
Invertible Transductions and Iteration

Klaus Sutner

Carnegie Mellon University
Pittsburgh, PA 15213, USA

Abstract. We study iterated transductions, where the basic transduc-
tions are given by a class of length-preserving invertible transducers over
the binary alphabet. It is shown that in some cases the resulting orbit
relation is rational and we determine the complexity of several natural
computational problems associated with the iterated transductions.

1 Iterating Transductions

We are interested in the analysis of discrete structures of the form C = 〈C, T 〉
where C is a rational set of words, in this context often referred to as the space
of configurations , and T is a functional binary relation on C determined by a
rational transducer. While first-order properties of C such as reversibility or the
existence of k-cycles are of considerable interest, higher order properties involv-
ing T �, the iterate of T , are critical for the understanding of the structures.
From a computational perspective, iteration of even rather simple transductions
T produces structures C that are too complicated to admit a detailed analysis.
To wit, the next-step function of a Turing machine is easily modeled as a ratio-
nal transduction, so together with iteration we are dealing with a system that
is potentially computationally universal and thus difficult to classify and under-
stand. Perhaps the most surprising result along these lines is Cook’s proof [3] of
the universality of the elementary cellular automaton number 110, a transducer
that is defined essentially by a ternary Boolean function. To the best of our
knowledge, this is the first example of a universal system that was “discovered”
rather than constructed, with the specific intent of producing universality.

The argument relies heavily on a version of Post tag systems, so-called cyclic
tag systems, and demonstrates that these systems, which are known to be com-
putationally universal, can indeed be simulated by the transducer, given initial
conditions of sufficient complexity. In fact, the argument employs bi-infinite bi-
nary words to produce universality; more precisely, one needs to consider words
of the form ωuwvω where u, w and v are finite, binary words. This type of
configuration is quite natural: letting C be the collection of all such words, the
first-order structure 〈C, T 〉 is an elementary substructure of the full shift space
〈2Z, T 〉 of all bi-infinite words, where T is the transduction associated with the
cellular automaton number 110, see [23]. Remnants of this hardness result per-
sist at the level of finite words, evaluation of the transduction on finite words is
shown to be P-complete in [14].

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 18–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Invertible Transductions and Iteration 19

To avoid hardness results based on configurations of unbounded size it is nat-
ural to consider length-preserving transductions on ordinary finite words. For
a length-preserving transduction, the question whether a configuration occurs
in the orbit of another is naturally in PSPACE and indeed easily seen to be
PSPACE-complete in general. It is NL-complete to determine whether a con-
figuration has a predecessor, see [21]. Note, though, that questions about the
behavior of length-preserving transductions may well become undecidable when
configurations of arbitrary size are considered. For example, one can show that it
is undecidable whether all orbits end in a fixed point, see [22]; more precisely, this
problem is Π1-complete. Similarly questions about the length of the limit cycle
of a configuration are undecidable. For example, one cannot determine whether
all configurations of size n will evolve to a limit cycle of size linear in n, see [21].
Incidentally, there is a close connection between length-preserving transductions
and context-sensitive languages as shown in [13]. The reference shows that every
context-sensitive language L can be written in the form L = Γ �τ�ρΣ where τ is
a length-preserving transduction and ρΣ� is the operation “intersection by Σ�”
for suitable alphabet Γ and Σ.

In this paper we further constrain transductions by insisting that they be
length-preserving and invertible. Thus, C consists of a collection of disjoint cycles,
and each cycle contains only configurations of the same length: T � ⊆ (2× 2)�.
Correspondingly, the iterate T � is an equivalence relation that we will refer
to as the orbit relation of T . It follows that the first-order structure C is an
automatic permutation structure in the sense of [9,11]. Automatic structures
have decidable first-order theories and natural decision algorithms can be given
based on classical automata-theoretic methods. Note, though, that in practice
only a small fragment of the first-order theory can be decided due to catastrophic
growth in the state complexity of the associated machines.

