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Preface

Decision making in business, economics, and social sciences is omnipresent yet at
the same time it becomes highly difficult to comprehend and model human mental
processes. In general, in spite of their diversity the decision problems exhibit a
number of highly visible features:

• the objective of the decision problem is ambiguous;
• the problem structure describing the relationship among sub-problems might be

loosely specified;
• preference relations are not explicitly stated;
• knowledge of the organizational environments is uncertain;
• available information is often imprecise, uncertain or there might be an acute

lack of information; and
• one-time decision models are needed when dealing with unrepeated problems

with partially available information.

The classical decision theories, such as the expected utility (EU) theory of von
Neumann and Morgenstern, and the subjective expected utility (SEU) theory of
Savage cannot fully address the complexity of the problems and still a number of
open critical questions remain that need to be thoroughly addressed.

This edited volume aims to offer effective methods to deal with different types
of uncertainty inherently existing in decision problems and deliver comprehensive
decision frameworks to handle different decision scenarios under various facets of
uncertainty. The objective is to bring forward diverse decision-making models,
which help use effectively the explicit and tacit knowledge and intuition, model
perceptions and preferences in a more human-oriented style, and form decisions
which become more in rapport with a human line of thinking.

The volume presents original approaches and delivers new results in funda-
mentals and applications related to human-centered decision making approaches to
business, economics, and social systems. It includes multi-criteria (multiattribute)
decision making, decision making with prospect theory, decision making with
incomplete probabilistic information, granular models of decision making and
decision making realized with the use of non-additive measures. New emerging
decision theories being presented as along with a wide spectrum of ongoing research
make the book valuable to all interested in the field of advanced decision making.
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An overall concise characterization of the objectives of this edited volume is
captured by highlighting several focal points:

• Systematic exposure of the concepts, design methodologies, and detailed
algorithms. This is a self-explanatory feature of the volume; the systematic,
well-organized flow of the presentation of the ideas is directly supported by a
way in which the material is structured.

• Individual chapters with clearly delineated agenda and well-defined focus and
additional reading material available via carefully structured references.

• Self-containment. The intent is to provide a material, which is self-contained
and provides the reader with all necessary prerequisites and, if necessary,
augments some parts of the material with a step-by-step explanation. More
advanced concepts are supported by a significant amount of illustrative numeric
material. Furthermore several detailed application scenarios are offered to
motivate the reader and make some abstract concepts more tangible and easy to
follow.

This book is aimed at a broad audience of researchers and practitioners. The
areas of particular interest include industrial engineering, informatics, business,
economics, social systems. The material could be also of interest to those involved
in operations research, management, and various branches of engineering. A
prudently struck balance between the theoretical studies and applications makes
the material suitable for researchers as well as graduate students especially in
courses such as information, computer sciences, psychology, cognitive science,
economics, system engineering, operation research and management science, risk
management, public and social policy.

We would like to take this opportunity to express our sincere thanks to the
authors for reporting on their innovative research and sharing their insights into the
area. The reviewers deserve our thanks for their constructive input. We highly
appreciate a continuous support and encouragement from the Editor-in-Chief,
Prof. Janusz Kacprzyk whose leadership and vision makes this book series a
unique vehicle to disseminate the most recent, highly relevant, and far-fetching
publications in the domain of Computational Intelligence and intelligent systems.

We hope that the readers will find this volume of genuine interest and the
research reported here will help foster further progress in research, education, and
numerous practical endeavors.

Peijun Guo
Witold Pedrycz
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Decision Making in the Environment
of Heterogeneous Uncertainty

Phan H. Giang

Abstract The environment of heterogeneous uncertainty is characterized by the
presence of variables in multiple uncertainty formalisms. This paper provides an
overview of decision models under several uncertainty frameworks including prob-
ability theory, Dempster-Shafer belief function theory and possibility theory. It
explores the challenges in pulling them together for decision making. We show
that the information of sequence of variable resolution, which was often neglected,
actually plays a key role in decision making under heterogeneous uncertainty. A
novel approach, based on the well-known folding-back principle, to find the cer-
tainty equivalent of acts under heterogeneous uncertainty is proposed.

Keywords Decision making ·Possibility theory ·Dempster-Shafer belief function ·
Ignorance

1 Introduction

Most models of uncertainty used in science, engineering and medicine are proba-
bilistic in nature. That is, all kinds of relevant uncertainty are forced to be quantified
in terms of probability, chance or risk. While probabilistic modeling may apply
naturally to many uncertain variables of interest, for others, it is simply a choice
motivated by convenience rather than objective justification. When reliable data are
scarce, a reliable estimation of probability would not be possible. If a concept is
vaguely defined, its frequency count is inevitably imprecise. Even when the objec-
tive data are lacking, some would still argue that subjective/personal probability can
be determined by observable preference via the subjective expected utility theory
(SEU) according to the tradition established by de Finetti and Savage. However, the
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2 P. H. Giang

results of research in last several decades show that SEU is not adequate for decision
under uncertainty.

For example, if you ask an expert about how the risk of a nuclear disaster of the
scale of Fukushima Daiichi is estimated. The expert will tell you that the probability of
an accident at a nuclear power plant is often the result of elaborate modelings in which
besides the laws of physics, also included are engineers’ subjective assumptions.
While the laws of physics are accurate, the subjective assumptions are much less
reliable.

For another example, economists of liberal inclination rarely agree with their col-
leagues on conservative side about the consequences of a proposed policy. They
disagree despite having the same academic training, using the same modeling
methodology and accessing the same data. In particular, there is an on-going con-
sequential debate among economists about the value of the fiscal multiplier which
measures the change in national income relative to the change in government spend-
ing. Depending on that value, one can either justify a policy to increase government
spending to fight an economic recession or recommend against the policy as an
ineffective remedy.

In fact, in most practical situations where an accurate estimation of probabil-
ity is not possible, practitioners have to supply subjective “educated” guess. As a
consequence, the optimality of a decision derived from the models is a conditional
property that depends on the validity of such guesses. In the quest for robustness,
that dependency must be minimized.

The probability doctrine seems especially deficient to deal with situations of
ignorance where reliable evidence is not available, data are noisy and expert opinions
are contradictory.

Several formal theories have been proposed to capture the notions of non-additive
uncertainty which elude the probability theory. In computer science and statistics, the
possibility theory rooted in Zadeh’s fuzzy set theory [8, 30], Dempster-Shafer belief
function theory [5, 23] and imprecise probability theory [28] have been extensively
investigated.

There is some misconception about the roles of those uncertainty theories. For
example, we often hear the claim that non-probabilistic formalisms such as DS belief
function theory can replace the role played by probability theory because the latter
is just a special case of the former. This claim ignores an important fact that unlike
probability which is updated according to Bayes’ rule, belief functions can be updated
in several ways that produce different updated belief [18].

The literature on uncertainty representation has been converging on the consensus
that different uncertainty formalisms are designed to capture different aspects of the
uncertainty that exists in the real world. In particular, the notion of chance is best
represented by using probability theory, the vagueness inherent in linguistic variables
by using possibility theory, the ambiguity associated with evidence by using DS belief
function and the imprecision due to lack of data is conveyed by imprecise probability.
This fact points naturally to the need to combine them in decision making situations.
It is not difficult to find a real world decision problem that involves various kinds
of uncertainty. For example, the choice in a national election depends on various
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considerations such as the chance that economy improves under candidate’s plan,
the vague perception that he is a good and honest person, the evidence of achievement
or failure of his leadership in the past, and so on.

An important motivation of non-additive uncertainty formalisms, besides expres-
sive power consideration, is to account for systematic violations of Savage’s postu-
lates which form the foundation of the subjective expected utility theory (SEU) [22].
The problem was first analyzed by scholars such as Allais [1] and Ellsberg [9] and
subsequently has been the subject of many studies (see [16] and [26] for systematic
discussions). Some of such violations can be explained by the cognitive perception
bias, others such as Ellsberg’s paradox is clearly due to the fact that the relevant
uncertainty is not reducible to a probability measure.

It is well accepted common sense that people perceive and process risk/probability
and uncertainty/ambiguity differently. But only recently, neuroscientists have accu-
mulated scientific evidence to support the idea that the difference is truly fundamental
and occurring at the physiological level. They have discovered that the regions of
brain that deal with probability and the regions that handle ambiguous situations are
distinct [17].

The advantage of using entire arsenal of uncertainty formalisms is that decision
makers can capture, express and process information about the world in most intuitive
and credible way, without invoking unsupported assumptions.

While the literature on individual non-additive uncertainty formalisms is exten-
sive, the research that brings them together under one roof for decision making is
almost nonexistent. Many scholars pursue an approach which places focus on deci-
sion making under more and more general uncertainty formalism. Underlying such
“generalization approach” is the assumption, which has been questioned in the recent
literature, that every relevant piece of uncertainty information can be expressed in a
common uncertainty language.

In contrast, we want to aggregate different uncertainty frameworks to make them
work together. In other words, our objective is to create a decision making frame-
work that involves uncertain variables of different types including probabilistic, pos-
sibilistic, DS belief variables, variables with indeterminate probability and ignorant
variables (those for which there is total lack of knowledge).

The plan of this chapter is as follows. In the next section we provide a systematic
review of decision making models for probability theory, possibility theory and belief
function theory. In the main section, we will pull those theories together to analyze
decision situations in which uncertainty variables of different types are involved.

First, we list notation convention used in this chapter. Following a convention in
literature, we make “you” the decision maker to help streamlining the discussion.
For example, we would write: your knowledge about the world is encoded by some
uncertainty function or you want to choose an action among available alternatives.

We use the capital letters to the end of the alphabet e.g., X,Y, Z . to denote
variables. Their instances are denoted by lower case letters. A state is a tuple of
instances of all variables. The set of states is denoted by Ω . Events or subsets of
states are denoted by capital letters to the start of the alphabet e.g., A, B,C .
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An act is a mapping from the set of states Ω to the set of outcomes W = [0, 1].
Two acts f, g are equivalent if ∀s ∈ Ω, f (s) = g(s). Besides the mapping notation,
an act is also recorded in the rule form: {Ai ↪→ xi }ki=1. The reading of rule Ai ↪→ xi

is “if event Ai occurs then you get outcome xi ”. A value c ∈W is called a constant
act which in the rule form is Ω ↪→ c. A chain rule E1 ↪→ E2 ↪→ . . . Ek ↪→ x
means “if A1 and A2 and . . . Ak then x”. Acts are denoted by lower case letters
d, f, h, p, q, r etc. The set of acts is denoted by D.

Given that your information is encoded as a measure of uncertainty overΩ , your
choice behavior over acts is modeled by a preference � over acts. We assume that
� is a weak order (reflexive, complete and transitive). The symmetric part ∼ and
asymmetric part � of � are defined as usual: f � g iff f � g and g �� f . f ∼ g iff
f � g and g � f . The restriction of � on the set of constant acts (W) is denoted by
the “greater than or equal to” symbol ≥. If f is an act and c is a constant act such
that f ∼ c, c is called the certainty equivalent of f .

2 Common Structure of Decision Making

This section, we start with the review of the classical expected utility theory for
probability then proceed to describe decision theories developed for other non-
additive uncertainty frameworks. The goal is to highlight both similarity and dif-
ference between them.

2.1 Expected Utility Theory

In this subsection, we assume that the risk relevant to your decision problem is
described by a probability measure P on Ω . Your preference relation is denoted by
�vnm . We say that your preference has the expected utility representation if

p �vnm q iff EP [U (p)] ≥ EP [U (q)] (1)

where U , utility function, is an increasing function from W → R where R is the set
of real numbers.

The expected utility for an act q is calculated by

EP [U (q(s))] =
∑

s∈Ω
P(s) U (q(s)) (2)

The certainty equivalent of q is calculated by

c = U−1(EP [U (q(s))]) (3)

where U−1 is the inverse function of U .
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Note that the certainty equivalent remains unchanged if U is transformed by a
positive linear transformation. To see that suppose U1 = aU + b with constants
a > 0, b. Consider the inverse function U−1

1 . By the defining property definition
U1(U

−1
1 (x)) = x and Eq. EP [U1(q(s))] = EP [aU (q(s))+b] = aEP [U (q(s))]+b,

we have

∀x, aU (U−1
1 (x))+ b = x (4)

∀x, U (U−1
1 (x)) = x − b

a
(5)

U (U−1
1 (EP [U1(q(s))])) = EP [U1(q(s))] − b

a
= EP [U (q(s))] (6)

U−1(U (U−1
1 (EP [U1(q(s))]))) = U−1(EP [U (q(s))]) (7)

U−1
1 (EP [U1(q(s))]) = U−1(EP [U (q(s))]) (8)

In literature, the expected utility model has been characterized in several ways. A
characterization is the necessary and sufficient condition that �vnm must satisfy in
order for representation equivalence p �vnm q iff EP [U (p)] ≥ EP [U (q)] to hold.
The following characterization is proposed by Jensen [21].

A key concept in this characterization is that of compound acts. Suppose p, q are
acts, {α/p, (1 − α)/q} denotes an act r that pays p with probability α and q with
probability 1−α. The implementation mechanism of the compound act is described
in Fig. 1. A biased coin (chance of Head is α and the chance of Tail is 1 − α) is
tossed. If the coin lands Head, you will get act p, if Tail then you get q.

Technically, a compound act is a conditional act not a mapping of signatureΩ →
W . Given the coin landed Head rHead(s) = p(s), and given Tail rTail(s) = q(s).
However, in characterization of�vnm , the compound act is identified with the linear
combination as follows.

{α/p, (1− α)/q} def= {α p + (1− α)q} (9)

∀s ∈ Ω, {α p + (1− α)q} (s) 
→ α p(s)+ (1− α)q(s) (10)

Fig. 1 Compound act
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Notation {·} denotes acts. The reading of Eq. (9) is that compound act {α/p, (1 −
α)/q} is taken to be equivalent to a linear combination of acts {α p+ (1−α)q}. The
Eq. (10) explains that the linear combination of p, q is a an act whose outcome is
the linear combination of the outcomes of p and q. Note that the difference between
the definition of compound act and that of linear combination is when the coin toss
is used. In the former, coin is tossed before state realization. In the latter, the order is
reversed. The need to distinguish between compound acts and linear combinations
will be made clear later. The main reason is that this identity holds only for prob-
abilistic acts. When the uncertainty is non-probabilistic such as belief function or
possibility function the identity no longer hold.

Now let us look at the axioms more closely.

J1 Weak order. �vnm is complete and transitive.
J2 Archimedean. For p, q, r ∈ D such that p �vnm q �vnm r then there exist
α, β ∈ [0, 1] such that {α/p, (1−α)/r} �vnm q and q �vnm {β/p, (1−β)/r}.

J3 Independence. For all p, q, r ∈ D and α ∈ [0, 1], p �vnm q iff {α/p, (1 −
α)/r} �vnm {α/q, (1− α)/r}

Some comments are in order. The weak order axiom conveys well accepted require-
ments for rationality. The completeness says that between two acts, you are always
able to tell which one you prefer. The transitivity is meant to ensure that your pref-
erence is immune from the Dutch book or “money pump” attack against you. The
last two axioms involve the compound acts. The Archimedean axiom implies that
given two simple acts p, r , by choosing a suitable bias for a coin you can create a
compound act that is indifferent to any act q which lies in between p and r . The
independence axiom says that contingent branches of a compound act are evaluated
separately from other branches.

A theorem proved by Jensen [21] states that the necessary and sufficient condition
for preference�vnm to have the representation p �vnm q iff EP [U (p)] ≥ EP [U (q)]
is the axioms J1, J2 and J3 together with the definition of compound acts and by
linear combinations.

2.2 Decision Under Ignorance

An important reason to consider non-probabilistic uncertainty is the desire to express
the notion of ignorance which probability theory has been shown to be unable to
adequately capture. The examination of decision under ignorance is critical for two
reasons. From practical point of view, ignorance is much more pervasive in real life
situations than we are ready to admit. From a theoretical point view, ignorance is a
test bed for any decision under uncertainty theory.

In literature on decision making under ignorance, an act can be identified with
its set of possible outcomes because the uncertainty information associated with
outcomes is absent. Hurwicz and Arrow [2] made the ground-breaking work on
decision under ignorance in early 1950s. Their basic construct is a choice operator
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(·̂) that returns a subset of optimal acts D̂ from the the set of available acts D. Arrow
and Hurwicz examined the implication of imposing rationality postulates (properties
A to D) that the choice operator must satisfy. Property A requires that if D1 ⊂ D2
and D̂2 ∩ D1 �= ∅ then D̂1 = D̂2 ∩ D1. Property B requires that relabeling actions
and states does not change the optimal status of actions. Property C says that deletion
of a duplicate state does not change the optimality status of actions. A state s is a
duplicate of another state s′ with respect to set of acts D if ∀ f, f ′ ∈ D f (s) = f (s′).
Property D states that for f, f ′ ∈ D and f dominates f ′ if f ′ ∈ D̂ then f is also
in D̂ and if f �∈ D̂ then f ′ �∈ D̂. An act is said to dominate another act if for every
state the outcome of the former is as least as good as the outcome of the latter.

They have shown that under complete ignorance, only extreme (the best and the
worst) outcomes matter. For example, f (Ω) = {0.1, 0, 3, 0, 4, 0, 7} is indifferent
to g(Ω) = {0.1, 0, 7}. A family of utility functions including max, min and linear
combinations of minimal and maximal values is permissible by this criterion.

The sequential consistency is a property that essentially imposes the condition that
starting from the epistemic stage of ignorance, one can not manipulate the value of
an act by repackaging it with hypothetical reasoning. Specifically, suppose that you
are ignorant about states inΩ and f is an act. Suppose that H = {A, Ā} is a partition
of Ω . You can reason as follows. If A occurs, then you will encounter a new act
under ignorance denoted by f A whose outcomes is f (A). Alternatively if Ā occurs
you will encounter another act under ignorance f Ā with the set of outcome f ( Ā). If
the certainty equivalent of f A is x and that of f Ā is y. So before the question which
of A or Ā occurs is resolved, you have the set of potential outcomes {x, y} but you
are still ignorant about which will obtains. So, without any new information from
outside, by purely hypothetical reasoning you can translate the original act under
ignorance f to another act {x, y} also under ignorance. The sequential consistency
condition says that you cannot improve an act by such a trick. In other words, f and
{x, y} must be indifferent.

In [11] it has been shown that if the sequential consistency condition is imposed in
addition to Arrow-Hurwicz four conditions then the utility function under ignorance
must have the following form: There exists a value a which is called your default
value, such that

UI (D) =
⎧
⎨

⎩

max(D) if max(D) ≤ a
a if min(D) ≤ a ≤ max(D)
min(D) if min(D) ≥ a

(11)

Utility function UI has an appealing interpretation. Each decision maker has a
pre-determined default value which she considers “good enough”, “satisfactory” or
“acceptable” in circumstance that she knows nothing about. If the potential outcome
range of an act covers the default value, she is willing to exchange the act for that
value. In case the outcome range does not include the default, she is willing to
exchange the act for the value in the range which is closest to the default value.
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2.3 Decision with Possibility Theory

The possibility theory has a root in Zadeh’s works in fuzzy set theory [30] and
substantially developed in theory and methodology by Dubois and Prade group in
Toulouse [8]. This theory is used to represent partial ignorance and uncertainty on
ordinal structure. Zadeh’s original idea is to use possibility theory to formalize the
semantics of statements in natural languages.

A possibility function is a mapping π : 2Ω → [0, 1] that satisfies constraints
π(Ω) = 1, π(∅) = 0 and ∀A, B ⊆ Ω

π(A ∪ B) = max(π(A), π(B)) (12)

The non-additivity of possibility functions can be seen by the fact that the sum
π(A)+π( Ā)where Ā is the negation (complement) of A, is not invariant for different
A. In fact, this sum is constrained by 1 ≤ π(A)+ π( Ā) ≤ 2 because 1 = π(Ω) =
π(A ∪ Ā) = max(π(A), π( Ā)), so 1 = max(π(A), π( Ā)) ≤ π(A) + π( Ā) ≤
2 ∗max(π(A), π( Ā)) = 2.

From the possibility function, a dual construct can be derived. A necessity function
ν on the 2Ω is defined as ν(A) = 1− π(¬A). Clearly for

ν(A ∩ B) = min(ν(A), ν(B)) (13)

There are two regimes that a possibility function can be updated given a new
information about realization of some event A. A quantitative conditional possibility
of B given A is defined when π(A) > 0

π(B|A) = π(A ∩ B)

π(A)
(14)

Under the qualitative regime, the qualitative conditional possibility

π(B|A) =
{

1 ifπ(A ∩ B) = π(A)
π(A ∩ B) otherwise

(15)

Note that in the qualitative regime of possibility theory any ordinal set can be used
as the uncertainty scale because the only operation needed is maximization.

For the rest of the chapter we will assume the possibility theory under quantitative
regime. The discussion can be translated to the qualitative regime with minimal
change.

The relationship between the possibility theory and belief function theory is not
as simple it seems. One the one hand, the quantitative possibility can be seen as a
special case of belief function theory. On the other hand, the qualitative version of
possibility has no representation in belief function theory.
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Besides the fuzzy-set interpretation, possibility theory has an interpretation in
terms of statistical likelihood function. In this interpretation, the set of states Ω
is the set of probabilistic models that you entertain for your stochastic problem.
Specifically, a state s ∈ Ω , is a probability measure over a sample space X . Your
information about the models is extracted from observed data. Suppose x is the
data collected about the stochastic problem. According to the likelihood principle
of statistics [3, 4], all information about the models is contained in the likelihood
function calculated from the observation. The probability of observing x predicted by
model s is s(x). As a function of the models given observation likx(s) 
→ s(x) is the
likelihood function. According to the likelihood principle, proportional likelihood
functions are equivalent. The likelihood function can be normalized by

Likx(s) = likx(s)

maxs′∈Ω likx(s′)
(16)

Although likelihood is defined only for individual models, it can be extended to sets
of models in the tradition of the maximum likelihood procedure of statistics.

Likx(A)
def= max

s∈A
Likx(s) (17)

It is easy to verify that function Lik defined in Eqs. (16) and (17) satisfies the
definition of a possibility function.

We want to draw attention on how the view of likelihood information as a possibil-
ity function is different from the way Bayesian statistics uses it. Bayesian approach
combines the likelihood with the prior probability on the set of modelΩ to arrive at
the posterior probability. The key difference between two approaches is the presence
or lack of prior probability. As Bayesian approach would not be applicable without
prior probability, its proponents insist on availability of prior one way or another. In
many practical situations when such prior is not available, Bayesian approach would
resort to the use of artificial non-informative prior probability.

We focus on the certainty equivalent operator for possibilistic acts which is given
by the construct of binary utility [10, 13]. As it is much less familiar to readers, we
provide a brief self-contained review of the construct. The following are the axioms
that the preference relation on possibilistic acts, �pos , have to satisfy.

A1 Weak order. �pos is complete and transitive.
A2 Archimedean axiom. If f �pos g �pos h then there exist possibility vectors

(α1, α2) and (β1, β2) such that {α1/ f, α1/h} �pos g and g �pos {β1/ f, β1/h}.
A3 Independence. Suppose f �pos g and let (α1, α2) is a possibility vector then for

any h, {α1/ f, α2/h} �pos {α1/g, α2/h}.
A4 Compound gamble. Suppose f1 = {β1i/ f1i |1 ≤ i ≤ I } and f2 = {β2 j/ f2 j |1 ≤

j ≤ J } then {α1/ f1, α2/ f2} ∼pos {α1β1i/ f1i |1 ≤ i ≤ I }∪{α2β2 j/ f2 j |1 ≤ j ≤
J }

A5 Idempotence. For any index set I {αi/ f |1 ≤ i ≤ I } ∼pos f
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Clearly, A1 − A3 are similar to J1 − J3. They differ on the account of possibility
function being used in the former and probability function used in the latter. A1
says that even as your uncertainty is represented by possibility, your preference
relation still complete and transitive as in the case of probability. Suppose act g is
in between acts f and h, axiom A2 requires that one can construct a possibilistic
compound act from f, h that is strictly better (worst) than g. Axiom A3 says that for
compound possibilistic act, each branch evaluated independently of other branches.
A less noticeable fact is that A3 is weaker than J3 because A3 is an “if” statement
whereas J3 is an “iff” statement. The axiom A4 makes clear that the concept of
linear combination of possibilistic acts is not the same as the compound act. It is
because in the possibilistic world, you are not allowed to use probability generating
devices such as dice to combine them. This restriction seems odd at first but actually
reasonable in possibilistic world because there every thing you know or don’t know
is expressed by possibility functions.

If you insist on the ability to make linear combination of possibilistic acts, later in
this chapter we present a method to evaluate such combination of possibilistic acts.

The possibilistic expected utility theory, a counterpart for the expected utility
theory, starts with a new utility scale.

Definition 1. Binary or polar utility scale is the ordered set of pairs

� = {〈α, β〉 | 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and max(α, β) = 1} (18)

equipped with an order � defined by

〈α, β〉 � 〈
α′, β ′

〉
iff α ≥ α′and β ≤ β ′ (19)

Hebrew letter � (daleth) is used to denote the polar utility set to remind the fact
that it is the set of points on the top and the right sides of the unit square. Intuitively,
the left number of a pair (the x-coordinate) is the index of “goodness” and the right
number (the y-coordinate) is the index of “badness”. This explains the intuition of
the order � . A pair is “better” than another pair if the goodness index of the former
is higher than the goodness index of the later and the badness index of the former is
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lower than that of the latter. The relation � (“strictly better”) if at least one of two
inequalities is strict.

Definition 2. Three operations scalar multiplication (∗), component-wise maxi-
mization (max) and � -maximization (⇑) are defined on polar pairs as follows:

c ∗ 〈α, β〉 def= 〈c ∗ α, c ∗ β〉 (20)

max(〈α, β〉 , 〈α′, β ′〉) def= 〈
max(α, α′),max(β, β ′)

〉
(21)

⇑ (〈α, β〉 , 〈α′, β ′〉) def=
{ 〈α, β〉 if 〈α, β〉 � 〈

α′, β ′
〉

〈
α′, β ′

〉
if

〈
α′, β ′

〉 � 〈α, β〉 (22)

Note that the result of component-wise maximization is not the greatest element
according to the order � . We reserve the symbol ⇑ for the taking the maximum
element in the set according to � .

Definition 3. A strictly increasing mapping V : W → � is called scalar to polar
utility transform if

V (0) = 〈0, 1〉 , V (1) = 〈1, 0〉 , V (c) � V (c′) iff c > c′. (23)

Definition 4. Suppose f = {Ai ↪→ wi | i = 1,m} is a possibilistic act i.e., {Ai }mi=1
is a partition ofΩ , and π is a possibility measure on 2Ω , the possibilistic expectation
of f with respect to π is defined by

Qπ [V ( f )] = max
1≤i≤m

{π(Ai )V ( f (Ai ))} (24)

Let us take a moment to explain the construct Qπ [·]. It is instructive to compare it
with the more familiar expected utility construct for a probabilistic act f : EP [ f ] =∑m

i=1 P(Ai )U ( f (Ai )). The similarity is obvious. The differences are: (1) between
functions U and V , while U maps to scalar utility, V maps to polar utility; (2) P is
a additive uncertainty while π is a possibility measure and (3) summation is used
in the expected utility wrt additive uncertainty while max is used in the possibilistic
expected utility wrt non-additive uncertainty. In the same way as the utility function
U is said to reflect the risk attitude of a decision maker, we say that function V
reflects her ambiguity attitude (for more details see [10]).

A theorem proved in [10] states that the necessary and sufficient condition for
preference �pos to have the representation f �pos g iff Qπ [V ( f )] � Qπ [V (g)]
is the axioms A1− A5. We note that this model subsumes two regimes of decision
making with possibility proposed in Dubois et al. [7].

Because V is a strictly increasing mapping, its inverse function V−1 : � → W
exists and defined uniquely by ∀w ∈W, V−1(V (w)) = w. Using V−1, the certainty
equivalent of a possibilistic act can be defined by V−1(Q[V ( f )]).

The ambiguity attitude conveyed by function V can be quantified by an index ρ in
the range (0, 1) with ρ = 0.5 means ambiguity neutral, the smaller ρ you have, the
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more ambiguity averse you are. A handy class of polar utility function Vρ , constant
ambiguity attitude utility function, is characterized by the following equation for
0 < x < 1

Vρ(x) = 〈α, β〉 iff log

(
x

1− x

)
= log

(
α

β

)
+ log

(
ρ

1− ρ
)

(25)

It follows that

Vρ(x) = 〈α, β〉 where

{
α = min(1, exp(logit(x)− logit(ρ)))
β = min(1, (exp(logit(x)− logit(ρ)))−1)

(26)

where logit(x)
def= log(x)/ log(1− x).

Example 1. (Fig. 2) Suppose f = {A1 ↪→ 0.1; A2 ↪→ 0.4; A3 ↪→ 0.9},
π(A1) = 1;π(A2) = 0.7;π(A3) = 0.3 and V0.4(0.1) = 〈0.17, 1〉 ; V0.4(0.4) =
〈1, 1〉 ; V0.4(0.9) = 〈1, 0.07〉.

Q[V0.4( f )] = max{π(A1)V0.4(0.1), π(A2)V0.4(0.4), π(A3)V0.4(0.9)} (27)

= max{1 〈0.17, 1〉 , 0.7 〈1, 1〉 , 0.3 〈1, 0.07〉} = 〈0.7, 1〉 (28)

So, we have V−1
0.4 (〈0.7, 1〉) = 0.32 i.e., the certainty equivalent of f is 0.32. �

Using possibility theory, the state of ignorance can be represented by possibility
function ∀s ∈ Ω,π(s) = 1. It can be shown that possibilistic expected utility (24)
reduces to (11) for decision under ignorance.

Example 2. For act f as in the previous example. Suppose we have an ignorant
possibility function π(A1) = π(A2) = π(A3) = 1.

Q[V0.4( f )] = max{V0.4(0.1), V0.4(0.4), V0.4(0.9)} (29)

= max{〈0.17, 1〉 , 〈1, 1〉 , 〈1, 0.07〉} = 〈1, 1〉 (30)

V−1
0.4 (〈1, 1〉) = 0.4. �

Fig. 2 Calculation of possi-
bilistic expected utility
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2.4 Decision Models for Dempster-Shafer Belief Function Theory

The belief function theory was originally developed by Dempster in 1960s to gen-
eralize Bayesian statistics [6]. Later, Shafer extended this proposal for evidential
reasoning [23]. A major advantage belief function theory is its ability to express, in
a more faithful manner, information availability: from complete ignorance to partial
ignorance to full information.

The classic exposition of the DS belief function theory is Shafer’s book “A Math-
ematical Theory of Evidence”. We present a brief introduction to the concepts,
notations and important results. A basic probability assignment (bpa) function m
is defined by

m : 2Ω → [0, 1]such that
∑

A⊆Ω
m(A) = 1. (31)

A subset with positive mass is a focus. Other forms of a belief function are belief
(Bel), plausibility (Pl) and commonality (Com) that are defined from m as follows:
∀B ⊆ Ω

Bel(B) =
∑

A⊆B

m(A); Pl(B) =
∑

A∩B �=∅
m(A); Com(B) =

∑

A⊇B

m(A) (32)

All the forms m, Bel, Pl and Com are equivalent in the sense that given any form
the others are completely determined. For example, given a belief function in Bel
form, its bpa form is completely determined by Möbius inverse transform

m(A) =
∑

B⊆A

(−1)|A\B|Bel(B) (33)

Although in literature Bel is often referred to as belief function. However, in our
usage, “belief function” is reserved for the body of information that has many incar-
nations m, Bel, Pl and Com. The choice of a form to work with depends on manip-
ulation convenience. In our case, we use plausibility form largely because of its
conditional expression.

If you hold belief function m1 and learn about new evidence represented by a
second belief function m2, you should update your belief by using Dempster’s rule.
The result is a new belief function denoted by m1 ⊕ m2 defined as follows

∀A �= ∅, m1 ⊕ m2(A) = K ·
⎛

⎝
∑

Ai∩B j=A

m1(Ai ) m2(B j )

⎞

⎠ (34)

where K is the normalization constant defined by
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K =
⎛

⎝1−
∑

Ai∩B j=∅
m1(Ai ) m2(B j )

⎞

⎠
−1

(35)

In a case of special interest, m2 is a belief function with a single focus i.e., m2(B) = 1
for some B, belief combination becomes conditionalization. It is easy to verify that
in the plausibility form, conditional has a familiar form of probability conditioning

Pl(A|B) = Pl(A ∩ B)

Pl(B)
(36)

Dempster [5] views of belief function as multiple value mapping from a sample
space to another space. Suppose there is probability function P on sample space Θ
and a set-valued mapping h fromΘ to the power set of another spaceΩ . For example
Θ can be observation space andΩ —a hypothesis space. Each observation points to
a set of hypotheses. A belief function m on Ω is induced by P and h by equation

∀C ∈ 2Ω, m(C) =
∑

h(w)=C

P(w) (37)

Note that h : Θ → 2Ω is not necessarily one-to-one. Therefore, the probability of
more than one points can be transferred to one subset (see Fig. 3). Dempster’s view
is the basis of many decision models.

There are several important subclasses of belief functions depending on the topol-
ogy of the foci. In Shafer’s book, the belief functions that have nested foci are singled
out. This class is called consonant belief function. Suppose the foci of a belief func-
tion are B1, B2, . . . Bn and B1 ⊂ B2 ⊂ . . . ⊂ Bn . It is easy to verify for such a
belief function Pl(.) is a possibility function, Bel is a necessity function. In particu-
lar Pl(A∪ B) = max(Pl(A), Pl(B)) and Dempster’s combination rule is reduced to
the quantitative conditioning formula. Conversely, given a possibility functionπ (and
its dual form ν), the bpa and foci of a consonant belief function can be determined
by the inverse Mobius transform (33).

Fig. 3 Belief function as a
multiple valued mapping from
a probability function
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Starting from the premise that belief functions can be used to represent statistical
evidence, Walley [27] asks what condition that belief functions must satisfy in order
to be consistent with a fundamental principle in statistics —the likelihood principle.
He proves the condition that the set of foci must be partitioned into non-intersecting
groups and within each group the foci are nested. Such belief functions are called
partially consonant. In other words, the foci of a partially consonant belief function
can be rearranged B1, B2, . . . Bn with the following property. There exist k numbers
0 = i0 < i1 < i2 . . . < ik = n that serve as the boundaries for the groups (see Fig. 4).
Group j has foci with index i in between i j−1 and i j i.e., G j = {Bi |i j−1 < i ≤ i j }

Bi j−1+1 ⊂ Bi j−1+2 . . . ⊂ Bi j for 1 ≤ j ≤ k (38)

Bi j ∩ Bi j ′ = ∅ for j �= j ′ (39)

Earlier we noted that in the possibilistic world, there is no such thing as linear
combination of possibilistic functions or acts. If we insist on that ability we have to go
beyond the world of possibility functions. In particular, a partially consonant belief
function can be construed as a linear combination of several possibility function.

Abusing notation slightly, we use symbol G j also to denote the set of elements of
Ω that belong to group j , clearly {G j |1 ≤ j ≤ k} is a the collection of disjoint sub-
sets. We have Pl(G j ) = Bel(G j ) because every focus that intersects with G j is com-
pletely enclosed in it. Also

∑k
j=1 Pl(G j ) = 1 because that sum takes into account

the mass of every focus and no focus is double accounted. So, vector (Pl(G j ))
k
j=1

can be viewed as a probability function on a partition {G1,G2, . . .Gk,Ω−G} where
Ω−G consists of elements that are not in any G j . Also note that the conditional belief
function given Gi is consonant. So Pl(·|G j ) is a possibility function.

The advantage of using belief function theory is the power to express the state of
partial lack of information. Specifically, the partiality of information is expressed by
assigning the probability mass not to singleton-states as in probability but to sets of
states. The ignorance is pertinent to question how that mass is distributed within the
focus.

There is a convenient convention in discussion of decision making. Given a belief
function m : 2Ω → [0, 1] with foci B1, B2, . . . BK an act f : Ω → W induces a

Fig. 4 Foci of a partially
consonant belief function
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belief function m f : 2W → [0, 1] (on the space of outcomes) by transferring the
probability mass from Bi to f (Bi ):

∀i,m f ( f (Bi )) = m(Bi ) and m f (C) = 0 otherwise. (40)

With f ⇔ m f identity, one can safely discuss the choice of belief functions (on the
outcome space) instead of the choice of acts.

There are several proposals in literature on decision making with belief function
such as Jaffray [19], Yager [29], Smets [25] and Giang and Shenoy [14]. Most of
them relies on the view that a belief function is a linear combination of elementary
belief functions. A belief function is elementary if it has only one focus. Suppose
belief function f has foci B1, B2, . . . BK , f can be written as

f =
K∑

i=1

m f (Bi ) eBi (41)

where eBi is an elementary belief function with single focus Bi .

2.4.1 Jaffray’s Model

Suppose f is belief function on the outcome space. The main argument for this model
is that since f is a linear combination of elementary belief functions, the utility of f
is a linear combination of the utilities of those elementary belief functions. Suppose
f has foci {Bi }Ki=1

vJ ( f ) =
K∑

i=1

m f (Bi )vJ (eBi ) (42)

where vJ ( f ) is utility of f . Since the elementary eB represents ignorance conditional
on B, Jaffray used the Hurwicz’s solution for decision under ignorance

vJ (eB) = αB⊥B + (1− αB)�B (43)

where ⊥B and �B are the smallest (bottom) and largest (top) elements in B and
0 ≤ αB ≤ 1 is a constant that depends on the values ⊥B and �B only. Hence the
utility expression of a general belief function is

vJ ( f ) =
K∑

i=1

m f (Bi )
(
αBi⊥Bi + (1− αBi )�Bi

)
(44)

The axiomatic justification of Jaffray’s model is given in [20].
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2.4.2 Yager’s Method

The only difference between Jaffray’s method and Yager’s method is in the treatment
of elementary belief functions.

vY ( f ) =
K∑

i=1

m f (Bi )vY (eBi ) (45)

Here vY (eB) is computed according to the ordered weighted average (OWA) method.
Suppose B = {w1, . . . wk} and its elements are arranged in a decreasing order i.e.,
w1 > w2 > . . . > wk . Yager assumes that for each DM, there are non-negative
weights c1, c2, . . . ck that sum to 1. vY (eB) =∑k

i=1 ci .wi .
OWA subsumes familiar criteria such as max (c1 = 1), min (ck = 1), Hurwicz’s

(c1 = 1 − α, ck = α). It is not clear how to justify Yager’s model from axiomatic
perspective. Without going into details, note that, except three special cases men-
tioned above, vY (eB) accounts for non-extreme values in B, hence, OWA does not
satisfy Arrow-Hurwicz’s postulates for decision under ignorance [2].

