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Abstract. The highest level of mathematics has traditionally been seen
as a solitary endeavour, to produce a proof for review and acceptance
by research peers. Mathematics is now at a remarkable inflexion point,
with new technology radically extending the power and limits of indi-
viduals. Crowdsourcing pulls together diverse experts to solve problems;
symbolic computation tackles huge routine calculations; and computers
check proofs too long and complicated for humans to comprehend.

The Study of Mathematical Practice is an emerging interdisciplinary
field which draws on philosophy and social science to understand how
mathematics is produced. Online mathematical activity provides a novel
and rich source of data for empirical investigation of mathematical prac-
tice - for example the community question-answering system mathover-
flow contains around 40,000 mathematical conversations, and polymath
collaborations provide transcripts of the process of discovering proofs.
Our preliminary investigations have demonstrated the importance of
“soft” aspects such as analogy and creativity, alongside deduction and
proof, in the production of mathematics, and have given us new ways to
think about the roles of people and machines in creating new mathemat-
ical knowledge. We discuss further investigation of these resources and
what it might reveal.

Crowdsourced mathematical activity is an example of a “social ma-
chine”, a new paradigm, identified by Berners-Lee, for viewing a combi-
nation of people and computers as a single problem-solving entity, and
the subject of major international research endeavours. We outline a fu-
ture research agenda for mathematics social machines, a combination of
people, computers, and mathematical archives to create and apply math-
ematics, with the potential to change the way people do mathematics,
and to transform the reach, pace, and impact of mathematics research.

1 Introduction

For centuries, the highest level of mathematical research has been seen as an
isolated creative activity, whose goal is to identify mathematical truths, and
justify them by rigorous logical arguments which are presented for review and
acceptance by research peers.

Yet mathematical discovery also involves soft aspects such as creativity, in-
formal argument, error and analogy. For example, in an interview in 2000 [1]
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Andrew Wiles describes his 1989 proof of Fermat’s theorem in almost mystical
terms “... and sometimes I realized that nothing that had ever been done before
was any use at all. Then I just had to find something completely new; it’s a
mystery where that comes from.” Michael Atiyah remarked at a workshop in
Edinburgh in 2012 [2]“I make mistakes all the time” and “I published a theorem
in topology. I didn’t know why the proof worked, I didn’t understand why the
theorem was true. This worried me. Years later we generalised it—we looked at
not just finite groups, but Lie groups. By the time we’d built up a framework,
the theorem was obvious. The original theorem was a special case of this. We
got a beautiful theorem and proof.”

Computer assisted proof formed some of the earliest experiments in artificial
intelligence: in 1955 Newell, Shaw and Simon’s Logic Theorist searched forward
from axioms to look for proofs of results taken from Russell and Whitehead’s
1911 Principia Mathematica. Simon reported in a 1994 interview [74] that he
had written to Russell (who died in 1970, aged 97), who “wrote back that if
we’d told him this earlier, he and Whitehead could have saved ten years of their
lives. He seemed amused and, I think, pleased.” By the mid-1980s a variety
of approaches and software tools, such as the theorem provers HOL, NuPrl and
Nqthm, had started to be developed for practical reasoning about programs: [42]
is a thorough account of the early history. This laid the foundation for a flour-
ishing academic and industry community, and currently verification to ensure
error-free systems is a major endeavour in companies like Intel and Microsoft
[37], as well as supporting specialist small companies. At the same time theo-
rem provers are now being used by an influential community of mathematicians.
Tom Hales and his team have almost completed a ten-year formalisation of their
proof of the Kepler conjecture, using several theorem provers to confirm his ma-
jor 1998 paper [36]. In September 2012 Georges Gonthier announced that after
a six year effort his team had completed a formalisation, in the Coq theorem
prover, of one of the most important and longest proofs of 20th century algebra,
the 255 page odd-order theorem [32]. He summarised the endeavour as:

Number of lines ˜ 170 000
Number of definitions ˜ 15 000
Number of theorems ˜ 4 200
Fun ˜ enormous!

The growth in the use of computers in mathematics, and in particular of com-
puter proof, has provoked debate, reflecting the contrast between the “logical”
and “human” aspects of creating mathematics: see [56] for a survey. For ex-
ample in an influential paper in 1979, De Millo, Lipton and Perlis [28], argued
that “Mathematical proofs increase our confidence in the truth of mathematical
statements only after they have been subjected to the social mechanisms of the
mathematical community”, and expressed concern over “symbol chauvinism”.
Similar concerns were raised in the mathematical community over the use of a
computer by Appel and Haken [10] to settle the long standing four colour conjec-
ture. Indeed, Hume, in his 1739 Treatise on Human Nature [40] p231, identified
the importance of the social context of proof:
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There is no Algebraist nor Mathematician so expert in his science, as to
place entire confidence in any truth immediately upon his discovery of it,
or regard it as any thing, but a mere probability. Every time he runs over
his proofs, his confidence encreases; but still more by the approbation of
his friends; and is rais’d to its utmost perfection by the universal assent
and applauses of the learned world. [sic]

The sociology of science addresses such paradoxes in the understanding of the
scientific process, and a comprehensive account is given by sociologist Donald
MacKenzie in his 2001 book “Mechanizing Proof” [52]. He concludes that used to
extend human capacity the computer is benign, but that “trust in the computer
cannot entirely replace trust in the human collectivity”. In recent years “the
study of mathematical practice” has emerged from the work of Pólya and Lakatos
as a subdiscipline drawing upon the work of sociologists, cognitive scientists,
philosophers and the narratives of mathematicians themselves, to study exactly
what it is that mathematicians do to create mathematics. Section 2 of this paper
contains a fuller account.