To ensure invertibility, our transducers are special types of Mealy automata

A where all transitions are of the form p
a/π(a)−−−−→ q; here π = πp is a permuta-

tion of the alphabet 2 = {0, 1} that depends on the source p of the transition.
Thus there are two types of states: toggle states where πp is the transposition
and copy states , otherwise. By selecting any state p in A as the initial state we
obtain a transduction A(p) : 2� → 2� . Write S(A) for the semigroup generated
by the basic transductions A(p). These automata are called binary invertible
transducers and have attracted a lot of attention in the group theory and dy-
namical systems community: the groups generated by all the transitions A(p)
often have surprisingly interesting properties, see [1,6,7,15]. For example, the
well-known lamplighter group can be described by a two-state invertible trans-
ducer and Grigorchuk has constructed a group of intermediate growth that can
be interpreted as the transduction group of a binary invertible transducer on
only 5 states and with a single toggle state.

In light of the complexity of the transduction groups associatedwith even rather
small invertible transducers we further constrain our study to a special type of in-
vertible transducers, so-called cycle-cum-chord transducers (or CCC transducers
for short). These transducers have state set {0, 1, . . . , n− 1} and transitions

20 K. Sutner

p
a/a−→ p− 1, p > 0 and 0

0/1−→ n− 1, 0
1/0−→ m− 1

where 1 ≤ m ≤ n. We write An
m for this transducer; the example A5

3 is shown
in figure 1. Note that An

m contains but a single toggle state. It is shown in [25]
that these transducers are fairly simple from the perspective of the associated
semigroups: they are all free Abelian groups (except in the degenerate case n = m
when we obtain a finite Boolean group).

0

1

2 3

4

0/1

1/0

a/a

a/a

a/a

a/a

0 = (4, 2)σ

k = (k−, k−) 0 < k < 5

Fig. 1. The cycle-cum-chord transducer A5
3 and its representation in the wreath form

from section 2

There are several natural questions that are related to the analysis of the
structures C determined by our CCC transducers. First and foremost, there is the
question of the complexity of the orbit relation associated with a transduction in
S(A). In particular, there is the decision problem of determining when the orbit
relation itself is rational, in which case the extended structure C� = 〈C, T, T � 〉
is still automatic. More generally, we would like to understand the complexity of
the Orbit Problem, the recognition problem of deciding xf�y given two words x
and y. A closely related question is the first canonical form problem: how hard
is it to compute the length-lexicographical least element of an orbit, see [4,8].
Another elementary question is the Iteration Problem: what is the complexity of
computing x f t for some transduction f , a word x and t ≥ 0. We can strengthen
the recognition problem and ask for a witness to membership in an orbit: given
words x and y, find the least number t ≥ 0 such that x f t = y, or determine that
no such t exists. We refer to this as the Timestamp Problem.

In this overview we will discuss results concerning these questions for cycle-
cum-chord transducers. Though this class of machines is rather narrow, it turns
out that a complete classification is currently out of reach. In section 2 we re-
cap the basic definitions and describe the so-called Knuth normal form of a
transduction, a central tool in the study of our transducers. We also comment
on the rationality of orbits. In the next section, we discuss a natural coordinate
system based on iterated transductions and describe the complexity of the times-
tamp and coordinate problems. Section 4 contains a rather lengthy list of open
problems.

Invertible Transductions and Iteration 21

2 Transduction Groups and Knuth Normal Form

Our transductions are given by Mealy automata of the form A = 〈Q,2, δ, λ 〉
where Q is a finite set, 2 = {0, 1} is the input and output alphabet, δ : Q× 2 →
Q the transition function and λ : Q× 2 → 2 the output function. As usual, we
can think of 2� as acting on Q via δ, see [2,18,10]. We are here only interested
in invertible transducers : λ(p, .) : 2 → 2 is required to be a permutation for
each state p. Write S2 for the symmetric group on two letters and let σ be the
transposition in this group. We refer to p as a toggle state when λ(p, .) : 2 → 2
is σ, and as a copy state, otherwise. By selecting an arbitrary state p as initial
state we obtain a transduction A(p) : 2� → 2� . It is clear from the definitions
that these maps are length-preserving bijections. To lighten notation we write
p for this transduction whenever the automaton is clear from context. Lastly,
S(A) denotes the semigroup generated by all the functions A(p) as p ranges over
Q. For the CCC transducers from above, S(A) is already a group, as we shall see
shortly. Given a transduction f ∈ S(A) we obtain a relational structure as in the
introduction by letting T be its graph: x T y iff x f = y. For technical reasons,
this is preferable to dealing with functions directly. Note that if we interpret A
as an acceptor over the alphabet 2× 2 it recognizes T .

