ObjC (QSP) 3.08 4.71 2.14 10.91 1.14 396.97 300.83 30.75

Fig. 7.3 Average total times, without abstracts. When there is no dark top, there was no file

reduction

7.8 Results 237

Fig. 7.4 Average total times, with abstracts

Fig. 7.5 Minimum and maximum total times, one million books, without abstracts

Fig. 7.6 Minimum and maximum times to create data, one million books without abstracts

238 7 Benchmark

Fig. 7.7 Minimum and maximum times for combined save+open, one million books, without

abstracts. Serializations move all the data between the memory and disk on open or save. In

technologies based on memory paging, data moving blends with traversing the data

Fig. 7.8 Minimum and maximum of the total (sort+topVoted+traversal), for one million books

without abstracts

Fig. 7.9 Size of the disk file before and after one quarter of the data has been removed, for one

million books, without abstracts. When there is no dark top, there was no file reduction

7.8 Results 239

Table 7.6 Times on MacBookPro and iPhone 5 are very close (times in sec, file sizes in MB)

QSP with SSD

1M books

Create+ Sort+

TopVoted Open Traverse Save Delete

FileSize

1

FileSize

2

Total

mean

time

MacBookPro

(no abstracts)

2.75 0.43 0.18 3.14 0.25 248 191 9.07

MacBookPro

(with abstracts)

3.32 0.63 0.20 4.57 0.26 526 400 12.4

iPhone

5 (no abstracts)

2.75 0.43 0.19 3.14 0.25 248 191 9.34

Table 7.7 Average total times for different number of books (times in sec)

Technology/books count

No abstract With abstract

50 k 250 k 1 M 50 k 250 k 1 M

DOL (bin) 1.36 7.00 31.11 1.83 9.57 46.00

DOL (mb) 0.26 1.38 6.85 0.46 3.37 14.38

DOL (ASCII) 2.06 11.59 49.29 3.02 18.06 72.73

PPF 0.44 1.86 8.67 0.78 3.77 16.21

P++(set) 0.76 3.59 14.89 1.47 6.72 32.98

J (set) 5.61 29.70 127.63 6.74 34.73 157.66

J (InCode) 4.18 19.40 82.05 4.51 23.23 105.57

C# XML(set) 3.23 17.24 76.13 3.25 18.40 80.30

SQLite 3.84 25.33 212.08 10.20 40.41 256.59

PSE Pro 1.37 3.14 10.65 2.06 6.73 28.72

Boost (bin) 1.47 6.97 28.35 1.65 10.64 31.97

ObjC (QSP) 0.86 4.77 19.74 1.30 8.62 30.75

240 7 Benchmark

7.9 Improvements

7.9.1 Warmup of the Hard Drive Cache (PPF)

This improvement is specific for problems where all the data must be in virtual

memory for fast traversal such as, for example, in VLSI CAD systems. Our

benchmark also falls into this category.

The IO cache on today’s hard disks is 64 MB and it keeps increasing. With RAM

well in the GB range, the internal buffers used by the disk drivers may be even

larger.

If a persistent system is based on memory paging, and all the data can fit into this

combined fast storage, any re-read of the data is lightning fast.18 But does the order

in which the pages warm up (or move to the cache) matter?

This question led Soukup to the following experiment. When running the PPF

benchmark,19 he did the opposite to running the CacheKiller: he traversed the entire

disk data in a serial manner, without doing anything with it.

That did not take long, left the disk image in the cache, and made PPF amazingly

fast. The total time including the initial warm-up was 12.5� shorter comparing to

the run after the CacheKiller, where PPF would slowly warm up by randomly

accessing the pages.

Useful Trick No. 5.

Before the run which loads the data from disk to memory, read the entire disk

file into a temporary buffer. This can be a short buffer which you keep

overwriting until the end-of-file. This moves the entire disk file into the

cache, and the subsequent load will be just as fast as if you ran it right after

saving the data.

18 This idea is based more on experimental evidence than on the exact knowledge of the HD

construction or of the internal design of the disk drive.
19 This idea is applicable only to persistent systems based on memory paging, because all the other

systems read the disk sequentially anyway.

Benchmark rule No.4 was:

When a participant improves his/her system beyond the publically avai-
lable version, the improved results will be accepted only if the participant
reveals the technical details of the improvement.

This chapter provides full stories and the technical details that may improve the

performance of your persistence system by the order of magnitude.

7.9 Improvements 241

This performance improvement is easy to explain. For mechanical hard drives,

the repositioning of the head is the main source of the delay, and traversing the disk

sequentially minimizes this delay. The performance improvement may not be as

significant for solid state drives (SSD).

Soukup added this warm-up to PPF as one of the options, and we invited all the

other participants to use the idea if they thought it would improve the performance

of their system. Similar additions improved the performance of POST++ and PSE

Pro by about the same rate.

The advantage of Useful Trick No. 5 is that it we can apply it to any persistent

system without having any information about its internal implementation, size of

pages, etc. PSE Pro support group proposed the following improvement, for

situations where we have the information about the paging of the particular system.

Useful Trick No. 6.

Before the run which loads the data from disk to memory, access one pointer

for each page, in the order in which the pages are stored on disk. This reads

the disk sequentially in the cache and, at the same time, it loads all the pages

directly into their memory locations.

This loads the pages to the cache sequentially just as the warmup does it, but it

also loads all the pages to memory. Useful Trick No. 5 throws away what it reads,

and only later do these pages move from the cache to memory. Table 7.8 shows the

effect of using warmup or preloading for PPF.

7.9.2 Problem with Collecting Objects (Boost)

For testing Boost serialization20 we chose the Boost implementation of the STL

library. The first results (see Table 7.9) were a disaster with the worst total time of

all tested systems, 30-times slower than DOL mb.

