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Preface

Decision making in business, economics, and social sciences is omnipresent yet at
the same time it becomes highly difficult to comprehend and model human mental
processes. In general, in spite of their diversity the decision problems exhibit a
number of highly visible features:

o the objective of the decision problem is ambiguous;

o the problem structure describing the relationship among sub-problems might be
loosely specified;

e preference relations are not explicitly stated;

e knowledge of the organizational environments is uncertain;

e available information is often imprecise, uncertain or there might be an acute
lack of information; and

e one-time decision models are needed when dealing with unrepeated problems
with partially available information.

The classical decision theories, such as the expected utility (EU) theory of von
Neumann and Morgenstern, and the subjective expected utility (SEU) theory of
Savage cannot fully address the complexity of the problems and still a number of
open critical questions remain that need to be thoroughly addressed.

This edited volume aims to offer effective methods to deal with different types
of uncertainty inherently existing in decision problems and deliver comprehensive
decision frameworks to handle different decision scenarios under various facets of
uncertainty. The objective is to bring forward diverse decision-making models,
which help use effectively the explicit and tacit knowledge and intuition, model
perceptions and preferences in a more human-oriented style, and form decisions
which become more in rapport with a human line of thinking.

The volume presents original approaches and delivers new results in funda-
mentals and applications related to human-centered decision making approaches to
business, economics, and social systems. It includes multi-criteria (multiattribute)
decision making, decision making with prospect theory, decision making with
incomplete probabilistic information, granular models of decision making and
decision making realized with the use of non-additive measures. New emerging
decision theories being presented as along with a wide spectrum of ongoing research
make the book valuable to all interested in the field of advanced decision making.



vi Preface

An overall concise characterization of the objectives of this edited volume is
captured by highlighting several focal points:

e Systematic exposure of the concepts, design methodologies, and detailed
algorithms. This is a self-explanatory feature of the volume; the systematic,
well-organized flow of the presentation of the ideas is directly supported by a
way in which the material is structured.

e Individual chapters with clearly delineated agenda and well-defined focus and
additional reading material available via carefully structured references.

e Self-containment. The intent is to provide a material, which is self-contained
and provides the reader with all necessary prerequisites and, if necessary,
augments some parts of the material with a step-by-step explanation. More
advanced concepts are supported by a significant amount of illustrative numeric
material. Furthermore several detailed application scenarios are offered to
motivate the reader and make some abstract concepts more tangible and easy to
follow.

This book is aimed at a broad audience of researchers and practitioners. The
areas of particular interest include industrial engineering, informatics, business,
economics, social systems. The material could be also of interest to those involved
in operations research, management, and various branches of engineering. A
prudently struck balance between the theoretical studies and applications makes
the material suitable for researchers as well as graduate students especially in
courses such as information, computer sciences, psychology, cognitive science,
economics, system engineering, operation research and management science, risk
management, public and social policy.

We would like to take this opportunity to express our sincere thanks to the
authors for reporting on their innovative research and sharing their insights into the
area. The reviewers deserve our thanks for their constructive input. We highly
appreciate a continuous support and encouragement from the Editor-in-Chief,
Prof. Janusz Kacprzyk whose leadership and vision makes this book series a
unique vehicle to disseminate the most recent, highly relevant, and far-fetching
publications in the domain of Computational Intelligence and intelligent systems.

We hope that the readers will find this volume of genuine interest and the
research reported here will help foster further progress in research, education, and
numerous practical endeavors.

Peijun Guo
Witold Pedrycz



Contents

Decision Making in the Environment of Heterogeneous
Uncertainty. . . .. ... ... ... .. 1
Phan H. Giang

One-Shot Decision Theory: A Fundamental Alternative
for Decision Under Uncertainty . . . .......................... 33
Peijun Guo

On the Influence of Emotion on Decision Making:
The Case of Charitable Giving. . . .. ......................... 57
Ryan Kandrack and Gustav Lundberg

Decision Theory and Rules of Thumb . ....................... 75
Konstantinos V. Katsikopoulos

Aggregating Imprecise Linguistic Expressions . . ................ 97
Edurne Falcd, José Luis Garcia-Lapresta and Lloreng Rosellé

Risk Perception and Ambiguity in a Quantile Cumulative
Prospect Theory . . ... ... ... .. . . . . . .. . . . . 115
Marcello Basili

Effective Decision Making in Changeable Spaces, Covering
and Discovering Processes: A Habitual Domain Approach . ........ 131
Moussa Larbani and Po Lung Yu

Decision Making Under Interval Uncertainty (and Beyond) ...... .. 163
Vladik Kreinovich

Dealing with Imprecision in Consumer Theory: A New Approach

to Fuzzy Utility Theory . . . .. ... ... .. .. ... .. .. ... .. ... ... 195
David Gélvez Ruiz and José Luis Pino Mejias

vii


http://dx.doi.org/10.1007/978-3-642-39307-5_1
http://dx.doi.org/10.1007/978-3-642-39307-5_1
http://dx.doi.org/10.1007/978-3-642-39307-5_2
http://dx.doi.org/10.1007/978-3-642-39307-5_2
http://dx.doi.org/10.1007/978-3-642-39307-5_3
http://dx.doi.org/10.1007/978-3-642-39307-5_3
http://dx.doi.org/10.1007/978-3-642-39307-5_4
http://dx.doi.org/10.1007/978-3-642-39307-5_5
http://dx.doi.org/10.1007/978-3-642-39307-5_6
http://dx.doi.org/10.1007/978-3-642-39307-5_6
http://dx.doi.org/10.1007/978-3-642-39307-5_7
http://dx.doi.org/10.1007/978-3-642-39307-5_7
http://dx.doi.org/10.1007/978-3-642-39307-5_8
http://dx.doi.org/10.1007/978-3-642-39307-5_9
http://dx.doi.org/10.1007/978-3-642-39307-5_9

viii Contents

Decision Making Under Z-Information. . . .. ... ... ... ... ... ... 233
R. A. Aliev and Lala M. Zeinalova

Approximations of One-dimensional Expected Utility Integral
of Alternatives Described with Linearly-Interpolated p-Boxes. . . . . .. 253
N. D. Nikolova, S. Ivanova and K. Tenekedjiev

Human-Centric Cognitive Decision Support System
for IllI-Structured Problems . . . ... ........ ... .. ... . ... ..... 289
Tasneem Memon, Jie Lu and Farookh Khadeer Hussain

Decision-Making Under Conditions of Multiple Values and Variation
in Conditions of Risk and Uncertainty . . . . . ... ................ 315
Ewa Roszkowska and Tom R. Burns

Supporting Ill-Structured Negotiation Problems. . ... ............ 339
Ewa Roszkowska, Jakub Brzostowski and Tomasz Wachowicz

Personalised Property Investment Risk Analysis Model
in the Real Estate Industry . . .............................. 369
Nur Atigah Rochin Demong, Jie Lu and Farookh Khadeer Hussain

The Logic and Ontology of Assessment of Conditions
in Older People. . . .. ... .. .. .. . .. 391
Patrik Eklund

Decision Making on Energy Options: A Case Study . . ............ 401
V. Jain, D. Datta and A. Deshpande


http://dx.doi.org/10.1007/978-3-642-39307-5_10
http://dx.doi.org/10.1007/978-3-642-39307-5_11
http://dx.doi.org/10.1007/978-3-642-39307-5_11
http://dx.doi.org/10.1007/978-3-642-39307-5_12
http://dx.doi.org/10.1007/978-3-642-39307-5_12
http://dx.doi.org/10.1007/978-3-642-39307-5_13
http://dx.doi.org/10.1007/978-3-642-39307-5_13
http://dx.doi.org/10.1007/978-3-642-39307-5_14
http://dx.doi.org/10.1007/978-3-642-39307-5_15
http://dx.doi.org/10.1007/978-3-642-39307-5_15
http://dx.doi.org/10.1007/978-3-642-39307-5_16
http://dx.doi.org/10.1007/978-3-642-39307-5_16
http://dx.doi.org/10.1007/978-3-642-39307-5_17

Decision Making in the Environment
of Heterogeneous Uncertainty

Phan H. Giang

Abstract The environment of heterogeneous uncertainty is characterized by the
presence of variables in multiple uncertainty formalisms. This paper provides an
overview of decision models under several uncertainty frameworks including prob-
ability theory, Dempster-Shafer belief function theory and possibility theory. It
explores the challenges in pulling them together for decision making. We show
that the information of sequence of variable resolution, which was often neglected,
actually plays a key role in decision making under heterogeneous uncertainty. A
novel approach, based on the well-known folding-back principle, to find the cer-
tainty equivalent of acts under heterogeneous uncertainty is proposed.

Keywords Decision making - Possibility theory - Dempster-Shafer belief function -
Ignorance

1 Introduction

Most models of uncertainty used in science, engineering and medicine are proba-
bilistic in nature. That is, all kinds of relevant uncertainty are forced to be quantified
in terms of probability, chance or risk. While probabilistic modeling may apply
naturally to many uncertain variables of interest, for others, it is simply a choice
motivated by convenience rather than objective justification. When reliable data are
scarce, a reliable estimation of probability would not be possible. If a concept is
vaguely defined, its frequency count is inevitably imprecise. Even when the objec-
tive data are lacking, some would still argue that subjective/personal probability can
be determined by observable preference via the subjective expected utility theory
(SEU) according to the tradition established by de Finetti and Savage. However, the
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results of research in last several decades show that SEU is not adequate for decision
under uncertainty.

For example, if you ask an expert about how the risk of a nuclear disaster of the
scale of Fukushima Daiichi is estimated. The expert will tell you that the probability of
an accident at a nuclear power plant is often the result of elaborate modelings in which
besides the laws of physics, also included are engineers’ subjective assumptions.
While the laws of physics are accurate, the subjective assumptions are much less
reliable.

For another example, economists of liberal inclination rarely agree with their col-
leagues on conservative side about the consequences of a proposed policy. They
disagree despite having the same academic training, using the same modeling
methodology and accessing the same data. In particular, there is an on-going con-
sequential debate among economists about the value of the fiscal multiplier which
measures the change in national income relative to the change in government spend-
ing. Depending on that value, one can either justify a policy to increase government
spending to fight an economic recession or recommend against the policy as an
ineffective remedy.

In fact, in most practical situations where an accurate estimation of probabil-
ity is not possible, practitioners have to supply subjective “educated” guess. As a
consequence, the optimality of a decision derived from the models is a conditional
property that depends on the validity of such guesses. In the quest for robustness,
that dependency must be minimized.

The probability doctrine seems especially deficient to deal with situations of
ignorance where reliable evidence is not available, data are noisy and expert opinions
are contradictory.

Several formal theories have been proposed to capture the notions of non-additive
uncertainty which elude the probability theory. In computer science and statistics, the
possibility theory rooted in Zadeh’s fuzzy set theory [8, 30], Dempster-Shafer belief
function theory [5, 23] and imprecise probability theory [28] have been extensively
investigated.

There is some misconception about the roles of those uncertainty theories. For
example, we often hear the claim that non-probabilistic formalisms such as DS belief
function theory can replace the role played by probability theory because the latter
is just a special case of the former. This claim ignores an important fact that unlike
probability which is updated according to Bayes’ rule, belief functions can be updated
in several ways that produce different updated belief [18].

The literature on uncertainty representation has been converging on the consensus
that different uncertainty formalisms are designed to capture different aspects of the
uncertainty that exists in the real world. In particular, the notion of chance is best
represented by using probability theory, the vagueness inherent in linguistic variables
by using possibility theory, the ambiguity associated with evidence by using DS belief
function and the imprecision due to lack of data is conveyed by imprecise probability.
This fact points naturally to the need to combine them in decision making situations.
It is not difficult to find a real world decision problem that involves various kinds
of uncertainty. For example, the choice in a national election depends on various
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considerations such as the chance that economy improves under candidate’s plan,
the vague perception that he is a good and honest person, the evidence of achievement
or failure of his leadership in the past, and so on.

An important motivation of non-additive uncertainty formalisms, besides expres-
sive power consideration, is to account for systematic violations of Savage’s postu-
lates which form the foundation of the subjective expected utility theory (SEU) [22].
The problem was first analyzed by scholars such as Allais [1] and Ellsberg [9] and
subsequently has been the subject of many studies (see [16] and [26] for systematic
discussions). Some of such violations can be explained by the cognitive perception
bias, others such as Ellsberg’s paradox is clearly due to the fact that the relevant
uncertainty is not reducible to a probability measure.

Itis well accepted common sense that people perceive and process risk/probability
and uncertainty/ambiguity differently. But only recently, neuroscientists have accu-
mulated scientific evidence to support the idea that the difference is truly fundamental
and occurring at the physiological level. They have discovered that the regions of
brain that deal with probability and the regions that handle ambiguous situations are
distinct [17].

The advantage of using entire arsenal of uncertainty formalisms is that decision
makers can capture, express and process information about the world in most intuitive
and credible way, without invoking unsupported assumptions.

While the literature on individual non-additive uncertainty formalisms is exten-
sive, the research that brings them together under one roof for decision making is
almost nonexistent. Many scholars pursue an approach which places focus on deci-
sion making under more and more general uncertainty formalism. Underlying such
“generalization approach” is the assumption, which has been questioned in the recent
literature, that every relevant piece of uncertainty information can be expressed in a
common uncertainty language.

In contrast, we want to aggregate different uncertainty frameworks to make them
work together. In other words, our objective is to create a decision making frame-
work that involves uncertain variables of different types including probabilistic, pos-
sibilistic, DS belief variables, variables with indeterminate probability and ignorant
variables (those for which there is total lack of knowledge).

The plan of this chapter is as follows. In the next section we provide a systematic
review of decision making models for probability theory, possibility theory and belief
function theory. In the main section, we will pull those theories together to analyze
decision situations in which uncertainty variables of different types are involved.

First, we list notation convention used in this chapter. Following a convention in
literature, we make “you” the decision maker to help streamlining the discussion.
For example, we would write: your knowledge about the world is encoded by some
uncertainty function or you want to choose an action among available alternatives.

We use the capital letters to the end of the alphabet e.g., X, Y, Z. to denote
variables. Their instances are denoted by lower case letters. A state is a tuple of
instances of all variables. The set of states is denoted by §2. Events or subsets of
states are denoted by capital letters to the start of the alphabet e.g., A, B, C.
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An act is a mapping from the set of states §2 to the set of outcomes W = [0, 1].
Two acts f, g are equivalent if Vs € £2, f(s) = g(s). Besides the mapping notation,
an act is also recorded in the rule form: {A; < x; }f.‘zl . The reading of rule A; < x;
is “if event A; occurs then you get outcome x;”. A value ¢ € W is called a constant
act which in the rule form is 2 < c¢. Achainrule £ — E; — ...E; — x
means “if A; and A, and ... Ay then x”. Acts are denoted by lower case letters
d, f,h, p,q,r etc. The set of acts is denoted by D.

Given that your information is encoded as a measure of uncertainty over §2, your
choice behavior over acts is modeled by a preference > over acts. We assume that
> is a weak order (reflexive, complete and transitive). The symmetric part ~ and
asymmetric part > of > are defined as usual: f > giff f > gandg # f. f ~ giff
f = gand g > f.The restriction of > on the set of constant acts (JV) is denoted by
the “greater than or equal to” symbol >. If f is an act and c is a constant act such
that f ~ c, c is called the certainty equivalent of f.

2 Common Structure of Decision Making

This section, we start with the review of the classical expected utility theory for
probability then proceed to describe decision theories developed for other non-
additive uncertainty frameworks. The goal is to highlight both similarity and dif-
ference between them.

2.1 Expected Utility Theory

In this subsection, we assume that the risk relevant to your decision problem is
described by a probability measure P on £2. Your preference relation is denoted by
>unm- We say that your preference has the expected utility representation if

P >um q iff Ep[U(p)] = Ep[U(q)] (1)
where U, utility function, is an increasing function from V¥ — R where R is the set

of real numbers.
The expected utility for an act ¢ is calculated by

EplU(q(s)] = D_ P(s) U(g(s)) @)

seS

The certainty equivalent of ¢g is calculated by
c=U"'EplU@GEND (3)

where U ! is the inverse function of U.
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Note that the certainty equivalent remains unchanged if U is transformed by a
positive linear transformation. To see that suppose Uy = aU + b with constants
a > 0, b. Consider the inverse function U, L By the defining property definition

Ui(U; ' (x)) = xand Eq. Ep[U1(q(s)] = Ep[aU(q(s))+b] = aEp[U(q(s))1+b,
we have

Va, aUU; ' (x) +b = x )

_ _x—b
v, U7 @) = 22 5)

Ep[Ui(g(s)]—b
a

U U Ep[Ui(g()D) = =Ep[U(g(s)] (6

UM U WU EpUIGG)HD)) = U N Ep[Ug(s)]) (7)
U Ep[U1(g(s)]) = U Ep[U(g(s)]) (8)

In literature, the expected utility model has been characterized in several ways. A
characterization is the necessary and sufficient condition that >,,,,, must satisfy in
order for representation equivalence p >y, q iff Ep[U(p)] > Ep[U(g)] to hold.
The following characterization is proposed by Jensen [21].

A key concept in this characterization is that of compound acts. Suppose p, g are
acts, {a/p, (1 — «@)/q} denotes an act r that pays p with probability & and g with
probability 1 — «. The implementation mechanism of the compound act is described
in Fig. 1. A biased coin (chance of Head is « and the chance of Tail is 1 — «) is
tossed. If the coin lands Head, you will get act p, if Tail then you get g.

Technically, a compound act is a conditional act not a mapping of signature 2 —
W. Given the coin landed Head ryeqaa(s) = p(s), and given Tail rryi(s) = g(s).
However, in characterization of >,,,,, the compound act is identified with the linear
combination as follows.

f/p, (1 —)/q} € fa p+ (1 — a)g} ©)
Vs e 2, {ap+ 1 —-a)g}(s)—apls)+ (1 —a)g(s) (10)

Fig.1 Compound act
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Notation {-} denotes acts. The reading of Eq. (9) is that compound act {«/p, (1 —
«)/q} is taken to be equivalent to a linear combination of acts {& p+ (1 —a)g}. The
Eq. (10) explains that the linear combination of p, ¢ is a an act whose outcome is
the linear combination of the outcomes of p and g. Note that the difference between
the definition of compound act and that of linear combination is when the coin toss
is used. In the former, coin is tossed before state realization. In the latter, the order is
reversed. The need to distinguish between compound acts and linear combinations
will be made clear later. The main reason is that this identity holds only for prob-
abilistic acts. When the uncertainty is non-probabilistic such as belief function or
possibility function the identity no longer hold.

Now let us look at the axioms more closely.

J1 Weak order. >, is complete and transitive.

J2 Archimedean. For p,q,r € D such that p >y, g >yum r then there exist
o, B € [0, 1] such that {a/p, (1 —@)/r} >ypm q and q >=yum {B/p, (1 = B)/r}.

J3 Independence. For all p,g,r € D and o € [0, 1], p >yum g iff {a/p, (1 —
a@)/r} Zonm {a/q, (1 —a)/r}

Some comments are in order. The weak order axiom conveys well accepted require-
ments for rationality. The completeness says that between two acts, you are always
able to tell which one you prefer. The transitivity is meant to ensure that your pref-
erence is immune from the Dutch book or “money pump” attack against you. The
last two axioms involve the compound acts. The Archimedean axiom implies that
given two simple acts p, r, by choosing a suitable bias for a coin you can create a
compound act that is indifferent to any act ¢ which lies in between p and r. The
independence axiom says that contingent branches of a compound act are evaluated
separately from other branches.

A theorem proved by Jensen [21] states that the necessary and sufficient condition
for preference >, to have the representation p >, q iff Ep[U(p)] > Ep[U(g)]
is the axioms J 1, J2 and J3 together with the definition of compound acts and by
linear combinations.

2.2 Decision Under Ignorance

An important reason to consider non-probabilistic uncertainty is the desire to express
the notion of ignorance which probability theory has been shown to be unable to
adequately capture. The examination of decision under ignorance is critical for two
reasons. From practical point of view, ignorance is much more pervasive in real life
situations than we are ready to admit. From a theoretical point view, ignorance is a
test bed for any decision under uncertainty theory.

In literature on decision making under ignorance, an act can be identified with
its set of possible outcomes because the uncertainty information associated with
outcomes is absent. Hurwicz and Arrow [2] made the ground-breaking work on
decision under ignorance in early 1950s. Their basic construct is a choice operator
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(*) that returns a subset of optimal acts D from the the set of available acts D. Arrow
and Hurwicz examined the implication of imposing rationality postulates (properties
A to D) that the choice operator must satisfy. Property A requires that if Dy C D;
and ﬁz N Dy # ¢ then 151 = 152 N Dy. Property B requires that relabeling actions
and states does not change the optimal status of actions. Property C says that deletion
of a duplicate state does not change the optimality status of actions. A state s is a
duplicate of another state s’ with respect to set of acts DifV f, f' € D f(s) = f(s).
Property D states that for f, f' € D and f dominates f’ if f' € D then f is also
in D and if fé D then ¢ D. An act is said to dominate another act if for every
state the outcome of the former is as least as good as the outcome of the latter.

They have shown that under complete ignorance, only extreme (the best and the
worst) outcomes matter. For example, f(£2) = {0.1,0, 3, 0,4, 0, 7} is indifferent
to g(£2) = {0.1, 0, 7}. A family of utility functions including max, min and linear
combinations of minimal and maximal values is permissible by this criterion.

The sequential consistency is a property that essentially imposes the condition that
starting from the epistemic stage of ignorance, one can not manipulate the value of
an act by repackaging it with hypothetical reasoning. Specifically, suppose that you
are ignorant about states in £2 and f is an act. Suppose that = {A, A} is a partition
of £2. You can reason as follows. If A occurs, then you will encounter a new act
under ignorance denoted by f4 whose outcomes is f (A). Alternatively if A occurs
you will encounter another act under ignorance f; with the set of outcome f (A). If
the certainty equivalent of f4 is x and that of f; is y. So before the question which
of A or A occurs is resolved, you have the set of potential outcomes {x, y} but you
are still ignorant about which will obtains. So, without any new information from
outside, by purely hypothetical reasoning you can translate the original act under
ignorance f to another act {x, y} also under ignorance. The sequential consistency
condition says that you cannot improve an act by such a trick. In other words, f and
{x, y} must be indifferent.

In [11] it has been shown that if the sequential consistency condition is imposed in
addition to Arrow-Hurwicz four conditions then the utility function under ignorance
must have the following form: There exists a value a which is called your default
value, such that

max (D) if max(D) <a
Ui(D)=1a if min(D) < a < max(D) (11)
min(D) if min(D) > a

Utility function U; has an appealing interpretation. Each decision maker has a
pre-determined default value which she considers “good enough”, “satisfactory” or
“acceptable” in circumstance that she knows nothing about. If the potential outcome
range of an act covers the default value, she is willing to exchange the act for that
value. In case the outcome range does not include the default, she is willing to
exchange the act for the value in the range which is closest to the default value.
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2.3 Decision with Possibility Theory

The possibility theory has a root in Zadeh’s works in fuzzy set theory [30] and
substantially developed in theory and methodology by Dubois and Prade group in
Toulouse [8]. This theory is used to represent partial ignorance and uncertainty on
ordinal structure. Zadeh’s original idea is to use possibility theory to formalize the
semantics of statements in natural languages.

A possibility function is a mapping 7 : 2 — [0, 1] that satisfies constraints
n(2)=1,7)=0and VA, B C 2

w(AU B) = max(w(A), m(B)) (12)

The non-additivity of possibility functions can be seen by the fact that the sum
7(A)+m(A) where A is the negation (complement) of A, is not invariant for different
A. In fact, this sum is constrained by 1 < 7 (A) + 7(A) < 2because | = 7 (2) =
7(A U A) = max(w(A), 7(A)), so | = max(w(A4), 7(A)) < 7(A) + 7(A) <
2 x max (7 (A), 7(A)) = 2.

From the possibility function, a dual construct can be derived. A necessity function
v on the 2% is defined as v(A) = 1 — w(—A). Clearly for

V(AN B) =min(v(A), v(B)) (13)

There are two regimes that a possibility function can be updated given a new
information about realization of some event A. A quantitative conditional possibility
of B given A is defined when 7w (A) > 0

_ 7(ANB)
w(B|A) = TR @A) (14)

Under the qualitative regime, the qualitative conditional possibility

1 if7(ANB) = 7(A)

(A N B) otherwise (15)

n(B|A) = [

Note that in the qualitative regime of possibility theory any ordinal set can be used
as the uncertainty scale because the only operation needed is maximization.

For the rest of the chapter we will assume the possibility theory under quantitative
regime. The discussion can be translated to the qualitative regime with minimal
change.

