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Abstract. Retrieving documents by querying their mathematical con-
tent directly can be useful in various domains, including education, engi-
neering, patent research, physics, and medical sciences. As distinct from
text retrieval, however, mathematical symbols in isolation do not contain
much semantic information, and the structure of an expression must be
considered as well. Unfortunately, considering the structure to calculate
the relevance scores of documents results in ranking algorithms that are
computationally more expensive than the typical ranking algorithms em-
ployed for text documents. As a result, current math retrieval systems ei-
ther limit themselves to exact matches, or they ignore the structure com-
pletely; they sacrifice either recall or precision for efficiency. We propose
instead an efficient end-to-endmath retrieval system based on a structural
similarity ranking algorithm. We describe novel optimizations techniques
to reduce the index size and the query processing time, and we experimen-
tally validate our system in terms of correctness and efficiency. Thus, with
the proposed optimizations, mathematical contents can be fully exploited
to rank documents in response to mathematical queries.

1 Introduction

Documents with mathematical expressions are extensively published in technical
and educational web sites, digital libraries, and other document repositories such
as patent collections. Retrieving such documents with respect to their math con-
tent is a challenging problem. Mathematical expressions are objects with complex
structures and rather few distinct symbols and terms. The symbols and terms
alone are usually inadequate to distinguish among mathematical expressions. For
example, a search for documents that include the expression

∫
x
√
x2 + a2 dx is

not likely satisfied by a document that includes
√
x+ 2

∫
2ax dx. Moreover, rele-

vant mathematical expressions might include small variations in their structures

or symbols. For example, a document including 1+
n∑

i=1

ik might well be useful in
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response to a query to find documents including
n∑

j=1

j2. Hence exact matching

of mathematical expressions is not a sufficiently powerful search strategy.
The majority of the published mathematical expressions are encoded with

respect to their appearance (presentation), and most instances do not preserve
much semantic information. Content-based mathematics retrieval systems [3,9]
are limited to resources that encode the semantics of mathematical expres-
sions, and they do not perform well with expressions encoded using presentation
markup. Other systems search based on the presentation of mathematical ex-
pressions [2,5,13,18,19], but they either find exact matches only or they use a
“bag of symbols” model that often returns many irrelevant results.

Because mathematical expressions are often distinguished by their structure,
we should not rely merely on the symbols they include but instead consider a
search paradigm that incorporates mathematical structure as well. More specif-
ically, the similarity of two expressions, defined as a function of their structures
and the symbols they share [6], can be used as an indication of the relevance of
documents when a math expression is given as a query. To be useful, besides the
correctness of results (i.e. their relevance to the query), the query processing time
must be kept reasonably low. However, this is difficult to achieve because calcu-
lating structural similarity of expressions is computationally expensive, and many
potential expressions must be considered in response to each query. Hence, effi-
ciently processing a query is a challenging problem that we address in this paper.

The rest of this paper is organized as follows. In Sect. 2 we explain the query
language and the search problem. We next describe related work. We describe
a structural similarity search algorithm in Sect. 4, and we propose optimization
techniques for this algorithm in Sect. 5 and 6. We finally present an evaluation
of our algorithm and conclude the paper.

2 The Framework

A mathematical expression is a finite combination of symbols that is formed ac-
cording to some context-dependent rules. Symbols can designate numbers (con-
stants), variables, operators, functions, and other mathematical entities.

A text document, such as a web page, that contains a mathematical expres-
sion is a document with mathematical content. We assume that a query is a
mathematics expression. Given a query, the search problem is to find the top-k
relevant documents, where documents are ranked with respect to the similarity
of their mathematical expressions to the query.

Presentation MathML is part of the W3C recommendation that is increasingly
used to publish mathematics information on the web, and many web browsers
support it. There are various tools to translate mathematical expressions from
other languages, including LATEX, into Presentation MathML. Thus we can as-
sume that stored expressions are encoded in this form when they are indexed.
Because forming queries directly with Presentation MathML is difficult, how-
ever, input devices such as pen-based interfaces and tablets [11,16] or more
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widely-known languages such as LATEX might be preferred for entering a query.
Nevertheless, automatic tools can also be applied to translate queries to Presen-
tation MathML, and therefore, regardless of the user interface, we can assume
a query is also represented using this encoding. In summary, it is appropriate
to assume that Presentation MathML is employed when querying mathematics
information on the web.