Following ideas from [19], we can think of 2� as an infinite, complete binary
tree. Our transductions naturally act as automorphisms of this tree, see [15,20].
Thus our groups S(A) can be viewed as subgroups of the ambient group Aut(2�)
of all automorphisms of 2�. In this setting, it is natural to write any automor-
phism f of 2� as f = (f0, f1)s where s ∈ S2: s describes the action of f on the
first level 2 of the tree, and f0 and f1 are the automorphisms induced by f on
the two subtrees of the root, which are naturally isomorphic to the whole tree.
The automorphisms f such that f = (f0, f1)σ are odd , the others even. One can
then write the ambient group in terms of wreath products as

Aut(2�) 	 Aut(2�)
S2 = (Aut(2�)× Aut(2�))�S2.

The group operation is given by (f0, f1)s (g0, g1)t = (f0gs(0), f1gs(1)) st, see
[15,20]. For example, the cycle-cum-chord transducers from section 1 can be
written as 0 = (n−,m−)σ and k = (k−, k−) for 0 < k < n. Here 1 ≤ m ≤ n and
we have written p− rather than p− 1 to improve legibility.

The collection I of all maps defined by invertible transducers is easily seen
to be closed under inverse and composition, and thus forms a subgroup I of the
ambient group. For automata groups G ⊆ I the wreath form naturally induces
three maps ∂0, ∂1 and par such that f = (∂0f, ∂1f) parf . The parity is simply
determined by the corresponding state being toggle or copy. The operations
∂s are the left residuals , see [17,5,15]: for any word x, define the function ∂xf
by (x f) (z ∂xf) = (xz) f for all words z (for transductions, we write function
application on the right and use diagrammatic composition for consistency with
relational composition). It follows that

∂xyf = ∂y∂xf ∂x(fg) = ∂xf ∂xfg

22 K. Sutner

The transduction semigroup S(A) is naturally closed under residuals. In fact, we
can describe the behavior of all the transductions by a transition system C, much
the way A describes the basic transductions: the states of C are all transductions

in S(A) and the transitions are f
s/sf−→ ∂sf where s ∈ 2. Thus C contains A as

a subautomaton. Of course, this system is infinite in general; it is referred to as
the complete automaton in [15]. The computation of x f follows a path in C.

The following characterization of the transduction semigroups of cycle-cum-
chord transducers was established in [25].

Theorem 1. The semigroup generated by a cycle-cum-chord transducer An
m is

a free Abelian group for m < n, and the Boolean group 2n for n = m.

From now on we will ignore the degenerate case n = m. It is easy to see that
the semigroup is Abelian. Letting s = gcd(n,m), An

m generates the free Abelian
group Z

n−s. To simplify the discussion, let us assume that n and m are coprime;
the general situation can be recovered by considering shuffle products of trans-
ductions in the coprime case. The reason the semigroup turns out to be a group
is that the following cancellation identity holds:

02 12 . . . (m−)2 m m+ 1 . . . n− = I.

To show that there are essentially no other identities one can use a device sug-
gested by Knuth in [12]. One enlarges the transducer by adding infinitely many
copy states k where k ≥ n together with transitions k = (k−, k−). This extension
does not change the (semi)group generated by the machine. In fact we have the
shift identities

k2 = k +m k + n.

Using these identities one can then show that for every transduction f there is
a unique flat representation

f = k1 k2 . . . kr,

where k1 < k2 < . . . < kr. For f = I we assume r = 0. We refer to this repre-
sentation as the Knuth normal form (KNF) of f , in symbols KNF(f). Indeed,
by interpreting the cancellation and shift identities as rewrite rules we obtain a
weakly convergent rewrite system that produces KNF(f), given f in semigroup
representation.