The relationship between the possibility theory and belief function theory is not
as simple it seems. One the one hand, the quantitative possibility can be seen as a
special case of belief function theory. On the other hand, the qualitative version of
possibility has no representation in belief function theory.
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Besides the fuzzy-set interpretation, possibility theory has an interpretation in
terms of statistical likelihood function. In this interpretation, the set of states 2
is the set of probabilistic models that you entertain for your stochastic problem.
Specifically, a state s € 2, is a probability measure over a sample space X. Your
information about the models is extracted from observed data. Suppose x is the
data collected about the stochastic problem. According to the likelihood principle
of statistics [3, 4], all information about the models is contained in the likelihood
function calculated from the observation. The probability of observing x predicted by
model s is s(x). As a function of the models given observation likx(s) > s(X) is the
likelihood function. According to the likelihood principle, proportional likelihood
functions are equivalent. The likelihood function can be normalized by

Lik(s) = —hx(8) (16)
maxy e likx(s")

Although likelihood is defined only for individual models, it can be extended to sets
of models in the tradition of the maximum likelihood procedure of statistics.

Likg(A) % max Liky(s) (17)
sEA

It is easy to verify that function Lik defined in Eqs. (16) and (17) satisfies the
definition of a possibility function.

We want to draw attention on how the view of likelihood information as a possibil-
ity function is different from the way Bayesian statistics uses it. Bayesian approach
combines the likelihood with the prior probability on the set of model £2 to arrive at
the posterior probability. The key difference between two approaches is the presence
or lack of prior probability. As Bayesian approach would not be applicable without
prior probability, its proponents insist on availability of prior one way or another. In
many practical situations when such prior is not available, Bayesian approach would
resort to the use of artificial non-informative prior probability.

We focus on the certainty equivalent operator for possibilistic acts which is given
by the construct of binary utility [10, 13]. As it is much less familiar to readers, we
provide a brief self-contained review of the construct. The following are the axioms
that the preference relation on possibilistic acts, > .y, have to satisfy.

A1l Weak order. >, is complete and transitive.

A2 Archimedean axiom. If f >,,5 g >pos h then there exist possibility vectors
(o1, o) and (B1, B2) such that {a1/f, a1/} > pos g and g > pos {B1/f, B1/h}.

A3 Independence. Suppose f > 05 g and let (a1, ar2) is a possibility vector then for
any h7 {al/fa az/h} z[?()? {al/g7 052/h}

A4 Compound gamble. Suppose fi = {B1;/f1ill <i <1} and f, = {B2;/f2jI1 <
J < Jtthen{ai/fi, a2/fa} ~pos {1 fri/frill <i < I}U{aapaj/fojll < j <
J}

A5 Idempotence. For any index setI {o; /f[1 <i < I} ~pos f
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Clearly, A1 — A3 are similar to J1 — J3. They differ on the account of possibility
function being used in the former and probability function used in the latter. Al
says that even as your uncertainty is represented by possibility, your preference
relation still complete and transitive as in the case of probability. Suppose act g is
in between acts f and h, axiom A2 requires that one can construct a possibilistic
compound act from f, & that is strictly better (worst) than g. Axiom A3 says that for
compound possibilistic act, each branch evaluated independently of other branches.
A less noticeable fact is that A3 is weaker than J3 because A3 is an “if” statement
whereas J3 is an “iff” statement. The axiom A4 makes clear that the concept of
linear combination of possibilistic acts is not the same as the compound act. It is
because in the possibilistic world, you are not allowed to use probability generating
devices such as dice to combine them. This restriction seems odd at first but actually
reasonable in possibilistic world because there every thing you know or don’t know
is expressed by possibility functions.

If you insist on the ability to make linear combination of possibilistic acts, later in
this chapter we present a method to evaluate such combination of possibilistic acts.

The possibilistic expected utility theory, a counterpart for the expected utility
theory, starts with a new utility scale.

Definition 1. Binary or polar utility scale is the ordered set of pairs
T={{.p) 10<a =<1, 0<p<I1andmax(e, B) = 1} (18)

equipped with an order > defined by

(@, ) > (', B) iff a>a'and B < p’ (19)
<0,1> <11>
1 |2 >
|
badpess :
ingex |
|
|
< >
goodness %7 1.0
0 index

1
Hebrew letter 1 (daleth) is used to denote the polar utility set to remind the fact
that it is the set of points on the top and the right sides of the unit square. Intuitively,
the left number of a pair (the x-coordinate) is the index of “goodness” and the right
number (the y-coordinate) is the index of “badness”. This explains the intuition of
the order > . A pair is “better” than another pair if the goodness index of the former
is higher than the goodness index of the later and the badness index of the former is
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lower than that of the latter. The relation >> (“strictly better”) if at least one of two
inequalities is strict.

Definition 2. Three operations scalar multiplication (%), component-wise maxi-
mization (max) and > -maximization () are defined on polar pairs as follows:

cx o, B) S (cxa,cxp) (20)
max({a, B) , (o, B) & (max(e, &), max(8, ")) Q1)
;o et [ (o, B if (@ B) > (o, B)

ﬂ ((O[, IB> ,(O{ ’ ﬂ) - [(Ol/, ﬂ/) if(Ol/, ﬂ/) 2 (Ol,,B) (22)

Note that the result of component-wise maximization is not the greatest element
according to the order > . We reserve the symbol 1} for the taking the maximum
element in the set according to > .

Definition 3. A strictly increasing mapping V : W — T is called scalar to polar
utility transform if

V() =(0,1), V(1) =(1,0), V(c) > V() iff ¢>c. (23)

Definition 4. Suppose f = {A; < w; | i = 1, m}isapossibilistic acti.e., {A;}];
is a partition of £2, and 7 is a possibility measure on 2%, the possibilistic expectation
of f with respect to 7 is defined by

Qe [V(NH] = max {w(A)V(f(AD))} (24)

Let us take a moment to explain the construct Q [-]. It is instructive to compare it
with the more familiar expected utility construct for a probabilistic act f: Ep[f] =
> P(A)U(f(A)). The similarity is obvious. The differences are: (1) between
functions U and V, while U maps to scalar utility, V maps to polar utility; (2) P is
a additive uncertainty while 7 is a possibility measure and (3) summation is used
in the expected utility wrt additive uncertainty while max is used in the possibilistic
expected utility wrt non-additive uncertainty. In the same way as the utility function
U is said to reflect the risk attitude of a decision maker, we say that function V
reflects her ambiguity attitude (for more details see [10]).

A theorem proved in [10] states that the necessary and sufficient condition for
preference >, to have the representation [ >,,s ¢ iff Q- [V (f)] > Q[V(g)]
is the axioms A1 — AS. We note that this model subsumes two regimes of decision
making with possibility proposed in Dubois et al. [7].

Because V is a strictly increasing mapping, its inverse function V=1 : 7 — W
exists and defined uniquely by Yw € W, V=1 (V (w)) = w. Using V !, the certainty
equivalent of a possibilistic act can be defined by V~1(Q[V (f)]).

The ambiguity attitude conveyed by function V can be quantified by an index p in
the range (0, 1) with p = 0.5 means ambiguity neutral, the smaller p you have, the
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more ambiguity averse you are. A handy class of polar utility function V,,, constant
ambiguity attitude utility function, is characterized by the following equation for
O0<x <1

V() = (o, B) iff log (1%) — log (%) +log (%) (25)

It follows that

o = min(1, exp(logit(x) — logit(p)))

B = min(1, (exp(logit(x) — logit(p)) ™" 0

Vo(x) = (a, B) where [
where logit(x) def log(x)/log(1 — x).

Example 1. (Fig.2) Suppose f = {A; — 0.1; Ay — 04;A3 — 0.9},
w(A)) = 1;7(Ay) = 0.7, m(A3) = 0.3 and Vp4(0.1) = (0.17,1); Vp4(0.4) =
(1, 1) ; V9.4(0.9) = (1, 0.07).

Q[Vo.4(f)] = max{w (A1) Vo.4(0.1), m(A2)V0.4(0.4), (A3) V0.4 (0.9}  (27)
=max{l1(0.17,1),0.7(1,1),0.3(1,0.07)} = (0.7, 1) (28)
So, we have V0f41 (0.7, 1)) = 0.32 i.e., the certainty equivalent of f is 0.32. H

Using possibility theory, the state of ignorance can be represented by possibility
function Vs € £2, w(s) = 1. It can be shown that possibilistic expected utility (24)
reduces to (11) for decision under ignorance.

Example 2. For act f as in the previous example. Suppose we have an ignorant
possibility function 7 (A1) = w(Az) = w(A3) = 1.

Q[Vo.4(f)] = max{Vp.4(0.1), Vo.4(0.4), V0.4(0.9)} (29)
=max{(0.17, 1), (1, 1), (1,0.07)} = (1, 1) (30)

Vor((1,1)=04.1

Fig. 2 Calculation of possi- 1.0 <0.17,1.0> ~ 0.1
bilistic expected utility ’

0.32~<0.7,1.0> 91 <1.0,1.0>~04

<1.0,0.07>~0.9
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2.4 Decision Models for Dempster-Shafer Belief Function Theory

The belief function theory was originally developed by Dempster in 1960s to gen-
eralize Bayesian statistics [6]. Later, Shafer extended this proposal for evidential
reasoning [23]. A major advantage belief function theory is its ability to express, in
a more faithful manner, information availability: from complete ignorance to partial
ignorance to full information.

The classic exposition of the DS belief function theory is Shafer’s book “A Math-
ematical Theory of Evidence”. We present a brief introduction to the concepts,
notations and important results. A basic probability assignment (bpa) function m
is defined by

m:2% > [0, 1]such that Z m(A) = 1. a3
ACQ

A subset with positive mass is a focus. Other forms of a belief function are belief
(Bel), plausibility (Pl) and commonality (C om) that are defined from m as follows:
VB C 2

Bel(B) = > m(A); PI(B)= Y m(A); Com(B)= Y m(A)  (32)

ACB ANB#Y ADB

All the forms m, Bel, Pl and Com are equivalent in the sense that given any form
the others are completely determined. For example, given a belief function in Bel
form, its bpa form is completely determined by Mobius inverse transform

m(A) = D (=)!"\PIBel(B) (33)

BCA

Although in literature Bel is often referred to as belief function. However, in our
usage, “belief function” is reserved for the body of information that has many incar-
nations m, Bel, Pl and Com. The choice of a form to work with depends on manip-
ulation convenience. In our case, we use plausibility form largely because of its
conditional expression.

If you hold belief function m; and learn about new evidence represented by a
second belief function m,, you should update your belief by using Dempster’s rule.
The result is a new belief function denoted by m & m» defined as follows

VA# G, mi@my(A) =K | D mi(A;) my(By) (34)
AiNBj=A

where K is the normalization constant defined by
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-1

K=[1- > mi(A)m(B)) (35)
AiNBj=0

In a case of special interest, m is a belief function with a single focusi.e., my(B) = 1
for some B, belief combination becomes conditionalization. It is easy to verify that
in the plausibility form, conditional has a familiar form of probability conditioning

__ PI(ANB)
PI(A|B) = “PB) (36)

Dempster [5] views of belief function as multiple value mapping from a sample
space to another space. Suppose there is probability function P on sample space &
and a set-valued mapping / from @ to the power set of another space 2. For example
® can be observation space and §2 —a hypothesis space. Each observation points to
a set of hypotheses. A belief function m on 2 is induced by P and & by equation

YC € 2%, m(C) = Z P(w) (37)
h(w)=C

Note that & : ©@ — 2% is not necessarily one-to-one. Therefore, the probability of
more than one points can be transferred to one subset (see Fig. 3). Dempster’s view
is the basis of many decision models.

There are several important subclasses of belief functions depending on the topol-
ogy of the foci. In Shafer’s book, the belief functions that have nested foci are singled
out. This class is called consonant belief function. Suppose the foci of a belief func-
tion are By, Ba,...B, and By C By C ... C B,. It is easy to verify for such a
belief function PI(.) is a possibility function, Bel is a necessity function. In particu-
lar PI(AU B) = max(PI(A), PI(B)) and Dempster’s combination rule is reduced to
the quantitative conditioning formula. Conversely, given a possibility function 7 (and
its dual form v), the bpa and foci of a consonant belief function can be determined
by the inverse Mobius transform (33).

Fig. 3 Belief function as a
multiple valued mapping from
a probability function ©
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Starting from the premise that belief functions can be used to represent statistical
evidence, Walley [27] asks what condition that belief functions must satisfy in order
to be consistent with a fundamental principle in statistics —the likelihood principle.
He proves the condition that the set of foci must be partitioned into non-intersecting
groups and within each group the foci are nested. Such belief functions are called
partially consonant. In other words, the foci of a partially consonant belief function
can be rearranged By, By, ... B, with the following property. There exist £ numbers
0=1ip < i) <iy... < i, = nthatserve as the boundaries for the groups (see Fig.4).
Group j has foci with index 7 in betweeni;_1 and ij i.e., G; = {Bjlij—1 <i < i}

B,'j71+1 C Bij—1+2 ... C BiijI‘ 1<j<k (38)
Bij N Bi/,/ =@ for j# j/ (39

Earlier we noted that in the possibilistic world, there is no such thing as linear
combination of possibilistic functions or acts. If we insist on that ability we have to go
beyond the world of possibility functions. In particular, a partially consonant belief
function can be construed as a linear combination of several possibility function.

Abusing notation slightly, we use symbol G ; also to denote the set of elements of
£2 that belong to group j, clearly {G ;|1 < j < k} is a the collection of disjoint sub-
sets. We have PI(G ;) = Bel(G j) because every focus that intersects with G ; is com-

pletely enclosed in it. Also Zl;zl PI(Gj) = 1 because that sum takes into account

the mass of every focus and no focus is double accounted. So, vector (PI(G j))l;zl
can be viewed as a probability function on a partition {G1, G, ... Gg, §2_g} where
§2_¢ consists of elements that are not in any G ;. Also note that the conditional belief
function given G; is consonant. So PI(-|G ;) is a possibility function.

The advantage of using belief function theory is the power to express the state of
partial lack of information. Specifically, the partiality of information is expressed by
assigning the probability mass not to singleton-states as in probability but to sets of
states. The ignorance is pertinent to question how that mass is distributed within the
focus.

There is a convenient convention in discussion of decision making. Given a belief
function m : 29 — [0, 1] with foci By, B>, ... Bk anact f : £ — VV induces a

Fig. 4 Foci of a partially
consonant belief function
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belief function m ¢ : 2W [0, 1] (on the space of outcomes) by transferring the
probability mass from B; to f(B;):

Vi,myg(f(B;)) =m(B;) and m(C) = 0 otherwise. (40)

With f < m s identity, one can safely discuss the choice of belief functions (on the
outcome space) instead of the choice of acts.

There are several proposals in literature on decision making with belief function
such as Jaffray [19], Yager [29], Smets [25] and Giang and Shenoy [14]. Most of
them relies on the view that a belief function is a linear combination of elementary
belief functions. A belief function is elementary if it has only one focus. Suppose
belief function f has foci By, Ba, ... Bk, f can be written as

K
f=> mp(B) e, (41)

i=1

where ep, is an elementary belief function with single focus B;.

2.4.1 Jaffray’s Model

Suppose f is belief function on the outcome space. The main argument for this model
is that since f is a linear combination of elementary belief functions, the utility of f
is a linear combination of the utilities of those elementary belief functions. Suppose
f has foci {Bi}X |

K
vy (f) =D ms(Bi)vs(en,) (42)

i=1

where vy (f) isutility of f. Since the elementary e g represents ignorance conditional
on B, Jaffray used the Hurwicz’s solution for decision under ignorance

vy(ep) =aplp+ (1 —ap)Tp (43)

where Lp and T p are the smallest (bottom) and largest (top) elements in B and
0 < ap < 1is a constant that depends on the values L p and T p only. Hence the
utility expression of a general belief function is

K
vi(f) =D ms(B) (s Ly + (1 —ap)Ts) (44)

i=1

The axiomatic justification of Jaffray’s model is given in [20].
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2.4.2 Yager’s Method

The only difference between Jaffray’s method and Yager’s method is in the treatment
of elementary belief functions.

K
vy (f) = D ms(Bi)vy(es,) (45)

i=1

Here vy (ep) is computed according to the ordered weighted average (OWA) method.
Suppose B = {wy, ... wy} and its elements are arranged in a decreasing order i.e.,
w] > wy > ... > wg. Yager assumes that for each DM, there are non-negative
weights c1, 3, ... ci that sum to 1. vy (eg) = Zle ci Wi

OWA subsumes familiar criteria such as max (¢; = 1), min (¢ = 1), Hurwicz’s
(c1 =1 — o, cx = ). It is not clear how to justify Yager’s model from axiomatic
perspective. Without going into details, note that, except three special cases men-
tioned above, vy (eg) accounts for non-extreme values in B, hence, OWA does not
satisfy Arrow-Hurwicz’s postulates for decision under ignorance [2].

2.4.3 Smets’ Transferable Belief Model

Smets and Kennes [24, 25] describe an approach called the transferable belief model
(TBM) in which “beliefs can be held at two levels: (1) a credal level where beliefs
are entertained and quantified by belief functions, (2) a pignistic level where belief
can be used to make decisions and are quantified by probability functions.” Given a
belief function with foci {B; }l |» probability function Pr;, defined by dividing the
mass of each focus evenly on its elements:

m(B;)

Vs € 2, Prp(s) = Tl and YA C 2, Pry(A) = ZPrb(s) (46)
B;Ds | i| seA
The expected utility of act d wrt Pry,
SEB ( )
vr(d) = D Pry(s) d(s) = Zm(B BT (47)

sef

It can be seen that (47) is a special case of (45) when all the weights ¢; are equal. As
such, TBM model also does not satisfy the requirements of decision under ignorance
and consistency. It can be argued that in this approach, the problem of decision under
ignorance does not even exist because the notions of ignorance and ambiguity are
meaningful in the “credal level” only. They cease to exist when it comes to decision.
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2.4.4 Giang-Shenoy’s Model

Unlike the previous models, Giang and Shenoy [15] propose an axiomatic decision
model applied not for belief functions in general but for the class of partially con-
sonant belief function. For a consonant belief function f with foci By, Bz, ... B,
which are divided into k nested groups with group boundary indices 0 = iy < i} <
i2... < i = n. Denote by G the largest element of group ;.

k
vGs(f) = > PUG )V~ Q@uig, (V (f6,)) (48)

j=1

where PI(G ) is the plausibility of G, Plg; is the conditional plausibility given
G j. Because the belief function conditional on G; is consonant, Plg; is a possibility
function. ij is the restriction of act f on G i.e., ij(w) = f(w)ifw € Gy, itis
undefined outside G ;.

The meaning of (48) can be explained in Fig.5. It is a two stage folding-back
evaluation. In the first stage ( right), act f¢, is evaluated to a binary utility value
(oe N j) under possibility function Plg; by the possibilistic expectation operator
(24). The certainty equivalent x; of the conditional act is found by applying V=l In
the second stage ( left), the probabilistic act {PI(G j)/x;|1 < j < k} is evaluated by
expected utility.

2.4.5 Examples

To conclude this section, we illustrate how different methods work on two examples.

Fig. 5 Evaluation of act in

Giang-Shenoy’s model <ap> m
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Example 3. The state of ignorance can be represented by a belief function of a
single focus which is the entire set of states £2 i.e., m(§£2) = 1. Let us consider the
act f ={A; — 0.1; A — 0.4; A3 — 0.9}.

The certainty equivalent of f in the Giang-Shenoy’s model with ambiguity attitude
p = 0.41s 0.4 as calculated in the example 2.

Using Jaffray’s model with « = 0.6 (ambiguity averse), we have the certainty
equivalent calculated by o % 0.1 4+ (1 — o) % 0.9 = 0.42.

Using Yager’s model with weight vector (0.15, 0.45, 0.40), the certainty equiva-
lent is calculated by 0.15 % 0.1 + 0.45 % 0.4 4+ 0.40 % 0.9 = 0.555

Under Smets” TBM model the certainty equivalent is calculated by (0.1 4+ 0.4 +
09)/3=047.1

Example 4. Ellsberg’s paradox [9]

Ellsberg’s paradox is one in a series of experiments used to demonstrate that
rational behavior under ambiguity violates Savage’s sure-thing principle. In an urn,
there are 90 balls of the same size. The balls are painted one of three colors: red,
yellow and white. It is known that 30 balls are red. The proportions of yellow and
white are not known.

Ellsberg considers four gambles. /A = {red — 1, {white, yellow} — 0} that
offers $1 if a randomly drawn ball is red, nothing otherwise. /B = {yellow <>
1, {white, red} < 0} offers $1 if the ball is yellow, nothing otherwise. I[IA =
{{red, white} — 1, yellow <— 0} offers $1 if the ball is red or white, nothing if
the ball is yellow. IIB = {{yellow, white} < 1, red < 0} offers $1 if the ball is
yellow or white and nothing if it is red.

Ellsberg discussed findings that a sizable proportion of respondents preferred /A
to IB and, at the same time, preferred //B to IIA. This observed preference is not
consistent with the sure-thing principle because the pair (I/A, I1B) is different from
the pair (/A, IB) only by the level of prize for white balls.

The uncertainty in the problem is nicely described by a pcb with 2 foci (Fig. 6).
m({red}) = % and m({yellow, white}) = % This pcb decomposes into P ({red}) =
1 and P ({yellow, white}) = 2 and I1(yellow|{yellow, white}) = IT(white|{yellow,
white}) = 1.

We show how Giang-Shenoy model works under three different scenarios of
ambiguity aversion, ambiguity neutrality and ambiguity seeking.

Case 1 (ambiguity aversion). We assume binary utility function V,($1) = (1, 0),
V,.($0) = (0, 1) and V,($0.4) = (1, 1). The first two equalities are natural since $1
is the best outcome and $0 is the worst outcome. The default value under ignorance is

Fig. 6 Belief function for

Ellsberg’s Urn Ellsberg's Urn

Yellow + White: 2/3
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(0, 1)

(0,1)

Fig. 7 Utility calculation for /A and /B under ambiguity aversion p = 0.4

.60

(L,1)
=4

(1,0)

Fig. 8 Utility calculation for //A and //B under ambiguity aversion y = 0.4

0.4 indicating somewhat ambiguity aversion. In Figs. 7 and 8 we show the calculation
of utility for the gambles. We have vgs(/A) = 0.33, vgs(IB) = 0.27, vgs(IIA) =
0.60 and vgs(IIB) = 0.67. This means /IB > IIA > IA > IB. These preferences
are consistent with the observed behavior.

Case 2 (ambiguity neutrality). We have V,,($1) = (1,0), V,,($0) = (0, 1) and
Va($0.5) = (1, 1) and vgs(IA) = %, vs(IB) = 3, vgs(IIA) = %, vgs(IIB) = 3.
This means IIA ~ IIB > IA ~ IB.

Case 3 (ambiguity seeking). We have Vi ($1) = (1,0), V,($0) = (0, 1) and
Vs($.6) = (1,1) and vgs(IA) = 0.333, vgs(IB) = 0.4, vgs(I{IA) = 0.733,
vgs(IIB) = 0.667. This means IIA > IIB > IB > IA.

Jaffray’s model. In this model the ambiguity attitude is controlled by the Hurwicz’s
coefficient o. We also consider three scenarios for« = 0.6, « = 0.5 and o = 0.4
corresponding to ambiguity averse, neutral and seeking. In case « = 0.6, v;(IA) =
0.33,v;(IB) =033%0+0.67% (0.6 0+ 0.4 % 1) = 0.27.

The result of calculation is shown in Table 1. The second row has the color pro-
portion data and the ambiguity attitude parameter for Jaffray’s and Giang-Shenoy’s
models. Smets’ TMB model does not have ambiguity attitude parameter. In this
example, the set of outcomes has only two elements (0, 1), Yager’s model is identi-
cal to Jaffray’s. Also because of that, the parameters in Jaffray’s and Giang-Shenoy’s
models can be set so that they produce the same result. In general, however, they have
different behavior. For more details on how these two models are different see [12].
|
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Table 1 The certainty equivalent under different models and ambiguity assumptions
Red Yellow White Jaffray Jaffray Jaffay GS GS GS TBM
Prob/er/p 0333 0.667 0.6 0.5 0.4 04 05 06

1A 1 0 0 0.33 0.33 0.33 033 033 033 033
IB 0 1 0 0.27 0.33 0.40 027 033 040 033
ITA 1 0 1 0.60 0.67 0.73 0.60 0.67 0.73 0.67
1B 0 1 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67

2.5 Relationship Between Uncertainty Models

We have considered several models of uncertainty that extend the traditional repre-
sentation by probability. The main motivation for such models is to capture different
aspects of uncertainty existed in the real world, to faithfully represent the extent of
knowledge and ignorance that you have about the real world.

Itis useful at this point to summarize their relationship (see Fig. 9). The oval nodes
are the models and their special cases. The arrow signifies “is a” relationship.