3 Related Work

Currently, there are a few alternative approaches to math retrieval. In one ap-
proach, expressions that match the query exactly are considered as relevant.
Examples include algorithms that are based on comparing images of expres-
sions [20,21] (they calculate the similarity of images, which allows for very lim-
ited variation among the expressions returned) or using very detailed and formal
query languages that enable database operations to match expressions [2,5]. We
characterize such algorithms as ExactMatch algorithms in this paper. Some other
algorithms perform some normalizations on the query and also on the expressions
before exactly matching them [18]. As shown below, ExactMatch and Normal-
izedExactMatch perform poorly when searching for mathematical content.

As a variant, some algorithms consider retrieving expressions that share sub-
structures with the query [3,6,9,15]. These algorithms do not consider ranking
the results when many partial matches exist. We characterize all such algorithms
as SubexprExactMatch algorithms and note that normalized subexpression exact
match algorithms are also feasible.

Another approach to math retrieval is to transform an expression into a col-
lection of tokens where each token represents a math symbol or a substruc-
ture [13,14,17,19,12]. Regardless of the tokenization details, some structure in-
formation is missed by transforming an expression into bags of tokens, which
affects the accuracy of results as shown below.

Algorithms for retrieving general XML documents based on tree-edit distance
have beenproposed [10], and these could be adapted tomatchXML-encodedmath-
ematical expressions. An alternative for matching based on structural similarity is
to express a query in the formof a template, specifying preciselywhere variability is

Fig. 1. Mean reciprocal rank versus success rate of each algorithm for Forum queries
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permitted and where exact matching is required [7]. This PatternSearch approach
requires more effort and skill on the part of the user who formulates queries.

Elsewhere [8] we have compared these various approaches in terms of their
ability to retrieve documents that contain mathematical expressions that match
a query. Some of the results are summarized in Fig. 1, which is explained in more
detail in Sect. 7. For the present, we merely observe that similarity search (Sim-
Search) and PatternSearch outperform the other approaches by a wide margin in
terms of accuracy, and forming queries with SimSearch is much easier than with
PatternSearch. The goal of this paper is to demonstrate that similarity search
can also be sufficiently fast to be used in practice.

4 Structural Similarity Search

Text with XML markup such as Presentation MathML can be naturally ex-
pressed as ordered labelled trees, also called Document Object Model (DOM)
trees. A DOM tree T is represented by T = (V,E), where V represents the set
of nodes and E represents the set of edges of T . A label λ(n) is assigned to each
node n ∈ V . In this paper we refer to a math expression and its corresponding
DOM tree interchangeably.

We define similarity in terms of “tree edit distance” as follows. Consider two
ordered labelled trees T1 = (V1, E1) and T2 = (V2, E2) and two nodes N1 ∈
V1 ∪ {Pφ} and N2 ∈ V2 ∪ {Pφ} where Pφ is a special node with label ε. An edit
operation is a function represented by N1 → N2 where N1 and N2 are not both
Pφ. The edit operation is a deletion if N2 is Pφ, it is an insertion if N1 is Pφ,
and a rename if N1 and N2 do not have the same labels. (Deleting a node N
replaces the subtree rooted at N by the immediate subtrees of node N ; insertion
is the inverse of deletion.) A cost represented by the function ω is associated with
every edit operation. For example, ω might reflect the design goal that renaming
a variable is less costly than renaming a math operator. For ease of explanation,
however, we will assume that the costs of all delete and insert operations are 1
and the cost of rename is 2. A transformation from T1 to T2 is a sequence of edit
operations that transforms T1 to T2. The cost of a transformation is the sum
of the costs of its edit operations. The edit distance between T1 and T2 is the
minimum cost of all possible transformations from T1 to T2.

