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Abstract To make a decision, we must find out the user’s preference, and help
the user select an alternative which is the best—according to these preferences.
Traditional utility-based decision theory is based on a simplifying assumption that
for each two alternatives, a user can always meaningfully decide which of them is
preferable. In reality, often, when the alternatives are close, the user is often unable
to select one of these alternatives. In this chapter, we show how we can extend the
utility-based decision theory to such realistic (interval) cases.
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1 Introduction

To make a decision, we must:

• find out the user’s preference, and
• help the user select an alternative which is the best—according to these preferences.

Traditional utility-based decision theory is based on a simplifying assumption that
for each two alternatives A′ and A′′, a user can always meaningfully decide which
of them is preferable. In reality, often, when the alternatives are close, the user is
often unable to select one of these alternatives. How can we extend the utility-based
decision theory to such realistic cases?

In this chapter, we provide an overview of such an extension. This paper is struc-
tured as follows: first, we recall the main ideas and results of the traditional utility-
based decision theory. We then consider the case when in addition to deciding which
of the two alternatives is better, the user can also reply that he/she is unable to decide
between the two close alternatives; this leads to interval uncertainty.

V. Kreinovich (B)

Department of Computer Science, University of Texas at El Paso, 500 W. University,
El Paso, TX 79968, USA
e-mail: vladik@utep.edu

P. Guo and W. Pedrycz (eds.), Human-Centric Decision-Making Models 163
for Social Sciences, Studies in Computational Intelligence 502,
DOI: 10.1007/978-3-642-39307-5_8, © Springer-Verlag Berlin Heidelberg 2014



164 V. Kreinovich

Comment. Some of the results presented in this paper were previously reported at
conferences [1, 23].

2 Traditional Utility-Based Decision Theory: Brief Reminder

Following [8, 27, 35], let us describe the main ideas and results of the traditional
decision theory.

Main assumption behind the traditional utility-based decision theory. Let us
assume that for every two alternatives A′ and A′′, a user can tell:

• whether the first alternative is better for him/her; we will denote this by A′′ < A′;
• or the second alternative is better; we will denote this by A′ < A′′;
• or the two given alternatives are of equal value to the user; we will denote this by

A′ = A′′.

Comment. In mathematical terms, we assume that the preference relation < is a linear
(total) order; in economics, this property of the preference relation is also known as
completeness.

The notion of utility. Under the above assumption, we can form a natural numerical
scale for describing attractiveness of different alternatives. Namely, let us select a
very bad alternative A0 and a very good alternative A1, so that most other alternatives
are better than A0 but worse than A1.

Since we assumed that the alternatives between which we need to choose are
linearly ordered, there exists the best one—which can be selected as A1, and the
worst one—which can be selected as A0. However, since one of the main objectives
of this paper is to go beyond this simplifying linearity assumption, it is better to select
A1 and A0 beyond the available alternatives. For example, we can choose, as A1, an
alternative “I win a billion dollars”—we do not have this alternative in our decision,
but this alternative is easy to imagine. Similarly, as A0, we can select a really bad
alternative—and it is OK if this alternative is not a possible outcome of our current
decision-making process.

Then, for every probability p ∈ [0, 1], we can form a lottery L(p) in which we
get A1 with probability p and A0 with the remaining probability 1 − p.

When p = 0, this lottery simply coincides with the alternative A0: L(0) = A0.
The larger the probability p of the positive outcome increases, the better the result,
i.e., p′ < p′′ implies L(p′) < L(p′′). Finally, for p = 1, the lottery coincides with
the alternative A1: L(1) = A1. Thus, we have a continuous scale of alternatives L(p)

that monotonically goes from A0 to A1.
We have assumed that most alternatives A are better than A0 but worse than A1:

A0 < A < A1. Since A0 = L(0) and A1 = L(1), for such alternatives, we thus get
L(0) < A < L(1). We assumed that every two alternatives can be compared. Thus,
for each such alternative A, there can be at most one value p for which L(p) = A;
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for others, we have L(p) < A or L(p) > A. Due to monotonicity of L(p) and
transitivity of preference, if L(p) < A, then L(p′) < A for all p′ ≤ p; similarly,
if A < L(p), then A < L(p′) for all p′ > p. Thus, the supremum (= least upper
bound) u(A) of the set of all p for which L(p) < A coincides with the infimum (=
greatest lower bound) of the set of all p for which A < L(p). For p < u(A), we
have L(p) < A, and for for p > u(A), we have A < L(p). This value u(A) is called
the utility of the alternative A.

It may be possible that A is equivalent to L(u(A)); however, it is also possible
that A �= L(u(A)). However, the difference between A and L(u(A)) is extremely
small: indeed, no matter how small the value ε > 0, we have L(u(A) − ε) < A <

L(u(A) + ε). We will describe such (almost) equivalence by ≡, i.e., we write that
A ≡ L(u(A)).

How can we actually find utility values. The above definition of utility is somewhat
theoretical, but in reality, utility can be found reasonably fast by the following iterative
bisection procedure.

We want to find the probability u(A) for which L(u(A)) ≡ A. On each stage
of this procedure, we have the values u < u for which L(u) < A < L(u). In the
beginning, we have u = 0 and u = 1, with |u − u| = 1.

To find the desired probability u(A), we compute the midpoint ũ = u + u

2
and

compare the alternative A with the corresponding lottery L (̃u). Based on our assump-
tion, there are three possible results of this comparison:

• if the user concludes that L (̃u) < A, then we can replace the previous lower bound
u with the new one p̃;

• if the user concludes that A < L (̃u), then we can replace the original upper bound
u with the new one ũ;

• finally, if A = L (̃u), this means that we have found the desired probability u(A).

In this third case, we have found u(A), so the procedure stops. In the first two cases,
the new distance between the bounds u and u is the half of the original distance. By
applying this procedure k times, we get values u and u for which L(u) < A < L(u)

and |u − u| ≤ 2−k . One can easily check that the desired value u(A) is within the
interval [u, u], so the midpoint ũ of this interval is an 2−(k+1)-approximation to the
desired utility value u(A).

In other words, for any given accuracy, we can efficiently find the corresponding
approximation to the utility u(A) of the alternative A.

How to make a decision based on utility values. If we know the utilities u(A′)
and u(A′′) of the alternatives A′ and A′′, then which of these alternatives should we
choose?

By definition of utility, we have A′ ≡ L(u(A′)) and A′′ ≡ L(u(A′′)). Since
L(p′) < L(p′′) if and only if p′ < p′′, we can thus conclude that A′ is preferable to
A′′ if and only if u(A′) > u(A′′).

In other words, we should always select an alternative with the largest possible
value of utility.
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Comment. Interval techniques can help in finding the optimizing decision; see,
e.g., [28].

How to estimate utility of an action: why expected utility. To apply the above idea
to decision making, we need to be able to compute utility of different actions. For each
action, we usually know possible outcomes S1, . . . , Sn , and we can often estimate

the probabilities p1, . . . , pn ,
n
∑

i=1
pi = 1, of these outcomes. Let u(S1), . . . , u(Sn)

be utilities of the situations S1, . . . , Sn . What is then the utility of the action?
By definition of utility, each situation Si is equivalent (in the sense of the relation

≡) to a lottery L(u(Si )) in which we get A1 with probability u(Si ) and A0 with the
remaining probability 1−u(Si ). Thus, the action in which we get Si with probability
pi is equivalent to complex lottery in which:

• first, we select one of the situations Si with probability pi : P(Si ) = pi ;
• then, depending on the selected situation Si , we get A1 with probability u(Si ) and

A0 with probability 1 − u(Si ): P(A1 | Si ) = u(Si ) and P(A0 | Si ) = 1 − u(Si ).

In this complex lottery, we end up either with the alternative A1 or with the alternative
A0. The probability of getting A1 can be computed by using the complete probability
formula:

P(A1) =
n

∑

i=1

P(A1 | Si ) · P(Si ) =
n

∑

i=1

u(Si ) · pi .

Thus, the original action is equivalent to a lottery in which we get A1 with probability
n
∑

i=1
pi ·u(Si ) and A0 with the remaining probability. By definition of utility, this means

that the utility of our action is equal to
n
∑

i=1
pi · u(Si ).

In probability theory, this sum is known as the expected value of utility u(Si ).
Thus, we can conclude that the utility of each action is equal to its expected utility;
in other words, among several possible actions, we should select the one with the
largest value of expected utility.

Non-uniqueness of utility. The above definition of utility depends on a selection
of two alternatives A0 and A1. What if we select different alternatives A′

0 and A′
1?