The mathematical community were “early adopters” of the internet for dis-
seminating papers, sharing data, and blogging, and in recent years have devel-
oped systems for “crowdsourcing” (albeit among a highly specialised crowd) the
production of mathematics through collaboration and sharing, providing further
evidence for the social nature of mathematics. To give just a few examples:

– A number of senior mathematicians produce influential and widely read
blogs. In the summer of 2010 a paper was released plausibly claiming to prove
one of the major challenges of theoretical computer science, that P �= NP :
it was withdrawn after rapid analysis organised by senior scientist-bloggers,
and coordinated from Richard Lipton’s blog. Fields Medallist Sir Tim Gowers
used his blog to lead an international debate about mathematics publishing.

– polymath collaborative proofs, a new idea led by Gowers, use a blog and
wiki for collaboration among mathematicians from different backgrounds
and have led to major advances [35]

– discussion fora allow rapid informal interaction and problem-solving; in three
years the community question answering system for research mathematicians
mathoverflow has 23,000 users and has hosted 40,000 conversations

– the widely used “Online Encyclopaedia of Integer Sequences” (OEIS) invokes
subtle pattern matching against over 200,000 user-provided sequences on a
few digits of input to propose matching sequences: so for example input of
(3 1 4 1) returns π (and other possibilities) [3]

– the arXiv holds around 750K preprints in mathematics and related fields.
By providing open access ahead of journal submission, it has markedly in-
creased the speed of refereeing, widely identified as a bottleneck to the pace
of research [27]

– Innocentive [4], a site hosting open innovation and crowdsourcing challenges,
has hosted around 1,500 challenges with a 57% success rate, of which around
10% were tagged as mathematics or ICT.
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As well as having a remarkable effect on mathematical productivity, these sys-
tems provide substantial and unprecedented evidence for studying mathematical
practice, allowing the augmentation of traditional ethnography with a variety of
empirical techniques for analysing the texts and network structures of the in-
teractions. In Section 3 we describe two of our own recent preliminary studies,
of mathoverflow and polymath, which provide evidence for the theories of Pólya
and Lakatos, and shed new light on mathematical practice, and on the current
or future computational tools that might enhance it. Analysing the content of a
sample of questions and responses, we find that mathoverflow is very effective,
with 90% of our sample of questions answered completely or in part. A typical
response is an informal dialogue, allowing error and speculation, rather than
rigorous mathematical argument: a surprising 37% of our sample discussions
acknowledged error. Looking at one of the recent mini-polymath problems, we
find only 24% of the 174 comments formed the development of the final proof,
with the remainder comprising a high proportion of examples (33%) alongside
conjectures and social glue. We conclude that extending the power and reach
of mathoverflow or polymath through a combination of people and machines
raises new challenges for artificial intelligence and computational mathematics,
in particular how to handle error, analogy and informal reasoning.

Of course, mathematics is not the only science in which productive new hu-
man collaborations are made possible by machines. Over the past twenty years
researchers in e-science have devised systems such as Goble’s myExperiment [71]
for managing scientific workflow, especially in bioinformatics, so that data, anno-
tations, experiments, and results can be documented and shared across a uniform
platform, rather than in a mixture of stand alone software systems and formats.
Michael Nielsen, one of the founders of polymath, in his 2011 book “Reinvent-
ing discovery” [61] discusses a number of examples of crowdsourced and citizen
science. Alongside polymath, he describes Galaxy Zoo, which allows members of
the public to look for features of interest in images of galaxies, and has led to
new discoveries, and Foldit, an online game where users solve protein folding
problems.

Considered more broadly, such systems are exemplars of “Social machines”,
a broad new paradigm identified by Berners-Lee in his 1999 book “Weaving
the Web” [16], for viewing a combination of people and computers as a single
problem-solving entity. Berners-Lee describes a dream of collaborating through
shared knowledge:

Real life is and must be full of all kinds of social constraint — the very
processes from which society arises. Computers can help if we use them
to create abstract social machines on the Web: processes in which the
people do the creative work and the machine does the administration. .
. The stage is set for an evolutionary growth of new social engines. The
ability to create new forms of social process would be given to the world
at large, and development would be rapid.

Current social machines provide platforms for sharing knowledge and leading to
innovation, discovery, commercial opportunity or social benefit: the combination
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of mobile phones, Twitter and google maps used to create real-time maps of the
effects of natural disasters has been a motivating example. Future more ambi-
tious social machines will combine social involvement and sophisticated automa-
tion, and are now the subject of major research, for example in Southampton’s
SOCIAM project [5] following an agenda laid out by Hendler and Berners-Lee
[38]. In Section 4 we look at collaborative mathematics systems through the lens
of social machines research, presenting a research agenda that further develops
the results of work on the practice of mathematics.