In particular for A3
2, Knuth normal form has a number of interesting properties

that will be important in section 3. For any transduction f , write shs(f) for the
transduction obtained by replacing any term k in the KNF of f by k + s. In group
representation, we have sh1(a, b) = (−2b, a − 2b). Lastly, let γ0 = 0, γ1 = 01,
γ2 = 0−1 and γ3 = 0−11−1 and set γ′

i = sh1(γi). A straightforward induction
shows the following lemma.

Lemma 1. Let 0 ≤ k and 0 ≤ i < 4. Then KNF(02
4k+i

) = sh8k+2i(γi). More

generally, for f = 0a1b, we have KNF(f24k+i

) = sh8k+2i(KNF(γa
i γ

′b
i)).

Invertible Transductions and Iteration 23

Because of the lemma, for A3
2, rewriting is not required at all to determine Knuth

normal form, rather a finite state transducer suffices to determine KNF in the
following sense. For simplicity let us only consider the KNF for 0t, t ≥ 0, rather
than the general group elements. We can think of the KNF of f as an ω-sequence
κ ∈ 2ω where κi = 1 ⇐⇒ i appears in the normal form of f . Likewise we can
think of KNF as a finite bit-vector u such that κ = u 0ω. We can pre-compute
these finite bit-vectors of 0a for 0 ≤ a < 16 and pad to length 8 whenever
necessary:

00000000 10000000 00110000 1011000 000010111 100010111
001110111 101110111 000000111 100000111 001100111 101100111
000010001 100010001 001110001 101110001

All but the first 4 entries have length 9 and require a “carry” to the next block.
According to lemma 1 we can now determine KNF of 0t as follows. Let T be
a 0-indexed table whose entries are the 16 KNFs, right-padded or truncated to
form blocks of length 8. If there is no carry, on input hex-digit d the correct
output is Td, but with a carry it is Td+1 mod 16. Figure 2 shows a sketch of the
appropriate transducer; input is hexadecimal, output is binary.

nc c h

d > 3/Td

d ≤ 2/Td+1

ε/1

d ≤ 3/Td d > 2/Td+1

Fig. 2. A transducer that determines the Knuth normal form of a transduction 0a for
CCC transducer A3

2

The state nc is the no-carry state, c is carry, and h takes care of pending
carries after the last input digit. For example, for a = 3921 = (15F)16r we get
three blocks plus one 1 because of the carry:

T1T5T0T1 = 10000000 10001011 00000000 1,

corresponding to KNF 0 8 12 14 15 24. Note that the KNF transducer can
be converted into a recurrence equation for the length of KNF(f), but it seems
difficult to obtain a closed form solution. Also, a similar construction works for
general group elements, but the machinery becomes considerably more compli-
cated since we now have to deal with both generators 0 and 1 of the transduction
group.

24 K. Sutner

2.1 Orbit Rationality

Given a transduction f we can think of the associated orbit relation f� as a lan-
guage over (2× 2)

�
. One can then exploit the group representation to calculate

Brzozowski quotients of this language. We obtain a generally infinite transition
system that recognizes the orbits of f and whose states naturally are given by
pairs of transductions, see [25] for details. Somewhat surprisingly, for some CCC
transducers this transition system turns out to be finite for all the associated
transductions. Thus, f� is rational and hence automatic. For space reasons we
focus here on the CCC Transducer A3

2, see the reference for the following result
and some generalizations.

Theorem 2. For any transduction f in S(A3
2), the orbit relation of f is rational.

Accordingly, the root function can be computed by a length-preserving finite state
transducer.

The proof is based on the explicit construction of an acceptor that recognizes the
orbit relation of f , considered as a language over (2× 2)�. As already mentioned,
the construction uses Brzozowski quotients and is a priori only guaranteed to
produce a potentially infinite transition system. However, for S(A3

2) only finite
systems are generated. For example, for f = 0 there are 34 states in the acceptor.
Critical for finiteness is the fact that the following operation π on transductions
has finite orbits: π(f) = ∂0f for f even, and π(f) = ∂0f ∂1f = ∂0f

2 for f odd.
As it turns out, except for the fixed point I, all orbits of π end in an 8-cycle.

