
Helmut Jürgensen
Rogério Reis (Eds.)

 123

LN
CS

 8
03

1

15th International Workshop, DCFS 2013
London, ON, Canada, July 2013
Proceedings

Descriptional Complexity
of Formal Systems

Lecture Notes in Computer Science 8031
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Helmut Jürgensen Rogério Reis (Eds.)

Descriptional Complexity
of Formal Systems
15th International Workshop, DCFS 2013
London, ON, Canada, July 22-25, 2013
Proceedings

13

Volume Editors

Helmut Jürgensen
Western University, Department of Computer Science
Middlesex College, London, ON N6A 5B7, Canada
E-mail: hjj@csd.uwo.ca

Rogério Reis
Universidade do Porto, Faculdade de Ciências
Departamento de Ciência de Computadores
Rua do Campo Alegre 1021-1055, 4169-007 Porto, Portugal
E-mail: rvr@dcc.fc.up.pt

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39309-9 e-ISBN 978-3-642-39310-5
DOI 10.1007/978-3-642-39310-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013941383

CR Subject Classification (1998): F.1.1-3, F.4.2-3, F.2-3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 15th International Workshop on Descriptional Complexity of Formal Sys-
tems, DCFS 2013, was held in London (Ontario, Canada) in July of 2013 at
Western University.

The annual DCFS workshop series has two origins: The workshop FDSR
– Formal Descriptions and Software Reliability – first held in 1998 in Pader-
born (Germany) and the workshop DCAGRS – Descriptional Complexity of
Automata, Grammars an Related Structures – first held in 1999 in Magde-
burg (Germany). FDSR met again in Boca Raton (Florida, USA) and in San
Jose (California, USA) in 1999 and 2000, while DCAGRS was held in Lon-
don (Ontario, Canada) and in Vienna (Austria) in 2000 and 2001. The two
series merged into DCFS with the next meeting in 2002 held again in London
(Canada). Since then DCFS has visited Budapest (Hungary), London (Canada),
Como (Italy), Las Cruces (New Mexico, USA), Nový Smokovec (Slovakia), Char-
lottetown (Prince Edward Island, Canada), Magdeburg (Germany), Saskatoon
(Saskatchewan, Canada), Gießen/Limburg (Germany) and Braga (Portugal).

Within the general theme of descriptional complexity of formal systems the
topics covered by DCFS include the following (as listed in the 2013 call for
papers):

– Automata, grammars, languages and other formal systems; various modes
of operations and complexity measures; co-operating systems.

– Succinctness of the description of objects, state-explosion-like phenomena.
– Circuit complexity of Boolean functions and related measures.
– Size complexity and structural complexity of formal systems.
– Trade-offs between computational models and modes of operation.
– Applications of formal systems – for instance, in software and hardware
testing, in dialogue systems, in systems modelling or in modelling natural
languages– and their complexity constraints.

– Size or structural complexity of formal systems for modelling natural lan-
guages.

– Complexity aspects related to the combinatorics of words.
– Descriptional complexity in resource-bounded or structure-bounded environ-
ments.

– Structural complexity as related to descriptional complexity.
– Frontiers between decidability and undecidability.
– Universality and reversibility.
– Nature-motivated (bio-inspired) architectures and unconventional models of
computing.

– Kolmogorov-Chaitin complexity, algorithmic information.

The workshop programme of DCFS 2013 included four invited lectures, 22 con-
tributed papers, discussion sessions and an excursion to one of the nature resorts

VI Preface

in the vicinity of London. The proceedings of DCFS 2013, which are published
in this volume of the Lecture Notes in Computer Science series and which were
available at the workshop, contain the invited lectures and the contributed pa-
pers.

Submissions to DCFS 2013 came from 46 authors from many different coun-
tries including Canada, the Czech Republic, Finland, France, Germany, India,
the Islamic Republic of Iran, Italy, the Republic of Korea, Malaysia, Morocco,
Portugal, Slovakia and the USA. On the basis of three reviews for each con-
tribution, an international committee selected the papers for inclusion in the
workshop programme and this proceedings volume.

We gratefully acknowledge generous financial support from the Fields In-
stitute for Research in Mathematical Sciences. It was crucial, covering the ex-
penses for invited speakers and offering some modest travel assistance to junior
researchers. We also received direct financial support from the Faculty of Sci-
ence of Western University and valuable in-kind support from the Department of
Computer Science and – in the form of free proceedings volumes – from Springer.
Without this support, it would have been very difficult to conduct DCFS 2013.
We are thankful for this help. We also say thanks to those who contributed
otherwise to the success of DCFS 2013:

– The invited speakers Cezar Câmpeanu (University of Prince Edward Island,
Canada), Frank Drewes (Ume̊a Universitet, Sweden), Pierre McKenzie (Uni-
versité de Montréal, Canada) and Klaus Sutner (Carnegie Mellon University,
Pittsburgh, USA).

– The authors of contributed and discussion papers.
– The speakers and participants of the workshop.
– The reviewers and the programme committee.
– The people looking after the organizational details, in particular, Cheryl
McGrath, Andrew Szilard, Roopa Bose and Feliks Rozenberg of the local
organization committee.

– The staff of the Computer Science Department and of the Grad Club at
Western University.

We also thank Springer and, in particular, their Computer Science Editorial, for
the extremely helpful and efficient collaboration in making this volume available
before the conference. As volume editors we value their experience and advice.

We hope that, as in previous years, DCFS 2013 has initiated scientific dis-
cussions and stimulated research and scientific co-operation in the area of de-
scriptional complexity, and that this volume contributes to raising the interest
in the field. We look forward to seeing this year’s participants and many others
at DCFS in 2014!

July 2013 Helmut Jürgensen
Rogério Reis

Organization

Programme Committee

Viliam Geffert Univerzita Pavol Jozefa Šafárika, Košice,
Slovakia

Galina Jirásková Slovenská akadémia vied, Košice, Slovakia
Helmut Jürgensen Western University, London, Canada
Christos Kapoutsis Carnegie Mellon University in Qatar
Lila Kari Western University, London, Canada
Stavros Konstantinidis Saint Mary’s University, Halifax, Canada
Dexter Kozen Cornell University, Ithaca, USA
Martin Kutrib Justus-Liebig-Universität, Gießen, Germany
Andreas Malcher Justus-Liebig-Universität, Gießen, Germany
Ian McQuillan University of Saskatchewan, Saskatoon, Canada
Victor Mitrana Universidad Politécnica de Madrid, Madrid,

Spain
Nelma Moreira Universidade do Porto, Portugal
Beatrice Palano Università degli Studi di Milano, Italy
Giovanni Pighizzini Università degli Studi di Milano, Italy
Rogério Reis Universidade do Porto, Portugal
Jacques Sakarovitch CNRS / ENST, Paris, France
Kai Salomaa Queen’s University, Kingston, Canada
Jeffrey Shallit University of Waterloo, Waterloo, Canada
Bianca Truthe Otto-von-Guericke-Universität, Magdeburg,

Germany

Additional Reviewers

Amorim, Ivone
Autebert, Jean-Michel
Bednárová, Zuzana
Bianchi, Maria Paola
Bordihn, Henning
Broda, Sabine
Cherubini, Alessandra
Enaganti, Srujan
Holzer, Markus
Jakobi, Sebastian
Karamichalis, Rallis
Kĺıma, Ondřej
Kulkarni, Manasi

Lombardy, Sylvain
Maia, Eva
Manea, Florin
Masopust, Tomáš
Meckel, Katja
Mereghetti, Carlo
Nabais, Davide
Palioudakis, Alexandros
Šebej, Juraj
de Souza, Rodrigo
Szilard, Andrew
Wendlandt, Matthias

Table of Contents

Blum Static Complexity and Encoding Spaces . 1
Cezar Câmpeanu

Millstream Systems and Graph Transformation for Complex Linguistic
Models . 14

Frank Drewes

Can Chimps Go It Alone? . 17
Pierre McKenzie

Invertible Transductions and Iteration . 18
Klaus Sutner

Universal Witnesses for State Complexity of Boolean Operations and
Concatenation Combined with Star . 30

Janusz Brzozowski and David Liu

Searching for Traces of Communication in Szilard Languages of Parallel
Communicating Grammar Systems - Complexity Views 42

Liliana Cojocaru and Erkki Mäkinen

State Complexity of Basic Operations on Non-returning Regular
Languages . 54

Hae-Sung Eom, Yo-Sub Han, and Galina Jirásková

State Complexity of Subtree-Free Regular Tree Languages 66
Hae-Sung Eom, Yo-Sub Han, and Sang-Ki Ko

State Complexity of k -Union and k–Intersection for Prefix-Free Regular
Languages . 78

Hae-Sung Eom, Yo-Sub Han, and Kai Salomaa

A Direct Construction of Finite State Automata for Pushdown Store
Languages . 90

Viliam Geffert, Andreas Malcher, Katja Meckel,
Carlo Mereghetti, and Beatrice Palano

Nondeterministic State Complexity of Proportional Removals 102
Daniel Goč, Alexandros Palioudakis, and Kai Salomaa

Nondeterministic Biautomata and Their Descriptional Complexity 112
Markus Holzer and Sebastian Jakobi

X Table of Contents

Queue Automata of Constant Length . 124
Sebastian Jakobi, Katja Meckel, Carlo Mereghetti, and
Beatrice Palano

On the State Complexity of the Reverse of R- and J -Trivial Regular
Languages . 136

Galina Jirásková and Tomáš Masopust

Size of Unary One-Way Multi-head Finite Automata 148
Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Syntactic Complexity of R- and J -Trivial Regular Languages 160
Janusz Brzozowski and Baiyu Li

Sophistication as Randomness Deficiency . 172
Francisco Mota, Scott Aaronson, Lúıs Antunes, and André Souto

Shortest Repetition-Free Words Accepted by Automata 182
Hamoon Mousavi and Jeffrey Shallit

A Characterisation of NL/poly via Nondeterministic Finite
Automata . 194

Rob Myers and Henning Urbat

Improved Normal Form for Grammars with One-Sided Contexts 205
Alexander Okhotin

Comparisons between Measures of Nondeterminism on Finite
Automata . 217

Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl

Finite Nondeterminism vs. DFAs with Multiple Initial States 229
Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl

The Power of Centralized PC Systems of Pushdown Automata 241
Holger Petersen

Limited Automata and Regular Languages . 253
Giovanni Pighizzini and Andrea Pisoni

Reversal on Regular Languages and Descriptional Complexity 265
Juraj Šebej

Kleene Star on Unary Regular Languages . 277
Krist́ına Čevorová

Author Index . 289

Blum Static Complexity and Encoding Spaces

Cezar Câmpeanu

Department of Computer Science and Information Technology,
The University of Prince Edward Island, Canada

Abstract. The notion of descriptional complexity or algorithmic infor-
mation, also known as Chaitin-Kolmogorov complexity, was defined in
the ’60s in terms of minimal description length [14, 17]. This concept was
extended in 2012 in two papers, each using a different approach. One of
the papers studies properties of the complexity function, and uses the
notion of encoded function space; the other one extends Blum axioms for
static complexity, and defines Blum static complexity spaces. In formal
language theory we also use the concept of descriptional complexity for
the number of states, or the number of transitions in a minimal finite
automaton accepting a regular language, and apparently, this number
has no connection to Chaitin-Kolmogorov complexity. In this paper we
establish such a connection by extending the notions of Blum static com-
plexity and of encoded function space.

1 Introduction

The complexity of an object can be defined in abstract terms of minimal descrip-
tion length (MDL) as the length of the shortest word (string) describing that
object, and from an algorithmic point of view, that shortest word is an encoding
of a Turing machine (TM).

Descriptional complexity measures static properties of objects, as opposed
to dynamic complexity, which measures properties of algorithms during their
execution. It is obvious that the complexity depends on the alphabet, language,
definition, and the measure we use for description.

Several flavors, such as plain or prefix complexity were studied over the years,
and many complexities defined so far share most properties. However, some
properties are specific to a certain definition, for example, randomness for infi-
nite sequences could be defined using prefix-free complexity, but not using plain
complexity1.

The notion of encoded function (EF) space was introduced by Helmut
Jürgensen in [16], and it is defined as a family of functions for which we have
some representation using strings over finite alphabets, for the input, output, and
the functions themselves. The measure considered is always the length function,
thus, the length of the string representation can be used to define the notion
of complexity. A Blum static complexity space (BSC) is a family of functions

1 In [12], randomness for infinite sequences can be defined in an arbitrary Blum uni-
versal static complexity space, thus, this distinction was eliminated.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 1–13, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 C. Câmpeanu

defined on the set of natural numbers, N, together with a measure satisfying four
axioms. Two of these axioms where first considered by Blum in [2] and further
developed by Burgin in [4–6].

BSC spaces are an extension of Burgin’s work, where the complexity of a
number is defined as the dual complexity with respect to the given measure.
Using both approaches (either EF or BSC), fundamental results such as the
invariance property, universality theorems, or computability theorems can be
proved [11, 12, 16].

In formal language theory, none of these models can be used directly in con-
nection with other types of descriptional complexities, such as state complexity,
or transition complexity for regular languages. The main reason is that lan-
guages are sets of strings, rather than strings, as we use for Chaitin-Kolmogorov
type complexity, and we need a meaningful definition for the complexity of a
language. A straight-forward approach is to define the complexity of a language
as the shortest description of a TM accepting the language [18]. Although this
definition is very concise, this format seems to be of little use when we try to
prove results or connections with other type of measures. For example, it would
be impossible to relate the size of the shortest TM recognizing a regular language
L, to the number of states of the minimal DFA accepting L. Because any DFA
is a TM, the minimal size of a DFA would exceed the size of a TM recognizing
the same language, but any other result is very difficult to prove.

We believe that the notion of encoded Blum static complexity (EBSC) space
introduced in this paper, extending previously defined BSC and EF spaces, al-
lows us to define not only the complexity of strings, but also the complexity of a
language in a satisfactory way. We extend the notion of encoded function spaces
to use arbitrary measures, beside the length, thus obtaining measured encoded
function (MEF) spaces.

First, we prove that effective MEF spaces are BSC spaces, then we generalize
the notion of a BSC space to EBSC space and show how it can be seen as an
MEF space, thus proving the equivalence of the models for families of computable
functions. This is the reason why the generalized results obtained in both [11, 16]
are very similar.

In this new framework of EBSC, we prove a sufficient condition for the com-
putability of the complexity associated to these spaces, and show how we can
obtain traditional measures for the complexity of languages, such as state com-
plexity or transition complexity, as the complexity defined in a specified EBSC
space.

In the last section, we present several open problems that naturally spring
from this approach of defininig descriptional complexity. For example, it remains
as open problem how we can define randomness and what the meaning of a
random object is, in the case of an EBSC having as target a family of languages.

2 Extending Complexity Spaces

We denote by N = {0, 1, . . .} the set of natural numbers. For a set T , we
denote by #T its cardinal. For a finite alphabet with p letters, we use the set

Blum Static Complexity and Encoding Spaces 3

Ap = {0, 1, . . . , p− 1}. The free monoid generated by Ap is A∗
p, and the neutral

element with respect to concatenation, i.e., the word with no letters, is ε.
The length of a word w = w1 . . . wn ∈ A∗

p, wi ∈ Ap, 1 ≤ i ≤ n, is |w|p = n.
The subscript p may be omitted every time when the underlying alphabet Ap
is understood. The set A∗

p can be ordered using the quasi-lexicographical order:
ε, 0, 1, . . . , p− 1, 00, 01, 0(p− 1), 10, We denote by stringp(n), the one to one
function between N and A∗

p, representing the n-th string of A∗
p in the quasi-

lexicographical order. Thus, stringp(0) = ε, stringp(1) = 0, . . . stringp(p) =
p− 1, stringp(p+ 1) = 00,

Encoding spaces are defined in [16], and basically represent a construction
where we have an encoding of the source S, of the target T , and of the set of
functions F . All these sets S, T , and F must be countable. Because the same
object may have several encodings, the encoding functions are surjective, and
they map a string, encoding the object to the set of objects, rather than being
functions from the set of objects to the set of strings2 (representing an encoding
of the object). The encoding of the results is not considered in [16], but in the
present paper we will make use of it.

In [16], the length function is used to measure the size of the encoding. Figure 1
presents the original setup as defined in [16] for an encoded function space.

s ∈ Σ+ �

�
σ

σ(s) ∈ S �

i ∈ Φ+ �

�
φ

φi ∈ F �

i(s) ∈ Θ+

�
θ

φi(σ(s)) ∈ T

Fig. 1. Encoded Function Space Diagram. Σ, Φ, Θ are finite alphabets, σ, φ and θ are
the encoding functions, F is a set of partial functions from S to T ; φ(i) is denoted in
the diagram by φi.

Remark 1. It must be noted that the length function over a finite alphabet is
computable, and only a finite number of encodings have a bounded length, i.e.,
the function length | · | : A∗ −→ N satisfies the following properties:

1. {x ∈ A∗ | |x| = n} is computable, and
2. #{x ∈ A∗ | |x| = n} <∞.

We can extend the notion of encoded function space to measured encoded func-
tion space as follows:

1. instead of considering alphabets for encoding the source S, the target T , and
the set of functions F , we can use N to enumerate the encoded elements,
thus we drop the condition for S, T , and F to be countable, ignoring all the
elements that cannot be encoded;

2 Otherwise, every object would have at most one encoding.

4 C. Câmpeanu

2. instead of using the length function | · |, we will use measures m(·) that
are specific to the source S, target T , and the functions F . Thus, we have
three measures mS ,mT ,mF defined on N, which are not necessarily distinct
functions. The range of measures mS ,mT ,mF could be any additive monoid
endowed with a total order relation (M,+, 0,≤), but it is usually the set
of natural numbers (N,+, 0,≤). We will consider that the order relation
defined on M is computable, and that we can enumerate the elements of M
in increasing order.

In order to make a proper comparison with BSC spaces, we have to consider the
encoding of the result. If only the length of the encoding is considered, other
important properties of the encoding cannot be captured. Thus, we extend the
notion of encoded function (EF) space to a more general one, measured encoded
function (MEF) space. In the most general case, we would like to use different
measures for the encodings, and we obtain the following definition:

Definition 1. Let (M,+, 0,≤) be a total ordered additive monoid. A measured
encoded function space is a 9-tuple

F = (F, S, T,mF ,mS ,mT , φ, σ, θ),

with the following properties:

1. S is a non-empty set, the source;
2. T is a non-empty set, the target;
3. F is a non-empty set of partial mappings of S into T ;
4. σ : N

◦−→ S is a partial mapping, the encoding of S;
5. φ : N

◦−→ F is a partial mapping, the encoding of F ;
6. θ : N

◦−→ T is a partial mapping, the encoding of T ; and
7. mS ,mT ,mF : N −→ M are functions, the direct measures. The measured

encoded function space F is said to be effective if all items in the construct
are effectively given, and the mappings σ, φ, and θ are computable.

The functions mS , mT , mF are measures for selected properties of the encoding.
With these notations, the Definition 2 of [16] is extended as follows:

Definition 2. Let F = (F, S, T,mF ,mS ,mT , φ, σ, τ) be a measured encoded
function space, and let t ∈ T .

1. For f ∈ F , the f -complexity of t in F is defined as:

cFf (t) = inf{mS(s) | s ∈ N, f(σ(s)) = t}.
2. The complexity of t in F is defined as

cF(t) = inf{mF (i) +mS(s) | i ∈ N, s ∈ N, φi(σ(s)) = t}.

3. The maximum complexity of an object of size n is

ΣF(n) = max{cF(t) | mT (t) = n}.

Blum Static Complexity and Encoding Spaces 5

s ∈ N �

�

σ

σ(s) ∈ S �

�

φ

φi ∈ F

�

�

θ

i(s) ∈ N

�

i ∈ N
�������
mS

φi(σ(s)) ∈ T

�������
mG� mT

(M,+, 0,≤)

Fig. 2. A MEF space: F = (F, S, T,mF ,mS,mT , φ, σ, θ)

We can see that all measures are required for this definition, and for all i ∈ N

cF(t) = inf
i∈N
{cFφi

(t)} ≤ cFφi
(t) +mF (i), (1)

therefore, the invariance property also holds for this very generalized version of
complexity.

Now we are ready to introduce Blum statics complexity axioms as in [4, 5, 11].

Let G ⊆ F , G = (ψ
(n)
i)i∈I be a class of algorithms3.

A function m : I −→ N is called a (direct) complexity measure [2, 5] if it
satisfies:

1. (Computational axiom) m is computable;
2. (Re-computational Axiom) for every n ∈ N, the set {j | m(j) = n} is

computable;
3. (Cofinitness Axiom) for every n ∈ N, #{j | m(j) = n} <∞.

In [5], additional axioms are considered for defining axiomatic complexity
measures:

4. (Re-constructibility Axiom) For any number n, it is possible to build all
algorithms A from G for which m(A) = n, or, using our notations, the set
{j | m(j) = n} is computable4.

5. (Compositional Axiom) If A ⊆ B, then m(A) ≤ m(B).

In this paper we will only consider the axioms 1–4. In Section 3 we will give
examples of spaces where axiom 5 is not satisfied.

Definition 3. [11] A space (G,m) satisfying axioms 1–4 is called Blum static
complexity space.

Using Remark 1, we obtain the following theorem:

3 Algorithms are also called computers, see for example, Chaitin’s work [14, 15].
4 Please see [5] for a complete explanation of the difference between axiom 2 and
axiom 4.

6 C. Câmpeanu

Theorem 1. Any effective encoded function space is a BSC space.

Proof. Effective encoded spaces use length function, which satisfies the axioms
1–4, as a direct measure.

Please note that an effective encoded space, as defined in [16], is also an effec-
tive measured encoded function space, because the measures used are all length
functions.

Remark 2. We observe that for a MEF space, if the measuremF satisfies axioms
1–4, and the set F = {φi | i ∈ N} is included in the set of computable functions,
then (F,mF) is a BSC space. MeasuresmS ,mT are not required in the definition
of a BSC space, but they are necessarily in defining complexity measures, thus
any extension of a BSC space should include these two other measures.

For a measured encoded space to be a BSC space, we must consider that the
functions are defined on S with values in T , thus we need to extend the BSC
space to a space that includes the case when functions have the domain included
in S, and their range in T . For a BSC space (G,m), we have only one direct
measure, while for a MEF, we have three measures. The reason for having three
is that the source S, the target T , and the functions F may be encoded differently
over distinct alphabets. Hence, by adding two additional direct measures for the
source and the target of each algorithm in ψi ∈ G, we can generalize this concept
for BSC spaces.

Let us denote by G the set of functions defined on S with values on T , com-
puted by the algorithms ψi. We can consider that the algorithms ψi compute
functions defined on S with values in T , and S, T , and I are encoded differently
over N; the corresponding direct measures are mS , mT , and respectively mG,
thus obtaining an encoded BSC space (G,m), where m = (mG,mS ,mT).

N

�σ

S

Ni ∈ I

�

�

ψi ∈ G �

�θ

T

Fig. 3. Extending a BSC by emphasizing encodings G = (ψi)i∈I , φi(σ(s)) ∈ range(θ)

Definition 4. Let (M,+, 0,≤) be a total ordered additive monoid, and G =
(ψi)i∈I be a family of algorithms, such that:

1. the functions computed by the algorithms ψi, denoted by G, are defined on
S with values in T ;

2. mS ,mT : N −→ M are measure functions for encodings of S, T , and mG :
I −→M is a measure function for I5;

5 In most cases, we can consider I ⊆ N. Other cases are not covered in this paper.

Blum Static Complexity and Encoding Spaces 7

3. mS ,mT : N −→ M and mG : I −→ N are direct measures satisfying axioms
1–4.

4. We have three encodings σ,θ, ψ, such that σ : N −→ S, θ : N −→ T , and
ψ : I −→ G according to the following diagram:

s ∈ N �

�σ

σ(s) ∈ S
�

�ψ

ψi ∈ G

�

�θ

i(s) ∈ N

�

i ∈ I

�mS

ψi(σ(s)) ∈ T

�mG� mT

(M,+, 0,≤) (M,+, 0,≤)(M,+, 0,≤)

Fig. 4. An EBSC space (G,m,E), where E = (σ, θ, ψ), m = (mS,mT ,mG)

Then (G,m), where m = (mS ,mT ,mI) is called an encoded Blum static com-
plexity (EBSC) space.

We can see that for an EBSC space (G,m,E), where the index of the functions
can be embedded in N, is also a MEF space.

s ∈ N �

�σ

σ(s) ∈ S
�

�ψ

ψi ∈ G

�

�θ

t = i(s) ∈ N

�

i ∈ I ⊆ N
�������
mS

θ(t) ∈ T

�������
mG� mT

(M,+, 0,≤)

Fig. 5. AnEBSC space (G,m,E) is also aMEF spaceG = (G,S, T,mG,mS,mT , ψ, σ, θ)

Now, we are ready to analyze the complexity functions, to see if the definition
used in BSC spaces is the same as the one for MEF spaces. First, we have to
generalize the definition of complexity from BSC to an EBSC space:

Definition 5. Let (G,m,E), where m = (mS ,mT ,mI) and E = (σ, θ, ψ), be an
encoded Blum static complexity space, and let t ∈ T . The dual to m with respect
to ψ is

m0
ψ(t) = min{mS(s) | s ∈ N, ψ(σ(s)) = t}. (2)

We denote complexity by CG
ψ = m0

ψ.

8 C. Câmpeanu

The complexity of t with respect to (G,m,E) is defined as

CG(t) = inf{mG(i) +mS(s) | i ∈ N, s ∈ N, ψi(σ(s)) = t}. (3)

For the maximum complexity of an object of a given size n ∈M , we have that

ΣG
φi
(n) = max{CG

φi
(x) | mT (x) = n}.

The maximum exists, because the set {x | mT (x) = n} is finite and computable.
We can also define the complexity of an element t ∈ T with respect to the EBSC
space (G,m,E) as:

ΣG(n) = max{CG
φi
(x) +mG(i) | i ∈ I,mT (x) = n}. (4)

This shows that the complexity defined in EBSC spaces as a dual complexity
measure is the same as the complexity defined in MEF spaces. From this con-
struction, it is clear that any EBSC space is a MEF space.

In the rest of the paper, for convenience, we will restrict our investigation to
EBSC spaces, where the ordered monoid M is the set of natural numbers N.
Some of the results can be extended to other EBSC spaces, or even to MEF
spaces, and we leave these cases for further investigations.

We check if properties proved before for BSC spaces, which use the length as
the direct measure, or EF spaces, can be proved for EBSC spaces.

First, we extend Theorem 2 of [16] to an EBSC space. Thus, we verify if the
complexity function is computable, so we can rewrite 2 as follows:

CG
ψi
(t) = min{mS(s) | s ∈ N, ψi(σ(s)) = t} = min{mS(s) | s ∈ Dt,i}, (5)

whereDt,i = {s ∈ N | ψi(σ(s)) = t}. In caseDt,i = ∅, then CG
ψ (t) =∞.6 Because

the measure mS satisfies axiom 1 – 4, we can enumerate all elements of N in
their increasing order of their measure mS . For each such element s, we can test
if s is in Dt,i. The measure of the first s found in Dt,i will give us the value for
the complexity of t.

If the complexity CG
ψi
(t) is computable, then we have:

1. the set Dt,i = ∅ iff CG
ψ (t) =∞;

2. in case CG
ψ (t) = m, then there is s ∈ N such that mS(s) = m and φi(σ(s)) =

t. Thus, s ∈ Dt,i, but it is impossible to decide for an arbitrary q ∈ N with
m ≤ mS(q), if q ∈ Dt,i.

Therefore, we can prove the following result:

Theorem 2. Let (G,m,E) be an EBSC space. Then, for every i ∈ I, the com-
plexity CG

ψi
is computable if:

1. emptiness of Dt,i is decidable;
2. membership of Dt,i is decidable.

6 We make the convention that min ∅ = ∞.

Blum Static Complexity and Encoding Spaces 9

Proof. To compute CG
ψi
(t), first we can test if Dt,i = ∅. If true, we set CG

ψi
(t) =

∞, otherwise we enumerate the elements of Dt,i in the increasing order of their
mS measure; the first one found will give the value of the complexity of t in
(G,m,E).

If there exists i ∈ N such that Dt,i �= ∅, then CG(t) �=∞. Thus, we can rewrite
3 as follows:

CG(t) = min{mS(s) +mG(i) | s ∈ Dt,i}
= min{c ∈ N | mS(s) +mG(i) ≤ c, s ∈ Dt,i}. (6)

Denote by Dt the following set

Dt={c | there is s ∈ N and i ∈ N such thatmS(s)+mG(i) ≤ c and φi(σ(s))= t}.

Then, the following theorem is true:

Theorem 3. Let (G,m,E) be an EBSC space. The complexity CG is computable
if

1. the emptiness of Dt is decidable;
2. the membership to the set Dt is decidable.

Proof. If Dt = ∅, then we set CG(t) = ∞. Otherwise, because the measures
mG and mS satisfy axioms 1–4, we can enumerate pairs (s, i) in their increasing
order of the sum mS(s) +mG(i). For each such pair (s, i), we test membership
of c = mS(i) +mG(i) to the set Dt. The first pair in the set will produce c as
the desired result for CG . Because each step of this procedure is computable, the
complexity CG is computable.

We can see that some of the conditions of Theorem 2 of [16] are not required for
Theorems 2 and 3, thus the new results are stronger.

3 Defining the Complexity of Languages

In this section we construct an encoded Blum static complexity space, where the
associated complexity is a measure for some families of languages over a finite
alphabet. We begin this section with a simple technical result:

Lemma 1. Let (G,m,E) be an EBSC space such that G, the set of functions
computed by G, is finite. If for every i ∈ I, Cφi is computable, then the complexity
CG is computable.

Proof. We can compute the complexity as follows: CG(t) = min{mG(i)+mS(s) |
ψi(σ(s)) = t} = min

i∈I
(mG(i)+min{mS(s) | ψi(σ(s)) = t} = min

i∈I
(mG(i)+C

G
ψi
(t)).

Because I is finite and CG
ψi
(t)) is computable for every i ∈ I, it follows that

CG(t)) is computable.

10 C. Câmpeanu

Let L be a family of languages over the alphabet Σ, such that they can be
recognized/generated by some devices S. Thus, we have a transformation ψ0 :
S −→ L, I = {0}. Assume we can enumerate the encodings of these devices,
i.e., S = σ(N), and we can define the direct measure mS for the devices. For
the algorithm ψ0 transforming the devices into languages, we can set mG(0) =
0, then we can construct an EBSC for which the complexity function can be
considered to be the complexity of a language of that family.

s ∈ N �

�σ

σ(s) ∈ S
�

�ψ

ψ0

�

�θ

i(s) ∈ N

�

i ∈ I

�mS

ψ0(σ(s)) = L ∈ L

�mG� mT

(N,+, 0,≤) (N,+, 0,≤)(N,+, 0,≤)

Fig. 6. An EBSC space for languages L ∈ L ⊆ 2Σ
∗
: (G,m,E), where E = (σ, θ, ψ0),

m = (mS,mT ,mG), C
G(L) = min{mS(s) | ψ0(σ(s)) = L}

Using standard gödelization procedures, we can encode any DFA/NFA, or
regular expression, as a natural number that can be further considered as string
over the binary alphabet A2.

The following proposition can be proved using a standard gödelization proce-
dure, or using previous results [3].

Proposition 1. Let Σ be a finite alphabet. The following statements are true:

1. There exists an algorithm for encoding all deterministic finite automata
(DFA) over an alphabet A, into words over A2.

2. There exists an algorithm for encoding all non-deterministic finite automata
(NFA) over an alphabet A, into words over A2.

3. There exists an algorithm for encoding all regular expressions (RE) over an
alphabet A, into words over A2.

For each n such that σ(n) is an encoding of a DFA/NFA, we can define a measure
mS that will give us either the number of states of σ(s), or the number of
transitions of σ(s). In case σ(n) encodes an RE, we can define a measure mS as
the number of symbols, or the number of operators, or any other thing that we
would like to measure. In case σ(n) encodes a finite automaton, the complexity
CG of a language L would be the minimum number of states of a DFA recognizing
L, or the minimum number of transitions of an NFA recognizing L. In case σ(n)
encodes an RE, the complexity CG of a language L would be the number of
symbols, or the number of operators of any regular expression α, such that
L(α) = L.

Blum Static Complexity and Encoding Spaces 11

By changing the measure of the sourcemS , we can see that most of the known
descriptional complexity measure for regular/context-free languages can be de-
scribed in terms of encoded Blum static complexity spaces, i.e., as a Chaitin-
Kolmogorov type of complexity measure, see Figure 7, for example.

s ∈ N �

�

σ = enumFA

σ(s) = As ∈ FA �

�

φ

FAtoLang

�

�

θ

t = s ∈ N

�

N

�mS = Sc

L ∈ Reg

�mG = 0� mT

(N,+, 0,≤) (N,+, 0,≤) (N,+, 0,≤)

Fig. 7. An EBSC space for state complexity of Regular languages, represented by
deterministic finite automata. Sc(s)=state complexity of automaton σ(s) = As.

It is clear that, using Lemma 1, all these complexities are computable. We
must note that most of these measures defined for languages do not satisfy ax-
iom 5, thus showing that the present approach is better than Burgin’s approach
for dual complexities, because by dropping axiom 5, we can include a lot more
cases of practical importance.

4 Conclusion and Future Work

In this paper we have established a strong connection between most descriptional
complexities, and proved that each of them can be defined as an EBSC space. We
proved a sufficient condition for a static complexity defined in an EBSC space to
be computable, and it shows that, as expected, most descriptional complexities
used in practice satisfy it.

According to [4], not all complexities defined so far can be expressed as dual
complexity measures, however Burgin uses more axioms. It would be interesting
to study, using the new framework, if we can find complexities that cannot be
defined in an EBSC space. In particular, would be of interest to check if Loveland
definition of complexity [19] can be defined as a complexity in an EBSC space.

Regarding languages, we have a long list of open problems, and here we list
just a few. We can see that the complexity of the target is not used for state
complexity or transition complexity, but is necessarily to compute the maximum
complexity of languages of a given size. For example, let us set the target as the
set of finite languages, the measure of the source, the number of states, and the
measure for the target to be

12 C. Câmpeanu

1. the number of words in the language;
2. the length of the longest word in the language.

We can see that in case 1 the measure does not satisfy axiom 3, but in case 2,
we obtain a number that was a subject to the paper [13].

We can also define two measures m1 and m2 for a family of languages L. Now
consider the family LF12 of languages of maximum complexity for mT = m2

and mS = m1, and the family LF21 of languages of maximum complexity for
mT = m1 and mS = m2. What are the conditions for m1 and m2 such that

1. LF12 ∩ LF21 �= ∅, or
2. LF12 ∩ LF21 = ∅?

Can we find conditions for two complexities of a language/string to be indepen-
dent, or conditions to relate arbitrary complexities?

Using maximum complexity, we can also think of declaring random the objects
of a given size having maximum complexity, i.e., for mT (t) = n and k ∈ N, we
search for objects o such that

ΣG(n) ≤ CG(o)− k.

An open problem is to study what languages can be declared random and how
do they fit in the context of formal language theory.

For the complexity of operations, it would be interesting how it can be defined
in this new framework.

It is clear that by using this new unified approach, the list of open problems
in descriptional complexity is now significantly larger.

References

1. Blum, M.: A machine-independent theory of the complexity of recursive functions.
Journal of the ACM 14(2), 322–336 (1967)

2. Blum, M.: On the size of machines. Information and Control 11, 257–265 (1967)
3. Boucher, C.: Leçons sur la théorie des automates mathématiques. Lecture Notes in

Operations Research and Mathematical Systems, vol. 46. Springer, Berlin (1971)
4. Burgin, M.: Generalized Kolmogorov complexity and other dual complexity mea-

sures. Translated from Kibernetica 4, 21–29 (1990) (Original article submitted
June 19, 1986)

5. Burgin, M.: Algorithmic complexity of recursive and inductive algorithms. Theo-
retical Computer Science 317, 31–60 (2004)

6. Burgin, M.: Algorithmic complexity as a criterion of unsolvability. Theoretical
Computer Science 383, 244–259 (2007)

7. Calude, C.: Information and Randomness - An Algorithmic Perspective. Springer,
Berlin (1994)

8. Calude, C.: Theories of Computational Complexity. North-Holland, Amsterdam
(1988)

9. Calude, C.: Theory of Algorithms, University of Bucharest, Bucharest (1987) (in
Romanian)

Blum Static Complexity and Encoding Spaces 13

10. Calude, C., Salomaa, K., Roblot, T.K.: Finite State Complexity and Randomness.
Technical Report CDMTCS 374 (December 2009/revised June 2010)

11. Câmpeanu, C.: A Note on Blum Static Complexity Measures. In: Dinneen,
M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS,
vol. 7160, pp. 71–80. Springer, Heidelberg (2012)

12. Câmpeanu, C.: Randomness in Blum Universal Static Complexity Spaces. Ac-
cepted to Journal of Automata Languages and Combinatorics (2012)

13. Câmpeanu, C., Ho, W.H.: The maximum state complexity for finite languages.
Journal of Automata, Languages and Combinatorics 9(2-3), 189–202 (2004)

14. Chaitin, G.J.: A Theory of Program Size Formally Identical to Information Theory.
Journal ACM 22(3), 329–340 (1975)

15. Chaitin, G.J.: Algorithmic Information Theory. Cambridge Tracts in Theoretical
Computer Science, vol. I. Cambridge University Press (1987)

16. Jürgensen, H.: Invariance and universality of complexity. In: Dinneen, M.J., Khous-
sainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS, vol. 7160,
pp. 140–158. Springer, Heidelberg (2012)

17. Kolmogorov, A.N.: Problems Inform. Transmission 1, 1–7 (1965)
18. Konstantinidis, S.: Private Communication to Cezar Câmpeanu at DCFS 2008

(2008)
19. Loveland, D.A.: On Minimal-Program Complexity Measures. In: STOC, pp. 61–65

(1969)

Millstream Systems and Graph Transformation

for Complex Linguistic Models

(Extended Abstract)

Frank Drewes

Ume̊a University, Sweden
drewes@cs.umu.se

Allan Turing [5] suggested to regard the ability to communicate in human lan-
guage as an indication of true intelligence. If a computer would be able to engage
in such a communication with human beings without them being able to identify
the computer, the computer should be considered to be intelligent. Although it
is debatable whether this conclusion could really be drawn from the Turing test
(see also [6]), it shows how complex human language is and how many facets it
has. Some of the most important dimensions of language are phonology, morphol-
ogy, syntax, semantics, and pragmatics. Pragmatics includes the whole field of
contextual and ontological knowledge. These dimensions are not orthogonal, but
are intertwined in many ways. Even if we restrict ourselves to text input and out-
put, thus disregarding phonology, this creates an amazingly complex structure.
While computational linguists try to make progress understanding the relation
between the various dimensions, we usually restrict ourselves to syntax in nat-
ural language processing, sometimes extended by limited attempts to make a
semantic interpretation or to make use of ontological knowledge. The reason for
this is, of course, the descriptional and computational complexity of the models
required.

Millstream systems [2, 1] are an attempt to handle this complexity by means
of modularization. If we view each dimension of language in isolation, its ele-
ments can usually be described by trees or rooted directed acyclic graphs (dags).
We can, for example, describe language syntax using parse trees, and semantics
using trees over semantic operations. In fact, the latter should more appropri-
ately be viewed as dags, because a sentence such as David forgot his umbrella
both the proper name David and the possessive pronoun his refer to David,
thus giving rise to a semantic structure with two references to one and the same
semantic object. Let us continue to look at the two language aspects given by
the syntactic and the semantic dimension. We can define the notion of a correct
syntax tree (e.g., via context-free grammars) and of a correct semantic tree or
dag (e.g., via type constraints). However, a decent analysis of a sentence does not
only consist of two individual trees. There are various links between these trees,
and those have to satisfy certain conditions in order for the whole to be a con-
sistent and reasonable analysis of the sentence. A Millstream system models this
situation by

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 14–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Millstream Systems and Graph Transformation 15

1. a tuple of independent modules M1, . . . ,Mk, each of which describes a single
dimension in isolation and

2. an interface φ, a logical formula that describes the links between the modules.

Each module Mi is some kind of grammar or automaton that describes the set
L(Mi) of all correct trees (or dags) of that particular aspect (e.g., syntactic and
semantic trees). These modules do not need to be of the same type, but together
they generate the set of tuples (t1, . . . , tk) ∈ L(M1)× · · · ×L(Mk). The purpose
of the interface φ is to specify in which way t1, . . . , tk must be related in order
to obtain a consistent configuration. A (rather basic) example taken from [4] is

S

NP

John

VP

V

claims

CP

C

that

S

Pro

he

VP

V

cheated

claiming

fact

cheating

person

John

In this case, there is only a single binary relation that establishes a correspon-
dence between the two trees (indicated by dashed lines). In general, there may
be an arbitrary (though finite) number of different relations, of various arities.
An admissible configuration is one in which the individual trees are well formed
(i.e., ti is in L(Mi)), and the entire structure, including the relations between
the trees, satisfies φ.

One advantage of Millstream systems is that they allow to break down the
complexity of language models into smaller parts. The “internal” well-formedness
of the individual aspects is taken care of by the modulesMi, and a tuple of well-
formed trees ti is combined into a whole using the interface φ. In particular, this
rules out combinations of trees that are well formed on their own but do not fit
together.

We expect Millstream systems to be useful for specifying what is a correct
analysis of a sentence. However, we also need ways to effectively construct such a
configuration from an input sentence. Since Millstream configurations are graphs
we propose to use graph transformation for that purpose. In particular, [3] intro-
duces the concept of readers. In a reader, each word is associated with a finite set

16 F. Drewes

of graph transformation rules. Reading a sentence w1 · · ·wn means to apply n of
these rules, associated with w1, . . . , wn, in succession. The derivation generates
a graph, and this graph is the analysis of the sentence. In [4] it is shown that,
given a Millstream system and a reader, under reasonable assumptions it is de-
cidable (although with an impractically inefficient construction) whether every
configuration the reader yields as output is indeed a correct configuration of the
given Millstream system. We currently do not know whether the other inclusion
is also decidable, i.e., whether one can test if the reader can create all correct
configurations of the Millstream system. We suspect, however, that this is not
possible.

References

[1] Bensch, S., Björklund, H., Drewes, F.: Algorithmic properties of Millstream sys-
tems. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp.
54–65. Springer, Heidelberg (2010)

[2] Bensch, S., Drewes, F.: Millstream systems – a formal model for linking lan-
guage modules by interfaces. In: Drewes, F., Kuhlmann, M. (eds.) Proc. ACL
2010 Workshop on Applications of Tree Automata in Natural Language Processing
(ATANLP 2010). The Association for Computer Linguistics (2010)

[3] Bensch, S., Drewes, F., Jürgensen, H., van der Merwe, B.: Incremental construction
of Millstream configurations using graph transformation. In: Proc. 9th Intl. Work-
shop on Finite State Methods and Natural Language Processing (FSMNLP 2011),
pp. 93–97. Association for Computational Linguistics (2011)

[4] Bensch, S., Drewes, F., Jürgensen, H., van der Merwe, B.: Graph transformation
for incremental natural language analysis (unpublished manuscript, 2013)

[5] Turing, A.M.: Computing machinery and intelligence. Mind LIX(236), 433–460
(2005)

[6] Weizenbaum, J.: ELIZA – a computer program for the study of natural language
communication between man and machine. Communications of the ACM 9, 36–45
(1966)

Can Chimps Go It Alone?

Pierre McKenzie

Université de Montréal and Chaire Digiteo ENS Cachan-École Polytechnique

Abstract. Consider a smart chimpanzee namedM from a tribe afflicted
with a form of Alzheimer’s disease. Think of M as a logspace-bounded
Turing machine. M can do simple things like integer arithmetic and ma-
trix multiplication, but M turns sullen and calls for help when asked to
perform seemingly equally simple tasks, such as simulating deterministic
tree and dag automata.

Is M acting difficult or is she just not smart enough?
Even before the P versus NP question, Cook [3] conjectured that no

amount of smarts can compensate for Alzheimer’s disease1.
We will review some of the attempts at separating L from P inspired

by pebbling arguments. Emphasis will be placed on branching programs
for the tree evaluation problem, recently studied anew [2]. The problem
consists of determining the value that percolates to the root of a (binary)
tree when a value from a domain D is prescribed at each tree leaf and an
explicit function f : D×D → D is prescribed at each internal node. In a
nutshell, lower bounds for restricted branching programs can be proved,
but approaches to attack the general model strangely come up against
the same barrier that Nec̆iporuk encountered in a two-page note 50 years
ago and that still stands today.

Tree evaluation naturally extends to tree generation [1], where the
functions f : D ×D → D at internal tree nodes are replaced with func-
tions f : D ×D → {S : S ⊆ D}. This is interpreted as allowing to pick,
as the D-value of a node labelled f with left child 	 and right child r,
any value from f(D-value of 	, D-value of r). Tree generation can then
be turned into a monotone boolean function. Strong lower bounds for
this function have been derived from pebbling intuition [4,1] and we will
further discuss some of these.

For a suitable bibliography please consult [2,4,1].

References

1. Chan,S.M.: Just apebble game.ElectronicColloquiumonComputationalComplexity
(ECCC) 20, 42 (2013)

2. Cook, S.A., McKenzie, P., Wehr, D., Braverman, M., Santhanam, R.: Pebbles and
branching programs for tree evaluation. TOCT 3(2), 4 (2012)

3. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded com-
puters. J. ACM 18, 4–18 (1971)

4. Chan, S.M., Potechin, A.: Tight bounds for monotone switching networks via fourier
analysis. Electronic Colloquium on Computational Complexity (ECCC) 19, 185
(2012)

1 Steve said this in a different language, thankfully.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, p. 17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Invertible Transductions and Iteration

Klaus Sutner

Carnegie Mellon University
Pittsburgh, PA 15213, USA

Abstract. We study iterated transductions, where the basic transduc-
tions are given by a class of length-preserving invertible transducers over
the binary alphabet. It is shown that in some cases the resulting orbit
relation is rational and we determine the complexity of several natural
computational problems associated with the iterated transductions.

1 Iterating Transductions

We are interested in the analysis of discrete structures of the form C = 〈C, T 〉
where C is a rational set of words, in this context often referred to as the space
of configurations , and T is a functional binary relation on C determined by a
rational transducer. While first-order properties of C such as reversibility or the
existence of k-cycles are of considerable interest, higher order properties involv-
ing T �, the iterate of T , are critical for the understanding of the structures.
From a computational perspective, iteration of even rather simple transductions
T produces structures C that are too complicated to admit a detailed analysis.
To wit, the next-step function of a Turing machine is easily modeled as a ratio-
nal transduction, so together with iteration we are dealing with a system that
is potentially computationally universal and thus difficult to classify and under-
stand. Perhaps the most surprising result along these lines is Cook’s proof [3] of
the universality of the elementary cellular automaton number 110, a transducer
that is defined essentially by a ternary Boolean function. To the best of our
knowledge, this is the first example of a universal system that was “discovered”
rather than constructed, with the specific intent of producing universality.

The argument relies heavily on a version of Post tag systems, so-called cyclic
tag systems, and demonstrates that these systems, which are known to be com-
putationally universal, can indeed be simulated by the transducer, given initial
conditions of sufficient complexity. In fact, the argument employs bi-infinite bi-
nary words to produce universality; more precisely, one needs to consider words
of the form ωuwvω where u, w and v are finite, binary words. This type of
configuration is quite natural: letting C be the collection of all such words, the
first-order structure 〈C, T 〉 is an elementary substructure of the full shift space
〈2Z, T 〉 of all bi-infinite words, where T is the transduction associated with the
cellular automaton number 110, see [23]. Remnants of this hardness result per-
sist at the level of finite words, evaluation of the transduction on finite words is
shown to be P-complete in [14].

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 18–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Invertible Transductions and Iteration 19

To avoid hardness results based on configurations of unbounded size it is nat-
ural to consider length-preserving transductions on ordinary finite words. For
a length-preserving transduction, the question whether a configuration occurs
in the orbit of another is naturally in PSPACE and indeed easily seen to be
PSPACE-complete in general. It is NL-complete to determine whether a con-
figuration has a predecessor, see [21]. Note, though, that questions about the
behavior of length-preserving transductions may well become undecidable when
configurations of arbitrary size are considered. For example, one can show that it
is undecidable whether all orbits end in a fixed point, see [22]; more precisely, this
problem is Π1-complete. Similarly questions about the length of the limit cycle
of a configuration are undecidable. For example, one cannot determine whether
all configurations of size n will evolve to a limit cycle of size linear in n, see [21].
Incidentally, there is a close connection between length-preserving transductions
and context-sensitive languages as shown in [13]. The reference shows that every
context-sensitive language L can be written in the form L = Γ �τ�ρΣ where τ is
a length-preserving transduction and ρΣ� is the operation “intersection by Σ�”
for suitable alphabet Γ and Σ.

In this paper we further constrain transductions by insisting that they be
length-preserving and invertible. Thus, C consists of a collection of disjoint cycles,
and each cycle contains only configurations of the same length: T � ⊆ (2× 2)�.
Correspondingly, the iterate T � is an equivalence relation that we will refer
to as the orbit relation of T . It follows that the first-order structure C is an
automatic permutation structure in the sense of [9,11]. Automatic structures
have decidable first-order theories and natural decision algorithms can be given
based on classical automata-theoretic methods. Note, though, that in practice
only a small fragment of the first-order theory can be decided due to catastrophic
growth in the state complexity of the associated machines.

To ensure invertibility, our transducers are special types of Mealy automata

A where all transitions are of the form p
a/π(a)−−−−→ q; here π = πp is a permuta-

tion of the alphabet 2 = {0, 1} that depends on the source p of the transition.
Thus there are two types of states: toggle states where πp is the transposition
and copy states , otherwise. By selecting any state p in A as the initial state we
obtain a transduction A(p) : 2� → 2� . Write S(A) for the semigroup generated
by the basic transductions A(p). These automata are called binary invertible
transducers and have attracted a lot of attention in the group theory and dy-
namical systems community: the groups generated by all the transitions A(p)
often have surprisingly interesting properties, see [1,6,7,15]. For example, the
well-known lamplighter group can be described by a two-state invertible trans-
ducer and Grigorchuk has constructed a group of intermediate growth that can
be interpreted as the transduction group of a binary invertible transducer on
only 5 states and with a single toggle state.

In light of the complexity of the transduction groups associatedwith even rather
small invertible transducers we further constrain our study to a special type of in-
vertible transducers, so-called cycle-cum-chord transducers (or CCC transducers
for short). These transducers have state set {0, 1, . . . , n− 1} and transitions

20 K. Sutner

p
a/a−→ p− 1, p > 0 and 0

0/1−→ n− 1, 0
1/0−→ m− 1

where 1 ≤ m ≤ n. We write Anm for this transducer; the example A5
3 is shown

in figure 1. Note that Anm contains but a single toggle state. It is shown in [25]
that these transducers are fairly simple from the perspective of the associated
semigroups: they are all free Abelian groups (except in the degenerate case n = m
when we obtain a finite Boolean group).

0

1

2 3

4

0/1

1/0

a/a

a/a

a/a

a/a

0 = (4, 2)σ

k = (k−, k−) 0 < k < 5

Fig. 1. The cycle-cum-chord transducer A5
3 and its representation in the wreath form

from section 2

There are several natural questions that are related to the analysis of the
structures C determined by our CCC transducers. First and foremost, there is the
question of the complexity of the orbit relation associated with a transduction in
S(A). In particular, there is the decision problem of determining when the orbit
relation itself is rational, in which case the extended structure C� = 〈C, T, T � 〉
is still automatic. More generally, we would like to understand the complexity of
the Orbit Problem, the recognition problem of deciding xf�y given two words x
and y. A closely related question is the first canonical form problem: how hard
is it to compute the length-lexicographical least element of an orbit, see [4,8].
Another elementary question is the Iteration Problem: what is the complexity of
computing x f t for some transduction f , a word x and t ≥ 0. We can strengthen
the recognition problem and ask for a witness to membership in an orbit: given
words x and y, find the least number t ≥ 0 such that x f t = y, or determine that
no such t exists. We refer to this as the Timestamp Problem.

In this overview we will discuss results concerning these questions for cycle-
cum-chord transducers. Though this class of machines is rather narrow, it turns
out that a complete classification is currently out of reach. In section 2 we re-
cap the basic definitions and describe the so-called Knuth normal form of a
transduction, a central tool in the study of our transducers. We also comment
on the rationality of orbits. In the next section, we discuss a natural coordinate
system based on iterated transductions and describe the complexity of the times-
tamp and coordinate problems. Section 4 contains a rather lengthy list of open
problems.

Invertible Transductions and Iteration 21

2 Transduction Groups and Knuth Normal Form

Our transductions are given by Mealy automata of the form A = 〈Q,2, δ, λ 〉
where Q is a finite set, 2 = {0, 1} is the input and output alphabet, δ : Q× 2→
Q the transition function and λ : Q× 2→ 2 the output function. As usual, we
can think of 2� as acting on Q via δ, see [2,18,10]. We are here only interested
in invertible transducers : λ(p, .) : 2 → 2 is required to be a permutation for
each state p. Write S2 for the symmetric group on two letters and let σ be the
transposition in this group. We refer to p as a toggle state when λ(p, .) : 2→ 2
is σ, and as a copy state, otherwise. By selecting an arbitrary state p as initial
state we obtain a transduction A(p) : 2� → 2� . It is clear from the definitions
that these maps are length-preserving bijections. To lighten notation we write
p for this transduction whenever the automaton is clear from context. Lastly,
S(A) denotes the semigroup generated by all the functions A(p) as p ranges over
Q. For the CCC transducers from above, S(A) is already a group, as we shall see
shortly. Given a transduction f ∈ S(A) we obtain a relational structure as in the
introduction by letting T be its graph: x T y iff x f = y. For technical reasons,
this is preferable to dealing with functions directly. Note that if we interpret A
as an acceptor over the alphabet 2× 2 it recognizes T .

Following ideas from [19], we can think of 2� as an infinite, complete binary
tree. Our transductions naturally act as automorphisms of this tree, see [15,20].
Thus our groups S(A) can be viewed as subgroups of the ambient group Aut(2�)
of all automorphisms of 2�. In this setting, it is natural to write any automor-
phism f of 2� as f = (f0, f1)s where s ∈ S2: s describes the action of f on the
first level 2 of the tree, and f0 and f1 are the automorphisms induced by f on
the two subtrees of the root, which are naturally isomorphic to the whole tree.
The automorphisms f such that f = (f0, f1)σ are odd , the others even. One can
then write the ambient group in terms of wreath products as

Aut(2�) Aut(2�) �S2 = (Aut(2�)× Aut(2�))�S2.

The group operation is given by (f0, f1)s (g0, g1)t = (f0gs(0), f1gs(1)) st, see
[15,20]. For example, the cycle-cum-chord transducers from section 1 can be
written as 0 = (n−,m−)σ and k = (k−, k−) for 0 < k < n. Here 1 ≤ m ≤ n and
we have written p− rather than p− 1 to improve legibility.

The collection I of all maps defined by invertible transducers is easily seen
to be closed under inverse and composition, and thus forms a subgroup I of the
ambient group. For automata groups G ⊆ I the wreath form naturally induces
three maps ∂0, ∂1 and par such that f = (∂0f, ∂1f) parf . The parity is simply
determined by the corresponding state being toggle or copy. The operations
∂s are the left residuals , see [17,5,15]: for any word x, define the function ∂xf
by (x f) (z ∂xf) = (xz) f for all words z (for transductions, we write function
application on the right and use diagrammatic composition for consistency with
relational composition). It follows that

∂xyf = ∂y∂xf ∂x(fg) = ∂xf ∂xfg

22 K. Sutner

The transduction semigroup S(A) is naturally closed under residuals. In fact, we
can describe the behavior of all the transductions by a transition system C, much
the way A describes the basic transductions: the states of C are all transductions

in S(A) and the transitions are f
s/sf−→ ∂sf where s ∈ 2. Thus C contains A as

a subautomaton. Of course, this system is infinite in general; it is referred to as
the complete automaton in [15]. The computation of x f follows a path in C.

The following characterization of the transduction semigroups of cycle-cum-
chord transducers was established in [25].

Theorem 1. The semigroup generated by a cycle-cum-chord transducer Anm is
a free Abelian group for m < n, and the Boolean group 2n for n = m.

From now on we will ignore the degenerate case n = m. It is easy to see that
the semigroup is Abelian. Letting s = gcd(n,m), Anm generates the free Abelian
group Zn−s. To simplify the discussion, let us assume that n and m are coprime;
the general situation can be recovered by considering shuffle products of trans-
ductions in the coprime case. The reason the semigroup turns out to be a group
is that the following cancellation identity holds:

02 12 . . . (m−)2 m m+ 1 . . . n− = I.

To show that there are essentially no other identities one can use a device sug-
gested by Knuth in [12]. One enlarges the transducer by adding infinitely many
copy states k where k ≥ n together with transitions k = (k−, k−). This extension
does not change the (semi)group generated by the machine. In fact we have the
shift identities

k2 = k +m k + n.

Using these identities one can then show that for every transduction f there is
a unique flat representation

f = k1 k2 . . . kr,

where k1 < k2 < . . . < kr. For f = I we assume r = 0. We refer to this repre-
sentation as the Knuth normal form (KNF) of f , in symbols KNF(f). Indeed,
by interpreting the cancellation and shift identities as rewrite rules we obtain a
weakly convergent rewrite system that produces KNF(f), given f in semigroup
representation.

In particular for A3
2, Knuth normal form has a number of interesting properties

that will be important in section 3. For any transduction f , write shs(f) for the
transduction obtained by replacing any term k in the KNF of f by k + s. In group
representation, we have sh1(a, b) = (−2b, a − 2b). Lastly, let γ0 = 0, γ1 = 01,
γ2 = 0−1 and γ3 = 0−11−1 and set γ′i = sh1(γi). A straightforward induction
shows the following lemma.

Lemma 1. Let 0 ≤ k and 0 ≤ i < 4. Then KNF(02
4k+i

) = sh8k+2i(γi). More

generally, for f = 0a1b, we have KNF(f2
4k+i

) = sh8k+2i(KNF(γai γ
′b
i)).

Invertible Transductions and Iteration 23

Because of the lemma, for A3
2, rewriting is not required at all to determine Knuth

normal form, rather a finite state transducer suffices to determine KNF in the
following sense. For simplicity let us only consider the KNF for 0t, t ≥ 0, rather
than the general group elements. We can think of the KNF of f as an ω-sequence
κ ∈ 2ω where κi = 1 ⇐⇒ i appears in the normal form of f . Likewise we can
think of KNF as a finite bit-vector u such that κ = u 0ω. We can pre-compute
these finite bit-vectors of 0a for 0 ≤ a < 16 and pad to length 8 whenever
necessary:

00000000 10000000 00110000 1011000 000010111 100010111
001110111 101110111 000000111 100000111 001100111 101100111
000010001 100010001 001110001 101110001

All but the first 4 entries have length 9 and require a “carry” to the next block.
According to lemma 1 we can now determine KNF of 0t as follows. Let T be
a 0-indexed table whose entries are the 16 KNFs, right-padded or truncated to
form blocks of length 8. If there is no carry, on input hex-digit d the correct
output is Td, but with a carry it is Td+1 mod 16. Figure 2 shows a sketch of the
appropriate transducer; input is hexadecimal, output is binary.

nc c h

d > 3/Td

d ≤ 2/Td+1

ε/1

d ≤ 3/Td d > 2/Td+1

Fig. 2. A transducer that determines the Knuth normal form of a transduction 0a for
CCC transducer A3

2

The state nc is the no-carry state, c is carry, and h takes care of pending
carries after the last input digit. For example, for a = 3921 = (15F)16r we get
three blocks plus one 1 because of the carry:

T1T5T0T1 = 10000000 10001011 00000000 1,

corresponding to KNF 0 8 12 14 15 24. Note that the KNF transducer can
be converted into a recurrence equation for the length of KNF(f), but it seems
difficult to obtain a closed form solution. Also, a similar construction works for
general group elements, but the machinery becomes considerably more compli-
cated since we now have to deal with both generators 0 and 1 of the transduction
group.

24 K. Sutner

2.1 Orbit Rationality

Given a transduction f we can think of the associated orbit relation f� as a lan-
guage over (2× 2)

�
. One can then exploit the group representation to calculate

Brzozowski quotients of this language. We obtain a generally infinite transition
system that recognizes the orbits of f and whose states naturally are given by
pairs of transductions, see [25] for details. Somewhat surprisingly, for some CCC
transducers this transition system turns out to be finite for all the associated
transductions. Thus, f� is rational and hence automatic. For space reasons we
focus here on the CCC Transducer A3

2, see the reference for the following result
and some generalizations.

Theorem 2. For any transduction f in S(A3
2), the orbit relation of f is rational.

Accordingly, the root function can be computed by a length-preserving finite state
transducer.

The proof is based on the explicit construction of an acceptor that recognizes the
orbit relation of f , considered as a language over (2× 2)�. As already mentioned,
the construction uses Brzozowski quotients and is a priori only guaranteed to
produce a potentially infinite transition system. However, for S(A3

2) only finite
systems are generated. For example, for f = 0 there are 34 states in the acceptor.
Critical for finiteness is the fact that the following operation π on transductions
has finite orbits: π(f) = ∂0f for f even, and π(f) = ∂0f ∂1f = ∂0f

2 for f odd.
As it turns out, except for the fixed point I, all orbits of π end in an 8-cycle.

Unsurprisingly, this property is not shared by all other transducers; for exam-
ple, the orbit relation of 0 in A4

3 fails to be rational. The proof comes down to
showing that all powers of a certain rational matrix fail to have rational eigen-
values. In a first step one can exploit field theory to show that it suffices to check
finitely cases, which cases can then be dispatched by computation in a computer
algebra system. Needless to say, this argument is difficult to generalize and it is
not clear how to characterize CCC transducers with rational orbits.

2.2 Computing Iterates

Knuth normal form also suggests that computing x f t can be computed easily: we
have az f = a f(z ∂af) and residuation for a transduction written in KNF comes
down to a left shift, except possibly for a first term 0. Hence, after processing an
initial segment of x, the residuals of f t will have low weight and from then on,
every single bit of x can be processed in constant time. In terms of the complete
automaton C from section 2 this means that there are only a few non-trivial
strongly connected components and every sufficiently long path winds up in one
of them. For example, in the case of A3

2 the complete automaton has 8 non-trivial
strongly connected components the largest of which has 6 states.

Thus we have two natural representations for transductions: the semigroup
representation f = 0e01e1 . . . n− 1en−1 where ei ≥ 0, and the unique group
representation f = 0e

′
01e

′
1 . . . n− 2e

′
n−s−1 where e′i ∈ Z. Correspondingly, the

group representation of f is the integer-valued vector (e′0, . . . , e
′
n−s−1). We will

Invertible Transductions and Iteration 25

refer to
∑
|ei| as the weight of f . The weight can be used to bound the the

complexity of the iteration problem: it is clear that we can compute residuals in
time O(n logw) where w is the weight of the transduction in question. It follows
that x f can be computed in O(|x|n logw) time. However, we can do better than
that.

Proposition 1. Given a transduction f ∈ S(Anm) we can compute x f in time
linear in |x|, with coefficients depending on f .

The idea is to express residuation as an affine operation of the form

∂su =

{
A · u if u is even,

A · u− (−1)sa otherwise.

where u ∈ Zn−1 is the group representation of the transduction, see [16]. A
is a rational matrix of suitable dimension and a a rational vector. The spectral
radius of A is less than 1, hence residuation is a contraction and after a transient
part all weights are bounded by a constant depending only on n and m.

We do not know how to obtain more precise bounds on the cost of computing
x f . In particular there appears to be no easy way to determine the number and
size of the non-trivial strongly connected components of the complete automaton,
short of actual computation.

3 Timestamps and Coordinates

One can show that for any CCC transducer Anm the group H of transductions
generated by p, 0 ≤ p < m, acts transitively on 2� (which set of words is often
referred to as a level set in connection with the infinite binary tree). For � = km

the quotient group H ′ obtained by factoring with respect to i2
k

acts simply
transitively on the level set 2�. As a consequence, there is a natural coordinate
system for 2km: for every � = km there is a bijection

2� → Z/(2k)× . . .× Z/(2k)

where the product on the right has m terms. We will write 〈w 〉� ∈ (Z/(2k))m

for the coordinates of a word w: 〈w 〉� = (a0, . . . , am−) if, and only if, w =
0� 0a01a1 . . .m−am− . We use x ≡ y to express that two integer vectors of lengthm
are componentwise congruent modulo 2k. Also, for a transduction f , define the �-
coordinates of f by 〈 f 〉� =

〈
0� f

〉
�
. For example, in A3

2, letting f = 0−113 we get

〈 f 〉2k = (2k−1, 3) for k ≥ 2. By commutativity it follows that
〈
0� f i

〉
�
≡ i·〈 f 〉�

and
〈
0� f�

〉
�
≡ N ·〈 f 〉�, so that the orbit of 0� is a linear subspace of (Z/(2k))m.

Again by commutativity general orbits can be described as affine subspaces of
(Z/(2k))m:

〈w f� 〉� ≡ 〈w 〉� + N · 〈 f 〉�
Thus, it is of interest to be able to calculate coordinates. More formally, we wish
to address the following problem, assuming a CCC transducer Anm is fixed.

26 K. Sutner

Problem: Coordinate Problem
Instance: A word x ∈ 2� where � = km.
Output: The coordinates 〈x 〉� ∈ (2k)m of x.

Closely related is the question how many times a given transduction f must be
applied to obtain a particular point in the orbit of a given word x. We refer to
this as the Timestamp Problem:

Problem: Timestamp Problem
Instance: A transduction f , two words x, y ∈ 2k.
Output: The least t ≥ 0 such that y = x f t, if it exists; NO otherwise.

Clearly the Orbit Problem reduces to the Timestamp Problem, which, as we will
see shortly, in turn reduces to the Coordinate Problem. We will show that all
of them can be solved in quadratic time. Let us first deal with the Timestamp
Problem, see [24].

Theorem 3. The Timestamp Problem can be solved in quadratic time: given
two words x and y of length � = km and a transduction f ∈ S(Anm) we can find
a timestamp t ≥ 0 such that x f t = y, or determine that no such t exists, in
O(�2) steps.

The technique of the last theorem can be pushed slightly to provide a fast al-
gorithm to compute coordinates. Suppose x ∈ 2� where � = km. We need to
compute integers e0, . . . , em− such that

x = 0� 0e0 . . .m−em− .

Let us call the transduction on the right f . Then for any r < �

x = 0r f · 0�−r∂0rf.

Since the first bit of 0�−r∂0rf depends only on the parity of ∂0rf we can deter-
mine the coefficients of the binary expansions of the exponents ei.

Theorem 4. The Coordinate Problem can be solved in quadratic time: given a
word x of length � = km we can determine its coordinates in O(�2) steps.

Given the algorithm for the Coordinate Problem one can also tackle the Times-
tamp Problem via a reduction.

Proposition 2. The Timestamp Problem reduces to the Coordinate Problem in
time O(� logw+ log2 k) where w is the weight of the transduction and km is the
length of the words.

For some CCC transducers the quadratic bounds from the last few results can be
improved upon: finite state machines sometimes suffice to calculate coordinates
and timestamps. As an example, consider again A3

2. The following algorithm
solves the Coordinate Problem in this case. Given a word x (here assumed to be
0-indexed) we calculate its coordinates in reverse binary as follows. The γi are
as in section 2.1.

Invertible Transductions and Iteration 27

// coordinate algorithm A3
2

h = (0, 0);
for r = 0, . . . , n− 1 do

sr = h1 + x2r mod 2; // phase 1: bind sr
h = ∂0(h+ sr · γr);
tr = h1 + x2r+1 mod 2; // phase 2: bind tr
h = ∂0(h+ tr · γr);

return (s, t);

As stated, the algorithm appears to require quadratic time. However, it can be
implemented on a finite state machine because of the contraction property of
residuals spelled out in section 2.

Theorem 5. The Coordinate Problem for A3
2 can be solved by a transducer that

computes the coordinates in reverse binary.

It is straightforward to modify this algorithm to deal with timestamps.

4 Open Problems

We have characterized the complexity of various computational problems asso-
ciated with the iteration of transductions defined by a rather narrow class of
invertible binary transducers. In particular it can be shown that for these trans-
ducers iterates, time-stamps and coordinates can be computed quickly. The ar-
gument uses Knuth normal form as an essential technical device. Incidentally,
we do not know in general when Knuth normal form can be computed by a finite
state transducer as in section 2.1 rather than a canonical rewrite system.

One obvious open question is to determine the cycle-cum-chord transducers
for which the orbit relation of any transduction is rational. The property appears
to be quite rare, but currently we do not even know whether it is decidable. The
rationality problem naturally carries over to other more complicated classes of
invertible transducers. A particularly plausible generalization of cycle-cum-chord
transducers are so-called m-lattices, invertible transducers whose transduction
groups are isomorphic to Zm, see [20,16]. One well-known example are the so-
called “sausage automata” in [15], given in wreath notation by 0 = (I, n)σ and
k = (k − 1, k − 1) for 2 ≤ k ≤ n. Here we ignore the identity I, as is customary.
We do not know to which degree the timestamp and/or coordinate machinery
arguments carry over tom-lattices, though the particular example of the sausage
automaton is easy to deal with. In this context an interesting question is whether
isomorphism of our structure C is decidable. Similarly we do not know what the
expression complexity of model checking for these structures is in general.

It is tempting to consider general invertible transducers with but a single
toggle state; after all, the impact of the complexity of the underlying groups
(which may be very complicated as in Grigorchuk’s example) on our decision
problems is not clear a priori. Another plausible generalization would be to
place restrictions on the topology of the underlying transition diagram.

28 K. Sutner

It is straightforward to check whether S(A) is commutative, using standard
automata-theoretic methods. We do not know whether it is decidable whether
S(A) is a group, though this property is obviously semidecidable. Unsurprisingly,
many other decidability questions regarding transduction semigroups or groups
of invertible transducers are also open, see [7, chap. 7] for an extensive list.

References

1. Bartholdi, L., Silva, P.V.: Groups defined by automata. In: CoRR, abs/1012.1531
(2010)

2. Berstel, J.: Transductions and context-free languages (2009),
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/

LivreTransductions.html

3. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)

4. Fortnow, L., Grochow, J.A.: Complexity classes of equivalence problems revisited.
Inf. Comput. 209(4), 748–763 (2011)

5. Gluškov, V.M.: Abstract theory of automata. Uspehi Mat. Nauk. 16(5(101)), 3–62
(1961)

6. Grigorchuk, R., Šunić, Z.: Self-Similarity and Branching in Group Theory. In:
Groups St. Andrews 2005. London Math. Soc. Lec. Notes, vol. 339. Cambridge
University Press (2007)

7. Grigorchuk, R.R., Nekrashevich, V.V., Sushchanski, V.I.: Automata, dynamical
systems and groups. Proc. Steklov Institute of Math. 231, 128–203 (2000)

8. Howard Johnson, J.: Rational equivalence relations. Theoretical Computer Sci-
ence 47, 167–176 (1986)

9. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

10. Khoussainov, B., Nerode, A.: Automata Theory and its Applications. Birkhäuser
(2001)

11. Khoussainov, B., Rubin, S.: Automatic structures: overview and future directions.
J. Autom. Lang. Comb. 8(2), 287–301 (2003)

12. Knuth, D.: Private communication (2010)
13. Latteux, M., Simplot, D., Terlutte, A.: Iterated length-preserving rational trans-

ductions. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
pp. 286–295. Springer, Heidelberg (1998)

14. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132–143. Springer, Heidelberg (2006)

15. Nekrashevych, V.: Self-Similar Groups. AMS. Math. Surveys and Monographs,
vol. 117 (2005)

16. Nekrashevych, V., Sidki, S.: Automorphisms of the binary tree: state-closed sub-
groups and dynamics of 1/2-endomorphisms. Cambridge University Press (2004)

17. Raney, G.N.: Sequential functions. J. Assoc. Comp. Mach. 5(2), 177–180 (1958)
18. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
19. Serre, J.-P.: Arbres, Amalgames, SL2. Astérisque Société Mathématique de France,

Paris (1977)
20. Sidki, S.: Automorphisms of one-rooted trees: Growth, circuit structure, and

acyclicity. J. Math. Sciences 100(1), 1925–1943 (2000)

http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html

Invertible Transductions and Iteration 29

21. Sutner, K.: On the computational complexity of finite cellular automata. J. Com-
put. System Sci. 50(1), 87–97 (1995)

22. Sutner, K.: Universality and cellular automata. In: Margenstern, M. (ed.) MCU
2004. LNCS, vol. 3354, pp. 50–59. Springer, Heidelberg (2005)

23. Sutner, K.: Computational classification of cellular automata. Int. J. General Sys-
tems 41(6), 1–13 (2012)

24. Sutner, K.: Invertible transducers, iteration and coordinates. In: Konstantinidis, S.
(ed.) CIAA 2013. LNCS, vol. 7982, pp. 306–318. Springer, Heidelberg (2013)

25. Sutner, K., Lewi, K.: Iterating invertible binary transducers. In:Kutrib,M.,Moreira,
N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 294–306. Springer, Heidelberg
(2012)

Universal Witnesses for State Complexity

of Boolean Operations and Concatenation
Combined with Star�

Janusz Brzozowski1 and David Liu2

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca
2 Department of Computer Science, University of Toronto,

Toronto, ON, Canada M5S 3G4
liudavid@cs.toronto.edu

Abstract. We study the state complexity of boolean operations and
product (concatenation, catenation) combined with star. We derive tight
upper bounds for the symmetric differences and differences of two lan-
guages, one or both of which are starred, and for the product of two
starred languages. We prove that the previously discovered bounds for
the union and the intersection of languages with one or two starred argu-
ments, for the product of two languages one of which is starred, and for
the star of the product of two languages, can all be met by the recently
introduced universal witnesses and their variants.

Keywords: boolean operation, combined operation, concatenation,
regular language, product, star, state complexity, universal witness.

1 Introduction

The state complexity of a regular language is the number of states in the min-
imal deterministic finite automaton (DFA) recognizing the language. The state
complexity of an operation on regular languages is the maximal state complexity
of the result of the operation as a function of the state complexities of the argu-
ments. We refer to state complexity simply as complexity. For more information
on this topic see [1,2,12].

Let K and L be two regular languages over alphabet Σ, and let their state
complexities be m and n, respectively. In 2007 A. Salomaa, K. Salomaa, and
Yu [11] showed using ternary witnesses that the complexity of (K ∪ L)∗ is
2m+n−1 − (2m−1 + 2n−1 − 1). They also established a lower bound for (K ∩L)∗
using an alphabet of 8 letters. These results were improved by Jirásková and
Okhotin [10] who showed that binary witnesses suffice for (K ∪ L)∗, and that

� This work was supported by the Natural Sciences and Engineering Research Council
of Canada under grant No. OGP0000871, and was done while the second author was
at the University of Waterloo.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 30–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Universal Witnesses for Basic Operations Combined with Star 31

c

0 1 2
a a aa, b

n − 2· · · a

b

a, c

n − 1

b, c
b

b, cc

Fig. 1. DFA Un(a, b, c) of language Un(a, b, c)

3 ·2mn−2 is a tight upper bound for (K ∩L)∗; they used an alphabet of 6 letters.
In 2012, Gao and Yu [9] showed with ternary witnesses that the complexity of
K ∪L∗ is m(3 · 2n−2− 1)+1, and that the same upper bound applies to K ∩L∗.
Moreover, it was shown in [7] by Gao, Kari and Yu that quaternary witnesses
meet the bound (3 · 2m−2 − 1)(3 · 2n−2 − 1) + 1 for K∗ ∪ L∗ and K∗ ∩ L∗. In
2008, Gao, K. Salomaa, and Yu [8] demonstrated using quaternary witnesses
that 2m+n−1+2m+n−4−2m−1−2n−1+m+1 is a tight upper bound for (KL)∗.
The complexity of KL∗ was studied by Cui, Gao, Kari and Yu [6] in 2012. They
proved with ternary witnesses that the tight bound is 3m2n−2−2n−2. The same
authors also showed in [5] using quaternary witnesses that the complexity ofK∗L
is 5 ·2m+n−3−2m−1−2n+1. A total of nine operations using union, intersection,
and product ((con)catenation) combined with star have been studied.

To establish the state complexity of an operation one finds an upper bound
and languages to act as witnesses to show that the bound is tight. A witness
is usually a sequence (Ln | n � k) of languages, where k is some small positive
integer; we will call such a sequence a stream of languages. In the past, two
different streams have been used for most binary operations.

Recently, Brzozowski [2] proposed the DFA Un(a, b, c) = (Q,Σ, δ, 0, {n−1}) of
Fig. 1 and its language Un(a, b, c), n � 3, as the “universal witness”. The inputs
of this DFA perform the following transformations on Q = {0, . . . , n− 1}. Input
a is a cycle of all n states, denoted by a : (0, . . . , n−1). Input b is a transposition
of 0 and 1, and does not affect any other states; this is denoted by b : (0, 1). Input
c is a singular transformation sending state n − 1 to state 0, and not affecting
any other states; this is denoted by c : (n− 1→ 0). The restrictions of the DFA
and the language to alphabet {a, b} are denoted by Un(a, b) and Un(a, b).

It was proved in [2] that the bound 3 ·2n−2 for star is met by Un(a, b), and the
bound 2n for reversal, by Un(a, b, c). The bound (m − 1)2n + 2n−1 for product
is met by Um(a, b, c) and Un(a, b, c). The bound mn for union, intersection,
difference (K \ L) and symmetric difference (K ⊕ L) is met by the streams
Um(a, b, c) and Un(a, b, c) if m �= n, as was conjectured in [2] and proved in [3].
Ifm = n, it is necessary to use two different streams; however, it is possible to use
streams that are almost the same, in the following sense. Two languages K and
L over Σ are permutationally equivalent if one can be obtained from the other by
permuting the letters of the alphabet, and a similar definition applies to DFAs.
It was proved in [2] that two permutationally equivalent streams Um(a, b, c) and
Un(b, a, c) are witnesses to the bound for the four boolean operations above.

It turns out that the witness Un(a, b, c) cannot meet the bound for some
combined operations. However, the notion of universal witness can be broadened

32 J. Brzozowski and D. Liu

to include “dialects”. A dialect of Un(a, b, c) is the language of any DFA with
three inputs a, b, and c, where a is a cycle of length n, b is the transposition of
any two states, and c is any singular transformation. The initial state is always
0, but the set of final states is arbitrary, as long as the resulting DFA is minimal.
The universal witness has also been extended to quaternary alphabets [2], by
adding a fourth input d which performs the identity permutation, denoted by
d : 1Q. Permutational equivalence and dialects are extended to four inputs in the
obvious way. We use dialect Tn(a, b, c) which is Un(a, b, c) with input c changed to
c : (1→ 0), and dialect Wn(a, b, c, d) which is Un(a, b, c, d) with input b changed
to b : (n− 2, n− 1) and c changed to c : (1→ 0). Sometimes we change the set
of final states from {n− 1} to some set F . This is indicated by UF,n(a, b, c), etc.

Our contributions are as follows:

1. We derive the bound m(3 ·2n−2−1)+1 for Km \L∗
n, L

∗
n \Km and Km⊕L∗

n.
We show that the bounds for Km ∪ L∗

n, Km ⊕ L∗
n and L∗

n \Km are met by
the streams Um(a, b, c) and Un(b, a, c), and that for Km ∩ L∗

n and Km \ L∗
n,

the dialect U{0},m(a, b, c) and the language Un(b, a, c) act as witnesses. This
corrects an error in [9], where it is claimed that the witnesses that serve for
union also work for intersection.

2. We derive the bound (3 · 2m−2 − 1)(3 · 2n−2 − 1) + 1 for K∗
m \ L∗

n, and
K∗
m ⊕ L∗

n. We show that the known bounds for K∗
m ∪ L∗

n and K∗
m ∩ L∗

n are
met by the dialects Wm(a, b, c, d) and Wn(d, c, b, a), and that the dialects
W{0},m(a, b, c, d) andWn(d, c, b, a) act as witnesses forK

∗
m\L∗

n andK∗
m⊕L∗

n.
3. We prove that the known bound 3m2n−2 − 2n−2 for KmL

∗
n is met by the

dialects Tm(a, b, c) and Tn(b, a, c).
4. We show that the known bound 5 · 2m+n−3 − 2m−1 − 2n + 1 for K∗

mLn is
met by Um(a, b, c, d) and U{0},n(d, c, b, a).

5. We derive the bound 5 · 2m+n−3 − 2m−1 − 2n + 1 for K∗
mL

∗
n and show that

it is met by Um(a, b, c, d) and U{0},n(d, c, b, a).
6. We prove that the known bound 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1

for (KmLn)
∗ is met by Wn(a, b, c, d) and Wn(d, c, b, a).

In obtaining these results, we prove Conjectures 7, 9, 10, 12, 15 and 17 of [2].
Sections 2 and 3 study boolean operations with one and two starred argu-

ments, respectively. Products with one or two starred arguments are examined
in Section 4. In Section 5 we consider the star of product, and Section 6 concludes
the paper.

2 Boolean Operations with One Starred Argument

Recall that the complexity of L∗
n is 3 · 2n−2. Gao and Yu [9] showed that the

complexity of Km∪L∗
n is m(3 ·2n−2− 1)+1. They showed that the same bound

also holds for Km ∩ L∗
n, and claimed that the same witnesses work for both

operations. That claim is incorrect, however, as is shown below.
The results of [9] for union are extended here to Km ∪ L∗

n, Km ⊕ L∗
n and

L∗
n \Km with witnesses Um(a, b, c) and Un(b, a, c), and to Km∩L∗

n and Km \L∗
n

with witnesses U{0},m(a, b, c) and Un(b, a, c).

Universal Witnesses for Basic Operations Combined with Star 33

a, ba

b

a, b a

bb, ccc

a, c

0 1 2 3 4

b
c

b b

a, ca, cc

a

a

s
c

a, b

ε, b, c
0 1 2 3

Fig. 2. DFA D1 of U4(a, b, c) and NFA N2 of (U5(b, a, c))
∗

Let K ◦ L denote any one of the operations K ∪ L, K ∩ L, K \ L, K ⊕ L.

Proposition 1. Let Km and Ln be regular languages with complexities m,n �
3 respectively. Then the complexities of Km ◦ L∗

n and L∗
n \ Km are at most

m(3 · 2n−2 − 1) + 1.

Proof. Let D1 = (Q1, Σ, δ1, 0, F1) with Q1 = {0, . . . ,m−1} be the minimal DFA
of Km, and let D2 = (Q2, Σ, δ2, 0, F2) with Q2 = {0, . . . , n− 1} be the minimal
DFA of Ln. Construct N2, an NFA accepting L∗

n, by adding a new final state s
to D2, with the same outgoing transitions as state 0, and ε-transitions (where ε
is the empty word) from each final state in F2 to 0. Let s, instead of 0, be the
initial state of N2. See Fig. 2 for an example of this construction. Let S2 be the
minimal DFA obtained from N2 by the subset construction and minimization,
and let P be the direct product of D1 and S2.

States of P are ordered pairs (i, S), where i ∈ Q1 and S is either {s} or
S ⊆ Q2 and S �= ∅. By appropriate assignment of final states of P , this DFA can
accept all five languages Km ◦ L∗

n and L∗
n \Km; hence the number of reachable

states in P is a bound on the complexities of these operations. Because of the
ε-transition, the allowable states are (0, {s}), all states of the form (i, S) where
S �= ∅ and S ∩F2 = ∅, and all states of the form (i, S) where S contains at least
one final state together with 0. The total number of possible states is largest
if there is only one final state, say n − 1. So the number of states in P cannot
exceed 1 +m(2n−1 − 1) for states where S �= ∅ and n − 1 /∈ S, and m2n−2 for
states where 0, n− 1 ∈ S. Adding these yields the desired bound. ��

We now prove that the universal witness and one of its dialects meet the bound
for these operations. We use the notation S1

w−→ S2 to denote that state S2 of
a DFA is reached from S1 by word w (of course this depends on the DFA, but
will be clear from the context).

Theorem 1 (K ◦ L∗). Let Km = Um(a, b, c), K ′
m = U{0},m(a, b, c), and Ln =

Un(b, a, c). For m,n � 3, the complexities of Km ∪L∗
n, Km ⊕L∗

n, and L
∗
n \Km,

K ′
m ∩ L∗

n, and K
′
m \ L∗

n are all m(3 · 2n−2 − 1) + 1.

Proof. Let the various automata be defined as in the proof of Proposition 1,
with Km = Um(a, b, c) and Ln = Un(b, a, c). We show that all m(3 ·2n−2−1)+1
allowable states of P are reachable. Note that because Km and K ′

m have the
same transitions, the reachability proof is the same for both languages.

In N2, state {0} is reachable from {s} by aa. Brzozowski showed in [2] that all
the remaining allowable states of N2 are reachable from {0} by words in {a, b}∗,

34 J. Brzozowski and D. Liu

which all act as permutations on D1. Consider an allowable state S of N2 and the
state (j, S) of P . If w ∈ {a, b}∗ such that {0} w−→ S, then there exists 0 � i < m

such that (i, {0}) w−→ (j, S). Hence it suffices to show that all states (i, {0}) are
reachable.

We have (0, {s}) c−→ (0, {0}) (ba)i−1

−−−−−→ (i, {0}) for 2 � i � m − 1. If m is odd,

(0, {0}) am+1

−−−→ (1, {0}); if m is even, (0, {0}) am−1ca−−−−−→ (1, {0}).
For distinguishability, first consider two states (i, S) and (j, T), where S, T ⊆

Q2 and S �= T . By applying a cyclic shift bk, we may assume without loss of
generality that n− 1 ∈ S\T . Applying a cyclic shift a� preserves this property,
as a maps only n − 1 to n − 1 in N2. These states are distinguishable for the
boolean operations by applying various cyclic shifts to D1:

– Km ∪ L∗
n,Km ⊕ L∗

n, L
∗
n\Km: map i and j to non-final states.

– K ′
m ∩ L∗

n: map i to 0, the final state of D1.
– K ′

m\L∗
n: map j to 0, the final state of D1.

Now consider two states (i, S) and (j, S), i < j, and S ⊆ Q2, S �= ∅. By
applying a cyclic shift if necessary, we may assume j < m − 1. The states are
distinguishable as follows:

– Km ∪ L∗
n,Km ⊕ L∗

n,K
′
m\L∗

n: apply c so that n − 1 /∈ S, then a cyclic shift
on N1 to map j to a final state.

– K ′
m ∩ L∗

n, L
∗
n\Km: since S is non-empty, apply a cyclic shift so n − 1 ∈ S,

then another shift so j is final.

This shows that all states (i, S) with S ⊆ Q2 are pairwise indistinguishable, and
only the initial state (0, {s}) remains. As only states (0, {s}) and (0, {0}) reach
(1, {1}) on applying a, by the previous arguments, (0, {s}) is distinguishable
from all other states except possibly (0, {0}). Moreover, since these two states
are mapped to the same state under any input, they are distinguishable if and
only if one is final and the other is not. Using m − 1 as the final state for D1,
they are distinguishable in Km ∪ L∗

n, Km ⊕ L∗
n and L∗

n \Km, but equivalent in
Km ∩L∗

n and Km \L∗
n. This argument generalizes to all possible choices of DFA

for D1, and hence we cannot have the same witnesses for both intersection and
union. However, the choice of final state as 0 for K ′

m ∩ L∗
n and K ′

m\L∗
n given in

the theorem distinguishes these states. ��

3 Boolean Operations with Two Starred Arguments

Gao, Kari and Yu [7] showed that the bounds for K∗
m ∪ L∗

n and K∗
m ∩ L∗

n are
both (3 · 2m−2 − 1)(3 · 2n−2 − 1) + 1. We extend these results to K∗

m ⊕ L∗
n and

K∗
n \ L∗

m, for which we now derive an upper bound.

Proposition 2. Let Km and Ln be two regular languages with complexities m
and n. Then the complexities of K∗

m◦L∗
n are at most (3·2m−2−1)(3·2n−2−1)+1

for m,n � 3.

Universal Witnesses for Basic Operations Combined with Star 35

ε, d
c

a
0 1 2 3 4

dd

bs20 1 2 3s1 b

a, ba

a c, d c, d

ε, a

b, c, d

b, c, d b, d

c

c, d

a, b, c a, b, cd
d

a, ba, ba, c

a, b, c

Fig. 3. NFAs N1 and N2 of (W4(a, b, c, d))
∗ and (W5(d, c, b, a))

∗

Proof. LetD1 = (Q1, Σ, δ1, 0, F1) be the DFA ofKm, andD2 = (Q2, Σ, δ2, 0, F2),
the DFA of Ln. We repeat the construction of Proposition 1, but on both DFAs,
producing N1 and N2 with new initial states s1 and s2, respectively. See Fig. 3
for an example of this construction. Let S1 and S2 be the minimal DFAs ob-
tained from N1 and N2 by the subset construction and minimization. Finally,
let P be the direct product of S1 and S2.

The states of P are ordered pairs (S, T), S ⊂ {s1} ∪ Q1 and T ⊂ {s2} ∪ Q2,
and S and T are non-empty. Note that s1 and s2 can only appear in the initial
state ({s1}, {s2}) of P . By the same argument as in Proposition 1, the numbers
of allowable subsets of Q1 and Q2 are 3 · 2m−2− 1 and 3 · 2n−2− 1, respectively.
Taking their product and counting the initial state yields the desired bound. ��

We now prove that permutationally equivalent dialects of the quaternary univer-
sal witness meet the upper bounds. Let Wn(a, b, c, d) = (Q,Σ, δW , 0, {n − 1}),
where Q = {0, . . . , n − 1}, a : (0, . . . , n − 1), b : (n − 2, n− 1), c : (1 → 0), and
d : 1Q. Define the DFA W ′

m(a, b, c, d) to be the same as Wm(a, b, c, d), except
that its set of final states is {0,m− 1} instead of {m− 1}.

Theorem 2 (K∗ ◦ L∗). Let Km = Wm(a, b, c, d) and Ln = Wn(d, c, b, a). For
m,n � 3, the complexities of K∗

m ∪ L∗
n and K∗

m ∩ L∗
n are (3 · 2m−2 − 1)(3 ·

2n−2 − 1) + 1. Let K ′
m is the language of W ′

m(a, b, c, d). Then the complexities
of (K ′

m)∗ \ L∗
n and (K ′

m)∗ ⊕ L∗
n are also (3 · 2m−2 − 1)(3 · 2n−2 − 1) + 1.

Proof. Let the various automata be defined as in the proof of Proposition 2.
Note that the construction does the same thing to both Wm(a, b, c, d) and
W ′
m(a, b, c, d). Therefore the only difference this causes in P is the assignment

of final states, which we consider only for distinguishing states. So for reacha-
bility, we may assume that N1 =Wm(a, b, c, d) and N2 =Wn(d, c, b, a). We first
show that all allowable subsets of Q1 are reachable in N1, ignoring N2. First,

{s1} c−→ {0} ai−→ {i} for i � m−2, and {0} am−1

−−−→ {0,m−1}. Let S = {i1, . . . , ik}
with k � 2 and i1 < · · · < ik < m−1. Let S′ = {0, i3−i2, . . . , ik−i2,m−1} (note
that |S′| = |S|). Then S′ a(ac)i2−i1−1ai1−−−−−−−−−−→ S. If instead i1 = 0 and ik = m − 1,

then let S′ = {i2− 1, . . . , ik− 1}. Then |S′| = |S|− 1, and S′ a−→ S. By induction
on |S|, all allowable subsets of Q1 are reachable by words in {a, c}∗.

In N2, a and c map states s2 and 0 to 0. Therefore all allowable states of P of
the form (S, {0}) are reachable. A symmetric argument shows that all states T
of D2 are reachable by words in {b2, d}∗ (as b2 and b are the same transformation
on D2). All of these words map states S ⊆ Q1 to themselves, except in the case

36 J. Brzozowski and D. Liu

0,m − 1 /∈ S, m − 2 ∈ S. Let S = {i1, . . . , ik} be such a state; then for all
allowable T , ({i1 − 1, . . . , ik − 1}, T) is reachable, and reaches (S, T) when a is
applied. Therefore all allowable states are reachable.

Next we show that all the states of P are distinguishable. Recall that for
K∗
m∪L∗

n and K∗
m∩L∗

n, we use {m− 1} as the final state of N1, and for (K ′
m)∗⊕

L∗
n and (K ′

m)∗\L∗
n, we use {0,m − 1}. Consider states (S1, T1), (S2, T2) with

T1 �= T2. As in Theorem 1, without loss of generality assume n − 1 ∈ T1\T2.
Apply c2ac2am−2 so that still n− 1 ∈ T1\T2, but now 0,m− 1 /∈ S′

1 ∪ S′
2. This

distinguishes the two states for K∗
m ∪ L∗

n and (K ′
m)∗ ⊕ L∗

n. To distinguish them
for K∗

m ∩ L∗
n, since S1 �= ∅ we may apply a cyclic shift on D1 to map S1 to a

final state (i.e., m − 1 ∈ S1). For (K ′
m)

∗\L∗
n, simply map S2 to a final state to

distinguish the states.
Now suppose T1 = T2, and hence S1 �= S2. We may assume that 2 ∈ S1\S2.

Then apply cam−3 so that m − 2 /∈ S1 ∪ S2 and m− 1 ∈ S1\S2. This does not
change the fact that T1 = T2. For union, difference, and symmetric difference,
applying b2dn−2 ensures that n− 1 /∈ T1, and then applying a distinguishes the
states. For intersection, mapping T1 and T2 to a final state using a cyclic shift
dk and then applying a distinguishes the states.

It remains to distinguish ({s1}, {s2}) from the other states. As in Theorem 1,
({s1}, {s2}) is distinguished from all states except ({0}, {0}) by a. It is dis-
tinguishable from ({0}, {0}) by the choice of final states of D1 for each of the
operations. ��

4 Products with Starred Arguments

4.1 The Language KL∗

Cui, Gao, Kari, and Yu [6] showed using ternary languages that (3m − 1)2n−2

is a tight bound on the complexity of KL∗. We prove that two permutation-
ally equivalent dialects of Un(a, b, c) also meet the bound. Let Tn(a, b, c) =
(Q,Σ, δT , 0, {n− 1}), where a : (0, . . . , n− 1), b : (0, 1), and c : (1→ 0).

Theorem 3 (KL∗). Let Km = Tm(a, b, c), and Ln = Tn(b, a, c). For m,n � 3,
the complexity of KmL

∗
n is (3m− 1)2n−2.

The proof can be found in [4].

4.2 The Language K∗L

Cui, Gao, Kari and Yu [5] proved using quaternary witnesses that the complex-
ity of K∗L is 5 · 2m+n−3 − 2m−1 − 2n + 1. We show here that a quaternary
universal witness and its dialect work as well. Let U{0},n(d, c, b, a) be the same
as Un(d, c, b, a) except that the set of final states is {0} instead of {n− 1}. Let
U{0},n(d, c, b, a) be the corresponding language.

Theorem 4 (K∗L). Let Km = Um(a, b, c, d) and Ln = U{0},n(d, c, b, a). For
m,n � 3, the complexity of K∗

mLn is 5 · 2m+n−3 − 2m−1 − 2n + 1.

Universal Witnesses for Basic Operations Combined with Star 37

s

a

b

aa, b

b, db, c, dc, dc, da, b

c, d

ε, a, c

0 1 2 3 4

dd d

c

a, b a, b, c a, b, c a, c

c, d

a, b

εq0 q1 q2 q3

ε
b, d

Fig. 4. NFA N for (U4(a, b, c, d))
∗U{0},5(d, c, b, a)

Proof. Let D1 = (Q1, Σ, δ1, q0, {qm−1}) with Q1 = {q0, . . . , qm−1} be the DFA
of Km, and let D2 = (Q2, Σ, δ2, 0, {0}) with Q2 = {0, . . . , n− 1} be the DFA of
Ln. Let N1 be the NFA for K∗

m, and let N be the NFA for the product K∗
mLn.