2.4.3 Smets’ Transferable Belief Model

Smets and Kennes [24, 25] describe an approach called the transferable belief model
(TBM) in which “beliefs can be held at two levels: (1) a credal level where beliefs
are entertained and quantified by belief functions, (2) a pignistic level where belief
can be used to make decisions and are quantified by probability functions.” Given a
belief function with foci {Bi }Ki=1, probability function Prb defined by dividing the
mass of each focus evenly on its elements:

∀s ∈ Ω, Prb(s) =
∑

Bi⊇s

m(Bi )

|Bi | and ∀A ⊆ Ω, Prb(A) =
∑

s∈A

Prb(s) (46)

The expected utility of act d wrt Prb

vT (d) =
∑

s∈Ω
Prb(s) d(s) =

K∑

i=1

m(Bi )

∑
s∈Bi

d(s)

|Bi | (47)

It can be seen that (47) is a special case of (45) when all the weights ci are equal. As
such, TBM model also does not satisfy the requirements of decision under ignorance
and consistency. It can be argued that in this approach, the problem of decision under
ignorance does not even exist because the notions of ignorance and ambiguity are
meaningful in the “credal level” only. They cease to exist when it comes to decision.
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2.4.4 Giang-Shenoy’s Model

Unlike the previous models, Giang and Shenoy [15] propose an axiomatic decision
model applied not for belief functions in general but for the class of partially con-
sonant belief function. For a consonant belief function f with foci B1, B2, . . . Bn

which are divided into k nested groups with group boundary indices 0 = i0 < i1 <

i2 . . . < ik = n. Denote by G j the largest element of group j .

vGS( f ) =
k∑

j=1

Pl(G j )V
−1(QPlG j

(V ( fG j ))) (48)

where Pl(G j ) is the plausibility of G j , PlG j is the conditional plausibility given
G j . Because the belief function conditional on Gi is consonant, PlG j is a possibility
function. fG j is the restriction of act f on G j i.e., fG j (w) = f (w) if w ∈ G j , it is
undefined outside G j .

The meaning of (48) can be explained in Fig. 5. It is a two stage folding-back
evaluation. In the first stage ( right), act fG j is evaluated to a binary utility value〈
α j , β j

〉
under possibility function PlG j by the possibilistic expectation operator

(24). The certainty equivalent x j of the conditional act is found by applying V−1. In
the second stage ( left), the probabilistic act {Pl(G j )/x j |1 ≤ j ≤ k} is evaluated by
expected utility.

2.4.5 Examples

To conclude this section, we illustrate how different methods work on two examples.

Fig. 5 Evaluation of act in
Giang-Shenoy’s model
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Example 3. The state of ignorance can be represented by a belief function of a
single focus which is the entire set of states Ω i.e., m(Ω) = 1. Let us consider the
act f = {A1 ↪→ 0.1; A2 ↪→ 0.4; A3 ↪→ 0.9}.

The certainty equivalent of f in the Giang-Shenoy’s model with ambiguity attitude
ρ = 0.4 is 0.4 as calculated in the example 2.

Using Jaffray’s model with α = 0.6 (ambiguity averse), we have the certainty
equivalent calculated by α ∗ 0.1+ (1− α) ∗ 0.9 = 0.42.

Using Yager’s model with weight vector (0.15, 0.45, 0.40), the certainty equiva-
lent is calculated by 0.15 ∗ 0.1+ 0.45 ∗ 0.4+ 0.40 ∗ 0.9 = 0.555

Under Smets’ TBM model the certainty equivalent is calculated by (0.1+ 0.4+
0.9)/3 = 0.47. �

Example 4. Ellsberg’s paradox [9]
Ellsberg’s paradox is one in a series of experiments used to demonstrate that

rational behavior under ambiguity violates Savage’s sure-thing principle. In an urn,
there are 90 balls of the same size. The balls are painted one of three colors: red,
yellow and white. It is known that 30 balls are red. The proportions of yellow and
white are not known.

Ellsberg considers four gambles. IA = {red ↪→ 1, {white, yellow} ↪→ 0} that
offers $1 if a randomly drawn ball is red, nothing otherwise. IB = {yellow ↪→
1, {white, red} ↪→ 0} offers $1 if the ball is yellow, nothing otherwise. IIA =
{{red,white} ↪→ 1, yellow ↪→ 0} offers $1 if the ball is red or white, nothing if
the ball is yellow. IIB = {{yellow,white} ↪→ 1, red ↪→ 0} offers $1 if the ball is
yellow or white and nothing if it is red.

Ellsberg discussed findings that a sizable proportion of respondents preferred IA
to IB and, at the same time, preferred IIB to IIA. This observed preference is not
consistent with the sure-thing principle because the pair (IIA, IIB) is different from
the pair (IA, IB) only by the level of prize for white balls.

The uncertainty in the problem is nicely described by a pcb with 2 foci (Fig. 6).
m({red}) = 1

3 and m({yellow,white}) = 2
3 . This pcb decomposes into P({red}) =

1
3 and P({yellow,white}) = 2

3 and
(yellow|{yellow,white})=
(white|{yellow,
white}) = 1.

We show how Giang-Shenoy model works under three different scenarios of
ambiguity aversion, ambiguity neutrality and ambiguity seeking.

Case 1 (ambiguity aversion). We assume binary utility function Va($1) = 〈1, 0〉,
Va($0) = 〈0, 1〉 and Va($0.4) = 〈1, 1〉. The first two equalities are natural since $1
is the best outcome and $0 is the worst outcome. The default value under ignorance is

Fig. 6 Belief function for
Ellsberg’s Urn
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Fig. 7 Utility calculation for IA and IB under ambiguity aversion ρ = 0.4

Fig. 8 Utility calculation for IIA and IIB under ambiguity aversion γ = 0.4

0.4 indicating somewhat ambiguity aversion. In Figs. 7 and 8 we show the calculation
of utility for the gambles. We have vGS(IA) = 0.33, vGS(IB) = 0.27, vGS(IIA) =
0.60 and vGS(IIB) = 0.67. This means IIB � IIA � IA � IB. These preferences
are consistent with the observed behavior.

Case 2 (ambiguity neutrality). We have Vn($1) = 〈1, 0〉, Vn($0) = 〈0, 1〉 and
Vn($0.5) = 〈1, 1〉 and vGS(IA) = 1

3 , vGS(IB) = 1
3 , vGS(IIA) = 2

3 , vGS(IIB) = 2
3 .

This means IIA ∼ IIB � IA ∼ IB.
Case 3 (ambiguity seeking). We have Vs($1) = 〈1, 0〉, Vs($0) = 〈0, 1〉 and

Vs($.6) = 〈1, 1〉 and vGS(IA) = 0.333, vGS(IB) = 0.4, vGS(IIA) = 0.733,
vGS(IIB) = 0.667. This means IIA � IIB � IB � IA.

Jaffray’s model. In this model the ambiguity attitude is controlled by the Hurwicz’s
coefficient α. We also consider three scenarios for α = 0.6, α = 0.5 and α = 0.4
corresponding to ambiguity averse, neutral and seeking. In case α = 0.6, vJ (IA) =
0.33, vJ (IB) = 0.33 ∗ 0+ 0.67 ∗ (0.6 ∗ 0+ 0.4 ∗ 1) = 0.27.

The result of calculation is shown in Table 1. The second row has the color pro-
portion data and the ambiguity attitude parameter for Jaffray’s and Giang-Shenoy’s
models. Smets’ TMB model does not have ambiguity attitude parameter. In this
example, the set of outcomes has only two elements (0, 1), Yager’s model is identi-
cal to Jaffray’s. Also because of that, the parameters in Jaffray’s and Giang-Shenoy’s
models can be set so that they produce the same result. In general, however, they have
different behavior. For more details on how these two models are different see [12].
�
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Table 1 The certainty equivalent under different models and ambiguity assumptions

Red Yellow White Jaffray Jaffray Jaffray GS GS GS TBM

Prob/α/ρ 0.333 0.667 0.6 0.5 0.4 0.4 0.5 0.6
IA 1 0 0 0.33 0.33 0.33 0.33 0.33 0.33 0.33
IB 0 1 0 0.27 0.33 0.40 0.27 0.33 0.40 0.33
IIA 1 0 1 0.60 0.67 0.73 0.60 0.67 0.73 0.67
IIB 0 1 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67

2.5 Relationship Between Uncertainty Models

We have considered several models of uncertainty that extend the traditional repre-
sentation by probability. The main motivation for such models is to capture different
aspects of uncertainty existed in the real world, to faithfully represent the extent of
knowledge and ignorance that you have about the real world.

It is useful at this point to summarize their relationship (see Fig. 9). The oval nodes
are the models and their special cases. The arrow signifies “is a” relationship.

For example, there is an arrow from “ignorance” to “consonant belief function”
because the epistemic state of ignorance can be represented by a belief function with
a single focus which is exactly the set of states Ω i.e., m(Ω) = 1 and m(A) = 0
for any A ⊂ Ω . That ignorant belief function is consonant. Also the arrow from
the “ignorance” node to “possibility function” node signifies that in the language
of possibility theory, the state of ignorance is represented by possibility function in
which the possibility of any element of the power set is 1 i.e., ∀A ⊆ Ω, Pl(A) = 1.

Fig. 9 Relationship between uncertainty models
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The arrow from “probability” to “partially consonant belief function” is because
a belief function with all singleton foci is a probability function. The arrow from
“consonant belief function” to “possibility function” is justified by the fact that
the plausibility form of a consonant belief function is a possibility function with
quantitative conditioning. The lack of a reverse arrow from “possibility function” to
“consonant belief function” is justified by the fact that possibility theory also accepts
qualitative conditioning (15) which does not have counterpart in DS belief function
theory.

Another model which should be mentioned here is the representation of uncer-
tainty by sets of probability functions. This is a natural extension of the representation
by single probability functions. The clear advantage is keeping the Bayes rule for
updating. Given a set S = {Pi } of probability measures and the arrival of evidence
A, the update belief is the set of probability measure S′ = {Pi (·|A)}. The arrow
from “probability” to “set of probability functions” is obvious. However, the lack of
arrow between “set of probability functions” and “DS belief functions” needs some
clarification. It is well known [18] that Pl and Bel forms of a DS belief function
can be interpreted as the upper and the lower envelops of some set of probability
functions. In this sense, we can say that the belief function and the set of probabil-
ities are matched. However, upon arrival of a new evidence, the DS belief function
is updated according to Dempster’s rule while the set of probabilities is updated via
Bayes rule for each member of the set. The resulting belief function and the set of
updated probabilities may no longer match.

The relationship between uncertainty models is useful in comparative analysis of
the decision proposals for different uncertainty models. For example, as probability
is a special case of partially consonant belief function (hence also a special case
of belief function), we want to make sure that the decision model for (partially
consonant) belief function applied for probability reduces to EU model. Also the
state of ignorance, as a special case of both belief function and possibility function,
can be used to compare their decision models.

All the models for decision making with belief function including those proposed
by Jaffray, Yager, Smets and Giang-Shenoy are reduced to expected utility model
when the foci of belief function are singletons. When belief function reduces to
ignorance the models by Jaffray and Giang-Shenoy satisfy four rationality postulates
by Arrow and Hurwicz. The models by Yager and Smets do not. Only Giang-Shenoy
model satisfies, in addition, the sequential consistency postulate. For the consonant
belief function—the possibility function, Giang-Shenoy model for partial consonant
belief and that for possibility theory have identical solutions which subsume the
two models proposed by Dubois et al. [7]. Applied for consonant belief function,
the models by Jaffray, Yager and Smets have different behaviors than the models
proposed for possibility theory—by Giang-Shenoy and Dubois et al.
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3 Decision Making Under Heterogeneous Uncertainty

The environment of heterogeneous uncertainty is characterized by the presence of
variables in multiple uncertainty formalisms. In previous section, we have reviewed
various uncertainty formalisms together with decision models proposed. Clearly, the
real world does not fit comfortably within any individual formalism. For example,
probability poorly severs the need to express the notion and degree of ignorance.
On the other hand, within the possibility model, you are not allowed to express the
notion of linear combination of acts even though such acts can arise naturally. For
example, given two possibilistic acts and a coin, a new act can be created by choosing
one alternative act depending coin toss. The focus of this section is a decision model
that can deal with different formalisms of uncertainty.

3.1 A Motivating Example

Let us consider a simple example in which the outcome of an act depends on both
risk and uncertainty.

Example 5. An investor considers an investment instrument d whose return, mea-
sured in risk-adjusted utility unit (util), depends on two binary variables. X , the
weather in US, is a chance variable with Pr(X = 1) = Pr(X = 0) = 0.5. X = 1
means favorable weather and X = 0 means unfavorable. Variable Y represents the
outcome of a political event of an obscure tribe in South Asia. The information about
Y is unreliable and mostly contradictory. Y is an ignorant variable. The contingent
outcome of d is as follows. d(s00) = 0, d(s01) = 1, d(s10) = 1 and d(s11) = 0
where si j stands for proposition (X = i & Y = j). The information is summarized
in Fig. 10.

Suppose that you consider to buy the instrument and wonder what is its worth.
You can reason as follows.

Scenario 1 Hypothetically assume X = 0 (unfavorable weather), the choice
then reduces to a decision problem under ignorance (political outcome) dX=0(Y =
0) = 0 and dX=0(Y = 1) = 1 since no information about Y is available. If you are
uncertainty averse (e.g. your preference pattern is highlighted in Ellsberg’s paradox),
the certainty equivalent you attach to dX=0 is c which is strictly less than 0.5. Note
that 0.5 is the value of dX=0 if Y were a fair coin toss. A symmetrical argument

Fig. 10 A chance variable
and an ignorant variable of an
investment
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day 1 day 2 day 1 day 2 

Fig. 11 Evaluation of uncertain investment under two orders of variable resolution

shows that the value of dX=1 is also c. So, no matter what the actual value of X will
be, the investor gets value c, she concludes that the value of investment is c (see in
Fig. 11).

Scenario 2 This scenario mirrors Scenario 1, but instead of conditioning on X ,
you choose to condition the investment on the values of Y . dY=0(X = 0) = 0,
dY=0(X = 1) = 1, since X is a chance variable with two equi-probable states and
the investment return is risk-adjusted, the value of dY=0 is 0.5 (write dY=0 = 0.5).
Similarly, dY=1 = 0.5. Thus, no matter what Y turns out to be, the value that you
get is 0.5, hence the value of the investment is also 0.5.

The apparent conflict between two perfectly reasonable evaluation scenarios begs
for a resolution. �

First of all, we need to figure out the answer for the following question. “Can and
how to represent the uncertainty pertaining to the instrument by one of the uncertainty
formalisms?”

On the one hand, probability theory is excluded because it is not able to handle
the ignorant variable (Y ). On the other hand, possibility theory also does not fit the
bill because it can not describe the chance variable (X).

This leaves the belief function as the only candidate. The state space is naturally
formed by Cartesian product of variables’ domains. Ω = {s00, s01, s10, s11} as si j

stands for (X = i & Y = j). In this space, the basic probability assignment of the
belief function is m({s00, s01}) = 0.5 and m({s10, s11}) = 0.5 (see Fig. 12).

Given that belief function, most models (Jaffray’s, Yager’s and Giang-Shenoy’s)
evaluate the instrument to c —-the solution under Scenario 1. Smets’ TBM model
evaluates the instrument to 0.5 which in this case coincides with the solution under
Scenario 2.
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Fig. 12 Belief function for
the investment instrument

The reason that TBM model can not deliver the solution under Scenario 1 is clear.
TBM is actually an application of expected utility model for a probability that is
derived from belief function. The uncertainty or partial ignorance contained in belief
function is assumed away in the derivation.

3.2 Variable Resolution Order

We consider it a serious defect of a model if it cannot compute the solution in a
perfectly reasonable scenario. In this sense, the inability of well-regarded decision
models for belief functions to deliver the solution in Scenario 2 is even more prob-
lematic.

A careful examination of the problem reveals that the problem starts with represen-
tation of uncertainty. Maybe, it is not correct to insist on belief function representation
of the uncertainty in the motivating example. This representation lumps together the
information about two separate variables of different nature.

First, it is not an information-preserving transformation. It is enough to realize
that there are infinite number of configurations (Θ, P, h) of a sample space Θ , a
probability measure P and a set-valued mapping h that induce the belief function
m({s00, s01}) = 0.5 and m({s10, s11}) = 0.5. For example, suppose Θ is the real
line, P is a probability density function and a is the median point then the mapping
h defined as follows creates the belief function

h(x) 
→
{ {s00, s01} if x < a
{s10, s11} if x > a

(49)

In fact, the configuration that consists of a binary chance variable of equi-probable
probability and an binary ignorant variable is only one among infinite many. Any
decision that is made on the basis of the belief function fails to account for the
information that can be found in the original problem setting.
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Unfortunately, even if you know that the use of belief function incurs loss of
information, it still remains the only available choice if you insist on bring probability
and ignorance variables into a single formal uncertainty formalism.

The novel approach we are proposing will not insist on representing the uncertainty
about different variables in the common product state space. For example, we do not
represent a chance variable X and an ignorant variable Y by an uncertainty measure
on the product space X × Y . Instead we connect those variables in a sequence.

Variable resolution order, the temporal order in which the variables involved in the
decision problem are resolved (their realizations become known) is a novel concept
that will play a key role in our approach.

Before presenting our approach, we speculate about the reason why the literature
on non-expected utility never seriously considered this concept. It is well-known that
decision models under uncertainty are heavily influenced by the knowledge about the
expected utility theory. An important fact about the EU model is that the result does
not depend on the order of variable resolution. This is an implication of the dynamic
consistency property. As discussed in the Sect. 2.1, in the axiomatization of the
expected utility theory, the compound act is identified with the linear combination of
acts. This identification is considered self-evident even though they are two distinct
concepts.

Let’s calculate the expected utility in the case if both variables X and Y in the
example are chance variables. There are three ways to compute the expected utility
of the instrument.

EX,Y [d(X,Y )] =
∑

x,y

Pr(x, y)d(x, y) (50)

EX [EY |X [d(X,Y )|X ]] =
∑

x

Pr(x)
∑

y

Pr(y|x)d(x, y) (51)

EY [EX |Y [d(X,Y )|Y ]] =
∑

y

Pr(y)
∑

x

Pr(x |y)d(x, y) (52)

Because Pr(x, y) = Pr(x)Pr(y|x) = Pr(y)Pr(x |y), the expected value calculated
is the same no matter which method is used. This is a special case of the law of
iterated expectation. You can interpret each calculation method in terms of order
of variable resolution. The first calculation corresponds to the case when you don’t
know which variable realizes first or you know that they are realized at the same
time. The second calculation applies when X realizes before Y . When the realization
of X is known, you can condition the instrument and probability of Y on that event
and calculate (conditional) expected utility. Before knowing X realization you can
calculate the expected utility by accounting for the probability of X realizations. The
third calculation applies when Y realizes before X . The invariance between three
calculations tells us the value of the instrument does not depend on the order of
variable resolution.

The situation becomes quite different when a non-probabilistic variable is
involved. Consider the motivating example. The return of investment instrument
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d depends on two variables, a chance variable X and an ignorant variable Y . For
the sake of simplicity, assume that X and Y are non-influential (term independent is
reserved for the relationship between probabilistic variables). The problem descrip-
tion, notably, does not say anything about when each variable is revealed to the
investor. The only implicit assumption is that both variables are resolved before the
instrument’s maturity. The omission could be due to the fact that the resolution order
is not known. But the order information, even known, could be left out because it is
judged to be irrelevant to the value of the investment, especially when variables are
supposed to be independent.

It turns out that the omission is an error and the information about the resolution
order is essential for evaluation of acts under heterogeneous uncertainty. If the order
is not given, one can list all the possibilities. There are two possibilities: (1) X is
revealed before Y denoted by X ⇀ Y and (2) Y is revealed before X denoted by
Y ⇀ X . If the order of resolution is unknown, notation X � Y is used.

Suppose that X is resolved at day 1 and Y a day later. Also assumed is that the
variable realizations become public information instantly. In this case, the Scenario
1 where the investor conditions Y , the variable that remain unresolved, on the real-
ization of X , seems more credible than Scenario 2. In fact, the conditional of X on Y
makes little sense because given a realization of Y at day 2, X is no longer a chance
variable. Once the realization of X is known, the instrument becomes a function of
Y only – dX=1(Y = 1) = 0 and dX=1(Y = 0) = 1 or dX=0(Y = 1) = 1 and
dX=0(Y = 0) = 0. The value (certainty equivalent) of such an instrument can be
found by putting it on the market. Suppose the market value for the instrument is c (c
is less than 0.5 if market is averse to uncertainty). So, the instrument that the decision
maker holds today (day 0) can be sold in day 1 for c no matter what the realization
of X will be. Therefore, in order to avoid arbitrage the value of the instrument today
must be exactly c.

On the other hand, if Y ⇀ X meaning Y is resolved at day 1 and X is resolved at
day 2, the Scenario 2 is more credible than Scenario 1. In this case, the value of the
instrument at day 1, either dY=0 or dY=1, is 0.5 because they are instruments under
risk (depend on X only) with equal probabilities of getting 0 and 1 util. Therefore,
the value (fair price) of d today must be 0.5.

Thus, the apparent conflict between two scenarios can be reconciled if the infor-
mation about the order of variable resolution is considered.

3.3 Decision Making Under Heterogeneous Uncertainty

Formally, we consider a decision situation described by a tuple (V,Δ,W,D). V is
a finite collection of variables {X1, X2, . . . Xn}. Each variable has a domain dom(·)
—the set of values it can take. The Cartesian product of the domains of variables in
V is the state-space denoted by dom(V) = Ω = ×X∈V dom(X). s ∈ Ω is a tuple of
values in the domains of Xi .Δ is a functional mapping from V to the set of functions
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of the form 2dom(.) → [0, 1]. Δ(X) represents the uncertainty about X . W = [0, 1]
is the outcome space. D is the act space. An act is a mapping f : Ω →W .

Furthermore, we assume that each variable in V has a type. The type of a vari-
able is determined by the properties that its uncertainty function Δ must satisfy.
For example, X is of probabilistic type if Δ(X) is a probability measure. For each
type of variable, there is a certainty equivalent operator (CE). This operator maps
a uncertainty measure Δ(X) and act fX on the domain of X to a point in W i.e.,
CE(Δ(X), fX ) ∈ W . For example, if X is probabilistic then CE Pr is the expected
utility operator.

For the sake of simplicity, we initially make an assumption that variables are
mutually non-influential. That means Δ(X) does not depend on the occurrence of
other variables.

Suppose O is a subset of the collection of variables V and Ō is the complement
of O. Let s be a state or element in dom(V), denote by sO the projection of s on O.
Conversely, if s is an element of dom(O) and t —an element of dom(Ō) then s.t
denotes the element of dom(V) that is constructed by joining s and t .

For act f onΩ (i.e., dom(V)) and s ∈ dom(O), denote by fs the act on dom(Ō)
defined as follows

∀t ∈ dom(Ō), fs(t) = f (s.t) (53)

We say that fs is f conditional on s.
In the example in Sect. 3.1, V = {X,Y }, Δ(X) = {Pr(X = 0) = 0.5, Pr(X =

1) = 0.5},Δ(Y ) = {π(Y = 0) = 1, π(Y = 1) = 1}, W = [0, 1] and D is the set of
functions from dom(X)× dom(Y )→W .

3.4 Folding Back Principle

For a given sequence of variable realization X1 ⇀ X1 ⇀ . . . Xn , an act f (0)

on Ω (i.e., dom(X1, X2, . . . Xn)) is transformed by folding back to an act f (1) on
dom(X1, X2, . . . Xn−1). In the rule form f (1) is

f (1) = {s ↪→ CE(ΔXn, f (0)s ) | s ∈ dom(X1, X2, . . . Xn−1)} (54)

In words, f (1) maps each state of the remaining domain dom(X1, X2, . . . Xn−1) into
the certainty equivalent obtained by folding back the original act conditional on that
state f (0)s . The superscript (i) tells the folding back step. Recursively, f (1) can be
transformed to f (2) on dom(X1, X2, . . . Xn−2) defined by

f (2) = {s ↪→ CE(ΔXn−1, f (1)s ) | s ∈ dom(X1, X2, . . . Xn−2)} (55)

Finally, the certainty equivalent of act f (0) is taken to be.
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CE( f (0)) = f (n) = CE(Δ(X1), f (n−1)) (56)

The fold-back procedure is well known. We just propose to apply it in situations
involving uncertain variables of different types. The major advantage of this approach
is that it makes use of uncertainty that is local for each variable and eschews the need
to have a global uncertainty on dom(X1, X2, . . . Xn). This property is important
because it could be impossible to have a global measure without loss of information.
More importantly, this procedure allows you to have more flexibility in using different
formal frameworks to model uncertainty about the world.

For an example, let us use this procedure to analyze the concept of linear combi-
nation of possibilistic acts which is impossible to handle within a purely possibilistic
framework.

3.5 Linear Combination of Possibilistic Acts

The linear combination of possibilistic acts f, g can be constructed with the help of
any probability generating device such as coin with bias p.

There are two schemes to construct such an act. In the first scheme, you toss the
coin and depending on which side it lands you get either f if Head occurs or g if Tail
occurs. You get an act h in the sense that if state s of theΩ realizes then you will be
rewarded with the outcome of this act h(s).

Alternatively, you can construct a new act by postponing the coin toss until after
realization of s and depends on which way it lands you get either f (s) if Head occurs
or g(s) if Tail occurs.

We can describe the situation with two variables X —a coin toss and Y —a
possibilistic variable. The first way of construction corresponds to X ⇀ Y while the
second to Y ⇀ X .

Example 6. Figure 13 describes two schemes for the case where dom(X) = {H, T }
and dom(Y ) = {M, L} (M stands for “more” and L stands for “less”). The following
configuration is used. Pr(H) = 0.7, Pr(T ) = 0.3 and π(M) = 1, π(L) = 0.4.
f (M) = 1, f (L) = 0.2 and g(M) = 0.4, g(L) = 0.8.

For risk attitude, we consider a utility function in the Constant Relative Risk
Averse (CRRA) family u = xr with r = 0.5 (risk averse). For ambiguity attitude,
we use ambiguity averse polar utility function V0.4(x). Attached to each node is the
certainty equivalent of the sub-tree rooting at the node. For example, on the tree on
the right, 0.79 is the certainty equivalent obtained by folding back the probabilistic
act {H ↪→ 1, T ↪→ 0.4} under utility function u(x) = x0.5. �

The calculation shows that the certainty equivalent if the coin is tossed before
realization of Y (on the left) is 0.55. If the order of resolution is reversed, the certainty
equivalent is 0.63. It shows that the two schemes of combination are not equivalent.
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Fig. 13 Ambiguity of the linear combination of possibilistic acts

If that conclusion seems counter-intuitive it could be because of the habits of
reasoning with probability.

Let consider some of the arguments. You could argue that if you are not allowed
to exchange what you have after the first variable resolved (coin toss in the first
scheme) for its certainty equivalent then the certainty equivalents of two scheme
must be identical because the reward for each contingency (HM, HL, TM, TL) is the
same.

The response to such argument is that first, the imposed ban can alter the value
of an act or in the language of business, distorts the market. There is a more subtle
explanation. If you are not in position to distinguish individual variables and all you
know is the final four options (HM, HL, TM, TL) then the formulation of problem
in terms of two variables X and Y is not correct. For you actually there is only one
variable Z whose domain has four elements. Under this scenario, the trees in Fig. 13
do not represent your information. Note that our proposed method still applied to
this one-variable scenario but of course it would give a different answer.

We have shown that the notion of “linear combination of possibilistic acts” is
not well-defined. The ambiguity embedded explains the problems in developing an
evaluation method for such a combination.

4 Summary

The environment of heterogeneous uncertainty is the situations in which a decision
maker has to choose among actions that depend on variables of multiple uncertainty
formalisms. This paper provides a systematic overview of decision models for indi-
vidual uncertainty frameworks including probability theory, Dempster-Shafer belief
function theory and possibility theory. We then propose a solution to an open problem
of decision making in the environment of heterogeneous uncertainty. This is an issue
of significant practical impact and many theoretically interesting questions. The key
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idea is to introduce the order of variable resolution to the analysis of decision making
under heterogeneous uncertainty. Many important questions in this approach remain
unsolved and are the subjects of future study.
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One-Shot Decision Theory: A Fundamental
Alternative for Decision Under Uncertainty

Peijun Guo

Abstract The attempts of this paper are as follows: clarifying the fundamental
differences between the one-shot decision theory which was initially proposed in the
paper [16] and other decision theories under uncertainty to highlight that the one-shot
decision theory is a scenario-based decision theory instead of a lottery-based one;
pointing out the instinct problems in other decision theories to show that the one-shot
decision theory is necessary to solve one-shot decision problems; manifesting the
relation between the one-shot decision theory and the probabilistic decision methods.
As regret is a common psychological experience in one-shot decision making, we
propose the one-shot decision methods with regret in this paper.

Keywords Decision making · One-shot decision · Regret · Regret focus points ·
Scenario-based decision theory · Human-centric decision-making · Behavioral
operations research

1 Introduction

In many decision problems encountered in practice, a decision maker has one and
only chance to make a decision under uncertainty. Such decision problems are called
one-shot decision problems. Let us begin with several real examples to show the
features of one-shot decision problems. An article in NIKKAN SPORTS (10-28-
2005) stated that Hanshin Electric Railway Co., Ltd., which owns Hansin Tiger
baseball team, lost nearly 500 thousand dollars because Hansin Tiger was beaten
by Chiba Lotte Marines in Japanese National Baseball Championship in 2005. The
huge loss resulted from the production cost of commemorative goods. The Hanshin
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Electric Railway Co., Ltd. had one and only one chance to make a decision whether
to prepare the commemorative goods and decide how many goods to be produced
before the final result of the game was known. Another example is the Great Sichuan
Earthquake that occurred at 14:28:01 CST on May 12,2008. Official figures stated
that 69,197 people were confirmed dead. Amongst many serious problems caused by
the earthquake, Tangjiashan Lake particularly drew the attention of the world because
it was seriously threatening the lives of 1300,000 people, Lanchengyu Oil Pipeline
and one of the arterial railways in China, Chengbao Railway. To prevent damage
to the dam, the water in the lake needed to be drained away as soon as possible
by building a sluice channel. There were only two alternatives for building a sluice
channel, using explosives or digging by excavators. It was a one-shot decision to
decide which method should be utilized in the face of the uncertainties from rain,
aftershock, dam stability, land slip and time.

Quoting from King ([23], p. 102) “There is a strong basis for the belief that the
decision to outsource-particularly offshore-is a “one-time and-never-return” decision
because the loss of capability by the client in activities that are outsourced is well
known and the cost of re-creating those capabilities may be prohibitive.” Clemen
and Kwit ([7], p. 74) stated that “Because of the one-time nature of typical decision-
analysis projects, organizations often have difficulty identifying and documenting
their value. Based on Eastman Kodak Company’s records for 1990 to 1999, we esti-
mated that decision analysis contributed around a billion dollars to the organization
over this time.” Fine [11] emphasized that technological innovation and competitive
intensity have been acting as two major drivers to speed up the rates of evolution i.e.
“industry clock speeds”, with regard to the product, the process, and the organization
of each industry. Accelerated industry clock speed makes one-shot decision problem
highly relevant. Lastly, the growing dominance of service industries makes one-shot
decision problems especially applicable.

It can be seen that one-shot decision is a kind of irreversible action for problems
with partially known information. Such decision problems are commonly encoun-
tered in business, social systems and economics.

Guo [16] proposed the one-shot decision theory (OSDT) for solving one-shot
decision problems. In OSDT, we argue that a person makes a one-shot decision
based on some particular scenario which is regarded as the most appropriate one
for him/her while considering the satisfaction level incurred by this scenario and
its possibility degree. The one-shot decision process involves two steps. The first
step is to identify which state of nature should be taken into account for each
alternative. The identified state of nature is called focus point. The second step is
to evaluate the alternatives based on the outcomes brought by the focus points to
obtain the optimal alternative. As an application, a duopoly market of a new product
with a short life cycle is analyzed where three kinds of firms, i.e. normal, active
and passive firms are considered. Possibilistic Cournot equilibriums are obtained
for different kinds of pairs of firms in a duopoly market. The results of analysis
are quite in agreement with the situations encountered in the real business world
[14]. Private real estate investment is a typical one-shot decision problem for per-
sonal investors due to the huge investment expense and the fear of substantial loss.
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In Guo [15], private real estate investment problem is analyzed using one-shot deci-
sion framework. The analysis demonstrates the relation between the amount of uncer-
tainty and the investment scale for different types of personal investors. The proposed
model provides insights into personal real estate investment decisions and important
policy implications in regulating urban land development.

In this research, we attempt to clarify the fundamental differences between OSDT
and other decision theories under uncertainty, types of instinct problems in other
decision theories that make OSDT necessary to solve one-shot decision problems,
and the kind of relation that OSDT holds with the probabilistic decision methods.
Realizing that regret is a common psychological experience in one-shot decision
making, we propose the one-shot decision methods with regret in this paper.

The remainder of the paper is organized as follows. In Sect. 2, we address the fun-
damental differences between OSDT and other decision theories under uncertainty
and why OSDT is necessary to solve certain types of problems. In Sect. 3, the one-
shot decision methods with regret are proposed. In Sect. 4, a numerical example of a
newsvendor problem is addressed. Finally, the relationship between OSDT and other
decision theories under uncertainty is clarified and the future research directions are
provided in Sect. 5.

2 The Need for the One-Shot Decision Theory

2.1 The Same Framework of Weighting Average
for the Existing Decision Theories Under Uncertainty

In general, before taking an action a decision maker cannot know which outcome
will occur. Such unknown situations can be divided into three categories: risk, uncer-
tainty and ignorance. According to Knight [24], risk involves situations where the
probabilities of all possible outcomes can be exactly calculated whereas uncertainty
is related to the status when exact probabilities cannot be obtained due to inadequate
information. Ignorance occurs when no information is available to distinguish which
outcome is more likely to occur.

Different unknown situations require different decision theories. Decision rules
for situations involving ignorance include maximin, maximax, minmax regret and
Hurwicz criterion. The expected utility (EU) theory of Von Neumann and Morgen-
stern is appropriate for decision making under risk and the subjective expected utility
(SEU) theory of Savage is appropriate for decision making under uncertainty where
subjective probabilities are used to reflect an individual’s belief. There is evidence
that people systematically violate EU theory while making decisions [21, 25]. Most
criticism of the Von Neumann-Morgenstern’s and Savage’s axioms mainly focus
on independence axiom or sure thing principle [1, 10], transitivity axiom [26] and
completeness axiom [5, 30].
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Let us discuss the completeness axiom. Quoting Von Neumann and Morgenstern
([33], p. 17) “Let us for the moment accept the picture of an individual whose
system of preferences is all-embracing and complete, i.e. who, for any two objects or
rather for any two imagined events, possesses a clear intuition of preference. More
precisely we expect him, for any two alternative events which are put before him as
possibilities, to be able to tell which of the two he prefers.” In fact, in the real world
the decision maker does not have the capability to distinguish which alternative is
better so that he/she asks a decision analyst to help solving the problem. Nevertheless,
with the assumption that the completeness axiom holds for the decision maker the
decision analyst builds decision models based on (subjective) expected utility theory.
Obviously, it is logically inconsistent. It is natural to raise the questions: who is the
protagonist? Is it the decision maker or the decision analyst?

Many theories have been proposed to react to such empirical evidence that human
behavior often contradicts expected utility theory. One such theory, i.e. prospect
theory developed by Kahneman and Tversky [20] is a non-additive probability model.
In prospect theory, value is assigned to gains and losses based on a reference point
rather than to the final asset as in EU and SEU. Also, probabilities are replaced by
decision weights which do not satisfy the probability additivity. The value function is
defined on deviations from a reference point. Value functions are normally concave
for gains (implying risk aversion), and convex for losses (implying risk seeking).
Regret theory [26] uses modified utility of choosing one alternative instead of another
which consists of a choiceless utility and a regret-rejoice function.

Other models such as, second-order probabilities models [19, 29] and non-additive
probability models [13, 28] have also been proposed in this empirical challenge. It
should be noted that these decision theories follow the same framework of weighting
average of all outcomes no matter how they revise their models. In the context of
fuzzy decision making, Yager [35] proposed the optimistic utility and Whalen ([34])
gave the pessimistic utility. These two utilities were axiomatized in the style of
Savage by Dubois et al. [9]. Giang and Shenoy [12] generalized them by introducing
an order on a class of canonical lotteries. In fact, the optimistic utility is a sort
of a weighted average where multiplication and addition is replaced by T-norm,
min and Co-norm, max, respectively. The pessimistic utility is a counterpart of the
optimistic utility in the sense of possibility and necessity measures. Brandstatter et al.
[6] proposed the priority heuristic where the lotteries are chosen by lexicographic
rules for the four reasons, i.e. minimum gain, maximum gain and their respective
probabilities.Katsikopoulos and Gigerenzer [22] showed that the priority heuristic
can predict human decision-making better than the most popular modifications of
utility theory, such as cumulative prospect theory, and is, in this sense, close to human
psychology.

It can be concluded that decision theories under uncertainty are theories of choice
under uncertainty where the objects of choice are lotteries. In light of the features of
the one-shot decision problem, this raises two problems: Is the probability distribution
suitable for characterizing the uncertainty? Is the expected utility a reasonable index
for evaluating the performance of a one-shot decision? The answers are given in the
following two subsections.
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2.2 Is the Probability Distribution Suitable for Characterizing
the Uncertainty in the One-Shot Decision Problem?