For example, there is an arrow from “ignorance” to “consonant belief function”
because the epistemic state of ignorance can be represented by a belief function with
a single focus which is exactly the set of states §2 i.e., m(£2) = 1 and m(A) = 0
for any A C £2. That ignorant belief function is consonant. Also the arrow from
the “ignorance” node to “possibility function” node signifies that in the language
of possibility theory, the state of ignorance is represented by possibility function in
which the possibility of any element of the power setis 1 i.e., YA C 2, PI(A) = 1.

Set of pr(_)bablllty Dem_pster-Shafer Possibility function
functions belief function
N
Partially consonant
> belief function

N

Consonant belief
function

AN
Extened likelihood
function

Fig. 9 Relationship between uncertainty models

Probability Ignorance
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The arrow from “probability” to “partially consonant belief function” is because
a belief function with all singleton foci is a probability function. The arrow from
“consonant belief function” to “possibility function” is justified by the fact that
the plausibility form of a consonant belief function is a possibility function with
quantitative conditioning. The lack of a reverse arrow from “possibility function” to
“consonant belief function” is justified by the fact that possibility theory also accepts
qualitative conditioning (15) which does not have counterpart in DS belief function
theory.

Another model which should be mentioned here is the representation of uncer-
tainty by sets of probability functions. This is a natural extension of the representation
by single probability functions. The clear advantage is keeping the Bayes rule for
updating. Given a set S = {P;} of probability measures and the arrival of evidence
A, the update belief is the set of probability measure §" = {P;(-|A)}. The arrow
from “probability” to “set of probability functions” is obvious. However, the lack of
arrow between “set of probability functions” and “DS belief functions” needs some
clarification. It is well known [18] that Pl and Bel forms of a DS belief function
can be interpreted as the upper and the lower envelops of some set of probability
functions. In this sense, we can say that the belief function and the set of probabil-
ities are matched. However, upon arrival of a new evidence, the DS belief function
is updated according to Dempster’s rule while the set of probabilities is updated via
Bayes rule for each member of the set. The resulting belief function and the set of
updated probabilities may no longer match.

The relationship between uncertainty models is useful in comparative analysis of
the decision proposals for different uncertainty models. For example, as probability
is a special case of partially consonant belief function (hence also a special case
of belief function), we want to make sure that the decision model for (partially
consonant) belief function applied for probability reduces to EU model. Also the
state of ignorance, as a special case of both belief function and possibility function,
can be used to compare their decision models.

All the models for decision making with belief function including those proposed
by Jaffray, Yager, Smets and Giang-Shenoy are reduced to expected utility model
when the foci of belief function are singletons. When belief function reduces to
ignorance the models by Jaffray and Giang-Shenoy satisfy four rationality postulates
by Arrow and Hurwicz. The models by Yager and Smets do not. Only Giang-Shenoy
model satisfies, in addition, the sequential consistency postulate. For the consonant
belief function—the possibility function, Giang-Shenoy model for partial consonant
belief and that for possibility theory have identical solutions which subsume the
two models proposed by Dubois et al. [7]. Applied for consonant belief function,
the models by Jaffray, Yager and Smets have different behaviors than the models
proposed for possibility theory—by Giang-Shenoy and Dubois et al.
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3 Decision Making Under Heterogeneous Uncertainty

The environment of heterogeneous uncertainty is characterized by the presence of
variables in multiple uncertainty formalisms. In previous section, we have reviewed
various uncertainty formalisms together with decision models proposed. Clearly, the
real world does not fit comfortably within any individual formalism. For example,
probability poorly severs the need to express the notion and degree of ignorance.
On the other hand, within the possibility model, you are not allowed to express the
notion of linear combination of acts even though such acts can arise naturally. For
example, given two possibilistic acts and a coin, a new act can be created by choosing
one alternative act depending coin toss. The focus of this section is a decision model
that can deal with different formalisms of uncertainty.

3.1 A Motivating Example

Let us consider a simple example in which the outcome of an act depends on both
risk and uncertainty.

Example 5. An investor considers an investment instrument ¢ whose return, mea-
sured in risk-adjusted utility unit (util), depends on two binary variables. X, the
weather in US, is a chance variable with Pr(X = 1) = Pr(X =0) =05. X =1
means favorable weather and X = 0 means unfavorable. Variable Y represents the
outcome of a political event of an obscure tribe in South Asia. The information about
Y is unreliable and mostly contradictory. Y is an ignorant variable. The contingent
outcome of d is as follows. d(sgp) = 0, d(sg1) = 1, d(s19) = 1 and d(s11) = 0
where s;; stands for proposition (X =i & ¥ = j). The information is summarized
in Fig. 10.

Suppose that you consider to buy the instrument and wonder what is its worth.
You can reason as follows.

Scenario 1 Hypothetically assume X = 0 (unfavorable weather), the choice
then reduces to a decision problem under ignorance (political outcome) dx—o(¥Y =
0) = 0 and dx—o(Y = 1) = 1 since no information about Y is available. If you are
uncertainty averse (e.g. your preference pattern is highlighted in Ellsberg’s paradox),
the certainty equivalent you attach to dx—o is ¢ which is strictly less than 0.5. Note
that 0.5 is the value of dx—¢ if ¥ were a fair coin toss. A symmetrical argument

Fig. 10 A chance variable X
and an ignorant variable of an d(x,y) ify)
investment 1
v ignorance
0 ignorance
Prx) 0.5 0.5
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Fig. 11 Evaluation of uncertain investment under two orders of variable resolution

shows that the value of dy— is also c¢. So, no matter what the actual value of X will
be, the investor gets value ¢, she concludes that the value of investment is ¢ (see in
Fig. 11).

Scenario 2 This scenario mirrors Scenario 1, but instead of conditioning on X,
you choose to condition the investment on the values of Y. dy—o(X = 0) = 0,
dy—o(X = 1) = 1, since X is a chance variable with two equi-probable states and
the investment return is risk-adjusted, the value of dy—g is 0.5 (write dy—¢ = 0.5).
Similarly, dy—1 = 0.5. Thus, no matter what Y turns out to be, the value that you
get is 0.5, hence the value of the investment is also 0.5.

The apparent conflict between two perfectly reasonable evaluation scenarios begs
for a resolution. l

First of all, we need to figure out the answer for the following question. “Can and
how to represent the uncertainty pertaining to the instrument by one of the uncertainty
formalisms?”

On the one hand, probability theory is excluded because it is not able to handle
the ignorant variable (Y). On the other hand, possibility theory also does not fit the
bill because it can not describe the chance variable (X).

This leaves the belief function as the only candidate. The state space is naturally
formed by Cartesian product of variables’ domains. £2 = {sgo. So1, 510, S11} as s;;
stands for (X =i & Y = j). In this space, the basic probability assignment of the
belief function is m({sg, so1}) = 0.5 and m({s10, s11}) = 0.5 (see Fig. 12).

Given that belief function, most models (Jaffray’s, Yager’s and Giang-Shenoy’s)
evaluate the instrument to ¢ —-the solution under Scenario 1. Smets’ TBM model
evaluates the instrument to 0.5 which in this case coincides with the solution under
Scenario 2.
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Fig. 12 Belief function for
the investment instrument

1 s10, s11

XxY
h
0 s00, s01

The reason that TBM model can not deliver the solution under Scenario 1 is clear.
TBM is actually an application of expected utility model for a probability that is
derived from belief function. The uncertainty or partial ignorance contained in belief
function is assumed away in the derivation.

3.2 Variable Resolution Order

We consider it a serious defect of a model if it cannot compute the solution in a
perfectly reasonable scenario. In this sense, the inability of well-regarded decision
models for belief functions to deliver the solution in Scenario 2 is even more prob-
lematic.

A careful examination of the problem reveals that the problem starts with represen-
tation of uncertainty. Maybe, it is not correct to insist on belief function representation
of the uncertainty in the motivating example. This representation lumps together the
information about two separate variables of different nature.

First, it is not an information-preserving transformation. It is enough to realize
that there are infinite number of configurations (®, P, h) of a sample space @, a
probability measure P and a set-valued mapping & that induce the belief function
m({soo, so1}) = 0.5 and m({s10, s11}) = 0.5. For example, suppose © is the real
line, P is a probability density function and a is the median point then the mapping
h defined as follows creates the belief function

{s00, so1}if x < a

{s10,s11}if x > a (49)

h(x) > I

In fact, the configuration that consists of a binary chance variable of equi-probable
probability and an binary ignorant variable is only one among infinite many. Any
decision that is made on the basis of the belief function fails to account for the
information that can be found in the original problem setting.
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Unfortunately, even if you know that the use of belief function incurs loss of
information, it still remains the only available choice if you insist on bring probability
and ignorance variables into a single formal uncertainty formalism.

The novel approach we are proposing will not insist on representing the uncertainty
about different variables in the common product state space. For example, we do not
represent a chance variable X and an ignorant variable Y by an uncertainty measure
on the product space X x Y. Instead we connect those variables in a sequence.

Variable resolution order, the temporal order in which the variables involved in the
decision problem are resolved (their realizations become known) is a novel concept
that will play a key role in our approach.

Before presenting our approach, we speculate about the reason why the literature
on non-expected utility never seriously considered this concept. It is well-known that
decision models under uncertainty are heavily influenced by the knowledge about the
expected utility theory. An important fact about the EU model is that the result does
not depend on the order of variable resolution. This is an implication of the dynamic
consistency property. As discussed in the Sect. 2.1, in the axiomatization of the
expected utility theory, the compound act is identified with the linear combination of
acts. This identification is considered self-evident even though they are two distinct
concepts.

Let’s calculate the expected utility in the case if both variables X and Y in the
example are chance variables. There are three ways to compute the expected utility
of the instrument.

Exyld(X,Y)] = > Pr(x,y)d(x,y) (50)
X,y
Ex[Eyix[d(X, V)IX]1 =D Pr(x) D Pr(ylx)d(x, y) (51)
x y
Ey[Exjy[d(X, VIYTI = D" Pr(y) D Pr(x|yd(x, y) (52)
y X

Because Pr(x, y) = Pr(x)Pr(y|x) = Pr(y)Pr(x|y), the expected value calculated
is the same no matter which method is used. This is a special case of the law of
iterated expectation. You can interpret each calculation method in terms of order
of variable resolution. The first calculation corresponds to the case when you don’t
know which variable realizes first or you know that they are realized at the same
time. The second calculation applies when X realizes before Y. When the realization
of X is known, you can condition the instrument and probability of ¥ on that event
and calculate (conditional) expected utility. Before knowing X realization you can
calculate the expected utility by accounting for the probability of X realizations. The
third calculation applies when Y realizes before X. The invariance between three
calculations tells us the value of the instrument does not depend on the order of
variable resolution.

The situation becomes quite different when a non-probabilistic variable is
involved. Consider the motivating example. The return of investment instrument
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d depends on two variables, a chance variable X and an ignorant variable Y. For
the sake of simplicity, assume that X and Y are non-influential (term independent is
reserved for the relationship between probabilistic variables). The problem descrip-
tion, notably, does not say anything about when each variable is revealed to the
investor. The only implicit assumption is that both variables are resolved before the
instrument’s maturity. The omission could be due to the fact that the resolution order
is not known. But the order information, even known, could be left out because it is
judged to be irrelevant to the value of the investment, especially when variables are
supposed to be independent.

It turns out that the omission is an error and the information about the resolution
order is essential for evaluation of acts under heterogeneous uncertainty. If the order
is not given, one can list all the possibilities. There are two possibilities: (1) X is
revealed before Y denoted by X — Y and (2) Y is revealed before X denoted by
Y — X. If the order of resolution is unknown, notation X = Y is used.

Suppose that X is resolved at day 1 and Y a day later. Also assumed is that the
variable realizations become public information instantly. In this case, the Scenario
1 where the investor conditions Y, the variable that remain unresolved, on the real-
ization of X, seems more credible than Scenario 2. In fact, the conditional of X on Y
makes little sense because given a realization of ¥ at day 2, X is no longer a chance
variable. Once the realization of X is known, the instrument becomes a function of
Yonly —dy—1(Y =1) =0and dy—1(Y = 0) = 1l ordx—o(Y = 1) = 1 and
dx—o(Y = 0) = 0. The value (certainty equivalent) of such an instrument can be
found by putting it on the market. Suppose the market value for the instrument is ¢ (¢
is less than 0.5 if market is averse to uncertainty). So, the instrument that the decision
maker holds today (day 0) can be sold in day 1 for ¢ no matter what the realization
of X will be. Therefore, in order to avoid arbitrage the value of the instrument today
must be exactly c.

On the other hand, if ¥ — X meaning Y is resolved at day 1 and X is resolved at
day 2, the Scenario 2 is more credible than Scenario 1. In this case, the value of the
instrument at day 1, either dy—¢ or dy—1, is 0.5 because they are instruments under
risk (depend on X only) with equal probabilities of getting 0 and 1 util. Therefore,
the value (fair price) of d today must be 0.5.

Thus, the apparent conflict between two scenarios can be reconciled if the infor-
mation about the order of variable resolution is considered.

3.3 Decision Making Under Heterogeneous Uncertainty

Formally, we consider a decision situation described by a tuple (V, A, W, D). V is
a finite collection of variables { X, X», ... X, }. Each variable has a domain dom(-)
—the set of values it can take. The Cartesian product of the domains of variables in
V is the state-space denoted by dom (V) = 2 = X x¢p dom(X). s € £2 is a tuple of
values in the domains of X;. A is a functional mapping from V to the set of functions
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of the form 29°™() — [0, 1]. A(X) represents the uncertainty about X. W = [0, 1]
is the outcome space. D is the act space. An act is a mapping f : 2 — W.

Furthermore, we assume that each variable in V has a fype. The type of a vari-
able is determined by the properties that its uncertainty function A must satisfy.
For example, X is of probabilistic type if A(X) is a probability measure. For each
type of variable, there is a certainty equivalent operator (CE). This operator maps
a uncertainty measure A(X) and act fx on the domain of X to a point in W i.e.,
CE(A(X), fx) € W. For example, if X is probabilistic then CE p, is the expected
utility operator.

For the sake of simplicity, we initially make an assumption that variables are
mutually non-influential. That means A(X) does not depend on the occurrence of
other variables.

Suppose O is a subset of the collection of variables 1 and O is the complement
of O. Let s be a state or element in dom()), denote by s¢ the projection of s on O.
Conversely, if s is an element of dom(Q) and ¢ —an element of dom(O) then s.1
denotes the element of dom()) that is constructed by joining s and 7.

For act f on £2 (i.e., dom(V)) and s € dom(QO), denote by f; the act on dom(@)
defined as follows

vt € dom(O), fi(t) = f(s.t) (53)

We say that f is f conditional on s.

In the example in Sect. 3.1,V = {X, Y}, A(X) = {Pr(X =0) = 0.5, Pr(X =
D=05LAY)={x¥ =0)=1,7(Y =1) =1}, W =10, 1] and D is the set of
functions from dom(X) x dom(Y) — W.

3.4 Folding Back Principle

For a given sequence of variable realization X; — X; — ...X,, an act f ©
on £ (i.e., dom(Xy, X2, ... X,)) is transformed by folding back to an act £ on
dom(X1, X5, ... X,_1). In the rule form £ is

Y =(s = cEAX,, f19) | s e dom(X1, X2, ... X, 1)} (54)

In words, f M maps each state of the remaining domain dom(X1, X», ... X,,—1) into
the certainty equivalent obtained by folding back the original act conditional on that
state fs(o). The superscript ) tells the folding back step. Recursively, f(1) can be

transformed to f(z) on dom(X1, X7, ... X,—2) defined by
[P ={s > CEAXu1, f[V) | s € dom(X1, X2, ... Xu2)}  (55)

Finally, the certainty equivalent of act f(© is taken to be.
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CED) = f" =ce@axn. D) (56)

The fold-back procedure is well known. We just propose to apply it in situations
involving uncertain variables of different types. The major advantage of this approach
is that it makes use of uncertainty that is local for each variable and eschews the need
to have a global uncertainty on dom(X1, X», ... X,). This property is important
because it could be impossible to have a global measure without loss of information.
More importantly, this procedure allows you to have more flexibility in using different
formal frameworks to model uncertainty about the world.

For an example, let us use this procedure to analyze the concept of linear combi-
nation of possibilistic acts which is impossible to handle within a purely possibilistic
framework.

3.5 Linear Combination of Possibilistic Acts

The linear combination of possibilistic acts f, g can be constructed with the help of
any probability generating device such as coin with bias p.

There are two schemes to construct such an act. In the first scheme, you toss the
coin and depending on which side it lands you get either f if Head occurs or g if Tail
occurs. You get an act 4 in the sense that if state s of the £2 realizes then you will be
rewarded with the outcome of this act 4 (s).

Alternatively, you can construct a new act by postponing the coin toss until after
realization of s and depends on which way it lands you get either f (s) if Head occurs
or g(s) if Tail occurs.

We can describe the situation with two variables X —a coin toss and ¥ —a
possibilistic variable. The first way of construction corresponds to X — Y while the
secondto ¥ — X.

Example 6. Figure 13 describes two schemes for the case where dom(X) = {H, T}
and dom(Y) = {M, L} (M stands for “more” and L stands for “less”). The following
configuration is used. Pr(H) = 0.7, Pr(T) = 0.3 and n(M) = 1,n(L) = 0.4.
fM)=1, f(L)=0.2and g(M) =0.4,g(L) =0.8.

For risk attitude, we consider a utility function in the Constant Relative Risk
Averse (CRRA) family u = x" with r = 0.5 (risk averse). For ambiguity attitude,
we use ambiguity averse polar utility function V{ 4(x). Attached to each node is the
certainty equivalent of the sub-tree rooting at the node. For example, on the tree on
the right, 0.79 is the certainty equivalent obtained by folding back the probabilistic
act {H — 1, T < 0.4} under utility function u(x) = x02. |

The calculation shows that the certainty equivalent if the coin is tossed before
realization of Y (on the left) is 0.55. If the order of resolution is reversed, the certainty
equivalent is 0.63. It shows that the two schemes of combination are not equivalent.
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<1,0>~1 1
0.63 ~<1,0.4> <1,0.18>~0.79
<0.37,1>~0.2 0.4
0.55 <1,0.4>~
<1,1>~04 0.63 0.2

0.4~<1,1> <0.77,1>~0.34

0.4 <1,0.17>~0.8 0.3 0.8

X before Y Y before X
r=0.5p=04

Fig. 13 Ambiguity of the linear combination of possibilistic acts

If that conclusion seems counter-intuitive it could be because of the habits of
reasoning with probability.

Let consider some of the arguments. You could argue that if you are not allowed
to exchange what you have after the first variable resolved (coin toss in the first
scheme) for its certainty equivalent then the certainty equivalents of two scheme
must be identical because the reward for each contingency (HM, HL, TM, TL) is the
same.

The response to such argument is that first, the imposed ban can alter the value
of an act or in the language of business, distorts the market. There is a more subtle
explanation. If you are not in position to distinguish individual variables and all you
know is the final four options (HM, HL, TM, TL) then the formulation of problem
in terms of two variables X and Y is not correct. For you actually there is only one
variable Z whose domain has four elements. Under this scenario, the trees in Fig. 13
do not represent your information. Note that our proposed method still applied to
this one-variable scenario but of course it would give a different answer.

We have shown that the notion of “linear combination of possibilistic acts” is
not well-defined. The ambiguity embedded explains the problems in developing an
evaluation method for such a combination.

4 Summary

The environment of heterogeneous uncertainty is the situations in which a decision
maker has to choose among actions that depend on variables of multiple uncertainty
formalisms. This paper provides a systematic overview of decision models for indi-
vidual uncertainty frameworks including probability theory, Dempster-Shafer belief
function theory and possibility theory. We then propose a solution to an open problem
of decision making in the environment of heterogeneous uncertainty. This is an issue
of significant practical impact and many theoretically interesting questions. The key
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idea is to introduce the order of variable resolution to the analysis of decision making
under heterogeneous uncertainty. Many important questions in this approach remain
unsolved and are the subjects of future study.
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One-Shot Decision Theory: A Fundamental
Alternative for Decision Under Uncertainty

Peijun Guo

Abstract The attempts of this paper are as follows: clarifying the fundamental
differences between the one-shot decision theory which was initially proposed in the
paper [16] and other decision theories under uncertainty to highlight that the one-shot
decision theory is a scenario-based decision theory instead of a lottery-based one;
pointing out the instinct problems in other decision theories to show that the one-shot
decision theory is necessary to solve one-shot decision problems; manifesting the
relation between the one-shot decision theory and the probabilistic decision methods.
As regret is a common psychological experience in one-shot decision making, we
propose the one-shot decision methods with regret in this paper.

Keywords Decision making - One-shot decision - Regret - Regret focus points -
Scenario-based decision theory : Human-centric decision-making * Behavioral
operations research

1 Introduction

In many decision problems encountered in practice, a decision maker has one and
only chance to make a decision under uncertainty. Such decision problems are called
one-shot decision problems. Let us begin with several real examples to show the
features of one-shot decision problems. An article in NIKKAN SPORTS (10-28-
2005) stated that Hanshin Electric Railway Co., Ltd., which owns Hansin Tiger
baseball team, lost nearly 500 thousand dollars because Hansin Tiger was beaten
by Chiba Lotte Marines in Japanese National Baseball Championship in 2005. The
huge loss resulted from the production cost of commemorative goods. The Hanshin
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Electric Railway Co., Ltd. had one and only one chance to make a decision whether
to prepare the commemorative goods and decide how many goods to be produced
before the final result of the game was known. Another example is the Great Sichuan
Earthquake that occurred at 14:28:01 CST on May 12,2008. Official figures stated
that 69,197 people were confirmed dead. Amongst many serious problems caused by
the earthquake, Tangjiashan Lake particularly drew the attention of the world because
it was seriously threatening the lives of 1300,000 people, Lanchengyu Oil Pipeline
and one of the arterial railways in China, Chengbao Railway. To prevent damage
to the dam, the water in the lake needed to be drained away as soon as possible
by building a sluice channel. There were only two alternatives for building a sluice
channel, using explosives or digging by excavators. It was a one-shot decision to
decide which method should be utilized in the face of the uncertainties from rain,
aftershock, dam stability, land slip and time.

Quoting from King ([23], p. 102) “There is a strong basis for the belief that the
decision to outsource-particularly offshore-is a “one-time and-never-return” decision
because the loss of capability by the client in activities that are outsourced is well
known and the cost of re-creating those capabilities may be prohibitive.” Clemen
and Kwit ([7], p. 74) stated that “Because of the one-time nature of typical decision-
analysis projects, organizations often have difficulty identifying and documenting
their value. Based on Eastman Kodak Company’s records for 1990 to 1999, we esti-
mated that decision analysis contributed around a billion dollars to the organization
over this time.” Fine [11] emphasized that technological innovation and competitive
intensity have been acting as two major drivers to speed up the rates of evolution i.e.
“industry clock speeds”, with regard to the product, the process, and the organization
of each industry. Accelerated industry clock speed makes one-shot decision problem
highly relevant. Lastly, the growing dominance of service industries makes one-shot
decision problems especially applicable.

It can be seen that one-shot decision is a kind of irreversible action for problems
with partially known information. Such decision problems are commonly encoun-
tered in business, social systems and economics.

Guo [16] proposed the one-shot decision theory (OSDT) for solving one-shot
decision problems. In OSDT, we argue that a person makes a one-shot decision
based on some particular scenario which is regarded as the most appropriate one
for him/her while considering the satisfaction level incurred by this scenario and
its possibility degree. The one-shot decision process involves two steps. The first
step is to identify which state of nature should be taken into account for each
alternative. The identified state of nature is called focus point. The second step is
to evaluate the alternatives based on the outcomes brought by the focus points to
obtain the optimal alternative. As an application, a duopoly market of a new product
with a short life cycle is analyzed where three kinds of firms, i.e. normal, active
and passive firms are considered. Possibilistic Cournot equilibriums are obtained
for different kinds of pairs of firms in a duopoly market. The results of analysis
are quite in agreement with the situations encountered in the real business world
[14]. Private real estate investment is a typical one-shot decision problem for per-
sonal investors due to the huge investment expense and the fear of substantial loss.
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In Guo [15], private real estate investment problem is analyzed using one-shot deci-
sion framework. The analysis demonstrates the relation between the amount of uncer-
tainty and the investment scale for different types of personal investors. The proposed
model provides insights into personal real estate investment decisions and important
policy implications in regulating urban land development.

In this research, we attempt to clarify the fundamental differences between OSDT
and other decision theories under uncertainty, types of instinct problems in other
decision theories that make OSDT necessary to solve one-shot decision problems,
and the kind of relation that OSDT holds with the probabilistic decision methods.
Realizing that regret is a common psychological experience in one-shot decision
making, we propose the one-shot decision methods with regret in this paper.