Unsurprisingly, this property is not shared by all other transducers; for exam-
ple, the orbit relation of 0 in A4

3 fails to be rational. The proof comes down to
showing that all powers of a certain rational matrix fail to have rational eigen-
values. In a first step one can exploit field theory to show that it suffices to check
finitely cases, which cases can then be dispatched by computation in a computer
algebra system. Needless to say, this argument is difficult to generalize and it is
not clear how to characterize CCC transducers with rational orbits.

2.2 Computing Iterates

Knuth normal form also suggests that computing x f t can be computed easily: we
have az f = a f(z ∂af) and residuation for a transduction written in KNF comes
down to a left shift, except possibly for a first term 0. Hence, after processing an
initial segment of x, the residuals of f t will have low weight and from then on,
every single bit of x can be processed in constant time. In terms of the complete
automaton C from section 2 this means that there are only a few non-trivial
strongly connected components and every sufficiently long path winds up in one
of them. For example, in the case of A3

2 the complete automaton has 8 non-trivial
strongly connected components the largest of which has 6 states.

Thus we have two natural representations for transductions: the semigroup
representation f = 0e01e1 . . . n− 1en−1 where ei ≥ 0, and the unique group
representation f = 0e

′
01e

′
1 . . . n− 2e

′
n−s−1 where e′i ∈ Z. Correspondingly, the

group representation of f is the integer-valued vector (e′0, . . . , e
′
n−s−1). We will

Invertible Transductions and Iteration 25

refer to
∑ |ei| as the weight of f . The weight can be used to bound the the

complexity of the iteration problem: it is clear that we can compute residuals in
time O(n logw) where w is the weight of the transduction in question. It follows
that x f can be computed in O(|x|n logw) time. However, we can do better than
that.

Proposition 1. Given a transduction f ∈ S(An
m) we can compute x f in time

linear in |x|, with coefficients depending on f .

The idea is to express residuation as an affine operation of the form

∂su =

{
A · u if u is even,

A · u− (−1)sa otherwise.

where u ∈ Z
n−1 is the group representation of the transduction, see [16]. A

is a rational matrix of suitable dimension and a a rational vector. The spectral
radius of A is less than 1, hence residuation is a contraction and after a transient
part all weights are bounded by a constant depending only on n and m.

We do not know how to obtain more precise bounds on the cost of computing
x f . In particular there appears to be no easy way to determine the number and
size of the non-trivial strongly connected components of the complete automaton,
short of actual computation.

3 Timestamps and Coordinates

One can show that for any CCC transducer An
m the group H of transductions

generated by p, 0 ≤ p < m, acts transitively on 2� (which set of words is often
referred to as a level set in connection with the infinite binary tree). For � = km

the quotient group H ′ obtained by factoring with respect to i2
k

acts simply
transitively on the level set 2�. As a consequence, there is a natural coordinate
system for 2km: for every � = km there is a bijection

2� → Z/(2k)× . . .× Z/(2k)

where the product on the right has m terms. We will write 〈w 〉� ∈ (Z/(2k))m

for the coordinates of a word w: 〈w 〉� = (a0, . . . , am−) if, and only if, w =
0� 0a01a1 . . .m−am− . We use x ≡ y to express that two integer vectors of lengthm
are componentwise congruent modulo 2k. Also, for a transduction f , define the �-
coordinates of f by 〈 f 〉� =

〈
0� f

〉
�
. For example, in A3

2, letting f = 0−113 we get

〈 f 〉2k = (2k−1, 3) for k ≥ 2. By commutativity it follows that
〈
0� f i

〉
�
≡ i·〈 f 〉�

and
〈
0� f�

〉
�
≡ N ·〈 f 〉�, so that the orbit of 0� is a linear subspace of (Z/(2k))m.

Again by commutativity general orbits can be described as affine subspaces of
(Z/(2k))m:

〈w f� 〉� ≡ 〈w 〉� + N · 〈 f 〉�
Thus, it is of interest to be able to calculate coordinates. More formally, we wish
to address the following problem, assuming a CCC transducer An

m is fixed.

26 K. Sutner

Problem: Coordinate Problem
Instance: A word x ∈ 2� where � = km.
Output: The coordinates 〈x 〉� ∈ (2k)m of x.