A forest is an ordered sequence of trees. For example deleting the root of a
tree results in a forest that consists of its immediate subtrees. Note that a single
tree and the empty sequence of trees are also forests. With these definitions, the
following recursive formula can be used to calculate edit distance [22]:

dist(F1, F2) = min

⎧
⎪⎨

⎪⎩

dist(F1 − u, F2) + ω(u → ε),

dist(F1, F2 − v) + ω(ε → v),

dist(F1 − Tu, F2 − Tv) + dist(Tu, Tv)

dist(Tu, Tv) = min

⎧
⎪⎨

⎪⎩

dist(Tu − u, Tv) + ω(u → ε),

dist(Tu, Tv − v) + ω(ε → v),

dist(Tu − u, Tv − v) + ω(u → v)

(1)
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where F1 and F2 are two non-empty forests such that either F1 or F2 contains
at least two trees, Tu and Tv are the first (leftmost) trees in F1 and F2 respec-
tively, u and v are the roots of Tu and Tv respectively, and F − n represents
the forest produced by deleting root n from the leftmost tree in forest F . The
edit distance between a forest F and the empty forest is the cost of iteratively
deleting (inserting) all the nodes in F . This formulation implies that a dynamic
programming algorithm can efficiently find the edit distance between two trees
T1 and T2 by building a distance matrix.

We calculate the structural similarity of two mathematical expressions E1 and
E2 represented by trees T1 and T2 as follows:

sim(E1, E2) = 1− dist(T1, T2)

|T1|+ |T2| (2)

where |T | is the number of nodes in tree T .
Assume document d contains mathematical expressions E1 . . . En. The rank

of d for a query Q is calculated as the maximum similarity of expressions in d:

docRank(d,Q) = max
Ei∈d

sim(Ei, Q) (3)

As described, a search algorithm based on the structural similarity of math
expressions would be time consuming because it requires calculating the edit
distances of many pairs of trees, which is computationally expensive. A naive
approach is to calculate the similarity score of every document and return the
top k documents as the search result. However, this naive approach performs
some unnecessary computations and can be optimized as follows:

1. Calculating the similarity of the query and an expression requires finding
the edit distance between their corresponding DOM trees which is compu-
tationally expensive. On the other hand, it is not necessary to calculate the
similarity of expressions that can be quickly seen to be too far from the
query.

2. Many expressions are repeated in a collection of math expressions, and many
share large overlapping sub-expressions. Hence, memoizing some partial re-
sults and reusing them saves us from repeatedly recalculating scores.

The next two sections address these observations.

5 Early Termination

In this section we propose a top-k selection algorithm that reduces query pro-
cessing time by avoiding some unnecessary computations. More specifically, we
define an upper limit on the similarity of two mathematical expressions that can
be calculated efficiently, and we define a stopping condition with respect to this
upper limit.

For a tree T , we designate the set of labels in T as τ(T ) = {λ(N)|N ∈ T }.
For two trees, T1 and T2, we define τ-difference and τ-intersection as follows:

(T1 −τ T2) = {N ∈ T1|λ(N) /∈ τ (T2)} (4)



Structural Similarity Search for Mathematics Retrieval 251

T1 ∩τ T2 = ({N |N ∈ T1} − (T1 −τ T2)) ∪ ({N |N ∈ T2} − (T2 −τ T1)) (5)

Note that both τ -difference and τ -intersection are defined over sets of nodes, not
sets of labels. As a result,

|T1 ∩τ T2| = |T1| − |T1 −τ T2|+ |T2| − |T2 −τ T1| (6)

Consider expression E and query Q. We first calculate an upper bound on the
value of sim(E,Q). If the label of a node N in TE , the DOM tree of E, does
not appear in TQ, the DOM tree of Q, their edit distance is at least equal to
1+dist(TE −N, TQ) where TE −N is the tree that results from deleting N from
TE. A similar argument can be made for nodes in TQ whose labels do not appear
in TE. Hence, the following lower bound on the edit distance of E and Q can be
defined: dist(TE , TQ) ≥ |TE −τ TQ|+ |TQ −τ TE| from which an upper bound on
the similarity of the two expressions is calculated using (2) and (6):

sim(E,Q) ≤ 1− |TE −τ TQ|+ |TQ −τ TE |
|TE|+ |TQ| =

|TE ∩τ TQ|
|TE |+ |TQ| (7)

and the upper bound for the relevance of a document d to Q is calculated using
(3):

docRank(d,Q) ≤ upperRank(d,Q) = max
Ei∈d

|TEi ∩τ TQ|
|TEi |+ |TQ| (8)

We employ a keyword search algorithm to calculate upperRank(d,Q) as follows.
We build an inverted index on node labels, treating each expression as a bag of
words. A document is a collection of such expressions (bags of words). In general
the keyword search algorithm can be modified by assigning custom weights to
terms to handle arbitrary edit costs.