2 The Study of Mathematical Practice

The study of mathematical practice emerged as a fledgling discipline in the
1940’s when mathematician and educator Georg Pólya formulated problem-
solving heuristics designed to aid mathematics students. These heuristics, such as
“rephrase the question”, and “draw a diagram” were based on Pólya’s intuition
about rules of thumb which he himself followed during his research, and have
been influential in mathematics education (although not without critics, who ar-
gue that meta-heuristics are needed to determine when a particular route is likely
to be fruitful [48,62,73]). Pólya’s idea, that it is possible to identify heuristics
which describe mathematical research – a logic of discovery – was extended by
Imre Lakatos, fellow countryman and philosopher of mathematics and science.1

Lakatos used in-depth analyses of extended historical case studies to formulate
patterns of reasoning which characterised conversations about a mathematical
conjecture and its proof. These patterns focused on interactions between math-
ematicians and, in particular, on the role that counterexamples play in driving
negotiation and development of concepts, conjectures and proofs.

Lakatos demonstrated his argument by presenting a rational reconstruction
of the development of Euler’s conjecture that for any polyhedron, the number of
vertices (V) minus the number of edges (E) plus the number of faces (F) is equal
to two; and Cauchy’s proof of the conjecture that the limit of any convergent
series of continuous functions is itself continuous. He outlined six methods for
modifying mathematical ideas and guiding communication: surrender, monster-
barring, exception-barring, monster-adjusting, lemma-incorporation, and proofs
and refutations. These are largely triggered by counterexamples, or problematic
entities, and result in a modified proof, conjecture or concept. For instance,
the methods of monster-barring and monster-adjusting exploit ambiguity or
vagueness in concept definitions in order to attack or defend a conjecture, by
(re)defining a concept in such a way that a problematic object is either excluded
or included. With monster-barring, the ambiguous concept is central to the con-
jecture and defines the domain of application, such as a “polyhedron” (in Eu-
ler’s conjecture), a “finite group” (in Lagrange’s theorem), or an “even number”
(in Goldbach’s conjecture). Here, Lakatos presents the picture-frame, for which

1 Lakatos translated Pólya’s [67] and other mathematical works into Hungarian before
developing his own logic of discovery, intended to carry on where Pólya left off [46,
p. 7].
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V - E + F = 16 - 32 + 16 = 0 (see figure 1): this is “monster-barred” as being
an invalid example of a polyhedron, and the definition of polyhedron tightened
to exclude it. With monster-adjusting, the ambiguous concept is a sub-concept
(appears in the definition of the central concept), such as “face”, “identity”,
or “division” (following the polyhedron/finite group/even number examples).
(Re)defining this sub-concept can provide an alternative way of viewing a prob-
lematic object in such a way that it ceases to be problematic: Lakatos gives
the example of Kepler’s star-polyhedron, which is a counterexample if V - E +
F is 12 - 30 + 12 = -6 (where its faces are seen as star-pentagons), but can
be salvaged if we see V - E + F as 32 - 90 +60 = 2 (where its faces are seen
as triangles) (see figure 1). The result of both of these methods is a preserved
conjecture statement, where the meaning of the terms in it have been revised or
clarified.

Fig. 1. Controversial polyhedra: A picture-frame, on the left, for which V - E + F =
16 - 32 + 16 = 0, and Kepler’s star-polyhedron, on the right, for which V - E + F
can be 12 - 30 + 12 = -6 (if it has star-pentagon faces) or 32 - 90 +60 = 2 (if it has
triangular faces)

In Lakatos’s exception-barring method, a counterexample is seen as an excep-
tion, triggering a refinement to the conjecture, and in his lemma-incorporation
and proofs and refutations methods, problematic objects are found and exam-
ined to see whether they are counterexamples to a conjecture or a proof step,
which are then revised accordingly.

Lakatos held an essentially optimistic view of mathematics, in which the pro-
cess of mathematics traditionally thought of as impenetrable and inexplicable
by rational laws, considered to be lucky guess work or intuition, is seen in a ra-
tionalist light, thereby opening up new arenas of rational thought. He challenged
Popper’s view [70] that philosophers can form theories about how to evaluate
conjectures, but not how to generate them, which should be left to psycholo-
gists and sociologists. Rather, Lakatos believed that philosophers could theorise
about both of these aspects of the scientific and mathematical process. He chal-
lenged Popper’s view in two ways - arguing that (i) there is a logic of discov-
ery, the process of generating conjectures and proof ideas is subject to rational
laws; and (ii) the distinction between discovery and justification is misleading as
each affects the other; i.e., the way in which we discover a conjecture affects our
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proof (justification) of it, and proof ideas affect what it is that we are trying
to prove (see [49]). This happens to such an extent that the boundaries of each
are blurred. These ideas have a direct translation into automated proof research,
suggesting that conjecture and concept generation are subject to rationality as
well as proof, and therefore systems can (perhaps even should) be developed
which integrate these theory-development aspects alongside proof generation.

At the heart of both Pólya and Lakatos’s work was the idea that the mecha-
nisms by which research mathematics progresses – as messy, fallible, and
speculative as this may be – can usefully be studied via analysis of informal math-
ematics. This idea has been welcomed and extended by a variety of disciplines;
principally philosophy, history sociology, cognitive science and mathematics ed-
ucation [9,21,26,54]. The development of computer support for mathematical
reasoning provides further motivation for studying the processes behind infor-
mal mathematics, particularly in the light of the criticisms this has sometimes
received. Sociologist Goffman [31] provides a useful distinction here, of front
and backstage activities, where activities in the front are services designed for
public consumption, and those in the back constitute the private preparation of
the services. Hersh [39] extends this distinction to mathematics, where textbook
or publication-style “finished mathematics” takes frontstage, and the informal
workings and conversations about “mathematics in the making” is hidden away
backstage. Pólya employed a similar distinction, and Lakatos warned of the dan-
gers of hiding the backstage process, either from students (rendering the subject
impenetrable) or from experts (making it more difficult to develop concepts or
conjectures which may arise out of earlier versions of a theorem statement).
Computer support for mathematics, such as computer algebra or computational
mathematics, has typically been for the frontstage. A second, far less developed,
approach is to focus on the backstage, including the mistakes, the dead ends and
the unfinished, and to try to extract principles which are sufficiently clear as to
allow an algorithmic interpretation: the study of mathematical practice provides
a starting point for this work.