The remainder of the paper is organized as follows. In Sect. 2, we address the fun-
damental differences between OSDT and other decision theories under uncertainty
and why OSDT is necessary to solve certain types of problems. In Sect. 3, the one-
shot decision methods with regret are proposed. In Sect. 4, a numerical example of a
newsvendor problem is addressed. Finally, the relationship between OSDT and other
decision theories under uncertainty is clarified and the future research directions are
provided in Sect. 5.

2 The Need for the One-Shot Decision Theory

2.1 The Same Framework of Weighting Average
Jor the Existing Decision Theories Under Uncertainty

In general, before taking an action a decision maker cannot know which outcome
will occur. Such unknown situations can be divided into three categories: risk, uncer-
tainty and ignorance. According to Knight [24], risk involves situations where the
probabilities of all possible outcomes can be exactly calculated whereas uncertainty
is related to the status when exact probabilities cannot be obtained due to inadequate
information. Ignorance occurs when no information is available to distinguish which
outcome is more likely to occur.

Different unknown situations require different decision theories. Decision rules
for situations involving ignorance include maximin, maximax, minmax regret and
Hurwicz criterion. The expected utility (EU) theory of Von Neumann and Morgen-
stern is appropriate for decision making under risk and the subjective expected utility
(SEU) theory of Savage is appropriate for decision making under uncertainty where
subjective probabilities are used to reflect an individual’s belief. There is evidence
that people systematically violate EU theory while making decisions [21, 25]. Most
criticism of the Von Neumann-Morgenstern’s and Savage’s axioms mainly focus
on independence axiom or sure thing principle [1, 10], transitivity axiom [26] and
completeness axiom [5, 30].
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Let us discuss the completeness axiom. Quoting Von Neumann and Morgenstern
([33], p- 17) “Let us for the moment accept the picture of an individual whose
system of preferences is all-embracing and complete, i.e. who, for any two objects or
rather for any two imagined events, possesses a clear intuition of preference. More
precisely we expect him, for any two alternative events which are put before him as
possibilities, to be able to tell which of the two he prefers.” In fact, in the real world
the decision maker does not have the capability to distinguish which alternative is
better so that he/she asks a decision analyst to help solving the problem. Nevertheless,
with the assumption that the completeness axiom holds for the decision maker the
decision analyst builds decision models based on (subjective) expected utility theory.
Obviously, it is logically inconsistent. It is natural to raise the questions: who is the
protagonist? Is it the decision maker or the decision analyst?

Many theories have been proposed to react to such empirical evidence that human
behavior often contradicts expected utility theory. One such theory, i.e. prospect
theory developed by Kahneman and Tversky [20] is a non-additive probability model.
In prospect theory, value is assigned to gains and losses based on a reference point
rather than to the final asset as in EU and SEU. Also, probabilities are replaced by
decision weights which do not satisfy the probability additivity. The value function is
defined on deviations from a reference point. Value functions are normally concave
for gains (implying risk aversion), and convex for losses (implying risk seeking).
Regret theory [26] uses modified utility of choosing one alternative instead of another
which consists of a choiceless utility and a regret-rejoice function.

Other models such as, second-order probabilities models [19, 29] and non-additive
probability models [13, 28] have also been proposed in this empirical challenge. It
should be noted that these decision theories follow the same framework of weighting
average of all outcomes no matter how they revise their models. In the context of
fuzzy decision making, Yager [35] proposed the optimistic utility and Whalen ([34])
gave the pessimistic utility. These two utilities were axiomatized in the style of
Savage by Dubois et al. [9]. Giang and Shenoy [12] generalized them by introducing
an order on a class of canonical lotteries. In fact, the optimistic utility is a sort
of a weighted average where multiplication and addition is replaced by T-norm,
min and Co-norm, max, respectively. The pessimistic utility is a counterpart of the
optimistic utility in the sense of possibility and necessity measures. Brandstatter et al.
[6] proposed the priority heuristic where the lotteries are chosen by lexicographic
rules for the four reasons, i.e. minimum gain, maximum gain and their respective
probabilities.Katsikopoulos and Gigerenzer [22] showed that the priority heuristic
can predict human decision-making better than the most popular modifications of
utility theory, such as cumulative prospect theory, and is, in this sense, close to human
psychology.

It can be concluded that decision theories under uncertainty are theories of choice
under uncertainty where the objects of choice are lotteries. In light of the features of
the one-shot decision problem, this raises two problems: Is the probability distribution
suitable for characterizing the uncertainty? Is the expected utility a reasonable index
for evaluating the performance of a one-shot decision? The answers are given in the
following two subsections.
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2.2 Is the Probability Distribution Suitable for Characterizing
the Uncertainty in the One-Shot Decision Problem?

In general, the one-shot decision problem involves the situation that has seldom
or never happened so far so that the decision maker can not obtain the objective
probability distribution. Subjective probability enters as a means of describing the
belief about how likely a particular event is to occur. Mainly, there are two kinds
of approaches for obtaining subjective probabilities, i.e. the lottery method and the
exchangeability method. The lottery method determines the subjective probability of
an event in terms of simple betting odds [27]. The exchangeability method consists in
the subsequent splitting of the state space into equally likely events via binary choices
between binary prospects. Baillon [2] argued that subjective probabilities elicited by
the exchangeability method might violate the additivity. The lottery method also was
examined by the following experiment.

Subjects:

Fifty subjects participated in the experiment conducted on May 25, 2011. All the
participants were undergraduate students who took the course of Decision Sciences,
at Faculty of Business Administration, Yokohama National University. The exper-
iment started at the beginning of the lesson. None of them were aware of the true
goal of the experiment. The experiment was conducted before teaching them what
the subjective probability and the additivity of probability measure are.

Procedure:

The following questions are independently asked:

Ql1: If it rains next Wednesday, you will get 10,000Yen. However, if it does not rain,
you will get nothing. How much would you be willing to pay for this proposition?
Q2: If it does not rain next Wednesday, you will get 10,000Yen. However, if it rains,
you will get nothing. How much would you be willing to pay for this proposition?
Results:

The prices for Q1 and Q2 are denoted as X; and X5, respectively. The mean
of X1 + X, is 4773.98 and the standard deviation of X| + X, is 2858.73. If the
additivity property holds, then the mean of X; 4+ X5 should be 10,000. We set up
the null hypothesis: the mean of X; + X7 is 10,000. The value of the test statistic
is calculated as —12.93 so that this null hypothesis is rejected at the 0.01 level of
significance by two-tail test. It means that the additivity can not always be guaranteed
while using the lottery method.

Possibility is an alternative for characterizing the uncertain situation. It can be
explained from three semantic aspects, i.e. ease of achievement, plausibility referring
to the propensity of events to occur (which relates to the concept “potential surprise™)
and logical consistency of available information. Possibility distribution is a function
whose value shows the degree to which an element is to occur, as defined as follows.

Definition 1 Given a function 7 : S — [0, 1] if ma;ur(x) = 1, then 7 (x) is called
Xe

a possibility distribution where S is the sample space. 7 (x) is the possibility degree
of x.
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m(x) = 1 means that it is normal that x occurs and 77 (x) = 0 means that it is
abnormal that x occurs. The smaller the possibility degree of x, the more surprising
the occurrence of x. Obtaining the possibility distribution always poses a fundamental
problem for decision with possibilistic information. Guo and Tanaka [17] proposed
the method for identifying the possibility distribution of the stock returns with the
idea of similarity. Guo et al. [18] obtained the possibility distribution of the demand
for a new product with the idea of potential surprise. Guo [16] presented a general
method for identifying the possibility distribution by voting described as follows:

Suppose S = {x1, x2, ..., x,}. We ask multiple experts to select the most possible
events from S. In other words, if an expert selects the event x;, the expert will not be
surprised by its occurrence. The number of experts who select x; is denoted as k;.
Setting K = rrllax ki, the possibility degree of x; is obtained as k; /K in the sense

n

=

.....

that each expert has equal reliability for judging which event will occur.
It is a valid question to ask which is better, probability or possibility. To answer
this question, let us take a look at the following example.

Example 1 [15] Who is guilty?

A car has been destroyed by somebody in a parking lot. After careful investigation,
itis sure that one and only one of three suspects A, B and C must be guilty of the crime.
However, who is guilty of the crime is still unknown. Suppose, based on the currently
obtained evidence subjective probabilities are used to characterize the belief about
who is guilty amongst the three suspects and given as e.g. P(A) = 0.4, P(B) =
0.4and P(C) = 0.2. Considering the relation P(A) = 1 — P(A) where A is the
complement of A, it can be concluded that none of these three suspects is guilty in
the context of probability (P(A) < P(A), P(B) < P(B), P(C) < P(C)). This
conclusion is in conflict with the antecedent one, i.e. one and only one of three
suspects A, B and C must be guilty. This conflict originates from the existence of
incomplete information. In this example, the possibility distributions showing the
degrees to which a person is guilty might be given as e.g. 7(A) = 1, n(B) = 1
and 7(C) = 0.7. 1 (A) = 7w (B) = 1 means that based on the obtained evidence, A
or B is most possible to be guilty. The relation 7(A) # 1 — 7 (A) implies that the
possibility degree of A being guilty does not provide any information on A not being
guilty.

It follows from this example that the possibility distribution is a less restricted
framework than single probability measures and hence can be used for encoding ill-
known subjective probability information. The answer to the question which is better,
probability or possibility is that the possibility distribution might be effective for
representing the rough knowledge or judgment of human being when the information
is not rich enough.
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2.3 Is the Expected Value a Reasonable Index for Evaluating the
Performance of a One-Shot Decision?

To answer this question, let us consider the following example.

Example 2 Is Mr. Smith is taller than Mr. Tanaka?

Let us consider two populations:

Population A: The heights of male undergraduate students in Yokohama National
University (YNU)

Population B: The heights of male undergraduate students in University of Alberta
(UA)

For instance, we take 100 samples from the populations A and B, respectively.
The sample mean of A, say 175cm is less than the sample mean of B, say 180cm.
You randomly select one male undergraduate student from UA, say Mr. Smith and
select one from YNU, say Mr. Tanaka. Can you say Mr. Smith is taller than Mr.
Tanaka? The answer will be “no” because the statistical property by itself does not
imply anything about what might happen in just one sample. Next, let us take into
account two other populations as follows:

Population I: The outcomes generated by an alternative C
Population II: The outcomes generated by an alternative D

Suppose that the mean of the population I is larger than the one of II. Randomly
select one outcome from I, that is, X, and one outcome from II, that is, y. Can you say
x is larger than y? Can you say C is better than D? Both of answers will be “no”. From
the above examples, it is easy to understand that for the one-shot decision problem
the expected value might not be a suitable index for evaluating the performance of
an alternative.

In conclusion, anew decision theory is needed to solve one-shot decision problems
featured by partially known information and the occurrence of only one outcome. Guo
[16] initially proposed the one-shot decision theory (OSDT) which is scenarios-based
instead of lotteries-based as in other decision theories under uncertainty. In OSDT,
we argue that a person makes a one-shot decision based on some particular scenario
which is regarded as the most appropriate one for him/her while considering the
satisfaction level incurred by this scenario and its possibility degree. Because regret
is a common emotion in one-shot decision problems, we propose one-shot decision
methods with regret in the following section.

3 One-Shot Decision Methods with Regret

Some people find decision making under uncertainty difficult because they fear mak-
ing the “wrong decision”, wrong in the sense that the outcome of their chosen alter-
native proves to be worse than could have been achieved with another alternative
([3], p- 1156). This kind of situation can be described by the word “regret” which
is “the painful sensation of recognizing that ‘what is’ compares unfavorably with



40 P. Guo

‘what might have been” ([32], p. 77). Shimanoff pointed out that regret was the
most frequently named negative emotion in a study of verbal expressions of emo-
tions in everyday conversation [31]. Decision with regret has been researched by
Savage [27], Loomes and Sugden [26], Bell [3], Sugden [32] and so on. In one-
shot decision problems, the decision maker has one and only opportunity to make a
decision so that there is no chance to correct his/her decisions once the decision has
been made. Hence, regret emotion is an especially important factor that affects the
decision maker’s behavior.

3.1 Regret Function

Denote the set of an alternative a as A and the set of a state of nature x as S. The degree
to which a state of nature is to occur in the future is characterized by a possibility
distribution 7 (x) defined by the definition 1. The consequence resulting from the
combination of an alternative a and a state of nature x is refereed to as a payoff,
denoted as v(x, a). Suppose that after a decision maker chooses an alternative a,
a state of nature x appears. The decision maker might regret his/her choice. The
regret value is p(x, a) = Igleaj‘( v(x, b) —v(x, a). Then the regret quantile denoted as

w(x, a), is calculated as follows:
w(x,a) = p(x,a)/ max p(x, d). (D
deA

The regret level of a decision maker for a regret quantile can be expressed by a
regret function, as defined below.

Definition 2 Denote the set of aregret quantile w(x, a) as W. The following function
r: W —[0,1] 2

with
r(wy) > r(wp) for w; > wp, 3)

is called a regret function. Because the regret quantile is the function of x and a, we
can rewrite the regret function as r (w(x, a)). For the sake of simplification, we write
r(w(x, a)) as r(x, a) in this paper. Regret function is a nonlinear transformation of
the regret quantile and represents the relative position of the regret.

The information for one-shot decision with regret can be summarized as a quadru-
ple (A, S, , r). One-shot decision is to choose one alternative based on (A, S, m, r)
when only one decision chance is given.

It is well recognized that when you ask some person why he/she makes such a
one-shot decision with little information, he/she always tells you just one scenario
which is crucial to him/her and is the basis for achieving some conclusion. For
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instance, empirical evidence suggests that insurance buyers focus on the potential
large loss even at the low probabilities; lottery ticket buyers focus on the big gains
even at small probabilities [8]. Interestingly, Bertrand and Schoar [4] found out
that financial decision depended not just on the nature of the firm and its economic
environment, but also the personalities of the firm’s top management. For instance,
while older CEOs tended to be more conservative and pushed their firms towards
lower debt, CEOs with MBA degrees tended to be more aggressive.

For the one-shot decision methods with regret, we think that a person make a one-
shot decision based on some particular scenario while considering the possibility
degree and the regret level. Selecting the scenario depends on the personalities of
the decision maker for example one person may be active whereas another may
be passive. The one-shot decision making procedure consists of the following three
steps. In Step 1, a decision maker identifies some state of nature (particular scenario),
called regret focus point for each alternative according to his/her own characteristic.
In Step 2, the validity of the regret focus points is checked. In Step 3, the decision
maker evaluates the alternatives based on the regret level brought by regret focus
point to obtain the best alternative. These three steps are addressed in detail in the
following subsections.

3.2 Identifying Regret Focus Points

Since one and only one state of nature will come up for a one-shot decision problem,
a decision maker needs to decide which state of nature ought to be considered for
making a one-shot decision. Each state of nature is equipped with a pair of possibility
and regret so that how to determine the states of nature depends on his/her attitudes
about possibility and regret. The selected state of nature is call regret focus point.
Twelve types of regret focus points are provided to help a decision maker in finding
out his/her own appropriate one. The characteristics of these focus points are depicted
below (shown in Tables 1, 2, 3). Type I and Il regret focus points are the states of nature
that have the highest and the lowest regret levels, respectively, amongst the ones that
have high possibility degrees. Type III and IV regret focus points are the states of
nature that have the highest and the lowest regret levels, respectively, amongst the
ones that have low possibility degrees. Type V and VI regret focus points are the
states of nature that have the highest and the lowest possibility degrees, respectively,
amongst the ones that have high regret levels. Type VII and VIII regret focus points are
the states of nature that have the highest and lowest possibility degrees, respectively,
amongst the ones that have low regret levels. Type IX regret focus point is the state
of nature with the higher possibility degree and the higher regret level. Type X regret
focus point is the state of nature that has the lower possibility degree and the lower
regret level. Type X1 regret focus point is the state of nature with the higher possibility
degree but the lower regret level. Type XII regret focus point is the state of nature
that has the lower possibility degree but the higher regret level.
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Table 1 The characteristics of regret focus points (types I-1V)

High possibility Low possibility
The highest regret Type I regret focus point Type III regret focus point
The lowest regret Type II regret focus point Type IV regret focus point

Table 2 The characteristics of regret focus points (types V-VIII)

High regret Low regret
The highest possibility Type V regret focus point Type VII regret focus point
The lowest possibility Type VI regret focus point Type VIII regret focus point

Table 3 The characteristics of regret focus points (types IX—XII)

Higher regret Lower regret
Higher possibility Type IX regret focus point Type XI regret focus point
Lower possibility Type XII regret focus point Type X regret focus point

In the following we will provide mathematical formulas to find out the above
mentioned twelve types of regret focus points. For establishing the focus points, we
use the operators

min[bl,b2,-~-,bn]:[ /\b,’ s /\b,’ S, /\b,‘ ], (4)
i=l1,..., n i=l,..., n i=1,...,n
and
max[bl,be"'9bn]=[ \/bi B Vbi s Ty \/bi ] (5)
i=1,...,n i=1,...n i=l,...,n
min[by, by, - - - , b,] and max[by, bs, -+ ,b,] are lower and upper bounds of
[b1, b2, - -, by], respectively. For example, min[0.3,0.8] = [0.3,0.3] and

max[0.3, 0.8] = [0.8, 0.8]. Twelve kinds of regret focus points are as follows:

Type I: x}*(a) = arg m}a(lx r(x, a) where X=% = {x|w(x) > a}.
xex=«

The given parameter « is a level used to distinguish whether the possibility degree
is evaluated as ‘high’ by a decision maker. If « = 1 then only the normal case
(7w (x) = 1) is considered. The states of nature belonging to X=% = {x|7(x) > «a}
are regarded as having the equivalent possibility to occur. x;*(a) is a state of nature
with high occurrence possibility. Once it occurs, the decision maker will most regret
his/her choice of the alternative a. x!*(a) is Type I regret focus point.

Type II: x2*(a) = arg ngn r(x,a) where X=% = {x|7(x) > a}.
xex=«
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xé* (a) is a state of nature with high occurrence possibility. Its occurrence will lead
to the lowest regret level of the decision maker for choosing the alternative a. xé* (a)
is Type II regret focus point.

Type III: x3*(a) = arg max r(x,a) where X=% = {x|7(x) < «a}.
ex=«

The occurrence of xg*(a) will make the decision maker most regret his/her choice
of the alternative a. However, the possibility of its occurrence is low. xg*(a) is Type
III regret focus point.

Type IV: x4 ) = arg ngén r(x,a) where X=% = {x|7(x) < a}.

The occurrence of x;‘* (a) will make the decision maker have the lowest regret level
for choosing the alternative a. However, the possibility of its occurrence is low.
xé* (a) is Type IV regret focus point.

Type V: xg*(a) =arg max mw(x) where XZB(a) = {x|r(x,a) = B}.

xeXzP(a)

The given parameter § is the level to distinguish whether the regret level is eval-
uated as ‘high’ by a decision maker. The states of nature belonging to X=#(a) =
{x|r(x,a) > B} are regarded as having the same regret level generated by the alter-
native a. xg* (a) is an undesirable (the regret level is high) state of nature that has the

highest possibility to occur. xg* (a) is Type V regret focus point.

Type VI: xﬁ*(a) = arg mlzl 7(x) where X=P(a) = {x|r(x,a) > B},

x€XZP(a)
which called Type VI regret focus point, is an undesirable state of nature that has the
smallest possibility to occur.
Type VIL: x;*(a) = arg max 7 (x) where X=F(a) = {x|r(x,a) < B},

xeX=P(a)
which called Type VII regret focus point, is a desirable (the regret level is low) state
of nature that has the highest possibility to occur.
Type VIIL: x§*(a) = arg  min 7 (x) where X</ (a) = {x|r(x, a) < B},

xeX=P(a)
which called Type VIII regret focus point, is a desirable state of nature that has the
smallest possibility to occur.

Type IX:
x7*(a) = arg max min[z (x), r (x, @)]. (6)

It follows from (6) that x = x%*(a) maximizes g(x, a) = min[7(x), r(x, a)]. In
consideration of (4), we know that min[x (x), 7 (x, a)] represents the lower bound of
the vector [ (x), r(x, a@)]. Increasing min[7 (x), r(x, a)] (ma;( min[w(x), r(x,a)])
xXe
will increase the possibility degree and the regret level simultaneously. Therefore,
arg ma;g min[7(x), 7(x, a)] is for seeking a state of nature that has the higher pos-
xXe

sibility degree and brings the higher regret level due to the choice of the alternative
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Fig. 1 The explanation of the

formula (6) r(x,a)=m(x)
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a. x**(a) is Type IX regret focus point. For easily understanding (6), let us have a

look at Fig. 1. There are four states of nature x; , x2, x3 and x4 whose [ (x), r(x, a)]

are respectively [0.1, 0.6], [0.3, 0.2], [1.0, 0.3] and [0.6, 0.4] represented by A, B, C

and D. min[m (x), r(x, a)] transfers A, B, C and D into A’, B’, C' and D', which are

[0.1, 0.1], [0.2, 0.2], [0.3, 0.3] and [0.4, 0.4], respectively. magc min[7(x), r(x, a)],
xe

that is,max([0.1, 0.1], [0.2, 0.2], [0.3, 0.3], [0.4, 0.4]) = [0.4, 0.4] corresponds to
D' arg ma;( min[m (x), r(x, a)] chooses x4. It follows from Fig. I that x4 is a state of
xe

nature with a higher possibility degree and a higher regret level.
Type X:

x1%(a) = arg migl max[7(x), r(x, a)]. @)
xe
(7) shows that x = x!%%(q¢) minimizes h(x,a) = max[7(x), r(x,a)]. In con-

sideration of (5), we know that max[w (x), r(x, a)] represents the upper bound of
the vector [ (x), r(x, a)]. Decreasing max[m (x), r (x, a)](mi? max[x(x), r(x,a)l)
xe
will decrease the possibility degree and the regret level simultaneously. Therefore,
arg milsl max[m(x), r(x, a)] is for seeking a state of nature that has the lower possi-
xXe
bility degree and generates the lower regret level due to the choice of the alternative
a. x'%(a) is Type X regret focus point.

Type XI:
') = argmiISlmax[l — 7 (x), r(x,a)]. (8)
xe

Likewise, we understand that x'1*(a) is the state of nature that has the higher pos-
sibility degree and causes the lower regret level when choosing the alternative a.
x*(a) is Type XI regret focus point.

Type XII:
x'%*(a) = arg mi? max[7(x), 1 — r(x, a)]. 9)
xe
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Following (9), we know that x 12% (4) is the state of nature that has the lower possibility
degree and incurs the higher regret level when choosing the alternative a. x'**(a) is
Type XII regret focus point.

For one alternative, more than one state of nature might exist as one type of regret
focus point. We denote the sets of twelve types of regret focus points of the alternative
aas Xy (a), XZ(a), X3(a), Xg(a), X}(a), X§(a), X}(a), X§(a), X°(a), X'(a),
X" (a),and X 12 (a), respectively. It should be noted that X 2 (a)and X 3 (a) are empty
sets when X=% = @; Xg (a) and Xg (a) are empty sets when XZPa) = 0 XZ, (a)
and X 2 (a) are empty sets when X=#(a) = @. The relationships between different
focus points are shown in the following theorem.

Theorem 1

(1) Xg(a)UX3(a) € X(a), (10)
where

a=p= mab{(min(n(x), r(x,a)). (11D
(I X UXj@ < X", (12)
where

a=p= mi?max(n(x), r(x,a)). (13)
(I11) X3(a)UXj(@) S X' (a), (14)
where

a=1—-—8= maémin(n(x), 1 —r(x,a)). (15)

X€E

(IV) X(@) UX§(@) < X% (a), (16)
where

l—a=8= maé(min(l —m(x),r(x,a)). (17

Proof The proof is similar to the proof of Theorem 1 in the paper [16].

Theorem 1 shows the relationships between the different types of regret focus
points. The inclusion relations (10), (12), (14) and (16) hold by choosing the suitable
values of parameters o and 8 shown in (11), (13), (15) and (17). Expressed in detail,
the set of regret focus points with the higher regret and the higher possibility (X°(a))
includes the set of regret focus points with the highest regret and the high possibility
(X (L (a)) and the set of regret focus points with the highest possibility and the high
regret (X ,53 (a)). The set of regret focus points with the lower regret and the lower

possibility (X'%(a)) includes the set of regret focus points with the lowest regret
and the low possibility (Xi (a)) and the set of regret focus points with the lowest
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possibility and the low regret (X g (a)). The set of focus points with the lower regret

and the higher possibility (X'!(a)) includes the set of regret focus points with the
lowest regret and the high possibility (X 3 (a)) and the set of regret focus points with
the highest possibility and the low regret (X 73 (a)). The set of regret focus points with

the higher regret and the lower possibility (X'%(a)) include the set of regret focus
points with the highest regret and the low possibility (X 2 (a)) and the set of regret
focus points with the lowest possibility and the high regret (X g (a)).