Table 7.8 Initial warm-up or preloading pages serially significantly improves the overall time

Technology

Create

(s)

Open

(s)

Sort+ TopVoted

+ Traverse (s)

Save

(s)

Delete

(s)

FileSize

1 (MB)

FileSize

2 (MB)

Total

mean time

(s)

PPF orig 7.27 0.01 4.79 1.05 296.4 351.90 351.90 310.30

PPF warm 5.91 3.67 9.46 0.80 3.85 358.18 359.18 24.18

PPF

preload

5.88 4.12 3.66 1.90 0.63 359.29 359.29 16.22

Times for one million books with abstracts

20We used Ver.1.53.

242 7 Benchmark

The author of Boost serialization, Robert Ramey, analyzed the problem and

found the problem in the algorithm which collects all objects before saving to disk.

In the case where STL containers were given pointers, it performed excessive

searches.

Situations like that can happen easily, for example, when invoking:
class Book { . . . };
std::set<Book*> books;

and we wondered why, with the world-wide use of Boost, nobody has

complained about it.

Our discussion about the internal workings of the algorithm convinced us that

even after this fix, the algorithm is still quite inefficient. It moves around objects

instead of pointers, thus changing the object address; yet this address is used as a

key in the std::set.

If this part of the Boost serialization is re-implemented with the algorithms from

Sect. 2.1.6 (Useful Trick No. 4), it would be at least ten-times faster.

It took several weeks of hard negotiations and testing to find the best data

structures for the benchmark. We clearly had different views of what would be a

“modern and efficient” implementation. The benchmark requires two OneToMany

associations and one ManyToMany associations that should be implemented to

allow fast removal of objects, and also, in one case (books), sorting. STL does not

provide such classes.21

Ramey’s design (row No. 2 in Table 7.9) involved:

std::set<Book> books;

std::string title;

std::string abstract;

std::set<Author> authors;

std::string name;

std::multiset<BookToAuthor, order_dereferenced_pair<

std::set<Book>::iterator, std::set<Author>::iterator> authorToBooks;

std::multiset<AuthorToBook, order_dereferenced_pair<

std::set<Author>::iterator, std::set<Book>::iterator> bookToAuthors;

Table 7.9 Original poor results obtained with BOOST Ver.1.5.3, and improved results by Ramey

and Machacek (times in sec, file sizes in MB)

1M books

without

abstracts Create Open

Sort+

TopVoted+

Traverse Save Delete

FileSize

1

FileSize

2

Total

mean

time

(1) Original

Machacek

4.28 193.86 0.96 10.34 0.51 84.42 79.99 218.46

(2) New

Ramey

9.21 13.7 14.0 8.24 1.30 70.4 53.9 51.3

(3) New

Machacek

5.62 7.06 0.40 8.75 0.81 84.4 65.5 28.9

21 InCode library has them but we did not want to go through the conversion of InCode to Boost.

Also, we believe that persistent systems should be tested with their native libraries.

7.9 Improvements 243

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec15_2

Machacek’s design (row No. 3 in Table 7.9) involved:

std::set<Book*> books;
std::string title;
std::string abstract;
std::set<Author*> authors;
std::string name;
std::map<Book*, std::set<Author*>> booksToAuthors;
std::map<Author*, std::set<Book*>> authorsToBook;

Note that both designs use std::set, which is internally implemented as a binary

tree. It is not as fast to remove an object from such a tree as it is from an intrusive

linked list,22 but it is reasonably fast. However, the set of books cannot be sorted by

the vote, because the vote count is not unique. Both versions use a temporary array

of Book* pointers, and sort this array with qsort.
Since our benchmark rules called for the best results to be published, Table 7.4

shows the results of Machacek’s implementation. The improved version of Boost,

Ver.1.5.4, will be released in June 2013.

Observation.

If you recently noticed a significant performance improvement of Boost

serialization (version 1.5.4 or higher), Code Farms PPF library (version 3.5

or higher), or ObjectSTORE (c) PSE Pro, possibly running over ten-times

faster on certain types of data, it is likely the result of the intense but friendly

competition associated with this benchmark.

22 Such as available from InCode or DOL.

244 7 Benchmark

Proposal to Add a Keyword to All OO
Languages 8
Jiri Soukup and Martin Soukup

Abstract

Implementation of libraries that can handle bi-directional associations today

requires a simple code generator. This code generator could be eliminated if

the programming languages supported a new keyword described in this proposal.

Keywords

Object-oriented languages • Syntax • Features • Aspects • Expansion • Proposal

When building library of generic data structures, existing languages allow us to

build only uni-directional association—essentially the containers which we have in

our standard libraries such as STL or Java Collections. These containers are only a

small part of what we need in practice. Every day we need bi-directional association

such as Aggregates, ManyToMany associations, various graphs and finite state

machines, and we have to custom code them any time we need them.

These bi-directional associations are missing in our standard libraries because

they require insertion of members, usually references, to two or more classes, and

the existing languages do not have a mechanism for this coordinated insertion and

for controlling their access which should be restricted to the dataless class which

represents (and manipulates) the data structure.

J. Soukup (*)

Code Farms Inc., Richmond, ON, Canada

e-mail: jiri@codefarms.com

M. Soukup

Irdeto Canada corp., Ottawa, Canada

e-mail: the.martin.soukup@gmail.com

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_8, # Springer-Verlag Berlin Heidelberg 2014

245

mailto:jiri@codefarms.com
mailto:the.martin.soukup@gmail.com

Being able to store all data structures, including the multi-directional ones, in a

library has a major positive effect on code clarity, because it moves all reference

members from the application classes to the library, where they can be well tested

and guarded. It also improves software reliability and quality. Having all pointers in

the library also simplifies the implementation of persistent objects. If all

associations are implemented as library classes, conversion back-and-forth between

the UML diagram and the code becomes trivial, no special tools are required.

For all these reasons, we propose an addition of two keywords (and of two

simple concepts) to the existing object-oriented languages. With their help, we will

get all these benefits plus, as a bonus, static aspects will become a part of the

language. For two decades, libraries based on this idea have been used in a variety

of application with great success.