Implicit or explicit in much work on mathematical practice is the recogni-
tion that mathematics takes place in a social context. Education theorist, Paul
Ernest [29], sees mathematics as being socially constructed via conversation; a
conversation which is as bound by linguistic and social conventions as any other
discourse. Thus, if such conventions are violated (by other cultures, or, per-
haps, by machines) then shared understanding is lost and – mirroring Kuhnian
paradigm shift – new conventions may need to be formed which accommodate
the rogue participant. Kitcher [44], a philosopher of mathematics, elaborates
what a mathematical practice might mean, suggesting a socio-cultural definition
as consisting in a language and four socially negotiated sets: accepted state-
ments, accepted reasonings, questions which are considered to be important and
meta-mathematical views such as standards of proof and the role of mathe-
matics in science (agreement over the content of these sets helps to define a
mathematical culture). Mackenzie [52] looked at the role of proof, especially com-
puter proof, and his student Barany [12] used ethnographic methods to trace the
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cycle of development and flow of mathematical ideas from informal thoughts, to
seminar, to publication, to dissemination and classroom, and back to informal
thoughts. He sees (re)representations in varying media such as notes, blackboard
scribbles, physical manifestations or patterns of items on a desk, as necessary,
for the knowledge to be decoded and encoded into socially and cognitively ac-
ceptable forms. In particular, Barany investigated the relationship between the
material (the “pointings, tappings, rubbings, and writings” of mathematics [12,
p.9]) and the abstract, arguing that each constrains the other. Other develop-
ments in the study of mathematical practice include work on visualisation, such
as diagrammatic reasoning in mathematics [30,53]; analogies, such as between
mathematical theories and axiom sets [13,72]; and mathematical concept de-
velopment, such as ways to determine potential fruitfulness of rival definitions
[75,76]. At the heart of many of these analyses lies the question of what proof
is for, and the recognition that it plays multiple roles; explaining, convincing,
evaluating, aiding memory, and so on, complementing or replacing traditional
notions of proof as a guarantee of truth). This in turn gives an alternative picture
of machines as members of a mathematical community.

3 Mathematical Practice and Crowdsourced Mathematics

In this section we outline preliminary results from our own ongoing programme
of work which uses collaborative online systems as an evidence base for further
understanding of mathematical practice. We studied a sample of mathoverflow
questions and the ensuing discussions [57], and the third mini-polymath problem
[65], looking at the kinds of activities taking place, the relative importance of
each, and evidence for theories of mathematical practice described in the previous
section, especially the work of Pólya [67] and Lakatos [46].

mathoverflow and polymath are similar in that they are examples of the back-
stage of collaborative mathematics. They provide records of mathematicians
collaborating through nothing more than conversation, underpinned by varying
levels of shared expertise and context. While participants may invoke results
from computational engines, such as GAP or Maple, or cite the literature, nei-
ther system contains any formal links to software or databases. The usual pre-
sentation of mathematics in research papers is the frontstage, in a standardised
precise and rigorous style: for example, the response to a conjecture is either a
counterexample, or a proof of a corresponding theorem, structured by means of
intermediate definitions, theorems and proofs. By contrast these systems present
the backstage of mathematics: facts or short chains of inference that are rele-
vant to the question, but may not answer it directly, justified by reference to
mathematical knowledge that the responder expects the other participants to
have.

3.1 Mathoverflow

Discussion fora for research mathematics have evolved from the early newsnet
newsgroups to modern systems based on the stackexchange architecture, which
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allow rapid informal interaction and problem-solving. In three years mathover-
flow.net has accumulated 23,000 users and hosted 40,000 conversations. Figure 2
shows part of a mathoverflow conversation [8], in answer to a question about the
existence of certain kinds of chains of subgroups. The highly technical nature
of research mathematics means that, in contrast to activities like GalaxyZoo,
this is not currently an endeavour accessible to the public at large: a separate
site math.stackexchange.com is a broader question and answer site “for people
studying math at any level and professionals in related fields”. Within mathover-
flow , house rules give detailed guidance, and stress clarity, precision, and asking
questions with a clear answer. Moderation is fairly tight, and some complain it
constrains discussion.

The design of such systems has been subject to considerable analysis (see, for
instance, [15]), and meta.mathoverflow contains many reflective discussions. A
key element is user ratings of questions and responses, which combine to form
reputation ratings for users. These have been studied by psychologists Tausczik
and Pennebaker [77,78], who concluded that mathoverflow reputations offline
(assessed by numbers of papers published) and in mathoverflow were consistently
and independently related to the mathoverflow ratings of authors’ submissions,
and that while more experienced contributors were more likely to be motivated
by a desire to help others, all were motivated by building their mathoverflow
reputation.