How will utility change? In other words, if A is an alternative with utility u(A) in
the scale determined by A0 and A1, what is its utility u′(A) in the scale determined
by A′

0 and A′
1?

Let us first consider the case when A′
0 < A0 < A1 < A′

1. In this case, since A0 is
in between A′

0 and A′
1, there exists a probability u′(A0) for which A0 is equivalent

to a lottery L ′(u′(A0)) in which we get A′
1 with probability u′(A0) and A′

0 with the
remaining probability 1 − u′(A0). Similarly, there exists a probability u′(A1) for
which A1 is equivalent to a lottery L ′(u′(A1)) in which we get A′

1 with probability
u′(A1) and A′

0 with the remaining probability 1 − u′(A1).
By definition of the utility u(A), the original alternative A is equivalent to a lottery

in which we get A1 with probability u(A) and A0 with the remaining probability
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1 − u(A). Here, A1 is equivalent to the lottery L ′(u′(A1)), and A0 is equivalent to
the lottery L ′(u′(A0)). Thus, the alternative A is equivalent to a complex lottery, in
which:

• first, we select A1 with probability u(A) and A0 with probability 1 − u(A);
• then, depending on the selection Ai , we get A′

1 with probability u′(Ai ) and A′
0

with the remaining probability 1 − u′(Ai ).

In this complex lottery, we end up either with the alternative A′
1 or with the alternative

A′
0. The probability u′(A) = P(A′

1) of getting A′
1 can be computed by using the

complete probability formula:

u′(A) = P(A′
1) =P(A′

1 | A1) · P(A1) + P(A′
1 | A0) · P(A0) =

u′(A1) · u(A) + u′(A0) · (1 − u(A)) =
u(A) · (u′(A1) − u′(A0)) + u′(A0).

Thus, the original alternative A is equivalent to a lottery in which we get A′
1 with

probability u′(A) = u(A) · (u′(A1) − u′(A0)) + u′(A0). By definition of utility,
this means that the utility u′(A) of the alternative A in the scale determined by the
alternatives A′

0 and A′
1 is equal to u′(A) = u(A) · (u′(A1) − u′(A0)) + u′(A0).

Thus, in the case when A′
0 < A0 < A1 < A′

1, when we change the alterna-
tives A0 and A1, the new utility values are obtained from the old ones by a linear
transformation. In other cases, we can use auxiliary events A′′

0 and A′′
1 for which

A′′
0 < A0, A′

0 and A1, A′
1 < A′′

1. In this case, as we have proven, transformation
from u(A) to u′′(A) is linear and transformation from u′(A) to u′′(A) is also linear.
Thus, by combining linear transformations u(A) → u′′(A) and u′′(A) → u′(A), we
can conclude that the transformation u(A) → u′(A) is also linear.

So, in general, utility is defined modulo an (increasing) linear transformation
u′ = a · u + b, with a > 0.

Comment. So far, once we have selected alternatives A0 and A1, we have defined the
corresponding utility values u(A) only for alternatives A for which A0 < A < A1.
For such alternatives, the utility value is always a number from the interval [0, 1].

For other alternatives, we can define their utility u′(A) with respect to different
pairs A′

0 and A′
1, and then apply the corresponding linear transformation to re-scale

to the original units. The resulting utility value u(A) can now be an arbitrary real
number.

Subjective probabilities. In our derivation of expected utility, we assumed that we
know the probabilities pi of different outcomes. In practice, we often do not know
these probabilities, we have to rely on a subjective evaluation of these probabilities.
For each event E , a natural way to estimate its subjective probability is to compare
the lottery �(E) in which we get a fixed prize (e.g., $1) if the event E occurs and 0 is it
does not occur, with a lottery �(p) in which we get the same amount with probability
p. Here, similarly to the utility case, we get a value ps(E) for which �(E) is (almost)
equivalent to �(ps(E)) in the sense that �(ps(E) − ε) < �(E) < �(ps(E) + ε) for
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every ε > 0. This value ps(E) is called the subjective probability of the event E ;
see, e.g., [5, 25, 27, 37].

For each event E , we can efficiently find its subjective probability by using a
bisection procedure which is similar to how we can find utilities.

From the viewpoint of decision making, each event E is equivalent to an event
occurring with the probability ps(E). Thus, if an action has n possible outcomes
S1, . . . , Sn , in which Si happens if the event Ei occurs, then the utility of this action

is equal to
n
∑

i=1
ps(Ei ) · u(Si ).

3 Towards a More Realistic Way to Describe User Preference:
Interval Uncertainty

Beyond traditional utility-based decision making: towards a more realistic
description. Previously, we assumed that a user can always decide which of the
two alternatives A′ and A′′ is better:

• either A′ < A′′,
• or A′′ < A′,
• or A′ ≡ A′′.
In practice, a user is sometimes unable to meaningfully decide between the two
alternatives A′ and A′′; see, e.g., [9, 27]. We will denote this option by A′ ‖ A′′.

In mathematical terms, this means that the preference relation is no longer a total
(linear) order, it can be a partial order.

From utility to interval-valued utility. Similarly to the traditional utility-based
decision making approach, we can select two alternatives A0 < A1 and compare
each alternative A which is better than A0 and worse than A1 with lotteries L(p).
The main difference is that here, the supremum u(A) of all the values p for which
L(p) < A is, in general, smaller than the infimum u(A) of all the values p for which
A < L(p). Thus, for each alternative A, instead of a single value u(A) of the utility,
we now have an interval [u(A), u(A)] such that:

• if p < u(A), then L(p) < A;
• if p > u(A), then A < L(p); and
• if u(A) < p < u(A), then A ‖ L(p).

We will call this interval the utility of the alternative A.

How to efficiently elicit the interval-valued utility from the user. To elicit the
corresponding utility interval from the user, we can use a slightly modified version
of the above bisection procedure. At first, the procedure is the same as before: namely,
we produce a narrowing interval [u, u] for which L(u) < A < L(u).

We start with the interval [u, u] = [0, 1], and we repeatedly compute the midpoint

ũ = u + u

2
and compare A with L (̃u). If L (̃u) < A, we replace u with ũ; if A < L (̃u),
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we replace u with ũ. If we get A ‖ L( p̃), then we switch to the new second stage of
the iterative algorithm. Namely, now, we have two intervals:

• an interval [u1, u1] (which is currently equal to [u, ũ]) for which L(u1) < A and
L (̃u1) ‖ A, and

• an interval [u2, u2] (which is currently equal to [̃u, u]) for which L(u2) ‖ A and
A < L(u2).

Then, we perform bisection of each of these two intervals. For the first interval, we

compute the midpoint ũ1 = u1 + u1

2
, and compare the alternative A with the lottery

L (̃u1):

• if L (̃u1) < A, then we replace u1 with ũ1;
• if L (̃u1) ‖ A, then we replace u1 with ũ1.

As a result, after k iterations, we get the value u(A) with accuracy 2−k .

Similarly, for the second interval, we compute the midpoint ũ2 = u2 + u2

2
, and

compare the alternative A with the lottery L (̃u2):

• if L (̃u2) ‖ A, then we replace u2 with ũ2;
• if A < L (̃u2), then we replace u2 with ũ2.

As a result, after k iterations, we get the value u(A) with accuracy 2−k .

Comment. Similar to the case of exactly known utilities, when we replace alternatives
A0 and A1 with alternatives A′

0 and A′
1, the new values u′ and u′ are related to the

original values u and u by the same linear transformation u′ = a ·u+b: u′ = a ·u+b
and u′ = a · u + b.

Interval-valued subjective probability. Similarly, when we are trying to estimate
the probability of an event E , we no longer get a single value ps(E), we get an
interval [ps(E), ps(E)] of possible values of probability.

By using bisection, we can feasibly elicit the values ps(E) and ps(E); alternative
ways of eliciting interval-valued probabilities are described in [13, 14].

4 Decision Making Under Interval Uncertainty

Need for decision making under interval uncertainty. In the traditional utility-
based approach, for each alternative A, we produce a number u(A)—the utility of
this alternative. Then, an alternative A′ is preferable to the alternative A′′ if and only
if u(A′) > u(A′′).

How can we make a similar decision in situations when we only know interval-
valued utilities?

Comment. Several approaches have been proposed for such decision-making; for
example, several approaches for decision making under interval-valued probabilities
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are described and compared in [42]. In this chapter, we concentrate on approaches
which naturally extend the above utility approach.