To find the most relevant expressions, we maintain a priority queue of length
k (“the top-k list”), as presented in Algorithm 1. This algorithm produces
the same results as the naive algorithm, but it reduces the query processing
time by avoiding some unnecessary computations. In Sect. 7 we show that this
optimization significantly reduces the query processing time.

6 Compact Index and Distance Cache

In this section we propose an indexing algorithm that i) reduces the space re-
quirement and ii) speeds up the query processing. Our indexing algorithm is
based on the observation that often many subexpressions appear repeatedly in
a collection of math expressions.

Consider a collection of trees C = {T1, . . . , Tn}. Let G ∈sub C denote that
G is a subtree of Ti for some Ti ∈ C. The total number of subtree instances in
C is equal to |T1| + · · · + |Tn|. If two subtrees G1 and G2 represent equivalent
subexpressions, we write G1 ∼ G2. This relation partitions {G|G ∈sub C} into
equivalence classes. Given an arbitrary tree T , its frequency in C is the size of
the matching equivalence class in C:

freq(T,C) = |{G|G ∈sub C ∧G ∼ T }| (9)
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Algorithm 1. Similarity Search with Early Termination
1: Input: Query Q and collection D of documents.
2: Output: A ranked list of top k documents.
3: Treat Q as a bag of words and perform a keyword search to rank documents with respect to

upperRank(d, Q).
4: Define a cursor C pointing to the top of the ranked result.
5: Define an empty priority queue TopK.
6: while true do
7: dC ← the document referenced by C.
8: if dC is null or upperRank(dC , Q) < min

d∈TopK
docRank(d,Q) and |TopK| = k then

9: break
10: end if
11: Calculate docRank(dC , Q).
12: if |Topk| < k or docRank(dC , Q) > min

d∈TopK
docRank(d,Q) then

13: Insert dC in TopK.
14: if |TopK| > k then
15: Remove document with smallest score from TopK.
16: end if
17: end if
18: C ← C.next
19: end while
20: return TopK

We omit the second argument C when it is clear from context.
Given a collection of math expressions, we observe that many subtrees appear

repeatedly in various expressions’ DOM trees. To confirm this, we ran experi-
ments on a collection of more than 863,000 math expressions. Details of this
collection are presented in Sect. 7.1, and the experimental confirmation is in-
cluded in Sect. 7.3.

The basis of our indexing algorithm is to store each subexpression once only
and to allow matching subtrees to point to them. This significantly decreases the
size of the index, and as we will explain later, it also effectively speeds up the
retrieval algorithm. The approach can also be combined with other optimiza-
tion techniques, such as the one proposed in Sect. 5, to further decrease query
processing time.

We assign a signature to each subtree such that matching subtrees have the
same signatures and subtrees that do not match the same expression have dif-
ferent signatures. Any hash function that calculates a long bit pattern from the
structure and node labels and any collision resolution method can be used for
this purpose.

Our index is a table, indexed by signatures, whose entries represent unique
MathML subtrees (both complete trees and proper subtrees). Each entry con-
tains the label of the root and a list of pointers to table entries corresponding to
the list of the children of the root. A data structure called exp-info is assigned
to each expression that represents a complete tree in order to store information
about documents that contain it. Each entry also contains some other informa-
tion, such as the frequency of the corresponding tree in the collection.

Initially, the index is empty. We add expression trees one by one to the index.
To add a tree T we first calculate its signature to index into the table. If there
is a match, we return a pointer to the corresponding entry in the table. We also



Structural Similarity Search for Mathematics Retrieval 253

update the exp-info of T if it is a complete tree. If T is not found, we add a new
entry to the table for that index, storing information such as the root’s label, etc.
Then, we recursively insert subtrees that correspond to the children of the root
of T in the index, and insert a list of the pointers to their corresponding entries
in the entry of T . This algorithm guarantees that each tree is inserted once only,

even if it repeats. Figure 2 shows a fragment of the index after x2−1
x2+1 is added.