Comments: It raises one question how a decision maker would choose among the
twelve focus points. The answer is choosing which type focus point completely
depends on which kind of the combination of possibility and regret, for example,
the higher possibility and the higher regret, is most worth taking into account for
his/her making a one-shot decision. It should be decided by the decision maker
himself/herself instead of a decision analyst. Sometimes, a decision maker may
consider several types or all types of focus points to make a final decision.

3.3 Checking the Validity of Regret Focus Points (Type 1X, X, XI
and XII)

In Step 1, twelve types of regret focus points are identified. These regret focus points
will be used for determining the optimal alternative. Before that, the validity of Type
IX, X, XI and XII regret focus points needs to be checked.

Definition 3 Given the thresholds of the possibility degree « and the regret level
B, we say that x**(a), x'%*(a), x'*(a) and x'**(a) are acceptable for « and 8 if
x%*(a) € X=* N X=P(a), x'%(a) € X=* N X=F(a), x'"*(a) € X=* N X=F(a) and
x'2*(a) € X=* N XZP(a) hold, respectively.

We denote the sets of Type IX, X, XI and XII acceptable regret focus points
for @ and B as ng ﬂ(a), X ;?ﬁ (a), X élﬁ (a) and X leﬂ (a), respectively. For easily
understanding the definitions 3, let us consider the following example.

Example 3 The sets of alternatives and states of nature are A = {aj, az} and
S = {x1, x2}, respectively. For illustrative purposes, let us assume that the esti-
mated possibility degrees of states of nature and the regret levels for two alternatives
on each state of nature are shown in Table4. We set « and g, e.g. as 0.5 and 0.5,
respectively. x¥*(ay), x'%*(a2), x'*(a1), and x'?*(a;) are not acceptable because
xM(ay) = x1 ¢ X7 N XZP(ay) = @, x'M(ay) = x1.x2 ¢ X=* N X=F(a) = @,
@) =x1 ¢ X2 N XZF(a)) = @ and x' % (a)) = x1 ¢ X=*NXZP@a) =0
hold. We can always obtain Type IX, X, XI and XII regret focus points by (6), (7),
(8) and (9). However, in some cases, they are not intuitively accepted as the states
of nature with the higher possibility and the higher regret, the lower possibility and
the lower regret, the higher possibility and the lower regret, the lower possibility and
the higher regret as shown in this example.
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Table 4 Data of the example

3 X1 X2
7 (x;) 0.2 1
r(x;,ay) 0.3 0.85
r(x;,a2) 1 0.1

3.4 Obtaining Optimal Alternatives

A decision maker identifies the valid regret focus points of each alternative according
to his/her own attitude about possibility and regret as shown in Sects.3.2 and 3.3.
He/she contemplates that the regret focus points are the most appropriate states of
nature (scenarios) for him/her and then chooses the alternative which can bring about
the best consequence (the lowest regret level) once the regret focus point (scenario)
comes true. The procedure for choosing the optimal alternative with regret focus
points are given below. Since there are twelve types of regret focus points, there are
twelve types of optimal alternatives.

Type I optimal alternative a'*(): a'* (o) = arg mi/rg r(x(i* (a),a).

ae

Type II optimal alternative a>* («): a®*(«) = arg l’l’li? r(xé* (a),a).
ae

Type III optimal alternative a>*(a): If X=% = @, then a**(«) € @; else a**(a) =
arg min r(xg* (a),a).

acA
Type IV optimal alternative a**(): If X=% = @, then a** () € @; else a**(a) =
arg min r(xg* (a), a).

acA
Type V optimal alternative as*(,B): If Van(a) # @, then a5*(ﬂ) = argmig

ae

max r(xg*(a), a); if Va Xg(a) = @, then a™*(B) € @; else a™*(B) €

XFF@eXj(a)

{alX ?5 (a) = @}. The minmax operator is needed for the cases where multiple focus
points of an alternative a exist. It reflects the conservative attitude of a decision
maker.

Type VI optimal alternative a%*(8): If Van (@) # @, then a®*(B) =

argmin  max r(xg*(a),a); if Va Xg(a) = @, then a®(B) € ©; else
a€A xG*(@)eX§(a)

a®(B) € lalX}(a) = @)}.
Type VII optimal alternative a’*(8): If Va X;(a) = @, then a”*(B) € @; else

a™(B) = arg min _ max r(x;*(a), a) where A~ = {a|X;(a) £ Q}.
acA~ x;*(a)ex;(a)

Type VIII optimal alternative a®*(8): If Va X% (a) = @, then a®*(B) € ©@; else

ag*(,B) = arg min max r(xg*(a), a) where A~ = {a|X§(a) #+ Q}.
acA~ xg*(a)exg(a)
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Type IX optimal alternative a®*(a, B): If Vaxg’ﬁ(a) # @, then a*(a, B) =
arg min max r(x%*(a), a); if Va Xg ﬂ(a) = @, then a™(a, B) € @; else
acA x9*(u)exgvﬁ(u) ’
a®*(a, B) € lalX;, ga) = @).
Type X optimal alternative a'%*(«, B): If Va Xé?ﬁ (a) = @, then a'%(a, B) € @;
else a'%(a, B) = arg min min r(x'%(a), a) where A~ = {alX‘LOﬁ(a)
acA” x10(@)eX % (@) ’
# @}. The minmin operator is used for the cases where multiple focus points of an
alternative a exist. It reflects the aggressive attitude of a decision maker.
Type XI optimal alternative a'"*(«, B): If Va Xé}ﬂ(a) = @, then a'™(«, B) €
@; else a''™(a, ) = arg min min r(x""(a), a) where A~ = {a|Xé1ﬂ
aeA” x1(@)eX}! (a) '
(a) # 0}
Type XII optimal alternative a'>*(a, 8): If VaX(L?ﬁ (a) # @, then a'*(«, B) =

argmin ~ max_ r(x'**(a), a);if Va X;zﬂ(a) = @, thena'**(a, B) € @;else
acA XIZ*(a)Exé‘Zﬂ(a) ’

a'®(a, B) € {alX (@) = @).

Comments:

This research extends the results of the paper [16] in two aspects. The first aspect
is that instead of the satisfaction level we utilize the regret level to seek focus points
because regret is a common emotion in one-shot decision problems. The second
aspect is introducing the step for checking the validity of Type IX, X, XI and XII
regret focus points. It should be noted that such a step is also applicable to the focus
points with satisfaction levels. We also can define dissatisfaction function and use
possibility and dissatisfaction to find out focus points. It is especially appropriate
for emergency management problems where the upper and lower bounds of losses
correspond to the dissatisfaction levels 1 and 0, respectively.

4 Numerical Example: The Newsvendor Problem

In this study, we consider the newsvendor problem for a new product with a short life
cycle. As the product is new, there is no data available for forecasting the upcoming
demand via statistical analysis. As the life cycle of the product is short, determining
optimal order quantity is a typical one-shot decision problem.

The newsvendor problem is described as follows. The retailer orders g units before
the season at the unit wholesale price W. When the demand x is observed, the retailer
sells goods (limited by the supply ¢ and the demand x) at the unit revenue R with
R > W. Any excess units can be salvaged at the unit salvage price S, with W > §,,.
If there is a shortage, the lost chance price is S,. The profit function of the retailer is

(18)

Rx + Sy(qg —x) — Wgq;ifx <gq
r(x,q) =

(R—W)qg—Su(x —q);ifx >q.
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Table 5 Profits obtained for each order quantity

Demand
5 6 7 8 9 10
5 200 180 160 140 120 100
6 150 240 220 200 180 160
Orders 7 100 190 280 260 240 220
8 50 140 230 320 300 280
9 0 90 180 270 360 340
10 -50 40 130 220 310 400

Table 6 Regret levels for each order quantity

Demands
5 6 7 8 9 10
5 0 0.3 0.8 1 1 1
6 0.2 0 0.4 0.667 0.75 0.8
Orders 7 04 0.25 0 0.333 0.5 0.6
8 0.6 0.5 0.333 0 0.25 0.4
9 0.8 0.75 0.667 0.278 0 0.2
10 1 1 1 0.556 0.208 0

Table 7 Possibility degrees of demands

Demands 5 6 7 8 9 10
Possibility degrees 0.2 0.5 0.7 1 0.8 0.6

The unit wholesale price W, the unit revenue R, the unit salvage price S,, and the lost
chance price S, are set, e.g. as 60 $, 100 $, 10 $ and 20 $, respectively. Following
(18), we calculate the profits (see Table5). Using (1), we obtain the regret quantile
for each order and demand. In this example we set r(w) = w, that is, the regret
quantile is the same as the regret level. The regret levels for each order and demand
are listed in Table 6.

Let us analyze this one-shot decision problem in the form of (A, S, 7, u). The set
of alternatives is the set of order quantities A = {5, 6,7, 8,9, 10}. The set of states
of nature is the set of demands § = {5, 6, 7, 8, 9, 10}. The regret levels are shown in
Table 6. We assume that the possibility degrees of the demands 8, 9, 7, 10, 6, and 5
are 1, 0.8, 0.7, 0.6, 0.5, and 0.2, respectively (shown in Table 7).

The thresholds of possibility degrees and satisfaction levels, « and S, are set,
e.g. as 0.55 and 0.52, respectively. In Step 1, all regret focus points are obtained and
listed in Table 8. For avoiding unnecessary repetition, only some results are explained
below. Amongst the high possible demands {7, 8, 9, 10}, 8, 9 or 10 makes order 5
most regretful. In other words, any other order will be better than them if demand 5
comes true. As a result, demands 8, 9 and 10 are Type I regret focus point. Demand
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Table 8 Regret focus points of order quantities

Order quantities

5 6 7 8 9 10
Type 1 8,9,10 10 10 10 7 7
Type II 7 7 7 8 9 10
Type III 6 5 5 5 5 5,6
Type IV 5 6 6 6 6 5,6
Type V 8 8 10 5 7 8
Type VI 10 10 10 5 5 5
Type VII 6 7 8 8 8 9
Type VIII 5 5 5 6 10 10
Type IX 8 9 10 6 7 7
Type X 5 5 5 6 10 10
Type XI 6 7 7 8 9 9
Type XII 10 10 5,10 5 5 5

7 can lead to the least regret for order 5 amongst high possible demands so that
it is Type 1II regret focus point. A decision maker might think about the scenarios
which have the low possibility to occur. They correspond to Type III and IV regret
focus points. Amongst the demands with low possibilities, that is {5, 6}, demand 6
makes order 5 more regrettable than demand 5. Thus, demands 6 and 5 are regarded
as Type III and IV regret focus points, respectively. Amongst the demands {7, 8, 9,
10} which can generate the high regret for order 5, demand 8 is Type V regret focus
point due to its highest possibility whereas demand 10 is Type VI regret focus point
due to its lowest possibility. Amongst the demands {6, 7, 8, 9, 10} which can bring
about low regret for order 8, demand 8 is identified as Type VII regret focus point
because of its highest possibility whereas demand 6 is chosen as Type VIII regret
focus points because of its lowest possibility. Type IX, X, XI and XII regret focus
points are obtained according to (6), (7), (8) and (9). The regret levels brought by
twelve types of regret focus points for each order quantity are listed in Table9. In
Step 2, let us examine the validity of the obtained Type IX, X, XI and XII regret
focus points. Since x** (8) ¢ X=* N X=F (8), x1%* (9) ¢ X=* N x=A(9), x'%* (10)
¢ X=0 N X=P (10), x'* (5) ¢ XZ2 N X=P (5), x12* (5) ¢ X=* N XZF (5), x12*
(6) ¢ X=* N XZP (6) and x'2* (7) ¢ X=* N X=P (7) hold, x** (8), x10* (9), x10*
(10), x'* (5), x'2* (5), x'?* (6) and x'** (7) are not acceptable for « = 0.55 and
B = 0.52. The regret levels brought by twelve types of valid regret focus points for
each order quantity are listed in Table 10.

In Step 3, the optimal order quantities are selected based on the regret levels of
valid regret focus points. The optimal orders are 8, {7, 8, 9, 10}, 6, {5, 6}, 10, {7,
8}, 8, {5, 10}, 8, 5, {7, 8, 9} and {5, 6, 7} which corresponds to Types I to XII
regret focus points, respectively. As the retailer sells seasonal goods, there is one
and only one chance for him/her to decide how many should be ordered. Hence,
considering a reasonable level of demand before determining how many products
should be ordered is appropriate for such one-shot decision problems.
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Table 9 Regret levels for regret focus points

Order quantities

5 6 7 8 9 10
Type 1 11,1 0.8 0.6 0.4 0.667 1
Type 1L 0.8 04 0 0 0 0
Type 111 0.3 0.2 0.4 0.6 0.8 1,1
Type IV 0 0 0.25 0.5 0.75 1,1
Type V 1 0.667 0.6 0.6 0.667 0.556
Type VI 1 0.8 0.6 0.6 0.8 1
Type VII 0.3 04 0.334 0 0.278 0.208
Type VII 0 0.2 0.4 0.5 0.2 0
Type IX 1 0.75 0.6 0.5 0.667 1
Type X 0 0.2 0.4 0.5 0.2 0
Type XI 0.3 04 0 0 0 0.208
Type XII 1 0.8 0.4,0.6 0.6 0.8 1
Table 10 Regret levels for valid regret focus points

Order quantities

5 6 7 8 9 10
Typel 11,1 0.8 0.6 04 0.667 1
Typell 0.8 0.4 0 0 0 0
Typelll 0.3 0.2 0.4 0..6 0.8 1,1
TypelV 0 0 0.25 0.5 0.75 1,1
TypeV 1 0.667 0.6 0.6 0.667 0.556
TypeVI 1 0.8 0.6 0.6 0.8 1
TypeVII 0.3 04 0.334 0 0.278 0.208
TypeVII 0 0.2 0.4 0.5 0.2 0
TypelX 1 0.75 0.6 * 0.667 1
TypeX 0 0.2 0.4 0.5 * *
TypeXI * 0.4 0 0 0 0.208
TypeXII * * * 0.6 0.8 1

5 Conclusions

The difference between OSDT and the decision based on optimistic and pessimistic
utilities have been comprehensively addressed in the paper [14]. It is especially

worthy making a detailed comparison between OSDT and SEU as follows:

Comparison 1: In SEU, there are two steps:

Step 1: Evaluating each alternative by using the weighted average utility of all out-

comes;
Step2: Selecting the alternative with the maximum average.
In OSDT, there are two steps:

Step 1: Scenario (focus point) seeking for each alternative;
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Step 2: Choosing the alternative with the maximal satisfaction level or minimal regret
level of the focus point.

Comparison 2: In SEU the utility function is used whereas in OSDT the satisfaction
function or regret function is used. Utility function is associated with risky situations.
If a person is a risk avoider, the utility function is concave. If a person is a risk taker,
the utility function is convex. If a person is risk neutral, the utility function is linear.
Satisfaction function or regret function has no relation with risk situations, which
just represents the relative position of payoff or regret. In OSDT, taking into account
which kind of focus point reflects the attitude of the individual to uncertainty.
Comparison 3: SEU uses subjective probability to characterize uncertainty whereas
OSDT applies possibility distribution.

Comparison 4: SEU amounts to the expected payoff based on the distorted proba-

bilities as follows:
EU = piu(xi) =k D pixi,

where k is a positive constant and p; is a distorted probability. The conventional
explanation of the optimal decision with SEU is that it can lead to the maximal
average utility when the decision is repeated infinite time in the sense of strong law
of large numbers. Hence, it is lack of consistency for the one-shot decision cases
because the expected value will never appear. On the other hand, OSDT give a clear
answer to why the decision maker makes such a decision in the face of uncertainty
and why the decision might not generate a satisfactory result after the uncertainty
resolving.

In conclusion, OSDT provides a scenario-based choice instead of the lottery-based
choices as in other decision theories under uncertainty. Therefore, it is a scenario-
based decision theory. OSDT is a fundamental alternative theory for decision under
uncertainty with greater appeal to intuition, simplicity of application and explicabil-
ity. Because it is very close to the human way of thinking, the decision with OSDT
is of human-centric decision making. OSDT also provides one of the basic theories
for behavioral operations research.

It is pointless to dispute which decision theory is better. There is no simple the-
ory which is appropriate for any decision situation and in this respect the one-shot
decision theory is no exception. It is true that different theories play different roles
for different decision situations.

The one-shot decision theory is mainly utilized in the situation where a decision
is experienced only once and the probability distribution is unavailable due to lack
of enough information. However it might play an indispensable role of a bridge in
linking decision under ignorance and decision with probabilities (shown in Fig. 2).
For a repeatable decision problem, at the beginning, a decision maker has to make
a decision under ignorance because the decision situation is completely new for
him/her and therefore he/she has no ability to tell the difference between the states of
the nature. After the first decision is made based on maximin or maximax or minmax
regret or Hurwicz criterion, he/she would has some knowledge about the state of
nature so that it is possible to construct an initial possibility distribution of states
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possibility distribution  probability distribution

Decision with One-shot Decision methods
ignorance decision theory with probabilities

Information improving

Time progressing

Update by Bayesian
formula

Fig. 2 The role of bridge between decision with ignorance and decision with probabilities

of nature. He/she could make a one-shot decision and repeat such decision with the
updated possibility distributions. As time progresses, the information improves. The
possibility distribution will switch into a probability distribution when the data is rich
enough. The switching criterion is the hypothesis test for the probability distribution.
After that decision methods with probability distributions should be utilized with the
probabilities updated using Bayesian formula.

Finally, let us give some comments on the case of one-shot decision under risk.
In such a case, for example, a game of tossing an ordinary coin, the objective prob-
abilities are exactly known. When making a one-shot decision under risk, we can
obtained the possibility distribution by normalizing a probability mass function (for a
discrete random variable) or a probability density function (for a continuous random
variable) and make a decision with OSDT.

The research on one-shot decision under uncertainty is in its early stages. There
is potential for research on theoretical and applied aspects. As a direct extension of
this research, multistage one-shot decision problems can be studied. One-shot game
theory can be developed and the case studies of international conflict resolutions
can be done. Newsvendor problems and supply chain management for innovative
products are other interesting and important applications of OSDT. Use of OSDT
in behavioral finance problems is another interesting research area. Other decision
problems, such as mergers and acquisitions (M&A), emergency management for
irregular events such as earthquakes, or nuclear power plant accidents, social policy
decision making for environment, energy, social insurance and infrastructure can also
be analyzed using OSDT. It may be especially interesting to test the hypotheses—the
aggregation result of individual decision making with OSDT can be approximated
by the decision result with SEU by empirical studies.
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On the Influence of Emotion on Decision
Making: The Case of Charitable Giving

Ryan Kandrack and Gustav Lundberg

Abstract This chapter summarizes and discusses methodologies and findings of
recent research focused on the influence of emotion on decision-making in general
and charitable giving in particular. Exploring how appraisal theory findings carry
over to the decision of charitable giving, we experimentally examine the influence of
incidental sadness and anger on charitable donations to an identified or a statistical
victim. First, subjects viewed a previously validated film clip and provided a written
response to how they would feel in the situation in the clip. Subjects then viewed
a charity letter and had the opportunity to make a donation. Overall, participants
in both the sad and angry conditions donated more than participants in the control
condition. Sad individuals donated more money to a statistical victim relative to
individuals in a neutral condition. This finding is consistent with appraisal-tendency
theories. Angry individuals, however, did not donate significantly more to either
an identified or statistical victim relative to individuals in a neutral condition. Self-
reported emotions reveal discrete levels of sadness elicited in the sad condition, but
elevated levels of additional negative emotions in the anger conditions.

Keywords Identifiable victim effect - Charitable giving - Incidental emotion -
Appraisal tendency framework

R. Kandrack - G. Lundberg (I)
Palumbo-Donahue School of Business Administration, Duquesne University, Pittsburgh, PA, USA
e-mail: lundberg @duq.edu

R. Kandrack
McAnulty College of Liberal Arts,Duquesne University, Pittsburgh, PA, USA

G. Lundberg
Swedish School of Economics and Business Administration, Helsinki, Finland

P. Guo and W. Pedrycz (eds.), Human-Centric Decision-Making Models 57
for Social Sciences, Studies in Computational Intelligence 502,
DOI: 10.1007/978-3-642-39307-5_3, © Springer-Verlag Berlin Heidelberg 2014



58 R. Kandrack and G. Lundberg

1 Introduction

Charitable giving represents a substantial economic transaction in the United States
and around the world. According to the American Association of Fundraising Coun-
sel, Americans donated over $290 billion to charities in 2010, over $211 billion of
which was donated by individuals. The amount of money donated to different causes
has led researchers in various fields, from psychology to economics, to investigate
the influences of altruistic behavior. In the words of Harbaugh et al. ([19], p. 1622),
“[t]o economists, charitable giving is a puzzle: Money is good, so why are people
willing to give it away?”

It is clear that people give for many reasons, and equally clear that much effort is
focused on how to get people to give. The reasons why people give include guilt [5,
30, 50], sympathy and empathy [11, 40, 48], happiness [12, 35], self-therapy [5],
and donor (e.g. moral) identity [1]. Cialdini et al. [9] claim that since altruism has
reinforcing properties, it is employed by people who wish to make themselves feel
better. Increased self-gratification following negative mood priming (e.g. sadness) is
mediated by an attempt to comfort oneself, to engage in self-therapy. With regard to
donor identity, Aaker and Akutsu [1] argue that there are contexts in which a person
thinks of her/himself as a giver (cf. [39, 45]). Referring back to the above list of
reasons why people give, there is mounting evidence that spending money (or time
through volunteering) on other people has a more positive impact on happiness than
spending on oneself [1, 22, 35]. Interestingly, however, Dunn and colleagues [12]
show that a significant majority of participants in their study thought that personal
spending would make them happier than pro-social spending. In three early studies,
Cialdini et al. [9], Cialdini and Kenrick [10] and Baumann et al. [5] explore altruism
as hedonism, finding support for a view of adult benevolence as self-gratification.
Cialdini and Kenrick primed subjects to think of either depressing or neutral events
and subsequently gave them the opportunity to be privately generous. They found
that subjects in the most socialized (oldest) group in the negative-mood condition
were significantly more generous than subjects in the neutral-mood control group.
Thus Cialdini and Kenrick showed the influencing of an action by an idea, a process
that has become known as the ideomotor effect. In the same vein of research, Vohs et
al. [52], show that study participants primed with money donated significantly less
money to a student fund than participants not primed with money. For further insights
on ideomotor processes and priming see Vohs et al. [53] and Kahneman [21].

Harbaugh and colleagues [19] discuss two possible motives for charitable contri-
butions: “pure altruism” and “warm glow.” The first motive is satisfied by increases
in the public good no matter the source or intent. The second motive is only fulfilled
by an individual’s own voluntary donations. The fMRI studies of Harbaugh and his
colleagues show that neural activation in very similar areas of the brain increased
with the monetary payoff to both the subject and to the charity. They demonstrate
that mandatory taxation for a good cause can produce activation in specific areas of
the brain associated with concrete, individualistic rewards; that transfers to others
are associated with neural activation akin to that of receiving money (rewards) for
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oneself. This finding was anticipated by Cialdini and his research associates in the
1970s and 1980s who argued that “... individuals often behave charitably in order
to provide themselves with reward” ([5], p. 1039).

Finally, Dickert et al. [11] explored the role of affective versus deliberate infor-
mation processing in decisions to provide financial aid to people in need. They found
that different mechanisms influence the decision to donate money compared to sub-
sequent decisions on how much money to donate. Whereas motivations for mood
management were predictive of donation decision, empathic feelings were predictive
of the amount.

A key distinction in studies of charitable giving has been made between donations
to an identifiable victim versus a statistical victim. Substantial research has focused
on how and why donors are affected by the two forms of presenting need, as well as
on in what conditions donors may be swayed in either direction. Thomas Schelling
first commented on this social phenomenon when he made the distinction between
an identified individual and a statistical life. For example, when the media reports
on a young girl’s need of funds for a life-saving operation, many individuals quickly
respond with donations. However, when an announcement is made about a need to
fund a hospital, few would act with equal generosity [42]. Within this framework,
an identified victim is one whose fate is seemingly certain in the mind of a potential
donor in the absence of action. A statistical victim is one whose fate is uncertain
as increased funding could represent only a possibility of saving more lives, not a
guarantee. Researchers have since expanded on this notion. Small and Loewenstein
[47] find support for the identifiable victim effect in the first explicit lab experiment
structured as a dictator game with a weak form of identification. Continuing this
research, Small and colleagues [48] find that priming a “feeling” mode of thought,
one driven first by emotion, as opposed to a deliberative mode of thought, increases
giving.