8.1 The New Keyword

Within the context of class R, keyword insert will transparently add a specified

member to a given class S. Using Java syntax:

class R {

insert S memberType1 memberName1;

insert S memberType2 memberName2;

. . .

}

Only R will have access to these members, and it will access them through

another keyword myown1:

class R {

public void xyz(S s){

s.myown.memberName1¼null;

}

}

The C++ syntax would be

public void xyz(S *s){

s->myown.memberName1¼NULL;

}

1 This is only a temporary arrangement; we will show later that we really do not need this keyword.

246 8 Proposal to Add a Keyword to All OO Languages

Keyword myown would not trigger any processing. It would only instruct the

compiler to create an internal name parameterized by the association and its types.

For example, if we have Aggregate

class Aggregate<P,C> {

insert P C head;

insert C P parent;

insert C C next;

. . .

C getNext(C c){return c.myown.next;}

}

then invocation

Aggregate<Library,Book> books = new

Aggregate<Library,Book>();

may trigger the insertion of the following members into class Book:

Library Aggregate_Library_Book_head;

Book Agregate_Library_Book_next;

and myown.next in function getNext() is interpreted as

Agregate_Library_Book_next

Keyword myown is a shortcut to make this easy to implement in the compiler. A

smart compiler may automatically insert the expanded identification for both the

member and its references within the context of the class with the insert, and then

only one keyword is required.

8.2 Generic Design Patterns

Structural design patterns are essentially data structures which, in addition to

traditional references and arrays, also use inheritance. Examples of patterns Com-

posite or Flywheel coded in this style are shown in Soukup (1995). His implemen-

tation with C++ templates automatically inserts references and arrays, but expects

that the required inheritance has been arranged by the user.

In order to make this fully automatic and transparent, it would make sense to

allow two styles of insertion:

insert S memberType memberName;

insert S baseType;

8.2 Generic Design Patterns 247

With this arrangement, for example, pattern Composite may look like this:

class Composite<P,C> {

insert P C; // implies P inherits from C

insert P C head;

insert C P parent;

insert C C next;

. . .

}

8.3 Example of Using the New Features for Generic Data
Structures

Let’s code a reusable Aggregate class in the style that AspectJ does it.

For a smart compiler, simply remove myown throughout the code.2

class Aggregate<Parent,Child,Dummy> {

insert Parent Child head;

insert Child Child next;

insert Child Parent parent;

// add c in a NULL-ending list

public static void add(Parent p,Child c) {

if(p.myown.head){

c.myown.next¼p.myown.head;

}

else c.myown.next¼NULL;

c.myown.parent¼p;

p.myown.head¼c;

}

. . .
}

Depending on the language and whether the static/non-static representation of

the data structure is used, using the same data structure with the same participating

classes more then once could lead to a conflict. For example, in Java this works fine,

because in this case instance based representations must be used.3

C++ has a special provision for such situations: templates may have an integer

parameter. If you don’t use it, it is assumed to be 0:

typedef Aggregate<Department,Employee> research;

typedef Aggregate<Department,Employee,1> admin;

typedef Aggregate<Department,Employee,2> manufact;

2 Aggregate is another name for OneToMany bi-directional association, one of the most frequently

occurring relations. This example shows its implementation based on intrusive linked lists.
3With Aggregate, such a situation is hard to imagine; the next three lines would not be the most

efficient model.

248 8 Proposal to Add a Keyword to All OO Languages

Using Aggregate in Java:

class Department {. . .} // as if not using any associations

class Employee {. . .} // as if not using any associations

// declaration of data structures

Aggregate<Company,Department> departments=new Aggregate<Company,Department>();

Aggregate<Department,Employee> employees=new Aggregate<Department,Employee>();

OneToOne<Department,Employee> boss=newOneToOne<Department,Employee> ();

// using the data structures

Department d=new Department();

Employee e1=new Employee();

Employee e2=new Employee();

. . .

employees.add(d,e);

employees.add(d,e2);

boss.add(d,e1);

Using Aggregate in C++:

public class Department {. . .}; // as if not using any associations

public class Employee {. . .} // as if not using any associations

// declaration of data structures

typedef Aggregate<Company,Department,Dummy> departments;

typedef Aggregate<Department,Employee,Dummy> employees;

typedef OneToOne<Department,Employee,Dummy> boss;

// using the data structures

Department *d; Employee *e1,*e2;

. . .
employees::add(d,e1);

employees::add(d,e2);

boss::add(d,e1);

8.4 Associations and Existing Class Libraries

We can add such reusable data structures to the existing libraries such as C++

Standard Template Library and Java or .NET Collections without any modifications

to the existing classes. Existing classes (uni-directional associations) will be a

special case of the new, multi-directional implementation. Iterators for the new

associations can be coded in the style already used for the collections—for

examples look at PTL (1997) or InCode (2004).

It will be easy and straightforward to derive new complex data structures from

the existing simple ones. For example, the bi-directional many-to-many association

can be theoretically derived from two Aggregates.4

4 This is all Java code; in C++, we can use Java classes multiple inheritance.

8.4 Associations and Existing Class Libraries 249

public class ManyToMany<Source,Link,Target>

{
Aggregate<Source,Link> srcRel =

new Aggregate<Source,Link>();

Aggregate<Target,Link> tarRel =

new Aggregate<Target,Link>();

// add a link between the given source and target

public void add(Source src,Link lnk,Target tar) {

srcRel.addHead(src,lnk);

tarRel.addHead(tar,lnk);

}

. . .
}

Using ManyToMany in an application:

// application classes as if not using data structures

static class Student {. . .}
static class Course {. . .}

static class Enrolled (

int mark;

}

// declaration of the data structure(s)

ManyToMany<Student,Enrolled,Course> enrollments =

new ManyToMany<Student,Enrolled,Course>();

// using the data structure

Student s = new Student();

Enrolled e = new Enrolled();

Course c = new Course();

enrollments.add(s,e,c);

250 8 Proposal to Add a Keyword to All OO Languages

The Future 9

Abstract

We believe that the ideas described in this book will lead to a new paradigm of

how to design software. In the same way as structured programming eliminated

goto statements and removed spaghetti logic, this new paradigm eliminates

explicit references (or pointers) from application classes and removes spaghetti

data organization. The architecture is controlled by a short block of code—the

schema, and the UML class diagram is automatically generated with each compi-

lation as a visual aid for the programmer. All this has been demonstrated in many

projects over the past 2 decades, but still requires more work in some areas.