<mn>

<mn>

{<http://www.wikipedia...}

<math> <mfrac>

<mrow>

<mrow>

<msup>
<mi>

<mo>

<mo>    +

   −

x

2

1

Fig. 2. The index after x2−1
x2+1

is added

Calculating the edit distance between two trees involves calculating the edit
distance between many of their corresponding subtrees. Dynamic programming
ensures that each pair of subtrees is compared no more than once within a single
invocation of sim(Ei, Q), but building the distance matrix involves calculating
the similarity between each pair of subtrees, one from Ei and one from Q. As
noted in the previous section, many subexpressions are shared among the mathe-
matical expressions found in a typical document collection; building the distance
matrix to compute the similarity of a query to each stored expression indepen-
dently does not capitalize on earlier computations. We can reduce computation
time significantly by memoizing some intermediate results for later reuse.

When calculating the edit distance between two trees, we store the result in
an auxiliary data structure that we call a distance cache. More specifically, the
cache stores triples of the form [Te, Tq, dist(Te, Tq)] where Te is a subtree of the
expression, Tq is a subtree of the query, and dist(Te, Tq) is the edit distance
between Te and Tq. Effectively we are saving the distances computed by the
dynamic programming algorithm (1) across similarity calls.

We implement the cache as a hash table where the key consists of the two
signatures for Te and Tq. Hence, the complexity of inserting and searching for
a triple is O(1). If D represents the set of all document-level expressions whose
distances to Q are calculated through invocations to docRank in Algorithm 1,
S = {G|G ∈sub D}, and n is the number of equivalence classes in S, the space
required to store the distance cache is O(n|Q|).

Each time we require the edit distance between two trees, we use the value in
the cache if it is there. Otherwise we calculate the distance and store the result
together with the signatures of the two subtrees in the cache.

If the available memory is limited or there are too many expressions, we may
not be able to store all pairs of distances as just described. However, calculating
the edit distance between small trees may be sufficiently fast that there is no
benefit gained by using the cache, and storing such pairs significantly increases
the size of the cache. Furthermore, storing the results for rare subtrees may not
be worthwhile, as the stored results may not be reused often enough to realize
the benefit of using the cache.
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The benefit of memoizing the edit distance between two trees comes from
the savings in processing time if the result is found in the cache instead of
being calculated for the distance matrix. Following this line of reasoning, we
augment the caching criteria described above to choose which distances should
be stored and which should not. We calculate the benefit of storing the triple
[Te, Tq, dist(Te, Tq)] as benefit(Te, Tq) = calcCost(Te, Tq) − cacheCost (Te, Tq),
where calcCost (Te, Tq) and cacheCost(Te, Tq) are the costs of calculating the
edit distance and looking up a value in the cache respectively. We also wish to
account for the number of times we will be able to realize the savings by reusing
the value from the cache. Therefore, to each pair (Te, Tq), we assign a weight
weight(Te, Tq) that reflects the frequency of occurrence of that pair. We suggest
how to compute the weights below.

Consider a set of tree pairs P = {(T 1
e , T

1
q ), . . . , (T

n
e , T

n
q )} and a space con-

straint that allows C triples to be cached. Our task is then to select a set of subtree
pairs H∗ = argmax

H

∑

(T i
e ,T

i
q)∈H

weight(T i
e , T

i
q) benefit(T

i
e , T

i
q) such that |H| ≤ C.

If we are given the set P , the problem is easily solved by choosing the C
triples having the highest values for weight(T i

e , T
i
q) benefit(T

i
e , T

i
q). However, Al-

gorithm 1 maintains a sorted list of expressions, and starting from the head of
the list calculates the similarity of each expression to Q. Thus, we cannot predict
exactly which pair of subtrees will be compared before the algorithm stops.

We need to assign the weight for a pair of subtrees that reflects the number of
times that pair will be needed for filling a dynamic programming matrix during
the remainder of the execution of Algorithm 1. Consider the following motivating
example:

Example 1. Assume freq(Te, D) = 100, and freq(Tq, {TQ}) = 1. The similarity
between the expressions represented by Te and Tq will be calculated at most 100
times by Algorithm 1. While processing the query, if the edit distance function
has already been called to fill 99 distance matrices for this pair, it will be called
at most once more for the rest of the query processing. Caching the edit distance
between Te and Tq at this point is not likely to be as cost-effective as caching
the distance for another pair of trees if those trees might still be compared 10
more times during query processing.

We want to assign a weight to each pair that reflects this declining benefit.
However, we cannot afford to store frequencies for every pair of subtrees (other-
wise we could store the distances instead). Therefore, we estimate the frequencies
based on the frequencies for each subtree independently.