The construction is illustrated in Fig. 4. We perform the subset construction and
minimization of N to obtain the DFA P for the product K∗L.

Owing to the ε-transitions, the allowable states of the DFA are {s, 0}, all
(2m−1 − 1)(2n − 1) subsets of the form S ∪ T where ∅ � S ⊆ Q1, qm−1 /∈ S,
∅ � T ⊆ Q2, and all 2m+n−3 subsets of the form S ∪ T , where q0, qm−1 ∈ S and
0 ∈ T . In total, 5 · 2m+n−3 − 2m−1 − 2n + 2 subsets are allowable.

The initial state of P is {s, 0}. It is known from [2] that all allowable subsets
of N1 are reachable by words in {a, b}∗. In N2, these inputs all map 0 to itself,
and hence all allowable states of the form S ∪ {0} are reachable.

Let S = {qi1 , . . . , qi�}, i1 < · · · < i�, and T = {t1, . . . , tk}, t1 < · · · < tk. If i� <
m−1, then let S′ = {qi2−i1−1, . . . , qi�−i1−1, qm−2} and T ′ = {t2−t1, . . . , tk−t1}.
Then S′ ∪T ′ ac2−−→ {q0, qi2−i1 , . . . , qi�−i1}∪ (T ′∪{0}) ai1dt1−−−−→ S ∪T. If i� = m− 1,

then i1 = t1 = 0, and defining the same S′ and T ′ as above yields S′∪T ′ a−→ S∪T .
By induction, all allowable states are thus reachable.

For distinguishability, first consider states S1 ∪ T1, S2 ∪ T2. If T1 �= T2, then
first apply c so that qm−1 /∈ S, then a cyclic shift on D2 to transform the states
so that 0 ∈ T1 ⊕ T2, distinguishing the states. If S1 �= S2, apply a cyclic shift ak

so that qm−1 ∈ S1 ⊕ S2. Then apply bd so that 0 ∈ T1 ⊕ T2.
Finally, the initial state {s}∪ {0} is indistinguishable from {q0} ∪ {0}, as any

non-empty input transforms these two states into the same state and both are
final. As those two states are the only ones reaching {q1}∪{0} on applying a, by
the previous argument {s, 0} is distinguishable from every other state. So then
there are 5 · 2m+n−3 − 2m−1 − 2n + 1 distinguishable states. ��

4.3 The Language K∗L∗

The combined operation K∗L∗ appears not to have been studied before. We use
the results of the previous section to derive a tight bound on the complexity of
this operation.

Proposition 3. Let Km and Ln be regular languages with respective state com-
plexities m,n � 3. If Ln �= L∗

n, the complexity of the operation K∗
mL

∗
n is at most

2m+n−1 − 2m−1 − 3 · 2n−2 + 2.

38 J. Brzozowski and D. Liu

ε, b, d

a
0 1 2 3 4

dd

cs2s1
ε, a, c

a, ca, b

q1 q2 q3
ε

ε

a

a, b

a, b

bq0

c, d b, db, c, dc, d

c, d

c, d a, b a, b, c a, b, c

dc, da, b

Fig. 5. NFA N of (U4(a, b, c, d))
∗(U{0},5(d, c, b, a))

∗

Proof. Let D1 = (Q1, Σ, δ1, q0, F1) with Q1 = {q0, . . . , qm−1} be the DFA of
Km, and let D2 = (Q2, Σ, δ2, 0, F2) with Q2 = {0, . . . , n − 1} be the DFA of
Ln. Construct NFAs N1 and N2 accepting K∗

m and L∗
n by adding new initial

states s1 and s2, which are also final. Let N be the NFA for K∗
mL

∗
n. These

constructions are illustrated in Fig. 5. Finally, let P be the DFA obtained by the
subset construction and minimization of N .

The initial state of P is {s1, s2}. Note that any state R of P containing s2
but not 0, is equivalent to R∪{0}, since both states are final because of s2, and
s2 and 0 have identical outgoing transitions. Hence we can ignore states like R
in our counting, and assume that every state containing s2 also contains 0. In
fact, if 0 ∈ F2 then s2 and 0 can simply be merged into a single state. Owing to
the ε-transitions, the allowable states of the DFA are {s1, s2}, all subsets of the
form S ∪ T , where ∅ � S ⊆ Q1, ∅ � T ⊆ {s2} ∪ Q2, and S and T fall into one
of the following cases:

(i) S ∩ F1 = ∅, T ∩ F2 = ∅, s2 /∈ T ;
(ii) S ∩ F1 = ∅, T contains 0 and at least one state of F2, s2 /∈ T ;
(iii) S contains q0 and at least one state of F1, and s2, 0 ∈ T .

We note that the number of states satisfying each condition depends only on |F1|,
|F2|, k1 = |F1\{q0}|, and k2 = |F2\{0}|. Moreover, if F1 = {q0} then K∗

m = Km,
and the resulting complexity of K∗

mL
∗
n is at most (m− 1)2n + 2n−1. So we will

assume k1 � 1. Also, k2 � 1 because Ln �= L∗
n.

The numbers of allowable states from each case are as follows:

(i) (2m−|F1| − 1)(2n−|F2| − 1)
(ii) (2m−|F1| − 1)(2n−1 − 2n−1−k2)
(iii) (2m−1 − 2m−1−k1) · 2n−1

The number of states is maximized when |F1| = |F2| = k1 = k2 = 1 (so q0 and
0 are non-final states in their original DFAs).

Without loss of generality, consider the case F1 = {qm−1} and F2 = {n− 1}.
The calculations become:

– qm−1 /∈ S, n− 1 /∈ T : (2m−1 − 1)(2n−1 − 1) states;
– qm−1 /∈ S, 0, n− 1 ∈ T : (2m−1 − 1)2n−2 states;
– q0, qm−1 ∈ S, s2, 0 ∈ T : 2m+n−3 states.

Therefore there are a total of 2m+n−1− 2m−1− 3 · 2n−2+2 allowable states. ��

Universal Witnesses for Basic Operations Combined with Star 39

Proposition 4. Let Km and Ln be regular languages with respective state com-
plexities m,n � 3. The complexity of the operation K∗

mL
∗
n is at most 5·2m+n−3−

2m−1 − 2n + 1.

Proof. There are two cases. If L∗
n = Ln, the claim is true by Proposition 3.

Otherwise, the complexity of K∗
mL

∗
n is equal to that of K∗

mLn, and we use the
bound of Cui, Gao, Kari and Yu [5] from the previous section. ��

Because the bound for K∗
mL

∗
n turns out to be the same as that for K∗

mLn, the
witnesses from Theorem 4 apply here as well. Hence we have

Theorem 5 (K∗L∗). Let m,n � 3 and let Km = Um(a, b, c, d) and Ln =
U{0},n(d, c, b, a). The complexity of K∗

mL
∗
n is 2m+n−1 − 2m−1 − 3 · 2n−2 + 2.

5 Star of Product

In 2008 Gao, K. Salomaa, and Yu [8] proved that 2m+n−1 + 2m+n−4 − 2m−1 −
2n−1 + m + 1 is a tight upper bound1 for (KL)∗. We show that the dialect
Wm(a, b, c, d) used for Theorem 2 also meets the bound, with a permutationally
equivalent witness.

Theorem 6 ((KL)∗). Let Km = Wm(a, b, c, d) and Ln = Wn(d, c, b, a). For
m,n � 3, the complexity of (KmLn)

∗ is 2m+n−1+2m+n−4−2m−1−2n−1+m+1.

Proof. Let D1 = (Q1, Σ, δ1, q0, {qm−1}) with Q1 = {q0, . . . , qm−1} be the DFA
of Km, and let D2 = (Q2, Σ, δ2, 0, {n− 1}) with Q2 = {0, . . . , n− 1} be the DFA
of Ln. Let N be the NFA for (KL)∗. This NFA is shown in Fig. 6 for m = 4
and n = 5. Let D be the DFA obtained from N by the subset construction and
minimization.

The states of D are the initial state {s} and states S ∪ T where ∅ � S ⊆ Q1

and T ⊆ Q2. Because of the ε-transitions, if state S ∪ T is allowable, then if
qm−1 ∈ S then 0 ∈ T , and if n− 1 ∈ T then q0 ∈ S. Moreover, if |S| > 1, then
T �= ∅, as at least one ε-transition from n − 1 to q0 must have been used. The
number of allowable states is counted as follows:

a

ε
0 1 3 4

d d

2

c, dd

cb
d

a, c a, ba, ba, b, ca, b, c

s q1 q3

a a a, b

b
a

c, dc, d

q2cq0

b, d

b, c, d

ε

b, c, d

Fig. 6. NFA for ((W4(a, b, c, d)W5(d, c, b, a))
∗

1 Their permutationally equivalent DFAs are not universal witnesses. For example,
the product of L(D3) with itself requires 6 states instead of 20.

40 J. Brzozowski and D. Liu

1. First, there is the initial state {s}.
2. T = ∅ and |S| = 1. Then qm−1 �∈ S, and so there are m− 1 such states.
3. T �= ∅, and |S| � 1.

(a) n− 1 �∈ T : If qm−1 �∈ S, then there are (2m−1− 1)(2n−1− 1) such states.
Otherwise, qm−1 ∈ S and 0 ∈ T , and there are 2m+n−3 such states.

(b) n − 1 ∈ T : Then q0 ∈ S. If qm−1 �∈ S, there are 2m+n−3 such states.
Otherwise, qm−1 ∈ S and 0 ∈ T , and there are 2m+n−4 such states.

Altogether we have 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m + 1 states. We will
now show they are all reachable.

The initial state is {s}. We have {s} b−→ {q0} ai−→ {qi} for i < m − 1. Let
T = {t1, . . . , tk} with t1 < · · · < tk. If tk < n − 1 and i < m − 1, then the

state {qi} ∪ T is reachable by {qi} ∪ {t2 − t1, . . . , tk − t1} amdt1−−−−→ {qi} ∪ T .
Suppose tk = n − 1. If T �= Q2, then the state {q0} ∪ T is reachable by a
applying a cyclic shift d� to some {q0} ∪ T ′, where n − 1 /∈ T ′. If T = Q2,

{qm−2} ∪ (Q2\{n − 1}) ada−−→ {q0, q1} ∪ Q2
c−→ {q0} ∪ Q2. Finally, if 0 ∈ T then

{qm−2}∪T a−→ {qm−1}∪T . By induction, all allowable states S ∪T , |S| = 1, are
reachable.

Let S = {qi1 , . . . , qi�}, i1 < · · · < i� and T = {t1, . . . , tk}, t1 < · · · < tk.
If tk = n − 1, then i1 = 0, and S ∪ T is reachable by {q0, qi3−i2 , . . . , qi�−i2} ∪
T

a(ac2)i2−1

−−−−−−−→ S ∪ T . If tk < n − 1 and i� < m − 1, then S ∪ T is reachable by

{i2− i1, . . . , i�− i1}∪T dnai1−−−−→ S∪T . Finally, suppose tk < n−1 and i� = m−1.
If S �= Q1, then S∪T is reachable by a cyclic shift ar from some state of the form
S′∪T where qm−1 /∈ S′. Note S′∪T is reachable by the previous case. Otherwise,

let T ′ = {t2− 1, . . . , tk− 1, n− 1}, and then (Q1\{qm−1})∪T ′ ad−→ Q1 ∪T ∪{1}.
If 1 /∈ T , apply b to get Q1 ∪ T . Reachability of all allowable states then follows
by induction.

We now show all states are disintinguishable. Let S1 ∪ T1, S2 ∪ T2 be two
distinct states. If T1 �= T2, then the states are distinguishable by a cyclic shift
dk. If S1 �= S2, without loss of generality we may assume qm−1 ∈ S1 ⊕ S2. Then
applying b2dn−1 results in states S′

1∪T ′
1, S

′
2∪T ′

2, where 0 ∈ T ′
1⊕T ′

2, so the states
are distinguishable. Finally, the initial state {s} is distinguished from every state
other than {q0} by a; it is distinguished from {q0} because it is final. ��

6 Conclusions

We have proved that the universal witnesses Un(a, b, c) and Un(a, b, c, d), along
with their permutational equivalents Un(b, a, c), dialects Tn(a, b, c), Tn(b, a, c),
Wn(a, b, c, d), Wn(d, c, b, a), and some dialects with final states changed, suffice
to act as witnesses for all state complexity bounds involving binary boolean
operations and product combined with star. In the case of one or two starred
arguments, we have shown that it is efficient to consider all four boolean op-
erations together. The use of universal witnesses and their dialects simplified
several proofs, and allowed us to utilize the similarities in the witnesses.

Universal Witnesses for Basic Operations Combined with Star 41

Acknowledgment. We thank Baiyu Li for careful proofreading and correcting
several flaws in an earlier version of the paper.

References

1. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15(1/2), 71–89 (2010)

2. Brzozowski, J.: In search of most complex regular languages. In: Moreira, N., Reis,
R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 5–24. Springer, Heidelberg (2012)

3. Brzozowski, J., Liu, D.: Universal witnesses for state complexity of basic operations
combined with reversal (July 2012), http://arxiv.org/abs/1207.0535

4. Brzozowski, J., Liu, D.: Universal witnesses for state complexity of boolean oper-
ations and concatenation combined with star (July 2012),
http://arxiv.org/abs/1207.1982

5. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of combined operations with
two basic operations. Theoret. Comput. Sci. 437, 82–102 (2012)

6. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:
catenation-star and catenation-reversal. Int. J. Found. Comput. Sc. 23(1), 51–66
(2012)

7. Gao, Y., Kari, L., Yu, S.: State complexity of union and intersection of star on k
regular languages. Theoret. Comput. Sci. 429, 98–107 (2012)

8. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:
star of catenation and star of reversal. Fund. Inform. 83(1-2), 75–89 (2008)

9. Gao, Y., Yu, S.: State complexity of combined operations with union, intersection,
star, and reversal. Fund. Inform. 116, 1–14 (2012)

10. Jirásková, G., Okhotin, A.: On the state complexity of star of union and star of
intersection. Fund. Inform. 109, 1–18 (2011)

11. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-
oret. Comput. Sci. 383, 140–152 (2007)

12. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

http://arxiv.org/abs/1207.0535
http://arxiv.org/abs/1207.1982

Searching for Traces of Communication

in Szilard Languages of Parallel Communicating
Grammar Systems - Complexity Views

Liliana Cojocaru and Erkki Mäkinen

University of Tampere, School of Information Sciences,
Kanslerinrinne 1, Tampere, 33014, Finland

{Liliana.Cojocaru,Erkki.Makinen}@uta.fi

Abstract. The paper brings new insights into the complexity of Szilard
languages (SZLs) of Parallel Communicating Grammar Systems (PCGSs).
We investigate the structure of Szilard words for several classes of PCGSs
with context-free rules. We prove that the classes of SZLs of returning
centralized and non-returning non-centralized PCGSs are included in cir-
cuit complexity class NC1. As a consequence, this result also holds for
the class of SZLs of non-returning centralized PCGSs.

Keywords: parallel communicating grammar systems, Szilard lan-
guages, indexing alternating Turing machines, NC1 complexity class,
ALOGTIME.

1 Introduction

A Szilard language (SZL) provides information concerning derivational mecha-
nisms in a generative device, such as grammar or grammar system. If labels are
associated with productions in one-to-one correspondence, then each terminal
derivation can be expressed as a Szilard word over the set of labels, such that
the labels in this word are concatenated in the same order as the corresponding
productions have been used during the derivation. Informally, the SZL associated
with a generative device is the set of all Szilard words obtained in this way.

Parallel Communicating Grammar Systems (PCGSs) (defined in Section 2)
are a language theoretical framework to simulate the classroom model in prob-
lem solving, in which the main strategy of the system is the communication by
request-response operations performed by the system components through so
called query symbols produced by query rules. Hence, the Szilard words appear
to be a suitable structure through which this communication can be visualized
and studied. The efficiency of several protocols of communication in PCGSs,
related to time, space, communication, and descriptional complexity measures,
such as the number of occurrences of query rules and query symbols used in a
derivation, can be resolved through a rigorous investigation of these words.

Therefore, one of the main questions, before studying computational resources,
used by a certain computational model to simulate PCGSs, is how to recover the

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 42–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Searching for Traces of Communication in Szilard Languages of PCGSs 43

communication strategy used by each component in a PCGS, from the structure
of the system’s Szilard words. Although the complexity of SZLs shows the com-
plexity of the description of the generating devices (and not the complexity of
the generated set of objects), the complexity of SZLs stands as a lower bound
for the complexity of the languages generated by those devices. Based on these
observations, we investigate (in Section 3) the parallel complexity of SZLs of
several classes of PCGSs, with context-free rules. The aim is to settle SZLs of
PCGSs into the low-level complexity classes ALOGTIME and NC1.

The paper is a continuation of our previous investigations on the parallel
complexity of SZLs of regulated rewriting grammars [4], [5].

We recall that ALOGTIME is the class of languages recognizable by an
indexing (random-access) ATM in logarithmic time [2]. For each integer i, NCi
is the class of Boolean functions computable by polynomial size Boolean circuits
with depth O(logi n) and fan-in two. ALOGTIME is equal to UE∗-uniform NC1
[9]. We haveNCi ⊆ NCi+1, i ≥ 1. The following relationships hold betweenNC1,
NC2, and (nondeterministic) Turing time and space complexity classes: NC1 ⊆
DSPACE(logn) ⊆ NSPACE(logn) ⊆ NC2. For more results, relationships
and hierarchies on the complexity classes DSPACE(logn), NSPACE(log n),
ALOGTIME, and NCi, i ≥ 1, the reader is referred to [1], [2], [9], and [11].

2 SZLs of PCGSs - Prerequisites

We introduce the main concepts concerning PCGSs and their SZLs. If X is an
alphabet, then X∗ denotes the free monoid generated by X . The empty word
is denoted by λ. By |x|a we denote the number of occurrences of letter a in the
string x, while |x|Y denotes the number of occurrences of symbols in Y ⊆ X
occurring in x, x ∈ X∗. If X is a finite set, |X | stands for the cardinality of X .

A PCGS is composed of several Chomsky grammars that work in parallel.
Each grammar has its own axiom and sentential form. A grammar Gi may ask,
through a special nonterminal called query (communication) symbol, another
grammar Gj , j �= i, for the sentential form generated so far by Gj . Then Gi’s
query symbol, occurring in the sentential form of Gi, is replaced by Gj ’s sen-
tential form, supposed that Gj ’s sentential form has no occurrence of a query
symbol. If no query symbol occurs in any sentential form, the system performs
a rewriting step. Thus a derivation in a PCGS consists of several rewriting and
communication steps. It ends up when no nonterminal occurs in the sentential
form of the first component (the master grammar). This grammar “collects” the
words of a single language generated by the system. More results on PCGSs can
be found in [3] and [8]. Formally, a PCGS is defined as follows [3].

Definition 1. A parallel communicating grammar system (PCGS) of degree r
is an (r + 3)-tuple Γ = (N,K, T,G1, . . . , Gr), r ≥ 1, where N is a nonterminal
alphabet, T is a terminal alphabet and K = {Q1, . . . , Qr} is an alphabet of
query symbols, such that Qi is the query symbol of Gi, 1 ≤ i ≤ r, and N , T ,
and K are pairwise disjoint. Gi = (N ∪ K,T, Pi, Si), 1 ≤ i ≤ r, are Chomsky
grammars, called the components of Γ , G1 is called the master grammar of Γ .

44 L. Cojocaru and E. Mäkinen

Definition 2. Let Γ = (N,K, T,G1, . . . , Gr) be a PCGS and let (x1, . . . , xr)
and (y1, . . . , yr) be two r-tuples, where xi, yi ∈ V ∗

Γ , 1 ≤ i ≤ r, VΓ = N ∪ T ∪K.
We write (x1, . . . , xr)⇒ (y1, . . . , yr) if one of the next two cases holds:

1. |xi|K = 0, 1 ≤ i ≤ r, and for each i, 1 ≤ i ≤ r, we have xi ⇒ yi, in the
grammar Gi, or xi ∈ T ∗ and xi = yi;

2. there is an i, 1 ≤ i ≤ r, such that |xi|K > 0; then, for each such i, we write
xi = z1Qi1z2Qi2 . . . ztQitzt+1, t ≥ 1, zj ∈ V ∗

Γ , |zj|K = 0, 1 ≤ j ≤ t + 1;
if |xij |K = 0, 1 ≤ j ≤ t, then yi = z1xi1z2xi2 . . . ztxitzt+1 [and yij = Sij ,
1 ≤ j ≤ t]; when, for some j, 1 ≤ j ≤ t, |xij |K �= 0, then yi = xi; for all i,
1 ≤ i ≤ r, for which yi is not specified above, we have yi = xi.

Note that, in Definition 2, item 1 defines the (componentwise) derivation steps
(which take place when no query symbol occurs in the sentential form of any
grammar), while item 2 defines the communication steps. In a communication
step, when the communication string xj replaces the query symbol Qj , we say
that Qj is satisfied by xj . If some query symbols are not satisfied at a given
communication step, because they ask for a string that contains a query symbol,
then they will be satisfied after the query symbol occurring in the string they
asked for, is satisfied. No rewriting is possible when at least one query symbol is
present, i.e., the communication has priority over rewriting. PCGSs as defined
in Definition 2 are also called synchronized PCGSs, due to the fact that at each
rewriting step only one rule of a grammar is applied, i.e., no component becomes
disabled, unless the sentential form is a terminal string. If in Definition 2 the
condition “xi ∈ T ∗” is omitted then the resulting PCGS is called unsynchronized,
i.e., some components may rewrite, meantime some other components do not.

An r-tuple (x1, . . . , xr), xi ∈ V ∗
Γ , 1 ≤ i ≤ r, that satisfies either item 1 or

item 2, in Definition 2, is referred to as a configuration of Γ .

Definition 3. Let Γ = (N,K, T,G1, . . . , Gr) be a PCGS. The language gener-
ated by Γ is L(Γ)= {x ∈ T ∗|(S1, . . . , Sr)⇒∗(x, α2, . . . , αr), αi ∈ V ∗

Γ , 2 ≤ i ≤ r}.

If in Definition 2 only grammar G1 is allowed to introduce query symbols, then
Γ is said to be centralized PCGS. Otherwise Γ is called non-centralized. A PCGS
is said to be returning if after communicating, each component returns to its
axiom (the bracketed expression in Definition 2 holds). Otherwise, (when the
bracketed expression in Definition 2 is omitted) Γ is called non-returning.

In this paper we deal only with synchronized context-free PCGSs (all rules of
the components are context-free). However, some results can be generalized for
the unsynchronized case.

For r ≥ 1, we denote by NCPCr(CF), NPCr(CF), CPCr(CF), and PCr(CF),
the classes of non-returning centralized, non-returning non-centralized, returning
centralized, and returning non-centralized synchronized PCGSs with r context-
free components, respectively.

Henceforth, in any reference to a PCGS Γ = (N,K, T,G1, . . . , Gr), each com-
ponent is considered to be of the form Gi = (N ∪K,T, Pi, Si) where |Pi| = ci,
1 ≤ i ≤ r, N = {A1, ..., Am} is the ordered finite set of nonterminals, and

Searching for Traces of Communication in Szilard Languages of PCGSs 45

K = {Q1, . . . , Qr} is the finite set of query symbols. Since the components of a
PCGS work in parallel it is more appropriate to label the productions of the com-
ponents, instead of the system components. According to this observation, we
consider the following labeling procedure. Each rule p ∈ P1 is labeled by a unique
pq, 1 ≤ pq ≤ c1, and each p ∈ Pi, 2 ≤ i ≤ r, is labeled by a unique pq, such that∑i−1

r=1 cr + 1 ≤ pq ≤
∑i

r=1 cr. Denote by Lab(Γ) the set of all labels introduced
in this way, and by Lab(Gi) the set of labels associated with rules in Pi. For any
context-free rule p of the form αp → βp, αp ∈ N , and βp ∈ V ∗

Γ , whose label is
pq ∈ Lab(Γ), the net effect of rule p with respect to each nonterminal Al ∈ N ,
1 ≤ l ≤ m, is given by dfAl

(pq) = |βp|Al
− |αp|Al

. To each rule p, we associate a
vector V (pq) ∈ Zm defined by V (pq) = (dfA1(pq), dfA2(pq), ..., dfAm(pq)), where
Z is the set of integers. The value of V (pq) taken at the lth place, 1 ≤ l ≤ m, is
denoted by Vl(pq) = VAl

(pq). The SZL of a PCGS is defined as follows [7].

Definition 4. Let Γ = (N,K, T,G1, . . . , Gr) be a PCGS, with Gi = (N ∪
K,T, Pi, Si) and |Pi| = ci, 1 ≤ i ≤ r. For two r-tuples ((x1, α1), . . . , (xr, αr))
and ((y1, β1), . . . , (yr, βr)), xi, yi ∈ V ∗

Γ , αi, βi ∈ Lab∗(Γ), 1 ≤ i ≤ r, we write
((x1, α1), . . . , (xr , αr))⇒ ((y1, β1), . . . , (yr, βr)) if either case 1 or 2 holds:

1. |xi|K = 0 for each 1 ≤ i ≤ r, then we have xi ⇒ yi in grammar Gi by using a

production labeled pq (1 ≤ pq ≤ c1, if i = 1, and
∑i−1

r=1 cr+1 ≤ pq ≤
∑i
r=1 cr,

if i �= 1) and βi = αipq; or we have xi = yi ∈ T ∗ and βi = αi;
2. there is i, 1 ≤ i ≤ r, such that |xi|K > 0, then, for each such i, we have xi =
z1Qi1z2Qi2 . . . ztQitzt+1, t ≥ 1, zj ∈ V ∗

Γ , |zj |K = 0, 1 ≤ j ≤ t+1; if |xij |K =
0, 1 ≤ j ≤ t, then yi = z1xi1z2xi2 . . . ztxitzt+1 and βi = αiαi1αi2 . . . αit
[yij = Sij , βij = λ, 1 ≤ j ≤ t]; if, for some j, 1 ≤ j ≤ t, |xij |K �= 0, then
yi = xi and βi = αi; for all i, 1 ≤ i ≤ r, for which yi is not specified above,
we have yi = xi and βi = αi.

Note that item 1 defines a rewriting step, while item 2 a communication step.
The bracketed formula is omitted in the case of non-returning PCGSs.

Definition 5. The Szilard language associated with a PCGS Γ is defined as
SZ(Γ) = {γ|((S1, λ), . . . , (Sr, λ)) ⇒∗ ((x, γ), (z2, β2), . . . , (zr, βr)), x ∈ T ∗, zi ∈
V ∗
Γ , γ, βi ∈ Lab∗(Γ), 2 ≤ i ≤ r}.

A word γ ∈ SZ(Γ) is called a Szilard word of Γ , while αi (or βi) ∈ Lab∗(Γ)
(Definition 4), obtained at any step of derivation in a PCGS, is called the Szilard
word of Gi. A rule p ∈ ∪ri=1Pi of the form αp → βp, αp ∈ N and βp ∈ V ∗

Γ , such
that |βp|K > 0, is called query rule. In Definition 4, αi1αi2 . . . αit is called a
communicating Szilard string (com.Sz.string). A substring αij , 1 ≤ j ≤ t, is said
to be a Szilard word of Gij that satisfies the query symbol Qij .

By SZNCPCr(CF), SZCPCr(CF), SZNPCr(CF), and SZPCr(CF) we
denote the classes of SZLs associated with non-returning centralized, returning
centralized, non-returning non-centralized, and returning non-centralized (syn-
chronized) PCGSs with r context-free components, respectively. Next we give
an example that illustrates the manner in which a SZL of a PCGS is built.

46 L. Cojocaru and E. Mäkinen

Example 1. Let Γ = ({S1, S2, S3, Z3}, {Q2, Q3}, {a, b, c, d, e}, G1, G2, G3), Γ ∈
CPC3(CF), where Si is the axiom of Gi, i ∈ {1, 2, 3}, and P1 = {1: S1 → aS1, 2:
S1 → Q2Q3, 3: S2 → eS2, 4: S2 → Q3}, P2 = {5: S2 → bS2c}, P3 = {6: S3 →
Z3, 7: Z3 → dZ3, 8: Z3 → d}. The derivation in Γ proceeds as follows
((S1, λ), (S2, λ), (S3, λ))⇒∗((ak1Q2Q3, 1

k12), (bk1+1S2c
k1+1, 5k1+1), (dn1+1, 67n18))

⇒((ak1bk1+1S2c
k1+1dn1+1, 1k125k1+167n18), (S2, λ), (S3, λ))⇒∗((ak1bk1+1ek2Q3

ck1+1dn1+1, 1k125k1+167n183k24),(bk2+1S2c
k2+1, 5k2+1),(dn2+1, 67n28))⇒((ak1bk1+1

ek2dn2+1ck1+1dn1+1, 1k125k1+1 67n183k2467n28), (bk2+1S2c
k2+1, 5k2+1), (S3, λ)),

where ni ≥ 0, ni ≤ ki − 1, i ∈ {1, 2}.
Hence, L(Γ) = {ak1bk1+1ek2dn2+1ck1+1dn1+1| ni ≥ 0, ni ≤ ki − 1, i ∈ {1, 2}}

and SZ(Γ) = {1k125k1+167n183k2467n28| ni ≥ 0, ni ≤ ki − 1, i ∈ {1, 2}}.

3 Szilard Languages of PCGSs - Complexity Results

Henceforth, if Γ = (N,K, T,G1, . . . , Gr) is a PCGS, a Szilard word γ ∈ SZ(Γ)
is considered to be of the form γ = γ1γ2...γn, where each γi ∈ Lab(Γ), 1 ≤ i ≤ n,
is the label of a context-free rule in ∪ri=1Pi of the form αγi → βγi , αγi ∈ N ,
and βγi ∈ V ∗

Γ . In the sequel, for the sake of simplicity, we use the same notation
both for a rule and the label associated with it. We point out that, when Γ is a
centralized PCGS, each Szilard word of a component Gi, i �= 1, is composed of
only labels in Lab(Gi). For returning centralized PCGSs we have

Theorem 1. Each language L ∈ SZCPCr(CF) can be recognized by an index-
ing ATM in O(logn) time and space (SZCPCr(CF) ⊆ ALOGTIME).

Proof. Let Γ= (N,K, T,G1, . . . , Gr) ∈ CPCr(CF) and A an ATM composed
of an input tape, an index tape, and a working tape divided into three blocks
B1, B2, and B3. Let γ ∈ Lab∗(Γ), γ = γ1γ2...γn, be an input word of length n.
At the beginning of the computation γ is stored on the input tape. The

∑r
q=1 cq

vectors V (rh)∈ Zm, 1≤ h ≤
∑r
q=1 cq are stored on B1. As

∑r
q=1 cq is finite, the

space used by A to store them is constant (with respect to the length of γ).

Level 1 (Existential). In an existential state A guesses the length of γ. The
correct value of n is recorded in binary on B2.

Level 2 (Universal). A spawns n universal processes ℘i, 1 ≤ i ≤ n.

I1. On ℘1 A checks whether γ1 ∈ Lab(G1) and αγ1 = S1, while on ℘2 A checks
whether i.) γ2 ∈ Lab(G1), |βγ1 |K = 0, and |βγ1 |αγ2

≥ 1 (rewriting step), or
ii.) γ2 ∈ Lab(Gi), i �= 1. For the latter case A searches forward in γ (Level
3-Existential) for the next label in Lab(G1). Suppose this is γc+2. A checks
whether βγ1 is of the form βγ1 = z1Qi1z2Qi2 . . . zcQiczc+1, where zl ∈ (N ∪ T)∗,
1 ≤ l ≤ c+ 1, γj+1 ∈ Lab(Gij) and αγj+1 = Sij , 1 ≤ j ≤ c (communication step
in which each grammar interrogated by γ1 performs only one rewriting step).
Process ℘2 returns 1 if either i. or ii. holds.

I2. On any process ℘q, such that γq−1 ∈ Lab(G1) and γq ∈ Lab(Gi), i �= 1, i.e.,
on any ℘q that takes a label γq placed at the beginning of a com.Sz.string C,
A searches forward (Level 3-Existential) for the label placed at the right edge

Searching for Traces of Communication in Szilard Languages of PCGSs 47

of C. Suppose that γt is this label, i.e., C = γq...γt. As C is a com.Sz.string,
γq−1 must be a query rule of the form αγq−1 → βγq−1 , αγq−1 ∈ N and βγq−1 =
z1Qi1z2Qi2 . . . zc′Qic′ zc′+1, where zl ∈ (N ∪ T)∗, 1 ≤ l ≤ c′ + 1. For any Qij ,
1 ≤ j ≤ c′, A searches backward in γ (Level 4-Existential) for the very last
com.Sz.string that contains a label in Lab(Gij). Denote by Cij this substring. A
counts the number of labels in Lab(G1) occurring between Cij and C, i.e., the
number of rewriting steps performed by G1 between two consecutive commu-
nication steps in which G1 interrogates Gij . Suppose this number is gij ≥ 1.
A guesses c′ positive integers �j, such that 1 ≤ �j ≤ gij , 1 ≤ j ≤ c′, and
�1 + ... + �c′ = t − q + 1, where �j is the length of the Szilard word1 generated
by Gij between Cij and C. To store them in binary, on B3, A uses only O(log n)
space (since c′ is a constant that does not depend on the length of the input).

Levels 5− 6 on ℘q (Universal-Universal). A spawns (Level 5) c′ universal pro-
cesses ℘̄j , 1 ≤ j ≤ c′, each of which checks whether γq+

∑j−1
i=0 �i

...γq+
∑j

i=0 �i−1

(�0= 0) can be the Szilard word ofGij . To do so,A first checks whether each sym-
bol in γq+

∑j−1
i=0 �i

...γq+
∑j

i=0 �i−1 belongs to Lab(Gij). Then A spawns �j universal

branches (Level 6). On the first branch A checks whether γq+
∑j−1

i=0 �i
rewrites Sij

(αγ
q+

∑j−1
i=0

�i

= Sij). Let γ
(h) = γq+

∑j−1
i=0 �i

γq+
∑j−1

i=0 �i+1...γq+
∑j−1

i=0 �i+h−1, 2 ≤ h ≤
�j − 1, and |Pij | = cij . On the hth branch A counts the occurrences of each rule

rk ∈ Pij , 1≤ k ≤ cij , in γ
(h). Suppose that rk occurs c

(h)
k times in γ(h), 0 ≤ c

(h)
k ≤

h. A computes s
(h)
Sij

= 1 +
∑cij

k=1 c
(h)
k VSij

(rk) and s
(h)
Al

=
∑cij
k=1 c

(h)
k VAl

(rk), for

Al �= Sij , i.e., the number of times Al, 1 ≤ l ≤ m, occurs in the sentential form
obtained at the hth rewriting step in Gij (obtained by summing up the net effect

of rules in γ(h)). A checks whether s
(h)
Al

> 0 for Al = αγ
q+

∑j−1
i=0

�i+h
(the nontermi-

nal rewritten by γq+
∑j−1

i=0 �i+h
exists in the sentential form ofGij). For each j such

that �j < gij , A checks whether s
(�j−1)
Al

+ VAl
(γq+

∑j
i=0 �i−1) = 0, 1 ≤ l ≤ m (the

sentential form ofGij at the �
th
j rewriting step is a terminal string). Furthermore,

when ever there exist two (or more) equal query symbols Qik and Qil in βγq−1 , A
checks whether �k = �l and γq+

∑k−1
i=0 �i

...γq+
∑k

i=0 �i−1 = γq+
∑l−1

i=0 �i
...γq+

∑l
i=0 �i−1.

If t = n (the rightmost label in C is at the end of γ) then besides the above

conditions, A checks whether s
(�j−1)
Al

+VAl
(γq+

∑j
i=0 �i−1) = 0, for any 1 ≤ j ≤ c′,

1 ≤ l ≤ m, i.e., all strings that satisfy query symbols in βγq−1 are terminal.

I3. Each ℘q that takes a label γq such that γq−1, γq ∈ Lab(Gi), i �= 1, i.e.,
γq−1γq is either a substring or a suffix of a com.Sz.string C, returns 1, without
any further checking, since the correctness of C is verified by the process that
takes the label placed at the beginning of C. Each ℘q that checks a label occurring
in a com.Sz.string is called plugged process. A plugged process always returns 1.

I4. On any ℘q that takes a label γq, γq ∈ Lab(G1), consider γ
(q) = γ1γ2...γq−1.

1 According to Definition 2, item 1, there may exist grammars Gij , 1 ≤ j ≤ c′, that
do not perform, between two communication steps, as many derivation steps as the
master grammar does, since the sentential form of Gij becomes a terminal string.

48 L. Cojocaru and E. Mäkinen

– A counts the occurrences of each rule rj1 ∈ P1, 1 ≤ j1 ≤ c1, in γ
(q). Suppose

that each rj1 occurs c
(q)
j1

times in γ(q), 0 ≤ c
(q)
j1
≤ q− 1. A computes s

(q,1)
S1

=

1 +
∑c1

j1=1 c
(q)
j1
VS1(rj1) and s

(q,1)
Al

=
∑c1
j1=1 c

(q)
j1
VAl

(rj1), for Al �= S1, i.e., the
number of occurrences of each Al, 1 ≤ l ≤ m, in the sentential form obtained
at the qth rewriting step, produced only by rules of G1.

– A counts the number of occurrences of each rule rji ∈ Pi, i �= 1, 1 ≤ ji ≤ ci,

in γ(q). Suppose that each rji occurs c
(q)
ji

times in γ(q), 0 ≤ c
(q)
ji
≤ q − 1. A

computes s
(q,i)
Si

= qi +
∑ci
ji=1 c

(q)
ji
VSi(rji) and s

(q,i)
Al

=
∑ci

ji=1 c
(q)
ji
VAl

(rji), for
Al �= Si, i.e., the number of occurrences of each Al, 1 ≤ l ≤ m, left in the
sentential form after all communication steps done by each Gi, 2 ≤ i ≤ r, up
to the qth rewriting step in G1. The integer qi is the number of query rules
occurring in γ(q) that contain on the right-hand side at least one Qi (since
Γ ∈ CPCr(CF), Gi returns to its axiom after each communication step).

Process ℘q returns 1 if
∑r

i=1 s
(q,i)
αγq

> 0, i.e., the nonterminal rewritten by γq
exists in the sentential form at the qth step of derivation (after summing up the
net effect of all rules occurring in γ(q) with respect to nonterminal αγq).

Concerning the last process ℘n, if γn ∈ Lab(G1), then besides the above con-

ditions A also checks whether γn is not a query rule, and whether
∑r
i=1 s

(n,i)
Al

+
VAl

(γn) = 0 for any Al, i.e., no nonterminal occurs in the sentential form at the
end of derivation. If γn ∈ Lab(Gi), i �= 1, then γn is the right edge of a last
com.Sz.string occurring in γ. Hence, ℘n is a plugged process, and it returns 1
“by default”. The correctness of this last com.Sz.string Cn is checked by process
℘n′ , where γn′ is the label placed at the left edge of Cn.

The computation tree of A has six levels, in which each node has unbounded
out-degree. By using a divide and conquer algorithm each of these levels can be
converted into a binary tree of height O(log n). All functions used in the algo-
rithm, such as counting and addition, are inNC1, which is equal toALOGTIME
under the UE∗-uniformity restriction [9]. To store and access the binary value of
auxiliary computations, such as sums of net effects, A needs O(logn) time and
space. Hence, for the whole computation A uses O(log n) time and space. �

Corollary 1. SZCPCr(CF) ⊂ NC1 (SZCPCr(CF) ⊂ DSPACE(logn)).

Proof. The claim is a direct consequence of Theorem 1 and results in [9]. �

Note that for the case of non-centralized PCGSs any component may ask for
the sentential form of any other component in the system. The Szilard word of
the master grammar G1 may be transfered, at any moment of the derivation, to
another grammar. Hence, for the returning case, what may be expected, before
ending up a derivation to be the prefix of a Szilard word (generated by G1) may
become, during the last steps of derivation, a substring or a suffix of the system’s
Szilard word. This happens in the case that G1 interrogates the grammar whose
G1’s former Szilard word has been communicated. Otherwise,G1’s former Szilard
word is wiped out (since G1 returns to its axiom), and the system’s Szilard word
is obtained just at the end of derivation.

Searching for Traces of Communication in Szilard Languages of PCGSs 49

Since non-returning PCGSs do not forget, after performing a communication
step, their derivation “history”, these PCGSs appear easier to handle. We point
out that, when Γ is a non-centralized PCGS any Szilard word of Γ is either of
the form γ = γr1C1γr2C2...γrkCk or, of the form γ = γr1C1γr2C2...Ck−1γrk .

A string of type γr corresponds to those rewriting steps in G1 that take place
before any communication event through which γr is sent to another grammar
Gi, i �= 1. In order to distinguish a γr sequence from a “γr ” sequence that has
been communicated to another grammar, we call the later substring a dummy
γr rewriting substring (while γr is considered an original rewriting substring).

A string of type C is composed of concatenations of Szilard words of grammars
Gi, i �= 1, which satisfy query symbols occurring in the query rule that cancels
γr (that precedes C). A Szilard word of Gi is composed of sequences of labels
in Gi (due to consecutive rewriting steps in Gi) and Szilard words of other
grammars Gj , including G1, j �= i, that satisfy query symbols produced by Gi.
To be also observed that C cannot end up in a label in Lab(G1).

Indeed, if the rightmost label in C belongs to Lab(G1), then there must exist
in Γ a configuration with Szilard words (see Definition 4 and Example 1) of
the form ((x1, α1), ..., (xi, αi), ..., (xj , αj), ..., (xr , αr)), 1 < i < j < r, such that
|x1|Qi > 0, |xi|Qj > 0, xj contains no query symbols, and αj ends up in a label
γt ∈ Lab(G1). As γt cancels αj , no rewriting step should be performed by Gj
after it asked for the sentential form ofG1, unless xj is a terminal string, i.e., x1 is
a terminal string, which is absurd. Therefore, ((x1, α1), ..., (xi, αi), ..., (xj , αj), ...,
(xr, αr)) should be obtained from ((x′1, α

′
1), ..., (x

′
i, α

′
i), ..., (x

′
j , α

′
j), ..., (x

′
r, α

′
r))

through a communication step in which x′1 is sent to Gj , αk = α′
k (and xk = x′k),

for each k �= j, αj = α′
jα1, |x′1|Qi > 0, |x′i|Qj > 0, and |x′j |Q1 > 0, which

contradicts2 Definition 2 (the sentential form of G1 cannot be sent to Gj , since
it contains a query symbol). For non-returning non-centralized PCGSs we have

Theorem 2. Each language L ∈ SZNPCr(CF) can be recognized by an index-
ing ATM in O(logn) time and space (SZNPCr(CF) ⊆ ALOGTIME).

Proof. Let Γ = (N,K, T,G1, . . . , Gr) ∈ SZNPCr(CF), A an ATM with the
same configuration as in Theorem 1, and γ ∈ Lab∗(Γ), γ = γ1γ2...γn, an input
word of length n. To guess the length of γ, A proceeds with Level 1-Existential,
Theorem 1. Then A spawns n universal processes ℘i, 1 ≤ i ≤ n, (Level 2-
Universal) such that each ℘i checks a label γi occurring in γ as follows.

I1. On any process ℘q that takes a label γq ∈ Lab(G1), occurring in a string of
type γr , A checks whether γq can be applied on the sentential form obtained
at the qth step of derivation in G1, i.e., the nonterminal rewritten by γq exists
in the sentential form corresponding to γ(q) = γ1γ2...γq−1. This can be done,
as described in Theorem 1, I4, by summing up the net effect of each rule γs,
1 ≤ s ≤ q−1, with the difference that qi = 1 (since Γ is a non-returning PCGS).

To distinguish an original γr substring from a dummy one, A searches back-
ward in γ (Level 3-4 Existential-Universal) for a rewriting sequence γr′ such that

2 This is the case of a circular query. Any circular query blocks the work of Γ on the
corresponding branch of derivation.

50 L. Cojocaru and E. Mäkinen

γr = γr′ . If no such substring is found, then γr is an original one. Otherwise, let

s
(f)
γr and s

(c)
γr be the position of the first and the current occurrence3 of γr in γ,

respectively. A checks, by universally branching4 (Level 5) pairs of labels of the

form (γ
s
(c)
γr −s(f)

γr +j
, γj), 1 ≤ j ≤ s

(f)
γr − 1, whether γ

s
(c)
γr −s(f)

γr +1
...γ

s
(c)
γr −1

equals

γ1...γs(f)
γr −1

, i.e., γ1...γs(f)
γr −1

γr is a communicated substring, case in which, if

it is correct, γr is a dummy rewriting sequence.

I2. On any ℘q that takes a label γq placed at the beginning of a com.Sz.string C ,
i.e., γq−1 ∈ Lab(G1), γq ∈ Lab(Gi), i �= 1, and γq−1 is a query rule, A searches
forward (Level 3-Existential) for the label γt that cancels C (C = γq...γt)
such that γt+1 ∈ Lab(G1), γt /∈ Lab(G1), γt is not a query rule, and C is
delimited at the left and right side by two consecutive (original) sequences of
type γr (whose correctness are checked as in Levels 3-4, I1). Let γq−1 be a
query rule of the form αγq−1 → βγq−1 , βγq−1 = z1Qi1z2Qi2 . . . zcQiczc+1, where
zl ∈ (N ∪ T)∗, 1 ≤ l ≤ c + 1. A guesses c positive integers �j , 1 ≤ j ≤ c, such
that �1+ ...+ �c = t−q+1, where each �j is the length of the Szilard word of Gij
that satisfies Qij . A stores all these numbers in binary, on B3, by using O(log n)
space. Then A spawns c universal processes ℘̄j , 1 ≤ j ≤ c, (Level 4), each of
which checks whether γ�j = γq+xj−1 ...γq+xj−1+�j−1 is a valid Szilard word of Gij ,

where xj−1 =
∑j−1

i=0 �i.

I3. On each ℘̄j, A spawns �j universal processes ℘̄j,ı (Level 5), each of which
takes a label γx, x = q + xj−1 + ı, 1 ≤ ı ≤ �j − 1, and it checks whether γx can
be applied on the sentential form obtained up to the application of rule γx−1.

Note that, each γ�j may be composed of i.) substrings over labels in Gij , cor-
responding to consecutive rewriting steps in Gij , that have not been transfered
to other grammars, and ii.) substrings over labels in Gi, i �= ij , which are Szilard
words in Gi that satisfied query symbols set by Gij . Szilard words in Gi may
also be composed of substrings over labels in Gij , which represent consecutive
rewriting steps in Gij that have been transfered to grammar Gi. In other words,
γ�j has the same structure as γ, in which the master grammar may be considered

the grammar Gij . Denote by γ
(Gij

)

�j
substrings of type i, and by γ

(Gi)
�j

substrings
of type ii. Suppose that γ�j is composed of k substrings of type i, in which the

lth such substring is denoted by γ
(Gij

)

l,�j
, and the lth communicating substring is

denoted by γ
(Gi)
l,�j

. Consider Ll,�j (�Ll,�j) the length of γ
(Gij

)

l,�j
(γ

(Gi)
l,�j

). Ll,�j is com-

putable knowing the start and end positions of γ
(Gij

)

l,�j
in γ�j . To localize γ

(Gij
)

l,�j

(or γ
(Gi)
l,�j

) in γ�j , A proceeds in the same way as for substrings of type γr in
G1. This is possible due to the fact that any string that satisfies a query symbol
posed by G1 in βγq−1 is a prefix of the Szilard word of Gij generated from the
beginning of derivation in Γ (since Γ is a non-returning system).

3 These are in fact the positions in γ, of the first label in γr for the first and current
occurrence of γr in γ.

4 Each branch returns 1 if γ
s
(c)
γr −s

(f)
γr +j

= γj , and 0 otherwise, where 1 ≤ j ≤ s
(f)
γr −1.

Searching for Traces of Communication in Szilard Languages of PCGSs 51

Suppose that up to the qth label in γ, G1 has performed tq rewriting steps (tq
is computable knowing the location of each γr in γ up to the qth label). Since G1

has performed tq rewriting steps any grammar Gij , whose Szilard words satisfy
query symbols in γq−1 must perform at most tq rewriting steps.

However, when Szilard words of a grammar Gi, i �= ij, satisfy query symbols
set by grammar Gij inside γ�j , the number of rewriting steps performed by Gi,
up to the interrogation time, must be less or equal to the number of rewriting
steps performed by Gij on γ�j , and so on. The space used by A to record the
number of rewriting steps performed by G1 may be later reused to record the
number of rewriting steps performed by Gij , since the number of derivation steps
performed by any grammar inside γ�j (including G1) are related afterwards to
the number of derivation steps performed by Gij . Hence, the space used by
A does not exceed O(log n). Furthermore, each time A meets a substring in
γ�j composed of labels corresponding to rewriting steps in G1, that satisfies a
query symbol set by Gij , A checks whether this substring matches the prefix
of γ of length at most the number of rewriting steps done by Gij up to the
interrogation time. The same procedure is applicable to grammar Gij , when A
meets a substring composed of labels corresponding to rewriting steps in Gij
occurring in a com.Sz.string that satisfies a query symbol set by Gi.

I3a . On any ℘̄j,m (of type ℘̄j,ı) that takes the mth label, denoted by γj,m, in

γ
(Gij

)

l,�j
, 1 ≤ m ≤ Ll,�j , 1 ≤ l ≤ k, A checks whether5

∑l−1
j=1 Lj,�j +m ≤ tq, and

whether the nonterminal αγj,m (rewritten by γj,m) exists in the sentential form

corresponding to γ
(m−1)
j,m = γq+xj−1 ...γj,m−1. This can be done, as in I1 (applied

to Gij) by summing up the net effect of each rule in γ
(m−1)
j,m .

I3b . On any ℘̄j,q (of type ℘̄j,ı) that takes a label γj,q such that γj,q−1 ∈ Lab(Gij),
γj,q ∈ Lab(Gi), i �= ij , and γj,q−1 is a query rule in Gij , i.e., on any ℘̄j,q that takes

a label γj,q placed at the beginning of a com.Sz.string γ
(Gi)
l,�j

in Gij , A proceeds
as follows. Let γj,q−1 be a query rule for which its right-hand side is of the form
βγj,q−1 = z1Ql1z2Ql2 . . . zc′Qlc′ zc′+1. As for the case of rule γq−1 ∈ Lab(G1), A
guesses c′ positive integers �′j′ , such that �′1 + ... + �′c′ = �Ll,�j , where each �′j′ ,
1 ≤ j′ ≤ c′, is the length of the Szilard word of component Glj′ , that satisfies
Qlj′ in βγj,q−1 . Then A checks in parallel whether each substring of length �′j′
is a valid Szilard word of Glj′ . The procedure is the same as for process ℘q, I2.
The only difference is that, since the component that has “issued the question”
is Gij , which up to this communication step has performed

∑l
j=1 Lj,�j rewriting

steps, each of the components whose labels occur in a com.Sz.string that satisfies
a query symbol in βγj,q−1 must perform at most

∑l
j=1 Lj,�j rewriting steps.

In order to check possible communication conflicts6 that may occur, between
two grammars Gj and Gk, j �= k, A existentially searches for all query rules of

5 If
∑l−1

j=1 Lj,�j+m < tq, then A verifies whether γq+xj−1 ...γj,m is a terminal string.
6 A communication conflict [10] in Γ is any configuration (x1, x2, . . . , xr) of Γ , xi ∈ V ∗

Γ ,
1 ≤ i ≤ r, such that there exist j, k,m, j �= k �= m �= j, 1 ≤ j, k,m ≤ r, such that
|xj |Qm �= 0 and |xk|Qm �= 0.

52 L. Cojocaru and E. Mäkinen

Gj and Gk that contain on their right-hand sides at least one occurrence of Qm,
j �= k �= m. Then, A localizes the position of these query rules in segments of
type γr that correspond to rewriting steps performed in Gj and Gk. Let tqGj

and tqGk
be the number of rewriting steps performed by Gj and Gk up to the

interrogation time, respectively. By using universal branches A checks whether
tqGj

= tqGk

7 and whether the two Szilard words of Gm, the grammars Gj and

Gk have asked for, are equal.
Note that since Γ is non-returning, any Szilard word of a certain grammar

Gi can be recovered from the Szilard word of G1, up to the moment of deriva-
tion in which Gi brings any contribution8 in the generation of a word. This
makes possible to identify within γ all communication conflicts (and in general
all communication steps) that brought a certain contribution in the generation
of the system’s language. Of course, there may exist conflicts (communication
steps) between two grammar components not visible within γ, but since these
components are never queried (directly or indirectly) by the master grammar,
their conflicts (queries) remain uninteresting. In other words, what we can re-
cover from γ are exactly those derivation steps that contribute in the generation
of the language. This is less possible for the case of (non-centralized) returning
PCGSs, since after sending a sentential form to Gi (that may be latter interro-
gated by G1) the Szilard word of the interrogated grammar Gj (by Gi) returns to
λ. For the moment we are not able to recover (from γ) this “unseen” information
(but it remains a provoking problem for further research).

Denote by T the computation tree of A. Throughout this proof we have briefly
described the main levels in which T can be expanded. However, there may exist
levels that can be followed by other “intermediate” levels, as it is the case of Level
3, item I2, which may be followed by the “intermediate” Levels 3-4, item I1
(through which A applies the procedures described at I1). However, the number
of intermediate levels of T is bounded by a constant that does not depend on
the length of the input. A node in these levels may have out-degree O(n) (but no
more than that). These levels can be converted into binary “subtrees” of height
O(log n), in which each node has out-degree 2. Hence, T can be converted into a
binary tree of at most O(logn) levels, i.e., A will perform the whole computation
in O(logn) time, by using O(log n) space. �

Corollary 2. SZNPCr(CF) ⊂ NC1 (SZNPCr(CF) ⊂ DSPACE(logn)).

Theorem 3. SZNCPCr(CF) ⊆ SZNPCr(CF).

From Theorem 2 and 3, as a direct consequence, we obtain

Theorem 4. SZNCPCr(CF) ⊂ NC1 (SZNCPCr(CF) ⊂ DSPACE(logn)).

However Theorem 4 can also be inferred from Theorem 1, through a slight mod-
ification of the algorithm described in its proof.

7 Gj and Gk simultaneously interrogate Gm at the tthqGj
time of derivation in Γ .

8 If G1 never queries Gi, then the Szilard word of Gi still can be recovered from γ,
if G1 queries another grammar Gj , i �= j, that once, in the past, had queried Qi.
Otherwise, the Szilard word of Gi is worthless.

Searching for Traces of Communication in Szilard Languages of PCGSs 53

4 Further Remarks and Conclusions

PCGSs turned out to be challenging generative devices, not only due to their
applicability in artificial intelligence, but also due to the diversity of commu-
nication phenomena occurring in these systems (which led to a rich hierarchy
of communication complexity classes [6]). In this paper we have investigated
the parallel complexity of SZLs of PCGSs. We proved that SZLs of centralized
returning and non-returning PCGSs are included in NC1 (Theorems 1 and 4).
The same result holds for non-centralized non-returning PCGSs (Theorem 2).
Theorems 1 and 4 also hold for unsynchronized PCGSs.

The manner we have approached complexity issues for SZLs of PCGSs, through
indexing ATMs, may have some applications in studying trade-offs between time,
space, and communication complexity for PCGSs. This can be easily done in
NC1, by counting the number of query rules of a certain component occurring
in a Szilard word. Proof of Theorem 2 may be considered as a method of how
to recover information related to past events, developed during a derivation in
a PCGS, from traces of computation left in the Szilard word. The method can
be generalized for several types of communication protocols in PCGSs.

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity, vol. II. Springer,
Heidelberg (1990)

2. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. of ACM 28(1), 114–133
(1981)

3. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, Yverdon
(1994)

4. Cojocaru, L., Mäkinen, E.: On the Complexity of Szilard Languages of Regulated
Grammars. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 77–94. Springer, Heidelberg (2011)

5. Cojocaru, L., Mäkinen, E.: On the Complexity of Szilard Languages of Matrix
Grammars. In: 13th IEEE International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pp. 339–347. IEEE Press, Los Alamitos (2011)

6. Hromkovič, J., Kari, J., Kari, L.: Some Hierarchies for the Communication Com-
plexity Measures of Cooperating Grammar Systems. Theor. Comput. Sci. 127(1),
123–147 (1994)

7. Mihalache, V.: Szilard Languages Associated to Parallel Communicating Grammar
Systems. In: Dassow, J., Rozenberg, G., Salomaa, A. (eds.) DLT 1995, pp. 247–256.
World Scientific, Singapore (1996)

8. Păun, G.: Parallel Communicating Grammar Systems: Recent Results, Open Prob-
lems. Acta Cybern. 12(4), 381–396 (1996)

9. Ruzzo, W.: On Uniform Circuit Complexity. J. Comput. Syst. Sci. 22(3), 365–383
(1981)

10. Ţiplea, F.L., Ene, C., Ionescu, C.M., Procopiuc, O.: Some Decision Problems for
Parallel Communicating Grammar Systems. Theor. Comput. Sci. 134, 365–385
(1994)

11. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer,
Heidelberg (1999)

State Complexity of Basic Operations

on Non-returning Regular Languages

Hae-Sung Eom 1,�, Yo-Sub Han 1,�, and Galina Jirásková 2,��

1 Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{haesung,emmous}@cs.yonsei.ac.kr
2 Mathematical Institute, Slovak Academy of Sciences

Grešákova 6, 040 01 Košice, Slovakia
jiraskov@saske.sk

Abstract. We consider the state complexity of basic operations on non-
returning regular languages. For a non-returning minimal DFA, the start
state does not have any in-transitions. We establish the precise state com-
plexity of four Boolean operations (union, intersection, difference, sym-
metric difference), catenation, reversal, and Kleene-star for non-returning
regular languages. Our results are usually smaller than the state complex-
ities for general regular languages and larger than the state complexities
for suffix-free regular languages.

Keywords: Finite automata, non-returning regular languages, basic
operations, state complexity.

1 Introduction

Given a regular language L, researchers often use the number of states in the
minimal deterministic finite-state automaton (DFA) for L to represent the com-
plexity of L. Based on this notion, the state complexity of an operation for regular
languages is defined as the number of states that are necessary and sufficient in
the worst-case for the minimal DFA to accept the language resulting from the
operation, considered as a function of the state complexities of operands.

Maslov [17] provided, without giving proofs, the state complexity of union,
catenation, and star, and later Yu et al. [24] investigated the state complexity
further. The state complexity of an operation is calculated based on the struc-
tural properties of input regular languages and a given operation. Recently, due
to large amount of memory, fast CPUs and massive data size, many applications
using regular languages require finite-state automata (FAs) of very large size.
This makes the estimated upper bound of the state complexity useful in prac-
tice since it helps to manage resources efficiently. Moreover, it is a challenging
quest to verify whether or not an estimated upper bound can be reached.

� Research supported by the Basic Science Research Program through NRF funded
by MEST (2012R1A1A2044562).

�� Research supported by VEGA grant 2/0183/11 and by grant APVV-0035-10.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 54–65, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

State Complexity of Basic Operations on Non-Returning Regular Languages 55

Yu [25] gave a comprehensive survey of the state complexity of regular lan-
guages. Salomaa et al. [21] studied classes of languages, for which the reversal
operation reaches the exponential upper bound. As special cases of the state
complexity, researchers examined the state complexity of finite languages [4,9],
the state complexity of unary language operations [19] and the nondeterministic
descriptional complexity of regular languages [12]. There are several other results
with respect to the state complexity of different operations [5,7,8,18].

For regular language codes, which preserve certain structural properties in
the corresponding minimal DFAs, Han et al. [11] studied the state complexity
of prefix-free regular languages. Similarly, based on suffix-freeness, Han and Sa-
lomaa [10] looked at the state complexity of suffix-free regular languages. Note
that a prefix-free minimal DFA has a single final state and all out-transitions of
the final state go to the sink state [1]. Moreover, this property is the necessary
and sufficient condition for a minimal DFA A to be prefix-free; namely, L(A)
is prefix-free. For a suffix-free minimal DFA, the start state does not have any
in-transitions [10]. A DFA with this property is called non-returning. However,
this non-returning property is only a necessary condition for a minimal DFA to
be suffix-free, but it is not sufficient. This observation intrigues us to investigate
DFAs with non-returning property and the state complexity of basic operations
on languages accepted by non-returning DFAs.

Note that state complexity of non-returning regular languages is different from
the state complexity of arbitrary regular languages because there is a structural
property in a non-returning DFA; the start state has no in-transitions. We get the
tight bounds on the state complexity of four Boolean operations (union, intersec-
tion, difference, symmetric difference), of catenation, reversal and Kleene-star.
Our results are usually less than the state complexities for general regular lan-
guages and greater than the state complexities for suffix-free regular languages.

In Section 2, we define some basic notions and prove preliminary results. Then
we formally define non-returning regular languages. We prove the tight bounds
on the state complexity of Boolean operations, catenation, reversal, and Kleene
star in Sections 3, 4, 5, and 6, respectively. We summarize the state complexity
results and compare them with the regular language case and the suffix-free case
in Section 7.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ is
any subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ
denotes the null string. Let |w|a be the number of a appearances in a string w.
For strings x, y and z, we say that y is a suffix of z if z = xy. We define a
language L to be suffix-free if for any two distinct strings x and y in L, x is not
a suffix of y. For a string x, let xR be the reversal of x and for a language L, we
denote LR = {xR | x ∈ L}.

A DFA A is specified by a tuple (Q,Σ, δ, s, F), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → Q is a transition function, s ∈ Q is the

56 H.-S. Eom, Y.-S. Han, and G. Jirásková

start state and F ⊆ Q is a set of final states. The state complexity of a regular
language L, sc(L), is defined to be the size of the minimal DFA recognizing L.

Given a DFA A, we assume that A is complete; therefore, A may have a sink
state. For a transition δ(p, a) = q in A, we say that p has an out-transition and q
has an in-transition. We say that A is non-returning if the start state of A does
not have any in-transitions. We define a regular language to be a non-returning
regular language if its minimal DFA is non-returning.

A nondeterministic finite automaton (NFA) is a tuple M = (Q,Σ, δ,Q0, F)
where Q,Σ, F are as in a DFA, Q0 is the set of start states, and δ : Q×Σ → 2Q

is the transition function. Every NFAM can be converted to an equivalent DFA
M ′ = (2Q, Σ, δ′, Q0, F

′) by the subset construction. We call the DFA M ′ the
subset automaton of the NFA M .

For complete background knowledge in automata theory, the reader may refer
to the textbooks [22,23,26]. To conclude this section let us state some preliminary
results that we will use later throughout the paper.

Proposition 1. Let N be an NFA such that for every state q, there exists a
string wq accepted by the NFA N from state q and rejected from any other state.
Then all states of the subset automaton of N are pairwise distinguishable.

Proof. Let S and T be two distinct subsets of the subset automaton. Then,
without loss of generality, there is a state q of N such that q ∈ S and q /∈ T .
Then the string wq is accepted by the subset automaton from S and rejected
from T . ��

The following well-known observation allows us to avoid the proof of distin-
guishability in the case of reversal. It can be easily proved using Proposition 1,
and for the sake of completeness, we present the proof here.

Proposition 2 ([2]). All states of the subset automaton of the reverse of a
minimal DFA are pairwise distinguishable.

Proof. Let A be a minimal DFA. Since every state of A is reachable, for every
state q of the NFA AR, there exists a string wq that is accepted by AR from q.
Since A is deterministic, the string wq cannot be accepted by AR from any other
state. Hence the NFA AR satisfies the condition of Proposition 1, and therefore
all states of the subset automaton of AR are pairwise distinguishable. ��

If N is a non-returning NFA with the state set Q and the initial state s, then
the only reachable subset of the subset automaton of N containing the state s
is {s}. If, moreover, the empty set is unreachable in the subset automaton, then
two distinct subsets of the subset automaton must differ in a state from Q \ {s}.
Hence a sufficient condition for distinguishability in such a case is as follows.

Proposition 3. Let N = (Q,Σ, δ, s, F) be a non-returning NFA such that the
empty set is unreachable in the corresponding subset automaton. Assume that
for every state q in Q \ {s}, there exists a string wq accepted by N only from q.
Then all states of the subset automaton of N are pairwise distinguishable. ��

State Complexity of Basic Operations on Non-Returning Regular Languages 57

3 Boolean Operations

We consider the following four Boolean operations: intersection, union, differ-
ence, and symmetric difference. In the general case of all regular languages, the
state complexity of all four operations is given by the functionmn, and the worst
case examples are defined over a binary alphabet [3,24].

In the case of non-returning languages, we obtain the precise state complexity
for these operations, which again turn out to be the same. A general boolean
operation with two arguments is denoted by K ◦ L.

Theorem 1. Let K and L be non-returning languages over an alphabet Σ with
sc(K) = m and sc(L) = n, where m,n ≥ 3. Then sc(K ◦L) ≤ (m−1)(n−1)+1,
and the bound is tight if |Σ| ≥ 2.

Proof. Let K and L be accepted by a nonreturning m-state and n-state DFA,
respectively. Let the state sets of the two DFAs be QA and QB, and let the start
states be sA and sB, respectively. Construct the cross-product automaton for
K ◦ L with the state set QA × QB. Since both DFAs are non-returning, in the
cross-product automaton, the states (sA, q) and (p, sB), except for the initial
state (sA, sB), are non-reachable. This gives the upper bound.

To prove tightness, first consider intersection. Let

K = {(a+ b)w | w ∈ {a, b}∗ and |w|a ≥ m− 2},
L = {(a+ b)w | w ∈ {a, b}∗ and |w|b ≥ n− 2}.

The languages K and L are accepted by the non-returning DFAs shown in
Fig. 1.

In the cross-product automaton for the language K∩L, the unique final state
is (m− 1, n− 1). The cross-product automaton in the case of m = 4 and n = 5
is shown in Fig. 2. The state (1, 1) is reached from the initial state (0, 0) by a.
Every state (i, j) with 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1 is reached from (1, 1)
by ai−1bj−1. This proves the reachability of (m− 1)(n− 1) + 1 states.

Now let (i, j) and (k, �) be two distinct states of the cross-product automaton.
If i < k, then the string am−1−kbn is accepted from (k, �) and rejected from (i, j).

0 m−11 2 m−2
a, b a a a

b b b a, b

a

0 n−11 2 n−2
a, b b b b

a a a a, b

b

Fig. 1. The witnesses for intersection meeting the bound (m− 1)(n− 1) + 1

58 H.-S. Eom, Y.-S. Han, and G. Jirásková

a, b

b b b

b b b

a a a a

b b b

a a a a

b

b

a a a
a, b

00

11 12 13 14

21 22 23 24

31 32 33 34

Fig. 2. The cross-product automaton for intersection; m = 4, n = 5

If j < �, then the string bn−1−�am is accepted from (k, �) and rejected from (i, j).
This proves distinguishability, and concludes the proof for intersection.

To prove the tightness for union, notice that the state complexity of a regular
language is the same as the state complexity of its complement. Consider the
languages Kc and Lc, where K and L are the witness languages for intersection.
The languages Kc and Lc are non-returning with state complexities m and n,
respectively. Since Kc∪Lc = (K∩L)c, we have sc(Kc∪Lc) = (m−1)(n−1)+1.

For difference, we take the languages K and Lc. Since K \ Lc = K ∩ L, we
have sc(K \ Lc) = (m− 1)(n− 1) + 1.

For symmetric difference, consider the same languages as for intersection.
In the cross-product automaton, the final states are (i, n−1) with 1 ≤ i ≤ m−2
and (m−1, j) with 1 ≤ j ≤ n−2. The proof of reachability is the same as in the
case of intersection. If i < k then the string am−1−kbn is rejected from (k, �) and
accepted from (i, j). If j < �, then the string bn−1−�am is rejected from (k, �)
and accepted from (i, j). This completes the proof of the theorem. ��

4 Catenation

The state complexity of catenation on regular languages is given by the function
m2n− 2n−1, and the worst case examples can be defined over a binary alphabet
[17,24]. The next result gives the tight bound for catenation on non-returning
languages over an alphabet of at least three symbols.

Theorem 2. Let K and L be non-returning languages over an alphabet Σ with
sc(K) = m and sc(L) = n, where m,n ≥ 3. Then sc(K · L) ≤ (m− 1)2n−1 + 1,
and the bound is tight if |Σ| ≥ 3.

Proof. To prove the upper bound, let K and L be accepted by minimal non-
returning DFAs A = (QA, Σ, δA, sA, FA) and B = (QB, Σ, δB, sB, FB) of m and
n states, respectively.

State Complexity of Basic Operations on Non-Returning Regular Languages 59

sA qm−2q0 q1 qm−3
a, b, c a a a

a

b, c b, c b, c b, c

a

sB n−20 1 n−3
a, b, c b b, c b, c

b, c

a, c a a a

b, c

Fig. 3. The non-returning witnesses for catenation meeting the bound (m−1)2n−1+1

Construct an NFA N for the language K · L from the DFAs A and B by
adding a transition on every symbol a in Σ from every final state of A to the
state δ(sB , a), and by omitting the state sB. The initial state of N is sA and
the set of final states is FB . Moreover, the NFA N is non-returning. Apply the
subset construction to the NFA N . Since the automaton A is deterministic, every
reachable state of the subset automaton contains exactly one state of the DFA A
and, possibly, some states of the DFA B, except for the state sB. Moreover, the
only subset containing the state sA is {sA}, and the empty set is unreachable.
It follows that the subset automaton has at most (m − 1)2n−1 + 1 reachable
states, which proves the upper bound.

To prove tightness, let K and L be the languages accepted by the non-
returning minimal DFAs A and B shown in Fig. 3.

Construct an NFA N for K ·L from the DFAs A and B by adding transitions
on a, b, c from the state qm−2 to the state 0 and by omitting the state sB.
The initial state of N is sA, and the unique final state is n− 2. Let us show that
the subset automaton of the NFA N has (m−1)2n−1+1 reachable and pairwise
distinguishable states.

We prove by induction that every set {qi, j1, j2, . . . , jk}, where 0 ≤ i ≤ m− 2
and 0 ≤ j1 < j2 < · · · < jk ≤ n− 2, is reachable from the initial state {sA}.

The basis, k = 0, holds since {qi} is reached from {sA} by ai+1. Assume that
1 ≤ k ≤ n − 2, and that the claim holds for k − 1. Let S = {qi, j1, j2, . . . , jk}.
Consider three cases:

(i) i = 0 and j1 = 0. Let S′ = {qm−2, j2, . . . , jk}. Then S′ is reachable by the
induction hypothesis. Since S′ goes to S by a, the set S is reachable.

(ii) i = 0 and j1 ≥ 1. Let S′ = {q0, 0, j2− j1, . . . , jk − j1}. Then S′ is reachable
as shown in case (i), and goes to S by bj1 .

(iii) i ≥ 1. Let S′ = {q0, j1, j2, . . . , jk}. Then S′ is reachable as shown in cases
(i) and (ii), and goes to S by ai.

To prove distinguishability, notice that the NFAN accepts the string bn−2−j (0 ≤
j ≤ n− 2) only from the state j, the string cnb · bn−2 only from the state qm−2,

60 H.-S. Eom, Y.-S. Han, and G. Jirásková

and the string am−2−i ·cnb ·bn−2 (0 ≤ i ≤ m−3) only from qi. By Proposition 3,
all states of the subset automaton of N are pairwise distinguishable. ��

We did some calculations, and it seems that the upper bound cannot be met
in the binary case. The next theorem provides a lower bound, however, our
calculations show that it can be exceeded.

Theorem 3. Let m,n ≥ 4. There exist binary non-returning languages K and L
with sc(K) = m and sc(L) = n such that sc(KL) ≥ (m− 2)2n−1 + 2n−2 + 2.

Proof. Consider the binary languages K and L accepted by DFAs shown in
Fig. 4. Construct an NFA N for the language KL from the two DFAs by adding
the transitions on a and b from the state qm−2 to the state 0, and by omitting
the state sB. The initial state of N is sA and the unique final state is n− 2. Let
us show that the subset automaton of the NFA N has (m− 2)2n−1 + 2n−2 + 2
reachable and pairwise distinguishable states.

We prove, by induction on the size of reachable sets, that {sA}, {q0}, and all
sets {qi} ∪ T , where 0 ≤ i ≤ m − 2 and T ⊆ {0, 1, . . . , n − 2}, and such that if
i = 0 then 0 ∈ T , are reachable in the subset automaton. Each singleton set {qi}
is reached from the initial state {sA} by ai+1.

Assume that 1 ≤ k ≤ n − 2 and that every set S of size k and such that if
i = 0 then 0 ∈ S is reachable. Let S = {qi, j1, j2, . . . , jk} be a set of size k + 1
with 0 ≤ j1 < j2 < · · · < jk ≤ n− 2. Consider six cases:

(i) i = 0 and j1 = 0. Then S is reached from {qm−2, j2 − 1, . . . , jk − 1} by a,
and the latter set is reachable by the induction hypothesis.

(ii) i = 1, j1 = 0 and |S| = 2; namely, S = {q1, 0}. Then S is reached from
{q0, 0} by a · bn−2 and the latter set is reachable by (i).

(iii) i = 1, j1 = 0, j2 = 1. Then S is reached from {q0, 0, j3 − 1, . . . , jk − 1, n− 2}
by a, and the latter set is reachable by (i).

(iv) i = 1, j1 = 0, and j2 ≥ 2. Then the set S is reached from the set {q1, 0, 1,
j3− j2+1, . . . , jk− j2+1} by bj2−1, and the latter set is reachable by (iii).

sA qm−2q0 q1 qm−3
a, b a a a

a

b b b b

a

sB n−20 1 n−3
a, b a a, b a, b

a, b

b

a, b

Fig. 4. Non-returning DFAs of binary K and L with sc(KL) ≥ (m−2)2n−1+2n−2+2

State Complexity of Basic Operations on Non-Returning Regular Languages 61

(v) i = 1 and j1 ≥ 1. Then S is reached from {q0, 0, j2 − j1, . . . , jk − j1} by
abj1−1, and the latter set is reachable by (i).

(vi) i ≥ 2. Then the set S is reached from the set {q1, (j1 − i+1) mod (n − 1),
. . . , (jk − i + 1) mod (n − 1)} by ai−1, and the latter set is reachable by
(ii)-(v).

This proves the reachability of 2 + 2n−2 + (m− 2)2n−1 subsets.
To prove distinguishability, notice that the string an−2−j (0 ≤ j ≤ n − 2) is

accepted by N only from the state j, the string bna · an−2 only from the state
qm−2, and the string am−2−i · bna · an−2 (0 ≤ i ≤ m− 3) only from the state qi.
By Proposition 3, all subsets are pairwise distinguishable. ��

5 Reversal

The tight bound on the state complexity of the reversal of regular languages is
2n with worst-case examples defined over a binary alphabet [16,24]. The aim of
this section is to show that for non-returning languages, the tight bound is the
same. However, to prove tightness, we need a three-letter alphabet.

Theorem 4. Let L be a non-returning regular language over an alphabet Σ with
sc(L) = n, where n ≥ 4. Then sc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 3.

Proof. The upper bound 2n is same as in the general case.
To prove tightness, consider the language L accepted by the DFA in Fig. 5.

Let us show that the subset automaton of the NFA AR has 2n reachable states.
The initial state of the subset automaton is {0}, and it goes by ci to {i} with

1 ≤ i ≤ n− 2. The set {n− 2} goes to {n− 1} by a. Assume that 2 ≤ k ≤ n and
that every set of size k − 1 is reachable. Let S = {i1, i2, . . . , ik} be a set of size
k with 0 ≤ i1 < i2 < · · · < ik ≤ n− 1. Consider four cases:

(i) ik ≤ n − 2. Then S is reached from {0, i3 − i2, . . . , ik − i2} by the string
abi2−i1−1ci1 , and the latter set is reachable by the induction hypothesis.

(ii) ik = n− 1 and i1 = 0. Then S is reached from {i2 − 1, . . . , ik−1 − 1, n− 2}
by c, and the latter set is reachable by the induction hypothesis.

(iii) ik = n− 1 and i1 = 1. Then S is reached from {i2 − 1, . . . , ik−1 − 1, n− 2}
by b, and the latter set is reachable by the induction hypothesis.

(iv) ik = n− 1 and i1 ≥ 2. Then S is reached from {i1 − 1, . . . , ik−1 − 1, n− 2}
by a, and the latter set is reachable by (i).

n− 1 0n− 2 n− 3 1
a, b, c a, b, c a, b, c a, c

c

a, b, c

a, b
b

Fig. 5. The non-returning witness for reversal meeting the bound 2n

62 H.-S. Eom, Y.-S. Han, and G. Jirásková

n−1 0n−2 n−3 1
a, b, c a, b, c a, b, c a, c

c

a, b, c

a, b
b

Fig. 6. The NFA AR for the reversal of the language accepted by the DFA in Fig. 5

n− 2 0n− 3 n− 4 1
a, b a, b a, b aa, b

a, b a, b

n− 1

b

Fig. 7. The non-returning DFA of a binary language L with sc(LR) = 2n−2

By Proposition 2, all states of the subset automaton are pairwise distinguishable,
and the proof is complete. ��

Our calculations show that the upper bound cannot be met by binary languages.
The next result provides a lower bound in the binary case.

Theorem 5. Let n ≥ 3. There exists a binary non-returning regular language L
such that sc(L) = n and sc(LR) = 2n−2.

Proof. Let L be the binary language accepted by the minimal non-returning
automaton shown in Fig. 7. Then LR = (a+b)∗a(a+b)n−3, and it is well-known
that the state complexity of (a+ b)∗a(a+ b)n−3 is 2n−2. ��

6 Kleene-Star

The state complexity of Kleene star on regular languages is 2n−1 + 2n−2 for an
alphabet of at least two symbols, and it is (n − 1)2 + 1 in the unary case [24].
Here we show that in the case of non-returning languages over an alphabet of
at least two symbols, the tight bound is 2n−1. In the unary case, we get a lower
bound (n− 2)2 + 2, and we conjecture that this is also an upper bound.

Theorem 6. Let L be a non-returning regular language over an alphabet Σ with
sc(L) = n, where n ≥ 3. Then sc(L∗) ≤ 2n−1, and the bound is tight if |Σ| ≥ 2.

Proof. To get an upper bound, let A = (Q,Σ, δ, s, F) be a minimal non-returning
automaton for L. Construct an NFA N for the language L∗ from the DFA A
by making the state s final, and by adding a transition on every symbol a from

State Complexity of Basic Operations on Non-Returning Regular Languages 63

s n−21 2 n−3a, b a, b a, b a, ba, b0 a

b

a

b

Fig. 8. The non-returning witness for Kleene star meeting the bound 2n−1

every final state to the state δ(s, a). The NFA N is non-returning, and therefore
the subset automaton of N has at most 2n−1 + 1 states. Since A is a complete
DFA, the empty set is unreachable, and the upper bound is 2n−1.

To prove tightness, consider the binary language accepted by the minimal
n-state DFA A shown in Fig. 8. Construct an NFA N for the language L∗ from
the DFA A by making the state s final, and by adding the transition on b from
the state n− 2 to the state 0.

Let us prove by induction on the size of subsets that every non-empty subset
of {0, 1, . . . , n− 2} is reachable in the subset automaton of N . Every set {i} is
reached from the initial state {s} by ai+1. Assume that 2 ≤ k ≤ n− 1 and that
every subset of size k − 1 is reachable. Let S = {i1, i2, . . . , ik} be a set of size k
with 0 ≤ i1 < i2 < · · · < ik ≤ n− 2. Consider three cases:

(i) i1 = 0 and i2 = 1. Then S is reached from {i3 − 1, . . . , ik − 1, n− 2} by b,
and the latter set is reachable by the induction hypothesis.

(ii) i1 = 0 and i2 ≥ 2. Then S is reached from {0, 1, i3− i2 +1, . . . , ik − i2 +1}
by bi2−1, and the latter set is reachable by (i).

(iii) i1 ≥ 1. Then S is reached from {0, i2− i1, . . . , ik− i1} by ai1 , and the latter
set is reachable by (i) and (ii).

To prove distinguishability, notice that the NFA N accepts the string an−2−i,
where 0 ≤ i ≤ n− 2, only from the state i. Since the empty set is unreachable
in the subset automaton, by Proposition 3, all states of the subset automaton
are pairwise distinguishable. ��

Theorem 7. Let n ≥ 3. There exists a unary non-returning regular language
with sc(L) = n and sc(L∗) = (n− 2)2 + 2.

Proof. Let L be the language accepted by the unary non-returning DFA shown
in Fig. 9. Then L∗ = {λ} ∪ {am | m = x(n− 1) + y(n− 2), x > 0, y ≥ 0}.

Since gcd(n − 1, n − 2) = 1, the largest integer that cannot be expressed as
x(n − 1) + y(n − 2) with x > 0, y ≥ 0 is (n − 2)(n− 2) [24]. It follows that the
minimal DFA for L∗ has (n− 2)2 + 2 states. ��

64 H.-S. Eom, Y.-S. Han, and G. Jirásková

n−11 2 n−20 a a a a a

a

Fig. 9. The non-returning DFA of a unary language L with sc(L∗) = (n− 2)2 + 2

7 Conclusions

The state complexity of subfamilies of regular languages (such as finite languages,
unary languages, prefix-free or suffix-free regular languages) is often smaller than
the state complexity of regular languages [4,9,10,11,19]. We have considered
another subfamily of regular languages, non-returning regular languages. Note
that when a minimal DFA A is non-returning, then we say that the language
L(A) is non-returning.

The non-returning property is a necessary condition for a DFA to accept a
suffix-free regular language, but it is not sufficient [10]. We notice that a suffix-
free DFA always has a sink state whereas a non-returning DFA may not have any
sink state. Based on these observations, we have examined non-returning DFAs
and established the state complexities of some basic operations for non-returning
regular languages. Our results are usually smaller than the state complexities for
general regular languages and larger than the state complexities for suffix-free
regular languages as summarized in Fig. 10.

operation non-returning suffix-free general

K ∪ L mn− (m+ n) + 2 mn− (m+ n) + 2 mn

K ∩ L mn− (m+ n) + 2 mn− 2(m+ n) + 6 mn

K \ L mn− (m+ n) + 2 mn− (m+ 2n− 4) mn

K ⊕ L mn− (m+ n) + 2 mn− (m+ n− 2) mn

LR 2n 2n−2 + 1 2n

K · L (m− 1)2n−2 + 1 (m− 1)2n−2 + 1 m2n − 2n−1

L∗ 2n−1 2n−2 + 1 2n−1 + 2n−2

Fig. 10. Comparison table between the state complexity of basic operations for non-
returning, suffix-free, and general regular languages

For the reversal and catenation case, we use a three-letter alphabet for the
lower bounds that meet the upper bounds. We conjecture that a ternary alphabet
is necessary. Tight bounds for reversal and catenation in the binary case remain
open. The calculations show that our lower bounds can be exceeded.

Acknowledgements. We wish to thank the referees for the careful reading of
the paper and valuable suggestions.

References

1. Berstel, J., Perrin, D.: Theory of code. Academic Press, Inc. (1985)
2. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11, 481–494 (1964)

State Complexity of Basic Operations on Non-Returning Regular Languages 65

3. Brzozowski, J.:Quotient complexity of regular languages. In:DCFS, pp. 17–28 (2009)
4. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-

ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

5. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of
shuffle of regular languages. J. Autom. Lang. Comb. 7, 303–310 (2002)

6. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012)

7. Domaratzki, M.: State complexity of proportional removals. J. Autom. Lang.
Comb. 7, 455–468 (2002)

8. Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. J. Autom.
Lang. Comb. 9, 217–232 (2004)

9. Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. Internat. J. Found. Comput. Sci. 19, 581–595 (2008)

10. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410, 2537–2548 (2009)

11. Han, Y.-S., Salomaa, K., Wood. D.: Operational state complexity of prefix-free reg-
ular languages. In: Automata, Formal Languages, and Related Topics, pp. 99–115
(2009)

12. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Internat. J. Found. Comput. Sci. 14, 1087–1102 (2003)

13. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput.
Sci. 449, 85–92 (2012)

14. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330, 287–298 (2005)

15. Jirásková, G., Okhotin, A.: On the state complexity of star of union and star of
intersection. Fund. Inform. 109, 161–178 (2011)

16. Leiss, E.: Succinct representation of regular languages by boolean automata. The-
oret. Comput. Sci. 13, 323–330 (1981)

17. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Dokl. 11, 1373–1375 (1970)

18. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999)

19. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Internat. J. Found. Comput. Sci. 13, 145–159 (2002)

20. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-
oret. Comput. Sci. 383, 140–152 (2007)

21. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoret. Comput. Sci. 320, 315–329 (2004)

22. Shallit, J.: A second course in formal languages and automata theory. Cambridge
University Press, New York (2008)

23. Wood, D.: Theory of computation. John Wiley & Sons, Inc., New York (1987)
24. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)
25. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234

(2001)
26. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages, vol. I, pp. 41–110 (1997)

State Complexity

of Subtree-Free Regular Tree Languages

Hae-Sung Eom, Yo-Sub Han, and Sang-Ki Ko

Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{haesung,emmous,narame7}@cs.yonsei.ac.kr

Abstract. We introduce subtree-free regular tree languages that often
appear in XML schemas and investigate the state complexity of basic
operations on subtree-free regular tree languages. The state complexity
of an operation for regular tree languages is the number of states that are
sufficient and necessary in the worst-case for the minimal deterministic
ranked tree automaton that accepts the tree language obtained from the
operation. We establish the precise state complexity of (sequential, par-
allel) concatenation, (bottom-up, top-down) star, intersection and union
for subtree-free regular tree languages.

Keywords: deterministic ranked tree automata, state complexity, subtree-
free regular tree language, basic operations.

1 Introduction

State complexity problem is one of the most interesting topics in automata
and formal language theory [2,8,11,12,21,26,27]. These results are mainly on the
descriptional complexity of finite automata and regular languages. For exam-
ple, Maslov [14] obtained the state complexity of catenation and later Yu et
al. [27] investigated the state complexity for basic operations. Later, the state
complexity of combined operations has been initiated by Yu et al. [5,6,24,25]
such as star-of-union, star-of-intersection and so on. Researchers also considered
the state complexity of multiple operations such as several catenations [4,5,23]
or several intersections [5]. Han et al. [9,10] observed the state complexity of
prefix-free and suffix-free regular languages that have unique structural proper-
ties in DFAs, which are crucial to obtain the state complexity. It turned out that
the state complexities of catenation and Kleene-star are both at most linear for
prefix-free regular languages due to the restrictions on the structures of DFAs.

Regular tree languages and tree automata theory provide a formal frame-
work for XML schema languages such as XML DTD, XML Schema, and Re-
lax NG [16]. XML schema languages can process a set of XML documents by
specifying the structural properties formally. Recently, Marten and Niehren [13]
considered the state complexity of tree automata for the purpose of minimiza-
tion of XML schemas and unranked tree automata. Piao and Salomaa [17,18]
also considered the state complexities between different models of unranked tree

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 66–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

State Complexity of Subtree-Free Regular Tree Languages 67

automata. They also investigated the state complexities of concatenation [20]
and star [19] for regular tree languages.

We consider a proper subfamily of regular tree languages, called subtree-free
regular languages. A subtree of a tree t is a tree consisting of a node in t and all
of its descendants in t. We say that a tree t1 is a supertree of a tree t2 if t2 is a
subtree of t1. Subtree-freeness means that a set of trees does not contain a tree
that is a subtree of another tree in the set. This property is useful because many
regular tree languages become subtree-free when they are used as XML schemas
in practice. XML documents should have exactly one unique root element that
is also known as the document element. The document element is, therefore,
the very first element of an XML document and encloses all other elements.
Therefore, all XML documents from a specific XML schema have the same root
element. When viewed as a set of trees, it satisfies the subtree-freeness. We tackle
the state complexities of basic operations for subtree-free regular tree languages.

In Section 2, we define some basic notions. We define the subtree-free regular
tree languages in Section 3 and observe the structural properties of the languages.
We obtain the state complexity for sequential and parallel concatenation in Sec-
tion 4, bottom-up and top-down star in Section 5, and the intersection and union
in Section 6. We conclude the paper in Section 7.

2 Preliminaries

We briefly recall definitions and properties of finite tree automata and regular
tree languages. We refer the reader to the books [3,7] for more details on tree
automata.

For a Cartesian product S = S1×· · ·×Sn, the ith projection, where 1 ≤ i ≤ n,
is the mapping πi : S −→ Si defined by setting πi(s1, . . . , sn) = si. A ranked
alphabet Σ is a finite set of characters and we denote the set of elements of
rank m by Σm ⊆ Σ for m ≥ 0. The set FΣ consists of Σ-labeled trees, where
a node labeled by σ ∈ Σm always has m children. We use FΣ to denote a set
of trees over Σ that is the smallest set S satisfying the following condition: if
m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S, then σ(t1, . . . , tm) ∈ S. Let t(u ← s) be
the tree obtained from a tree t by replacing the subtree at a node u of t with a
tree s. The notation is extended for a set U of nodes of t and S ⊆ FΣ : t(U ← S)
is the set of trees obtained from t by replacing the subtree at each node of U by
some tree in S.

A nondeterministic bottom-up tree automaton (NTA) is specified by a tu-
ple A = (Σ,Q,Qf , g), where Σ is a ranked alphabet, Q is a finite set of states,
Qf ⊆ Q is a set of final states and g associates each σ ∈ Σm to a mapping
σg : Qm −→ 2Q, where m ≥ 0. For each tree t = σ(t1, . . . , tm) ∈ FΣ , we define
inductively the set tg ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)g,
for 1 ≤ i ≤ m, such that q ∈ σg(q1, . . . , qm). Intuitively, tg consists of the states
of Q that A may reach by reading the tree t. Thus, the tree language accepted
by A is defined as follows: L(A) = {t ∈ FΣ | tg ∩Qf �= ∅}.

The intermediate states of a computation, or configurations, of A are trees
where some leaves may be labeled by states of A. Thus the set of configurations

68 H.-S. Eom, Y.-S. Han, and S.-K. Ko

of A consists of Σ′-trees, where Σ′
0 = Σ0 ∪ {Q} and Σ′

m = Σ when m ≥ 1. The
set of configurations is denoted as FΣ [Q]. The automaton A is a deterministic
bottom-up tree automaton (DTA) if, for each σ ∈ Σm, where m ≥ 0, σg is a
partial function Qm −→ Q.

For tree languages, there are two types of concatenations and two types of
Kleene-star: sequential concatenation, parallel concatenation, bottom-up Kleene-
star and top-down Kleene-star. We follow the definitions and notations of the
operations from the prior work [19,20]. We denote the set of leaves of a tree
t labeled σ by leaf(t, σ). For σ ∈ Σ0, T1 ⊆ FΣ and t2 ∈ FΣ , we define the
sequential σ-concatenation of T1 and t2 as follows: T1 ·sσ t2 = {t2(u ← t1) |
u ∈ leaf(t2, σ), t1 ∈ T1}. Therefore, T1 ·sσ t2 is the set of trees obtained from
t2 by replacing a leaf labeled by σ with a tree in T1. We extend the sequential
σ-concatenation operation to the tree languages T1, T2 ⊆ FΣ as follows: T1 ·sσ
T2 =

⋃
t2∈T2

T1 ·sσ t2. The parallel σ-concatenation of T1 and t2 is defined as
T1 ·pσ t2 = t2(leaf(t2, σ) ← T1). Thus, T1 ·pσ t2 is the set of trees obtained from
t2 by replacing all leaves labeled by σ with a tree in T1. Note that the parallel
σ-concatenation also can be extended to the tree languages.

We observe that the sequential σ-concatenation is associative whereas the
parallel version is not associative. Due to the non-associativity of the sequen-
tial concatenation, we have two variants of iterated sequential concatenations:
sequential top-down σ-star and sequential bottom-up σ-star. We only consider
the sequential σ-star operations since the iterated parallel concatenation does
not preserve regularity [19]. For σ ∈ Σ0 and T ⊆ FΣ , we define the sequential
top-down σ-star of T to be T s,t,∗σ =

⋃
k≥0 T

s,t,k
σ by setting T s,t,0σ = {σ} and

T s,t,kσ = T ·sσ T s,t,k−1
σ for k ≥ 1. Similarly, we define the sequential bottom-

up σ-star of T to be T s,b,∗σ =
⋃
k≥0 T

s,b,k
σ by setting T s,b,0σ = {σ}, T s,b,1σ = T

and T s,b,kσ = T s,b,k−1
σ ·sσ T for k ≥ 2. Since we only consider the sequential

σ-star operations, we call the sequential top-down (bottom-up, respectively) σ-
star the top-down (bottom-up, respectively) σ-star and denote by T t,∗σ (T b,∗σ ,
respectively) instead of T s,t,∗σ (T s,b,∗σ , respectively) in the remaining sections.

3 Subtree-Free Regular Tree Language

There are several subfamilies of (regular) languages such as prefix-free, suffix-free
and infix-free (regular) languages. For regular languages, some of these subfam-
ilies have unique structural properties in their minimal DFAs and these proper-
ties often make the state complexity of the considered subfamilies different from
that of general regular languages. For regular tree languages, we can similarly
define proper subfamilies by adding some restrictions on the structure of minimal
DTAs. We consider subtree-freeness in a tree language and define a subtree-free
tree language as follows:

Definition 1. A tree language L is subtree-free if, for any two trees t1 and t2
from L, t1 is not a proper subtree of t2.

State Complexity of Subtree-Free Regular Tree Languages 69

We can extend the subtree-freeness to the family of regular tree languages and
define subtree-free regular tree languages. Then, the minimal DTAs recognizing
the family have the following structural properties. It is interesting to note that
the subtree-freeness of the tree language corresponds to the prefix-freeness of
the string language since tree automata operate in the bottom-up direction.

Lemma 1. A regular tree language L is subtree-free if and only if its minimal
DTA A for L has only one final state and there is no transitions whose left-hand
sides contain the final state.

Recall that a regular language is prefix-free if and only if the unique final state of
its minimal DFA does not have any out-transitions [1]. The properties of subtree-
free regular tree languages in Lemma 1 are similar to that of prefix-free regular
languages. This leads us to the following question: Are the state complexities
for subtree-free regular tree languages similar to those for prefix-free regular
languages considered by Han et al. [10]?

4 State Complexity of Concatenation

There are two types of concatenation operations when we consider the state com-
plexity of regular tree languages. Piao and Salomaa [20] gave formal definitions
of sequence and parallel concatenations and established two state complexities
of regular tree languages for the operations. Note that the state complexity of
regular tree languages considers incomplete minimal DTAs [19,20].

4.1 Sequential Concatenation

We first consider the state complexity of the sequential concatenation operation
for subtree-free regular tree languages. We note that the state complexity of
sequential concatenation obtained here differs from the state complexity of string
concatenation since we need to remember the node where the σ-substitution has
occurred.

Lemma 2. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2 states,
respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, (n2 + 1)(n1 + n2 + 1)− 1 states are
sufficient for the minimal DTA of L(A1) ·sσ L(A2).

For the tight bound, we define subtree-free DTAs A and B such that state
complexity of L(A) ·sσ L(B) reaches the upper bound in Lemma 2. We choose
Σ = Σ0 ∪ Σ1 ∪ Σ2, where Σ0 = {d}, Σ1 = {a, b, c} and Σ2 = {a2, b2}. Let
A = (Σ,QA, qA,F , gA), where QA = {0, 1, . . . , n1 − 1}, qA,F = n1 − 1 and the
transition function gA is defined as follows:

– dgA = 0,
– agA(i) = (a2)gA(i, i) = i+ 1, 0 ≤ i ≤ n1 − 2,
– bgA(i) = (b2)gA(i, i) = i, 0 ≤ i ≤ n1 − 2,
– cgA(i) = i, 0 ≤ i ≤ n1 − 2.

