
Chapter 8

Abiotic Stress Tolerance Induced

by Endophytic PGPR

Patricia Piccoli and Rubén Bottini

8.1 Introduction

Plant roots release substantial amounts of compounds into the surrounding soil and as

consequence a dense microflora colonize the roots and use the root exudates and

lysates to propagate, survive, and disperse along the growing root (Ryan and Delhaize

2001). Among the root-zone microflora, plant growth-promoting rhizobacteria

(PGPR) colonize the rhizosphere of many plant species and confer beneficial effects,

such as increased plant growth and reduced susceptibility to diseases caused by plant

pathogenic fungi, bacteria, viruses, and nematodes (Kloepper et al. 2004). Some

PGPR also elicit physical or chemical changes related to plant defense, a process

referred to as “induced systemic resistance” (ISR, Kloepper et al. 2004; Van Loon

and Glick 2004). However, few reports have been published on PGPR as elicitors of

tolerance to abiotic stresses, such as drought, salt, and nutrient deficiency or excess.

Recent work by several groups shows that PGPR also elicit the so-called induced

systemic tolerance to salt and drought (Yang et al. 2009 and references included

therein).

Although the potential use of PGPR (Kloepper et al. 1991; Bashan and Holguin

1998) as plant growth and yield enhancers (either not under abiotic or biotic

stresses) has been known for several decades (Döbereiner et al. 1976; Okon and

Labandera-González 1994; Glick et al. 1999), there has been limited success in

practical use. A considerable amount of literature has been produced in the mean-

time relating the understanding of the mechanisms involved in the purported

beneficial effects (Dimkpa et al. 2009), but the yield increases obtained by inocula-

tion with PGPR are rather modest. As an example, the effect of long-living spore
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formulations of the Bacillus strain FZB24 and FZB42 produced and

commercialized in Germany were tested in extended and long-lasting field trials

with potatoes under practical farming conditions. Forty-eight field trials performed

with FZB24 under standard conditions (250 g/ha) during 1995–1998 resulted in an

increase of tuber potatoes yield of 8.3 % as the mean value. Similar experiments

conducted in 2002, 2003, and 2004 confirmed that FZB strains in fact enhance

productivity of potatoes about 7.5–10 % (mean value of 87 independent trials). Best

results were obtained if application of bacilli was combined with use of fungicides.

In such cases an increase of tuber yield up to 40 % was obtained (Choudhary and

Johri 2009), although the question rises how much of the effect was due to the

inoculation.

PGPR might also increase nutrient uptake from soils, thus reducing the need for

fertilizers and preventing the accumulation of nitrates and phosphates in agricul-

tural soils. A reduction in fertilizer use would lessen the effects of water contami-

nation from fertilizer runoff and lead to savings for farmers (Gyaneshwar

et al. 2002; Mantelin and Touraine 2004). Some studies tested the hypothesis that

PGPR might enable agricultural plants to maintain productivity with reduced rates

of fertilizer application. In field-grown maize partial replacement of N fertilization

with Azospirillum sp., bacterization has been obtained (Fulchieri and Frioni 1994),

although under conditions of limited soil fertility. In another field study with

Triticum aestivum L. (Shaharoona et al. 2008), the yield for plants that were

given 75 % of the recommended amount of N–P–K fertilizer plus a PGPR strain

was equivalent to the yield for plants that were given the full amount of fertilizer but

without PGPR. In tomato, the dry weight of tomato transplants grown in the

greenhouse was significantly greater with two PGPR strains and 75 % fertilizer

than with the full amount of fertilizer and without PGPR; after transplanting to the

field, the yields for some combinations of PGPR and mycorrhizal fungi with

fertilizers at 50 % were greater than the yield of the 100 % fertilizer control without

microbes.

8.2 Plants Are Mostly Subjected to Several Stresses That

Act as Signals Preparing the Organism to Afford More

Stress

Plants growing in natural environments are frequently exposed to different stresses,

even in environments where there is no apparent reason. For instance, one of the

most common stresses is water restriction during mid-afternoon hours even in

humid environments (Granier and Tardieu 1999). Plants respond to such stressful

situations by modifying their metabolism in a way that they become more tolerant

to that situation but also to other stresses. As an example, the plant hormone

abscisic acid (ABA) is produced by dehydrating roots and transported to leaves

as a sensitive indicator of degree of water deficits in the soils (Zhang and Davies
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1989). Thus leaves from plants growing under water-stress conditions usually show

an abrupt rise in ABA level which produce stomata closure and therefore decreas-

ing water losses that prepare the plant to cope with other stresses (Huang and Zhu

2004). Also, grape plants perceiving relatively high levels of UV-B radiation

(potentially harmful for the plant’s tissues) responded by enhancing ABA levels,

which in turn promote increase of polyphenols that filter UV-B at epidermal level,

trigger antioxidant enzymatic mechanisms and the sterol-structural defense of

membranes (Berli et al. 2010). By consequence, acclimation to relatively high

UV-B conditions prepares plants to better afford drought, and, conversely, water-

stress situations may promote UV-B tolerance.