Keywords

Algorithm • Class libraries • Future • Goto • OO languages • Pointerless

programming • Programming paradigm • Structured programming • UML. QSP

9.1 New Programming Paradigm

It is not academics or IT researchers, but programmers who work on real-life projects

who are conservative in accepting new ideas. Programming differently means think-

ing differently, as if the problems they have to handle are not complex and challeng-

ing enough! And how many times did they get their fingers burnt by errors in new

software or by an interface that makes them swear any time they use it.

This chapter discusses how the ideas and concepts presented in this book may

lead to a completely new way of designing software, how they may improve

existing languages and products, and what additional work is needed to bring

products such as QSP or InCode to a massive everyday use.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_9, # Springer-Verlag Berlin Heidelberg 2014

251

On the other hand, progress cannot be stopped. If there is a way to design

software several times faster—doesn’t matter whether 3� or 10�, without any

special evaluation clearly much faster while producing programs with fewer errors

that are easier to maintain, then it is only a matter of time before we will all be

programming in this new style and wondering how we could have programmed so

inefficiently for such a long time.

The reason for the general acceptance will be twofold: business owners and

managers will grasp it because of the indisputable increase in productivity, and

programmers will like it because it will make their work less stressful and more fun.

Based on 2 decades of programming in this new paradigm, we don’t just

believe—we know that improvements of this magnitude are now at our disposal.

9.1.1 Pointerless Programming

We use this term for the new style of representing data structures as described in

Chap. 3, with separation of the control (interface) from the pointers and other data

stored in the participating classes. The control classes representing the data

structures (associations) have the same visibility as application classes.

Pointerless programming is sorely needed for several reasons:

• It will finally get us out of the corner into which we painted ourselves with the

existing container libraries. We need generic libraries with bi-directional

associations, not just uni-directional ones.

• It will allow us to expand our libraries with a multitude of pointer-based data

structures, which were developed over the past 2 decades and which are mostly

unused today.

• In general, we need libraries capable of handling intrusive data structure—truly

intrusive ones, not what Boost library calls “intrusive”.

• Libraries implemented in this style can remove all explicit pointer members

from the application classes, thus preventing many hard-to-find pointer errors.

The term pointerless comes from the ban on explicit pointer members in

application classes. As shown in Chap. 3, we do allow pointer members, but they

must not be loose, explicit pointers. All pointer members must be transparent and

controlled as a part of some data structure.

Conceptually, pointerless programming is analogous to structured programming

which eliminates goto statements, which used to form hard-to-manage networks in

program logic. Today, lose pointers can form hard-to-manage networks of objects.

9.1.2 Different Way of Using UML Class Diagram

The reasons for using UML class diagrams are:

• It is a visual help in both the architecture design and in the programmaintenance.

• It is the prime input for the code generator which creates the initial code

skeleton.

• It is the key communication tool between the architect and the programmer.

252 9 The Future

http://dx.doi.org/10.1007/978-3-642-39323-5_3
http://dx.doi.org/10.1007/978-3-642-39323-5_3

Our experience is that the block of Association statements (or file ds.def in the

InCode library) is a better record of the architecture than any diagram could be.

These statements are compact and concise, and, because they are an integral part of

the code, they cannot be outdated. It is easier to modify them with a text editor than

to create, remove and move boxes and connection lines on the screen. The diagram

can be generated automatically—always up to date and visually pleasing even after

a major modification of the architecture.

The change of paradigm involves a major chane in the role for the UML class

diagram. The new approach could be called “UML inside out”. Instead of the

diagram controlling the code, we have code (file ds.def with the Association

statements) controlling the diagram.

Note that the programmer cannot misinterpret the architecture. The architect

provides ds.def and, if the programmer wants/needs to change it, the architect has to

approve the change.

Wait a minute, you may say; isn’t architect supposed to design at a higher level,

thinking in Associations and not in Hash tables or Collections? In many situations

the choice of implementation is part of the architecture; for a more general design,

libraries like InCode provide a default for each Association type, usually its

simplest, basic implementation.

9.1.3 Automatic Persistence and Databases

There are many small and medium sized projects where persistent objects are a

better solution than using a database. The code is simpler and easier to maintain,

and the program is more efficient both in speed and size.

There are also important practical problems, for example CAD systems for

design of silicon chips, where, in spite of huge data size, using a database is not

an option because of the speed requirements.

Then there are problems where multiuser access and data security are the key

issues, for example banking systems or online flight reservation, and a true database

is the only solution.

Traditionally, a light database such as SQLite was easier to use than clumsy

serializations offered by various languages including Boost. With the automatic

persistence available now, the situation is reversed, and the programming commu-

nity should be educated about it.

With 64-bit computer architectures available today, persistent objects can effi-

ciently handle huge data frameworks, and will likely replace traditional databases

in many applications.

9.1 New Programming Paradigm 253

9.2 What Can Be Improved

There are several areas in which the existing software can be improved:

Persistent C++: It would be easy to add paged-based persistence (such as QSP)

to the C++ language. It could be completely transparent and it would give C++ a

tremendous edge compared to other OO languages.

C++ class info: It would greatly simplify the implementation of persistent objects

if the C++ compiler produced a file with the list of classes and their pointers.1 That

would allow one to add a completely transparent persistent layer, and products like

ObjectStore PSE would not need a code generator, or their generator would be much

simpler.