How to make a decision under interval uncertainty: a natural idea. For each
possible decision d, we know the interval [u(d), u(d)] of possible values of utility.
Which decision shall we select? A seemingly natural idea is to select all decisions d0
that may be optimal, i.e., which are optimal for some function u(d) ∈ [u(d), u(d)].
There is a minor problem with this definition: that checking all possible functions
is not feasible. However, this problem is easy to solve, since this condition can be
reformulated in simpler equivalent terms.

Let us describe this reformulation.

Definition 1. Let D be a set; its elements will be called possible decisions. Let u
be a function that assigns, to each possible decision d ∈ D, an interval u(d) =
[u(d), u(d)]. A function u which maps D into real numbers is called a possible
utility function if u(d) ≤ u(d) ≤ u(d) for all d. We say that a decision d0 is possibly
optimal if u(d0) = max

d∈D
u(d) for some possible utility function u.

Proposition. A decision d0 is possibly optimal if and only if

u(d0) ≥ max
d

u(d).

Comment. This equivalent inequality is indeed easy to check.

Proof. If d0 is possibly optimal, then u(d0) ≥ u(d) for all d. Thus, from u(d0) ≥
u(d0) ≥ u(d) ≥ u(d), we conclude that u(d0) ≥ u(d) for all d. Hence, we get
u(d0) ≥ max

d
u(d).

Vice versa, suppose that u(d0) ≥ max
d

u(d), i.e., that u(d0) ≥ u(d) for all d. Then,

we can take the following possible utility function u: u(d0) = u(d0) and u(d) = u(d)

for all d �= d0. For this possible utility function, u(d0) ≥ u(d) for all d, so d0 is
indeed a possibly optimal decision. The equivalence is proven.

Comment. Interval computations can help in describing the range of all such d0; see,
e.g., [28].

Need for definite decision making. In practice, we would like to select one decision;
which one should be select?

At first glance, the situation may sound straightforward: if A′ ‖ A′′, it does
not matter whether we select A′ or A′′. However, this is not a good way to make
a decision. For example, let us assume that there is an alternative A about which
we know nothing. In this case, we have no reason to prefer A or L(p), so we have
A ‖ L(p) for all p. By definition of u(A) and u(A), this means that we have u(A) = 0
and u(A) = 1, i.e., the alternative A is characterized by the utility interval [0, 1].

In this case, the alternative A is indistinguishable both from a good lottery
L(0.999) (in which the good alternative A1 appears with probability 99.9 %) and
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from a bad lottery L(0.001) (in which the bad alternative A0 appears with probabil-
ity 99.9 %). If we recommend, to the user, that A is equivalent both to to L(0.999)

and L(0.001), then this user will feel comfortable exchanging his chance to play in
the good lottery with A, and then—following the same logic—exchanging A with a
chance to play in a bad lottery. As a result, following our recommendations, the user
switches from a very good alternative to a very bad one.

This argument does not depend on the fact that we assumed complete ignorance
about A. Every time we recommend that the alternative A is equivalent to L(p) and
L(p′) with two different values p < p′, we make the user vulnerable to a similar
switch from a better alternative L(p′) to a worse one L(p). Thus, there should be
only a single value p for which A can be reasonably exchanged with L(p).

In precise terms: we start with the utility interval [u(A), u(A)], and we need to
select a single utility value u for which it is reasonable to exchange the alternative
A with a lottery L(u). How can we find this value u?

How to make decisions under interval uncertainty: Hurwicz optimism-pessim-
ism criterion. The problem of decision making under such interval uncertainty was
first handled by the future Nobelist L. Hurwicz in [16].

We need to assign, to each interval [u, u], a utility value u(u, u).
No matter what value u we get from this interval, this value will be larger than or

equal to u and smaller than or equal to u. Thus, the equivalent utility value u(u, u)

must satisfy the same inequalities: u ≤ u(u, u) ≤ u. In particular, for u = 0 and

u = 1, we get 0 ≤ αH ≤ 1, where we denoted αH
def= u(0, 1).

We have mentioned that the utility is determined modulo a linear transformation
u′ = a · u + b. It is therefore reasonable to require that the equivalent utility does
not depend on what scale we use, i.e., that for every a > 0 and b, we have

u(a · a + b, a · u + b) = a · u(u, u) + b.

In particular, for u = 0 and u = 1, we get

u(b, a + b) = a · u(0, 1) + b = a · αH + b.

So, for every u and u, we can take b = u, a = u − u, and get

u(u, u) = u + αH · (u − u) = αH · u + (1 − αH ) · u.

This expression is called Hurwicz optimism-pessimism criterion, because:

• when αH = 1, we make a decision based on the most optimistic possible values
u = u;

• when αH = 0, we make a decision based on the most pessimistic possible values
u = u;

• for intermediate values αH ∈ (0, 1), we take a weighted average of the optimistic
and pessimistic values.
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So, if we have two alternatives A′ and A′′ with interval-valued utilities
[u(A′), u(A′)] and [u(A′′), u(A′′)], we recommend an alternative for which the
equivalent utility value is the largest. In other words, we recommend to select A′
if αH ·u(A′)+ (1−αH ) ·u(A′) > αH ·u(A′′)+ (1−αH ) ·u(A′′) and A′′ otherwise.

Which value αH should we choose? An argument in favor of αH = 0.5. Which
value αH should we choose?

To answer this question, let us take an event E about which we know nothing. For
a lottery L+ in which we get A1 if E and A0 otherwise, the utility interval is [0, 1],
thus, from a decision making viewpoint, this lottery should be equivalent to an event
with utility αH · 1 + (1 − αH ) · 0 = αH .

Similarly, for a lottery L− in which we get A0 if E and A1 otherwise, the utility
interval is [0, 1], thus, this lottery should also be equivalent to an event with utility
αH · 1 + (1 − αH ) · 0 = αH .

We can now combine these two lotteries into a single complex lottery, in which we
select either L+ or L− with equal probability 0.5. Since L+ is equivalent to a lottery
L(αH ) with utility αH and L− is also equivalent to a lottery L(αH ) with utility αH ,
the complex lottery is equivalent to a lottery in which we select either L(αH ) or
L(αH ) with equal probability 0.5, i.e., to L(αH ). Thus, the complex lottery has an
equivalent utility αH .

On the other hand, no matter what is the event E , in the above complex lottery,
we get A1 with probability 0.5 and A0 with probability 0.5. Thus, this complex
lottery coincides with the lottery L(0.5) and thus, has utility 0.5. So, we conclude
that αH = 0.5.

Comment. The fact that people with too optimistic attitude often make suboptimal
decisions is experimentally confirmed, e.g., in [15].

Which action should we choose? Suppose that an action has n possible outcomes
S1, . . . , Sn , with utilities

[u(Si ), u(Si )],

and probabilities [p
i
, pi ]. How do we then estimate the equivalent utility of this

action?
We know that each alternative is equivalent to a simple lottery with utility ui =

αH ·u(Si )+(1−αH )·u(Si ), and that for each i , the i-th event is—from the viewpoint
of decision making—equivalent to pi = αH · pi + (1 − αH ) · p

i
. Thus, from the

viewpoint of decision making, this action is equivalent to a situation in which we get
utility ui with probability pi . We know that the utility of such a situation is equal to

n
∑

i=1
pi · ui . Thus, the equivalent utility of the original action is equivalent to

n
∑

i=1

pi · ui =
n

∑

i=1

(αH · pi + (1 − αH ) · p
i
) · (αH · u(Si ) + (1 − αH ) · u(Si )).
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Comment. One can easily see that if we replace the selected values A0 and A1 with
A′

0 and A′
1, so that the utilities change linearly u → u′ = a · u + b, then the above

equivalent utility uequiv also changes according to the same linear transformation
u′

equiv = a · uequiv + b.

Discussion. We started with the situation in which a decision maker cannot decide
between A′ and A′′. In this case, it is possible that A′ is better, and it is also
possible that A′′ is better. In terms of interval-valued utilities [u(A′), u(A′)] and
[u(A′′), u(A′′)], this means that:

• there exists values u(A′) ∈ [u(A′), u(A′)] and u(A′′) ∈ [u(A′′), u(A′′)] for which
u(A′) > u(A′′), and

• there exists values u(A′) ∈ [u(A′), u(A′)] and u(A′′) ∈ [u(A′′), u(A′′)] for which
u(A′) < u(A′′).

In this case, the above approach recommends selecting one of the alternatives A′ and
A′′:

• we recommend to select A′ if

αH · u(A′) + (1 − αH ) · u(A′) ≥ αH · u(A′′) + (1 − αH ) · u(A′′);

• we recommend to select A′′ if

αH · u(A′) + (1 − αH ) · u(A′) < αH · u(A′′) + (1 − αH ) · u(A′′).