8.3 Beneficial Bacteria Are Present in Plants and They

Often Have the Capability to Stimulate the Host’s

Growth and Yield

In nature, beneficial endophytic bacteria play a fundamental role in plant adaptation

to the environment (Hallman et al. 1997). They can pre-sensitize plant cell metab-

olism, so that upon exposure to stress primed plants are able to respond more

quickly and efficiently than non-primed individuals (Compant et al. 2005). More-

over, microorganisms from the rhizosphere or tissues of a specific plant may be

better adapted to that plant and environment conditions, and they may therefore

provide better control of diseases than organisms originally belonging from other

rhizosphere (Cook 1993). Since PGPR were characterized as beneficial for plants,

genera like Azospirillum, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas,
Gluconacetobacter, and others have been tested to improve growth and yield in

different crops (Egamberdiyeva and Höflich 2004). Oliveira et al. (2002) and

Muthukumarasamy et al. (2006) found that Gluconacetobacter and Herbaspirillum
improved N uptake and increased biomass in sugar cane. Burkholderia
phytofirmans is able to colonize several parts of grapevines cv. Chardonnay

(Compant et al. 2005), to increase root and shoot dry weight, and to induce growth

of secondary roots (Ait Barka et al. 2000; Compant et al. 2005). Among the PGPR

Azospirillum sp. may be considered the most important genus for improving plant

growth or crop yield worldwide, under a variety of environmental and soil

conditions (Bashan and de-Bashan 2010). The main visible effects of inoculations

with Azospirillum sp. and other PGPR are in the plant root system. Azospirillum
sp. can promote root elongation (Levanony and Bashan 1989; Dobbelaere

et al. 1999), formation of lateral and adventitious roots (Creus et al. 2005;

Molina-Favero et al. 2008), root hairs (Hadas and Okon 1987; Fulchieri

et al. 1993), and branching of root hairs (Jain and Patriquin 1985), which increase

the root area active in water and nutrient uptake. It has also been proposed that some

PGPR increase the plant tolerance against abiotic stresses such as drought, salinity,

and metal toxicity (Creus et al. 1997; Mayak et al. 2004; Cohen et al. 2009). In
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addition to their usefulness in agriculture, they possess potential in solving envi-

ronmental problems by improving growth of desert plants and by reducing pollution

through phytoremediation that decontaminates soils and waters (de-Bashan

et al. 2011).

Among the mechanisms that explain the beneficial effects on plant growth and

yield promotion by Azospirillum sp. is the production of phytohormones (Costacurta

and Vanderleyden 1995; Bastián et al. 1998; Bloemberg and Lugtenberg 2001;

Bottini et al. 2004), mainly the auxin indol-3-acetic acid (IAA; Crozier

et al. 1988; Patten and Glick 2002), gibberellins (GAs; Bottini et al. 1989, 2004;

Fulchieri et al. 1993), and cytokinins (Arkhipova et al. 2005). Results of several

researches indicated that the most important mechanism in plant-growth promotion

by PGPR is production of phytohormones and/or enhancement of phytohormones

synthesis by the plant tissues [for reviews see Bottini et al. (2004), Spaepen

et al. (2007), Bashan and de-Bashan (2010)]. Also production of the stress-related

hormones, salicylic acid (De Meyer and Höfte 1997; Forchetti et al. 2010), ABA

(Cohen et al. 2008, 2009) and jasmonic acid (Forchetti et al. 2010; Piccoli

et al. 2011), and of the signaling molecule nitric oxide (Creus et al. 2005), have

also been indicated as possible players in the game. Complementary, impairment

in ethylene production via 1-aminocyclopropane-1-carboxylicacid (ACC) deami-

nase activity may also be involved in plant growth promotion by PGPR

(Belimov et al. 2009).