Fig. 2. A typical mathoverflow conversation

Within mathoverflow we identified the predominant kinds of questions as:
Conjecture (36%), which ask whether or under what circumstances a state-
ment is true; What is this (28%), which describe an object or phenomenon
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and ask what is known about it; and Example (14%) which ask for examples of
a phenomenon or an object with particular properties. Other smaller categories
ask for an explicit formula or computation technique, for alternatives to a known
proof , for literature references, for help in understanding a difficulty or apparent
contradiction,2 or for motivation.

Analysing the answers in our sample shed further light on how the system was
being used. mathoverflow is very effective, with 90% of our sample successful,
in that they received responses that the questioner flagged as an “answer”, of
which 78% were reasonable answers to the original question, and a further 12%
were partial or helpful responses that moved knowledge forward in some way.
The high success rate suggests that, of the infinity of possible mathematical
questions, questioners are becoming adept at choosing those for mathoverflow
that are amenable to its approach.

The presentation is often speculative and informal, a style which would have
no place in a research paper, reinforced by conversational devices that are ac-
cepting of error and invite challenge, such as “I may be wrong but...”, “This
isn’t quite right, but roughly speaking...”. Where errors are spotted, either
by the person who made them or by others, the style is to politely accept
and correct them: corrected errors of this kind were found in 37% of our
sample.3

In 34% of the responses explicit examples were given, as evidence for, or coun-
terexamples to, conjectures: thus playing exactly the role envisaged by Lakatos.
We return to this below. In 56% of the responses we found citations to the liter-
ature. This includes both finding papers that questioners were unaware of, and
extracting results that are not explicit in the paper, but are straightforward (at
least to experts) consequences of the material it contains.

It is perhaps worth commenting on things that we did not see. As we shall see
in the next section, in developing “new” mathematics considerable effort is put
into the formation of new concepts and definitions: we saw little of this in math-
overflow, where questions by and large concern extending or refining existing
knowledge and theories. We see little serious disagreement in our mathoverflow
sample: perhaps partly because of the effect of the “house rules”, but also be-
cause of the style of discussion, which is based on evidence from the shared
research background and knowledge of the participants: there is more discussion
and debate in meta.mathoverflow, which has a broader range of non-technical
questions about the development of the discipline and so on.

3.2 Polymath

In 2009 the mathematician Timothy Gowers asked “Is massively collaborative
mathematics possible?” [34], and with Terence Tao initiated experiments which

2 Several questions concerned why Wikipedia and a published paper seemed to con-
tradict each other.

3 This excludes “conjecture” questions where the responses refutes the conjecture. We
looked at discussions of error: we have no idea how many actual errors there are!
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invited contributions on a blog to solving open, difficult conjectures. Participants
were asked to follow guidelines [7], which had emerged from an online collabora-
tive discussion, and were intended to encourage widespread participation and a
high degree of interaction, with results arising from the rapid exchange of infor-
mal ideas, rather than parallelisation of sub-tasks. These included “It’s OK for
a mathematical thought to be tentative, incomplete, or even incorrect” and “An
ideal polymath research comment should represent a ‘quantum of progress’ ”.
While mathoverflow is about asking questions, where typically the questioner
believes others in the community may have the answer, polymath is about col-
laborating to solve open conjectures.

There have now been seven Polymath discussions, with some still ongoing,
leading to significant advances and published papers, under the byline of “D
J H Polymath” [69]. Analysis by Gowers [35], and by HCI researchers Cran-
shaw and Kittur [43], indicates that polymath has enabled a level of collab-
oration which, before the internet, would probably have been impossible to
achieve; the open invitation has widened the mathematical community; and
the focus on short informal comments has resulted in a readily available and
public record of mathematical progress. As noted by Gowers, this provided “for
possibly the first time ever (though I may well be wrong about this) the first
fully documented account of how a serious research problem was solved, com-
plete with false starts, dead ends etc.” [33]. Four annual mini-polymath projects
(so far) have selected problems from the current International Mathematical
Olympiad: thus in contrast to the open-ended research context of polymath,
participants trust the question to be solvable without advanced mathematical
knowledge.

We investigated mini-polymath 3, which used the following problem.

Let S be a finite set of at least two points in the plane. Assume that no three points
of S are collinear. A windmill is a process that starts with a line l going through a
single point P ∈ S. The line rotates clockwise about the pivot P until the first time
that the line meets some other point Q belonging to S. This point Q takes over as the
new pivot, and the line now rotates clockwise about Q, until it next meets a point of
S. This process continues indefinitely.
Show that we can choose a point P in S and a line l going through P such that the
resulting windmill uses each point of S as a pivot infinitely many times.

It was solved over a period of 74 minutes by 27 participants through 174
comments on 27 comment threads. People mostly followed the rules, which were
largely self regulating due to the speed of responses: a long answer in response
to an older thread was likely to be ignored as the main discussion had moved
on. Some sample comments included:
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1 If the points form a convex polygon, it is easy.

2 Can someone give me *any* other example where the windmill cycles without vis-
iting all the points? The only one I can come up with is: loop over the convex hull of S

3 One can start with any point (since every point of S should be pivot infinitely
often), the direction of line that one starts with however matters!

4 Perhaps even the line does not matter! Is it possible to prove that any point and
line will do?

5 The first point and line P0, l0 cannot be chosen so that P0 is on the boundary of
the convex hull of S and l0 picks out an adjacent point on the convex hull. Maybe
the strategy should be to take out the convex hull of S from consideration; follow it
up by induction on removing successive convex hulls.