70 H.-S. Eom, Y.-S. Han, and S.-K. Ko

Similarly, we defineB = (Σ,QB, qB,F , gB), whereQB = {0, 1, . . . , n2−1}, qB,F =
n2 − 1 and the transition function gB is defined as follows:

– dgB = 0,
– agB (i) = (a2)gB (i, i) = i, 0 ≤ i ≤ n2 − 2,
– bgB (i) = (b2)gB (i, i) = i+ 1, 0 ≤ i ≤ n2 − 2,
– cgB (i) = i+ 1, 0 ≤ i ≤ n2 − 3 and cgB (n2 − 2) = (c2)gB (n2 − 2, n2 − 2) = 0.

Note that both the final states of A and B do not have any out-transitions, thus,
L(A) and L(B) are subtree-free regular tree languages. Now we show that the
upper bound in Lemma 2 is reachable. Let C = (Σ,QC , QC,F , gC) be a new
DTA constructed from A and B as in the proof of Lemma 2.

Lemma 3. All states of C are reachable and pairwise inequivalent.

From Lemma 2 and Lemma 3, we establish the following result.

Theorem 1. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2
states, respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, (n2 + 1)(n1 + n2 + 1) −
1 states are sufficient and necessary in the worst-case for the minimal DTA
of L(A1) ·sσ L(A2).

4.2 Parallel Concatenation

The parallel concatenation L1 ·pσL2 is called the σ-product of L1 and L2 [7]. Piao
and Salomaa obtained the state complexity of parallel concatenation [20], which
is similar to that of catenation for regular string languages The state complexity
of subtree-free regular tree languages for parallel concatenation turns out to be
similar to the DFA state complexity for prefix-free regular languages [10].

Theorem 2. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2
states, respectively, where n1, n2 ≥ 2. For σ ∈ Σ0, n1+n2−1 states are sufficient
and necessary in the worst-case for the minimal DTA of L(A1) ·pσ L(A2).

Proof. Let A1 and A2 be two subtree-free DTAs Ai = (Σ,Qi, qi,F , gi), for i =
1, 2. We denote the set containing the undefined state (qsink) with Qi by Q

′
i;

Q′
i = Qi ∪ {qsink}. We construct a new DTA B = (Σ,QB, qD,F , gB), where

QB = Q′
2 ×Q′

1, QB,F = {q ∈ QB | π1(q) = q2,F }, and gB is defined as follows:
For τ ∈ Σ0, we define

τgB =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(σg2 , τg1) if τg1 = q1,F ,

(qsink, τg1) if τg1 is defined and τg1 �= q1,F ,

(τg2 , qsink) if τg2 is defined,

undefined, if τg2 and τg1 are both undefined.

For τ ∈ Σm and (pi, qi) ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define
τgB ((p1, q1), . . . , (pm, qm)) to be

State Complexity of Subtree-Free Regular Tree Languages 71

(i) (σg2 , τg1(q1, . . . , qm)) if τg1(q1, . . . , qm) = q1,F .
(ii) (τg2(p1, . . . , pm), qsink) if τg2(p1, . . . , pm) is defined.
(iii) undefined, otherwise.

Now we consider the computation of the new DTA B. The first component of a
state in QB simulates A2 assuming that every leaf node labeled by σ is substi-
tuted with a tree in L(A1). The second component of a state in QB simulates
A1 and changes the first component into σg2 when it becomes the final state of
A1. Since each state of B is a pair of states from A2 and A1, the total number of
states is (n1+1)(n2+1). However, the states of D consist of two states from Q1

and Q2, respectively, are unreachable by the construction except (σg2 , q1,F) that
can be merged with (σg2 , qsink). We have one more unreachable state (qsink , q1,F)
since the first component should be σg2 when the second component is the final
state of A1. Furthermore, we remove the undefined state (qsink,qsink). Therefore,
the upper bound is n1 + n2 − 1. The lower bound example for parallel concate-
nation can be given by unary tree languages. Let word(t) denote the sequence of
symbols labeling the nodes of a unary tree t in a bottom-up way. For instance,
word(t) for a unary tree t = b(a1(. . . an(x) . . .)) is anan−1 · · ·a1b. Note that the
label of the leaf (which is x in t) is not included. Let L1 and L2 be subtree-free
regular tree languages accepting unary trees t1 and t2 such that word(t1) = an1−1

and word(t2) = an2−1, respectively. It is easy to verify that n1 (respectively, n2)
states are necessary for recognizing L1 (respectively, L2). By parallel concate-
nation, L1 ·pσ L2 recognizes a tree t′ such that word(t′) = an1+n2−2. It is easy to
observe that n1 + n2 − 1 states are necessary for L1 ·pσ L2. Thus, we know that
n1 + n2 − 1 is a tight bound for the parallel concatenation operation. ��

5 State Complexity of Kleene-Star

Piao and Salomaa [19] gave definitions of two types of Kleene-star operations:
bottom-up star and top-down star operations and obtained the tight state com-
plexities for the operations. Note that they only considered the sequential vari-
ants of iterated concatenation as Kleene-star operation on trees since the parallel
version does not preserve regularity [19]. We also observe that the same holds
for subtree-free regular tree languages.

5.1 Bottom-Up Star

First we give an upper bound for the state complexity of subtree-free regular
tree languages for bottom-up Kleene-star operation.

Lemma 4. Let A = (Σ,Q, qF , g) be a subtree-free minimal DTA with n states,
where n ≥ 2. For σ ∈ Σ0, 2n + 1 states are sufficient for the minimal DTA
of L(A)b,∗σ .

Proof. Let Q′ = Q ∪ {qsink}. We construct a new DTA B = (Σ,QB, QB,F , gB)
recognizingL(A)b,∗σ , whereQB = Q′×Q′∪{qnew} andQB,F = {(qF , qsink), qnew}.

72 H.-S. Eom, Y.-S. Han, and S.-K. Ko

We reach qnew by reading a single node tree labeled by σ. Therefore, we define
the transitions of qnew to be equal to those of (qsink , σg) except that qnew is a final
state and (qsink, σg) is not necessarily a final state. We assume that σg is well de-
fined without loss of generality because otherwise, L(A)b,∗τ = L(A)b,0τ ∪L(A)b,1τ =
{σ} ∪ L(A). For τ ∈ Σ0 \ {σ}, we define

τgB =

⎧⎪⎨⎪⎩
(σg, τg) if τg = qF ,

(qsink, τg), if τg is defined and τg �= qF ,

undefined, if τg is undefined.

For τ ∈ Σm and (pi, qi) ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define
τgB ((p1, q1), . . . , (pm, qm)) to be

(i) (σg, τg(q1, . . . , qm)) if τg(q1, . . . , qm) = qF .
(ii) (qsink, τg(q1, . . . , qm)) if τg(q1, . . . , qm) �= qF is defined.
(iii) (x, qsink) if τg(q1, . . . , qm) is undefined. Here, x is

– τg(q1, . . . , qi−1, pi, qi+1, . . . , qm) if τg(q1, . . . , qi−1, pi, qi+1, . . . , qm) is de-
fined and pj is undefined for 1 ≤ j ≤ m and i �= j.

– qsink, otherwise.
(iv) undefined, otherwise.

The second component of a state in QB simply simulates A while the first com-
ponent of the state in QB simulates A under the assumption that at least a leaf
labeled by σ has been replaced by a tree in L(A)b,kσ , where k ≥ 0. Note that the
total number of states in QB is (n+1)2+1. When the second component reaches
the final state qF , we should have σg in the first state. After we reach (σg, qF),
the second component should be qsink, since there is no transition defined for
the final state. Thus, a state pair in QB cannot be in a form of (pi, qi) ∈ Q×Q
except (σg , qF). Therefore, we have n2 − 1 unreachable states. We can merge
two final states into one since (qF , qsink) has no out transitions. After we merge
two states, the resulting state has the transitions of (qsink, σg) and, thus, the
resulting automaton is still deterministic. Furthermore, we remove one more
state (qsink, qsink), which is undefined. Therefore, the sufficient number of states
for L(A)b,∗σ is 2n+ 1. ��

We show a lower bound example whose state complexity corresponds to the
upper bound in Lemma 4. Let Σ = Σ0 ∪Σ1 ∪Σ2, where Σ0 = {e}, Σ1 = {a, b}
and Σ2 = {a2, b2}. We define a subtree-free DTA D = (Σ,QD, qD,F , gD), where
QD = {0, 1, . . . , n − 1}, qD,F = n − 1 and the transition function gD is defined
as follows:

– egD = 0,
– agD (i) = (a2)gD (i, i) = i+1, 0 ≤ i ≤ n−3, agD(n−2) = (a2)gD (n−2, n−2) =

0,
– bgD (n− 2) = (b2)gD (n− 2, n− 2) = n− 1.

All transitions of gD not defined above are undefined. Using D and the upper
bound construction of the proof of Lemma 4, we construct a new DTA E =
(Σ,QE, QE,F , gE) accepting L(D)b,∗e , namely L(D)b,∗e = L(E).

State Complexity of Subtree-Free Regular Tree Languages 73

Lemma 5. All states of E are reachable and pairwise inequivalent.

Theorem 3. Let A be a subtree-free minimal DTA with n states, where n ≥ 2.
For σ ∈ Σ0, 2n+ 1 states are sufficient and necessary in the worst-case for the
minimal DTA of L(A)b,∗σ .

5.2 Top-Down Star

Now we investigate the state complexity for top-down star of subtree-free regular
tree languages. Note that the state complexity of regular tree languages for top-
down star coincides with the state complexity of regular string languages for
star [19]. We show that the state complexity of subtree-free regular tree languages
for top-down star also coincides with that of prefix-free regular string languages
for star.

Theorem 4. Let A = (Σ,Q, qF , g) be a subtree-free minimal DTA with n states,
where n ≥ 2. For σ ∈ Σ0, n states are sufficient and necessary in the worst-case
for the minimal DTA of L(A)t,∗σ .

Proof. The upper bound construction for the top-down star operation is straight-
forward since it is similar to the construction of the Kleene-star operation for
prefix-free languages [10]. We define B = (Σ,QB, QB,F , gB), where QB = Q ∪
{qnew} and QB,F = {qnew, qF }. As in the proof of Lemma 4, qnew is defined as
a state that is reached by reading a single node tree labeled by σ. Therefore, we
define the transitions of qnew to be equal to those of σg except that qnew is a
final state and σg is not necessarily a final state.

For τ ∈ Σ0 \ {σ}, we define τgB to be equal to σgB if τg = qF . Otherwise, we
set τgB = τg. For τ ∈ Σm and qi ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define
τgB (q1, . . . , qm) to be

(i) σg if τg(q1, . . . , qm) = qF .

(ii) τg(q1, . . . , qm) if τg(q1, . . . , qm) �= qF is defined.

(iii) undefined, otherwise.

There are now n+1 states in QB and we merge two states qF and qnew into one
state while maintaining determinism since qF does not have any out-transitions.
Thus, the sufficient number of states for L(A)t,∗σ is n.

Now we show that n states are necessary for recognizing L(A)t,∗σ by a simple
lower bound. Let L be the following unary tree language:

L(A) = {t | word(t) = an−1}.

It is easy to verify that a DTA A needs at least n states for recognizing L. Then,
we construct a DTA B as described in the upper bound construction. Note that
B accepts L(A)t,∗σ and has n states. Therefore, n is a tight bound for the minimal
DTA of L(A)t,∗σ . ��

74 H.-S. Eom, Y.-S. Han, and S.-K. Ko

6 Intersection and Union

For regular languages, the state complexities of intersection and union are quite
trivial. The upper bound construction is based on the Cartesian product of states
and yields n1n2 states. Yu et al. [27] showed that n1n2 is tight. For regular
tree languages, the tight bounds of intersection and union are similar to the
string case. Since we consider incomplete DTAs, it is easy to verify that the
state complexities for intersection and union are n1n2 + n1 + n2. The state
complexities of subtree-free regular tree languages for intersection and union
operations are the same as those of prefix-free regular string languages [10].
The exact complexities are slightly different since we consider incomplete DTAs.
First, we establish the tight bound of intersection for subtree-free regular tree
languages as follows.

Theorem 5. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2
states, respectively, where n1, n2 ≥ 2. Then, n1n2−n1−n2+2 states are sufficient
and necessary in the worst-case for the minimal DTA of L(A1) ∩ L(A2).

Proof. Let A1 and A2 be two subtree-free DTAs, where Ai = (Σ,Qi, qi,F , gi) for
i = 1, 2. We construct a new DTA B = (Σ,QB, QB,F , gB), where QB = Q1 ×
Q2, QB,F = {q ∈ QB | π1(q) = q1,F and π2(q) = q2,F }, and gB is defined as
follows. For τ ∈ Σ0, we define τgB = τg1 × τg2 . For τ ∈ Σm and (pi, qi) ∈ QB,
where m ≥ 1 and 1 ≤ i ≤ m, we define τgB ((p1, q1), . . . , (pm, qm)) to be

(i) (τg1(p1, . . . , pm), τg2(q1, . . . , qm)) if τg1(p1, . . . , pm) and τg2(q1, . . . , qm) are
both defined.

(ii) undefined, otherwise.

Now B has n1n2 states. We assume that a state in QB contains q1,F or q2,F ,
which is the final state of A1 or A2, respectively. Since A1 and A2 have no
transitions defined for their final states, there are no transitions defined for the
corresponding states in B, either. Note that the number of states containing q1,F
or q2,F is n1+n2− 1. Among these states, (q1,F , q2,F) is the final state while the
others are non-final. We remove n1 + n2 − 2 non-final states, which are the sink
states. Then, the sufficient number of states for intersection is n1n2−n1−n2+2.
We give lower bound examples whose state complexity meets the upper bound.
Let L1 and L2 be subtree-free unary tree languages as follows:

L1 = {t | word(t) = (an1−1)∗} and L2 = {t | word(t) = (an2−1)∗},

Then, two DTAs A1 and A2 need at least n1 and n2 states for recognizing L1 and
L2, respectively. Assume n1−1 and n2−1 are relatively prime. Then, L1∩L2 =
{t | word(t) = (a(n1−1)(n2−1))∗} and thus, requires at least n1n2 − n1 − n2 + 2
states. ��

Next, we examine the state complexity of union.

Theorem 6. Let A1 and A2 be subtree-free minimal DTAs with n1 and n2
states, respectively, where n1, n2 ≥ 2. Then, n1n2+n1+n2−2 states are sufficient
and necessary in the worst-case for the minimal DTA of L(A1) ∪ L(A2).

State Complexity of Subtree-Free Regular Tree Languages 75

Proof. Let A1 and A2 be two subtree-free DTAs Ai = (Σ,Qi, qi,F , gi) for i = 1, 2.
Let Q′

i = Qi ∪ {qsink}. We construct a new DTA B = (Σ,QB, QB,F , gB), where
QB = Q′

1 × Q′
2, QB,F = {q ∈ QB | π1(q) = q1,F or π2(q) = q2,F }, and gB is

defined as follows. For τ ∈ Σ0, we define τgB = τg1 × τg2 . For τ ∈ Σm and
(pi, qi) ∈ QB, where m ≥ 1 and 1 ≤ i ≤ m, we define τgB ((p1, q1), . . . , (pm, qm))
to be

(i) (τg1(p1, . . . , pm), τg2(q1, . . . , qm)) if either τg1(p1, . . . , pm) or τg2(q1, . . . , qm)
is defined.

(ii) undefined, otherwise.

Note that we have (n1 + 1)(n2 + 1) states. First, we remove the sink state
(qsink, qsink) and merge three final states (qsink, q2,F), (q1,F , qsink) and (q1,F , q2,F)
into one final state since they are all equivalent. Thus, the cardinality of B is
n1n2 + n1 + n2 − 2. Now we consider a lower bound example for the claimed
upper bound. We choose Σ = Σ0 ∪Σ1, where Σ0 = {e} and Σ1 = {a, b}. Let L1

and L2 be subtree-free unary tree languages as follows:

L1 = {t1 | word(t1) = w1a and |w1|a = n1 − 2},
L2 = {t2 | word(t2) = w2b and |w2|b = n2 − 2}.

Note that there are the minimal DTAs of size n1 and n2 for L1 and L2, respec-
tively. Let M be a new DTA recognizing L1 ∪ L2. Then, M should count both
a’s and b’s simultaneously. Since the number of a’s can be from 0 to n1 − 2 and
the number of b’s can be from 0 to n2 − 2, M requires (n1 − 1)(n2 − 1) states.
Assume that M reads (n1 − 1)’th a, then M should be in one of n2 − 1 final
states depending on the number of b’s that we have read. Similarly, M reaches
n2 − 1 non-final states by reading more a’s from the final states. Analogously,
M reaches n1 − 1 final states and n1 − 1 non-final states by reading (n2 − 1)’th
and n2’th b. Now the number of necessary states is n1n2 + n1 + n2 − 3. We
have one more final state that is reached by reading a unary tree such that
word(t) = an1−1bn2−1. Therefore, it follows that n1n2 + n1 + n2 − 2 states are
necessary for union. ��

Table 1. Comparison table among the state complexity of basic operations for subtree-
free, general regular tree languages and prefix-free regular string languages

operations subtree-free general prefix-free (string)

L1 ·sσ L2 (n+ 1)(m+ n+ 1) − 1 (n+ 1)(m · 2n + 2n−1)− 1
m+ n− 2

L1 ·pσ L2 m+ n− 1 m · 2n + 2n−1 − 1

Lb,∗
σ 2n+ 1 (n+ 1)2n−1 + 2n−2

n
Lt,∗

σ n 2n−1 + 2n−2

L1 ∩ L2 mn−m− n+ 2 mn+m+ n mn− 2(m+ n) + 6

L1 ∪ L2 mn+m+ n− 2 mn+m+ n mn− 2

76 H.-S. Eom, Y.-S. Han, and S.-K. Ko

7 Conclusions

Regular tree languages often appear to be subtree-free in practice. For instance,
all XML documents from a specific XML schema have a unique root element and,
thus, the set of such documents is a subtree-free tree language. We have defined
the family of subtree-free regular tree languages, which is a proper subfamily
of regular tree languages. Then, we have investigated the state complexity of
subtree-free regular tree languages and obtained the tight bounds.

We have summarized the tight bounds and compared with that of general
regular tree languages in Table 1. We have shown that the tight bounds of basic
operations for subtree-free regular tree languages are linear (parallel concate-
nation, bottom-up star and top-down star) or at most quadratic (sequential
concatenation, intersection and union) with respect to the sizes of input DTAs.
We also have compared with the state complexity prefix-free regular string lan-
guages. Interestingly, the state complexity of subtree-free regular tree languages
coincides with the state complexity of the incomplete DFAs for prefix-free regular
string languages.

Acknowledgements. We wish to thank the referees for the careful reading of
the paper and many valuable suggestions.

This research was supported by the Basic Science Research Program through
NRF funded by MEST (2012R1A1A2044562).

References

1. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Inc. (1985)

2. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

3. Comon, H., Dauchet, M., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree Automata Techniques and Applications (2007), Electronic book available at
www.tata.gforge.inria.fr

4. Domaratzki, M., Okhotin, A.: State complexity of power. Theoretical Computer
Science 410(24-25), 2377–2392 (2009)

5. Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined
operations. Theoretical Computer Science 410(35), 3272–3280 (2009)

6. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:
Star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89
(2008)

7. Gécseg, F., Steinby, M.: Handbook of Formal Languages. Tree languages. In: vol. 3,
pp. 1–68 (1997)

8. Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. International Journal of Foundations of Computer Science 19(3), 581–595
(2008)

9. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoretical Computer Science 410(27-29), 2537–2548 (2009)

www.tata.gforge.inria.fr

State Complexity of Subtree-Free Regular Tree Languages 77

10. Han, Y.-S., Salomaa, K., Wood, D.: State complexity of prefix-free regular lan-
guages. In: Proceedings of the 8th International Conference on Descriptional Com-
plexity of Formal Systems, pp. 165–176 (2006)

11. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages
and descriptional complexity. Proceedings of the 7th International Conference on
Descriptional Complexity of Formal Systems 2005, 170–181 (2005)

12. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-
plementation. International Journal of Foundations of Computer Science 16(3),
511–529 (2005)

13. Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata
for unranked trees. Journal of Computer System Sciences 73(4), 550–583 (2007)

14. Maslov, A.: Estimates of the number of states of finite automata. Soviet Mathe-
matics Doklady 11, 1373–1375 (1970)

15. Nerode, A.: Linear automaton transformations. Proceedings of the American Math-
ematical Society 9(4), 541–544 (1958)

16. Neven, F.: Automata theory for XML researchers. ACM SIGMOD Record 31(3),
39–46 (2002)

17. Piao, X., Salomaa, K.: State trade-offs in unranked tree automata. In: Proceed-
ings of the 13th International Conference on Descriptional Complexity of Formal
Systems, pp. 261–274 (2011)

18. Piao, X., Salomaa, K.: Transformations between different models of unranked
bottom-up tree automata. Fundamenta Informaticae 109(4), 405–424 (2011)

19. Piao, X., Salomaa, K.: State complexity of kleene-star operations on trees. In:
Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond.
LNCS, vol. 7160, pp. 388–402. Springer, Heidelberg (2012)

20. Piao, X., Salomaa, K.: State complexity of the concatenation of regular tree lan-
guages. Theoretical Computer Science 429, 273–281 (2012)

21. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. International Journal of Foundations of Computer Science 13(1),
145–159 (2002)

22. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3(2), 114–125 (1959)

23. Rampersad, N.: The state complexity of L2 and Lk. Information Processing Let-
ters 98(6), 231–234 (2006)

24. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-
oretical Computer Science 383(2-3), 140–152 (2007)

25. Salomaa, K., Yu, S.: On the state complexity of combined operations and their
estimation. International Journal of Foundations of Computer Science 18, 683–698
(2007)

26. Yu, S.: State complexity of regular languages. Journal of Automata, Languages
and Combinatorics 6(2), 221–234 (2001)

27. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

State Complexity of k-Union and k-Intersection

for Prefix-Free Regular Languages

Hae-Sung Eom 1, Yo-Sub Han 1, and Kai Salomaa 2

1 Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{haesung,emmous}@cs.yonsei.ac.kr
2 School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

Abstract. We investigate the state complexity of multiple unions and
of multiple intersections for prefix-free regular languages. Prefix-free de-
terministic finite automata have their own unique structural properties
that are crucial for obtaining state complexity upper bounds that are
improved from those for general regular languages. We present a tight
lower bound construction for k-union using an alphabet of size k+1 and
for k-intersection using a binary alphabet. We prove that the state com-
plexity upper bound for k-union cannot be reached by languages over an
alphabet with less than k symbols. We also give a lower bound construc-
tion for k-union using a binary alphabet that is within a constant factor
of the upper bound.

Keywords: state complexity, prefix-free regular languages, k-union,
k-intersection.

1 Introduction

State complexity is one of the most intensively studied topics in automata and
formal language theory in recent years [1, 2, 4, 6, 11, 14, 15, 20, 21, 24, 29, 30].
The state complexity problem is both interesting theoretically and relevant for
practical applications. For example, in a regular-expression pattern matching,
it is very useful to be able to estimate the size of a finite-state automaton for
describing patterns, which helps to manage memory resources efficiently. On
the other hand, state complexity is a basic foundational property of regular
languages. We find out more about structural properties of regular languages by
establishing tight state complexity bounds for them.

The state complexity of a k-ary regularity-preserving language operation f
is, roughly speaking, a function that associates with positive integers n1, . . . ,
nk the worst-case size of a minimal DFA for a language f(L1, . . . , Lk) where Li
has a DFA of size ni, i = 1, . . . , k. Maslov [19] obtained the state complexity
of concatenation and other basic operations; however, his short paper did not
include many proofs. Later, unaware of the earlier work, Yu et al. [30] reintro-
duced the study of operational state complexity in a more systematic way. The

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 78–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

State Complexity of k-Union and k-Intersection 79

state complexity of an operation is calculated based on the structural properties
of input regular languages and a given operation.

While researchers mainly looked at the state complexity of single operations
(union, intersection, catenation and so on), Yu and his co-authors started to
investigate the state complexity of combined operations (star-of-union, star-of-
intersection and so on) [7, 10, 23, 25]. They showed that the state complexity
of a combined operation is usually not equal to the function composition of the
state complexities of the participating individual operations. They also observed
that, in a few cases, the state complexity of a combined operation is very close
to the composition of the individual state complexities. In addition, Yu and
his co-authors considered the state complexity of combined Boolean operations
including multiple unions and multiple intersections [7–9]. They conjectured that
the upper bound cannot be reached, in general, over an alphabet of a fixed size.
Researchers also considered the state complexity of multiple operations such as
several concatenations or several intersections [5, 7, 22]. Jirásková and her co-
authors studied the state complexity of some operations for binary languages [3,
17, 18]. Binary languages allow us to prove the tightness of the upper bound also
in the case of reversal of deterministic union-free languages, that is, languages
represented by one-cycle-free-path deterministic automata, in which from each
state there exists exactly one cycle-free accepting path [16].

Here we consider the state complexity of multiple unions (L1 ∪L2 ∪ · · · ∪Lk)
and of multiple intersections (L1∩L2∩· · ·∩Lk) for prefix-free regular languages.
Note that prefix-free regular languages preserve unique structural properties in
minimal DFAs, and these properties are crucial to obtain the state complexity
bounds that are often significantly lower than for general regular languages [12,
13]. We first compute the upper bound for k-union and prove that the bound
cannot be reached using a fixed alphabet and that, more precisely, the bound
cannot be reached by languages defined over any alphabet of size less than k.
We also present a tight lower bound construction using an alphabet of size k+1.
For k-union we also give a lower bound construction over a binary alphabet
that is within a fraction of 1

2 of the general upper bound. For k-intersection, we
compute the upper bound and present a tight lower bound construction using a
binary alphabet.

In Section 2, we define some basic notions. Then we present the state complex-
ity of k-union and k-intersection for prefix-free regular languages, respectively, in
Sections 3 and 4. We summarize the results and conclude the paper in Section 5.

2 Preliminaries

For k ∈ IN, we denote [1, k] = {1, 2, . . . , k}. We say that a set of positive integers
{m1, . . . ,mk} is pairwise relatively prime if, for any 1 ≤ i < j ≤ k, the greatest
common divisor of mi and mj is 1.

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all
strings over Σ. The size |Σ| of Σ is the number of characters in Σ. A language
over Σ is any subset of Σ∗. The symbol ∅ denotes the empty language and

80 H.-S. Eom, Y.-S. Han, and K. Salomaa

the symbol λ denotes the null string. Let |w|b be the number of occurrences of
symbol b ∈ Σ in the string w. For strings x, y and z, we say that x is a prefix of
z and y is a suffix of z if z = xy. We define a language L to be prefix-free if for
any two distinct strings x and y in L, x is not a prefix of y.

A DFA A is specified by a tuple (Q,Σ, δ, s, F), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → Q is a transition function, s ∈ Q is the
start state and F ⊆ Q is a set of final states. Given a DFA A, we assume that
A is complete; namely, each state has |Σ| out-transitions and, therefore, A may
have a sink state (a non-final state where all outgoing transitions are self-loops).
We assume that A has a unique sink state since all sink states are equivalent
and can be merged into a single state. Let |Q| be the number of states in Q. By
the size of A we mean |Q|. For a transition δ(p, a) = q in A, we say that p has
an out-transition and q has an in-transition. Furthermore, p is a source state of
q and q is a target state of p. We say that A is non-returning if the start state
of A does not have any in-transitions and A is non-exiting if all out-transitions
of any final state in A go to the sink state.

A string x over Σ is accepted by A if there is a labeled path from s to a final
state such that this path spells out x. We call this path an accepting path. The
language L(A) of A is the set of all strings spelled out by accepting paths in A.
For a minimal DFA A, L(A) is prefix-free if and only if A has exactly one accept
state and all transitions from the accept state go to the sink state, that is, A is
non-exiting. We define a state q of A to be reachable (respectively, co-reachable)
if there is a path from the start state to q (respectively, a path from q to a final
state). In the following, unless otherwise mentioned, we assume that all states
are reachable and all states except the sink state are co-reachable and a DFA
has at most one sink state. The state complexity SC(L) of a regular language L
is defined to be the size of the minimal DFA recognizing L.

For complete background in automata theory, the reader may refer to the
textbooks [26–28].

3 Union of k Prefix-Free Languages

We first consider the state complexity of L1 ∪L2 ∪ · · · ∪Lk (k-union operation)
for prefix-free regular languages Li ⊆ Σ∗, where 1 ≤ i ≤ k for k ≥ 3. Note that
the case k = 2 has been dealt with in [13]. Also, in the construction below we
restrict consideration to prefix-free DFAs having at least three states because
the only prefix-free language having a DFA of size two is {λ}.

3.1 Construction of a DFA for L1 ∪ · · · ∪ Lk

For 1 ≤ i ≤ k, consider minimal prefix-free DFAs Ai = (Qi, Σ, δi, q0,i, {fi}) of
sizemi ≥ 3. Note that a minimal prefix-free DFA has a sink state and a unique fi-
nal state and hence we can denote Qi = Pi∪{fi, di}, Pi = {q0,i, q1,i, . . . , qmi−3,i}
where di is the sink state of Ai and fi is the unique final state of Ai. The states
of Pi are non-final and each state of Pi can reach a final state, 1 ≤ i ≤ k.

State Complexity of k-Union and k-Intersection 81

The union L(A1) ∪ · · · ∪ L(Ak) is recognized by a DFA

B = (R,Σ, γ, r0, F), (1)

where R = (P1 × · · · × Pk) ∪ R1 ∪ {dB, fB} and R1 =
⋃

∅	=S�[1,k](
∏
i∈S Pi) ×

{acc, rej}. The notation
∏
i∈S Pi above denotes the Cartesian product of sets Pi,

i ∈ S, taken in order of increasing i. That is, if S = {j1, . . . , jr}, 1 ≤ j1 < j2 <
· · · < jr ≤ k, the product is Pj1×Pj2×· · ·×Pjr . (The order of the components of∏
i∈S Pi is not important. However, for the construction we need that the order

is fixed.)
The initial state r0 of B is the tuple (q0,1, . . . q0,k) consisting of the initial

states of each of the Ai’s. The set of final states F consists of fB and all tuples
in R1 where the last component is acc. Before defining the transitions we explain
the intuitive idea of the construction of the DFA B which, hopefully, makes also
the choice of the set of states more transparent. The DFA B simulates all the
DFAs Ai, 1 ≤ i ≤ k, in parallel. The states of P1×· · ·×Pk simulate computations
where none of the Ai’s has reached a final state or a sink state.

When the simulated computation of Ai reaches the final state fi, in the next
step Ai necessarily goes to the sink state. The states of R1 simulate computations
where at least one Ai but not all the Ai’s have reached the final state or the sink
state. Suppose that ∅ �= S � [1, k] is the set of indices of DFAs Ai that, in the
simulated computation, have not yet reached the final nor the sink state. Now
the state of B (belonging to R1) keeps track of only the corresponding states of
Ai, i ∈ S and does not need to store the information whether the state of Aj ,
for each j �∈ S, is dj or fj. Instead, in the last component, the state of R1 stores
only a binary choice. If the last component is acc, this means that at least one
Aj , for j �∈ S, is in the final state fj and the last component being rej encodes
the situation where all the DFAs Aj , j �∈ S, are in the sink state.

Finally, the state fB ∈ F encodes the situation where, in the simulated com-
putation, all the Ai’s are in the accept state and dB the situation where all the
Ai’s are in the sink state.

It remains to define the transition relation γ of B. First, for every b ∈ Σ, we
define γ(fB, b) = γ(dB, b) = dB. Note that dB is the sink state of B and fB is a
special final state from which all transitions lead to the sink state.

Second, we define the general transitions. Let S = {j1, . . . , js} ⊂ [1, k], 1 ≤
j1 < · · · < js ≤ k. For z = (zj1 , . . . , zjs), zjx ∈ Pjx , 1 ≤ x ≤ s, and b ∈ Σ, we
define Sz,b ⊆ S to consist of those indices of ji ∈ S such that δji(zji , b) ∈ Pji .
That is, if S gives the indices of the DFAs Ai that in the simulated computation
have not reached the final state nor the sink state (i.e., Ai is in a state of Pi),
then Sz,b gives the indices of the DFAs that after processing a further input
symbol b ∈ Σ have still not reached the final state nor the sink state.

Let y ∈ {acc, rej} be arbitrary. Let S and z be as above and denote Sz,b =
{h1, . . . , ht}, h1 < · · · < ht, 0 ≤ t ≤ s. Now when ∅ �= Sz,b �= [1, k] we define

γ((zj1 , . . . , zjs , y), b) = (δh1(zh1 , b), . . . , δht(zht , b), y
′) (2)

where y′ is acc if there exists i ∈ S − Sz,b such that δhi(zhi , b) = fi and y
′ is rej

otherwise. Note that the transition step simply simulates the computation step

82 H.-S. Eom, Y.-S. Han, and K. Salomaa

of each of the individual Azhi
and eliminates from the tuple the states of the

DFAs that go to the accept state or the sink state. The last component y′ of the
new state simply encodes the information whether or not some of the eliminated
computations entered a final state. Note that the computation step (2) does not
depend on the last component y of the original state.

There remain only two special cases to define separately that correspond to
situations where either Sz,b = ∅ or the original set of indices S consists of the
entire set S.

If Sz,b = ∅, we define

γ((zj1 , . . . , zjs , y), b) =

{
fB, if (∃1 ≤ i ≤ s) δji(zji , b) = fji ;

dB, otherwise.
(3)

Finally, if z = (z1, . . . , zk), zi ∈ Pi, 1 ≤ i ≤ k, we define

γ((z1, . . . , zk), b) =

{
(δ1(z1, b), . . . , δk(zk, b)), if δj(zj , b) ∈ Pj ;
(δh1(zh1 , b), . . . , δht(zht , b), y

′), otherwise.
(4)

In the latter case of (4), Sz,b = {h1, . . . , ht} and y′ = acc if there exists i ∈
[1, k]− {h1, . . . , ht} such that δi(zi, b) = fi and y

′ = rej otherwise.
The rules (4) are used in the initial part of the computation where none of

the components Ai has reached the accept nor the sink state. During this part
of the computation, the state of B is a tuple of P1×· · ·×Pk and we do not need
a component of {acc, rej}. Finally, the transitions (3) pertain to the situation
where all components reach the accept or the sink state, and in this case the
state of B is fB if at least one component is in the accept state and the sink
state dB otherwise.

From the above description it is clear that B accepts an input string w if
and only if at least one of the components Ai, 1 ≤ i ≤ k, accepts w, that is
L(B) = L(A1) ∪ · · · ∪ L(Ak).

Lemma 1. Let Ai be a prefix-free DFA of size mi ≥ 3, i = 1, . . . , k. The union
L(A1) ∪ · · · ∪ L(Ak) can be recognized by a DFA of size

2 ·

⎛⎝ ∑
∅	=S�[1,k]

∏
i∈S

(mi − 2)

⎞⎠+

(
k∏
i=1

(mi − 2)

)
+ 2.

3.2 The Upper Bound Cannot be Reached with a Fixed Alphabet

We begin by observing that the upper bound of Lemma 1 cannot be reached for
arbitrary k when the alphabet Σ is fixed.

Lemma 2. If k > |Σ|, the upper bound of Lemma 1 cannot be reached.

Proof. Let Ai = (Qi, Σ, δi, q0,i, {fi}), i = 1, . . . , k, be minimal prefix-free DFAs
and let B be constructed for the union L(A1) ∪ · · · ∪ L(Ak) as in (1). In the

State Complexity of k-Union and k-Intersection 83

following we use, without further mention, the notation for the DFAs Ai and B
(as given in Section 3.1).

For 1 ≤ i ≤ k, we define Ωi ⊆ Σ as follows: Ωi = {c ∈ Σ | (∃p ∈ Pi) δi(p, c) =
fi}. The set Ωi consists of alphabet symbols that take some state of Pi (where
Pi consists of states of Ai that are neither final nor the sink state) to the unique
final state. Since L(Ai) �= ∅, we know that Ωi �= ∅, i = 1, . . . , k. The following
observation will be the basis of our argument.

Claim 1. Let b ∈ Σ. If b ∈ Ωi, 1 ≤ i ≤ k, then the function δi(·, b) is not
surjective on the set Pi. To verify the claim, we note that in the DFA Ai the
states of Pi can be reached only from states of Pi. Since b ∈ Ωi, we know that
the b-transitions take some state of Pi outside Pi. It follows that some state of
Pi must be outside the range of δi(·, b). Suppose now that for some 1 ≤ j ≤ k,

(∃ci ∈ Ωi, i = 1, . . . , j − 1, j + 1, . . . , k) Ωj ⊆ {c1, . . . , cj−1, cj+1, . . . , ck}. (5)

The condition above means that there exists an index j such that by choosing
one element from each of the sets Ωi, i �= j, we get all elements of Ωj .

We show that, assuming (5) holds, some states of the form

(p1, . . . , pj−1, pj+1, . . . , pk, acc), pi ∈ Pi, i = 1, . . . , j − 1, j + 1, . . . , k, (6)

cannot be reachable in the DFA B. Since the tuple (6) is missing only the jth
component corresponding to a state of Aj , according to rules (4), a state of the
form (6) can be reached only from a state of P1 × · · · × Pk by a transition on a
symbol b ∈ Ωj that takes a state of Pj to the final state fj of Aj . Note that a
state of the form (6) cannot be reached from a state of the same form because
in transitions (2) the last component becomes “rej” unless one of the states
p1, . . . , pj−1, pj+1, . . . , pk reaches the final state of the corresponding DFA, and
in this case that component would also be omitted.

Now according to (5) we can choose ci ∈ Ωi, i = 1, . . . , j − 1, j + 1, . . . , k,
such that Ωj ⊆ {c1, . . . , cj−1, cj+1, . . . , ck}. By Claim 1 we know that δi(·, ci)
is not surjective on Pi and hence there exist p′i ∈ Pi that cannot be reached in
Ai by any transition on input ci, i = 1, . . . , j − 1, j + 1, . . . , k. In the previous
paragraph it was observed that a state of the form (5) can be reached only by
an element of Ωj . Since each element of Ωj is one of the ci’s, it follows that the
state (p′1, . . . , p′j−1, p

′
j+1, . . . , p

′
k, acc) will be unreachable in the DFA B.

Finally, it is easy to see using induction on k that when |Σ| < k we cannot
choose nonempty subsets Ωi of Σ, i = 1, . . . , k, such that (5) fails to hold. That
is, no matter how the individual DFAs Ai are defined, for some 1 ≤ j ≤ k, the
condition (5) holds and, consequently, B has unreachable states. ��

3.3 Lower Bound with a Binary Alphabet

Next we give for the k-union of prefix-free languages a lower bound construction
over a binary alphabet that reaches the upper bound of Lemma 1, within a con-
stant factor. The motivation for first considering the binary alphabet case is that

84 H.-S. Eom, Y.-S. Han, and K. Salomaa

using a simple modification of the binary alphabet construction we obtain, in
Section 3.4, an optimal lower bound using an alphabet of size k+1. Furthermore,
the same languages over a binary alphabet will be used in the next section to
give a tight lower bound for the state complexity of k-intersection of prefix-free
languages.

Our results leave open the question whether or not the upper bound can be
reached using an alphabet of size exactly k. Note that from Lemma 2 we know
that k − 1 alphabet symbols are not sufficient.

We choose Σ = {a, b}. For w ∈ Σ∗ of length m, the set of positions of w is
{1, . . . ,m}. For x ∈ {a, b} and 1 ≤ u ≤ m, we say that u is an x-position of w if
the u’th symbol of w is x.

The set of all b-positions of string w is denoted posb(w) ⊆ {1, . . . , |w|}. Con-
sider a b-position ub of w ∈ Σ∗. By the a-count of position ub, counta(ub), we
mean the number fub is simply the number of occurrences of symbols a that
precede the occurrence of b at position ub.

For each m ∈ IN we define the prefix-free language

Lm ⊆ {a, b}∗ (7)

to consist of all strings w such that

1. |w| ∈ posb(w),
2. counta(|w|) ≡ 0 (mod m), and,
3. (∀u ∈ posb(w)) u < |w| implies counta(u) �≡ 0 (mod m).

That is, Lm consists of strings w ending with symbol b where the number of
occurrences of symbols a is a multiple of m. Furthermore, any occurrence of b
in w except the last one is preceded by a number of a’s that is not a multiple
of m.

Lemma 3. For m ≥ 1, the language Lm is prefix-free and is recognized by a
DFA Am+2 with m+ 2 states.

Lemma 4. Let {m1, . . . ,mk} be a set of relatively prime integers where mi ≥ 2,
i = 1, . . . , k. Let Lmi , 1 ≤ i ≤ k, be the language defined in (7).

Then the minimal DFA for Lm1 ∪ · · · ∪ Lmk
has⎛⎝ ∑

∅	=S⊂[1,k]

∏
i∈S

mi

⎞⎠+

⎛⎝ ∑
∅	=S⊂[1,k]

∏
i∈S

(mi − 1)

⎞⎠+

(
k∏
i=1

mi

)
+ 2 (8)

states.

When comparing the value (8) to the upper bound of Lemma 1 we recall that
the minimal DFA for Lmi had mi + 2 states. Thus for the union of prefix-free
DFAs of size mi, 1 ≤ i ≤ k, over a binary alphabet the construction of Lemma 4
gives a lower bound⎛⎝ ∑

∅	=S⊂[1,k]

∏
i∈S

(mi − 2)

⎞⎠+

⎛⎝ ∑
∅	=S⊂[1,k]

∏
i∈S

(mi − 3)

⎞⎠+

(
k∏
i=1

(mi − 2)

)
+ 2.

State Complexity of k-Union and k-Intersection 85

This differs from the upper bound of Lemma 1 by⎛⎝ ∑
∅	=S⊂[1,k]

∏
i∈S

(mi − 2)

⎞⎠−

⎛⎝ ∑
∅	=S⊂[1,k]

∏
i∈S

(mi − 3)

⎞⎠ .

Corollary 1. For arbitrary k ≥ 1 the lower bound for the union of k prefix-free
DFAs over a binary alphabet is more than half of the general upper bound of
Lemma 1.

3.4 Tight Lower Bound with Alphabet of Size k + 1

As a simple modification of the binary DFA construction from the previous
section, we obtain a lower bound matching the upper bound of Lemma 1 using
an alphabet of size k + 1.

In the following let k ∈ IN be arbitrary but fixed and Σ = {a, b1, . . . , bk}. For
m ∈ IN and 1 ≤ i ≤ k we define the language Li,m to consist of all strings w ∈ Σ∗

such that w ends with bi, |w|a ≡ 0 mod m and the number of a’s preceding any
other occurrence of bi in w except the last one is not a multiple of m. In strings
of Li,m the symbols bj, j �= i, can occur in arbitrary positions, except that the
string must end with bi.

Clearly Li,m is prefix-free, 1 ≤ i ≤ m, and Li,m is recognized by a DFA
A′
i,m+2 = (Q,Σ, δ, 0, {m}) where Q = {0, 1, . . . ,m+ 1} and the transition rela-

tion δ is defined by setting

1. for 0 ≤ j ≤ m− 2, δ(j, a) = j + 1,
2. δ(m− 1, a) = 0, δ(m, a) = δ(m+ 1, a) = m+ 1,
3. for 1 ≤ j ≤ m− 1 and j = m+ 1, δ(j, bi) = j,
4. δ(0, bi) = m,
5. for 0 ≤ j ≤ m− 1 and h �= i, δ(j, bh) = j,
6. for all 1 ≤ h ≤ k, δ(m, bh) = δ(m+ 1, bh) = m+ 1.

The transitions of the DFA A′
i,m+2 restricted to subalphabet {a, bi} are an iso-

morphic copy of the DFA Am+2 defined in the proof of Lemma 3. In A′
i,m+2 the

transitions on bj , j �= i, are the identity on states {0, 1, . . . ,m − 1} and take m
and m+ 1 to the sink state m+ 1.

Let {m1, . . . ,mk} be a set of relatively prime integers. As in the proof of
Lemma 1 we construct a DFA B′ for L1,m1 ∪ · · · ∪ Lk,mk

. Now similarly as in
the proof of Lemma 4 we verify that all states of B′ are reachable and pairwise
inequivalent. The latter property was shown to hold already in the case of a
binary alphabet. The only unreachable states in the construction used in the
proof of Lemma 4 were states of the form (pj1 , . . . , pjr , acc), where some pjx ,
1 ≤ x ≤ r, was the final state of Amjx+2. In B

′ the above state is reached from
a state (pj1 , . . . , qh,0, . . . , pjr , rej) by reading a symbol bh. Here 1 ≤ h ≤ k is an
index not appearing in the sequence j1, . . . , jr, and hence the B′-transition on
bh does not change the components pj1 , . . . , pjr . (Strictly speaking, it may be
the case that we must choose h < j1 or h > jr in which case the notations above
are slightly different.)

86 H.-S. Eom, Y.-S. Han, and K. Salomaa

Thus, as a consequence of Lemma 1 and Proposition 2, we have the following
result.

Theorem 1. Let Ai be a prefix-free DFA of size mi ≥ 3, i = 1, . . . , k. The union
L(A1) ∪ · · · ∪ L(Ak) can be recognized by a DFA of size

2 ·

⎛⎝ ∑
∅	=S⊂[1,k]

∏
i∈S

(mi − 2)

⎞⎠+

(
k∏
i=1

(mi − 2)

)
+ 2. (9)

For any integers n1, . . . , nk, there exist prefix-free DFAs Ai over an alphabet of
size k + 1 having size mi ≥ ni, i = 1, . . . , k, such that the minimal DFA for
L(A1) ∪ · · · ∪ L(Ak) has size exactly (9). The state complexity upper bound (9)
cannot be reached by prefix-free DFAs over an alphabet with less than k symbols.

Theorem 1 leaves open the question whether or not the worst-case state complex-
ity of k-union of prefix-free languages can be reached by DFAs over an alphabet
of size exactly k. We conjecture a positive answer to this question but the re-
quired lower bound construction would likely be much more complicated than
the construction used above for proving Theorem 1.

4 Intersection of k Prefix-Free Languages

We consider the state complexity of L1 ∩L2 ∩ · · · ∩Lk (the k-intersection opera-
tion) for prefix-free regular languages. First we give an upper bound construction.
Recall, as in the previous section, that we can restrict consideration to DFAs
of size at least three because any non-trivial prefix-free DFA has at least three
states.

Lemma 5. Let Ai be a DFA with mi states, mi ≥ 3, that recognizes a prefix-free

language Li, 1 ≤ i ≤ k. Then 2 +

k∏
i=1

(mi − 2) states are sufficient for a DFA to

recognize

k⋂
i=1

Li.

We note that the state complexity upper bound of Lemma 5 coincides with the
(k − 1)-fold function composition of the state complexity for the intersection of
two prefix-free regular languages [13].

The result of Lemma 5 is, perhaps, not surprising because the family of prefix-
free regular languages is closed under intersection. A more interesting question is
whether or not the upper bound can be reached using a fixed alphabet. Note that
we have shown that this is not possible for k-union in Lemma 2. On the other
hand, for k-intersection, we present a positive answer using a binary alphabet.
We use the prefix-free regular languages Lm, defined by (7), that were used also
in Lemma 3, and prove that with an appropriate choice of the values m the
languages Lm yield a tight lower bound for k-intersection.

State Complexity of k-Union and k-Intersection 87

Lemma 6. Let Σ = {a, b} and, for m ≥ 1, let Lm ⊂ {a, b}∗ be the prefix-free
regular language defined in (7). Let {m1, . . . ,mk} be a set of relatively prime
integers, where mi ≥ 2 for 1 ≤ i ≤ k. Then the minimal DFA for Lm1∩· · ·∩Lmk

has

2 +

k∏
i=1

(mi − 2) (10)

states.

The below theorem summarizes the results from Lemmas 5 and 6.

Theorem 2. Let Ai be a prefix-free DFA of size mi ≥ 3, i = 1, . . . , k. The
intersection L(A1) ∩ · · · ∩ L(Ak) can be recognized by a DFA of size

2 +
k∏
i=1

(mi − 2).

Furthermore, there exist prefix-free DFAs as above defined over a binary input
alphabet such that the minimal DFA for L(A1) ∩ · · · ∩ L(Ak) needs this number
of states.

5 Conclusion

We have examined the state complexity of two multiple operations, the k-union
and k-intersection operations, for prefix-free regular languages. We have estab-
lished a tight state complexity bound for k-union using an alphabet of size k+1
and a tight state complexity bound for k-intersection using a binary alphabet.
The following table summarizes the state complexity bounds.

operation state complexity k = 2 [13]

⋃
1≤i≤k

Li 2 ·
∑

∅�=S⊂[1,k]

∏
i∈S

(mi − 2) +
k∏

i=1

(mi − 2) + 2 m1m2 − 2

⋂
1≤i≤k

Li

k∏
i=1

(mi − 2) + 2 m1m2 − 2(m1 +m2) + 6

operation lower bound on the state complexity when |Σ| = 2

⋃
1≤i≤k

Li

∑
∅�=S⊂[1,k]

∏
i∈S

(mi − 2) +
∑

∅�=S⊂[1,k]

∏
i∈S

(mi − 3) +
k∏

i=1

(mi − 2) + 2

Note that the state complexity for k-union is smaller than the function com-
position of the state complexity of several unions whereas the state complexity
for k-intersection is the same as the (k − 1)-fold composition of the state com-
plexity function for the intersection of two languages. This phenomenom can

88 H.-S. Eom, Y.-S. Han, and K. Salomaa

be viewed to be caused by the fact that the family of (regular) prefix-free lan-
guages is closed under intersection but not closed under union. Since prefix-free
languages are closed under concatenation, analogously, by extending the con-
struction used in [13], the state complexity of k-fold concatenation of prefix-free
languages can be shown to coincide with the k-fold function composition of the
state complexity of the concatenation of two languages.

For k-union, additionally, we have considered the binary alphabet case and
given a lower bound construction that is within the constant 1

2 from the general
upper bound. We have proved that the state complexity of k-union cannot be
reached when the alphabet size is less than k. This leaves open only whether or
not the state complexity of k-union can be reached by prefix-free languages over
an alphabet of size exactly k.

Acknowledgements. Wewish to thank the referees for the careful reading of the
paper and valuable suggestions, which led to improvement on the presentation.

Eom and Han were supported by the Basic Science Research Program through
NRF funded by MEST (2012R1A1A2044562) and Salomaa was supported by the
Natural Sciences andEngineeringResearchCouncil ofCanadaGrantOGP0147224.

References

1. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

2. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity
of shuffle of regular languages. Journal of Automata, Languages and Combina-
torics 7(3), 303–310 (2002)

3. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012)

4. Domaratzki, M.: State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics 7(4), 455–468 (2002)

5. Domaratzki, M., Okhotin, A.: State complexity of power. Theoretical Computer
Science 410(24-25), 2377–2392 (2009)

6. Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. Journal
of Automata, Languages and Combinatorics 9(2-3), 217–232 (2004)

7. Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined
operations. Theoretical Computer Science 410(35), 3272–3280 (2009)

8. Gao, Y., Kari, L.: State complexity of star and square of union of k regular lan-
guages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386,
pp. 155–168. Springer, Heidelberg (2012)

9. Gao, Y., Kari, L., Yu, S.: State complexity of union and intersection of square and
reversal on k regular languages. Theoretical Computer Science 454, 164–171 (2012)

10. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:
Star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89
(2008)

11. Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. International Journal of Foundations of Computer Science 19(3), 581–595
(2008)

State Complexity of k-Union and k-Intersection 89

12. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoretical Computer Science 410(27-29), 2537–2548 (2009)

13. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Automata, Formal Languages, and Related Topics - Dedi-
cated to Ferenc Gécseg on the Occasion of his 70th Birthday, pp. 99–115. Institute
of Informatics, University of Szeged, Hungary (2009)

14. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages
and descriptional complexity. In: Proceedings of DCFS 2005, pp. 170–181. Univer-
sità degli Studi di Milano, Milan (2005)

15. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-
plementation. International Journal of Foundations of Computer Science 16(3),
511–529 (2005)

16. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Interna-
tional Journal of Foundations of Computer Science 22(7), 1639–1653 (2011)

17. Jirásková, G., Olejár, P.: State complexity of intersection and union of suffix-free lan-
guages and descriptional complexity. In: Proceedings of NCMA 2009, pp. 151–166.
Austrian Computer Society (2009)

18. Jirásková, G., Sebej, J.: Reversal of binary regular languages. Theoretical Com-
puter Science 449, 85–92 (2012)

19. Maslov, A.: Estimates of the number of states of finite automata. Soviet Mathe-
matics Doklady 11, 1373–1375 (1970)

20. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999)

21. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. International Journal of Foundations of Computer Science 13(1),
145–159 (2002)

22. Rampersad, N.: The state complexity of L2 and Lk. Information Processing Let-
ters 98(6), 231–234 (2006)

23. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-
oretical Computer Science 383(2-3), 140–152 (2007)

24. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoretical Computer Science 320(2-3), 315–329 (2004)

25. Salomaa, K., Yu, S.: On the state complexity of combined operations and their
estimation. International Journal of Foundations of Computer Science 18, 683–698
(2007)

26. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, New York (2008)

27. Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York (1987)
28. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language,

Grammar. Handbook of Formal Languages, vol. 1, pp. 41–110. Springer (1997)
29. Yu, S.: State complexity of regular languages. Journal of Automata, Languages

and Combinatorics 6(2), 221–234 (2001)
30. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

A Direct Construction of Finite State Automata

for Pushdown Store Languages

Viliam Geffert1,�, Andreas Malcher2,��, Katja Meckel2,��,
Carlo Mereghetti3,��,� � �, Beatrice Palano3,��,� � �

1 Dep.Computer Sci., P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia
viliam.geffert@upjs.sk

2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{malcher,meckel}@informatik.uni-giessen.de

3 Dip. Informatica, Univ. degli Studi di Milano, v. Comelico 39, 20135Milano, Italy
{mereghetti,palano}@di.unimi.it

Abstract. We provide a new construction of a nondeterministic finite
automaton (NFA) accepting the pushdown store language of a given
pushdown automaton (PDA). The resulting NFA has a number of states
which is quadratic in the number of states and linear in the number
of pushdown symbols of the given PDA. Moreover, we prove the size
optimality of our construction. Beside improving some results in the lit-
erature, our approach represents an alternative and more direct proof of
pushdown store language regularity. Finally, we give a characterization
of the class of pushdown store languages.

Keywords: pushdown automata, pushdown store languages, descrip-
tional complexity.

1 Introduction

Pushdown automata (PDAs) are one of the fundamental models in formal lan-
guage theory. They provide an automata-based counterpart of context-free gram-
mars, as well as address many practical issues on parsing and decidability (see,
e.g., [9,11]). Nearly from PDAs formal introduction in the early 60’s [4,5,13],
an interesting related concept, namely pushdown store language, is pointed out
without receiving much attention from the literature. Given a PDAM , its push-
down store language P (M) consists of all words occurring on the pushdown
store along accepting computation paths of M . The first property investigated

� Supported by the SlovakGrant Agency for Science under contract VEGA 1/0479/12
“Combinatorial Structures and Complexity of Algorithms” and by the Slovak
Research and Development Agency under contract APVV-0035-10 “Algorithms,
Automata, and Discrete Data Structures”.

�� Partially supported by CRUI/DAAD under the project “Programma Vigoni:
Descriptional Complexity of Non-Classical Computational Models”.

� � � Partially supported by MIUR under the project “PRIN: Automi e Linguaggi
Formali: Aspetti Matematici e Applicativi”.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 90–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Finite State Automata for Pushdown Store Languages 91

on pushdown store languages and related languages (see, e.g., [8]) is regularity.
Several contributions in the literature show that pushdown store languages are
regular, and a proof of this fact can be found, e.g., in [1]. From a practical point
of view, pushdown store language regularity has several applications, e.g.: it pro-
vides an alternative proof of Büchi’s theorem [3], it implies decidability for some
questions on PDAs [12], and it has also impacts in model checking [6,14].

The proof in [1] for pushdown store language regularity uses a grammar-based
approach, yielding P (M) as the intersection of two languages generated by one-
sided linear grammars describing pushdown content evolutions. Yet, the produc-
tions of these grammars are established thanks to the decidability of emptiness
for context-free languages. This approach is also adopted in [12] where, for the
first time, the focus is on the size (number of states) of NFAs for P (M). In this
latter contribution, by suitably modifying grammars in [1], a polynomial time
algorithm is presented, returning an NFA for P (M) with O(|Q|2 · |Γ |) states,
where Q and Γ are the state set and pushdown alphabet of M , respectively.
Yet, the asymptotical size optimality of the output NFA is proved by exhibiting
witness PDAs accepting regular languages. Finally, as a consequence of such con-
structive descriptional complexity results, the P-completeness of some questions
for PDAs (e.g., being of constant height, or being a counter machine) is shown.

In this paper, we provide an alternative way of building small NFAs for push-
down store languages, inspired by the construction in [7] of context-free gram-
mars from PDAs. Our construction of an NFA N accepting P (M), for a given
PDA M with |Q| states and |Γ | pushdown symbols, relies on the notion of a
meaningful triple, whose definition and inductive structure are given in Section 3.
A triple [p,X, q] ∈ Q × Γ × Q is said to be meaningful whenever there exists
a computation of M starting from p with the sole symbol X in the pushdown,
and ending in q with the empty pushdown. Meaningful triples form the states
of N . The transitions are settled in N so that, roughly speaking, the sequence
of meaningful triples in a computation of N that accepts γ ∈ Γ ∗ suitably resem-
bles the sequence of states through which an accepting computation ofM builds
and destroys γ in the pushdown. The proposed algorithm runs in polynomial
time, and constructs N featuring |Q|2 · |Γ |+ 1 states (actually, a lower number
of states is attained), thus improving the NFA size obtained in [12]. We also
would like to remark that the correctness proof of our approach, i.e. showing
that L(N) = P (M), in our opinion provides an explicit and more direct proof of
pushdown store language regularity, alternative to the above mentioned proofs
in the literature.

Next, in Section 4, we prove the size optimality of NFAs output by our algo-
rithm by exhibiting a family of context-free languages Λh, for odd h > 1, such
that: (i) there exists a PDA Mh for Λh with 2h + 2 states and h + 2 push-
down symbols, on which our algorithm outputs an NFA for P (Mh) featuring
h3 + 2h2 + (h + 7)/2 states, but (ii) any NFA accepting P (Mh) needs at least
h3 + h2 +2 states. Even this optimality result improves [12], where a larger gap
between upper and lower bound for the size of NFAs shows up.

92 V. Geffert et al.

Finally, in Section 5, we characterize the class of languages that may appear
as pushdown store languages. Precisely, we show that a language is a pushdown
store language if and only if it is prefix-closed regular, containing more than
the empty string. While the “only if” part is easy, we show the “if” part by
exhibiting, for any prefix-closed regular language R containing more than the
empty string, a PDA M for which P (M) = R. Yet, we obtain that L(M) is
context-free if and only if R is not finite.

2 Preliminaries

We assume familiarity with basics in formal languages (see, e.g., [9,11]). The set
of all words (including the empty word λ) over a finite alphabet Σ is denoted
by Σ∗. The length of a word w ∈ Σ∗ is denoted by |w|, and the set of all words
of length k is denoted by Σk. A language over Σ is any subset of Σ∗.

A pushdown automaton (PDA) is formally defined as a 7-tuple M = 〈Q,Σ, Γ,
δ, qI, ZI, F 〉, where Q is a finite set of states, Σ is a finite input alphabet, Γ is a
finite pushdown alphabet, δ is the transition function mapping Q×(Σ∪{λ})×Γ
to finite subsets ofQ×Γ ∗, qI ∈ Q is the initial state, ZI ∈ Γ is an initial pushdown
symbol, and F ⊆ Q is a set of accepting (final) states.

Roughly speaking, a nondeterministic finite automaton (NFA) can be viewed
as a PDA never using its pushdown store. Formally, it is defined as a 5-tuple N =
〈Q,Σ, δ, qI, F 〉, whereQ,Σ, qI, F are as above, while the transition function δ now
maps Q× (Σ ∪ {λ}) to finite subsets of Q.

A configuration of a PDA is a triple (p, w, γ), where p is the current state, w the
unread part of the input, and γ the current content of the pushdown store; the
rightmost symbol of γ being the top symbol. For p, q ∈ Q, σ ∈ Σ ∪{λ}, u ∈ Σ∗,
γ, ψ ∈ Γ ∗, and Z ∈ Γ , we write (p, σu, γZ) � (q, u, γψ) whenever δ(p, σ, Z) �
(q, ψ). As usual, we denote by �k the reachability relation among configurations
in k moves, and by �∗ the reflexive transitive closure of �. A configuration of an
NFA is a pair (p, w), where p is the current state and w the unread part of the
input; other notions are adapted in the obvious way.

Without loss of generality, we assume that M has a unique final state qF
and accepts an input string w ∈ Σ∗ whenever it presents a computation path
consuming the whole w and reaching qF with empty pushdown. (This can be
achieved by adding one new state, see e.g. [9].) Thus, the language accepted
by M is the set

L(M) = {w ∈ Σ∗ | (qI, w, ZI) �∗ (qF, λ, λ)} .

The pushdown store language of a PDA M (see, e.g., [1]) is defined as the
set P (M) of all words occurring on the pushdown store along accepting compu-
tations of M . Formally:

P (M) = {γ∈Γ ∗ | ∃u, v∈Σ∗, s∈Q : (qI, uv, ZI) �∗ (s, v, γ) �∗ (qF, λ, λ)} .

Finite State Automata for Pushdown Store Languages 93

It is easy to observe that P (M) is prefix-closed, i.e., for each γ ∈ P (M), all
prefixes of γ must belong to P (M) as well, since M cannot remove more than
one symbol from the pushdown in a single step.

There exist several size measures for PDAs (see, e.g., [10]). According to [9],
the size of a PDAM can be defined as the length of a string describing the tran-
sition function for M . More precisely, if the i-th transition in M is δ(p, σ,X) �
(r, Y1 · · ·Yk), with k ≥ 0, it can be written down as a string ti = σXpY1 · · ·Ykr.
(Here we assume, without loss of generality, that Q ∩ (Σ ∪ Γ) = ∅, that is, the
state set is disjoint from both alphabets. This makes decoding of transitions
unambiguous.) Then M can be written down as T = t1 · · · tm ∈ (Q ∪ Σ ∪ Γ)∗,
a string listing all machine’s instructions one after another. By charging “1” for
the constant part in each transition, we have

|M | =
∑

(p,σ,X)∈Q×(Σ∪{λ})×Γ
∑

(q,ψ)∈δ(p,σ,X)(|ψ|+ 1) .

It turns out that |M | can be measured by the number of states after convertingM
into the normal form (also called moderate [9]), in which the machine pushes at
most two pushdown symbols in a single transition step. Formally, any transition
(r, ψ) ∈ δ(p, σ,X) satisfies |ψ| ≤ 2. In this case, the pushdown height changes at
most by 1 in one move.

Lemma 1. Each PDA M accepting a nontrivial language (i.e., L(M) contains
at least one word longer than 1) can be converted into an equivalent PDA M ′

in normal form, preserving also the same pushdown store language, with a state
set Q′ satisfying |Q′| ≤ |M |. (For trivial L(M), we get |Q′| ≤ 2.)

The above lemma allows to restrict our considerations to PDAs in normal form,
unless otherwise stated.

To clarify the notion of pushdown store language, we end this section with an
example.

Example 2. For any h > 0, the context-free language

Lh = {anbmcmdn | n,m > 0, n mod h(h+1) = 0} ∪ {λ}

is accepted by the PDA Eh= 〈S1∪S2∪{qF}, {a, b, c, d}, {ZI, A,B}, δ, qI, ZI, {qF}〉,
with S1 = {q0, q1, . . . , qh−1}, S2 = {p0, p1, . . . , ph}, qI = q0, and δ defined as
follows (undefined moves mean rejection):

δ(q0, a, ZI) = {(q1, ZIA)},
δ(qi, a, A) = {(q(i+1) mod h, AA)} for 0 ≤ i ≤ h− 1,
δ(q0, b, A) = {(q0, AB)},
δ(q0, b, B) = {(q0, BB)},
δ(q0, c, B) = {(p0, λ)},
δ(p0, c, B) = {(p0, λ)},
δ(pi, d, A) = {(p(i+1) mod (h+1), λ)} for 0 ≤ i ≤ h,
δ(p0, λ, ZI) = {(qF, λ)}.

94 V. Geffert et al.

Let us informally describe the dynamics of Eh on strings in Lh. While consuming
the initial segment of a’s, Eh counts their number modulo h by using the states
in S1 and pushes a symbol A for each input symbol a. Then, Eh checks the
correctness of the inner factor bmcm in the usual way. After that, Eh consumes
the final segment of d’s, counts their number modulo h+1 by using the states
in S2, and pops the symbol A for each input symbol d. It is not hard to verify
that Eh accepts in the final state qF with empty pushdown if and only if the
given input is in Lh.

The pushdown store language of Eh is easily seen to be

P (Eh) = ZI ·{An | n > 0, n mod h(h+ 1) = 0}·B∗ ∪ ZI ·A∗ ∪ {λ} .

Note that Eh has 2h+2 states and 3 pushdown symbols, and that Θ(h2) states
are needed for any NFA accepting P (Eh).

3 Constructing NFAs for Pushdown Store Languages

In this section, we provide an algorithm which returns an NFA accepting the
pushdown store language for the given PDA. We are then going to analyze
the correctness of the algorithm and to evaluate the number of states of the
resulting NFA. Moreover, we also quickly address the time complexity of the
algorithm. To this regard, given the transition function δ of a PDA, we let
|δ| =

∑
(p,σ,Z)∈Q×(Σ∪{λ})×Γ |δ(p, σ, Z)|.

A central role in our constructions is played by the notion of a meaningful
triple for PDA (see also [7]):

Definition 3. Given a PDA M = 〈Q,Σ, Γ, δ, qI, ZI, {qF}〉, we say that a triple
[p,X, q] ∈ Q × Γ × Q is meaningful, if there exists some w ∈ Σ∗ such that
(p, w,X) �∗ (q, λ, λ).

Concerning this definition, we want to stress three important observations:

1. In general, meaningfulness of [p,X, q] can be witnessed by more than one
computation path from (p, w,X) to (q, λ, λ).

2. In the course of these paths, the pushdown becomes empty at the last move
only. In fact, by definition of a transition function, a PDA with empty push-
down cannot move.

3. For any PDA M , the triple [qI, ZI, qF] is meaningful if and only if L(M) �= ∅.
Moreover, if L(M) �= ∅, i.e., we have at least one accepting computation for
at least one input, then also P (M) �= ∅ and both ZI and λ are in P (M),
since they appear, respectively, in the pushdown store at the very beginning
and at the very end of this computation.

To clarify the notion of meaningful triple, let us consider the PDA provided
in Example 2. One may easily verify that the meaningfulness of [q0, B, q0] is
witnessed, e.g., by computations on words of the form bmcm, with m > 0. On
the other hand, no triple of the form [qi, A, qi], with qi ∈ S1, can be meaningful
since our machine always enters a state in S2 upon popping A.

Finite State Automata for Pushdown Store Languages 95

Meaningful triples of a PDAM are fundamental in our construction of an NFA
N accepting P (M), since they will represent the states of N . Let us formally
describe the construction of N from M . First, we provide an inductive version
of Definition 3 for PDAs in normal form:

Proposition 4. Given a PDA M = 〈Q,Σ, Γ, δ, qI, ZI, {qF}〉 in normal form, a
triple [p,X, q] ∈ Q × Γ × Q is meaningful if and only if one of the following
conditions holds:

– Base of induction: There exists some σ ∈ Σ∪{λ} such that δ(p, σ,X) �
(q, λ). So, in one step, M pops the pushdown symbol X, switching from the
state p to q upon consuming σ along the input.

– Inductive step i: There exist some σ ∈ Σ ∪ {λ}, r ∈ Q, and Y ∈ Γ , such
that δ(p, σ,X) � (r, Y) and the triple [r, Y, q] is meaningful. So, in one step,
M turns the pushdown symbol X into Y , switching from the state p to r upon
consuming σ. Subsequently, we have a computation path (r, u, Y) �∗ (q, λ, λ),
for some input string u ∈ Σ∗.

– Inductive step ii: There exist some σ ∈ Σ ∪ {λ}, r, s ∈ Q, and Y, Z ∈ Γ ,
such that δ(p, σ,X) � (r, ZY) and both [r, Y, s] and [s, Z, q] are meaningful.
So, in one step,M replaces the pushdown symbol X with ZY , switching from
the state p to r upon consuming σ. Subsequently, we have two computation
paths, namely, (r, u, Y) �∗ (s, λ, λ) and (s, v, Z) �∗ (q, λ, λ), for some input
strings u, v ∈ Σ∗.

Proof. Let us start with the triple [p,X, q] ∈ Q× Γ ×Q, which is meaningful
according to Definition 3. We are going to show that it satisfies one of the
three conditions in Proposition 4. By definition, there exists w ∈ Σ∗ inducing a
computation path C of the form (p, w,X) �∗ (q, λ, λ), taking some k > 0 steps. If
k = 1, then obviously theBase of inductionmust hold. If k > 1, then C can be
divided into the first step and the remaining k−1 steps. Given the normal form
of M , the first step is then either of the form δ(p, σ,X) � (r, Y), or of the form
δ(p, σ,X) � (r, ZY), for some σ ∈ Σ∪{λ}, r ∈ Q, and Z, Y ∈ Γ . In the first case,
for w expressed as w = σu, C proceeds as (p, σu,X) � (r, u, Y) �k−1 (q, λ, λ).
Thus, [r, Y, q] is meaningful, and hence the Inductive step i holds true. In the
second case, C is in the form (p, σuv,X) � (r, uv, ZY) �i (s, v, Z) �j (q, λ, λ),
where (s, v, Z) is the configuration in which, for the first time along this path,
the height of the pushdown drops down from 2 = |ZY | back to 1. This fixes
partitioning w = σuv, for some u, v ∈ Σ∗, together with k = 1 + i + j, for
some i, j smaller than k. This gives that both [r, Y, s] and [s, Z, q] are meaningful,
and hence the Inductive step ii holds true.

Summing up, we have proved that Definition 3 implies Proposition 4. The
converse implication works out easily by a symmetric reasoning. ��

As previously observed, the meaningful triples of a PDAM will represent, in our
construction, the states of an NFA N accepting P (M) �= ∅. The routine Build-
StateSet in Figure 1 returns the set S of meaningful triples of M , according
to the inductive definition in Proposition 4.

96 V. Geffert et al.

BuildStateSet(PDA M = 〈Q,Σ, Γ, δ, qI, ZI, {qF}〉)
S := ∅;
foreach σ ∈ Σ∪{λ} and (q, λ) ∈ δ(p, σ,X) do
S := S ∪ {[p,X, q]};

repeat
S′ := S;
foreach [p,X, q] ∈ (Q×Γ×Q) \ S′ do

if IndStep1([p,X, q], Σ, δ, S) or IndStep2([p,X, q], Σ,Q, δ, S) then
S := S ∪ {[p,X, q]};

until S = S′;
return S

Fig. 1. The routine returning the set S of meaningful triples, for the PDA M given as
argument. The subroutines IndStep1 and IndStep2 are displayed in Figure 2.

Let us now briefly describe how BuildStateSet works for the given PDA
M = 〈Q,Σ, Γ, δ, qI, ZI, {qF}〉. The routine starts by extracting, from the set
Q× Γ ×Q, all triples satisfying the Base of induction in Proposition 4. Such
triples are collected in the set S; their meaningfulness is witnessed by a single
computation step, and thus can be verified by a direct inspection of the transition
function δ. This is exactly the role of the first foreach-loop.

Now, the set S is dynamically enlarged along the repeat-loop. More precisely,
at each iteration of the repeat-loop, S contains triples declared as meaningful up
to now. At this point, any triple t is examined by the nested foreach-loop which
checks whether t can be declared as meaningful (in more than one computation
step of M) by using the triples from S. This check is performed in the if -
statement by the subroutines IndStep1 and IndStep2 sketched in Figure 2.

IndStep1([p,X, q], Σ, δ, S)
foreach σ ∈ Σ∪{λ} and (r, Y) ∈ δ(p, σ,X) do

if [r, Y, q] ∈ S then return true;
return false

IndStep2([p,X, q], Σ,Q, δ, S)
foreach σ ∈ Σ∪{λ}, (r,ZY) ∈ δ(p, σ,X), and s ∈ Q do

if [r, Y, s] ∈ S and [s, Z, q] ∈ S then return true;
return false

Fig. 2. The boolean subroutines for checking meaningfulness, used by the routine
BuildStateSet in Figure 1

These two subroutines implement, respectively, Inductive step i and In-
ductive step ii in Proposition 4. If t is detected as meaningful, it is added to S.
The repeat-loop terminates as soon as S does not grow in the course of two
consecutive iterations, and hence it cannot grow any more.

Let us quickly account for the running time of BuildStateSet. We observe
that the most expensive part of the routine is represented by the repeat-loop,
which is easily seen to be repeated at most |Q×Γ×Q| times. Along each iteration,

Finite State Automata for Pushdown Store Languages 97

a nested foreach-loop is performed at most |Q×Γ×Q| times again, within which
the more expensive task is run by the subroutine IndStep2. This subroutine
basically iterates over all transitions and all states, requiring |δ| · |Q| iterations.
Thus, we get that the time complexity of BuildStateSet is O(|Q|5 ·|Γ |2 ·|δ|).

After getting S, the set of states for the NFA N , we are ready to define the
transition function for N . This is the main task of the algorithm BuildNFA in
Figure 3, which outputs the complete NFA N for P (M).

BuildNFA input: PDA M = 〈Q,Σ, Γ, δ, qI, ZI, {qF}〉
S := BuildStateSet(M);
foreach t ∈ S∪{tF} and X ∈ Γ∪{λ} do δN(t,X) := ∅;
if [qI, ZI, qF] /∈ S then output: NFA N = 〈{tF}, Γ, δN , tF, ∅〉;
foreach [p,X, q] ∈ S do begin
δN ([p,X, q], X) := {tF}; --- Rule i
foreach σ ∈ Σ∪{λ} and (r, Y) ∈ δ(p, σ,X) do

if [r, Y, q] ∈ S then --- Rule ii
δN([p,X, q], λ) := δN ([p,X, q], λ) ∪ {[r, Y, q]};

foreach σ ∈ Σ∪{λ}, (r,ZY) ∈ δ(p, σ,X), and s ∈ Q do
if [r, Y, s] ∈ S and [s, Z, q] ∈ S then begin --- Rule iii
δN([p,X, q], Z) := δN ([p,X, q], Z) ∪ {[r, Y, s]};
δN([p,X, q], λ) := δN ([p,X, q], λ) ∪ {[s, Z, q]}

end
end;
output: NFA N = 〈S ∪ {tF}, Γ, δN , [qI, ZI, qF], S ∪ {tF}〉 --- Rule iv

Fig. 3. The algorithm BuildNFA returning the NFA N for P (M), where the PDA M
is given as input

For the given PDA M = 〈Q,Σ, Γ, δ, qI, ZI, {qF}〉, the algorithm fixes S, the
set of all meaningful triples for M , by the use of the routine BuildStateSet.
The state set of N is S ∪ {tF}, where tF is a new state. Initially, the transition
function δN for N is fixed by the first foreach-loop to always return the empty
set (to be updated later).

In the first if -statement, the algorithm checks whether [qI, ZI, qF] does not
belong to S and hence it is not meaningful, which gives P (M) = ∅ (see the third
observation after Definition 3). In this case, the algorithm immediately outputs
a trivial single-state NFA accepting the empty language, and quits.

Otherwise, the construction of δN sets transitions from each state in S along
the second foreach-loop. The key idea is to design δN so that it consumes a
symbol X whenever there exists a computation of M , in which the symbol X
on top of the pushdown is either popped or covered (and possibly renamed)
by another symbol. Moreover, due to technical reasons, some λ-transitions are
added. So, the NFA N is built according to the following rules:

– Rule i: For each meaningful triple [p,X, q] (that is, a state in N), we add
the transition δN ([p,X, q], X) � tF. Here tF is a fixed accepting and halting
state, with no transitions going out. This accounts for pop operations with X
on top.

98 V. Geffert et al.

Next, we add transitions corresponding to possible pushdown modifications that
do not decrease the pushdown height. Thus, for each σ ∈ Σ ∪ {λ}, the original
δ function is scanned by two nested foreach-loops:

– Rule ii: For each move δ(p, σ,X) � (r, Y) with meaningful [r, Y, q], we add
the transition δN ([p,X, q], λ) � [r, Y, q].

– Rule iii: For each move δ(p, σ,X) � (r, ZY) and each state s ∈ Q such
that both [r, Y, s] and [s, Z, q] are meaningful, we add the following two
transitions: δN ([p,X, q], Z) � [r, Y, s], δN ([p,X, q], λ) � [s, Z, q].
In particular, the transition on Z accounts for increasing the length of the
string stored in the pushdown.

Now we are ready to complete the definition of N :

– Rule iv: The triple [qI, ZI, qF] is declared as the initial state of N and all
states of N are declared as accepting.
Such machine rejects only by undefined transitions. Among others, all paths
leading to any fixed reachable accepting state in N pass only through ac-
cepting states. This reflects the fact that P (M) is a prefix-closed language.

The desired NFA N = 〈S ∪ {tF}, Γ, δN , [qI, ZI, qF], S ∪ {tF}〉 for P (M) is output
after completing δN . Notice that N is defined to have λ-transitions. However,
classical tools (see, e.g., [9,11]) enable to obtain an equivalent NFA without
λ-transitions and with the same number of states.

Theorem 5.The algorithm BuildNFA in Figure 3 converts each given PDAM
in normal form into an NFA N recognizing the pushdown store language P (M),
that is, L(N) = P (M). The number of states in N corresponds to the number
of meaningful triples of M plus 1, and hence is bounded by |Q|2 · |Γ |+ 1.

Concerning the number of states of the NFA N , we would like to stress the
following point. As observed, the number of states in N is given by the number
of meaningful triples of the PDA M . However, not all the meaningful triples are
necessarily reachable from the initial state [qI, ZI, qF]. So, the number of states
of N can be reduced to the number of reachable meaningful triples. (Testing
reachability is a well known efficient task, see, e.g., [11].)

We quickly address the running time of our algorithm BuildNFA. Calling
the routine BuildStateSet on the first instruction costs O(|Q|5 · |Γ |2 · |δ|)
time, as above emphasized. After this routine, the most time consuming part
of BuildNFA is represented by the foreach-loop on the set S, implying at
most |Q × Γ × Q| iterations. By inspecting operations at each iteration, one
may easily see that O(|δ| · |Q|) steps are performed (required by the two nested
foreach-loop on δ and Q). So, the global time turns out to be O(|Q|5 · |Γ |2 ·
|δ|) + O(|Q|3 · |Γ | · |δ|) = O(|Q|5 · |Γ |2 · |δ|). We leave it as an open problem to
devise a time-more-efficient algorithm.

We end this section by noticing that Theorem 5 holds for PDAs in normal
form. However, by a preliminary application of Lemma 1, converting a general
PDA M into an equivalent PDA in normal form, and then by running Build-
NFA, we get an algorithm ensuring

Finite State Automata for Pushdown Store Languages 99

Corollary 6. For each given PDA M = 〈Q,Σ, Γ, δ, qI, ZI, {qF}〉, there exists an
NFA for P (M) with |M |2 · |Γ |+ 1 states.

4 Descriptional Optimality

In this section, we show that our algorithm BuildNFA is optimal, i.e., we ex-
hibit PDAs in normal form on which BuildNFA outputs the (asymptotically)
smallest possible NFAs for the corresponding pushdown store languages.

For odd h > 1, we consider the context-free language

Λh =

{
an1an2an3an4 · · · anh bmcm dnh · · · dn4dn3dn2dn1

∣∣∣∣m,ni > 0,
ni mod h(h+ 1) = 0

}
∪{λ},

which is a generalization of the language Lh provided in the Example 2. The
following proposition displays the features of a PDA for Λh:

Proposition 7. There exists a PDA Mh for Λh with 2h + 2 states and h + 2
pushdown symbols.

Now, we run our algorithm BuildNFA on the PDA Mh in Proposition 7 in
order to get an NFA Nh for P (Mh). Theorem 5 gives us an upper bound of
|Q|2 · |Γ | = (2h + 2)2(h + 2) = 4h3 + O(h2) for the number of states of Nh.
However, as observed after Theorem 5, the states of Nh can actually be reduced
to be the set of meaningful triples reachable from the initial state of Nh. The
number of such reachable triples can be bounded as follows:

Proposition 8. Given the PDA Mh in Proposition 7 for Λh with odd h, let Nh
be the NFA output by the algorithm BuildNFA on input Mh. Then Nh ac-
cepts P (Mh) with h

3 + 2h2 + h+7
2 states.

The number of states of the NFA Nh in Proposition 8 is really close to the
theoretical lower bound. In fact:

Proposition 9. Given the PDA Mh in Proposition 7 for Λh, then any NFA
accepting P (Mh) cannot have less than h3 + h2 + 2 states.

Proof. We use a pumping argument. Let N be an NFA for P (Mh), and consider

the string γ = Z0Z
h(h+1)
1 Z

h(h+1)
2 · · ·Zh(h+1)

h of length h2(h + 1) + 1. It is easy
to see that γZh+1 ∈ P (Mh), so N must have an accepting computation on it.
If N has less than |γ|+1 = h2(h+1)+2 states then, by a pigeonhole argument,
a state q is repeated along this accepting computation on the prefix γ. Let
γ = γ1γ2γ3 with γ2 being the factor consumed by N during two occurrences
of q. Clearly, any string of the form γ1γ

i
2γ3Zh+1, with i ≥ 0, admits an accepting

computation as well. We have two cases: either γ2 ∈ Z+
j for some 0 ≤ j ≤ h, or

γ2 ∈ Z+
j Z

+
j+1 · · ·Z+

k for some 0 ≤ j < k ≤ h.
In the former case, consider the string γ1γ3Zh+1. As observed, such a string

is accepted, but its Zj-block is either missing or has length strictly less than
h(h+ 1), and hence cannot belong to P (Mh), a contradiction.

100 V. Geffert et al.

In the latter case, consider the string γ1γ
2
2γ3Zh+1. Again, such a string is

accepted, but it clearly has a wrong alternation of Zj-blocks. Hence, also in this
case it cannot belong to P (Mh), a contradiction. ��

In conclusion, by Propositions 8 and 9, we get

Theorem 10. The algorithm BuildNFA in Figure 3 is optimal with respect to
the number of states of the output NFA.

A similar optimality result can be given for the algorithm addressed by Corol-
lary 6, working on general PDAs (i.e., not necessarily in normal form):

Corollary 11. There cannot exist an algorithm which, on input any given gen-
eral PDA M , returns an NFA for P (M) with o(|M |2 · |Γ |) states.

Proof. Consider the PDA Eh in Example 2, with 3 pushdown symbols. Suppose,
by contradiction, there exists an algorithm outputting NFAs with o(|M |2 · |Γ |)
states and let this algorithm run on Eh. The reader may verify that |Eh| ∈ Θ(h),
and so the supposed algorithm would return an NFA for P (Eh) featuring o(h

2)
states, against what observed at the end of Example 2. ��

5 Universality

We observed in Section 2 that pushdown store languages are prefix-closed. Here,
we prove that also the converse holds, i.e., that any prefix-closed regular language
can be seen as a pushdown store language of some PDA. The only exception is
clearly represented by the prefix-closed regular language {λ} which cannot occur
as a pushdown store language, since any PDA starts by definition with an initial
symbol on its pushdown store.

Theorem 12. Let R be a prefix-closed regular language different from {λ}. Then
there exists a (deterministic) PDA M in normal form such that P (M) = R.
Moreover, if R is not finite, then L(M) is not regular.

We quickly notice that if the chosen prefix-closed regular language R is finite,
then we cannot exhibit any PDA M satisfying P (M) = R while accepting a
nonregular context-free language. This is due to the general fact that if P (M)
is finite then the entire content of the pushdown can be kept in the finite state
control, and hence L(M) must be regular.

Finally, from a descriptional complexity point of view, one may ask whether
the determinization of NFAs for pushdown store languages may be economical,
given that they are restricted to accept prefix-closed languages. The answer
is negative. In fact, Theorem 12 states that any prefix-closed regular language
containing more than the empty word occurs as pushdown store language of some
PDA. Moreover, in [2] it is proved that, for any n ≥ 1, there exist prefix-closed
languages which are accepted by n-state NFA, but every DFA accepting these
languages needs at least 2n states. These two facts together obviously imply an

Finite State Automata for Pushdown Store Languages 101

exponential state blow-up to determinize NFAs for pushdown store languages,
as in the general case.

On the other hand, we conjecture that by using a more powerful model, a
two-way nondeterministic finite automaton, it is possible to accept P (M) with
only O(|M | · |Γ |) states.

Acknowledgements. The authors wish to thank the anonymous referees for
their comments.

References

1. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown
automata. In: Handbook of Formal Languages, vol. 1, pp. 111–174. Springer (1997)

2. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theor. Comput. Sci. 410, 3209–3222 (2009)

3. Büchi, J.R.: Regular canonical systems. Arch. Math. Logik Gr. 6, 91–111 (1964)
4. Chomsky, N.: Context-free grammars and pushdown storage. Quarterly Progress

Report No. 65, Research Lab. Electonics. MIT, Cambridge, Massachusetts (1962)
5. Evey, J.: The theory and applications of pushdown store machines. Ph.D. Thesis,

Harvard University, Cambridge, Massachusetts (1963)
6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model

checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

7. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill,
New York (1966)

8. Greibach, S.A.: A note on pushdown store automata and regular systems. Proc.
Amer. Math. Soc. 18, 263–268 (1967)

9. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

10. Holzer, M., Kutrib, M.: Descriptional complexity – an introductory survey. In: Sci-
entific Applications of Language Methods, pp. 1–58. Imperial College Press (2010)

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

12. Malcher, A., Meckel, K., Mereghetti, C., Palano, B.: Descriptional complexity of
pushdown store languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012.
LNCS, vol. 7386, pp. 209–221. Springer, Heidelberg (2012)

13. Schützenberger, M.P.: On context-free languages and pushdown automata. Infor-
mation and Control 6, 246–264 (1963)

14. Sun, C., Tang, L., Chen, Z.: Secure information flow in Java via reachability anal-
ysis of pushdown system. In: QSIC 2010, pp. 142–150. IEEE Computer Society
(2010)

Nondeterministic State Complexity

of Proportional Removals

Daniel Goč1, Alexandros Palioudakis2, and Kai Salomaa2

1 School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada,

dgoc@uwaterloo.ca
2 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada,

{alex,ksalomaa}@cs.queensu.ca

Abstract. The language 1
2
(L) consists of first halfs of strings in L. Many

other variants of a proportional removal operation have been considered
in the literature and a characterization of removal operations that pre-
serve regularity is known. We consider the nondeterministic state com-
plexity of the operation 1

2
(L) and, more generally, of polynomial removals

as defined by Domaratzki (J. Automata, Languages and Combinatorics
7(4), 2002). We give an O(n2) upper bound for the nondeterministic
state complexity of polynomial removals and a matching lower bound in
cases where the polynomial is a sum of a monomial and a constant.

Keywords: finite automata, state complexity, nondeterminism, propor-
tional removals.

1 Introduction

State complexity of finite automata has been investigated already for more than
half a century [8,10,11]. The state complexity of regularity preserving language
operations was first considered by A.N. Maslov [9]. A systematic study of opera-
tional state complexity was later initiated by S. Yu [14,15] and nondeterministic
state complexity of basic language operations was investigated by M. Holzer and
M. Kutrib [5]. Good recent surveys on the descriptional complexity of finite au-
tomata can be found in [6,7] and operational state complexity is discussed in
more detail in [3].

For a language L over an alphabet Σ and a binary relation r on natural
numbers, the proportional removal operation based r on the language L consists
of all strings x ∈ Σ∗ such that there exists y ∈ Σ∗ with (|x|, |y|) ∈ r and xy ∈ L.
The identity relation yields the language 1

2 (L) consisting of first halfs of strings
belonging to the language L. Seiferas and McNaughton [12] have given a general
characterization of relations for which the corresponding proportional removal
operation preserves regularity.

The state complexity of proportional removals was investigated by M. Do-
maratzki [2] who shows that if L has a deterministic finite automaton (DFA)

with n states, the language 1
2 (L) is recognized by a DFA with n · eO(

√
n·logn)

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 102–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Nondeterministic State Complexity of Proportional Removals 103

states and also an almost matching lower bound is given. Furthermore, Do-
maratzki [2] gives an n · eO(

√
n·logn) upper bound for the state complexity of

polynomial removals.
Here we investigate the nondeterministic state complexity of proportional

removals. If L is recognized by an n state nondeterministic finite automaton
(NFA), it is immediate that 1

2 (L) has an NFA with n2 states. We give a lower
bound construction for the nondeterministic state complexity of 1

2 (L) that is
tight within a factor of, roughly, 1

4 .
We investigate also the state complexity of polynomial removals that are de-

fined based on a relation rf = {(n, f(n)) | n ∈ N}, where f is a monotonic
polynomial and f(n) is positive for positive n. We establish that the state com-
plexity of polynomial removals is O(n2). The construction is inspired by Do-
maratzki [2], however, our proof differs in a couple of crucial aspects. We need
only to assume that the polynomial is monotonic, whereas [2] assumes that the
polynomial is strictly monotonic. We use a Chrobak normal form [1] for the
unary NFA that performs the reversed computation. The tranformation into
Chrobak normal form may increase the preperiod of the NFA by a square factor,
and then we need to verify that, when f is any monotonic and a nonlinear poly-
nomial, the preperiod can be reduced in the unary NFA performing the forward
computation.

In the case where f is the sum of a monomial and a constant, we establish
a matching Ω(n2) lower bound for the nondeterministic state complexity of the
polynomial removal corresponding to f . Note that establishing lower bounds for
the deterministic state complexity of polynomial removals was left open in [2].

2 Preliminaries

We assume that the reader is familiar with the basic definitions concerning fi-
nite automata [13,15] and descriptional complexity [4,7]. Here we just fix some
notation needed in the following.

The set of positive integers is denoted N. The cardinality of a finite set S is
#S. Let Z[x] be the set of all polynomials with integral coefficients. If for all
numbers n ∈ N, it holds that f(n) ∈ N, we denote this by f(N) ⊆ N. Recall that
a function f is monotonic if i ≥ j implies f(i) ≥ f(j).

The set of strings, or words, over a finite alphabet Σ is Σ∗, the length of
w ∈ Σ∗ is |w| and ε is the empty string. Moreover, we denote Σk to be the set
of all words over Σ which have length exactly k, i.e. Σk = {x ∈ Σ∗ | |x| = k}.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, I, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is
the transition function, I is the set of initial states and F ⊆ Q is the set of
accepting states. The NFA A is deterministic (a DFA) if all transitions of A are
deterministic and it has only one initial state, i.e. #I = 1 and #δ(q, a) ≤ 1
for all q ∈ Q and all a ∈ Σ. The function δ is extended in the usual way as
a function Q × Σ∗ → 2Q and the language recognized by A, L(A), consists of
strings w ∈ Σ∗ such that δ(q, w) ∩ F �= ∅, for q ∈ I. We say that an NFA
A = (Q,Σ, δ, I, F) is unary if #Σ = 1.

104 D. Goč, A. Palioudakis, and K. Salomaa

Note that sometimes we omit the symbol of the alphabet in the definition of
a unary NFA. Then, a unary NFA is a 4-tuple A = (Q, δ, I, F), where now the
transition function δ is a relation δ ⊆ Q×Q.

The minimal size of a DFA or an NFA recognizing a regular language L is
called the deterministic (nondeterministic) state complexity of L and denoted,
respectively, sc(L) and nsc(L). Note that we allow DFAs to be incomplete and,
consequently, the deterministic state complexity of L may differ by one from a
definition using complete DFAs.

Here, we adopt the notations of Seiferas and McNaughton [12] and Domaratzki
[2]; for any binary relation r ⊆ N×N and any language L ⊆ Σ∗, let the language
P (r, L) be defined as

P (r, L) = {x ∈ Σ∗ | ∃y ∈ Σ∗ such that r(|x|, |y|) and xy ∈ L}.

For any set A ⊆ N, we say that A is ultimately periodic (u.p.) if there exist
integers t ≥ 0 and p ≥ 1 such that for all n > t, n ∈ A if and only if n+p ∈ A. If
t and p are chosen to be minimal among all integers satisfying those respective
conditions, we say that t is the preperiod of A and p is the period of A. For any
relation r ⊆ N× N and any set A, define:

r−1(A) = {i | ∃j ∈ A such that r(i, j)}

We call r u.p.-preserving if A is u.p. implies r−1(A) is u.p. From Seiferas and
McNaughton [12] we have the following theorem which is a complete character-
ization of relations preserving regularity.

Theorem 2.1. For all laguages L, the following are equivalent:

• If L is regular, then P (r, L) is regular.
• r is u.p.-preserving.

In concluding the preliminaries section let us remind to the reader the Chrobak
normal form [1]. A unary NFA A is in Chrobak normal form if initially the states
of A form a ‘tail’ and later, at the end of the tail, followed nondeterministically
by disjoint cycles. Note, that the only state with nondeterministic choices is the
last state of the tail. We can see an example of an NFA in Chrobak normal form
in Figure 1. Formally, the NFA M = (Q, δ, I, F) is in Chrobak normal form if it
has the following properties:

1. I = {q0},
2. Q = {q0, . . . , qt−1} ∪ C1 ∪ · · · ∪ Ck, where Ci = {pi,0, pi,1, . . . , pi,yi−1} for
i ∈ {1, . . . , k},

3. δ = {(qi, qi+1) | 0 ≤ i ≤ t − 2} ∪ {(qt−1, pi,0) | 1 ≤ i ≤ k} ∪ {(pi,j , pi,j+1) |
1 ≤ i ≤ k, 1 ≤ j ≤ yi − 2} ∪ {(pi,yi−1 , pi,0) | 1 ≤ i ≤ k}.

Notice that Lemma 4.3 of [1] says that every unary NFA M , with n states, has
an equivalent unary NFA M ′ in Chrobak normal form, where the NFA M ′ has
at most n states participating in its cycles, and O(n2) states in its tail. We will
use this estimation in Section 3.

Nondeterministic State Complexity of Proportional Removals 105

Fig. 1. An NFA in Chrobak normal form, recognizing the unary language over the
numbers {1, 2} ∪ {3x+ 2 | x ≥ 1} ∪ {4x + 2 | x ≥ 1} ∪ {4x+ 3 | x ≥ 1} ∪ {2x | x ≥ 2}

Further, notice that the language L(M) can be thought of as the union of

other smaller languages L(Mi), i.e. L(M) =
⋃k
i=1 L(Mi), where each Mi is a

unary DFA Mi obtained by restricting M to one of the loops and the tail. We
will use this idea later, in the proof of Lemma 3.2.

3 Upper Bounds

We give an O(n2) upper bound for the nondeterministic state complexity of
polynomial removals. We begin by stating a slightly more precise bound for the
size of an NFA for 1

2 (L) where L is a n state NFA language.

Proposition 3.1. For any regular language L, nsc(12 (L)) ≤ (nsc(L))2.

Proof. Let A = (Q,Σ, δ, I, F) be an NFA recognizing L. We define B = (Q ×
Q,Σ, γ, I × F, FB) where FB = {(q, q) | q ∈ Q} and for q1, q2 ∈ Q, and b ∈ Σ,

γ((q1, q2), b) = {(p1, p2) | p1 ∈ δ(q1, b) and (∃c ∈ Σ) q2 ∈ δ(p2, c)}.