Considering the numerous interactions that exist among the different hormonal

signaling pathways in plants, it is difficult to assess which of these pathways is the

primary target of PGPR. It is known that many signals affect root architecture and

branching, conspicuously plant hormones that regulate initiation and growth of

lateral roots (Nibau et al. 2008). As an example, the formation of lateral roots which

is an important postembryonic event that is vital for the growth of plants is

primarily regulated by auxins (Casimiro et al. 2003), and PGPR are well-known

auxin producers (Patten and Glick 2002). More likely, the rhizobacteria alters not

just a single but several hormonal pathways, even in a pleiotropic manner, which

could account for the different morphological changes observed, for example

lateral root elongation and root hair development (Fulchieri et al. 1993; Dobbelaere

and Okon 2007). Also, lateral root primordial emergence is repressed by limiting

water supply (Deak and Malamy 2005); therefore PGPR-produced ABA may

account for plant’s growth under water restriction (Cohen et al. 2008, 2009).

However, De Smet et al. (2006) observed that Arabidopsis seedlings grown on

medium containing exogenous ABA did not form clearly visible lateral roots, and

roots of aba2-1 plants (deficient in ABA) had a larger number of lateral roots that

grew longer than those of the wild type (Deak and Malamy 2005). Notwithstanding,

Azospirillum sp. increased the number of lateral roots and root’s fresh weight in

Arabidopsis aba2-1 plants suggesting the effects may be in turn mediated by IAA

and GAs (Cohen, Bottini, Pontin, Berli, Moreno, Travaglia, Boccalandro, Piccoli,

unpublished results), which is sustained by the fact that Azospirillum reversed the

dwarf phenotype dx and dy in rice mutants (Cassán et al. 2001a, b). Indeed, it has

been proven that Azospirillum sp. produce both IAA (Crozier et al. 1988) and GAs
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(Bottini et al. 1989). For instance, elicitation of Arabidopsis thaliana growth

promotion by PGPR involved signaling of cytokinins, brassinosteroids, auxin,

salicylic acid, and GAs (Ryu et al. 2003, 2005, 2007). López-Bucio et al. (2007)

found that the bacteria Bacillus megaterium is able to increase lateral root number

and root hair length in A. thaliana plants through auxin- and ethylene-independent

mechanisms. It has also been found that Bacillus sp. modulates the root-system

architecture in A. thaliana through the emission of volatiles (Gutiérrez-Luna

et al. 2010).

A. piechaudiiARV8 confer tolerance to water stress in tomatoes and peppers and

therefore can promote growth under such situation (Mayak et al. 2004). It has also

been reported that Bacillus pumilus and Bacillus licheniformis increased leaf area in
dwarfed alder seedlings (Gutiérrez-Mañero et al. 2001) and in Arabidopsis (Ryu

et al. 2007), and Azospirillum lipoferum USA 5b augmented leaf area in both well-

watered and water-stressed individuals (Cohen et al. 2009). Zhang et al. (2008)

reported that Bacillus subtilis strain GB03 can stimulate growth of Arabidopsis by
the emission of organic compounds and increase photosynthesis through modula-

tion of ABA signaling (Xie et al. 2009). Increased chlorophyll, and consequently,

enhanced photosynthesis, is a known response of plant to inoculation with several

PGPR (Deka and Dileep 2002), including Azospirillum sp. (Bashan et al. 2006).

Yield increases ranging from 10 to 20 % with PGPR applications have also been

documented for several agricultural crops (Kloepper et al. 1991). Increases in seed

yield had also been observed in lettuce inoculated with Bacillus sp. (Arkhipova

et al. 2005). Wheat grain yield was increased by up to 30 % (Okon and Labandera-

González 1994) by inoculation with Azospirillum brasilense, and partial replace-

ment of N fertilization with Azospirillum sp. bacterization has been obtained in

maize (Fulchieri and Frioni 1994).

8.4 PGPR Enhance Stress Tolerance in Plants Subjected

to Abiotic Stresses

Drought is one of the main stressful environmental conditions that reduce crop yield

worldwide. It has been shown that diurnal water stress is a condition normally

found in most species growing in temperate climates during the noon and afternoon

hours, even though the soil water status may be at field capacity. This temporary

stress might then affect the growth rate (Granier and Tardieu 1999). In fact, mild

water deficits that cause reduction of the plant tissues turgidity (equivalent to a

reduction of 10–15 % in the plant water content) result in large changes in growth

and metabolism. The plant’s tolerance to water stress results from both morpholog-

ical adaptation and responses at biochemical and genetic levels. The central

response to water deficits however is the increase in ABA biosynthesis and/or a

decrease in ABA breakdown (Bray 2002). In plants experiencing drought, it is

assumed that ABA acts as the signal that prepares the plant to resist the water
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deficit, mainly by controlling stomata closure and water loss (Zhang and Outlaw