In general, the one-shot decision problem involves the situation that has seldom
or never happened so far so that the decision maker can not obtain the objective
probability distribution. Subjective probability enters as a means of describing the
belief about how likely a particular event is to occur. Mainly, there are two kinds
of approaches for obtaining subjective probabilities, i.e. the lottery method and the
exchangeability method. The lottery method determines the subjective probability of
an event in terms of simple betting odds [27]. The exchangeability method consists in
the subsequent splitting of the state space into equally likely events via binary choices
between binary prospects. Baillon [2] argued that subjective probabilities elicited by
the exchangeability method might violate the additivity. The lottery method also was
examined by the following experiment.
Subjects:

Fifty subjects participated in the experiment conducted on May 25, 2011. All the
participants were undergraduate students who took the course of Decision Sciences,
at Faculty of Business Administration, Yokohama National University. The exper-
iment started at the beginning of the lesson. None of them were aware of the true
goal of the experiment. The experiment was conducted before teaching them what
the subjective probability and the additivity of probability measure are.
Procedure:

The following questions are independently asked:
Q1: If it rains next Wednesday, you will get 10,000Yen. However, if it does not rain,
you will get nothing. How much would you be willing to pay for this proposition?
Q2: If it does not rain next Wednesday, you will get 10,000Yen. However, if it rains,
you will get nothing. How much would you be willing to pay for this proposition?
Results:

The prices for Q1 and Q2 are denoted as X1 and X2, respectively. The mean
of X1 + X2 is 4773.98 and the standard deviation of X1 + X2 is 2858.73. If the
additivity property holds, then the mean of X1 + X2 should be 10,000. We set up
the null hypothesis: the mean of X1 + X2 is 10,000. The value of the test statistic
is calculated as −12.93 so that this null hypothesis is rejected at the 0.01 level of
significance by two-tail test. It means that the additivity can not always be guaranteed
while using the lottery method.

Possibility is an alternative for characterizing the uncertain situation. It can be
explained from three semantic aspects, i.e. ease of achievement, plausibility referring
to the propensity of events to occur (which relates to the concept “potential surprise”)
and logical consistency of available information. Possibility distribution is a function
whose value shows the degree to which an element is to occur, as defined as follows.

Definition 1 Given a function π : S→ [0, 1] if max
x∈S

π(x) = 1, then π(x) is called

a possibility distribution where S is the sample space. π(x) is the possibility degree
of x .
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π(x) = 1 means that it is normal that x occurs and π(x) = 0 means that it is
abnormal that x occurs. The smaller the possibility degree of x , the more surprising
the occurrence of x . Obtaining the possibility distribution always poses a fundamental
problem for decision with possibilistic information. Guo and Tanaka [17] proposed
the method for identifying the possibility distribution of the stock returns with the
idea of similarity. Guo et al. [18] obtained the possibility distribution of the demand
for a new product with the idea of potential surprise. Guo [16] presented a general
method for identifying the possibility distribution by voting described as follows:

Suppose S = {x1, x2, . . . , xn}. We ask multiple experts to select the most possible
events from S. In other words, if an expert selects the event xi , the expert will not be
surprised by its occurrence. The number of experts who select xi is denoted as ki .
Setting K = max

i=1,...,n
ki , the possibility degree of xi is obtained as ki/K in the sense

that each expert has equal reliability for judging which event will occur.
It is a valid question to ask which is better, probability or possibility. To answer

this question, let us take a look at the following example.

Example 1 [15] Who is guilty?
A car has been destroyed by somebody in a parking lot. After careful investigation,

it is sure that one and only one of three suspects A, B and C must be guilty of the crime.
However, who is guilty of the crime is still unknown. Suppose, based on the currently
obtained evidence subjective probabilities are used to characterize the belief about
who is guilty amongst the three suspects and given as e.g. P(A) = 0.4, P(B) =
0.4 and P(C) = 0.2. Considering the relation P(A) = 1 − P(�A) where �A is the
complement of A, it can be concluded that none of these three suspects is guilty in
the context of probability (P(A) < P(�A), P(B) < P(�B), P(C) < P(�C)). This
conclusion is in conflict with the antecedent one, i.e. one and only one of three
suspects A, B and C must be guilty. This conflict originates from the existence of
incomplete information. In this example, the possibility distributions showing the
degrees to which a person is guilty might be given as e.g. π(A) = 1, π(B) = 1
and π(C) = 0.7. π(A) = π(B) = 1 means that based on the obtained evidence, A
or B is most possible to be guilty. The relation π(A) �= 1 − π(�A) implies that the
possibility degree of A being guilty does not provide any information on A not being
guilty.

It follows from this example that the possibility distribution is a less restricted
framework than single probability measures and hence can be used for encoding ill-
known subjective probability information. The answer to the question which is better,
probability or possibility is that the possibility distribution might be effective for
representing the rough knowledge or judgment of human being when the information
is not rich enough.
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2.3 Is the Expected Value a Reasonable Index for Evaluating the
Performance of a One-Shot Decision?

To answer this question, let us consider the following example.

Example 2 Is Mr. Smith is taller than Mr. Tanaka?
Let us consider two populations:

Population A: The heights of male undergraduate students in Yokohama National
University (YNU)
Population B: The heights of male undergraduate students in University of Alberta
(UA)

For instance, we take 100 samples from the populations A and B, respectively.
The sample mean of A, say 175cm is less than the sample mean of B, say 180cm.
You randomly select one male undergraduate student from UA, say Mr. Smith and
select one from YNU, say Mr. Tanaka. Can you say Mr. Smith is taller than Mr.
Tanaka? The answer will be “no” because the statistical property by itself does not
imply anything about what might happen in just one sample. Next, let us take into
account two other populations as follows:
Population I: The outcomes generated by an alternative C
Population II: The outcomes generated by an alternative D

Suppose that the mean of the population I is larger than the one of II. Randomly
select one outcome from I, that is, x, and one outcome from II, that is, y. Can you say
x is larger than y? Can you say C is better than D? Both of answers will be “no”. From
the above examples, it is easy to understand that for the one-shot decision problem
the expected value might not be a suitable index for evaluating the performance of
an alternative.

In conclusion, a new decision theory is needed to solve one-shot decision problems
featured by partially known information and the occurrence of only one outcome. Guo
[16] initially proposed the one-shot decision theory (OSDT) which is scenarios-based
instead of lotteries-based as in other decision theories under uncertainty. In OSDT,
we argue that a person makes a one-shot decision based on some particular scenario
which is regarded as the most appropriate one for him/her while considering the
satisfaction level incurred by this scenario and its possibility degree. Because regret
is a common emotion in one-shot decision problems, we propose one-shot decision
methods with regret in the following section.

3 One-Shot Decision Methods with Regret

Some people find decision making under uncertainty difficult because they fear mak-
ing the “wrong decision”, wrong in the sense that the outcome of their chosen alter-
native proves to be worse than could have been achieved with another alternative
([3], p. 1156). This kind of situation can be described by the word “regret” which
is “the painful sensation of recognizing that ‘what is’ compares unfavorably with
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‘what might have been”’ ([32], p. 77). Shimanoff pointed out that regret was the
most frequently named negative emotion in a study of verbal expressions of emo-
tions in everyday conversation [31]. Decision with regret has been researched by
Savage [27], Loomes and Sugden [26], Bell [3], Sugden [32] and so on. In one-
shot decision problems, the decision maker has one and only opportunity to make a
decision so that there is no chance to correct his/her decisions once the decision has
been made. Hence, regret emotion is an especially important factor that affects the
decision maker’s behavior.

3.1 Regret Function

Denote the set of an alternative a as A and the set of a state of nature x as S. The degree
to which a state of nature is to occur in the future is characterized by a possibility
distribution π(x) defined by the definition 1. The consequence resulting from the
combination of an alternative a and a state of nature x is refereed to as a payoff,
denoted as v(x, a). Suppose that after a decision maker chooses an alternative a,
a state of nature x appears. The decision maker might regret his/her choice. The
regret value is p(x, a) = max

b∈A
v(x, b)− v(x, a). Then the regret quantile denoted as

w(x, a), is calculated as follows:

w(x, a) = p(x, a)/max
d∈A

p(x, d). (1)

The regret level of a decision maker for a regret quantile can be expressed by a
regret function, as defined below.

Definition 2 Denote the set of a regret quantile w(x, a) as W . The following function

r : W → [0, 1] (2)

with
r(w1) > r(w2) for w1 > w2, (3)

is called a regret function. Because the regret quantile is the function of x and a, we
can rewrite the regret function as r(w(x, a)). For the sake of simplification, we write
r(w(x, a)) as r(x, a) in this paper. Regret function is a nonlinear transformation of
the regret quantile and represents the relative position of the regret.

The information for one-shot decision with regret can be summarized as a quadru-
ple (A, S, π, r). One-shot decision is to choose one alternative based on (A, S, π, r)
when only one decision chance is given.

It is well recognized that when you ask some person why he/she makes such a
one-shot decision with little information, he/she always tells you just one scenario
which is crucial to him/her and is the basis for achieving some conclusion. For
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instance, empirical evidence suggests that insurance buyers focus on the potential
large loss even at the low probabilities; lottery ticket buyers focus on the big gains
even at small probabilities [8]. Interestingly, Bertrand and Schoar [4] found out
that financial decision depended not just on the nature of the firm and its economic
environment, but also the personalities of the firm’s top management. For instance,
while older CEOs tended to be more conservative and pushed their firms towards
lower debt, CEOs with MBA degrees tended to be more aggressive.

For the one-shot decision methods with regret, we think that a person make a one-
shot decision based on some particular scenario while considering the possibility
degree and the regret level. Selecting the scenario depends on the personalities of
the decision maker for example one person may be active whereas another may
be passive. The one-shot decision making procedure consists of the following three
steps. In Step 1, a decision maker identifies some state of nature (particular scenario),
called regret focus point for each alternative according to his/her own characteristic.
In Step 2, the validity of the regret focus points is checked. In Step 3, the decision
maker evaluates the alternatives based on the regret level brought by regret focus
point to obtain the best alternative. These three steps are addressed in detail in the
following subsections.

3.2 Identifying Regret Focus Points

Since one and only one state of nature will come up for a one-shot decision problem,
a decision maker needs to decide which state of nature ought to be considered for
making a one-shot decision. Each state of nature is equipped with a pair of possibility
and regret so that how to determine the states of nature depends on his/her attitudes
about possibility and regret. The selected state of nature is call regret focus point.
Twelve types of regret focus points are provided to help a decision maker in finding
out his/her own appropriate one. The characteristics of these focus points are depicted
below (shown in Tables 1, 2, 3). Type I and II regret focus points are the states of nature
that have the highest and the lowest regret levels, respectively, amongst the ones that
have high possibility degrees. Type III and IV regret focus points are the states of
nature that have the highest and the lowest regret levels, respectively, amongst the
ones that have low possibility degrees. Type V and VI regret focus points are the
states of nature that have the highest and the lowest possibility degrees, respectively,
amongst the ones that have high regret levels. Type VII and VIII regret focus points are
the states of nature that have the highest and lowest possibility degrees, respectively,
amongst the ones that have low regret levels. Type IX regret focus point is the state
of nature with the higher possibility degree and the higher regret level. Type X regret
focus point is the state of nature that has the lower possibility degree and the lower
regret level. Type XI regret focus point is the state of nature with the higher possibility
degree but the lower regret level. Type XII regret focus point is the state of nature
that has the lower possibility degree but the higher regret level.
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Table 1 The characteristics of regret focus points (types I–IV)

High possibility Low possibility

The highest regret Type I regret focus point Type III regret focus point
The lowest regret Type II regret focus point Type IV regret focus point

Table 2 The characteristics of regret focus points (types V–VIII)

High regret Low regret

The highest possibility Type V regret focus point Type VII regret focus point
The lowest possibility Type VI regret focus point Type VIII regret focus point

Table 3 The characteristics of regret focus points (types IX–XII)

Higher regret Lower regret

Higher possibility Type IX regret focus point Type XI regret focus point
Lower possibility Type XII regret focus point Type X regret focus point

In the following we will provide mathematical formulas to find out the above
mentioned twelve types of regret focus points. For establishing the focus points, we
use the operators

min[b1, b2, · · · , bn] = [ ∧ bi
i=1,...,n

, ∧ bi
i=1,...,n

, · · · , ∧ bi
i=1,...,n

], (4)

and
max[b1, b2, · · · , bn] = [ ∨ bi

i=1,...,n
, ∨ bi

i=1,...,n
, · · · , ∨ bi

i=1,...,n
]. (5)

min[b1, b2, · · · , bn] and max[b1, b2, · · · , bn] are lower and upper bounds of
[b1, b2, · · · , bn], respectively. For example, min[0.3, 0.8] = [0.3, 0.3] and
max[0.3, 0.8] = [0.8, 0.8]. Twelve kinds of regret focus points are as follows:

Type I: x1∗
α (a) = arg max

x∈X≥α
r(x, a) where X≥α = {x |π(x) ≥ α}.

The given parameter α is a level used to distinguish whether the possibility degree
is evaluated as ‘high’ by a decision maker. If α = 1 then only the normal case
(π(x) = 1) is considered. The states of nature belonging to X≥α = {x |π(x) ≥ α}
are regarded as having the equivalent possibility to occur. x1∗

α (a) is a state of nature
with high occurrence possibility. Once it occurs, the decision maker will most regret
his/her choice of the alternative a. x1∗

α (a) is Type I regret focus point.

Type II: x2∗
α (a) = arg min

x∈X≥α
r(x, a) where X≥α = {x |π(x) ≥ α}.
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x2∗
α (a) is a state of nature with high occurrence possibility. Its occurrence will lead

to the lowest regret level of the decision maker for choosing the alternative a. x2∗
α (a)

is Type II regret focus point.

Type III: x3∗
α (a) = arg max

x∈X≤α
r(x, a) where X≤α = {x |π(x) ≤ α}.

The occurrence of x3∗
α (a) will make the decision maker most regret his/her choice

of the alternative a. However, the possibility of its occurrence is low. x3∗
α (a) is Type

III regret focus point.

Type IV: x4∗
α (a) = arg min

x∈X≤α
r(x, a) where X≤α = {x |π(x) ≤ α}.

The occurrence of x4∗
α (a) will make the decision maker have the lowest regret level

for choosing the alternative a. However, the possibility of its occurrence is low.
x4∗
α (a) is Type IV regret focus point.

Type V: x5∗
β (a) = arg max

x∈X≥β(a)
π(x) where X≥β(a) = {x |r(x, a) ≥ β}.

The given parameter β is the level to distinguish whether the regret level is eval-
uated as ‘high’ by a decision maker. The states of nature belonging to X≥β(a) =
{x |r(x, a) ≥ β} are regarded as having the same regret level generated by the alter-
native a. x5∗

β (a) is an undesirable (the regret level is high) state of nature that has the

highest possibility to occur. x5∗
β (a) is Type V regret focus point.

Type VI: x6∗
β (a) = arg min

x∈X≥β(a)
π(x) where X≥β(a) = {x |r(x, a) ≥ β},

which called Type VI regret focus point, is an undesirable state of nature that has the
smallest possibility to occur.

Type VII: x7∗
β (a) = arg max

x∈X≤β(a)
π(x) where X≤β(a) = {x |r(x, a) ≤ β},

which called Type VII regret focus point, is a desirable (the regret level is low) state
of nature that has the highest possibility to occur.

Type VIII: x8∗
β (a) = arg min

x∈X≤β(a)
π(x) where X≤β(a) = {x |r(x, a) ≤ β},

which called Type VIII regret focus point, is a desirable state of nature that has the
smallest possibility to occur.

Type IX:
x9∗(a) = arg max

x∈S
min[π(x), r(x, a)]. (6)

It follows from (6) that x = x9∗(a) maximizes g(x, a) = min[π(x), r(x, a)]. In
consideration of (4), we know that min[π(x), r(x, a)] represents the lower bound of
the vector [π(x), r(x, a)]. Increasing min[π(x), r(x, a)] (max

x∈S
min[π(x), r(x, a)])

will increase the possibility degree and the regret level simultaneously. Therefore,
arg max

x∈S
min[π(x), r(x, a)] is for seeking a state of nature that has the higher pos-

sibility degree and brings the higher regret level due to the choice of the alternative
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Fig. 1 The explanation of the
formula (6)

a. x9∗(a) is Type IX regret focus point. For easily understanding (6), let us have a
look at Fig. 1. There are four states of nature x1 , x2, x3 and x4 whose [π(x), r(x, a)]
are respectively [0.1, 0.6], [0.3, 0.2], [1.0, 0.3] and [0.6, 0.4] represented by A, B, C
and D. min[π(x), r(x, a)] transfers A, B, C and D into A′, B ′, C ′ and D′, which are
[0.1, 0.1], [0.2, 0.2], [0.3, 0.3] and [0.4, 0.4], respectively. max

x∈S
min[π(x), r(x, a)],

that is,max([0.1, 0.1], [0.2, 0.2], [0.3, 0.3], [0.4, 0.4]) = [0.4, 0.4] corresponds to
D′. arg max

x∈S
min[π(x), r(x, a)] chooses x4. It follows from Fig. 1 that x4 is a state of

nature with a higher possibility degree and a higher regret level.
Type X:

x10∗(a) = arg min
x∈S

max[π(x), r(x, a)]. (7)

(7) shows that x = x10∗(a) minimizes h(x, a) = max[π(x), r(x, a)]. In con-
sideration of (5), we know that max[π(x), r(x, a)] represents the upper bound of
the vector [π(x), r(x, a)]. Decreasing max[π(x), r(x, a)](min

x∈S
max[π(x), r(x, a)])

will decrease the possibility degree and the regret level simultaneously. Therefore,
arg min

x∈S
max[π(x), r(x, a)] is for seeking a state of nature that has the lower possi-

bility degree and generates the lower regret level due to the choice of the alternative
a. x10∗(a) is Type X regret focus point.

Type XI:
x11∗(a) = arg min

x∈S
max[1− π(x), r(x, a)]. (8)

Likewise, we understand that x11∗(a) is the state of nature that has the higher pos-
sibility degree and causes the lower regret level when choosing the alternative a.
x11∗(a) is Type XI regret focus point.

Type XII:
x12∗(a) = arg min

x∈S
max[π(x), 1− r(x, a)]. (9)
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Following (9), we know that x12∗(a) is the state of nature that has the lower possibility
degree and incurs the higher regret level when choosing the alternative a. x12∗(a) is
Type XII regret focus point.

For one alternative, more than one state of nature might exist as one type of regret
focus point. We denote the sets of twelve types of regret focus points of the alternative
a as X1

α(a), X2
α(a), X3

α(a), X4
α(a), X5

β(a), X6
β(a), X7

β(a), X8
β(a), X9(a), X10(a),

X11(a), and X12(a), respectively. It should be noted that X3
α(a) and X4

α(a) are empty
sets when X≤α = �; X5

β(a) and X6
β(a) are empty sets when X≥β(a) = �; X7

β(a)

and X8
β(a) are empty sets when X≤β(a) = �. The relationships between different

focus points are shown in the following theorem.

Theorem 1
(I ) X1

α(a) ∪ X5
β(a) ⊆ X9(a), (10)

where
α = β = max

x∈S
min(π(x), r(x, a)). (11)

(I I ) X4
α(a) ∪ X8

β(a) ⊆ X10(a), (12)

where
α = β = min

x∈S
max(π(x), r(x, a)). (13)

(I I I ) X2
α(a) ∪ X7

β(a) ⊆ X11(a), (14)

where
α = 1− β = max

x∈S
min(π(x), 1− r(x, a)). (15)

(I V ) X3
α(a) ∪ X6

β(a) ⊆ X12(a), (16)

where
1− α = β = max

x∈S
min(1− π(x), r(x, a)). (17)

Proof The proof is similar to the proof of Theorem 1 in the paper [16].
Theorem 1 shows the relationships between the different types of regret focus

points. The inclusion relations (10), (12), (14) and (16) hold by choosing the suitable
values of parameters α and β shown in (11), (13), (15) and (17). Expressed in detail,
the set of regret focus points with the higher regret and the higher possibility (X9(a))
includes the set of regret focus points with the highest regret and the high possibility
(X1

α(a)) and the set of regret focus points with the highest possibility and the high
regret (X5

β(a)). The set of regret focus points with the lower regret and the lower

possibility (X10(a)) includes the set of regret focus points with the lowest regret
and the low possibility (X4

α(a)) and the set of regret focus points with the lowest
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possibility and the low regret (X8
β(a)). The set of focus points with the lower regret

and the higher possibility (X11(a)) includes the set of regret focus points with the
lowest regret and the high possibility (X2

α(a)) and the set of regret focus points with
the highest possibility and the low regret (X7

β(a)). The set of regret focus points with

the higher regret and the lower possibility (X12(a)) include the set of regret focus
points with the highest regret and the low possibility (X3

α(a)) and the set of regret
focus points with the lowest possibility and the high regret (X6

β(a)).

Comments: It raises one question how a decision maker would choose among the
twelve focus points. The answer is choosing which type focus point completely
depends on which kind of the combination of possibility and regret, for example,
the higher possibility and the higher regret, is most worth taking into account for
his/her making a one-shot decision. It should be decided by the decision maker
himself/herself instead of a decision analyst. Sometimes, a decision maker may
consider several types or all types of focus points to make a final decision.

3.3 Checking the Validity of Regret Focus Points (Type IX, X, XI
and XII)

In Step 1, twelve types of regret focus points are identified. These regret focus points
will be used for determining the optimal alternative. Before that, the validity of Type
IX, X, XI and XII regret focus points needs to be checked.

Definition 3 Given the thresholds of the possibility degree α and the regret level
β, we say that x9∗(a), x10∗(a), x11∗(a) and x12∗(a) are acceptable for α and β if
x9∗(a) ∈ X≥α ∩ X≥β(a), x10∗(a) ∈ X≤α ∩ X≤β(a), x11∗(a) ∈ X≥α ∩ X≤β(a) and
x12∗(a) ∈ X≤α ∩ X≥β(a) hold, respectively.

We denote the sets of Type IX, X, XI and XII acceptable regret focus points
for α and β as X9

α,β(a), X10
α,β(a), X11

α,β(a) and X12
α,β(a), respectively. For easily

understanding the definitions 3, let us consider the following example.

Example 3 The sets of alternatives and states of nature are A = {a1, a2} and
S = {x1, x2}, respectively. For illustrative purposes, let us assume that the esti-
mated possibility degrees of states of nature and the regret levels for two alternatives
on each state of nature are shown in Table 4. We set α and β, e.g. as 0.5 and 0.5,
respectively. x9∗(a2), x10∗(a2), x11∗(a1), and x12∗(a1) are not acceptable because
x9∗(a2) = x1 /∈ X≥α ∩ X≥β(a2) = �, x10∗(a2) = x1, x2 /∈ X≤α ∩ X≤β(a2) = �,
x11∗(a1) = x1 /∈ X≥α ∩ X≤β(a1) = � and x12∗(a1) = x1 /∈ X≤α ∩ X≥β(a1) = �
hold. We can always obtain Type IX, X, XI and XII regret focus points by (6), (7),
(8) and (9). However, in some cases, they are not intuitively accepted as the states
of nature with the higher possibility and the higher regret, the lower possibility and
the lower regret, the higher possibility and the lower regret, the lower possibility and
the higher regret as shown in this example.
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Table 4 Data of the example
3

x1 x2

π(xi ) 0.2 1
r(xi ,a1) 0.3 0.85
r(xi ,a2) 1 0.1

3.4 Obtaining Optimal Alternatives

A decision maker identifies the valid regret focus points of each alternative according
to his/her own attitude about possibility and regret as shown in Sects. 3.2 and 3.3.
He/she contemplates that the regret focus points are the most appropriate states of
nature (scenarios) for him/her and then chooses the alternative which can bring about
the best consequence (the lowest regret level) once the regret focus point (scenario)
comes true. The procedure for choosing the optimal alternative with regret focus
points are given below. Since there are twelve types of regret focus points, there are
twelve types of optimal alternatives.
Type I optimal alternative a1∗(α): a1∗(α) = arg min

a∈A
r(x1∗

α (a), a).

Type II optimal alternative a2∗(α): a2∗(α) = arg min
a∈A

r(x2∗
α (a), a).

Type III optimal alternative a3∗(α): If X≤α = �, then a3∗(α) ∈ �; else a3∗(α) =
arg min

a∈A
r(x3∗

α (a), a).

Type IV optimal alternative a4∗(α): If X≤α = �, then a4∗(α) ∈ �; else a4∗(α) =
arg min

a∈A
r(x4∗

α (a), a).

Type V optimal alternative a5∗(β): If ∀aX5
β(a) �= �, then a5∗(β) = arg min

a∈A

max
x5∗
β (a)∈X5

β(a)
r(x5∗

β (a), a); if ∀a X5
β(a) = �, then a5∗(β) ∈ �; else a5∗(β) ∈

{a|X5
β(a) = �}. The minmax operator is needed for the cases where multiple focus

points of an alternative a exist. It reflects the conservative attitude of a decision
maker.
Type VI optimal alternative a6∗(β): If ∀aX6

β(a) �= �, then a6∗(β) =
arg min

a∈A
max

x6∗
β (a)∈X6

β(a)
r(x6∗

β (a), a); if ∀a X6
β(a) = �, then a6∗(β) ∈ �; else

a6∗(β) ∈ {a|X6
β(a) = �}.

Type VII optimal alternative a7∗(β): If ∀a X7
β(a) = �, then a7∗(β) ∈ �; else

a7∗(β) = arg min
a∈A−

max
x7∗
β (a)∈X7

β(a)
r(x7∗

β (a), a) where A− = {a|X7
β(a) �= �}.

Type VIII optimal alternative a8∗(β): If ∀a X8
β(a) = �, then a8∗(β) ∈ �; else

a8∗(β) = arg min
a∈A−

max
x8∗
β (a)∈X8

β(a)
r(x8∗

β (a), a) where A− = {a|X8
β(a) �= �}.
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Type IX optimal alternative a9∗(α, β): If ∀aX9
α,β(a) �= �, then a9∗(α, β) =

arg min
a∈A

max
x9∗(a)∈X9

α,β (a)
r(x9∗(a), a); if ∀a X9

α,β(a) = �, then a9∗(α, β) ∈ �; else

a9∗(α, β) ∈ {a|X9
α,β(a) = �}.

Type X optimal alternative a10∗(α, β): If ∀a X10
α,β(a) = �, then a10∗(α, β) ∈ �;

else a10∗(α, β) = arg min
a∈A−

min
x10∗(a)∈X10

α,β (a)
r(x10∗(a), a) where A− = {a|X10

α,β(a)

�= �}. The minmin operator is used for the cases where multiple focus points of an
alternative a exist. It reflects the aggressive attitude of a decision maker.
Type XI optimal alternative a11∗(α, β): If ∀a X11

α,β(a) = �, then a11∗(α, β) ∈
�; else a11∗(α, β) = arg min

a∈A−
min

x11∗(a)∈X11
α,β (a)

r(x11∗(a), a) where A− = {a|X11
α,β

(a) �= �}.
Type XII optimal alternative a12∗(α, β): If ∀aX12

α,β(a) �= �, then a12∗(α, β) =
arg min

a∈A
max

x12∗(a)∈X12
α,β (a)

r(x12∗(a), a); if ∀a X12
α,β(a) = �, then a12∗(α, β) ∈ �; else

a12∗(α, β) ∈ {a|X12
α,β(a) = �}.

Comments:
This research extends the results of the paper [16] in two aspects. The first aspect

is that instead of the satisfaction level we utilize the regret level to seek focus points
because regret is a common emotion in one-shot decision problems. The second
aspect is introducing the step for checking the validity of Type IX, X, XI and XII
regret focus points. It should be noted that such a step is also applicable to the focus
points with satisfaction levels. We also can define dissatisfaction function and use
possibility and dissatisfaction to find out focus points. It is especially appropriate
for emergency management problems where the upper and lower bounds of losses
correspond to the dissatisfaction levels 1 and 0, respectively.

4 Numerical Example: The Newsvendor Problem

In this study, we consider the newsvendor problem for a new product with a short life
cycle. As the product is new, there is no data available for forecasting the upcoming
demand via statistical analysis. As the life cycle of the product is short, determining
optimal order quantity is a typical one-shot decision problem.

The newsvendor problem is described as follows. The retailer orders q units before
the season at the unit wholesale price W. When the demand x is observed, the retailer
sells goods (limited by the supply q and the demand x) at the unit revenue R with
R > W . Any excess units can be salvaged at the unit salvage price So with W > So.
If there is a shortage, the lost chance price is Su . The profit function of the retailer is

r(x, q) =
{

Rx + So(q − x)−Wq; i f x < q

(R −W )q − Su(x − q); i f x ≥ q.
(18)
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Table 5 Profits obtained for each order quantity

Demand
5 6 7 8 9 10

5 200 180 160 140 120 100
6 150 240 220 200 180 160

Orders 7 100 190 280 260 240 220
8 50 140 230 320 300 280
9 0 90 180 270 360 340
10 −50 40 130 220 310 400

Table 6 Regret levels for each order quantity

Demands
5 6 7 8 9 10

5 0 0.3 0.8 1 1 1
6 0.2 0 0.4 0.667 0.75 0.8

Orders 7 0.4 0.25 0 0.333 0.5 0.6
8 0.6 0.5 0.333 0 0.25 0.4
9 0.8 0.75 0.667 0.278 0 0.2
10 1 1 1 0.556 0.208 0

Table 7 Possibility degrees of demands

Demands 5 6 7 8 9 10
Possibility degrees 0.2 0.5 0.7 1 0.8 0.6

The unit wholesale price W, the unit revenue R, the unit salvage price So, and the lost
chance price Su are set, e.g. as 60 $, 100 $, 10 $ and 20 $, respectively. Following
(18), we calculate the profits (see Table 5). Using (1), we obtain the regret quantile
for each order and demand. In this example we set r(w) = w, that is, the regret
quantile is the same as the regret level. The regret levels for each order and demand
are listed in Table 6.

Let us analyze this one-shot decision problem in the form of (A, S, π, u). The set
of alternatives is the set of order quantities A = {5, 6, 7, 8, 9, 10}. The set of states
of nature is the set of demands S = {5, 6, 7, 8, 9, 10}. The regret levels are shown in
Table 6. We assume that the possibility degrees of the demands 8, 9, 7, 10, 6, and 5
are 1, 0.8, 0.7, 0.6, 0.5, and 0.2, respectively (shown in Table 7).

The thresholds of possibility degrees and satisfaction levels, α and β, are set,
e.g. as 0.55 and 0.52, respectively. In Step 1, all regret focus points are obtained and
listed in Table 8. For avoiding unnecessary repetition, only some results are explained
below. Amongst the high possible demands {7, 8, 9, 10}, 8, 9 or 10 makes order 5
most regretful. In other words, any other order will be better than them if demand 5
comes true. As a result, demands 8, 9 and 10 are Type I regret focus point. Demand
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Table 8 Regret focus points of order quantities

Order quantities
5 6 7 8 9 10

Type I 8, 9, 10 10 10 10 7 7
Type II 7 7 7 8 9 10
Type III 6 5 5 5 5 5, 6
Type IV 5 6 6 6 6 5, 6
Type V 8 8 10 5 7 8
Type VI 10 10 10 5 5 5
Type VII 6 7 8 8 8 9
Type VIII 5 5 5 6 10 10
Type IX 8 9 10 6 7 7
Type X 5 5 5 6 10 10
Type XI 6 7 7 8 9 9
Type XII 10 10 5, 10 5 5 5

7 can lead to the least regret for order 5 amongst high possible demands so that
it is Type II regret focus point. A decision maker might think about the scenarios
which have the low possibility to occur. They correspond to Type III and IV regret
focus points. Amongst the demands with low possibilities, that is {5, 6}, demand 6
makes order 5 more regrettable than demand 5. Thus, demands 6 and 5 are regarded
as Type III and IV regret focus points, respectively. Amongst the demands {7, 8, 9,
10} which can generate the high regret for order 5, demand 8 is Type V regret focus
point due to its highest possibility whereas demand 10 is Type VI regret focus point
due to its lowest possibility. Amongst the demands {6, 7, 8, 9, 10} which can bring
about low regret for order 8, demand 8 is identified as Type VII regret focus point
because of its highest possibility whereas demand 6 is chosen as Type VIII regret
focus points because of its lowest possibility. Type IX, X, XI and XII regret focus
points are obtained according to (6), (7), (8) and (9). The regret levels brought by
twelve types of regret focus points for each order quantity are listed in Table 9. In
Step 2, let us examine the validity of the obtained Type IX, X, XI and XII regret
focus points. Since x9∗ (8) /∈ X≥α ∩ X≥β (8), x10∗ (9) /∈ X≤α ∩ X≤β (9), x10∗ (10)
/∈ X≤α ∩ X≤β (10), x11∗ (5) /∈ X≥α ∩ X≤β (5), x12∗ (5) /∈ X≤α ∩ X≥β (5), x12∗
(6) /∈ X≤α ∩ X≥β (6) and x12∗ (7) /∈ X≤α ∩ X≥β (7) hold, x9∗ (8), x10∗ (9), x10∗
(10), x11∗ (5), x12∗ (5), x12∗ (6) and x12∗ (7) are not acceptable for α = 0.55 and
β = 0.52. The regret levels brought by twelve types of valid regret focus points for
each order quantity are listed in Table 10.

In Step 3, the optimal order quantities are selected based on the regret levels of
valid regret focus points. The optimal orders are 8, {7, 8, 9, 10}, 6, {5, 6}, 10, {7,
8}, 8, {5, 10}, 8, 5, {7, 8, 9} and {5, 6, 7} which corresponds to Types I to XII
regret focus points, respectively. As the retailer sells seasonal goods, there is one
and only one chance for him/her to decide how many should be ordered. Hence,
considering a reasonable level of demand before determining how many products
should be ordered is appropriate for such one-shot decision problems.
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Table 9 Regret levels for regret focus points

Order quantities
5 6 7 8 9 10

Type I 1,1,1 0.8 0.6 0.4 0.667 1
Type II 0.8 0.4 0 0 0 0
Type III 0.3 0.2 0.4 0.6 0.8 1,1
Type IV 0 0 0.25 0.5 0.75 1,1
Type V 1 0.667 0.6 0.6 0.667 0.556
Type VI 1 0.8 0.6 0.6 0.8 1
Type VII 0.3 0.4 0.334 0 0.278 0.208
Type VII 0 0.2 0.4 0.5 0.2 0
Type IX 1 0.75 0.6 0.5 0.667 1
Type X 0 0.2 0.4 0.5 0.2 0
Type XI 0.3 0.4 0 0 0 0.208
Type XII 1 0.8 0.4,0.6 0.6 0.8 1

Table 10 Regret levels for valid regret focus points

Order quantities
5 6 7 8 9 10

TypeI 1,1,1 0.8 0.6 0.4 0.667 1
TypeII 0.8 0.4 0 0 0 0
TypeIII 0.3 0.2 0.4 0..6 0.8 1,1
TypeIV 0 0 0.25 0.5 0.75 1,1
TypeV 1 0.667 0.6 0.6 0.667 0.556
TypeVI 1 0.8 0.6 0.6 0.8 1
TypeVII 0.3 0.4 0.334 0 0.278 0.208
TypeVII 0 0.2 0.4 0.5 0.2 0
TypeIX 1 0.75 0.6 ∗ 0.667 1
TypeX 0 0.2 0.4 0.5 ∗ ∗
TypeXI ∗ 0.4 0 0 0 0.208
TypeXII ∗ ∗ ∗ 0.6 0.8 1

5 Conclusions

The difference between OSDT and the decision based on optimistic and pessimistic
utilities have been comprehensively addressed in the paper [14]. It is especially
worthy making a detailed comparison between OSDT and SEU as follows:
Comparison 1: In SEU, there are two steps:
Step 1: Evaluating each alternative by using the weighted average utility of all out-
comes;
Step2: Selecting the alternative with the maximum average.
In OSDT, there are two steps:
Step 1: Scenario (focus point) seeking for each alternative;
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Step 2: Choosing the alternative with the maximal satisfaction level or minimal regret
level of the focus point.
Comparison 2: In SEU the utility function is used whereas in OSDT the satisfaction
function or regret function is used. Utility function is associated with risky situations.
If a person is a risk avoider, the utility function is concave. If a person is a risk taker,
the utility function is convex. If a person is risk neutral, the utility function is linear.
Satisfaction function or regret function has no relation with risk situations, which
just represents the relative position of payoff or regret. In OSDT, taking into account
which kind of focus point reflects the attitude of the individual to uncertainty.
Comparison 3: SEU uses subjective probability to characterize uncertainty whereas
OSDT applies possibility distribution.
Comparison 4: SEU amounts to the expected payoff based on the distorted proba-
bilities as follows:

EU =
∑

pi u(xi ) = k
∑

p′i xi ,

where k is a positive constant and p′i is a distorted probability. The conventional
explanation of the optimal decision with SEU is that it can lead to the maximal
average utility when the decision is repeated infinite time in the sense of strong law
of large numbers. Hence, it is lack of consistency for the one-shot decision cases
because the expected value will never appear. On the other hand, OSDT give a clear
answer to why the decision maker makes such a decision in the face of uncertainty
and why the decision might not generate a satisfactory result after the uncertainty
resolving.

In conclusion, OSDT provides a scenario-based choice instead of the lottery-based
choices as in other decision theories under uncertainty. Therefore, it is a scenario-
based decision theory. OSDT is a fundamental alternative theory for decision under
uncertainty with greater appeal to intuition, simplicity of application and explicabil-
ity. Because it is very close to the human way of thinking, the decision with OSDT
is of human-centric decision making. OSDT also provides one of the basic theories
for behavioral operations research.

It is pointless to dispute which decision theory is better. There is no simple the-
ory which is appropriate for any decision situation and in this respect the one-shot
decision theory is no exception. It is true that different theories play different roles
for different decision situations.