Note that Te matches freq(Te, D) subtrees of the expressions in the collection
and requires up to |TQ| entries to be made in the distance matrix during dynamic
programming. We augment the index described above by adding fields freqD
and freqcur to each node to store the frequency of that subexpression in the
document collection together with a variant of that frequency, both initialized to
be equal to freq(Te, D) for the node corresponding to Te. Whenever we require
a value for dist(Te, Tq), we calculate its score as the weighted benefit based
on expected re-use as score(Te, Tq) = freqcur(Te) freq(Tq, {TQ}) benefit(Te, Tq)
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where freq(Tq, {TQ}) is the number of subtrees in the DOM tree of Q that
match Tq. We also save the score in the cache along with the distance, and
update freqcur(Te) with the value freqcur(Te) − 1

|TQ| to reflect the maximum

number of times Te might still be required in a distance computation.
Algorithm 2 details how the scores for each pair of trees is calculated and used

to manage a limited cache. A priority queue maintains the most promising M
pairs in the cache as similarity search progresses. Thus the cache stores quadru-
ples [se, sq, dist(Te, Tq), score(Te, Tq)] where se and sq are the signatures for Te

and Tq respectively. Because score(x, y) increases monotonically with freqcur(x)
and freq(y) and because trees cannot repeat more frequently than any of their
subtrees, if dist(Te, Tq) is stored in the cache for some subtree Te stored in the
document collection and some subtree Tq of the query, then dist(T ′e, T ′q) is also
stored for all T ′e ∈sub Te and T ′q ∈sub Tq, as long as benefit(T ′e, T

′
q) is sufficiently

high.

Algorithm 2. Calculating Edit Distance with a Limited Cache
Input: Two trees Te and Tq , |TQ| (the number of nodes in the query tree), and cacheM storing
quadruples.
Output: dist(Te, Tq) (with side-effects onM and freqcur(Te))
Form pair p = (se, sq) that consists of the signatures of Te and Tq .
freqcur(Te)← freqcur(Te)− 1

|Q| .
v ← freqcur(Te) ∗ freq(Tq) ∗ benefit(Te, Tq) (the score for this pair).
if p is found inM then

dist← dist(Te, Tq) associated with p inM
Replace the matched quadruple inM by (se, sq, dist, v).

else
dist← computed dist(Te, Tq) using the distance matrix and cache for subproblems.
m← min{score(m)|m ∈M}
if m < v then

if |M| = C then
Remove the entry with minimum score fromM.

end if
Insert (se, sq , dist, v) intoM.

end if
end if
return dist

In the next section we show that the proposed optimization techniques signif-
icantly reduce the query processing time in practice.

7 Experiments

In this section we investigate the performance of the proposed algorithms.

7.1 Experiment Setup

Data Collection. For our experiments we use a collection of web pages with
mathematical content. We collected pages from the Wikipedia and DLMF (Digi-
tal Library of Mathematics Functions) websites. Wikipedia pages contain images
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of expressions annotated with equivalent LATEX encodings of the expressions. We
extracted the annotations and translated them into Presentation MathML using
Tralics [4]. DLMF pages use Presentation MathML to represent mathematical
expressions. Statistics summarizing this dataset are presented in Table 1A.

Table 1. Experimental dataset and query statistics

A Wikipedia DLMF Combined
Num. pages 44,368 1,550 45,918
Num. exprs. 611,210 252,148 863,358

Avg. expr. size 28.3 17.6 25.2
Max. expr. size 578 223 578

B Interview Forum Combined
Num. queries 45 53 98

Avg. query size 14.2 23.8 19.4

Query Collection. To evaluate the described algorithms we prepared two sets
of queries as follows.

– Interview: We invited a wide range of students and researchers to participate
in our study. They were asked to try our system and search for mathematical
expressions of potential interest to them in practical situations. They could
also provide us with their feedback about the quality of results after each
search.

– Mathematics forum: People often use mathematics forums in order to ask
a questions or discuss math-related topics. Many threads start by a user
asking a question in the form of a single mathematics expression. Usually,
by reading the rest of a thread and responses, the exact intention of the
user is clear. This allows us to manually judge if a given expression, together
with the page that contains it, can answer the information need of the user
who started the thread. We manually read such discussions and gathered a
collection of queries.