The first component of states of B simulates the computation of A and the
second component simulates the reversed computation of A, starting from the
final states. Hence it is clear that L(B) = 1

2 (L). ��

More generally, for an NFA A = (Q,Σ, δ, I, F), k ≥ 1, c ≥ 0, and the relation
rk,c = {(n, k ·n+ c) | n ∈ N} the language P (rk,c, L(A)) can be recognized by an
NFA C = (Q×Q,Σ, ρ, I×IC , FC) where IC = {q ∈ Q | (∃w ∈ Σc) δ(q, w)∩F �=
∅}, FC = {(q, q) | q ∈ Q} and for q1, q2 ∈ Q, and b ∈ Σ,

ρ((q1, q2), b) = {(p1, p2) | p1 ∈ δ(q1, b) and (∃w ∈ Σk) q2 ∈ δ(p2, w)}.

106 D. Goč, A. Palioudakis, and K. Salomaa

The second component of the states of C simulates k steps of the reversed
computation of A in one computation step. The initial states of C are pairs
(p, q) where p ∈ I and a state of F is reachable from q in exactly c computation
steps (in A.)

Corollary 3.1. For any regular language L and any numbers k ∈ N+, c ∈ N,

nsc(P (rk,c, L)) ≤ (nsc(L))2.

In the next section we give lower bounds that match the bound of Corollary 3.1
within a multiplicative constant.

Next we develop an upper bound for the nondeterministic state complexity of
polynomial removals as considered by Domaratzki [2]. An auxiliary step to that
is the following two propositions, both are well known results in number theory
and they also appear in [2].

Proposition 3.2. Let f ∈ Z[x] with f(N) ⊆ N. Then for all n1, n2 ∈ N with
n2 > 0, f(n1) ≡ f(n1 + n2) (mod n2).

Proposition 3.3. Let A be a u.p. set with period p and preperiod t. Let p′ be
any integer satisfying

a+ p′ ∈ A ⇐⇒ a ∈ A
for all a ≥ t. Then p|p′.

The proof of the following lemma is modified from a proof in [2], however, dif-
fering from [2], we will need also to establish an upper bound for the size of the
preperiod of r−1

f (A). Note that in the deterministic case considered in [2] the
worst case size of the cycle dominates the size of the preperiod and an estimation
for the size of the preperiod of r−1

f (A) was not crucial. Furthermore, we found we
can relax the restrictions on f , no longer requiring it to be strictly monotonic.

Lemma 3.1. Let f ∈ Z[x] be a monotonic polynomial such that f(N) ⊆ N. Let
A be a u. p. set with preperiod t and period p. Then r−1

f (A) is u. p. set, with
preperiod tf and period pf where tf ≤ min{i | f(i) ≥ t} and pf |p.

Proof (modified from proof of Theorem 10 of [2]).
Let if = min{i | f(i) ≥ t} and let i ≥ if . Since f is monotonic, we have

f(i+ p) ≥ f(i) ≥ f(if) ≥ t (the preperiod of A).
By Proposition 3.2 we have that f(i) ≡ f(i+ p) (mod p), which implies that

f(i+ p) = f(i) + lp for some nonnegative integer l. Moreover, p is the period of
A, so we have that f(i) ∈ A if and only if f(i + p) ∈ A. We may conclude that
for all i ≥ if ,

i ∈ r−1
f (A) ⇐⇒ f(i) ∈ A ⇐⇒ f(i+ p) ∈ A ⇐⇒ i + p ∈ r−1

f (A).

Thus r−1
f (A) is u.p. Let pf be the period and tf the preperiod of r−1

f (A). There-
fore, by Proposition 3.3, pf |p and furthermore tf ≤ if as the lemma claims.

��

Nondeterministic State Complexity of Proportional Removals 107

Lemma 3.2. Let f ∈ Z[x] be a monotonic polynomial such that f(N) ⊆ N and
f(n) ∈ Ω(n2). Then for any regular language L,

nsc(P (rf , L)) ∈ O((nsc(L))2).

Proof. Let M be the NFA with n states accepting L and let MR be the corre-
sponding NFA for LR created by reversing the transitions of M . Note that in
our model we allow multiple start states and so MR also has n states. Let N be
the unary NFA in Chrobak normal form corresponding to MR with its alphabet
collapsed to {a}.

Then let t be the size of the tail of N and C1, C2, . . . , Ck be the cycles of N .
By Lemma 4.3 of [1] we have that t ∈ O(n2) and Σk

i=0|Ci| ≤ n.

Thus L(N) can be thought of as a union L(N) =
⋃k
i=1 L(Ni) where each Ni

is the DFA generated by restricting N to one of the loops and the tail as we
have noted it the preliminaries.

Each Ni accepts an ultimately periodic set. Let pi and ti be respectively the
period and preperiod of L(Ni). We see that pi = |Ci| and ti ≤ t, where t is the
size of the tail of N . Applying Lemma 3.1 to Ni we see that Bi = r−1

f (L(Ni)) is
u.p. with period p′i|pi and preperiod

t′i ≤ min{n | f(n) ≥ ti} ≤ min{n | f(n) ≥ t}.

Let t′ = maxki=1 t
′
i ≤ min{i | f(i) ≥ t}. Since f(n) ∈ Ω(n2) and t ∈ O(n2)

it follows that t′ ∈ O(n). The union of the pre-images B =
⋃k
i=1 Bi can be

accepted by an NFA N ′ in Chrobak normal form with a tail of size at most t′

and at most k cycles of size p′1, p
′
2, . . . , p

′
k. Thus

nsc(B) ≤ t′ +Σk
i=1p

′
i ≤ t′ +Σk

i=1pi ≤ t′ + n ∈ O(n).

Following the construction for P (rf , L) described in [2], we conclude that
nsc(P (rf , L)) ∈ O(n2) as required. ��
As a result of Corollary 3.1 and Lemma 3.2, we can state our main result:

Theorem 3.1. Let f ∈ Z[x] be a monotonic polynomial such that f(N) ⊆ N.
Then for any regular language L,

nsc(P (rf , L)) ∈ O((nsc(L))2).

Proof. We have three cases to consider:

1. f(n) ∈ Θ(1)
Then f(n) = c for some constant c it is immediate that for any regular
language L, nsc(P (rf , L)) ≤ nsc(L).

2. f(n) ∈ Θ(n)
Applying Corollary 3.1 we see that nsc(P (rf , L)) ∈ O((nsc(L))2).

3. f(n) ∈ Ω(n2)
Here the result follows directly from Lemma 3.2. ��

For cases where f is of the form x2, x3 etc., in the next section we give for the
nondeterministic state complexity of P (rf , L) a lower bound that matches the
result of Theorem 3.1.

108 D. Goč, A. Palioudakis, and K. Salomaa

4 Lower Bounds

We first give a lower bound construction for the operation 1
2 (L). After that we

give an Ω(n2) lower bound for the nondeterministic state complexity of P (rf , L)
always when f is a sum of a monomial and a constant. The latter result naturally
gives a lower bound also for nsc(12 (L)), but in the below Lemma 4.1 we derive
slightly more precise values for the multiplicative constants.

Lemma 4.1. Let p, q be distinct prime numbers and define Lp,q = (0p)∗10(0q)∗.
Then nsc(Lp,q) ≤ p+ q and nsc(12 (Lp,q)) ≥ (p+ 1)q.

Proof. The language Lp,q is recognized by a DFA

Ap,q = (Q, {0, 1}, δ, {a0}, {b1})

where Q = {a0, a1, . . . , ap−1, b0, b1, . . . , bq−1}, where δ is defined by setting

1. δ(ai, 0) = ai+1, 0 ≤ i ≤ p− 2, δ(ap−1, 0) = a0,
2. δ(bj , 0) = bj+1, 0 ≤ j ≤ q − 2, δ(bq−1, 0) = b0,
3. δ(a0, 1) = b0 and the transition on symbol 1 is undefined in all other cases.

This establishes the upper bound for nsc(Lp,q). (It is easy to give a fooling set
of size p+ q for Lp,q and hence Ap,q is, in fact, a minimal NFA for Lp,q, but this
will not be needed.)

We define
X1 = {(0i, 0pq−i1) | 1 ≤ i ≤ pq},
X2 = {(10i, 0q−i) | 1 ≤ i ≤ q}.

To complete the proof it is sufficient to show that Y = X1 ∪X2 is an extended
fooling set [6,13] for 1

2 (Lp,q).
Clearly for any (y1, y2) ∈ Y , y1y2 ∈ 1

2 (Lp,q). For the second part we need to
verify that

[∀(y1, y2), (y′1, y′2) ∈ Y, (y1, y2) �= (y′1, y
′
2)] y1y

′
2 �∈

1

2
(Lp,q) or y

′
1y2 �∈

1

2
(Lp,q).

(1)
If (y1, y2) ∈ X1 and (y′1, y

′
2) ∈ X2, we note that y

′
1y2 �∈ 1

2 (Lp,q) because any word
of Lp,q has only one occurrence of 1.

Consider now two pairs belonging to the set X1, (0
i, 0pq−i1) and (0j , 0pq−j1),

i �= j. We note that 0x1 can be a prefix of any word of Lp,q only if x is a multiple
of p. On the other hand, 0x1 can be the first half of some word of Lp,q only if x
is a multiple of q. This means that 0x1 ∈ 1

2 (Lp,q) if and only if x is a multiple
of pq and for any 1 ≤ i, j ≤ pq, i �= j, 0i0pq−j1 �∈ 1

2 (Lp,q).
Finally consider two pairs belonging to the set X2, (10

i, 0q−i) and (10j , 0q−j),
i �= j. We note that 1{0, 1}∗ ∩ 1

2 (Lp,q) = {10x·q | x ∈ N} and hence 10i · 0q−j �∈
1
2 (Lp,q).

We have shown that X is a fooling set for 1
2 (Lp,q) and hence nsc(12 (Lp,q)) ≥

pq + q. ��

Nondeterministic State Complexity of Proportional Removals 109

Theorem 4.1. For every n1 ∈ N there exists n ≥ n1 and a regular language L
with nsc(L) = n such that nsc(12 (L)) ≥

1
4 (n

2).

Proof. This follows from Lemma 4.1 by choosing p and q to be sufficiently large
consecutive primes.

Corollary 4.1. For an n-state NFA language L, the worst-case nondeterminis-
tic state complexity of 1

2 (L) is asymptotically between 1
4n

2 and n2.

The upper bound of Proposition 3.1 and the lower bound of Lemma 4.1 differ,
roughly, by a factor of 4. The precise nondeterministic state complexity of the
operation 1

2 (L) remains open.
Next we generalize the lower bound result for certain types of polynomial

removals. A polynomial f ∈ Z[x] is said to be simple if it is of the form a ·xk+ b
with a, k ≥ 1, b ≥ 0, that is, f is a sum of a monomial and a constant. A simple
polynomial f is clearly monotonic and f(N) ⊆ N.

Lemma 4.2. Let f = a · xk + b be a simple polynomial (a, k ≥ 1, b ≥ 0). Let p
and q be distinct prime numbers where q > max(a, b). Define

L′
p,q,b = (0p)∗0p−110b(0q)∗.

Then nsc(L′
p,q,b) ≤ p+ q and nsc(P (rf , L

′
p,q,b)) ≥ p · q.

Proof. It is easy to construct for the language L′
p,q,b an NFA B that consists of

a cycle of 0-transitions connecting p states and a disjoint cycle of 0-transitions
connecting q states where the cycles are connected by one 1-transition. Here
we need the assumption b ≤ q. The construction is similar to the one used in
Lemma 4.1 and we leave the details as an exercise to the reader. In Figure 2
there is an NFA as described before for the language L′

5,7,4.
For the lower bound we define

Z = {(0i, 0pq−i−11) | 0 ≤ i < pq}.

Fig. 2. A minimal NFA recognizing the language (05)∗041(07)∗04

110 D. Goč, A. Palioudakis, and K. Salomaa

We verify that Z is an extended fooling set for L′
p,q,b. In order to do this it is

sufficient to show that

0h1 ∈ P (rf , L′
p,q,b) iff pq divides h+ 1.

For the “only if” part we first note that if 0h1 is a prefix of a string in L′
p,q,b

then p has to divide h+1. Secondly, if 0h1 ∈ P (rf , L′
p,q,b), this means that there

exists r ∈ N such that
a(h+ 1)k + b = r · q + b. (2)

Since q > a this implies that also q must divide h+ 1.
Conversely, if pq divides h + 1 we can find r as in (2). Thus we have shown

that Z is a fooling set and the claim follows since #Z = pq. ��

As a consequence of Lemma 4.2 and Theorem 3.1 we have:

Corollary 4.2. For any simple polynomial f the nondeterministic state com-
plexity of the operation P (rf , ·) is in Θ(n2).

We conjecture that the upper bound of Theorem 3.1 is tight within a multiplica-
tive constant for all polynomial removals (of the types that are considered in
Theorem 3.1). It seems that a lower bound construction for general monotonic
polynomials would need to use ideas essentially different from the idea used in
the proof of Lemma 4.2.

5 Conclusion

As our main result we have established an O(n2) upper bound for the nonde-
terministic state complexity of polynomial removals. We have given a matching
lower bound in cases where the polynomial is the sum of a monomial and a con-
stant. It remains open to prove an Ω(n2) lower bound for the nondeterministic
state complexity of removals based on any monotonic polynomial.

References

1. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149–158 (1986)

2. Domaratzki, M.: State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics 7(4), 455–468 (2002)

3. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review of state complexity of individual
operations. Technical report, Universidade do Porto, Technical Report Series DCC-
2011-08, Version 1.1 (September 2012), http://www.dcc.fc.up.pt/Pubs

4. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002)

5. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003)

http://www.dcc.fc.up.pt/Pubs

Nondeterministic State Complexity of Proportional Removals 111

6. Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20(4),
563–580 (2009)

7. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata - a survey. Inf. Comput. 209(3), 456–470 (2011)

8. Lupanov, O.: A comparison of two types of finite sources. Problemy Kibernetiki 9,
328–335 (1963)

9. Maslov, A.: Estimates of the number of states of finite automata. Doklady Akademii
Nauk SSSR 194, 1266–1268 (1970)

10. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)

11. Moore, F.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers C-20(10), 1211–1214 (1971)

12. Seiferas, J.I., McNaughton, R.: Regularity-preserving relations. Theor. Comput.
Sci. 2(2), 147–154 (1976)

13. Shallit, J.O.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press (2008)

14. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

15. Yu, S.: Regular Languages. In: Handbook of Formal Languages, vol. 1, pp. 41–110.
Springer (1998)

Nondeterministic Biautomata

and Their Descriptional Complexity

Markus Holzer and Sebastian Jakobi

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,jakobi}@informatik.uni-giessen.de

Abstract. We investigate the descriptional complexity of nondetermin-
istic biautomata, which are a generalization of biautomata [O. Kĺıma,
L. Polák: On biautomata. RAIRO—Theor. Inf. Appl., 46(4), 2012].
Simply speaking, biautomata are finite automata reading the input from
both sides; although the head movement is nondeterministic, additional
requirements enforce biautomata to work deterministically. First we study
the size blow-up when determinizing nondeterministic biautomata.
Further, we give tight bounds on the number of states for nondeter-
ministic biautomata accepting regular languages relative to the size of
ordinary finite automata, regular expressions, and syntactic monoids. It
turns out that as in the case of ordinary finite automata nondeterminis-
tic biautomata are superior to biautomata with respect to their relative
succinctness in representing regular languages.

1 Introduction

Biautomata were recently introduced in [10] as a generalization of ordinary de-
terministic finite automata. A biautomaton consists of a deterministic finite
control, a read-only input tape, and two reading heads, one reading the input
from left to right, and the other head reading the input from right to left. Simi-
lar two-head finite automata models were introduced, e.g., in [3,11,14]. An input
word is accepted by a biautomaton, if there is an accepting computation starting
the heads on the two ends of the word meeting somewhere in an accepting state.
Although the choice of reading a symbol by either head is nondeterministic, the
determinism of the biautomaton is enforced by two properties: (i) The heads
read input symbols independently, i.e., if one head reads a symbol and the other
reads another, the resulting state does not depend on the order in which the
heads read these single letters. (ii) If in a state of the finite control one head
accepts a symbol, then this letter is accepted in this state by the other head
as well. We call the former property the �-property and the latter one the F -
property. In [10] it was shown that biautomata share a lot of properties with
ordinary deterministic finite automata. Moreover, in [9] also descriptional com-
plexity issues for biautomata were addressed. This is the starting point for our
investigation.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 112–123, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Nondeterministic Biautomata and Their Descriptional Complexity 113

We focus on descriptional complexity issues for nondeterministic biautomata,
which were recently introduced in [7]. It is known that these machines already
accept non-regular languages and characterize the family of linear context-free
languages [11], but nondeterministic biautomata with the �-property accept reg-
ular languages only [7]. Thus, at first glance we reprove the above mentioned
result on linear context-free grammars showing a linear relation between the
number of states of nondeterministic biautomata and the number of nontermi-
nals of linear context-free grammars. This allows us to show that the trade-off
between nondeterministic biautomata in general and biautomata with at least
the �-property is non-recursive. That is, the size (here the number of states)
when changing from one description to the other equivalent description cannot
be bounded by any recursive function. On the other hand, when changing from
nondeterminism to determinism in the presence of both properties, namely the
�- and the F -property, the difference in size is exponential. Moreover, we also
investigate the relative succinctness of nondeterministic biautomata with the �-
and the F -property relative to ordinary finite automata, syntactic monoids, and
regular expressions. For the conversion of ordinary finite automata to nonde-
terministic biautomata we show a quadratic upper and lower bound. In order
to prove the lower bound on the number states of nondeterministic biautomata
we generalize the well known fooling set technique [2,4] to the devices under
consideration. This contrasts the result on deterministic biautomata, where ex-
ponential upper and lower bounds were shown in [9]. When starting from a
syntactic monoid as a description for a regular language, nondeterministic biau-
tomata turn out to be linear in size. This bound turns out to be tight, and is
again evidence, that nondeterminism is superior to determinism also in the case
of biautomata, since in [9] a tight quadratic bound for deterministic biautomata
from syntactic monoids was shown. Finally, we study the conversion of regular
expressions to nondeterministic biautomata. Here we can show that the well
known Glushkov-construction that obtains an ordinary nondeterministic finite
automaton from a regular expression naturally generalizes to nondeterministic
biautomata. While the original construction is linear for nondeterministic finite
automata, it becomes quadratic for nondeterministic biautomata. Our results
are based on the presence of both properties for nondeterministic biautomata.
Since the �-property is essential for a biautomaton to accept regular languages,
the question on the effect of the F -property remains. Here we do not have a
complete understanding of the situation, but we can still obtain upper bounds
for conversions, as we mention in the conclusions.

2 Preliminaries

The reader is assumed to be familiar with the notations in formal language and
automata theory as contained in [8]. We use a more general notion of biautomata
than in [10], but it resembles that of nondeterministic linear automata defined
in [11], which characterize the family of linear context-free languages. A nonde-
terministic biautomaton is a sixtuple A = (Q,Σ, ·, ◦, I, F), where Q is a finite

114 M. Holzer and S. Jakobi

set of states, Σ is an alphabet, · : Q×Σ → 2Q is the forward transition function,
◦ : Q × Σ → 2Q is the backward transition function, I ⊆ Q is the set of initial
states, and F ⊆ Q is the set of final or accepting states. The transition functions ·
and ◦ are extended to words in the following way, for every word v ∈ Σ∗ and
letter a ∈ Σ:

q · λ = {q}, q · av =
⋃

p∈(q·a)
p · v, and q ◦ λ = {q}, q ◦ va =

⋃
p∈(q◦a)

p ◦ v,

and further, both · and ◦ can be extended to sets of states S ⊆ Q, and w ∈ Σ∗

by S · w =
⋃
p∈S p · w, and S ◦w =

⋃
p∈S p ◦w. The biautomaton A accepts the

word w ∈ Σ∗, if and only if w can be written as w = u1u2 . . . ukvk . . . v2v1, for
some words ui, vi ∈ Σ∗ with 1 ≤ i ≤ k, such that

[((. . . ((((I · u1) ◦ v1) · u2) ◦ v2) . . .) · uk) ◦ vk] ∩ F �= ∅. (1)

The language accepted by A is defined as L(A) = {w ∈ Σ∗ | A accepts w }.
A biautomaton A is deterministic, if |I| = 1, and |q · a| = |q ◦ a| = 1 for all
states q ∈ Q and letters a ∈ Σ. In this case we simply write q · a = p, or
q ◦ a = p instead of q · a = {p}, or q ◦ a = {p}, respectively, treating · and ◦ to
be functions of the form ·, ◦ : Q×Σ → Q. The automaton A has the confluence
or diamond property, for short �-property, if (q · a) ◦ b = (q ◦ b) · a, for every
state q ∈ Q and a, b ∈ Σ. Further, A has the equal acceptance property, for short
F -property, if q · a ∩ F �= ∅ if and only if q ◦ a ∩ F �= ∅, for every state q ∈ Q
and letter a ∈ Σ. A deterministic biautomaton as defined above that has both
the �- and the F -property is exactly what is called a biautomaton in [10]. Two
biautomata A and B are equivalent if they accept the same language, which
means L(A) = L(B) holds.

The next lemma was proven in [7], and shows that the acceptance condition
given in Equation (1) simplifies under certain conditions.

Lemma 1. Let A = (Q,Σ, ·, ◦, I, F) be a biautomaton. (i) If A satisfies the
�-property, then

L(A) = {w ∈ Σ∗ | ∃u, v ∈ Σ∗ : w = uv and [(I · u) ◦ v] ∩ F �= ∅ }.

(ii) If A obeys the �- and the F -property, then L(A) = {w ∈ Σ∗ | [I ·w]∩F �= ∅ }.

We illustrate these definitions by the following example.

Example 2. Let us consider the biautomaton A = (Q, {a, b, c}, ·, ◦, I, F) with
Q = {0, 1, . . . , 6}, I = {0}, F = {6}, and whose transition functions ·, and ◦ are
depicted in Figure 1—solid arrows denote forward transitions by ·, and dashed
arrows denote backward transitions by ◦. One can check, that A has the �-
property, i.e., that (q · d) ◦ e = (q ◦ e) · d, for all d, e ∈ {a, b, c} and q ∈ Q. For
example, we have (0 · a) ◦ c = {0, 1} ◦ c = {2, 4} and (0 ◦ c) · a = {2} · a = {2, 4}.
Further, A has the F -property, i.e., for all q ∈ Q, and d ∈ Σ we have (q·d)∩F �= ∅
if and only if (q ◦d)∩F �= ∅. For example both sets 1 ·b = {3}, and 1◦b = ∅ have

Nondeterministic Biautomata and Their Descriptional Complexity 115

0

1

2

3

4

5

6

a
a

c

b

c

a

a

b

c

c

b

b

a

a

aa

Fig. 1. A nondeterministic biautomaton A, that has both the �- and the F -property,
with L(A) = a∗abc

an empty intersection with F = {6}, and the sets 5 ·a = {5, 6} and 5◦a = {5, 6}
both contain the accepting state 6. If we removed the backward transition loop
on letter a in state 5, i.e., if 5 ◦ a = {6}, instead of 5 ◦ a = {5, 6}, then A would
not have the �-property anymore because then (5 ·a)◦a �= (5◦a) ·a, but it would
still have the F -property. Since A satisfies both the �- and the F -property we
have due to Lemma 1 that A accepts a word w if and only if reading w leads
from some initial state of A to a final state in F , while only using forward
transitions. Therefore, it is easy to determine the language accepted by A to be
L(A) = a∗abc. ��

3 Conversions between Different Types of Biautomata

At first glance we show that as for ordinary finite automata, one can enforce
biautomata to be deterministic. To this end we generalize the well known pow-
erset construction of ordinary finite automata to biautomata. For a biautomaton
A = (Q,Σ, ·, ◦, I, F), its powerset automaton or subset automaton is the deter-
ministic biautomaton referred to P(A) = (Q′, Σ, ·′, ◦′, q′0, F ′), where the state
set Q′ ⊆ 2Q consists of all states that are reachable from the initial state q′0 = I,
the set of accepting states is F ′ = {P ∈ Q′ | P ∩ F �= ∅ }, and the forward and
backward transition functions are defined as

P ·′ a =
⋃
p∈P

p · a, and P ◦′ a =
⋃
p∈P

p ◦ a,

for every state P ∈ Q′, and letter a ∈ Σ. Since the transition functions ·′, and ◦′
of B are just the extensions of the functions ·, and ◦ of A to sets of states, the �-
property and the F -property are preserved by the powerset construction. To this
end we use the following simple fact: if A = (Q,Σ, ·, ◦, I, F) is a nondeterministic
biautomaton that has the �-property, then (S ·a)◦b = (S ◦b) ·a, and if A has the
F -property, then (S · a) ∩ F �= ∅ if and only if (S ◦ a) ∩ F �= ∅, for every S ⊆ Q
and a, b ∈ Σ. Thus, we summarize our findings—due to space constraints, some
proofs are omitted or sketched.

116 M. Holzer and S. Jakobi

Lemma 3. Let A be an n-state nondeterministic biautomaton. Then P(A) is
a deterministic biautomaton which is equivalent to A, i.e., L(A) = L(P(A)),
and has at most 2n states. Furthermore, for every X ∈ {�, F}, if A has the X-
property, then the deterministic biautomaton P(A) has the X-property, too. ��

Next we concentrate on biautomata in general, i.e., not necessarily satisfying
any of the �- or F -property. There we can show the following nice relation to
linear context-free grammars. Here a linear context-free grammar is a 4-tuple
G = (N, T, P, S), where N is a finite set of nonterminals, T is a finite set of
terminal symbols or letters, S ∈ N is the axiom, and P ⊆ N × (T ∗NT ∗ ∪ T ∗)
is a finite set of productions or rules—we write A → α for a rule in P instead
of (A,α). The language generated by the linear context-free grammarG is defined
as usual, that is, L(G) = {w ∈ T ∗ | S ⇒∗ w }, where ⇒∗ refers to the reflexive,
transitive closure of the direct derivation relation ⇒ based on the rules in P .
Moreover, a linear context-free grammar G = (N, T, P, S) is in normalform if
every rule in P is either of the form A→ aB, A→ Ba, or A→ a, for A,B ∈ N
and a ∈ T , and if the axiom S does not appear on any right-hand side of any
production, then the rule S → λ is allowed in P . Then our next theorem reads
as follows:

Theorem 4. Let A be an n-state nondeterministic biautomaton. Then one can
effectively construct an equivalent linear context-free grammar G in normalform
with (n+ 1)-nonterminals, i.e., L(G) = L(A). ��

Conversely the following result holds:

Theorem 5. Let G = (N, T, P, S) be a linear context-free grammar in normal-
form. Then one can effectively construct an equivalent (|N |+1)-state nondeter-
ministic biautomaton A, i.e., L(A) = L(G). The biautomaton A can be forced
to satisfy the F -property.

Proof. We construct a nondeterministic biautomaton A = (Q, T, ·, ◦, I, F) with
Q = { qA | A ∈ N} ∪ {qf} (the union being disjoint), initial states I = {qS}, set
of final states F = {qf} ∪ { qS | S → λ ∈ P }, and

qA · a = { qB | A→ aB ∈ P } ∪ { qf | A→ a ∈ P }
and

qA ◦ a = { qB | A→ Ba ∈ P } ∪ { qf | A→ a ∈ P },

for every qA ∈ Q and a ∈ T . Observe, that by construction A satisfies the F -
property. Then one can show by induction that w ∈ L(G) if and only if w ∈ L(A).
The tedious details are left to the reader. ��

Thus, by Lemma 3 and the previous two theorems we can summarize:

Corollary 6. A language L is accepted by a deterministic or nondeterministic
biautomaton (with the F -property) if and only if L is linear context free. ��

Nondeterministic Biautomata and Their Descriptional Complexity 117

On the other hand, the most restrictive model, namely deterministic biautomata
with both the �- and the F -property, only accept regular languages. In fact these
devices exactly characterize this language family, and hence are an alternative
descriptional system for the family of regular languages. A closer inspection
on both properties, as undertaken in [7], revealed, that the F -property is not
essential here, since already the �-property alone guarantees the regularity of
the language accepted by a biautomaton. This even holds in case the underlying
machine is nondeterministic. The result presented in [7] reads as follows:

Theorem 7. Let A be a nondeterministic biautomaton with the �-property.
Then language L(A) is regular.

Therefore, converting an arbitrary nondeterministic biautomaton into an equiv-
alent biautomaton with the �-property is not always possible. Nevertheless, one
can consider languages that are accepted by biautomata in general and biau-
tomata with the �-property in order to study the relative succinctness of these
devices. Since biautomata in general characterize the family of linear context-free
languages, we can build on an early result of Meyer and Fischer [13]: the trade-off
between linear context-free grammars and deterministic or nondeterministic fi-
nite automata is non-recursive, i.e., there is no recursive upper bound on the size
of the description, when changing the representation of a language from a linear
context-free grammar to a deterministic or nondeterministic finite automaton.
Since the conversion between linear context-free grammars and nondeterministic
biautomata and vice versa is constructive, we can utilize the above mentioned
result for our needs, because we can recursively enumerate biautomata with and
without the �-property.
Theorem 8. The trade-off between deterministic or nondeterministic biautom-
ata with or without the F -property and deterministic or nondeterministic biau-
tomata that satisfy at least the �-property is non-recursive. ��
Observe, that even if we consider biautomata which come attached with a proof
that they accept only regular languages, the above given theorem remains valid—
cf. [6]. Moreover, this result goes hand-in-hand with the non-decidability of the
regularity for biautomata, since for linear context-free languages regularity is
not even semi-decidable. We summarize our findings in the following theorem:

Theorem 9. For a given biautomaton A, it is not decidable whether the lan-
guage L(A) is regular or not. ��

In the light of the previous results, it seems appropriate to concentrate on bi-
automata that have the �-property. Moreover, for the rest of the paper we limit
our attention to biautomata that have both the �-property, and the F -property.
Some discussion on biautomata without the F -property is given in the conclu-
sions section. For biautomata with �- and F -property, we are now interested in
the trade-off between nondeterministic an deterministic versions. An exponen-
tial upper bound for the cost of determinizing nondeterministic biautomata is
given in Lemma 3, by the powerset construction. In the following we also prove
an exponential lower bound for this conversion.

118 M. Holzer and S. Jakobi

Lemma 10. For all integers n ≥ 1 there is a binary regular language Ln ac-
cepted by a nondeterministic biautomaton with �-, and F -property that has 3n+2
states, and for which every equivalent deterministic biautomaton with �- and F -
property needs at least 22n + 1 states.

Proof (Sketch of). In order prove the exponential lower bound we consider the
language Ln = Σ∗aΣn−1aΣ∗ over the alphabet Σ = {a, b} with n = k + 1
and n ≥ 1. Since any ordinary deterministic finite automaton accepting the
language Ln needs at least 2n states, also any deterministic biautomaton that
has the �- and the F -property needs at least an exponential number of states.
By using a combined product and powerset construct as presented in [9] to
convert the nondeterministic finite automaton A into an equivalent deterministic
biautomaton B which has the �- and F -property leads to a lower bound of 22n+1
states—we omit the details. The construction of a 3n+2-states nondeterministic
biautomaton Cn with the �- and F -property is sketched in Figure 2. There the

q0

0 1 . . . k

0′′ 1′′ . . . k′′

0′ 1′ . . . k′

qf

a, b

a, b

a

a, b a, b a, b

a

a, b a, b a, b

a, b a, b a, b

a

a, b a, b a, b

a

a, b

a, b

a, b a, b a, b

a, b a, b a, b

a a a

a a a

Fig. 2. The nondeterministic biautomaton Cn with the �- and the F -property for the
language Ln = Σ∗aΣn−1aΣ∗, for n ≥ 1; recall that n = k + 1

idea is to use nondeterminism to guess the appropriate a-letters from the left
and right, and then to verify the distance between these two guessed letters by
moving the heads towards each other until they meet. ��

In the following sections we present conversions from different descriptional
models, each of which characterize the family of regular languages, to nonde-
terministic biautomata. These conversions will be such that both the �- and the
F -property are obtained in a very natural way. This is further evidence, that
these properties are reasonable restrictions on nondeterministic biautomata.

Nondeterministic Biautomata and Their Descriptional Complexity 119

4 From Finite Automata to Nondeterministic Biautomata

The trade-off between finite automata and deterministic biautomata with �-
and F -property was studied in [9]. There it is shown that any n-state nondeter-
ministic finite automaton can be transformed into an equivalent deterministic
biautomaton with 22n − 2(2n − 1) states, and this bound is tight. The corre-
sponding tight bound for converting n-state deterministic finite automata into
equivalent deterministic biautomata is n · 2n − 2(n − 1) states. Here we show
that we can transform any finite automaton into an equivalent nondeterministic
biautomaton with �- and F -property of quadratic size. The following theorem
provides the upper bound, which we later prove to be tight.

Theorem 11. For any given (deterministic or nondeterministic) finite automa-
ton A with n states, one can construct an equivalent nondeterministic biautoma-
ton with n2 states that has the �-property and the F -property. ��

Our next goal is to prove a lower bound for this conversion. Therefore we use
a straight-forward adaption of the extended fooling set technique for classical
finite automata to biautomata with the �-property and the F -property.

Lemma 12. A set S = { (xi, yi, zi) | xi, yi, zi ∈ Σ∗, 1 ≤ i ≤ n } is a bi-fooling
set for a language L ⊆ Σ∗ if the following two properties hold:

1. for 1 ≤ i ≤ n it is xiyizi ∈ L, and
2. for 1 ≤ i, j ≤ n, with i �= j, it is xiyjzi /∈ L or xjyizj /∈ L.

If S is a bi-fooling set for the language L, then any nondeterministic biautomaton
with both the �-property and the F -property that accepts the language L has at
least |S| states. ��

We now use the technique of Lemma 12 to prove a lower bound for the conversion
from Theorem 11.

Theorem 13. For all integers n ≥ 1 there is a binary regular language Ln
accepted by an n-state deterministic finite automaton, such that any nondeter-
ministic biautomaton that has the �-property and the F -property needs n2 states
to accept the language Ln.

Proof (Sketch of). We only consider the case n ≥ 3. Consider the language Ln
accepted by the deterministic finite automaton An = (Q,Σ, δ, q0, F) over the
alphabet Σ = {a, b}, with state set Q = {0, 1, . . . , n − 1}, initial state q0 = 0,
final states F = {0}, and whose transition function δ is defined as follows—cf.
Figure 3.

δ(i, a) =

{
i+ 1 for 0 ≤ i ≤ n− 2,

0 for i = n− 1,
δ(i, b) =

{
i+ 1 for 0 ≤ i ≤ n− 2,

n− 1 for i = n− 1.

We now define a bi-fooling set of size n2 for Ln. For 0 ≤ i, j ≤ n− 1 define the
following words: xi,j = ai, yi,j = an−ibn−2aj+2, and zi,j = an−j . Then the set

120 M. Holzer and S. Jakobi

0 1 . . . n−1
a, b a, b a, b

a

b

Fig. 3. The deterministic finite automaton An, for n ≥ 3

S = { (xi,j , yi,j , zi,j) | 0 ≤ i, j ≤ n− 1 } is a bi-fooling set for Ln, which will be
shown in the following. First note that for 0 ≤ i, j,≤ n−1 the word xi,j ·yi,j ·zi,j =
anbn−2an+2 is accepted by An, thus, it belongs to the language Ln. Now consider
pairs of integers (i, j), and (i′, j′), with 0 ≤ i, i′, j, j′ ≤ n− 1, and (i, j) �= (i′, j′).
We have to show that at least one of the words xi,jyi′,j′zi,j and xi′,j′yi,jzi′,j′

does not belong to the language Ln. We consider two cases, namely i �= i′ and
i = i′. (i) Let i �= i′ and assume that (j′ − j) mod n �= n − 1 holds. Then
the word xi,j · yi′,j′ · zi,j = an−i

′+ibn−2an+2+j′−j is not accepted by An. After

reading an−i
′+i, the automaton An is in some state q, with 1 ≤ q ≤ n− 2, and

then after reading bn−2 from state q, the automaton An reaches state n − 1.
From state n − 1, a string am leads to the only accepting state 0 if and only
if m mod n = 1, but from our assumption (j′ − j) mod n �= n− 1, we conclude
that (n + 2 + j′ − j) mod n �= 1, so the word cannot be accepted by An. The
case i �= i′ and (j′ − j) mod n = n − 1 is treated similarly. (ii) Finally, let
i = i′, which implies j �= j′. Then the word xi,j · yi′,j′ · zi,j = anbn−2an+2+j′−j

is not accepted by An, since from the initial state 0, by reading anbn−2, the
automaton reaches state n − 2. From there, a string am leads to the accepting
state 0 if and only if m mod n = 2, but since 0 ≤ j, j′ ≤ n− 1, and j �= j′, it is
(n+2+j′−j) mod n �= 2—thus, the word is not accepted by An. This concludes
the proof that S is a bi-fooling set for Ln. ��

5 From Syntactic Monoid to Nondeterministic
Biautomata

The language L ⊆ Σ∗ is regular if and only if there exists a finite monoid M ,
a morphism ϕ : Σ∗ → M , and a subset N ⊆ M such that L = ϕ−1(N). The
monoid M is said to recognize L. The syntactic monoid of L is the smallest
monoid recognizing the language under consideration. It is uniquely defined up
to isomorphism and is induced by the syntactic congruence ∼L defined over Σ∗

by u ∼L v if and only if xuy ∈ L ⇐⇒ xvy ∈ L, for every x, y ∈ Σ∗. The
syntactic monoid of L is the quotient monoid M(L) = Σ∗/ ∼L. In [9] it was
shown that if a regular language L is given by its syntactic monoid of size n,
then the minimal deterministic biautomaton with �- and F -property for L has
at most n2 states, and this bound can be reached for certain n. In the following
we show that we can do better in case of nondeterministic biautomata.

Theorem 14. Let L ⊆ Σ be regular language given by a syntactic monoid of
size n. Then the minimal nondeterministic biautomaton with the �- and the F -
property has at most n states. This bound can be reached for every n ≥ 1.

Nondeterministic Biautomata and Their Descriptional Complexity 121

Proof (Sketch of). Let M(L) be the syntactic monoid of L. We refer to the
monoid operation by •. Moreover, let ϕ : Σ∗ → M(L) be the morphism such
that L = ϕ−1(N), for N = {ϕ(u) | u ∈ L }. Then we define a nondeterministic
biautomaton Aϕ such that L = L(Aϕ) as follows: let Aϕ = (Q,Σ, ·, ◦, N, F),
where Q = M(L), F = {1}—here 1 = ϕ(λ) is the identity element of M(L),—
and

m ·a = {n ∈M(L) | m = ϕ(a)•n } and m◦a = {n ∈M(L) | m = n•ϕ(a) },
for every m ∈ M(L) and a ∈ Σ. Then it remains to prove that L = L(Aϕ) and
that that Aϕ satisfies both, the �- and the F -property—we omit the details. The
lower bound can be verified with the witness language (an)∗. ��

6 From Regular Expressions to Nondeterministic
Biautomata

We show that the Glushkov-construction [5,12], which constructs a nondeter-
ministic finite automaton from a given regular expression, can be easily adapted
to convert any regular expression into a nondeterministic biautomaton, that has
both the �- and the F -property. Given a regular expression r over an alpha-
bet Σ, we denote by r′ the regular expression, where all occurrences of alphabet
symbols in r are numbered from left to right. For example, for r = (a+ b) · a∗,
we have r′ = (a1 + b2) · a∗3. The new alphabet over which r′ is defined, is de-
noted by Γ . Further, let ϕ : Γ → Σ be the function that maps a numbered
symbol ai ∈ Γ to its original symbol a ∈ Σ. Now we define the following sets of
positions:

firstr′ = { i | ∃v ∈ Γ ∗ : aiv ∈ L(r′) },
lastr′ = { i | ∃v ∈ Γ ∗ : vai ∈ L(r′) },

and

followr′(i) = { j | ∃u, v ∈ Γ ∗ : uaiajv ∈ L(r′) }.
If the expressions r, and r′ are clear from the context, we omit the index r′.
In [1] it is shown how to effectively construct the sets first, last, and follow.
Let us define a biautomaton A′

r = (Qr, Γ, ·′r, ◦′r, Ir , Fr) for the language L(r′),
with states Qr = { (i, j), (⊥, j), (i,⊥), (⊥,⊥) | ai, aj ∈ Γ }, final states

Fr = { (⊥, j) | j ∈ firstr′ } ∪ { (i,⊥) | i ∈ lastr′ }
∪ { (i, j) | j ∈ followr′(i) } ∪ { (⊥,⊥) | λ ∈ L(r′) },

and initial states Ir = { (⊥,⊥) }. The transition functions ·′r, and ◦′r are defined
such that for all states (x, y) ∈ Qr and symbols aj ∈ Γ , we have

(x, y) ·′r aj � (j, y) if

{
either x = i for some ai ∈ Γ and j ∈ followr′(i),

or x = ⊥ and j ∈ firstr′ ,

(x, y) ◦′r aj � (x, j) if

{
either y = i for some ai ∈ Γ and i ∈ followr′(j),

or y = ⊥ and j ∈ lastr′ .

122 M. Holzer and S. Jakobi

To obtain a biautomaton for the language L(r) we simply apply the mapping ϕ to
the input symbols of A′

r: let Ar = (Qr, Σ, ·r, ◦r, Ir, Fr), where for all symbols ai ∈
Γ , and states p, q ∈ Qr we have

p ·r a =
⋃

ϕ(ai)=a

p ·′r ai, p ◦r a =
⋃

ϕ(ai)=a

p ◦′r ai.

The following theorem shows the correctness of this construction, and gives an
upper bound on the size increase. Here the size of a regular expression r over
an alphabet Σ is measured by the alphabetic width of r, which is the number of
occurrences of symbols from Σ in the expression r.

Theorem 15. Let r be a regular expression of alphabetic width n over the al-
phabet Σ. Then Ar is a nondeterministic biautomata with L(Ar) = L(r) that
has (n+ 1)2 states. Further, Ar has the �- and the F -property. ��

The following lemma provides a lower bound for this conversion.

Lemma 16. For all integers n ≥ 1 there is a binary language Ln with alphabetic
width n, such that any nondeterministic biautomaton with the �- and the F -
property needs n2 states to accept the language Ln.

Proof (Sketch of). Let n ≥ 1, and consider the language Ln which is described
by the regular expression r = (an−1b)∗ of alphabetic width n. Then one can show
that the set S = { (ai, an−1−iban−1−j, ajb) | 0 ≤ i, j ≤ n− 1 } is a bi-fooling set
for the language Ln. ��

7 Conclusions

The results and constructions in this paper for nondeterministic biautomata
with �- and F -property are evidence that this automaton model is a reason-
able nondeterministic counterpart of the model of biautomata, as introduced
in [10]. In particular, the connection between (unrestricted) biautomata and lin-
ear grammars on the one hand, and the fact that biautomata with �-property
accept regular languages on the other hand substantiate the call for this prop-
erty. Concerning the F -property, its influence on the size of the biautomata is
yet to be studied. For nondeterministic biautomata, one can simply enforce the
F -property (without changing the accepted language, of course) as follows: add
a new final state f without any outgoing transitions to the automaton, then,
for all states q and input symbols a, add forward and backward transitions on
symbol a from q to f , whenever state q goes to some accepting state on either
a forward or a backward transition on a. We can also use this technique on
deterministic biautomata, obtaining an equivalent nondeterministic biautoma-
ton with F -property, which, when determinized by powerset construction, yields
a deterministic biautomaton with F -property, and where the number of states
is at most twice the number of states of the original deterministic biautoma-
ton. Unfortunately, this conversion does not necessarily preserve the �-property.

Nondeterministic Biautomata and Their Descriptional Complexity 123

Nevertheless, by close inspection of the proof in [7] that biautomata with �-
property accept regular languages, one can deduce a quadratic upper bound for
converting biautomata with �-property into equivalent nondeterministic finite
automata. From there, using constructions from [9], and from this paper, one
can obtain upper bounds for enforcing the F -property, while preserving the �-
property—in case of nondeterministic biautomata, the bound is polynomial, and
for deterministic biautomata it is exponential. The search for tight bounds for
these conversions is left as an open problem.

References

1. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret.
Comput. Sci. 48(3), 117–126 (1986)

2. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

3. Champarnaud, J.M., Dubernard, J.P., Jeanne, H., Mignot, L.: Two-sided deriva-
tives for regular expressions and for hairpin expressions. arXiv:1301.3316v1 [cs.FL]
(2012)

4. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

5. Glushkov, V.M.: The abstract theory of automata. Russian Mathematics Sur-
veys 16, 1–53 (1961)

6. Hartmanis, J.: On the succinctness of different representations of languages. SIAM
J. Comput. 9(1), 114–120 (1980)

7. Holzer, M., Jakobi, S.: Minimization, characterizations, and nondeterminism for
biautomata. IFIG Research Report 1301, Institut für Informatik, Justus-Liebig-
Universität Gießen, Arndtstr. 2, D-35392 Gießen, Germany (2013)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

9. Jirásková, G., Kĺıma, O.: Descriptional complexity of biautomata. In: Kutrib, M.,
Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 196–208. Springer,
Heidelberg (2012)

10. Kĺıma, O., Polák, L.: On biautomata. RAIRO–Informatique Théorique et Appli-
cations/Theoretical Informatics and Applications 46(4), 573–592 (2012)

11. Loukanova, R.: Linear context free languages. In: Jones, C.B., Liu, Z., Woodcock,
J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 351–365. Springer, Heidelberg (2007)

12. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Transactions on Electronic Computers EC-9(1), 39–47 (1960)

13. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of the 12th Annual Symposium on Switching and
Automata Theory, pp. 188–191. IEEE Computer Society Press (1971)

14. Rosenberg, A.L.: A machine realization of the linear context-free languages. Inform.
Control 10, 175–188 (1967)

Queue Automata of Constant Length

Sebastian Jakobi1,�, Katja Meckel1,�,
Carlo Mereghetti2,�,��, and Beatrice Palano2,�,��

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{jakobi,meckel}@informatik.uni-giessen.de

2 Dip. Informatica, Univ. degli Studi di Milano, v. Comelico 39, 20135Milano, Italy
{mereghetti,palano}@di.unimi.it

Abstract. We introduce and study the notion of constant length queue
automata, as a formalism for representing regular languages. We show
that their descriptional power outperforms that of traditional finite state
automata, of constant height pushdown automata, and of straight line
programs for regular expressions, by providing optimal exponential and
double-exponential size gaps. Moreover, we prove that constant height
pushdown automata can be simulated by constant length queue au-
tomata paying only by a linear size increase, and that removing non-
determinism in constant length queue automata requires an optimal
exponential size blow-up, against the optimal double-exponential cost
for determinizing constant height pushdown automata.

Keywords: deterministic, nondeterministic, queue and pushdown
automata, straight line programs, descriptional complexity.

1 Introduction

It is well known that computational power can be tuned by restricting the way
memory is accessed. To get a quick overview of this phenomenon, one may start
from the traditional model of one-way Turing machines, where memory is mod-
eled by a potentially unbounded working tape that can be freely accessed. If we
impose a lifo usage of the working tape, still keeping unboundedness, then we
obtain pushdown automata, whose computational power (context-free languages)
is strictly lower. On the other hand, by imposing a fifo access policy, we get
queue automata, whose power gets back to that of Turing machines.

In all cases, by fixing a constant bound — i.e., not depending on the input
length — on the amount of available memory, the computational power boils
down to that of finite state automata, regardless of memory usage mode. For
constant memory machines, it is then worth investigating how the way in which
memory is accessed affects their descriptional power, in other words, their capa-
bility of succinctly representing regular languages.

� Partially supported by CRUI/DAAD under the project “Programma Vigoni: De-
scriptional Complexity of Non-Classical Computational Models”.

�� Partially supported byMIUR under the project “PRIN: Automi e Linguaggi Formali:
Aspetti Matematici e Applicativi”.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 124–135, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Queue Automata of Constant Length 125

This line of research is settled in [10], where the notion of a constant height
pushdown automaton is introduced and studied from a descriptional complexity
perspective. Roughly speaking, this device is a traditional pushdown automaton
(see, e.g., [11]) with a built-in constant limit on the height of the pushdown. Op-
timal exponential and double-exponential gaps are proved between the size of
constant height deterministic and nondeterministic pushdown automata (dpdas
and npdas, respectively), deterministic and nondeterministic finite state au-
tomata (dfas and nfas), and that of classical regular expressions. Moreover,
also the notion of a straight line program for regular expressions (slp, see Sec-
tion 2) is introduced, as a formalism equivalent to a constant height npda from
a size point of view. In [4,5], the fundamental problem of removing nondetermin-
ism in constant height npdas is tackled, and a double-exponential size blow-up
for determinization is emphasized. Finally, the descriptional cost of boolean op-
erations on constant height dpdas and npdas is analyzed in [3,6].

In this paper, we investigate the descriptional advantages of substituting the
pushdown with a queue storage of fixed size by introducing the notion of a
constant length queue automaton. Basically, this device is a traditional queue
automaton (see, e.g., [2,8]), where the length of the queue cannot grow beyond
a fixed constant limit.

As for constant height pushdown automata, in Section 3 we single out opti-
mal exponential and double-exponential gaps between the size of constant height
deterministic and nondeterministic queue automata (dqas and nqas, respec-
tively) and dfas and nfas. However, differently from constant height pushdown
automata, in Section 4 we prove that a queue storage enables a size-efficient
handling of nondeterminism. Precisely, we show that nfas can be simulated by
constant length dqas paying by only a linear size increase. This, in turn, leads
us to prove that the optimal cost of removing nondeterminism in constant length
nqas is only exponential, in sharp contrast with the optimal double-exponential
blow-up above pointed out for the pushdown case.

The higher descriptional power of a queue vs. a pushdown storage in a constant
setting is also emphasized in Section 5, where we show that constant height
npdas (resp., dpdas) can be simulated by constant length nqas (resp., dqas),
paying by only a linear size increase. On the other hand, the opposite simulations
have optimal exponential costs; this is witnessed by proving, in Section 6, that
constant length dqas can be exponentially smaller than equivalent slps, and
this gap is optimal. Finally, in Section 7, we provide some concluding remarks.

2 Preliminaries: Adding Memory to Finite State
Automata

We assume the reader is familiar with the basic notions on formal language
theory (see, e.g., [11]). The set of all words (including the empty word ε) over
a finite alphabet Σ is denoted by Σ∗. By |w| we denote the length of a word
w ∈ Σ∗, and by Σi the set of words of length i ≥ 0 (with Σ0 = {ε}). We let

Σ≤k =
⋃k
i=0Σ

i. A language on Σ is any subset of Σ∗.

126 S. Jakobi et al.

We refer the reader to the literature for the notions of deterministic and
nondeterministic finite state automata (resp., dfas and nfas). The other two
computational models we shall be dealing with, can be obtained by equipping fi-
nite state automata with some auxiliary memory storage. Depending on whether
such memory is used in a lifo- or fifo-mode, we have pushdown or queue au-
tomata, respectively. In particular, we will be interested in the case in which the
auxiliary memory storage has a fixed constant size.

Constant Height Pushdown Automata. A nondeterministic pushdown au-
tomaton (npda) is formally defined as a septuple A = 〈Q,Σ, Γ, δ, q0,⊥, F 〉,
where Q,Σ, q0, F are defined as for nfas, Γ is the pushdown alphabet, ⊥ ∈ Γ
is the initial symbol in the pushdown store, and the transition function δ maps
Q× (Σ∪{ε})×Γ to finite subsets of Q×Γ ∗. At any time, the pushdown content
may be represented by a string where the leftmost symbol is the top of the push-
down while the rightmost is its bottom. Let δ(q, σ,X) � (p, γ). Then A, being
in the state q, reading σ on the input and X on the top of the pushdown, can
reach the state p, replace X by γ and finally, if σ �= ε, advance the input head
one symbol. An input string is accepted, if there exists a computation beginning
in the state q0 with ⊥ in the pushdown, and ending in some final state q ∈ F
after reading this input. The set of all inputs accepted by A is denoted by L(A).
The deterministic version (dpda) is obtained by imposing that: for any q ∈ Q,
σ ∈ Σ ∪ {ε} and X ∈ Γ , we have |δ(q, σ,X)| ≤ 1, and if δ(q, ε,X) is defined
then |δ(q, a,X)| = 0 for any a ∈ Σ.

A constant height npda [10] is obtained from a traditional npda by imposing
that the pushdown store can never contain more than h symbols, for a given
constant h ≥ 0. By definition, any attempt to store more than h symbols in the
pushdown results in rejection. Such a machine will be denoted by an octuple
A = 〈Q,Σ, Γ, δ, q0,⊥, F, h〉, where h ≥ 0 is the pushdown height, and all other
elements are defined as above.

Constant Length Queue Automata. A nondeterministic queue automaton
(nqa, see e.g. [2,8]) is formally defined as a septuple A = 〈Q,Σ, Γ, δ, q0,�, F 〉,
where Q,Σ, q0, F are defined as for nfas, Γ is the queue alphabet, � ∈ Γ is
the initial symbol in the queue store, and the transition function δ maps Q ×
(Σ ∪ {ε}) × Γ to finite subsets of Q × {D,K} × Γ ∗. At any time, the queue
content may be represented by a string where the leftmost symbol is the head
of the queue while the rightmost is its tail. Let δ(q, σ,X) � (p, χ, ω). Then A,
being in the state q, reading σ on the input and X as the head of the queue,
can reach the state p, delete (resp., keep) X if χ = D (resp., χ = K), enqueue ω
(i.e., append ω after the tail) and finally, if σ �= ε, advance the input head one
symbol. An input string is accepted, if there exists a computation beginning in
the state q0 with � in the queue, and ending in some final state q ∈ F after
reading this input. The set of all inputs accepted by A is denoted by L(A).
The deterministic version (dqa) is obtained by imposing that: for any q ∈ Q,
σ ∈ Σ ∪ {ε} and X ∈ Γ , we have |δ(q, σ,X)| ≤ 1, and if δ(q, ε,X) is defined
then |δ(q, a,X)| = 0 for any a ∈ Σ.

Queue Automata of Constant Length 127

A quick comment on this definition of queue automata is in order. Here, we
allow ε-moves but not stationary moves on the input, this latter feature being
introduced, e.g., in [2,8]. Our choice is motivated by guaranteeing direct and
fair comparisons with pushdown automata, where stationary moves are never
considered. However, it is not hard to see that queue automata with ε-moves
and queue automata with stationary moves are descriptionally equivalent.

A constant length nqa is obtained from a traditional nqa by imposing that
the queue can never contain more than h symbols, for a given constant h ≥ 0.
Any attempt to store more than h symbols in the queue results in rejection.
Such a machine will be denoted by an octuple A = 〈Q,Σ, Γ, δ, q0,�, F, h〉, where
h ≥ 0 is the queue length, and all other elements are defined as above.

Throughout the rest of the paper, for the sake of conciseness, we will be
using the designation “constant memory automaton” to denote either a constant
height npda or a constant length nqa. For constant memory automata, a fair
size measure (see, e.g., [3,10]) takes into account all the components the device
consists of, i.e.: (i) the number of finite control states, (ii) the size of the memory
alphabet, and (iii) the memory limit.

Straight Line Programs for Regular Expressions. A regular expression
over a given alphabet Σ, is: (i) ∅, ε, or any symbol a ∈ Σ, (ii) (r1 + r2), (r1 · r2),
or r∗1, if r1 and r2 are regular expressions. The language represented by a given
regular expression is defined in the usual way (see, e.g., [11]).

A convenient way for representing regular expressions is given by straight line
programs. Given a set of variables X = {x1, . . . , x�}, a straight line program
for regular expressions (slp, see [10]) on Σ is a finite sequence of instructions
P ≡ instr1 , . . . , instr� , where the i-th instruction instri has one of the forms:

(i) xi := ∅, xi := ε, or xi := a for any symbol a ∈ Σ,
(ii) xi := xj+xk, xi := xj ·xk, or xi := x∗j , for 1 ≤ j, k < i.

Such a program P expands to the regular expression in x� (output variable),
obtained by nested macro-expansion of the variables x1, . . . , x�−1, using the right
parts of their instructions. Notice that a variable may be reused several times in
the right parts. Such a number of occurrences is called the fan-out of the variable.
The fan-out of x� is 0, while the fan-out of any other variable is at least 1. Note
that point (ii) imposes a loopless structure to slps, naturally leading to their
digraph representation analogous to that of boolean circuits (see, e.g., [1,10]).

The size of an slp P is measured by parameters length(P) and fan-out(P),
where length(P) denotes the number of instructions in P , and fan-out(P) the
maximum fan-out of its variables. It is not hard to see that a regular expression
may be seen as an slp with fan-out 1. In general, due to fan-out power, straight
line programs can be exponentially more succinct than regular expressions [10].

3 Comparing Queue and Finite State Automata

In [10], it is proved that any constant height npda (resp., constant height dpda)
can be converted into an equivalent nfa (resp., dfa) paying by an exponential

128 S. Jakobi et al.

size increase, this cost being optimal (i.e., necessary in some cases). An analogous
result may be obtained for converting constant length nqas or dqas:

Theorem 1. For each constant length nqa A = 〈Q,Σ, Γ, δ, q0,�, F, h〉, there
exists an equivalent nfa A′ = 〈Q′, Σ, δ′, q′0, F

′〉 with |Q′| ≤ |Q|·|Γ≤h|. Moreover,
if A is a dqa then A′ is a dfa.

Proof. The key idea is to keep the queue content of A, represented by a string
in Γ≤h, in the finite control state of A′. The transitions of A′ reflect step-by-
step the evolution of both state and queue content. Thus, we define our nfa
A′ = 〈Q′, Σ, δ′, q′0, F

′〉 as having Q′ = Q × Γ≤h, q′0 = [q0,�], F ′ = F × Γ≤h,
and δ′ defined as follows, for any p, q ∈ Q, ω ∈ Γ≤h, σ ∈ Σ ∪ {ε}, and X ∈ Γ :

– If (p, χ, ω) ∈ δ(q, σ,X) and α ∈ Γ≤h−1, then [p,Xeαω] ∈ δ′([q,Xα], σ),
provided that |Xeαω| ≤ h, where e = 0 if χ = D, and e = 1 if χ = K.

The reader may easily verify that L(A′) = L(A), and that this transformation
preserves determinism. ��

Let us now show the optimality of the exponential simulation costs presented
in Theorem 1. Consider the following witness language, for each h > 0, each
alphabet Γ , and a separator symbol � �∈ Γ :

DΓ,h = {w�w : w ∈ Γ≤h} .

Such a language is accepted by small constant length dqas, while any accepting
nfa must be exponentially larger:

Theorem 2. For each h > 0 and each alphabet Γ :

(i) The language DΓ,h is accepted by a dqa with 3 states, with queue alphabet
Γ ∪ {�,�} and with constant length h+ 1.

(ii) Any nfa accepting the language DΓ,h must have at least |Γ≤h| states.

Proof. We informally describe the behavior of a constant length dqa A for DΓ,h,
accepting the input w�w. First, A stores w� in the queue by remaining in its initial
state and using no more than h + 1 queue cells. Then, by switching to another
state, A compares the input suffix w against the queue content by dequeuing any
matching symbol. Finally, by reading the sole symbol � in the queue, A reaches
a final state by an ε-move. The formal definition of A, correctly managing also
inputs not in DΓ,h, may be easily fixed by the reader. This shows point (i).

To prove point (ii), assume by contradiction an nfa B for DΓ,h exists, with
less than |Γ≤h| states. Suppose also that any non-final state of B has an outgoing
path leading to a final state, otherwise we can remove the state without altering
the accepted language. By counting arguments, there exist two different words
v �= w ∈ Γ≤h taking B from the initial to the same non-final state q. Now, let α
be a word leading B from q to a final state. Clearly, we have that both vα and
wα belong to DΓ,h. From this, we get that β�vβ = α = β�wβ for some β ∈ Γ≤h,
hence v = w against the hypothesis v �= w. ��

Queue Automata of Constant Length 129

Now, we investigate the size trade-off between constant length nqas and dfas.
By Theorem 1, any constant length nqa can be simulated by an equivalent nfa,
paying by an exponential size increase. In turn, the classical powerset transfor-
mation of nfas into dfas induces another exponential blowup. So, we get

Proposition 3. Any constant length nqa with state set Q, queue alphabet Γ ,

and queue length h can be converted into an equivalent dfa with 2|Q|·|Γ≤h| states.

The double-exponential simulation cost pointed out in Proposition 3 is optimal.
In fact, for each h > 0, each alphabet Γ , and a separator symbol � �∈ Γ , define
the language

SΓ,h = {v1v2 · · · vr�w1w2 · · ·wt : vi, wj ∈ Γ h and (∪ri=1{vi})∩ (∪tj=1{wj}) �= ∅} .

The following theorem proves that SΓ,h can be accepted by a constant length
nqa whose components have size linear in h, while any equivalent dfa requires
a number of states which cannot be less than double-exponential in h:

Theorem 4. For each h > 0 and each alphabet Γ :

(i) The language SΓ,h is accepted by an nqa with O(h) states, with queue al-
phabet Γ ∪ {�} and with constant length h.

(ii) Any dfa accepting the language SΓ,h must have at least 2|Γ
h| states.

Proof. Point (i) is left to the reader. For point (ii), assume by contradiction

a dfa A for SΓ,h exists, with less than 2|Γ
h| states. By counting arguments, this

implies the existence of two different subsets of Γ h, say B = {x1, x2, . . . , xm}
and C = {y1, y2, . . . , yn}, such that A reaches the same state q after processing
either the input string α = x1x2 · · ·xm and the input string β = y1y2 · · · yn.
Without loss of generality, assume that u ∈ B and u /∈ C. Clearly, the word
α�u belongs to SΓ,h, while the word β�u does not. However, starting from q and
processing the same suffix �u, we get that A accepts α�u if and only if it accepts
β�u, a contradiction. ��

4 The Cost of Determinizing Queue Automata

Let us now focus on the cost of removing nondeterminism in constant length
queue automata. We are going to prove an optimal exponential cost, in sharp
contrast with the realm of constant height pushdown automata where an optimal
double-exponential cost is proved in [4,5].

As a preliminary result, we complete the picture given in the previous section
by studying the missing simulation. Precisely, we show that, by having a constant
length queue at our disposal, we can remove nondeterminism in finite state
automata paying by only a linear size increase.

Theorem 5. For each nfa A = 〈Q,Σ, δ, q1, F 〉, there exists an equivalent con-
stant length dqa A′ = 〈Q′, Σ, Γ, δ′, q0,�, F ′, h〉 such that |Q′| ∈ O(|Q| · |Σ|), and
|Γ | , h ∈ O(|Q|).

130 S. Jakobi et al.

Proof. The key idea is to simulate the behavior of the powerset automaton of A
(i.e., the dfa obtained from A by the powerset construction) by using the queue
of A′ to store the set of states in which A may currently be. Each possible tran-
sition of A is simulated in A′ by consuming the state q at the head of the queue,
and enqueuing the set of successors of q on the current input symbol. Formally,
we let our constant length dqa A′ = 〈Q′, Σ, Γ, δ′, q0,�, F ′, h〉 as having:
– Q′ = { eqa, ẽqa | q ∈ Q, a ∈ Σ } ∪ { ta | a ∈ Σ } ∪ { q0, r, rF },
– Γ = Q ∪ {�,�},
– F ′ = {rF } if q1 /∈ F , otherwise F ′ = {q0, rF } if q1 ∈ F ,
– h = 2 · |Q|+ 2,

and δ′ defined as follows. The first transition initializes the queue, reads the
first input symbol, and stores it in the finite state control. So, for every a ∈ Σ,
we let δ′(q0, a,�) = (ta, D, q1� �). Roughly speaking, along the computation
of A′, the queue content will be a string in Γ ∗ of the form α�β�, with α, β ∈ Q∗,
having the following meaning: the prefix α represents the set of states in which A
may currently be in, while the factor β represents the set of states A may visit
upon reading the current input symbol. This queue content is managed by A′

as follows: the first symbol of α (i.e., the state q at the head of the queue) is
consumed and its successor states in A are enqueued. To accomplish this task,
a queue rotation is required to avoid multiple storing of the same state in the
second part β of the queue. To this aim, the transitions on the state eqa rotate the
queue content until � is reached, while those on ẽqa still rotate the queue content,
together with deleting the successors of q already occurring in β. Formally, let
Q = {q1, q2, . . . , qn} be the state set of A, and for any P = {qi1 , qi2 , . . . , qi�} ⊆ Q
with i1 < i2 < · · · < i� define wP as the string qi1qi2 · · · qi� ∈ Γ ∗. For any a ∈ Σ
and p, q ∈ Q, we let

δ′(ta, ε, q) = (eqa, D, ε), δ′(ta, ε, �) = (r,D, ε),

δ′(eqa, ε, p) = (eqa, D, p), δ′(eqa, ε, �) = (ẽqa, D, �),

δ′(ẽqa, ε, p) =

{
(ẽqa, D, ε) if p ∈ δ(q, a),
(ẽqa, D, p) if p /∈ δ(q, a),

δ′(ẽqa, ε,�) = (ta, D,wδ(q,a)�).

If there is no further state symbol of A in first part of the queue, i.e., if the head
of the queue is �, we need to process β upon the next input symbol. To this aim,
the queue content is modified from �β� to β��. We get this by rotating the queue
in the states r and rF , while checking whether some state in F shows up in the
queue. If this is the case, A′ enters the accepting state rF at the end of rotation,
otherwise it enters the state r. Formally, for any a ∈ Σ and q ∈ Q, we let

δ′(r, ε, q) =

{
(r,D, q) if q /∈ F ,
(rF , D, q) if q ∈ F ,

δ′(rF , ε, q) = (rF , D, q),

δ′(r, a,�) = δ′(rF , a,�) = (ta, D, � �).

To see that L(A′) = L(A), let A′′ be the corresponding powerset automaton
of A. First, note that ε is accepted by A′ if and only if ε is accepted by A′′.

Queue Automata of Constant Length 131

Now, assume that A′′ is in some state P1 ⊆ Q, reads an input symbol a ∈ Σ,
and goes to successor state P2 ⊆ Q. Further, assume that A′, after consuming
the input symbol a, is in the state ta, and its queue content is w1��, for some
permutation w1 of wP1 — note that this situation is established since the be-
ginning, after the first transition of A′. Then, for each state symbol q in w1, the
dqa A′ deletes this symbol from w1, and adds the state symbols from δ(q, a)
to the second part of the queue between the � and � symbols. When all state
symbols from w1 are processed, the queue content of A′ is �w2 �, where w2 is
some permutation of wP2 . Now, A

′ sees the � symbol in the queue and scans
the word w2, trying to reveal some accepting state symbol q ∈ F by rotating
the queue content symbol by symbol. When A′ sees the � symbol, the scanning
of w2 is completed. In this situation, A′ is in the accepting state rF if and only if
there is an accepting state of A in the state set P2. Then, the next input symbol
is consumed, the new queue content is w2� �, and A′ is ready to simulate the
next step of A′′. Thus, after completely sweeping the input string, A′ is in the
accepting state rF if and only if A′′ entered an accepting state.

Clearly, the dqa A′ has 2 · |Q| · |Σ|+ |Σ|+3 states and |Q|+2 queue symbols.
Moreover, notice that at any time the queue contains: any state symbol q ∈ Q
at most once in the first part and at most once in the second part, at most one �
symbol, at most one � symbol. So, the queue length never exceeds 2 · |Q|+2. ��

As a consequence, we can settle the claimed optimal exponential size cost for
the determinization of constant length nqas:

Theorem 6. For each constant length nqa A = 〈Q,Σ, Γ, δ, q0,�, F, h〉 there
exists an equivalent constant length dqa A′ = 〈Q′, Σ, Γ ′, δ′, q′0,�′, F ′, h′〉 with
|Q′| ∈ O(|Q| ·

∣∣Γ≤h∣∣ · |Σ|) and |Γ ′| , h′ ∈ O(|Q| ·
∣∣Γ≤h∣∣). Furthermore, this con-

version is optimal.

Proof. First, we use Theorem 1 to transform the given constant length nqa into
an equivalent nfa, paying by an exponential size increase. Then, we use the
linear transformation in Theorem 5 to get the desired constant length dqa.

To get the optimality of this exponential cost, assume by contradiction a
sub-exponential size increase. Then, by Theorem 1, we would get a sub-double-
exponential conversion cost from constant length nqas to dfas, against the
double-exponential optimality pointed out at Theorem 4. ��

5 Comparing Queue and Pushdown Automata

We begin by showing that constant height pushdown automata can be simulated
by constant length queue automata paying by only a linear size increase.

Theorem 7. For any constant height npda A = 〈Q,Σ, Γ, δ, q0,⊥, F, h〉, there
exists an equivalent constant length nqa A′ with 2 · |Q| states, |Γ | + 1 queue
symbols, and queue length h+ 1. Moreover, if A is a dpda then A′ is a dqa.

132 S. Jakobi et al.

Proof. The key idea is to maintain the pushdown storage in the queue so that
the queue head (resp., tail) represents the symbol at the top (resp., bottom) of
the pushdown. The simulation in A′ of a move of A works as follows: (i) the
head (corresponding to the top of A) is consumed, (ii) the string to pile at the
top of the pushdown is enqueued, preceded by a special separator symbol � /∈ Γ ,
(iii) the whole queue content is rotated symbol by symbol, until � is consumed.
It is easy to see that at the end of this rotation the new queue content reflects
the pushdown content in A after the move.

So, we let our constant length nqa A′ = 〈Q′, Σ, Γ ∪ {�}, δ′, q0,⊥, F, h + 1〉
as having Q′ = Q ∪ {qr : q ∈ Q}, and δ′ defined as follows. Given the move
δ(q, σ, Z) � (p, γ), with σ ∈ Σ ∪ {ε}, we let

δ′(q, σ, Z) = {(pr, D, �γ)},
δ′(pr, ε,X) = {(pr, D,X)} for any X ∈ Γ \ {�},
δ′(pr, ε, �) = {(p,D, ε)}.

The first transition enqueues the pushed string and prepares to queue rotation,
this task being then accomplished by the second transitions. Finally, the third
transition switches state according to δ.

Clearly, |Q′| = |Q|+ |{qr : q ∈ Q}| = 2 · |Q|, while the set of queue symbols has
cardinality |Γ |+1. Also, notice that the queue rotation process increases by 1 the
length of the queue at the first step, due to appending �. In conclusion, observe
that no nondeterminism is induced by moves from the states in {qr : q ∈ Q}. So,
if A is deterministic then A′ is deterministic as well. ��

For the reverse conversions, i.e., from queue to pushdown automata, note that
Theorem 1 directly implies an exponential upper bound since a finite automaton
can be seen as a pushdown automaton that does not use its pushdown store.
Thus, the following result holds:

Proposition 8. For each constant length nqa A = 〈Q,Σ, Γ, δ, q0,�, F, h〉, there
exists an equivalent constant height npda A′ = 〈Q′, Σ, Γ ′, δ′, q′0,⊥, F ′, h′〉 with
|Q′| ≤ |Q|·|Γ≤h| and |Γ ′| = h′ = 1. Moreover, if A is a dqa then A′ is a dpda.

A corresponding exponential lower bound for converting constant length queue
automata to constant height pushdown automata, i.e., the optimality of Propo-
sition 8, will be proved later in Section 6.

We end this section, by addressing the costs of converting npdas to dqas,
and nqas to dpdas:

Proposition 9. For each constant height npda A = 〈Q,Σ, Γ, δ, q0,⊥, F, h〉
there exists an equivalent constant length dqa A′ = 〈Q′, Σ, Γ ′, δ′, q′0,�, F ′, h′〉
with |Q′| ∈ O(|Q| ·

∣∣Γ≤h∣∣ · |Σ|) and |Γ ′| , h′ ∈ O(|Q| ·
∣∣Γ≤h∣∣). Furthermore, this

conversion is optimal.

Proposition 10. For each constant length nqa A = 〈Q,Σ, Γ, δ, q0,�, F, h〉,
there exists an equivalent constant height dpda A′ = 〈Q′, Σ, Γ ′, δ′, q′0,⊥, F ′, h′〉
with |Q′| ≤ 2|Q|·|Γ≤h| and |Γ ′| = h′ = 1. Furthermore, this conversion is optimal.

Queue Automata of Constant Length 133

6 Comparing Queue Automata and Straight Line
Programs

By composing Proposition 8 with [10], we get:

Proposition 11. For each constant length nqa A=〈Q,Σ, Γ, δ, q0,�, F, h〉, there
is an equivalent slp of length O(|Q|4 · |Γ≤h|4 · |Σ|) and fan-out O(|Q|2 · |Γ≤h|2).
For the optimality of Proposition 11, we consider the following language, for
each h > 0, alphabet Γ , and separator symbols $, � /∈ Γ :

LΓ,h =
⋃
u∈Γh

{ (�u)i$ | i ≥ 1 }.

Theorem 12. For each h > 0 and each alphabet Γ :

(i) The language LΓ,h is accepted by a dqa with O(h) states, with queue alpha-
bet Γ ′ = Γ ∪ {�, �}, and with constant queue length h+ 1.

(ii) Any slp accepting the language LΓ,h must have at least
∣∣Γ h∣∣ variables.

Proof. A dqa for LΓ,h stores the prefix �u of a given input word in its queue,
while checking that |u| = h by using O(h) states. Then, it matches its queue
content against the rest of the input word by rotating the queue symbol by
symbol. Upon reading the input symbol $ and the symbol � at the head of the
queue, the dqa enters a final state.

Let us now switch to slps for LΓ,h. We first introduce some terminology. In
an slp, we call star-variable any variable x occurring in star-instruction of the
form x := y∗. Moreover, we denote by L(x) the language represented by the
regular expression computed in x.

So, let P be an slp computing a regular expression for LΓ,h, and let P ′ be
the slp obtained from P by replacing every star-instruction x := y∗ by the
instruction x := ε. Clearly, P ′ describes a finite language for which we let m be
the length of the longest word. It is easy to see that any z ∈ LΓ,h with |z| > m
must be represented in P by a star-variable producing some non-empty factor
of z. By applying this observation to the word zu = (�u)m$ ∈ LΓ,h, with u ∈ Γ h,
we get the existence of a star-variable xu in P such that: (i) zu = zu,1zu,2zu,3
with ε �= zu,2 ∈ L(xu), and (ii) for all z′u,2 ∈ L(xu), we have zu,1z

′
u,2zu,3 ∈ LΓ,h.

The non-empty factor zu,2 must contain at least one � symbol. Otherwise, P
would describe a word with a factor ω ∈ Γ ∗ satisfying |ω| > h, which cannot
belong to LΓ,h. If zu,2 contains at least two � symbols, then it contains the
factor �u�. If zu,2 contains only one � symbol, i.e., if zu,2 = v1�v2 for v1, v2 ∈ Γ ∗,
then v1 (resp., v2) is a suffix (resp., prefix) of u. In fact, since z2u,2 ∈ L(xu), it
must be v2v1 = u. Thus, we have shown that, for every word u ∈ Γ h, there
exists a star-variable xu such that L(xu) contains a word having �u� as a factor.

If P has less than
∣∣Γ h∣∣ variables, clearly there exist u, v ∈ Γ h, with u �= v,

satisfying xu = xv. This implies that the language L(xu) contains words that
have �u� and �v� as factors. Moreover, since L(xu) is closed under star operation,
we get that P describes words of the form α�u�β�v�γ �∈ LΓ,h, for α, β, γ ∈
(Γ ∪ {�, $})∗, a contradiction. Thus, P must have at least

∣∣Γ h∣∣ variables. ��

134 S. Jakobi et al.

As a consequence of Theorem 12, we get the optimality of the exponential conver-
sions of constant length queue automata to constant height pushdown automata
addressed in Proposition 8:

Proposition 13. The exponential conversions from constant length dqas to
constant height npdas, and from constant length nqas (resp., dqas) to constant
height npdas (resp., dpdas) are optimal.

We conclude by converting slps to constant length nqas or dqas:

Proposition 14. The size increase for converting slps to equivalent constant
length dqas (resp., nqas) is exponential (resp., linear). Furthermore, the expo-
nential transformation is optimal.

7 Concluding Remarks

For reader’s ease of mind, we sum up in Figure 1 the main relations on the sizes of
the different types of formalisms for regular languages considered in this paper:

nfa

h-npda

h-nqa

h-dpda

dfa

h-dqa slp

�

lin

�

lin

�

exp

�

exp

�lin

	
exp

�lin �exp

	
lin

��

� �
�exp

	
double
exp

�

poly

�

lin

�

double
exp

�

lin

�

exp

�

lin

�

exp

�

lin

�

double
exp

�lin

	
exp

�

lin

��

� �

lin

�

� �

�
exp

�

� �

�

exp

Fig. 1. Costs of simulations among different types of formalisms defining regular lan-
guages. Here h-dpda (h-npda) denotes constant height dpda (npda, respectively),
while h-dqa (h-nqa) denotes constant length dqa (nqa, respectively). An arc labeled
by lin (poly, exp, double exp) from a vertex A to a vertex B means that, given a repre-
sentation of type A, we can build an equivalent representation of type B, paying by a
linear (polynomial, exponential, double-exponential, respectively) increase in the size.

Queue Automata of Constant Length 135

Among possible future researches, one may investigate constant memory au-
tomata working on unary, i.e., single-letter, input alphabets (see, e.g., [7,9]). We
also would like to emphasize the interest in two-way devices.

Acknowledgements. The authors wish to thank the anonymous referees for
their comments.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Allevi, E., Cherubini, A., Crespi Reghizzi, S.: Breadth-first phrase-structure gram-
mars and queue automata. In: Koubek, V., Janiga, L., Chytil, M.P. (eds.) MFCS
1988. LNCS, vol. 324, pp. 162–170. Springer, Heidelberg (1988)

3. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean op-
erations on constant height deterministic pushdown automata. Th. Comp. Sci. 449,
23–36 (2012)

4. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism
in constant height pushdown automata. In: Kutrib, M., Moreira, N., Reis, R. (eds.)
DCFS 2012. LNCS, vol. 7386, pp. 76–88. Springer, Heidelberg (2012)

5. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism
in constant height pushdown automata; submitted for publication

6. Geffert, V., Bednárová, Z., Mereghetti, C., Palano, B.: Boolean language operations
on nondeterministic automatawith apushdownof constant height. In:Bulatov,A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 100–111. Springer, Heidelberg
(2013)

7. Bianchi, M.P., Mereghetti, C., Palano, B., Pighizzini, G.: On the size of unary
probabilistic and nondeterministic automata. Fund. Inf. 112, 119–135 (2011)

8. Cherubini, A., Citrini, C., Crespi Reghizzi, S., Mandrioli, D.: QRT FIFO automata,
breadth-first grammars and their relations. Th. Comp. Sci. 85, 171–203 (1991)

9. Chrobak, M.: Finite automata and unary languages. Th. Comp. Sci. 47, 149–158
(1986); Corrigendum. ibid. 302, 497–498 (2003)

10. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. Comp. 208, 385–394 (2010)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2001)

12. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proc. IEEE 12th Symp. Switch. Aut. Th., pp. 188–191 (1971)

13. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

On the State Complexity of the Reverse

of R- and J -Trivial Regular Languages

Galina Jirásková 1,� and Tomáš Masopust 2,��

1 Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice, Slovak Republic

jiraskov@saske.sk
2 Institute of Mathematics, Academy of Sciences of the Czech Republic

Žižkova 22, 616 62 Brno, Czech Republic
masopust@math.cas.cz

Abstract. The tight bound on the state complexity of the reverse of
R-trivial and J -trivial regular languages of the state complexity n is
2n−1. The witness is ternary for R-trivial regular languages and (n− 1)-
ary for J -trivial regular languages. In this paper, we prove that the
bound can be met neither by a binary R-trivial regular language nor
by a J -trivial regular language over an (n − 2)-element alphabet. We
provide a characterization of tight bounds for R-trivial regular languages
depending on the state complexity of the language and the size of its
alphabet. We show the tight bound for J -trivial regular languages over
an (n− 2)-element alphabet and a few tight bounds for binary J -trivial
regular languages. The case of J -trivial regular languages over an (n−k)-
element alphabet, for 2 ≤ k ≤ n− 3, is open.

1 Introduction

Regular languages of simple forms play an important role in mathematics and
computer science. The reader is referred to, e.g., [1,6,12] for a few applications of
J -trivial (piecewise testable) languages. The aim of this paper is to investigate
the state complexity of the reverse of two such language classes, namely of R-
trivial and J -trivial regular languages.

For a regular language, the state complexity is the number of states of its
minimal automaton representation. The reverse of an automaton or of a language
is a classical operation whose state complexity is exponential in the worst case.
There exist binary witness languages of the state complexity n with the reverse
of the state complexity 2n, see [11,17]. This even holds true for union-free regular
languages defined by regular expressions without the union operation [8].

As mentioned above, we consider languages defined by Green’s equivalence
relations, namely R-trivial and J -trivial regular languages. Let M be a monoid
and s and t be two elements of M . Green’s relations L, R, J , and H on M are

� Research supported by VEGA grant 2/0183/11 and by grant APVV-0035-10.
�� Research supported by GAČR grant P202/11/P028 and by RVO: 67985840.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 136–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

State Complexity of the Reverse of R- and J -Trivial Regular Languages 137

defined so that (s, t) ∈ L if and only if M · s = M · t, (s, t) ∈ R if and only if
s ·M = t ·M , (s, t) ∈ J if and only if M · s ·M = M · t ·M , and H = L ∩ R.
For ρ ∈ {L,R,J ,H}, M is ρ-trivial if (s, t) ∈ ρ implies s = t, for all s, t in M .
A language is ρ-trivial if its syntactic monoid is ρ-trivial. Note that H-trivial
regular languages coincide with star-free languages [10, Chapter 11] and that
L-trivial, R-trivial and J -trivial regular languages are all star-free. Moreover,
J -trivial regular languages are both L-trivial and R-trivial.

Equivalently, a regular language is R-trivial if and only if it is a finite union of
languages of the form Σ∗

1a1Σ
∗
2a2Σ

∗
3 · · ·Σ∗

kakΣ
∗, where k ≥ 0, ai ∈ Σ, and Σi ⊆

Σ \ {ai}, or if and only if it is accepted by a partially ordered minimal DFA [3].
Similarly, a regular language is J -trivial (or piecewise testable) if and only if it is
a finite boolean combination of languages of the form Σ∗a1Σ∗a2Σ∗ . . . Σ∗akΣ∗,
where k ≥ 0 and ai ∈ Σ, or if and only if the minimal DFAs for both the language
and the reverse of the language are partially ordered [13,14]. Other automata
representations of these languages can be found, e.g., in [7] and the literature
therein. Stern [15] suggested a polynomial algorithm to decide whether a regular
language is J -trivial. Trahtman [16] recently improved this result to a quadratic
algorithm.

In [9], we have shown that the bound on the state complexity of the reverse of
R- and J -trivial regular languages is 2n−1 for languages of the state complexity
n. We have also shown that this bound can be met by a ternaryR-trivial regular
language and conjectured that an (n − 1)-element alphabet is sufficient for J -
trivial regular languages of the state complexity n to meet the bound, which
was proved in [4]. In this paper, we prove the optimality of the size of these
alphabets. Namely, we prove that the bound on the state complexity of the
reverse can be met neither by a binary R-trivial regular language (Lemma 2)
nor by a J -trivial regular language over an (n−2)-element alphabet (Theorem 2).
As a result, we provide a complete characterization of tight bounds for R-trivial
regular languages depending on the state complexity of the language and the
size of its alphabet (Theorem 1). Finally, we prove a tight bound for J -trivial
regular languages over (n− 2)-element alphabets (Theorem 3) and several tight
bounds for binary J -trivial regular languages (Table 1). The case of J -trivial
regular languages over (n−k)-element alphabets, for 2 ≤ k ≤ n− 3, is left open.

2 Preliminaries and Definitions

We assume that the reader is familiar with automata and formal language theory.
The cardinality of a set A is denoted by |A|, and the powerset of A is denoted
by 2A. An alphabet is a finite nonempty set. The free monoid generated by an
alphabet Σ is denoted by Σ∗. A string over Σ is any element of Σ∗, and the
empty string is denoted by ε.

A nondeterministic finite automaton (NFA) is a 5-tupleM = (Q,Σ, δ,Q0, F),
where Q is the finite nonempty set of states, Σ is the input alphabet, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q is
the transition function that can be extended to the domain 2Q×Σ∗. The language

138 G. Jirásková and T. Masopust

accepted by M is the set L(M) = {w ∈ Σ∗ | δ(Q0, w) ∩ F �= ∅}. The NFA M is
deterministic (DFA) if |Q0| = 1 and |δ(q, a)| = 1 for every q in Q and a in Σ. In
this case we identify singleton sets with their elements and simply write q instead
of {q}. Moreover, the transition function δ is a total map fromQ×Σ toQ that can
be extended to the domainQ×Σ∗. Two states of a DFA are distinguishable if there
exists a string w that is accepted from one of them and rejected from the other;
otherwise they are equivalent. A DFA isminimal if all its states are reachable and
pairwise distinguishable. A non-accepting state d ∈ Q such that δ(d, a) = d, for
all a in Σ, is called a dead state.

The state complexity of a regular language L, denoted by sc(L), is the number
of states in the minimal DFA accepting the language L.

The subset automaton of an NFA M = (Q,Σ, δ,Q0, F) is the DFA M ′ =
(2Q, Σ, δ′, Q0, F

′) constructed by the standard subset construction.
Let M = (Q,Σ, δ,Q0, F) be a DFA. The reachability relation ! on the states

of M is defined by p ! q if there exists a string w in Σ∗ such that δ(p, w) = q.
The DFA M is partially ordered if the reachability relation ! is a partial order.
For two states p and q of M , we write p ≺ q if p ! q and p �= q. A state p is
maximal if there is no state q such that p ≺ q.

The reverse wR of a string w is defined by εR = ε and (va)R = avR, for v inΣ∗

and a in Σ. The reverse of a language L is the language LR = {wR | w ∈ L}. The
reverse of a DFAM is the NFAMR obtained fromM by reversing all transitions
and swapping the role of initial and accepting states. The following result says
that there are no equivalent states in the subset automaton of the reverse of a
minimal DFA. We use this fact in the paper when proving the tightness of upper
bounds. By this fact, it is sufficient to show that the corresponding number of
states is reachable in the subset automaton since the distinguishability always
holds.

Fact 1 ([2]). All states of the subset automaton corresponding to the reverse of
a minimal DFA are pairwise distinguishable. ��
In what follows we implicitly use the characterization that a regular language is
R-trivial if and only if it is accepted by a minimal partially ordered DFA and
that it is J -trivial if and only if both the language and its reverse are accepted
by minimal partially ordered DFAs. This characterization immediately implies
that J -trivial regular languages are closed under reverse. However, R-trivial
regular languages are not closed under reverse since not all R-trivial regular
languages are J -trivial. For instance, the R-trivial regular language of Fig. 2 is
not J -trivial, hence the minimal DFA for its reverse is not partially ordered.

The following lemma shows that in some cases we do not need to distinguish
between DFAs with and without dead state. In particular, we can get a result
for DFAs without a dead state immediately from the analogous result for DFAs
with a dead state or vice versa.1

Lemma 1. Let L be a regular language. Then sc(L) = sc(Lc), where Lc denotes
the complement of L. In particular, we have sc(LR) = sc((Lc)R). ��
1 We are grateful to an anonymous referee for pointing out this observation.

State Complexity of the Reverse of R- and J -Trivial Regular Languages 139

LetM be a DFA with a dead state reaching the upper bound on the reverse. This
lemma says that if the complement of M does not have a dead state, the same
result can be reached by DFAs without a dead state. Indeed, the complement of
M reaches the bound. However, Table 1 demonstrates that there are cases where
this technique fails because both the DFA and its complement have a dead state.

Immediate consequences of this lemma combined with the known results are
formulated below.

Corollary 1. (i) There exist ternary R-trivial regular languages L1 and L2

whose automaton representation has and does not have a dead state, respectively,
with sc(L1) = sc(L2) = n and sc(LR1) = sc(LR2) = 2n−1. (ii) There exist J -
trivial regular languages L1 and L2 over an alphabet Σ with |Σ| ≥ n− 1 whose
automaton representation has and does not have a dead state, respectively, with
sc(L1) = sc(L2) = n and sc(LR1) = sc(LR2) = 2n−1.

Proof. Using Lemma 1, (i) follows from [9, Lemma 3, p. 232] since the automaton
used there has a dead state and its complement does not, while (ii) follows from
the automaton used in [4, Theorem 5, p. 15]. ��

3 R-Trivial Regular Languages

Recall that the state complexity of the reverse for R-trivial regular languages
with the state complexity n is 2n−1 and there exists a ternary witness language
meeting the bound [9]. We now prove that the ternary alphabet is optimal, that
is, the bound cannot be met by any binary R-trivial regular language.

Lemma 2. Let L be a binary R-trivial regular language with sc(L) = n, where
n ≥ 2. Then sc(LR) ≤ 2n−2 + n− 1.

Proof. Let M = ({1, . . . , n}, {a, b}, δ, 1, F) be a minimal partially ordered DFA
with n states such that i ! j implies i ≤ j. LetM ′ denote the subset automaton
of the NFA MR. We show that M ′ has at most n − 1 reachable states that do
not contain n− 1. By Lemma 1, we can assume that state n of M is accepting,
otherwise we take the complement ofM . Then there are three cases inM between
states n− 1 and n: (i) state n− 1 has self-loops under both letters a and b, (ii)
both letters a, b go from state n− 1 to state n, or (iii) without loss of generality,
the transition under b goes from n− 1 to n and a is a self-loop in state n− 1.

In the first case, states n and n− 1 have self-loops under both letters in M .
As n− 1 is non-accepting (otherwise equivalent to n), n appears in all and n− 1
in no reachable states of M ′. This gives at most 2n−2 reachable states in M ′.

In the second case, no sets without state n−1 are reachable inM ′, except for
F , because state n appears in all reachable states of M ′ and any transition of
M ′ generates state n− 1 into the next state. Thus, expect for the initial state F
of M ′, every reachable state of M ′ contains both n and n− 1. Hence, the upper
bound is at most 2n−2 + 1.

In the third case, all subsets not containing state n− 1 must be reachable in
M ′ by strings in a∗. We prove that at most n− 1 such sets are reachable in M ′.

140 G. Jirásková and T. Masopust

0

1

2

3

5

6

7

8

4

9

a

a

a

a

a, b

a

a

a

a, b

a, b

b

b

b

b

b

b

b

Fig. 1. There are three trees, namely T4 = {0, 1, 2, 3, 4}, T8 = {5, 6, 7, 8}, and T9 = {9};
b-transitions are dotted

To this aim, it is sufficient to show that F · an−1 = F · an−2, where · denotes
the transition function of the subset automaton M ′. The subautomaton of M ,
defined by restricting to the alphabet {a}, is a disjoint union of trees Tq where
δ(q, a) = q and Tq consists of all states that can reach q by a string in a∗; see
Fig. 1 for illustration. Let k be the depth of Tq, and let F ′ = F ∩ Tq. If q ∈ F ′,
then F ′ · ak = Tq. If q /∈ F ′, then F ′ · ak = ∅. In both cases, F ′ · ak = F ′ · ak+1.
Now F ·am is a disjoint union of such F ′ ·am. By the assumption, all trees are of
depth at most n− 2; recall that there is no a-transition from n− 1 to n. Hence
F · an−1 = F · an−2 follows. ��

The following lemma shows the lower bound 2n−2 on the state complexity of the
reverse of binary R-trivial regular languages.

Lemma 3. For every n ≥ 3, there exists a binary R-trivial regular language L
with sc(L) = n such that sc(LR) ≥ 2n−2. ��

The bound is reached by DFAs depicted in Fig. 2.
Using a computer program we have computed a few tight bounds summarized

in Table 1. The bound 2n−2 + (n − 1) is met by a DFA for L with sc(L) = n
if n ≤ 6, but not if n = 7. In addition, more than 2n−2 states are reachable if
n ≤ 7, but not if n = 8. By Lemma 1, this means that for n = 8, the worst-case
minimal partially ordered DFA has a dead state and so does its complement. It
is worth mentioning that the witness languages are even J -trivial, hence these
tight bounds also apply to binary J -trivial regular languages discussed in the
next section.

0 1 2 . . . n− 2n− 1

a, ba, b

a

b

a, b a, ba, b

Fig. 2. A binary R-trivial regular language meeting the bound 2n−2 for the reverse

State Complexity of the Reverse of R- and J -Trivial Regular Languages 141

Table 1. Tight bounds for the reverse of binary R-trivial regular languages

Worst-case sc(LR)
where DFA for L is

n = without with Upper bound Lower bound
sc(L) dead state dead state 2n−2 + n− 1 2n−2 Witness

1 1 1 1/2 1/2
2 2 2 2 1 L2 = a∗b(a+ b)∗

3 4 4 4 2 L3 = b∗ + b∗aL2

4 7 7 7 4 L4 = b∗aL3

5 12 12 12 8 L5 = b∗a(aL3 + bL2)
6 21 21 21 16 L6 = b∗a(b∗a+ L5)
7 34 34 38 32 b∗ab∗a(a+ b)(ε+ aL3 + bL2)
8 55 64 71 64

We now prove that for n ≥ 8, the upper bound is 2n−2 for binary languages.

Lemma 4. Let n ≥ 8 and let L be a binary R-trivial regular language with
sc(L) = n. Then sc(LR) ≤ 2n−2 and the bound is tight.

Proof. Consider a minimal partially ordered n-state DFA M over a binary al-
phabet {a, b}. By definition, each maximal state of M has self-loops under both
letters a and b, hence there are at most two nonequivalent maximal states in M .

If there are two maximal states, then one of them is accepting and the other
one is the dead state. The accepting state appears in all reachable subsets of the
subset automaton of the NFA MR, while the dead state appears in no reachable
subset. Hence the number of reachable subsets is bounded by 2n−2.

It remains to prove that 2n−2 is also the bound for M with only one maximal
state. If the only maximal state is the dead state, we take the complement that
has the same state complexity by Lemma 1 and has no dead state. Thus, assume
thatM has a single maximal state, n, which is accepting. Note that if a minimal
binary partially ordered DFA has at least four states, there is a path of length
two in the automaton. Consider three last states of such a longest path, say
(n − 2) → (n − 1) → n. In particular, there is no longer path from n − 2 to n.
Note also that n − 1 is not accepting, otherwise it is equivalent to n. As in the
proof of Lemma 2, we can show that to reach the upper bound, the situation
between states n− 1 and n must be as depicted in Fig. 3.

We now compute the number of reachable sets in the subset automaton of
the NFA MR containing n and n − 1, but not n − 2. Recall from the proof of
Lemma 2 that F · ak, k ≥ 0, reaches at most n− 1 different subsets.

If both a, b go from state n − 2 to state n − 1, then there are at most n − 1
subsets in the subset automaton of the NFA MR containing n and n − 1 and
not n− 2, namely F · ak · b with k ≥ 0.

If x = a, cf. Fig. 3, we have the following cases: (i) b goes to n, (ii) b goes to
another state p /∈ {n, n − 1, n − 2} (the case p = n − 1 is discussed above), or
(iii) b is a self-loop in n− 2.

142 G. Jirásková and T. Masopust

nn− 1n− 2

a, b

b

a

x

Fig. 3. Path of length two, where x ∈ {a, b}

In the first case, there is no subset containing n and n − 1 and not n − 2
reachable in the subset automaton of MR because n − 1 is introduced by b,
which also introduces n− 2.