In this case, from the viewpoint of descriptive preference, we have uncertainty—we
cannot decide between A′ and A′′. In this case, we make a recommendation. The
recommended prescriptive (normative) preference will enable the user to make a
good decision in a situation when this user is unsure which decision is better—this
is exactly the type of situation in which user seek advise of specialists in decision
making.

Observation: the resulting decision depends on the level of detail. We make a
decision in a situation when we do not know the exact values of the utilities and
when we do not know the exact values of the corresponding probabilities. Clearly, if
gain new information, the equivalent utility may change. For example, if we know
nothing about an alternative A, then its utility is [0, 1] and thus, its equivalent utility
is αH . Once we narrow down the utility of A, e.g., to the interval [0.5, 0.9], we get
a different equivalent utility αH · 0.9 + (1 − αH ) · 0.5 = 0.5 + 0.4 · αH . On this
example, the fact that we have different utilities makes perfect sense.

However, there are other examples where the corresponding difference is not as
intuitively clear. Let us consider a situation in which, with some probability p, we
gain a utility u, and with the remaining probability 1 − p, we gain utility 0. If we
know the exact values of u and p, we can then compute the equivalent utility of this
situation as the expected utility value p · u + (1 − p) · 0 = p · u.
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Suppose now that we only know the interval [u, u] of possible values of utility
and the interval [p, p] of possible values of probability. Since the expression p · u
for the expected utility of this situation is an increasing function of both variables:

• the largest possible utility of this situation is attained when both p and u are the
largest possible: u = u and p = p, and

• the smallest possible utility is attained when both p and u are the smallest possible:
u = u and p = p.

In other words, the resulting amount of utility ranges from p · u to p · u.
If we know the structure of the situation, then, according to our derivation, this

situation has an equivalent utility

uk = (αH · p + (1 − αH ) · p) · (αH · u + (1 − αH ) · u)

(k for know). On the other hand, if we do not know the structure, if we only know that
the resulting utility is from the interval [p · u, p · u], then, according to the Hurwicz
criterion, the equivalent utility is equal to

ud = αH · p · u + (1 − αH ) · p · u

(d for don’t know). One can check that

ud − uk =

αH · p ·u+(1−αH )· p ·u−α2
H · p ·u−αH ·(1−αH )·(p ·u+ p ·u)−(1−αH )2 · p ·u =

αH · (1 − αH ) · p · u + αH · (1 − αH ) · p · u − αH · (1 − αH ) · (p · u + p · u) =

αH · (1 − αH ) · (p − p) · (u − u).

This difference is always positive, meaning that additional knowledge decreases the
utility of the situation. (This is maybe what the Book of Ecclesiastes means by “For
with much wisdom comes much sorrow”?)

Comment. A similar example has been recently described in [12].

5 From Intervals to Arbitrary Sets

In the ideal case, we know the exact situation s in all the detail, and we can thus
determine its utility u(s). Realistically, we have an imprecise knowledge, so instead
of a single situation s, we only know a set S of possible situations s. Thus, instead
of a single value of the utility, we only know that the actual utility belongs to the set
U = {u(s) : s ∈ S}. If this set U is an interval [u, u], then we can use the above
arguments to come up with its equivalent utility value αH · u + (1 − αH ) · u.
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What is U is a not an interval? For example, we can have a 2-point set U = {u, u}.
What is then the equivalent utility?

Let us first consider the case when the set U contains both its infimum u and
its supremum u. The fact that we only know the set of possible values and have
no other information means that any probability distribution on this set is possible
(to be more precise, it is possible to have any probability distribution on the set of
possible situations S, and this leads to the probability distribution on utilities). In
particular, for each probability p, it is possible to have a distribution in which we
have u with probability p and u with probability 1 − p. For this distribution, the
expected utility is equal to p · u + (1 − p) · u. When p goes from 0 to 1, these values
fill the whole interval [u, u]. Thus, every value from this interval is the possible value
of the expected utility. On the other hand, when u ∈ [u, u], the expected value of
the utility also belongs to this interval—no matter what the probability distribution.
Thus, the set of all possible utility values is the whole interval [u, u] and so, the
equivalent utility is equal to αH · u + (1 − αH ) · u.

When the infimum and/or supremum are not in the set U , then the set U contains
points as close to them as possible. Thus, the resulting set of possible values of utility
is as close as possible to the interval [u, u]—and so, it is reasonable to assume that
the equivalent utility is as close to u0 = αH · u + (1 − αH ) · u as possible—i.e.,
coincides with this value u0.

6 Beyond Interval and Set Uncertainty: Partial Information
About Probabilities

Formulation of the problem. In addition to the interval x, we may also have partial
information about the probabilities of different values x ∈ x. How can we describe
this partial information?

An exact probability distribution can be described, e.g., by its cumulative distri-
bution function (cdf) F(z) = Prob(x ≤ z). A partial information means that for
each z, instead of knowing the exact value F(z), we only know the bounds on F(z),
i.e., we only know the interval F(z) = [F(z), F(z)]. Such an interval-valued cdf
is known as a p-box; see, e.g., [7, 32]. Once we know the p-box, we consider all
possible distributions for which, for all z, we have F(z) ∈ F(z).

The problem is that there are many ways to represent a probability distribution,
and each leads to a different way to represent partial information. Which of these
ways should we choose?

Which is the best way to describe the corresponding probabilistic uncertainty?
One of the main objectives of data processing is to make decisions. A standard way
of making a decision is to select the action a for which the expected utility (gain)
is the largest possible. This is where probabilities are used: in computing, for every
possible action a, the corresponding expected utility. To be more precise, we usually
know, for each action a and for each actual value of the (unknown) quantity x , the
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corresponding value of the utility ua(x). We must use the probability distribution for
x to compute the expected value E[ua(x)] of this utility.

In view of this application, the most useful characteristics of a probability dis-
tribution would be the ones which would enable us to compute the expected value
E[ua(x)] of different functions ua(x).

Which representations are the most useful for this intended usage? General idea.
Which characteristics of a probability distribution are the most useful for computing
mathematical expectations of different functions ua(x)? The answer to this question
depends on the type of the function, i.e., on how the utility value u depends on the
value x of the analyzed parameter.

Smooth utility functions naturally lead to moments. One natural case is when the
utility function ua(x) is smooth. We have already mentioned, in the previous text,
that we usually know a (reasonably narrow) interval of possible values of x . So, to
compute the expected value of ua(x), all we need to know is how the function ua(x)

behaves on this narrow interval. Because the function is smooth, we can expand it
into Taylor series. Because the interval is narrow, we can consider only linear and
quadratic terms in this expansion and safely ignore higher-order terms: ua(x) ≈
c0 + c1 · (x − x0) + c2 · (x − x0)

2, where x0 is a point inside the interval. Thus,
we can approximate the expected value of this function by the expected value of the
corresponding quadratic expression: E[ua(x)] ≈ E[c0+c1 ·(x −x0)+c2 ·(x −x0)

2],
i.e., by the following expression: E[ua(x)] ≈ c0 +c1 · E[x − x0]+c2 · E[(x − x0)

2].
So, to compute the expectations of such utility functions, it is sufficient to know the
first and second moments of the probability distribution.

In particular, if we use, as the point x0, the average E[x], the second moment
turns into the variance of the original probability distribution. So, instead of the first
and the second moments, we can use the mean E and the variance V .

In decision making, non-smooth utility functions are common. In decision mak-
ing, not all dependencies are smooth. There is often a threshold x0 after which, say,
a concentration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical and/or physical analy-
sis. In this case, when we increase the value of this parameter, we see the drastic
increase in effect and hence, the drastic change in utility value. Sometimes, this
threshold simply comes from regulations. In this case, when we increase the value
of this parameter past the threshold, there is no drastic increase in effects, but there
is a drastic decrease of utility due to the necessity to pay fines, change technology,
etc. In both cases, we have a utility function which experiences an abrupt decrease
at a certain threshold value x0.