The one-shot decision theory is mainly utilized in the situation where a decision
is experienced only once and the probability distribution is unavailable due to lack
of enough information. However it might play an indispensable role of a bridge in
linking decision under ignorance and decision with probabilities (shown in Fig. 2).
For a repeatable decision problem, at the beginning, a decision maker has to make
a decision under ignorance because the decision situation is completely new for
him/her and therefore he/she has no ability to tell the difference between the states of
the nature. After the first decision is made based on maximin or maximax or minmax
regret or Hurwicz criterion, he/she would has some knowledge about the state of
nature so that it is possible to construct an initial possibility distribution of states
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Decision with 
ignorance

One-shot
decision theory

Decision methods
with probabilities

Information improving

Time progressing

possibility distribution probability distribution

Update by Bayesian
formula

Fig. 2 The role of bridge between decision with ignorance and decision with probabilities

of nature. He/she could make a one-shot decision and repeat such decision with the
updated possibility distributions. As time progresses, the information improves. The
possibility distribution will switch into a probability distribution when the data is rich
enough. The switching criterion is the hypothesis test for the probability distribution.
After that decision methods with probability distributions should be utilized with the
probabilities updated using Bayesian formula.

Finally, let us give some comments on the case of one-shot decision under risk.
In such a case, for example, a game of tossing an ordinary coin, the objective prob-
abilities are exactly known. When making a one-shot decision under risk, we can
obtained the possibility distribution by normalizing a probability mass function (for a
discrete random variable) or a probability density function (for a continuous random
variable) and make a decision with OSDT.

The research on one-shot decision under uncertainty is in its early stages. There
is potential for research on theoretical and applied aspects. As a direct extension of
this research, multistage one-shot decision problems can be studied. One-shot game
theory can be developed and the case studies of international conflict resolutions
can be done. Newsvendor problems and supply chain management for innovative
products are other interesting and important applications of OSDT. Use of OSDT
in behavioral finance problems is another interesting research area. Other decision
problems, such as mergers and acquisitions (M&A), emergency management for
irregular events such as earthquakes, or nuclear power plant accidents, social policy
decision making for environment, energy, social insurance and infrastructure can also
be analyzed using OSDT. It may be especially interesting to test the hypotheses—the
aggregation result of individual decision making with OSDT can be approximated
by the decision result with SEU by empirical studies.
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Abstract This chapter summarizes and discusses methodologies and findings of
recent research focused on the influence of emotion on decision-making in general
and charitable giving in particular. Exploring how appraisal theory findings carry
over to the decision of charitable giving, we experimentally examine the influence of
incidental sadness and anger on charitable donations to an identified or a statistical
victim. First, subjects viewed a previously validated film clip and provided a written
response to how they would feel in the situation in the clip. Subjects then viewed
a charity letter and had the opportunity to make a donation. Overall, participants
in both the sad and angry conditions donated more than participants in the control
condition. Sad individuals donated more money to a statistical victim relative to
individuals in a neutral condition. This finding is consistent with appraisal-tendency
theories. Angry individuals, however, did not donate significantly more to either
an identified or statistical victim relative to individuals in a neutral condition. Self-
reported emotions reveal discrete levels of sadness elicited in the sad condition, but
elevated levels of additional negative emotions in the anger conditions.
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1 Introduction

Charitable giving represents a substantial economic transaction in the United States
and around the world. According to the American Association of Fundraising Coun-
sel, Americans donated over $290 billion to charities in 2010, over $211 billion of
which was donated by individuals. The amount of money donated to different causes
has led researchers in various fields, from psychology to economics, to investigate
the influences of altruistic behavior. In the words of Harbaugh et al. ([19], p. 1622),
“[t]o economists, charitable giving is a puzzle: Money is good, so why are people
willing to give it away?”

It is clear that people give for many reasons, and equally clear that much effort is
focused on how to get people to give. The reasons why people give include guilt [5,
30, 50], sympathy and empathy [11, 40, 48], happiness [12, 35], self-therapy [5],
and donor (e.g. moral) identity [1]. Cialdini et al. [9] claim that since altruism has
reinforcing properties, it is employed by people who wish to make themselves feel
better. Increased self-gratification following negative mood priming (e.g. sadness) is
mediated by an attempt to comfort oneself, to engage in self-therapy. With regard to
donor identity, Aaker and Akutsu [1] argue that there are contexts in which a person
thinks of her/himself as a giver (cf. [39, 45]). Referring back to the above list of
reasons why people give, there is mounting evidence that spending money (or time
through volunteering) on other people has a more positive impact on happiness than
spending on oneself [1, 22, 35]. Interestingly, however, Dunn and colleagues [12]
show that a significant majority of participants in their study thought that personal
spending would make them happier than pro-social spending. In three early studies,
Cialdini et al. [9], Cialdini and Kenrick [10] and Baumann et al. [5] explore altruism
as hedonism, finding support for a view of adult benevolence as self-gratification.
Cialdini and Kenrick primed subjects to think of either depressing or neutral events
and subsequently gave them the opportunity to be privately generous. They found
that subjects in the most socialized (oldest) group in the negative-mood condition
were significantly more generous than subjects in the neutral-mood control group.
Thus Cialdini and Kenrick showed the influencing of an action by an idea, a process
that has become known as the ideomotor effect. In the same vein of research, Vohs et
al. [52], show that study participants primed with money donated significantly less
money to a student fund than participants not primed with money. For further insights
on ideomotor processes and priming see Vohs et al. [53] and Kahneman [21].

Harbaugh and colleagues [19] discuss two possible motives for charitable contri-
butions: “pure altruism” and “warm glow.” The first motive is satisfied by increases
in the public good no matter the source or intent. The second motive is only fulfilled
by an individual’s own voluntary donations. The fMRI studies of Harbaugh and his
colleagues show that neural activation in very similar areas of the brain increased
with the monetary payoff to both the subject and to the charity. They demonstrate
that mandatory taxation for a good cause can produce activation in specific areas of
the brain associated with concrete, individualistic rewards; that transfers to others
are associated with neural activation akin to that of receiving money (rewards) for
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oneself. This finding was anticipated by Cialdini and his research associates in the
1970s and 1980s who argued that “… individuals often behave charitably in order
to provide themselves with reward” ([5], p. 1039).

Finally, Dickert et al. [11] explored the role of affective versus deliberate infor-
mation processing in decisions to provide financial aid to people in need. They found
that different mechanisms influence the decision to donate money compared to sub-
sequent decisions on how much money to donate. Whereas motivations for mood
management were predictive of donation decision, empathic feelings were predictive
of the amount.

A key distinction in studies of charitable giving has been made between donations
to an identifiable victim versus a statistical victim. Substantial research has focused
on how and why donors are affected by the two forms of presenting need, as well as
on in what conditions donors may be swayed in either direction. Thomas Schelling
first commented on this social phenomenon when he made the distinction between
an identified individual and a statistical life. For example, when the media reports
on a young girl’s need of funds for a life-saving operation, many individuals quickly
respond with donations. However, when an announcement is made about a need to
fund a hospital, few would act with equal generosity [42]. Within this framework,
an identified victim is one whose fate is seemingly certain in the mind of a potential
donor in the absence of action. A statistical victim is one whose fate is uncertain
as increased funding could represent only a possibility of saving more lives, not a
guarantee. Researchers have since expanded on this notion. Small and Loewenstein
[47] find support for the identifiable victim effect in the first explicit lab experiment
structured as a dictator game with a weak form of identification. Continuing this
research, Small and colleagues [48] find that priming a “feeling” mode of thought,
one driven first by emotion, as opposed to a deliberative mode of thought, increases
giving.

Psychologists have long been concerned with emotion and its influence on
decision-making. Though at first concerned with examining emotions in terms of
pleasantness and arousal, a more recent strand of research has shown that not all
positive or negative emotions are equal. According to cognitive appraisal theory
people extract emotions from evaluations (appraisals) of events in their environ-
ment. Smith and Ellsworth [49] experimentally study emotions on eight dimensions
(pleasantness, attention, control, certainty, perceived obstacle, legitimacy, respon-
sibility, and anticipated effort), finding that emotions are closely linked to specific
cognitive evaluations. For example, if an individual thinks that a negative event is
caused by another individual, she will feel anger. In contrast, an individual who sees
a negative event as controlled by situational factors will feel sadness. Building on
cognitive appraisal theory, the appraisal-tendency framework [8, 18, 32] serves as
a framework for distinguishing and predicting the influence of specific emotions on
judgment and decision making. The appraisal-tendency framework posits that spe-
cific emotions trigger specific cognitive and emotional processes, which delineate
the effects of each emotion on decision making [18]. For example, the individual
who feels sadness from some negative event will then make a subsequent decision
formed by the appraisals which characterize sadness.
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This chapter summarizes and discusses methodologies and findings of recent
research focused on the influence of emotion on decision-making in general and
charitable giving in particular. After reviewing the relevant research, we present the
results of an experiment designed to examine the influence of incidental sadness
and anger on charitable donations to an identified or a statistical victim. That is,
we explore how appraisal theories of incidental sadness and anger carry over to the
decision of charitable giving.

2 Review of Key Literature

2.1 Emotion and Decision-Making

The early study of decision-making paid rather little attention to the role of emotions.
Instead, researchers focused on cognitive errors/biases and heuristics in judgment.
More recently, social scientists have turned their attention to the study of emotions,
arriving at a granular perspective on emotion and its influence on decision-making.
Before reviewing recent research on emotion, it is useful to present the concep-
tual distinction between emotion, affect, and mood, three terms sometimes used
interchangeably for emotional states. Affect refers to a general emotional state with-
out deliberation on cause. It has traditionally been studied in terms of positive and
negative valence. Emotion is characterized by a specific cause or behavior, a short
duration, and a physiological manifestation. For example, when coming into contact
with a grotesque image an individual might feel disgust. When looking away or lean-
ing backwards (physiological manipulation), an individual immediately wishes to
reverse the feeling of disgust and thus the emotion does not last. In addition, emotion
can be incidental or integral. Incidental emotions are caused by dispositional factors
and are unrelated to the decision faced by an individual. Integral emotions occur at
the time of making a decision and are derived from considering the consequence of
a decision. Mood, however, is distinguished by its long duration and diffuse cause.
For example, an individual might be in an irritable mood for no particular reason,
simply feeling vexed by the world in general.1

The study of incidental emotion and its influence on subsequent decisions has blos-
somed recently, and results suggest that the carry-over effects of incidental emotions
are robust to a variety of judgment scenarios and economic decisions. A number of
methodologies have been used to elicit emotion. A frequently-used method involves
reading an emotionally-charged scenario and then performing a writing task where
participants imagine themselves in the scenario and write about how they might feel.
Keltner et al. [24] examined the influence of incidental sadness and anger on causal
judgments. In several experiments, subjects were first presented with ambiguous sce-
narios in order to induce emotion (e.g. the death of a family member to elicit sadness)

1 On the mapping of the distinction between emotion, affect, and mood, Ryan Kandrack has bene-
fitted from personal communication with Dr. Nicole Verrochi Coleman.
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and subsequently were instructed to imagine how they would feel or what they might
think in the given situations. Subjects then judged the likelihood of future life events
associated with an individual or a situational cause. Keltner and colleagues find angry
individuals likely to blame someone else while sad individuals are likely to find fault
with situational factors, results which are consistent with cognitive appraisal theories
of emotion [18, 28, 49].

This methodology has been extended to the study of incidental emotion’s influ-
ence on risk-taking. There is evidence that sad individuals are risk-taking and anxious
individuals are risk averse [27, 37]. In addition, fear has been shown to be associ-
ated with risk-aversion, while anger has been associated with risk-taking [32, 33].
The results of these studies were instrumental in creating the appraisal-tendency
framework (ATF) through which researchers have been able to differentiate specific
emotions regardless of valence [18, 32, 33]. The ATF creates an emotion-to-cognition
pathway that relies on appraisal dimensions which fuel motivation to appraise, or
evaluate, future decisions by using the appraisal dimensions of the specific emotion.
Small and Lerner [46] provide an extension of the ATF by examining the effects of
incidental sadness and anger on the judgment and justification of a welfare recip-
ient’s amount of assistance. Participants in this study wrote about the cause of the
person’s need and selected a recommendation to increase or decrease poverty assis-
tance. The researchers find that incidental anger decreases recommended assistance
while sadness increased assistance.

Expanding the range of decision contexts influenced by emotion, as well as the
methodologies to induce emotion, Lerner and colleagues [34] examine the impact
of incidental sadness and disgust on the endowment effect, a notion that individuals
value things they own more than things they do not own. Their experiment crossed
an emotion manipulation (disgust, sadness, neutral) with an ownership condition in
which half of the subjects were given an object and presented with the opportunity
to sell it, while the other half were shown the object and asked if they would like to
receive cash or the object. To induce emotion, subjects viewed one of three film clips:
The Champ in the sadness condition, Trainspotting in the disgust condition, and a
National Geographic depiction of fish to induce neutrality. Subjects then wrote a
self-reflective response on how they might feel had they been in the situation viewed
in the film clip. The results suggest that disgust reduces buying and selling prices,
while sadness increases buying but decreases selling prices. The endowment effect
is eliminated in the disgust condition and reversed in the sadness condition.

In daily activities individuals frequently encounter events that trigger emotional
responses, many of which occur in succession. Winterich and colleagues [55], fol-
lowing cognitive appraisal theories, utilize film clips to induce different emotions of
the same valence in succession to examine the blunting effects of subsequent emotion
elicitation. In one study, subjects watch a film clip to induce sadness (The Champ)
or to induce a neutral state (National Geographic). A second study induces anger
by assigning subjects as the recipient of an unfair offer ($8 dictator/$2 receiver) in a
dictator game, and then giving them the choice to accept or reject. Following the dic-
tator game, subjects recorded emotional responses to the allocation and completed
the Life Events Questionnaire adapted from Lerner and Keltner [33]. The results
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suggest that sadness mediates the effect of subsequent anger, and that the reverse
also holds.

2.2 Charitable Giving and the Identified Victim Effect

The identified victim effect refers to the propensity of donors to give more assistance
to a single, specific, and vivid victim. On the other hand, a statistical victim refers
to a large, ambiguously-defined entity (e.g. starving children in Africa). This phe-
nomenon has been attributed to an individual’s judgment of the relative size of the
reference group given aid [20]. That is, the identified victim is one of one, whereas a
statistical victim represents a vaguely defined set. Small and Loewenstein [47] pro-
vide the first explicit test of the identifiable victim effect, (1) in a dictator game lab
experiment, and (2) in a field experiment where people in an airport terminal were
given a chance to donate all or any part of $5 given to them by the experimenters.
The studies employed a weak form of identifiability—determining the victim with-
out providing any personalized information—focusing on determined versus not-
yet-determined victims. In both experiments the contributions were larger when the
recipients had already been determined than when they were yet to be determined.

Kogut and Ritov [25, 26] study the identifiable/statistical victim phenomenon to
examine its boundary conditions and find that a single, identified victim (in this case
a child identified by age, name and picture) gains greater contributions than one
which is non-identified, but that fully identified groups of children do not gain more
than non-identified groups. The researchers argue that in the donors’ information
processing the singularity of the individual victim represents coherency. The expec-
tation of coherency leads to greater information processing and generates a higher
level of empathy for the single victim [17, 51].

Small et al. [48] test the effect of educating people about the inconsistent valuation
of lives when considering an identified or a statistical victim. The researchers provide
a written explanation of the differences between the two and then present experiment
participants with the choice to give. The authors find that providing education on the
identifiable victim bias decreased donations to the identified victim, but did not
increase donations to the statistical victim. While priming with education was not
successful to counter the predispositional bias, there is evidence that priming with
an emotional task increases the amount donated [11, 48].

3 Experiment Overview

The goal of this experiment is to investigate the influence of incidental sadness and
anger on an individual’s propensity to donate to a victim. The experiment follows a
3×2 between-subject design, crossing an emotion manipulation (sadness, anger, neu-
tral) with the decision to give to a victim (identified, statistical). The experiment was
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presented as two short studies to reduce demand effects (cf. [34, 46]). The first study
follows cognitive appraisal theories of emotion and the appraisal-tendency frame-
work, eliciting sadness and anger to examine the influence on subsequent decisions
[28, 32–34, 37, 46, 49]. Incidental emotion elicitation has been shown to influence
subsequent, unrelated decisions [6, 13, 43, 44]. Those who participated received $5
compensation. In the second study a short charity letter was presented to subjects
along with two envelopes in which they had the opportunity to make a donation
using the $5 compensation, or retain any amount of that money. Study 2 follows
the identified victim effect literature and adapts the procedure used in inducing an
affective mode of thinking prior to a donating decision [11, 48].

4 Propositions

Proposition. 1 Anger is associated with appraisals of increased certainty and human
agency. The identifiable victim effect has been shown to be a dispositional bias in
decision-making, yielding increased giving to the victim. An individual primed to
feel anger will feel more certain of his/her decision, and will also find the plight of
the identified victim more likely, which will intensify the identifiable victim effect.
That is, individuals in the anger condition are predicted to give more money to an
identifiable victim relative to individuals in the neutral condition.

Proposition. 2 Sadness is associated with cognitive appraisals of decreased certainty
and situational agency. An individual primed with sadness will therefore require more
cognitive processing to make a decision and will find the plight of the statistical victim
more likely. Therefore, individuals in the sadness condition are predicted to give more
to the statistical victim relative to individuals in the neutral condition.

Proposition. 3 Drawing on earlier research relating altruism and spending money on
others to happiness, we expect that participants who donate more to charity will report
greater happiness than participants who keep more of the money for themselves. We
expect this relationship to hold in all three conditions, and to be most clearly evident
in the neutral condition.

5 Participants

Two hundred and thirty five undergraduate students in the school of business at
Duquesne University participated in the experiment. The mean age of the subjects
was 20 years. About 52 % of subjects were male, and 57 % of subjects reported
having a part-time job. About 95 % of the subjects reported that they enjoyed the
experiment or were indifferent, and 4 % reported they did not.
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6 Methodology

Following the completion of consent forms, subjects received their $5 compensation
which had been placed in a blank envelope beneath their survey packet. Due to budget
restrictions on the project, the money was allocated through a randomized lottery at
the end of the study such that roughly 40 % of subjects had the opportunity to leave
with the share of the $5 which they did not donate. The five dollar compensation
consisted of four one-dollar bills and four quarters. Next, subjects completed a base-
line survey of affect (PANAS, adapted from Watson et al. [54]). The baseline affect
survey has been used in past research to simply ease participants into the emotion
elicitation task by instructing them to begin thinking about and feeling emotions (cf.
[34, 46]). The survey consists of twenty emotions, both positive and negative, which
the subjects rate on a scale of one (very slightly/not at all) to five (extremely) based
on how they felt at that time.

Following this initial survey, subjects began the “imagination study” in which
they watched one of three film clips (sad, angry, neutral) and were asked to imagine
themselves in the situations in the clip. For the neutral conditions, subjects were asked
to simply watch the clip, a documentary on the Great Barrier Reef from National
Geographic. In the sadness condition, a scene from The Champ showed a young
boy grieving over the death of a boxer. In the anger condition, a scene from My
Bodyguard portrayed a bully scene (the film clips were adapted from [16, 34, 55]).
After viewing the clip, subjects wrote about how they would feel if they were in the
situation in the clip in order to create a deeper personal connection. Subjects in the
neutral condition wrote about what they had done that day (cf. [33]). The use of film
clips and a writing response has been shown to be a reliable method of eliciting target
emotions [31, 33].

Study 2 consisted of the charity letter and the exit survey. Subjects were given two
envelopes (labeled “me” and “charity”) along with a charity letter in which they read
about a single identified child (name, age, picture) or factual information on poverty
in the United States. The child’s picture and poverty information was obtained from
Save the Children.org. Subjects were then asked if they would like to donate any
amount of their $5 compensation by placing a donation into the envelope labeled
charity; otherwise they could retain any share of the five dollars by placing that
amount into the envelope labeled me. The exit survey, adapted from Rottenberg et al.
[41], asked subjects to rate how they felt during the film clip anchored on 0 (“not at
all/none”) to 8 (“extremely/a great deal”). The survey consisted of eighteen emotions,
of which only three were of primary interest (sad, angry, and happy). This scale has
been used extensively in past research (see [33, 34, 46]). These survey questions
were asked toward the end of each session to prevent subjects from thinking about
or labeling their emotions felt as a result of watching the film clip (cf. [33, 34]).
Subjects also answered simple demographic questions such as age and gender, and
answered yes/no to “do you have a part-time job” and “did you enjoy this study”.



On the Influence of Emotion on Decision Making: The Case of Charitable Giving 65

Once subjects completed the exit survey, those with randomly chosen participant IDs
were able to keep the envelope labeled me. Forty percent of subjects were randomly
chosen to keep the money they chose not to donate.

7 Results

The subjects’ donations ranged from $0 to $5 and 97 % of all subjects donated some
amount of the $5 compensation. About 70 % of all subjects donated the entire $5.
Descriptive statistics on donations across conditions are presented in Tables 1 and 2.
Overall, participants in both the sad and angry conditions (identified and statistical
victims), donated marginally more than participants in the neutral condition; t(95) =
1.704 (p = 0.092) and t(95) = 1.770 (p = 0.080), respectively. Note that the degrees
of freedom in each case reflect unequal variances. Given the relatively high mean
donations, Table 2 summarizes the proportions of participants in the various cate-
gories who donated the full $5 amount, along with the proportions of participants
who donated half or less (≤$2.50) of the received payment. The highest proportion
of full-amount-donors is associated with the angry-identified (81.40 %) and sad-
statistical (76.60 %) conditions. This donating behavior provides directional (but not
statistically significant, χ2 = 1.315, d.f. = 1, p = 0.251) support for our expectation

Table 1 Descriptive statistics of overall donations

Emotion, Victim n Mean
Donation

Standard
Deviation

Standard
Error

Coefficient
of Variation

Sad, Identified 44 4.22 1.319 0.199 0.312
Sad, Statistical 47 4.24 1.448 0.211 0.341
Angry, Identified 43 4.44 1.259 0.192 0.284
Angry, Statistical 44 4.07 1.433 0.216 0.352
Neutral, Identified 29 3.89 1.674 0.311 0.431
Neutral, Statistical 28 3.61 2.025 0.383 0.561
Total 235 4.12 1.510 0.099 0.367

Table 2 Proportion of participants donating all versus half or less

Emotion, Victim n Donated Full Amount (%) Donated Half or Less (%)

Sad, Identified 44 68.18 15.91
Sad, Statistical 47 76.60 17.02
Angry, Identified 43 81.40 11.63
Angry, Statistical 44 63.64 18.18
Neutral, Identified 29 65.52 31.03
Neutral, Statistical 28 64.29 32.14
Total 235 70.64 19.57
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that, relative to the neutral condition, angry individuals will contribute more to iden-
tified victims and sad individuals more to statistical victims. The highest proportions
of participants who donated $2.50 or less are associated with the neutral-statistical
(32.14 %) and neutral-identified (31.03 %) conditions. These two proportions clearly
differ from the proportions in the other four conditions, as reflected in the noticeably
higher coefficients of variation in Table 1.

Subjects felt significantly more sad than angry in the sad conditions (t (89) =
20.47, p < 0.001), but did not feel significantly more angry than sad in the angry
conditions (t (86) = −0.779, p = 0.438; see Fig. 1). The effect of gender on dona-
tions was not significant (t (225) = −1.599, p = 0.112). Having a part-time job also
did not have a significant effect on donations (t (227) = 0.746, p = 0.457).

Examining the influence of emotion on donations, one-way analysis of variance
(ANOVA) revealed a marginally significant effect (p = 0.098). Post-hoc LSD tests
revealed the difference in mean donations between sad and neutral conditions to
be marginally significant at 5 % (p = 0.057), and the difference in mean donations
between angry and neutral conditions to be significant (p = 0.05).

Mean donations in the sad and angry conditions were not significantly different (p
= 0.931). One way ANOVA between all six conditions revealed an overall insignifi-
cant difference in mean donations, F(5,229) = 1.305 (p = 0.263), but post-hoc LSD
tests revealed a marginally significant difference between the sad and neutral sta-
tistical conditions (p = 0.076). The difference in donations between the angry and
neutral identified conditions was not significant (p = 0.126; see Fig. 2 below).

A further dissection of how cleanly the various emotions were elicited helps
us understand why our results were not as strong as expected. Sadness was cleanly
elicited such that the self-reported levels of sadness were significantly higher than the
anger level, but the same does not hold for anger. Subjects felt high levels of sadness
and low levels of anger in the sad conditions while subjects felt high levels of both
anger and sadness in the angry conditions. Figure 3 shows self-reported sadness and
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anger within the sad condition, whereas Fig. 4 shows self-reported anger and sadness
in the angry condition.

In the exit survey, subjects responded to eighteen different emotions of which
only three were of primary interest to the current study (i.e. sad, angry, and happy).
However, it is interesting to note some of the additional negative emotions felt by the
subjects, all of which have been studied in similar research. In addition to sadness
and anger, we examined disgust and fear (see Table 3 for mean self-reported levels
of emotion). Taking into account the additional negative emotions, the sad manipu-
lation elicited a more discrete emotion while the anger manipulation appears to have
generated an overall negativity, with elevated levels of disgust, anger, and sadness.

As proposed, sadness increased giving to a statistical victim relative to the neutral
condition. Surprisingly, anger did not significantly increase donations to an identified
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victim relative to the neutral condition. This could be due to a general negativity,
characterized by multiple high-scoring components. Although no statistical signifi-
cance was attained in the anger/identified victim condition, a case could be made that
there is “practical” significance in that individuals in this condition averaged $0.20
more in donations than donors in any other condition (see Table 1).

With respect to the relationship between giving to others and happiness, we
expected that participants who donate more to charity will report greater happiness
than participants who keep more of the money for themselves. Our proposition—
largely an extension of the above general tendency—was that this relationship would
hold in all three conditions (sad, angry, and neutral), and be most clearly evident in
the neutral condition. As illustrated in Table 4, we observe an unexpectedly com-
plex pattern. In accordance with our expectations, the correlation between amount
given to charity and happiness was indeed positive and marginally significant in the
neutral condition. This is consistent with earlier findings. However, the correlation
coefficients in the angry and sad conditions are near zero and strongly negative,
respectively. The induced sadness seems to have trumped any happiness stemming
from giving-to-others, whereas the induced anger largely seems to have mitigated
that happiness (cf. [55]). Lerner and colleagues [34] report a similar finding with

Table 3 Mean self-reported emotion in sadness and anger manipulations

Emotion Sadness Manipulation Mean Anger Manipulation Mean

Anger 1.96 5.57
Disgust 1.88 6.06
Fear 2.40 2.95
Sadness 6.60 5.39
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Table 4 Correlation coefficients relating amount given to charity and happiness for three induced
conditions: sad, angry, and neutral

Happiness n t p

Si and Ss −0.3323 89 −3.286 0.0015
Ai and As 0.0340 87 0.314 0.7545
Ni and Ns 0.2452 57 1.876 0.0660

regard to the endowment effect, as discussed earlier, as in the case of disgust2 the
endowment effect is eliminated, whereas in the sadness case the endowment effect
is reversed. A similar phenomenon is reported by Baumann et al. [5] who observed
that for participants in a sad mood, altruistic activity canceled the enhanced tendency
for self-gratification. All in all, these reversals illustrate that emotions of the same
valence can have dissimilar effect (Table 4).

8 Discussion

We find support for our claim that incidental emotions can influence the decision
to donate to a charity, that despite the fact that the two emotions elicited in our
experiment were not equally unambiguous. The emotion elicited in the sad condition
was clean in that self-reported sadness far exceeded any of the other emotions felt
by the subjects. In contrast, disgust was the highest self-reported emotion felt by
subjects in the anger manipulation, and there was no significant difference between
self-reported anger and sadness. However, it is interesting to note the high levels of
disgust in relation to its associated appraisal characteristics. Disgust, associated with
an appraisal of being in close proximity to a disagreeable idea or object, has been
shown to be further associated with an appraisal tendency to avert from accepting
a new object or idea [34]—in the present case the $5 compensation for themselves.
However, due to increased levels of anger and sadness in addition to disgust, this is a
difficult assumption to tease out. Clearly, the development of methods used to induce
specific emotions is in its infancy, albeit a promising one, and much additional work
is necessary.

While many economists have been concerned with policies and tax implications
relating to charities (cf. [36, 38]), relatively few have examined the determinants of
charitable giving (e.g. [3, 23]). One such contribution in economics has been the
“warm glow” theory, which states that individuals may simply gain positive util-

2 Interestingly, disgust and anger—used in our study—are located in close proximity to each other
in Smith and Ellsworth’s [49] plot of 15 emotions where the vertical axis ranges from Situa-
tional to Human Control and the horizontal axis ranges from Other-Responsibility/Control to
Self-Responsibility/Control. Both emotions are located in the Other-Responsibility/Control-Human
Control quadrant.
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ity from the act of giving [2]. The current research contributes to our knowledge
by finding a determinant of increased donations founded on psychological theory.
The current research also contributes an additional application of appraisal tendency
theories to an economic decision. Recent behavioral economics research has sought
to incorporate psychological insights into models and experiments to further under-
stand decision-making (see [7]). This strand of research seeks to bridge the gap
between social sciences to create stronger theories and expand the boundaries for
decision-making. The current research supports those goals by providing experimen-
tal evidence of the influence of sadness and anger on charitable donations.

The present research is perhaps most limited by the sample size of subjects. With
between 28 and 47 subjects in each of the six conditions, statistical significance could
not be attained for all differences. However, it could be argued that the difference
in mean donations between subjects in the angry and neutral manipulations shows
directional support (p = 0.126), and with a larger sample could attain some level of
statistical significance. Similarly, the difference in mean donations between males
and females was also nearing significance (p = 0.112). Importantly, the sample con-
sisted only of college students with an average age of 20 years. This homogeneous
sample of business school students is not representative of the general population
in terms of demographics. The subjects’ age may indeed matter. Baumann and col-
leagues [5] note that with increasing age, helping becomes a progressively greater
response of subjects. In contrast, saddened young children engage in a higher degree
of helping (compared to neutral mood controls) only when it leads to external (social)
reinforcement. Also, it has been suggested that a person’s field of study in itself may
influence social behaviors like cooperation and views on altruism [14, 15, 29]. Also
on these fronts there is ample room for further research.

Given the elevated levels of emotion in the anger condition, the film clip used
to elicit anger comes under question. Though past research has used this film clip
without reports of elevated levels of other negative emotions, the anger condition
in the present research is polluted with emotions such as disgust, sadness and fear.
Gross and Levenson [16] found sixteen film clips which were moderately successful
in eliciting discrete emotions. One such film clip was My Bodyguard, the clip used
in the present research to elicit anger. Gross and Levenson note that anger is a
complex emotion and difficult to elicit using a film clip, and also found that subjects
reported high levels of both disgust and sadness. Instead of a film clip, Gross and
Levenson suggest that eliciting anger may require a more personal involvement for
subjects. Future research could try to elicit anger using unfair (rigged) offers to
unknowing subjects in a dictator game, a procedure employed by Winterich et al.
[55]. This method of eliciting anger has been successfully employed, resulting in a
purer emotion compare to that/those induced by a film clip.

Future research should further examine the role of disgust and possibly moral
outrage [4] in the context of charitable donations. In addition, future research should
consider the effects of systematic processing and uncertainty associated with sadness
related to the decision to give to an identified or statistical victim, possibly by inducing
cognitive load prior to making the decision. We sense research opportunities in
today’s emotionally-charged political environment. For example, what would happen
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if an organization like Save the Children were to air a solicitation message after a
polarizing political advertisement? Such a laboratory or field experiment could serve
as a managerial or practical extension of the current research.

9 Conclusion

The present research indicates that incidental emotions carry over and influence the
decision to donate to a charity, a finding that resonates with the appraisal tendency
framework and extends the applications of the framework to a new decision environ-
ment. Sad individuals donated more to statistical victims—Americans in poverty—
relative to individuals in the neutral condition. This result is supported by an appraisal
tendency framework which suggests that sad individuals find events caused by situa-
tional factors more likely. Interestingly, angry individuals did not donate significantly
more to an identified victim than did those in the neutral condition, although their
contributions were larger than those of any other group in the experiment. Moreover,
the identified victim effect was eliminated in the sad manipulation. This could be
due to increased systematic processing associated with sadness. That is, individuals
may read the description of the identified victim and think more about the plight
instead of immediately making a donation. Likewise, sad individuals may see the
description of the statistical victim and, instead of being distracted by the vague
statistics, consider that this is indeed a victim which deserves aid. The elimination
of the identified victim effect could also be due to the associated uncertainty. These
issues merit future consideration.

While we found an expected positive relationship between the amount of money
given to others and happiness, we also found no relationship between giving-to-
others and happiness in the angry condition, and a strong negative relationship in
the sad condition. While other researchers also have found reversals of established
effects, e.g. the endowment effect, among subjects primed to be sad, collectively
these reversals reveal how complex the impact of emotions are in diverse decision
making and judgment contexts.
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Abstract This chapter presents a relatively new and rapidly developing interdis-
ciplinary theory of decision making, the theory of fast and frugal heuristics. It is
first shown how the theory complements most of the standard theories of decision
making in the social sciences such as Bayesian expected utility theory and its vari-
ants: Fast and frugal heuristics are not derived from normatively compelling axioms
but are inspired by the simple rules of thumb that people and animals have been
empirically found to use. The theory is illustrated by presenting the basic concepts
and mathematics of some fast and frugal heuristics such as the recognition heuristic,
the take-the-best heuristic, and fast and frugal trees. Then, applications of fast and
frugal heuristics in a number of problems are described (how do laypeople make
investment decisions? how do military staff identify unexploded ordnance buried
in the ground? how do doctors decide whether to admit a patient to the emergency
care or not?) It is emphasized that there are no good or bad decision models per se
but that all models can work well in some situations and not in others, and thus the
goal is to find the right model for each situation. Accordingly, in all applications,
the performance of fast and frugal heuristics is compared, by computer simulations
and mathematical analyses, to the performance of standard models such as Bayesian
networks, classification-and-regression trees and support-vector machines. Finally,
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1 Introduction

Decision theory today is dominated by models that are exhaustive and integrative.
Exhaustive means that as many decision options as possible are evaluated. For each
option, the evaluation is integrative, meaning that tradeoffs are made among the
option’s good and bad features. For example, if a medical treatment has a low prob-
ability that the patient will live for at least ten more years, in the Bayesian expected
utility model, the utility of this outcome is multiplied by its probability. When the
situation is deterministic, the features of an option are its attributes and their impor-
tance to the decision-maker. For instance, if an apartment has a guest room, the multi-
attribute utility model multiplies the utility of this attribute by a weight that expresses
the attribute’s importance. In this chapter, the theory that consists of exhaustive and
integrative models of decision making is called standard decision theory.

Standard decision theory is taught widely at schools of management, engineering
colleges and at departments of economics and psychology, among others. Although
a flurry of standard decision models exists, it is possible to (over)simplify the picture
and trace some core ideas of the theory to just a few pieces of work.

Savage [60] proved that if a decision maker accepts a set of apparently self-evident
axioms—such as transitivity, which says that if options a, b and c are such that a is
preferred to b and b is preferred to c, then a is also preferred to c—then, she will
decide for the option that has the highest expected utility where the probabilities
will be her subjective beliefs and, when new information is obtained, she will update
those probabilities according to Bayes rule.

Such work on the mathematical foundations of the Bayesian expected utility
model makes standard decision theory seem normatively compelling. That is, it can
be argued that it is what we should do in an ideal world. Nevertheless, Savage himself
did not appear to see his contribution as much more than a theoretical exercise. He
pointed out that it is applicable to what he called small worlds, that is, situations
where the decision maker can obtain the relevant information on decision options
and attributes, and has the time and other resources necessary to computationally
process this information. If these conditions are not met, Savage made no claim that
decision makers should use standard decision theory.

Savage’s hesitations were not taken that seriously, at least not by those eager to
solve real decision problems. The perceived success of other mathematical models
applied to decision making, such as linear- and dynamic programming, provided
reasons for optimism around the world.

In Cambridge, Massachusetts, economist Howard Raiffa and his colleagues
[44, 58] advocated the application of Bayesian and multi-attribute versions of utility
theory to all kinds of decision problems such as choosing an apartment or designing
an airport. In Ann Arbor, Michigan, where Savage also worked for a bit, psychologist
Ward Edwards became so enamored with standard decision theory that he devoted
more than five decades to its further development and application [17]. Edwards
shaped decision theory and practice as few, if any, others [37]. His statement “no
principle other than maximizing subjective expected utility deserves a moment of
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consideration” (quoted in [65]) may appear too single-minded but it is in fact exactly
the dominant attitude in decision theory and practice today.

On the other hand, problems with standard decision models are well known.
For example, it is challenging for decision makers to provide reliable and correct
estimates of attribute weights, probabilities of possible outcomes or their utilities;
suitable approximations to intractable Bayesian computations must be discovered;
and decision makers find the models difficult to understand and resist them [41, 46].
Proponents of standard decision theory, of course, do not see these challenges as
formidable [66]. Rather, whatever problems are acknowledged are seen as relating
to practical application and not as undermining the accuracy of standard decision
theory. Consequently, research effort is invested in improving the application of the
standard theory rather than in developing alternative theories.

This chapter makes a more radical point—that there exists an alternative to stan-
dard decision theory which is simpler to understand, neither exhaustive nor integra-
tive, and also, under some conditions, more accurate. The chapter reviews the basics
of the theory and some applications—including yet unpublished studies—and also
synthesizes the current state of knowledge and presents open problems.

Of course, this theory is not presented as a substitute for standard decision theory,
but rather as a challenge and as complementary. It is a mathematical theory, which
is not derived analytically from normatively compelling axioms but is synthesized
from empirical knowledge from biology and psychology.

2 Rules of Thumb

Behavioral biologists use the term rules of thumb to describe how animals solve their
basic problems, such as finding a home, foraging for food, avoiding a predator and
choosing a mate. For example, the ant Leptothorax albipennis estimates the size of
a candidate nest cavity as follows [50]. It first explores the cavity for a fixed time
interval on an irregular path that covers the area fairly evenly; while doing this the
ant lays down an individually distinct pheromone trail. Then, the ant leaves. When
it returns, Leptothorax albipennis explores the nest again but now on a different
irregular path. The rule of thumb is that cavity size is inversely proportionate to the
frequency of encountering the old trail.