In the second case, p must go to n (and only to n or p) because M has only
one maximal state, n, and there is no longer path from n− 2 to n. If p goes to n
under a, b, then p appears in all subsets containing n and n− 1, hence only F · b
contains n and n− 1 and not n− 2. If p goes to n under a and b is a self-loop in
p, then there are at most (n− 2) subsets containing n and n− 1 and not n− 2,
namely F · b · bk with k ≥ 0, computed similarly as in the proof of Lemma 2. If
p goes to n under b and a is a self-loop in p, then p is equivalent to n− 1 (if p
is non-accepting) or to n (if p is accepting), hence it is not possible.

In the third case, all subsets reachable in the subset automaton of MR con-
taining n and n − 1 and not n − 2 are F · ak · b · b� with k, � ≥ 0. There are at
most (n− 2)2 such subsets (at most n− 2 nonempty subsets F · ak in this case).

If x = b, we have the following cases: (i) a goes to n, (ii) a goes to another
state p /∈ {n, n− 1, n− 2}, or (iii) a is a self-loop in n− 2.

In the first case, there at most n− 1 subsets containing n and n− 1 and not
n− 2, namely F · ak · b with k ≥ 0.

In the second case, p must again go to n (and only to n or p) for the same
reason as above. If p goes to n under a, b, then p appears in all subsets containing
n and n − 1, hence at most n − 1 subsets, F · ak · b with k ≥ 0, contain n and
n− 1 and not n− 2. If p goes to n under a and b is a self-loop in p, then there
are at most 2n− 3 subsets containing n and n− 1 and not n− 2, namely n− 1
subsets F · ak · b and n− 2 subsets F · b · bk · a with k ≥ 0. If p goes to n under b
and a is a self-loop in p, then p is equivalent to n− 1 (or to n, see above).

In the third case, all subsets containing n and n−1 and not n−2 are reachable
only by strings with one b, i.e., the reachable subsets are F ·ak ·b·a� with k, � ≥ 0.
Their number is at most (n− 2)2 (at most n− 2 subsets F · ak in this case).

By the proof of Lemma 2, there are at most 2n−2 reachable sets in the subset
automaton of MR containing n and n − 1, and at most n − 1 reachable states
not containing n − 1. Thus, for n ≥ 4 and M with no dead state, the subset
automaton of MR has at most 2n−3+min(max(2n− 3, (n− 2)2), 2n−3)+ (n− 1)
reachable states (those containing n, n− 1, n− 2, those containing n, n− 1 and
not n− 2, and those containing n and not n− 1, respectively), which is less than
2n−2 for n ≥ 9. For n = 8 is the bound given by computation (Table 1). ��

Denote by fk(n) the state complexity function of the reverse on binary R-trivial
regular languages over a k-element alphabet defined by

fk(n) = max{sc(LR) | L ⊆ Σ∗, |Σ| = k, L is R-trivial regular, and sc(L) = n}.

State Complexity of the Reverse of R- and J -Trivial Regular Languages 143

Using this notation, we can summarize our results in the following theorem.

Theorem 1. Let n ≥ 1 and let fk(n) be the state complexity of the reverse on
R-trivial regular languages over a k-element alphabet. Then

f1(n) = n,

f2(n) =

⎧⎪⎪⎨⎪⎪⎩
1, if n = 1,
2n−2 + n− 1, if 2 ≤ n ≤ 6,
34, if n = 7,
2n−2, otherwise,

f3(n) = fk(n) = 2n−1, for every k ≥ 3. ��

4 J -Trivial Regular Languages

Every J -trivial regular language is also R-trivial, hence the previous bounds
apply. To prove the results of this section, we first define Simon’s condition on
R-trivial regular languages to be J -trivial.

Let M = (Q,Σ, δ, q0, F) be a DFA. It can be turned into a directed graph
G(M) with the set of vertices Q, where a pair (p, q) ∈ Q×Q is an edge in G(M)
if there is a transition from p to q in M . For Γ ⊆ Σ, we define the directed
graph G(M,Γ) with the set of vertices Q by considering only those transitions
that correspond to letters in Γ .

For a directed graph G = (V,E) and p ∈ V , the set C(p) = {q ∈ V | q =
p or there is a directed path from p to q} is called the component of p.

Definition 1 (Simon’s condition). A DFA M with an input alphabet Σ sat-
isfies Simon’s condition if, for every subset Γ of Σ, each component of G(M,Γ)
has a unique maximal state.

Simon [14] has shown the following result.

Fact 2. An R-trivial regular language is J -trivial if and only if its minimal
partially ordered DFA satisfies Simon’s condition.

Using Simon’s result we immediately obtain the following lemma.

Lemma 5. Let Γ ⊆ Σ. If a partially ordered DFA M over Σ satisfies Simon’s
condition, then the DFA M ′ (not necessarily connected) obtained from M by
removing transitions under letters from Γ also satisfies Simon’s condition. ��

We now prove the main result of this section.

Theorem 2. At least n−1 letters are necessary for a J -trivial regular language
of the state complexity n to reach the state complexity 2n−1 in the reverse.

Proof. We prove by induction on the number of states that every partially or-
dered DFA M satisfying Simon’s condition with n ≥ 3 states and at most n− 2
letters has less than 2n−1 subsets reachable in the subset automaton of MR.

144 G. Jirásková and T. Masopust

The basis for n = 3 holds since the automaton is over a unary alphabet, which
means that the set {F · ak | k ≥ 0} has at most three elements (cf. the proof of
Lemma 2).

Assume that for some k ≥ 3 the claim holds for every partially ordered DFA
satisfying Simon’s condition with at most k states and k − 2 letters. Let M =
(Q,Σ, δ, q0, F) be a partially ordered DFA satisfying Simon’s condition with
|Q| = k + 1 states and |Σ| < |Q| − 1 letters. We prove that less than 2|Q|−1

subsets are reachable in the subset automaton of the NFA MR. To do this, we
show that reachability of 2|Q|−1 subsets in the subset automaton of MR implies
the existence of a partially ordered DFA M ′′ = (Q′′, Σ′′, δ′′, q′′0 , F

′′) satisfying
Simon’s condition with |Σ′′| < |Q′′| − 1 letters, |Q′′| ≤ k states and 2|Q

′′|−1

reachable subsets in the subset automaton of the NFA M ′′R. However, by the
induction hypothesis, the number of reachable subsets in the subset automaton
ofM ′′R is less than 2|Q

′′|−1, which means that the assumption of 2|Q|−1 reachable
subsets in the subset automaton of MR cannot hold.

We may assume that M is connected and has no equivalent states, since any
two equivalent states of M appear in the same sets in the subset automaton
of MR, which implies reachability of less than 2|Q|−1 subsets in the subset au-
tomaton of MR. Similarly for two or more connected components. We may also
assume that the unique maximal state ofM , denoted by n, is accepting. Indeed,
a subset X ⊆ Q is reachable in the subset automaton of the reverse of M if and
only if the set Q \X is reachable in the subset automaton of the reverse of the
complement of M .

To constructM ′′, we first define nonempty sets S ⊆ Q\F and Γ ⊆ Σ such that
|S| ≤ |Γ | and use them to construct the (not necessarily connected) partially
ordered DFA M ′′ from M by removing state n and all transitions labeled by
letters from Γ and joining all states of S into a single state. We show that
M ′′ satisfies Simon’s condition and that it has 2|Q

′′|−1 reachable subsets in the
subset automaton of the reverse. Since |Σ| < |Q| − 1 and |S| ≤ |Γ |, we obtain
that |Σ′′| = |Σ| − |Γ | < |Q| − |S| − 1 = |Q′′| − 1 < k and induction applies.

To construct the sets S and Γ , let R = {q ∈ Q \ {n} | δ(q, a) = n, a ∈ Σ}
denote the set of all states different from n with a transition to n, and let
Γ = {a ∈ Σ | δ(R, a) ∩ {n} �= ∅} denote the set of letters connecting states
of R with state n. Note that R and Γ are nonempty. Let M ′ be the k-state
subautomaton of M obtained by removing state n and all transitions labeled by
letters from Γ . By Lemma 5, M ′ satisfies Simon’s condition.

Let max(R) denote the set of states of R that are maximal in M ′. For a state
p in max(R), let Cp denote the connected component of G(M ′) containing p,
and let Σp = {a ∈ Σ | δ(p, a) = n} ⊆ Γ denote the set of labels connecting p to
n, see Fig. 4 for illustration. Note that Cp and Cq are not connected, for p �= q,
otherwise p and q are two maximal states of the connected component containing
Cp ∪ Cq. Next, we show that for every letter a in Γ , there exists a state s in
max(R) such that s goes to n under a. Let a be a letter from Γ and let r be a
state in R with an a-transition to n such that no other state reachable from r
in M goes to n under a. If r is not in max(R), there is a state t in max(R) such

State Complexity of the Reverse of R- and J -Trivial Regular Languages 145

n

p

Σp

q

Σq

Σ

Σ \ Γ Σ \ Γ

Cp Cq

Fig. 4. The partially ordered DFA M ′; Γ = Σp ∪Σq

that r belongs to Ct. But then there are two maximal states in the component
containing r in the graph G(M, (Σ \ Γ)∪ {a}), namely n and the one reachable
from t by letters from (Σ \ Γ) ∪ {a}. Thus, Γ =

⋃
p∈max(R)Σp. Note that all

states of max(R) are non-accepting; if a state s of max(R) is accepting, then, by
the assumption, subset {n} is reachable in the subset automaton of MR. This
requires to eliminate state s from the initial state F . However, it can be done
only by a letter from Γ , which always introduces another state from max(R).

We now prove that |Γ | ≥ |max(R)|, i.e., for every state p in max(R), there
exists a letter σp in Σp that does not appear in Σq for any other state q in
max(R). For the sake of contradiction, assume that there is a state p in max(R)

with Σp ⊆
⋃q 	=p
q∈max(R)Σq. Since all subsets containing n and p and not any q

from max(R) different from p are reachable in the subset automaton of MR,
state p is introduced to the subset from n by a transition under a letter from Σp
which also introduces a state q �= p into that subset. Since Γ =

⋃q 	=p
q∈max(R)Σq,

any attempt to eliminate state q results in the introduction of a state q′ different
from p, which is a contradiction.

Let S = max(R). Then |Γ | ≥ |S| as required. Recall that the states of S are
maximal in M ′ and non-accepting. Thus, they do not appear in any reachable
subset of the subset automaton of the reverse of M ′. Construct the DFA M ′′

from M ′ by joining all states of S into one state. Then the subset automaton
of the reverse of M ′′ has the same number of reachable subsets as the subset
automaton of the reverse of M ′, and M ′′ satisfies Simon’s condition.

Finally, we show that M ′ (hence also M ′′) has 2|Q
′′|−1 reachable subsets in

the subset automaton of the reverse. Since n is accepting, each set X containing
n and nothing from S is reachable in the subset automaton of MR only by
symbols from Σ′′ = Σ \ Γ (otherwise a symbol from S is introduced and we
cannot get rid of states of S anymore), hence the set X \ {n} is reachable in the
subset automaton of M ′R. As there are 2|Q|−(|S|+1) = 2|Q

′′|−1 such sets,M ′′ has
2|Q

′′|−1 reachable subsets in the subset automaton of the reverse. This leads to
the contradiction explained above and completes the proof. ��

146 G. Jirásková and T. Masopust

1 2 . . . n− 2 n− 1

0

a1, . . . , an−2

a1

a2, . . . , an−2 an−3, an−2

a1, . . . , an−4

an−3

an−2

a1, . . . , an−3

an−2

Σ

Fig. 5. The witness minimal partially ordered DFA M satisfying Simon’s condition

Using this result, we can prove the tight bound on the state complexity of the
reverse for J -trivial regular languages over an (n− 2)-element alphabet.

Theorem 3. Let n ≥ 3 and let L be a J -trivial regular language over an (n−2)-
element alphabet with sc(L) = n. Then sc(LR) ≤ 2n−1−1 and the bound is tight.

Proof. The upper bound follows from Theorem 2. The tightness is witnessed by
the J -trivial regular language depicted in Fig. 5. ��

Lemma 4 also gives the upper bound for binary J -trivial regular languages. The
witness languages in Table 1 are J -trivial. For n ≥ 8, we need a dead state
to reach the upper bound 2n−2 and our witness automata have a dead state
(Fig. 2), hence the language is not J -trivial.

Corollary 2. Let L be a binary J -trivial regular language with sc(L) = n, where
n ≥ 4, then sc(LR) ≤ 2n−3 +min(max(2n− 3, (n− 2)2), 2n−3) + (n− 1). A few
tight bounds for 2 ≤ n ≤ 7 are given in Table 1. ��

Concerning the lower bound state complexity, it was shown in [5] that there are
finite binary languages whose reverse have a blow-up of 3 · 2n

2 −1− 1, for n even,

and of 2
n+1
2 − 1, for n odd. Since every finite language is J -trivial, we obtain at

least these lower bounds for binary J -trivial regular languages.

5 Conclusions

We have presented a characterization of tight bounds on the state complexity
of the reverse for R-trivial regular languages depending not only on the state
complexity of the language, but also on the size of its alphabet. As a consequence,
this characterization also gives upper bounds for J -trivial regular languages, but
they are not reachable for languages of the state complexity n over an (n− k)-
element alphabet, for 2 ≤ k ≤ n − 3. We have further shown tight bounds for
J -trivial regular languages over (n − 1)- and (n − 2)-element alphabets, but
(except for a few examples for binary J -trivial regular languages) the problem
of the tight bounds for J -trivial regular languages over an alphabet of a lower
cardinality is open.

State Complexity of the Reverse of R- and J -Trivial Regular Languages 147

Acknowledgements. The authors gratefully acknowledge comments and sug-
gestions of anonymous referees.

References

1. Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. Log-
ical Methods in Computer Science 8 (2012)

2. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for defi-
nite events. In: Symposium on Mathematical Theory of Automata. MRI Symposia
Series, vol. 12, pp. 529–561. Polytechnic Institute of Brooklyn, New York (1963)

3. Brzozowski, J.A., Fich, F.E.: Languages of R-trivial monoids. Journal of Computer
and System Sciences 20, 32–49 (1980)

4. Brzozowski, J.A., Li, B.: Syntactic complexity of R- and J -trivial regular lan-
guages. CoRR ArXiv 1208.4650 (2012)

5. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

6. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Smotrovs, J., Yakaryilmaz, A. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer, Heidelberg (2013)

7. Jahn, F., Kufleitner, M., Lauser, A.: Regular ideal languages and their boolean
combinations. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp.
205–216. Springer, Heidelberg (2012)

8. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Interna-
tional Journal of Foundations of Computer Science 22, 1639–1653 (2011)

9. Jirásková, G., Masopust, T.: On the state and computational complexity of the re-
verse of acyclic minimal dFAs. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS,
vol. 7381, pp. 229–239. Springer, Heidelberg (2012)

10. Lawson, M.: Finite Automata. Chapman and Hall/CRC (2003)
11. Leiss, E.: Succinct representation of regular languages by boolean automata. The-

oretical Computer Science 13, 323–330 (1981)
12. Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., Wibel,

S.: On languages piecewise testable in the strict sense. In: Ebert, C., Jäger, G.,
Michaelis, J. (eds.) MOL 10/11. LNCS (LNAI), vol. 6149, pp. 255–265. Springer,
Heidelberg (2010)

13. Simon, I.: Hierarchies of Events with Dot-Depth One. PhD thesis, Dep. of Applied
Analysis and Computer Science, University of Waterloo, Canada (1972)

14. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

15. Stern, J.: Complexity of some problems from the theory of automata. Information
and Control 66, 163–176 (1985)

16. Trahtman, A.N.: Piecewise and local threshold testability of DFA. In: Freivalds,
R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 347–358. Springer, Heidelberg (2001)

17. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125, 315–328 (1994)

Size of Unary One-Way Multi-head

Finite Automata

Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. We investigate the descriptional complexity of determinis-
tic one-way multi-head finite automata accepting unary languages. It
is known that in this case the languages accepted are regular. Thus,
we study the increase of the number of states when an n-state k-head
finite automaton is simulated by a classical (one-head) deterministic or
nondeterministic finite automaton. In the former case an upper bound of
O(n·F (t·n)k−1) and a lower bound of n·F (n)k−1 states is shown, where t
is a constant and F denotes Landau’s function. Since both bounds are of
order eΘ(

√
n·ln(n)), the trade-off for the simulation is tight in the order

of magnitude. For the latter case we obtain an upper bound of O(n2k)
and a lower bound of Ω(nk) states. We investigate also the costs for the
conversion of one-head nondeterministic finite automata to determinis-
tic k-head finite automata, that is, we trade nondeterminism for heads.
Finally, as an application of the simulation results, we show that decid-
ability problems for unary deterministic k-head finite automata such as
emptiness or equivalence are LOGSPACE-complete.

1 Introduction

One of the main topics of descriptional complexity is the question of how the
size of the description of a formal language varies when being described by dif-
ferent formalisms. A fundamental result is the exponential trade-off between the
number of states of nondeterministic (NFA) and deterministic finite automata
(DFA) (see, for example, [19]). Additional exponential and double-exponential
trade-offs are known, for example, between unambiguous and deterministic finite
automata, between alternating and deterministic finite automata, between deter-
ministic pushdown automata and DFA, and between the complement of a regular
expression and conventional regular expressions. Beside these recursive trade-
offs, bounded by recursive functions, it is known that there also non-recursive
trade-offs, which are not bounded by any recursive function. Such trade-offs have
at first been shown to exists between context-free grammars generating regular
languages and finite automata [19]. For a survey on recursive and non-recursive
trade-offs we refer to [6,8].

Unary languages, that is, languages defined over a singleton alphabet, are of
particular interest, since in this case often better or more precise results than

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 148–159, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Size of Unary One-Way Multi-head Finite Automata 149

in the case of arbitrary alphabets can be obtained. For example, the trade-

off of 2n between an n-state NFA and DFA, is reduced to eΘ(
√
n·ln(n)) in the

unary case [2]. The descriptional complexity of unary regular languages has
been studied in many ways. On the one hand, many automata models such
as one-way finite automata, two-way finite automata, pushdown automata, or
context-free grammars for unary languages are investigated and compared to
each other with respect to simulation results and the size of the simulation
(see, for example, [5,18,21,23]). On the other hand, many results concerning the
state complexity of operations on unary languages have been obtained (see, for
example, [7,12,17,22]).

Here, we consider deterministic one-way multi-head finite automata accept-
ing unary languages. Since it is known that every unary language accepted by
a one-way multi-head finite automaton is semilinear and thus regular [10,25],
it is of interest to investigate the descriptional complexity of such devices in
comparison with the models mentioned above. In detail, we establish upper and
lower bounds for the conversion of k-head DFA to one-head DFA and one-head
NFA. Moreover, we investigate the size costs for simulating one-head NFA by k-
head DFA and the computational complexity of decidability questions for k-head
DFA. Unary deterministic one-way multi-head finite automata have already been
studied in [14]. The main results obtained there are infinite proper hierarchies
with respect to the number of states as well as to the number of heads. It should
be noted that the trade-offs between general k-head DFA and one-head DFA are
non-recursive for all k ≥ 2 [13].

The paper is organized as follows. After preliminaries and definitions, we study
in Section 3 the costs of the conversion of k-head DFA to one-head DFA in terms
of the number of states. An upper bound of O(n ·F (t ·n)k−1) and a lower bound
of n · F (n)k−1 states is shown, where t is a constant and F denotes Landau’s
function. In Section 4, we consider the conversion to one-head NFA instead of
one-head DFA. The nondeterminism allows us here to reduce the exponential
to a polynomial upper bound that is in O(n2k). On the other hand, we can
also provide a lower bound in Ω(nk). The converse question of simulating an
n-state one-head NFA by a k-head DFA is considered in Section 5. Depending
on the number k of heads provided, we give upper bounds which are quadratic if

‘enough’ heads are available or in
k
√
eO(

√
n·ln(√n)), otherwise. For the latter case,

also lower bounds are proved. Finally, we study in Section 6 the computational
complexity of decidability questions such as emptiness, finiteness, inclusion, or
equivalence for k-head DFA. Using the results from Section 4, we can show that
all questions are LOGSPACE-complete.

2 Preliminaries and Definitions

We write A∗ for the set of all words over the finite alphabet A. The length of a
word w is denoted by |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.
For i ≥ 1, the ith prime number is denoted by pi, where p1 = 2.

150 M. Kutrib, A. Malcher, and M. Wendlandt

Let k ≥ 1 be an integer. A one-way k-head finite automaton is a finite au-
tomaton having a single read-only input tape whose inscription is the input
word in between two endmarkers (we provide two endmarkers in order to have
a definition consistent with two-way finite automata). The k heads of the au-
tomaton can move to the right or stay on the current tape square but not be-
yond the endmarkers. Formally, a deterministic one-way k-head finite automaton
(DFA(k)) is a system M = 〈S,A, k, δ,�,�, s0, F 〉, where S is the finite set of
internal states, A is the finite set of input symbols, k ≥ 1 is the number of heads,
� /∈ A is the left and � /∈ A is the right endmarker, s0 ∈ S is the initial state,
F ⊆ S is the set of accepting states, and δ : S × (A ∪ {�,�})k → S × {0, 1}k
is the partial transition function, where 1 means to move the head one square
to the right, and 0 means to keep the head on the current square. Whenever
(s′, d1d2 · · · dk) = δ(s, a1a2 · · · ak) is defined, then di = 0 if ai = �, for 1 ≤ i ≤ k.

A DFA(k) starts with all of its heads on the left endmarker. It halts when
the transition function is not defined for the current situation. Nevertheless, if
necessary, by adding some new states we always can modify a given DFA(k) such
that it halts in distinguished states with all heads on the right endmarker.

A configuration of a DFA(k) M = 〈S,A, k, δ,�,�, s0, F 〉 is a triple (w, s, t),
where w ∈ A∗ is the input, s ∈ S is the current state, and t = (t1, t2, . . . , tk)
in {0, 1, . . . , |w|+1}k gives the current head positions. If a position ti is 0, then
head i is scanning the symbol �, if it satisfies 1 ≤ ti ≤ |w|, then the head is
scanning the tith letter of w, and if it is |w| + 1, then the head is scanning
the symbol �. The initial configuration for input w is set to (w, s0, (0, . . . , 0)).
During the course of its computation, M runs through a sequence of configu-
rations. One step from a configuration to its successor configuration is denoted
by �. Let w = a1a2 · · · an be the input, a0 = �, and an+1 = �, then we
set (w, s, (t1, t2, . . . , tk)) � (w, s′, (t1 + d1, t2 + d2, . . . , tk + dk)) if and only if
(s′, d1d2 · · · dk) = δ(s, at1at2 · · · atk). As usual we define the reflexive, transitive
closure of � by �∗, and its transitive closure by �+. Note, that due to the re-
striction of the transition function, the heads cannot move beyond the right
endmarker.

The language accepted by a DFA(k) M is precisely the set of words w such
that there is some computation beginning with �w� on the input tape and
ending with the DFA(k) halting in an accepting state:

L(M) = {w ∈ A∗ | (w, s0, (0, . . . , 0)) �∗ (w, s, (t1, t2, . . . , tk)), s ∈ F,
and M halts in (w, s, (t1, t2, . . . , tk)) }.

3 From k Heads to One Head

We turn to investigate the state complexity of the maximal head reduction, that
is, for the unary DFA(k) to DFA(1) conversion. As is often the case in connection
with unary languages, the function

F (n) = max{ lcm(c1, c2 . . . , cl) | c1, c2, . . . , cl ≥ 1 and c1 + c2 + · · ·+ cl = n },

Size of Unary One-Way Multi-head Finite Automata 151

which gives the maximal order of the cyclic subgroups of the symmetric group
of n symbols, plays a crucial role, where lcm denotes the least common multiple. It
is well known that the ci always can be chosen to be relatively prime. Moreover,
an easy consequence of the definition is that the ci always can be chosen so
that c1, c2, . . . , cl ≥ 2, c1 + c2 + · · · + cl ≤ n, and lcm(c1, c2, . . . , cl) = F (n)
(cf., for example, [20]). Since F depends on the irregular distribution of the prime
numbers we cannot expect to express F (n) explicitly by n. The function itself
has been investigated by Landau [15,16] who proved the asymptotic growth rate

limn→∞
ln(F (n))√
n·ln(n) = 1. Currently the best known approximation for F is shown

in [26]. Bounds derived from this result (cf. [3]) are F (n) ∈ Ω
(
e
√
n·ln(n)

)
and

F (n) ∈ O
(
e
√
n·ln(n)(1+o(1))

)
.

The following theorem gives a lower bound for the conversion.

Theorem 1. For any integers k, n ≥ 2 so that n is prime, there is a unary
n-state DFA(k) M , such that n · F (n)k−1 states are necessary for any DFA to
accept the language L(M).

Proof. For any constants k ≥ 2 and prime n ≥ 2, we construct a unary n-state
DFA(k) M = 〈S, {a}, k, δ,�,�, s0, F}〉 with state set S = {s0, s1, . . . , sn−1}. As
mentioned above, there are integers c1, c2, . . . , cl ≥ 2 such that c1+c2+· · ·+cl ≤ n
and lcm(c1, c2, . . . , cl) = F (n). We set p(1) = 0, q(1) = c1 − 1, p(i) = q(i−1)+1,
q(i) = p(i) + ci − 1, for 2 ≤ i ≤ l. So, we obtain in particular q(l) ≤ n− 1.

The set of accepting states F is {sp(1), sp(2), . . . , sp(l)}. The transition function
δ is specified as follows. Transitions (1) to (3) drive head 1 from the left to the
right endmarker, whereby the length � of the input is counted modulo n. All the
other heads remain on the left endmarker.

(1) δ(s0,�k) = (s0, 10
k−1)

(2) δ(sj , a�k−1) = (sj+1, 10
k−1) for 0 ≤ j ≤ n− 2

(3) δ(sn−1, a�k−1) = (s0, 10
k−1)

If the length � of the input is congruent modulo n with one of the numbers
in {p(1), p(2), . . . , p(l)}, the computation continues with transition (4), whereby
the remaining heads are moved from the left endmarker and the current state is
kept.

(4) δ(sp(i),�,�k−1) = (sp(i), 01
k−1) for 1 ≤ i ≤ l

Now the second head is used together with the states sp(i) to sq(i) to count �
modulo ci. In each cycle, the remaining heads are moved one symbol less than
the second head.

(5) δ(sp(i),�ak−1) = (sp(i)+1, 010
k−2)

(6) δ(sj ,�ak−1) = (sj+1, 01
k−1) for p(i) + 1 ≤ j ≤ q(i)− 1

(7) δ(sq(i),�ak−1) = (sp(i), 01
k−1)

The computation continues with transitions of type (8) to (10) in the case the
second or any further head 2 ≤ h ≤ k − 1 reaches the right endmarker with

152 M. Kutrib, A. Malcher, and M. Wendlandt

state sp(i). Subsequently, head h+1 is driven to the right endmarker whereby it
counts modulo ci. Again, in each cycle, the remaining heads h + 2, h+ 3, . . . , k
are moved one symbol less than head h+ 1. For all h ∈ {3, 4, . . . , k} we set:

(8) δ(sp(i),�h−1ak−h+1) = (sp(i)+1, 0
h−110k−h)

(9) δ(sj ,�h−1ak−h+1) = (sj+1, 0
h−11k−h+1) for p(i) + 1 ≤ j ≤ q(i)− 1

(10) δ(sq(i),�h−1ak−h+1) = (sp(i), 0
h−11k−h+1)

Finally, if head k reaches the right endmarker with state sp(i), the input is

accepted since δ(sp(i),�k) is undefined and sp(i) ∈ F .
Now we turn to analyze the construction. The language L(M) can be deter-

mined as follows.
The first head is used to count the length � of the input modulo n. If the first

head arrives at the right endmarker in any state not in {sp(1), sp(2), . . . , sp(l)},
the computation blocks and rejects. Let us assume the state is sp(i), for 1 ≤ i ≤ l.
Then we know � = x1 · n+ p(i), for some x1 ≥ 0.

When head 2 arrives at the right endmarker in any state not equal to sp(i),
the computation blocks and rejects. Otherwise, we have � = x2 · ci, for some
x2 ≥ 0, and the heads 3 to k are located at position � · ci−1

ci
.

Now assume that head 2 ≤ j ≤ k arrives at the right endmarker in state sp(i)
(for any other state the computation blocks and rejects), the heads j+1 to k are

located at position � · c
j−1
i −1

cj−1
i

, and � = xj · cj−1
i . Next, head j+1 is driven to the

right endmarker. If it arrives in state sp(i) (for any other state the computation

blocks and rejects), it has checked that the number �

cj−1
i

of symbols passed

through is a multiple of ci. Thus, � = xj+1 · cji . Moreover, all the remaining

heads are located at position � · c
j−1
i −1

cj−1
i

+ � · ci−1

cji
= � · c

j
i−1

cji
. In particular, when

head k arrives at the right endmarker, we have � = xk · ck−1
i .

So, together we have that � = x1 · n + p(i) and � = xk · ck−1
i . Since n is

prime and all ci are less than n, the numbers n and ci are relatively prime, for
all 1 ≤ i ≤ l. Therefore, n and ck−1

i are relatively prime as well. So, there is a
smallest x̄ so that x̄ck−1

i is congruent 1 modulo n. We derive that there is a ȳ so
that x̄ck−1

i = ȳn+ 1. This implies p(i)x̄ck−1
i = p(i)ȳn+ p(i) and, thus, there is

an � having the properties mentioned above. By extending the length of the input
by multiples of nck−1

i an infinite set of input lengths � meeting the properties are
derived. More precisely, given such an �, the difference to the next input length
longer than � meeting the properties has to be a multiple of n and a multiple
of ck−1

i . Since both numbers are relatively prime, it has to be a multiple of nck−1
i .

The language Li consisting of all input lengths having these two properties is
regular, and every deterministic or nondeterministic finite automaton accepting
unary Li has a cycle of at least nck−1

i states.
The language L(M) is the union of the languages Li, 1 ≤ i ≤ l. Since all ci and

n are pairwise relatively prime, all ck−1
i and n are pairwise relatively prime. So,

an immediate generalization of the proof of the state complexity for the union
of two unary deterministic finite automata languages [27] shows that every DFA

Size of Unary One-Way Multi-head Finite Automata 153

accepting L(M) has a cycle of at least

lcm{nck−1
i | 1 ≤ i ≤ l } = n(c1c2 · · · cl)k−1 = n · F (n)k−1

states. ��

Now we turn to an upper bound. The following lemma from [14] shows that we
have to consider infinite languages, since already our lower bound is beyond the
upper bound for finite unary languages.

Lemma 2 ([14]). Let k, n ≥ 1 and M be a unary n-state DFA(k). Then L(M)
is either infinite or contains only words strictly shorter than 2k−1knk.

So, letM be an n-state DFA(k) accepting an infinite language, and assume that
a� is some input accepted by M in a computation C. If M runs into a cycle in
which some heads are moved, then the only possibility to get out of the cycle is
when one of the moving heads reaches the right endmarker. We number the heads
in order of their arrival at the right endmarker (for the fixed computation C),
and denote the number of moving steps in the cycle that drives head i to the
right endmarker by ci, 1 ≤ i ≤ k, and recall ci ≤ n. In [14] it is shown that then
all inputs whose lengths � are of the form

� =
P

Q
+ x · c1c2 · · · ck

Q
, (1)

are accepted as well, where x ≥ 1, Q is a sum having 2k−2 positive and 2k−2

negative summands, and each summand is a product of k−1 numbers not greater
than n. Moreover, P is a sum of the same summands as of Q, but each summand
is additionally multiplied by some number not greater than 2kn. So, we derive
P
Q < 2k−1knk.

The following straightforward lemma plays a role in the proof of the next
theorem.

Lemma 3. Let r, s ≥ 1 and x1, x2, . . . , xr and y1, y2, . . . , ys be positive integers.
Then it holds

lcm{ xi · yj | 1 ≤ i ≤ r, 1 ≤ j ≤ s } = lcm{x1, x2, . . . , xr} · lcm{y1, y2, . . . , ys}.

Now we are prepared to show the upper bound.

Theorem 4. Let k, n ≥ 1 and M be a unary n-state DFA(k). Then there is a
constant t depending only on k so that O(n · F (t · n)k−1) states are sufficient
for a DFA to accept the language L(M). The DFA can effectively be constructed
from M .

Proof. We assume that L(M) is infinite and consider all infinitely many accept-
ing computations of M . For each such computation there is an equation of the
form (1). These equations describe all accepted inputs. However, since P , Q, and
the ci are bounded by an expression over k and n, there are only finitely many

154 M. Kutrib, A. Malcher, and M. Wendlandt

different equations of the form (1), which together describe L(M). Clearly, for
each of these equations one can construct a unary DFA that accepts exactly the
words described by the equation. The unary DFA has an initial tail of at most
$PQ% ≤ 2k−1knk states, which is followed by a cycle of at most c1c2 · · · ck states.
Note, if � is a solution of the equation, then � + x · c1c2 · · · ck is a solution for
all x ≥ 1 as well. Now, language L(M) is the union of all languages accepted by
the DFAs constructed from the equations. In [22] it is shown that the union is
accepted by a DFA M ′ whose length of the initial tail is the maximum of the
lengths of the initial tails of the DFAs to be joint, and whose cycle length is
the least common multiple of all cycle lengths of the DFAs to be joint. The sum
of both gives an upper bound for the number of states sufficient for a DFA to
accept L(M).

So, the length of the initial tail of M ′ is at most 2k−1knk.
We turn to the length of the cycle. To this end, the least common multiple of

all possible products c1c2 · · · ck is determined. Clearly, this gives an upper bound
for the length of the cycle of M ′. Since the DFA(k) M is deterministic, for all
inputs that drive M into a cycle at all, the value c1 is the same. Therefore we
set c1 to its maximum, that is, to n.

Dependent on the state in which the first head arrives at the right end-
marker, M can enter different cycles that drive the second head to the right
endmarker. Each two different cycles cannot share a common situation at which
the transition function is applied. That is, either the states are different or the
heads reading different symbols. For the second cycle, the first head is on the
right endmarker, the second head reads always the input symbol, and the re-
maining heads are either reading the left endmarker or an input symbol. So,
there are at most t · n different situations, where t denotes the constant 2k−2.
Therefore, the sum of all possible cycle lengths is at most t ·n. By Lemma 3, the
least common multiple of n · c2 is maximal if the least common multiple of the
possible values of c2 is maximal. The latter is given by F (t ·n). We continue with
the same reasoning for the other factors ci, and obtain that the least common
multiple of all possible products c1c2 · · · ck and, thus the cycle length of M ′, is
at most n · F (t · n)k−1. Altogether, the DFA M ′ accepting L(M) has at most
2k−1knk + n · F (t · n)k−1 ∈ O(n · F (t · n)k−1) states. ��

In fact, in the previous Theorems 1 and 4 the number k of heads is a constant. It
has been given as part of the bounds to be more precise. However, these constant
can be hidden in the order of magnitude of the exponent.

4 From k Heads to One Head NFA

The results in the last section show that the costs for the simulation of DFA(k)
by DFA are the same (in the order of magnitude) as for the simulation of NFA
by DFA. From this point of view the two resources heads and nondeterminism
are equally powerful. So the question for the costs of the mutual simulation of
DFA(k) and NFA raises immediately. The following results reveal that trading k

Size of Unary One-Way Multi-head Finite Automata 155

heads for nondeterminism yields polynomially larger state sets, where the degree
of the polynomial depends on k.

Theorem 5. Let k, n ≥ 2 be constants and M be a unary n-state DFA(k).
Then O(n2k) states are sufficient for an NFA to accept the language L(M). The
NFA can effectively be constructed from M .

Proof. If L(M) is finite, by Lemma 2 it contains only words strictly shorter
than 2k−1knk. Clearly, there is an NFA accepting L(M) with no more than
2k−1knk ∈ O(nk) states.

Next, we assume that L(M) is infinite and start the reasoning similar as in
the proof of Theorem 4. We consider all infinitely many accepting computations
of M . For each such computation there is an equation of the form (1). These
equations describe all accepted inputs whose lengths are at least 2k−1knk. Alto-
gether there are only finitely many different such equations, and for each equa-
tion one can construct a unary DFA with no more than 2k−1knk + c1c2 · · · ck ≤
2k−1knk + nk states.

In order to determine an upper bound on the number of such DFA, we observe
the computations of M on inputs having at least length 2k−1knk: These inputs
driveM into cycles. The first phase of the computation ends when the first head
arrives at the right endmarker. Dependent on the state on arrival the computa-
tion continues. There are at most n different possibilities to continue. For each
of these possibilities the continuation is again deterministic until the next head
arrives at the right endmarker (or the input is accepted or rejected). Arguing in-
ductively, one can distinguish at most nk different possibilities for computations.
That is, there are at most nk different equations of the form (1) and, hence, at
most nk different DFA, where the union of their accepted languages describe all
words in L(M) whose lengths are at least 2k−1knk.

The union of the different DFA is accepted by an NFA that initially guesses
which of the DFA to simulate and, subsequently, simulates it. In addition, the
NFA initially guesses whether the input is shorter than 2k−1knk and simulates
a DFA accepting all word from L(M) having at most this length. Together, this
takes at most 1 + 2k−1knk + nk(2k−1knk + nk) ∈ O(n2k) states. ��

For the lower bound we can use an example of a singleton language from [14].

Example 6 ([14]). For each k, n ≥ 2, the singleton language Lk,n = { a(k−1)nk }
is accepted by some n-state DFA(k). ��

The example can be extended to infinite languages { ai·(k−1)nk | i ≥ 0 } in a
straightforward manner.

Theorem 7. For any integers k, n ≥ 2, there is a unary n-state DFA(k) M ,
such that Ω(nk) states are necessary for any NFA to accept the language L(M).

Proof. Any NFA accepting the witness languages Lk,n from Example 6 needs
at least (k − 1)nk + 1 ∈ Ω(nk) states to check that there is no shorter word
accepted. ��

156 M. Kutrib, A. Malcher, and M. Wendlandt

5 From One Head NFA to k Head DFA

So far, we considered the costs for the head reduction. Next we turn to the
converse question whether we can trade nondeterminism for heads, that is, we are
interested in the state complexity for the NFA by DFA(k) simulation. Naturally,
our upper bound depends highly on the number k of heads available. If k is at

least the (on first sight) cryptic number t = &−3+
√
8n+1

2 ', then the upper bound
is quadratic, otherwise superpolynomial.

Theorem 8. Let k ≥ 1, n ≥ 2 be constants, t = &−3+
√
8n+1

2 ', and M be a
unary n-state NFA. Then

n′ ≤

⎧⎪⎪⎨⎪⎪⎩
n2 − 2 + F (n), if k = 1;

n2 − 2 +
(
n− t2+t

2

)$ t
k%
, if 1 < k < t/2;

2n2, if k ≥ t/2.

states are sufficient for a DFA(k) to accept the language L(M). The DFA(k) can
effectively be constructed from M .

Proof. Given an n-state NFA, its conversion into Chrobak normal form [2] leads
to an equivalent NFA consisting of a non-cyclic initial part of at most n2 − 2
states which is followed by several disjoint cycles. The cyclic part has altogether
at most n − 1 states. Furthermore, the only nondeterministic guess takes place
at the end of the initial part, when one of the cycles is chosen. These bounds
have been obtained in [4].

So, for k = 1, the bounds of the claim follow directly from the conversion of
unary NFA to DFA.

Next, we consider the case k ≥ t/2. The idea is to use each head to simulate
two different cycles. Since k ≥ t/2, this is always possible. In detail, a DFA(k)M ′

simulating M first simulates the non-cyclic part of M by using at most n2 − 2
states and moving all heads simultaneously to the right in each step. When the
non-cyclic part has been simulated, all heads one after the other start to simulate
two different cycles of M . If at least one such simulation is successful, the input
is accepted by M ′ and otherwise rejected. The number of states necessary for
each head is bounded by (n−1)2. The states used by the first head can be reused
by the other heads. Altogether, n2 − 2 + (n− 1)2 ≤ 2n2 states are sufficient.

The details of the proof for the case 1 < k < t/2 are omitted due to space
constraints. ��

The following theorem provides a lower bound.

Theorem 9. Let k ≥ 1 be a constant. For any integer m ≥ 1 there is an integer

n > m and a unary n-state NFA M , such that c2 ·
k

√
e

√
2n√

c1 ln(
√

2n) states are
necessary for any DFA(k) to accept the language L(M), where c1, c2 > 0 are two
constants.

Size of Unary One-Way Multi-head Finite Automata 157

6 Computational Complexity

In this section we study the computational complexity of decidability problems
for DFA(k) such as emptiness, finiteness, inclusion, and equivalence. It turns
out that all problems considered are LOGSPACE-complete, where LOGSPACE
denotes the complexity class given by deterministic Turing machines with loga-
rithmic space bound. We denote the complement of a language L by L.

Lemma 10. Let k ≥ 1 and M be an n-state DFA(k). Then there exists an
n-state DFA(k) M ′ accepting the complement of L(M). The DFA(k) M ′ can
effectively be constructed from M .

Theorem 11. Let k ≥ 1 be an integer. Then the problems to decide empti-
ness, universality, finiteness, inclusion, and equivalence for unary DFA(k) are
LOGSPACE-complete.

Proof. Here we show the theorem for emptiness. First, we show that the non-
emptiness problem belongs to LOGSPACE. Since LOGSPACE is closed under com-
plementation, the emptiness problem belongs to LOGSPACE as well. So, a two-
way deterministic Turing machine M with read-only input tape and logspace-
bounded read-write working tape is constructed. The input ofM is the encoding
of some DFA(k) M ′ and of k. The Turing machine computes the answer no or
yes dependent on whether or not the DFA(k) M ′ accepts the empty language.
Let n be the number of states of M ′. Since this parameter has to appear in the
encoding, the length of the logspace-bounded working tape is at least Ω(log(n))
and Ω(log(k)).

The proofs of Theorem 4 and 5 show that the language L(M ′) can be repre-
sented as union of some languages accepted by DFA, so that each DFA has at
most 2k−1knk+nk states. Clearly, L(M ′) is non-empty if and only if at least one
of the DFA accepts a non-empty language. It is a standard application of the
pumping lemma for regular languages (see, for example, [9]) that the DFA ac-
cepts a non-empty language if and only if a word of length at most 2k−1knk+nk

is accepted.
So, the idea for the Turing machine M is to simulate the given DFA(k) M ′

successively on all inputs of length at most 2k−1knk + nk until some input is
accepted or all inputs tested are rejected.

To this end, k + 1 binary counters C0, C1, . . . , Ck are implemented on the
working tape. Counter C0 is used to store the length of the currently tested input,
and counter Ci, 1 ≤ i ≤ k, stores the current positions of the ith head. This
takes at most (k + 1) log(2k−1knk + nk) ∈ O(log nk) = O(k log(n)) = O(log(n))
tape cells, since k is a constant number. Additionally, the current state of M ′

has to be tracked, which also can be stored in O(log(n)) tape cells.
Assume first that M ′ is always halting. The Turing machine starts the sim-

ulation of M ′ with counter C0 storing 2k−1knk + nk and the remaining coun-
ters storing zero, which means that the length of the currently tested input is
2k−1knk + nk, and all heads (of M ′) are on the left endmarker. Then, accord-
ing to the transition function of M ′, the current state and the head positions

158 M. Kutrib, A. Malcher, and M. Wendlandt

C1, C2, . . . , Ck are updated. If in the course of this simulation a halting configu-
ration is reached, then the Turing machine halts and outputs yes if an accepting
state of M ′ has been entered. Otherwise, counter C0 is decreased by one, coun-
ters C1, C2, . . . , Ck are reset to zero, and the next simulation of M ′ starts. If C0

should be decreased from zero, all inputs have been tested. Then, M halts and
outputs no. Altogether, M decides the non-emptiness problem for M ′, and uses
at most a logarithmic number of tape cells with regard to the length of the in-
put. Let us shortly discuss the case whenM ′ contains non-halting computations.
Following the argumentation in the proof of Lemma 10 how to make non-halting
computations halting, we obtain that the construction introduces no new states
and can be done by inspecting the transition function. Thus, LOGSPACE is suf-
ficient also in this case. Hence, the problem is in LOGSPACE.

Finally, the hardness results follow directly from the hardness results for DFA
(see, for example, [11]), since any DFA can be interpreted as DFA(k), that always
moves its first head, never moves its remaining heads, and accepts only on the
right endmarker. ��

Acknowledgments. We like to thank the anonymous referees for their valuable
comments which significantly improved the presentation of the paper.

References

1. Bach, E., Shallit, J.: Algorithmic Number Theory, Foundations of Computing,
vol. 1. MIT Press (1996)

2. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

3. Ellul, K.: Descriptional Complexity Measures of Regular Languages. Master’s the-
sis, University of Waterloo, Ontario, Canada (2004)

4. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Com-
put. 205, 1652–1670 (2007)

5. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)

6. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8, 193–234
(2002)

7. Holzer, M., Kutrib, M.: Unary language operations and their nondeterministic
state complexity. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp.
162–172. Springer, Heidelberg (2003)

8. Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In:
Scientific Applications of Language Methods, pp. 1–58. Imperial College Press
(2010)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

10. Ibarra, O.H.: A note on semilinear sets and bounded-reversal multihead pushdown
automata. Inform. Process. Lett. 3, 25–28 (1974)

11. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Com-
put. System Sci. 11, 68–85 (1975)

Size of Unary One-Way Multi-head Finite Automata 159

12. Kunc, M., Okhotin, A.: State complexity of operations on two-way finite automata
over a unary alphabet. Theoret. Comput. Sci. 449, 106–118 (2012)

13. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput.
Sci. 16, 957–973 (2005)

14. Kutrib, M., Malcher, A., Wendlandt, M.: States and heads do count for unary
multi-head finite automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS,
vol. 7410, pp. 214–225. Springer, Heidelberg (2012)

15. Landau, E.: Über die Maximalordnung der Permutationen gegebenen Grades.
Archiv der Math. und Phys. 3, 92–103 (1903)

16. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. Teubner
(1909)

17. Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. The-
oret. Comput. Sci. 330, 349–360 (2005)

18. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30, 1976–1992 (2001)

19. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971),
pp. 188–191. IEEE (1971)

20. Nicolas, J.-L.: Sur l’ordre maximum d’un élément dans le groupe Sn des permuta-
tions. Acta Arith. 14, 315–332 (1968)

21. Pighizzini, G.: Deterministic pushdown automata and unary languages. Int. J.
Found. Comput. Sci. 20, 629–645 (2009)

22. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13, 145–159 (2002)

23. Pighizzini, G., Shallit, J., Wang, M.W.: Unary context-free grammars and push-
down automata, descriptional complexity and auxiliary space lower bounds. J.
Comput. System Sci. 65, 393–414 (2002)

24. Ruiz, S.M.: A result on prime numbers. Math. Gaz. 81, 269–270 (1997)
25. Sudborough, I.H.: Bounded-reversal multihead finite automata languages. Inform.

Control 25, 317–328 (1974)
26. Szalay, M.: On the maximal order in Sn and S∗

n. Acta Arithm. 37, 321–331 (1980)
27. Yu, S.: State complexity of regular languages. J. Autom., Lang. Comb. 6, 221–234

(2001)

Syntactic Complexity

of R- and J -Trivial Regular Languages�

Janusz Brzozowski and Baiyu Li��

David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, ON, Canada N2L 3G1
{brzozo,b5li}@uwaterloo.ca

Abstract. The syntactic complexity of a subclass of the class of regular
languages is the maximal cardinality of syntactic semigroups of languages
in that class, taken as a function of the state complexity n of these
languages. We prove that n! and �e(n−1)!� are tight upper bounds for the
syntactic complexity of R- and J -trivial regular languages, respectively.

Keywords: finite automaton, J -trivial, monoid, regular language,
R-trivial, semigroup, syntactic complexity.

1 Introduction

The state complexity of a regular language L is the number of states in the
minimal deterministic finite automaton (DFA) accepting L. An equivalent notion
is quotient complexity, which is the number of distinct left quotients of L. The
syntactic complexity of L is the cardinality of the syntactic semigroup of L. Since
the syntactic semigroup of L is isomorphic to the semigroup of transformations
performed by the minimal DFA of L, it is natural to consider the relation between
syntactic complexity and state complexity. The syntactic complexity of a subclass
of regular languages is the maximal syntactic complexity of languages in that
class, taken as a function of the state complexity of these languages.

Here we consider the classes of languages defined using the well-known Green
equivalence relations on semigroups [13]. LetM be a monoid, that is, a semigroup
with an identity, and let s, t ∈ M be any two elements of M . The Green rela-
tions onM , denoted by L,R,J and H, are defined as follows: sL t⇔Ms =Mt,
s R t⇔ sM = tM, s J t⇔MsM = MtM, and s H t⇔ s L t and s R t. For
ρ ∈ {L,R,J ,H}, M is ρ-trivial if and only if (s, t) ∈ ρ implies s = t for all
s, t ∈ M . A language is ρ-trivial if and only if its syntactic monoid is ρ-trivial.
In this paper we consider only regular ρ-trivial languages. H-trivial regular lan-
guages are exactly the star-free languages [13], and L-, R-, and J -trivial regular

� This work was supported by the Natural Sciences and Engineering Research Council
of Canada under grant No. OGP0000871 and a Postgraduate Scholarship.

�� Present address: Optumsoft, Inc., 275 Middlefield Rd, Suite 210, Menlo Park, CA
94025, USA.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 160–171, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Syntactic Complexity of R- and J -Trivial Regular Languages 161

languages are all subclasses of the class of star-free languages. The class of J -
trivial languages is the intersection of the classes of R- and L-trivial languages.

A language L ⊆ Σ∗ is piecewise-testable if it is a finite boolean combination of
languages of the form Σ∗a1Σ∗ · · ·Σ∗alΣ∗, where ai ∈ Σ. Simon [15,16] proved
in 1972 that a language is piecewise-testable if and only if it is J -trivial. A
biautomaton is a finite automaton which can read the input word alternatively
from left and right. In 2011 Kĺıma and Polák [9] showed that a language is
piecewise-testable if and only if it is accepted by an acyclic biautomaton; here
self-loops are allowed, as they are not considered cycles.

In 1979 Brzozowski and Fich [1] proved that a regular language is R-trivial if
and only if its minimal DFA is partially ordered, that is, it is acyclic as above.
They also showed that R-trivial regular languages are finite boolean combina-
tions of languagesΣ∗

1a1Σ
∗ · · ·Σ∗

l alΣ
∗, where ai ∈ Σ and Σi ⊆ Σ\{ai}. Recently

Jirásková and Masopust proved a tight upper bound on the state complexity of
reversal of R-trivial languages [8].

In the past, the syntactic complexity of the following subclasses of regular
languages was considered: In 1970 Maslov [11] noted that nn was a tight upper
bound on the number of transformations performed by a DFA of n states. In
2003–2004, Holzer and König [7], and Krawetz, Lawrence and Shallit [10] studied
unary and binary languages. In 2010 Brzozowski and Ye [5] examined ideal and
closed regular languages. In 2012 Brzozowski, Li and Ye studied prefix-, suffix-,
bifix-, and factor-free regular languages [3], Brzozowski and Li [2] considered
the class of star-free languages and three of its subclasses, and Brzozowski and
Liu [4] studied finite/cofinite, definite, and reverse definite languages, where L
is definite (reverse-definite) if it can be decided whether a word w belongs to L
by examining the suffix (prefix) of w of some fixed length.

We state basic definitions and facts in Section 2. In Sections 3 and 4 we prove
tight upper bounds on the syntactic complexities of R- and J -trivial regular
languages, respectively. Section 5 concludes the paper. Omitted proofs can be
found at http://arxiv.org/abs/1208.4650.

2 Preliminaries

Let Q be a non-empty finite set with n elements, and assume without loss of
generality that Q = {1, 2, . . . , n}. There is a linear order on Q, namely the
natural order < on integers. If X is a non-empty subset of Q, then the maximal
element in X is denoted by max(X). A partition π of Q is a collection π =
{X1, X2, . . . , Xm} of non-empty subsets of Q such that Q = X1∪X2 ∪· · ·∪Xm,
and Xi ∩Xj = ∅ for all 1 � i < j � m. We call each subset Xi a block in π. For
any partition π of Q, let Max(π) = {max(X) | X ∈ π}. The set of all partitions
of Q is denoted by ΠQ. We define a partial order ! on ΠQ such that, for any
π1, π2 ∈ ΠQ, π1 ! π2 if and only if each block of π1 is contained in some block
of π2. We say π1 refines π2 if π1 ! π2. The poset (ΠQ,!) is a finite lattice: For
any π1, π2 ∈ ΠQ, the meet π1∧π2 is the !-largest partition that refines both π1
and π2, and the join π1∨π2 is the !-smallest partition that is refined by both
π1 and π2. From now on, we refer to the lattice (ΠQ,!) simply as ΠQ.

162 J. Brzozowski and B. Li

A transformation of a set Q is a mapping of Q into itself. We consider only
transformations t of a finite set Q. If j ∈ Q, then jt is the image of j under t.
If X is a subset of Q, then Xt = {jt | j ∈ X}, and the restriction of t to X ,
denoted by t|X , is a mapping from X to Xt such that jt|X = jt for all j ∈ X .
The composition of transformations t1 and t2 of Q is a transformation t1 ◦ t2
such that j(t1 ◦ t2) = (jt1)t2 for all j ∈ Q. We usually drop the operator “◦” and
write t1t2 for short. An arbitrary transformation can be written in the form

t =

(
1 2 · · · n− 1 n
i1 i2 · · · in−1 in

)
,

where ik = kt, 1 � k � n, and ik ∈ Q. We also use the notation t = [i1, i2, . . . , in]
for t above. The domain dom(t) of t is Q. The range rng(t) of t is the set rng(t) =
Qt. The rank rank(t) of t is the cardinality of rng(t), i.e., rank(t) = |rng(t)|. The
binary relation ωt on Q ×Q is defined as follows: For any i, j ∈ Q, i ωt j if and
only if itk = jtl for some k, l � 0. This is an equivalence relation, and each
equivalence class is called an orbit of t. For any i ∈ Q, the orbit of t containing
i is denoted by ωt(i). The set of all orbits of t is denoted by Ω(t). Clearly, Ω(t)
is a partition of Q.

A permutation of Q is a mapping of Q onto itself, so here rng(π) = Q. The
identity transformation 1Q maps each element to itself. A transformation t is a
cycle of length k, where k � 2, if there exist pairwise different elements i1, . . . , ik
such that i1t = i2, i2t = i3, . . . , ik−1t = ik, and ikt = i1, and the remaining
elements are mapped to themselves. A cycle is denoted by (i1, i2, . . . , ik). For
i < j, a transposition is the cycle (i, j). A singular transformation, denoted by
(j → i), has jt = i and ht = h for all h �= j. A constant transformation, denoted
by (Q → i), has jt = i for all j. A transformation t is an idempotent if t2 = t.
The set TQ of all transformations of Q is a finite semigroup, in fact, a monoid.
We refer the reader to the book of Ganyushkin and Mazorchuk [6] for a detailed
discussion of finite transformation semigroups.

For background about regular languages, we refer the reader to [17]. Let Σ
be a non-empty finite alphabet. Then Σ∗ is the free monoid generated by Σ,
and Σ+ is the free semigroup generated by Σ. A word is any element of Σ∗, and
the empty word is ε. The length of a word w ∈ Σ∗ is |w|. A language over Σ
is any subset of Σ∗. The reverse of a word w is denoted by wR. For a language
L, its reverse is LR = {w | wR ∈ L}. The left quotient, or simply quotient, of a
language L by a word w is w−1L = {x ∈ Σ∗ | wx ∈ L}.

The Myhill congruence [12] ≈L of any language L is defined as follows:
x ≈L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗. This congruence
is also known as the syntactic congruence of L. The quotient set Σ+/≈L of
equivalence classes of the relation ≈L is a semigroup called the syntactic semi-
group of L, and Σ∗/≈L is the syntactic monoid of L. The syntactic complexity
σ(L) of L is the cardinality of its syntactic semigroup. A language is regular if
and only if its syntactic semigroup is finite. We consider only regular languages,
and so assume that all syntactic semigroups and monoids are finite.

A DFA is denoted by A = (Q,Σ, δ, q1, F), as usual. The DFA A accepts a
word w ∈ Σ∗ if δ(q1, w) ∈ F . The language accepted by A is denoted by L(A).

Syntactic Complexity of R- and J -Trivial Regular Languages 163

If q is a state of A, then the language Lq of q is the language accepted by
the DFA (Q,Σ, δ, q, F). Two states p and q of A are equivalent if Lp = Lq. If
L ⊆ Σ∗ is a regular language, then its quotient DFA is A = (Q,Σ, δ, q1, F),
where Q = {w−1L | w ∈ Σ∗}, δ(w−1L, a) = (wa)−1L, q1 = ε−1L = L, F =
{w−1L | ε ∈ w−1L}. The quotient complexity κ(L) of L is the number of distinct
quotients of L. The quotient DFA of L is the minimal DFA accepting L, and so
quotient complexity is the same as state complexity.

If A = (Q,Σ, δ, q1, F) is a DFA, then its transition semigroup [13], denoted
by TA, consists of all transformations tw on Q performed by non-empty words
w ∈ Σ+ such that jtw = δ(j, w) for all j ∈ Q. The syntactic semigroup TL of a
regular language L is isomorphic to the transition semigroup of the quotient DFA
A of L [13], and we represent elements of TL by transformations in TA. Given
a set G = {ta | a ∈ Σ} of transformations of Q, we can define the transition
function δ of some DFA A such that δ(j, a) = jta for all j ∈ Q. The transition
semigroup of such a DFA is the semigroup generated by G. When the context is
clear, we write a = t, to mean that the transformation performed by a ∈ Σ is t.

3 R-Trivial Regular Languages

Given DFA A = (Q,Σ, δ, q1, F), we define the reachability relation → as follows.
For all p, q ∈ Q, p→ q if and only if δ(p, w) = q for some w ∈ Σ∗. We say that
A is partially ordered [1] if the relation → is a partial order on Q.

Consider the natural order < on Q. A transformation t of Q is non-decreasing
if p � pt for all p ∈ Q. The set FQ of all non-decreasing transformations of Q is a
semigroup, since the composition of two non-decreasing transformations is again
non-decreasing. It was shown in [1] that a language L is R-trivial if and only if its
quotient DFA is partially ordered. Equivalently, L is anR-trivial language if and
only if its syntactic semigroup contains only non-decreasing transformations.

It is known [6] that FQ is generated by the following set

GFQ = {1Q} ∪ {t ∈ FQ | t2 = t and rank(t) = n− 1}.

For any transformation t of Q, let Fix(t) = {j ∈ Q | jt = j}. Then

Lemma 1. For any t ∈ GFQ, rng(t) = Fix(t).

If n = 1, then FQ contains only the identity transformation 1Q, and GFQ =
FQ = {1Q}. So |GFQ| = |FQ| = 1. If n � 2, then we have

Lemma 2. For n � 2, |GFQ| = 1 +
(
n
2

)
.

Lemma 3. If G ⊆ FQ and G generates FQ, then GFQ ⊆ G.

Consequently, GFQ is the unique minimal generator of FQ. We also have

Lemma 4. For n � 1, |FQ| = n!.

Using the lemmas, we obtain our first tight upper bound:

164 J. Brzozowski and B. Li

Theorem 5. If L ⊆ Σ∗ is an R-trivial regular language of quotient complexity
κ(L) = n � 1, then its syntactic complexity σ(L) satisfies σ(L) � n!, and this
bound is tight if |Σ| � 1 for n = 1 and if |Σ| � 1 +

(
n
2

)
for n � 2.

Proof. Let A be the quotient DFA of L, and let TL be its syntactic semigroup.
Then TL is a subset of FQ, and σ(L) � n!.

When n = 1, the only regular languages are Σ∗ or ∅, and they are both R-
trivial and meet the bound 1. To see the bound is tight for n � 2, let An =
(Q,Σ, δ, 1, {n}) be the DFA with alphabet Σ of size 1 +

(
n
2

)
and set of states

Q = {1, . . . , n}, where each a ∈ Σ defines a distinct transformation in GFQ.
For each p ∈ Q, let tp = [p, n, . . . , n]. Since GFQ generates FQ and tp ∈ FQ,
tp = e1 · · · ek for some e1, . . . , ek ∈ GFQ, where k depends on p. Then there
exist a1, . . . , ak ∈ Σ such that each ai performs ei and state p is reached by
w = a1 · · · ak. Moreover, n is the only final state of An. Consider any non-final
state q ∈ Q \ {n}. Since t = [2, 3, . . . , n, n] ∈ FQ, there exist b1, . . . , bl ∈ Σ such
that the word u = b1 · · · bl performs t. State q can be distinguished from other
non-final states by the word un−q. Hence L = L(An) has quotient complexity
κ(L) = n. The syntactic monoid of L is FQ, and so σ(L) = n!. By Lemma 3,
the alphabet of An is minimal. ��

Example 6. When n = 4, there are 4! = 24 non-decreasing transformations of
Q = {1, 2, 3, 4}. Among them, there are 11 transformations with rank n− 1 = 3.
The following 6 transformations from the 11 are idempotents: e1 = [1, 2, 4, 4],
e2 = [1, 3, 3, 4], e3 = [1, 4, 3, 4], e4 = [2, 2, 3, 4], e5 = [3, 2, 3, 4], e6 = [4, 2, 3, 4].

Together with the identity transformation 1Q, we have the generating set GFQ
for FQ with 7 transformations. We can then define the DFA A4 with 7 inputs
as in the proof of Theorem 5; A4 is shown in Fig. 1. The quotient complexity of
L = L(A4) is 4, and the syntactic complexity of L is 24. �

1 2 3 4

e2, . . . , e6 e1, . . . , e6e1, e2, e3 e1, e4, e5, e6

e6

e3
e5

e4 e2 e1

Fig. 1. DFA A4 with κ(L(A4)) = 4 and σ(L(A4)) = 24; the input performing the
identity transformation is not shown

Syntactic Complexity of R- and J -Trivial Regular Languages 165

4 J -Trivial Regular Languages

For any m � 1, we define an equivalence relation ↔m on Σ∗ as follows. For any
u, v ∈ Σ∗, u↔m v if and only if for every x ∈ Σ∗ with |x| � m, x is a subword
of u if and only if x is a subword of v. Let L be any language over Σ. Then L is
piecewise-testable if there exists m � 1 such that, for every u, v ∈ Σ∗, u↔m v
implies that u ∈ L⇔v ∈ L. Let A = (Q,Σ, δ, q1, F) be a DFA. If Γ is a subset of
Σ, a component of A restricted to Γ is a minimal subset P of Q such that, for all
p ∈ Q and w ∈ Γ ∗, δ(p, w) ∈ P if and only of p ∈ P . A state q of A is maximal
if δ(q, a) = q for all a ∈ Σ. Simon [16] proved the following characterization of
piecewise-testable languages.

Theorem 7 (Simon). Let L be a regular language over Σ, let A be its quotient
DFA, and let TL be its syntactic monoid. Then the following are equivalent:

1. L is piecewise-testable.
2. A is partially ordered, and for every non-empty subset Γ of Σ, each com-

ponent of A restricted to Γ has exactly one maximal state.
3. TL is J -trivial.

Consequently, a regular language is piecewise-testable if and only if it is J -trivial.
The following characterization of J -trivial monoids is due to Saito [14].

Theorem 8 (Saito). Let S be a monoid of transformations of Q. Then the
following are equivalent:
1. S is J -trivial.
2. S is a subset of FQ and Ω(ts) = Ω(t)∨Ω(s) for all t, s ∈ S.

Let L be a J -trivial language with quotient DFA A = (Q,Σ, δ, q1, F) and syn-
tactic monoid TL. Since TL ⊆ FQ, an upper bound on the cardinality of J -trivial
submonoids of FQ is an upper bound on the syntactic complexity of L.

Lemma 9. If t, s ∈ FQ, then
1. Fix(t) = Max(Ω(t)).
2. Ω(t) ! Ω(s) implies Fix(t) ⊇ Fix(s), where Fix(t) = Fix(s) if and only if

Ω(t) = Ω(s).

Define the transformation tmax = [2, 3, . . . , n, n]. The subscript “max” is chosen
because Ω(tmax) = {Q} is the maximal element in the lattice ΠQ. Clearly tmax ∈
FQ and Fix(tmax) = {n}. For any submonoid S of FQ, let S[tmax] be the smallest
monoid containing tmax and all elements of S.

Lemma 10. Let S be a J -trivial submonoid of FQ. Then
1. S[tmax] is J -trivial.
2. Let A = (Q,Σ, δ, 1, {n}) be the DFA in which each a ∈ Σ defines a distinct

transformation in S[tmax]. Then A is minimal.

For any J -trivial submonoid S of FQ, we denote by A(S, tmax) the DFA in
Lemma 10. Then A(S, tmax) is the quotient DFA of some J -trivial regular lan-
guage L. Next, we have

166 J. Brzozowski and B. Li

Lemma 11. Let S be a J -trivial submonoid of FQ. For any t, s ∈ S, if Fix(t) =
Fix(s), then Ω(t) = Ω(s).

Proof. Pick any t, s ∈ S such that Fix(t) = Fix(s). If t = s, then it is trivial that
Ω(t) = Ω(s). Assume t �= s, and Ω(t) �= Ω(s). By Part 2 of Lemma 9, we have
Ω(t) �≺ Ω(s) and Ω(s) �≺ Ω(t). Then there exists i ∈ Q such that ωt(i) �⊆ ωs(i).
Let p = max(ωt(i)). We define q ∈ Q as follows. If max(ωt(i)) �= max(ωs(i)),
then let q = max(ωs(i)); so q �= p. Otherwise max(ωt(i)) = max(ωs(i)), and there
exists j ∈ ωt(i) such that j �∈ ωs(i); let q = max(ωs(j)). Now p = max(ωt(j)) =
max(ωt(i)) = max(ωs(i)), and since j �∈ ωs(i), we have q �= p as well. Note that
p, q ∈ Fix(t) = Fix(s) in both cases. Consider the DFA A(S, tmax) with alphabet
Σ, and suppose that a ∈ Σ performs t and b ∈ Σ performs s. Let B be the
DFA A(S, tmax) restricted to {a, b}. Since p ∈ ωt(i) and q ∈ ωs(i), p, q are in the
same component P of B. However, p and q are two distinct maximal states in
P , which contradicts Theorem 7. Therefore Ω(t) = Ω(s). ��

Example 12. To illustrate one usage of Lemma 11, we consider two non-
decreasing transformations t = [2, 2, 4, 4] and s = [3, 2, 4, 4]. They have the same
set of fixed points Fix(t) = Fix(s) = {2, 4}. However, Ω(t) = {{1, 2}, {3, 4}}
and Ω(s) = {{2}, {1, 3, 4}}. By Lemma 11, t and s cannot appear together in
a J -trivial monoid. Indeed, consider any minimal DFA A having at least two
inputs a, b such that a performs t and b performs s. The DFA B of A restricted
to the alphabet {a, b} is shown in Fig. 2. There is only one component in B, but
there are two maximal states 2 and 4. By Theorem 7, the syntactic monoid of
A is not J -trivial. �

1 2 3 4
a

b

a, b a, b

a, b

Fig. 2. DFA B with two inputs a and b, where ta = [2, 2, 4, 4] and tb = [3, 2, 4, 4]

Let π be any partition of Q. A block X of π is trivial if it contains only one
element of Q; otherwise it is non-trivial. We define the set E(π) = {t ∈ FQ |
Ω(t) = π}. Then

Lemma 13. If π is a partition of Q with r blocks, where 1 � r � n, then
|E(π)| � (n − r)!. Moreover, equality holds if and only if π has exactly one
non-trivial block.

Proof. Suppose π = {X1, . . . , Xr}, and |Xi| = ki for each i, 1 � i � r. Without
loss of generality, we can rearrange blocks Xi so that k1 � · · · � kr. Let t ∈ E(π)

Syntactic Complexity of R- and J -Trivial Regular Languages 167

be any transformation. Then t ∈ FQ, and hence Fix(t) = Max(Ω(t)) = Max(π).
Consider each block Xi, and suppose Xi = {j1, . . . , jki} with j1 < · · · < jki .
Since jki = max(Xi), we have jki ∈ Fix(t) and jkit = jki . On the other hand,
if 1 � l < ki, then jl �∈ Max(π), and since t ∈ FQ, we have jlt > jl; since
jlt ∈ ωt(jl) = Xi, jlt ∈ {jl+1, . . . , jki}. So there are (ki − 1)! different t|Xi , and
there are

∏r
i=1(ki − 1)! different transformations t in E(π).

Clearly, if r = 1, then kr = n and |E(π)| = (n − 1)!. Assume r � 2. Note
that ki � 1 for all i, 1 � i � r, and

∑r
i=1 ki = n. If k1 = · · · = kr−1 = 1, then

kr = n− r+1, and |E(π)| = (kr − 1)!
∏r−1
i=1 0! = (n− r)!. Otherwise, let h be the

smallest index such that kh > 1. For all i, h � i � r − 1, since ki � kr, we have
(ki − 1)! < (ki − 1)ki−1 � (kr − 1)ki−1. Then

|E(π)| = (kr − 1)!

h−1∏
i=1

0!

r−1∏
i=h

(ki − 1)! < (kr − 1)!

r−1∏
i=h

(kr − 1)ki−1

= (kr − 1)! · (kr − 1)
∑r−1

i=h(ki−1)

< (kr − 1)! · kr(kr + 1) · · · (kr − 1 +

r−1∑
i=h

(ki − 1))

= (kr − 1)! · kr(kr + 1) · · · (n− r) = (n− r)!

Therefore the lemma holds. ��

Example 14. Suppose n = 10, r = 3, and consider the partitionπ = {X1, X2, X3},
where X1 = {1, 2, 5}, X2 = {3, 7}, and X3 = {4, 6, 8, 9, 10}. Then k1 = |X1| = 3,
k2 = |X2| = 2, and k3 = |X3| = 5. Let t ∈ E(π) be an arbitrary transformation;
then Fix(t) = {5, 7, 10}. For any j ∈ X1, if j = 1, then jt could be 2 or 5; oth-
erwise j = 2 or 5, and jt must be 5. So there are (k1 − 1)! = 2! different t|X1 .
Similarly, there are (k2 − 1)! = 1! different t|X2 and (k3 − 1)! = 4! different t|X3 .
So |E(π)| = 2!1!4! = 48.

Consider another partition π′ = {X ′
1, X

′
2, X

′
3} with three blocks, where X ′

1 =
{5}, X ′

2 = {7}, and X ′
3 = {1, 2, 3, 4, 6, 8, 9, 10}. Now k1 = |X ′

1| = 1, k2 =
|X ′

2| = 1, and k3 = |X ′
3| = 8. We have Max(π′) = Max(π) = {5, 7, 10}. Then,

for any t ∈ E(π′), Fix(t) = {5, 7, 10} as well. Since k1 = k2 = 1, both t|X1

and t|X2 are unique. There are (k3 − 1)! = 7! different t|X3 . Together we have
|E(π′)| = 1!1!7! = (10 − 3)! = 5040, which is the upper bound in Lemma 13 for
n = 10 and r = 3. �

Note that, for any t ∈ FQ, we have n ∈ Fix(t). Let Pn(Q) be the set of all
subsets Z of Q such that n ∈ Z. Then we obtain the following upper bound.

Proposition 15. For n � 1, if S is a J -trivial submonoid of FQ, then

|S| �
n∑
r=1

(
n− 1

r − 1

)
(n− r)! = &e(n− 1)!'.

168 J. Brzozowski and B. Li

Proof. Assume S is a J -trivial submonoid of FQ. For any Z ∈ Pn(Q), let SZ =
{t ∈ S | Fix(t) = Z}. Then S =

⋃
Z∈Pn(Q) SZ , and for any Z1, Z2 ∈ Pn(Q) with

Z1 �= Z2, SZ1 ∩ SZ2 = ∅.
Pick any Z ∈ Pn(Q). By Lemma 11, for any t, s ∈ SZ , since Fix(t) = Fix(s) =

Z, we have Ω(t) = Ω(s) = π for some partition π ∈ ΠQ. Then SZ ⊆ E(π).
Suppose r = |Z|. By Lemma 13, |SZ | � |E(π)| � (n−r)!. Since n ∈ Z, 1 � r � n;
and since there are

(
n−1
r−1

)
different Z ∈ Pn(Q), we have

|S| =
∑

Z∈Pn(Q)

|SZ | �
n∑
r=1

(
n− 1

r − 1

)
(n− r)! =

n∑
r=1

(n− 1)!

(r − 1)!
= &e(n− 1)!'.

The last equality is a well-known identity in combinatorics. ��

The above upper bound is met by the following monoid Sn. For any Z ∈ Pn(Q),
suppose Z = {j1, . . . , jr, n} such that j1 < · · · < jr < n for some r � 0; then we
define partition πZ = {Q} if Z = {n}, and πZ = {{j1}, . . . , {jr}, Q\{j1, . . . , jr}}
otherwise. Let

Sn =
⋃

Z∈Pn(Q)

E(πZ).

Proposition 16. For n � 1, the set Sn is a J -trivial submonoid of FQ with
cardinality

g(n) = |Sn| =
n∑
r=1

(
n− 1

r − 1

)
(n− r)! = &e(n− 1)!'. (1)

Proof. First we prove the following claim:

Claim: For any t, s ∈ Sn, Ω(ts) = πZ for some Z ∈ Pn(Q).
Let t ∈ E(πZ1) and s ∈ E(πZ2) for some Z1, Z2 ∈ Pn(Q). Suppose Ω(ts) �= πZ

for any Z ∈ Pn(Q). Then there exists a block X0 ∈ Ω(ts) such that n �∈ X0

and |X0| � 2. Suppose j ∈ X0 with j �= max(X0). We must have j ∈ ωt(n) or
jt ∈ ωs(n); otherwise jt = j and (jt)s = jt = j, which implies j = max(X0).
However, in either case, there exists large m such that jtm = n or j(ts)m = n,
respectively. Then n ∈ ωts(j) = X0, a contradiction. So the claim holds.

By the claim, for any t, s ∈ Sn, since Ω(ts) = πZ for some Z ∈ Pn(Q),
ts ∈ E(πZ) ⊆ Sn. Hence Sn is a submonoid of FQ.

Next we show that Sn is J -trivial. Pick any t, s ∈ Sn, and suppose t ∈ E(πZ1)
and s ∈ E(πZ2) for some Z1, Z2 ∈ Pn(Q). Suppose Max(Z1) ∩ Max(Z2) =
{j1, . . . , jr, n}, for some r � 0. Then we have Z1∨Z2 = {{j1}, . . . , {jr}, X},
where X = Q \ {j1, . . . , jr} and n ∈ X . On the other hand, by the claim,
Ω(ts) = {{p1}, . . . , {pk}, Y } for some p1, . . . , pk ∈ Q, where Y = Q\{p1, . . . , pk}
and n ∈ Y . Note that, since Sn ⊆ FQ, Max(Ω(ts)) = Fix(ts) = Fix(t) ∩
Fix(s) = Max(Z1) ∩ Max(Z2). Then r = k and {j1, . . . , jr} = {p1, . . . , pk}.
Hence Ω(t)∨Ω(s) = Z1∨Z2 = Ω(ts). By Theorem 8, Sn is J -trivial.

For any Z ∈ Pn(Q) with |Z| = r, where 1 � r � n, we have πZ =
{X1, . . . , Xr} with ki = |Xi| = 1 for 1 � i < r, and kr = |Xr|. By Lemma 13,

Syntactic Complexity of R- and J -Trivial Regular Languages 169

|E(πZ)| = (n− r)!. Moreover, if Z1 �= Z2, then E(πZ1)∩E(πZ2) = ∅. Since n ∈ Z
is fixed, there are

(
n−1
r−1

)
different Z. Therefore |Sn| =

∑n
r=1

(
n−1
r−1

)
(n − r)! =

&e(n− 1)!'. ��

We now define a generating set of the monoid Sn. Suppose n � 1. For any
Z ∈ Pn(Q), if Z = Q, then let tZ = 1Q. Otherwise, let hZ = max(Q \ Z), and
let tZ be a transformation of Q defined by: For all j ∈ Q,

jt
def
=

⎧⎪⎨⎪⎩
j if j ∈ Z,
n if j = hZ ,

hZ otherwise.

Let GSn = {tZ | Z ∈ Pn(Q)}.

Proposition 17. For n � 1, the monoid Sn can be generated by the set GSn of
2n−1 transformations of Q.

Proof. First, for any tZ ∈ GSn, where Z ∈ Pn(Q), we have Ω(tZ) = πZ ; hence
tZ ∈ E(πZ) ⊆ Sn. So GSn ⊆ Sn and 〈GSn〉 ⊆ Sn, where 〈GSn〉 denotes the
semigroup generated by GSn.

Fix arbitrary Z ∈ Pn(Q), and suppose U = Q \ Z. If U = ∅, then πZ =
{{1}, . . . , {n}} and E(πZ) = {1Q} ⊆ 〈GSn〉. Assume U �= ∅ in the following. Let
Y be the only non-trivial block in πZ . Note that Y = U∪{n} and hZ = max(U).
For any t ∈ E(πZ), since Fix(t) = Z and hZ �∈ Z, hZt > hZ ; and since Y is an
orbit of t, hZt = n. We prove by induction on |U | = |Q\Z| that E(πZ) ⊆ 〈GSn〉.

1. If U = {hZ}, then Y = {hZ , n}. So t = (hZ → n) = tZ ⊆ 〈GSn〉.
2. Otherwise U = {h1, . . . , hl, hZ} for some h1 < · · · < hl < hZ < n and l � 1.

Assume that, for any Z ′ ∈ Pn(Q) with |Q\Z ′| � l, we have E(πZ′) ⊆ 〈GSn〉.
Then Y = {h1, . . . , hl, hZ , n}, and tZ = (hZ → n)(hl → hZ) · · · (h1 → hZ).
For any t ∈ E(πZ), since Y is an orbit of t and Q\Y ⊆ Fix(t), t must have the
form t = (hZ → n)(hl → jl) · · · (h1 → j1), where ji ∈ {hi+1, . . . , hl, hZ , n}
for i = 1, . . . , l. Let {h1, . . . , hl} = V ∪ W such that hi ∈ V if and only
if ji = hit = hZ . Suppose V = {hp1 , . . . , hpk} and W = {hq1 , . . . , hqm},
where hp1 < · · · < hpk , hq1 < · · · < hqm , 0 � k,m � l and l = k + m.
Let t1 = (hZ → n), t2 = (hZ → n)(hp1 → hZ) · · · (hpk → hZ), and t3 =
(hp1 → n) · · · (hpk → n)(hq1 → jq1) · · · (hqm → jqm). Note that t1 = tZ′ for
Z ′ = Q \ {hZ}, and t2 = tZ′′ for Z ′′ = Q \ {hp1 , . . . , hpk , hZ}. Also note that
Fix(t3) = Fix(t)∪ {hZ}, and since jqi = hqit ∈ U \ {hZ} for all hqi ∈ W , we
have t3 ∈ E(πZ′′′) for Z ′′′ = Z ∪ {hZ}. By assumption, t3 ∈ 〈GSn〉. Now

t1t2t3 = (hZ → n) ◦ (hZ → n)(hp1 → hZ) · · · (hpk → hZ)

◦ (hp1 → n) · · · (hpk → n)(hq1 → jq1) · · · (hqm → jqm)

= (hZ → n)(hp1 → hZ) · · · (hpk → hZ)(hq1 → jq1) · · · (hqm → jqm) = t.

Thus t ∈ 〈GSn〉 and E(πZ) ⊆ 〈GSn〉.

170 J. Brzozowski and B. Li

By induction, Sn =
⋃
Z∈Pn(Q) E(πZ) ⊆ 〈GSn〉. Therefore Sn = 〈GSn〉. Since

there are 2n−1 different Z ∈ Pn(Q), there are 2n−1 transformations in GSn. ��

Example 18. Suppose n = 5. Consider Z = {3, 5} ∈ P5(Q), and t = [2, 4, 3, 5, 5] ∈
E(πZ). The transition graph of t is shown in Fig. 3 (a). As in Proposition 17, we
have U = {1, 2, 4} and hZ = 4. To show that t ∈ 〈GS5〉, we find V = {2} and
W = {1}. Then let t1 = (4→ 5), t2 = (4→ 5)(2→ 4), and t3 = (2→ 5)(1→ 2).
We assume that t3 ∈ 〈GS5〉; in fact, t3 = tZ′′′ for Z ′′′ = {3, 4, 5} in this example.
The transition graphs of t1, t2, and t3 are shown in Fig. 3 (b), (c), and (d),
respectively. One can verify that t = t1t2t3, and hence t ∈ 〈GS5〉. �

1

1

1

1

2 3 4 5(a)

2 3 4 5

2 3 4 5

(b)

(c)

2 3 4 5(d)

Fig. 3. Transition graphs of t = [2, 4, 3, 5, 5], t′ = [1, 4, 3, 5, 5], and tZ′′ = [2, 5, 3, 4, 5]

Now, by Propositions 15, 16, and 17, we have

Theorem 19. Let L ⊆ Σ∗ be a J -trivial regular language with quotient com-
plexity n � 1. Then its syntactic complexity σ(L) satisfies σ(L) � g(n) =
&e(n− 1)!', and this bound is tight if |Σ| � 2n−1.

5 Conclusion

We proved that n! and &e(n− 1)!' are the tight upper bounds on the syntactic
complexities of R- and J -trivial languages with n quotients, respectively. For
n � 2, the upper bound for R-trivial languages can be met using 1+

(
n
2

)
letters,

and the upper bound for J -trivial languages, using 2n−1 letters. It remains open
whether the upper bound for J -trivial languages can be met with fewer than
2n−1 letters. The syntactic complexity of L-trivial languages is also open.

Syntactic Complexity of R- and J -Trivial Regular Languages 171

References

1. Brzozowski, J., Fich, F.E.: Languages of R-trivial monoids. J. Comput. System
Sci. 20(1), 32–49 (1980)

2. Brzozowski, J., Li, B.: Syntactic complexities of some classes of star-free languages.
In:Kutrib,M.,Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 117–129.
Springer, Heidelberg (2012)

3. Brzozowski, J., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and
factor-free regular languages. Theoret. Comput. Sci. 449, 37–53 (2012)

4. Brzozowski, J., Liu, D.: Syntactic complexity of finite/cofinite, definite, and reverse
definite languages (June 2012), http://arxiv.org/abs/1203.2873

5. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011)

6. Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups: An
Introduction. Springer (2009)

7. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theoret. Comput. Sci. 327(3), 319–347 (2004)

8. Jirásková, G., Masopust, T.: On the state and computational complexity of the
reverse of acyclic minimal DFAs. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS,
vol. 7381, pp. 229–239. Springer, Heidelberg (2012)

9. Kĺıma, O., Polák, L.: On biautomata. In: Freund, R., Holzer, M., Mereghetti, C.,
Otto, F., Palano, B. (eds.) Proceedings of the Third Workshop on Non-Classical
Models for Automata and Applications - NCMA 2011, Milan, Italy, July 18-19,
vol. 282, pp. 153–164. Austrian Computer Society (2011)

10. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of trans-
formations of a finite set (2003), http://arxiv.org/abs/math/0306416v1

11. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970) (Russian); English translation: Soviet Math.
Dokl. 11, 1373–1375 (1970)

12. Myhill, J.: Finite automata and the representation of events. Wright Air Develop-
ment Center Technical Report 57–624 (1957)

13. Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages. Word, Language, Grammar, vol. 1, pp. 679–746. Springer
(1997)

14. Saito, T.: J -trivial subsemigroups of finite full transformation semigroups. Semi-
group Forum 57, 60–68 (1998)

15. Simon, I.: Hierarchies of Events With Dot-Depth One. PhD thesis, Dept. of Applied
Analysis & Computer Science, University of Waterloo, Waterloo, Ont., Canada
(1972)

16. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages. Word, Language, Grammar, vol. 1, pp. 41–110. Springer (1997)

http://arxiv.org/abs/1203.2873
http://arxiv.org/abs/math/0306416v1

Sophistication as Randomness Deficiency

Francisco Mota1,2, Scott Aaronson4, Lúıs Antunes1,2, and André Souto1,3

1 Security and Quantum Information Group at Instituto de Telecomunicações
fmota@fmota.eu, lfa@dcc.fc.up.pt, asouto@math.ist.utl.pt

2 Departamento de Ciência de Computadores at FCUP
3 Departamento de Matemática at IST at UTL

4 Computer Science and Artificial Intelligence Lab at MIT
aaronson@csail.mit.edu

Abstract. The sophistication of a string measures how much structural
information it contains. We introduce naive sophistication, a variant of
sophistication based on randomness deficiency. Naive sophistication mea-
sures the minimum number of bits needed to specify a set in which the
string is a typical element. Thanks to Vereshchagin and Vitányi, we know
that sophistication and naive sophistication are equivalent up to low or-
der terms. We use this to relate sophistication to lossy compression,
and to derive an alternative formulation for busy beaver computational
depth.

1 Introduction

Kolmogorov complexity measures the amount of information intrinsic in an ob-
ject by measuring how much an object can be compressed. For example, the
string 01000 (that is, 0 repeated 1000 times) can be compressed into only a few
bits and therefore has very little information. On the other hand, a random
string cannot easily be compressed and therefore has a lot of information.

Different methods of compression will yield different complexity measures.
Fortunately, there is a compression scheme that yields an optimal complexity
measure. The trick is to describe a string x as a pair 〈p, d〉, where p is a program
in some prefix-free Turing-complete language, and the program p generates the
string x when given the string d as input. Thus we define the Kolmogorov com-
plexity of x as the length of the shortest description of x under this universal
compression scheme:

K(x) = min
p,d
{ |p|+ |d| : 〈p, d〉 is a description of x }.

We say that a string x is incompressible if K(x) ≥ |x| − O(1). Incompressible
strings are indistinguishable from randomly generated strings, so we equate the
two: a random string is an incompressible string. Furthermore, we know that if
〈p, d〉 is an optimal two-part description for x, then d is incompressible. Thus
we say that p represents the structural information of x and d represents the
random information of x.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 172–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sophistication as Randomness Deficiency 173

This sets the stage for the study of sophistication. Sophistication measures the
amount of structural information in a string. We look at all short descriptions
of a string and minimize over the structural information in those descriptions.
An equivalent way to look at sophistication is to model a string by a finite set
that contains it. Some sets are better models than others. Sophistication is then
the minimum complexity of a good model for that string.

For example, the set of all strings of length n is a good way to model com-
pletely random strings of length n, so a completely random string has very low
sophistication. On the other hand, the set {x} is always a good model for the
string x, so a string of very low complexity also has very low sophistication.

One of the characteristics of a good model for x is that x must be a typical
element of that model, in the sense that x is generally indistinguishable from
an element of the model taken at random. Randomness deficiency addresses this
question of typicality. Randomness deficiency is used to measure how typical a
string is with respect to a finite set that contains it.

The contributions of this paper are:

– We introduce a sophistication measure based on randomness deficiency, naive
sophistication (§3). Vereshchagin and Vitányi [1] showed that naive sophis-
tication is equivalent to sophistication up to low order terms (§4).

– We relate naive sophistication to the limits of lossy compression, in the sense
that naive sophistication measures how many bits are needed to represent a
consistent model of the string. With a consistent model, we can query the
properties of the string with a very low false positive rate (§5).

– We compare naive sophistication to computational depth (§6). By using
naive sophistication, we establish an alternative definition for busy beaver
computational depth.

2 Preliminaries

In this section we present formal definitions for Kolmogorov complexity, random-
ness deficiency, discrepancy, and sophistication. What follows is a brief summary
of the theory of Kolmogorov complexity. For more details, we suggest the reading
of [2].

Definition 1 (Kolmogorov Complexity). Let T be a prefix-free Turing ma-
chine. We define the conditional Kolmogorov complexity of x given y relative
to T as the length of the shortest program that outputs x when given y as an
additional input:

KT (x|y) = min
p
{ |p| : T (p, y) = x }.

There is a prefix-free Turing machine U which yields an optimal prefix-free com-
plexity measure. For any prefix-free Turing machine T , there is a constant cT

174 F. Mota et al.

such that KU (x|y) ≤ KT (x|y)+cT . Because U is optimal, we drop the subscript,
and this is what we call the Kolmogorov complexity of x given y:

K(x|y) = KU (x|y) = min
p
{ |p| : U(p, y) = x }.

We also use special notation for the case where the condition y is the empty string
ε. This is equivalent to the definition of K(x) presented in the introduction:

K(x) = K(x|ε) = min
p
{ |p| : U(p, ε) = x }.

Kolmogorov complexity measures how much information we need to describe a
string. We can also extend this definition to finite sets of strings, by encoding the
set S = {x1, x2, . . . , xk} as a string [S] = [k][x1][x2] · · · [xk] where the sequence
x1, . . . , xk enumerates all elements of S in lexicographic order, [k] is a prefix-free
encoding1 of the integer k, and [xi] is a prefix-free encoding2 of the string xi.
The complexity of a finite set S is then

K(S) = K([S]) = K([k][x1][x2] · · · [xk]).

Likewise, we can use a finite set S as the condition in confitional Kolmogorov
complexity. We define K(x|S) = K(x|[S]). Given such a description of a set, we
would need at most log |S| bits to describe any element from the set. That is, if
x ∈ S, then K(x|S) ≤ log |S| + O(1). By a counting argument, most elements
of S also satisfy K(x|S) ≥ log |S| − O(1), but there might be a shorter way to
describe x given S, if x is atypical.

Definition 2 (Randomness Deficiency). The randomness deficiency of x
with respect to a finite set S containing x is defined as

δ(x|S) = log |S| −K(x|S).

An element x of S with low randomness deficiency is said to be typical, for the
best way to describe x using S is to pinpoint its exact location in the set. In this
paper we adopt the convention that if x is not an element of S, then δ(x|S) =∞.

We could also use S to describe any x ∈ S unconditionally, by first describing S
and then pinpointing x’s location in it: K(x) ≤ K(S)+ log |S|+O(1). However,
the set S might be a very poor model of x, resulting in a large gap between K(x)
and K(S) + log |S|. We introduce discrepancy as a new notation to talk about
this gap.

Definition 3 (Discrepancy). The discrepancy of x with respect to a finite set
S containing x is the additional cost of using S to describe x. It is defined as

Δ(x|S) = log |S| −K(x) +K(S).

By convention, if x is not an element of S, then Δ(x|S) =∞.

1 For example, let [k] = 0k1, for any natural number k.
2 For example, let [x] = [|x|]x = 0|x|1x, for any string x.

Sophistication as Randomness Deficiency 175

Randomness deficiency measures how far x is from being a typical element of
S, and discrepancy measures how far S is from being a good model of x. They
are two sides of the same coin, and they are simply related. It is easy to see that
δ(x|S) ≤ Δ(x|S) + O(1) for any x and S. The following lemma tells us exactly
how far apart they are, up to a logarithmic term.

Lemma 1. For any finite set of strings S and any string x ∈ S, we have

Δ(x|S) = δ(x|S) +K(S|x)

up to a logarithmic additive term in K(S) and K(x).

Proof. By the symmetry of algorithmic information [3], we know that K(S) −
K(S|x) = K(x)−K(x|S) up to a logarithmic additive term in K(S) and K(x).
Rearranging the terms and adding log |S| to both sides gives us the desired
approximate equality. ��

2.1 Sophistication and Coarse Sophistication

Sophistication, as defined by Koppel [4], measures the amount of structural
information contained in a string. According to Vitányi [5], this is equivalent to
measuring the complexity of a good model for that string, up to low order terms.

Definition 4 (Sophistication). The sophistication of x is the complexity of
the simplest model of x with limited discrepancy:

sophc(x) = min
S
{ K(S) : Δ(x|S) ≤ c }.

The significance level c tells us how much discrepancy S is allowed to have. We
say that S is a witness to sophc(x) if K(S) ≤ sophc(x) and Δ(x|S) ≤ c.

Antunes and Fortnow [6] defined a variant of sophistication, called coarse so-
phistication, that gets rid of the significance level by incorporating it into the
minimization.

Definition 5 (Coarse Sophistication). The coarse sophistication of a string
x minimizes both the complexity of the model and its discrepancy:

csoph(x) = min
S
{ K(S) +Δ(x|S) }.

Once again, this definition is equivalent to the definition based on structural
information, given in [6], up to a logarithmic additive term. We say that S is a
witness to csoph(x) if K(S) +Δ(x|S) ≤ csoph(x).

What follows is an alternative definition for coarse sophistication.

Lemma 2. We have:

csoph(x) = min
c
{ sophc(x) + c }.

176 F. Mota et al.

Proof

(≤) For any c, let S be a witness to sophc(x). By definition, Δ(x|S) ≤ c.
Therefore,

csoph(x) ≤ K(S) +Δ(x|S) ≤ sophc(x) + c.

Since this is true for any c, we have csoph(x) ≤ minc{ sophc(x) + c }.

(≥) Let S be a witness to csoph(x) and let d = Δ(x|S). Therefore,

minc{ sophc(x) + c } ≤ sophd(x) + d

≤ K(S) +Δ(x|S)
= csoph(x). ��

3 Naive Sophistication

We now define a sophistication measure based on randomness deficiency.3

Definition 6 (Naive Sophistication). The naive sophistication of x is the
complexity of the simplest set in which x is a typical element:

nsophc(x) = min
S
{ K(S) : δ(x|S) ≤ c }.

The significance level c tells us how atypical x is allowed to be. We say that S
is a witness to nsophc(x) if K(S) ≤ nsophc(x) and δ(x|S) ≤ c.

Definition 7 (Naive Coarse Sophistication). Naive coarse sophistication
gets rid of the significance level, by minimizing over both the complexity of the
set and the resulting randomness deficiency:

ncsoph(x) = min
S
{ K(S) + δ(x|S) }.

We say that S is a witness to ncsoph(x) if K(S) + δ(x|S) ≤ ncsoph(x).

Naive coarse sophistication is the naive counterpart to coarse sophistication.
Lemma 2 also applies to naive coarse sophistication. In other words, the following
equation is an equivalent definition for naive coarse sophistication:

ncsoph(x) = min
c
{ nsophc(x) + c }.

4 Comparing Sophistication Measures

In this section, we show that naive sophistication is equivalent to sophistication
up to low order terms, based on previous work by Vereshchagin and Vitányi [1].
These equations and inequalities hold up to a logarithmic additive term in |x|:

sophc+O(log |x|)(x) ≤ nsophc+O(1)(x) ≤ sophc(x),

csoph(x) = ncsoph(x).

3 Aaronson first introduced naive sophistication in his MathOverflow question [7].

Sophistication as Randomness Deficiency 177

Theorem 1. Naive sophistication is a lower bound for sophistication:

nsophc+O(1)(x) ≤ sophc(x),

ncsoph(x) ≤ csoph(x) +O(1).

Proof. This is a consequence of δ(x|S) ≤ Δ(x|S) +O(1) for any x and S. ��

Lemma 3 (Lemma A.4 of [1]). For any finite set A containing x with K(A)+
log |A| ≤ O(|x|), then there is a finite set S containing x with K(S) ≤ K(A)−
K(A|x) +O(log |x|) and log |S| ≤ log |A|.

Theorem 2. Naive sophistication is an upper bound for sophistication:

sophc+O(log |x|)(x) ≤ nsophc(x) +O(log |x|),
csoph(x) ≤ ncsoph(x) +O(log |x|).

Proof. Let A witness nsophc(x). By Lemma 3, there is a set S with K(S) ≤
K(A)−K(A|x) +O(log |x|) and log |S|. Therefore,

Δ(x|S) = K(S) + log |S| −K(x)

≤ (K(A)−K(A|x) +O(log |x|)) + log |A| −K(x)

≤ Δ(x|A) −K(A|x) +O(log |x|)
≤ δ(x|A) +O(log |x|) (by Lemma 1)

≤ c+O(log |x|).