Non-smooth utility functions naturally lead to cumulative distribution functions
(cdfs). We want to be able to compute the expected value E[ua(x)] of a function
ua(x) which

• changes smoothly until a certain value x0,
• then drops it value and continues smoothly for x > x0.
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We usually know the (reasonably narrow) interval which contains all possible values
of x . Because the interval is narrow and the dependence before and after the threshold
is smooth, the resulting change in ua(x) before x0 and after x0 is much smaller than
the change at x0. Thus, with a reasonable accuracy, we can ignore the small changes
before and after x0, and assume that the function ua(x) is equal to a constant u+ for
x < x0, and to some other constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In this case, the desired expected
value E[u(0)

a (x)] coincides with the probability that x < x0, i.e., with the correspond-
ing value F(x0) of the cumulative distribution function (cdf). A generic function
ua(x) of this type, with arbitrary values u− and u+, can be easily reduced to this
simplest case, because, as one can easily check, ua(x) = u− + (u+ − u−) · u(0)(x)

and hence, E[ua(x)] = u− + (u+ − u−) · F(x0).
Thus, to be able to easily compute the expected values of all possible non-smooth

utility functions, it is sufficient to know the values of the cdf F(x0) for all possible x0.
Describing the cdf is equivalent to describing the inverse quantile function—a

function that assigns, to every possible probability p ∈ [0, 1], the value x = x(p)

for which F(x) = p. For example, the quantile corresponding to p = 0.5 is the
median of the probability distribution.

Summarizing: which statistical characteristics we select. Our analysis shows that
the most appropriate characteristics are the moments and the values of the cdf (or,
equivalently, the values of the quantiles).

Comment. How to estimate the values of the selected statistical characteristics? How
to propagate these values via data processing? For answers to these questions, see
[7, 32] and references therein.

7 What if We Cannot Even Elicit Interval-Valued Uncertainty:
Symmetry Approach

Case study. In some situations, it is difficult to elicit even interval-valued utilities.
As a case study, we consider the problem of selecting the best location for a meteo-
rological tower.

In many applications involving meteorology and environmental sciences, it is
important to measure fluxes of heat, water, carbon dioxide, methane and other trace
gases that are exchanged within the atmospheric boundary layer. Air flow in this
boundary layer consists of numerous rotating eddies, i.e., turbulent vortices of var-
ious sizes, with each eddy having horizontal and vertical components. To estimate
the flow amount at a given location, we thus need to accurately measure wind speed
(and direction), temperature, atmospheric pressure, gas concentration, etc., at dif-
ferent heights, and then process the resulting data. To perform these measurements,
researchers build up vertical towers equipped with sensors at different heights; these
tower are called Eddy flux towers.
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When selecting a location for the Eddy flux tower, we have several criteria to
satisfy; see, e.g., [2, 19].

• For example, the station should not be located too close to a road, so that the gas
flux generated by the cars does not influence our measurements of atmospheric
fluxes; in other words, the distance x1 to the road should be larger than a certain

threshold t1: x1 > t1, or y1
def= x1 − t1 > 0.

• Also, the inclination x2 at the station location should be smaller than a corre-
sponding threshold t2, because otherwise, the flux will be mostly determined by
this inclination and will not be reflective of the atmospheric processes: x2 < t2, or

y2
def= t2 − x2 > 0.

General case. In general, we have several such differences y1, . . . , yn all of which
have to be non-negative. For each of the differences yi , the larger its value, the better.
Based on the above, our problem is a typical setting for multi-criteria optimization;
see, e.g., [6, 38, 40].

Practical problem: reminder. We want to select the best location based on the values
of the differences y1, . . . , yn . For each of the differences yi , the larger its value, the
better.

Weighted average: a natural approach for solving multi-criterion optimization
problems, and limitations of this approach. The most widely used approach to
multi-criteria optimization is weighted average, where we assign weights w1, . . . ,

wn > 0 to different criteria yi and select an alternative for which the weighted
average w1 · y1 + . . . + wn · yn attains the largest possible value.

This approach has been used in many practical problems ranging from selecting
the lunar landing sites for the Apollo missions (see, e.g., [3]) to selecting landfill
sites (see, e.g., [10]).

In our problem, we have an additional requirement—that all the values yi must
be positive. Thus, we must only compare solutions with yi > 0 when selecting an
alternative with the largest possible value of the weighted average.

In general, the weighted average approach often leads to reasonable solutions of
the multi-criteria optimization problem. However, as we will show, in the presence
of the additional positivity requirement, the weighted average approach is not fully
satisfactory.

A practical multi-criteria optimization must take into account that measure-
ments are not absolutely accurate. In many practical application of the multi-
criterion optimization problem (in particular, in applications to optimal sensor
placement), the values yi come from measurements, and measurements are never
absolutely accurate. The results ỹi of the measurements are close to the actual
(unknown) values yi of the measured quantities, but they are not exactly equal to
these values. If:

• we measure the values yi with higher and higher accuracy and,
• based on the measurement results ỹi , we conclude that the alternative y =

(y1, . . . , yn) is better than some other alternative y′ = (y′
1, . . . , y′

n),
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then we expect that the actual alternative y is indeed either better than y′ or at least
of the same quality as y′. Otherwise, if we do not make this assumption, we will
not be able to make any meaningful conclusions based on real-life (approximate)
measurements.

The above natural requirement is not always satisfied for weighted average. Let
us show that for the weighted average, this “continuity” requirement is not satisfied
even in the simplest case when we have only two criteria y1 and y2. Indeed, let
w1 > 0 and w2 > 0 be the weights corresponding to these two criteria. Then, the
resulting strict preference relation � has the following properties:

• if y1 > 0, y2 > 0, y′
1 > 0, and y′

2 > 0, and w1 · y′
1 + w2 · y′

2 > w1 · y1 + w2 · y2,
then

y′ = (y′
1, y′

2) � y = (y1, y2); (1)

• if y1 > 0, y2 > 0, and at least one of the values y′
1 and y′

2 is non-positive, then

y = (y1, y2) � y′ = (y′
1, y′

2). (2)

Let us consider, for every ε > 0, the tuple y′(ε) def=
(

ε, 1 + w1

w2

)

, with y′
1(ε) = ε

and y′
2(ε) = 1 + w1

w2
, and also the comparison tuple y = (1, 1). In this case, for

every ε > 0, we have

w1 · y′
1(ε) + w2 · y′

2(ε) = w1 · ε + w2 + w2 · w1

w2
= w1 · (1 + ε) + w2 (3)

and
w1 · y1 + w2 · y2 = w1 + w2, (4)

hence y′(ε) � y. However, in the limit ε → 0, we have y′(0) =
(

0, 1 + w1

w2

)

, with

y′
1(0) = 0 and thus, y′(0) ≺ y.

Towards a more adequate approach to multi-criterion optimization. We want to
be able to compare different alternatives.

Each alternative is characterized by a tuple of n values y = (y1, . . . , yn), and
only alternatives for which all the values yi are positive are allowed. Thus, from the
mathematical viewpoint, the set of all alternatives is the set (R+)n of all the tuples
of positive numbers.

For each two alternatives y and y′, we want to tell whether y is better than y′ (we
will denote it by y � y′ or y′ ≺ y), or y′ is better than y (y′ � y), or y and y′ are
equally good (y′ ∼ y). These relations must satisfy natural properties. For example,
if y is better than y′ and y′ is better than y′′, then y is better than y′′. In other words, the
relation � must be transitive. Similarly, the relation ∼ must be transitive, symmetric,
and reflexive (y ∼ y), i.e., in mathematical terms, an equivalence relation.
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So, we want to define a pair of relations � and ∼ such that � is transitive, ∼ is
an equivalence relation, and for every y and y′, one and only one of the following
relations hold: y � y′, y′ � y, or y ∼ y′.

It is also reasonable to require that if each criterion is better, then the alternative
is better as well, i.e., that if yi > y′

i for all i , then y � y′.

Comment. Pairs of relations of the above type can be alternatively characterized by
a pre-ordering relation

y′ � y ⇔ (y′ � y ∨ y′ ∼ y). (5)

This pre-ordering relation must be transitive and—in our case—total (i.e., for every
y and y′, we have y � y′ ∨ y′ � y). Once we know the pre-ordering relation �, we
can reconstruct � and ∼ as follows:

y′ � y ⇔ (y′ � y & y �� y′); (6)

y′ ∼ y ⇔ (y′ � y & y � y′). (7)

Scale invariance: motivation. In general, the quantities yi describe completely dif-
ferent physical notions, measured in completely different units. In our meteorological
case, some of these values are wind velocities measured in meters per second, or in
kilometers per hour, or in miles per hour. Other values are elevations described
in meters, in kilometers, or in feet, etc. Each of these quantities can be described in
many different units. A priori, we do not know which units match each other, so it is
reasonable to assume that the units used for measuring different quantities may not
be exactly matched.