The ant constructs an attribute that it can use to make decisions. When honeybees
have to identify the species of a flower, they use attributes which already exist and
are easy for them to observe. They use a rule of thumb that relies on odor, color and
shape, in that order [27]. That is, to choose one of two alternatives species, honeybees
first attempt to decide based on odor only; then, if the odors of the two alternatives
are the same, they use color; and finally, they use shape if both odors and colors of
the two alternatives species are the same.

For a collection of rules of thumb that animals use, see Hutchinson and Gigerenzer
[35]. These rules are neither exhaustive nor integrative. In the above examples, the
first nest cavity with an acceptable size can be chosen without inspecting any other
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candidates; and, a flower species is evaluated without making trade-offs between the
attributes of odor, color and shape.

Cognitive scientists, such as Gerd Gigerenzer and his colleagues, call rules of
thumb heuristics [8, 25]. Heuristics have been proposed for describing people’s
judgments of salaries or values of assets, their choices of consumer goods, and so on.
Like rules of thumb, heuristics are neither exhaustive nor integrative. For example,
laypeople may invest on the stock of these companies they recognize, without even
considering other companies [54]. Or, when customers choose between cameras
varying on a number of attributes, in the majority of times, they use just one or
two attributes [21]. For a collection of the heuristics that laypeople and professional
decision-makers use, see Gigerenzer et al. [24]. Typically, heuristics are just assumed
to be second-best to standard decision models. This chapter, however, makes the case
that, when the accuracy of the two is actually compared empirically, heuristics are
sometimes found to outperform the standard models.

It should be noted here that the heuristics discussed in this chapter are distinct
from other conceptions of heuristics in the psychological literature. For example,
Daniel Kahneman and his colleagues [36, 63] developed verbal models of heuris-
tics, using labels such as “availability” and “representativeness”, which do not
lead to precise quantitative predictions. On the other hand, the heuristics devel-
oped in the program of Gigerenzer and his colleagues lead to precise quantitative
predictions. Kahneman et al.’s research program on heuristics is known as the
“heuristics-and-biases” program. Gigerenzer et al.’s research program is called the
“fast-and-frugal-heuristics” program. Interestingly, both programs claim to continue
the work of Herbert Simon [61, 62], a polymath who often presented himself as
a cognitive psychologist but was also awarded the Nobel prize in economics. For
details on the similarities and differences between the two programs, see [45].

Biologists emphasize that rules of thumb are adapted through natural selection
while psychologists and other social scientists point out that heuristics can also be
learned individually and socially or are formally taught, but this difference is ignored
here. I focus on a similarity between rules of thumb and heuristics: that both can,
and have been, defined by simple mathematical models.

Formally, a number of decision problems reduce to the identification of one out
of many alternative options A, B, and so on, so that this option has a maximum value
on a numerical criterion of interest Cr. The value of the criterion can be objectively
determined as in the size of a nest cavity, or it can be determined subjectively by the
decision-maker as in the satisfaction derived by using a camera. The important thing
about the criterion values of the options is that they are unknown to the decision-
maker at the time the decision has to be made.

The next four sections present simple models of rules of thumb for solving this
problem. The goal of this presentation is to give a flavor of the kinds of models of rules
of thumb that have been developed; the research that has compared the accuracy of
these models with the accuracy of standard decision models is presented afterwards.
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3 The Recognition Heuristic

Imagine that you are a contestant in a TV game show and face the $1 million question:
Which city has more inhabitants: Detroit or Milwaukee? You cannot use an Internet
connection to find the answer, but you have to infer it based on whatever you know
about these two cities.

What is your answer? If you are American, then your chances of finding the right
answer, Detroit, are not bad. 60 % of undergraduates at the University of Chicago
did. If, however, you are German, your prospects look dismal because most Germans
know little about Detroit, and many have not even heard of Milwaukee.

So, how many correct inferences did the less knowledgeable German group
achieve? 90 % of the Germans answered the question correctly [26]! How can people
who know less about a subject make more correct inferences? The answer seems to
be that the Germans used the following heuristic: If you recognize the name of one
city but not the other, then infer that the recognized city has the larger population.
This heuristic is reasonable in the sense that one may expect to have heard of heavily
populated cities because they generate a lot of news. Note that someone who happens
to know many cities, as the American participants in this experiment, can not use the
heuristic. She would have too much knowledge.

For simplicity, I assume here that the correlation between recognition and criterion
is positive. For problems where the goal is to infer which one of two options (e.g.,
cities) has the higher value on a numerical criterion (e.g., population), the heuristic
is stated as follows.

Recognition heuristic: If one of two options is recognized and the other is not,
then infer that the recognized option has the higher value on the criterion.

The recognition heuristic builds on people’s core capacity for recognition, of faces,
voices and names. No computer program exists today that can perform face recogni-
tion as well as a human child does (with the possible exception of new anti-terrorist
technologies). Note that the heuristic is not derived from any logical axioms, but is
suggested by the empirical knowledge that people are excellent at recognizing things
they have been experienced. It has been claimed that animals also use recognition to
make decisions (for examples, see [35]).

Intuitively, one may expect the recognition heuristic to be successful when igno-
rance is systematic rather than random, that is, when recognition is strongly corre-
lated with the criterion. Substantial correlations exist in competitive situations, that
is, between name recognition and the excellence of colleges, the value of the products
of companies or the quality of sports teams [26].

A strong prediction of the recognition heuristic is that no other pieces of informa-
tion can change the decision to which recognition points. For example, suppose that
a person (i) recognizes Detroit and not Milwaukee and (ii) recalls that the automo-
bile industry in Detroit has been hit for long time by a recession. The prediction of
the recognition heuristic is that she will infer that Detroit is more populous despite
Detroit’s recession. In other words, recognition is predicted to be used in a noncom-
pensatory fashion. This is a strong prediction in the sense that it does not follow
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from other theories of decision making. Pachur et al. [55] reported that 50 % of the
participants in their study chose the recognized object consistently, that is, in every
single trial, even when they had knowledge of three attributes indicating that the
recognized object should have a low criterion value.

3.1 The Less-is-More Effect

Beyond the noncompensatory use of recognition, the recognition heuristic leads to
another strong prediction, one that has to do with accuracy. This is the less-is-more
effect, where less information leads to more accuracy [26]. The effect can be viewed
as a violation of the celebrated effort-accuracy tradeoff where effort is measured by
the amount of information used to make a decision. This tradeoff, touted as one of
the most general laws of human cognition, holds that it is not possible to increase
accuracy without increasing effort [26]. Below, I briefly present a theoretical analysis
of the less-is-more effect.

Assume that there exist N options (e.g., cities) and the person performs all N(N
– 1)/2 paired comparisons according to a numerical criterion involving two of these
options, (e.g., compare two city populations). The amount of information a person
uses is measured by the number of options the person recognizes, n. The question is
if, and under what conditions, can a smaller n lead to higher accuracy than a larger n.

The probability of being able to use the recognition heuristic for a paired com-
parison equals the probability of exactly one option in the pair being recognized,
or

r(n) = 2n(N − n)/[N (N − 1)]. (1)

Similarly, the probability that both options are recognized, and thus other knowl-
edge beyond recognition must be used equals

k(n) = n(n − 1)/[N (N − 1)]. (2)

Finally, the probability that neither option is recognized, which means that the
decision maker has to guess, equals

g(n) = (N − n)(N − n − 1)/[N (N − 1)]. (3)

Let α be the accuracy of the recognition heuristic and β the accuracy when both
options are recognized and other knowledge is used (where α, β > 1/2 and both are
constant across n). I also assume that accuracy equals 1/2 when none of the options is
recognized. Based on these assumptions and (1–3), the overall accuracy of a person
who recognizes n options equals

f (n) = r(n)α + k(n)β + g(n)(1/2). (4)
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From (4), it can be shown analytically that f(n) is an inverted-U-shaped function
of n whenever α > β [26]. In other words, whenever α > β, a less-is-more effect is
predicted.

As an illustration, assume that there are three sisters who study for a geography
quiz with N = 100 cities. The three sisters have the same α = 0.8 and β = 0.6, but
differ in the number of cities n they recognize. The little sister who recognizes zero
cities has an accuracy of f(0) = 0.50. The eldest sister who recognizes all 100 cities
has an accuracy of f(100) = 0.60. The middle sister, who recognizes 50 cities is the
most accurate of the three sisters with f(50) = 0.68.

At a first glance, the less-is-more effect might appear paradoxical. But it is not
because less recognition information may simply enable more accurate cognitive
processing via the use of the recognition heuristic. This idea is expressed formally
by the condition α > β. Additionally, it is a mathematical fact that, whenever
α > β, a less-is-more effect is also predicted for groups who use a variety of
majority rules [59].

The above analyses assumed that decision makers have a perfect recognition
memory, in the sense that all options that have been experienced are recognized
(and all options which have not been experienced are not recognized). Of course,
this is a simplification. More realistically, it can be assumed that a decision maker
falsely recognizes a city which she has not experienced with a probability of a
false alarm f (and fails to recognize a city she has experienced with some other
probability). As in the case of perfect recognition memory, it has been proven that,
under some conditions, a less-is-more effect is predicted. The conditions are relatively
cumbersome—for details, see Katsikopoulos [38]—but, informally, less experience
leads to more accuracy when the probability of a false alarm f is either relatively low
or relatively high, but not when f has a medium value.

Finally, how frequently is the less-is-more effect observed in practice and what
is its magnitude? Katsikopoulos [38] reviewed four studies and found that a less-is-
more effect was observed in two of them; additionally, the magnitude of the effect
varied a lot, from 0.30 down to 0.01. Of course, it should be noted that even a tiny
effect could be very important in actual decision-making as, for example, in large
business contexts. Thus, decision makers and the analysts who support them should
not assume that more information always leads to better decisions.

The recognition heuristic is not an exhaustive decision model, as it does not even
consider unrecognized options. The next family of models presented also does not
consider all available options.

4 Social Heuristics

When recognition is not strongly correlated with the criterion or the decision maker
recognizes all options, decision making may involve a search for the possible out-
comes of each option. A few years after his voyage on the Beagle, the 29-year-old
Charles Darwin divided a scrap of paper (titled “This is the Question”) into two
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columns with the headings “Marry” and “Not Marry” and listed favorable outcomes
for each of the two options, such as “nice soft wife on a sofa with good fire” and “con-
versation of clever men at clubs.” Darwin concluded that he should marry, writing
“Marry–Marry–Marry Q. E. D” decisively beneath the first column. The following
year, Darwin married his cousin, Emma Wedgwood, with whom he eventually had
ten children.

How did Darwin decide to marry, based on the possible outcomes he envisioned,
such as children, loss of time or having a constant companion? He did not tell us. One
possibility is that he used a version of multi-attribute utility theory or some heuristic
simplifications of it which I will present in the next sections. Another possibility is
that he used one of the social heuristics which exploit the social core capacities of
people, such as imitation which is unmatched among animal species. For instance,
consider the following [47].

Do-what-the-majority-does heuristic: If the majority of your peers display a
behavior, engage in it as well.

For the marriage problem, this heuristic makes a man start thinking of marriage
at a time when most other men in one’s social group do, say, around age 30. It
is a most frugal heuristic, for one does not even have to think of pros and cons.
Do-what-the-majority-does tends to perform well when (i) the observer and the
demonstrators of the behavior are exposed to similar environments that (ii) are stable
rather than changing and (iii) noisy, that is, where it is hard to see what the immediate
consequence of one’s action is [3].

Social heuristics appear to guide many of our decisions, and do-what-the-majority-
does is only one such heuristic in the adaptive toolbox of decision makers. But there
are other social heuristics as well.

Consider deciding about green versus gray energy. Assume you have moved into a
new apartment, and you need to choose providers for the basic utilities. In the United
States, the United Kingdom and many countries in Europe, 50–90 % of the people
asked say that they would favor a green electricity carrier and are even willing to pay
a small premium for it. But, unfortunately, these statements do not reflect behavior.
The percentage of people who consume green electricity is marginal; for example,
2 % in Germany and 0.5 % in the United Kingdom. This discrepancy between what
people say and what they do can be explained by the use of a social heuristic [56].
When one moves into their new apartment, there is typically an electricity carrier that
provides a default (the carrier that was used by the previous tenant or the carrier that
the landlord has chosen). The new tenants typically take no action and the default is
used.

Default heuristic: If a decision is set as the default, do not change it.
The default heuristic can explain a flurry of phenomena such as peoples’ retirement

plans and whether they are organ donors or not. It is not an exhaustive model as it
does not consider all available options and their attributes.

It is important to note that the default heuristic, as also the recognition- and do-
what-the-majority-does heuristics, arrive at a decision without evaluating options.
For problems where it is difficult to obtain high-quality input for evaluating options
or to perform the computations necessary for the evaluation, sidestepping option
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evaluation can be a great relief. It is possible, however, that a decision maker feels
uncomfortable to not perform any evaluations. In the next two sections, I describe
two families of attribute-based heuristics, which evaluate options, albeit in a simpler
way than standard decision theory does.

5 Lexicographic Heuristics

In this family of models, a decision is based on a subset of the attribute values of the
oprions. I use the term “attributes” broadly here to include any piece of information
that can be used as, for example, the probability of a particular outcome for a given
option, and so on.

5.1 Take-the-Best

Let us say that you want to predict which one of Lufthansa and Southwest Airlines
will have a higher stock price five years from now. You have heard of both Lufthansa
and Southwest Airlines, and thus you cannot use the recognition heuristic, and you
also hesitate to use a social heuristic. Relevant company attributes may be the number
of years that the company has been operating, whether the country of origin is a G-8
country or not, and so on. I symbolize attributes by a1, a2, . . ., and the values of
option A on the attributes by a1(A), a2(A), . . . (attributes are coded so that their
values are nonnegative and the correlation between each attribute and the criterion
is positive).

A family of simple attribute-based models is lexicographic heuristics [20]:

Infer Cr(A) > Cr(B)if and only if

ai(A) > ai(B),where a j(A) = a j(B) for all j < i. (5)

What does (5) say? Attributes are inspected one at a time until an attribute is found
that has different values on the two objects; then, the object with the higher value on
this attribute is inferred to have the higher criterion value. For example, suppose that
a decision-maker orders the country-of-origin-in-G-8 attribute first and the number-
of-years attribute second. The country-of-origin-in-G-8 attribute has the same value
on Lufthansa and Southwest Airlines (“yes” that would be coded as 1), and Lufthansa
has a higher value on the number-of-years attribute, so the decision-maker would
infer that Lufthansa has a higher stock price.

The family of lexicographic heuristics is parameterized by the rule used to order
attributes. For instance, in the take-the-best heuristic [23], attributes are ordered in
descending order of their validity, vi :
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vi = Pr [ai(A) > ai(B) | ai(A) �= ai(B)],where Cr(A) > Cr(B). (6)

According to (6), the validity of an attribute is the probability that the attribute
has a higher value on the option that has the higher criterion value (given that the
attribute has different values on the two options).

Gigerenzer and Goldstein [23] postulated that people are able to calculate attribute
validities based on their core capacity of monitoring frequencies of events, but this
claim has been challenged [16]. Rules for ordering attributes, simpler than using
validity, have also been proposed, as ordering attributes randomly [23]. In any case,
when the decision-maker makes an inference by using a lexicographic heuristic such
as take-the-best, she needs to retrieve attribute values from memory, one by one.
Thus, lexicographic heuristics rely on peoples’ core capacity for what psychologists
call recall.

Note that, like the recognition heuristic, take-the-best is noncompensatory. Fur-
thermore, take-the-best specifies the processes by which people make inferences.
More specifically, it is specified how people search for information (by ordering
attributes by validity), how they decide to stop the search (as soon as one attribute
discriminates between the objects and allows making a decision) and how they decide
based on the available information (by using the first discriminating attribute). There
have been a number of laboratory tests of these processes (as well as of the decision
outcomes predicted by take-the-best) and this research is summarized in Broeder
and Newell ([6] see also the other articles in this journal’s special issue). Overall,
if people use heuristics such as take-the-best depends on the characteristics of the
decision environment, as, for example, whether there is time pressure or not, and
how skewed is the distribution of attribute validities. Animals have also been argued
to use lexicographic heuristics (for examples, see [35]).

The standard decision-theoretic way of comparing two options is the family of
linear models, in which a weighted sum of attribute values for each option is computed
and the option with the higher sum is inferred to have the higher criterion value (if
the sums are equal, one object is picked randomly). More formally,

Infer Cr(A) > Cr(B) if and only if

�i wi ai(A) > �i wi ai(B), where wi ≥ 0. (7)

Unlike lexicographic heuristics, linear models are compensatory. The weight wi

for attribute ci can be computed in a number of ways as, for example, in ordinary
linear regression, by minimizing the sum of squared differences between the real
criterion values in the ecology and the criterion values estimated by the linear model.

Another family of standard decision-theoretic models for making paired compar-
isons is that of Bayesian models [14].

Infer Cr(A) > Cr(B)if and only if

Pr [Cr(A) > Cr(B)|ai(A), ai(B)] > 1/2. (8)
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That is, the option that has, given all available information, the higher probability
of having the higher criterion value, is inferred to have the higher criterion value.
The probability in (8) is difficult to compute if the number of attributes is large or
their interrelations are complicated. In practice, Bayesian models make simplifying
assumptions about the interrelations among attributes. For example, naïve Bayes [14]
assumes that attributes are conditionally independent given the criterion. It is easy to
see [42] that, if attributes take binary values, naïve Bayes reduces to a linear model
(7) with wi = log[vi/(1 − vi )].

For making inferences in problems in which there is an objectively determined
answer, as in comparing two companies’ stock prices, the linear model (7) is the
analogue of the additive multi-attribute utility model for making choices in problems
where the criterion is subjectively determined, as in choosing an apartment: The
relevant pieces of information (attribute values) are weighted and added. On the
other hand, lexicographic heuristics such as take-the-best dispense with adding, and
instead just use a simple form of weighing, ordering attributes.

Next, I present another kind of lexicographic heuristics, that are used in a decision
problem different from the paired-comparison problem discussed so far.

5.2 Fast and Frugal Trees

A middle-aged man is taken to the hospital with complaints of intense chest pain.
The doctors have to decide quickly whether he is at a low risk of having ischemic
heart disease and just needs a regular nursing bed, or he is at a high risk and should
be rushed to the emergency room. This decision problem is called a categorization
problem. In the particular situation of categorizing a heart-disease patient, the avail-
able resources—such as time, information, and computation—are limited, there is
pressure to be accurate and the stakes are big. The fast-and-frugal-heuristics research
program has provided some answers to how professionals and laypeople make, or
should make, accurate categorizations with limited resources, by using simple trees.

I first introduce some elements from the general theory of trees for categorization.
In a categorization problem, the decision-maker has to assign objects to one of
mutually exclusive categories, based on the values of the objects on some attributes.
In the example above, the objects are the patients, there are two categories—having
a low and a high risk of ischemic heart disease—and the attributes are the available
pieces of medical information such as readings from an electrocardiogram.

A categorization tree can be graphically represented by the root node, on the
tree’s first level, and subsequent levels with one attribute processed at each level (see
Fig. 1). There are two types of nodes. First, a node may specify a question about the
value of the object on an attribute; the answer then leads to another node at the next
level, and the process continues in this way. The root node is of that type. For nodes
of the other type there is an exit; the object is categorized and the process stops.
In sum, starting from the root node and answering a sequence of questions about
attributes, an exit is reached and the object is categorized. For trees to be easy for
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Fig. 1 A fast frugal tree for categorizing patients as having a high or low risk of ischemic heart
disease (for more details, see [28])

people to understand and apply they should not have too many levels or attributes.
For example, Fig. 1 shows such a tree, developed by two practicing doctors for the
ischemic-heart-disease problem [28].

A categorization tree is called fast and frugal if and only if it has at least one exit
at each level [53]. According to this definition, the tree of Fig. 1 is fast and frugal.
If a second question were asked for all patients with elevated ST segment, the tree
would not have been fast and frugal.

Fast and frugal trees are noncompensatory. They also specify a number of cog-
nitive processes—how information is searched for, how search is stopped, and how
a decision is taken based on the obtained information. For example, a physician
using the tree of Fig. 1 first looks up the ST segment, then the chest pain, and finally
other symptoms. There are a number of simple ways of ordering attributes, includ-
ing straightforward extensions of the validity rule (7) for take-the-best (for details,
see [53]).

Standard decision theory has produced a number of categorization models such as
logistic regression [48] Vapnik’s [64] support vector machines (SVM) and Breiman
et al.’s [4] classification and regression trees (CART). These families of models are
more mathematically sophisticated than fast and frugal trees. For example, CART use
information theory for ordering attributes; and the resulting trees are not, in general,
fast and frugal. Also, the standard models are compensatory.

Fast and frugal trees appear to be used by practitioners in a number of fields such
as law and medicine [9, 10]. Louis Cook and his team at the Emergency Medical
Services Division of the New York City Fire Department used a fast and frugal tree
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for deciding which of the victims of the September 11 terrorist attack needed urgent
care [7].

Next, I mention a family of models that lies between standard decision theory and
heuristics.

6 Tallying

Recall that lexicographic heuristics are a simplification of linear models where
attributes are weighed but not added. Tallying heuristics are another simplification of
linear models where attributes are added but not weighed. In other words, by setting
wi = 1 in (7), the following is obtained.

Infer Cr(A) > Cr(B) if and only if �i ai(A) > �i ai(B). (9)

Tallying as described in (9) refers to paired comparisons. It is easy to see that it
can also be applied to categorization, as well as to other problems such as deciding
how to construct one’s financial portfolio. Lay investors often use tallying in the
sense that they allocate an equal amount of wealth to each asset in the portfolio (this
is also known as naïve diversification or as the 1/N heuristic where N is the number
of assets or alternatives; [2]).

Of course, tallying is exhaustive and integrative and, in this sense, it is a standard
model. It can, however, also be seen as a heuristic in that it amounts to simply adding
attribute values and “is not demanding from a cognitive viewpoint” [29]. Tallying
is based on peoples’ capacity for simple arithmetic, which even if not necessarily
innate, it is, in most cases, easily learned by children.

In the previous four sections, I introduced some models of heuristics and discussed
their basic properties (e.g., less-is-more effect, noncompensatoriness, etc.) This kind
of theory is necessary from the perspective of cognitive science. But the crucial
question for an engineer is how these models perform compared to standard decision
models. This is an active topic of research. Even though not always framed as such,
answers are being provided since the 1970s. In the last 15 years, many studies have
been carried out and today there exists a relatively large repository of results (for a
review, see [39]). The next section presents some basic findings, including some yet
unpublished studies, and attempts to synthesize the current state of knowledge.

7 Decision Theory and Rules of Thumb: Comparisons

I first define the measure by which the performance of models is evaluated. The
accuracy of a model is the proportion of problems in which it made the correct
decision; for example, a correct inference is that Lufthansa has a higher stock price
than Southwest Airlines, and the categorization that a patient is at a high risk of
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having heart disease is correct if the patient subsequently suffered a heart attack.
Most of the studies in the heuristics literature investigate accuracy (in a few studies,
a second performance measure is investigated, the financial gain from a model’s
inferences, but I will not present such studies).

Furthermore, there are two types of accuracy. Fitting accuracy refers to the sit-
uation where the parameters of a model (e.g., attribute weights, order of attributes)
are estimated using all data available. Predictive accuracy is often measured by
cross-validation where the model parameters are estimated by using a subset of all
data—called the training set—and the same parameters are applied to make deci-
sions for the rest of the data—the test set; this process is repeated many times to
average out random variation. Often, the training set comprises of the attribute and
criterion values, or categories, of 50 % of all options. Predictive accuracy is a relevant
measure of performance because it refers to decisions not yet made, and this is what
most studies have focused on.

The empirical evidence I review comes from computer simulation studies. By
simulations I do not mean that the datasets discussed are fictitious—most of them
are in fact real—but rather that the performance of models is not calculated by using
closed-form equations, but by simulating how an ideal agent would apply the models.
I focus on simulations because the goal is to first evaluate the performance of models
per se, excluding the human factor in applying the models. Presumably, taking into
account human errors would favor heuristics because they are simpler.

To keep things simple, I do not discuss research on the accuracy of the recognition
heuristic; a complicating factor with this research is that each decision-maker has
potentially different attribute values, so the performance of one decision maker does
not say much about the performance of other decision makers (for a review of this
work, see [24]). Also, there are no studies that I am aware of that evaluate the accuracy
of social heuristics in real-world problems (for theoretical analyses, see [3]). As will
be acknowledged in the concluding section of the chapter, I see the lack of research
on these heuristics as a weakness of the heuristics program. In any case, below I
discuss the accuracy of lexicographic heuristics (take-the-best and fast and frugal
trees) and tallying, compared to standard decision models.

7.1 Empirical Findings

I first survey some results of comparisons among lexicographic heuristics, tallying
and linear models. In the seventies, Robyn Dawes and his colleagues [11, 12] found
that tallying had higher predictive accuracy than linear regression in two of three
forecasting problems (e.g., one problem was to predict success in graduate school).
Dorans and Drasgow [15] generated a number of artificial datasets so that they
reflected characteristics of real forecasting problems and concluded that tallying
overall outperformed a number of versions of regression.

It has been and should continue to be emphasized, however, that there are con-
ditions under which regression has higher predictive accuracy than tallying as, for
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example, when the size of the training set is large [18] further highlighted such
conditions.

Czerlinski et al. [8] performed a simulation study with 20 datasets from the fields of
biology, environmental science, economics, demography, health, psychology, soci-
ology, and transportation. The criterion varied widely from men’s and women’s
attractiveness, to cities’ populations and homelessness rates, to obesity rates and
mammals’ sleep amounts, and so on. First, continuous attributes were dichotomized
by using the median. In fitting, regression was most accurate (77 %), tallying scored
73 % and take-the-best 75 %. In prediction, where the size of the training set was
50 % of the whole dataset, take-the-best was most accurate (71 %), and even tal-
lying outperformed regression by 69–68 %. When continuous attributes were not
dichotomized, the predictive accuracy of take-the-best and regression was equal,
76 %. More recently, in a series of papers, Hogarth and Karelaia [29–33] used mostly,
though not exclusively, artificial datasets, and confirmed and extended these results:
Take-the-best, tallying, and linear regression all sometimes had superior- and some-
times inferior performance.

I now discuss comparisons of lexicographic heuristics and tallying with Bayesian
models. Martignon and Hoffrage [52] compared the predictive accuracy of take-
the-best and tallying with two Bayesian models in the 20 datasets of [8] when the
size of the training set equaled 50 % of the whole dataset. The first model was
naïve Bayes where attributes were assumed to be conditionally independent given
the criterion, and the second one was a Bayesian network where attributes were
assumed dependent in a relatively simple Markov sense. Recall that the predictive
accuracy of take-the-best with continuous attributes was 76 %, of take-the-best with
binary attributes 71 %, and of tallying (with binary attributes) 69 %. The predictive
accuracy of Naïve Bayes was 73 % and of the Bayesian network 75 % (both models
used binary attributes).

Katsikopoulos et al. [43] also compared the predictive accuracy of take-the-best
with continuous attributes and tallying with that of naïve Bayes with binary attributes.
This study tested very small training set sizes, from 2 to 10 objects, that is, from 3 %
to 15 % of all objects across 19 of the Czerlinski et al. [8] datasets. It was found that,
for 2 objects, tallying had the highest predictive accuracy and take-the-best was more
accurate than naïve Bayes; for 3–10 objects, take-the-best had the highest accuracy,
with naïve Bayes being more accurate than tallying. For 5–10 objects, the predictive
accuracy of take-the-best exceeded that of naïve Bayes by more than 5 %.

DeMiguel et al. [13] run a simulation study of models for deciding how to allocate
one’s wealth across assets in a financial portfolio. They tested tallying (here meaning
the allocation of an equal amount of wealth to each asset), against Harry Markowitz’s
[51] mean-variance model (for details, see [13], pp. 1921–1922), and 13 variants of
this model, some of them Bayesian, designed to deal with issues of statistical estima-
tion. Tallying ignores the data on returns, whereas the mean-variance models use past
returns to reallocate wealth. The authors used seven real portfolios (with data on the
returns of the assets spanning form twenty to forty years) and one artificial portfolio.
The performance of the models was evaluated according to three measures (Sharpe
ratio, which is a risk-adjusted return; certainty-equivalent return; and turnover) in a
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test set, over many repetitions. The main result is that tallying was not consistently
outperformed by any of the optimization models, in any of the three measures. On
the other hand, the same authors have also developed more sophisticated Bayesian
models that outperformed tallying [13].

Finally, I discuss comparisons of fast and frugal trees with standard models.
Brighton [5] compared the predictive accuracy of fast and frugal trees with CART
[4] and another popular family of decision trees, C4.5 [57]. He used eight of the
problems of Czerlinski et al. [8], and, in each problem, varied the size of the training
set. In four of the problems, the fast and frugal tree outperformed the other decision
trees for all training set sizes. In the other four problems, the highest predictive
accuracy was achieved by different models for different training set sizes: When the
size of the training set was relatively small, the fast and frugal tree tended to do best,
whereas when the size of the training set was larger, CART and C4.5 tended to do
best.

Martignon et al. [53] compared two fast and frugal trees—that differed on the
rules used for ordering attributes and for assigning, at each tree level, the exit to one
category—with CART and logistic regression. They used 30 categorization problems
from the UC Irvine Machine Learning Repository, of which 11 were medical decision
problems. For each problem, three sizes of the training set were tested: 90 , 50 , and
15 % of all objects. The results were similar to Brighton’s: When the training set size
was large, one of CART or logistic regression outperform both fast and frugal trees,
and when the training set size was small, a fast and frugal tree outperformed both
CART and logistic regression. For example, in the 11 medical problems, when the
training set included 90 % of the objects, logistic regression outperformed both fast
and frugal trees (79 % vs. 76 % and 74 %); and when the training set included 15 %
of the objects, a fast and frugal tree scored 74 %, whereas the other fast and frugal
tree scored 72 %, which was equal to the accuracy of CART and logistic regression.

In a yet unpublished study, Fernandez, Katsikopoulos, and Shubitizde [19] applied
fast and frugal trees, CART and SVM to the problem of detecting unexploded ord-
nance (UXO; this is munitions used in war or military practice). This is a very relevant
problem as, for example, around 11 million acres contain UXO in the United States
and in Afghanistan more people have lost their lives due to UXO than due to land-
mines between 2002 and 2006. In cross-validation, when the training set had up to 10,
out of a total of 216, objects found in the military ground Camp Sibert in Alabama,
fast and frugal trees had higher accuracy than CART and equal accuracy with SVM
(when the training set had more than 10 objects, the three models had essentially
equal accuracy).

In sum, there are three main findings of computer simulation studies comparing
the accuracy of lexicographic heuristics and tallying with that of standard decision
models such as linear and Bayesian models, classification and regression trees and
support vector machines. First, when all evidence is taken into account, the accuracy
of all models is not that different (with tallying possibly lagging a bit behind). It
should be emphasized, however, that even a small difference of, say, 1 % in accuracy
could translate to large differences in situations with high stakes. Second, all models
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can achieve relatively superior and inferior accuracy. Third, the accuracy of heuristics
is surprisingly competitive to that of standard models, especially in prediction.

Thus, the picture is quite complicated. Nevertheless, we do have some under-
standing of the mathematical and conceptual reasons for the three findings. In the
next discussion, I sketch this understanding (for more details, see [39]), while also
trying to show how open the problem still really is.

7.2 Theoretical Analyses

I first sketch why one may expect that, to a first approximation, the accuracy of
heuristics and standard models is not that different. This claim follows from the
combination of two facts: (i) many of the models can be viewed as linear models,
which differ just in their attribute weights, and (ii) the performance of linear models
does not, informally stated, change “much” when the attribute weights change.

The second fact is well known in the statistics and forecasting literature [49]. The
first fact can be seen if one considers various models. Tallying is by definition a
linear model with attribute weights wi = 1; naïve Bayes, as said earlier, is a linear
model with wi = log[vi/(1 − vi )] if attributes are binary-valued; and it turns out
that, again if attributes are binary valued, lexicographic heuristics can also be seen
as linear models where the attribute weights satisfy the condition wi ≥ �k> i wk for
all i ([52]; e.g., it is easy to verify that a lexicographic heuristic that first inspects a1,
then a2 and finally a3, makes identical paired comparisons with the linear model 4
a1 + 2 a2 + a3).

Explaining the second finding amounts to uncovering conditions under which
heuristics are more accurate than standard models, and vice versa. There is actually
a host of such conditions. I give two examples.

First, Katsikopoulos and Martignon [41] provided a necessary and sufficient con-
dition for a lexicographic heuristic to achieve maximum accuracy among all possible
models in paired comparisons (this accuracy equals that of naïve Bayes). Assuming
conditional independence and that attributes are binary, the condition is that attributes
have noncompensatory validities:

oi ≥ �k> i ok,where oi = vi/(1 − vi ); for all i. (10)

For example, if there are three attributes with v1 = 0.8, v2 = 2/3, and v3 = 0.6,
then (10) holds.

In a series of papers, Robin Hogarth and Natalia Karelaia [29–33], analyzed
further the relative accuracy of linear models and lexicographic heuristics. There are
three main differences between these studies and the studies by Laura Martignon and
her colleagues [41, 42, 52]. First, Hogarth and Karelaia also considered continuous
attributes [30, 33]. Second, they looked into issues such as the correlations among
attributes, or errors in the application of the models [29].
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Third, and most importantly, unlike Martignon and her colleagues, Hogarth and
Karelaia modeled the decision environment, that is, the relationship between the
criterion value of an option and the attribute values of the option. A simple version
of the environment model is linear:

Cr(A) = �i β
i

ai(A),where β
i
≥ 0. (11)

In some of their papers, Hogarth and Karelaia made additional mathematical
assumptions to (11), as, for example, that attributes are normally distributed random
variables [30, 33]. They were then able to derive conditions for patterns of relative
accuracy involving heuristics and linear models.

For example, Hogarth and Karelaia [30] showed that a lexicographic heuristic
is at least as accurate as linear regression whenever the following condition holds
(where a1 is the attribute inspected first in the lexicographic heuristic, ρC,a1 is the
correlation between a1 and the criterion value C, and R2

adjis an adjusted version of
the correlation coefficient of linear regression; for details see [30], p. 118):

ρ2
C,a1 ≥ R2

adj· (12)

An informal interpretation of (12) is that the single attribute used by the
lexicographic heuristic (because attributes are continuous, the first attribute inspected,
a1, allows making a decision almost always) has a higher correlation with the crite-
rion than does the sum of all attributes (weighed by the regression coefficients). In a
sense, the attribute structure specified by (12) is noncompensatory, as is the attribute
structure specified by (10).

In sum, even though it is an oversimplification, it can be said that the results of
Hogarth and Karelaia converge with the results of Martignon and her colleagues
on a condition for competitive accuracy of lexicographic heuristics. This condition
is a noncompensatory attribute structure. We do not have analytical results on how
inferior is the accuracy of lexicographic heuristics when this condition is not satisfied;
all that is known is that there exist other models that outperform the heuristics.

There is a second condition that guarantees competitive accuracy for lexicographic
heuristics. Baucells, Carasco, and Hogarth [1] showed that, assuming a linear envi-
ronment model (11), a lexicographic heuristic achieves maximum accuracy across
all possible models in paired comparisons, if the condition of cumulative dominance
holds:

There exists A so that for all B : �k≤i ak(A) ≥ �k≤i ak(B), for all i

(inequality holds strictly for at least one i). (13)

For example, for two options, A and B, such that a1(A) = 1, a2(A) = 0, a3(A) =
1, and a1(B) = 0, a2(B) = 1, a3(B) = 1, (13) shows thatA cumulatively domi-
nates B. The lexicographic heuristic that inspects attributes in the order a1, a2, and
a3, would infer A as having the highest criterion value, and this is correct for the lin-
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ear environment model C(A) = 5a1(A) + 4a2(A) + 3a3(A). In a yet unpublished
study, Katsikopoulos [40] showed that this result holds for a linear environment model
that includes multiplicative interactions among attributes if and only if attributes are
binary.

Do the two conditions of noncompensatoriness and cumulative dominance explain
why lexicographic heuristics often achieve superior accuracy? Not fully. Noncom-
pensatoriness seems to be infrequently satisfied. For example, Hogarth and Karelaia
[29] pointed out that, in principle, attribute weights are seldom noncompensatory,
and Katsikopoulos and Martignon [42] empirically found that attribute validities
were noncompensatory in three of the 20 datasets of Czerlinski et al. [8]. Cumu-
lative dominance is actually relatively common [1] for example, given two objects
with three attributes each, one object cumulatively dominates the other in 97 % of
all possible distributions of binary attributes across objects. But, it is not clear how
often is the environment model linear.

In sum, there is still a lot to understand about why lexicographic heuristics often
have superior accuracy. In fact, this is even truer when one tries to understand the third
finding, the success of heuristics in prediction. It does seem that part of the answer has
to do with heuristics needing less, and perhaps also lower-quality, information to get
calibrated than the standard models, because they have fewer parameters and simpler
functional forms. But how exactly does this affect predictive accuracy? Gigerenzer
and Brighton [22] used an insight from the machine-learning literature [34] and
conjectured that heuristics have lower variance in their decisions than the standard
models but a comprehensive study of this conjecture is still lacking.

The next section concludes the chapter by briefly summarizing its message and
speculating on how decision theory, as we know it today, and the new ideas of
modeling rules of thumb, as presented in this chapter, can be combined in order to
construct an adaptive and effective repertoire for decision making.

7.3 Decision Theory and Rules of Thumb, Together?

Until recently, it was basically taken for granted that the models of standard decision
theory, such as linear models, Bayesian networks, classification and regression trees,
perform better than their heuristic counterparts, such as lexicographic heuristics
and tallying. The heuristics were viewed as simplifications, perhaps dictated by the
constraints of the real world, but simplifications nevertheless, doomed to be second
best.