2001). Also, there is evidence suggesting that ABA plays a role in root branching,

improving the plant water uptake capacity (De Smet et al. 2006), and it has been

demonstrated that ABA sprayed onto leaves promotes vegetative growth in Ilex
paraguariensis plants by alleviating diurnal water stress (Sansberro et al. 2004). In

wheat and soybean, applications of ABA increase leaf carotenoid content and favor

the allocation of carbohydrates into grains (Travaglia et al. 2007, 2009). ABA

treatments also augment yield in wheat cultivated under moderate water restriction

(Travaglia et al. 2010) and enhance fruit set (and so yield) in grapevines (Quiroga

et al. 2009). Otherwise, gibberellin A3 (GA3) and ABA treatments promote carbon

allocation in roots and berries of grapevines (Moreno et al. 2011).

ABA has been characterized by full scan mass spectrometry as a by-product of

chemically defined growth cultures of A. brasilense Sp 245. ABA production by the

bacteria increased when NaCl was added to the culture medium, and ABA levels

were enhanced in A. thaliana seedlings inoculated with A. brasilense Sp

245 (Cohen et al. 2008). As well, A. lipoferum inoculated to 45-day-old maize

plants increased ABA levels and reversed the effects of applied inhibitors of ABA

and GAs synthesis, fluridone, and prohexadione-Ca, respectively, on the hormone

levels and the plant’s drought tolerance. That is, ABA and GA3 contributed to

water-stress alleviation of maize plants by A. lipoferum (Cohen et al. 2009).

Although reports on the effects of plant hormones produced by PGPR on plants

are abundant, information regarding the mechanism involved in ABA effects

(including A. thaliana as a model) after bacterization with PGPR under drought

conditions is scarce. Cho et al. (2012) proposed an ABA-independent stomata

closure in Arabidopsis bacterized with Pseudomonas chlororaphis but without

further information regarding the mechanism involved. In a recent work (Cohen,

Bottini, Pontin, Berli, Moreno, Travaglia, Boccalandro, Piccoli, unpublished

results), Arabidopsis was used as a model system to further analyze the physiologi-

cal basis by which A. brasilense Sp 245 affects the plant’s response to water

restriction. In an agar-grown system inoculation with A. brasilense of Arabidopsis
wild-type Col-0, the mutant aba2-1 and the transgenic pGL2::GUS genotypes

during early growth increased both the aerial part and roots through modifications

in root architecture, that is, increase in lateral root number and length (both main

and lateral roots). Inoculation with A. brasilense also increased photosynthetic and

photoprotective pigments and retarded water loss in A. thaliana wild-type plants

and augmented ABA levels in both the wild-type and aba2-1 mutant plants; that is,

A. brasilense has the ability to produce ABA in vivo and restore the wild-type

phenotype. Also, inoculation with A. brasilense and application of GA3 increased

leaf trichomes, and Azospirillum, IAA, and GA3 increased the number of lateral

roots in transgenic pGL2::GUS plants. Furthermore, Azospirillum increased

growth, survival, seed yield, and ABA and proline levels and decreased stomatal

conductance in Arabidopsis plants subjected or not to drought. In a recent study

(Salomon, Cohen, Bottini, Gil, Moreno, Piccoli, unpublished results), several

bacteria strains were isolated and characterized from roots and rhizosphere of

Vitis vinifera cv. Malbec. Two of them, P. fluorescens and B. licheniformis, elicitate
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production of defense-related terpenes purportedly involved in protection of

dehydrated membranes (Beckett et al. 2012).

Salinity is an important stress that hinders crop yield in many parts of the world,

mainly via enhanced biosynthesis of ethylene that inhibits root growth (Feng and

Barker 1992). To overcome the ethylene-induced root inhibition is a requirement

for successful production, and studies have shown that ethylene level in plants is

regulated by ACC deaminase, which is present in some PGPR (Belimov et al. 2009;

Nadeem et al. 2010). However, the effects of salinity are far more complicated than

the simple augmentation of ethylene synthesis, and a main component in salt effects

is drought, so phytohormones provided (or their synthesis being induced) by PGPR

may be essential in the stress alleviation (Creus et al. 1997; Mayak et al. 2004;

Cohen et al. 2008, 2009; Piccoli et al. 2011). As well, salinity increases oxidative

stress so any mechanism that collaborates in avoiding such oxidative situation may

help the plant defense (Grassmann et al. 2002). Apart, PGPR are identified that

stimulate plant roots to excrete organic acids that chelate Na excess in the soil

solution as a mechanism that protects plants against salinity (Li et al. 2007). Pro-

duction of siderophores by PGPR, that is, substances that increase nutrient uptake

under mineral shortage (Bagg and Neilands 1987), may in turn favor heavy

(or excess of) metals sequestration, in a sort of homeostatic balance for the

rhizospheric environment (Khan et al. 2009).