It is therefore reasonable to require that the relations � and ∼ between the two
alternatives y = (y1, . . . , yn) and y′ = (y′

1, . . . , y′
n) do not change if we simply

change the units in which we measure each of the corresponding n quantities.

Comment. The importance of such invariance is well known in measurements theory,
starting with the pioneering work of S. S. Stevens [41]; see also the classical books
[34] and [26] (especially Chap. 22), where this invariance is also called meaningful-
ness.

Scale invariance: towards a precise description. When we replace a unit in which
we measure a certain quantity q by a new measuring unit which is λ > 0 times
smaller, then the numerical values of this quantity increase by a factor of λ, i.e.,
q → λ ·q. For example, 1 cm is λ = 100 times smaller than 1 m, so the length q = 2
m, when measured in cm, becomes λ · q = 2 · 100 = 200 cm.

Let λi denote the ratio of the old to the new units corresponding to the i-th
quantity. Then, the quantity that had the value yi in the old units will be described
by a numerical value λi · yi in the new units. Therefore, scale-invariance means that
for all y, y′ ∈ (R+)n and for all λi > 0, we have

y′ = (y′
1, . . . , y′

n) � y = (y1, . . . , yn) ⇒ (λ1·y′
1, . . . , λn ·y′

n) � (λ1·y1, . . . , λn ·yn)
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and

y′ = (y′
1, . . . , y′

n)∼ y = (y1, . . . , yn) ⇒ (λ1·y′
1, . . . , λn ·y′

n) ∼ (λ1·y1, . . . , λn ·yn).

Comment. In general, in measurements, in addition to changing the unit, we can also
change the starting point. However, for the differences yi , the starting point is fixed
by the fact that 0 corresponds to the threshold value. So, in our case, only changing
a measuring unit (= scaling) makes sense.

Continuity. As we have mentioned in the previous section, we also want to require
that the relations � and ∼ are continuous in the following sense: if y′(ε) � y(ε) for
every ε, then in the limit, when y′(ε) → y′(0) and y(ε) → y(0) (in the sense of
normal convergence in Rn), we should have y′(0) � y(0).

The main result. Let us now describe our requirements in precise terms.

Definition 2. By a total pre-ordering relation on a set Y , we mean a pair of a tran-
sitive relation � and an equivalence relation ∼ for which, for every y, y′ ∈ Y , one
and only one of the following relations hold: y � y′, y′ � y, or y ∼ y′.

Comment. We will denote y � y′ def= (y � y′ ∨ y ∼ y′).

Definition 3. We say that a total pre-ordering is non-trivial if there exist y and y′
for which y′ � y.

Comment. This definition excludes the trivial pre-ordering in which every two tuples
are equivalent to each other.

Definition 4. We say that a total pre-ordering relation on the set (R+)n is:

• monotonic if y′
i > yi for all i implies y′ � y;

• scale-invariant if for all λi > 0:
• (y′

1, . . . , y′
n) � y = (y1, . . . , yn) implies

(λ1 · y′
1, . . . , λn · y′

n) � (λ1 · y1, . . . , λn · yn), (8)

and
• (y′

1, . . . , y′
n) ∼ y = (y1, . . . , yn) implies

(λ1 · y′
1, . . . , λn · y′

n) ∼ (λ1 · y1, . . . , λn · yn). (9)

• continuous if whenever we have a sequence y(k) of tuples for which y(k) � y′ for
some tuple y′, and the sequence y(k) tends to a limit y, then y � y′.

Theorem [20] Every non-trivial monotonic scale-invariant continuous total pre-
ordering relation on (R+)n has the following form:
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y′ = (y′
1, . . . , y′

n) � y = (y1, . . . , yn) ⇔
n

∏

i=1

(y′
i )

αi >

n
∏

i=1

yαi
i ; (10)

y′ = (y′
1, . . . , y′

n) ∼ y = (y1, . . . , yn) ⇔
n

∏

i=1

(y′
i )

αi =
n

∏

i=1

yαi
i , (11)

for some constants αi > 0.

Comment. In other words, for every non-trivial monotonic scale-invariant continuous
total pre-ordering relation on (R+)n , there exist values α1 > 0, . . . , αn > 0 for which
the above equivalence hold. Vice versa, for each set of values α1 > 0, . . . , αn > 0, the
above formulas define a monotonic scale-invariant continuous pre-ordering relation
on (R+)n .

For reader’s convenience, the proof of the main result is presented in an Appendix.
It is worth mentioning that the resulting relation coincides with Cobb-Douglas

production (utility) function [4, 43] and with the asymmetric version (see, e.g., [36])
of the bargaining solution proposed by the Nobelist John Nash (see next section).

Applications. We have applied this approach to selecting a site for the Eddy tower
that we built at Jornada Experimental Range, a study site in the northern Chihuahuan
Desert; see, e.g., [17, 18]. In this applications, the parameters yi have already been
identified in the previous research; see, e.g., [2].

The values αi were selected based on the information provided by experts, who
supplied us with pairs of (approximately) equally good (or equally bad) designs y
and y′ with different combinations of the parameters yi . Each resulting resulting

condition
n
∏

i=1
yαi

i =
n
∏

i=1
(y′

i )
αi can be equivalently described, after taking logarithms

of both sides, as a linear equation
n
∑

i=1
αi · ln(yi ) =

n
∑

i=1
αi · ln(y′

i ). By solving this

system of linear equations, we found the values αi that reflect the expert opinion on
the efficiency of Eddy towers.

A similar symmetry-based approach was used to design a network of radiotele-
scopes [24].

Comment. The above equations determine αi modulo a multiplicative constant: if
we multiply all the values αi by the same constant, the equations remain valid. To
avoid this non-uniqueness, we used normalized values of αi , i.e., values that satisfy

the additional normalizing equation
n
∑

i=1
αi = 1.
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8 Group Decision Making

Need for group decision making. In many practical situations, several people are
affected by the planned decision. In such situations, we need to take into account
preferences of all the participating agents.

For each participant Pi , we can determine the utility ui j
def= ui (A j ) of all the

alternatives A1, . . . , Am . How to transform these utilities into a reasonable group
decision rule?

Nash’s bargaining solution. The answer to this question was, in effect, provided
by a future Nobelist John Nash who, in [30, 31], has shown that under reasonable
assumptions like symmetry, independence from irrelevant alternatives, and scale
invariance (i.e., invariance under replacing the original utility function ui (A) with an
equivalent function a ·ui (A)), the only group decision rule is selecting an alternative
A for which the product

u(A)
def=

n
∏

i=1

ui (A)

is the largest possible; see also [27, 29].
Here, the utility functions must be scaled in such a way that the “status quo”

situation A(0) is assigned the utility 0. This re-scaling can be achieved, e.g., by

replacing the original utility values ui (A) with re-scaled values u′
i (A)

def= ui (A) −
ui (A(0)).

Multi-agent decision making under interval uncertainty. What if we do not know
the exact values of utility, we only know intervals [ui (A), ui (A)]? In this case, the first
idea is to find all A0 which can be Nash-optimal, i.e., for which u(A0) ≥ max

A
u(A),

where

u(A)
def=

n
∏

i=1

ui (A)and u(A)
def=

n
∏

i=1

ui (A).

If we want to select a single alternative, then we should maximize uequiv(A)
def=

n
∏

i=1
uequiv

i (A), where uequiv
i (A) are values obtained by using Hurwicz optimism-

pessimism criterion.

Comment. An interesting aspect of this problem is that sometimes, we have a conflict
situation; this happens, for example, in security situations. In such situations, only
partial results are known; see, e.g., [21].
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9 Beyond Optimization

Need to go beyond optimization. While optimization problems are ubiquitous,
sometimes, we need to go beyond optimization: e.g., we need to make sure that the
system is controllable for all disturbances within a given range.

In control situations, the desired value z depends both on the variables the variables
that we can select (control variables) u = (u1, . . . , um) and on the variables x =
(x1, . . . , xn) describing the changing state of the world: z = f (x, u). For each control
variable u j , we know the range U j within which we can select its value, and for each
variable xi , we know the range Xi of its possible values. We want to find a range
Z for which, for every state of the world xi ∈ Xi , we can get z ∈ Z by selecting
appropriate control values u j ∈ U j :

∀x ∃u (z = f (x, u) ∈ Z).

Interval computations: reminder. Interval computations [28] can be viewed as a
degenerate case of this control problem in which there are no controls at all. In this
case:

• we know the intervals X1, . . . , Xn containing x1, . . . , xn ;
• we know that a quantity z depends on x : z = f (x);
• we want to find the range Z of possible values of z:

Z =
[

min
x∈X

f (x), max
x∈X

f (x)

]

.