Closely related is the question how many times a given transduction f must be
applied to obtain a particular point in the orbit of a given word x. We refer to
this as the Timestamp Problem:

Problem: Timestamp Problem
Instance: A transduction f , two words x, y ∈ 2k.
Output: The least t ≥ 0 such that y = x f t, if it exists; NO otherwise.

Clearly the Orbit Problem reduces to the Timestamp Problem, which, as we will
see shortly, in turn reduces to the Coordinate Problem. We will show that all
of them can be solved in quadratic time. Let us first deal with the Timestamp
Problem, see [24].

Theorem 3. The Timestamp Problem can be solved in quadratic time: given
two words x and y of length � = km and a transduction f ∈ S(An

m) we can find
a timestamp t ≥ 0 such that x f t = y, or determine that no such t exists, in
O(�2) steps.

The technique of the last theorem can be pushed slightly to provide a fast al-
gorithm to compute coordinates. Suppose x ∈ 2� where � = km. We need to
compute integers e0, . . . , em− such that

x = 0� 0e0 . . .m−em− .

Let us call the transduction on the right f . Then for any r < �

x = 0r f · 0�−r∂0rf.

Since the first bit of 0�−r∂0rf depends only on the parity of ∂0rf we can deter-
mine the coefficients of the binary expansions of the exponents ei.

Theorem 4. The Coordinate Problem can be solved in quadratic time: given a
word x of length � = km we can determine its coordinates in O(�2) steps.

Given the algorithm for the Coordinate Problem one can also tackle the Times-
tamp Problem via a reduction.

Proposition 2. The Timestamp Problem reduces to the Coordinate Problem in
time O(� logw+ log2 k) where w is the weight of the transduction and km is the
length of the words.

For some CCC transducers the quadratic bounds from the last few results can be
improved upon: finite state machines sometimes suffice to calculate coordinates
and timestamps. As an example, consider again A3

2. The following algorithm
solves the Coordinate Problem in this case. Given a word x (here assumed to be
0-indexed) we calculate its coordinates in reverse binary as follows. The γi are
as in section 2.1.

Invertible Transductions and Iteration 27

// coordinate algorithm A3
2

h = (0, 0);
for r = 0, . . . , n− 1 do

sr = h1 + x2r mod 2; // phase 1: bind sr
h = ∂0(h+ sr · γr);
tr = h1 + x2r+1 mod 2; // phase 2: bind tr
h = ∂0(h+ tr · γr);

return (s, t);

As stated, the algorithm appears to require quadratic time. However, it can be
implemented on a finite state machine because of the contraction property of
residuals spelled out in section 2.

Theorem 5. The Coordinate Problem for A3
2 can be solved by a transducer that

computes the coordinates in reverse binary.

It is straightforward to modify this algorithm to deal with timestamps.

4 Open Problems

We have characterized the complexity of various computational problems asso-
ciated with the iteration of transductions defined by a rather narrow class of
invertible binary transducers. In particular it can be shown that for these trans-
ducers iterates, time-stamps and coordinates can be computed quickly. The ar-
gument uses Knuth normal form as an essential technical device. Incidentally,
we do not know in general when Knuth normal form can be computed by a finite
state transducer as in section 2.1 rather than a canonical rewrite system.

One obvious open question is to determine the cycle-cum-chord transducers
for which the orbit relation of any transduction is rational. The property appears
to be quite rare, but currently we do not even know whether it is decidable. The
rationality problem naturally carries over to other more complicated classes of
invertible transducers. A particularly plausible generalization of cycle-cum-chord
transducers are so-called m-lattices, invertible transducers whose transduction
groups are isomorphic to Z

m, see [20,16]. One well-known example are the so-
called “sausage automata” in [15], given in wreath notation by 0 = (I, n)σ and
k = (k − 1, k − 1) for 2 ≤ k ≤ n. Here we ignore the identity I, as is customary.
We do not know to which degree the timestamp and/or coordinate machinery
arguments carry over to m-lattices, though the particular example of the sausage
automaton is easy to deal with. In this context an interesting question is whether
isomorphism of our structure C is decidable. Similarly we do not know what the
expression complexity of model checking for these structures is in general.