Also, other studies have provided new insights into the phytoremediation of

metal-contaminated soils by PGPR (Zhuang et al. 2007). A metal-tolerant PGPR,

Enterobacter sp., was able to enhance extraction of Ni, Zn, and Cr in Brassica
juncea, along with plant growth increase by IAA production and with ACC

deaminase activity (Kumar et al. 2008). A similar capacity was found for two

strains of a metal resistant strain of Pseudomonas on the plant growth and the

uptake of Ni, Cu, and Zn by Ricinus communis (Rajkumar and Freitas 2008) and for

several PGPR in Brassica spp. (Ma et al. 2009). In the hyperaccumulating plant,

Sedum alfredii, inoculation with Burkholderia cepacia enhanced plant growth

submitted to excess of Zn, Pb, and Cd, in correlation with stimulation of organic

acid production by the plant roots (Li et al. 2007). Co-inoculation of lupines with a

mix of metal-resistant PGPR (including Bradyrhizobium sp., Pseudomonas sp., and
Ochrobactrum cytisi) improved plant biomass and a decrease in metal accumula-

tion due to a protective effect on the rhizosphere (Dary et al. 2010). The secretion of

organic acids appears to be a functional metal resistance mechanism that chelates

the metal ions extracellularly, reducing their uptake and subsequent impacts on root

physiological processes (Li et al. 2007). In fact, nutrient-solubilizing activity of

PGPR has been associated with the release of organic acids and a drop in the pH that

may have the additional effect of metal quelation (Dastager et al. 2010). In other

words, the mechanisms involved in metal detoxification appear to be the same as

per salinity, that is, metal quelation, extrusion pumps, and ACC deaminase activity,

with other side effects like nutrient solubilization.

Regarding extreme temperatures, detrimental situations are mostly related with

water restriction, and few reports deal specifically with the subject. In this respect,
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B. phytofirmans has been reported as enhancing plant resistance to low

temperatures (Ait Barka et al. 2002, 2006).

Solar ultraviolet-B radiation (UV-B, wavelength range 280–315 nm), even in

relatively small amounts, is potentially harmful for plants (Frohnmeyer and Staiger

2003). The syntheses promoted by UV-B of terpenic compounds (Gil et al. 2012)

that have the capacity of repelling the attack and propagation of pathogens (Vögeli

and Chappell 1988; Escoriaza et al. 2013) are in turn enhanced by PGPR (Salomon,

Cohen, Bottini, Gil, Moreno, Piccoli, unpublished results). Therefore PGPR pre-

pare the plant tissues to afford UV-B damage. As well, considering that biosynthe-

sis of membrane-related sterols is enhanced by ABA (Berli et al. 2010), an

additional benefit of bacterial-produced ABA may be the increase in sterols that

are associated with stability and integrity of membranes, and attenuation of oxida-

tive damage.

8.5 Prospective

Most of the studies analyzed the plant/PGPR interaction based on one plant species

interacting with one bacterial strain (or a few strains of the same species) under

controlled conditions looking for some specific mechanism, which is not the case in

nature where a plant population is interrelating with a whole bunch of microorgan-

ism of both deleterious or beneficial characteristics along with many environmental

signals (some stressful like water restriction, some trophic like photosynthetic light,

some just signaling other factors like light quality that indicates neighbors, etc.). In

other words, the interaction of so many factors produces a “holistic” response by the

plant in which some of these factors may be predominant (like water availability),

whereas some others are not (like the relative presence of PGPR). Therefore, no

general mechanisms can account for improvement in growth and yield of crops.

That is, one may expect a noticeable beneficial effect of PGPR in precise situations

in which bacterization becomes effective in alleviating specific environmental

treats. In this regard, future research should be directed in addressing specific

questions posed for definite conditions in order to develop technologies effective

in abiotic stress tolerance induced by endophytic PGPR.
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