In logical terms, we want to make sure that ∀x (z = f (x) ∈ Z).

Reformulation in logical terms—of modal intervals. In the general control case,
we want to make sure that ∀x∈X ∃u∈U ( f (x, u) ∈ Z). There is a logical difference
between intervals X and U : the property f (x, u) ∈ Z must hold

• for all possible values xi ∈ Xi , but
• for some values u j ∈ U j .

We can thus consider pairs of intervals and quantifiers (modal intervals [11]):

• each original interval Xi is a pair 〈Xi ,∀〉, while
• controlled interval is a pair 〈U j , ∃〉.
We can then treat the resulting interval Z as the “range” defined over such modal
intervals:

Z = f (〈X1,∀〉, . . . , 〈Xn,∀〉, 〈U1, ∃〉, . . . , 〈Um, ∃〉).

Even further beyond optimization. In more complex situations, we need to go
beyond control. For example, in the presence of an adversary, we want to make a
decision x such that:
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• for every possible reaction y of an adversary,
• we will be able to make a next decision x ′ (depending on y)
• so that after every possible next decision y′ of an adversary,
• the resulting state s(x, y, x ′, y′) will be in the desired set:

∀y ∃x ∀y′ (s(x, y, x ′, y′) ∈ S).

In this case, we arrive at general quantifier classes described, e.g., in [39].
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A Proof of the Theorem

1◦. Due to scale-invariance (9), for every y1, …, yn , y′
1, …, y′

n , we can take λi = 1

yi
and conclude that

(y′
1, . . . , y′

n) ∼ (y1, . . . , yn) ⇔
(

y′
1

y1
, . . . ,

y′
n

yn

)

∼ (1, . . . , 1). (12)

Thus, to describe the equivalence relation ∼, it is sufficient to describe the set of all
the vectors z = (z1, . . . , zn) for which z ∼ (1, . . . , 1). Similarly,

(y′
1, . . . , y′

n) � (y1, . . . , yn) ⇔
(

y′
1

y1
, . . . ,

y′
n

yn

)

� (1, . . . , 1). (13)

So, to describe the ordering relation �, it is sufficient to describe the set of all the
vectors z = (z1, . . . , zn) for which z � (1, . . . , 1).

Alternatively, we can take λi = 1

y′
i

and conclude that

(y′
1, . . . , y′

n) � (y1, . . . , yn) ⇔ (1, . . . , 1) �
(

y1

y′
1
, . . . ,

yn

y′
n

)

. (14)

Thus, it is also sufficient to describe the set of all the vectors z = (z1, . . . , zn) for
which (1, . . . , 1) � z.

2◦. The above equivalence involves division. To simplify the description, we can
take into account that in the logarithmic space, division becomes a simple difference:

ln

(

y′
i

yi

)

= ln(y′
i ) − ln(yi ). To use this simplification, let us consider the logarithms
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Yi
def= ln(yi ) of different values. In terms of these logarithms, the original values

can be reconstructed as yi = exp(Yi ). In terms of these logarithms, we thus need to
consider:

• the set S∼ of all the tuples Z = (Z1, . . . , Zn) for which

z = (exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1), (15)

and
• the set S� of all the tuples Z = (Z1, . . . , Zn) for which

z = (exp(Z1), . . . , exp(Zn)) � (1, . . . , 1). (16)

We will also consider the set S≺ of all the tuples Z = (Z1, . . . , Zn) for which

(1, . . . , 1) � z = (exp(Z1), . . . , exp(Zn)). (17)

Since the pre-ordering relation is total, for every tuple z,

• either z ∼ (1, . . . , 1),
• or z � (1, . . . , 1),
• or (1, . . . , 1) � z.

In particular, this is true for z = (exp(Z1), . . . , exp(Zn)). Thus, for every tuple Z ,
either Z ∈ S∼ or Z ∈ S� or Z ∈ S≺.

3◦. Let us prove that the set S∼ is closed under addition, i.e., that if the tuples Z =
(Z1, . . . , Zn) and Z ′ = (Z ′

1, . . . , Z ′
n) belong to the set S∼, then their component-

wise sum
Z + Z ′ = (Z1 + Z ′

1, . . . , Zn + Z ′
n) (18)

also belongs to the set S∼.
Indeed, by definition (15) of the set S∼, the condition Z ∈ S∼ means that

(exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1). (19)

Using scale-invariance (9) with λi = exp(Z ′
i ), we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ∼ (exp(Z ′
1), . . . , exp(Z ′

n)). (20)

On the other hand, the condition Z ′ ∈ S∼ means that

(exp(Z ′
1), . . . , exp(Z ′

n)) ∼ (1, . . . , 1). (21)

Thus, due to transitivity of the equivalence relation ∼, we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ∼ (1, . . . , 1). (22)
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Since for every i , we have exp(Zi ) · exp(Z ′
i ) = exp(Zi + Z ′

i ), we thus conclude that

(exp(Z1 + Z ′
1), . . . , exp(Zn + Z ′

n)) ∼ (1, . . . , 1). (23)

By definition (15) of the set S∼, this means that the tuple Z + Z ′ belongs to the
set S∼.

4◦. Similarly, we can prove that the set S� is closed under addition, i.e., that if the
tuples Z = (Z1, . . . , Zn) and Z ′ = (Z ′

1, . . . , Z ′
n) belong to the set S�, then their

component-wise sum

Z + Z ′ = (Z1 + Z ′
1, . . . , Zn + Z ′

n) (24)

also belongs to the set S�.
Indeed, by definition (16) of the set S�, the condition Z ∈ S� means that

(exp(Z1), . . . , exp(Zn)) � (1, . . . , 1). (25)

Using scale-invariance (8) with λi = exp(Z ′
i ), we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) � (exp(Z ′
1), . . . , exp(Z ′

n)). (26)

On the other hand, the condition Z ′ ∈ S� means that

(exp(Z ′
1), . . . , exp(Z ′

n)) � (1, . . . , 1). (27)

Thus, due to transitivity of the strict preference relation �, we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) � (1, . . . , 1). (28)

Since for every i , we have exp(Zi ) · exp(Z ′
i ) = exp(Zi + Z ′

i ), we thus conclude that

(exp(Z1 + Z ′
1), . . . , exp(Zn + Z ′

n)) � (1, . . . , 1). (29)

By definition (16) of the set S�, this means that the tuple Z + Z ′ belongs to the
set S�.

5◦. A similar argument shows that the set S≺ is closed under addition, i.e., that if the
tuples Z = (Z1, . . . , Zn) and Z ′ = (Z ′

1, . . . , Z ′
n) belong to the set S≺, then their

component-wise sum

Z + Z ′ = (Z1 + Z ′
1, . . . , Zn + Z ′

n) (30)

also belongs to the set S≺.
6◦. Let us now prove that the set S∼ is closed under the “unary minus” operation, i.e.,

that if Z = (Z1, . . . , Zn) ∈ S∼, then −Z
def= (−Z1, . . . ,−Zn) also belongs to S∼.
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Indeed, Z ∈ S∼ means that

(exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1). (31)

Using scale-invariance (9) with λi = exp(−Zi ) = 1

exp(Zi )
, we conclude that

(1, . . . , 1) ∼ (exp(−Z1), . . . , exp(−Zn)), (32)

i.e., that −Z ∈ S∼.

7◦. Let us prove that if Z = (Z1, . . . , Zn) ∈ S�, then −Z
def= (−Z1, . . . ,−Zn)

belongs to S≺.
Indeed, Z ∈ S� means that

(exp(Z1), . . . , exp(Zn)) � (1, . . . , 1). (33)

Using scale-invariance (8) with λi = exp(−Zi ) = 1

exp(Zi )
, we conclude that

(1, . . . , 1) � (exp(−Z1), . . . , exp(−Zn)), (34)

i.e., that −Z ∈ S≺.
Similarly, we can show that if Z ∈ S≺, then −Z ∈ S�.

8◦. From Part 3 of this proof, it now follows that if Z = (Z1, . . . , Zn) ∈ S∼, then
Z + Z ∈ S∼, then that Z + (Z + Z) ∈ S∼, etc., i.e., that for every positive integer
p, the tuple

p · Z = (p · Z1, . . . , p · Zn) (35)

also belongs to the set S∼.
By using Part 6 of this proof, we can also conclude that this is true for negative

integers p as well. Finally, by taking into account that the zero tuple 0
def= (0, . . . , 0)

can be represented as Z + (−Z), we conclude that 0 · Z = 0 also belongs to the
set S∼.