Psychologists have long been concerned with emotion and its influence on
decision-making. Though at first concerned with examining emotions in terms of
pleasantness and arousal, a more recent strand of research has shown that not all
positive or negative emotions are equal. According to cognitive appraisal theory
people extract emotions from evaluations (appraisals) of events in their environ-
ment. Smith and Ellsworth [49] experimentally study emotions on eight dimensions
(pleasantness, attention, control, certainty, perceived obstacle, legitimacy, respon-
sibility, and anticipated effort), finding that emotions are closely linked to specific
cognitive evaluations. For example, if an individual thinks that a negative event is
caused by another individual, she will feel anger. In contrast, an individual who sees
a negative event as controlled by situational factors will feel sadness. Building on
cognitive appraisal theory, the appraisal-tendency framework [8, 18, 32] serves as
a framework for distinguishing and predicting the influence of specific emotions on
judgment and decision making. The appraisal-tendency framework posits that spe-
cific emotions trigger specific cognitive and emotional processes, which delineate
the effects of each emotion on decision making [18]. For example, the individual
who feels sadness from some negative event will then make a subsequent decision
formed by the appraisals which characterize sadness.
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This chapter summarizes and discusses methodologies and findings of recent
research focused on the influence of emotion on decision-making in general and
charitable giving in particular. After reviewing the relevant research, we present the
results of an experiment designed to examine the influence of incidental sadness
and anger on charitable donations to an identified or a statistical victim. That is,
we explore how appraisal theories of incidental sadness and anger carry over to the
decision of charitable giving.

2 Review of Key Literature

2.1 Emotion and Decision-Making

The early study of decision-making paid rather little attention to the role of emotions.
Instead, researchers focused on cognitive errors/biases and heuristics in judgment.
More recently, social scientists have turned their attention to the study of emotions,
arriving at a granular perspective on emotion and its influence on decision-making.
Before reviewing recent research on emotion, it is useful to present the concep-
tual distinction between emotion, affect, and mood, three terms sometimes used
interchangeably for emotional states. Affect refers to a general emotional state with-
out deliberation on cause. It has traditionally been studied in terms of positive and
negative valence. Emotion is characterized by a specific cause or behavior, a short
duration, and a physiological manifestation. For example, when coming into contact
with a grotesque image an individual might feel disgust. When looking away or lean-
ing backwards (physiological manipulation), an individual immediately wishes to
reverse the feeling of disgust and thus the emotion does not last. In addition, emotion
can be incidental or integral. Incidental emotions are caused by dispositional factors
and are unrelated to the decision faced by an individual. Integral emotions occur at
the time of making a decision and are derived from considering the consequence of
a decision. Mood, however, is distinguished by its long duration and diffuse cause.
For example, an individual might be in an irritable mood for no particular reason,
simply feeling vexed by the world in general.!

The study of incidental emotion and its influence on subsequent decisions has blos-
somed recently, and results suggest that the carry-over effects of incidental emotions
are robust to a variety of judgment scenarios and economic decisions. A number of
methodologies have been used to elicit emotion. A frequently-used method involves
reading an emotionally-charged scenario and then performing a writing task where
participants imagine themselves in the scenario and write about how they might feel.
Keltner et al. [24] examined the influence of incidental sadness and anger on causal
judgments. In several experiments, subjects were first presented with ambiguous sce-
narios in order to induce emotion (e.g. the death of a family member to elicit sadness)

1 On the mapping of the distinction between emotion, affect, and mood, Ryan Kandrack has bene-
fitted from personal communication with Dr. Nicole Verrochi Coleman.
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and subsequently were instructed to imagine how they would feel or what they might
think in the given situations. Subjects then judged the likelihood of future life events
associated with an individual or a situational cause. Keltner and colleagues find angry
individuals likely to blame someone else while sad individuals are likely to find fault
with situational factors, results which are consistent with cognitive appraisal theories
of emotion [18, 28, 49].

This methodology has been extended to the study of incidental emotion’s influ-
ence on risk-taking. There is evidence that sad individuals are risk-taking and anxious
individuals are risk averse [27, 37]. In addition, fear has been shown to be associ-
ated with risk-aversion, while anger has been associated with risk-taking [32, 33].
The results of these studies were instrumental in creating the appraisal-tendency
framework (ATF) through which researchers have been able to differentiate specific
emotions regardless of valence [18, 32, 33]. The ATF creates an emotion-to-cognition
pathway that relies on appraisal dimensions which fuel motivation to appraise, or
evaluate, future decisions by using the appraisal dimensions of the specific emotion.
Small and Lerner [46] provide an extension of the ATF by examining the effects of
incidental sadness and anger on the judgment and justification of a welfare recip-
ient’s amount of assistance. Participants in this study wrote about the cause of the
person’s need and selected a recommendation to increase or decrease poverty assis-
tance. The researchers find that incidental anger decreases recommended assistance
while sadness increased assistance.

Expanding the range of decision contexts influenced by emotion, as well as the
methodologies to induce emotion, Lerner and colleagues [34] examine the impact
of incidental sadness and disgust on the endowment effect, a notion that individuals
value things they own more than things they do not own. Their experiment crossed
an emotion manipulation (disgust, sadness, neutral) with an ownership condition in
which half of the subjects were given an object and presented with the opportunity
to sell it, while the other half were shown the object and asked if they would like to
receive cash or the object. To induce emotion, subjects viewed one of three film clips:
The Champ in the sadness condition, Trainspotting in the disgust condition, and a
National Geographic depiction of fish to induce neutrality. Subjects then wrote a
self-reflective response on how they might feel had they been in the situation viewed
in the film clip. The results suggest that disgust reduces buying and selling prices,
while sadness increases buying but decreases selling prices. The endowment effect
is eliminated in the disgust condition and reversed in the sadness condition.

In daily activities individuals frequently encounter events that trigger emotional
responses, many of which occur in succession. Winterich and colleagues [55], fol-
lowing cognitive appraisal theories, utilize film clips to induce different emotions of
the same valence in succession to examine the blunting effects of subsequent emotion
elicitation. In one study, subjects watch a film clip to induce sadness (The Champ)
or to induce a neutral state (National Geographic). A second study induces anger
by assigning subjects as the recipient of an unfair offer ($8 dictator/$2 receiver) in a
dictator game, and then giving them the choice to accept or reject. Following the dic-
tator game, subjects recorded emotional responses to the allocation and completed
the Life Events Questionnaire adapted from Lerner and Keltner [33]. The results
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suggest that sadness mediates the effect of subsequent anger, and that the reverse
also holds.

2.2 Charitable Giving and the Identified Victim Effect

The identified victim effect refers to the propensity of donors to give more assistance
to a single, specific, and vivid victim. On the other hand, a statistical victim refers
to a large, ambiguously-defined entity (e.g. starving children in Africa). This phe-
nomenon has been attributed to an individual’s judgment of the relative size of the
reference group given aid [20]. That is, the identified victim is one of one, whereas a
statistical victim represents a vaguely defined set. Small and Loewenstein [47] pro-
vide the first explicit test of the identifiable victim effect, (1) in a dictator game lab
experiment, and (2) in a field experiment where people in an airport terminal were
given a chance to donate all or any part of $5 given to them by the experimenters.
The studies employed a weak form of identifiability—determining the victim with-
out providing any personalized information—focusing on determined versus not-
yet-determined victims. In both experiments the contributions were larger when the
recipients had already been determined than when they were yet to be determined.

Kogut and Ritov [25, 26] study the identifiable/statistical victim phenomenon to
examine its boundary conditions and find that a single, identified victim (in this case
a child identified by age, name and picture) gains greater contributions than one
which is non-identified, but that fully identified groups of children do not gain more
than non-identified groups. The researchers argue that in the donors’ information
processing the singularity of the individual victim represents coherency. The expec-
tation of coherency leads to greater information processing and generates a higher
level of empathy for the single victim [17, 51].

Small et al. [48] test the effect of educating people about the inconsistent valuation
of lives when considering an identified or a statistical victim. The researchers provide
a written explanation of the differences between the two and then present experiment
participants with the choice to give. The authors find that providing education on the
identifiable victim bias decreased donations to the identified victim, but did not
increase donations to the statistical victim. While priming with education was not
successful to counter the predispositional bias, there is evidence that priming with
an emotional task increases the amount donated [11, 48].

3 Experiment Overview

The goal of this experiment is to investigate the influence of incidental sadness and
anger on an individual’s propensity to donate to a victim. The experiment follows a
3 x2 between-subject design, crossing an emotion manipulation (sadness, anger, neu-
tral) with the decision to give to a victim (identified, statistical). The experiment was
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presented as two short studies to reduce demand effects (cf. [34, 46]). The first study
follows cognitive appraisal theories of emotion and the appraisal-tendency frame-
work, eliciting sadness and anger to examine the influence on subsequent decisions
[28, 32-34, 37, 46, 49]. Incidental emotion elicitation has been shown to influence
subsequent, unrelated decisions [6, 13, 43, 44]. Those who participated received $5
compensation. In the second study a short charity letter was presented to subjects
along with two envelopes in which they had the opportunity to make a donation
using the $5 compensation, or retain any amount of that money. Study 2 follows
the identified victim effect literature and adapts the procedure used in inducing an
affective mode of thinking prior to a donating decision [11, 48].

4 Propositions

Proposition. 1 Anger is associated with appraisals of increased certainty and human
agency. The identifiable victim effect has been shown to be a dispositional bias in
decision-making, yielding increased giving to the victim. An individual primed to
feel anger will feel more certain of his/her decision, and will also find the plight of
the identified victim more likely, which will intensify the identifiable victim effect.
That is, individuals in the anger condition are predicted to give more money to an
identifiable victim relative to individuals in the neutral condition.

Proposition. 2 Sadness is associated with cognitive appraisals of decreased certainty
and situational agency. An individual primed with sadness will therefore require more
cognitive processing to make a decision and will find the plight of the statistical victim
more likely. Therefore, individuals in the sadness condition are predicted to give more
to the statistical victim relative to individuals in the neutral condition.

Proposition. 3 Drawing on earlier research relating altruism and spending money on
others to happiness, we expect that participants who donate more to charity will report
greater happiness than participants who keep more of the money for themselves. We
expect this relationship to hold in all three conditions, and to be most clearly evident
in the neutral condition.

5 Participants

Two hundred and thirty five undergraduate students in the school of business at
Duquesne University participated in the experiment. The mean age of the subjects
was 20 years. About 52 % of subjects were male, and 57 % of subjects reported
having a part-time job. About 95 % of the subjects reported that they enjoyed the
experiment or were indifferent, and 4 % reported they did not.
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6 Methodology

Following the completion of consent forms, subjects received their $5 compensation
which had been placed in a blank envelope beneath their survey packet. Due to budget
restrictions on the project, the money was allocated through a randomized lottery at
the end of the study such that roughly 40 % of subjects had the opportunity to leave
with the share of the $5 which they did not donate. The five dollar compensation
consisted of four one-dollar bills and four quarters. Next, subjects completed a base-
line survey of affect (PANAS, adapted from Watson et al. [54]). The baseline affect
survey has been used in past research to simply ease participants into the emotion
elicitation task by instructing them to begin thinking about and feeling emotions (cf.
[34, 46]). The survey consists of twenty emotions, both positive and negative, which
the subjects rate on a scale of one (very slightly/not at all) to five (extremely) based
on how they felt at that time.

Following this initial survey, subjects began the “imagination study” in which
they watched one of three film clips (sad, angry, neutral) and were asked to imagine
themselves in the situations in the clip. For the neutral conditions, subjects were asked
to simply watch the clip, a documentary on the Great Barrier Reef from National
Geographic. In the sadness condition, a scene from The Champ showed a young
boy grieving over the death of a boxer. In the anger condition, a scene from My
Bodyguard portrayed a bully scene (the film clips were adapted from [16, 34, 55]).
After viewing the clip, subjects wrote about how they would feel if they were in the
situation in the clip in order to create a deeper personal connection. Subjects in the
neutral condition wrote about what they had done that day (cf. [33]). The use of film
clips and a writing response has been shown to be a reliable method of eliciting target
emotions [31, 33].

Study 2 consisted of the charity letter and the exit survey. Subjects were given two
envelopes (labeled “me” and “charity”) along with a charity letter in which they read
about a single identified child (name, age, picture) or factual information on poverty
in the United States. The child’s picture and poverty information was obtained from
Save the Children.org. Subjects were then asked if they would like to donate any
amount of their $5 compensation by placing a donation into the envelope labeled
charity; otherwise they could retain any share of the five dollars by placing that
amount into the envelope labeled me. The exit survey, adapted from Rottenberg et al.
[41], asked subjects to rate how they felt during the film clip anchored on 0 (“not at
all/none”) to 8 (“extremely/a great deal”). The survey consisted of eighteen emotions,
of which only three were of primary interest (sad, angry, and happy). This scale has
been used extensively in past research (see [33, 34, 46]). These survey questions
were asked toward the end of each session to prevent subjects from thinking about
or labeling their emotions felt as a result of watching the film clip (cf. [33, 34]).
Subjects also answered simple demographic questions such as age and gender, and
answered yes/no to “do you have a part-time job” and “did you enjoy this study”.
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Once subjects completed the exit survey, those with randomly chosen participant IDs
were able to keep the envelope labeled me. Forty percent of subjects were randomly
chosen to keep the money they chose not to donate.

7 Results

The subjects’ donations ranged from $0 to $5 and 97 % of all subjects donated some
amount of the $5 compensation. About 70 % of all subjects donated the entire $5.
Descriptive statistics on donations across conditions are presented in Tables 1 and 2.
Overall, participants in both the sad and angry conditions (identified and statistical
victims), donated marginally more than participants in the neutral condition; #95) =
1.704 (p = 0.092) and #(95) = 1.770 (p = 0.080), respectively. Note that the degrees
of freedom in each case reflect unequal variances. Given the relatively high mean
donations, Table2 summarizes the proportions of participants in the various cate-
gories who donated the full $5 amount, along with the proportions of participants
who donated half or less (<$2.50) of the received payment. The highest proportion
of full-amount-donors is associated with the angry-identified (81.40 %) and sad-
statistical (76.60 %) conditions. This donating behavior provides directional (but not
statistically significant, x> = 1.315, d.f. = 1, p = 0.251) support for our expectation

Table 1 Descriptive statistics of overall donations

Emotion, Victim n Mean Standard Standard Coefficient
Donation Deviation Error of Variation

Sad, Identified 44 4.22 1.319 0.199 0.312

Sad, Statistical 47 4.24 1.448 0.211 0.341

Angry, Identified 43 4.44 1.259 0.192 0.284

Angry, Statistical 44 4.07 1.433 0.216 0.352

Neutral, Identified 29 3.89 1.674 0.311 0.431

Neutral, Statistical 28 3.61 2.025 0.383 0.561

Total 235 4.12 1.510 0.099 0.367

Table 2 Proportion of participants donating all versus half or less

Emotion, Victim n Donated Full Amount (%) Donated Half or Less (%)
Sad, Identified 44 68.18 1591
Sad, Statistical 47 76.60 17.02
Angry, Identified 43 81.40 11.63
Angry, Statistical 44 63.64 18.18
Neutral, Identified 29 65.52 31.03
Neutral, Statistical 28 64.29 32.14

Total 235 70.64 19.57
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that, relative to the neutral condition, angry individuals will contribute more to iden-
tified victims and sad individuals more to statistical victims. The highest proportions
of participants who donated $2.50 or less are associated with the neutral-statistical
(32.14 %) and neutral-identified (31.03 %) conditions. These two proportions clearly
differ from the proportions in the other four conditions, as reflected in the noticeably
higher coefficients of variation in Table 1.

Subjects felt significantly more sad than angry in the sad conditions (¢(89) =
20.47, p < 0.001), but did not feel significantly more angry than sad in the angry
conditions (¢ (86) = —0.779, p = 0.438; see Fig. 1). The effect of gender on dona-
tions was not significant (# (225) = —1.599, p = 0.112). Having a part-time job also
did not have a significant effect on donations (¢ (227) = 0.746, p = 0.457).

Examining the influence of emotion on donations, one-way analysis of variance
(ANOVA) revealed a marginally significant effect (p = 0.098). Post-hoc LSD tests
revealed the difference in mean donations between sad and neutral conditions to
be marginally significant at 5% (p = 0.057), and the difference in mean donations
between angry and neutral conditions to be significant (p = 0.05).

Mean donations in the sad and angry conditions were not significantly different (p
=0.931). One way ANOVA between all six conditions revealed an overall insignifi-
cant difference in mean donations, F(5,229) = 1.305 (p = 0.263), but post-hoc LSD
tests revealed a marginally significant difference between the sad and neutral sta-
tistical conditions (p = 0.076). The difference in donations between the angry and
neutral identified conditions was not significant (p = 0.126; see Fig.2 below).

A further dissection of how cleanly the various emotions were elicited helps
us understand why our results were not as strong as expected. Sadness was cleanly
elicited such that the self-reported levels of sadness were significantly higher than the
anger level, but the same does not hold for anger. Subjects felt high levels of sadness
and low levels of anger in the sad conditions while subjects felt high levels of both
anger and sadness in the angry conditions. Figure 3 shows self-reported sadness and

B Self-Reported Sadness
Self-Reported Anger

Self-Reported Emotion, Scale 0-8

N | 1

Sad Angry Neutral

Fig. 1 Mean self-reported emotion across the three emotion manipulations



On the Influence of Emotion on Decision Making: The Case of Charitable Giving 67

4.60 7

4.40 A
M Identified
4207 Statistical

4.00 A
3.80 1

3.60

Donations in Dollars

3.40 1

3.20 1

3.00 - T T
Sad Angry Neutral

Fig. 2 Mean donations across all six conditions

35~

30 1
M Sadness
25 A
Anger

20 1

Count

15 4

10 4

0 1 2 3 4 5 6 7 8
Self-reported emotion, sad condition

Fig. 3 Self-reported anger and sadness; sad condition

anger within the sad condition, whereas Fig. 4 shows self-reported anger and sadness
in the angry condition.

In the exit survey, subjects responded to eighteen different emotions of which
only three were of primary interest to the current study (i.e. sad, angry, and happy).
However, it is interesting to note some of the additional negative emotions felt by the
subjects, all of which have been studied in similar research. In addition to sadness
and anger, we examined disgust and fear (see Table 3 for mean self-reported levels
of emotion). Taking into account the additional negative emotions, the sad manipu-
lation elicited a more discrete emotion while the anger manipulation appears to have
generated an overall negativity, with elevated levels of disgust, anger, and sadness.

As proposed, sadness increased giving to a statistical victim relative to the neutral
condition. Surprisingly, anger did not significantly increase donations to an identified
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victim relative to the neutral condition. This could be due to a general negativity,
characterized by multiple high-scoring components. Although no statistical signifi-
cance was attained in the anger/identified victim condition, a case could be made that
there is “practical” significance in that individuals in this condition averaged $0.20
more in donations than donors in any other condition (see Table 1).

With respect to the relationship between giving to others and happiness, we
expected that participants who donate more to charity will report greater happiness
than participants who keep more of the money for themselves. Our proposition—
largely an extension of the above general tendency—was that this relationship would
hold in all three conditions (sad, angry, and neutral), and be most clearly evident in
the neutral condition. As illustrated in Table4, we observe an unexpectedly com-
plex pattern. In accordance with our expectations, the correlation between amount
given to charity and happiness was indeed positive and marginally significant in the
neutral condition. This is consistent with earlier findings. However, the correlation
coefficients in the angry and sad conditions are near zero and strongly negative,
respectively. The induced sadness seems to have trumped any happiness stemming
from giving-to-others, whereas the induced anger largely seems to have mitigated
that happiness (cf. [55]). Lerner and colleagues [34] report a similar finding with

Table 3 Mean self-reported emotion in sadness and anger manipulations

Emotion Sadness Manipulation Mean Anger Manipulation Mean
Anger 1.96 5.57
Disgust 1.88 6.06
Fear 2.40 2.95

Sadness 6.60 5.39
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Table 4 Correlation coefficients relating amount given to charity and happiness for three induced
conditions: sad, angry, and neutral

Happiness n t P
Si and Sg —0.3323 89 —3.286 0.0015
A; and A 0.0340 87 0314 0.7545
N; and Ng 0.2452 57 1.876 0.0660

regard to the endowment effect, as discussed earlier, as in the case of disgust® the
endowment effect is eliminated, whereas in the sadness case the endowment effect
is reversed. A similar phenomenon is reported by Baumann et al. [5] who observed
that for participants in a sad mood, altruistic activity canceled the enhanced tendency
for self-gratification. All in all, these reversals illustrate that emotions of the same
valence can have dissimilar effect (Table4).

8 Discussion

We find support for our claim that incidental emotions can influence the decision
to donate to a charity, that despite the fact that the two emotions elicited in our
experiment were not equally unambiguous. The emotion elicited in the sad condition
was clean in that self-reported sadness far exceeded any of the other emotions felt
by the subjects. In contrast, disgust was the highest self-reported emotion felt by
subjects in the anger manipulation, and there was no significant difference between
self-reported anger and sadness. However, it is interesting to note the high levels of
disgust in relation to its associated appraisal characteristics. Disgust, associated with
an appraisal of being in close proximity to a disagreeable idea or object, has been
shown to be further associated with an appraisal tendency to avert from accepting
a new object or idea [34]—in the present case the $5 compensation for themselves.
However, due to increased levels of anger and sadness in addition to disgust, this is a
difficult assumption to tease out. Clearly, the development of methods used to induce
specific emotions is in its infancy, albeit a promising one, and much additional work
is necessary.

While many economists have been concerned with policies and tax implications
relating to charities (cf. [36, 38]), relatively few have examined the determinants of
charitable giving (e.g. [3, 23]). One such contribution in economics has been the
“warm glow” theory, which states that individuals may simply gain positive util-

2 Interestingly, disgust and anger—used in our study—are located in close proximity to each other
in Smith and Ellsworth’s [49] plot of 15 emotions where the vertical axis ranges from Situa-
tional to Human Control and the horizontal axis ranges from Other-Responsibility/Control to
Self-Responsibility/Control. Both emotions are located in the Other-Responsibility/Control-Human
Control quadrant.
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ity from the act of giving [2]. The current research contributes to our knowledge
by finding a determinant of increased donations founded on psychological theory.
The current research also contributes an additional application of appraisal tendency
theories to an economic decision. Recent behavioral economics research has sought
to incorporate psychological insights into models and experiments to further under-
stand decision-making (see [7]). This strand of research seeks to bridge the gap
between social sciences to create stronger theories and expand the boundaries for
decision-making. The current research supports those goals by providing experimen-
tal evidence of the influence of sadness and anger on charitable donations.

The present research is perhaps most limited by the sample size of subjects. With
between 28 and 47 subjects in each of the six conditions, statistical significance could
not be attained for all differences. However, it could be argued that the difference
in mean donations between subjects in the angry and neutral manipulations shows
directional support (p = 0.126), and with a larger sample could attain some level of
statistical significance. Similarly, the difference in mean donations between males
and females was also nearing significance (p = 0.112). Importantly, the sample con-
sisted only of college students with an average age of 20 years. This homogeneous
sample of business school students is not representative of the general population
in terms of demographics. The subjects’ age may indeed matter. Baumann and col-
leagues [5] note that with increasing age, helping becomes a progressively greater
response of subjects. In contrast, saddened young children engage in a higher degree
of helping (compared to neutral mood controls) only when it leads to external (social)
reinforcement. Also, it has been suggested that a person’s field of study in itself may
influence social behaviors like cooperation and views on altruism [14, 15, 29]. Also
on these fronts there is ample room for further research.

Given the elevated levels of emotion in the anger condition, the film clip used
to elicit anger comes under question. Though past research has used this film clip
without reports of elevated levels of other negative emotions, the anger condition
in the present research is polluted with emotions such as disgust, sadness and fear.
Gross and Levenson [16] found sixteen film clips which were moderately successful
in eliciting discrete emotions. One such film clip was My Bodyguard, the clip used
in the present research to elicit anger. Gross and Levenson note that anger is a
complex emotion and difficult to elicit using a film clip, and also found that subjects
reported high levels of both disgust and sadness. Instead of a film clip, Gross and
Levenson suggest that eliciting anger may require a more personal involvement for
subjects. Future research could try to elicit anger using unfair (rigged) offers to
unknowing subjects in a dictator game, a procedure employed by Winterich et al.
[55]. This method of eliciting anger has been successfully employed, resulting in a
purer emotion compare to that/those induced by a film clip.

Future research should further examine the role of disgust and possibly moral
outrage [4] in the context of charitable donations. In addition, future research should
consider the effects of systematic processing and uncertainty associated with sadness
related to the decision to give to an identified or statistical victim, possibly by inducing
cognitive load prior to making the decision. We sense research opportunities in
today’s emotionally-charged political environment. For example, what would happen
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if an organization like Save the Children were to air a solicitation message after a
polarizing political advertisement? Such a laboratory or field experiment could serve
as a managerial or practical extension of the current research.