6 Since the points are in general position, you could define “the wheel of p”, w(p)
to be radial sequence of all the other points p!=p around p. Then, every transition
from a point p to q will “set the windmill in a particular spot” in q. This device
tries to clarify that the new point in a windmill sequence depends (only) on the two
previous points of the sequence.

Within mini-polymath 3, we classified the main activity of each of the 174 com-
ments as either:

Example 33% (1, 2 above). Examples and counterexamples played a key role:
in understanding and exploring the problem, in clarifying explanations, and in
exploring concepts and conjectures about the problem. In the early stages of
understanding the problem, a number of participants were misled by the use of the
term “windmill” to think of the rotating line as a half-line, a misunderstanding that
led to counterexamples to the result they were asked to prove.4

Conjecture 20% (3, 4 above). This category included exploration of the limits of
the initial question and various sub-conjectures. We identified conjectures made by
analogy; conjectures that generalised the original problem; sub-conjectures towards
a proof; and conjectured properties of the main windmill concept.

Proof 14% (5 above) Proof strategies found included induction, generalisation, and
analogy.

Concept 10% (6 above) As well as standard concepts from Euclidean geometry
and the like, even in such a relatively simple proof, new concepts arise by analogy;
in formulating conjectures; or from considering examples and counterexamples. For
example, analogies involving “windmills” led to the misapprehension referred to
above.

Other 23% These typically concerned cross referencing to other comments; clari-
fication; and social interjections, both mathematically interesting and purely social,
including smiley faces and the like. All help to create a friendly, collaborative, infor-
mal and polite environment.
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3.3 What do We Learn about Mathematical Practice?

Both mathoverflow and mini-polymath provide living examples of the backstage
of mathematics.

While the utility of Pólya’s ideas in an educational setting has been contested,
mini-polymath shows many examples of his problem-solving heuristics operating
in a collaborative, as opposed to individual, setting: for example we see par-
ticipants rephrasing the question, using case splits and trying to generalise the
problem. This is hardly surprising, as the questions themselves may have been
designed to be solved by these techniques.

Both mathoverflow and mini-polymath afford precisely the sort of openness
that Lakatos advocated in the teaching and presentation of mathematics (de-
scribed above). We have seen the striking number of examples used in both
mathoverflow and mini-polymath : this accords with the emphasis which Lakatos
placed on examples. He emphasised fallibility and ambiguity in mathematical de-
velopment, addressing semantic change in mathematics as the subject develops,
the role that counterexamples play in concept, conjecture and proof development,
and the social component of mathematics via a dialectic of ideas. Although his
theory was highly social, it was not necessarily collaborative. For reasons of space
we single out here Lakatos’s notion of “monster-adjusting” examples: others are
considered in [65].

Monster-adjusting occurs when an object is seen as a supporting example of a
conjecture by one person and as a counterexample by another; thus exposing two
rival interpretations of a concept definition. The object then becomes a trigger
for concept development and clarification. Thus in our mathoverflow example
this occurs, relative to the larger conversation not displayed, in the comment
and adjustment of Figure 2 around “Why does q have to be odd?” In our mini-
polymath study the monster-adjusting occurs in clarifying the rotating line of
the question as a full line not a half-line: the problematic object is an equilateral
triangle with one point in the centre; this exposes different interpretations of the
concept of the rotating line.

While with sufficient ingenuity most of the examples we found in both sys-
tems could be assigned to one or more of Lakatos’s categories, the process is
quite subtle, and dependent on context in a way not always taken into account
in Laktos’s work: the mathoverflow example taken alone could also be seen a
variation of Lakatos’s exception-barring, where the conjecture is strengthened
by lifting unnecessary conditions.

While Lakatos identifies the role that hidden assumptions play, and suggests
ways of diagnosing and repairing flawed assumptions, he does not suggest how
they might arise. Here we can go beyond Lakatos and hypothesise as to what
might be the underlying reason for mistaken assumptions or rival interpretations.
Lakoff and colleagues [47] and Barton [14] have explored the close connection
between language and thought, and shown that images and metaphors used in
ordinary language shape mathematical (and all other types of) thinking. We
hypothesise that the misconception of a line as a half-line may be due to the
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naming of the concept; which triggered images of windmills with sails which
pivoted around a central tower and extended in one direction only.5

We expect the use and development of online discussion to provide researchers
into mathematical practice with large new bodies of data of informal reasoning
in the wild. While it is an open question whether online mathematics is repre-
sentative of other mathematical activity, it is certainly the case that this is one
type of activity. This is validated by peer reviewed collective publications arising
out of online discussions and by the user-base of 23,000 people on MathOverflow
(a small but significant proportion of the world’s research mathematicians).6 It
is also an open question as to whether it is desirable for online mathematical
collaboration to model offline work, given the new potential of the online world.
As a form of mathematical practice, it will inform (evolving) theories of (evolv-
ing) mathematical practices and – crucially – provides a much-needed way of
empirically evaluating them.