As I hope to have shown in this chapter, this is not true. The standard decision
models and the heuristics all have their regions of being best, and, in fact, this does
not seem to be a strange accident but also fits with theoretical analyses. In a broader
sense, this result could have been anticipated because people, as well as animals,
have, for a long time, been using rules of thumb that are very intimately related to the
models of heuristics presented here such as take-the-best and fast and frugal trees,
and one may expect that these rules have some value, at least under some conditions.
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In sum, it seems necessary to combine decision theory and rules of thumb, so that
decision makers are supported in adaptively switching between the two, depending
on the problem. But how?

I think it is fair to say that this question has not really been considered. There is
some relevant work, as in Hogarth and Karelaia (2006) and [39] who have suggested
“maps” that delineate how to decide which decision model to use depending on
the characteristics of the problem at hand. These maps include standard models,
lexicographic heuristics and tallying. The maps concentrate on option evaluation.
What they are missing is a role for the more radical rules of thumb such as the
recognition heuristic and social heuristics. These heuristics are radical because they
are not exhaustive and thus do not require that all options are known. Given that
not knowing all options is what makes real decision-making under uncertainty so
challenging, studying social heuristics may well be the way in which it makes most
sense to infuse today’s decision theory with rules of thumb.
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Aggregating Imprecise Linguistic Expressions

Edurne Falcó, José Luis García-Lapresta and Llorenç Roselló

Abstract In this chapter, we propose a multi-person decision making procedure
where agents judge the alternatives through linguistic expressions generated by an
ordered finite scale of linguistic terms (for instance, ‘very good’, ‘good’, ‘acceptable’,
‘bad’, ‘very bad’). If the agents are not confident about their opinions, they might use
linguistic expressions composed by several consecutive linguistic terms (for instance,
’between acceptable and good’). The procedure we propose is based on distances and
it ranks order the alternatives taking into account the linguistic information provided
by the agents. The main features and properties of the proposal are analyzed.

Keywords Group decision-making · linguistic assessments · Imprecision · Dis-
tances

1 Introduction

People face a lot of decision-making problems in their everyday life. Some of these
problems can be easily managed by means of numbers (How many tablespoons of
sugar should I add to my coffee? How much is this computer?), but other problems
are more complex and a numerical representation is more difficult to be implemented
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(Which mean of transportation should I choose? How much is this brand preferred to
this other?). Trying to assign a number to an opinion that could be imprecise makes it
even harder. Human beings usually have difficulties representing uncertainty through
numbers. As Zimmer [31] suggested, people generally prefer to handle the impre-
cision with linguistic terms rather than with numbers, because verbal expressions
and their associated rules of conversation are more naturally included in people’s
thoughts.

Wallsten et al. [26] conducted an experimental research where they showed that
people are more comfortable expressing the meanings of probability through words
rather than through numbers. Following this line of thought, the program Computing
with Words arises (see [15, 29], among others). In it, the objects of computation
are words drawn from the natural language and agents express themselves through
linguistic terms.

Among all possible kinds of decisions, this chapter focuses on the ones concerning
voting systems. In voting, agents (or voters) have to show their preferences over
multiple options (candidates or alternatives). Next, the individual preferences are
somehow aggregated to yield a final result.

There are several voting systems where the agents assess linguistic terms to show
their preferences. One of the most simple is Approval Voting [5, 6], where agents can
either "approve of" or "not-approve of" the candidates. As an extension of Approval
Voting, recently the voting system Majority Judgment [1–3] appears. In Majority
Judgment, agents can assess to each candidate a linguistic term as ’excellent’, ’very
good’, ’good’, etc., from a fixed linguistic scale, to each candidate.

Majority Judgment is a controversial method and some authors have shown several
paradoxes and inconsistences (see [9, 12, 17, 22], among others).

In order to solve some of these inconsistences, extensions of Majority Judgment
have been developed. For instance, García-Lapresta and Martínez-Panero [12] pro-
posed an extension for small committees where the linguistic information is aggre-
gated by means of centered OWA operators [28] and the 2-tuple fuzzy linguistic
representation [14]. In Falcó and García-Lapresta [7, 8], an extension based on
the distances between linguistic terms is introduced. Finally, Zahid [30] proposed a
combination between Majority Judgment and the Borda Count [4].

There are other examples of voting systems using linguistic terms, such as García-
Lapresta [10], who extended simple majority through linguistic preferences, or
García-Lapresta et al. [11, 13] who generalized Borda rule assessing linguistic terms
to the alternatives.

The introduction of linguistic terms partially captures agent’s complexity. Nev-
ertheless, this treatment does not necessarily include all the uncertainty that agents
may feel. An agent might have some doubts about which linguistic term to assess.
In this regard, allowing agents to assess several consecutive linguistic terms comes
out as a possible solution (see Tang and Zheng [23], Ma et al. [16], Rodríguez et
al. [18]). In this sense, our proposal deals with the matter by means of the absolute
order of magnitude spaces introduced by Travé-Massuyés and Piera [25] and Travé-
Massuyés and Dague [24]. More specifically, in the extension developed in Roselló
et al. [19–21] as a starting point.
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In this chapter we introduce a decision process where agents show their assess-
ments over the feasible alternatives either through linguistic terms or through lin-
guistic expressions. These expressions are generated by consecutive linguistic terms,
and allow individuals to express imprecise assessments when they are not confident
about their opinions.

The process aggregates the individual assessments by providing a weak order
on the set of alternatives, satisfying some desirable properties. This weak order
ranks the alternatives according to the distance between the corresponding individual
assessments and the maximal linguistic term. These distances are defined through
parameterized metrics in such a way that the values of the parameters allow to
consider different ways of penalization on the agents’ imprecision.

The chapter is organized as follows. Section 2 includes some notation and basic
notions. Section 3 is devoted to analyze how to penalize the imprecision through
appropriate parameterized metrics. Section 4 introduces the canonical linear order
on the set of linguistic expressions and shows how this order can be reached through
distances to the maximal linguistic term. Section 5 describes the decision process
and some properties. Section 6 includes some illustrative examples. Finally, Sect. 7
includes some concluding remarks.

2 Preliminaries

Let V = {1, . . . ,m}, with m ≥ 2, be a set of agents or voters and let X =
{x1, . . . , xn}, with n ≥ 2, be the set of alternatives or candidates that have to be
evaluated.

Let L = {l1, . . . , lg} be a linguistic ordered scale, where l1 < l2 < · · · < lg .
The granularity of L is its cardinal, # L = g ≥ 2. The elements of L are linguistic
terms as ‘excellent’, ‘very good’, ‘good’, etc.

A binary relation � on a set A �= ∅ is a weak order (or complete preorder) if it
is complete (a � b or b � a, for all a, b ∈ A) and transitive (if a � b and b � c,
then a � c, for all a, b, c ∈ A). On the other hand, a linear order on A �= ∅ is an
antisymmetric1 weak order on A. Given a weak or linear order � on A �= ∅, the
asymmetric and symmetric parts of � are denoted by � and ∼, respectively; in
other words, a � b if not b � a, and a ∼ b if a � b and b � a.

The set of weak orders on A is denoted by W (A).
Based on the absolute order of magnitude spaces following Travé-Massuyès and

Piera [25], we define the set of linguistic expressions as

L = {[lh, lk] | lh, lk ∈ L , 1 ≤ h ≤ k ≤ g} ,

where [lh, lk] = {lh, lh+1, . . . , lk}. Since [lh, lh] = {lh}, this linguistic expression
can be replaced by the linguistic term lh . In this way, L ⊂ L.

1 � is antisymmetric if for all a, b ∈ A such that a �= b it holds a � b or b � a.
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Table 1 Meaning of the linguistic terms in Example 1

l1 l2 l3 l4 l5

Very bad Bad Acceptable Good Very good

Given E = [lh, lk] ∈ L, with #E we denote the number of linguistic terms of
E , i.e., #E = k − h + 1.

Example 1 Consider the set of linguistic terms L = {l1, l2, l3, l4, l5} with the mean-
ings given in Table 1.

Each linguistic expression has a meaning on its own. For instance, [l2, l4] means
‘between bad and good’, [l4, l5] means between ‘good and very good’, or ‘at least
good’, etc.

The set of all the linguistic expressions can be represented by a graph where the
lowest layer represents the linguistic terms lh ∈ L ⊂ L, the second layer represents
the linguistic expressions formed by two consecutive linguistic terms [lh, lh+ 1], the
third layer represents the linguistic expressions formed by three consecutive linguistic
terms [lh, lh+ 2], and so on up to the last layer where the linguistic expression [l1, lg]
is located. Consequently, the higher layer a linguistic expression is located, the more
imprecise is.

Notice that # L = g + (g − 1)+ · · · + 1 = g(g + 1)

2
.

Sometimes the computations in L will be done in Z2 by means of the injection
ψ : L −→ Z2 defined as ψ([lh, lk]) = (k − 1, h − 1). Trough the function ψ

we can represent a linguistic expression as a point in the plane. For instance, the
linguistic expression [l2, l5] can be represented as the point (4, 1) in Z2 . This
function allows us to work in an easier computational setting.

The Manhattan metric on Rq is the function dM : Rq ×Rq −→ R defined as

Fig. 1 Layers in the set of linguistic expressions for g = 5
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Fig. 2 Graph representation of the linguistic expressions for g = 5

dM ((a1, . . . , aq), (b1, . . . , bq)) =
q∑

r=1

|ar − br |.

For q = 1 the Manhattan and the Euclidean metrics coincide: dM (a, b) = |a − b|.
To define a first metric on the set of linguistic expressions L, we adopt the treat-

ment introduced by Roselló et al. [21] in the associated graph GL. The vertices in GL

are the elements of L and the edges E ∼ F , where E = [lh, lk] and F = [lh, lk+1],
or E = [lh, lk] and F = [lh+1, lk].

The graph representation for g = 5 is included in Fig. 2.

Definition 1 The geodesic metric on L is the function dG : L×L −→ R defined as

dG(E ,F ) = dM (ψ(E ), ψ(F )).

Notice that dG(E ,F ) is the number of edges in one of the shortest paths con-
necting E and F in the graph associated with L.

Example 2 The geodesic distance between the linguistic expressions [l1, l4] and
[l3, l5] in Example 1 is

dG([l1, l4], [l3, l5]) = dM (ψ([l1, l4]), ψ([l3, l5])) = dM ((3, 0), (4, 2)) = 3,

just the length of one of the shortest paths from [l1, l4] to [l3, l5], for instance from
vertex [l1, l4] to vertex [l2, l4], from vertex [l2, l4] to vertex [l2, l5] and, finally,
from vertex [l2, l5] to vertex [l3, l5]. This path is not unique, but it is one of those
shortest paths.

Figure 3 shows the geodesic distances between contiguous linguistic expressions
in Example 1. Distances between non-contiguous linguistic expressions can be
obtained as the sum of distances through shortest paths between them.
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Fig. 3 Geodesic distances between contiguous linguistic expressions for g = 5

3 Penalizing The Imprecision

According to the geodesic metric dG , the distance between two consecutive linguistic
terms lh and lh+ 1 is equal to 2. Imagine now an individual doubting about which
one to choose (either lh or lh+ 1). If allowed, this individual may assess both of
them, the linguistic expression [lh, lh+ 1]. This linguistic expression is in a geodesic
distance of 1 from both lh and lh+ 1. In that sense, an individual confident about
which linguistic term assesses is treated in the same way that an individual who
assesses several linguistic terms.

In this chapter, we consider that precision in the assessments should be rewarded
or, in a similar fashion, the imprecision should be penalized. That being said, we
consider two kinds of penalization through two parameters α and β that must be
chosen according to the penalization we want to impose.

Every time an agent assesses an additional linguistic term (i.e., the cardinality of
the linguistic expression rises by 1), her level of imprecision increases. As we go up
in the layers of Fig. 1, each linguistic expression is less precise than in the previous
layer. So, the bottom layer has the highest precision (a single linguistic term), the
second layer is less precise (two linguistic terms), the third one is even less precise
(three linguistic terms), and so on.

Taking into account that the loss of precision should be penalized, we propose two
different ways of penalization. First, for each linguistic term we add up, we increase
the distance with a penalization of α: the distances from lh to [lh, lh+1] or [lh−1, lh]
are not 1, but 1+α. This penalization can be modeled by adding up α dM (#E , #F )

to dG(E ,F ).
Following this α-penalization, the distances between some linguistic expressions

are as follows:

d(l2, [l2, l3]) = dG(l2, [l2, l3])+ α dM (#l2, #[l2, l3]) = 1+ α
d([l3, l4], [l3, l5]) = dG([l3, l4], [l3, l5])+ α dM (#[l3, l4], #[l3, l5]) = 1+ α
d(l1, [l1, l3]) = dG(l1, [l1, l3])+ α dM (#l1, #[l1, l3]) = 2+ 2α.
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Until now, we have considered a penalization for the layer variation. Every addi-
tional linguistic term is penalized by α. Consequently, going from 2 linguistic terms
up to 3 is the same than going from 3 up to 4. The second penalization takes into
account not only how many linguistic terms the agent is using, but how far are from
the maximum precision. What is the same, the higher the linguistic expression is in
the layers, the more each added term should be penalized. For instance, the penal-
ization from l2 to [l2, l3] should not be the same that from [l2, l3] to [l2, l4]. In
this regard, the β-penalization appears. This penalization increases as we climb the
graph. That way, going up from 2 linguistic terms up to 3 is penalized by 1+α+β,
and going up from 3 up to 4 by 1 + α + 2β. To model this β-penalization we
introduce a new function ρ : N×N −→ N defined as

ρ(a, b) = (a + b − 3) |a − b|
2

.

Notice that ρ(a, a + 1) = a − 1 for every a ∈ N.
If we apply the function ρ to the “linguistic expressions cardinality”, we would

obtain the number of times we should use the β-penalization. Taking into account
that, as we climb up from the second layer to the top, we are increasing by β the
penalization, the function ρ allows us to add the penalization of every layer. For
instance, if we compare the linguistic expression [l2, l3] , which is on the second
layer, and the linguistic expression [l1, l5] , which is on the fifth layer, we have to
climb up a total of three layers. Climbing up form the second to the third layer it
penalizes β , form the third to the fourth layer it penalizes 2β and from the fourth
to the fifth layer it penalizes 3β . Adding all the β’s we obtain 1 + 2 + 3 = 6 or,
similarly using the function ρ ,

ρ(2, 5) = (2+ 5− 3) |2− 5|
2

= 6.

We now introduce a family of parameterized metrics that agglutinates the geodesic
metric and the mentioned penalizations.

Proposition 1 For all α, β ≥ 0, the function d : L× L −→ R defined as

d(E ,F ) =
{

dG(E ,F )+ α dM (#E , #F )+ β ρ(#E , #F ), if #E + #F > 3
dG(E ,F )+ α dM (#E , #F ), if #E + #F ≤ 3

is a metric, and it is called the metric associated with (α, β).

Proof Since every linear combination of metrics is a metric, it is only necessary to
check that ρ is a metric when it is restricted to N = {(a, b) ∈ N2 | a + b > 3}.
Clearly, ρ(a, b) ≥ 0, ρ(a, b) = ρ(b, a), and ρ(a, b) = 0 if and only if a = b, for
all a, b ∈ N . To prove the triangular inequality, ρ(a, b) ≤ ρ(a, c)+ ρ(c, b) for all
a, b, c ∈ N , six cases have to be considered: a ≤ b ≤ c, a ≤ c ≤ b, b ≤ a ≤ c,
b ≤ c ≤ a, c ≤ a ≤ b and c ≤ b ≤ a. Suppose a ≤ b ≤ c (the other five cases are
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Fig. 4 Representation of the metric associated with (α, β) for g = 5

analogous). It is immediate to see that

ρ(a, b) = b2 − a2 + 3(a − b)

2

ρ(a, c) = c2 − a2 + 3(a − c)

2

ρ(c, b) = c2 − b2 + 3(b − c)

2
.

Then, ρ(a, b) ≤ ρ(a, c) + ρ(c, b) is equivalent to (c − b)(c + b − 3) ≥ 0, and it
is obviously true for all a, b, c ∈ N . �

Figure 4 shows the distances between contiguous linguistic expressions for g = 5.
Distances between non-contiguous linguistic expressions can be obtained as the sum
of distances through shortest paths between them.

Remark 1 Some values ofα andβ can lead us into undesirable results. For instance, if
α > 1, we have d(l4, l5) = 2 < 1+ α = d([l4, l5], l5). Analogously, if α + β > 1,
we have d([l3, l4], l5) = 3 + α < 2 + 2α + β = d([l3, l5], l5). To avoid these
paradoxes, we should impose some conditions over the values of α and β.

4 Ordering Linguistic Expressions

In the last section we have shown that is possible to obtain some strange orders
among the linguistic expression. We now introduce an intuitive order, the canonical
linear order. It ranks a linguistic expression over another if the sum of the subindices
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Fig. 5 Representation of the canonical linear order �L for g = 5

of the first one is higher than the sum of second one. If both linguistic expressions
have the exact same addition, we should rank ahead the more precise one.

Definition 2 The canonical order on L is defined as

[lh, lk] �L [lh′, lk′ ] ⇔
⎧
⎨

⎩

h + k > h′ + k′
or
h + k = h′ + k′ and k − h ≤ k′ − h′.

It is easy to see that �L is a linear order. Figure 5 shows this canonical linear
order for g = 5.

Proposition 2 For every metric d : L × L −→ R, the binary relation �d on L

defined as
E �d F ⇔ d(E , lg) ≤ d(F , lg)

is a weak order.

Definition 3 Let Tg be the following triangles

• If g is odd

Tg =
{
(α, β) ∈ [0,∞)2 | α + 1

2
β(g − 1) <

1

g − 2

}
.

• If g is even

Tg =
{
(α, β) ∈ [0,∞)2 | α + 1

2
β(g − 2) <

1

g − 1

}
.

In Fig. 6 the triangle T5 = {(α, β) ∈ [0,∞)2 | α + 2β < 1/3} is showed.
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Fig. 6 Graphical representation of T5

Proposition 3 If d : L × L −→ R is the metric associated with (α, β), then
�d = �L ⇔ (α, β) ∈ Tg.

Proof Let us consider that g is odd.
⇒) Suppose that �d = �L. By Definition 2, we have

[l1, lg] �d

[
l g−1

2
, l g+1

2

]

i.e.,
d

([l1, lg], lg
)
< d

([
l g−1

2
, l g+1

2

]
, lg

)
.

Taking into account

d
([l1, lg], lg

) = dG
([l1, lg], lg

)+ α dM
(
#[l1, lg], #lg

)+ β ρ (
#[l1, lg], #lg

)

= dM ((g − 1, 0), (g − 1, g − 1))+ α dM (g, 1)+ β ρ(g, 1)

= g − 1+ α (g − 1)+ 1

2
β(g − 2)(g − 1)

and

d

([
l g−1

2
, l g+1

2

]
, lg

)
= dG

([
l g−1

2
, l g+1

2

]
, lg

)
+ α dM

(
#

[
l g−1

2
, l g+1

2

]
, #lg

)
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= dM

((
g − 1

2
,

g − 3

2

)
, (g − 1, g − 1)

)
+ α dM (2, 1) = g + α,

we have

[l1, lg] �d

[
l g−1

2
, l g+1

2

]
⇔ g − 1+ α (g − 1)+ 1

2
β(g − 2)(g − 1) < g + α

⇔ α + 1

2
β(g − 1) <

1

g − 2
.

Consequently, (α, β) ∈ Tg .
⇐) If (α, β) ∈ Tg , it is a routine to check �d = �L.
Let now us consider that g is even.
⇒) Suppose that �d = �L. By Definition 2, we have

l g
2
�d [l1, lg]

i.e.,
d

(
l g

2
, lg

)
< d

([l1, lg], lg
)
.

Taking into account

d
(

l g
2
, lg

)
= dG

(
l g

2
, lg

)
+ α dM

(
#l g

2
, #lg

)

= dM

((
g − 2

2
,

g − 2

2

)
, (g − 1, g − 1)

)
+ α dM (1, 1) = g + α

and

d
([l1, lg], lg

) = g − 1+ α (g − 1)+ 1

2
β(g − 2)(g − 1),

we have

l g
2
�d [l1, lg] ⇔ g − 1+ α (g − 1)+ 1

2
β(g − 2)(g − 1) < g + α

⇔ α + 1

2
β(g − 2) <

1

g − 1
.

Consequently, (α, β) ∈ Tg .
⇐) If (α, β) ∈ Tg , it is a routine to check �d = �L. �
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5 The Decision Process

Let vp
i ∈ L be the linguistic expression assessed by voter p ∈ V to alternative

xi ∈ X , and vi =
(
v1

i , . . . , vm
i

) ∈ L
m the assessments vector of alternative xi .

A profile is a matrix m × n with coefficients in L whose columns contain the
assessments vectors of the alternatives

v = (v1 | · · · | vi | · · · | vn) =

⎛

⎜⎜⎜⎜⎝

v1
1 · · · v1

i · · · v1
n

· · · · · · · · · · · · · · ·
vp

1 · · · vp
i · · · vp

n
· · · · · · · · · · · · · · ·
vm

1 · · · vm
i · · · vm

n

⎞

⎟⎟⎟⎟⎠
= (

vp
i

)
.

The set of profiles is denoted by V.
For each i ∈ {1, . . . ,m}, the distance between the assessments vector of xi and

lg is defined as

d(vi , lg) =
m∑

p=1

d
(
vp

i , lg
)
.

Proposition 4 Given α, β ≥ 0, let d be the metric associated with (α, β). Then, the
binary relation �F on X defined as

xi �F x j ⇔ d(vi , lg) ≤ d(v j , lg)

is a weak order on X.

Proof It is straightforward. �

Definition 4 A decision rule is a mapping F : V −→ W (X) that satisfies the
following properties

1. Anonymity: For every permutationπ on {1, . . . ,m} and every profile v = (
vp

i

) ∈
V, it holds

F
(
vπ

) = F (v) ,

where vπ =
(

vπ(p)i

)
.

2. Neutrality: For every permutation σ on {1, . . . , n} and every profile v = (
vp

i

) ∈
V, it holds

F (vσ ) = (F (v))σ ,

where vσ =
(

vp
σ(i)

)
and xσ(i) (F (v))σ xσ( j) ⇔ xi F (v) x j , i.e., xi (F (v))σ

x j ⇔ xσ−1(i) F (v) xσ−1( j).
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3. Independence: For all pair of alternatives xi , x j ∈ X and all pair of profiles
v = (

vp
i

)
,w = (

wp
i

) ∈ V, if vp
i = wp

i and vp
j = wp

j for every p ∈ V , it holds

xi F(v) x j ⇔ xi F(w) x j and x j F(v) xi ⇔ x j F(w) xi .

Proposition 5 The mapping that assigns �F to each profile is a decision rule.

Proof The three conditions are trivially satisfied by �F because of the commuta-
tivity of addition in R and the fact that the ranking between xi and x j provided by
�F only depends on vi and v j . �

Definition 5 Given a weak order � on L, a decision rule F : V −→ W (X) is
monotonic with respect to � if for all pair of alternatives xi , x j ∈ X and all pair of
profiles v = (

vp
i

)
,w = (

wp
i

) ∈ V , then if wp
i � vp

i for some p ∈ V , wq
i = vq

i
for every q ∈ V \ {p} , and wq

j = vq
j for every q ∈ V , it holds

xi F(v) x j ⇒ xi F(w) x j .

Proposition 6 The mapping that assigns �F to each profile is monotonic with
respect to �L .

Proof

xi F(v) x j ⇒ d(vi , lg) ≤ d(v j , lg) ⇒
m∑

p=1

d
(
vp

i , lg
) ≤

m∑

p=1

d
(

vp
j , lg

)

⇒
∑

q∈V \{p}
d

(
vq

i , lg
)+ d

(
vp

i , lg
) ≤

m∑

p=1

d
(

vp
j , lg

)

⇒
∑

q∈V \{p}
d

(
wq

i , lg
)+ d

(
vp

i , lg
) ≤

m∑

p=1

d
(

wp
j , lg

)
.

By means of the canonical order

wp
i �L vp

i ⇒ d
(
wp

i , lg
) ≤ d

(
vp

i , lg
)
.

Then,

∑

q∈V \{p}
d

(
wq

i , lg
)+ d

(
wp

i , lg
) ≤

m∑

p=1

d
(

wp
j , lg

)

m∑

p=1

d
(
wp

i , lg
) ≤

m∑

p=1

d
(

wp
j , lg

)
⇒ xi F(w) x j .

�
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6 Illustrative Examples

In this section we show different aspects of the proposed method of ranking through
three toy examples. The first one shows how the method can provide the same ranking
whenever imprecision is not penalized. The second example is about how different
values of the parameters α and β can provide different rankings. And the third
one shows that in some cases ties are obtained irrespectively of the values of the
parameters α and β.

Example 3 Consider two alternatives x1 and x2 assessed by three voters through the
set of linguistic terms L = {l1, l2, l3, l4, l5} whose meanings are given in Table 1.
The assessments are shown in Table 2.

Using the metric d associated with (α, β), with α, β ≥ 0, we obtain

d(v1, l5) = d(v1
1, l5)+ d(v2

1, l5)+ d(v3
1, l5)

= 4+ (2+ 2α + β)+ (7+ α) = 13+ 3α + β,
d(v2, l5) = d(v1

2, l5)+ d(v2
2, l5)+ d(v3

2, l5)

= (3+ 3α + 3β)+ (5+ α)+ (5+ α) = 13+ 5α + 3β.

Since 13 + 3α + β < 13 + 5α + 3β ⇔ α + β > 0, we have x1 �F x2 ⇔
α + β > 0 and, consequently, x1 ∼F x2 ⇔ α = β = 0. In other words, x1 and
x2 are in a tie whenever imprecision is not penalized. But if it is, then x1 always
defeats x2.

Example 4 Consider again two alternatives x1 and x2 now assessed by four voters
through the set of linguistic terms L = {l1, l2, l3, l4, l5} with the meanings given in
Table 1. Taking into account the assessments provided in Table 3, we can see how
depending on the values of α and β, these alternatives are ranked in a different way.

Using the metric d associated with (α, β), with α, β ≥ 0, we obtain

Table 2 Assessments in Example 3

Alternative Voter 1 Voter 2 Voter 3

x1 l3 [l3, l5] [l1, l2]
x2 [l2, l5] [l2, l3] [l2, l3]

Table 3 Assessments in Example 4

Alternative Voter 1 Voter 2 Voter 3 Voter 4

x1 [l1, l5] [l1, l5] l3 l3
x2 [l1, l4] [l2, l5] [l1, l3] [l3, l5]
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Fig. 7 Distribution of the rankings in Example 4

d(v1, l5) = d(v1
1, l5)+ d(v2

1, l5)+ d(v3
1, l5)+ d(v4

1, l5)

= (4+ 4α + 6β)+ (4+ 4α + 6β)+ 4+ 4 = 16+ 8α + 12β,

d(v2, l5) = d(v1
2, l5)+ d(v2

2, l5)+ d(v3
2, l5)+ d(v4

2, l5)

= (5+ 3α + 3β)+ (3+ 3α + 3β)+ (6+ 2α + β)+ (2+ 2α + β)
= 16+ 10α + 8β.

Since 16 + 8α + 12β < 16 + 10α + 8β ⇔ α > 2β, we have x1 �F x2 ⇔
α > 2β, x2 �F x1 ⇔ α < 2β, and x1 ∼F x2 ⇔ α = 2β. Consequently,
depending how imprecision is penalized, x1 and x2 are ordered in a different way.
See Fig. 7.

Example 5 Consider again two alternatives x1 and x2 assessed by three voters
through the set of linguistic terms L = {l1, l2, l3, l4, l5} with the meanings given in
Table 1. The assessments are provided in Table 4.

Using the metric d associated with (α, β), with α, β ≥ 0, we obtain

Table 4 Assessments in Example 5

Alternative Voter 1 Voter 2 Voter 3

x1 l3 [l2, l3] [l1, l4]
x2 l4 [l1, l2] [l1, l4]
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d(v1, l5) = d(v1
1, l5)+ d(v2

1, l5)+ d(v3
1, l5)

= 4+ (5+ α)+ (5+ 3α + 3β) = 14+ 4α + 3β,

d(v2, l5) = d(v1
2, l5)+ d(v2

2, l5)+ d(v3
2, l5)

= 2+ (7+ α)+ (5+ 3α + 3β) = 14+ 4α + 3β.

Despite of the values of α and β we choose, the result is the same for the two
alternatives. Thus, x1 ∼F x2 for all possible values of the parameters.

7 Concluding Remarks

In this paper, we have introduced a multi-person decision making procedure where
agents may express their opinions about feasible alternatives by means of linguistic
terms, if they are confident about their opinions, or through linguistic expressions
composed by consecutive linguistic terms, in the case they are not confident about
their opinions. The proposal allows to penalize the imprecision by means of two
parameters.

As further research, it would be interesting to consider some breaking-tie
processes, to analyze additional properties and advantages of the proposed method,
and to apply the introduced multi-person decision making procedure to some real
problems.

Acknowledgments The authors are grateful to Jorge Alcalde-Unzu and Ilan Fischer for their
suggestions. The financial support of the Spanish Ministerio de Ciencia e Innovación (projects
ECO2009-07332, ECO2009-12836, ECO2008-03204-E/ECON, TIN2010-20966-C02-01 and
TIN2010-20966-C02-02, SENSORIAL Research Project TIN2010-20966-C02-01 and TIN2010-
20966-C02-02), the Spanish Ministerio de Economía y Competitividad (project ECO2012-32178),
and ERDF are also acknowledged.

References

1. Balinski, M., Laraki, R.: A theory of measuring, electing and ranking. Proc. Nat. Academy
Sci. U.S.A. 104, 8720–8725 (2007)

2. Balinski, M., Laraki, R.: Majority Judgment. Measuring, Ranking, and Electing. The MIT
Press, Cambridge, (2011)

3. Balinski, M., Laraki, R.: Election by Majority Judgement: Experimental evidence. In: Dolez, B,
Grofman, B, Laurent, A.(eds.), In Situ and Laboratory Experiments on Electoral Law Reform:
French Presidential Elections. Studies in Public Choice vol. 25, pp. 13–54. Springer, New York
(2011)

4. de Borda, J.C, Mémorie sur les élections au scrutin, Historie de l’Academie Royale des Sci-
ences, Paris, (1781)

5. Brams, S.J., Fishburn, P.C.: Approval Voting. Am. Political Sci. Rev. 72, 831–847 (1978)
6. Brams, S.J., Fishburn, P.C.: Approval Voting. Birkhäuser, Boston (1983)
7. Falcó, E., García-Lapresta, J.L.: A distance-based extension of the majority judgement voting

system. Acta Universitatis Matthiae Belii, series Mathematics 18, 17–27 (2011)



Aggregating Imprecise Linguistic Expressions 113

8. Falcó, E., García-Lapresta, J.L.: Aggregating individual assessments in a finite scale. World
Conference on Soft Computing, San Francisco (2011)

9. Felsenthal, D.S., Machover, M.: The Majority Judgement voting procedure: a critical evalua-
tion. Homo Oeconomicus 25, 319–334 (2008)

10. García-Lapresta, J.L.: A general class of simple majority decision rules based on linguistic
opinions. Inf. Sci. 176, 352–365 (2006)

11. García-Lapresta, J.L., Llamazares, B., Martínez-Panero, M.: A Social Choice analysis of the
Borda rule in a general linguistic framework. Inte. J. Comput. Intell. Syst. 3, 501–513 (2010)

12. García-Lapresta, J.L., Martínez-Panero, M.: Linguistic-based voting through centered OWA
operators. Fuzzy Optim. Decis. Mak. 8, 381–393 (2009)

13. García-Lapresta, J.L., Martínez-Panero, M., Meneses, L.C.: Defining the Borda count in a
linguistic decision making context. Inf. Sci. 179, 2309–2316 (2009)

14. Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with
words. IEEE Trans. Fuzzy Syst. 8, 746–752 (2000)
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Risk Perception and Ambiguity in a Quantile
Cumulative Prospect Theory

Marcello Basili

Abstract This chapter introduces a version of Cumulative Prospect Theory in a
quantile utility model with multiple priors on possible events as proposed in [8].
The chapter analyzes the decision-maker’s risk and ambiguity perception facing
ordinary and exterme events. It is showed a new functional that models asymmetric
attitude with respect to ambiguity on extreme events (optimism respects windfall
gains and pessimism respects catastrophic events) and the decision-maker’s attitude
to consider maximization of entropy as a rule of inference. Finally, it is defined
a simplified approach based on the epsilon contamination method of a probability
distribution.

Keywords Ambiguity ·Multiple priors · Quantiles · Entropy · Extreme events

1 Introduction

This chapter regards some recent development in Cumulative Prospect Theory, in par-
ticular how it is possible to consider the notion of distorted probabilities and extreme
events without any assumption about the shape or properties of the decision-maker’s
utility function e.g., [32, 63]. This chapter is mainly focused on [8] who introduced

1 In standard Quantile Utility Models [17, 53, 61] the decision-maker orders feasible alterna-
tives with respect to the highest γ th -quantile of the induced cumulative probability distribution
over outcomes (if γ = 0 or γ = 1 the standard maxmin or maxmax decisional rule is obtained).
This single statistic decisional rule produces very large classes of indifference because of a
lottery is evaluated by the fixed γ th -quantile and it is irrelevant what happens in the probability
distribution outside it.
2 Evidences are in [35].
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a new version of decision making rule under uncertainty based on quantiles of the
probability distributions over consequences. Basili and Chateauneuf simply assumed
an ambiguity averse decision-maker and used two quantiles that defines an interval
of ordinary events (familiar), because they are considered more reliable and closer
to her experienced life, and two tails where are included extreme events, or events
with very small probabilities of occurring but very large consequences (windfall
gains and catastrophic losses).1 The new representation takes into account fat-tailed
events, usually misvalued in standard approaches, due to cognitive insensitivity to
small probability outcomes and also includes competence effect.2

Section 2 shows that axiomatization and characterization of an agent beliefs by
a capacity made possible to represent her partial knowledge about future, indeed
formal representation of decision making problems under ambiguity as opposed to
risk. Capacities allowed to encode beliefs in subjective probability distributions when
the decision-maker has multiple priors, fuzzy prior and non-additive prior.

Section 3 introduces a new decision rule under uncertainty based on entropy max-
imization. CPT is generalized by introducing a quantile representation with multiple
prior on possible events. The set of priors reflect the decision-maker’s assessment of
the reliability of available information about the underlying uncertainty.

Section 4 exihibits the new functional form to evaluate prospects. Facing a risky
situation the decision-maker adopts diversification, an intuitive and consistent strat-
egy for reducing likely loss. Since entropy reflects the diversification degree of a
portfolio of choices, the decision-maker applies the Maximum Entropy Principle to
elicit that probability distribution. Because of tractability and theoretical soundness,
the value functional of a prospect is defined by the Choquet integral of an appropriate
quantile function.

Section 5 provides derivation of the new functional form when the decision-
maker’s ambiguity attitude is characterized through the ε-contamination of confi-
dence. Cautiousness in her belief leads the decision-maker to elicit the closest to
uniformity probability distribution in her information set, but lack of confidence in
her opinion and awarness of a possible error forces her to consider an ε-contamination
of the elicited probability distribution. Finally, it is considered a simpler approach
where the decision-maker only considers her most credible probability distribution,
even if not fully reliable, and the parameter ε is the value that captures error in her
assessment.

2 Related Literature

In a celebrated paper Camerer observes “because economics is the science of how
resources are allocated by individuals and by collective institutions like firms and
markets, the psychology of individual behavior should underlie and inform eco-
nomics, much as physics informs chemistry; archaeology informs anthropology; or
neuroscience informs cognitive psychology. However, economists routinely—and
proudly—use models that are grossly inconsistent with findings from psychology.
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A recent approach, behavioral economics, seeks to use psychology to inform eco-
nomics, while maintaining the emphases on mathematical structure and explanation
of field data that distinguish economics from other social sciences. In fact, behav-
ioral economics represents a reunification of psychology and economics, rather than
a brand new synthesis, because early thinking about economics was shot through
with psychological insight” [16].

The aspiration of behavioral economics is to increase the explanatory power
of economic theories by deepening the psychological foundation of economic
behavior through a greater realism that explains anomalies and counterexamples
observed in financial and real markets. In this perspective a larger interaction between
behavioral economics, experimental economics, and decision theory has been seen
in the last decades. Empirical literature appears to confirm that gender, age, educa-
tion and income may introduce new fascinating and intriguing explanations of the
main anomalies of markets. Concurrently, psychology puts in evidence that specific
individual characters such as the perceived control, affective and emotional factors
may influence individual attitude towards of alternative choices [60, 70, 71].

As a matter of fact all previous considerations apply to individuals’ risk percep-
tion since it involves judgment and choice. In fact, risk perception is how individuals
understand and comprehend uncertain events. Even if risk has manifold different
meanings that involve characterization of implied events: hazard, threat, dread, con-
trollability, vulnerability, fatality, etc., there is a general consensus about the defini-
tion of risk as probability of occurrence and magnitude of consequences.

It is straightforward to note that risk perception that not only involves likelihood of
probability and appraisement of consequences but also time consideration on uncer-
tain prospects. Nonetheless, risk perception is a specific concept distinguished from
expected return and attractiveness3 [3, 26, 31]. Resting on subjective probability
distributions about feasible future events, risk perception appears to be a subjective
notion that encompasses interpretation (awareness, knowledge, information, famil-
iarity, dread, etc.), and beliefs (chance) about possible consequences of a feasible
option in an opportunity set. Crucially “perceptions of risk play a prominent role
in the decisions people make, in the sense that differences in risk perception lie at
the heart of disagreements about the best course of action between technical experts
and members of the general public…Both individual and group differences in pref-
erence for risky decision alternatives and situational differences in risk preference
have been shown to be associated with differences in perceptions of the relative risk
of choice options, rather than with differences in attitude towards (perceived) risk,
i.e., a tendency to approach or to avoid options perceived as riskier” [72].