9 Conclusion

The present research indicates that incidental emotions carry over and influence the
decision to donate to a charity, a finding that resonates with the appraisal tendency
framework and extends the applications of the framework to a new decision environ-
ment. Sad individuals donated more to statistical victims—Americans in poverty—
relative to individuals in the neutral condition. This result is supported by an appraisal
tendency framework which suggests that sad individuals find events caused by situa-
tional factors more likely. Interestingly, angry individuals did not donate significantly
more to an identified victim than did those in the neutral condition, although their
contributions were larger than those of any other group in the experiment. Moreover,
the identified victim effect was eliminated in the sad manipulation. This could be
due to increased systematic processing associated with sadness. That is, individuals
may read the description of the identified victim and think more about the plight
instead of immediately making a donation. Likewise, sad individuals may see the
description of the statistical victim and, instead of being distracted by the vague
statistics, consider that this is indeed a victim which deserves aid. The elimination
of the identified victim effect could also be due to the associated uncertainty. These
issues merit future consideration.

While we found an expected positive relationship between the amount of money
given to others and happiness, we also found no relationship between giving-to-
others and happiness in the angry condition, and a strong negative relationship in
the sad condition. While other researchers also have found reversals of established
effects, e.g. the endowment effect, among subjects primed to be sad, collectively
these reversals reveal how complex the impact of emotions are in diverse decision
making and judgment contexts.
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1 Introduction

Decision theory today is dominated by models that are exhaustive and integrative.
Exhaustive means that as many decision options as possible are evaluated. For each
option, the evaluation is integrative, meaning that tradeoffs are made among the
option’s good and bad features. For example, if a medical treatment has a low prob-
ability that the patient will live for at least ten more years, in the Bayesian expected
utility model, the utility of this outcome is multiplied by its probability. When the
situation is deterministic, the features of an option are its attributes and their impor-
tance to the decision-maker. For instance, if an apartment has a guest room, the multi-
attribute utility model multiplies the utility of this attribute by a weight that expresses
the attribute’s importance. In this chapter, the theory that consists of exhaustive and
integrative models of decision making is called standard decision theory.

Standard decision theory is taught widely at schools of management, engineering
colleges and at departments of economics and psychology, among others. Although
a flurry of standard decision models exists, it is possible to (over)simplify the picture
and trace some core ideas of the theory to just a few pieces of work.

Savage [60] proved that if a decision maker accepts a set of apparently self-evident
axioms—such as transitivity, which says that if options a, b and ¢ are such that a is
preferred to b and b is preferred to ¢, then a is also preferred to c—then, she will
decide for the option that has the highest expected utility where the probabilities
will be her subjective beliefs and, when new information is obtained, she will update
those probabilities according to Bayes rule.

Such work on the mathematical foundations of the Bayesian expected utility
model makes standard decision theory seem normatively compelling. That is, it can
be argued that it is what we should do in an ideal world. Nevertheless, Savage himself
did not appear to see his contribution as much more than a theoretical exercise. He
pointed out that it is applicable to what he called small worlds, that is, situations
where the decision maker can obtain the relevant information on decision options
and attributes, and has the time and other resources necessary to computationally
process this information. If these conditions are not met, Savage made no claim that
decision makers should use standard decision theory.

Savage’s hesitations were not taken that seriously, at least not by those eager to
solve real decision problems. The perceived success of other mathematical models
applied to decision making, such as linear- and dynamic programming, provided
reasons for optimism around the world.

In Cambridge, Massachusetts, economist Howard Raiffa and his colleagues
[44, 58] advocated the application of Bayesian and multi-attribute versions of utility
theory to all kinds of decision problems such as choosing an apartment or designing
an airport. In Ann Arbor, Michigan, where Savage also worked for a bit, psychologist
Ward Edwards became so enamored with standard decision theory that he devoted
more than five decades to its further development and application [17]. Edwards
shaped decision theory and practice as few, if any, others [37]. His statement “no
principle other than maximizing subjective expected utility deserves a moment of
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consideration” (quoted in [65]) may appear too single-minded but it is in fact exactly
the dominant attitude in decision theory and practice today.

On the other hand, problems with standard decision models are well known.
For example, it is challenging for decision makers to provide reliable and correct
estimates of attribute weights, probabilities of possible outcomes or their utilities;
suitable approximations to intractable Bayesian computations must be discovered;
and decision makers find the models difficult to understand and resist them [41, 46].
Proponents of standard decision theory, of course, do not see these challenges as
formidable [66]. Rather, whatever problems are acknowledged are seen as relating
to practical application and not as undermining the accuracy of standard decision
theory. Consequently, research effort is invested in improving the application of the
standard theory rather than in developing alternative theories.

This chapter makes a more radical point—that there exists an alternative to stan-
dard decision theory which is simpler to understand, neither exhaustive nor integra-
tive, and also, under some conditions, more accurate. The chapter reviews the basics
of the theory and some applications—including yet unpublished studies—and also
synthesizes the current state of knowledge and presents open problems.

Of course, this theory is not presented as a substitute for standard decision theory,
but rather as a challenge and as complementary. It is a mathematical theory, which
is not derived analytically from normatively compelling axioms but is synthesized
from empirical knowledge from biology and psychology.

2 Rules of Thumb

Behavioral biologists use the term rules of thumb to describe how animals solve their
basic problems, such as finding a home, foraging for food, avoiding a predator and
choosing a mate. For example, the ant Leptothorax albipennis estimates the size of
a candidate nest cavity as follows [50]. It first explores the cavity for a fixed time
interval on an irregular path that covers the area fairly evenly; while doing this the
ant lays down an individually distinct pheromone trail. Then, the ant leaves. When
it returns, Leptothorax albipennis explores the nest again but now on a different
irregular path. The rule of thumb is that cavity size is inversely proportionate to the
frequency of encountering the old trail.

The ant constructs an attribute that it can use to make decisions. When honeybees
have to identify the species of a flower, they use attributes which already exist and
are easy for them to observe. They use a rule of thumb that relies on odor, color and
shape, in that order [27]. That is, to choose one of two alternatives species, honeybees
first attempt to decide based on odor only; then, if the odors of the two alternatives
are the same, they use color; and finally, they use shape if both odors and colors of
the two alternatives species are the same.

For a collection of rules of thumb that animals use, see Hutchinson and Gigerenzer
[35]. These rules are neither exhaustive nor integrative. In the above examples, the
first nest cavity with an acceptable size can be chosen without inspecting any other
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candidates; and, a flower species is evaluated without making trade-offs between the
attributes of odor, color and shape.

Cognitive scientists, such as Gerd Gigerenzer and his colleagues, call rules of
thumb heuristics [8, 25]. Heuristics have been proposed for describing people’s
judgments of salaries or values of assets, their choices of consumer goods, and so on.
Like rules of thumb, heuristics are neither exhaustive nor integrative. For example,
laypeople may invest on the stock of these companies they recognize, without even
considering other companies [54]. Or, when customers choose between cameras
varying on a number of attributes, in the majority of times, they use just one or
two attributes [21]. For a collection of the heuristics that laypeople and professional
decision-makers use, see Gigerenzer et al. [24]. Typically, heuristics are just assumed
to be second-best to standard decision models. This chapter, however, makes the case
that, when the accuracy of the two is actually compared empirically, heuristics are
sometimes found to outperform the standard models.

It should be noted here that the heuristics discussed in this chapter are distinct
from other conceptions of heuristics in the psychological literature. For example,
Daniel Kahneman and his colleagues [36, 63] developed verbal models of heuris-
tics, using labels such as “availability” and “representativeness”, which do not
lead to precise quantitative predictions. On the other hand, the heuristics devel-
oped in the program of Gigerenzer and his colleagues lead to precise quantitative
predictions. Kahneman et al.’s research program on heuristics is known as the
“heuristics-and-biases” program. Gigerenzer et al.’s research program is called the
“fast-and-frugal-heuristics” program. Interestingly, both programs claim to continue
the work of Herbert Simon [61, 62], a polymath who often presented himself as
a cognitive psychologist but was also awarded the Nobel prize in economics. For
details on the similarities and differences between the two programs, see [45].

Biologists emphasize that rules of thumb are adapted through natural selection
while psychologists and other social scientists point out that heuristics can also be
learned individually and socially or are formally taught, but this difference is ignored
here. I focus on a similarity between rules of thumb and heuristics: that both can,
and have been, defined by simple mathematical models.

Formally, a number of decision problems reduce to the identification of one out
of many alternative options A, B, and so on, so that this option has a maximum value
on a numerical criterion of interest Cr. The value of the criterion can be objectively
determined as in the size of a nest cavity, or it can be determined subjectively by the
decision-maker as in the satisfaction derived by using a camera. The important thing
about the criterion values of the options is that they are unknown to the decision-
maker at the time the decision has to be made.

The next four sections present simple models of rules of thumb for solving this
problem. The goal of this presentation is to give a flavor of the kinds of models of rules
of thumb that have been developed; the research that has compared the accuracy of
these models with the accuracy of standard decision models is presented afterwards.
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3 The Recognition Heuristic

Imagine that you are a contestant in a TV game show and face the $1 million question:
Which city has more inhabitants: Detroit or Milwaukee? You cannot use an Internet
connection to find the answer, but you have to infer it based on whatever you know
about these two cities.

What is your answer? If you are American, then your chances of finding the right
answer, Detroit, are not bad. 60 % of undergraduates at the University of Chicago
did. If, however, you are German, your prospects look dismal because most Germans
know little about Detroit, and many have not even heard of Milwaukee.

So, how many correct inferences did the less knowledgeable German group
achieve? 90 % of the Germans answered the question correctly [26]! How can people
who know less about a subject make more correct inferences? The answer seems to
be that the Germans used the following heuristic: If you recognize the name of one
city but not the other, then infer that the recognized city has the larger population.
This heuristic is reasonable in the sense that one may expect to have heard of heavily
populated cities because they generate a lot of news. Note that someone who happens
to know many cities, as the American participants in this experiment, can not use the
heuristic. She would have too much knowledge.

For simplicity, I assume here that the correlation between recognition and criterion
is positive. For problems where the goal is to infer which one of two options (e.g.,
cities) has the higher value on a numerical criterion (e.g., population), the heuristic
is stated as follows.

Recognition heuristic: If one of two options is recognized and the other is not,
then infer that the recognized option has the higher value on the criterion.

The recognition heuristic builds on people’s core capacity for recognition, of faces,
voices and names. No computer program exists today that can perform face recogni-
tion as well as a human child does (with the possible exception of new anti-terrorist
technologies). Note that the heuristic is not derived from any logical axioms, but is
suggested by the empirical knowledge that people are excellent at recognizing things
they have been experienced. It has been claimed that animals also use recognition to
make decisions (for examples, see [35]).

Intuitively, one may expect the recognition heuristic to be successful when igno-
rance is systematic rather than random, that is, when recognition is strongly corre-
lated with the criterion. Substantial correlations exist in competitive situations, that
is, between name recognition and the excellence of colleges, the value of the products
of companies or the quality of sports teams [26].

A strong prediction of the recognition heuristic is that no other pieces of informa-
tion can change the decision to which recognition points. For example, suppose that
a person (i) recognizes Detroit and not Milwaukee and (ii) recalls that the automo-
bile industry in Detroit has been hit for long time by a recession. The prediction of
the recognition heuristic is that she will infer that Detroit is more populous despite
Detroit’s recession. In other words, recognition is predicted to be used in a noncom-
pensatory fashion. This is a strong prediction in the sense that it does not follow
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from other theories of decision making. Pachur et al. [55] reported that 50 % of the
participants in their study chose the recognized object consistently, that is, in every
single trial, even when they had knowledge of three attributes indicating that the
recognized object should have a low criterion value.

3.1 The Less-is-More Effect

Beyond the noncompensatory use of recognition, the recognition heuristic leads to
another strong prediction, one that has to do with accuracy. This is the less-is-more
effect, where less information leads to more accuracy [26]. The effect can be viewed
as a violation of the celebrated effort-accuracy tradeoff where effort is measured by
the amount of information used to make a decision. This tradeoff, touted as one of
the most general laws of human cognition, holds that it is not possible to increase
accuracy without increasing effort [26]. Below, I briefly present a theoretical analysis
of the less-is-more effect.
Assume that there exist N options (e.g., cities) and the person performs all N(N
— 1)/2 paired comparisons according to a numerical criterion involving two of these
options, (e.g., compare two city populations). The amount of information a person
uses is measured by the number of options the person recognizes, n. The question is
if, and under what conditions, can a smaller n lead to higher accuracy than a larger n.
The probability of being able to use the recognition heuristic for a paired com-
parison equals the probability of exactly one option in the pair being recognized,
or
r(n) =2n(N — n)/[N(N — 1)]. (1)

Similarly, the probability that both options are recognized, and thus other knowl-
edge beyond recognition must be used equals

k(n) =n(n — 1/[N(N — D]. (@)

Finally, the probability that neither option is recognized, which means that the
decision maker has to guess, equals

gn) = (N —n)(N —n — D/IN(N — D] 3)

Let a be the accuracy of the recognition heuristic and f the accuracy when both
options are recognized and other knowledge is used (where o, p > 1/2 and both are
constant across n). I also assume that accuracy equals 1/2 when none of the options is
recognized. Based on these assumptions and (1-3), the overall accuracy of a person
who recognizes n options equals

f(n) =rma +kn)p +gnx1/2). “4)
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From (4), it can be shown analytically that f{rn) is an inverted-U-shaped function
of n whenever a > B [26]. In other words, whenever & > B, a less-is-more effect is
predicted.

As an illustration, assume that there are three sisters who study for a geography
quiz with N =100 cities. The three sisters have the same o = 0.8 and p = 0.6, but
differ in the number of cities n they recognize. The little sister who recognizes zero
cities has an accuracy of f{(0)=0.50. The eldest sister who recognizes all 100 cities
has an accuracy of f{100)=0.60. The middle sister, who recognizes 50 cities is the
most accurate of the three sisters with {50)=0.68.

At a first glance, the less-is-more effect might appear paradoxical. But it is not
because less recognition information may simply enable more accurate cognitive
processing via the use of the recognition heuristic. This idea is expressed formally
by the condition a > . Additionally, it is a mathematical fact that, whenever
a > P, a less-is-more effect is also predicted for groups who use a variety of
majority rules [59].

The above analyses assumed that decision makers have a perfect recognition
memory, in the sense that all options that have been experienced are recognized
(and all options which have not been experienced are not recognized). Of course,
this is a simplification. More realistically, it can be assumed that a decision maker
falsely recognizes a city which she has not experienced with a probability of a
false alarm f (and fails to recognize a city she has experienced with some other
probability). As in the case of perfect recognition memory, it has been proven that,
under some conditions, a less-is-more effect is predicted. The conditions are relatively
cumbersome—for details, see Katsikopoulos [38]—but, informally, less experience
leads to more accuracy when the probability of a false alarm fis either relatively low
or relatively high, but not when f'has a medium value.

Finally, how frequently is the less-is-more effect observed in practice and what
is its magnitude? Katsikopoulos [38] reviewed four studies and found that a less-is-
more effect was observed in two of them; additionally, the magnitude of the effect
varied a lot, from 0.30 down to 0.01. Of course, it should be noted that even a tiny
effect could be very important in actual decision-making as, for example, in large
business contexts. Thus, decision makers and the analysts who support them should
not assume that more information always leads to better decisions.

The recognition heuristic is not an exhaustive decision model, as it does not even
consider unrecognized options. The next family of models presented also does not
consider all available options.

4 Social Heuristics

When recognition is not strongly correlated with the criterion or the decision maker
recognizes all options, decision making may involve a search for the possible out-
comes of each option. A few years after his voyage on the Beagle, the 29-year-old
Charles Darwin divided a scrap of paper (titled “This is the Question”) into two
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columns with the headings “Marry” and “Not Marry” and listed favorable outcomes
for each of the two options, such as “nice soft wife on a sofa with good fire” and “con-
versation of clever men at clubs.” Darwin concluded that he should marry, writing
“Marry—Marry—Marry Q. E. D” decisively beneath the first column. The following
year, Darwin married his cousin, Emma Wedgwood, with whom he eventually had
ten children.

How did Darwin decide to marry, based on the possible outcomes he envisioned,
such as children, loss of time or having a constant companion? He did not tell us. One
possibility is that he used a version of multi-attribute utility theory or some heuristic
simplifications of it which I will present in the next sections. Another possibility is
that he used one of the social heuristics which exploit the social core capacities of
people, such as imitation which is unmatched among animal species. For instance,
consider the following [47].

Do-what-the-majority-does heuristic: If the majority of your peers display a
behavior, engage in it as well.

For the marriage problem, this heuristic makes a man start thinking of marriage
at a time when most other men in one’s social group do, say, around age 30. It
is a most frugal heuristic, for one does not even have to think of pros and cons.
Do-what-the-majority-does tends to perform well when (i) the observer and the
demonstrators of the behavior are exposed to similar environments that (i7) are stable
rather than changing and (ii7) noisy, that is, where it is hard to see what the immediate
consequence of one’s action is [3].

Social heuristics appear to guide many of our decisions, and do-what-the-majority-
does is only one such heuristic in the adaptive toolbox of decision makers. But there
are other social heuristics as well.

Consider deciding about green versus gray energy. Assume you have moved into a
new apartment, and you need to choose providers for the basic utilities. In the United
States, the United Kingdom and many countries in Europe, 50-90 % of the people
asked say that they would favor a green electricity carrier and are even willing to pay
a small premium for it. But, unfortunately, these statements do not reflect behavior.
The percentage of people who consume green electricity is marginal; for example,
2 % in Germany and 0.5 % in the United Kingdom. This discrepancy between what
people say and what they do can be explained by the use of a social heuristic [56].
When one moves into their new apartment, there is typically an electricity carrier that
provides a default (the carrier that was used by the previous tenant or the carrier that
the landlord has chosen). The new tenants typically take no action and the default is
used.

Default heuristic: If a decision is set as the default, do not change it.

The default heuristic can explain a flurry of phenomena such as peoples’ retirement
plans and whether they are organ donors or not. It is not an exhaustive model as it
does not consider all available options and their attributes.

It is important to note that the default heuristic, as also the recognition- and do-
what-the-majority-does heuristics, arrive at a decision without evaluating options.
For problems where it is difficult to obtain high-quality input for evaluating options
or to perform the computations necessary for the evaluation, sidestepping option
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evaluation can be a great relief. It is possible, however, that a decision maker feels
uncomfortable to not perform any evaluations. In the next two sections, I describe
two families of attribute-based heuristics, which evaluate options, albeit in a simpler
way than standard decision theory does.

S Lexicographic Heuristics

In this family of models, a decision is based on a subset of the attribute values of the
oprions. I use the term “attributes” broadly here to include any piece of information
that can be used as, for example, the probability of a particular outcome for a given
option, and so on.

5.1 Take-the-Best

Let us say that you want to predict which one of Lufthansa and Southwest Airlines
will have a higher stock price five years from now. You have heard of both Lufthansa
and Southwest Airlines, and thus you cannot use the recognition heuristic, and you
also hesitate to use a social heuristic. Relevant company attributes may be the number
of years that the company has been operating, whether the country of origin is a G-8
country or not, and so on. I symbolize attributes by aj, az, ..., and the values of
option A on the attributes by aj(A), az(A), ... (attributes are coded so that their
values are nonnegative and the correlation between each attribute and the criterion
is positive).
A family of simple attribute-based models is lexicographic heuristics [20]:

Infer Cr(A) > Cr(B)if and only if
ai(A) > a(B),whereaj(A) = aj(B)forallj < i. 5)

What does (5) say? Attributes are inspected one at a time until an attribute is found
that has different values on the two objects; then, the object with the higher value on
this attribute is inferred to have the higher criterion value. For example, suppose that
a decision-maker orders the country-of-origin-in-G-8 attribute first and the number-
of-years attribute second. The country-of-origin-in-G-8 attribute has the same value
on Lufthansa and Southwest Airlines (“yes” that would be coded as 1), and Lufthansa
has a higher value on the number-of-years attribute, so the decision-maker would
infer that Lufthansa has a higher stock price.

The family of lexicographic heuristics is parameterized by the rule used to order
attributes. For instance, in the take-the-best heuristic [23], attributes are ordered in
descending order of their validity, v;:
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vi = Prlai(A) > aiB)|ai(A) # ai(B)], where Cr(A) > Cr(B). (6)

According to (6), the validity of an attribute is the probability that the attribute
has a higher value on the option that has the higher criterion value (given that the
attribute has different values on the two options).

Gigerenzer and Goldstein [23] postulated that people are able to calculate attribute
validities based on their core capacity of monitoring frequencies of events, but this
claim has been challenged [16]. Rules for ordering attributes, simpler than using
validity, have also been proposed, as ordering attributes randomly [23]. In any case,
when the decision-maker makes an inference by using a lexicographic heuristic such
as take-the-best, she needs to retrieve attribute values from memory, one by one.
Thus, lexicographic heuristics rely on peoples’ core capacity for what psychologists
call recall.

Note that, like the recognition heuristic, take-the-best is noncompensatory. Fur-
thermore, take-the-best specifies the processes by which people make inferences.
More specifically, it is specified how people search for information (by ordering
attributes by validity), how they decide to stop the search (as soon as one attribute
discriminates between the objects and allows making a decision) and how they decide
based on the available information (by using the first discriminating attribute). There
have been a number of laboratory tests of these processes (as well as of the decision
outcomes predicted by take-the-best) and this research is summarized in Broeder
and Newell ([6] see also the other articles in this journal’s special issue). Overall,
if people use heuristics such as take-the-best depends on the characteristics of the
decision environment, as, for example, whether there is time pressure or not, and
how skewed is the distribution of attribute validities. Animals have also been argued
to use lexicographic heuristics (for examples, see [35]).

The standard decision-theoretic way of comparing two options is the family of
linear models, in which a weighted sum of attribute values for each option is computed
and the option with the higher sum is inferred to have the higher criterion value (if
the sums are equal, one object is picked randomly). More formally,

Infer Cr(A) > Cr(B)if and only if
Yiwiai(A) > Xiw;aiB), wherew; > 0. (7)

Unlike lexicographic heuristics, linear models are compensatory. The weight w;
for attribute ¢; can be computed in a number of ways as, for example, in ordinary
linear regression, by minimizing the sum of squared differences between the real
criterion values in the ecology and the criterion values estimated by the linear model.

Another family of standard decision-theoretic models for making paired compar-
isons is that of Bayesian models [14].

Infer Cr(A) > Cr(B)if and only if
Pr[Cr(A) > Cr(B)lai(A), ai(B)] > 1/2. (8)
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That is, the option that has, given all available information, the higher probability
of having the higher criterion value, is inferred to have the higher criterion value.
The probability in (8) is difficult to compute if the number of attributes is large or
their interrelations are complicated. In practice, Bayesian models make simplifying
assumptions about the interrelations among attributes. For example, naive Bayes [14]
assumes that attributes are conditionally independent given the criterion. It is easy to
see [42] that, if attributes take binary values, naive Bayes reduces to a linear model
(7) with w; = log[v; /(1 — v;)].

For making inferences in problems in which there is an objectively determined
answer, as in comparing two companies’ stock prices, the linear model (7) is the
analogue of the additive multi-attribute utility model for making choices in problems
where the criterion is subjectively determined, as in choosing an apartment: The
relevant pieces of information (attribute values) are weighted and added. On the
other hand, lexicographic heuristics such as take-the-best dispense with adding, and
instead just use a simple form of weighing, ordering attributes.

Next, I present another kind of lexicographic heuristics, that are used in a decision
problem different from the paired-comparison problem discussed so far.

5.2 Fast and Frugal Trees

A middle-aged man is taken to the hospital with complaints of intense chest pain.
The doctors have to decide quickly whether he is at a low risk of having ischemic
heart disease and just needs a regular nursing bed, or he is at a high risk and should
be rushed to the emergency room. This decision problem is called a categorization
problem. In the particular situation of categorizing a heart-disease patient, the avail-
able resources—such as time, information, and computation—are limited, there is
pressure to be accurate and the stakes are big. The fast-and-frugal-heuristics research
program has provided some answers to how professionals and laypeople make, or
should make, accurate categorizations with limited resources, by using simple trees.

I first introduce some elements from the general theory of trees for categorization.
In a categorization problem, the decision-maker has to assign objects to one of
mutually exclusive categories, based on the values of the objects on some attributes.
In the example above, the objects are the patients, there are two categories—having
a low and a high risk of ischemic heart disease—and the attributes are the available
pieces of medical information such as readings from an electrocardiogram.