The interdisciplinary study of mathematical practice is still very young, par-
ticularly when considered relative to its older, more respectable sibling, the phi-
losophy of mathematics (˜70 years versus ˜2,300 years).7 Different disciplines
will focus on different aspects of the sites: philosophers will concern themselves
with their fundamental question of how mathematics progresses; sociologists
on the dynamics of the discussion and the socio-cultural-technical context in
which it takes place; linguists may analyse the language used, and compare it to
other forms of communication; mathematicians might reflect on whether there
is a significant difference between massively collaborative maths and ordinary
mathematics research; cognitive scientists will look for evidence of hypothesised
cognitive behaviours, and so on. However, these questions are deeply interre-
lated. We predict that multi-disciplinary collaboration in constructing theories of
mathematical practice will increase, and that online discussion sites will play an
important role in uncovering processes and mechanisms behind informal mathe-
matical collaboration. There is a an exciting potentially symbiotic relationship-
in-the-making between the study of mathematical practice and that of computer
support for mathematics.

5 The IMO presents tremendous opportunity for cultural and linguistic analysis, as
each problem is translated into at least five different languages, and candidate prob-
lems are evaluated partially for the ease with which they can be translated, and the
process of translating a problem is taken extremely seriously.

6 Estimates vary from ˜80,000 (an estimate by Jean-Pierre Bourguignon based on
the number of people who are in a profession which attaches importance to mathe-
matics research and hold a Mathematics PhD or equivalent [17]), to ˜140,000 (the
number of people in the Mathematics Genealogy Project who got their PhD be-
tween 1960-2012), to ˜350,000 (the number of people estimated still living, on the
Math Reviews authors database): see http://mathoverflow.net/questions/5485/how-
many-mathematicians-are-there

7 We calculated the 2325 year age gap based on Polya’s [68] in 1945 marking the
beginning of MP and Plato’s [66] in 380 BC on the theory of forms and the status
of mathematical objects, marking the beginning of PoM.
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4 Mathematics as a Social Machine: The Next Steps

The goal of social machines research is to understand the underlying computa-
tional and social principles, and devise a framework for building and deploying
them.

While polymath and mathoverflow are fairly recent, the widely used “Online
Encyclopaedia of Integer Sequences” (www.oeis.org) is a more long-standing
example of a social machines for mathematics. Given a few digits of input, it
proposes sequences which match it, through invoking subtle pattern matching
against over 220,000 user-provided sequences: so, for example, user input of (3 1
4 1) returns π, and 556 other possibilities, each supported by links to the math-
ematical literature. Viewed as a social machine, it involves users with queries
or proposed new entries; a wiki for discussions; volunteers curating the system;
governance and funding mechanisms through a trust; alongside traditional com-
puter support for a database, matching engine and web interface, with links to
other mathematical data sources, such as research papers. While anyone can
use the system, proposing a new sequence requires registration and a short CV,
which is public, serving as a reputation system.

One can imagine many kinds of mathematics social machines: the kinds of
parameters to be considered in thinking about them in a uniform way include,
for example:

– precise versus loose queries and knowledge
– human versus machine creativity
– specialist or niche users versus general users
– logical precision versus cognitive appeal for output
– formal versus natural language for interaction
– checking versus generating conjectures or proofs
– formal versus informal proof
– “evolution” versus “revolution” for developing new systems
– governance, funding and longevity

Current social and not-so-social machines occupy many different points in this
design space. Each dimension raises broad and enduring challenges, whether in
traditional logic and semantics, human computer interaction, cognitive science,
software engineering or information management.

4.1 Mathematical Elements

Likely mathematical elements of a mathematics social machine would include
the following, all currently major research activities in their own right.

“Traditional” machine resources available, include software for symbolic and
numeric mathematics such as GAP or Maple, theorem provers such as Coq or
HOL, and bodies of data and proofs arising from such systems. Our work high-
lights the importance of including databases of examples, perhaps incorporating
user tagging, and also of being able to mine libraries for data and deductions
beyond the immediate facts they record: see in particular the work of Urban [79]
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on machine learning from such libraries. The emerging field of mathematical
knowledge management [20] addresses ontologies and tools for sharing and min-
ing such resources, for example providing “deep” search or executable papers.
Such approaches should in future be able to provide access to the mathematical
literature, especially in the light of ambitious digitisation plans currently being
developed by the American Mathematical Society and the Sloan Foundation [6].

The presentation in mathoverflow and polymath is linear and text based.
Machine rendering of mathematical text has been a huge advance in enabling
mathematicians to efficiently represent their workings in silico, which in turn
has enabled online rapid-fire exchange of ideas, but technology for going beyond
the linear structure to capture the more complex structure of a proof attempt,
or to represent diagrams, is less developed. At the end of the first polymath
discussion there were 800 comments, and disentangling these for newcomers to
the discussion or to write up the proof for publication can be problematic. Rep-
resenting the workflow in realtime using argumentation visualization software,
which provides a graphical representation, would help prospective participants
to more easily understand the discussion and to more quickly identify areas to
which they can contribute: initial experiments using the Online Visualization of
Argument software 8 developed by Chris Reed and his group at the University
of Dundee, are promising.

Turning to the less formal side of mathematics, current challenges raised by
the mathematical community, for example see [2], include the importance of col-
laborative systems that “think like a mathematician”, can handle unstructured
approaches such as the use of “sloppy” natural language, support the exchange
of informal knowledge and intuition not recorded in papers, and engage diverse
researchers in creative problem-solving. This mirrors the results of research into
mathematical practice: the importance of human factors, and of handling in-
formal reasoning, error, and uncertainty. Turning messy human knowledge into
a usable information space, and reasoning across widely differing user contexts
and knowledge bases is only beginning to emerge as a challenge in artificial intel-
ligence applied to mathematics, for example in the work of Bundy [18] on “soft”
aspects such as creativity, analogy and concept formation and the handling of
error by ontology repair [58], or work in cognitive science which studies the role
of metaphor in the evolution and understanding of mathematical concepts [47].