It is possible to identify at least three different areas of research on people pref-
erences in regard to perceived risk that emerged in facing the inadequacy of the
dominant cognitive paradigm in experimental studies and behavioral analyses of the
1970s. The first approach, the Cultural Theory or Socio-cultural Paradigm originated
in sociology and anthropology. The second approach is formulated in psychology,

3 Expected return is concerned with evaluation rule; attractiveness involves evaluation and attitude
toward risk.
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it is known as the Psychometric Paradigm. The third approach is introduced in the
decision theory, it concentrates on the relationship between lack of knowledge about
future occurrence or systems, probability elicitation and optimal decision rules, it is
known as the Axiomatic Measurement Paradigm.4

In cultural theory risk perception is informed by social and cultural determinants.
Cultural theory is based on the group-grid analysis, a two dimensional scheme, that
represents the degree of social activity and how the social context governs the indi-
vidual behavior. Cultural theory claims a correspondence between individuals and
particular ways of life and in the group-grid scheme and correspondence originates
in five types of people: egalitarians, hierarchists, individualists, fatalists and hermits
that can be used to“predict and explain what kinds of people will perceive which
potential hazards to be how dangerous” [81, p. 42].5

On the contrary, the psychometric paradigm and the axiomatic measurement para-
digm are based on the assumption that risk is a subjective notion, even if they context
the main assumption of economic risky choice model, indeed that risk attitude, or
curvature of the individual utility function, only determines individual risk-taking.
In standard economic theory risk attitude is measured by the Arrow-Pratt absolute
and relative risk aversion index [4, 57], but experimental psychology and behavioral
economics put in evidence inconsistent behaviors under imperfect knowledge and
complex decision making processes.

In the 1970s cognitive psychologists [27, 28, 70] define a research agenda to
answer some crucial questions about: determinants of perceived risk, different risk
perception, role of information and judgment in risk assessment, perception of bene-
fit and acceptability of risk. Psychologists observed that the subjective nature of risk
makes at least qualitative factors (ethical values, priorities, emotions, voluntariness
of threat exposure, history, ideology, etc.) as important as quantitative characteristics
in risk assessment, risk management and in evaluation of a risky decision [29]. Psy-
chologists develop psychometric risk scales that assess individual risk attitude and
behavior in dependence of how people process information, since risk perception is
influenced by mental processes that govern information elaboration, indeed the asso-
ciative system and the analytic process.6 Combining different co-operating mental
processes, psychometric paradigm gives a scheme to understand individuals’ behav-
ior.7 Because of almost invariant structure and intuitive appeal of factors that affect
risk perception, the psychometric paradigm obtained an enormous success, even if
some critics point out that its explanatory power mainly derives from including dread
among the relevant variables and misleading data analysis using means [68].

4 A comprehensive review of the three paradigms is in [79].
5 Since it is assumed that risk is a strictly subjective and psychologically determined notion, cultural
theory is not considered in this review. A critical evaluation of cultural theory is in [56].
6 Details are in [80].
7 The psychometric paradigm is a taxonomic scheme that produces results that are usually sum-
marized in a two(three)-dimensional space derived by factor analysis from the intercorrelation of
given risk characteristics, where each factor is made up of a combination of characteristics, e.g.,
dread-controllability or known-observable [69, 72].
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Decision theorists assume that ambiguity attitude emerges when individuals face
vague and incomplete information. Ambiguity attitude refers to beliefs and prefer-
ences on feasible actions. Ambiguity influences perception of uncertain actions and
induces human beings to elicit probabilities and apply decision rules that violate
axioms of the rationality paradigm, based on the Bayesian approach, of the stan-
dard economic theory. Decision theory under uncertainty rests on [62] subjective
expected utility theory, even if there exists a representation of uncertainty based on
explicit probability approach, so that the objects of individuals’ choices consisted of
lottery prizes, with given objective probability distributions over outcomes [76]. Sav-
age’s approach centers around two fundamental assumptions. First, a complete list
of possible future states of the world is available to the individual—a list that, in an
interpersonal context, is common knowledge to all individuals. The individual is
endowed with subjective beliefs over the state space (uncertain prospect). These
beliefs are represented by a well-defined (additive) probability function. As a result,
individuals in uncertain settings are supposed to be able to undertake expected
cost/benefit analysis in information gathering, and hence to reach an informational
optimum. In particular, in the tradition of the choice theoretic approach to subjective
probability developed by Ramsey and De Finetti, Savage put forward an axiomatic
framework in which the subjective additive probabilities of an individual are elicited
from choices and satisfy the requirement of consistency (Dutch Book or Arbitrage in
Gambling). The second fundamental assumption of probabilistic decision making has
to do with the cognitive capabilities of the decision-maker. The processing of infor-
mation consists of a Bayesian process of updating individual beliefs (prior probability
distribution), when a signal is received on the realization of the state (Bayes’s rule).

These assumptions follow from the implicit hypothesis that individuals are ratio-
nal in a strong sense, namely that they have a complete knowledge of all possible
states of the world and can manage to deduce all logical propositions contained in
the axioms of the theory. Both assumptions have been questioned and abandoned in:
bounded rationality models [66, 67] and non-expected utility models [33, 39, 59,
63, 84]. In the approach based on bounded rationality, decision-makers replace util-
ity maximization by violating exponential discounting [50]. In non-expected utility
models economic agents have distorted probabilities, contractions or expansions of
prior linear probabilities, that are capable of accommodating individuals’ perception
of probabilities through weighting functions.

2.1 Behavioral Foundation of Risk Perception

The behavioral foundation of risk perception is in alternative representations of indi-
vidual beliefs and rules for choice that were paramount in decision theory since the
time of Savage’s synthesis. From a theoretical point of view, Shackle [65] strongly
objected to the use of probability functions on the grounds that the list of possible
states of the world conditioning crucial entrepreneurial choices cannot be assumed as
given. Decision theorists and statisticians like [36, 37, 77] set criteria for decisions
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under complete or partial ignorance that are alternatives to expected utility maximiza-
tion [52]. Moreover, since the inception of experimental economics it was evident that
expected utility theory was descriptively inadequate [58]. In particular, Edwards [21,
p. 49] argued that “a great deal of experimental evidence that bears on the additivity
of subjective probability is now available and it argues against the additive property
so strongly that I do not see how it is possible any longer to defend that property.
Fortunately, it may be possible to develop a utility-subjective probability model that
is mathematically satisfactory and that does not require subjective probabilities to
add to one or anything else”. As well known, Edwards’s experimental evidence con-
stitutes the main starting point of Kahneman and Tversky’s studies about the use
of decision weights to represent the way decision makers feel about probabilities
within the framework of a descriptive model of decision making under uncertainty.
After Kahneman and Tversky [39] it has become usual to utilize weighted functions
to represent how decision makers overweigh low probabilities and underweigh high
probabilities, a pattern of behavior observed under uncertainty [82].

Real reports8 and experimental evidence9 confirmed that under uncertainty, a
decision maker not only considers “the reliability, credibility or adequacy of infor-
mation, experience, advice, intuition taken as a whole: not about the relative support
it may give to one hypothesis as opposed to another, but about its ability to lend
support to any hypothesis—any set of definite options—at all” [23, p. 192], but also
“relative willingness to rely upon it in [her] decision-making; and various factors
enter [her] decision criterion in linear combination” [23, p. 193]. Moreover, there is
a strict reciprocal influence between beliefs and consequences, that is consequences
induce a particular distortion of beliefs on the basis of amount (catastrophic, windfall,
ordinary) and/or sign (gain and loss) and beliefs (low or high) modify perception of
consequences.

2.2 Prospect Theory

Prospect Theory emerges as a result of thought experiments that verify the assumption
that individual perception is reference-dependent, that is “the perceived attributes of
a focal stimulus reflect the contrast between that stimulus and a context of prior and
concurrent stimuli….Intuitive evaluations of outcomes are also reference-dependent”

8 It is well known the situation in which the President of the USA and the White House Staff had to
decide about the development of nuclear weapons (InterContinental Ballistic Missiles—ICBMs) in
the face of the menace of USSR in the 60’s. In a condition of ambiguity, characterized by a set of
probability distributions, none of which were fully reliable, the President assumed the worst scenario
(full pessimism), that is the USSR had hundreds of ICBM, and launched the Minuteman missiles
Program. In the fall of 1961, a revised highly secret report set that “the missile gap favouring the
Soviets had been a fantasy. There was a gap, but it was currently ten to one in our favour. Our 40
Atlas and Titan ICBMs were matched by 4 Soviet SS-6 ICBMs at one launching site at Plesetsk”
[24, p. 32 ]
9 Wakker [78].
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[38, p. 1455], Specifically, an individual seems to dislike a decrease in wealth with
respect to her initial endowment more than she likes a gain: this finding has been
expressed by a value function that is kinked at the reference point (typically the
current endowment) and loss averse, indeed a value function that shows diminishing
sensitivity away from the refererence point. At the same time individuals are under
the infuence of the psychological impact of the absolute and relative value of prob-
abilities. In fact they show a general attitude to overweight low probability events
and underweight large probability events, but at the same time they are more sensi-
tive to small changes from zero probability (possibility effect) or to one probability
(certainty effect), than when the same changes occur at intermediate probabilities.
Kahneman and Tversky [39] proposed in the seminal paper the inverse S-shaped
value function, i.e., convex on losses and concave on gains to render asimmetric risk
attitudes, and the probability weighting function to represent diminishing sensitivity,
possibility effect and certainty effect.10

Kahnemann and Tversky [40] later rationalized decision making under uncertainty
through the cumulative version of prospect theory, by combining the empirical real-
ism of their original prospect theory with the theoretical tractability of non-additive
measures. Cumulative Prospect Theory introduced the notion of distort probability
distributions, obtained through a probability weighting function attached cumula-
tively to outcomes, to maximize the overall value of a prospect. Cumulative Prospect
Theory solved the violation of stochastic dominance that occurred in Prospect Theory
by connect sign-dependence with Rank-Dependent Expected Utility [59].11

In 1980 Thaler introduces prospect theory in economics to explain violation of
consumer theory, and in the last decade a lot of papers have tried to accommodate new
evidence drawn from financial market observations into larger models of market or
multi-agent experiments, following intuitions of behavioral economics. In particular,
prospect theory has been introduced to resolve financial puzzles, such as the equity
premium puzzle [54], and reconcile financial theory with observations [9–11, 20,
30, 34].12

10 In cumulative prospect theory the general attitude toward uncertainty consists of risk attitude and
ambiguity attitude. Risk attitude is described by the slope of the weighting function. Ambiguity
attitude is summarized by the parameters of the weighting function: δ (elevation) that represents
dominant attitude (pessimism or optimism) and γ (curvature) that shows sensitivity to partial infor-
mation [14, 24].
11 Cumulative Prospect Theory is a special class of Rank-Dependent Expected Utility where the
reference point originates negative and positive ranks.
12 Kahneman and Tversky [39] is one of the most quoted paper (more than 26000 quotations) and
Prospect Theory has been applied almost everywhere in Economics, Insurance Economics, Law
and Economics, Managment Science etc.
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2.3 Familiarity, Competence and Extreme Events

In order to cope with some observed phenomena, such as preference reversal or coun-
terfactual thinking, the literature on decision making under uncertainty has recently
questioned the critical assumption of the single reference point assumed in prospect
theory and cumulative prospect theory. The preference reversal phenomenon has
been explained in models of context-free preferences, in which independence and/or
reduction axioms [41, 64], transitivity of preferences [51] or the double matching
axiom [83] are violated. Counterfactual thoughts have been considered a key deter-
minant of the individual behavior in post-decisional regret frameworks, where regret
is evoked whenever an obtained outcome compares unfavourably with an outcome
that the investor could have obtained she had chosen differently [13]. Crucially,
preference reversal and counterfactual thinking have been explained in variants of
prospect theory by introducing lotteries as reference points [43, 44, 73] or simply
by comparing obtained outcomes with unchosing ones (non-investment or inaction
outcome, the best-performing outcome, the worst-performing outcome) to assess the
investor regret [49, 75].

Basili et al. [6] provided a peculiar characterization of the decision maker’s behav-
ior under uncertainty introducing a sort of familiarity bias. In fact psychometric stud-
ies have put in evidence that familiarity with a risk alters the individual perception
of its riskiness, with the result that “an accident that takes many lives may produce
relatively little social disturbance (beyond that caused to the victims’ families and
friends) if it occurs as part of a familiar and well-understood system (e.g., a train
wreck). However, a small incident in an unfamiliar system (or one perceived as poorly
understood), such as a nuclear waste repository or a recombinant DNA laboratory,
may have immense social consequences if it is perceived as a harbinger of future and
possibly catastrophic mishaps” [72, p. 13].13 Basili et al. [6] presented a representa-
tion theorem for a decision-maker that is ambiguity averse towards very large losses
and ambiguity seeker towards unusual gains, but is assumed to be ambiguity neutral
with respect to a set of ordinary outcomes. Crucially, they introduced a reference set,
that is, an interval of outcomes that the decision-maker feels more familiar with than
other possible outcomes, instead of assuming the existence of a unique reference
point.14

Basili et al. [7] introduced a characterization of the precautionary principle15 for
a decision making process under uncertainty with catastrophic losses and/or wind-
fall gains. Unlike Basili et al. [6], where it is assumed that people act as in stan-

13 Assumption that decision-makers are affected by familiarity bias is confirmed in empirical
researches, such as de Lara Resende and Wu (2010) who find that “the decision weighting function
parameters estimated for losses show an elevation parameter for less familiar domains higher than
the elevation parameter for more familiar domain”.
14 Baillon and Cabantous [5, p. 135 ] put in evidence that even “identical (convex hulls of) possible
priors can be treated differently by the same individual depending on the source of uncertainty”.
15 Precautionary Principle is considered the rational guide to policy making in situations character-
ized by scientific uncertainty, irreversibility, and catastrophic events.
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dard cumulative prospect theory, they suppose that the decision maker’s behavior is
characterized by the opposite ambiguity attitude with respect to extremely negative
events, indeed pessimism in place of optimism (since the latter behavior could induce
dissipative choices instead of conservative ones) and optimism instead of pessimism
towards windfall gains. This is justified by real life observations and recent experi-
mental papers [1, 25, 48], that provide some evidence that contrasts the assumption
of standard cumulative prospect theory. Their value functional provides a consistent
notion of the precautionary principle that could be used to contrast disregarded pre-
vention of disasters and sloppy response operations in emergencies. Indeed whenever
individuals show some difficulty in perception of ambiguous extreme risks, such as
in the case of Hurricane Katrina, the human version of mad cow disease (CJDv),
the possible pandemic of the human avian flu (A-H5N1 or A-H1N1 virus) or conse-
quences induced by global warming.

3 Entropy and Quantile Functions for the Representation
Theorem

In 2011, Basili and Chateauneuf introduced a multiple quantile utility model of CPT
and a representation theorem that models not only asymmetric attitude with respect
to ambiguity on extreme events (optimism respects windfall gains and pessimism
respects catastrophic events), but also the decision-maker attitude to consider maxi-
mization of entropy as a rule of inference when information is ambiguous and scanty.
Maximum entropy probability, which is a measure of conflict of evidence, is a mea-
sure of the diversification degree and a rational form of prudence. The maximum
entropy principle is a general method to choose a probability distribution under
uncertainty, indeed the method that elicits the most unbiased-uniform distribution
among all the possible ones.

The maximum entropy principle was introduced by Jaynes [46, 47] in physics as
a generalization of the classical Principle of Insufficient Reason of Laplace and it is
a general method to choose a probability distribution under uncertainty, indeed the
method that elicits the most unbiased-uniform distribution among all the possible
ones. Basili and Chateauneuf obtained an inverse cumulative function, that is less
peaked, through maximization of entropy, in intermediate quantiles, but has the fattest
tails, simce it maximizes the minimum expected loss and the maximum expected
gain. Crucially this result is coherent with evidence of Tsallis-Renyi entropy (non-
extensive entropy measure) applications in economics, where the individual attitude
with respect to ordinary and extreme events is considered within the context of non-
extensive statistical mechanics.16

16 Non-extensive entropy not only permits to represent a different behavior of the decision-maker
with respect to ordinary and extreme events, but also to take into account the dependence between
perception of ambiguity, competence and reliability of information [74].
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Interesting enough, they introduced an alternative method to define the composite
value function of a prospect that is suitable for using the class of ε-contaminated
probabilities, where the parameter ε ∈ [0, 1] indicates the probability deviation from
the prior, a basic methodology in Bayesian robustness analysis.

4 Determination of the Composed Inverse Cumulative Function

For simplicity suppose that S is a finite state space, A is a σ -algebra of events (e.g.,
the power set 2S) and P is a set of probability distributions on (S,A). A measure
υ is a capacity on (S,A) if υ : A ∈ A→ υ(A) ∈ R, where υ(∅) = 0, υ(S) = 1
and (A, B) ∈ A2 such that A ⊆ B =⇒ υ(A) ≤ υ(B). A capacity υ is convex if
υ(A ∪ B) + υ(A ∩ B) ≥ υ(A) + υ(B), ∀A, B ∈ A. The dual capacity17 υ of a
capacity υ is defined by υ(A) = 1 − υ(AC ) ∀A ∈ A, where AC = S \ A is the
complement of the set A. It is considered a decision-maker facing uncertainty, where
uncertainty is modeled through the core of a convex capacity υ, i.e., through the set
C(υ) of probability distributions P on (S,A) above υ, or P(A) ≥ υ(A) ∀A ∈ A.

For X : S → R, the cumulative distribution function FX of X is defined by x ∈
R→ FX (x) = P(X ≤ x). A common pseudo-inverse of FX denoted the quantile-

function F−1
X is defined by p ∈ [0, 1] → F−1

X (p) = I n f
{

x ∈ R, FX (x) ≥ p
}

,

such that F−1
X (0) = −∞, F−1

X (1) = Max
s∈S

X (s) and F−1
X is non-decreasing and

left-continuous.
For X ∈ R

S and υ a capacity on A, the Choquet integral18 of X w.r.t. υ denoted∫
Xdυ is defined by

∫
Xdυ = ∫ 0

−∞(υ(X ≥ t)− 1)dt + ∫ +∞
0 υ(X ≥ t)dt .

The cumulative distribution FυX of X with respect to capacity υ is defined by
x ∈ R → FυX (x) = υ(X ≤ x) and it is possible to define the quantile function

Fυ
−1

X by p ∈ [0, 1]→ Fυ
−1

X (p) = I n f
{

x ∈ R, FυX (x) ≥ p
}

.

The the quantile function Fυ
−1

X (0) = −∞, Fυ
−1

X (1) = Max
s∈S

X (s), Fυ
−1

X is non-

decreasing, left-continuous and completely defined by its values on (0, 1). It follows
that:

Theorem 1 ∀X ∈ R
S :

∫
Xdυ = ∫ 1

0 Fυ
−1

X (p)dp .

Theorem 1 expresses the Choquet integral as an integral of a quantile function
and resultant composed inverse cumulative function is capable of describing pes-
simism and optimism on extreme outcomes and ambiguity neutrality on ordinary
outcomes.19 In fact, given an act X : S→ R and (α, β) ∈ [0, 1]2 , α ≤ β, such that
[α, β] determines the interval of cumulative probability between which outcomes

17 Note that if a capacity υ is covex its dual capacity υ is concave.
18 For X ∈ R

S , EP (X) =
∫ 1

0 F−1
X (p)dp is the mathematical expectation of X w.r.t. P .

19 Proof is in [8, p. 1098].
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can be considered as ordinary, the decision-maker values outcomes between these
two quantiles in an ambiguity neutral way by probability distribution π . In this way
she models pessimism in the lower tail [0, α] , i.e., she models the attitude of the DM
who minimizes the expectation of X on this quantile with respect to all P = C(υ),
and symmetrically optimism in the upper tail [β, 1], through maximization of the
expectation of X in this quantile with respect to all P = C(υ).

The decision-maker defines the lower tail and the upper tail, by choosing α, β ∈
[0, 1], where α ≤ β, and then calculates the value of X ∈ R

S through I (X) =
I1(X)+ I2(X)+ I3(X), where:

I1(X) =
∫ α

0 Fυ
−1

X (p)dp; I2(X) =
∫ β
α

Fπ
−1

X (p)dp and I3(X) =
∫ 1
β

Fυ−1
X (p)dp.

Since20 I satisfies monotonicity or X ≥ Y =⇒ I (X) ≥ I (Y ), constant additivity
or I (X + a · S∗) = I (X)+ a ∀a ∈ R and positive homogeneity or I (aX) = aI (X)
∀a ≥ 0 and ∀X , it is possible to characterize the pessimistic attitude of the DM
with respect to outcomes in the lower tail and her optimistic attitude with respect to
outcomes in the upper tail.21

Because of ambiguous information, the decision-maker solves the problem of
assigning values to probabilities distributions in C(υ) by applying the Maximum
Entropy Principle and focusing on the probability distribution π in C(υ). The prob-
ability distribution π is the ‘less concentrated’ in P = C(υ).

Determination of the probability distribution π ∈ core(υ) that maximizes entropy
is a crucial problem in the model. In fact the probability distribution π is the pivotal
distribution (ambiguity neutrality) for the definition of the decision-maker’s pes-
simism and optimism Basili and Chateauneuf [8] found that an efficient algorithm to
obtain π , that is the less diffuse probability distribution in the core of a capacity, was
proposed by [45]. Jaffray set that the natural candidate was the probability distribu-
tion closer to uniformity “in particular the smallest elementary probability should be
as big as possible”. To elicit π ∈ C(υ) consistent with the convex capacity υ, Jaffray
considered the dual capacity υ. Assumed A0 = ∅, Jaffray defined a family of dis-
joint non-empty subsets Ak of S, where k ≥ 1, such that: Ak ⊆ (A0 ∪ ... ∪ Ak−1)

c

and υ(A0∪...∪Ak−1∪Ak )−υ(A0∪...∪Ak−1)
|Ak | =

= Min

{
υ(A0∪...∪Ak−1∪E)−υ(A0∪...∪Ak−1)

|E | ,

∅ = E ⊂ (A0 ∪ ... ∪ Ak−1)
c

}
.

Setting αk = υ(A0∪...∪Ak )−υ(A0∪...∪Ak−1)
|Ak | , Jaffray showed that the maximum

entropy probability π in C(υ) is clearly specified by π({s}) = αk when s belongs to
Ak for k ≥ 1.

Once the unique probability π has been selected, it is straightforward to define
the DM pessimism and optimism with respect to outcomes in the tails.

20 Proof and details in [8, p. 1099]
21 Cardin [15] introduces a class of aggregation functional based on a multiple quantile model that
generalizes the approach established in [8].
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Definition 2 The decision-maker is pessimistic with respect to the lower tail if
I1(X) ≤

∫ α
0 Fπ

−1

X (p)dp (overestimated losses with respect to the reference proba-
bility π ).

Definition 3 The decision-maker is optimistic with respect to the upper tail if
I3(X) ≥

∫ 1
β

Fπ
−1

X (p)dp (overestimated gains with respect to the reference prob-
ability π ).

Proposition 4 The decision-maker is pessimistic in the lower tail and optimistic in
the upper tail.22

5 Entropy and ε-Contamination

Ellsberg [22] suggested for the solution of his famous Paradox, about two urns
containing red and black balls, the functional form

[
ρq0 + (1− ρ)qmin

X

]
(X),where

q0 is the estimated probability vector and qmin
X the probability vector in�, such that

“in the case of the red, yellow and black balls, supposing no samples and no explicit
information except that 1/3 of the balls are red” [22, p. 665 ], corresponding to min,
for the act X . The set of probability distributions � on the act is exogenous and the
parameter ρ ∈ [0, 1] reflects the subjective “degree of confidence, in a given state of
information or ambiguity, in the estimated distribution q0, which in turn reflects all
of his judgments on the relative likelihood of distributions, including judgments of
equal likelihood” [22, p. 664].

In robust Bayesian analyses the class� of prior distributions is an ε-contaminated
class where, given an initial believable prior q0, the parameter ε ∈ [0, 1] is the amount
of error that is deemed possible for that prior. For A ⊂ S, if the decision-maker is not
certain about sureness (reliability) of q0, she considers a perturbation (contamination)
of q0 through some probability distribution q in the set of all priors with weight ε,
that is� = {q : q = (1− ε)q0 + εq, q ∈ Q}. “Stated another way, further reflection
might to alterations of probability judgements by an amount ε. Hence, possible priors
involving such alterations should be included in �” [12, p. 462] and the class � of
beliefs is only a special class of capacity (a particular case of Dempster-Shafer belief
functions).

Previous considerations induce quite straightforward to represent ambiguity
through ε-contamination, when the decision-maker faces multiple priors [19, 42, 55].
In this perspective Basili and Chateauneuf [8] considered the capacity υ obtained
by the ε-contamination of the probability P0, such that υ(A) = (1 − ε)P0(A),
∀A = S.23 They showed that for the particular convex case of ε-contamination of a
given probability P0, Jaffray’s algorithm is particularly efficient [8, p. 1100]:

22 Proof is in [8, p. 1099]
23 If A = S then υ(A) = 1.
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Theorem 5 Let υ be the ε-contamination of P0, and let π denote the maximum
entropy probability in C(υ). If ε = 0 ,π = P0; if ε = 1,π is the uniform distribution.
Finally if ε ∈ (0, 1), π is defined by: π ({s}) = υ(A1)|A1| , for any s ∈ A1, where υ(A1)|A1| =
Min

{
υ(E)
|E | ,∅ = E ⊆ S

}
(1), if A1 = S, π is therefore the uniform distribution; if

Ac
1 = ∅ then π is furthermore defined by π ({s}) = (1 − ε)P0({s}), ∀s ∈ Ac

1 (2).

Note that υ(E)|E | = ε +(1−ε)P0(E)|E | for any ∅ = E ⊆ S.24

5.1 A Simplified Model

Jaffray’s algorithm is a general procedure to identified the maximum entropy prob-
ability distribution in C(υ), but it is not immediate. If the decision-maker has some
competence or confidence about consequence induced by a given act, she could
attach a different reliability to estimation of events in lower tail and upper tail when
information is vague or incomplete.25 This scenario can be represented through an
asymmetric ambiguity attitude respect extreme events and synthethized in more than
one ε-contamination of the given probability, inducing in such a way a sort of skew-
ness in the composite inverse cumulative function. Basili and Chateauneuf [8] set
the following simple procedure. Given an enough reliable and credible probability
measure P0 ∈ C(υ) and asymmetric pessimism and optimism on extreme events,
summarized by ε1 (degree of pessimism) on the lower tail and ε2 (degree of optimism)
on the upper tail, such that ε1 = ε2 and ε1+ε2 ≤ 1. Denoted υ1 the ε1-contamination
of P0 and υ2 the ε2-contamination of P0, the value of the act X is defined as:

I (X) = I1(X)+ I2(X)+ I3(X), where

I1(X) =
∫ α

0 F
υ−1

1
X (p)dp; I2(X) =

∫ β
α

F
P−1

0
X (p)dp and I3(X) =

∫ 1
β

F
υ−1

2
X (p)dp.

This new functional satisfies monotonicity, constant additivity and positive homo-
geneity. The new procedure allows the expression of simultaneous different degrees
of ambiguity attitude expressed by more than one contamination. In the new approach
(1− ε1 − ε2) captures the notion of reliability of the chosen probability distribution
P0 whereas ε1 and ε2 measure the error in the elicitation of P0 in C(υ), weighted
by the asymmetric confidence with respect to reliability of extreme outcomes.26 It is
worth noticing that assuming ε1 ≥ ε2 it is possible to obatin a more conservative ver-
sion of the precautionary principle that always combines conservative and dissipative
behavior, given the reliability of the probability distribution P0, and overcomes the
failure of the full conservative measure, e.g., maxmin decisional rule.

24 Proof is in [8, p. 1100 ].
25 As an example consider the collection of probabilistic opinions given by experts and the DM is
relatively less optimistic on upper tail events.
26 This result, that arranges a mixture of pessimism and optimism, is coherent with neo-additive
capacities modelled by Chambers [17].
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Effective Decision Making in Changeable
Spaces, Covering and Discovering Processes:
A Habitual Domain Approach
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Abstract This chapter proposes a model of covering and discovering processes for
solving non-trivial decision making problems in changeable spaces, which encom-
pass most of the decision making problems that a person or a group of people
encounter at individual, family, organization and society levels. The proposed frame-
work fully incorporates two important aspects of the real-decision making process
that are not fully considered in most of the traditional decision theories: the cogni-
tive aspect and the psychological states of the decision makers and their dynamics.
Moreover, the proposed model does not assume that the set of alternatives, criteria,
outcomes, preferences, etc. are fixed or depend on some probabilistic and/or fuzzy
parameter with known probability distribution and/or membership function. The
model allows the creation of new ideas and restructuring of the decision parameters
to solve problems. Therefore, it is called decision making/optimization in change-
able spaces (DM/OCS). DM/OCS is based on Habitual Domain theory, the decision
parameters, the concept of competence set and the mental operators 7-8-9 principles
of deep knowledge. Some illustrative examples of challenging problems that cannot
be solved by traditional decision making/optimization techniques are formulated as
DM/OCS problems and solved. Finally, some directions of research are provided in
conclusion.
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1 Introduction

The study of decision making process started few centuries ago. It has evolved
through four stages. (1) Preoccupation with the rational, (2) critiques and extensions
of the rational tradition, (3) creation of fully articulated alternatives to the rational
and, finally, (4) a multi-perspective view of decision making [2]. The rational theory
of decision making is based on utility function. In this model it is assumed that a set
of alternatives X is available and fixed and a utility function u(.) : X→ R (R is the
real line) that represents the preferences of the Decision Maker (DM) is constructed.
To each alternative x the function associates a value or utility u(x). An alternative y
is preferred to an alternative x if u(y) > u(x). The decision having the largest utility
is chosen as the optimal decision. In other words, the optimal decision is selected by
solving the optimization problem maxx∈X u(x). Such a model assumes that (i) the
DM is rational, that is, his preferences, tastes, etc. are consistent with each other and
(ii) he has the capability of looking at all possible choices and outcomes, weighing
each, and then making an optimal decision based upon these deliberations.

When a decision making problem involves uncertainty, the expected utility func-
tion is used instead of the utility function [30]. The DM weighs the different scenarios
of each alternative by probabilities and computes the expected value of each alter-
native by: first multiplying the utility of each of its scenarios by the corresponding
probability, then summing up over all the alternative’s scenarios. The procedure ends
by selecting the best alternative as the one presenting the highest expected value. The
existence of utility function requires the preferences of DM to be transitive, complete,
and continuous (convex) [30].

Most of the early quantitative models and theories of decision making were based
on the optimization model maxx∈X u(x). These models were later generalized to
decision making problems involving multiple criteria [26, 36]. To better represent
real-decision making problems, both single criterion and multiple criteria decision
making models were further extended to models incorporating stochastic or fuzzy
[4] or fuzzy-stochastic parameters with known probability distribution and/or mem-
bership functions [21, 22, 24, 43]. Numerous methods were developed to solve
optimization problems as linear programming [9], nonlinear programming methods
[3], stochastic programming methods [22], multiple criteria optimization methods
[11, 24, 26], and so on. It is important to note also that the advances made in computer
sciences considerably contributed to the development of decision making software
that facilitate decision making.

Critiques and extensions of the rational tradition began to appear in the next stage
of decision making literature as scholars realized that neither man nor his orga-
nizations were capable of making decisions which took into account all possible
alternatives, assessed all possible outcomes, and selected the optimal among such
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alternatives. Simon [23] stated that man does not make decisions by “optimizing”
principle rather he uses the “satisfycing” principle. The satisfycing or bounded ratio-
nality based models of decision making assume that the DM chooses certain levels
of satisfaction, and then a decision is selected as soon as it achieves the fixed levels
of satisfaction or goes beyond.

Later, Tversky and Kahneman [14, 27–29] provided experimental evidence of
the limitations of the rational model of decision making. Tversky [27] showed that
the preferences of a DM may not be transitive. Tversky and Kahneman [28, 29]
provided experimental evidence of violation of the expected utility model when a
DM is faced with a decision making problem involving states of nature. These works
led the latter two scholars to the introduction of an extension of expected utility
theory, the Prospect theory [14]. Prospect theory is a descriptive model of decision
making that attempts to describe how we make decisions and why our decisions
violate the expected utility model. This theory predicts that people will be especially
averse to loss and will show differences in preferences depending on how alternatives
are presented, or framed.

Busemeyer and Towsend [6] extended the static expected utility theory to the
Decision Field theory via a dynamic approach where a probability function that maps
each pair of actions into the interval [0,1] describes the variation of the preferences
with respect to deliberation time.

In the third stage, full-fledged alternative views to the classical rational tradition
were developed. Cyert and March [8], for example, introduced an organizational
theory of decision making in the book “A Behavioral Theory of the Firm” that was
to replace the neo-classical economic theory of the firm. Several decidedly non-
rational views of the decision making process grew out of the literature of cognitive
and perceptual psychology as the Attribution theory [15]. The Attribution theory is
a decision making theory that is based on schemata and heuristics. A schemata is a
working hypothesis about some aspect of the environment and may be a concept of
the self (self schema), other individuals (person schemata), groups (role schemata), or
sequence of events in the environment (scripts). In addition to using them to organize
their interpretation of their environment, people use schemata to develop scripts for
action. Heuristics consist of rules people use to test their schemata and facilitate the
processing of information.

From stages one to three, it appears that the decision making process involves
many aspects as psychology, sociology, rationality, etc. Moreover, different decision
making models may lead to different outcomes.

In the fourth, stage attempts were made to develop a multiple-perspective approach
to the study of decision making. For instance, in 1971, Allison made an explicit
elaboration of the multiple-perspectives idea in the book “The Essence of Decision;
Explaining the Cuban Missile Crisis” [1]. Steinbruner [25] elaborated the Cybernetic
Theory of Decision based on the multiple-perspective approach. However, there is
no theory that encompasses all the multiple aspects of decision making process as
cognitive processes, rationality, emotions, group behavior, etc.

Dynamic Decision Making is a model that encompasses decision making prob-
lems under conditions which require a series of decisions, where the decisions are
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not independent, where the state of the world changes, both autonomously and as
a consequence of the DM’s actions, and where the decisions have to be made in
real time [5, 10]. According to Brehmer [5], it is difficult to find useful normative
theories for these kinds of decision making problems, and research thus has to focus
on descriptive issues. A general approach, based on control theory, is proposed as
a means to organize research in the area. An experimental paradigm for the study
of dynamic decision making, the computer stimulated microworlds (i.e., Decision
Making Games, DMgames), has been introduced to study decision performance. In
fact, research in dynamic decision-making is mostly laboratory-based [12].

It is important to note that the existing theories of decision making have achieved
tremendous results in both theory and applications [11–13, 21, 22, 24, 26, 36, 43].
However, most of them cannot handle problems involving parameters with unknown
shapes and behavior i.e. unstructured uncertainty. Indeed, in real decision making,
some parameters may even be intangible. Without special efforts, we may not be
aware of their existence. Even when they are noticed, their dimensions, ranges and
shapes may not be easily predetermined or assumed as in probabilistic and/or fuzzy
models. Often, real-life decision making problems also involve parameters that are
changeable, including the set of alternatives, the criteria and the DMs, as situations
and psychological states of the DMs change. Discovering and controlling the change
of these parameters is a vital part of the process of solving challenging decision
making problems. A decision making problem involving changeable parameters is
called a decision making in changeable spaces (DMCS) problem. DMCS problems
have been introduced and discussed in [18, 38]. A broad class of decision making
problems involving DMCS problems are covering and/or discovering problems. Let
us explain these two problems by examples.

Why a professional tiger hunter and a newborn are not afraid of a tiger when
they see it, while common people are afraid of it? It is because the hunter has the
competence to deal with the tiger, while the newborn has no idea about the danger
when dealing with it; the common people are afraid of the tiger because they know
its danger but they don’t have the necessary competence to deal with it. For effective
decision making problem solving, one need to have the necessary competence it
requires. Given a decision making problem, the competence set associated to this
problem is defined as the set of knowledge, ideas, skills, know-how, resources, efforts,
etc. necessary to effectively solve it [37]. Covering and discovering are two non-trivial
decision making processes that people encounter in their socio-economic activities
at individual, family, organization and society levels. The covering problem can be
defined as “how to transform a given competence set to cover a targeted competence
set”. A covering problem may be difficult to solve when the Decision Makers (DMs)
do not know exactly their actual competence sets and/or the target competence set
and/or the way they should transform their competence sets to acquire the target
competence set.

Given a competence set, what is the best way to make use of it to solve unsolved
problems or to create value? The process underlying this problem solving or value
creation involves discovering. Thus, a discovering process can be defined as iden-
tifying how to use available tangible and intangible skills, and resources to solve
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an unsolved problem or to produce new ideas, concepts, products or services that
satisfy some newly-emerging needs of people. From the definitions of covering and
discovering, it appears clearly that these two classes of non-trivial decision making
problems encompass most of the non-trivial problems people face in their economic,
social and academic activities. Let us give a pair of examples of covering and dis-
covering problems for illustration.

Example 1.1 (Horse Race [31]). A retiring corporate chairman invited to his ranch
two finalists (A and B) from whom he would select his replacement using a horse
race. A and B, equally skillful in horseback riding, were given a black and white
horse, respectively. The chairman laid out the course for the horse race and said,
“Starting at the same time now, whoever’s horse is slower in completing the course
will be selected as the next chairman!” The two candidates were puzzled at the
beginning because the rule of the race is not the commonly known rule that the first
who crosses the finishing line is the winner. They need to discover new strategies
to win the race themselves. Thus, the candidates face a discovering and covering
problem. Discovering strategies and executing them to win the race (cover their
objective).

In the sequel, when a decision making problem involves discovering and covering,
we say that it involves a dis/covering problem.

Example 1.2 (Emerson’s Calf [31]) One very cold weather day, Ralph W. Emerson
and his son had an extremely difficult time pushing a young calf into their barn
for shelter. As Ralph pulled from the head of the calf and his son pushed with
determination from behind, the calf stiffed its legs and met his action with strong
resistance. The calf’s survival instinct was aroused by the action of Emerson and his
son. Here, Emerson and his son tried their best using their knowledge and physical
force (resource) to bring the calf into the barn (target), they could not. This means
that they need to transform their set of knowledge and resources to reach or cover
their objective, that is, to bring the calf into the barn. In other words, they face a
dis/covering problem.