It is tempting to consider general invertible transducers with but a single
toggle state; after all, the impact of the complexity of the underlying groups
(which may be very complicated as in Grigorchuk’s example) on our decision
problems is not clear a priori. Another plausible generalization would be to
place restrictions on the topology of the underlying transition diagram.

28 K. Sutner

It is straightforward to check whether S(A) is commutative, using standard
automata-theoretic methods. We do not know whether it is decidable whether
S(A) is a group, though this property is obviously semidecidable. Unsurprisingly,
many other decidability questions regarding transduction semigroups or groups
of invertible transducers are also open, see [7, chap. 7] for an extensive list.

References

1. Bartholdi, L., Silva, P.V.: Groups defined by automata. In: CoRR, abs/1012.1531
(2010)

2. Berstel, J.: Transductions and context-free languages (2009),
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/

LivreTransductions.html

3. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)

4. Fortnow, L., Grochow, J.A.: Complexity classes of equivalence problems revisited.
Inf. Comput. 209(4), 748–763 (2011)

5. Gluškov, V.M.: Abstract theory of automata. Uspehi Mat. Nauk. 16(5(101)), 3–62
(1961)

6. Grigorchuk, R., Šunić, Z.: Self-Similarity and Branching in Group Theory. In:
Groups St. Andrews 2005. London Math. Soc. Lec. Notes, vol. 339. Cambridge
University Press (2007)

7. Grigorchuk, R.R., Nekrashevich, V.V., Sushchanski, V.I.: Automata, dynamical
systems and groups. Proc. Steklov Institute of Math. 231, 128–203 (2000)

8. Howard Johnson, J.: Rational equivalence relations. Theoretical Computer Sci-
ence 47, 167–176 (1986)

9. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

10. Khoussainov, B., Nerode, A.: Automata Theory and its Applications. Birkhäuser
(2001)

11. Khoussainov, B., Rubin, S.: Automatic structures: overview and future directions.
J. Autom. Lang. Comb. 8(2), 287–301 (2003)

12. Knuth, D.: Private communication (2010)
13. Latteux, M., Simplot, D., Terlutte, A.: Iterated length-preserving rational trans-

ductions. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
pp. 286–295. Springer, Heidelberg (1998)

14. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132–143. Springer, Heidelberg (2006)

15. Nekrashevych, V.: Self-Similar Groups. AMS. Math. Surveys and Monographs,
vol. 117 (2005)

16. Nekrashevych, V., Sidki, S.: Automorphisms of the binary tree: state-closed sub-
groups and dynamics of 1/2-endomorphisms. Cambridge University Press (2004)

17. Raney, G.N.: Sequential functions. J. Assoc. Comp. Mach. 5(2), 177–180 (1958)
18. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
19. Serre, J.-P.: Arbres, Amalgames, SL2. Astérisque Société Mathématique de France,

Paris (1977)
20. Sidki, S.: Automorphisms of one-rooted trees: Growth, circuit structure, and

acyclicity. J. Math. Sciences 100(1), 1925–1943 (2000)

http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html

Invertible Transductions and Iteration 29

21. Sutner, K.: On the computational complexity of finite cellular automata. J. Com-
put. System Sci. 50(1), 87–97 (1995)

22. Sutner, K.: Universality and cellular automata. In: Margenstern, M. (ed.) MCU
2004. LNCS, vol. 3354, pp. 50–59. Springer, Heidelberg (2005)

23. Sutner, K.: Computational classification of cellular automata. Int. J. General Sys-
tems 41(6), 1–13 (2012)

24. Sutner, K.: Invertible transducers, iteration and coordinates. In: Konstantinidis, S.
(ed.) CIAA 2013. LNCS, vol. 7982, pp. 306–318. Springer, Heidelberg (2013)

25. Sutner, K., Lewi, K.: Iterating invertible binary transducers. In:Kutrib,M.,Moreira,
N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 294–306. Springer, Heidelberg
(2012)

	Invertible Transductions and Iteration
	1 Iterating Transductions
	2 Transduction Groups and Knuth Normal Form
	2.1 Orbit Rationality
	2.2 Computing Iterates

	3 Timestamps and Coordinates
	4 OpenProblems
	References