Standard libraries: The difficulties with converting existing libraries is the

main hindrance to the mass use of automatic persistence. In all languages, no library

should be accepted as a standard unless it provided a general support for general

persistence, not just for their own serialization.

Boost serialization would be significantly faster in saving data to disk, if the

algorithm for collecting objects applied Useful Trick No. 4.

Serializations in Java, C#, and Objective-C (archiving) would remove their

limitations if the algorithm for collecting all objects used a ring stack instead of the

recursive function.

Proposal to add keyword to OO languages: After the book is published,2 we

plan to submit Chap. 8 to languages committees and compiler designers for C++,

Java, and C#.

9.3 Unfinished Business

If you are looking for interesting projects in persistence, consider these:

QSP needs more extensive testing.

QSP automatic pointer detection should be expanded to handle pointers

embedded in a struct.

Existing QSP automatic pointer detection assumes that all classes have

several methods including start and getMask. Using recursive [Persist start], this

assumption can be relaxed to only classes with allocated instances, and that will

help to detect pointers of library classes derived from other library classes.

QSP internal pages: If QSP page could not allocate because of its size, allocate

several smaller pages instead.

InCode version for Objective-C needs to convert remaining classes.

1 This would be a primitive, partial reflection, but the compiler already has this information

available.
2We attempted to contact some of these places already, but for example Microsoft refused to

discuss the matter for legal reasons unless it has been published.

254 9 The Future

http://dx.doi.org/10.1007/978-3-642-39323-5_8

PTL with PPF: Experiment with making Pattern Template Library persistent

with PPF. The modifications should be similar to InCode with PPF.

Layout: This program needs more testing.

9.3 Unfinished Business 255

References

Biliris A, Dar S, Gehani NH (1993) Making C++ object persistent: the hidden pointers. Software

Pract Exp 23(12):1285–1303

BOOST library serialization (2013) http://www.boost.org/doc/libs/1_52_0/libs/serialization/doc/

index.html. Accessed 19 Apr 2013

Borland C++ Version 4.5, Library Reference 1994. Borland, Scotts Vallley

Core Data Framework (2013) http://en.wikipedia.org/wiki/Core_Data. Accessed 29 Apr 2013

Cornell G, Horstmann C (1997) Core Java, 2nd edn. Sun Microsystems, Mountain View, CA

Cornell G, Horstmann C (2011) Core Java I and II. Prentice Hall, Upper Saddle River, NJ (Eight

Edition)

Data Object Library (2013) http://www.codefarms.com/dol. Accessed 19 Apr 2013

Dijkstra EW (1976) Discipline of programming. Prentice Hall, Upper Saddle River, NJ

Forward A, Badreddin O, Lethbridge C, Solano J (2011) Model-driven rapid prototyping with

Umple. http://obahy.files.wordpress.com/2012/11/softwarepractexpjournal-proto-fromrsp.pdf.

Accessed 19 Apr 2013

Gal E, Toledo S (2005) Mapping structures for flash memories: techniques and open problems. In:

Proc. of IEEE Int.Conf. on Software (SwSTE’05)

Goldberg A, Robson D (1989) Smalltalk-80, The Language. Addison-Wesley, Reading, MA

Haradhvala SJ, Weinreb DL (1991) Method and apparatus for virtual memory mapping and

transaction management in an object-oriented database system. US Patent No: 5,426,747, 22

Mar 1991

Horstmann C (1993) /DOS/C++. C++ Rep 5(5):54–59

Horstmann C, Cornell G (2012) Core Java I and II. Prentice Hall Upper Saddle River, NJ

(Ninth Edition) (The section on Java persistence differs significantly in different editions.)

InCode Library (2004) http://www.codefarms.com/incode. Accessed 19 Apr 2013

Javin P (2011) How garbage collection works in Java. http://javarevisited.blogspot.com/2011/04/

garbage-collection-in-java.html. Accessed 1 May 2013

Kernighan BW, Ritchie DM (1978) The C programming language. Prentice Hall, Englewood

Cliffs, NJ

Knizhnik K (1999) Persistent object storage for C++. www.garret.ru/post_readme.ps.gz. Accessed

11 Dec 2013

Ku A (2011) Investigation: is your SSD more reliable than a hard drive? http://www.

tomshardware.com/reviews/ssd-reliability-failure-rate,2923.html. Accessed 19 Apr 2013

Lamb C, Landis G, Orenstein J, Weinreb D (1991) The ObjectStore database system. ComACM

34(10):50–63

Laddad R (2003) Aspect J in action. Manning, Greenwich, CT

Mariott A, Rousseau B (2003) ObjectStore and STL. http://odbms.org/download/026.01%

20Marriott%20ObjectStore%20and%20STL%20June%202006.PDF. Accessed 19 Apr 2013

Nelson S, Pearce DJ, Noble J (2007) First-class relationships in object oriented programs.

University of Auckland Software Engineering Workshop (SIENZ) 2007

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5, # Springer-Verlag Berlin Heidelberg 2014

257

http://www.boost.org/doc/libs/1_52_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_52_0/libs/serialization/doc/index.html
http://en.wikipedia.org/wiki/Core_Data
http://www.codefarms.com/dol
http://obahy.files.wordpress.com/2012/11/softwarepractexpjournal-proto-fromrsp.pdf
http://www.codefarms.com/incode.%20Accessed%2019%20Apr%202013
http://javarevisited.blogspot.com/2011/04/garbage-collection-in-java.html#_blank
http://javarevisited.blogspot.com/2011/04/garbage-collection-in-java.html#_blank
http://www.garret.ru/post_readme.ps.gz
http://www.tomshardware.com/reviews/ssd-reliability-failure-rate%2c2923.html#_blank
http://www.tomshardware.com/reviews/ssd-reliability-failure-rate%2c2923.html#_blank
http://odbms.org/download/026.01%20Marriott%20ObjectStore%20and%20STL%20June%202006.PDF
http://odbms.org/download/026.01%20Marriott%20ObjectStore%20and%20STL%20June%202006.PDF