Therefore sophc+O(log |x|)(x) ≤ K(S) ≤ nsophc(x) + O(log |x|). The csoph(x)
upper bound follows by Lemma 2. ��

We can also use naive sophistication to create an upper bound for sophistication
that uses a O(1) additive term in the significance level, but it is significantly
weaker.

Theorem 3 (Upper bound for sophistication with constant overhead)

sophnsophc(x)+c+O(1)(x) ≤ nsophc(x),

csoph(x) ≤ 2 · nsophc(x) + c+O(1).

Proof Let S be a witness to nsophc(x). Notice that log |S| ≤ K(x|S) + c, that
K(S) = nsophc(x), and that K(x|S) ≤ K(x) +O(1). We have,

Δ(x|S) ≤ K(S) + log |S| −K(x)

≤ K(S) +K(x|S) + c−K(x)

≤ K(S) + c+O(1)

= nsophc(x) + c+O(1).

The csoph(x) upper bound follows by Lemma 2. ��

178 F. Mota et al.

5 Relation to Lossy Compression

Naive sophistication measures the limits of lossy compression. This is true in the
sense that we need only a witness to nsophc(x) to be able to query properties of
x without false positives, and we need at least nsophc+O(1)(x) bits to describe
any such model of x. The connection between lossy compression and randomness
deficiency was established in [1]. We are elaborating on that connection.

Let us say that a set S is (c, x)-consistent if and only if, for all properties
P ⊆ Σ∗, if P occurs with high probability in S, then x ∈ P . Formally, S is
(c, x)-consistent if for all properties P ,

Pr
S
(P) ≥ 1− 2−c−K(P |S) implies x ∈ P.

Theorem 4. Consistency is equivalent to randomness deficiency, up to a con-
stant d:

1. A set S is (c, x)-consistent if δ(x|S) ≤ c− d.
2. A set S is (c, x)-consistent only if δ(x|S) ≤ c+ d.

Proof.

1. Let S satisfy δ(x|S) ≤ c − d. We will show that S is (c, x)-consistent. Let
P ⊆ Σ∗ be a property that occurs with high probability in S. That is,
PrS(P) ≥ 1 − 2−c−K(P |S). Let Q = S \ P . Then |Q| < |S| · 2−c−K(P |S). If
x ∈ Q, we have

K(x|S) ≤ K(Q|S) + log |Q|
< (K(P |S) +O(1)) + (log |S| − c−K(P |S))
≤ log |S| − c+O(1).

This implies δ(x|S) > c − O(1), which is a contradiction for large enough
values of d. Therefore x ∈ P . This holds for all properties P that occur with
high probability in S, so S is (c, x)-consistent.

2. We know that for any property P with PrS(P) ≥ 1 − 2−c−K(P |S), we have
x ∈ P . By way of contradiction, let us assume that δ(x|S) > c + d. That
is, K(x|S) < log |S| − c − d. Let P = { y : y �= x }. Note that K(P |S) ≤
K(x|S) +O(1) ≤ K(x|S) + d ≤ log |S| − c, for large enough values of d. We
have

PrS(P) = (|S| − 1)/|S|
= 1− 1/|S|
= 1− 2− log |S|

≥ 1− 2−c−K(P |S).

Since S is (c, x)-consistent and P occurs with high probability in S, we have
x ∈ P . But by construction, x �∈ P . Therefore, δ(x|S) ≤ c+ d. ��

Sophistication as Randomness Deficiency 179

As a result, nsophc(x) roughly measures the minimum complexity of (c, x)-
consistent sets. Also, if S is a witness to nsophc(x), we can use S to infer
information about x. If we want to see if x has a property P , we take many
elements of S at random. If all of those elements are in P , then it is very likely
that x is in P as well. Otherwise, we cannot tell whether x ∈ P or x �∈ P . That
is, witnesses to naive sophistication generally only prevent false positives, not
false negatives.

6 Relation to Computational Depth

Computational depth measures how much harder compression is in the presence
of time bounds:

deptht(x) = Kt(x) −K(x)

where Kt(x) = minp{ |p| : U(p, ε) = x in at most time t } is the time-bounded
Kolmogorov complexity. It is well known that sophistication and computational
depth are related [4,6], as are computational depth and randomness deficiency
[8]. Antunes and Fortnow [6] used busy beaver computational depth:

depthBB(x) = min
t
{ K(t) + deptht(x) }.

They showed that coarse sophistication is equivalent to busy beaver computa-
tional depth, up to a logarithmic additive term:

csoph(x) ≈ depthBB(x).

We can show a similar result about naive sophistication and how it relates to
a variant of busy beaver computational depth, but first we need to strengthen
symmetry of information with explicit time bounds.

Lemma 4 (Time-bounded symmetry of information). Symmetry of infor-
mation still holds in the presence of a time bound, but the time bound increases.
Let t be a time bound. Then there exists a t′ ≥ t such that

Kt′(y) +Kt′(x|y) ≤ Kt(x, y) +O(logKt(x, y)).

Furthermore, t′ = γ · t log t where K(γ) ≤ O(logKt(x, y)).

Proof. Let m = Kt(x, y). Let V = { v : Kt(v, y) ≤ m }, and U = { u :
∃≥|V | v. Kt(v, u) ≤ m }. Note that |U | ≤ 2m/|V |, that x ∈ V and y ∈ U , and
that both V and U are enumerable in time t′ = 22m+O(1) · t log t, and we have
K(22m+O(1)) ≤ O(logm). Finally, we have,

Kt′(y) +Kt′(x|y) ≤ (Kt′(U) + log |U |) + (Kt′(V |y) + log |V |) +O(1)

≤ log |U |+ log |V |+O(logm)

≤ (m− k) + k +O(logm)

≤ Kt(x, y) +O(logKt(x, y)). ��

180 F. Mota et al.

Theorem 5 (Naive sophistication as computational depth). Up to a log-
arithmic additive term, we have:

ncsoph(x) = min
t
{ K(t) + deptht(x|t) }.

Proof.

(≤) Let t minimize the right-hand side. Let k = Kt(x|t), and let S = { y :
Kt(y|t) ≤ k }. We have log |S| ≤ k and K(S|t) ≤ K(k) ≤ O(log |x|).
Therefore,

ncsoph(x) ≤ K(S) + log |S| −K(x|S)
≤ (K(t) +O(log |x|)) + k − (K(x|t)−O(log |x|))
≤ K(t) +Kt(x|t) −K(x|t) +O(log |x|).

(≥) Let S be a witness to ncsoph(x). Let t be a time bound sufficiently large in
order to describe S fully, pick any given element from it, and also to return
t, in such a way that Kt(x, t) ≤ K(S) + log |S| + O(1). For any S, we can
construct such a t, so K(t|S) ≤ O(log |x|). Using Lemma 4, we obtain a time
bound t′ such that K(t) + Kt′(x|t) ≤ Kt(x, t) + O(log |x|), with K(t′|t) =
O(log |x|) and K(t|t′) = O(log |x|). We extend this with a time bound t′′ =
c · t′ for some constant c, such that Kt′′(x|t′′) ≤ Kt′(x|t) + O(log |x|). As a
result, we have,

mint{ K(t) +Kt(x|t)−K(x|t) } ≤ K(t′′) +Kt′′(x|t′′)−K(x|t′′)
≤ K(t) +Kt′(x|t) −K(x|t) +O(log |x|)
≤ Kt(x, t)−K(x|t) +O(log |x|)
≤ K(S) + log |S| −K(x|S) +O(log |x|)
= ncsoph(x) +O(log |x|). ��

This reveals an alternative definition for busy beaver computational depth, that
holds up to a logarithmic additive term:

depthBB(x) = min
t
{ K(t) + deptht(x) }

≈ min
t
{ K(t) + deptht(x|t) }.

7 Conclusion

We have defined naive sophistication, a variant of sophistication based on ran-
domness deficiency, and we have seen that it is equivalent to sophistication up
to low order terms. Naive sophistication gives us a new perspective on sophis-
tication and allows us to apply it in new ways, as we have done in looking at
lossy compression and computational depth through new eyes. We have seen that
naive sophistication arises naturally in trying to measure how much information
of a string we can throw away without losing the ability to query its properties
(without false positives). We have also seen that naive sophistication allows us
to find an alternative definition for busy beaver computational depth.

Sophistication as Randomness Deficiency 181

Acknowledgements. We wish to thank Péter Gács, Paul Vitányi, Nikolay
Vereshchagin, and the anonymous reviewers for their insightful comments. This
work was partially supported by the national science foundation of Portugal,
Fundação para a Ciência e Tecnologia, through the project CSI2 with the ref-
erence PTDC/EIA-CCO/099951/2008 and through grants of the Instituto de
Telecomunicações. André Souto was also supported by Fundação para a Ciência
e Tecnologia through the scholarship SFRH/BPD/76231/2011.

References

1. Vereshchagin, N., Vitányi, P.: Kolmogorov’s structure functions and model selection.
IEEE Transactions on Information Theory 50(12), 3265–3290 (2004)

2. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications,
3rd edn. Springer (2008)

3. Gács, P.: On the symmetry of algorithmic information. Soviet Mathematics Dok-
lady 15, 1477–1480 (1974)

4. Koppel, M.: Structure. In: Herken, R. (ed.) The Universal Turing Machine: A Half-
Century Survey, pp. 435–452. Oxford University Press (1988)

5. Vitányi, P.: Meaningful information. IEEE Transactions on Information The-
ory 52(10), 4617–4626 (2006)

6. Antunes, L., Fortnow, L.: Sophistication revisited. Theory of Computing Sys-
tems 45(1), 150–161 (2009)

7. Aaronson, S.: Can a string’s sophistiocation be defined in an unsophisticated way?
(2012), http://mathoverflow.net/questions/103619

8. Antunes, L., Matos, A., Souto, A., Vitányi, P.: Depth as randomness deficiency.
Theory of Computing Systems 45(4), 724–739 (2009)

http://mathoverflow.net/questions/103619

Shortest Repetition-Free Words Accepted

by Automata

Hamoon Mousavi and Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1 Canada
{sh2mousa,shallit}@uwaterloo.ca

Abstract. We consider the following problem: given that a finite au-
tomaton M of N states accepts at least one k-power-free (resp., overlap-
free) word, what is the length of the shortest such word accepted? We
give upper and lower bounds which, unfortunately, are widely separated.

1 Introduction

Let L be an interesting language, such as the language of primitive words, or the
language of non-palindromes. We are interested in the following kind of question:
given that an automaton M of N states accepts a member of L, what is a good
bound on the length �(N) of the shortest word accepted?

For example, Ito et al. [7] proved that if L is the language of primitive words,
then �(N) ≤ 3N − 3. Horváth et al. [6] proved that if L is the language of
non-palindromes, then �(N) ≤ 3N . For additional results along these lines, see
[1].

For an integer k ≥ 2, a k-power is a nonempty word of the form xk. A word is
k-power-free if it has no k-powers as factors. A word of the form axaxa, where a
is a single letter, and x is a (possibly empty) word, is called an overlap. A word
is overlap-free if it has no factor that is an overlap.

In this paper we address two open questions left unanswered in [1], corre-
sponding to the case where L is the language of k-power-free (resp., overlap-free)
words. For these words we give a class of DFAs of N states for which the shortest
k-power (resp., overlap) is of length N

1
4 (logN)+O(1). For overlaps over a binary

alphabet we give an upper bound of 2O(N4N).

2 Notation

For a finite alphabet Σ, let Σ∗ denote the set of finite words over Σ. Let w =
a0a1 · · · an−1 ∈ Σ∗ be a word. Let w[i] = ai, and let w[i..j] = ai · · ·aj . By
convention we have w[i] = ε for i < 0 or i ≥ n, and w[i..j] = ε for i > j. A prefix
p of w is a period of w if w[i+ r] = w[i] for 0 ≤ i < |w| − r, where r = |p|.

For words x, y, let x ! y denote that x is a factor of y. A factor x of y is
proper if x �= y. Let x !p y (resp., x !s y) denote that x is a prefix (resp., suffix)
of y. Let x ≺p y (resp., x ≺s y) denote that x is a proper prefix (resp., proper
suffix) of y; that is, a prefix (resp., suffix) such that x �= y.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 182–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Shortest Repetition-Free Words Accepted by Automata 183

A word is primitive if it is not a k-power for any k ≥ 2. Two words x, y are
conjugate if one is a cyclic shift of the other; that is, if there exist words u, v
such that x = uv and y = vu. One simple observation is that all conjugates of a
k-power are k-powers.

Let h : Σ∗ → Σ∗ be a morphism, and suppose h(a) = ax for some letter a. The
fixed point of h, starting with a ∈ Σ, is denoted by hω(a) = a xh(x)h2(x) · · · .
We say that a morphism h is k-power-free (resp., overlap-free) if h(w) is k-power-
free (resp., overlap-free) if w is.

Let Σm = {0, 1, . . . ,m− 1}. Define the morphism μ : Σ∗
2 → Σ∗

2 as follows

μ(0) = 01

μ(1) = 10.

We call t = μω(0) the Thue-Morse word. It is easy to see that

μ(t[0..n− 1]) = t[0..2n− 1] for n ≥ 0.

From classical results of Thue [10,11], we know that the morphism μ is overlap-
free. From [2], we know that that μ(x) is k-power free for each k > 2.

For a DFAD = (Q,Σ, δ, q0, F) the set of states, input alphabet, transition
function, set of final states, and initial state are denoted by Q,Σ, δ, F, and q0,
respectively. Let L(D) denote the language accepted by D. As usual, we have
δ(q, wa) = δ(δ(q, w), a) for a word w.

We state the following basic result without proof.

Proposition 1. Let D = (Q,Σ, δ, q0, F) be a (deterministic or nondeterminis-
tic) finite automaton. If L(D) �= ∅, then D accepts at least one word of length
smaller than |Q|.

3 Lower Bound

In this section, we construct an infinite family of DFAs such that the shortest
k-power-free word accepted is rather long, as a function of the number of states.
Up to now only a linear bound was known.

For a word w of length n and i ≥ 1, let

cyci(w) = w[i..n− 1]w[0..i− 2]

denote w’s ith cyclic shift to the left, followed by removing the last symbol. Also
define

cyc0(w) = w[0..n− 2].

For example, we have

cyc2(recompute) = computer,

cyc4(richly) = lyric.

184 H. Mousavi and J. Shallit

We call each cyci(w) a partial conjugate of w, which is not a reflexive, symmetric,
or transitive relation.

A word w is a simple k-power if it is a k-power and it contains no k-power as
a proper factor.

We start with a few lemmas.

Lemma 2. Let w = pk be a simple k-power. Then the word p has |p| distinct
conjugates.

Proof. By contradiction. If pk is a simple k-power, then p is a primitive word.
Suppose that p = uv = xy such that x ≺p u and vu = yx. Without loss of
generality, we can assume that xv �= ε. Then there exists a word t �= ε such that
u = xt and y = tv. From vu = yx we get

vxt = tvx.

Using a theorem of Lyndon and Schützenberger [8], we get that there exists z �= ε
such that

vx = zi

t = zj

for some positive integers i, j. So yx = zi+j . Hence p = xy is not primitive, a
contradiction. ��

Lemma 3. Let w be a simple k-power of length n. Then we have

cyci(w) = cycj(w) iff i ≡ j (mod
n

k
). (1)

Proof. Let w = pk. If i ≡ i′ (mod n
k) and i

′ < n
k , then

cyci(w) = (p[i′..
n

k
− 1] p[0..i′ − 1])k−1 cyci′(p).

Similarly, if j ≡ j′ (mod n
k) and j

′ < n
k , then

cycj(w) = (p[j′..
n

k
− 1] p[0..j′ − 1])k−1 cycj′(p).

So if i′ = j′, we get cyci(w) = cycj(w). On the other hand, if i′ �= j′, we get

p[i′..
n

k
− 1] p[0..i′ − 1] �= p[j′..

n

k
− 1] p[0..j′ − 1]

using Lemma 2, and hence cyci(w) �= cycj(w).
��

Lemma 4. All conjugates of a simple k-power are simple k-powers.

Shortest Repetition-Free Words Accepted by Automata 185

· · ·x =

uqkv =
p p p p p p

· · ·u q q q q v

|u| |pu| − e |p2u| − 2e |pk−1u| − (k − 1)e

Fig. 1. starting positions of the occurrences of q inside x

Proof. By contradiction. Let w = pk be a simple k-power, and let z �= w be a
conjugate of w. Clearly z is a k-power. Suppose z contains qk and z �= qk. Thus
|q| < |p|. Since w is simple qk � w = pk. The word x = pk+1 contains z as a
factor. So x = uqkv, for some words u, v ! p.
Note that u and v are nonempty and not equal to p since qk � pk. Letting
e := |p| − |q|, and considering the starting positions of the occurrences of q in x
(see Fig. 1), we can write

x
[
|piu| − ie..|piu| − (i − 1)e− 1

]
= x

[
|pju| − je..|pju| − (j − 1)e− 1

]
for every 0 ≤ i, j < k. Since p is a period of x, we can write

x [|u| − ie..|u| − (i − 1)e− 1] = x [|u| − je..|u| − (j − 1)e− 1]

which means x[u − (k − 1)e..u + e − 1] ! w is a k-power. Therefore w contains
a k-power other than itself, a contradiction. ��
Corollary 5. Partial conjugates of simple k-powers are k-power-free.

The next lemma shows that there are infinitely many simple k-powers over a
binary alphabet for k > 2. We also show that there are infinitely many simple
squares over a ternary alphabet, using a result of Currie [4].

Lemma 6

(i) Let p = t[0..2n − 1] where n ≥ 0. For every k > 2, the word pk is a simple
k-power.

(ii) There are infinitely many simple squares over a ternary alphabet.

Proof

(i) By induction on n. For n = 0 we have pk = 0k which is a simple k-power.
Suppose n > 0. To get a contradiction, suppose that there exist words u, v, x
with uv �= ε and x �= ε such that pk = uxkv. Note that |x| < |p|, so
|uv| ≥ k. Without loss of generality, we can assume that |v| ≥ $k2 % ≥ 2. Let
q = t[0..2n−1 − 1]. We know that

pk = μ(qk).

We can write
w = uxk !p μ(qk−1q[0..|q| − 2]).

Since μ is k-power-free, the word qk−1q[0..|q| − 2] contains a k-power. Hence
qk contains at least two k-powers, a contradiction.

186 H. Mousavi and J. Shallit

(ii) Currie [4] proved that over a ternary alphabet, for every n ≥ 18, there is a
word p of length n such that all its conjugates are squarefree. Such squarefree
words are called circularly squarefree words.

We claim that for every circularly squarefree word p, the word p2 is a
simple square. To get a contradiction, let q2 be the smallest square in p2. So
there exist words u, y with uy �= ε such that p2 = uq2y. We have |q2| > |p|
since p is circularly squarefree. Therefore, if we let p = uv = xy, then |x| > |u|
and |v| > |y|. So there exists t such that x = ut and v = ty. We can assume
|t| < |q|, since otherwise |t| = |q| and |uy| = 0, a contradiction. Now since
q2 = vx = tyut, we get that q begins and ends with t, which means t2 ≺ q2.
Therefore p2 has a smaller square than q2, a contradiction. ��

Next we show how to construct arbitrarily long simple k-powers from smaller
ones. Fix k = 2 (resp., k ≥ 3) and m = 3 (resp., m = 2). Let w1 ∈ Σ∗

m be a
simple k-power. Using the previous lemma, there are infinitely many choices for
w1. Let w1 be of length n. Define wi+1 ∈ Σ∗

m+i for i ≥ 1 recursively by

wi+1 = cyc0(wi)ai cycni−1(wi)ai cyc2ni−1(wi)ai · · · cyc(n−1)ni−1(wi)ai (2)

where ai = m + i − 1. The next lemma states that wi, for i ≥ 1, is a simple
k-power. Therefore, using Corollary 5, each word cyc0(wi) is k-power-free. For
i ≥ 1, it is easy to see that

|wi| = n|wi−1| = ni. (3)

Lemma 7. For every i ≥ 1, the word wi is a simple k-power.

Proof. By induction on i. The word w1 is a simple k-power. Now suppose that
wi is a simple k-power for some i ≥ 1. Using Lemma 3, we have cycjni−1 (wi) =

cyc(j+ n
k)ni−1(wi), since

|wi|
k = ni

k .
We get that wi+1 is a k-power since

wi+1 = (cyc0(wi)ai cycni−1(wi)ai cyc2ni−1(wi)ai · · · cyc(n
k −1)ni−1(wi)ai)

k.

We now claim that wi+1 is a simple k-power. To see this, suppose that wi+1

contains a k-power yk such that wi+1 �= yk.
If y contains more than one occurrence of ai, then y = uai cycj(wi)aiv for some

words u, v and an integer j. Since y2 = uai cycj(wi)aivuai cycj(wi)aiv ! wi+1,
using (2) and Lemma 3, we get that

|y| =
∣∣cycj(wi)aivuai∣∣ ≥ n

k
ni =

|wi+1|
k

,

and hence yk = wi+1, a contradiction.
If y contains just one ai, then y = uaiv for some words u, v which contain

no ai. So y
k = u(avu)k−1av for a = ai. Therefore vu is a partial conjugate of

wi. However the distance between two equal partial conjugates of wi in wi+1 is
longer than just one letter, using (2) and Lemma 3.

Finally, if y contains no ai, then a partial conjugate of wi contains a k-power,
which is impossible due to Corollary 5. ��
To make our formulas easier to read, we define a0 = w1[n− 1].

Shortest Repetition-Free Words Accepted by Automata 187

Theorem 8. For i ≥ 1, there is a DFADi with 2i−1(n− 1)+ 2 states such that
cyc0(wi) is the shortest k-power-free word in L(Di).

Proof. Define D1 = (Q1, Σa1 , δ1, q1,0, F1) where

Q1 := {q1,0, q1,1, q1,2, . . . , q1,n−1, qd},
F1 := {q1,n−1},
δ1(q1,j , w1[j]) := q1,j+1 for 0 ≤ j < n− 1,

and the rest of the transitions go to the dead state qd. Clearly we have |Q1| = n+1
and L(D1) = {cyc0(w1)}.

We define Di = (Qi, Σai , δi, q1,0, Fi) for i ≥ 2 recursively. We recall that
ai = m + i − 1 for i ≥ 1 and a0 = w1[n − 1]. For the rest of the proof s and t
denote (possibly empty) sequences of integers and j denotes a single integer (a
sequence of length 1). We use integer sequences as subscripts of states in Qi. For
example, q1,0, qs,j , and qs,1,t might denote states of Di. For i ≥ 1, define

Qi+1 := Qi ∪ {qi+1,t : qt ∈ (Qi − Fi)− {qd}}, (4)

Fi+1 := {qi+1,i,t : δi(qi,t, c) = q1,n−1 for some c ∈ Σai}, (5)

if qt ∈ Qi and c ∈ Σai , then δi+1(qt, c) := δi(qt, c) (6)

if qt, qs ∈ (Qi − Fi)− {qd}, c ∈ Σai , and δi(qt, c) = qs,

then δi+1(qi+1,t, c) := qi+1,s (7)

if qt ∈ Fi, then δi+1(qt, ai) := q1,1 and δi+1(qt, ai−1) := qi+1,1,0 (8)

if i > 1, qi+1,t /∈ Fi+1, and δi(qt, ai−1) = q1,j,

then δi+1(qi+1,t, ai) := q1,j+1 (9)

and finally for the special case of i = 1,

δ2(q2,1,j , a1) := q1,j+2 for 0 ≤ j < n− 2. (10)

The rest of the transitions, not indicated in (6)–(10), go to the dead state qd.
Fig. 2b depicts D2 and D3. Using (4), we have |Qi+1| = 2|Qi|−2 = 2i(n−1)+2
by a simple induction.

An easy induction on i proves that |Fi| = 1. So let fi be the appropriate
integer sequence for which Fi = {qfi}. Using (6)–(10), we get that for every
1 ≤ j < n, there exists exactly one state qt ∈ Qi for which δi(qt, ai−1) = q1,j .

By induction on i, we prove that for i ≥ 2 if δi(qt, ai−1) = q1,j , then

x1 = cyc(j−1)ni−2 (wi−1), (11)

x2 = wi[0..jn
i−1 − 2], (12)

x3 = wi[(j − 1)ni−1..ni − 2]. (13)

are the shortest k-power-free words for which

δi(q1,j−1, x1) = qt, (14)

δi(q1,0, x2) = qt, (15)

δi(q1,j−1, x3) = qfi . (16)

188 H. Mousavi and J. Shallit

In particular, from (13) and (16), for j = 1, we get that cyc0(wi) is the shortest
k-power-free word in L(Di).

The fact that our choices of x1, x2, and x3 are k-power-free follows from the
fact that proper factors of simple k-powers are k-power-free. For i = 2 the proofs
of (14)–(16) are easy and left to the readers.

Suppose that (14)–(16) hold for some i ≥ 2. Let us prove (14)–(16) for i+ 1.
Suppose that

δi+1(qt, ai) = q1,j . (17)

First we prove that the shortest k-power-free word x for which

δi+1(q1,j−1, x) = qt,

is x = cyc(j−1)ni−1 (wi).
If qt ∈ Qi, from (8) and (17), we have

qt = qfi , and

δi+1(qt, ai) = q1,1.

By induction hypothesis, the cyc0(wi) is the shortest k-power-free word in L(Di).
In other words, we have δi(q1,0, cyc0(wi)) = qfi = qt, which can be rewritten
using (6) as δi+1(q1,0, cyc0(wi)) = qt.

Now suppose qt /∈ Qi. Then by (9) and (17), we get that there exists t′ such
that qt′ ∈ Qi and

t = i+ 1, t′;
δi(qt′ , ai−1) = q1,j−1.

From the induction hypothesis, i.e., (15) and (16), we can write

δi(q1,0, wi[0..(j − 1)ni−1 − 2]) = qt′ , (18)

δi(q1,j−1, wi[(j − 1)ni−1..ni − 2]) = qfi . (19)

In addition wi[0..(j − 1)ni−1 − 2] and wi[(j − 1)ni−1..ni − 2] are the shortest
k-power-free transitions from q1,0 to qt′ and from q1,j−1 to qfi respectively. Using
(6), we can rewrite (18) and (19) for δi+1 as follows:

δi+1(q1,0, wi[0..(j − 1)ni−1 − 2]) = qt′ , (20)

δi+1(q1,j−1, wi[(j − 1)ni−1..ni − 2]) = qfi . (21)

Note that from (7) and (20), we get

δi+1(qi+1,1,0, wi[0..(j − 1)ni−1 − 2]) = qi+1,t′ = qt. (22)

We also have δi+1(qfi , ai) = qi+1,1,0, using (8). So together with (21) and (22),
we get

δi+1(q1,j−1, cyc(j−1)ni−1(wi)) = qt

and cyc(j−1)ni−1(wi) is the shortest k-power-free transition from q1,j−1 to qt.
The proofs of (15) and (16) are similar. ��

In what follows, all logarithms are to the base 2.

Shortest Repetition-Free Words Accepted by Automata 189

Corollary 9. For infinitely many N , there exists a DFA with N states such
that the shortest k-power-free word accepted is of length N

1
4 logN+O(1).

Proof. Let i = &logn' in Theorem 8. Then D = Di has

N = 2�logn�−1(n− 1) + 2 = Ω(n2)

states. In addition, the shortest k-power-free word in L(D) is cyc0
(
w�log n�

)
.

Now, using (3) we can write∣∣cyc0(w�log n�)
∣∣ = n�log n� − 1.

Suppose 2t ≤ n < 2t+1 − 1, so that t = &logn' and Then logN = 2t+O(1), so
1
4 (logN)2 = t2+O(t). On the other hand log |w| = &logn'(logn) = t(t+O(1)) =

t2 +O(t). Now 2O(t) = nO(1) = NO(1), and the result follows. ��

Remark 10. The same bound holds for overlap-free words. To do so, we define
a simple overlap as a word of the form axaxa where axax is a simple square.
In our construction of the DFAs, we use complete conjugates of (ax)2 instead of
partial conjugates.

Remark 11. TheDi in Theorem 8 are defined over the growing alphabetΣm+i−1.
However, we can fix the alphabet to be Σm+1. For this purpose, we introduce
w′
i which is quite similar to wi:

w′
1 = w1,

w′
i+1 = cyc0(w

′
i)bi cycni−1(w′

i)bi cyc2ni−1(w′
i)bi · · · cyc(n−1)ni−1(w′

i)bi,

where bi = mcim such that ci is (any of) the shortest nonempty k-power-free
word over Σm not equal to c1, . . . , ci−1. Clearly we have |bi| ≤ |bi−1|+1 = O(i),
and hence w′

i = Θ(ni).
One can then prove Lemma 7 and Theorem 8 for w′

i with minor modifications
of the argument above. In particular, we construct DFAD′

i that accepts cyc0(w
′
i)

as the shortest k-power-free word accepted, and a D′
i that is quite similar to Di.

In particular, they have asymptotically the same number of states.

4 Upper Bound for Overlap-Free Words

In this section, we prove an upper bound on the length of the shortest overlap-
free word accepted by a DFAD over a binary alphabet.

Let L = L(D) and let R be the set of overlap-free words over Σ∗
2 . Carpi

[3] defined a certain operation Ψ on binary languages, and proved that Ψ(R) is
regular. We prove that Ψ(L) is also regular, and hence Ψ(L) ∩ Ψ(R) is regular.
Then we apply Proposition 1 to get an upper bound on the length of the shortest
word in Ψ(L) ∩ Ψ(R). This bound then gives us an upper bound on the length
of the shortest overlap-free word in L.

190 H. Mousavi and J. Shallit

q1,0start

q1,1

q1,2

q1,3

.

.

.

q1,n−2

q1,n−1

q2,1,0

q2,1,1

.

.

.

q2,1,n−4

q2,1,n−3

q2,1,n−2

w1[0]

w1[1]

w1[2]

w1[3]

w1[n − 3]

w1[n − 2]

a0 = w1[n − 1]

w1[0]

w1[1]

w1[n − 5]

w1[n − 4]

w1[n − 3]

a1

a1

a1

a1

a1

(a) transition diagram of
D2

q1,0start

q1,1

q1,2

q1,3

.

.

.

q1,n−2

q1,n−1

q2,1,0

q2,1,1

.

.

.

q2,1,n−4

q2,1,n−3

q2,1,n−2

w1[0]

w1[1]

w1[2]

w1[3]

w1[n − 3]

w1[n − 2]

a0 = w1[n − 1]

w1[0]

w1[1]

w1[n − 5]

w1[n − 4]

w1[n − 3]

a1

a1

a1

a1

a1

q3,1,0

q3,1,1

q3,1,2

q3,1,3

.

.

.

q3,1,n−2

q3,1,n−1

q3,2,1,0

q3,2,1,1

.

.

.

q3,2,1,n−4

q3,2,1,n−3

w1[0]

w1[1]

w1[2]

w1[3]

w1[n − 3]

w1[n − 2]

a0 = w1[n − 1]

w1[0]

w1[1]

w1[n − 5]

w1[n − 4]

a1

a1

a1

a1

a1

a2

a1

a2

a2

a2

a2

(b) transition diagram of D3

Fig. 2. transition diagrams

Shortest Repetition-Free Words Accepted by Automata 191

Let H = {ε, 0, 1, 00, 11}. Carpi defines maps

Φl, Φr : Σ25 → H

such that for every pair h, h′ ∈ H , one has

h = Φl(a), h
′ = Φr(a)

for exactly one letter a ∈ Σ25.
For every word w ∈ Σ∗

25, define Φ(w) ∈ Σ∗
2 inductively by

Φ(ε) = ε, Φ(aw) = Φl(a)μ(Φ(w))Φr(a) (w ∈ Σ∗
25, a ∈ Σ25). (23)

Expanding (23) for w = a0a1 · · · an−1, we get

Φl(a0)μ(Φl(a1)) · · ·μn−1(Φl(an−1))μ
n−1(Φr(an−1)) · · ·μ(Φr(a1))Φr(a0). (24)

For L ⊆ Σ∗
2 define Ψ(L) =

⋃
x∈L Φ

−1(x). Based on the decomposition of Restivo
and Salemi [9] for finite overlap-free words, the language Ψ({x}) is always
nonempty for an overlap-free word x ∈ Σ∗

2 . The next theorem is due to Carpi
[3].

Theorem 12. Ψ(R) is regular.

Carpi constructed a DFAA with less than 400 states that accepts Ψ(R). We
prove that Ψ preserves regular languages.

Theorem 13. Let D = (Q,Σ2, δ, q0, F) be a DFA with N states, and let L =
L(D). Then Ψ(L) is regular and is accepted by a DFA with at most N4N states.

Proof. Let ι : Q→ Q denote the identity function, and define η0, η1 : Q→ Q as
follows

ηi(q) = δ(q, i) for i = 0, 1. (25)

For functions ζ0, ζ1 : Q → Q, and a word x = b0b1 · · · bn−1 ∈ Σ∗
2 , define ζx =

ζbn−1 ◦ · · · ◦ ζb1 ◦ ζb0 . Therefore we have ζy ◦ ζx = ζxy. Also by convention ζε = ι.
So for example x ∈ L(D) if and only if ηx(q0) ∈ F .

We create DFAD′ = (Q′, Σ25, δ
′, q′0, F ′) where

Q′ = {[κ, λ, ζ0, ζ1] : κ, λ, ζ0, ζ1 : Q→ Q},
δ′([κ, λ, ζ0, ζ1], a) =

[
ζΦl(a) ◦ κ, λ ◦ ζΦr(a), ζ1 ◦ ζ0, ζ0 ◦ ζ1

]
.

Also let q′0 = [ι, ι, η0, η1] and

F ′ = {[κ, λ, ζ0, ζ1] : λ ◦ κ(q0) ∈ F}. (26)

We can see that |Q′| = N4N . We claim that D′ accepts Ψ(L). Indeed, on input
w, the DFAD′ simulates the behavior of D on Φ(w).

Let w = a0a1 · · ·an−1 ∈ Σ∗
25, and define

Φ1(w) = Φl(aa0)μ(Φl(a1)) · · ·μn−1(Φl(an−1)),

192 H. Mousavi and J. Shallit

Φ2(w) = μn−1(Φr(an−1)) · · ·μ(Φr(a1))Φr(a0).
Using (24), we can write

Φ(w) = Φ1(w)Φ2(w).

We prove by induction on n that

δ′(q′0, w) =
[
ηΦ1(w), ηΦ2(w), ημn(0), ημn(1)

]
. (27)

For n = 0, we have Φ(w) = Φ1(w) = Φ2(w) = ε. So

δ′(q′0, ε) = q′0 = [ι, ι, η0, η1] = [ηΦ1(w), ηΦ2(w), ημ0(0), ημ0(1)].

So we can assume (27) holds for some n ≥ 0. Now suppose w = a0a1 · · · an and
write

δ′(q′0, a0a1 · · · an) = δ′(δ′(q′0, a0a1 · · ·an−1), an)

= δ′
([
ηΦ1(w[0..n−1]), ηΦ2(w[0..n−1]), ημn(0), ημn(1)

]
, an

)
=

[
ημn(φl(an)) ◦ ηΦ1(w[0..n−1]), ηΦ2(w[0..n−1]) ◦ ημn(φr(an)),

ημn(1) ◦ ημn(0), ημn(0) ◦ ημn(1)

]
=

[
ηΦ1(w), ηΦ2(w), ημn+1(0), ημn+1(1)

]
, (28)

and equality (28) holds because

Φ1(w[0..n− 1])μn(φl(an)) = Φ1(w),

μn(φr(an))Φ2(w[0..n− 1]) = Φ2(w),

μn(0)μn(1) = μn(01) = μn(μ(0)) = μn+1(0), and similarly

μn(1)μn(0) = μn+1(1).

Finally, using (26), we have

w ∈ L(D′) ⇐⇒ δ′(q′0, w) =
[
ηΦ1(w), ηΦ2(w), ζ0, ζ1

]
∈ F ′

⇐⇒ ηΦ2(w) ◦ ηΦ1(w)(q0) ∈ F
⇐⇒ Φ(w) = Φ1(w)Φ2(w) ∈ L(D). ��

Theorem 14. Let D = (Q,Σ2, δ, q0, F) be a DFA with N states. If D accepts
at least one overlap-free word, then the length of the shortest overlap-free word

accepted is 2O(N4N).

Proof. Let L = L(D). Using Theorem 13, there exists a DFAD′ with N4N states
that accepts the language Ψ(L).

Since Ψ(R) is regular and is accepted by a DFA with at most 400 states, we
see that

K = Ψ(L) ∩ Ψ(R)
is regular and is accepted by a DFA with O

(
N4N

)
states.

Since L accepts an overlap-free word, the language K is nonempty. Using
Proposition 1, we see that K contains a word w of length O

(
N4N

)
.

Therefore Φ(w) is an overlap-free word in L. By induction, one can easily

prove that |Φ(w)| = O
(
2|w|). Hence we have |Φ(w)| = 2O(N4N). ��

Shortest Repetition-Free Words Accepted by Automata 193

References

1. Anderson, T., Loftus, J., Rampersad, N., Santean, N., Shallit, J.: Detecting palin-
dromes, patterns and borders in regular languages. Info. Comput. 207, 1096–1118
(2009)

2. Brandenburg, F.-J.: Uniformly growing k-th power-free homomorphisms. Theoret.
Comput. Sci. 23, 69–82 (1983)

3. Carpi, A.: Overlap-free words and finite automata. Theoret. Comput. Sci. 115,
243–260 (1993)

4. Currie, J.: There are ternary circular square-free words of length n for n ≥ 18.
Electron. J. Comb. 9(1), Paper #N10 (2002),
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v9i1n10

5. Harju, T.: On cyclically overlap-free words in binary alphabets. In: Rozenberg, G.,
Salomaa, A. (eds.) The Book of L, pp. 125–130. Springer (1986)

6. Horváth, S., Karhumäki, J., Kleijn, J.: Results concerning palindromicity. J. Info.
Process. Cybern. EIK 23, 441–451 (1987)

7. Ito, M., Katsura, M., Shyr, H.J., Yu, S.S.: Automata accepting primitive words.
Semigroup Forum 37, 45–52 (1988)

8. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group.
Michigan Math. J. 9, 289–298 (1962)

9. Restivo, A., Salemi, S.: Overlap-free words on two symbols. In: Nivat, M., Perrin,
D. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 198–206. Springer,
Heidelberg (1985)

10. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906); Reprinted in Nagell, T. (ed.) Selected Mathematical Papers of Axel
Thue, Universitetsforlaget, Oslo, pp. 139–158 (1977)

11. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichen reihen. Norske
vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912); Reprinted in Nagell, T. (ed.) Selected
Mathematical Papers of Axel Thue, Universitetsforlaget, Oslo, pp. 413–478 (1977)

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v9i1n10

A Characterisation of NL/poly
via Nondeterministic Finite Automata

Rob Myers and Henning Urbat

Institut für Theoretische Informatik
TU Braunschweig, Germany

Abstract. For each language L ⊆ 2∗ and function t : �→ �, we define
another language t∗L ⊆ 2∗. We then prove that L ∈ NL/poly if and only
if there exists k ∈ � such that the projections (nk ∗L)∩2n are accepted
by nondeterministic finite automata of size polynomial in n. There-
fore, proving super-polynomial lower bounds for unrestricted nondeter-
ministic branching programs reduces to proving super-polynomial lower
bounds for oblivious read-once nondeterministic branching programs i.e.
nondeterministic finite automata.

1 Introduction

In this paper, we show that proving super-polynomial lower bounds for nondeter-
ministic branching programs (nbps) is essentially equivalent to proving them for
nondeterministic finite automata (nfas). It is a major open problem in complex-
ity theory to provide an explicit language L ⊆ 2∗, such that there is no sequence
of nbps Bn of size polynomial in n accepting the projections Ln = L ∩ 2n [5].
However, if one restricts to sequences of nfas – which are instances of oblivious
read-once nbps – many explicit languages with provably super-polynomial lower
bounds are known, e.g. the language of all binary palindromes. Since the latter
has linear size nbps, which read the variables in the appropriate order, we cannot
simply replace nbps by nfas. Instead, given any L ⊆ 2∗ and function t : � → �

we define another language t ∗ L ⊆ 2∗. We then show that for any language L,
the projections Ln are accepted by nbps of size polynomial in n iff there exists
k ∈ � such that the projections (nk ∗L)n are accepted by nfas of size polynomial
in n. This is achieved via a relatively simple translation between nbps and nfas.

Recall the non-uniform complexity class NL/poly i.e. those languages accepted
by a single logspace-bounded nondeterministic Turing machine with polynomi-
ally bounded advice [7]. It is known to coincide with those languages whose
projections are accepted by a sequence of nbps of size polynomial in n [9,1].
Letting nfa(poly) contain those languages whose projections are accepted by a
sequence of nfas of size polynomial in n, our main result is as follows:

Theorem. L ∈ NL/poly iff there exists k ∈ � such that nk ∗ L ∈ nfa(poly).

As we explain in the final section, one can also deduce other connections between
complexity theory and automata theory:

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 194–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Characterisation of NL/poly via Nondeterministic Finite Automata 195

(1) For any language L ⊆ 2∗ with poly-size deterministic branching programs,
there exists k ∈ � such that nk ∗ L is accepted by a sequence of poly-size
nfas, each of which is a disjoint union of dfas.

(2) There is an explicit polynomial translation from propositional formulae φ to
nfas Nφ, such that φ is a tautology iff Nφ accepts the full language 2∗.

These results illustrate the difficulty of minimising or proving lower bounds for
nondeterministic finite automata. Although it is well known that minimising nfas
is PSPACE-complete, our results imply hardness for many specific languages. For
example, to show L /∈ NL/poly it is necessary and sufficient to prove that, for each
fixed natural k, the language nk ∗ L does not have poly-size nfas. Showing this
for any language L ∈ NP would prove that NL �= NP. Also, by the contrapositive
of (1) above, one could prove L �= NL by starting with some L ∈ NL.

We discuss some connections with existing work. It is known that NL/poly =
UL/poly i.e. in some precise sense one can efficiently make nbps unambiguous
[10]. However, our translation from nbps to nfas does not preserve unambigu-
ity. This is unsurprising, since there exist good general methods for proving
lower bounds for unambiguous nfas, essentially by computing the minimal di-
mension of any �2-weighted machine accepting L ⊆ 2n, viewed as a weighted
language L : 2∗ → �2. We have also considered the (extended) fooling technique
and its generalisation, namely biclique edge coverings and their associated di-
mension [2], which is strongly related to communication complexity [3,4]. These
methods appear to be unsuitable for the languages we consider, although this
approach deserves further study. Finally, Jukna has written a note concerning
our construction, in which he explains that all known lower bound methods for
read-once nbps do not apply to the languages we consider [6,5].

2 Nondeterministic Branching Programs

In this section we review nondeterministic branching programs, providing com-
parisons to related structures and a normal form. We first fix our notation.

Notation. Let 2 = {0, 1} be the booleans and � = {0, 1, 2, . . .} be the set of

natural numbers. For any language L ⊆ 2∗ let L̃ = 2∗\L denote its complement,
and for any finite language L ⊆ 2n write L = 2n \L for its relative complement.
Given any word w ∈ 2n and 1 ≤ i ≤ n let wi ∈ 2 be the ith letter of w.
For any d ∈ � let wd = w · · ·w be the d-fold composition. Finally, fix a set
Xn = {x1, . . . , xn} of n variables for each natural n ∈ �.

Definition 1. (a) A nondeterministic branching program (nbp) over n variables
is a quadruple B = (G, s, θ, τ) consisting of:
(i) a finite directed multigraph G = (V,E);
(ii) a source node s ∈ V ;
(iii) a node labelling i.e. a function θ : V → Xn ∪ 2 where every node

labelled with 0 or 1 is a sink (has out-degree 0);
(iv) an edge labelling i.e. a function τ : E → 2.

196 R. Myers and H. Urbat

We use the notation (u‖l) b−→ (v‖m) to indicate that node u has label l, node
v has label m, and there is an edge from u to v with label b.

(b) A deterministic branching program (dbp) is an nbp whose variable-labelled
nodes have out-degree 2, where one outgoing edge is labelled by 0, the other
by 1.

(c) The size s(B) of an nbp B is its number of nodes. For acyclic B, its depth
d(B) is the number of edges of any longest directed path starting at the
source.

(d) A word w = w1 . . . wn ∈ 2n is accepted by an nbp B if there exists some
path:

(s‖xk0)
b0−→ (v1‖xk1)

b1−→ · · · bm−2−−−→ (vm−1‖xkm−1)
bm−1−−−→ (vm‖1)

consistent with w, i.e. bi = wki for every 0 ≤ i < m. The language LB ⊆ 2n

of B is the set of all words accepted by B.

Remark 2. Many authors make additional assumptions on the structure of
(nondeterministic) branching programs, e.g. that they are acyclic and every node
is reachable from the source. These restrictions emerge in Lemma 8.

Example 3. Here is an nbp B = (G, s, θ, τ) over n = 4 variables:

s‖x4
0

��
1

��
v1‖x2

0 ��
0

��

v2‖x3
0

�� 1��
v3‖x4

0 �� 1 ��

v4‖x2

0,1��

v5‖x1

0��0‖0 1‖1

Then B accepts the language:

LB = {0000, 1000, 0010, 1010, 0001, 0101, 1001, 1101, 0011, 0111}

i.e. the satisfying assignments of (x̄4 ∧ x̄2)∨ (x4 ∧ (x̄3 ∨ (x3 ∧ x̄1))). For example,

1010 is accepted via the path (s‖x4) 0−→ (v1‖x2) 0−→ (v4‖x2) 0−→ (�‖1).

Remark 4. Nbps are closely related to switching-and-rectifier networks (srns)
[9]. An srn S = (G, s, t, μ) over n variables is a finite directed multigraph G =
(V,E) equipped with two vertices s, t ∈ V (source and target) and a partial
edge-labelling μ : E ⇀ Xn × 2. A word w ∈ 2n is accepted iff there exists a
directed path from s to t such that for each label (xi, b) we have wi = b. Define
the size s(S) of an srn S to be the number of nodes, although it is more standard
to consider the number of labelled edges.

Every nbp B has an equivalent srn S with s(S) ≤ s(B) + 1, and every srn S
has an equivalent nbp B with s(B) ≤ 1+ n · s(S). By ‘equivalent’ we mean they
accept the same language. The constructions resemble the translation between
Moore and Mealy machines.

A Characterisation of NL/poly via Nondeterministic Finite Automata 197

(a) Given an nbp B = (G, s, θ, τ) one can assume it has exactly one 1-labelled
node � (else introduce a new 1-labelled node � and merge 1-labelled nodes).
Then an equivalent srn S is obtained by labelling each edge (u, v) in G by
(θ(u), τ(u, v)) and requiring s/� to be the source/target node, respectively.
Therefore s(S) ≤ 1 + s(B).

(b) Given any srn S = (G, s, t, μ) over n > 0 variables, we may assume that:

(1) Any two labelled edges with the same source are labelled by the same
variable xi i.e. they have labels (xi, bj) for j = 1, 2. One can force this
by adding unlabelled edges to ‘dummy’ nodes, used as the source of
conflicting edges. At most (n− 1) · s(S) new nodes are required.

(2) t is a sink, else add a new target t′ and an unlabelled edge t→ t′.
(3) All edges are labelled, else replace every unlabelled edge (u, v) by two

parallel edges (u, v), one labelled by (xi, 0) and one labelled by (xi, 1),
where i is chosen such that (1) still holds.

Then S and S ′ accept the same language and s(S ′) ≤ 1 + n · s(S). We
obtain B from S ′ as follows. Replace each (xi, b)-labelled edge (u, v) by the
b-labelled edge (u, v) and set θ(u) = xi (well-defined by (1)). Finally label
θ(t) = 1 and θ(v) = 0 for each sink v �= t, and let s be the source of B. Then
B accepts the same language as S, and s(B) = s(S ′) ≤ 1 + n · s(S).

We now define a ‘normal form’ for nondeterministic branching programs.

Definition 5. An nbp B = (G, s, θ, τ) is called stratified if

(1) for any pair e �= e′ of parallel edges, one has τ(e) �= τ(e′);
(2) G is acyclic;
(3) every node is reachable from s;
(4) all sinks are labelled by 0 or 1;
(5) every path from s to a sink has length d(B).

Remark 6. Assuming that (3) holds, the conditions (2) and (5) are equivalent
to the existence of a (necessarily unique) partition V = V0 ∪V1 ∪ . . .∪Vd(B) such
that V0 = {s}, all sinks are contained in Vd(B), and every edge of B goes from
Vi to Vi+1 for some 0 ≤ i < d(B). In fact, choose Vi to be the nodes reachable
from s via a path of length i.

Example 7. The nbp in Example 3 is stratified.

Lemma 8. Every nbp B has an equivalent stratified nbp of size O(s(B)6).

Proof. For 1 ≤ k ≤ 5, we show that every nbp B = ((V,E), s, θ, τ) satisfying
the first k − 1 conditions of Definition 5 can be turned into an equivalent nbp
satisfying the first k conditions.

k = 1: Whenever an nbp B has parallel edges with the same label, delete all
but one of them. This yields an equivalent nbp satisfying (1).

198 R. Myers and H. Urbat

k = 2: If B satisfies (1), construct the nbp B′ = ((V ′, E′), s′, θ′, τ ′) where:

V ′ = V × {0, . . . , s(B)} E′ = {((u, i), (v, i+ 1)) : 0 ≤ i < s(B), (u, v) ∈ E}
s′ = (s, 0) θ′(v, i) = θ(v) τ ′((u, i), (v, i + 1)) = τ(u, v)

Clearly B′ satisfies (1) and (2). Furthermore B′ is equivalent to B: if w ∈ LB
then there exists a w-consistent path (s‖xk0)

b0−→ (v1‖xk1)
b1−→ · · · bm−1−−−→ (vm‖1)

in B of length m ≤ s(B), which immediately yields the w-consistent path:

((s, 0)‖xk0)
b0−→ ((v1, 1)‖xk1)

b1−→ · · · bm−1−−−→ ((vm,m)‖1)

in B′. This shows LB ⊆ LB′ and the reverse inclusion is proved analogously.

k = 3: Given an nbp satisfying (1) and (2), restrict to those nodes reachable
from the source via directed paths.

k = 4: Now assume that B satisfies (1)-(3). Then relabelling all variable-labelled
sinks with 0 yields an equivalent nbp satisfying (1)-(4).

k = 5: We may assume that every sink is reachable from s via a path of length
d(B): Otherwise merge sinks with the same label, so that the resulting nbp has
at most two sinks, and if there is sink of depth i < d(B), extend it by a dummy
path of length d(B)− i. In view of Remark 6, define the partition:

Vi = {v ∈ V : i is the length of any longest directed path from s to v}

for each 0 ≤ i ≤ d(B). Clearly V0 = {s} and Vd(B) contains all sinks. Further-
more, every edge goes from Vi to Vj for some i < j. By replacing any such edge
by a 0, 1-labelled path of length j− i, one makes sure that every edge goes from
V ′
i to V ′

i+1 for some i < d(B). By Remark 6, the resulting nbp satisfies (1)-(5).

Observe that in steps 2 and 5, the size of the constructed nbp is at most
quadratic and cubic, respectively, in the size of the given one. In the other steps
the size does not increase. Therefore, starting from any nbp B we have shown
how to construct an equivalent stratified nbp of size O(s(B)6). ��

3 From Stratified Nbps to Nfas

In this section we associate to each stratified nbp B a nondeterministic finite
automaton NB of size polynomial in s(B). Although NB does not accept the
same language as B, they are closely related. We start by recalling the classical
notion of a nondeterministic finite automaton.

Definition 9. A nondeterministic finite automaton (nfa) is a tuple

N = (Z, (Rb)b=0,1, F, I)

A Characterisation of NL/poly via Nondeterministic Finite Automata 199

where Z is a finite set of states, Rb ⊆ Z×Z is a relation representing b-transitions,
F ⊆ Z is the set of final states, and I ⊆ Z is the set of initial states. The size
s(N) of an nfa N is the number of states, and the depth d(N) of N is the
length of any longest path starting in an initial state (defined for acyclic nfas).
N accepts the language L(N) ⊆ 2∗ in the usual manner: w ∈ L(N) iff there
exists a w-path from some initial state to some final state.

Remark 10. In analogy to Definition 5, we call an nfa N stratified if (i) N is
acyclic and reachable, (ii) N has exactly one initial state, (iii) a state is final iff
it is a sink, and (iv) all paths from the initial state to a final state have the same
length d(N). It is easy to see that every nfa accepting a finite language L ⊆ 2n

can be turned into an equivalent stratified nfa with no more states. Moreover, a
stratified nfa can be viewed as a stratified nbp: label final states with 1, label any
nonfinal state with xi+1 if it is reachable via any word of length i, and choose the
initial state as the source node. The resulting nbp is an instance of an oblivious
read-once nbp: all paths from the source to a sink read each variable exactly
once and in the same order.

Definition 11. Given a stratified nbp B = (G, s, θ, τ) over n variables, the nfa
NB is constructed as follows:

(1) Replace every edge (u‖xi)
b−→ (v‖l) of B by a path of length n from u to v,

where the i-th transition has label b and all others have labels 0 and 1.

�������	u
0,1

��
������
0,1

�� · · · 0,1 ��
������ b ��
������
0,1

�� · · · 0,1 ��
������
0,1

�� �������	v

(2) The source s is the only initial state of NB, and a state is final if and only if
it is labelled with 1.

Example 12. For the nbp B of Example 3 we obtain the following nfa NB:

0,1
��

0,1
�� 1 �� v2

0,1
��

0,1 ��

0,1
�� 1 ��

0,1
�� v5

0 ��
0,1

��
0,1

��

0,1

��
0,1

��
0
��

0,1 		

0 ��
0,1

��

0,1
		

�� s

0,1

0,1

��

v4

0,1
��

0,1 		

1

0 ��
0,1

��

0,1
��

1 ��
0,1

��

0,1 ��

0,1
��

0,1
��

0
�� v1

0,1
��

0,1

0
��

0,1
��

0,1
�� v3

0,1
��

0,1
��

0,1
��

0
��

1

��

0

Lemma 15 below describes various relevant properties of NB. First we need a
simple definition.

Definition 13. For each n, d ∈ � and finite language L ⊆ 2n define:

d · L := {wd : w ∈ L} ⊆ 2nd,

i.e. we take the collection of all d-powers of words from L.

200 R. Myers and H. Urbat

Remark 14. It follows that d · L = d · L ∪ d · 2n for any n, d ≥ 0 and L ⊆ 2n.
That is, this relative complement consists of (a) those d-powered words wd where
w /∈ L, and (b) those words in 2nd which are not d-powers.

Lemma 15. For any stratified nbp B over n variables, we have:

(a) s(NB) = O(n · s(B)2), d(NB) = n · d(B) and L(NB) ⊆ 2n·d(B).

(b) d(B) ·LB = L(NB)∩ (d(B) · 2n). That is, the d(B)-powers of words accepted
by B are precisely those d(B)-powered words that NB accepts.

Proof. (a) follows directly from the construction of NB.
(b) Let d = d(B). To prove ‘⊆’, suppose w ∈ LB, so there exists some path:

s = (v0‖xk0)
b0−→ (v1‖xk1)

b1−→ . . .
bd−1−−−→ (�‖1) (∗)

in B with bi = wki for all i. This yields accepting paths of the form

(s = v0
c0,1−−→ . . .

c0,n−−→)(v1
c1,1−−→ . . .

c1,n−−→) . . . (vd−1
cd−1,0−−−−→ . . .

cd−1,n−−−−→ �) (∗∗)

in NB where ci,j = bi for j = ki, and ci,j ∈ 2 is arbitrary otherwise. In particular,
choosing ci,j = wj for all i and j yields an accepting path for the word wd. Hence
wd ∈ L(NB) ∩ d · 2n.

Conversely, any accepting path in NB is induced by some path (∗) in B and
has the form (∗∗). If a word wd (w ∈ 2n) is accepted in NB via (∗∗), we have
bi = ci,ki = wki for all i, so the path (∗) in B is consistent with w. It follows
that w ∈ LB, which proves ‘⊇’. ��

4 Characterisation of NL/poly

We are now ready to prove our characterisation of NL/poly via nondeterministic
finite automata. We first introduce the relevant complexity classes.

Notation. For any language L ⊆ 2∗ and n ∈ �, let Ln := L ∩ 2n.

Definition 16. The complexity class nbp(poly) contains those L ⊆ 2∗ such
that each Ln is accepted by some nbp Bn, where s(Bn) ∈ nO(1) i.e. their size is
bounded polynomially in n. The complexity classes dbp(poly) and nfa(poly) are
defined analogously: replace ‘nbp’ by ‘dbp’ or ‘nfa’, respectively.

The following relationships are well-known:

dbp(poly) = L/poly nbp(poly) = NL/poly

where L/poly (resp. NL/poly) consists of those languages accepted by some single
log-space bounded deterministic (resp. nondeterministic) Turing machine with
polynomially bounded advice [7]. These results are mentioned in [9], where our
dbps correspond to ‘BPs’ and their notion of size agrees up to a linear factor.

A Characterisation of NL/poly via Nondeterministic Finite Automata 201

On the other hand, although our nbps are not quite the same as the switching-
and-rectifier networks used in [9] (their size is the number of labelled edges), the
above correspondence nevertheless holds, see [1, Theorem 1].

For any language L ⊆ 2∗ and function t : �→ �, define:

t ∗ L :=
⋃
n≥0

t(n) · Ln ⊆ 2∗

Recall that t(n) · Ln ⊆ 2n·t(n) is the relative complement of t(n) · Ln, the latter
being the t(n)-powers of words in Ln (see Definition 13).

Theorem 17. L ∈ nbp(poly) iff there exists k ∈ � such that nk ∗L ∈ nfa(poly).

The proof uses the following two results. The first is a corollary of the Immerman-
Szelepcsényi theorem, as mentioned in [9].

Theorem 18. The class nbp(poly) is closed under complement:

L ∈ nbp(poly) iff L̃ ∈ nbp(poly)

for any language L ⊆ 2∗.

The second result provides poly-size nfas for certain finite languages.

Lemma 19. For all n, d ∈ �, there exists an nfa with O(n2d3) states accepting
the language d · 2n ⊆ 2nd.

Proof. d · 2n consists of all words w ∈ 2nd such that there exists 1 ≤ i < j ≤ n ·d
where (i) i = j mod n, and (ii) wi �= wj . The following nfa with O(nd) states
accepts all such words for a fixed pair (i, j):

xi+1
0,1

�� . . .
0,1

�� xj

0

��
�� y1

0,1
�� . . .

0,1
�� yi

1

0 ��

yj+1
0,1

�� . . .
0,1

�� ynd+1

zi+1
0,1

�� . . .
0,1

�� zj
1

Taking the disjoint union of these nfas yields an nfa accepting d · 2n. Since there
are n

(
d
2

)
= O(nd2) pairs (i, j) satisfying (i), this nfa has O(n2d3) states. ��

Remark 20. On the other hand, poly-size nfas do not exist for the relative
complements d ·2n ⊆ 2nd. In fact, a state-minimal nfa for d ·2n is obtained from
its state-minimal dfa by deleting the state accepting the empty language. The
latter is exponential in n for any fixed d > 1. To see this, one can use the fact
that d · 2n defines a linear code i.e. a linear subspace of �nd2 .

202 R. Myers and H. Urbat

Proof (Theorem 17). Let L ∈ nbp(poly). Then also L̃ ∈ nbp(poly) by Theorem

18, so there exists a family of nbps Bn (n ≥ 0) such that Bn accepts (L̃)n = Ln
and sn := s(Bn) is polynomially bounded in n. By Lemma 8, we may assume
that the nbps Bn are stratified. Moreover, we assume that dn := d(Bn) = nk for
some k ∈ � (otherwise add dummy paths). Let Nn := NBn be the nfa associated
to Bn (see Definition 11). Then:

dn · Ln = dn · Ln ∪ dn · 2n see Remark 14

= dn · LBn ∪ dn · 2n since LBn = Ln

= (L(Nn) ∩ dn · 2n) ∪ dn · 2n by Lemma 15.(b)

= (L(Nn) ∪ dn · 2n) ∩ (dn · 2n ∪ dn · 2n)
= L(Nn) ∪ dn · 2n

By Lemma 15,Nn has O(ns2n) states. Moreover, by Lemma 19 there exists an nfa
N ′
n accepting dn · 2n with O(n2d3n) states, this being polynomial in n because

dn ≤ sn. Taking the disjoint union of the nfas Nn and N ′
n yields a polynomial-

sized nfa N ′′
n for L(Nn) ∪ dn · 2n = dn · Ln.

Then we obtain a polynomial-sized family of nfas Mm accepting (dn ∗L)m as
follows. If m = ndn(= nk+1) for some n, we have (dn ∗ L)m = dn · Ln, so take
Mm = N ′′

n . The size of N ′′
n is polynomial in n, hence also in m = nk+1. If m

is not of the form ndn = nk+1 for some n then (dn ∗ L)m = ∅, so let Mm be a
one-state nfa accepting ∅. This proves dn ∗ L ∈ nfa(poly).

For the converse, suppose we have nk ∗ L ∈ nfa(poly) for some k ∈ �. Then
there exists a family of polynomial-sized nfas Nm (m ∈ �) accepting (nk ∗L)m.
By Remark 10, we can turn Nm into an equivalent stratified (oblivious read-
once) nbp Bm of the same size. Then by Theorem 18, there also exists a family

of polynomial-sized nbps B′
m accepting (˜nk ∗ L)m. If m = nk+1 for some n, then

(˜nk ∗ L)m = nk ·Ln and the size of B′
m is polynomial in n, since it is polynomial

in m = nk+1. The nbp B′
m has nk+1 variables x1, . . . , xnk+1 , and replacing all

node labels xp·n+i (where 0 ≤ p < nk and 1 ≤ i ≤ n) by xi yields an nbp B′′
n

accepting Ln whose size is polynomial in n. It follows that L ∈ nbp(poly). ��

5 Applications

It immediately follows that L ∈ NL/poly iff there exists k ∈ � such that nk∗L has
poly-size nfas. Equivalently, to show L does not lie in NL/poly it is necessary and
sufficient to prove that, for each fixed k, any sequence of nfas accepting nk ∗L’s
projections have size super-polynomial in n. Proving this for some L ∈ NP would
imply NL �= NP. Furthermore, if some nk ∗ L did have poly-size nfas, then L
has non-uniform poly-size boolean circuits: (i) view the nfas as acyclic nbps and
linearly translate to boolean circuits, (ii) identify variables xi = xj whenever
|j − i| = 1 mod n, (iii) add a NOT gate to the output. In particular, either an
NP-complete language L has non-uniform poly-size circuits, or for each k the
language nk ∗ L does not have poly-size nfas.

A Characterisation of NL/poly via Nondeterministic Finite Automata 203

Next we show that the non-powers d · 2n ⊆ 2nd are accepted by an nfa of size
O(n2d), improving the O(n2d3) bound in Lemma 19. For each 1 ≤ i ≤ n, there
is an nfa Ni of size O(nd) accepting those w ∈ 2nd such that wnx+i �= wny+i for
some 1 ≤ x, y < d. Below we have drawn N1 in the case where d = 4.

•
0,1

�� . . .
0,1

�� •
0,1

�� •
0,1

�� . . .
0,1

�� •
0,1

��

x1

0,1
��
. . .

0,1
��
xn

0 ��

1 �� xn+1

0,1
��
. . .

0,1
��
x2n

0

��

1 �� x2n+1

0,1
��
. . .

0,1
��
x3n

0

���� y0

1 ��

0 ��

0,1
�� y1

0,1
�� . . .

0,1
�� yn

1

��

0 ��

0,1
�� yn+1

0,1
�� . . .

0,1
�� y2n

1

��

0 ��

y3n+1

0,1
�� . . .

0,1
�� y4n

z1 0,1
�� . . .

0,1
�� zn

1 ��

0
�� zn+1 0,1

�� . . .
0,1
�� z2n

1 ��

0
�� z2n+10,1

�� . . .
0,1
�� z3n

1

��

•
0,1

��
. . .

0,1
�� •

0,1
�� •

0,1
��
. . .

0,1
�� •

0,1

��

The disjoint union of the Ni’s accepts d · 2n and has size O(n2d). However
the Ni’s are inherently nondeterministic, whereas the nondeterministic acceptor
described in Lemma 19 is a disjoint union of partial dfas, which turns out to be
useful. First note that dbps are nbps, so for any L ∈ L/poly there is some nk ∗L
with poly-size nfas. Then one can strengthen this as follows:

Lemma 21. If L ∈ L/poly then there exists k ∈ � such that nk ∗L has poly-size
nfas, each of which is a disjoint union of dfas.

Proof. If L ∈ L/poly there exist poly-size dbps Bn of depth dn accepting Ln. We
may assume they are stratified with dn = nk for some k ∈ �, and construct the
associated nfas NBn . Since Bn is a dbp, NBn is very nearly a partial dfa: some
nondeterminism arises via parallel 0, 1-edges from the dbp but it may easily
be eliminated by identifying states, see node v4 in Example 12. Then we can
construct dfas Dn accepting L(NBn) of essentially the same size, so put them in
parallel with the dfas from Lemma 19 to obtain nfas Nn accepting:

L(Nn) = L(Dn) ∪ dn · 2n = L(NBn) ∪ dn · 2n = dn · L(Bn) = dn · Ln

using Lemma 15.(b) in the penultimate step. Thus nk ∗L has poly-size nfas Nn,
each one being a disjoint union of dfas. ��

Therefore to prove L �= NL it suffices to find some L ∈ NL such that, for each fixed
k ∈ �, the language nk ∗L does not have poly-size nfas of this form. This bares
a resemblance to work on 2-dfas simulating nfas [11,12,8], where it is believed
that certain nfas which somehow encode ‘reachability’ cannot be polynomially
simulated by 2-dfas. However, there is a significant difference: the work on 2-dfas
uses sequences of nfas accepting infinite regular languages, whereas we work with
sequences of finite languages.

Finally we describe a polynomial translation between propositional formulae
φ and nfas Nφ, such that φ is a tautology iff the nfa Nφ accepts the full language
2∗. We may assume the formula φ is in negation normal form and only mentions
the variables x1, . . . , xn. Then there is a linear translation from φ to an acyclic
nbp Bφ accepting φ’s satisfying valuations Lφ ⊆ 2n [5]. Briefly, variables xi

204 R. Myers and H. Urbat

and negated variables x̄i become xi
1→ 1 and xi

0→ 1 respectively, whereas
disjunctions/conjunctions become parallel/sequential composition respectively.
Stratifying Bφ, one obtains an nbp B′

φ accepting Lφ whose depth dφ is the
maximal nesting depth of conjunctions in φ (appropriately defined). Applying
our translation, we obtain an nfa NB′

φ
of depth ndφ whose accepted dφ-powered

words are precisely dφ · Lφ. Finally, put this nfa in parallel with:

(i) The O(n2dφ) sized nfa accepting the non-powers dφ · 2n ⊆ 2ndφ .
(ii) An O(ndφ) sized nfa accepting 2∗ \ 2ndφ .

The resulting nfa Nφ accepts the full language 2∗ iff it accepts every dφ-power in
2ndφ iff Lφ = 2n iff φ is a tautology. Furthermore s(Nφ) is polynomial in s(Bφ)
and hence also in the size of φ, where one usually counts the leaves.

References

1. Damm, C., Holzer, M.: Inductive counting below logspace. In: Privara, I., Ružička,
P., Rovan, B. (eds.) MFCS 1994. LNCS, vol. 841, pp. 276–285. Springer, Heidelberg
(1994)

2. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374.
Springer, Heidelberg (2006)

3. Hromkovic, J.: Communication complexity and parallel computing. Texts in theo-
retical computer science. Springer (1997)

4. Hromkovic, J., Karhumki, J., Klauck, H., Schnitger, G., Seibert, S.: Measures of
nondeterminism in finite automata. In: Welzl, E., Montanari, U., Rolim, J.D.P.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 199–210. Springer, Heidelberg (2000)

5. Jukna, S.: Boolean Function Complexity - Advances and Frontiers. Algorithms and
combinatorics, vol. 27. Springer (2012)

6. Jukna, S.: What have read-once branching programs to do with nl/poly? (2013),
http://www.thi.informatik.uni-frankfurt.de/

~jukna/boolean/comments.html (online, see Comment 12)
7. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform com-

plexity classes. In: Proceedings of the Twelfth Annual ACM Symposium on Theory
of Computing, STOC 1980, pp. 302–309. ACM, New York (1980)

8. Leung, H.: Tight lower bounds on the size of sweeping automata. J. Comput. Syst.
Sci. 63(3), 384–393 (2001)

9. Razborov, A.A.: Lower bounds for deterministic and nondeterministic branching
programs. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 47–60. Springer,
Heidelberg (1991)

10. Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. In: Proceedings
of the 38th Annual Symposium on Foundations of Computer Science, pp. 244–253
(1997)

11. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: STOC, pp. 275–286. ACM (1978)

12. Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. Syst.
Sci. 21(2), 195–202 (1980)

http://www.thi.informatik.uni-frankfurt.de/~jukna/boolean/comments.html
http://www.thi.informatik.uni-frankfurt.de/~jukna/boolean/comments.html

Improved Normal Form for Grammars

with One-Sided Contexts

Alexander Okhotin

Department of Mathematics and Statistics, University of Turku,
20014, Turku, Finland

alexander.okhotin@utu.fi

Abstract. Formal grammars equipped with operators for specifying the
form of the context of a substring were recently studied by Barash and
Okhotin (“Defining contexts in context-free grammars”, LATA 2012),
further extending the author’s (“Conjunctive grammars”, DCAGRS
2000) earlier work on propositional connectives in grammars. These
grammars allow two types of context specifications: for a substring w
of a string uwv, a left context operator �D states that u is of the form
described by D, while the extended left context operator �E states that
uw is described by E. This paper establishes a normal form for these
grammars, in which extended left contexts are never used, while left
contexts may be applied only for individual symbols, so that all rules
are of the form A → B1C1 & . . .&BnCn or A → a&�D. This elimi-
nates circular dependencies in the grammar and allows simplifying the
known parsing algorithm. Some further improvements to the algorithm

accelerate it from time O(n3) to time O(n3

log n
).

1 Introduction

A context-free grammar is a mathematical model of inductive definitions of syn-
tax, where the properties of a string are defined based on the properties of its
substrings. For example, a rule E → E + E in a grammar for arithmetical ex-
pressions allows making deductions, such as the following one: “if x and y*z

are expressions, then x+y*z is an expression as well”. Algorithms and mathe-
matical proofs dealing with grammars typically follow this inductive structure
of dependencies. Even though there is a slight complication with possible cy-
cles in the definition, such as in the rules S → ASA, A → ε, according to
which the membership of w in S depends on the membership of w in S, all such
self-dependencies can be eliminated by transforming a grammar to any of the
well-known normal forms.

The standard definition of context-free grammars allows expressing only one
Boolean operation: the disjunction, represented by multiple rules for a single
nonterminal symbol. The families of conjunctive grammars [8] and Boolean gram-
mars [9] were introduced by the author, with the aim of maintaining inductive
definitions of the properties of strings, while allowing conjunction and negation in
such definitions. In these grammars, one can represent the set of strings satisfying

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 205–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

206 A. Okhotin

two conditions simultaneously (A→ B&C) or the set of strings that satisfy one
condition but not the other (A → B&¬C). Circular dependence of strings on
themselves becomes more complicated in these grammars: for instance, the rules
S → ASA&B, A→ ε set a possible dependence of the membership of w in S on
itself, but this dependence is also affected by the second condition represented
by the nonterminal symbol B. However, there still exists a normal form theorem
that allows eliminating all these self-dependencies from any grammar, as well
as numerous results that rely upon this normal form, including simple parsing
algorithms [8,9] and more efficient parsing through matrix multiplication [10].

Recently, Barash and Okhotin [3,4] introduced a further extension of con-
junctive grammars that provides a special operator for defining the context, in
which a substring occurs. For example, a rule A→ BC &�D defines a substring
representable as a concatenation BC, which must be preceded by a substring
described by D. These grammars with one-sided contexts, in particular, have a
O(n3)-time parsing algorithm, where n is the length of the input string, which re-
lies upon a certain normal form [3]. However, this normal form does not entirely
eliminate self-dependencies of a string on itself: such self-dependencies can occur
through the context operator. This complication requires the parsing algorithm
to do some iterative calculations in a loop of the form “until all nonterminals
generating a certain prefix of the input are determined”. Even though the algo-
rithm successfully calculates these self-dependencies, while maintaining running
time cubic in the length of the input, it would generally be important to know
whether these self-dependencies could be avoided.

This paper establishes a new stronger normal form for grammars with one-
sided contexts, in which all self-dependencies are eliminated. This immediately
gives a simplified version of the known parsing algorithm. The paper continues
with more significant improvements to the algorithm, which is accelerated to run

in time O(n3

logn) using the method of Arlazarov et al. [1].

2 Grammars with One-Sided Contexts

Grammars with contexts [3,4] were introduced with the intention of implement-
ing Chomsky’s [5] early idea of a context-free rule applicable only in contexts of
a certain form. Chomsky’s own attempt to implement his idea [5, p. 142] did not
work out as intended, as his “context-sensitive grammars” later turned out to be
equivalent to nondeterministic space-bounded Turing machines. However, with
the modern understanding of formal grammars as a logic—see Rounds [11]—
giving an adequate definition of contexts is not difficult.

Definition 1 (Barash and Okhotin [3,4]). A grammar with left contexts is
a quadruple G = (Σ,N,R, S), where

– Σ is the alphabet of the language being defined;
– N is a finite set of auxiliary symbols (“nonterminal symbols” in Chomsky’s

terminology), disjoint with Σ, which denote the properties of strings defined
in the grammar;

Improved Normal Form for Grammars with One-Sided Contexts 207

– R is a finite set of grammar rules, each of the form

A→ α1 & . . .&αk &�β1 & . . .&�βm&�γ1 & . . .&�γn, (1)

with A ∈ N , k � 1, m,n � 0, αi, βi, γi ∈ (Σ ∪N)∗;
– S ∈ N represents syntactically well-formed sentences of the language.

Each term αi, �βi and �γi in a rule (1) is called a conjunct. Let w = uvx with
u, v, x ∈ Σ∗ be a string and consider the rule (1) used to define the substring
v. Then, each conjunct αi describes the form of v, each conjunct �βi is called
a (proper) left context and describes the form of u, while each conjunct �γi,
called an extended left context, describes the form of uv. If the substrings u, v
and uv satisfy the conditions listed in the rule (1), then the rule asserts that the
substring v has the property A (in other words, is generated by A).

If no context specifications are used in the grammar, that is, if m = n = 0
in each rule (1), then this is a conjunctive grammar [8]. If, furthermore, only
one conjunct is allowed in each rule (k = 1), this is an ordinary context-free
grammar.

The above intuitive definition of grammars with left contexts is formalized by
a deduction system as follows.

Definition 2 (Barash and Okhotin [3,4]). Let G = (Σ,N,R, S) be a gram-
mar with left contexts, and define the following deduction system of elementary
statements of the form “a substring v ∈ Σ∗ in the left context u ∈ Σ∗ has the
property X ∈ Σ ∪N”, denoted by X(u〈v〉). There is a single axiom scheme:

�G a(x〈a〉) (for all a ∈ Σ and x ∈ Σ∗).

Each rule (1) in the grammar defines the following scheme for deduction rules:

I �G A(u〈v〉),

for all u, v ∈ Σ∗ and for every set of items I satisfying the below properties:

– For every conjunct αi = X1 . . . X� with � � 0 and Xj ∈ Σ ∪ N , there
should exist a partition v = v1 . . . v� with Xj(uv1 . . . vj−1〈vj〉) ∈ I for all
j ∈ {1, . . . , �}.

– For every conjunct �βi = �X1 . . . X� with � � 0 and Xj ∈ Σ ∪ N , there
should be such a partition u = u1 . . . u�, that Xj(u1 . . . uj−1〈uj〉) ∈ I for all
j ∈ {1, . . . , �}.

– Every conjunct �γi = �X1 . . .X� with � � 0 and Xj ∈ Σ ∪ N should have
a corresponding partition uv = w1 . . . w� with Xj(w1 . . . wj−1〈wj〉) ∈ I for
all j.

Then the language generated by a nonterminal symbol A is defined as

LG(A) = {u〈v〉 | u, v ∈ Σ∗, �G A(u〈v〉)}.

The language generated by the grammar G is the set of all strings with left context
ε generated by S:

L(G) = {w | w ∈ Σ∗, �G S(ε〈w〉)}.

208 A. Okhotin

The following trivial example of a grammar is given only to illustrate the
definition.

Example 1. Consider the following grammar with left contexts.

S → AB

A→ a

B → b&�A
It generates the string ab as follows:

� a(ε〈a〉) (axiom)

a(ε〈a〉) � A(ε〈a〉) (A→ a)

� b(a〈b〉) (axiom)

b(a〈b〉), A(ε〈a〉) � B(a〈b〉) (B → b&�A)
A(ε〈a〉), B(a〈b〉) � S(ε〈ab〉) (S → AB)

Barash and Okhotin [3,4] give a few non-trivial examples of grammars, define
parse trees corresponding to deductions, and also present an equivalent definition
of grammars by language equations. An important result for studying these
grammars is the following generalization of the Chomsky normal form.

Theorem A (Barash, Okhotin [3,4]). For every grammar with left contexts
G0, there exists and can be effectively constructed a grammar with left contexts
G = (Σ,N,R, S) generating the same language as G0, in which all rules in R
are of the form

A→ B1C1 & . . .&BkCk &�D1 & . . .&�Dm&�E1 & . . .&�En,

A→ a&�D1 & . . .&�Dm&�E1 & . . .&�En,

where k � 1, m,n � 0, Bi, Ci, Di, Ei ∈ N and a ∈ Σ.
The size of G is at most exponential in the size of G0.

In this paper, the normal form given in Theorem A shall be called the weak
binary normal form. Theorem A was proved in three steps of transformation.
At the first step, null conjuncts were eliminated, so that the grammar contains
no rules of the form A→ ε& . . . and no symbol can generate the empty string.
It is important to note that even if the original grammar never uses extended
left contexts �E, they may be created out of proper left contexts �D while
eliminating null conjuncts. The second step is the elimination of null contexts of
the form �ε [4]. The final third step is the elimination of unit conjuncts, that
is, the rules of the form A → B& This normal form led to the following
generalization of the Cocke–Kasami–Younger algorithm.

Theorem B (Barash, Okhotin [3,4]). There exists an algorithm, which,
given a grammar with left contexts G = (Σ,N,R, S) in the weak binary nor-
mal form and given a string w = a1 . . . an with n � 1 and ai ∈ Σ, constructs the
sets of properties of each substring ai+1 . . . aj according to the grammar,

Ti,j = {A |A ∈ N, a1 . . . ai〈ai+1 . . . aj〉 ∈ LG(A)},

Improved Normal Form for Grammars with One-Sided Contexts 209

and does so in time O(|G|2 · n3).
In an ordinary context-free grammar, as well as in a conjunctive or a Boolean
grammar, the properties of each substring depend only on the properties of
its substrings. In terms of this parsing algorithm, each set Ti,j representing a
substring w = ai+1 . . . aj logically depends on the sets Ti,k and Tk,j , for all
k ∈ {i + 1, . . . , j − 1}, and this allows constructing these sets inductively, from
shorter substrings to longer ones. However, the introduction of context operators
leads to certain circular dependencies in the grammar, which require special
processing in the algorithm. These circular dependencies are demonstrated in
the following section.

3 Circular Dependencies between Substrings

Example 2. Consider the following grammar with left contexts in the weak nor-
mal form, which elaborates the one from Example 1.

S → AB1

A→ a
B1 → b&�E1

E1 → AB2 &AB3

B2 → b&�E2

E2 → AB4

B3 → b&�E3

E3 → AB4

B4 → b&�E4

E4 → AB5

B5 → b

This grammar generates a single string ab, but does so in a rather complicated
way. Each Bi should generate the single symbol b in the left context a; each Ei
should generate the whole string ab. While B5 can derive b directly, any Bi with
i � 4 requires the extended left context Ei, which can in turn be obtained only
by concatenating a to some other Bj. This leads to the following acyclic graph
of dependencies, which must be followed in order to prove S(ε〈ab〉).

The parsing algorithm of Barash and Okhotin [3,4] calculates these self-
dependencies by alternating between the entries T0,2 and T1,2 and gradually
filling them in the order given in the above diagram.

The goal is to reconstruct the grammar, so that no such iterative dependencies
exist. The proposed method is to split the above graph into individual edges,
to check them independently from each other, and then join these conditions
together by a conjunction operator. Consider, for instance, the nonterminal E2,
which requires the context E4 in order to generate ab, and define a new nonter-

minal symbol E
{E4}
2 , which stands for “E2, with the context E4 assumed to be

true”. Then this symbol may have a rule E
{E4}
2 → AB

{E4}
4 referring to another

nonterminal B
{E4}
4 , which also assumes E4 to be true. Then the symbol B

{E4}
4

can generate a terminal string without checking the context E4.
The new grammar begins with the rules

S → AB1

B1 → b&�E{E2,E3}
1 &�E{E4}

2 &�E{E4}
3 &�E∅

4 ,

210 A. Okhotin

where the latter essentially includes the entire graph of dependencies in Exam-
ple 2, sliced into four conditions to be checked independently. Since the rule now
uses a proper left context, rather than an extended left context, the symbols it
refers to shall have to generate only a, and not ab. The rules for E2 explained
above take the following form:

E
{E4}
2 → AB

{E4}
4

B
{E4}
4 → ε

The rules defining E
{E2,E3}
1 , E

{E4}
3 and E∅

4 are constructed analogously. The
resulting grammar should be subjected to the elimination of null rules, followed
by the elimination of the ensuing null conjuncts. This post-processing is straight-
forward in this particular case, and not much harder in the general case.

4 A Stronger Normal Form

The goal is to transform a grammar featuring both kinds of left contexts to
the following normal form, in which no extended left contexts are used, while
proper left contexts are applied only to individual symbols. This is another
generalization of the Chomsky normal form for ordinary context-free grammars.

Definition 3. A grammar with left contexts G = (Σ,N,R, S) is in the strong
binary normal form, if each rule in R is of the form

A→ B1C1 & . . .&BmCm (m � 1, Bi, Ci ∈ N) (3a)

A→ a&�D1 & . . .&�Dm (m � 0, a ∈ Σ, Di ∈ N) (3b)

It is convenient to begin the transformation with changing all context specifica-
tions to extended left contexts, as in the following intermediate normal form.

Lemma 1. For every grammar with left contexts there exists and can be effec-
tively constructed a grammar with left contexts generating the same language, in
which all rules are of the form

A→ B1C1 & . . .&BmCm (m � 1, Bi, Ci ∈ N) (4a)

A→ a&�E1 & . . .&�Em (m � 0, a ∈ Σ, Ei ∈ N) (4b)

Its size is at most exponential in the size of the original grammar.

Proof. By Theorem A, the given grammar can be assumed to be in the weak
binary normal form. Let G = (Σ,N,R, S) be this grammar.

Construct a new grammar G′ = (Σ,N ′, R′, S) with the set of nonterminals

N ′ = N ∪ Ñ ∪←−N ∪−→N , where Ñ = {Aa |A ∈ N, a ∈ Σ},
←−
N = {←−A |A ∈ N} and−→

N = {−→A |A ∈ N}. The goal of the construction is to have these symbols define
the following languages:

Improved Normal Form for Grammars with One-Sided Contexts 211

LG′(A) = LG(A), for each A ∈ N ;

LG′(Aa) = {u〈va〉 | u〈v〉 ∈ LG(A)}, for each A ∈ N and a ∈ Σ;

LG′(
←−
D) = {u〈v〉 | ε〈u〉 ∈ LG(D), v ∈ Σ+}, for each D ∈ N ;

LG′(
−→
E) = {u〈v〉 | ε〈uv〉 ∈ LG(E)}, for each E ∈ N .

The rules of the grammar G′ are omitted due to space constraints, though an
interested reader can easily reconstruct them. ��
Theorem 1. For every grammar with left contexts there exists and can be ef-
fectively constructed a grammar with left contexts in the strong binary normal
form generating the same language. The size of the grammar is at most triple
exponential in the size of the original grammar.

Proof. The construction begins by transforming the given grammar to the in-
termediate form by Lemma 1, which incurs at most an exponential blow-up. Let
G = (Σ,N,R, S) be the resulting grammar, in which all rules are of the form
(4a), (4b) given in the lemma.

Construct a new grammar G′ = (Σ,N ∪N ′, R′, S), where

N ′ = {Aa,X | A ∈ N, a ∈ Σ, X ⊆ N}.
The goal of the construction is to have LG′(A) = LG(A) for all A ∈ N , and to
have LG′(Aa,X) contain all such strings u〈v〉, that there is a proof of A(u〈va〉) in
G, which uses additional assumptions F (ε〈uva〉) for all F ∈ X , and never infers

any intermediate statements of the form F̃ (ε〈uva〉), for any F̃ ∈ N .
For every rule

A→ a&�E1 & . . .&�Em (5a)

in the original grammar and for every connected directed acyclic graph Γ
with a set of nodes {D1, . . . , Dn} ⊇ {E1, . . . , Em} and with the set of sources
{E1, . . . , Em}, the constructed grammar contains the rule

A→ a&�Da,X1

1 & . . .&�Da,Xn
n , (5b)

where each Xi is the set of direct descendants of the corresponding Di. In addi-
tion, the constructed grammar contains the rule

Aa,{E1,...,Em} → ε. (5c)

Each rule

A→ B1C1 & . . .&BmCm (5d)

in the original grammar is included in the new grammar, which also contains
the following additional rules:

Aa,X1∪...∪Xm → B1C
a,X1

1 & . . .&BmC
a,Xm
m (a ∈ Σ, X1, . . . , Xm ⊆ N).

(5e)

The correctness of the construction is established in the following two claims:

212 A. Okhotin

Claim 1. Let A ∈ N , u, v ∈ Σ∗, a ∈ Σ. (I) If a statement A(u〈v〉)
can be derived in G, then it can be derived in G′ as well. (II) If a state-
ment A(u〈va〉) can be derived in G essentially using additional assumptions
F1(ε〈uva〉), . . . , F�(ε〈uva〉) and without establishing any intermediate statements

of the form F̃ (ε〈uva〉), then the statement Aa,{F1,...,F�}(u〈v〉) can be proved in
G′.

Claim 2. Let A ∈ N , u, v ∈ Σ∗, a ∈ Σ. (I) If A(u〈v〉) can be derived in G′,
then it can be derived in G as well. (II) If a statement Aa,{F1,...,F�}(u〈v〉) can be
derived in G′, then the statement A(u〈va〉) can be derived in G using additional
assumptions F1(ε〈uva〉), . . . , F�(ε〈uva〉).

In each claim, both assertions are proved by a simultaneous induction on the
length of derivations.

Together, these two claims imply that the grammar G′ defines the same lan-
guage as G. However, G′ is not yet in any normal form, because it contains null
rules (5c). Once all null rules are eliminated from G′, as in the paper by Barash
and Okhotin [3,4], some of its rules (5b) may get null contexts, while some other
rules (5e) may get unit conjuncts:

A→ a&�ε
Aa,X1∪...∪Xm → B& . . .

The rules containing null contexts are then eliminated by the method of Barash
and Okhotin [3,4]. Each rule with a unit conjuncts is transformed by substituting
all rules for B [3,8], with at most an exponential blow-up. This results in a
grammar of a desired form. ��

The construction in Theorem 1 involves a double exponential blow-up in the size
of the grammar, as a function of the size of the given grammar in the intermediate
normal form. One can apply yet another exponential blow-up on top of that, in
order to obtain the following slightly more restricted normal form:

Corollary 1. Every grammar with left contexts G = (Σ,N,R, S) can be trans-
formed to a grammar G′ = (Σ,N ′, R′, S′) with all rules of the form A →
B1C1 & . . .&BmCm and A → a&�D, which defines the same language and
is of size at most quadruple exponential in the size of G.

Proof (a sketch). This is proved by a straightforward subset construction, with
N ′ = 2N and with LG′(X) =

⋃
A∈X LG(A) for all X ∈ N ′. ��

The strong binary normal form allows reformulating the parsing algorithm of
Barash and Okhotin [3,4] without using any iterative computations.

Improved Normal Form for Grammars with One-Sided Contexts 213

Algorithm 1. Let G = (Σ,N,R, S) be a grammar with left contexts in the
strong binary normal form. Let w = a1 . . . an ∈ Σ+ with n � 1 and ai ∈ Σ be
the input string. Let Ti,j with 0 � i < j � n be variables, each representing a
subset of N , and let Ti,j = ∅ be their initial values.

1: for j = 1 to n do
2: for all A→ a&�D1 & . . .&�Dn ∈ R do
3: if aj = a and D1, . . . , Dn ∈ T0,j−1 then
4: Tj−1,j = Tj−1,j ∪ {A}
5: for i = j − 2 to 0 do
6: let P = ∅ (P ⊆ N ×N)
7: for � = i+ 1 to j − 1 do
8: P = P ∪ (Ti,� × T�,j)
9: for all A→ B1C1 & . . .&BmCm ∈ R do

10: if (B1, C1), . . . , (Bn, Cn) ∈ P then
11: Ti,j = Ti,j ∪ {A}

The algorithm calculates Ti,j = {A | A ∈ N, a1 . . . ai〈ai+1 . . . aj〉 ∈ LG(A)}.

5 A Faster Parsing Algorithm

Parsing for ordinary context-free grammars can be reduced to Boolean ma-
trix multiplication through the famous Valiant’s algorithm [12], which works
in asymptotically the same time as needed to multiply a pair of n× n matrices,
where n is the length of the input string. The same method generalizes to con-
junctive and Boolean grammars [10], which are, after all, “context-free” in the
general sense of the word. The method is generally based on the possibility of
adjusting the order of computation of different entries Ti,j, so that many Carte-
sian products Ti,� × T�,j could be calculated together as products of Boolean
matrices of unbounded size.

For grammars with contexts, every rule A→ a&�D defines a dependency of
the entries Ti,j , for all i < j, on the entry T0,j−1, as in line 3 of Algorithm 1. This
fixes the order of computation of different entries Ti,j and apparently rules out
using matrix-by-matrix products to speed up the algorithm. Nevertheless, one
can develop a slightly faster than cubic-time parsing for these grammars by using
matrix-by-vector products, calculated efficiently using a variant of the method
of Arlazarov et al. [1], known in the literature as The Method of Four Russians.
The new algorithm computes the same data as Algorithm 1, but the order of
computation is slightly changed, which will subsequently allow improving its
running time.

Algorithm 2. Let G = (Σ,N,R, S) be a grammar with left contexts in the
strong binary normal form. Let w = a1 . . . an ∈ Σ+ with n � 1 and ai ∈ Σ be
the input string. Let k0 n be the block size used by the algorithm.

214 A. Okhotin

Fig. 1. A Boolean matrix–column product in line 14 of Algorithm 2

The algorithm uses the following variables: (1) Ti,j ⊆ N for all 0 � i < j � n,
all initialized to empty sets; (2) Pi ⊆ N ×N for all i ∈ {0, . . . , n−2}. Denote by
TAi,j the bit representing the membership of A in Ti,j. The membership of (B,C)

in Pi is similarly represented by PBCi .

1: for j = 1, . . . , n do
2: for all A→ a&�D1 & . . .&�Dm ∈ R do
3: if aj = a and D1, . . . , Dm ∈ T0,j−1 then
4: Tj−1,j = Tj−1,j ∪ {A}
5: let Pi = ∅ for all i ∈ {0, . . . , j − 2}
6: for i = j − 2 to 0 do
7: for � = i+ 1 to k · $ ik% − 1 do
8: Pi = Pi ∪ (Ti,� × T�,j)
9: for all A→ B1C1 & . . .&BmCm ∈ R do

10: if (B1, C1), . . . , (Bm, Cm) ∈ Pi then
11: Ti,j = Ti,j ∪ {A}
12: if i ≡ 0 (mod k) and i > 0 then
13: for all B,C ∈ N do

14:

⎛⎜⎝PBC0
...

PBCi−1

⎞⎟⎠∨ =

⎛⎜⎝ TB0,i . . . TB0,i+k−1
...

. . .
...

TBi−1,i . . . T
B
i−1,i+k−1

⎞⎟⎠×

⎛⎜⎝ TCi,j
...

TCi+k−1,j

⎞⎟⎠
The last line multiplies an i× k Boolean matrix by a k × 1 Boolean vector, and
stores the resulting i × 1 Boolean vector in the variables PBCi , taking a bitwise
disjunction with their previous contents. This product is illustrated in Figure 1.

Once the table is constructed, the input is accepted if and only if S ∈ T0,n.

Lines 8 and 14 of Algorithm 2 carry out the same computations as in line 8
of Algorithm 1, which are split into the following two cases. For all numbers

Improved Normal Form for Grammars with One-Sided Contexts 215

i0 < �0 < j0, where i0, �0 and j0 belong to three different blocks of size k (that
is, if & i0k ' < &

�0
k ' < &

j0
k '), the product Ti0,�0×T�0,j0 is processed in line 14 at the

iteration j = j0, i = k · & i0k ', as a part of multiplying the i-th row of the matrix
by the column vector, in their coordinate number (i mod k). For the remaining
values of i0, �0 and j0 (that is, for & i0k ' = &

�0
k ' or &

�0
k ' = & j0k '), this product is

calculated directly in line 8 at the iteration j = j0, i = i0, � = �0.
At every j-th iteration of the outer loop, line 8 is executed at most 2kj times,

which sums up to O(kn2) operations across all iterations. Thus, the running
time of the algorithm is dominated by the matrix-by-column multiplications in
line 14.

Note that the i× k matrix used in line 14 does not depend on the value of j:
for each i � k with i ≡ 0 (mod k) and for each B ∈ N , there is a single Boolean

matrix B(i
k) that is multiplied by some column vector at every j-th iteration of

the outer loop. The column vector of size k× 1 is different for each j. Assuming
that k is a small number, one can save time by multiplying each matrix B(t) by
all possible column vectors x ∈ Bk×1 in advance, store the results in memory and
then access them in line 14 instead of calculating the matrix-by-vector product.

Multiplying each B(t) by each vector x takes tk2 bit operations, which sums
up to |N | ·2k · tk2 for all nonterminals B and all vectors x. Doing this for every t

takes
∑�n/k�
t=1 |N |·2k ·tk2 = O(|N |·2k ·n2) bit operations. Next, line 14 is replaced

with a table lookup to B
i
k and a bitwise disjunction of i bits. For each j, lines 13–

14 are executedm = & jk'−1 times, for all matrices B(1), . . . , B(m), to the total of

O(|G|· j
2

k) bit operations. For all j, this sums up to O(|G|·
∑n

j=1
j2

k) = O(|G|· n3

k)
bit operations.

Theorem 2. For every grammar, for every input string of length n, and for
every block size k, Algorithm 2 correctly computes the values of Ti,j, and does so
in O(n3) bit operations, using space O(n2).

If the matrix-vector products in line 14 are pre-computed, the resulting algo-

rithm will work in O
(
2kn2+ n3

k

)
bit operations. Choosing k = &logn− log logn'

leads to O
(
n3

logn

)
bit operations.

The algorithm can be efficiently implemented by presenting the matrix T as |N |
Boolean matrices, and by storing them by columns, so that each machine word
contains a column of bits. Since the main bulk of bit operations in the algorithm
are bitwise disjunctions of column vectors, this will work fast.

The suggested future work is to try applying the matrix-vector multiplication
method of Williams [13] in the context of this algorithm, and to investigate the
possible improvements in complexity.

6 Conclusion

The paper made a certain progress in understanding context specifications in
formal grammars. It is now known that extended left contexts can be avoided

216 A. Okhotin

in a normal form grammar, though it remains to investigate whether the trans-
formation preserves unambiguity of a grammar.