A categorization tree can be graphically represented by the root node, on the
tree’s first level, and subsequent levels with one attribute processed at each level (see
Fig. 1). There are two types of nodes. First, a node may specify a question about the
value of the object on an attribute; the answer then leads to another node at the next
level, and the process continues in this way. The root node is of that type. For nodes
of the other type there is an exit; the object is categorized and the process stops.
In sum, starting from the root node and answering a sequence of questions about
attributes, an exit is reached and the object is categorized. For trees to be easy for
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ST segment elevated?

2z

yes no

@ Chest pain main symptom?
A
Other symptoms?
yty \

Fig. 1 A fast frugal tree for categorizing patients as having a high or low risk of ischemic heart
disease (for more details, see [28])

people to understand and apply they should not have too many levels or attributes.
For example, Fig. 1 shows such a tree, developed by two practicing doctors for the
ischemic-heart-disease problem [28].

A categorization tree is called fast and frugal if and only if it has at least one exit
at each level [53]. According to this definition, the tree of Fig. 1 is fast and frugal.
If a second question were asked for all patients with elevated ST segment, the tree
would not have been fast and frugal.

Fast and frugal trees are noncompensatory. They also specify a number of cog-
nitive processes—how information is searched for, how search is stopped, and how
a decision is taken based on the obtained information. For example, a physician
using the tree of Fig. 1 first looks up the ST segment, then the chest pain, and finally
other symptoms. There are a number of simple ways of ordering attributes, includ-
ing straightforward extensions of the validity rule (7) for take-the-best (for details,
see [53]).

Standard decision theory has produced a number of categorization models such as
logistic regression [48] Vapnik’s [64] support vector machines (SVM) and Breiman
et al.’s [4] classification and regression trees (CART). These families of models are
more mathematically sophisticated than fast and frugal trees. For example, CART use
information theory for ordering attributes; and the resulting trees are not, in general,
fast and frugal. Also, the standard models are compensatory.

Fast and frugal trees appear to be used by practitioners in a number of fields such
as law and medicine [9, 10]. Louis Cook and his team at the Emergency Medical
Services Division of the New York City Fire Department used a fast and frugal tree
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for deciding which of the victims of the September 11 terrorist attack needed urgent
care [7].

Next, I mention a family of models that lies between standard decision theory and
heuristics.

6 Tallying

Recall that lexicographic heuristics are a simplification of linear models where
attributes are weighed but not added. Tallying heuristics are another simplification of
linear models where attributes are added but not weighed. In other words, by setting
w; = 1 in (7), the following is obtained.

Infer CHA) > Cr(B)if and onlyif X;a(A) > iaiB). 9)

Tallying as described in (9) refers to paired comparisons. It is easy to see that it
can also be applied to categorization, as well as to other problems such as deciding
how to construct one’s financial portfolio. Lay investors often use tallying in the
sense that they allocate an equal amount of wealth to each asset in the portfolio (this
is also known as naive diversification or as the 1/N heuristic where N is the number
of assets or alternatives; [2]).

Of course, tallying is exhaustive and integrative and, in this sense, it is a standard
model. It can, however, also be seen as a heuristic in that it amounts to simply adding
attribute values and “is not demanding from a cognitive viewpoint” [29]. Tallying
is based on peoples’ capacity for simple arithmetic, which even if not necessarily
innate, it is, in most cases, easily learned by children.

In the previous four sections, I introduced some models of heuristics and discussed
their basic properties (e.g., less-is-more effect, noncompensatoriness, etc.) This kind
of theory is necessary from the perspective of cognitive science. But the crucial
question for an engineer is how these models perform compared to standard decision
models. This is an active topic of research. Even though not always framed as such,
answers are being provided since the 1970s. In the last 15 years, many studies have
been carried out and today there exists a relatively large repository of results (for a
review, see [39]). The next section presents some basic findings, including some yet
unpublished studies, and attempts to synthesize the current state of knowledge.

7 Decision Theory and Rules of Thumb: Comparisons

I first define the measure by which the performance of models is evaluated. The
accuracy of a model is the proportion of problems in which it made the correct
decision; for example, a correct inference is that Lufthansa has a higher stock price
than Southwest Airlines, and the categorization that a patient is at a high risk of
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having heart disease is correct if the patient subsequently suffered a heart attack.
Most of the studies in the heuristics literature investigate accuracy (in a few studies,
a second performance measure is investigated, the financial gain from a model’s
inferences, but I will not present such studies).

Furthermore, there are two types of accuracy. Fitting accuracy refers to the sit-
uation where the parameters of a model (e.g., attribute weights, order of attributes)
are estimated using all data available. Predictive accuracy is often measured by
cross-validation where the model parameters are estimated by using a subset of all
data—called the training set—and the same parameters are applied to make deci-
sions for the rest of the data—the test set; this process is repeated many times to
average out random variation. Often, the training set comprises of the attribute and
criterion values, or categories, of 50 % of all options. Predictive accuracy is a relevant
measure of performance because it refers to decisions not yet made, and this is what
most studies have focused on.

The empirical evidence I review comes from computer simulation studies. By
simulations I do not mean that the datasets discussed are fictitious—most of them
are in fact real—but rather that the performance of models is not calculated by using
closed-form equations, but by simulating how an ideal agent would apply the models.
I focus on simulations because the goal is to first evaluate the performance of models
per se, excluding the human factor in applying the models. Presumably, taking into
account human errors would favor heuristics because they are simpler.

To keep things simple, I do not discuss research on the accuracy of the recognition
heuristic; a complicating factor with this research is that each decision-maker has
potentially different attribute values, so the performance of one decision maker does
not say much about the performance of other decision makers (for a review of this
work, see [24]). Also, there are no studies that I am aware of that evaluate the accuracy
of social heuristics in real-world problems (for theoretical analyses, see [3]). As will
be acknowledged in the concluding section of the chapter, I see the lack of research
on these heuristics as a weakness of the heuristics program. In any case, below I
discuss the accuracy of lexicographic heuristics (take-the-best and fast and frugal
trees) and tallying, compared to standard decision models.

7.1 Empirical Findings

I first survey some results of comparisons among lexicographic heuristics, tallying
and linear models. In the seventies, Robyn Dawes and his colleagues [11, 12] found
that tallying had higher predictive accuracy than linear regression in two of three
forecasting problems (e.g., one problem was to predict success in graduate school).
Dorans and Drasgow [15] generated a number of artificial datasets so that they
reflected characteristics of real forecasting problems and concluded that tallying
overall outperformed a number of versions of regression.

It has been and should continue to be emphasized, however, that there are con-
ditions under which regression has higher predictive accuracy than tallying as, for
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example, when the size of the training set is large [18] further highlighted such
conditions.

Czerlinski et al. [8] performed a simulation study with 20 datasets from the fields of
biology, environmental science, economics, demography, health, psychology, soci-
ology, and transportation. The criterion varied widely from men’s and women’s
attractiveness, to cities’ populations and homelessness rates, to obesity rates and
mammals’ sleep amounts, and so on. First, continuous attributes were dichotomized
by using the median. In fitting, regression was most accurate (77 %), tallying scored
73 % and take-the-best 75 %. In prediction, where the size of the training set was
50% of the whole dataset, take-the-best was most accurate (71 %), and even tal-
lying outperformed regression by 69—-68 %. When continuous attributes were not
dichotomized, the predictive accuracy of take-the-best and regression was equal,
76 %. More recently, in a series of papers, Hogarth and Karelaia [29-33] used mostly,
though not exclusively, artificial datasets, and confirmed and extended these results:
Take-the-best, tallying, and linear regression all sometimes had superior- and some-
times inferior performance.

I now discuss comparisons of lexicographic heuristics and tallying with Bayesian
models. Martignon and Hoffrage [52] compared the predictive accuracy of take-
the-best and tallying with two Bayesian models in the 20 datasets of [8] when the
size of the training set equaled 50% of the whole dataset. The first model was
naive Bayes where attributes were assumed to be conditionally independent given
the criterion, and the second one was a Bayesian network where attributes were
assumed dependent in a relatively simple Markov sense. Recall that the predictive
accuracy of take-the-best with continuous attributes was 76 %, of take-the-best with
binary attributes 71 %, and of tallying (with binary attributes) 69 %. The predictive
accuracy of Naive Bayes was 73 % and of the Bayesian network 75 % (both models
used binary attributes).

Katsikopoulos et al. [43] also compared the predictive accuracy of take-the-best
with continuous attributes and tallying with that of naive Bayes with binary attributes.
This study tested very small training set sizes, from 2 to 10 objects, that is, from 3 %
to 15 % of all objects across 19 of the Czerlinski et al. [8] datasets. It was found that,
for 2 objects, tallying had the highest predictive accuracy and take-the-best was more
accurate than naive Bayes; for 3—10 objects, take-the-best had the highest accuracy,
with naive Bayes being more accurate than tallying. For 5—-10 objects, the predictive
accuracy of take-the-best exceeded that of naive Bayes by more than 5 %.

DeMiguel et al. [13] run a simulation study of models for deciding how to allocate
one’s wealth across assets in a financial portfolio. They tested tallying (here meaning
the allocation of an equal amount of wealth to each asset), against Harry Markowitz’s
[51] mean-variance model (for details, see [13], pp. 1921-1922), and 13 variants of
this model, some of them Bayesian, designed to deal with issues of statistical estima-
tion. Tallying ignores the data on returns, whereas the mean-variance models use past
returns to reallocate wealth. The authors used seven real portfolios (with data on the
returns of the assets spanning form twenty to forty years) and one artificial portfolio.
The performance of the models was evaluated according to three measures (Sharpe
ratio, which is a risk-adjusted return; certainty-equivalent return; and turnover) in a
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test set, over many repetitions. The main result is that tallying was not consistently
outperformed by any of the optimization models, in any of the three measures. On
the other hand, the same authors have also developed more sophisticated Bayesian
models that outperformed tallying [13].

Finally, I discuss comparisons of fast and frugal trees with standard models.
Brighton [5] compared the predictive accuracy of fast and frugal trees with CART
[4] and another popular family of decision trees, C4.5 [57]. He used eight of the
problems of Czerlinski et al. [8], and, in each problem, varied the size of the training
set. In four of the problems, the fast and frugal tree outperformed the other decision
trees for all training set sizes. In the other four problems, the highest predictive
accuracy was achieved by different models for different training set sizes: When the
size of the training set was relatively small, the fast and frugal tree tended to do best,
whereas when the size of the training set was larger, CART and C4.5 tended to do
best.

Martignon et al. [53] compared two fast and frugal trees—that differed on the
rules used for ordering attributes and for assigning, at each tree level, the exit to one
category—with CART and logistic regression. They used 30 categorization problems
from the UC Irvine Machine Learning Repository, of which 11 were medical decision
problems. For each problem, three sizes of the training set were tested: 90, 50, and
15 % of all objects. The results were similar to Brighton’s: When the training set size
was large, one of CART or logistic regression outperform both fast and frugal trees,
and when the training set size was small, a fast and frugal tree outperformed both
CART and logistic regression. For example, in the 11 medical problems, when the
training set included 90 % of the objects, logistic regression outperformed both fast
and frugal trees (79 % vs. 76 % and 74 %); and when the training set included 15 %
of the objects, a fast and frugal tree scored 74 %, whereas the other fast and frugal
tree scored 72 %, which was equal to the accuracy of CART and logistic regression.

In a yet unpublished study, Fernandez, Katsikopoulos, and Shubitizde [19] applied
fast and frugal trees, CART and SVM to the problem of detecting unexploded ord-
nance (UXO; this is munitions used in war or military practice). This is a very relevant
problem as, for example, around 11 million acres contain UXO in the United States
and in Afghanistan more people have lost their lives due to UXO than due to land-
mines between 2002 and 2006. In cross-validation, when the training set had up to 10,
out of a total of 216, objects found in the military ground Camp Sibert in Alabama,
fast and frugal trees had higher accuracy than CART and equal accuracy with SVM
(when the training set had more than 10 objects, the three models had essentially
equal accuracy).

In sum, there are three main findings of computer simulation studies comparing
the accuracy of lexicographic heuristics and tallying with that of standard decision
models such as linear and Bayesian models, classification and regression trees and
support vector machines. First, when all evidence is taken into account, the accuracy
of all models is not that different (with tallying possibly lagging a bit behind). It
should be emphasized, however, that even a small difference of, say, 1 % in accuracy
could translate to large differences in situations with high stakes. Second, all models
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can achieve relatively superior and inferior accuracy. Third, the accuracy of heuristics
is surprisingly competitive to that of standard models, especially in prediction.

Thus, the picture is quite complicated. Nevertheless, we do have some under-
standing of the mathematical and conceptual reasons for the three findings. In the
next discussion, I sketch this understanding (for more details, see [39]), while also
trying to show how open the problem still really is.

7.2 Theoretical Analyses

I first sketch why one may expect that, to a first approximation, the accuracy of
heuristics and standard models is not that different. This claim follows from the
combination of two facts: (i) many of the models can be viewed as linear models,
which differ just in their attribute weights, and (i) the performance of linear models
does not, informally stated, change “much” when the attribute weights change.

The second fact is well known in the statistics and forecasting literature [49]. The
first fact can be seen if one considers various models. Tallying is by definition a
linear model with attribute weights w; = 1; naive Bayes, as said earlier, is a linear
model with w; = log[v;/(1 — v;)] if attributes are binary-valued; and it turns out
that, again if attributes are binary valued, lexicographic heuristics can also be seen
as linear models where the attribute weights satisfy the condition w; > X - ;wy for
all i ([52]; e.g., it is easy to verify that a lexicographic heuristic that first inspects ay,
then a, and finally a3, makes identical paired comparisons with the linear model 4
ay + 2ay + az).

Explaining the second finding amounts to uncovering conditions under which
heuristics are more accurate than standard models, and vice versa. There is actually
a host of such conditions. I give two examples.

First, Katsikopoulos and Martignon [41] provided a necessary and sufficient con-
dition for a lexicographic heuristic to achieve maximum accuracy among all possible
models in paired comparisons (this accuracy equals that of naive Bayes). Assuming
conditional independence and that attributes are binary, the condition is that attributes
have noncompensatory validities:

0; > Iy jog, whereo; = v; /(1 — v;); foralli. (10)

For example, if there are three attributes with vi = 0.8, v = 2/3, and v3 = 0.6,
then (10) holds.

In a series of papers, Robin Hogarth and Natalia Karelaia [29-33], analyzed
further the relative accuracy of linear models and lexicographic heuristics. There are
three main differences between these studies and the studies by Laura Martignon and
her colleagues [41, 42, 52]. First, Hogarth and Karelaia also considered continuous
attributes [30, 33]. Second, they looked into issues such as the correlations among
attributes, or errors in the application of the models [29].
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Third, and most importantly, unlike Martignon and her colleagues, Hogarth and
Karelaia modeled the decision environment, that is, the relationship between the
criterion value of an option and the attribute values of the option. A simple version
of the environment model is linear:

Cr(A) =X%; f_Sa,-(A), where B > 0. (11

In some of their papers, Hogarth and Karelaia made additional mathematical
assumptions to (11), as, for example, that attributes are normally distributed random
variables [30, 33]. They were then able to derive conditions for patterns of relative
accuracy involving heuristics and linear models.

For example, Hogarth and Karelaia [30] showed that a lexicographic heuristic
is at least as accurate as linear regression whenever the following condition holds
(where a; is the attribute inspected first in the lexicographic heuristic, pc 41 is the
correlation between a; and the criterion value C, and Rﬁdjis an adjusted version of
the correlation coefficient of linear regression; for details see [30], p. 118):

PC.a1 = Ragg: (12)

An informal interpretation of (12) is that the single attribute used by the
lexicographic heuristic (because attributes are continuous, the first attribute inspected,
a1, allows making a decision almost always) has a higher correlation with the crite-
rion than does the sum of all attributes (weighed by the regression coefficients). In a
sense, the attribute structure specified by (12) is noncompensatory, as is the attribute
structure specified by (10).

In sum, even though it is an oversimplification, it can be said that the results of
Hogarth and Karelaia converge with the results of Martignon and her colleagues
on a condition for competitive accuracy of lexicographic heuristics. This condition
is a noncompensatory attribute structure. We do not have analytical results on how
inferior is the accuracy of lexicographic heuristics when this condition is not satisfied;
all that is known is that there exist other models that outperform the heuristics.

There is a second condition that guarantees competitive accuracy for lexicographic
heuristics. Baucells, Carasco, and Hogarth [1] showed that, assuming a linear envi-
ronment model (11), a lexicographic heuristic achieves maximum accuracy across
all possible models in paired comparisons, if the condition of cumulative dominance
holds:

There exists A sothatforall B : Xx<; ax(A) > Xi<jax(B), forall i
(inequality holds strictly for at least one ). (13)

For example, for two options, A and B, such that a;(A) = 1,a2(A) = 0,a3(A) =
I,and a1 (B) = 0,a2(B) = 1,a3(B) = 1, (13) shows thatA cumulatively domi-
nates B. The lexicographic heuristic that inspects attributes in the order ay, ap, and
asz, would infer A as having the highest criterion value, and this is correct for the lin-
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ear environment model C(A) = 5a1(A) + 4a3(A) + 3a3(A). In a yet unpublished
study, Katsikopoulos [40] showed that this result holds for a linear environment model
that includes multiplicative interactions among attributes if and only if attributes are
binary.

Do the two conditions of noncompensatoriness and cumulative dominance explain
why lexicographic heuristics often achieve superior accuracy? Not fully. Noncom-
pensatoriness seems to be infrequently satisfied. For example, Hogarth and Karelaia
[29] pointed out that, in principle, attribute weights are seldom noncompensatory,
and Katsikopoulos and Martignon [42] empirically found that attribute validities
were noncompensatory in three of the 20 datasets of Czerlinski et al. [8]. Cumu-
lative dominance is actually relatively common [1] for example, given two objects
with three attributes each, one object cumulatively dominates the other in 97 % of
all possible distributions of binary attributes across objects. But, it is not clear how
often is the environment model linear.

In sum, there is still a lot to understand about why lexicographic heuristics often
have superior accuracy. In fact, this is even truer when one tries to understand the third
finding, the success of heuristics in prediction. It does seem that part of the answer has
to do with heuristics needing less, and perhaps also lower-quality, information to get
calibrated than the standard models, because they have fewer parameters and simpler
functional forms. But how exactly does this affect predictive accuracy? Gigerenzer
and Brighton [22] used an insight from the machine-learning literature [34] and
conjectured that heuristics have lower variance in their decisions than the standard
models but a comprehensive study of this conjecture is still lacking.

The next section concludes the chapter by briefly summarizing its message and
speculating on how decision theory, as we know it today, and the new ideas of
modeling rules of thumb, as presented in this chapter, can be combined in order to
construct an adaptive and effective repertoire for decision making.

7.3 Decision Theory and Rules of Thumb, Together?

Until recently, it was basically taken for granted that the models of standard decision
theory, such as linear models, Bayesian networks, classification and regression trees,
perform better than their heuristic counterparts, such as lexicographic heuristics
and tallying. The heuristics were viewed as simplifications, perhaps dictated by the
constraints of the real world, but simplifications nevertheless, doomed to be second
best.

As I hope to have shown in this chapter, this is not true. The standard decision
models and the heuristics all have their regions of being best, and, in fact, this does
not seem to be a strange accident but also fits with theoretical analyses. In a broader
sense, this result could have been anticipated because people, as well as animals,
have, for a long time, been using rules of thumb that are very intimately related to the
models of heuristics presented here such as take-the-best and fast and frugal trees,
and one may expect that these rules have some value, at least under some conditions.
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In sum, it seems necessary to combine decision theory and rules of thumb, so that
decision makers are supported in adaptively switching between the two, depending
on the problem. But how?

I think it is fair to say that this question has not really been considered. There is
some relevant work, as in Hogarth and Karelaia (2006) and [39] who have suggested
“maps” that delineate how to decide which decision model to use depending on
the characteristics of the problem at hand. These maps include standard models,
lexicographic heuristics and tallying. The maps concentrate on option evaluation.
What they are missing is a role for the more radical rules of thumb such as the
recognition heuristic and social heuristics. These heuristics are radical because they
are not exhaustive and thus do not require that all options are known. Given that
not knowing all options is what makes real decision-making under uncertainty so
challenging, studying social heuristics may well be the way in which it makes most
sense to infuse today’s decision theory with rules of thumb.
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Aggregating Imprecise Linguistic Expressions

Edurne Falcé, José Luis Garcia-Lapresta and Lloren¢ Rosell6

Abstract In this chapter, we propose a multi-person decision making procedure
where agents judge the alternatives through linguistic expressions generated by an
ordered finite scale of linguistic terms (for instance, ‘very good’, ‘good’, ‘acceptable’,
‘bad’, ‘very bad’). If the agents are not confident about their opinions, they might use
linguistic expressions composed by several consecutive linguistic terms (for instance,
"between acceptable and good’). The procedure we propose is based on distances and
it ranks order the alternatives taking into account the linguistic information provided
by the agents. The main features and properties of the proposal are analyzed.

Keywords Group decision-making - linguistic assessments - Imprecision - Dis-
tances

1 Introduction

People face a lot of decision-making problems in their everyday life. Some of these
problems can be easily managed by means of numbers (How many tablespoons of
sugar should I add to my coffee? How much is this computer?), but other problems
are more complex and a numerical representation is more difficult to be implemented
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(Which mean of transportation should I choose? How much is this brand preferred to
this other?). Trying to assign a number to an opinion that could be imprecise makes it
even harder. Human beings usually have difficulties representing uncertainty through
numbers. As Zimmer [31] suggested, people generally prefer to handle the impre-
cision with linguistic terms rather than with numbers, because verbal expressions
and their associated rules of conversation are more naturally included in people’s
thoughts.

Wallsten et al. [26] conducted an experimental research where they showed that
people are more comfortable expressing the meanings of probability through words
rather than through numbers. Following this line of thought, the program Computing
with Words arises (see [15, 29], among others). In it, the objects of computation
are words drawn from the natural language and agents express themselves through
linguistic terms.

Among all possible kinds of decisions, this chapter focuses on the ones concerning
voting systems. In voting, agents (or voters) have to show their preferences over
multiple options (candidates or alternatives). Next, the individual preferences are
somehow aggregated to yield a final result.

There are several voting systems where the agents assess linguistic terms to show
their preferences. One of the most simple is Approval Voting [5, 6], where agents can
either "approve of" or "not-approve of" the candidates. As an extension of Approval
Voting, recently the voting system Majority Judgment [1-3] appears. In Majority
Judgment, agents can assess to each candidate a linguistic term as "excellent’, ’very
good’, "good’, etc., from a fixed linguistic scale, to each candidate.

Majority Judgment is a controversial method and some authors have shown several
paradoxes and inconsistences (see [9, 12, 17, 22], among others).

In order to solve some of these inconsistences, extensions of Majority Judgment
have been developed. For instance, Garcia-Lapresta and Martinez-Panero [12] pro-
posed an extension for small committees where the linguistic information is aggre-
gated by means of centered OWA operators [28] and the 2-tuple fuzzy linguistic
representation [14]. In Falcé and Garcia-Lapresta [7, 8], an extension based on
the distances between linguistic terms is introduced. Finally, Zahid [30] proposed a
combination between Majority Judgment and the Borda Count [4].

There are other examples of voting systems using linguistic terms, such as Garcia-
Lapresta [10], who extended simple majority through linguistic preferences, or
Garcia-Laprestaetal. [11, 13] who generalized Borda rule assessing linguistic terms
to the alternatives.

The introduction of linguistic terms partially captures agent’s complexity. Nev-
ertheless, this treatment does not necessarily include all the uncertainty that agents
may feel. An agent might have some doubts about which linguistic term to assess.
In this regard, allowing agents to assess several consecutive linguistic terms comes
out as a possible solution (see Tang and Zheng [23], Ma et al. [16], Rodriguez et
al. [18]). In this sense, our proposal deals with the matter by means of the absolute
order of magnitude spaces introduced by Travé-Massuyés and Piera [25] and Travé-
Massuyés and Dague [24]. More specifically, in the extension developed in Rosellé
et al. [19-21] as a starting point.
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In this chapter we introduce a decision process where agents show their assess-
ments over the feasible alternatives either through linguistic terms or through lin-
guistic expressions. These expressions are generated by consecutive linguistic terms,
and allow individuals to express imprecise assessments when they are not confident
about their opinions.

The process aggregates the individual assessments by providing a weak order
on the set of alternatives, satisfying some desirable properties. This weak order
ranks the alternatives according to the distance between the corresponding individual
assessments and the maximal linguistic term. These distances are defined through
parameterized metrics in such a way that the values of the parameters allow to
consider different ways of penalization on the agents’ imprecision.

The chapter is organized as follows. Section?2 includes some notation and basic
notions. Section3 is devoted to analyze how to penalize the imprecision through
appropriate parameterized metrics. Section4 introduces the canonical linear order
on the set of linguistic expressions and shows how this order can be reached through
distances to the maximal linguistic term. Section5 describes the decision pr