Osterby K (2000) Design of a class library for association relationships. http://lcsd.cs.tamu.edu/

2007/final/7/7_Paper.pdf. Accessed 19 Apr 2013

Pattern Template Library (1006) (2013) http://www.codefarms.com/ptl. Accessed 19 Apr 2013

Pearce DJ, Noble J (2006) Relationship aspects. AOSD 06 conference, Bonn, Germany, 20–24

March, 2006

Persistent Pointer Factory (1997) http://www.codefarms.com/ppf. Accessed 19 Apr 2013

Riley D (2012) Write endurance. http://www.tomshardware.com/reviews/ssd-910-benchmark-per

formance,3226-6.html. Accessed 19 Apr 2013

Saxena M, Shah M, Swift MM, Merchant A (2012) Hathi: durable transactions for memory using

flash. In: Proc. of Int. workshop on data management on New Hardware (DaMoN 2012),

Scottsdale AZ, 21 May 2012

Shasha N, Toledo S (2007) Storing a persistent transactional object heap on flash memory. In:

Proc. of IEEE Int. Conf. on Software (SwSTE’07)

Singhal V, Kakkad SV, Wilson PR (1992) Texas: an efficient portable persistent portable store. In:

Proceedings of the 5th international workshop on persistent object system, San Miniato, Italy.

Springer

Soukup J (1989) An easy way to program algorithms. Paper presented at southeastern int. conf. on

combinatorics, graphs theory, and computing, Boca Raton, Florida, Feb 1989

Soukup J (1992a) Selecting a C++ library. C++ Rep 4(1):1–6

Soukup J (1992b) Memory resident databases. C++ Rep 4(2):11–15

Soukup J (1992) The secret of efficient software design—internal data organization. Paper presented

at IEEE electro-internat conf, Boston, May 1992

Soukup J (1992d) Persistent data, part 1. C++ J 2(2):60–65

Soukup J (1992e) Beyond templates, part I. C++ Rep 4(4):27–31

Soukup J (1992f) Beyond templates, part II. C++ Rep 4(5):29–35

Soukup J (1994) Taming C++, pattern classes and persistence for large projects. Addison-Wesley,

Reading, MA (Japanese translation ISBN 4-8101-8088-3)

Soukup J (1995) Implementing patterns. In: Coplien JO, Schmidt DC (eds) Pattern languages of

program design. Addison-Wesley, Reading, MA, p 395–415

Soukup J (1996) Quality patterns. C++ Rep 8(9):26–29

Soukup J (1997) Implementing patterns. C++ Rep 9(4):49–50

Soukup J (1998a) Intrusive data structures, part I. C++ Rep 10(5):22–27

Soukup J (1998b) Intrusive data structures, part II. C++ Rep 10(7):5–7

Soukup J (1998c) Intrusive data structures, part III. C++ Rep 10(9):28–32

Soukup J (1999) Data structures as objects. DrDobb’s J 24(10):21–30

Soukup J (2007) Implementing reusable associations/relationships, 2007 OOPSLA workshop

(organized by)

Soukup M, Soukup J (2007a) Reusable associations. DrDobb’s J 32(11):51–56

Soukup M, Soukup J (2007b) The inevitable cycle: graphical tools and programming paradigms.

IEEE Comput 40(8):24–30

Spinczyk O, Lohmann D (2007) The design and implementation of AspectC++. Knowl Based Syst

Spec Issue Tech Prod Intell Secur Softw 20(7):636–651

Stevens A (1993) Object-oriented database management systems. DrDobbs’s J 18(4):7–15

Stroustrup B (1991) The C++ programming language. Addison-Wesley, Reading

Urban J, Vaněk J, Soukup J, Štys D (2009) Expertomica metabolite profiling: getting more

information from LC-MS using the stochastic systems approach. Bioinformatics 25

(20):2764–2767. doi:10.1093/bioinformatics/b

Urban J, Vaněk J, Štys D (2012) Systems theory in liquid chromatography. In: Mass spectrometry,

LAMBERT Academic Publishing, ISBN-13: 978-3-659-29816-5

UMPLE User Manual (2012) http://cruise.eecs.uottawa.ca/umple/GettingStarted.html. Accessed

19 Apr 2013

Vadaparty K (1997) Memory-resident object databases <DOL> JOOP 10(7):63–67

Vadaparty K (1998a) A closer look at DOL. JOOP 10(8):65–68

258 References

http://lcsd.cs.tamu.edu/2007/final/7/7_Paper.pdf
http://lcsd.cs.tamu.edu/2007/final/7/7_Paper.pdf
http://www.codefarms.com/ptl
http://www.codefarms.com/ppf
http://www.tomshardware.com/reviews/ssd-910-benchmark-performance%2c3226-6.html#_blank
http://www.tomshardware.com/reviews/ssd-910-benchmark-performance%2c3226-6.html#_blank
http://dx.doi.org/10.1093/bioinformatics/b
http://cruise.eecs.uottawa.ca/umple/GettingStarted.html

Vadaparty L (1998b) Relationships and entry points in DOL. JOOP 11(2):6–9

Weinreb D (2007) Dan Weinreb’s blog. http://danweinreb.org/blog/category/objectstore.