We only consider queries with at least one match in our dataset. Table 1B
summarizes statistics about the queries, where the number of nodes in the query
tree is used to represent query size.

Evaluation Measures. We evaluate the proposed algorithms using the follow-
ing measures:

MRR: The rank of the first correct answer is a representative metric for the
success of a mathematics search. Hence, for each search we consider the Recip-
rocal Rank (RR), that is, the inverse of the rank of the first relevant answer. The
Mean Reciprocal Rank (MRR) is the average reciprocal rank for all queries:

MRR =
1

|Q|
∑

q∈Q

1

R(q)
(10)

where Q is the collection of queries, and R(q) is the rank of the first relevant
answer for query q.
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Success-Rate: If at least one of the top 20 search results returned by an al-
gorithm for a given query is relevant, we classify the search as successful. Al-
ternatively, if the first relevant answer is not among the top 20 results, or if
no relevant result is returned at all, the search is classified as unsuccessful. The
success rate is the number of successful searches divided by the total number of
searches:

Success Rate =
|{q ∈ Q|q is successfully searched}|

|Q| (11)

Query Processing Time: The time in milliseconds from when a query is submitted
until the results are returned. A query is encoded with Presentation MathML
and if the user interface allows other formats, the time taken to translate it is
ignored. Also the network delay and the time to render results are not included.
For a collection of queries, we measure the query processing time of each and
report the average query processing time.

Alternative Algorithms. We evaluate the described algorithms by comparing
their performance against the following alternative algorithms:

– TextSearch: The query and expressions are treated as bags of words. A stan-
dard text search algorithm is used for ranking expressions according to a
given query1.

– ExactMatch: An expression is reported as a search result only if it matches a
given query exactly. Results are ranked with respect to the alphabetic order
of the name of their corresponding documents.

– NormalizedExactMatch: Some normalization is performed on the query and
on the stored expressions: in particular, we replace numbers and variables
with generic labels N and V , respectively. The normalized expressions are
searched and ranked according to the ExactMatch algorithm.

– SubexprExactMatch: An expression is returned as a search result if one of its
subexpressions exactly matches the query. Results are ranked by increasing
sizes of their DOM trees and ties are broken using the alphabetic order of
the name of their corresponding documents.

– NormalizedSubExactMatch: Normalization is performed on the query and on
the stored expressions as for NormalizedExactMatch, and an expression is
returned as a search result if one of its normalized subexpressions matches
the normalized query..

– MIaS: Expressions are matched using the algorithm proposed by Sojka and
Liska [17]: An expression is first tokenized, where a token is a subtree of the
expression. Each token is next normalized with respect to various rules (e.g.
number values are removed, or variables are removed, or both), and multiple
normalized copies are preserved. The result, which is a collection of tokens,
is indexed with a text search engine. Each query is similarly normalized (but
not tokenized) and then matched against the index.

1 We used Apache Lucene [1] in our implementation.
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– PatternSearch: Expressions are matched against a query template as de-
scribed by Kamali and Tompa [7]. Like SubexprExactMatch, results are
ranked with respect to the sizes of their DOM trees.

– SimSearch: Expressions are matched against a query according to the algo-
rithm described in Sect. 4.

We further refine SimSearch to cover the following algorithms that reflect the
proposed optimization techniques:

– Unoptimized: Each expression is stored independently. The relevance score
is calculated for any expression sharing at least one tag with the query.

– ET: The early termination algorithm described in Sect. 5. Each expression
is stored independently. As described, an inverted index is used to calculate
upper bounds on the scores of each document, which increases the index size.

– Compact: Similar to unoptimized a query is processed by comparing the
relevance of each document that contains an expression with at least one
node whose tag appears in the query. Each subtree is stored once only to
reduce the index size as described in Sect. 6.

– Compact-ET-NMC: The early termination algorithm with a compact index,
and no memory constraint as described in Sect. 6.

– Compact-ET-MC: The early termination algorithm with a compact index
and a constraint on the memory that is available during the query processing
(Sect. 6). The results are presented for specific amounts of available memory
separately (e.g. if the memory constraint allows storing 1000 cache entries,
we use the label Compact-ET-MC-1000). We consider three values for the
memory constraint: 5000, 10000, and 50000 entries.

– Compact-ET-RandMC: Similar to Compact-ET-MC, but entries are chosen
at random for being assigned space in the cache.