Thus, if a tuple Z belongs to the set S∼, then for every integer p, the tuple p · Z
also belongs to the set S∼.
9◦. Similarly, from Parts 4 and 5 of this proof, it follows that

• if Z = (Z1, . . . , Zn) ∈ S�, then for every positive integer p, the tuple p · Z also
belongs to the set S�, and

• if Z = (Z1, . . . , Zn) ∈ S≺, then for every positive integer p, the tuple p · Z also
belongs to the set S≺.

10◦. Let us prove that for every rational number r = p

q
, where p is an integer and

q is a positive integer, if a tuple Z belongs to the set S∼, then the tuple r · Z also
belongs to the set S∼.
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Indeed, according to Part 8, Z ∈ S∼ implies that p · Z ∈ S∼.
According to Part 2, for the tuple r · Z , we have either r · Z ∈ S∼, or r · Z ∈ S�,

or r · Z ∈ S≺.

• If r · Z ∈ S�, then, by Part 9, we would get p · Z = q · (r · Z) ∈ S�, which
contradicts our result that p · Z ∈ S∼.

• Similarly, if r · Z ∈ S≺, then, by Part 9, we would get p · Z = q · (r · Z) ∈ S≺,
which contradicts our result that p · Z ∈ S∼.

Thus, the only remaining option is r · Z ∈ S∼. The statement is proven.
11◦. Let us now use continuity to prove that for every real number x , if a tuple Z
belongs to the set S∼, then the tuple x · Z also belongs to the set S∼.

Indeed, a real number x can be represented as a limit of rational numbers: r (k) →
x . According to Part 10, for every k, we have r (k) · Z ∈ S∼, i.e., the tuple

Z (k) def= (exp(r (k) · Z1), . . . , exp(r (k) · Zn)) ∼ (1, . . . , 1). (36)

In particular, this means that Z (k) � (1, . . . , 1). In the limit,

Z (k) → (exp(x · Z1), . . . , exp(x · Zn)) � (1, . . . , 1). (37)

By definition of the sets S∼ and S�, this means that x · Z ∈ S∼ or x · Z ∈ S�.
Similarly, for −(x · Z) = (−x) · Z , we conclude that −x · Z ∈ S∼ or

(−x) · Z ∈ S�. (38)

If we had x · Z ∈ S�, then by Part 7 we would get (−x) · Z ∈ S≺, a contradiction.
Thus, the case x · Z ∈ S� is impossible, and we have x · Z ∈ S∼. The statement is
proven.
12◦. According to Parts 3 and 11, the set S∼ is closed under addition and under

multiplication by an arbitrary real number. Thus, if tuples Z , . . . , Z ′ belong to the
set S∼, their arbitrary linear combination x · Z + . . . + x ′ · Z ′ also belongs to the set
S∼. So, the set S∼ is a linear subspace of the n-dimensional space of all the tuples.
13◦. The subspace S∼ cannot coincide with the entire n-dimensional space, because
then the pre-ordering relation would be trivial. Thus, the dimension of this subspace
must be less than or equal to n − 1. Let us show that the dimension of this subspace
is n − 1.

Indeed, let us assume that the dimension is smaller than n − 1. Since the pre-
ordering is non-trivial, there exist tuples y = (y1, . . . , yn) and y′ = (y′

1, . . . , y′
n)

for which y � y′ and thus, Z = (Z1, . . . , Zn) ∈ S�, where Zi = ln

(

yi

y′
i

)

. From

Z ∈ S�, we conclude that −Z ∈ S≺.
Since the linear space S∼ is a less than (n − 1)-dimensional subspace of an

n-dimensional linear space, there is a path connecting Z ∈ S� and −Z ∈ S≺ which
avoids S∼. In mathematical terms, this path is a continuous mapping γ : [0, 1] → Rn
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for which γ (0) = Z and γ (1) = −Z . Since this path avoids S∼, every point γ (t) on
this path belongs either to S� or to S≺.

Let t denote the supremum (least upper bound) of the set of all the values t for
which γ (t) ∈ S�. By definition of the supremum, there exists a sequence t (k) → t
for which γ

(

t (k)
) ∈ S�. Similarly to Part 11, we can use continuity to prove that in

the limit, γ
(

t
) ∈ S� or γ

(

t
) ∈ S∼. Since the path avoids the set S∼, we thus get

γ
(

t
) ∈ S�.

Similarly, since γ (1) �∈ S�, there exists a sequence t (k) ↓ t for which γ
(

t (k)
) ∈

S≺. We can therefore conclude that in the limit, γ
(

t
) ∈ S� or γ (t) ∈ S∼—a

contradiction with our previous conclusion that γ
(

t
) ∈ S�.

This contradiction shows that the linear space S∼ cannot have dimension smaller
than n − 1 and thus, that this space have dimension n − 1.
14◦. Every (n − 1)-dimensional linear subspace of an n-dimensional superspace

separates the superspace into two half-spaces. Let us show that one of these half-
spaces is S� and the other is S≺.

Indeed, if one of the subspaces contains two tuples Z and Z ′ for which Z ∈ S�
and Z ′ ∈ S≺, then the line segment γ (t) = t · Z + (1 − t) · Z ′ containing these two
points also belongs to the same subspace, i.e., avoids the set S∼. Thus, similarly to
Part 13, we would get a contradiction.

So, if one point from a half-space belongs to S�, all other points from this subspace
also belong to the set S�. Similarly, if one point from a half-space belongs to S≺, all
other points from this subspace also belong to the set S≺.
15◦. Every (n − 1)-dimensional linear subspace of an n-dimensional space has the
form

α1 · Z1 + . . . + αn · Zn = 0 (39)

for some real values αi , and the corresponding half-spaces have the form

α1 · Z1 + . . . + αn · Zn > 0 (40)

and
α1 · Z1 + . . . + αn · Zn < 0. (41)

The set S� coincides with one of these subspaces. If it coincides with the set of
all tuples Z for which α1 · Z1 + . . . + αn · Zn < 0, then we can rewrite it as

(−α1) · Z1 + . . . + (−αn) · Zn > 0, (42)

i.e., as α′
1 · Z1 + . . . + α′

n · Zn > 0 for α′
i = −αi .

Thus, without losing generality, we can conclude that the set S� coincides with
the set of all the tuples Z for which α1 · Z1 + . . . + αn · Zn > 0. We have mentioned
that

y′ = (y′
1, . . . , y′

n) � y = (y1, . . . , yn) ⇔ (Z1, . . . , Zn) ∈ S�, (43)
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where Zi = ln

(

y′
i

yi

)

. So,

y′ � y ⇔

α1 · Z1 + . . . + αn · Zn = α1 · ln

(

y′
1

y1

)

+ . . . + αn · ln

(

y′
n

yn

)

> 0. (44)

Since ln

(

y′
i

yi

)

= ln(y′
i )− ln(yi ), the last inequality in the formula (44) is equivalent

to
α1 · ln(y′

1) + . . . + αn · ln(y′
n) > α1 · ln(y1) + . . . + αn · ln(yn). (45)

Let us take exp of both sides of the formula (45); then, due to the monotonicity of
the exponential function, we get an equivalent inequality

exp(α1 · ln(y′
1) + . . . + αn · ln(y′

n)) > exp(α1 · ln(y1) + . . . + αn · ln(yn)). (46)

Here,

exp(α1 · ln(y′
1) + . . . + αn · ln(y′

n)) = exp(α1 · ln(y′
1)) · . . . · exp(αn · ln(y′

n)),

where for every i , eαi ·zi = (ezi )αi , with zi
def= ln(y′

i ), implies that

exp(αi · ln(y′
i )) = (exp(ln(y′

i )))
αi = (y′

i )
αi , (47)

so
exp(α1 · ln(y′

1) + . . . + αn · ln(y′
n)) = (y′

1)
α1 · . . . · (y′

n)αn (48)

and similarly,

exp(α1 · ln(y1) + . . . + αn · ln(yn)) = yα1
1 · . . . · yαn

n . (49)

Thus, due to (44), (45), (46), (48) and (49), the condition y′ � y is equivalent to:

n
∏

i=1

yαi
i >

n
∏

i=1

(y′
i )

αi . (50)

Similarly, we prove that

y1, . . . , yn) ∼ y′ = (y′
1, . . . , y′

n) ⇔
n

∏

i=1

yαi
i =

n
∏

i=1

(y′
i )

αi . (51)
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The condition αi > 0 follows from our assumption that the pre-ordering is
monotonic.

The theorem is proven.
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