Accessed 19 Apr 2013

White SJ, DeWitt DJ (1995) QuickStore: A high performance mapped object store. VLDB J 4

(4):629–673

Wilson PR (1990) Pointer swizzling at page fault time: efficiently supporting huge address spaces

on standard hardware. Tech. Rep. UIC-EECS-90-6, University of Illinois

Zikari RV (2010) TechView product report: objectStore. http://odbms.org/download%

5CTechView%20Progress10.pdf. Accessed 19 Apr 2013

Zino DAD (2012) Apple iOS 4 security evaluation. http://media.blackhat.com/bh-us-11/DaiZovi/

BH_US_11_DaiZovi_iOS_Security_WP.pdf. Accessed 19 Apr 2013

References 259

http://danweinreb.org/blog/category/objectstore
http://media.blackhat.com/bh-us-11/DaiZovi/BH_US_11_DaiZovi_iOS_Security_WP.pdf
http://media.blackhat.com/bh-us-11/DaiZovi/BH_US_11_DaiZovi_iOS_Security_WP.pdf

Index

A
Active objects, 62–66

Adding members and methods to a class,

40–43

Address Space Layout Randomization

(ASLR), 170–172

Aggregate, 115

AggregateChild, 119

AggregateParent, 119

Agile, 153

Alexander, C.W., 142

Algorithm A, 101

Algorithm B, 102

Algorithm C, 103

Algorithm D, 103

Allocation, 76–80, 97–100, 210–211

Apple, 236

Archiving, 96, 189

Array, 58–59, 99–100, 105, 134–136

Array-based data structures, 110

ASCII serialization, 68–70

ASLR. See Address Space Layout
Randomization (ASLR)

AspectC++, 159

AspectJ, 158–159

Aspects, 156–160

Associations, 115, 249–250

Automatic persistence, 253

Automatic Reference Counting (ARC), 194

B
Benchmark, 223–244

Benchmark rules, 231

Bidirectional, 109, 115

Binary serialization, 67–68

Boost, 184

Boost (C++), 234

C
C#, 188–189

C++, 182–184

CacheKiller, 241

Chains of references, 63

C language, 176–181

Class libraries, 249–250

Cleanup, 104

C# library of associations, 189

Cocoa archives, 189
Code generator, 55–58, 122–125, 132–134

Collecting, 62–66

Collecting objects, 242–244

Collections, 114, 115

Complexity, 147–153

Composite, 145

Compression, 104

Concatenate all the pages, 102

Constructors, 207

Container libraries, 118

Converting, 217–222

Convert STL, 128

C# serialization, 231–232

D
Databases, 253

Data Object Library (DOL), 54, 68, 112,

182–186

Data structures, 110–138

DB schema, 154–156

Deallocation, 70

Debugging, 198–199

Debugging print, 213

Dependency, 216–217

Design patterns, 142–147

Detecting pointers, 55–58

Disk address, 93

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5, # Springer-Verlag Berlin Heidelberg 2014

261

DOL. See Data Object Library (DOL)

DOL (C++), 232

DOL ASCII, 164

ds.def, 123

Dynamic aspect, 157

E
Embedded List, 114
Errors, 147–153, 198–199

Evolving tMask, 60

Explicit pointer members, 137

Extensible property, 167–169

Extracting inheritance, 59–62

F
FIFO (First In First Out), 63

File mapping, 81–86

Flash memories, 172–174

Free lists, 76

Free objects, 105–107

Free storage, 91

From above, 42–43

From below, 40–41

Future, 251–255

G
Garbage collection, 70, 76–80

Generalized templates, 122–125

Generic associations, 247–248

Generic classes, 148

Generic design patterns, 247–248

H
Hard drive cache, 241–242

Hidden pointers, 43–46

I
IDE, 132–134

InCode, 112, 123

Inheritance, 138–142

Inserting pointers, 138–142

Interface, 152–153

Intrusive Aggregate, 120, 121

Intrusive List, 114

iPhone, 217

J
Java, 187–185

Java serialization, 231

L
Languages, 175–199

Layout, 154

Libraries, 142–147, 217–222

Linux, 236

Lists, 111–115

Long macro, 41

M
MacBookPro, 236

Memory blasting, 72

Memory paging, 70–80

Merging, 111

mmap, 84

Multiple inheritance, 43

Multi-user, 169–170

N
Networks, 169–170

New keyword, 246–247

NextStep (NS), 190, 193

NSArray, 211

NS classes, 218–220

NSObject, 190, 193

NSString, 193, 209

O
Object array, 113

Objective-C, 95, 189–198, 201–222

ObjectStore PSE (C++), 45, 233–234

Overloading new(), 45

P
Page-fault, 81

Pages of memory, 210–211

Paradigm, 251–253

Parameterization, 122

Partial syntax, 59

Persistent libraries, 107

Persistent Pointer Factory (PPF), 92, 183–184

Persistent pointers, 86–95

PersistObject, 216–217

PersistPtrT, 92

Placement new, 45

Pointer array, 111

Pointer based data structures, 110

Pointerless programming, 252

Pointer list, 113

Pointer mask, 37, 96, 206–210, 214–215

POST++, 48, 79, 86

POST++ (C++), 233

262 Index

PPF. See Persistent Pointer Factory (PPF)

PPF (C++), 232

Preallocated objects, 87

Preprocessor, 132

Proposal, 245–250

PSE, 86

PSE Pro, 187

PTL library, 157

PTR, 48, 50, 206–210

Q
QSP (Objective-C), 235

Quasi-Single Page (QSP), 95–107, 198, 202

R
Rapid, 153

Recursion, 101

Recursive, 63

Reflection, 47–48, 96, 214–215

Registering pointers, 53

Registry file, 155

Regular pointers, 46–58

Relations, 118

Results, 235–240

Roots, 62

Runtime errors, 150–152

S
Schema migration, 163–167

Self, 192

Separating data and interface, 116–121

Serialization, 96

Set, 114

Smart library, 53–55

Smart phones, 172–174

Smart pointer, 52–53, 71

Sorting a list, 111

Splitting, 111

SQLite (C++), 233

Stacks, 101

Standard library, 115

Static aspects, 157

STL, 118

STR, 47

Super, 196

Swizzle, 45, 81

T
Transparent insertion, 125–128

Traversing pointers, 62

U
UML, 252–253

UML class diagram, 154–156

UMPLE, 187

Unfinished business, 254–255

Uni-directional, 115

Unused objects, 89

Useful trick, 41, 51, 64, 75, 106, 215, 242

V
Vector, 111, 134

Virtual functions, 43

Visibility, 118

W
Warmup, 241–242

Z
ZZ_FORMAT, 164

Index 263

	Preface
	Issue 1: Persistency
	Issue 2: Bi-directional and Intrusive Data Structures
	Issue 3: Pointers (or References) as Members of Application Classes
	Issue 4: Visibility of the Relations
	Issue 5: UML Class Diagram Driving the Code