The given transformation may require up to a triple exponential blow-up.
Though it would be useful to try reducing its complexity, it will likely remain high
enough to be inconvenient for any practical implementation of these grammars.
Hence, from the practical point of view, perhaps it would be more useful to
develop a new parsing algorithm in the spirit of Earley [6] and Graham–Harrison–
Ruzzo [7], which would not require any normal form.

References

1. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzhev, I.A.: On economical con-
struction of the transitive closure of an oriented graph. Soviet Mathematics Dok-
lady 11, 1209–1210 (1970)

2. Barash, M.: Recursive descent parsing for grammars with contexts. SOFSEM 2013
student research forum (2013)

3. Barash, M., Okhotin, A.: Defining contexts in context-free grammars. In: Dediu,
A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 106–118. Springer,
Heidelberg (2012)

4. Barash, M., Okhotin, A.: An extension of context-free grammars with one-sided
context specifications, manuscript submitted for publication

5. Chomsky, N.: On certain formal properties of grammars. Information and Con-
trol 2(2), 137–167 (1959)

6. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2), 94–102 (1970)

7. Graham, S.L., Harrison, M.A., Ruzzo, W.L.: An improved context-free recognizer.
ACM Transactions of Programming Languages and Systems 2(3), 415–462 (1980)

8. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

9. Okhotin, A.: Boolean grammars. Information and Computation 194(1), 19–48
(2004)

10. Okhotin, A.: Fast parsing for Boolean grammars: A generalization of Valiant’s
algorithm. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224,
pp. 340–351. Springer, Heidelberg (2010)

11. Rounds, W.C.: LFP: A logic for linguistic descriptions and an analysis of its com-
plexity. Computational Linguistics 14(4), 1–9 (1988)

12. Valiant, L.G.: General context-free recognition in less than cubic time. Journal of
Computer and System Sciences 10(2), 308–314 (1975)

13. Williams, R.: Matrix-vector multiplication in sub-quadratic time (some preprocess-
ing required). In: 18th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, USA, January 7-9, pp. 995–1001 (2007)

Comparisons between Measures

of Nondeterminism on Finite Automata

Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
{alex,ksalomaa,akl}@cs.queensu.ca

Abstract. We study the interrelationships between various measures of
nondeterminism for finite automata. The tree width of an NFA (nonde-
terministic finite automaton) A is a function that associates a positive
integer n to the maximum number of leaves in any computation tree of
A on an input of length n. The trace of an NFA is defined in terms of the
maximum product of the degrees of nondeterministic choices in compu-
tation on inputs of given length. We establish upper and lower bounds
for the trace function of an NFA in terms of its tree width. Additionally,
the unbounded trace of an NFA has exponential growth.

Keywords: finite automata, limited nondeterminism, state complexity.

1 Introduction

There has been much work on limited nondeterminism for finite automata
[1,3,4,8,12] and very different ways to measure or quantify the nondeterminism
have been considered. The degree of ambiguity counts the number of accepting
computations [10,11,14]. The guessing measure [2,9] counts, for a given input,
the smallest number of advice bits needed in an accepting computation and the
advice measure [6,7] counts the maximum number of advice bits (worst-case
measure). The branching measure [2] is the product of choices used in a best
accepting computation. The tree width measure [13], which is called leaf size in
[6,7], counts the total number of computation paths corresponding to a given
input.

The nondeterminism measures differ inherently from each other. Different
measures are relevant for different applications and it is important to establish
their interrelationships in order to obtain a thorough understanding of the power
of limited nondeterminism.

Directly based on the definitions it follows that the branching and guessing
measure are exponentially related [2]. Also, the papers [6,7] give upper and lower
bounds for the tree width (or leaf size) of an NFA in terms of the ambiguity and
the number of advice bits used by the same automaton.

In this paper we continue the study of the interrelationships of the different
nondeterminism measures from a descriptional complexity point of view. It is
easy to see that the branching measure and tree width are incomparable in
the sense that there exist NFAs with finite branching and infinite tree width

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 217–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 A. Palioudakis, K. Salomaa, and S.G. Akl

while, on the other hand, there exist NFAs where the branching is exponentially
larger than the tree width. Due, in part, to the above observation we consider
here the worst-case variant of the branching measure, which we call the trace
measure. The trace of an input string is the largest product of the degrees of
nondeterministic choices used in a computation on that string. We give upper
and lower bounds for the trace of an NFA as a function of its tree width. The
bounds are optimal in the sense that they cannot, in general, be improved. As a
consequence we observe that the trace of an NFA is finite if and only if its tree
width is finite.

We study the trace function of an NFA as the function of the length on
inputs. We show that the trace function of an NFA can either be bounded from
a constant or it has an exponential growth. In the former case, we establish a
maximum value for this constant and we show that it is optimal, in the sense
that there are automata with finite trace reaching this value. In the latter case,
although the trace of an NFA is exponential it is still bounded by an exponential
function depending on the number of nondeterministic steps that occur in a
computation. Finally, we give upper and lower bounds for the size blow-up of
converting an NFA with finite trace to a DFA (deterministic finite automaton).

2 Preliminaries

We assume that the reader is familiar with the basic definitions concerning fi-
nite automata [15,16] and descriptional complexity [1,5]. Here we just fix some
notation needed in the following.

The set of strings, or words, over a finite alphabet Σ is Σ∗, the length of
w ∈ Σ∗ is |w| and ε is the empty string. The set of positive integers is denoted
N. The cardinality of a finite set S is #S.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is
the transition function, q0 is the initial state and F ⊆ Q is the set of accepting
states. The function δ is extended in the usual way as a function Q×Σ∗ → 2Q

and the language recognized by A, L(A), consists of strings w ∈ Σ∗ such that
δ(q0, w) ∩ F �= ∅. We denote by A(q), where q ∈ Q, the NFA obtained from A
that has q as its initial state. Moreover, by the size of A we mean the number
of states of A, size(A) = #Q.

If δ is as above, we denote rel(δ) = {(q, a, p) | p ∈ δ(q, a), q, p ∈ Q, a ∈ Σ}.
We call rel(δ) as the transition relation of A. A transition of A is an element
μ = (q, a, p) ∈ rel(δ). Sometimes we use the word move instead of transition.
The transition μ is nondeterministic if there exists p′ �= p such that p′ ∈ δ(q, a)
and otherwise μ is deterministic. The NFA A is deterministic (a DFA) if all
transitions of A are deterministic. This is equivalent of saying that #δ(q, a) ≤ 1
for all q ∈ Q and a ∈ Σ. Note that we allow DFAs to have undefined transitions.

A computation chain of A from state s1 to s2 is a sequence of transitions
(qi, ai, pi), 1 ≤ i ≤ k, where qi+1 = pi, i = 1, . . . , k − 1, and s1 = q1, s2 = pk.
A cycle of A is a computation chain from state s to the same state s. The
underlying word of a computation chain

Limited Nondeterminism 219

(q1, a1, q2)(q2, a2, q3) · · · (qm, am, qm+1)

is a1a2 · · · am. For x ∈ Σ∗, compA(x) denotes the set of all computation chains of
A with underlying word x, starting from the initial state. We call a computation
chain of A accepting if it starts from the initial state and it finishes at a final
state. For x ∈ Σ∗, acompA(x) denotes the set of all accepting computation
chains of A with underlying word x.

Unless otherwise mentioned, we assume that any state q of an NFA A is
reachable from the start state and some computation originating from q reaches a
final state, that is, there is a computation chain from q to a final state. Moreover,
for technical reasons we assume that we do not have the cases where L(A) = ∅
or L(A) = {ε}.

The minimal size of a DFA or an NFA recognizing a regular language L is
called the (nondeterministic) state complexity of L and denoted, respectively,
sc(L) and nsc(L). Note that we allow DFAs to be incomplete and, consequently,
the deterministic state complexity of L may differ by one from a definition using
complete DFAs.

In the rest of this section we recall the notations of computation tree and
collapsed computation tree from [13]. They will be needed to define the tree width
measure and for some proofs in the later sections. Finally, for completeness, we
recall the advice of an NFA [6,7]. We avoid stating here the definition of the
branching measure [2], as this measure is very similar to the trace measure. We
define both of these measures in Section 3.

For q ∈ Q and w ∈ Σ∗, the q-computation tree of A on w, TA,q,w, is a finite
tree where the nodes are labelled by elements of Q× (Σ ∪{ε, %}), where % /∈ Σ is
a new symbol. We define TA,q,w inductively by first setting TA,q,ε to consist of
one node labelled by (q, ε). When w = au, a ∈ Σ, u ∈ Σ∗ and δ(q, a) = ∅ we set
TA,q,w to be the singleton tree where the only node is labelled by (q, %). Then
assuming δ(q, a) = {p1, . . . , pm}, m ≥ 1, we define TA,q,w as the tree where the
root is labelled by (q, a) and the root has m children where the subtree rooted
at the ith child is TA,pi,u, i = 1, . . . ,m. For our purposes the order of children
of a node is not important and we can assume that the elements of δ(q, a) are
ordered by a fixed but arbitrary linear order. Note that in TA,q,w every path
from the root to a leaf has length at most |w|. A path may have length less than
w because the corresponding computation of A may become blocked at a node
labelled by a pair (p, %).

The tree TA,q0,w is called the computation tree of A on w and denoted simply
as TA,w. The NFA A accepts w if and only if TA,w contains a leaf labelled by an
element (q, ε), where q ∈ F . Note that a node label (q, ε) can occur in TA,w only
after the corresponding computation branch has consumed the entire string w.

We mostly refer to a node of a computation tree of A to be labelled simply
by an element q ∈ Q. This is taken to mean that the node is labelled by a pair
(q, x) where x ∈ Σ ∪ {ε, %} is arbitrary.

Consider an arbitrary w ∈ Σ∗ and let col(TA,w) be the tree obtained from the
computation tree TA,w by “collapsing” all sequences of deterministic transitions.
That is, if TA,w has a node v1 labelled by state q1 and v1 has exactly one child

220 A. Palioudakis, K. Salomaa, and S.G. Akl

v2 labelled by q2, we replace the subtree rooted at v1 with the subtree rooted at
v2. This process is continued until, in the resulting tree, all non-leaf nodes have
more than one child. Clearly the process does not change the number of leaves
of the tree and the resulting tree col(TA,w) is well defined, i.e., the result does
not depend on the order of performing the collapse operations. Note that if the
computation of A on w is deterministic, col(TA,w) is a singleton tree where the
only node is labelled by the last state occurring in the computation. (This is the
state A reaches at the end of w or some earlier state where the computation of
A becomes blocked.)

Next we recall the definition of the tree width of an NFA [13] (or with a
different name, leaf-size, from [6,7]). Let A be an NFA and w ∈ Σ∗. The tree
width of A on w, twA(w), is the number of leaves of the tree TA,w. Note that
twA(w) is simply the number of all (accepting and non-accepting) branches in
the computation tree of A on w. The tree width function twA : N→ N is defined
as

twA(n) = max{twA(x) | x ∈ Σn}
The tree width of A is defined as tw(A) = sup{twA(n) | n ∈ N}. We say that A
has finite tree width if the above value is finite.

We recall the definition of advice of an NFA [6,7], which is a simple nonde-
terministic measure for NFAs. Let A be an NFA and C be a computation chain
of automaton A of a word w ∈ Σ∗. We define adviceA(C) as the number of
nondeterministic choices during the computation chain C, i.e., the number of
nodes on the chain C which have more than one successor. We define the advice
of A of a word w ∈ Σ∗ to be the maximum advice among all computation chains
reading w, i.e. adviceA(x) = max{adviceA(C) | C ∈ compA(x)}. Naturally, the
advice function adviceA : N→ N is defined as

adviceA(n) = max{adviceA(x) | x ∈ Σn}

The advice of A is defined as advice(A) = sup{adviceA(n) | n ∈ N}.

3 Nondeterministic Trace

We consider a measure of nondeterminism that is, roughly speaking, a worst-case
variant of the branching measure [2]. We call this new measure, trace. Here we
present, in parallel, the definitions of branching and trace of an NFA.

We recall the definition of the branching of an NFA A [2]. The branching of
a move μ = (q, a, p) on the automaton A, βA(μ), is the number of nondetermin-
istic choices that A has on state q reading a, i.e. #δ(q, a). The branching of a
computation chain C = μ1 . . . μk of an NFA A is the product of the branching
of the moves participating in C, i.e.

βA(C) = βA(μ1) · . . . · βA(μk)

The branching of a word x ∈ L(A) of automaton A is the minimum of the
branching of all accepting computation chains reading word x, that is

Limited Nondeterminism 221

βA(x) = min{βA(C) | C ∈ acompA(x)}. The branching function βA : N → N is
defined as

βA(n) = max{βA(x) | x ∈ Σ≤n ∩ L(A)}

Now we want to define the new measure, called trace. The trace for a move or a
computation chain should be as branching, for simplicity we avoid to give addi-
tional definitions. The difference between trace and branching appears when we
define them for words. The trace of a word x ∈ Σ∗ of an NFA A is the maximum
branching among all computations reading x, that is τA(x) = max{βA(C) | C ∈
compA(y), y is a prefix of x}. Note that the trace of a word x can be given from
any of its prefixes, we define trace in this way to include also computations that
read only an initial part of the word x. The trace of any word x ∈ Σ∗ is at least
1, since ε is prefix of x and δ(q0, ε) = {q0}. The trace function τA : N → N is
defined as

τA(n) = max{τA(x) | x ∈ Σn}

Note that for an automaton A the branching of a word x is defined only when x
is in L(A). On the other hand the trace of a word w of an NFA is defined for all
words w in Σ∗. Also note that we can define a similar worst-case measure with
trace, where it ranges over only accepting computations.

The trace of an NFA A (resp. branching of A) is defined as the maximal value
that the trace function (resp. branching function) can reach. More formally, we
define the trace and branching of an NFA A to be

β(A) = sup{βA(n) | n ∈ N}
τ(A) = sup{τA(n) | n ∈ N}

In the special case when L(A) = ∅, we set βA(n) to be always 1. We say that
the trace (resp. branching) of A is finite if the above values are finite. Note that
it is possible that β(A) is finite while τ(A) is infinite as illustrated in example
of Figure 1. This example has branching 2 but infinite trace.

Fig. 1. A minimal NFA recognizing the language aa∗

Since we intend to study the trade-off between the amount of nondeterminism
and the size of finite automata, we make the following definition. We define the
following notation:

sctracei(L) = min{size(A) | A is a finite automaton for L with τ(A) ≤ i}.

222 A. Palioudakis, K. Salomaa, and S.G. Akl

3.1 Relating Trace and Other Measures of Nondeterminism

We want to compare the trace with other nondeterminism measures. The re-
lationship of trace and branching is obvious since the former is the worst-case
variant of the latter. In the following we establish relationships between the trace
and the tree width of an NFA.

Proposition 3.1. For every NFA A = (Q,Σ, δ, q0, F) and for every word x ∈
Σ∗, we have twA(x) ≤ τA(x).

Proof. We prove this proposition by induction on the length of x. We want to
prove that for every state q and every word x, twA(q)(x) ≤ τA(q)(x).

The induction base is valid, twA(q)(a) = τA(q)(a) = #δ(q, a) for all states
q ∈ Q and all strings a ∈ Σ ∪ {ε}.

Let us assume now that twA(q)(x) ≤ τA(q)(x) for every state q and for every
word x which has length at most n. Now, we want to show that twA(q)(ax) ≤
τA(q)(ax), for every letter a ∈ Σ, for every state q ∈ Q, and for every word x
which has length at most n. If δ(q, a) = ∅, we have that twA(q)(ax) = τA(q)(ax) =
1, otherwise,

twA(q)(ax) =
∑

p∈δ(q,a)
twA(p)(x) ≤ #δ(q, a) · max

p∈δ(q,a)
twA(p)(x) ≤(ind.hyp.)

#δ(q, a) · max
p∈δ(q,a)

τA(p)(x) = τA(q)(ax).

��
From the above proposition we have immediately the following results.

Corollary 3.1. Let A be an NFA. For every n ∈ N, we have twA(n) ≤ τA(n).

Corollary 3.2. For every NFA A, its tree width is at most its trace, i.e. for all
NFA A it holds tw(A) ≤ τ(A).

We have just seen that the tree width of an automaton is always bounded by
the trace of this automaton. Next we can ask whether conversely the trace is
also bounded by a function of the tree width. The following proposition gives a
positive reply.

Proposition 3.2. Let A = (Q,Σ, δ, q0, F) be an NFA. Then for every word
x ∈ Σ∗,

τA(x) ≤ 2twA(x)−1

Proof. If the automaton A has only deterministic transitions (or no transitions
at all) from reading a word x ∈ Σ∗, then we have that τA(x) ≤ 1 and = twA(x) =
1. Hence, the proposition is true in that case.

Now, let us assume that A has at least one nondeterministic transition from
reading the word x ∈ Σ∗. Then, the trace of A reading x would be the product

Limited Nondeterminism 223

of the nondeterministic steps that occur in a computation of A on x. In other
words we have that,

τA(x) = Y1 · . . . · Yr (1)

for some Yi ∈ {2, . . . , c}, where c = max({#δ(q, a) | q ∈ Q and a ∈ Σ}, and
some r ∈ N+. Moreover, each time that a nondeterministic step occurs in a
computation of A on x, we know that each of these nondeterministic choices will
add at least one more leaf to the computation tree TA,x. From this observation
we have the following inequation;

1 +
r∑
i=1

(Yi − 1) ≤ twA(x) (2)

Since n ≤ 2n−1 for all n ∈ N, equation (1) gives us that τA(x) ≤ 2Y1−1 ·. . .·2Yr−1,
which from inequation (2) we have τA(x) ≤ 2twA(x)−1. ��

Corollary 3.3. Let A be an NFA. For all n ∈ N, τA(n) ≤ 2twA(n)−1. Further-
more, if A has finite tree width, then τ(A) ≤ 2tw(A)−1.

Since the branching of an NFA A is always at most its trace, we can conclude
the relation between branching and tree width for an NFA A is β(A) ≤ 2tw(A)−1

and for all m ∈ N, βA(m) ≤ 2twA(m)−1.
Naturally the question arises whether the bounds of Propositions 3.1 and 3.2,

and of Corollaries 3.1 and 3.3, are the best possible. That is, whether there
exist NFAs for which the inequalities become an equality. Although one of the
inequalities relating the trace and tree width of an NFA is linear and the other
is exponential, it turns out that these bounds cannot, in general, be improved.

Lemma 3.1. For every n ∈ N+ there exists an NFA Bn with n states such that,
for all m ≥ 1, τBn(m) = twBn(m) and τBn(m) = βBn(m).

Furthermore, Bn can be chosen to be a minimal NFA for L(Bn).

Proof. Let us have the NFA Bn = (Q,Σ, δ, 0, {0}), where Q = {0, 1, . . . , n− 1},
Σ = {a, b}, δ(i, a) = {(i + j) mod n | 1 ≤ j ≤ 2} and δ(i, b) = {(i + 1) mod n}
for i ∈ {0, 1, . . . , n− 1}. In Figure 2 we give an example of Bn for n = 5.

It is easy to see that τBn(a
m) = βBn(a

m) = 2m. Moreover, we notice that
all the states of Bn are symmetric in terms of their transitions. Each state has
a deterministic b-transition and exactly two a-transitions. Then, from induction
on m we can easily prove that twBn(a

m) = 2m. ��

Lemma 3.2. For every n ∈ N+ there exists a minimal NFA Gn with n states
such that, for all m ≥ 1, τGn(m) = 2twGn (m)−1.

Proof. Let us have the NFA Gn = (Q,Σ, δ, 0, {n−1}), where Q = {0, 1, . . . , n−
1},Σ = {a, b}, δ(0, a) = {0, 1}, δ(i, a) = {i+1} for all 1 ≤ i ≤ n−2, δ(0, b) = {0},
δ(i, b) = {i+ 1} for all 2 ≤ i ≤ n− 2, and undefined otherwise.

It is not difficult to see that twGn(a
m) = m + 1 and τGn(a

m) = 2m for
all m ≥ 1. Hence, for all m ≥ 1 we have that m ≥ 1, τGn(m) = 2twGn (m)−1.

224 A. Palioudakis, K. Salomaa, and S.G. Akl

Fig. 2. The minimal NFA B5

Now, for the minimality of the NFA Gn we use the extended fooling set technique
for the set {(ai, an−i−1 | 0 ≤ i ≤ n−1}. Notice that for any two pairs (ai, an−i−1)
and (aj , an−j−1) such that i �= j and 0 ≤ i, j ≤ n− 1 one of the words ai+n−j−1

or aj+n−i−1 has length less than n − 1, which means that this word cannot be
in L(Gn). ��
As an immediate result of Corollary 3.2 and Corollary 3.3, we have the following
theorem relating the tree width and trace of an NFA.

Theorem 3.1. An NFA A has finite tree width if and only if A has finite trace.

Recall that the tree width of an NFA A is finite if and only if no cycle of A has
a nondeterministic transition.

Corollary 3.4. An NFA A has finite trace iff no cycle of A has a nondetermin-
istic transition.

Lastly, the close relation of tree width and trace gives us another result relating
ambiguity and trace.

Theorem 3.2. For n ≥ 4, there exists an unambiguous NFA A with n states
such that, for any k ∈ N, sctracek(L(A)) = 2n−1.

Proof. In Proposition 3.1 of [13] we have seen that for all n ≥ 4, there exists an
unambiguous NFA A with n states such that for every NFA with finite tree width
recognizing L(A) has 2n−1 states. This proposition together with Corollary 3.2
implies the theorem. ��
Note here that in the proof of Proposition 3.1 of [13], we have already seen that
a similar result holds for branching. That is, there is an unambiguous NFA A,
with n ≥ 4 states, where for every NFA equivalent to A and finite branching has
at least 2n−1 states.

Finally we present estimations of trace in terms of the advice function. As an
immediate result from the definitions we have that for every NFA A the advice
function is bounded by the trace function. That is, for every number m ∈ N, we
have adviceA(m) ≤ τA(m). In the following proposition we also show that the
trace is also bounded by a function of advice.

Limited Nondeterminism 225

Proposition 3.3. Let A = (Q,Σ, δ, q0, F) be an NFA and let k = max{#δ(q, a) |
q ∈ Q, a ∈ Σ}. Then, for every number m ∈ N, we have

τA(m) ≤ kadviceA(m)

Moreover, for all k ∈ N and n ≥ k there exists an NFA B with n states where
the maximum number of nondeterministic choices in one step is k such that for
all m ∈ N,

τB(m) = kadviceB(m)

3.2 Growth Rate of the Trace Function

We begin by investigating the growth rate of the trace function τA(n). Recall
that, for an NFA A, the function twA(n) is either constant, polynomial or ex-
ponential [7]. We show that the trace function is either bounded or grows expo-
nentially.

Lemma 3.3. Let A be an NFA with n states such that the trace of A is un-
bounded. Then for all m ∈ N:

τA(m) ≥ 2�
m
n �

Proof. From Corollary 3.4 the automaton A has cycles with nondeterministic
transitions since its trace is unbounded.

Let q be the state where we enter a cycle which has a nondeterministic transi-
tion. Let w1 be a shortest possible word which starting from the initial state, we
can reach state q in A. Let w2 be a shortest possible word which goes from state
q to state q. Then, we know that |w1| < n and that |w2| ≤ n. Hence, the trace

of the word w1(w2)
l is at least 2l. Moreover, we have that |w1|+l·|w2|

n < 1 + l,

which implies that & |w1|+l·|w2|
n ' ≤ l. ��

It seems that the same result with Lemma 3.3 holds also for branching. However,
we haven’t been able to prove it and we leave it as open problem.

Problem 3.1. Is the growth rate of βA(m) exponential for all NFAs that have
unbounded branching?

In the previous section, we have seen a connection of finite trace with results on
finite tree width as they have been studied in [13]. For example, an automaton
A has finite trace if and only if no cycle of A can contain a nondeterministic
transition. Moreover, we can decide in polynomial time whether or not a given
NFA has finite trace, immediate from Corollary 3.1 of [13]. The proof of the
following theorem is inspired by the proof establishing the upper bound for tree
width [13], however, for a given NFA the upper bounds for the trace and tree
width, respectively, are different.

Theorem 3.3. Let A = (Q,Σ, δ, q0, F) be an NFA with finite trace and n states,
then

τ(A) ≤ (n− 1)!

226 A. Palioudakis, K. Salomaa, and S.G. Akl

Proof. Since the automaton A has finite trace, from Corollary 3.4, A can not
have cycles with a nondeterministic transition. Hence, we can define an irreflexive
partial order <A⊆ Q×Q by setting q1 <A q2 if and only if there is a computation
path from q1 to q2 involving a nondeterministic transition. Since no cycle of A
has a nondeterministic transition we know that <A is indeed a partial order.
For any two nodes u1 and u2 of col(TA,w) labelled, respectively, by q1 and q2,
we have if u2 is a proper descendant of u1, then q1 <A q2. Recall that col(TA,w)
is the collapsed tree corresponding to the computation tree TA,w as defined in
preliminaries.

Additionally, in each node, of the computation tree TA,w, we place a value,
this value is the trace of the given node for its state and the remaining input.
Notice that due to the way we create the collapsed tree, we do not lose any
information about the trace, that is, the trace associated with any node that
is deleted from the collapsed tree is the same as the trace associated with the
closest ancestor of the node in TA,w that is not deleted in the collapsed tree. It
is sufficient to show that the value of the root of col(TA,w) is at most (n− 1)!.

Let w be a word with the maximum trace on A. We use induction on the size
of the collapsed tree col(TA,w). If its size is one, then this means that the NFA A
is deterministic. Then the NFA A has trace 1, which is at most 0! as the theorem
claims. Now if its size is greater than one, this means that it is at least three since
the root has to have at least two children. States of the collapsed tree cannot
re-appear, otherwise we would have a cycle which contains a nondeterministic
transition. Each of the root’s children is a collapsed subtree containing at most
n − 1 states. From the induction hypothesis, the value of each child is at most
(n−2)!. Now the value of the root would be the number of its children times the
maximum value of any of the children. The root at one transition can go to at
most all the states, with the exception of itself, which in total is n− 1. In other
words, the value of the root is at most (n− 1) · (n− 2)!. ��
A natural question is then whether the bound given by Theorem 3.3 is the
best possible. By choosing A to be the NFA with state set {1, . . . , n}, a unary
input alphabet and transitions from each state i , 1 ≤ i ≤ n − 1, to the states
i+ 1, . . . , n, it is immediate that A has finite trace (n− 1)!.

We note that, on the other hand, the trace of finite trace NFAs with n states
cannot have all different values between 1 and the upper bound (n − 1)!. This
follows from the simple observation that the trace of A (having n states) has
to be a product of integers belonging to {1, . . . , n} and there are always prime
numbers between n+ 1 and (n− 1)! when n ≥ 4.

The above differs from the situation with tree width. In [13] we observed that
the tree width of an n state NFA can have all possible values from 1 to the upper
bound 2n−2.

As an immediate result of Theorem 3.3 and Lemma 3.3 we have the following
theorem.

Theorem 3.4. For every NFA A with n states and for every natural number
m, we have about its trace;

Limited Nondeterminism 227

(i) τA(m) ≤ (n− 1)!, or
(ii) τA(m) ≥ 2�

m
n �.

3.3 Converting Finite Trace NFAs to DFAs

In [13], we have seen that when applying the subset construction to an NFA
with tree width k, only sets of states of size at most k can be reached. The
correspondence between trace and tree width gives the following upper bound
for the size of a DFA equivalent to a finite trace NFA.

Lemma 3.4. Let L be a regular language where sctracek(L) = n for some k ≤
n− 1. Then sc(L) ≤ 1 +

∑k
j=1

(
n−1
j

)
.

Proof. Let the automaton A have trace k. By Corollary 3.2 we know that the
tree width of A is at most k. Now the inequality in the statement of the lemma
follows from Lemma 3.3 of [13]. ��
Also based on results from [13] we get a matching lower bound for determinizing
an NFA with finite trace k.

Theorem 3.5. For every 1 ≤ k ≤ n− 1 there exists an n-state NFA An,k such

that τ(An,k) = k and sc(L(An,k)) = 1 +
∑k

j=1

(
n−1
j

)
.

Proof. Theorem 3.3 of [13] gives an NFA An,k with n states and tree width k

such that the minimal equivalent DFA needs 1 +
∑k

j=1

(
n−1
j

)
states. The NFA

An,k makes only one nondeterministic move with k branches at the first move.
Hence, the trace of An,k is equal to k. ��

4 Conclusion and Open Problems

Continuing the study of the interrelationships of the different measures of non-
determinism from a descriptional complexity point of view, we have defined a
new measure of nondeterminism for NFAs, we call it trace. The trace measure is
a worst case variant of the branching measure [2]. Theorem 3.1 tells us that trace
is close relative with the tree width measure. The trace measure is always larger
than the tree width, and sometimes can be exponentially larger. For NFAs with
bounded trace we have given an optimal upper bound for the trace in terms of
the number of states. We have shown that the growth rate of trace, as a function
of input length, when unbounded is always exponential. We conjecture that the
same holds for NFAs with unbounded branching but do not have a complete
proof for this claim.

References

1. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002)

228 A. Palioudakis, K. Salomaa, and S.G. Akl

2. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inf. Comput. 86(2), 179–194 (1990)

3. Goldstine, J., Leung, H., Wotschke, D.: On the relation between ambiguity and
nondeterminism in finite automata. Inf. Comput. 100(2), 261–270 (1992)

4. Holzer, M., Kutrib, M.: Descriptional complexity of (un)ambiguous finite state
machines and pushdown automata. In: Kučera, A., Potapov, I. (eds.) RP 2010.
LNCS, vol. 6227, pp. 1–23. Springer, Heidelberg (2010)

5. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata - a survey. Inf. Comput. 209(3), 456–470 (2011)

6. Hromkovič, J., Karhumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Measures of
nondeterminism in finite automata. In: Montanari, U., Rolim, J.D.P., Welzl, E.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 199–210. Springer, Heidelberg (2000)

7. Hromkovic, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communi-
cation complexity method for measuring nondeterminism in finite automata. Inf.
Comput. 172(2), 202–217 (2002)

8. Kintala, C.M.R., Wotschke, D.: Amounts of nondeterminism in finite automata.
Acta Inf. 13, 199–204 (1980)

9. Leung, H.: On finite automata with limited nondeterminism. Acta Inf. 35(7), 595–
624 (1998)

10. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

11. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found.
Comput. Sci. 16(5), 975–984 (2005)

12. Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Com-
put. 212, 15–36 (2012)

13. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeter-
minism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386,
pp. 252–265. Springer, Heidelberg (2012); A full version of the paper is accepted
for publication in JALC

14. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to
the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989)

15. Shallit, J.O.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press (2008)

16. Yu, S.: Regular Languages. In: Handbook of Formal Languages, vol. 1, 41–110.
Springer (1998)

Finite Nondeterminism vs. DFAs

with Multiple Initial States

Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
{alex,ksalomaa,akl}@cs.queensu.ca

Abstract. It is known that a nondeterministic finite automaton (NFA)
with n states and branching k can be simulated by a deterministic finite
automaton with multiple initial states (MDFA) having k · n states. We
give a lower bound k

1+log k
·n for the size blow-up of this conversion. We

consider also upper and lower bounds for the number of states an MDFA
needs to simulate a given NFA of finite tree width.

Keywords: finite automata, limited nondeterminism, deterministic au-
tomata with multiple initial states, state complexity.

1 Introduction

A deterministic finite automaton with multiple initial states (MDFA) can use
only a constant amount of nondeterminism at the beginning of the computa-
tion to select the initial state [4,8,10]. Also other models of nondeterministic
finite automata (NFA) employing a finite amount of nondeterminism have been
considered in the literature. The tree width of an NFA A (a.k.a. leaf-size, a.k.a.
“computations(A)”) [1,9,13] counts the maximum number of leaves of compu-
tation trees of A. Finite tree width NFAs can use only a constant amount of
nondeterminism, however, the nondeterministic choices need not occur at the
start of the computation. Similarly, an NFA with finite branching [6,10] is re-
quired to have, for each accepted string, a computation with a constant number
of nondeterministic choices. For a given input, the branching measure limits the
amount of nondeterminism of the “best” accepting the computation, that is,
the computation that uses the least amount of nondeterminism. Other related
models of limited nondeterminism are considered e.g. in [11].

Converting a general NFA to an NFA with finite branching results, in the worst
case, in an exponential size blow-up [6] and hence also the number of states of
an MDFA equivalent to a given NFA A is, in the worst case, exponential in the
size of A. On the other hand, Kappes [10] has given a nice simulation based on
modular arithmetic that allows an MDFA to simulate an NFA A with branching
k just by increasing the number of states of A by a factor of k.

Here our goal is to provide a lower bound for the size blow-up of converting an
NFA with finite branching to an MDFA. We construct NFAs An,k with n states
and branching k such that any MDFA recognizing the language of An,k needs at

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 229–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 A. Palioudakis, K. Salomaa, and S.G. Akl

least k
1+log k · n states, i.e., the lower bound is within a factor of 1 + log k of the

upper bound [10]. The lower bound examples can be constructed for infinitely
many values of n greater than a constant c(k) depending on k.

We consider also the descriptional complexity of converting a finite tree width
NFA to an MDFA. We say that an NFA A has unique transition degree if all
nondeterministic transitions of A have the same number of choices. A finite tree
width NFA with unique transition degree can be efficiently simulated by an
MDFA using a straightforward construction. For the size blow-up of converting
general finite tree width NFAs to an MDFA we get a better upper bound by
using the observation that an NFA with tree width t has branching at most
2t−1 [14] and then relying on the result of [10].

2 Preliminaries

We assume that the reader is familiar with the basics of finite automata and
regular languages [16,17]. Surveys on descriptional complexity of finite automata
include [3,5,7,15]. Following the convention used by the overwhelming majority of
the literature, including the earlier work on branching [6,10] and tree width [9,13]
that we rely on, we restrict an NFA to have only one initial state which means
that, strictly speaking, an MDFA is not a special case of an NFA.

The set of strings over a finite alphabet Σ is Σ∗, the length of w ∈ Σ∗ is
|w| and ε is the empty string. The set of positive integers is denoted N and for
n ∈ N, [n] = {1, 2, . . . , n}. The cardinality of a finite set F is #F .

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is the
transition function, q0 ∈ Q is the start state and F ⊆ Q is the set of final states.
The function δ is in the usual way extended as a function Q × Σ∗ → 2Q and
the language recognized by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}. By the
size of the NFA A we mean the number of states, that is, #Q. Unless otherwise
mentioned, we assume that an NFA A has no useless states, that is, for any state
q of A, q is reachable from the start state and some computation originating from
q reaches a final state.

A transition of A is a triple μ = (q, a, p), q, p ∈ Q, a ∈ Σ such that p ∈
δ(q, a). The branching of a transition μ = (q, a, p) is βA(μ) = #δ(q, a). The
transition μ is nondeterministic if it has branching at least 2, and otherwise μ
is deterministic. The transition degree of A is the maximum branching of any
transition of A. For k ≥ 2, we say that A has unique transition degree k if
all nondeterministic transitions of A have branching exactly k. Note that an
NFA with unique transition degree k ≥ 2 is allowed to have also deterministic
transitions, that is, transitions with branching 1. In particular, an NFA with
transition degree 2 always has a unique transition degree because in this case
the branching of all transitions must be either 1 or 2.

An NFA A is a deterministic finite automaton (DFA) if the transition degree
of A is one (or zero). In this case we can view δ as a partial function Q×Σ → Q.
Note that we allow DFAs to have undefined transitions.

Finite Nondeterminism and MDFAs 231

A deterministic finite automaton with multiple initial states (MDFA) [8,10] is
a 5-tuple B = (Q,Σ, δ, I, F) where Q is the set of states, Σ is the input alphabet,
δ is a partial function Q×Σ → Q, I ⊆ Q is a set of initial states and F is a set
of final states. The language recognized by B consists of strings w ∈ Σ∗ such
that δ(q, w) ∈ F for some q ∈ I.

2.1 Branching and Tree Width of an NFA

Here we briefly recall some definitions concerning the branching and the tree
width measures for NFAs. The branching measure was originally defined in [6]
and more details on tree width can be found in [9,13]. (The measure is called
“leaf size” in [9].) In the rest of this subsection, A is an NFA (Q,Σ, δ, q0, F).

A computation of A from state s1 to state s2 on input w = a1 · · · ak, ai ∈ Σ,
i = 1, . . . , k, k ≥ 1, is a sequence of transitions

C = (μ1, . . . , μk), μi = (qi, ai, qi+1), 1 ≤ i ≤ k, (1)

where s1 = q1, s2 = qk+1, k ≥ 1. The set of all possible computations on w
from state s1 to state s2 is denoted compA(w, s1, s2) and the set of accepting
computations of A on w ∈ Σ∗ is accompA(w) =

⋃
q∈F comp(w, q0, q).

The branching of a computation C as in (1) is βA(C) =
∏k
i=1 βA(μi) (recalling

that βA(μi) was defined as #δ(qi, ai)) and the branching of A on string w ∈ L(A)
is βA(w) = min{β(C) | C ∈ accompA(w)}. The branching of the NFA A is
βA = sup{βA(w) | w ∈ L(A)}. The branching of a computation is the product of
the numbers of choices made by individual transitions of the computation and the
branching of A on w ∈ L(A) is the branching of the best accepting computation
on w, i.e., the computation that uses the least amount of nondeterminism. Here
we consider only cases where the values βA(w), w ∈ Σ∗, are bounded, that is,
βA is finite.

The tree width of a given input w is defined as the number of leaves of the
computation tree of A on input w. For q ∈ Q, the q-computation tree of A on
w = au, a ∈ Σ, u ∈ Σ∗, δ(q, a) = {p1, . . . , pm}, m ≥ 0, is the tree TA,q,w defined
as follows. The root of TA,q,w is labeled (q, a) and the root has as immediate
subtrees the trees TA,pi,u, 1 ≤ i ≤ m. If u = ε, TA,pi,u is a tree with a single
node labeled by (pi, ε). If δ(q, a) = ∅, the tree TA,q,w consists of only the root.

The tree TA,q0,w is called the computation tree of A on w and denoted simply
as TA,w. The NFA A accepts w if and only if TA,w contains a leaf labeled by an
element (q, ε), where q ∈ F . Note that a node label (q, ε) can occur in TA,w only
after the corresponding computation branch has consumed the entire string w.

The tree width of A on w ∈ Σ∗, twA(w), is the number of leaves of the tree
TA,w. The tree width of A is defined as twA = sup{twA(w) | w ∈ Σ∗}. We say
that A is a finite tree width NFA, ftw-NFA, if twA is finite.

More generally, the branching and tree width of an NFA A can be defined
as a function of input length [9,14]. Here we concentrate on cases where the
branching and tree width of an NFA are bounded by a finite constant. Directly
from the definition it is clear that βA is finite always when twA is finite, however,

232 A. Palioudakis, K. Salomaa, and S.G. Akl

the converse is not true because the branching of a string is defined in terms of
the accepting computation with the smallest branching.

3 Converting an NFA with Finite Branching to an MDFA

Kappes [10] has shown that an NFA with n states and branching k can be
simulated by a complete MDFA with nk+1 states. Our goal here is to provide a
lower bound for this conversion. The construction used in the proof of Lemma 4
of [10] produces an MDFA with a dead state. Since our MDFA model allows the
possibility of undefined transitions, the result can be stated as follows.

Proposition 3.1. ([10]) An NFA with n states and branching k can be simulated
by an MDFA with k · n states and k initial states.

Let k, r ∈ N and Σ = {a, 1, 2, . . . , r}. Also choose r positive integers p1, . . . , pr.
(In our lower bound construction the pi’s will be distinct primes, but for the
time being they can be any positive integers.) We define

Lk,p1,...,pr = ((ap1)∗1 ∪ . . . ∪ (apr)∗r)k. (2)

Lemma 3.1. For k, r, p1, . . . , pr ∈ N, the language Lk,p1,...,pr has an NFA Bk,r
with 2 + k

∑r
i=1 pi states and branching rk.

Proof. (Sketch) The NFA Bk,r consists of k disjoint cycles of a-transitions of
length pi, for each i = 1, . . . , r, and additionally an initial and a final state. For
j < k, after exiting the jth a-cycle of length pi on input symbol i the NFA
guesses a value 1 ≤ � ≤ r and enters the (j + 1)st cycle of length p�. ��
The following property which states that maximal substrings belonging to a∗ in
strings of Lk,p1,...,pr must have a length divisible by some of the pi’s (1 ≤ i ≤ r)
follows directly from the definition of the language.

Lemma 3.2. Let Σ = Ω ∪ {a} and Ω = {1, . . . , r}. Denote w1 = u1h1a
zh2u2

and w2 = azh2u2, u1, u2 ∈ Σ∗, h1, h2 ∈ Ω and z ≥ 0.
If w1 ∈ Lk,p1,...,pr (respectively, w2 ∈ Lk,p1,...,pr), then z is a multiple of pi,

for some 1 ≤ i ≤ r.

Next we present our main result which will be used as a basis of the lower bound
results. The below lemma establishes, under suitable assumptions on the integers
pi, 1 ≤ i ≤ r, a lower bound for the size of any MDFA recognizing Lk,p1,...,pr .
While the NFA Bk,r recognizes Lk,p1,...,pr by making k consecutive choices each
with branching r during the computation, we prove that if the nondeterminism
has to occur at the start of the computation the number of states needs to be

multiplied, roughly, by rk−1

k .

Lemma 3.3. Let k, r ∈ N and denote h = rk−1
r−1 . Let p1, . . . , pr be distinct primes

such that

(∀1 ≤ j < � ≤ r) pj · p� > 1 + h ·
r∑
i=1

pi. (3)

Finite Nondeterminism and MDFAs 233

We claim that any MDFA for the language Lk,p1,...,pr (as in (2)) needs at least
1 + h ·

∑r
i=1 pi states. Furthermore, any MDFA for Lk,p1,...,pr with this number

of states needs at least rk initial states.

Proof. Recall that Ω = {1, . . . , r} and Σ = Ω ∪ {a}. In the following let Ak =
(Q,Σ, δ,Q0, F) be an arbitrary MDFA for the language Lk,p1,...,pr such that

Ak has at most 1 + h ·
r∑
i=1

pi states. (4)

Also, without loss of generality, we assume that Ak has no useless states.
By an a-subDFA of Ak, we mean a unary DFA D = (P, {a}, γ, p0, FD), where

p0 is either an initial state of Q0 or a state with an incoming δ-transition on a
symbol of Ω, P consists of all states of Ak reachable from p0 with a-transitions
(that is, P = δ(p0, a

∗)), γ contains the a-transitions of δ defined on P , and
FD ⊆ P consists of all states that have an outgoing δ-transition with a symbol
of Ω. Intuitively, an a-subDFA D consists of a “part” of Ak that processes
some maximal substrings in a∗ that are delimited on both sides by symbols of
Ω = {1, . . . , r} (or a maximal prefix in a∗ that is followed by a symbol of Ω) and
hence, by Lemma 3.2, and the assumption that Ak does not have useless states

L(D) ⊆ (ap1)∗ ∪ . . . ∪ (apr)∗. (5)

We say that an a-subDFA D has depth i (0 ≤ i ≤ k− 1) if the initial state of D,
in a computation of Ak, can be reached with a string having exactly i elements
of Ω. Since every string accepted by Ak must have exactly k elements of Ω (and
Ak has no useless states), it follows that the depth of each a-subDFA is unique.

Note that although the depth of an a-subDFA is unique, different a-subDFAs
of the same depth need not, in general, be disjoint. However, two a-subDFAs
having different depths cannot share states (this is again seen by relying on the
assumption that Ak has no useless states).

Recall that a unary DFA consists of a tail and a cycle [2]. If the DFA recognizes
a finite language, there is no cycle. We say that an a-subDFA D has type j,
1 ≤ j ≤ r, if the length of the cycle of D is a multiple of pj . (It is easy to see
that each a-subDFA with a cycle containing a final state must have type j, for
some 1 ≤ j ≤ r.)

Consider an a-subDFA D. For states q and q′ in the cycle of D, by the distance
from q to q′ we mean the smallest integer x such that δ(q, ax) = q′.

Claim 1. Let D be an a-subDFA of type j ∈ {1, . . . , r}.
(i) The distance from one final state to another final state in the cycle of D is

always a multiple of pj.
(ii) The distance from one final state to another in the cycle ofD is not a multiple

of pi, for any i �= j.

Proof of Claim 1. Since D has type j, the length of the cycle of D is a multiple
of pj . By the assumption on the number of states of Ak (4) and the choice of
the primes (3), the length of the cycle of D cannot be a multiple of pi for any
i �= j. Thus the length of the cycle is of the form c · pj , where c is not a multiple

234 A. Palioudakis, K. Salomaa, and S.G. Akl

of any pi, i �= j. Now if the length between consecutive final states in the cycle
is not a multiple of pj , this means that for some constants t and s where s is not
a multiple of pj , the DFA D accepts, for all x ≥ 0, strings of length

t+ x · c · pj and t+ s+ x · c · pj .

Choose x1 such that z = t+ x1 · c · pj is not a multiple of pi, for any 1 ≤ i ≤ r,
i �= j. Hence, z must be a multiple of pj and consequently also t must be a
multiple of pj . Thus, since pj does not divide s, for all x2 ≥ x1, t+ s+ x2 · c · pj
is not a multiple of pj .

Now by choosing x2 ≥ x1 such that t+ s+ x2 · c · pj is not a multiple of pi,
for any i �= j, we get a string accepted by D whose length is not a multiple of
any p�, 1 ≤ � ≤ r, contradicting (5).

We have shown (i). The second part of the claim (ii) follows since by (3)
and (4) we know that the cycle of D has length less than pi · pj , for any i �= j.
This concludes the proof of Claim 1. &

Note that the statement of Claim 1 deals with final states appearing in the cycle
of an a-subDFA. In general, the distance between two final states in the tail or a
final state in the tail and another final state in the cycle need not be a multiple of
one of the primes pi (or, more precisely, we have not proved that such a property
must hold).

Claim 2. Let D be an a-subDFA of type j, 1 ≤ j ≤ r. If D accepts a string w
of length greater than pi · pj, where i �= j, 1 ≤ i ≤ r, then the length of w must
be a multiple of pj .

Proof of Claim 2. By the assumption on the number of states of Ak and (3) we
know that the computation of the unary DFA D on w enters the cycle. As in
the proof of Claim 1 we observe that the length of the cycle of D is c · pj, where
c is less than any of the primes pt, t �= j. It follows that D accepts all strings in
a∗ having length |w|+ x · c · pj , x ≥ 0. Now if |w| were not a multiple of pj , this
would imply that D must accept strings whose length is not a multiple of any
p�, 1 ≤ � ≤ r, which contradicts (5). This concludes the proof of Claim 2. &

Next we define a set S such that accepting computations of Ak on strings of S
can be used to derive a lower bound for the size of Ak. Denote

uj = apj+
∏r

i=1 pi , 1 ≤ j ≤ r.

The set S is defined to consist of the rk strings of the form:

w(i1, i2, . . . , ik) = ui1 · i1 · ui2 · i2 · · ·uik · ik, i1, . . . , ik ∈ Ω. (6)

The substring uij ∈ a∗, 1 ≤ j ≤ k, is called the jth component of w(i1, . . . , ik).
For w ∈ S, let C(w) be a fixed but arbitrary accepting computation of Ak on

w. Note that for w = w(i1, . . . , ik), in the computation C(w) the substring uij
must be processed by an a-subDFA of depth j − 1, 1 ≤ j ≤ k, and having type
ij. The second observation follows by Claim 2 since the length of uij is not a
multiple of any p�, where � �= ij .

Finite Nondeterminism and MDFAs 235

Claim 3. Consider two k-tuples (i1, . . . , ik), (j1, . . . , jk) ∈ Ωk, and assume that
there exists z ∈ {1, . . . , k} such that iz �= jz . Consider an index x < z.

We claim that in the computations

C1 = C(w(i1, . . . , ik)) and C2 = C(w(j1, . . . , jk))

the subcomputations of the a-subDFA (of depth x− 1) processing the xth com-
ponent (respectively, uix and ujx) cannot end in the same state.
Proof of Claim 3. For the sake of contradiction assume that in the computations
C1 and C2 the processing of the components uix and ujx ends in the same state.
This implies that ix = jx. Note that otherwise components uix and ujx would
need to be followed by distinct symbols of �,m ∈ Ω. If a state in the cycle of
some a-subDFA would have an outgoing transition both on � and on m, � �= m,
this would cause Ak to accept illegal strings because the cycle length cannot be
a multiple of both p� and of pm.

Also, without loss of generality we can assume that ix+1 = jx+1, . . . , iz−1 =
jz−1, because if this is not the case we can simply replace z with the smallest
index s greater than x such that is �= js.

Since the transition function of the MDFA Ak is deterministic, it follows that
the computation C1 at the end of ui1 i1 · · ·uiz−1iz−1 is in the same state as the
computation C2 at the end of uj1j1 · · ·ujz−1iz−1. In particular, this means that
C1 and C2 process the zth component of their respective inputs (that is, uiz
and ujz , respectively) using the same a-subDFA D of depth z − 1 and let �,
1 ≤ � ≤ r, be the type of D. Now we get a contradiction with Claim 2 since p�
cannot divide both piz +

∏r
i=1 pi and pjz +

∏r
i=1 pi when iz �= jz . This concludes

the proof of Claim 3. &

By the total cycle size of a-subDFAs of depth j and type i, 0 ≤ j ≤ k − 1,
1 ≤ i ≤ r, we mean the total number of states of Ak appearing in all the cycles
of a-subDFAs of depth j and type i. Note that two a-subDFAs of same depth
and same type may share a cycle and in this case the cycle is counted only once
(since we want a lower bound for the number of states of Ak). By Claim 1 we
know that the cycles of a-subDFAs of different types must be disjoint.

Claim 4. The total cycle size of a-subDFAs of depth j, 0 ≤ j ≤ k − 1, and
type i, 1 ≤ i ≤ r, is at least rk−j−1pi.
Proof of Claim 4. Consider the set Sj,i ⊆ S defined by

Sj,i = {w(
j copies︷ ︸︸ ︷
1, . . . , 1, i, xj+2, . . . , xk) | xj+2, . . . , xk ∈ Ω}.

Above the notation for strings w(i1, . . . , ik) is as in (6). The set Sj,i has r
k−j−1

elements. Let v1, v2 ∈ Sj,i be distinct strings. By Claim 2, the computations
C(v1) and C(v2) process the (j+1)st component of their respective input using
an a-subDFA of type i. In general, they may use the same a-subDFA but, by
Claim 3, we know that the computations of the a-subDFA must end in distinct
final states in the cycle.

Now suppose that for � distinct substrings v1, . . . , v� ∈ Sj,i the chosen com-
putations C(v1), . . . , C(v�) of Ak use the same a-subDFA D0 of depth j and

236 A. Palioudakis, K. Salomaa, and S.G. Akl

type i. Each of the computations C(v1), . . . , C(v�) must “exit” the a-subDFA
D0 through a different final state in the cycle and, by Claim 1, the distance
between any two final states of the cycle of D0 must be a multiple of pi. Thus,
the length of the cycle of D0 is at least � · pi. This means that the total cycle
size of a-subDFAs of depth j and type i is at least |Sj,i| · pi = rk−j−1 · pi. &

By taking the sum of all values 0 ≤ j ≤ k − 1 and 1 ≤ i ≤ r, Claim 4 implies
that the total cycle size of the a-subDFAs is at least h ·

∑r
i=1 pi. Additionally,

Ak needs (at least) one final state. Note that since strings of Lk,p1,...,pr cannot
end with the symbol a, none of the a-subDFAs can include a final state of Ak.

It remains to verify the claim concerning the number of initial states. Us-
ing the notation (6) consider distinct strings w1 = w(�, i2, . . . , ik) and w2 =
w(�′, j2, . . . , jk), �, i2, . . . , ik, �′, j2, . . . , jk ∈ Ω. Again let C(wi) be an (arbitrary
but fixed) accepting computation of Ak on wi, i = 1, 2.

First consider the possibility that � = �′ and for some 2 ≤ x ≤ k, ix �= jx. By
Claim 3, the subcomputations of C(w1) and C(w2) in the depth zero a-subDFA
cannot end in the same state. Since both w1 and w2 begin with the prefix u� · �
and the only nondeterminism in the computations of Ak occurs in the choice
of the initial state, the computations C(w1) and C(w2) must begin in different
initial states.

Second, when � �= �′ the first components have to be processed by a-subDFAs
of different type. Again we conclude that the computations C(w1) and C(w2)
must begin in different initial states. ��
It can be verified that the language Lk,p1,...,pr has an MDFA with

1 + rk−1
r−1

∑r
i=1 pi states and rk initial states and, thus, the size lower bound

of Lemma 3.3 cannot be improved.
As a consequence of Lemmas 3.1 and 3.3 we can now give a lower bound for

the size blow-up of converting an NFA with finite branching to an MDFA.

Theorem 3.1. For any h0 ∈ N we can choose h0 ≤ h < 2 · h0 and an infi-
nite sequence of values ni, i = 1, 2, . . . , such that there exists an NFA Ah,ni with
branching h and size ni and any MDFA equivalent toAh,ni needs

h
1+log h ·ni states.

Proof. The language Lk,p1,p2 has an NFA of size 2+k·(p1+p2) and branching 2k,
where we choose h0 ≤ 2k < 2 · h0. Any sufficiently large two consecutive primes
(depending on k) satisfy the condition (3) in the statement of Lemma 3.3 and,
hence by the lemma, for such primes any MDFA for the language Lk,p1,p2 needs
size at least 1 + (2k − 1) · (p1 + p2). ��
For an NFA with branching h, the lower bound is within a factor of 1 + log h
from the upper bound of Proposition 3.1. Note that for the statement of Theo-
rem 3.1, Lemma 3.3 gives the best bound with the choice r = 2. We have stated
Lemma 3.3 for general values of r because this will be useful in the next section
(and the proof is essentially the same for general r and the case r = 2).

Also it can be noted that the NFAs constructed in Lemma 3.1 are, in fact,
unambiguous. This means that the statement of Theorem 3.1 holds with the
additional assumption that the NFAs Ah,ni are unambiguous.

Finite Nondeterminism and MDFAs 237

4 Converting Finite Tree Width NFAs to MDFAs

We begin by considering a straightforward simulation of a finite tree width NFA
by an MDFA. After that, by relying on Proposition 3.1, we give a more general
upper bound for the size blow-up of converting ftw-NFAs to an MDFA.

For ftw-NFAs with unique transition degree already the upper bound given
by the straightforward construction of Lemma 4.1 is reasonably good. However,
the straightforward construction does not give a good upper bound in the case of
general ftw-NFAs. This observation motivates the question of how much larger
an ftw-NFA with unique transition degree may need to be compared to a general
ftw-NFA with the same tree width.

Lemma 4.1. Let A = (Q,Σ, δ, q0, F) be an NFA with n states and tree width
t. Furthermore, assume that the transition degree of A is r. Then L(A) can be

recognized by an MDFA with h · n states and h initial states where h = rt−1
r−1 .

Furthermore, if A has unique transition degree r then L(A) can be recognized
by an MDFA with h(r, t) · n states and h(r, t) initial states where

h(r, t) =
ru − 1

r − 1
and u =

⌊
t− r
r − 1

⌋
+ 1. (7)

Proof. (Sketch) An MDFA B can simulate the NFA A by guessing a sequence
of elements of [r] of length at most t− 1. The states of B are elements of Q×X ,

where X =
⋃t−1
i=0 [r]

i, and always the last element of [r] in the second component
of the state is used to make the choice in a nondeterministic step of the simulated
computation of A.

For the second part of the claim it is sufficient to note that when A has
unique transition degree r, a computation of tree width t can go through at
most & t−rr−1'+ 1 nondeterministic steps. ��
The languages used in the lower bound construction of Lemma 3.3 can be ef-
ficiently recognized using an NFA of unique transition degree r and this ob-
servation, together with Lemma 4.1, yields a fairly tight worst-case bound for
converting ftw-NFAs with unique transition degree to MDFAs. In particular,
recall that any NFA with transition degree 2 necessarily has unique transition
degree. Note that the lower bound of the below proposition is within the mul-
tiplicative factor 1

k+1 from the upper bound provided by Lemma 4.1 (and k
depends only on the tree width and the transition degree of the NFA and does
not depend on the number of states).

Proposition 4.1. Let r, k, n0 ∈ N. Then for infinitely many n ≥ n0 there exists
an NFA An of size n having unique transition degree r and tree width t =
r+(k−1)(r−1) such that any MDFA recognizing the language L(A) needs more
than h(r, t) · n

k+1 states. (Here h(r, t) is as in (7).)

On the other hand, when r > 2 and the NFA does not have unique transition
degree, we note that, in the construction of the MDFA B used in the proof of
Lemma 4.1 many states ofQ×X are useless because the corresponding sequences

238 A. Palioudakis, K. Salomaa, and S.G. Akl

of X specify a nondeterministic computation of tree width greater than t. For
i ∈ [r], denote f(i) = max{i− 1, 1} and define

Xr,t = {(i1, . . . , ix) | ij ∈ [r], 1 ≤ j ≤ x, 0 ≤ x < t, 1 +

x∑
z=1

f(iz) ≤ t}.

Now it is easy to see that if a computation of B on input w consumes a sequence
(i1, . . . , ix) in the second component of the state, then the simulated computation
of A on the same input w has tree width at least 1 +

∑x
z=1 f(iz) and thus

sequences where this value exceeds t are not needed. Note that, in the definition
of the elements of Xr,t, for an element 1 in a sequence (i1, . . . , ix) we also add
1 to the sum because a value ix = 1 would correspond to a nondeterministic
transition of branching at least 2.

When r = 2, the cardinality of Xr,t is 2
t−1 which yields the upper bound (7)

in the statement of Lemma 4.1. This is not surprising since an NFA with r = 2
necessarily has a unique transition degree.

Lemma 4.2. In the special case r = 3 and t ≥ 3 we have

#X3,t =

� t−1
2 �∑

x=0

3x +

t−1∑
x=� t−1

2 �+1

⎛⎝t−1−x∑
j=0

(
x

j

)
2x−j

⎞⎠ .

We do not have a formula for the cardinality of Xr,t for general values of r
and finding one seems to be a hard combinatorial question. Furthermore, even
knowing the cardinality of Xr,t would likely not yield an optimal upper bound
for the size blow-up of converting ftw-NFAs to MDFAs because the estimation in
the definition of the sets Xr,t still does not take into account that, naturally, in
the sequences an element ij (also when ij ≥ 2) may be used to specify a choice
in a computation step with branching strictly greater than ij .

We know from Proposition 4.1 that the construction of Lemma 4.1 gives a
fairly good upper bound for converting ftw-NFAs with unique transition degree
to MDFAs. A relevant question is then how much larger an ftw-NFA with unique
transition degree may need to be compared to a general NFA with same tree
width. Naturally any NFA A of transition degree r and size n has an equivalent
NFA B with unique transition degree r and size at most n + r − 2. Here B is
obtained from A simply by adding, for each transition with branching 2 ≤ h < r,
transitions to r − h useless states, and the same r − 2 new states can be used
to “pad” all nondeterministic transitions. The defect of this construction is that
the tree width of B will be significantly larger than the tree width of A.

It can be noted that, in the case of NFAs with ε-transitions, it is easy to see
that an NFA A with n states and transition degree r has an equivalent NFA
B with (r − 1) · n states and (unique) transition degree 2 such that twA =
twB. By adding ε-transitions and new states the construction simply simulates
a transition with branching at most r by a tree structure of transitions with
branching two, where all transitions after the first one are ε-transitions. A similar
straightforward conversion seems not possible for NFAs without ε-transitions.

Finite Nondeterminism and MDFAs 239

Problem 4.1. Consider an NFA A with n states, tree width t and transition de-
gree r. How many states are sufficient in the worst case for an NFA B recognizing
L(A) (i) if B is required to have tree width t and unique transition degree r, or,
(ii) if B is required to have transition degree 2 and tree width t.

The upper bound provided by Lemma 4.1 for the ftw-NFA–to–MDFA transfor-
mation is “bad” when the NFA does not have a unique transition degree and, as
discussed above, possible improvements of the estimation could lead to compli-
cated combinatorial questions. For general ftw-NFAs we get a better estimation
by relying on, for a given NFA A, an upper bound for the branching of A in
terms of the tree width of A. Note that A having finite tree width implies that
the branching of A is finite but not vice versa. Also using an NFA with transition
degree two it is easy to see that the estimation of the below lemma cannot, in
general, be improved.

Lemma 4.3. ([14]) Let A be an ftw-NFA. Then βA ≤ 2twA−1.

Combining the above with the efficient simulation of a finite branching NFA with
an MDFA (Proposition 3.1 due to [10]) we get an improved upper bound for the
size blow-up of converting an ftw-NFA A to an MDFA where we do not need to
require that A has a unique transition degree. The corresponding lower bound is
implied by the languages of Lemma 3.3 and the lower bound is, roughly, within
a factor of twA of the upper bound. The results are summarized in the following
theorem.

Theorem 4.1. An NFA of size n and tree width t can be simulated by an MDFA
of size 2t−1 · n.

Let t ∈ N be arbitrary. For infinitely many positive integers ni, i = 1, 2, . . . ,
there exists an NFA Ai of size ni and tree width t such that any MDFA recog-

nizing the language L(Ai) needs at least 2t−1

t · ni states.

5 Conclusion

For an NFA with branching k (respectively, tree width t) our lower bound for
the worst case size of an equivalent MDFA is within a fraction of 1 + log k
(respectively, t) of the known upper bound. The results for branching and tree
width, respectively, are comparable since the upper bound for the conversion
is linear in the case of finite branching and exponential in the case of finite
tree width. For a possible improved lower bound for the size of the MDFAs we
would need to use languages other than the ones used in Lemma 3.3 because, as
observed after the lemma, the lower bound actually gives the size of the minimal
MDFA for these languages.

Lemma 3.3 uses an ad hoc proof to establish the lower bound for the size
of MDFAs. A topic for further research could be to find general lower bound
techniques for the size of MDFAs, in the spirit of the fooling set methods used
for general NFAs [7,16]. A separator set technique was used in [13] to establish

240 A. Palioudakis, K. Salomaa, and S.G. Akl

lower bounds for the size of finite tree width NFAs. In order to prove lower bounds
for the size of MDFAs equivalent to given finite tree width (or finite branching)
NFAs, we would need a more specialized technique. The minimization of MDFAs
is intractable [1,12] and we cannot expect to have a technique that always yields
an optimal lower bound.

References

1. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J.
Comput. System Sci. 78, 198–210 (2012)

2. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

3. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on state complexity (March 2013)
(submitted for publication)

4. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System. Sci. 9,
1–19 (1974)

5. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke,
D.: Descriptional complexity of machines with limited resources. J. Univ. Comput.
Sci. 8, 193–234 (2002)

6. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inform. Comput. 86, 179–194 (1990)

7. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata — A survey. Inf. Comput. 209, 456–470 (2011)

8. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic
finite automata. J. Automata, Languages and Combinatorics 6, 453–466 (2001)

9. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput. 172, 202–217 (2002)

10. Kappes, M.: Descriptional complexity of deterministic finite automata with multi-
ple initial states. J. Automata, Languages, and Combinatorics 5, 269–278 (2000)

11. Leung, H.: On finite automata with limited nondeterminism. Acta Inf. 35, 595–624
(1998)

12. Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Com-
put. Sci. 327, 375–390 (2004)

13. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeter-
minism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386,
pp. 252–265. Springer, Heidelberg (2012); Full version accepted for publication in
J. Automata, Lang., Combinatorics

14. Palioudakis, A., Salomaa, K., Akl, S.G.: Comparisons between measures of non-
determinism on finite automata. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013.
LNCS, vol. 8031, pp. 217–228. Springer, Heidelberg (2013)

15. Salomaa, K.: Descriptional complexity of nondeterministic finite automata. In:
Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 31–
35. Springer, Heidelberg (2007)

16. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press (2009)

17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer (1997)

The Power of Centralized PC Systems

of Pushdown Automata

Holger Petersen

Reinsburgstr. 75
70197 Stuttgart, Germany

Abstract. In (Csuhaj-Varjú et. al. 2000) parallel communicating sys-
tems of pushdown automata (PCPA) were introduced and in their cen-
tralized variants shown to be able to simulate nondeterministic one-way
multi-head pushdown automata. A claimed converse simulation for re-
turning mode (Balan 2009) turned out to be incomplete (Otto 2012)
and a language was suggested for separating these PCPA of degree two
(number of pushdown automata) from nondeterministic one-way two-
head pushdown automata. We show that the suggested language can
be accepted by the latter computational model. We present a different
decidable example over a single letter alphabet indeed ruling out the
possibility of a simulation between the models. The open question about
the power of centralized PCPA working in returning mode is then settled
by showing them to be universal. Since the construction is possible using
systems of degree two, this also improves the previous bound three for
accepting all recursively enumerable languages with non-centralized sys-
tems. A similar technique can be applied to centralized PCPA working
in non-returning mode improving the previous bound on the number of
components to two for accepting all recursively enumerable languages.
Finally PCPAs are restricted in such a way that a simulation by multi-
head automata is possible.

1 Introduction

Parallel communicating systems of pushdown automata (PCPA) were introduced
in [5]. They carry over to automata the concept of parallel communication from
grammar systems studied earlier. The latter systems were introduced in order to
model a group of experts working together on a document encoded as a string.

PCPA consist of a finite number of components, each of which is a one-way
pushdown automaton. All components read a common input string, but not nec-
essarily at the same speed. The components can communicate with each other
by special pushdown symbols that create a copy of the contents of one push-
down store on top of another one. In [5] some properties of PCPA were shown.
Among these are that general PCPA of degree two (number of components) and
returning PCPA of degree three can accept all recursively enumerable languages.

In [1] a proof was presented that centralized PCPA working in returning
mode can be simulated by multi-head pushdown automata. More precisely, these
PCPA of degree k (with k pushdown automata) were claimed to be simulated

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 241–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

242 H. Petersen

by nondeterministic one-way k-head automata. Since the converse simulation
had previously been shown in [5], this would be an interesting characterization
in contrast to the universal power of other variants of non-centralized or non-
returning PCPA (see [5] and [1] for further references). It would also link the
recent investigation of PCPA to classical automata theory dating back more
than 40 years [6].

As demonstrated by Otto [9], the proof from [1] is incomplete and the power
of centralized PCPA working in returning mode is open. He defined a language
that can be accepted by centralized PCPA of degree two working in returning
mode for which the simulation given in [1] fails.

The main purpose of the present paper is to elaborate on the observations
from [9] about the inherent synchronization of PCPAs and settle the open prob-
lem resulting from the gap in [1]. First we show that the language from [9] on
which the simulation fails can be accepted in a way deviating substantially from
the suggested simulation by a nondeterministic two-head pushdown automaton
(in [9] it is stated without proof that four heads are sufficient for this task).
Since for degree two this is consistent with the claim of [1], the language can-
not serve as a witness showing the claimed result to be incorrect. In order to
obtain a concrete counterexample we show that a non-regular language over a
single-letter alphabet can be accepted by a centralized PCPA in returning mode.
By a classical result such languages cannot be accepted by one-way multi-head
pushdown automata.

We then present the main result that centralized PCPA of degree two working
in returning mode are universal, placing them among the formally more powerful
systems mentioned above. It also improves the result that non-centralized PCPA
of degree three can accept every recursively enumerable language [5, Theorem 4]
and answers several open problems from Section 5 of [5]. A modification can be
applied to centralized PCPA working in non-returning mode. This improves the
bound three from [2] to two components for accepting every recursively enumer-
able language. Next we restrict the PCPA to linear time and give a simulation by
multi-head pushdown automata in the spirit of [1]. This simulation is probably
not tight, since it uses more heads than the degree of the PCPA and makes use of
sensing (detecting coincidence of heads). We remark that an asynchronous vari-
ant of PCPA is introduced in [10], which allows a tight simulation by multi-head
pushdown automata.

We summarize the previously best bounds on components of universal PCPA
in the following table. The first bound is optimal, all others will be improved to
two in the present paper. This is the smallest bound possible, since systems of
degree one accept the context-free languages.

model # of comp. accepting all r.e. lang. source

non-returning PCPA 2 [5]
centralized non-returning PCPA 3 [2]
returning PCPA 3 [5]
centralized returning PCPA no bound known [9]

The Power of Centralized PC Systems of Pushdown Automata 243

2 Preliminaries

Several variants of PCPA were defined in [5,1]. Informally, a PCPA of degree k
consists of a collection of k nondeterministic pushdown automata in the classi-
cal sense. These automata (called components) work in a synchronous fashion
reading the same input string. Note that by epsilon-moves on the input the com-
ponents can process the input at different speeds. Communication is carried out
via special pushdown store symbols. If one of these symbols is on top of a push-
down store, instead of a usual step the contents of another pushdown store are
copied to the pushdown store replacing the topmost symbol. In such a communi-
cation step no input symbol is read and the states of the pushdown automata are
not modified. If the PCPA is working in returning mode, the source pushdown
store is emptied up to a bottom symbol. The PCPA is centralized if only one
component (say the first) can use communication symbols. An input is accepted
if all components have read the entire input string and reach final states.

We also give a formal definition of PCPA since we will need it for a concrete
example. A PCPA of degree k is a tuple

A = (V,Δ,A1, A2, . . . , Ak,K)

where

– V is a finite input alphabet,
– Δ is a finite alphabet of pushdown symbols,
– Ai is a component as defined below for 1 ≤ i ≤ k,
– K = {K1, . . . ,Kk} ⊆ Δ is a set of query symbols.

Each component Ai = (Qi, V,Δ, fi, qi, Zi, Fi) is a pushdown automaton where

– Qi is a finite set of states,
– fi is a function from Qi × (V ∪ ε)×Δ to the finite subsets of Qi ×Δ∗,
– qi ∈ Qi is the initial state,
– Zi ∈ Δ is the bottom symbol,
– Fi ⊆ Qi is the set of final states.

If only function f1 of the first component maps to sets with members containing
query symbols, the system is called centralized.

A configuration of a PCPA of degree k is a 3k-tuple

(s1, x1, α1, . . . , sk, xk, αk)

where

– si ∈ Qi is the state of component Ai,

– xi ∈ V ∗ is the part of the input not yet processed by Ai,
– αi ∈ Δ∗ is the word on the pushdown store of Ai with its topmost symbol

on the left.

244 H. Petersen

In returning mode the step relation �r between configurations is defined by:

(s1, x1, B1α1, . . . , sk, xk, Bkαk) �r (s′1, x′1, α′
1, . . . , s

′
k, x

′
k, α

′
k),

if one of the following conditions holds:

Internal step: {B1, . . . , Bk} ∩ K = ∅, xi = aix
′
i with ai ∈ V ∪ {ε}, (s′i, β) ∈

fi(si, ai, Bi) with α
′
i = βαi.

Communication step: {B1, . . . , Bk}∩K �= ∅, for each Bi = Kji with Bji �∈ K
we have α′

i = Bjiαjiαi, α
′
ji
= Zji , and α

′
m = Bmαm for all other indices m.

States and input are not modified: s′i = si and x
′
i = xi for 1 ≤ i ≤ k.

The PCPA accepts exactly those words w that admit a sequence of steps from
the initial configuration

(q1, w, Z1, . . . , qk, w, Zk)

to a final configuration
(s1, ε, α1, . . . , sk, ε, αk)

with si ∈ Fi for 1 ≤ i ≤ k.
A nondeterministic one-way multi-head pushdown automaton has one push-

down store and k read-only heads. These heads can be moved forward on a single
input tape. In some constructions we assume that the input-heads are sensing
(they can “see” each other when they scan the same position). This is a variant
of the model investigated in [4]. Formal definitions of these automata can be
found in [6,11,5]. In the first reference input-tapes have end-markers and we also
assume this here. When we mention multi-head pushdown automata we always
refer to the one-way variant in the present paper.

A universal model of computation that we will make use of is the one regis-
ter machine with operations multiplication and conditional division by two or
three. Conditional means that the machine branches depending upon whether
the division is exact. A machine of this kind can simulate a Turing machine if
the counter is initialized with a suitable encoding of its tape as shown in Theo-
rem 14.2-1 of [8]. It is easy to see that with a separate input tape the one register
machine can simulate the work of a Turing machine step-by-step by updating
an encoding of the memory tape of the Turing machine.

3 Results for General Centralized PCPA

We start our investigation with the language defined in [9] and show that it
can be accepted by the type of automata proposed in [1] for a simulation of
centralized PCPA working in returning mode. Notice that this does not mean
that the simulation works, since our algorithm deviates from the simulation of
[1] as outlined for this specific language in [9]. It can however be deduced that
a different witness language is necessary to show that the claim of [1] in general
fails.

The Power of Centralized PC Systems of Pushdown Automata 245

Theorem 1. Language L = {uvuRvRuR | u, v ∈ {a, b}+, |u| = |v|} (where
wR is the reversal of string w) can be accepted by a nondeterministic two-head
pushdown automaton.

Proof. We first describe the algorithm carried out by a nondeterministic two-
head pushdown automaton.

1. While moving head 1 forward, push a non-empty prefix x of the input w
onto the pushdown store. The head stops at a nondeterministically chosen
position.

2. Move head 2 over the input counting the number of steps using a special
counting symbol. Head 2 stops at a nondeterministically chosen position.

3. Move head 1 and head 2 in parallel over the input at least one position and
compare the symbols read. Also pop four counting symbols for each step
and repeat until all counting symbols have been removed. Reject the input
in one of the following cases:
– A head reaches the end-marker before all counting symbols have been

removed.
– The symbols read by head 1 and head 2 are not equal.
– The remaining number of counting symbols in an iteration is between

one and three (which means that the initial number was not divisible by
four).

– Head 2 has not reached the end-marker when all counting symbols have
been removed.

4. With the help of head 1 compare the contents of the pushdown store to the
remaining part of the input.

5. Check that the end-marker is reached exactly when the pushdown store
becomes empty and accept.

Clearly every string in L can be accepted by the algorithm described above. On
arbitrary input w with |w| = n, a prefix x of w is first pushed onto the pushdown
store. Then a suffix y of the input is compared to a section of equal length after
x. By counting on the pushdown store the automaton ensures

|y| = (|w| − |y|)/4

and thus
|y| = |w|/5.

Suppose that the copies of y being compared overlap. Then |x| > |w| − 2|y| =
3|w|/5 ≥ |w|/2 and the last comparison will fail. Therefore we can assume that
w = xyzy and in case of acceptance xR = zy. It follows that |x| = 2|w|/5,
|z| = |w|/5 and by letting u = yR and v = zR we see that the input

w = xyzy = (zy)Ryzy = yRzRyzy = uvuRvRuR

belongs to L. ��
Next we present a non-regular language accepted by a centralized PCPA of
degree two working in returning mode. This improves the construction from [5,

246 H. Petersen

Example 1] where the same language was shown to be accepted by a similar
non-centralized system of degree four. At the same time it will serve as one
building-block of a proof that the main claim from [1] is incorrect.

Example: The decidable language {a2n | n ≥ 1} can be accepted by a central-
ized PCPA of degree two working in returning mode with the following transi-
tions of its components:

f1(q
1
0 , a, Z1) = {(q10 , Z2)}

f1(q
1
0 , a, Z2) = {(q11 ,K2)}

f1(q
1
1 , a, a) = {(q10 , ε)}

f2(q
2
0 , a, Z2) = {(q21 , Z2)}

f2(q
2
1 , a, Z2) = {(q21 , aZ2)}

f2(q
2
1 , a, a) = {(q21 , aaa)}

Initial states are q10 and q20 , final states are F1 = {q11} and F2 = {q21}.
We outline the idea of the construction. First both components read a single

a. Then component 1 reads as many input symbols as indicated by the size of
its pushdown store. Component 2 in parallel pushes twice as many symbols in
every step, with the exception of the first one replacing Z2 with aZ2, since the
bottom symbol is initially present. This process ends when the pushdown store of
component 1 is empty. Then the contents of the pushdown store of component 2
is copied and the process is repeated.

Component 2 stays in its final state after the first step. Therefore acceptance
depends on component 1, which is in a final state after the pushdown store has
become empty. This happens after reading

1 +
k∑
i=0

2i = 2k+1

input symbols for some k ≥ 0.
We consider the accepting computation on a8:

(q10 , a
8, Z1, q

2
0 , a

8, Z2) �r (q10 , a7, Z2, q
2
1 , a

7, Z2) �r
(q11 , a

6,K2, q
2
1 , a

6, aZ2) �r (q11 , a6, aZ2, q
2
1 , a

6, Z2) �r
(q10 , a

5, Z2, q
2
1 , a

5, aZ2) �r (q11 , a4,K2, q
2
1 , a

4, aaaZ2) �r
(q11 , a

4, aaaZ2, q
2
1 , a

4, Z2) �r (q10 , a3, aaZ2, q
2
1 , a

3, aZ2) �r
(q10 , a

2, aZ2, q
2
1 , a

2, aaaZ2) �r (q10 , a, Z2, q
2
1 , a, aaaaaZ2) �r

(q11 , ε,K2, q
2
1 , ε, a

7Z2)

Since in the last configuration all components have read the entire input and all
states are final, the word a8 is accepted.

The following result [6, Theorem 4.2] shows a limitation of pushdown
automata:

The Power of Centralized PC Systems of Pushdown Automata 247

Fact 1. The single-letter alphabet languages accepted by nondeterministic multi-
head pushdown automata are the regular languages over single-letter alphabets.

The more general result that bounded languages accepted by bounded-reversal
multi-head pushdown automata are semilinear has been shown in [7].

Notice that a statement analogous to Fact 1 about automata with sensing
heads is not true. The above language can be accepted by a deterministic push-
down automaton with two sensing heads that keeps doubling the distance be-
tween the heads using its pushdown store as a counter.

The language in the example above is not regular, therefore we obtain:

Observation 1. No general simulation of centralized PCPA of degree two work-
ing in returning mode by nondeterministic multi-head pushdown automata is
possible.

We can also conclude that Theorem 8 of [1] (which is weaker than Theorem 5
from that reference) is wrong, since the system in the example above is simple. A
simple system as defined in [1] has no two components querying the same com-
ponent and components that query do not communicate to any other querying
component. For a simple centralized PCPA A working in returning mode Balan
claimed in his Theorem 8 that the accepted language L(A) could be written as

L(A) = L(M1) ∩ L(M2) ∩ · · · ∩ L(Mm),

where every Mi is a multi-head pushdown automaton. Since regular languages
are closed under intersection and over a single letter alphabet each L(Mi) is
regular by Fact 1, this claim contradicts the example (we could also argue that
languages accepted by multi-head automata are closed under intersection, where
the number of heads required for the intersection is at most the sum of the heads
for the languages in the intersection).

After the basic separation of the models claimed to be equivalent in [1], it
remains to be investigated how powerful centralized PCPA working in returning
mode really are. The following result gives an answer and improves the previous
bound three for non-centralized systems [5]. The proof we give deviates consid-
erably from the one in [5], where a two-pushdown automaton is simulated as an
intermediate universal model. This is done by letting one component determine
the current step of the two-pushdown automaton by pushing a symbol describing
its next step on its pushdown store. The two other components copy the symbol
and then carry out the corresponding operations on their stores. Clearly such an
approach requires three components.

Theorem 2. Every recursively enumerable language can be accepted by a cen-
tralized PCPA of degree two working in returning mode.

Proof. We will outline a simulation of a one register machine (see Section 2) with
input tape by a PC system of two pushdown automata.

248 H. Petersen

Component 1 carries out the main task of the simulation, which includes
simulating the input tape of the one register machine. For every instruction of
the register machine, an in general unbounded number of steps of the pushdown
automaton will be carried out. On its pushdown store a counter is simulated.

Component 2 constantly works in a cycle of length six, pushing a single count-
ing symbol in every cycle. As long as there are unread input symbols, the automa-
ton reads a symbol in order to satisfy the acceptance condition of PC systems
of pushdown automata. If the top-most symbol on the pushdown store is the
bottom symbol, it is kept and the first counting symbol is pushed after six steps.
Then the cyclic behavior starts.

We will first outline how a reset to an empty pushdown store of component 2
can be enforced by component 1. A reset of the pushdown store of component 2
occurs in a communication step transferring the contents of the pushdown store
of component 2 to component 1. The difficulty is that such a communication step
empties the pushdown store of component 2 but possibly puts “garbage” gener-
ated in previous steps on top of the pushdown store of component 1. The idea
is to let component 1 delete symbols at a faster rate than component 2 pushes
symbols, which gives component 1 the chance to “catch up” with component 2.
Therefore component 1 repeatedly carries out the following process:

– A communication step from component 2 to component 1.

– Component 1 checks whether the top-most symbol of its pushdown store is
the bottom symbol transferred from component 2. If so, there is no “garbage”.
The bottom symbol is removed and the process is terminated.

– Otherwise a loop of component 1 starts that removes one symbol from the
pushdown store in each iteration, stopping after the bottom symbol trans-
ferred from component 2 has been removed.

Note that each execution of the process reduces the number of counting symbols
on the pushdown store of component 2 by at least a factor of six. Thus eventually
only the bottom symbol is transferred from component 2 leaving its pushdown
store empty and the pushdown store of component 1 unchanged.

Now we are ready to describe the simulation of register machine instructions
by component 1:

Read a symbol from the input tape: Carry out transitions reading input
of the pushdown automata without changing the pushdown store.

Multiply by 2 (3): Reset the pushdown store of component 2. Then carry
out a loop of length 12 (18) that removes one counting symbol from the
pushdown store in each iteration. Finally the bottom symbol is replaced
with the communication symbol and the pushdown store is transferred.

Divide by 2 (3): Reset the pushdown store of component 2. Then carry out
a loop of length 3 (2) that removes one counting symbol from the push-
down store in each iteration. Determine the remainder by the state when
the bottom symbol is read and replace it with the communication symbol.

The Power of Centralized PC Systems of Pushdown Automata 249

If the register machine accepts its input, component 1 enters an accepting state
and we let all states of component 2 be accepting. ��
Clearly every language accepted by multi-head pushdown automata is decidable,
therefore we obtain another separation of PCPA and this computational model
in addition to Observation 1. From the Main Theorem of [4] the concrete example

L′ = {w1# · · ·#wn$wn# · · ·#w1 | n ≥ 0, wi ∈ {0, 1}∗ for all 1 ≤ i ≤ n}

can be derived that separates the classes.
We now apply a modified version of the previous proof to centralized PCPA

working in non-returning mode. Balan, Krithivasan and Madhu have shown that
three components suffice to accept all recursively enumerable languages [2].

Theorem 3. Every recursively enumerable language can be accepted by a cen-
tralized PCPA of degree two working in non-returning mode.

Proof. Again a one register machine is simulated. Component 2 works in a cycle
pushing a counting symbol in every step. The difficulty is that the pushdown
store of component 2 cannot be deleted. Instead each operation that does not
increase the counter in addition to the intended modification also multiplies by
five or seven, thus allowing component 1 to carry out a cycle reading the appro-
priate number of symbols of its pushdown store. Note that additional factors of
primes other than two and three do not affect the simulation.

In particular the simulation given an initial number x encoded on the push-
down stores of components 1 and 2 is done by component 1 as follows:

Read a symbol from the input tape: Carry out a transition reading an in-
put symbol and then jump into a loop of length four deleting one symbol
from the pushdown store in every cycle. Since the initial number x is trans-
formed into x+ 4x, this operation multiplies by five.

Multiply by 2 (3): Work in a loop of length one (two) deleting one symbol
from the pushdown store in each cycle. The result on the pushdown store of
component 2 is x + x (x + 2x). Therefore these operations multiply by two
(three).

Divide by 2: Carry out a loop of length three that removes two counting sym-
bols symbol by symbol from the pushdown store at the start of each cycle.
Determine the remainder by the state when the bottom symbol is read and
record it in the finite control of component 1. This transforms x = 2y + r
with 0 ≤ r < 2 into x + 3y + r = 2y + r + 3y + r = 5y + 2r, which is the
intended result for r = 0. In case r = 1 the count is multiplied by two as
described above. This results in 10y + 4 and after one additional step the
result is 10y+5 = 5(2y+1), the initial count up to a factor of five. The next
instruction can be based on the remainder recorded in the finite control.

Divide by 3: Carry out a loop of length four that removes three counting
symbols from the pushdown store at the start of each cycle. Determine
the remainder by the state when the bottom symbol is read and record
it in the finite control. This transforms x = 3y + r with 0 ≤ r < 3 into

250 H. Petersen

x+4y+ r = 3y+ r+4y+ r = 7y+2r, which is the intended result for r = 0.
In case r > 0 the count is multiplied by three. This results in 21y + 6r and
after r additional steps the result is 21y + 7r = 7(3y + r), the initial count
up to a factor of seven. The next instruction can be based on the remainder
recorded in the finite control.

At the end of the simulation of an instruction a communication symbol is pushed
onto the empty pushdown store of component 1. ��

4 Results for Time-Bounded Centralized PCPA

In view of the impossibility of simulating centralized PCPA working in returning
mode by multi-head pushdown automata we explore in this section restrictions
of PCPA that admit a simulation.

See [11, Theorem 13.15.8] for a proof that there is no loss of generality in
requiring a linear time bound for multi-head pushdown automata. Since the
construction from the proof of [5, Theorem 5] gives a system accepting in a time
proportional to the automaton being simulated, we obtain the following:

Observation 2. Every k-head pushdown automaton can be simulated by a cen-
tralized PCPA of degree k working in returning mode and accepting in linear
time.

This raises the question, whether a result in the spirit of the simulation of [1] is
possible when restricting the time bound of PCPA to being linear. We were not
able to give a characterization but present here a partial result that uses addi-
tional heads exceeding the degree of the system. We also assume that the heads
are sensing. Observe that such automata are stronger than their counterparts
with non-sensing heads as pointed out after Fact 1.

Theorem 4. Every centralized PCPA of degree k working in returning mode
and accepting in linear time is simulated by a 2k-head pushdown automaton
with sensing heads.

Proof. Let the PCPA accept in at most cn steps on inputs of length n for some
constant c. The heads of the simulator are divided into two groups. Heads of the
first group simulate the access to the input for the k components of the PCPA.
Heads of the second group serve as clocks measuring the number of steps carried
out by the components being simulated. The multi-head automaton simulates
the first component of the PCPA step by step until communication occurs. It
also records the current state of each of the other components. For every step
being simulated the clock for component 1 is advanced by one counting mod-
ulo c in the finite control and recording each iteration of this counting process
by advancing the input head. If communication with component i > 1 takes
place, the component i is simulated starting at the current state using its input
head and clock until the clock of component 1 and i coincide and the simula-
tion of component 1 continues. This can be detected by the sensing property.

The Power of Centralized PC Systems of Pushdown Automata 251

The pushdown store of component i is simulated on top of the contents of the
current pushdown store. The first phase of the simulation is terminated if com-
ponent 1 accepts or if the clock reaches cn. Notice that in the latter case the
simulator can reject the input, since by definition all components have to accept.
If component 1 accepts, the simulator simulates the remaining k−1 components
in turn until each of them has executed the same number of steps as compo-
nent 1. The input is accepted if all components accept. ��
When all components of a PCPA read their input synchronously, we can identify
heads accessing the input and clocks for each component. We obtain the following
result by basically the same simulation as in the proof of Theorem 4:

Theorem 5. Every centralized PC system of pushdown automata of degree k
working in returning mode without ε-transitions on the input can be simulated
by a k-head pushdown automaton with sensing heads.

5 Discussion

We have settled the open problem about the power of centralized PCPA of degree
two working in returning mode from [5,9] by showing them to be universal. This
also improves the previous bound three for accepting all recursively enumerable
languages with non-centralized systems and solves several open problems from
Section 5 of [5]:

1. PCPA of degree two working in returning mode are as powerful as those of
degree three.

2. Centralized systems can accept all recursively enumerable languages, also in
returning mode.

3. The inclusion of [5, Theorem 5] referring to returning mode is strict and
becomes a corollary of our main result.

4. The degree hierarchy for centralized PCPA working in returning mode is
finite, with the context-free languages at level one and the recursively enu-
merable languages at all other levels.

A modification of the technique can be applied to centralized PCPA working
in non-returning mode, which improves the bound on the degree of universal
systems to two. The simulation of register machines is deterministic, an aspect
that is mentioned at the end of Section 5 of [5]. In hindsight the power of these
systems is surprising, since the claim of [1] would have implied decidability even
in linear time on nondeterministic Turing machines [11, Theorem 13.15.8].

In addition we described simulations of restricted PCPA by multi-head au-
tomata in the spirit of [1]. The optimality of the simulations in terms of input
heads remains an open question as well as the possibility of a converse simula-
tion, since we required the heads to be sensing. We expect that Theorem 4 can
be strengthened in this direction.

Acknowledgement. Many thanks to Friedrich Otto for remarks on an early
draft of this paper.

252 H. Petersen

References

1. Sakthi Balan, M.: Serializing the parallelism in parallel communicating pushdown
automata systems. In: Dassow, J., Pighizzini, G., Truthe, B. (eds.) 11th Interna-
tional Workshop on Descriptional Complexity of Formal Systems, DCFS 2009, pp.
59–68 (2009), http://dx.doi.org/10.4204/EPTCS.3.5

2. Sakthi Balan, M., Krithivasan, K., Mutyam, M.: Some variants in communication
of parallel communicating pushdown automata. Journal of Automata, Languages
and Combinatorics 8(3), 401–416 (2003)

3. Chrobak, M.: Hierarchies of one-way multihead automata languages. Theor. Com-
put. Sci. 48(3), 153–181 (1986)

4. Chrobak, M., Li, M.: k + 1 heads are better than k for PDAs. J. Comput. Syst.
Sci. 37(2), 144–155 (1988)

5. Csuhaj-Varjú, E., Mart́ın-Vide, C., Mitrana, V., Vaszil, G.: Parallel communicating
pushdown automata systems. Int. J. Found. Comput. Sci. 11(4), 633–650 (2000)

6. Harrison, M.A., Ibarra, O.H.: Multi-tape and multi-head pushdown automata. In-
form. and Control 13(5), 433–470 (1968)

7. Ibarra, O.H.: A note on semilinear sets and bounded-reversal multihead pushdown
automata. Inform. Process. Lett. 3(1), 25–28 (1974)

8. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs (1967)

9. Otto, F.: Centralized PC systems of pushdown automata versus multi-head push-
down automata. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS,
vol. 7386, pp. 244–251. Springer, Heidelberg (2012)

10. Otto, F.: Asynchronous PC systems of pushdown automata. In: Dediu, A.-H.,
Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 456–467.
Springer, Heidelberg (2013)

11. Wagner, K., Wechsung, G.: Computational Complexity. D. Reidel Publishing Com-
pany, Dordrecht (1986)

http://dx.doi.org/10.4204/EPTCS.3.5

Limited Automata and Regular Languages�

Giovanni Pighizzini and Andrea Pisoni

Dipartimento di Informatica,
Università degli Studi di Milano, Italy

giovanni.pighizzini@unimi.it,
andrea.pisoni1@studenti.unimi.it

Abstract. Limited automata are one-tape Turing machines that are al-
lowed to rewrite the content of any tape cell only in the first d visits, for
a fixed constant d. In the case d = 1, namely, when a rewriting is possible
only during the first visit to a cell, these models have the same power
of finite state automata. We prove state upper and lower bounds for the
conversion of 1-limited automata into finite state automata. In particu-
lar, we prove a double exponential state gap between nondeterministic
1-limited automata and one-way deterministic finite automata. The gap
reduces to single exponential in the case of deterministic 1-limited au-
tomata. This also implies an exponential state gap between nondetermin-
istic and deterministic 1-limited automata. Another consequence is that
1-limited automata can have less states than equivalent two-way nonde-
terministic finite automata. We show that this is true even if we restrict
to the case of the one-letter input alphabet. For each d ≥ 2, d-limited
automata are known to characterize the class of context-free languages.
Using the Chomsky-Schützenberger representation for context-free lan-
guages, we present a new conversion from context-free languages into
2-limited automata.

Keywords: finite automata, formal languages, Turing machines, regular
languages, context-free languages, descriptional complexity.

1 Introduction

The investigation of computational models operating under restrictions is a
classical topic in theoretical computer science. Standard devices, as finite or
pushdown automata, can be defined by restricting the storage capabilities of
some kinds of Turing machines. These restrictions can reduce the power of the
models. In terms of devices used to recognize languages, this means to restrict
the class of accepted languages. Finer analyses have been done by considering
computational resources. For example, in the case of Turing machines, classi-
cal complexity classes as P, NP, PSPACE, etc., are defined by introducing time
or space constraints on different variants of Turing machines. In the case of

� Partially supported by MIUR under the project PRIN “Automi e Linguaggi Formali:
Aspetti Matematici e Applicativi”.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 253–264, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

254 G. Pighizzini and A. Pisoni

finite automata, a lot of work has been done to compare different variants of
these devices (deterministic, nondeterministic, one-way, two-way, etc.) with re-
spect to the sizes of their descriptions, usually measured using the number of
the states. (For surveys in this area see, e.g., [16,6].) In 1965, Hennie proved
that one-tape Turing machines working in linear time have the same power of
finite state automata, namely they characterize the class of regular languages [4].
(Some improvements of this result have been presented in the literature. For a
recent survey and new developments see [11].) Hence, the capability of storing a
non-constant amount of information does not necessary increase the recognition
power of finite automata, when other constraints apply.

Along these lines of research, in this paper we focus on another restricted
model of Turing machine or, from a different point of view, another extension of
finite automata. This model, which was introduced in 1967 by Hibbard, is called
limited automata [5]. Given an integer d ≥ 0, a d-limited automaton is a one-tape
Turing machine that is allowed to modify any tape cell only during the first d
visits. An interesting result proved by Hibbard is that for each d ≥ 2 the class of
languages accepted by d-limited automata coincides with the class of context-free
languages. Clearly, 0-limited automata are standard two-way finite automata.
Hence, they exactly characterize the class of regular languages. Wagner and
Wechsung proved that the possibility or rewriting each tape cell only during the
first visit does not increase the power, namely 1-limited automata characterize
the class of regular languages [15].

In this paper we revise such results, by considering descriptional complexity
aspects. First, we prove that each 1-limited automaton M with n states can be
simulated by a one-way deterministic automaton with a number of states double
exponential in a polynomial in n. The upper bound reduces to a single exponen-
tial when M is deterministic. We point out that these bounds do not depend on
any other parameter related to the description of M , in particular they do not
depend on the size of the input and working alphabets. We also study the tight-
ness of these bounds. To this aim, we present a family of binary languages and
we study the state costs of recognizing these languages using different variants
of finite automata and using 1-limited automata. The state upper and lower
bounds we obtain for these languages have several consequences. First of all,
the above-mentioned double exponential state gap between 1-limited automata
and one-way deterministic finite automata cannot be reduced. The same holds
for the exponential gap from deterministic 1-limited automata. Furthermore, we
prove that the simulation of nondeterministic 1-limited automata by determin-
istic 1-limited automata requires exponentially many states. Notice that, up to
now, the same is not known in the case of 0-limited automata, namely, standard
two-way automata. In fact, this is the famous question posed by Sakoda and
Sipser in 1978 about the state cost of the simulation of two-way nondetermin-
istic automata by two-way deterministic automata, which, despite all attempts,
is still open [12].

We also give a contribution to the investigation of the unary case, namely
to the case of devices accepting languages defined over the one-letter alphabet.

Limited Automata and Regular Languages 255

It is well-known that in this case the state costs of automata simulations are
lower than the corresponding costs in the general case [3,9]. We prove that there
are infinitely many unary regular languages recognized by deterministic 1-limited
automata using a fixed working alphabet and having a number of states which is
smaller than the number of the states of any equivalent two-way nondeterministic
automaton.