Automated theory formation systems which automatically invent concepts
and conjectures are receiving increasing attention. Examples include Lenat’s
AM [51], which was designed to both construct new concepts and conjecture re-
lationships between them, and Colton’s HR system [24,25]. HR uses production
rules to form new concepts from old ones; measures of interestingness to drive
a heuristic search; empirical pattern-based conjecture making techniques to find
relationships between concepts, and third party logic systems to prove conjec-
tures or find counterexamples. Other examples include the IsaScheme system by
Montano Rivas [60], which employs a scheme-based approach to mathematical
theory exploration; the IsaCosy system by Johansson et al. [41] which performs

8 http://ova.computing.dundee.ac.uk/

http://ova.computing.dundee.ac.uk/
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inductive theory formation by synthesising conjectures from the available con-
stants and free variables; and the MATHsAiD system by McCasland [55], which
applies inference rules to user-provided axioms, and classifies the resulting proved
statements as facts (results of no intrinsic mathematical interest), lemmas (state-
ments which might be useful in the proof of subsequent theorems), or theorems
(either routine or significant results). A survey of next generation automated the-
ory formation is given in [64], including Pease’s philosophically-inspired system
HRL [63], which provides a computational representation of Lakatos’s theory
[46], and Charnley’s cognitively-inspired system [22] based on Baar’s theory of
the Global Workspace [11].

Social expectations in mathoverflow, and generally in research mathematics,
are of a culture of open discussion, and knowledge is freely shared provided it is
attributed: for example, it is common practice in mathematics to make papers
available before journal submission. As with mathematics as a whole, informa-
tion accountability in principle in a mathematics social machine comes from a
shared understanding that the arguments presented, while informal, are capable
of refinement to a rigorous proof. In mathoverflow, as described in [77], social ex-
pectation and information accountability are strengthened through the power of
off-line reputation: users are encouraged to use real names, and are likely to inter-
act through professional relationships beyond mathoverflow. A further challenge
for social computation will be scaling these factors up to larger more disparate
communities who have less opportunity for real-world interaction; dealing in a
principled way with credit and attribution as the contributions that social com-
putation systems make become routinely significant; and incorporating models
where contributions are traded rather than freely given.

4.2 Social Machines: The Broader Context

The research agenda laid out by social machines pioneers like Hendler, Berners
Lee and Shadbolt is ambitious [38], with a goal of devising overarching principles
to understand, design, build and deploy social machines. Viewing mathematics
social machines in this way has the potential to provide a unifying framework
for disparate ideas and activities.

Designing social computations. Social machine models view users as “entities”
(cf agents or peers) and allow consideration of social interaction, enactment
across the network, engagement and incentivisation, and methods of software
composition that take into account evolving social aggregation. For mathematics
this has far reaching implications — handling known patterns of practice, and
enabling others as yet unimagined, as well as handling issues such as error and
uncertainty, and variations in user beliefs.

Accessing data and information. Semantic web technology enables databases
supporting provenance, annotation, citation and sophisticated search. Mathe-
matics data includes papers, records of mathematical objects from systems such
as Maple, and scripts from theorem provers. There has been considerable re-
search in mathematical knowledge management [45], but current experiments in
social machines for mathematics have little such support. Yet effective search,
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mining and data re-use would transform both mathematics research and related
areas of software verification. Research questions are both technical, for example
tracking provenance or ensuring annotation remains timely and correct [23], and
social, for example many mathoverflow responses cite published work, raising
the question of why users prefer asking mathoverflow to using a search engine.

Accountability, provenance and trust. Participants in social machines need
to be able to trust the processes and data they engage with and share. Key
concepts are provenance, knowing how data and results have been obtained,
which contributes to accountability, ensuring that the source of any breakdown
in trust can be identified and mitigated [80]. There is a long tradition of openness
in mathematical research which has made endeavours like polymath or the arXiv
possible and effective — for example posting drafts on the arXiv ahead of journal
submission is reported as speeding up refereeing and reducing priority disputes
[2]. Trusting mathematical results requires considering provenance of the proof,
a major issue in assessing the balance between formal and informal proofs, and
the basis for research into proof certificates [59]. Privacy and trust are significant
for commercial or government work, where revealing even broad interests may
already be a security concern.

Interactions among people, machines and data. Interactions among people,
machines and data are core to social machines, which have potential to support
novel forms of interaction and workflow which go beyond current practice, a
focus of current social machine research [38]. Social mathematics shows a vari-
ety of communities, interactions and purposes, looking for information, solving
problems, clarifying information and so on, displaying much broader interac-
tions than those supported by typical mathematical software. In particular such
workflows need to take account of informality and mistakes [50].

In conclusion, social machines both provide new ways of doing mathemat-
ics and the means for evaluating theories of mathematical practices. Improved
knowledge of human interactions and reasoning in mathematics will suggest
new ways in which artificial intelligence and computational mathematics can
intersect with mathematics. We envisage that the challenges raised will include
developing better computational support for mathematicians and modelling soft
aspects of mathematical thinking such as errors, concept development and value
judgements. There is much to be done, and a substantial body of research lies
ahead of us, but the outcomes could transform the nature and production of
mathematics.
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