	Suggested Reading Paths (Based on Reader's Experience)
	Level 1: Beginner Able to Use Basic Collections
	Level 2: Practitioner Already Using Serialization
	Level 3: Software Architect
	Level 4: Expert or Someone Building Class Libraries or Persistent Systems

	Book Website
	Acknowledgements
	Contents
	1: Introduction
	1.1 Starting with an Example
	1.2 Definition of Persistent Objects and the Scope of this Book
	1.3 Pointers and References
	1.4 Persistent Objects as a Light-Weight Database
	1.5 Languages with Built-In Persistence
	1.5.1 Persistence in Early Smalltalk
	1.5.2 Java Serialization
	1.5.3 C# Serialization
	1.5.4 Objective-C Archiving
	1.5.5 BOOST Serialization in C++

	2: Fundamentals of Persistence
	2.1 Algorithms and Techniques
	2.1.1 Adding Members and Methods to a Class
	2.1.1.1 Adding from Below
	2.1.1.2 Inserting Inside
	2.1.1.3 Adding from Above

	2.1.2 Hidden Pointers
	2.1.3 Regular Pointers
	2.1.3.1 Detecting Pointers with Reflection
	2.1.3.2 References Registered for Each Class
	2.1.3.3 Smart Pointer that Registers Itself
	2.1.3.4 Smart Library Registering Pointers
	2.1.3.5 Detecting Pointers with a Code Generator

	2.1.4 Arrays
	2.1.5 Extracting Inheritance
	2.1.6 Collecting All Active Objects
	2.1.7 Java-Style Collecting Objects
	2.1.8 Binary Serialization
	2.1.9 ASCII Serialization
	2.1.10 Deallocation and Garbage Collection

	2.2 Memory Paging
	2.2.1 Bitmap
	2.2.2 Pages of Memory
	2.2.3 Dynamic Allocation and Garbage Collection

	2.3 File Mapping
	2.4 Persistent Pointers
	2.4.1 The Main Idea
	2.4.2 Array on Disk, Paged to Memory on Demand

	2.5 Quasi-Single Page (QSP)

	3: Data Structures, Patterns, and UML
	3.1 Basic Facts About Data Structures
	3.1.1 Working with Lists
	3.1.2 Separating Data and Interface
	3.1.3 Generalized Templates-Code Generator
	3.1.4 Transparent Insertion
	3.1.5 Big and Small, STL
	3.1.6 Code Generator and IDE
	3.1.7 Arrays (Vectors)
	3.1.8 Make Them Persistent

	3.2 Inserting Pointers with Inheritance
	3.3 Library of Design Patterns
	3.4 Complexity and Errors
	3.4.1 Reducing Complexity
	3.4.2 Leaving More Work to the Compiler
	3.4.3 Preventing and Catching Runtime Errors
	3.4.4 Interface: Less May Be More
	3.4.5 True Rapid and Agile Development

	3.5 DB Schema and UML Class Diagram
	3.6 Intrusive Data Structures with Aspects
	3.7 Conclusion

	4: Advanced Features, Schema Migration
	4.1 Schema Migration
	4.2 Extensible Property
	4.3 Multi-user Access, Data over Networks
	4.4 Address Space Layout Randomization (ASLR)
	4.5 Flash Memories, Smart Phones

	5: Languages, Their Features and Limitations
	5.1 Plain Old C Language
	5.2 C++ Language
	5.3 Java Language
	5.4 C# Language
	5.5 Objective-C Language
	5.6 Errors and Debugging

	6: Automatic Persistence for Objective-C
	6.1 Practical Guide to QSP Persistence
	6.1.1 QSP Phase 1
	6.1.2 QSP Phase 2

	6.2 Technical Notes on Objective-C Implementation
	6.2.1 Notes to Phase 1
	6.2.1.1 Creating Pointer Mask from PTR Statements
	6.2.1.2 Allocating Objects from Pages of Memory
	6.2.1.3 Main Part of the QSP Algorithm

	6.2.2 Notes to Phase 2
	6.2.2.1 Creating Pointer Mask with Reflection
	6.2.2.2 Removing Dependency on PersistObject

	6.3 Testing QSP on iPhone
	6.4 Converting Existing Libraries
	6.4.1 Libraries Available in Source
	6.4.2 Difficulties with NS Classes
	6.4.3 Pointer Detection

	7: Benchmark
	7.1 History of this Benchmark
	7.2 Persistent Systems Tested
	7.3 Description of the Benchmark
	7.4 Monitored Data
	7.5 Specifics of Individual Technologies
	7.6 Benchmark Rules
	7.7 Testing Details
	7.7.1 Java Serialization
	7.7.2 C# Serialization
	7.7.3 DOL (C++)
	7.7.4 PPF (C++)
	7.7.5 POST++ (C++)
	7.7.6 SQLite (C++)
	7.7.7 PSE Pro for C++ from ObjectStore (c)
	7.7.8 BOOST (C++)
	7.7.9 QSP (Objective-C)

	7.8 Results
	7.9 Improvements
	7.9.1 Warmup of the Hard Drive Cache (PPF)
	7.9.2 Problem with Collecting Objects (Boost)

	8: Proposal to Add a Keyword to All OO Languages
	8.1 The New Keyword
	8.2 Generic Design Patterns
	8.3 Example of Using the New Features for Generic Data Structures
	8.4 Associations and Existing Class Libraries

	9: The Future
	9.1 New Programming Paradigm
	9.1.1 Pointerless Programming
	9.1.2 Different Way of Using UML Class Diagram
	9.1.3 Automatic Persistence and Databases

	9.2 What Can Be Improved
	9.3 Unfinished Business

	References
	Index