The above-mentioned characterization of the class of context-free languages
in terms of d-limited (d ≥ 2) and, in particular, of 2-limited automata has been
proved by Hibbard by providing transformations between some kinds of rewrit-
ing systems equivalent to pushdown automata and 2-limited automata. In our
opinion this result is very interesting. However, its original presentation uses a lot
of technicalities. We discovered, and we present in the final part of this paper,
a different transformation from context-free languages to 2-limited automata
which is founded on the famous Chomsky-Schützenberger characterization of
the class of context-free languages [2]. In particular, we make use of a variant of
this characterization, recently obtained by Okhotin [10].

2 Preliminaries

In this section we recall some basic definitions useful in the paper. In particular,
we assume the reader familiar with notions from formal languages and automata
theory (see, e.g., [7,13]).

Given a set S, #S denotes its cardinality and 2S the family of all its subsets.
Given an alphabet Σ and a string w ∈ Σ∗, let us denote by |w| the length of w
and by ε the empty string.

A two-way nondeterministic finite automaton (2nfa, for short) is defined as
a quintuple A = (Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite
input alphabet, δ : Q × (Σ ∪ {�,�}) → 2Q×{−1,+1} is a transition function,
with the two special symbols �,� /∈ Σ called the left and the right end-markers,
respectively, q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states. The
input is stored onto the tape surrounded by the two end-markers, the left end-
marker being at the position zero. Hence, on input w, the right end-marker is
on the cell in position |w| + 1. In one move, A reads an input symbol, changes
its state, and moves the input head one position forward or backward depending
on whether δ returns +1 or −1, respectively. Furthermore, the head cannot
violate the end-markers, except at the end of computation, to accept the input,
as explained below. (For the sake of simplicity, in the paper we do not consider
stationary moves. However, our results can be easily extended to take account
also of them.) The machine accepts the input, if there exists a computation path
from the initial state q0 with the head on the first input cell, ending in a final
state q ∈ F after violating the right end-marker. The language accepted by A
is denoted by L(A). A 2nfa A is said to be deterministic (2dfa), whenever
#δ(q, σ) ≤ 1, for any q ∈ Q and σ ∈ Σ∪{�,�}. By 1nfas and 1dfas we denote
one-way nondeterministic and deterministic finite automata, respectively.

An automaton working over a single letter alphabet is called unary.

256 G. Pighizzini and A. Pisoni

We now introduce the main model we are interested in. Given an integer d ≥ 0,
a d-limited automaton (d-la, for short) is a tuple A = (Q,Σ, Γ, δ, q0, F), where
Q,Σ, q0, F are defined as for 2nfas, Γ is a finite working alphabet such that
Σ ∪ {�,�} ⊆ Γ , with �, � /∈ Σ the left and the right end-markers as for
2nfas, δ : Q × Γ → 2Q×(Γ\{�,�})×{−1,+1} is the transition function. In one
move, according to δ and to the current state, A reads a symbol from the tape,
changes its state, replaces the symbol just read from the tape by a new symbol,
and moves its head to one position forward or backward. However, replacing
symbols is subject to some restrictions, which, essentially, allow to modify the
content of a cell only during the first d visits. To this aim, the alphabet Γ is
partitioned into d + 1 sets Γ0, Γ1, . . . , Γd, where Γ0 = Σ and �,� ∈ Γd. With
the exception of the cells containing the end-markers, which are never modified,
at the beginning all the cells contain symbols from Γ0 = Σ. In the k-th visit to
a tape cell, the content of the cell is rewritten by a symbol from Γk, up to k = d,
when the content of the cell is “frozen”, i.e., after that, the symbol in the cell
cannot be changed further. Actually, on a cell we do not count the visits, but the
scans from left to right (corresponding to odd numbered visits) and from right to
left (corresponding to even numbered visits). Hence, a move reversing the head
direction is counted as a double visit for the cell where it occurs. In this way,
when a cell c is visited for the kth time, with k ≤ d, its content is a symbol from
Γk−1. If the move does not reverse the head direction, then the content of the
cell is replaced by a symbol from Γk. However, if the head direction is reversed,
then in this double visit the symbol is replaced by a symbol from Γk+1, when
k < d, and by a symbol of Γd, that after then is frozen, otherwise.

Formally, for each (q, γ,m) ∈ δ(p, σ), with p, q ∈ Q, σ ∈ Γk, γ ∈ Γh, m ∈
{−1,+1}, we require the following:

– if k = d then σ = γ and k = h,

– if k < d and m = +1 then h = min($k2 % ∗ 2 + 1, d);

– if k < d and m = −1 then h = min($k+1
2 % ∗ 2, d).

An automaton is said to be limited if it is d-limited for some d ≥ 0. Acceptance
for limited automata is defined exactly as for 2nfas. Observe that 0-las are
exactly 2nfas.

Let Ωk = {(1,)1, (2,)2, . . . , (k,)k} be the alphabet consisting of k ≥ 1 types of
brackets. The Dyck language Dk overΩk is the set of strings w ∈ Ω∗

k representing
well-balanced sequences of brackets. It is well-known that Dk is a context-free
language, for each k ≥ 1.

Example 1. A 2-la A is able to recognize the language Dk with the following
procedure. A starts scanning the tape until it finds a closed bracket)i. A sub-
stitutes)i with the symbol X ∈ Γ2 and changes the head direction. In a similar
way, it stops when it meets the first left bracket (j . If i �= j, i.e., the two brackets
are not of the same type, then A rejects. Otherwise, it writes X on the cell and
changes again the head direction moving to the right. This procedure is repeated
until A reaches one of the end-markers. (See Figure 1.)

Limited Automata and Regular Languages 257

() (([])) () X X ((X X X) () X X X X X X X X X XX X X X X X X X X X

Fig. 1. Three steps in an accepting computation of the automaton A of Example 1
on input ()(([]))(), with the trajectory of the head. In the first visit each bracket is
replaced by its dotted copy, in the second visit by the symbol X.

– If the left end-marker is reached, then at least one of the right brackets in
the input w does not have a matching left bracket. Hence, A rejects.

– If instead the right end-marker is reached, then A has to make sure that
every left bracket has a matching right one. In order to do this, it scans the
entire tape from the right to the left and, if it finds a left bracket not marked
with X , then A rejects. On the other hand, if A reaches the left end-marker
reading only Xs, it enters a state q and scans again the whole tape from the
left to the right, A then accepts after violating the right end-marker. ��

3 Converting 1-Limited Automata into Finite Automata

The possibility of rewriting tape cells only in the first visit does not increase
the power of finite automata. This fact has been proven by Wagner and Wech-
sung [15, Thm. 12.1]. By revisiting their construction, we obtain state upper
bounds for finite automata simulating 1-limited automata.

Theorem 2. Let M be an n-state 1-la. Then M can be simulated by 1nfa

with n · 2n2

states and by a 1dfa with 2n·2
n2

states. Furthermore, if M is deter-
ministic then an equivalent 1dfa with no more than n · (n + 1)n states can be
obtained.

Proof (Sketch). Using an argument similar to the conversion of 2dfas into equiv-
alent 1dfas, as presented in [14], given a 1-las M , it is possible to build an
equivalent 1nfa A which keeps in its finite state control a transition table, de-
scribing the possible behaviors of M on the part of the tape to the left of the
head. By inspecting the construction, we obtain the state upper bounds. ��

We point out that the upper bounds given in Theorem 2 do not depend on the
size of the working alphabet of the given 1-la M , but only on its number of
states. We compare our upper bounds with those concerning the simulations of
two-way automata by one-way automata.

– When M is deterministic, the simulation in Theorem 2 is essentially the
same simulation of 2dfas by 1dfas given in [14]. Hence, the upper bound
is the same.

258 G. Pighizzini and A. Pisoni

– For the simulation of 1-las by 1dfas, Theorem 2 gives a double exponential
upper bound. This is related to a double role of nondeterminism in 1-las.
When a 1-la visits for the first time a cell, it rewrites the content according
to a nondeterministic choice. Furthermore, the next visits are also nondeter-
ministic. Hence, for a given input, the transition table obtained after visiting
cell i depends on the nondeterministic decisions taken until reaching the cell i
for the first time. In contrast, by applying to a 2nfa a construction simi-
lar to that in Theorem 2, the transition table obtained after visiting cell i
depends only on the first i input symbols, and it does not depend on the
nondeterministic choices taken in the computation. In the next section we
will show that this double exponential cannot be avoided.

4 The Witness Languages

In this section we present a family of languages over a binary alphabet which
can be recognized by “small” 1-limited automata, but which requires “large”
deterministic automata. In particular, the languages in this family show a double
exponential state gap between 1-las and 1dfas.

For each integer n, let us denote by Ln the set of all strings on the alpha-
bet {0, 1} consisting of the concatenation of blocks of length n, such that at least
n blocks coincide. Formally:

Ln = {x1x2 · · ·xk | k ≥ 0, x1, x2, . . . , xk ∈ {0, 1}n,
∃i1, i2, . . . , in ∈ {1, . . . , k}, i1 < i2 < · · · < in, xi1 = xi2 = . . . = xin} .

We will now prove upper and lower bounds for the number of states of different
kinds of automata accepting Ln. In the following, fixed n > 0 and given a string
w = w1w2 · · ·wm, m ≥ 0, wi ∈ {0, 1}, i = 1, . . . ,m, by a block of w we mean any
factor of length n which starts in a position i with i mod n = 1, i.e., a factor of
the form wkn+1wkn+2 · · ·wkn+n, for a suitable integer k.

Theorem 3. Let n ≥ 1 be an integer. Then:

(a) Ln is accepted by a 1-la with O(n) states and a fixed (not depending on n)
working alphabet.

(b) Ln is accepted by a 1dfa with (2n − 1) · n2n + n states.
(c) Ln is accepted by a 1nfa, a 2dfa and a 2nfa, each one of them with O(n2 ·

2n) states.

Proof (Sketch). (a) A 1-la M can accept L, by working in three phases, as
follows. First, M scans its tape from left to right. During this phase, M marks
exactly n input cells, guessing that those are the leftmost positions of the n
coinciding blocks. This phase can be implemented using n + 1 states, to count
how many positions have been marked. When the right end-marker is reached,
the second phase starts.M makes a complete scan of the input from right to left,
in order to verify whether or not the input length is a multiple of n and each cell

Limited Automata and Regular Languages 259

which has been marked in the first phase is the leftmost cell of one block. If the
outcome of this phase is negative, thenM stops and rejects. The number of states
used here is n. Finally, in the third phase, M verifies that all the blocks starting
from the marked positions, called candidates, contain the same string of length n.
To this aim, the candidate from position jh is compared symbol by symbol with
the candidate from position jh+1, for h = 1, . . . , n− 1, where j1 < j2 < · · · < jn
are the marked positions. This phase can be implemented with O(n) states.

(b) A 1dfa can recognize Ln by keeping in its finite control a counter cx
from 0 to n − 1, for each x ∈ {0, 1}n. When the nth occurrence of a same
block is found, the automaton can forget all the counters starting a final phase
where it remembers that the search of a witness block was successful and it
continues to count the input length modulo n. This final phase uses n states.
Before the final phase, n2

n

different configurations are used to remember the
counters. Furthermore, during the inspection of a block, the automaton has to
identify the corresponding factor to increment its counter. Summing up, we can
derive an (2n − 1) · n2n + n upper bound.

(c) To accept Ln, a 1nfa A can firstly guess one string x ∈ {0, 1}n and then
it can scan the input w from left to right to verify if |w| is a multiple of n and at
least n among the blocks forming w are equal to x. During the scan, A remembers
the initial guess. Furthermore, it uses a counter modulo n to locate the blocks
in w, while comparing each symbol in each block with the corresponding symbol
in w, and another counter from 0 to n, to count the blocks coinciding with x.
Hence, the number of states is O(n2 · 2n). With a similar technique, we build a
2dfa which makes one scan of the tape for each string x ∈ {0, 1}n in order to
verify whether or not the tape contains at least n blocks equal to x. ��

We now study lower bounds:

Theorem 4. Let n ≥ 1 be an integer. Then:

(a) Each 1dfa accepting Ln needs more than n2
n

states.
(b) Each 1-la accepting Ln needs a number of states at least polynomial in n.
(c) Each deterministic 1-la and each 2nfa, 2dfa, 1nfa, accepting Ln need a

number of states exponential in n. In particular, each 1nfa accepting Ln
needs n2 · 2n states.

Proof (Sketch). (a) Roughly, each 1dfa recognizing Ln has to count how many
times (up to n − 1) each factor of length n is a block of the input string. The
statement is proved using distinguishability arguments. Let x1, x2, . . . , xN , with
N = 2n, be a list of all the strings in {0, 1}n in some fixed order, and F be the
set of all functions from {0, 1}n to {0, . . . , n− 1}. With each function f ∈ F , we
associate the string wf = x

f(x1)
1 x

f(x2)
2 · · ·xf(xN)

N . Given two different functions
f, g ∈ F , let x ∈ {0, 1}n be a string such that f(x) �= g(x). Then, the string
xn−max{f(x),g(x)} distinguishes wf and wg. Furthermore, all those strings wf ,

f ∈ F , do not belong to Ln. Hence, they are distinguishable from the string 0n
2

,
which belongs to Ln. Counting the cardinality of F , we obtain a 1 + n2

n

lower
bound.

260 G. Pighizzini and A. Pisoni

(b) In the light of Theorem 2, the existence of a 1-la accepting Ln with f(n)

states implies the existence of a 1dfa with 2f(n)·2
f2(n)

states. Hence, f(n) grow-
ing less than any polynomial would contradict (a).

(c) In a similar way, considering the state costs of the corresponding con-
versions to 1dfas, we can observe that each deterministic 1-la and each 2nfa,
2dfa, 1nfa accepting Ln should have a number of states exponential in n, thus
obtaining the first part. Furhermore, using the extended fooling set technique [1],
it can be shown that each 1nfa accepting Ln needs n2 · 2n states. ��

The upper and lower bounds for the recognition of languages Ln proved in The-
orem 3 and in Theorem 4 have several consequences. First of all, the state costs
of the simulations of 1-las by 1nfas and by 1dfas proved in Theorem 2 can-
not be significantly improved. In particular, 1-las can be doubly exponentially
smaller than 1dfas. Furthermore, the O(n) state upper bound in Theorem 3 is
given by providing a nondeterministic 1-la. If we restrict to deterministic de-
vices, still keeping the ability of rewriting each input cell during the first visit,
Theorem 4(c) gives an exponential lower bound. Hence:

Corollary 5. The simulation of nondeterministic 1-las by deterministic 1-las
requires exponentially many states.

It should be interesting to see if one can obtain a direct simulation of nonde-
terministic 1-las by deterministic 1-las also producing an exponential upper
bound. Up to now, the only upper bound we know is double exponential and
it derives from the simulation of 1-las by 1dfas in Theorem 2. Notice that
by removing the ability of writing, we obtain standard two-way automata, for
which the counterpart of Corollary 5 is still unknown. In fact, the state cost of
the simulation of 2nfas by 2dfas is the main question posed by Sakoda and
Sipser in 1978 [12] that, in spite of all attempts, is still open.

5 The Unary Case

The witness languages used in Section 4 are defined over a binary alphabet. So
we can ask if the bounds presented in the previous sections are the same if we
restrict to the unary case, namely to the case of languages defined over the one
letter input alphabet. We expect to have some interesting differences, as already
known for other automaton simulations. In particular, in the unary case, the
cost of the optimal simulation of n-state 2nfas or 2dfas by 1nfas or 1dfas are

the same, eΘ(
√
n lnn) for all 4 simulations [3,9]. At the moment we do not have

such kind of results for 1-las. These simulations will be the subject of future
investigations. However, we can prove that 1-las can be smaller than 2nfas,
even in the unary case. Furthermore, this is also true when 1-las are restricted
to be deterministic and to not be able to detect the end-markers. To this aim,
for each composite integer m = α · β let us consider the language:

Lm = {an | n is a multiple of m} .

Limited Automata and Regular Languages 261

Theorem 6. The language Lm can be accepted by a deterministic 1-la with
max(α, β) + 1 states.

Proof. Without loss of generality, suppose α = max(α, β). A 1-la can mark
every αth cell with a special symbol X and every other cell with Y during the
first scan, using a counter of α states. If the last cell before the right end-marker
contains Y then the automaton rejects, otherwise it starts a second scan in the
opposite direction counting the cells containing X , modulo β. Additional states
are not necessary to perform the second scan, indeed the states used in the
first scan can be used again without any ambiguity, since in the first scan the
automaton reads only symbols in Σ, while in the second scan only symbols in
{X,Y }. When the automaton reaches the left end-marker it rejects if the number
of Xs is not multiple of β, alternatively, it enters a special state q and scans the
entire tape again, to accept after violating the right end-marker. ��
It is also possible to recognize Lm with the same number of states without read-
ing the end-markers. In the first scan, each time a cell in position k ·α is marked,
the automaton can use nondeterminism to guess that it is the rightmost input
symbol. In this case the head is immediately reversed to start the second scan
as explained above. When the left end-marker � is reached, the only difference
is that, before accepting, the automaton needs to check the correctness of the
previous guess. This can be done by verifying, while scanning the tape from left
to right in the special state q, that every input symbol has been rewritten.

It can be shown that the nondeterminism can be eliminated in this procedure
still keeping the number of states linear:

Theorem 7. The language Lm can be accepted by a deterministic 1-la with
O(max(α, β)) states without reading the end-markers.

We now show that 1-las described in Theorem 6 and Theorem 7 can be smaller
than any 2nfa accepting Lm for infinitely many m. To this aim, we remind the
reader that a unary language L ⊆ {a}∗ is said to be ultimately λ-cyclic, for an
integer λ ≥ 1, when an ∈ L if and only if an+λ ∈ L for each sufficiently large
integer n. If, in addition, L is not λ′-cyclic, for each 1 ≤ λ′ < λ, then L is
ultimately properly λ-cyclic. We also recall the following result [8, Thm. 9]:

Theorem 8. Let L be a unary language which is ultimately properly λ-cyclic,
where λ factorizes according to the Fundamental Theorem of Arithmetic as λ =
pk11 ·pk22 ·. . .·pkss . Then, the number of states in the cycles of any 2nfa accepting L
is at least pk11 + pk22 + · · ·+ pkss .

We now observe that for each m the language Lm is properly m-cyclic. Hence,
for each prime p, from Theorem 8 it follows that any 2nfa accepting Lp2 needs
p2 states. On the other hand, Theorem 6 and 7 show that Lp2 can be accepted
by a 1-la with p+ 1 states. Hence, we get the main result of this section:

Corollary 9. For infinitely many integers n there is a unary regular language
recognized by a n-state deterministic 1-la using a fixed working alphabet, even
not reading any end-marker, such that each equivalent 2nfa requires a number
of states which is quadratic in n.

262 G. Pighizzini and A. Pisoni

6 More than One Rewriting

As witnessed by Example 1, limited automata allowed to make more than one
rewriting are more powerful than finite state automata. Hibbard proved that
2-limited automata characterize the class of context-free languages. However,
further increasing the constant limiting the number of possible rewriting does
not augment the recognition power, i.e., for each d ≥ 2, d-limited automata
also characterize the class of context-free languages [5]. These results have been
proved by providing transformations from a kind of rewriting systems, equivalent
to pushdown automata, to 2-las, and vice versa, together with reductions from
d+ 1-las to d-las, for d ≥ 2.

In this section, we present an alternative construction showing that each
context-free language can be accepted by a 2-la. The construction is based on
the Chomsky-Schützenberger Theorem [2], which states that every context-free
language L ⊆ Σ∗ can be expressed as L = h(Dk∩R), where Dk ⊆ Ω∗

k , k ≥ 1, is a
Dyck language, R ⊆ Ω∗

k is a regular language, and h : Ωk → Σ∗ is an homomor-
phism. An interesting variant of such theorem, recently proved in [10], shows
that for L ⊆ Σ∗ \ Σ, we can always restrict to non-erasing homomorphisms,
namely, we can consider h : Ωk → Σ+.

Let L ⊆ Σ∗ \Σ be a given context-free language.

1. We build a one-way nondeterministic transducer T which on input w ∈ Σ∗

produces z ∈ Ω∗
k such that h(z) = w.

2. Using the automaton A presented in Example 1, we check whether or not
z ∈ Dk.

3. Finally, using a finite automaton AR accepting the language R, we test the
membership of z to the language R.

Now, we discuss how to embed the transducer T , the 2-la A, and the automa-
ton AR in a unique 2-la M . In a first phase, T and A work together using a
producer–consumer scheme and, after that, in a second phase AR is simulated.
In the first phase, when A has to examine for the first time a tape cell, T pro-
duces in a nondeterministic way a symbol σ ∈ h−1(u), for a nondeterministically
chosen prefix u of the part of the input w which starts from the T current head
position. Being A a two-way machine, in the following steps it may need to visit
the symbol σ′ rewritten from σ by A. Furthermore, the symbol σ will be used
for the simulation of AR. Hence, the machine needs to keep these symbols some-
where. Being the homomorphism h non-erasing, this can be done, by replacing u
by the pair (σ, σ′) on the tape. More precisely, the tape of 2-la M is divided in
two tracks. At the beginning of the computation, the first track contains the in-
put w, while the second track is empty. In the first phase, the finite control ofM
contains both controls of T and A. M alternatively simulates some computation
steps of T and of A, as follows:

1. When the head reaches a cell which has not yet been visited (hence, also
at the beginning of the computation), M simulates T , by nondeterministi-
cally replacing a prefix u of the remaining input, with a string �|u|−1σ such

Limited Automata and Regular Languages 263

that σ ∈ h−1(u). The symbol � is used for padding purposes. All the cells
containing this symbol will be skipped in the future steps.

2. In the last step of the above-described part of computation, when the right-
most symbol of u is replaced by σ on the first track, M also resumes the
simulation of A, starting from a step reading σ. Hence, while writing σ on
the first track, M also writes on the second track the symbol σ′ which is
produced by A while rewriting σ in the first visit.

3. If A moves to the left, going back to already-visited cells, then M simulates
directly the moves of A, skipping all cells containing �, and using the second
track of the tape. When, moving to the right, the head of M reaches a cell
which has not been visited before, the simulation of A is interrupted. (A cell
not visited before can be located since it does not contain � and the second
track is empty.) In this case, M resumes the simulation of T , as explained
in 1, except in the case the cell contains the right end-marker.

4. When the right end-marker is reached, the first track contains a string z ∈
h−1(w), while the second track contains the result of the rewriting of z by A
(ignoring all the cells containing �). If A rejects, namely, z /∈ Dk, then M
rejects. Otherwise, M moves its head to the left end-marker and, starting
from the first tape cell, it simulates the automaton AR, consulting the first
track, in order to decide whether or not z ∈ R. Finally, M accepts if and
only if AR accepts.

With an easy modification, we can extend the simulation to context-free lan-
guages that also contain strings consisting of only one symbol. We also observe
that the simulation of the automaton AR can be done in the first phase, while
simulating T and A. In particular, in the previous item 2, when T produces a
symbol σ andM simulates a move of A on σ,M can also simulate a move of AR
on σ. To this aim, M has to keep in its finite state control, together with the
controls of T and A, also the control of AR. This increases the number of the
states of M , but makes superfluous to keep the first track with the string z.
Hence, it reduces the size of the working alphabet of M .

7 Conclusion

We presented a double exponential state gap between 1-las and 1dfas, which
reduces to a single exponential in the conversion of 1-las into 1nfas, as well as in
the conversion of deterministic 1-las into 1dfas. A future topic of investigation
in this area will be the same conversions in the unary case. Even if we have
shown that unary deterministic 1-las can be smaller than equivalent 2nfas,
we conjecture that the state bounds for the conversion of 1-las into 1dfas are
similar to those for the conversion of unary 2nfas into equivalent 1dfas.

We have to mention that the original model of Hibbard is slightly different
from the model we presented here. As in standard one-tape Turing machines, the
input is written on the leftmost part of a tape infinite to the right, with all the
other cells initially containing a blank symbol. Writing in a cell which initially
contains the blank symbol is subject to the same restrictions as for input cells.

264 G. Pighizzini and A. Pisoni

It can be shown that, for each fixed d, the availability of such semi-infinite tape
does not increase the recognition power of the model. In fact, all the languages
accepted are context-free and, on the other hand, in Section 6 we have shown
that, already for d = 2, our restricted model is able to recognize all context-
free languages. In the case d = 1, the simulation in Theorem 2 can be slightly
modified, obtaining the same state upper bounds.

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity.
Information Processing Letters 43(4), 185–190 (1992)

2. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems,
Studies in Logic and the Foundations of Mathematics, vol. 35, pp. 118–161. Elsevier
(1963)

3. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149–158 (1986); Errata: ibid 302(1-3), 497–498 (2003)

4. Hennie, F.C.: One-tape, off-line Turing machine computations. Information and
Control 8(6), 553–578 (1965)

5. Hibbard, T.N.: A generalization of context-free determinism. Information and Con-
trol 11(1/2), 196–238 (1967)

6. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata - a survey. Inf. Comput. 209(3), 456–470 (2011)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

8. Mereghetti, C., Pighizzini, G.: Two-way automata simulations and unary lan-
guages. Journal of Automata, Languages and Combinatorics 5(3), 287–300 (2000)

9. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30(6), 1976–1992 (2001)

10. Okhotin, A.: Non-erasing variants of the Chomsky-Schützenberger Theorem. In:
Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer,
Heidelberg (2012)

11. Pighizzini, G.: Nondeterministic one-tape off-line Turing machines. Journal of Au-
tomata, Languages and Combinatorics 14(1), 107–124 (2009)

12. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.)
STOC, pp. 275–286. ACM (1978)

13. Shallit, J.O.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press (2008)

14. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

15. Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing
Company, Dordrecht (1986)

16. Yu, S.: State complexity of regular languages. Journal of Automata, Languages
and Combinatorics 6(2), 221–234 (2001)

Reversal on Regular Languages

and Descriptional Complexity

Juraj Šebej�

Institute of Computer Science, Faculty of Science, P.J. Šafárik University,
Jesenná 5, 040 01 Košice, Slovakia

juraj.sebej@gmail.com

Abstract. We study the problem stated as follows: which values in the
range from log n to 2n may be obtained as the state complexity of the
reverse of a regular language represented by a minimal deterministic au-
tomaton of n states? In the main result of this paper we use an alphabet
of size 2n− 2 to show that the entire range of complexities may be pro-
duced for any n. This considerably improves an analogous result from
the literature that uses an alphabet of size 2n. We also provide some
partial results for the case of a binary alphabet.

1 Introduction

Reversal is an operation on formal languages defined by LR = {wR | w ∈ L},
where wR is the mirror image of w, that is, the string w written backwards.
The reverse of a regular language is again a regular language [12]. A nondeter-
ministic finite automaton for the reverse of a regular language can be constructed
from an automaton recognizing the given language by reversing all the transi-
tions and swapping the role of initial and final states. This gives the upper bound
2n on the number of states in the state complexity of reversal.

Mirkin [11] pointed out that Lupanov’s ternary witness automaton [10] for
determinization of nondeterministic automata proves the tightness of the upper
bound 2n for reversal in the case of a three-letter alphabet since the ternary
nondeterministic automaton is the reverse of a deterministic automaton. Another
ternary worst-case example for reversal was given in 1981 by Leiss [9], who also
proved the tightness of the upper bound in the binary case. However, his binary
automata have n/2 final states. In [8] we presented binary witness automata
with a single final state. Moreover, the witness automata from [8] are so-called
one-cycle-free-path automata which improved a result in [7].

In this paper we are interested not only in the worst-case complexity, but
rather with all possible values that can be achieved as the state complexity of the
reverse of a regular language represented by an n-state deterministic automaton.

Our motivation comes from the paper by Iwama, Kambayashi and Takaki [3],
in which the authors stated the problem of whether there always exists a regular

� The author was supported by the Slovak Grant Agency for Science under contract
VEGA 1/0479/12.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 265–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

266 J. Šebej

language represented by a minimal n-state nondeterministic finite automaton
such that the minimal deterministic automaton for the language has α states for
any integers n and α with n ≤ α ≤ 2n. The values that cannot be obtained in
such a way are called “magic” in [4]. The problem was solved positively in [6]
by using a ternary alphabet. On the other hand, “magic” numbers exist in the
case of a unary alphabet. The binary case is still open.

In the case of the operation of reversal, the possible complexities are in the
range from logn to 2n. Using an alphabet of size 2n, Jiráskova [5] has shown
that there are no gaps in the hierarchy of complexities for reversal for any n.
Here we improve this result using an alphabet of size 2n − 2. We prove that
each number in the range from log n to 2n can be obtained as the number
of states in the minimal deterministic automaton for the reverse of a regular
language represented by a minimal deterministic automaton of n states over an
alphabet of size 2n−2. Decreasing the input alphabet to a fixed size seems to be
a challenging problem since nondeterministic automata obtained as the reverse
of deterministic automata have some special properties, and so the constructions
for NFA-to-DFA conversion [6] cannot be used.

In the second part of the paper, we consider the binary case. We get a continu-
ous segment of a quadratic length of achievable complexities for n ≥ 8. Using our
Java program we did some computations. These computations show that each
value from logn to 2n may be a state complexity of a binary regular language
represented by an n-state DFA, where 2 ≤ n ≤ 8.

2 Preliminaries

We assume that the reader is familiar with the basic notions of automata theory,
and for all unexplained notions we refer to [13,14].

All the deterministic finite automata (DFAs) in this paper are assumed to
be complete, and our nondeterministic finite automata (NFAs) have multiple
initial states and no ε-transitions. The state complexity of a regular language L,
denoted by sc(L), is the number of states in the minimal DFA for L.

Every NFA M = (Q,Σ, δ,Q0, F) can be converted to an equivalent DFA
M ′ = (2Q, Σ, δ′, Q0, F

′), where δ′(R, a) = δ(R, a) for each subset R of Q and
each a in Σ, and F ′ = {R ∈ 2Q | R∩F �= ∅} [12]. We call the DFAM ′ the subset
automaton of the NFAM . The subset automatonM ′ need not be minimal since
some of its states may be unreachable or equivalent.

The reversewR of a string w is defined as follows: εR = ε and if w = a1a2 · · · an
with ai ∈ Σ, then wR = an · · ·a2a1. The reverse of a language L is the language
LR = {wR | w ∈ L}. The reverse of a DFA A = (Q,Σ, δ, s, F) is the NFA
AR obtained from the DFA A by reversing all the transitions and by swap-
ping the role of initial and final states, that is AR =

(
Q,Σ, δR, F, {s}

)
, where

δR (q, a) = {p ∈ Q : δ (p, a) = q}. Let us recall the quite interesting result that
no two distinct states in the subset automaton corresponding to the reverse of a
minimal DFA are equivalent. This means that, throughout the paper, we need
not prove distinguishability of states of the subset automaton.

Reversal on Regular Languages and Descriptional Complexity 267

1 2 m−1 m m+1 n... ...a a a a a a a a

b
b

b

b b b

Fig. 1. The deterministic finite automaton for L; α = n+m, 1 � m � n

Proposition 1 ([1,8,11]). All the states of the subset automaton corresponding
to the reverse of a minimal DFA are pairwise distinguishable.

The following lemma from [5] shows that each number from n to 2n may be the
state complexity of the reverse of a binary language represented by a minimal
n-state DFA. We will use the lemma several times later in the paper.

Lemma 1 ([5]). For all integers n and α with 2 � n � α � 2n, there exists a
binary regular language L such that sc(L) = n and sc(LR) = α.

Proof (Sketch). For α = n+m (0 ≤ m ≤ n), the DFA for L is shown in Fig. 1.

3 Linear Alphabet

It is known that there are no gaps in the hierarchy of complexities for reversal
in the case of an alphabet of size 2n [5]. The aim of this section is to show that
a linear alphabet of size 2n − 2 is enough to obtain each state complexity of
reversal in the range from logn to 2n.

We start with two examples. The first one shows how we can double the
number of reachable states, respectively double and add one more state, in the
subset automaton for reverse by adding one new state and two new letters. This
illustrates our proof by mathematical induction given in this section.

The second example shows that we also are able to provide an explicit con-
struction of an appropriate automaton for a given number of states in the original
automaton and a given value of the state complexity of reversal.

Example 1. Consider the 3-state DFA B in Fig. 2 (top left) with the sole final
state f = 3. Its reverse BR is shown in Fig. 2 (bottom left), and the minimal
DFA for the reverse has 5 states. Let us show how can we construct a 4-state
DFA requiring 2 · 5 deterministic states for reverse, and a 4-state DFA requiring
2 · 5 + 1 deterministic states for reverse.

To get a 4-state DFA A whose reverse requires 2 · 5 deterministic states, add
a new rejecting state N going to itself on a, b, and transitions on two new letters
a4, b4 defined as follows: by a4, state N goes to state f , and every other state
of A goes to itself, and by b4, every state of A goes to state N . The resulting
4-state DFA A is again minimal. Fig. 2 (top right) shows the reverse AR of A.

268 J. Šebej

a a a

b

b

b

1 2 3

a

b

b

b

a a
1 2 N3

b4 b4
b4

b4

a, ba4

a4a4

a4

b

b

b

a a
1 2 3

a

a

b

b

b

a a
1 2 N3

b4 b4

b4

b4

a, ba4

a4a4

a4

Fig. 2. The construction of 5-state DFAs requiring 2 ·10 and 2 ·10+1 states for reverse

In the subset automaton A′ corresponding to NFA AR, all the states that were
reachable in the subset automaton B′ from state {f} = {3} will be reachable
since {f} is also the initial state of A′ and we did not change transitions on a, b
in states 1, 2, 3. Moreover, state {3} goes to state {1, 3} on a4, and then all the
states X ∪ {N}, where X is reachable in B′, will be reachable. No other set will
be reachable in the subset automaton A′, so A′ has 10 states.

To get a 4-state DFA A requiring 2 ·5+1 = 11 states for the reverse, we again
add a new rejecting state N going to itself on a, b. We also add transitions on a4
as above. Next we use the following conditions that are satisfied for B and B′:

(i) Automaton B with the set of states QB has exactly one final state.
(ii) There exists a set SB = {1, 2} of states of B which is not reachable in B′.

The set SB does not contain the final state of B.
(iii) The set ScB = {3}, which is the complement of SB in B, is reachable in B′.
(iv) SB goes by each symbol either to itself, or to a set that is reachable in B′.
(v) States ∅ and QB are reachable in B′.

Now we add transitions on symbol b4 defined as follows: by b4, each state in the
set SB goes to state f , and every other state of A goes to state N . Fig. 2 (bottom
right) shows the reverse AR of the DFA A. The 10 subsets are reachable in A′

as above, and moreover, the set SB is reachable from {f} by b4. However, no
other set is reachable, and so 11 states are reachable. ��
Using the above described procedure, we will be able to construct n-state DFAs
requiring 2α and 2α + 1 states from an (n − 1)-state DFA requiring α states.
Assuming that we can reach every value from n to 2n−1 − 1 by (n − 1)-state
DFAs, then we will be able to reach all the value from 2n to 2n − 1 by n-state
DFAs.

Reversal on Regular Languages and Descriptional Complexity 269

Although the proof by induction will be an existential proof, the next example
shows that given n and α we, in fact, can provide the construction of an n-state
DFA requiring α states for the reverse.

Example 2. Let n = 8 and α = 185. We want to construct an 8-state DFA,
the reverse of which after determinisation has 185 states. We start to divide the
current value of α, or α − 1 if α is odd, by two, and decrease the value of n by
one, until the result is smaller then the new value of n multiplied by two:

n α
8 185 2 · 8 > 185 no (185− 1)/2 = 92 N8 a8, b8 S8

7 92 2 · 7 > 92 no 92/2 = 46 N7 a7, b7 S7

6 46 2 · 6 > 46 no 46/2 = 23 N6 a6, b6 S6

5 23 2 · 5 > 23 no (23− 1)/2 = 11 N5 a5, b5 S5

4 11 2 · 4 > 11 no (11− 1)/2 = 5 N4 a4, b4 S4

3 5 2 · 3 > 5 yes initiate S3

We cannot construct this automaton directly using Lemma 1 because
185 > 2 · 8. We have to start from the 7-state automaton whose reverse requires
(185−1)/2 = 92 deterministic states. Since 92 > 2·7, we repeat the previous case
but now the number 92 is even. We have to start from 6-state automaton whose
reverse requires 92/2 = 46 states. As 46 > 2 · 6, we repeat the previous case. We
have to start from 5-state DFA whose reverse requires 46/2 = 23 deterministic
states. Again 23 > 2 · 5, and we have to start from 4-state automaton requiring
(23− 1)/2 = 11 deterministic states for reverse. Still 11 > 2 · 4, we have to start
from 3-state DFA requiring (11− 1)/2 = 5 deterministic states for reverse. Now
we have 5 < 2 · 3, and finally we use the initial DFA given by Lemma 1 which is
the same as the DFA in Example 1 shown in Fig. 2 (top left).

Now we construct our automaton backwards through the calculations. We add
states Ni for i = 4, . . . , 8 step by step and in each step we also add symbols ai, bi.
In case i ∈ {6, 7} we use the construction from the first part of Example 1, for
i ∈ {4, 5, 8} the construction follows the second part of example. For simplicity,
we discuss only the changes of the states Si, i = 3, . . . , 8 and define all ai, bi at
once. By ai all states go to itself except for 3 which goes by ai to Ni. If i ∈ {6, 7},
then all the states in {1, 2, 3, N1, . . . , Ni} go by bi to Ni and all the other states
to itself. If i ∈ {4, 5, 8}, then the states from Si go by bi to state 3 which is final,
the states from {1, 2, 3, N1, . . . , Ni} \ Si go to state Ni, and states Ni+1, . . . , N8

go to itself. As we showed in Example 1 when we use the first type of the
construction, we do not change the set Si, otherwise we add Ni to it: S3 = {1, 2}
S4 = {1, 2, N4} S5 = S6 = S7 = {1, 2, N4, N5} S8 = {1, 2, N4, N5, N8}. The
reverse of the resulting automaton is shown in Fig. 3. ��

Now we use the principles of the above examples to show that we can reach each
complexity from n = n+1 to 2n− 1 for reversal in the case of a linear alphabet.

Lemma 2. For every n, α with 3 ≤ n+1 ≤ α ≤ 2n−1, there exists a language L
over an alphabet Σ, |Σ| ≤ 2n− 2, such that sc(L) = n and sc(LR) = α.

270 J. Šebej

abb4a5a6a7a8

a a
1 2 N43

aa4a5a6a7a8a4a5a6a7a8
a4a5a6a7a8

bb4
b

b b4 b4
a4b5 N5

aba4b4b5a6a7a8

a5

b5
b5

N6

a6

aba4b4a5b5b6a7a8

b6

N7

b7

aba4b4a5b5a6b6b7a8

a7

N8

aba4b4a5b5a6b6a7b7b8

b8
b8

a8

Fig. 3. The reverse of an 8-state automaton which has 185 reachable states after
determinisation

Proof. For a DFA A, we denote by A′ the subset automaton of the reverse of A.
The proof is by induction on the number of states n of the minimal DFA for

L. We are going to show that for every α with n+ 1 ≤ α ≤ 2n − 1 there exists
an n-state minimal DFA A over an alphabet Σ with |Σ| ≤ 2n− 2 such that the
minimal DFA for L(A)R has α states, and moreover, the following five conditions
for automata A,A′ are satisfied:

(i) The DFA A with the state set QA has exactly one final state.
(ii) There exists a set SA of states of A which is not reachable in the subset

automaton A′. The set SA does not contain the final state of A.
(iii) The set ScA, which is the complement of SA in A, is reachable in A′.
(iv) SA goes by each symbol either to itself, or to a set that is reachable in A′.
(v) The states ∅ and QA are reachable in A′.

The base case is n = 2 and α = 3. Consider the binary DFA A from Lemma 1
for n = 2 and α = 3. The DFA A satisfies the conditions (i)-(v) with SA = {1}.

Let n > 2, and assume that the theorem holds for n − 1, that is, for every
β with n ≤ β ≤ 2n−1 − 1, there exists an (n − 1)-state automaton B over an
alphabet ΣB, |ΣB| ≤ 2(n− 1)− 2, such that the minimal DFA for L(B)R has β
states, and moreover, the following five conditions are satisfied:

(i) Automaton B with the state set QB has exactly one final state.
(ii) There exists a set SB of states of B which is not reachable in B′. The set

SB does not contain the final state of B.
(iii) The set ScB, which is the complement of set SB in B, is reachable in B′.
(iv) SB goes by each symbol either to itself, or to a set that is reachable in B′.
(v) States ∅ and QB are reachable in DFA B′.

Now we prove that for every α with n + 1 ≤ α ≤ 2n − 1, there exists an n-
state DFA A such that the minimal DFA for language L(A)R has α states, and
moreover, the five conditions above are satisfied for automata A,A′.

Reversal on Regular Languages and Descriptional Complexity 271

We consider three cases depending on the value of α: (1) n+1 ≤ α ≤ 2n− 1;
(2) 2n ≤ α ≤ 2n − 1 and α is even; (3) 2n ≤ α ≤ 2n − 1 and α is odd.

(1) Let n+1 ≤ α ≤ 2n−1. Similarly as in the base case we use the automaton
from Lemma 1; notice that this is possible for our values of n and α. The DFA
A satisfies the conditions (i)-(v) with SA = {1, 2, . . . ,m}.

(2) Let 2n ≤ α ≤ 2n−1 and α is an even number. Now we use the (n−1)-state
automaton B over an alphabet ΣB with the state set QB, and the final state
f for β = α/2 from the induction hypothesis. We construct the n-state DFA A
from DFA B by adding a new non-final state N , and transitions on two new
letters an, bn. We have to define the transitions on new letters in all states of
A, and the transitions on all letters in state N to make A deterministic. Let us
define transitions on an as follows: state N goes by an to the final state f , and
every other state of A goes to itself on an. By bn, each state of A goes to state
N . State N goes by each old letter in ΣB to itself.

Since the DFA B is minimal, the states of B are reachable and pairwise distin-
guishable in the DFA A as well because we did not change the old transitions
and the finality of old states. The state N is reached from the state f on bn. We
need to show that N is not equivalent to any other state of B. The final state
f and the state N are not equivalent since N is not final. The state N is not
equivalent to any other state of B since an is accepted in A only from N and f .

Now we prove that the subset automaton A′ has α = 2β states. All the states
that are reachable in the subset automaton B′ are also reachable in the subset
automaton A′ since the initial state of A′ is the same as the initial state of B′,
namely {f}, and we did not change the old transitions. Moreover, the state {f}
goes to the state {f,N} by an, from which each state X ∪ {N}, where X is
reachable in B′, can be reached by old letters; recall that the state N goes to
itself on each old letter. To show that no other state is reachable in A′ notice
that every set X that is reachable in B′ goes by an to itself if f /∈ X , and
to X ∪ {N} otherwise, and by bn to the empty set that is reachable in B′ by
induction. Next, each state X ∪ {N} goes by an to itself if f ∈ X ∪ {N}, and
to X otherwise, by bn to QB ∪ {N}, and by each old letter in ΣB it goes to a
set X ′ ∪ {N} where X ′ is reachable in B′. This means that A′ has exactly 2β
reachable states and, by Lemma 1, pairwise distinguishable states. Finally, we
need to verify the conditions (i)-(v) for automata A,A′.

(i) Automaton A has one final state because we defined N as a non-final state.
(ii) Let SA = SB. Then SA is not reachable in A′, and it does not contain the

final state of A.
(iii) Since ScB was reachable in B′ on some string w, it follows that the set

ScA = ScB ∪ {N} is reachable in A′ by anw.
(iv) If a is a letter in ΣB, then SA goes either to itself or to a set that is

reachable in B′ by the induction hypothesis. By an, the set SA goes to itself
since f /∈ SA. By bn, the set SA goes to the empty set, which is reachable
in B′, thus in A′, by the induction hypothesis.

(v) The empty set is reachable in B′ and therefore in A′. Since QB is reachable
in B′ by a string w, the set QA = QB ∪ {N} is reachable in A′ by anw.

272 J. Šebej

(3) Let 2n ≤ α ≤ 2n− 1 and α is odd. This part of the proof is similar to part
(2) with the following changes. By bn, each state of the set SB goes to state f ,
and every other state of A goes to state N . It follows that now also the state SB
is reachable in A′, and so A′ has exactly 2β + 1 reachable states. The new set
SA is equal to SB ∪ {N}. The proof of the theorem is now complete. ��

Using the results of Lemma 1, Lemma 2, and the results from [8,9] we can prove
the main result of this paper which shows that there are no gaps in the hierarchy
of state complexities for reversal in the case of a linear alphabet.

Theorem 1. For every n, α with n ≥ 3 and logn ≤ α ≤ 2n, there exists a lan-
guage L over an alphabet Σ, |Σ| ≤ 2n−2, such that sc(L) = n and sc(LR) = α.

Proof. The case of n + 1 ≤ α ≤ 2n − 1 is covered by Lemma 2. For α = n, we
can use Lemma 1, and for α = 2n we can use the results from [8,9]. When we
reverse the languages from Lemma 2 and the two above mentioned languages,
we obtain all the possible state complexities between logn ≤ α ≤ n. ��

4 Binary Alphabet

In this section we consider the reversal of binary regular languages. Lemma 1
shows that each complexity from n to 2n is achievable for reversal in the binary
case. The upper bound 2n also can be met by a binary language [9, Proposition 2],
[8, Theorem 5].

The aim of this section is to find a non-linear number of achievable com-
plexities for reversal in the binary case. We show that each value from

√
8n to

n2/8 can be obtained as the state complexity of the reverse of a binary language
represented by an n-state deterministic finite automaton, where n ≥ 8.

By using our Java program we show that all complexities are achievable in
the binary case if n ≤ 8, except for n = 1 where 2 cannot be achieved, and n = 2
where 1 cannot be achieved. Moreover we compute the frequency of the state
complexities of the reverses for n = 2, 3, 4, 5. The results of our computations
are given in the graphs in the end of this section Fig. 6.

Now we are going to define special automata that we will use later to get a
quadratic number of values that can be obtained as the state complexity of the
reverse of a binary n-state regular language.

To this aim let 2 ≤ p < m ≤ n− 2 and let A = ({1, 2, . . . , n}, {a, b}, δ, 1, {n})
be a DFA, in which the transitions are as follows. Each state i goes by a to state
i+1, except for n which goes to itself. By b, each state i with i ≤ p−1 goes to state
i+ 1, each state i with p ≤ i ≤ m− 1 goes to itself, state m goes to n, and each
state i with i ≥ m+1 goes tom+1. Since two distinct states can be distinguished
by a string in a∗, the automaton A is minimal. Fig. 4 shows the reverse of A,
and the next lemma deals with the complexity of the reverse of L(A).

Lemma 3. Let n ≥ 5 and 2 ≤ p < m ≤ n−2 and let L be the language accepted
by the DFA in Fig. 4. Then sc(LR) = n+m+ 1 + p (p− 1)/2.

Reversal on Regular Languages and Descriptional Complexity 273

Proof. Let n ≥ 5 and 2 ≤ p < m ≤ n− 2.
Consider the NFA AR for L(AR) shown in Fig. 4. We will show that the

minimal DFA for L(AR) has n +m + 1 + p (p − 1)/2 states. To prove this, by
Lemma 1, it is enough to show that the subset automaton corresponding to the
NFA AR shown in Fig. 5 has exactly n+m+ 1+ p (p− 1)/2 reachable states.

Denote for i = 1, 2, . . . , n,

Si = {n, n− 1, ..., i+ 1, i},

and for i = 1, 2, . . . , p− 1

Ti = {p, p− 1, . . . , p− i}.

For an integer j with 0 ≤ j ≤ p− i− 1, denote

Ti 1 j = {p− j, p− 1− j, . . . , p− i− j}.

Let
R1 = {Si | 1 ≤ i ≤ n},
R2 = {{i} | 1 ≤ i ≤ m} ∪ {∅},
R3 = {Ti 1 j | 1 ≤ i ≤ p− 1 and 0 ≤ j ≤ p− i− 1},
R = R1 ∪R2 ∪R3.
The family R consists of n+m+ 1+ p(p− 1)/2 sets, and we will prove that

(1) each set in R is reachable in the subset automaton and (2) no other set is
reachable. Every Si in R1 is reachable from the initial state {n} by ai−1. Every
{i} in R2 is reachable from {n} by bam−i, and ∅ is reachable from {1} by a.
Every Ti 1 j in R3 is reachable from {n} by bam−pbiaj . This proves (1).

Since the initial state {n} is in R, to show (2) it is enough to prove that each
set in R goes to a set in R by both a and b. By a, each Si in R1 goes to Si−1,
except for S1 which goes to itself, each i in R2 goes to i− 1, except for 1 which
goes to the empty set, each Ti1j in R3 goes to Ti1(j+1), except for Ti1(i−1)
which goes to Ti−1 1 (i − 2) and T1 1 (p − 2) which goes to {1}. By b, each Si
goes to m if i ≥ m + 2, to Sm if i = m + 1, to itself if m ≤ i ≤ p + 1, and if
i ≤ p then Si goes to the same state as it goes on a. Next, the set {i} goes to the

n n− 1 mm+ 1m+ 2
a a a a

a

a a

b
b

bb b

m− 1
a

b

pp+ 1 p− 1 12
a a

a a a a

b b

b b b b

Fig. 4. Automaton which equivalent DFA has exactly n+m+ 1 + p.(p− 1)/2 states

274 J. Šebej

n

n, n− 1

n, n− 1, ..., m+ 2,m+ 1

n, n− 1, ..., m+ 1,m

n, n− 1, ..., m+ 3,m+ 2

n, n− 1, ..., p+ 2, p+ 1

n, n− 1, ..., p+ 1, p

n, n− 1, ..., p, p− 1

n, n− 1, ..., 3, 2

n, n− 1, ..., 2, 1

m

m− 1

p+ 1

p

p− 1

2

1

∅

R1 R2

p, p− 1

p, p− 1, p− 2

p, ..., 2

p, ..., 1

p, ..., 3

p− 1, p− 2 2, 1p− 2, p− 3

p− 1, p− 2, p− 3

p− 1, ..., 2 p− 2, ..., 1

p− 1, ..., 1

3, 2, 1

R3

Fig. 5. Sketch of subset construction of the automaton from Fig. 4

empty set of states by b when i equals m or 1, to itself if m− 1 ≥ i ≥ p+ 1, to
T110 when i = p, otherwise it goes to {i−1}. The set Ti goes to Ti+1 whenever
i �= p− 1, to Tp−2 1 1 when i = p− 1, otherwise it goes to the same state as it
goes on a. The empty set goes to itself by both a and b. Since all the resulting
sets are in R, the proof of (2) is complete.

Hence, the subset automaton has exactly n +m + 1 + p (p − 1)/2 reachable
and, by Lemma 1, pairwise distinguishable states. This proves the theorem. ��

The next lemma shows that each value from n + 5 to (n2 + 10n− 8)/8 can be
obtained as the state complexity of the reverse of an n-state binary language.

Lemma 4. For every n and α with n ≥ 5 and n + 5 ≤ α ≤ (n2 + 10n− 8)/8,
there exists a binary regular language L such that sc(L) = n and sc(LR) = α.

Proof. Let n+ 5 ≤ α ≤ (n2 + 10n− 8)/8. Then
n+ 5 ≤ α ≤ n+ 2 + (1 + 2 + · · ·+ &(n− 3)/2'+ 1) + &(n− 3)/2' − 1.

This means that there exists an integer p such that 2 ≤ p ≤ &(n− 3)/2'+1 and
(n+ 2) + (1 + 2 + · · ·+ p) ≤ α < (n+ 2) + (1 + 2 + · · ·+ p+ p+ 1).

Then

α = (n+ 2) + (1 + 2 + · · ·+ p) + i

for some integer i such that 0 ≤ i ≤ p, respectively if p = &(n − 3)/2'+ 1 then
0 ≤ i ≤ p− 2.

Set m = p+ i+ 1. Then p < m ≤ n− 2. Let A be the DFA A from Lemma 3
defined for integers n,m = p+i+1, p. By Lemma 3, the minimal DFA for L(A)R

has n+(p+ i+1)+1+p(p− 1)/2 = (n+2)+(1+2+ · · ·+p)+ i = α states. ��

Reversal on Regular Languages and Descriptional Complexity 275

Now we are able to get a continuous segment of a quadratic length of state
complexities of reversal in the binary case.

Theorem 2. For every n and α with n ≥ 8 and
√
8n ≤ α ≤ n2/8, there exists

a binary regular language L such that sc(L) = n and sc(LR) = α.

Proof. Let n ≥ 8. If n ≤ α < n+5 ≤ 2n, then the language is given by Lemma 1.
The case of n+5 ≤ α ≤ n2/8 is covered by Lemma 4. Since (LR)R = L, when we
reverse the languages mentioned in the two lemmas, we obtain all the possible
state complexities of reversal between

√
8n ≤ α ≤ n. ��

Notice that using automata from Lemma 3 we are able to get additional

1 + 2 + · · ·+ (n− 2)− (&(n− 3)/2'+ 2) ≥ n2/9

complexities outside the continuous segment in the previous lemma.
In the last part of this section we discuss the small values of n. For n =

2, 3, 4, 5 we used the lists of pairwise non-isomorphic DFAs, and compute the
state complexities of their reverses. The graphs in Fig. 6 show the number of
automata with the corresponding complexities of reversal. It follows from the
graphs that all the values of α from logn to 2n can be reach for n = 2, 3, 4, 5
with the exception of n = 2 and α = 1.

For n = 6, 7, 8 we changed the strategy of searching of appropriate automata.
The first strategy was to define a so that state i goes to i+ 1 and the last state

Fig. 6. The frequencies of state complexities for reversal: n = 2 top left, n = 3 bottom
left, n = 4 top right, n = 5 bottom right

276 J. Šebej

goes to state 0 because we do not have to control minimality in such a case.
The other strategy was to generate all the transitions randomly but we used it
only for the upper part of the range because here the minimality is guaranteed.
We obtained all the complexities of reversal in the range from logn to 2n for
n = 6, 7, 8.

References

1. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-
inite events. In: Fox, J. (ed.) Proceedings of the Symposium on Mathematical
Theory of Automata, New York, NY, April 24-26. MRI Symposia Series, vol. 12,
pp. 529–561. Polytechnic Press of the Polytechnic Institute of Brooklyn, Brooklyn
(1963)

2. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Com-
put. 205, 1652–1670 (2007)

3. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of
DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, 485–494
(2000)

4. Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2n − α
deterministic states. Theoret. Comput. Sci. 301, 451–462 (2003)

5. Jirásková, G.: On the state complexity of complements, stars, and reversals of
regular languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
431–442. Springer, Heidelberg (2008)

6. Jirásková, G.: Magic numbers and ternary alphabet. Inter. J. Found. Comput.
Sci. 22, 331–344 (2011)

7. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Internat.
J. Found. Comput. Sci. 22, 1639–1653 (2011)

8. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput.
Sci. 449, 85–92 (2012)

9. Leiss, E.: Succinct representation of regular languages by Boolean automata. The-
oret. Comput. Sci. 13, 323–330 (1981)

10. Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kiber-
netiki 9, 321–326 (1963) (in Russian)

11. Mirkin, B.G.: On dual automata. Kibernetika (Kiev) 2, 7–10 (1966) (in Russian);
English translation: Cybernetics 2, 6–9 (1966)

12. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. De-
velop. 3, 114–129 (1959)

13. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

14. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, ch. 2, pp. 41–110. Springer, Heidelberg (1997)

Kleene Star on Unary Regular Languages

Krist́ına Čevorová1�

Mathematical Institute, Slovak Academy of Sciences
Štefánikova 49, 814 73 Bratislava, Slovakia

cevorova@mat.savba.sk

Abstract. We study possible deterministic state complexities of lan-
guages obtained as the Kleene star of a unary language with state com-
plexity n. We prove that for every n, depending on the parity of n, only
3 or 4 complexities from n2−4n+6 to n2−2n+2 are attainable. On the
other hand, we show that all the complexities from 1 to n are attainable.
In the end, we outline a connection to the Frobenius problem.

1 Introduction

How does the state complexity of the result of a given regular operation depend
on the complexity of operands? Questions of this nature are currently objectives
of many papers. Tight upper bounds for different operations both for the unary
and general case have been given in [1] and others.

This determines the range of possible outcomes, but does not say anything
about attainability of any particular value in this range. Two different ap-
proaches to this problem have emerged so far. Nicaud [2] studied an average
case. Because even enumeration of all automata with a given state complexity
is too difficult, he limited himself to basic operations on unary automata.

Another point of view was introduced by Iwama, Kambayashi and Takaki at
Third Conference on Developments in Language Theory. Thier question was,
whether, given any integers n and α with n ≤ α ≤ 2n, we are able to find
a language with nondeterministic state complexity n and deterministic state
complexity α [3]. If it is impossible, the number α is called magic for n. This
problem has been solved by Jirásková for ternary alphabet [4] with a positive
answer (there are no magic numbers). For a unary alphabet, a partial answer
was given by Geffert [5]. He showed, that magic numbers do exist and in some
sense, there are a lot of them.

Although the problem of magic numbers was originally stated for the tradeoff
of nondeterminism and determinism, this idea is more universal. How does the
state complexity of the language resulting from a regular operation depend on the
state complexities of operands? Is the spectrum of possible outcomes continuous,
or are there any gaps – magic numbers?

This question was investigated for several operations. So far it appears, that
magic numbers are quite unusual phenomenon: their existence was shown only for

� Research supported by grant VEGA 2/0183/11.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 277–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 K. Čevorová

determinization of unary NFAs [5] and for determinization of unary symmetric
difference NFAs[6]. In the latter problem, Zijl has found necessary conditions for
attainable high complexities, but it is still unknown, whether there is any large
non-trivial non-magic number at all.

For the operation of Kleene Star with a growing alphabet, Jirásková has shown
that each value in the range from 1 to 3/4 · 2n can be obtained as the state
complexity of the star of an n-state DFA language [7].

This paper gives partial answer to this problem for Kleene star with unary
alphabet. If the state complexity of a unary language L is n, then the state
complexity of L∗ is at most (n − 1)2 + 1 [1], and in the average case, it is less
than a certain constant not depending on n [2].

With these results, it is not that surprising that we get two gaps of a linear
length near the upper bound that are not attainable, namely, the ranges from
n2−4n+7 to n2−3n+1 and from n2−3n+4 to n2−2n+1. On the other hand,
the numbers n2 − 3n+ 3 and n2 − 4n + 5 are attainable, and the attainability
of n2 − 3n + 2 is determined by the parity of n. Hence we solve the problem
of attainable complexities for unary star for each number in the range from
n2 − 4n + 6 up to the known upper bound n2 − 2n + 2. We also show, using
finite languages where possible, that values up to n can be obtained as the state
complexity of the star of a unary language with state complexity n.

2 Preliminaries

In this section, we give the basic notation and definitions used in this paper.
Let [n] = {0, 1, . . . , n}, and [c, d] denote the set {c, c+ 1, . . . , d} if c ≤ d, and

the empty set if c > d.
The power set of a set A is denoted by 2A. The greatest common divisor of a

non-empty set S is denoted by gcd(S). The ceiling (floor) of a real number $·%
(&·') is the smallest integer not smaller than that number (greatest integer not
greater). The state complexity of a regular language L, sc(L), is the number of
states of its minimal DFA.

A DFA A = (Q, {a}, δ, q0, F) for a unary language are uniquely given by less
information than an arbitrary DFA. Identify states with numbers from [n − 1]
via q ∼ min{i| δ(q0, ai) = q}. Then A is unambiguously given by the number of
states n, the set of final numbers F and the “loop” number � = δ(q0, a

n). This
allows us to freely interchange states and their ordinal numbers and justifies
the notation convention used by Nicaud [2], where a unary automaton with n
states, loop number � and set of final states F is denoted as (n, �, F). Nicaud
also provided following characterization:

Theorem 1 ([2, Lemma 1]). A unary automaton (n, �, F) is minimal if and
only if both conditions below are true:

1. its loop is minimal, and
2. states n− 1 and � − 1 do not have the same finality (that is, exactly one of

them is final). ��

Kleene Star on Unary Regular Languages 279

If the language of a minimal unary automaton is cofinite, then its loop has a
single state, and this state is final. The state preceding the loop must be rejecting.
Since this state corresponds to the longest word that is not in the language, this
reasoning leads to the following proposition.

Proposition 1. If a unary language L is cofinite, then it is regular and
sc(L) = max{m | am /∈ L}+ 2. ��
Cofiniteness sometimes also allows us to find an upper bound on the state com-
plexity of a language using the state complexity of another language that is
accepted by some simpler automaton.

Lemma 1. Let 0 ≤ � ≤ n, and let Ft ⊆ F ′
t ⊆ [0, �− 1] and F� ⊆ F ′

� ⊆ [�, n− 1].
Let A = (n, �, Ft ∪F�) be a unary automaton such that L(A)∗ is cofinite, and let
B = (n, �, F ′

t ∪ F ′
�). Then sc(L(B)∗) ≤ sc(L(A)∗). ��

3 Lower Bound on Gaps in the Hierarchy of State
Complexities

In this section we show that each number from 1 to n can be obtained as the
state complexity of the star of an n-state unary language. Let us start with the
following two technical results.

Lemma 2. Let A = (n, �, F) be a unary automaton and k = min{F \ {0}}.
If there exists a non-negative integer m such that {am, am+1, . . . , am+k−1} ⊆
L(A)∗, then for every non-negative i, the word am+i is in L(A)∗.

Proof. Every i is representable as i = sk + r, where r and s are non-negative
integers with r < k. Then am+i = am+sk+r = (ak)sam+r. Since k is a final state,
word ak is in L(A). By the assumption of the lemma, the word am+r is in L(A)∗.
It follows that the word am+i is in L(A)∗. ��
Lemma 3. Let α ≥ 7 and k = &α/2'. Let Lα = {ak, ak+1, . . . , aα−3} ∪ {aα−1}
be a finite language. Then L∗

α is cofinite and sc(L∗
α) = α.

Proof. First, notice that aα−2 is not in L∗
α since it is not in Lα and the length

of any concatenation of two or more words in Lα is at least α− 1. To prove the
lemma, we only need to show that for every i ≥ 0, the word aα−1+i is in L∗

α.
By Lemma 2, it is enough to show that {aα−1, aα−1+1, . . . , aα−1+(k−1)} ⊆ L∗

α.
The word aα−1 is in Lα, thus also in L∗

α. If α is even, then we have α = 2k
and Lα = {ak, ak+1, . . . , a2k−3} ∪ {a2k−1}. Therefore for i = 1, 2, . . . , k − 2, we
have aα−1+i = a2k−1+i = akak+i−1 which is a concatenation of words in Lα.
Next aα−1+k−1 = aα−3+k+1 = aα−3ak+1 and since k+1 ≤ α− 3, this is also the
concatenation of words are in Lα. The proof for an odd α is similar. ��
Suppose we have a finite language L with cofinite star. We will use it to find
languages, with the same state complexity of star, but greater state complexity
of the language. Take any c > sc(L∗). Any concatenation using ac−2 has length
at least c−2, but by Proposition 1, all such words already were in L∗. Therefore
sc((L ∪ {ac−2})∗) = sc(L∗) but sc(L ∪ {ac−2}) = max{c, n}.

280 K. Čevorová

Lemma 4. Let n ≥ 8 and 7 ≤ α ≤ n−1. There exists a unary finite language L
such that sc(L) = n, and sc(L∗) = α.

Proof. Let Lα be the finite language given by Lemma 3. Define L = Lα∪{an−2}.
Then sc(L) = n. Since n− 2 ≥ α− 1, we have an−2 ∈ L∗

α. Hence sc(L
∗) = α. ��

This is almost all we need. The following two lemmas solve missing cases.

Lemma 5. Let n ≥ 4 and 3 ≤ α ≤ min{6, n− 1}. There exists a unary regular
language L such that sc(L) = n and sc(L∗) = α.

Proof. Let An,3 = (n, 0, {2, 3}), A5,4 = (5, 0, {0, 3, 4}) and An,4 = (n, 0, {3, 4, 5})
if n ≥ 6. Next, let An,5 = (n, 0, {2, 5}) for n ≥ 6, let A7,6 = (7, 0, {0, 3, 5, 6}),
A8,6 = (8, 7, {6}) and An,6 = (n, 0, {3, 5, 7, n − 2}) for n ≥ 9. Let L be the
language accepted by the DFA An,α. Then sc(L) = n and sc(L∗) = α. ��

Lemma 6. Let n ≥ 2 and α ∈ {1, 2, n}. There exists a unary regular language L
such that sc(L) = n and sc(L∗) = α.

Proof. The languages {a, amax{1,n−2}} and (an)∗ satisfy the conditions of the
lemma in the case of α = 1 and α = n, respectively.

Let α = 2. For an even n ≥ 4, consider the language L = a2(an)∗ accepted
by the minimal unary automaton (n, 0, {2}). For n = 3, let L = a2(a2)∗, and for
an odd n with n ≥ 5, let L = a2(an−1)∗ ∪ {ε} be the language accepted by the
minimal unary automaton (n, 1, {0, 2}). Then sc(L) = n and L∗ = (a2)∗. ��

The next theorem is a summarization of the results of this section.

Theorem 2. For all integers n and α with n ≥ 2 and 1 ≤ α ≤ n, there exists a
unary regular language L such that sc(L) = n and sc(L∗) = α. ��

4 State Complexity of Significant Classes of Automata

In order to prove our main result, we need to find the state complexity of certain
special types of automata. An useful tool for this is number theory.

Every non-negative linear combination of integers m and n will be a multiple
of their common factor. Thus any number not divisible by this factor trivially
does not have such a presentation. But we still may be interested in non-trivial
cases of absence of such presentation. The following result is a straightforward
generalization of [1, Lemma 5.1 (ii) and (iii)].

Lemma 7. Let m,n be positive integers.

a) The largest integer divisible by gcd(m,n) that cannot be presented as mx+ny
for any x > 0, y ≥ 0 is r = (m

gcd(m,n) − 1)n.

b) The largest integer divisible by gcd(m,n) that cannot be presented as mx+ny
for any x, y ≥ 0 is r = (mn

gcd(m,n))− (m+ n). ��

Now we can get the state complexity of star in some simple cases.

Kleene Star on Unary Regular Languages 281

Theorem 3. Let 1 ≤ k < n and 0 ≤ � < n. Let L be the language accepted by
a unary automaton (n, �, {k}).
a) If k < �, then sc(L∗) = k.
b) If k ≥ � and k divides n− � then sc(L∗) = k.
c) If k ≥ � and k does not divide n− �,

then sc(L∗) = (k
gcd(n−�,k) − 1)(n− �) + gcd(n− �, k) + 1.

Proof. a) Notice that L = {ak}. Therefore L∗ = (ak)∗ and sc(L∗) = k.
b) Since L = {ak+i(n−�) | i ≥ 0} and k divides n− �, the length of every word

in L and L∗ is divisible by k. Since ak ∈ L, we have L∗ = (ak)∗ and sc(L∗) = k.
c) Let d = gcd(k, n − �). The length of every non-empty word in L∗ can

be written as kx+ (n− �)y where x > 0, y ≥ 0. By Lemma 7a, the maximal
multiple of d unexpressable in this form is q = (kd − 1)(n− �). Since k � n− �, we
have d < k. Therefore q > 0 and L∗ is accepted by an automaton in the form
(q + d+ 1, q + 1, F), where F ∩ [q+1, q+ d] = {q+ d}, see Fig. 1. Its loop has a
single final state, thus it is minimal, and the states q and q + d do not have the
same finality. By Theorem 1, this automaton is minimal. ��

Fig. 1. The minimal automaton for star in Theorem 3c

In a similar way we can compute the state complexity of the star of languages
accepted by automata with two final states, when one of them is 0.

Theorem 4. Let 1 ≤ k < n and 0 ≤ � < n. Let L be the language accepted by
a unary automaton A = (n, �, {0, k}).
a) If k < �, then sc(L∗) = k.
b) If k ≥ �, and k divides n− �, then sc(L∗) = k.
c) If k ≥ �, k � n− �, and � �= 0,

then sc(L∗) = (k
gcd(n−�,k) − 1)(n− �) + gcd(n− �, k) + 1.

d) If k ≥ �, k � n− �, and � = 0, then sc(L∗) = nk
gcd(n,k) − (k+n)+ gcd(n, k)+ 1.

��

Until now, we did not use the construction of a DFA for star operation to get
the state complexity of the resulting language. The standard construction is not
difficult. To get such a DFA, we first construct an NFA for star of a given unary
automaton by adding at most one new state and several transitions, and then
we apply the subset construction to this NFA.

282 K. Čevorová

For technical reasons, we will use a slightly different construction. Let L be the
language accepted by a minimal unary DFA A = ([n−1], {a}, δ, 0, F). Construct
an NFA N from the DFA A by adding a transition on a from a state i to the
state 0 whenever δ(i, a) ∈ F . This NFA accepts L∗, except for ε if 0 /∈ F .

Suppose that 0 /∈ F . In DFA A is state 0 either unreachable by non-empty
word, or reachable only from state n − 1. It follows, that if 0 /∈ F , then in the
subset automaton of N , there is no transition from any reachable state to the
initial state {0}, since the only candidate for such a transition is from state
{n− 1}, that needs to be non-final, but by induction, all reachable states would
be non-final. Thus if we mark the state {0} in the subset automaton of N as
final, we get a DFA A′ = (2[n−1], {a}, δ′, {0}, F ′) for L∗.

The DFA A′ is not necessarily minimal, but it provides an upper bound on
the state complexity of L∗, and this is a good starting point for a minimization.

Now we define an important notion of the set of states reached by the DFA
A′ after reading i symbols:

Ri = δ′({0}, ai).
Note that Ri+m = δ′(Ri, am). Next, if i < j, then it does not mean that neces-
sarily |Ri| ≤ |Rj |. Later, we will prove this inequality with additional constraints
placed on i and j. But sometimes, there are no additional requirements needed.

Lemma 8. Let 0 ≤ i < j and A = (n, �, F). If � = 0 or � ∈ F , then |Ri| ≤ |Rj |.

Proof. It is sufficient to prove that |Ri| ≤ |Ri+1|. If the state n− 1 is not in Ri,
then Ri+1 ⊇ {q + 1 | q ∈ Ri}, and therefore |Ri| ≤ |Ri+1|.

Now assume that n− 1 is in Ri. Since � = 0 or � ∈ F , the initial state 0 is in
δ′(n−1, a). Therefore Ri+1 ⊇ {q+1 | q ∈ Ri\{n−1}}∪{0}, so |Ri| ≤ |Ri+1|. ��

This will help us to find the complexity of more intricate type of automata.

Theorem 5. Let n ≥ 3 and 2 ≤ k ≤ n − 1. Let L be a language accepted by a
unary cyclic automaton (n, 0, [k, n− 1]). Then sc(L∗) = $ k

n−k %k + 1.

Proof. First, we determine certain significant states of the DFA A′ for L∗.
Let us show that for i ∈ [1, $ k

n−k%]

Ri·k−1 = [n− i(n− k)− 1, k − 1], (1)

Ri·k = {0} ∪ [n− i(n− k), k], (2)

and for i ∈ [1, $ k
n−k% − 1] also

Ri·n−1 = [0, i(n− k)− 1] ∪ {n− 1}. (3)

The proof is by induction on i.
If i = 1, then Rk−1 corresponds to the first k − 1 deterministic computation

steps, so Rk−1 = {k − 1}. Since the state k is final, we have Rk = {0, k}. The
basis for (3) is meaningful iff $ k

n−k % − 1 ≥ 1. In that case, n− k − 1 < k. Hence

Rn−1 = δ′(Rk, an−1−k) = δ′({0, k}, an−1−k). During this part of computation,

Kleene Star on Unary Regular Languages 283

we bubble trough final states in [k, n− 1] and in the end, n− 1 is reached. The
transition trough each of these final states derives zero. Since n−k−1 < k, these
zeros behaved deterministically in the subsequent computations, and finally we
get [0, n− k − 1]. Hence Rn−1 = [0, (n− k)− 1] ∪ {n− 1}.

Assume that 1 ≤ i ≤ $ k
n−k % − 1, and that (1), (2), and (3) hold. Then

Ri·n = [0, i(n−k)] and is non-final, since i(n−k) < k. The next (i+1)k− in−1
(under our assumptions, this is at least 0) steps before we reach state k are
deterministic for each member state, so R(i+1)·k−1 = [(i + 1)k − in − 1, k − 1]
and is non-final. R(i+1)·k = {0}∪ [(i+1)k− in, k]. In the next (i+1)(n− k)− 1
steps, we keep adding the initial state 0 while bubbling trough sequence of final
states. In the end, this sequence reduces to n− 1, originating from (i+1)k− in.
Thus R(i+1)·n−1 = [0, (i+ 1)(n− k)− 1] ∪ {n− 1}, hence (1),(2) and (3) hold.

We have R� k
n−k �·n = [0, $ k

n−k %(n − k)]. It has at least k + 1 states. Since

� = 0, by Lemma 8, all its successors will have at least k + 1 states. There are
only k non-final states, so it follows that for every j with j ≥ $ k

n−k%n, the state
Rj is final. Therefore, the last non-final state was R� k

n−k �k−1. It follows that

a�
k

n−k �k−1 is the longest word not accepted by the DFA A′. By Proposition 1,
sc(L∗) = $ k

n−k %k − 1 + 2. ��
Now we will assert several dependencies between states of the DFA A′, and
derive an upper bound on the number of subsets reachable from its initial state,
that provides estimates on the state complexity.

Lemma 9. Let 0 ≤ i < j. Then for every non-negative integer m, we have
a) if Ri = Rj, then Ri+m = Rj+m,
b) if Ri ⊆ Rj, then Ri+m ⊆ Rj+m.

��
Proof. a) If Ri = Rj , then Ri+m = δ′(Ri, am) = δ′(Rj , am) = Rj+m.
b) If Ri ⊆ Rj , then Ri+m = δ′(Ri, am) ⊆ δ′(Ri, am) ∪ δ′(Rj \Ri, am) =
δ′(Rj , am) = Rj+m.

��
Corollary 1. Let i ≥ 0 and k ≥ 1. If Ri ⊆ Ri+k, then the DFA A′ has at most
k(n− 1) + i+ 1 reachable states.

Proof. By Lemma 9, we have a chain Ri ⊆ Ri+k ⊆ Ri+2k ⊆ · · · ⊆ Ri+(n−1)k.
Either one of these inclusions is an equality, or all of them are proper inclusions.
In the first case, we have a loop in A′ using less than k(n− 1) + i+ 1 subsets.

In the second case, since Ri is not empty, the set Ri+(n−1)k has at least n
elements. Hence Ri+(n−1)k = {0, 1, . . . , n− 1}, thus Ri+(n−1)k−1 ⊆ Ri+(n−1)k.

By Lemma 9b, with m equal to 1, we get Ri+(n−1)k ⊆ Ri+(n−1)k+1, and
so Ri+(n−1)k+1 = {0, 1, . . . , n − 1}. Therefore, with an obvious inductive step,
Ri+(n−1)k+m = {0, 1, . . . , n−1} for all non-negativem. It follows that the DFAA′

has at most i+ (n− 1)k + 1 reachable states. ��
Corollary 2. If k is a non-initial final state of A, then the DFA A′ has at most
k(n− 1) + 1 reachable states.

284 K. Čevorová

Proof. Let m = min{q | q �= 0 and q ∈ F}. Thus m ≤ k. Notice that we have
R0 = {0} ⊆ {0,m} = Rm. By Corollary 1, the DFA A′ has at most m(n− 1)+1
reachable states, and the lemma follows. ��

Corollary 3. Let 1 ≤ � < n, F \ {0} ⊆ [�, n − 1], and A = (n, �, F). Then the
DFA A′ for the language L(A)∗ has at most � + (n − �)(n − 1) + 1 reachable
states.

Proof. There is no ambiguity in a computation of NFA N after reading � − 1
symbols, thus R�−1 = {� − 1}. If � is not final, R� = {�} and from definition
of loop number, � ∈ Rn. Otherwise, if � is final, R� = {0, l}, but both 0 and
� are in Rn. Anyhow R� ⊆ Rn and by Corollary 1, the DFA A′ has at most
�+ (n− �)(n− 1) + 1 reachable states. ��

5 Gaps in Complexity Hierarchy for Unary Star

In this section we present our main result. We prove that there are two gaps in
the hierarchy of state complexities for unary star. The gaps are of linear length
and are close to the known tight upper bound (n − 1)2 + 1. Since this bound
follows directly from our previous observations, we provide the proof here.

Theorem 6 ([1, Theorem 5.3]). Let n ≥ 2 and let L be a unary regular
language with sc(L) = n. Then sc(L∗) ≤ (n− 1)2 + 1, and the bound is tight.

Proof. If the initial state of the minimal DFA for L is a unique final state, then
L = L∗, and sc(L∗) = n ≤ (n− 1)2 + 1.

Otherwise, there exists a final state k with 0 < k ≤ n− 1. By Corollary 2, the
DFA A′ for L∗ has at most k(n− 1) + 1 ≤ (n− 1)2 + 1 reachable states.

If n = 2, then the witness automaton is (2, 0, {0}). Otherwise, the witness
automaton is the cyclic automaton (n, 0, {n − 1}). Since gcd(n, n − 1) = 1, by
Theorem 3c star of its language has the state complexity (n − 2)n + 1 + 1 =
(n− 1)2 + 1. ��

Using previous sections, we would be able to show that various state complexities
of star of n-state unary languages are attainable. Since we are interested in high
complexities, the next result will be important for us.

Lemma 10. For every n ≥ 2, there is a unary language L such that sc(L) = n
and sc(L∗) = (n− 2)(n− 1) + 1.

Proof. If n = 2, then we can take the automaton (2, 1, {1}). Otherwise, consider
the unary automaton (n, 0, {0, n− 1}). Since 0 and n− 1 are subsequent states,
the loop is minimal. Because n− 1 does not divide n if n ≥ 3, by Theorem 4d,
we have sc(L∗) = n(n− 1)− (n− 1 + n) + 1 + 1 = (n− 1)(n− 2) + 1. ��

The next two theorems show that, with sparse exceptions, high state complexities
of star are unattainable.

Kleene Star on Unary Regular Languages 285

Theorem 7. Let n ≥ 3. There is no unary language L with sc(L) = n and
(n− 2)(n− 1) + 1 < sc(L∗) < (n− 1)2 + 1.

Proof. We will use two estimates from the section 4 to obtain necessary con-
ditions on minimal automaton A = (n, �, F) recognizing some language L with
sc(L∗) > (n− 2)(n− 1) + 1.

If 0 is the only final state, then L = L∗ and sc(L∗) = n < (n− 2)(n− 1) + 2.
Therefore, the automaton A has a final state k such that k ≥ 1. By Corollary 2,

the DFA A′ for L∗ has at most k(n− 1)+1 states. We must have k(n− 1)+1 >
(n−2)(n−1)+1, and since k < n, the only solution is k = n−1. Hence n−1 is the
only non-initial final state. It is inside the loop, so by Corollary 3, the DFA A′ has
at most �+(n−�)(n−1)+1 states. We need �+(n−�)(n−1)+1 > (n−1)(n−2)+1,
and therefore If n ≥ 4, then � ≤ 2. If n = 3, then � ≤ 2 as well since [2] = {0, 1, 2}.

These restrictions yield only six types of automata. The state complexities
of these candidates are in Table 1. If n ≥ 3, then none of them is in the range
[(n− 2)(n− 1) + 2, (n− 1)2] = [n2 − 3n+ 4, n2 − 2n+ 1]. ��

Theorem 8. Let n ≥ 6. Then there is no language L such that sc(L) = n and
n2 − 4n + 6 < sc(L∗) < n2 − 3n + 2. Furthermore, the number n2 − 3n + 2 is
attainable as the complexity of star if n is odd, and it is unattainable if n is even.

Proof. Similarly as in the previous proof, we can find the restrictions on the first
non-zero final state k and the loop number �. By Corollary 2 we have k ≥ n− 2.

First suppose there is a non-initial final state outside the loop. Since n − 2
is the smallest possible final state, we have only two such minimal automata:
(n, n − 1, {n − 2}) and (n, n − 1, {0, n − 2}). In both cases the star is (an−2)∗

with state complexity n− 2.
Thus we may assume that no non-initial state outside the loop is final. Then

by Corollary 3 we have � ≤ 3. This yields 24 different types of automata. Tables
1 and 2 summarize complexities of stars of types with single nonzero final state.
All of them could be get by direct use of Theorem 3 or 4.

Now consider automata with both states n−1 and n−2 final. Since n−1 and
n− 2 are final, all nonnegative linear combinations of n− 1 and n− 2 are in the
star. If � ∈ {1, 2}, using the loop does not add anything new to the star. Since
n− 1 and n− 2 are coprime if n ≥ 6, by 7b, the largest integer not representable

Table 1. The candidates for L with sc(L∗) > (n− 1)(n− 2) + 1

type of automata complexity by Th. notes

(n, 0, {n− 1}) n2 − 2n+ 2 3c if n ≥ 3, then n − 1 � n and
gcd(n, n− 1) = 1(n, 0, {0, n− 1}) n2 − 3n+ 3 4d

(n, 1, {n− 1})
n− 1

3b
(n, 1, {0, n− 1}) 4b not minimal

(n, 2, {n− 1})
n2 − 4n+ 6

3c if n ≥ 4, then n − 2 � n − 1 and
gcd(n− 1, n− 2) = 1(n, 2, {0, n− 1}) 4c

286 K. Čevorová

Table 2. Directly computable candidates for state complexity > n2 − 4n+ 6

Type of automata complexity by Th. notes

(n, 3, {n− 1}) if n is even n2 − 5n+ 8 3c for n > 5 is 	 = 3 ≤ n− 1
(n, 3, {0, n− 1}) if n is odd n2/2− 3n+ 15/2 4c and n− 3 � n− 1

(n, 0, {n− 2}) if n is even n2/2− 2n+ 3
3c

if n is odd n2 − 3n+ 2

(n, 0, {0, n− 2}) if n is even n2/2− 3n+ 5
4d

if n is odd n2 − 4n+ 4

(n, 1, {n− 2})
n2 − 4n+ 5

3c not minimal
(n, 1, {0, n− 2}) 4c

(n, 2, {n− 2})
n− 2

3b

not minimal
(n, 2, {0, n− 2}) 4b
(n, 3, {n− 2})

n2 − 6n+ 11
3c

(n, 3, {0, n− 2}) 4c

as their nonnegative linear combination is (n−1)(n−2)−(2n−3) = n2−5n+5. It

follows that an
2−5n+5 is the longest word that is not in the star. By Proposition 1,

the state complexity of the star is n2 − 5n+ 7.
The automata with � = 3 are “supersets” of the automata in the last two rows

of Table 2. Since these correspond to cofinite languages (since n − 2 and n − 3
are coprime), then by Lemma 1, their state complexity is at most n2 − 6n+ 11.

The automaton A = (n, 0, {n− 2, n − 1}) is a special case of Theorem 5 for
k = 2 and sc(L∗) = (n− 2)$n−2

2 %+ 1.
If n ≥ 6, then all obtained state complexities are at most n2 − 4n+ 5, except

for n2 − 3n+ 2 if n is odd. This completes our proof. ��

6 Connection to the Frobenius Problem

The problem of the state complexity of the star of a given unary language has
an interesting connection to the well-known Frobenius problem. There are no
results in this sections, but it shows our problem in different light.

The lengths of words in L∗ forms a subsemigroup of the semigroup of natu-
ral numbers with the operation of addition. A cofinite numerical semigroup is
called a numerical monoid. The maximal integer that is not a member of a given
numerical monoid is called its Frobenius number and is well defined. Since nu-
merical semigroups are finitely generated, this directly reflects our use of finite
languages with cofinite star.

The problem of finding the Frobenius number given a basis of a numerical
monoid is called the Frobenius problem (FP). An alternative formulation of
the FP is to find the greatest natural number, that cannot be expressed as a
non-negative linear combination of given natural numbers. Computing the state
complexity of cofinite languages is the same problem, but with special additional
constraints on coefficients. Exactly stated as follows.

Kleene Star on Unary Regular Languages 287

Let Ft = {t1, . . . , ti}, F� = {�1, . . . , �j} be sets of positive integers and let r

be a positive integer. Then f̃(Ft, F�, r) is the greatest integer not contained in
the numerical semigroup

G(Ft, F�, r) = {
i∑

k=1

cktk +

j∑
k=1

dk�k + ρ r | (ck, dk, ρ ≥ 0) ∧ (ρ = 0 ∨
j∑

k=0

dk > 0)}

Since solving FP for basis S is equivalent with computation of f̃(S,∅,∅), this
is a generalization of FP.

On the other hand, it could be reduced to FP for the cost of a more complex
basis. If we suppose, that �1 ≤ �k for all k, then one of basis of G(Ft, F�, r) is
{t1, . . . ti} ∪ {lk +mr| k ∈ [1, j],m ∈ [0, l1 − 1]}. As a consequence, f̃(Ft, F�, r)
is well defined iff gcd(Ft ∪ F� ∪ {r}) = 1.

For finite languages, we solve the classical FP. For an automaton with cofinite
star (n, �, {t1, . . . , ti} ∪ {�1, . . . �j}), where tk < � and �k ≥ �, we need to find

f̃({t1, . . . , ti}, {�1, . . . �j}, {n− �}). If the star is not cofinite, then the common
divisor of all lengths is nontrivial, and we proceed similarly as in Lemma 7.

We have seen, that results in the language of FP could be translated to the
language of the state complexity of unary star and vice versa. If we do this
with Theorem 5, we get a generalization of Roberts’s formula for FP with an
arithmetic sequence as a basis[8], but only for difference 1.

7 Conclusion

We studied the state complexity of unary languages obtained as Kleene star of
a language with state complexity n.

Fig. 2. Computations for n ≤ 18

288 K. Čevorová

We have shown, using mostly finite languages, that we can reach any value
from 1 to n as the state complexity of the star of an n-state unary language.
Computations indicates, that n is not a tight lower bound on ”attainable” num-
bers, and we assume that it could be improved significantly.

Next, we studied the range from n2− 4n+6 to the known tight upper bound
n2 − 2n+ 2 and we showed that the complexities n2 − 2n+ 2, n2 − 3n+ 3, and
n2− 4n+6 are reachable. Additionally, if n is odd, th complexity n2− 3n+2 is
also reachable. Our main result is, that all numbers in the studied range different
from these three values are not reachable. Investigating any broadening of this
interval would be probably hindered by problems with divisibility.

Fig. 2 illustrates these results on computations for unary languages with state
complexity at most 18. A dot indicates an existence of a language with given
properties, and its absence means that no such language exists. Lines indicate
significant non-magic numbers, dashed line non-magic numbers for odd n and
shaded area scope of our results.

Acknowledgement. I would like to thank to my supervisor Galina Jirásková
for her guidance and to the anonymous reviewers for many valuable remarks.

References

1. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

2. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999)

3. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of
DFAs that are equivalent to n-state NFAs. Theor. Comput. Sci. 237(1-2), 485–494
(2000)

4. Jirásková, G.: Magic numbers and ternary alphabet. Int. J. Found. Comput.
Sci. 22(2), 331–344 (2011)

5. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inf. Com-
put. 205(11), 1652–1670 (2007)

6. van Zijl, L.: Magic numbers for symmetric difference NFAs. Int. J. Found. Comput.
Sci. 16(5), 1027–1038 (2005)

7. Jirásková, G.: On the state complexity of complements, stars, and reversals of regular
languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442.
Springer, Heidelberg (2008)

8. Roberts, J.B.: Note on linear forms. Proceedings of the American Mathematical
Society 7(3), 465–469 (1956)

Author Index

Aaronson, Scott 172
Akl, Selim G. 217, 229
Antunes, Lúıs 172

Brzozowski, Janusz 30, 160

Câmpeanu, Cezar 1
Čevorová, Krist́ına 277
Cojocaru, Liliana 42

Drewes, Frank 14

Eom, Hae-Sung 54, 66, 78

Geffert, Viliam 90
Goč, Daniel 102

Han, Yo-Sub 54, 66, 78
Holzer, Markus 112

Jakobi, Sebastian 112, 124
Jirásková, Galina 54, 136

Ko, Sang-Ki 66
Kutrib, Martin 148

Li, Baiyu 160
Liu, David 30

Mäkinen, Erkki 42
Malcher, Andreas 90, 148
Masopust, Tomáš 136
McKenzie, Pierre 17
Meckel, Katja 90, 124
Mereghetti, Carlo 90, 124
Mota, Francisco 172
Mousavi, Hamoon 182
Myers, Rob 194

Okhotin, Alexander 205

Palano, Beatrice 90, 124
Palioudakis, Alexandros 102, 217, 229
Petersen, Holger 241
Pighizzini, Giovanni 253
Pisoni, Andrea 253

Salomaa, Kai 78, 102, 217, 229
Šebej, Juraj 265
Shallit, Jeffrey 182
Souto, André 172
Sutner, Klaus 18

Urbat, Henning 194

Wendlandt, Matthias 148

	Preface
	Organization
	Table of Contents
	Blum Static Complexity and Encoding Spaces
	1 Introduction
	2 Extending Complexity Spaces
	3 Defining the Complexity of Languages
	4 Conclusion and Future Work

	Millstream Systems and Graph Transformation for Complex Linguistic Models
	References

	Can Chimps Go It Alone?
	References

	Invertible Transductions and Iteration
	1 Iterating Transductions
	2 Transduction Groups and Knuth Normal Form
	2.1 Orbit Rationality
	2.2 Computing Iterates

	3 Timestamps and Coordinates
	4 Open Problems
	References

	Universal Witnesses for State Complexity of Boolean Operations and Concatenation Combined with Star
	1 Introduction
	2 Boolean Operations with One Starred Argument
	3 Boolean Operations with Two Starred Arguments
	4 Products with Starred Arguments
	4.1 The Language KL*
	4.2 The Language K*L
	4.3 The Language K*L*

	5 Star of Product
	6 Conclusions
	References

	Searching for Traces of Communication in Szilard Languages of Parallel Communicating Grammar Systems - Complexity Views
	1 Introduction
	2 SZLs of PCGSs - Prerequisites
	3 Szilard Languages of PCGSs - Complexity Results
	4 Further Remarks and Conclusions
	References

	State Complexity of Basic Operations on Non-returning Regular Languages
	1 Introduction
	2 Preliminaries
	3 Boolean Operations
	4 Catenation
	5 Reversal
	6 Kleene-Star
	7 Conclusions
	References

	State Complexity of Subtree-Free Regular Tree Languages
	1 Introduction
	2 Preliminaries
	3 Subtree-Free Regular Tree Language
	4 State Complexity of Concatenation
	4.1 Sequential Concatenation
	4.2 Parallel Concatenation

	5 State Complexity of Kleene-Star
	5.1 Bottom-Up Star
	5.2 Top-Down Star

	6 Intersection and Union
	7 Conclusions
	References

	State Complexity of k-Union and k-Intersection for Prefix-Free Regular Languages
	1 Introduction
	2 Preliminaries
	3 Union of k Prefix-Free Languages
	3.1 Construction of a DFA for $L1 \cup ·· · \cup L_k$
	3.2 The Upper Bound Cannot be Reached with a Fixed Alphabet
	3.3 Lower Bound with a Binary Alphabet
	3.4 Tight Lower Bound with Alphabet of Size k+1

	4 Intersection of k Prefix-Free Languages
	5 Conclusion
	References

	A Direct Construction of Finite State Automata for Pushdown Store Languages
	1 Introduction
	2 Preliminaries
	3 Constructing NFAs for Pushdown Store Languages
	4 Descriptional Optimality
	5 Universality
	References

	Nondeterministic State Complexity of Proportional Removals
	1 Introduction
	2 Preliminaries
	3 Upper Bounds
	4 Lower Bounds
	5 Conclusion
	References

	Nondeterministic Biautomata and Their Descriptional Complexity
	1 Introduction
	2 Preliminaries
	3 Conversions between Different Types of Biautomata
	4 From Finite Automata to Nondeterministic Biautomata
	5 From Syntactic Monoid to Nondeterministic Biautomata
	6 From Regular Expressions to Nondeterministic Biautomata
	7 Conclusions
	References

	Queue Automata of Constant Length
	1 Introduction
	2 Preliminaries: Adding Memory to Finite State Automata
	3 Comparing Queue and Finite State Automata
	4 The Cost of Determinizing Queue Automata
	5 Comparing Queue and Pushdown Automata
	6 Comparing Queue Automata and Straight Line Programs
	7 Concluding Remarks
	References

	On the State Complexity of the Reverse of R- and J-Trivial Regular Languages
	1 Introduction
	2 Preliminaries and Definitions
	3 R-Trivial Regular Languages
	4 J-Trivial Regular Languages
	5 Conclusions

	Size of Unary One-Way Multi-head Finite Automata
	1 Introduction
	2 Preliminaries and Definitions
	3 From k Heads to One Head
	4 From k Heads to One Head NFA
	5 From One Head NFA to k Head DFA
	6 Computational Complexity
	References

	Syntactic Complexity of R- and J-Trivial Regular Languages
	1 Introduction
	2 Preliminaries
	3 R-Trivial Regular Languages
	4 J-Trivial Regular Languages
	5 Conclusion
	References

	Sophistication as Randomness Deficiency
	1 Introduction
	2 Preliminaries
	2.1 Sophistication and Coarse Sophistication

	3 Naive Sophistication
	4 Comparing Sophistication Measures
	5 Relation to Lossy Compression
	6 Relation to Computational Depth
	7 Conclusion
	References

	Shortest Repetition-Free Words Accepted by Automata
	1 Introduction
	2 Notation
	3 Lower Bound
	4 Upper Bound for Overlap-Free Words
	References

	A Characterisation of NL/poly via Nondeterministic Finite Automata
	1 Introduction
	2 Nondeterministic Branching Programs
	3 From Stratified Nbps to Nfas
	4 Characterisation of NL/poly
	5 Applications
	References

	Improved Normal Form for Grammars with One-Sided Contexts
	1 Introduction
	2 Grammars with One-Sided Contexts
	3 Circular Dependencies between Substrings
	4 A Stronger Normal Form
	5 A Faster Parsing Algorithm
	6 Conclusion
	References

	Comparisons between Measures of Nondeterminism on Finite Automata
	1 Introduction
	2 Preliminaries
	3 Nondeterministic Trace
	3.1 Relating Trace and Other Measures of Nondeterminism
	3.2 Growth Rate of the Trace Function
	3.3 Converting Finite Trace NFAs to DFAs

	4 Conclusion and Open Problems

	Finite Nondeterminism vs. DFAs with Multiple Initial States
	1 Introduction
	2 Preliminaries
	2.1 Branching and Tree Width of an NFA

	3 Converting an NFA with Finite Branching to an MDFA
	4 Converting Finite Tree Width NFAs to MDFAs
	5 Conclusion
	References

	The Power of Centralized PC Systems of Pushdown Automata
	1 Introduction
	2 Preliminaries
	3 Results for General Centralized PCPA
	4 Results for Time-Bounded Centralized PCPA
	5 Discussion
	References

	Limited Automata and Regular Languages
	1 Introduction
	2 Preliminaries
	3 Converting 1-Limited Automata into Finite Automata
	4 The Witness Languages
	5 The Unary Case
	6 More than One Rewriting
	7 Conclusion
	References

	Reversal on Regular Languages and Descriptional Complexity
	1 Introduction
	2 Preliminaries
	3 Linear Alphabet
	4 Binary Alphabet
	References

	Kleene Star on Unary Regular Languages
	1 Introduction
	2 Preliminaries
	3 Lower Bound on Gaps in the Hierarchy of State Complexities
	4 State Complexity of Significant Classes of Automata
	5 Gaps in Complexity Hierarchy for Unary Star
	6 Connection to the Frobenius Problem
	7 Conclusion
	References

	Author Index