7.2 Correctness

Fuller descriptions of the algorithms and correctness results for the experiments
are reported elsewhere [8]. For completeness, we summarize the correctness re-
sults here.

The success rate against MRR for each algorithm is plotted in Fig. 1 for the
Forum queries and in Fig. 3 for the Interview queries. As both figures show,
PatternSearch and SimSearch have high success rates and also high MRRs. In-
terestingly, PatternSearch has a higher MRR because irrelevant expressions are
less likely to match a carefully formed pattern, whereas SimSeach has a slightly
higher success rate because in some cases even an experienced user may not be
able to guess the pattern that will yield a correct answer.

In summary, SimSearch and PatternSearch perform much better than the
other approaches in terms of the correctness of results. However, because forming
queries for SimSearch is easier, it is generally preferred over PatternSearch.
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Fig. 3. MRR versus success rate of each algorithm for Interview queries

7.3 Index Size

The average number of repetitions of subtrees with sizes in specific ranges is
listed in Table 2A. The average repetitions of trees whose sizes are in the range
of [1−k] for various values of k is shown as a graph. As the results suggest, most
subtrees repeat at least a few times. Not surprisingly, for smaller subtrees the
rate of repetition is higher.

Next, we compare the compact index to an index that stores each expression
independently. For our experiments, an expression’s signature is computed by a
conventional hash function applied to its XML string S: S[0] ∗ 31(z−1) + S[1] ∗
31(z−2)+ · · ·+S[z−1] where S[i] is the ith character in S and z = |S|. As shown
in Table 2C, the size of the compact index (in terms of the number of nodes
stored) is significantly smaller than that of the regular index.

7.4 Query Processing Time

Figure 4A shows that the early termination algorithm significantly reduces the
query processing time — by a factor of 44. Using the compact index and mem-
oizing partial results also reduces the query processing time by an additional

Table 2. Subtree repetitions in experimental dataset and resulting index sizes

Size Avg. repetition

1-5 325.0
6-10 10.5
11-15 3.2
16-20 2.1
21-25 1.7
26-30 1.5
> 30 1.3

Num. Nodes

Original index 19,775,322
Compact index 1,284,701

A B C
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factor of 1.5, to about .8 seconds per query on average. (Note that accuracy
is not affected by employing any of the optimization techniques.) Figure 4B
compares the proposed approach against alternative approaches. The alterna-
tive algorithms use straightforward text search or database lookup algorithms,
which result in query processing times that are two to four times faster, but at
the expense of very poor accuracy. To date, these approaches have been preferred
to a more elaborate similarity search, largely because the latter was deemed to be
too slow to be practical. However, Compact-ET-NMC, which applies both early
termination and memoization, has practical processing speeds and far better
accuracy.

A B

Fig. 4. The query processing time of alternative algorithms

The effect of the available memory on the query processing time is investigated
in Fig. 5. For higher values of the space budget, the query processing time is
very similar to that of Compact-ET-NMC, which assumes there is no constraint
on the available memory. Even for smaller values of the constraint (e.g. when we
can memoize at most 5,000 intermediate results), there is a notable improvement
over the performance of ET .

The figure also compares the performance when the available space is managed
with respect to the described algorithm and when distances for pairs of trees are
chosen to be cached at random. For a small space budget, caching randomly
chosen pairs has little advantage over the ET algorithm, which does not use
a cache. For greater values of the space budget the performance is improved
compared to ET, but not as much as when caching is applied more strategically.

Fig. 5. The query processing time for various space budgets and cache strategies
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For example, the performance of Compact-ET-MC-50000 is very close to that of
Compact-ET-NMC, which assumes unlimited memory is available, and Compact-
ET-MC-5000 performs similarly fast as Compact-ET-RandMC-50000 while using
only a tenth of the space budget. This validates the proposed method for choosing
which pairs to cache.

8 Conclusion

Mathematics retrieval is still in an early stage of development. We have shown
that in order to correctly capture the relevance of math expressions, their struc-
tures must be considered. Tree edit distance, which is a standard technique to
compare structures, is computationally expensive, but optimization techniques
can reduce query processing time significantly. Through extensive experiments,
we showed that our algorithm significantly outperforms baseline algorithms in
terms of the accuracy of results while performing comparably in terms of query
processing time even when memory is limited. Additional improvements should
still be explored, however, to close the remaining performance gap.
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