Later we will see how these two DMCS problems were solved within the intro-
duced model. It is important to note that most of decision making problems involve a
dis/covering process. Indeed, the discovering process requires an objective to reach,
that is, covering, while in the covering process, the DMs may need to generate new
ideas and concepts, that is, discovering. For instance, in the Example 1.1, the can-
didates have a target to cover, win the race; however, they have to discover winning
strategies. Thus, to solve a non-trivial decision problem, we are generally involved
with a dis/covering problem or process.

From the foregoing discussion, it appears that the existing decision making the-
ories can be categorized into rational theories and cognitive theories. The rational
theories are normative, however, they do not reflect the process of decision making
with respect to preferences of the DM as pointed out by Tversky and Kahenman [14,
27–29], while cognitive theories are basically descriptive and lack a well-developed



136 M. Larbani and P. L. Yu

theory. Moreover, both rational and cognitive theories cannot handle DMCS prob-
lems and do not allow restructuring of the decision parameters to solve problems.
Following the multiple-perspective approach to decision making problems, in this
chapter, we propose a model of decision making based on the Habitual Domain
(HD) theory [31–35]. It is a comprehensive mathematical framework in the sense
that it incorporates the psychological and the cognitive aspects of decision making.
Compared to existing decision making models, the introduced model has the follow-
ing unique features: (i) it can handle dynamic decision making problems involving
unstructured uncertainty i.e. DMCS problems at individual, group and organizational
levels, and in conflict resolution, (ii) it is at the same time descriptive and normative
in the sense that it suggests courses of action to solve decision making problems,
including restructuring their parameters (iii) it introduces the competence set as a tool
in decision process and (iv) it formulates decision making problems as dis/covering
problems.

Specifically, we introduce a mathematical model of DMCS problem focusing on
dis/covering, called decision making /optimization in changeable spaces (DM/OCS).
DM/OCS is based on HD theory, the decision parameters, the concept of competence
set and the mental operators 7-8-9 principles of deep knowledge.

The rest of the chapter is organized as follows. Section 2 briefly presents the
decision making process from HD theory perspective and the decision parameters. A
detailed discussion of these parameters can be found in [38]. Section 3 presents a brief
competence set analysis and the mental operators 7-8-9 principles of deep knowledge.
A more detailed competence set analysis and explanation of the 7-8-9 principles are
provided in [37] and [31, 32, 34], respectively. Section 4 formally defines covering
and discovering, introduces OCS and provides necessary and sufficient conditions for
dis/covering completion. Section 5 provides some applications. Section 6 concludes
the chapter and provides further research directions.

2 Habitual Domains and Decision Making
in Changeable Spaces

As mentioned in the introduction, the traditional framework for decision making
is not appropriate for the formulation and resolution of DMCS problems because
it does not take into account the psychological states of the DMs, does not handle
parameters with unknown shapes and ranges, and does not allow the restructuring of
the decision parameters during the decision process. In this chapter, we demonstrate
that HD theory [31–35] can be used as a basis to develop a comprehensive framework
for DMCS problems. Thus, we essentially use HD theory as a general framework to
develop our model of dis/covering. In this section, because of space constraint, we
briefly introduce the HD theory.

The collection of ideas and actions (including ways of perceiving, thinking,
responding, acting, and memory) in our brain, together with their formation, dynam-
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ics, and basis in experience and knowledge, is called our Habitual Domain (HD)
[31–35]. Over time, unless extraordinary or purposeful effort is exerted, our HD will
become stabilized within a certain domain. This can be proven mathematically [7].
As a consequence, we observe that each of us has habitual ways of eating, dressing,
speaking, reacting to specific situations, etc.

The concept of an individual’s HD can be extended to other living entities, such as
companies, social organizations, and groups in general. The following are the basic
elements of HD.

(i) The potential domain (PD): the collection of ideas and actions that can poten-
tially be activated to occupy our attention.

(ii) The actual domain (AD): the set of ideas and actions that are actually acti-
vated or which occupy our attention.

(iii) The activation probabilities (AP): the probabilities that ideas or actions in
PD also belong to AD.

(iv) The Reachable Domain (RD): the set of ideas and actions that can be attained
from a given set in AD.

Thus, the habitual domain can be formally formulated as

HDt = {PDt , ADt , APt , RDt }, (1)

where t represents time. The theory of HD is based on eight hypotheses H1-H8 [31,
32, 34]: (H1) Circuit Pattern Hypothesis, (H2) Unlimited Capacity Hypothesis, (H3)
Efficient Restructuring Hypothesis,(H4) Analogy and Association Hypothesis, (H5)
Goal Setting and State Evaluation Hypothesis, (H6) Charge Structure and Atten-
tion Allocation Hypothesis, (H7) Discharge Hypothesis, and (H8) Information Input
Hypothesis.

The hypotheses H1-H8 are explained in Appendix. Note that hypotheses
H1-H4 describe how the brain operates, while hypotheses H5-H8 describe how the
mind operates. Moreover, a high level of charge can be a drive for active problem
solving or can create a mental stress if no action is taken. In fact, it is humans that
make decisions; therefore, understanding the human behavioral system plays a vital
role in making good decisions. The complex processes of human behaviors have a
common denominator resulting from a common behavior mechanism. The mecha-
nism depicts the dynamics of human behavior. Based on the literature of psychology,
neural physiology, dynamic optimization theory, and system science, Yu [31, 34, 36]
described the dynamic human behavior mechanism as presented in Fig. 1, which is
briefly explained below:

(i) Box (1) is our brain and its extended nervous system. Its functions may be
described by the four hypotheses (H1–H4) in Appendix.

(ii) Boxes (2)–(3) represent two basic functions of our mind, Goal Setting and
State Evaluation, explained by H5 in Appendix.

(iii) Boxes (4)–(6) represent how we allocate our attention to various events,
described by H6 in Appendix.
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Fig. 1 The human behavior mechanism

(iv) Boxes (8)–(9), (10) and (14) represent the least resistance principle which
humans use to release their charges (precursors of mental stress), described
by H7 in Appendix.

(v) Boxes (7), (12)–(13) and (11) represent the information input into our infor-
mation processing center (Box (1)). Boxes (10) and (11) are two important
functions of human thinking and information processing. Boxes (7), (12)–
(13) represent external information inputs, an important parameter in decision
making, which are explained in H8 in Appendix.

2.1 Decision Making Parameters

Dis/covering problems are fundamentally DMCS problems. Therefore, a complete
description of the real decision making process is a prerequisite to formulation of a
model of dis/covering problems. Decision making in non-trivial situations is a com-
plex process that involves two interacting groups of parameters, namely, the decision
elements and environmental facets [38]. Moreover, many non-trivial decision prob-
lems involve uncertainty and the unknown, which can lead to judgmental fuzziness
and decision failure. The unknowns and uncertainty may be due to the changing
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nature and/or unawareness of the relevant parameters. In the next section, we briefly
describe the decision parameters.

2.1.1 Decision Elements

In general, there are five basic elements involved in a decision making process. These
are (i) decision alternatives, (ii) decision criteria, (iii) decision outcomes, (iv) decision
preferences, and (v) decision information inputs. In existing decision theories, these
elements are implicitly assumed to be fixed or vary according to some known patterns
(e.g. probability distribution). In real decision making problems, these elements are
not fixed, they may change unpredictably over time depending on events, information
input and the psychological states of DMs, especially, when the decision process is
in a transition state. In other words, each of these elements is a changeable space.
They can also be considered as HDs, they tend to stabilize if no relevant event and/or
information arrives.

2.1.2 Decision Environmental Facets

Decision environments may be described by four facets: (i) decisions as a part of the
human behavior mechanism, (ii) stages of the decision making processes, (iii) players
in the decision making processes and (iv) unknowns in the decision making processes.
Here also, the existing decision theories implicitly assume that the facets (ii)–(iv)
are fixed or change according to some structured way as in dynamic programming,
dynamic stochastic decision making models and games in extensive form. However,
in real decision making problems, they may change in an unpredictable way over
time depending on the psychological states of DMs and the arriving events and
information. As for (i), in most of the decision theories, it is not incorporated. Let us
elaborate more on the unknowns in the decision making process [38].

Knowing the unknowns and how to manage them may add satisfaction to our deci-
sion processes; otherwise, they may create fear, frustration and bitterness. Unknowns
may exist in any decision element. Because of HDs and being unaware of the deci-
sion parameters and their changing nature, people would easily have decision blinds
or even get into decision traps. When blinds or traps occur, it is hard to see the
problem clearly, let alone to solve it effectively and efficiently. Note that the blinds
and traps can cause fuzziness or unknown in decision making. Conversely, fuzziness
and unknowing about the nature of problems can lead to decision blinds, traps and
wrong decisions.

Formally, a DMCS problem can be represented by the following collection (from
a single DM perspective) {Xt ,Ct , Ft , Dt , Jt , It ,HDt , ,Ut , Qt }, where the time t
varies in a certain interval [0, L], representing the allowable time for solving the
problem, Xt is the available alternative set at time t;Ct is the criteria set at time
t; Ft is the outcome measured in terms of the criteria at time t; Dt is the preference
of DM at time t, Jt is the set of possible outcomes at time t, It is the information
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inputs at time t,HDt is the DM’s HD at time t,Ut is the set of unknowns at time
t and Qt is the set of the involved DMs at time t. It is important to note that the
described decision parameters not only vary with time, but also mutually interact
with each other through time. Time optimality and time satisficing solutions (optimal
or satisficing as perceived by DMs during certain period of time, see [31, 34]) become
important solution concepts.

3 Competence Set Analysis

Competence Set Analysis began with Yu in 1989 [35], as a derivative of HD theory.
Its mathematical foundation was built by Yu and Zhang [40–42]. The competence
set (CS) for a given decision problem is defined as the collection of ideas, knowl-
edge, skills, know-how, efforts and resources required for its effective resolution [37].
Therefore, knowing the characteristics and dynamics of this set is essential for suc-
cessfully solving challenging problems. When the decision maker thinks he/she has
already acquired and mastered the CS as perceived, he/she would feel comfortable
making the decision and/or undertaking the challenge.

3.1 Decision Blinds and Decision Traps from a Competence Set
Perspective

The competence set CS(E) of a problem E is, in fact, a projection of the DMs’
HDs onto the problem. Implicitly, it contains Actual Domain, Potential Domain,
Reachable Domain, and Activation Probabilities (1). For simplicity, assume that CS
(E) is constant and denote by C St (E), the competence set of the DMs at any time
t. WhenC S(E) ⊂ C St (E), for some time t, the DMs are able to solve the problem
E, while when C S(E) �⊂ C St (E), the DMs are not able to completely solve the
problem E at time t, then C S(E)\C St (E) would be the decision blinds, it is the set
of all the competencies required but not seen by the decision makers at time t. See
the illustration in Fig. 2.

Decision Blinds
CS (E)\CSt (E)

CSt (E)

CS (E)

Fig. 2 Decision blinds
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Note that the larger the decision blind is, the more likely it is that the DMs might
make important mistakes [37].

Suppose that C St (E) is fixed or contained in a certain domain for some period
of time and C S(E)\C St (E) is large and significant, then we tend to make mistakes
in decisions and we are in a decision trap during the considered period. Note that
C St (E) being contained or fixed in a certain domain is equivalent to the correspond-
ing Actual Domain and Reachable Domain being fixed or trapped in a certain domain.
This can occur when we are in a very highly charged state of mind or when we are
over confident, which makes us respond quickly and unthinkingly and to habitually
commit the behavior of decision traps. In Fig. 3, one can see that decision blinds
reduce as we move our Actual Domain from A to B then to C. By changing our
Actual Domain, we can change and expand our Reachable Domain. We can reduce
decision blinds and/or avoid decision traps by systematically changing the Actual
Domain. For illustration, assume that CS(E) and the Reachable Domain are given,
as depicted in Fig. 3.

Fig. 3 Reducing decision blinds and/or avoiding decision traps

Then, as we move the Actual Domain from A to B, then to C, our decision blinds
reduce progressively from C S(E)\RD(A) to C S(E)\(RD(A) ∪ RD(B)) then to
C S(E)\(RD(A) ∪ RD(B) ∪ RD(C)).

For challenging decision problems, we can treat the 9 decision parameters of
Sect. 2.1 as 9 points of the Actual Domain. Systematically moving over these 9 para-
meters and pondering their possible Reachable Domains can expand our Reachable
Domain for dealing with the challenging problems. As a consequence, C St (E) is
expanded and our decision blinds,C S(E)\C St (E), reduced. In the next section, we
will introduce HD tools to enrich and expand our HD and C St (E) to reduce the
decision blinds and avoid decision traps.

Let us illustrate the concepts of decision trap and decision blinds.

Example 3.1 Let us consider Example 1.2 (Emerson’s Calf). At the beginning, there
were three DMs involved in the situation, Emerson, his son and the Calf. Emerson
and his son wanted to bring the Calf to the barn because the weather was very cold.
Thus, the targeted competence set CS is a set that encompasses the skill of being
friendly with animals and make them obey to do what we want them to do, in the
present case, going into the barn. The initial competence set of Emerson and his
son, C S∗, is limited to their skills and competencies derived from their experiences
and education. Emerson and his son adopted the strategy of pushing the Calf into
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the barn. Although the intention of Emerson and his son was good, the strategy did
not work. Let us explain this situation by HD theory. In fact, the Calf perceived
the action of Emerson and his son as a threat to its life (see Hypothesis H5, goal
setting and state evaluation, in Sect. 2). This threat created a large deviation from the
ideal position of the goal representing its life, which triggered immediate action (see
Hypotheses H6 and H7) from the Calf in the form of strong resistance to the action
of Emerson and his son. Since Emerson and his son maintained the same strategy,
the reaction of Calf became even stronger. We can conclude that Emerson and his
son were definitely in a decision trap, that is, C St was constant and did not evolve to
cover CS. Although Emerson was a knowledgeable and famous writer, his habitual
domain and competence set did not include the skills and knowledge to make the Calf
accept to come to the barn peacefully. Obviously, his son too did not have the needed
skills to solve the problem with his limited experience and exposure to animals. Thus,
the decision blind, C S\C St was nonempty and significant and included the skills of
dealing with animals and making them accept to do what one wants them to do.

3.2 Clarifying Fuzziness and Unknown in Decision Making
Using HD Tools

Uncertainty pervades decision making process. It may be structured as stochastic,
fuzzy, fuzzy-stochastic, etc. or unstructured, that is, represented by parameters with
unknown shapes, dimensions and behavior. Uncertainty results mainly from the cog-
nitive limitations of human beings and the complexity and unpredictability of the
environment behavior. It is the main source of blinds and traps in the decision mak-
ing process. To reduce the blinds and avoid traps, in addition to being aware of
the decision parameters and their changing nature, we need HD tools to expand
and enrich our Actual Domain and Reachable Domain and look into the depth of
the Potential Domains. The HD tools can also expand and enrich our perception
of the decision problem and its related parameters. Here, we present three toolboxes:
the seven empowering operators, the eight basic methods for expanding HD and the
nine principles of deep knowledge. Note that all the HD tools in all three boxes may
be used or ignored by DMs. In fact, the more we use them, the more powerful they
will be in our brain and the more they will be ready to help us expand and enrich our
HD. We call them the 7-8-9 principles of deep knowledge (referred to as the 7-8-9
principles in the sequel) [31, 32, 34]. These basic general principles can be used
individually or combined to create new ideas to solve dis/covering problems.

3.2.1 Seven Empowerment Operators

The seven empowering operators listed in Table 1 can make our minds think posi-
tively, with great hope and confidence to explore our world as to achieve our goals.
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As a result, whenever these operators occupy our minds, we could expand and enrich
our HD.

Table 1 The seven empowering operators

M1 Everyone is a priceless living entity. We are all unique creations who carry the spark of
the divine

M2 Clear, specific and challenging goals produce energy for our lives. I am totally
committed to doing and learning with confidence. This is the only way I can reach
the goals

M3 There are reasons for everything that occurs. One major reason is to help us grow and
develop

M4 Every task is part of my life mission. I have the enthusiasm and confidence to
accomplish this mission

M5 I am the master of my living domain. I take responsibility for everything that happens in
it

M6 Be appreciative and grateful and don’t forget to give back to society
M7 Our remaining lifetime is our most valuable asset. I will enjoy it fully and make a 100 %

contribution to society in each moment of my remaining life

3.2.2 Eight Basic Methods for Expanding HD

These eight basic principles, as listed in Table 2, are almost self-explanatory. They
can expand our HDs. These principles, usually, through self-suggestion, will enable
us to generate new ideas, new concepts and, consequently, to expand our HDs [31,
32, 34].

Table 2 Eight methods for
expanding and enriching HDs

M8 Learning actively
M9 Projecting from a higher position
M10 Active association
M11 Changing the relevant parameters
M12 Changing the environment
M13 Brainstorming
M14 Retreating in order to advance
M15 Praying or meditating
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Table 3 Nine principles of
deep knowledge

M16 The deep and down principle
M17 The alternating principle
M18 The contrasting and complementing principle
M19 The revolving and cycling principle
M20 The inner connection principle
M21 The changing and transforming principle
M22 The contradiction principle
M23 The cracking and ripping principle
M24 The void principle

3.2.3 Nine Principles of Deep Knowledge

The nine principles for deep knowledge, as listed in Table 3, not only allow us to
understand and expand our HDs, but help us on how to use our own HDs and other
people’s HDs to solve our problems as well.

It is important to note that there is no guarantee that the 7-8-9 principles are
enough to handle all transformations of a given competence set CS. We do not
pretend that this list is exhaustive. These principles are derived from HD theory
and a thorough analysis of literature on psychology, problem solving, creativity,
innovation, scientific discovery and critical thinking. Moreover, more principles can
be derived from them for specific problems in specific areas. For instance, one may
consider the mathematical transformations under the principle M21, the “changing
and transforming principle”. Moreover, their combination generates more principles.

Remark 3.1 One can, by analogy, see the cognitive process of a DM as an inter-
nal light of the mind that illuminates part of his/her Potential Domain. Then the
efficiency and effectiveness of solving a DMCS problem depends on the brightness,
intensity andorientation (flexibility) of the internal light. It is important to note that the
7-8-9 principles of deep knowledge are tools that the DM can use to go deeper into
his/her Potential Domain, to change and enlarge the scope of his/her Reachable and
Actual domains. Therefore, these principles have a direct effect on the guidance and
control of DM’s internal light. The more they are used skillfully and frequently, the
brighter, intense and flexible (in terms of direction or orientation) is the DM’s internal
light. The brightness of the internal light allows illuminating or shining the area it
points to, its intensity helps to penetrate into the depth of Potential Domains in the
direction it focuses and its flexibility makes it possible to change direction it points to.
For instance, consider the problem of covering the points A, B and C of the targeted
competence set CS(E) in Fig. 3. By using one or more of the 7-8-9 principles, the DM
may increase the brightness of the light to enlarge the scope of his/her Reachable
Domain to reach the point A. Next, using some of the 7-8-9 principles, he/she may
increase the intensity of the light so as to reach deeper parts of the Potential Domain,
then reach the point B. The DM may use the 7-8-9 principles to increase the bright-
ness, intensity and change the direction (flexibility) of the internal light, at the same
time, to reach the point C. Indeed, referring to Fig. 2, a person who diligently and
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repeatedly uses the 7-8-9 principles increases the brightness, intensity and flexibility
of his/her internal light thereby enlarging his/her Reachable Domain in all directions.
Thus, enlarging the HDs by 7-8-9 principles increases the potential of DMs to cover
a larger amount of ideas, skills and concepts that are part of the targeted competence
set C S(E), that is, to reduce the decision blinds and avoid decision traps.
The cognitive process in dis/covering may be described by the situation of a person
that enters a dark and open area for the first time, equipped with a torch with variable
brightness and intensity, to look for something he/she believes it is there. The dark
area would be some knowledge space, while the area covered by the torch’s light
would be the Reachable Domain, and the torch’s light is his/her internal light. Falling
in a decision trap can be similarly represented by a person that enters a cave and
doesn’t know how to get out. He/she has a torch with variable brightness and intensity
to look for the way out. Thus, completing dis/covering depends essentially on the
brightness, intensity and flexibility of the torch’s light.

4 Optimization in Changeable Spaces

In this section, we present a new optimization paradigm to formulate and solve
DMCS problems, the optimization in changeable spaces (OCS) or Second Order
Optimization. The OCS model introduces psychological and cognitive aspects and
the possibility to restructure the decision parameters into optimization, which have
never been considered in existing optimization models [3, 6, 12–15, 19, 21, 22, 24,
26, 43]. OCS is formulated in the framework of HD theory (Sect. 2). The fundamental
elements of OCS are the decision parameters including the five decision making
elements and the four decision making environmental facets (see Sect. 2), the 7-8-9
principles of deep knowledge (see Sect. 3.2) and the concept of competence set
presented in Sect. 3. In our formulation of OCS problems, we focus on one general
problem, namely, the dis/covering problem. Before that, we need to introduce some
mathematical notations and tools. The 7-8-9 principles, M1,M2, . . . ,M24, can help
generate new ideas to solve problems, therefore, mathematically, they can be thought
of operators that transform a given set of ideas into another set of ideas. Thus, the
domain of these operators is the Ω1-space of all the knowledge, know-how and
skills that the whole humanity has reached so far. The operators M1,M2, . . . ,M24
are set-to-set functions with domain Ω1-space and range Ω-space, such that for
any subset A of Ω1,Mi (A) ⊂ Ω, i = 1, . . . , 24. The space Ω is the space of all
the knowledge, know-how and skills that the whole humanity has reached so far
and the knowledge, know-how and skills it will reach in the future. The Ω -space
is not a set in the traditional or fuzzy sense because its boundaries are not known
and change over time in an uncertain way. For presentation convenience, denote by
M = {M1,M2, . . . ,M24} the set of 7-8-9 principles. In the decision making process,
the DMs may apply these principles individually at some times or use a sequence of
them at some other times; an individual principle may also be repeatedly applied in
some period of time. A finite compound of principles Mi(1)oMi(2)o . . . oMi(s) from
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M is called ideas generation operator or IG-operator. For any part A of theΩ1-space,
the DMs could generate new ideas by the operation Mi(1)oMi(2)o . . . oMi(s)(A) that
we call ideas generation operation or IG-operation. Let us denote the set of all
IG-operators based on M by

C M = {Mi(1)oMi(2)o . . . oMi(s)/Mi( j) ∈ M, j = 1, 2, . . . , s, s ∈ {1, 2, . . .}}.
(2)

4.1 Covering

In Sect. 1, we have literally defined covering problem as “how to transform a given
competence set C S∗ into a set that contains a targeted competence set CS”. In fact,
at any time, the competence set is just a projection of DMs’ Habitual Domains
(1); hence, it has an Actual Domain, a Reachable Domain, a Potential Domain and
Activation Probabilities. In this chapter, we focus only on the Reachable Domain part
of competence set, that is, the skills, know-how and resources that can be reached
from the Actual Domain. Generally speaking, at any time, the competence set of
DMs may include part or all of the decision parameters, skills and resources related
to the decision making problem. The process of transformation from one competence
set to another can occur when there is a change in Actual Domain or the Reachable
Domain is expanded to deeper parts of the Potential Domain or some new ideas are
acquired from outside of the DMs’ HDs. To realize such transformation, the use of
the 7-8-9 principles of deep knowledge is very useful. We will use IG-operators as
tools of competence set transformation.

4.1.1 Feasibility and Minimum Time and/or Cost Covering

Assume that a time frame, [0, L], for completing the covering is given. The first
question that arises is: Is there an IG-operator H that can complete covering within
the allowed time? In other words, is the covering problem feasible? This problem
can be formulated as follows

Find H, H ∈ C M , t (H) ≤ L and C S ⊂ H(C S∗), (3)

here and in the rest of the chapter, t (H) is the duration of the transformation, by
IG-operator H, of the given competence set including the time spent for finding or
selecting the IG-operator H ;C S ⊂ H(C S∗) means that the target competence set
CS is covered by the new competence set H(C S∗) resulting from the transformation
of C S∗ through the operation H. We will deal with covering feasibility problem in
Sect. 4.3. Assume that the covering problem is feasible, i.e. there exists at least one
IG-operator that can lead to CS covering within the allowed time. Then the minimum
time covering problem can be formulated as follows.
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min t (H), Subject to H ∈ C M, t (H) ≤ L , C S ⊂ H(C S∗). (4)

In the constraints of (4), the set C S∗ can be replaced by Ω1-space. As far as the
authors know such a problem has not been discussed in literature. The unique feature
of this problem is that it involves the mental operator H in CM that is defined in a
domain that is not endowed with some known mathematical structure to be tractable
with traditional optimization methods. Some new mathematical structures are suit-
able to solve this problem in its general form. This could be a worthy direction of
research. For the time being, in order to make the problem (4) tractable by traditional
methods, some further restrictive assumptions should be made. The optimization
problem (4) can be formulated in a way that takes into account the stages or steps of
the decision making process as follows. Assuming that there are p+1 stages, we have

min T =
p∑

i=0

t (H(i))

Subject to H(i)(C Si ) = C Si+1, H(i) ∈ C M, i = 0, . . ., p,

C S0 = C S∗, C S ⊂ C S p+1, T ≤ L , (5)

where H(i) is the IG-operator implemented at stage i. This problem looks like an
optimal control problem, however, it has a fundamental difference, H(i) is not a
traditional control function, it is an ideas generating operator and the dynamics of
C St is not governed by a differential equation or difference-equation.

Assume that the DMs can provide an estimate c(H) of the cost of any IG-operator
H ∈ C M , then the minimum cost covering problem can be formulated as follows

min c(H), Subject to H ∈ C M, C S ⊂ H(C S∗). (6)

When the DMs are interested in time and cost efficiency at the same time, a
multiple criteria formulation is more suitable

min c(H), min t (H), Subject to H ∈ C M, t (H) ≤ L , C S ⊂ H(C S∗).
(7)

The reader may derive more OCS problems from the previous models. In Sect. 5,
we present some applications of the models (3)–(7).

Remark 4.1 In traditional optimization, the term “minimization” is about find-
ing the absolute minimum of some objective function subject to some constraints.
Absolute minimum may not be reached when a problem involves human psychology
and changeable spaces. Therefore, in HD theory “minimization” is about reducing
the charge level of the DM to a satisfactory or acceptable level. Thus, minimiza-
tion in problems (4)–(7) and in the problems that appear in the rest of the chapter
should be understood in the HD theory sense not in traditional sense. Moreover,
existing dynamic models of decision making as dynamic programming and dynamic
stochastic models assume a structured uncertainty, while the problems (4), (5) and
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(7) are formulated in changeable spaces, that is, they can incorporate unstructured
uncertainty.

4.2 Discovering

In this section, we present the discovering problem as an OCS problem. In Sect. 1, we
have seen that discovering is the transformation of a given competence set C S∗ into
a new competence set so as to solve an unsolved problem or create value. In terms of
HD theory, discovering contributes to reducing the charge level (see Appendix and
Sect. 2) or relieving the pain of some targeted people. Thus, the general formulation
of discovering as an OCS problem is

min ch(H(C S∗)) , Subject to H ∈ C M (8)

where ch(H(C S∗)) is the resulting charge level after implementation of the IG-
operator H. When discovery time is limited, a multiple criteria formulation is more
suitable

min ch(H(C S∗)), min t (H), Subject to H ∈ C M, t (H) ≤ L (9)

where t(H) is the duration of the operation H(C S∗). In fact, the traditional mathe-
matical programming problem

min f (x), Subject to gi (x) = bi , i = 1, 2, . . .,m, x ∈ X (10)

is a special case of the problem (8). On the one hand the objective function f(x) of
(10) represents profit or cost in general, which is a measure of the most two important
goals in economic activities: profit maximizing or cost minimizing. In most of the
time, they are the only goals in economic activities. Therefore, deviations from the
maximum profit or minimum cost significantly contribute to the charge level of DMs.
In most of the time they are its determinants. Thus, the objective function of (10) can
be seen as a special case of charge level. On the other hand, generally, the constraints
of (10) express the available resources and how they are used for a given decision
x. In other words, these constraints express the existing resources (competence set)
and how they are used or transformed to create value for a given decision x.

Remark 4.2 The problem (10) could be an optimal control problem i.e. f (x) could
be an integral functional, the constraints could be a system of differential equations
or difference equations and x a time dependent control function u(t).

The traditional optimization problem reduces to a dis/covering problem. Formu-
lating (10) as an OCS problem, we obtain the problem

min c(H), Subject to H(C S∗) ∩ C S �= ∅, H ∈ C M, (11)
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where C S∗ = {x/x ∈ X, gi (x) = bi , i = 1, 2, ..,m } is the fixed set of available
alternatives derived from the constraints of (10); C S = {x∗/x∗ ∈ C S∗, f (x∗) =
minx∈C S∗ f (x)}, is the set of optimal solutions of (10), H is an IG-operator and c(H)
is the cost of finding and implementing H , e.g. time cost. In terms of the problem (10),
the operator H in (11) may be interpreted as an optimization method or algorithm, e.g.
gradient method. Here, covering CS means covering at least one element from CS.
Generally, a solution H of (11), involves mathematical transformations that can be
represented mainly by the principle M21, the “Transforming and Changing Principle”
and other principles from the 7-8-9 principles. Thus, the formulation of a traditional
optimization problem alone is not an OCS problem because its decision parameters
are fixed. However, considering the search for its optimal solution, it becomes an
OCS problem. In general, (10) may appear at the late stages of the resolution process
of an OCS problem once the decision blinds and decision traps are eliminated.

4.3 Necessary and Sufficient Conditions for Covering

In this subsection, we present the dis/covering process in a way that allows us to derive
some necessary and sufficient conditions for its completion within the allowable time
[0, L]. We consider an approach based on the cardinality of the competence set C St

at any time t.
The resolution of the covering problem depends on the awareness of the DMs of

the decision parameters related to the problem, the 7-8-9 principles and the dynamics
of their HDs. Naturally, in covering problems, the HDs and competence sets of the
DMs should not stay trapped for long time in some area before covering is completed,
especially, when the available time is limited and short. Thus, by avoiding long-
lasting decision traps within the allowed time [0, L], the covering problem could be
solved. Generally speaking, if the allowed time is large enough, the covering problem
could be solved when there is a continuous acquiring (up to some period �) of new
elements from the targeted competence set CS. In order to get some practical results,
we make two general assumptions. Assumption 4.1 is valid for this section only,
while Assumption 4.2 is valid for the rest of the chapter.

Assumption 4.1 At any time t of the dis/covering process, the DMs have a correct
perception about their actual competence set and the actual targeted competence set.
Moreover, the targeted competence set CS is constant.

Assumption 4.2 One may generally assume that when ideas or skills or resources
are acquired they are not lost in the future, that is, the sequence of competence sets
C St is non decreasing, that is, C St ⊂ C St ′ for all t, t ′ such that t < t ′.

It is important to note the difference between the target competence set CS and
the problem that DMs face. The DMs know the problem to be solved, but they may
completely or partially ignore the target competence set, CS, required to solve it.
For instance, in the Example 2.1, the two candidates know the problem to be solved:



150 M. Larbani and P. L. Yu

make sure one’s horse passes the finishing line last, while they do not know how the
achieve this, that is, they do not know the target competence set, CS. Later we will
see how candidate A discovered CS.

4.3.1 Cardinality Approach to Covering

Let us assume that the initial competence set C S∗ and the targeted competence
set CS are finite (it is generally the case), i.e. C S∗ = {a1, a2, . . . , an} and C S =
{b1, b2, . . . , bm}.
Definition 4.1 Let C S0 = C S∗, then the covering problem can be formulated as
follows.

Find the first time t∗∗ ≤ L such that C S ⊂ C St∗∗ , (12)

where L is the maximum time allowed to solve the covering problem.
Denote by AQt = C St ∩ C S the acquired set of ideas, skills and resources from

the targeted competence set CS at time t and let qt = Card{AQt } be the cardinality
of AQt . Then, the covering problem (12) can be simply formulated as follows

Find the smallest time t∗∗ ≤ L such that qt∗∗ = m = Card{C S}. (13)

Definition 4.2 (Decision trap) We say that the decision makers are in a decision trap
iff there exists some time t0 such that qt is constant for all t in the interval [t0, t1],
where t1 > t0 + �. The time �, 0 < � < L depends on the allowable covering
time [0, L], it can be subjectively set by the decision makers. � is called decision
trap threshold.

Definition 4.2 means that, the DMs cannot acquire any new elements from
C S\C St0

to be added to C St during the period [t0, t1]. In terms of HD theory,
� depends on the DMs’ charge level. If it is high, the DMs tend to take a small
value for �, whereas when it is low, the DMs tend to take a large value for �. It is
important to note that it often happens that the DMs fall in a decision trap without
being aware of it. In this case, the period � is not relevant and the covering process
may not be completed within the allowed time. In this chapter, we assume that when
the DMs are in a decision trap, they are aware of it. A covering process that does not
involve decision traps can be formally defined as follows.

Definition 4.3 We say that the covering process is operational iff for all t such that
C S\C St �= ∅, there exists some period r(t) ≤ � such that t + r(t) ≤ L and
qt+r(t) − qt ≥ 1.

In other words, starting from any time t, the competence set C St , does not stop
acquiring additional elements from CS for a period longer than�, which means that
an operational covering process is a process that does never falls in a decision trap.
The condition C S\C St �= ∅ means that the covering process is not completed at
time t, while t + r(t) ≤ L and qt+r(t) − qt ≥ 1 mean that at least one element from
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C S\C St is acquired by DMs within the remaining time [t, L], without falling in a
decision trap. Consequently, we have the following necessary condition for covering
completion within the allowable time.

Necessary conditions: There are two necessary conditions for completing the
covering.

(i) In case the covering process is expected to be operational, a necessary and
sufficient condition is that t∗ = max{t (bi ), i = 1, 2, . . . ,m} ≤ L , where
m = Card{CS} and t (bi ) is the smallest time t such that bi ∈ C St , i.e. the first
time bi is acquired by the DMs. Let us assume that the acquiring of elements from
CS takes place sequentially, that is, at any time t, the covering process is dedicated
fully to the acquisition of only one element from CS. Consequently, since m =
Card{CS}, in the extreme case when each element of CS requires the maximum
time period � to be covered in an operational covering process, the necessary
condition is m� ≤ L (in Proposition 4.1, we prove that, in general, it is also a
sufficient condition). Thus, the period of time m� can be taken as an upper bound
for completing the covering process on time in an operational covering, provided
that m� ≤ L . In case the DMs expects only a certain number s of problems that
will take the maximum resolution period of time � in an operational covering
process, then the necessary condition to complete the covering process is s� ≤
L . It is important to note that this necessary condition is not valid if the acquisition
of elements from CS is not sequential (i.e. it can be parallel).

(ii) In case the DMs expect to fall in a certain number of decision traps (challenging
problems), then the necessary condition to complete the covering process is
tmax ≤ L , where

tmax = max{t/ the DMs are in a decision trap at time t}.

Sufficient conditions. The following two propositions establish the feasibility
or sufficient condition for a covering within the allowable covering time, when
the process is operational.

Proposition 4.1 Assume that the acquisition of elements from CS is sequential,
m� ≤ L and the covering process is operational. Then the covering of CS can be
achieved within the allowable covering time [0, L].

Proof Let us recall that based on (13) the covering problem is solved when qt = m
for some time t. Assume the worst case, that for all t such that t ≤ L −�, we have
r(t) = �, since the process is operational, we have qt+�−qt ≥ 1, for all t ≤ L−�.
Therefore, qm� = (qm�−q(m−1)�)+(q(m−1)�−q(m−2)�)+....+(q�−q0)+q0 ≥ m.
Then either qs� = mfor some s < m, then qm� = m because qt is non decreasing by
Assumption 4.2 or the process continues until the time m�, then qm� = m because
the process is operational.

Let us now turn to the difficult case when the process encounters decision traps.
Assume that the DMs enter a decision trap at some time t0 and consider the problem
at some time t1 > t0 + �. As stated above, this means that the DMs are stuck
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and recognize that they cannot reach or acquire any additional point from CS after
trying during the period�. In terms of HD theory, this means that the Actual Domains
and/or the Reachable Domains of the DMs are trapped in some area. In order to reach
an additional element from CS, the DMs need either to change their Actual Domains
and/or expand their Reachable Domains towards CS. As for the change of Actual
Domains, the DMs have to consider decision parameters (see Sects. 2.1.1–2.1.2) and
go deeper into their Potential Domains to expand their Reachable Domains, to come
out with new ideas and concepts. For this purpose, the 7-8-9- principles presented in
Sect. 3.2 can be very useful.

Definition 4.5 At any time t1, an IG-operation using an IG-operator H is said to be
successful in advancing the covering process, if there exists a subset A of Ω1-space
such that H(A) ∩ (C S\C St1

) �= ∅. Otherwise, it is said unsuccessful.
Most likely, the subset A of the Ω1-space could beC St1

itself or part of C St1

or contain only part of it. If H is successful, the new competence set is C St2 =
C St1 ∪ (H(A) ∩ (C S\C St1

)), which is larger than C St1
. In terms of the sequence

qt introduced above, an IG-operation that starts at time t1 and ends at time t2 is said
to be successful if qt1 < qt2 . Thus, we have the following sufficient condition for
solving the covering problem.

Proposition 4.2 Assume that the following conditions are satisfied:

(i) tmax ≤ L
(ii) �(m − qtmax) ≤ L − tmax

Then the covering problem can be solved within the given time frame [0, L].

Proof The condition (i) implies that, each time the DMs get into a decision trap, they
are able to get out of it by acquiring at least one additional element from CS within
the time frame. After the time tmax , the covering process becomes operational, i.e. no
decision trap is expected. Then DMs will acquire at least one new element from CS
within each period of time not exceeding�. Since at time tmax the number of acquired
elements from CS is qtmax , then the number of uncovered elements is m − qtmax . If
m − qtmax = 0, the covering is completed. Assume that m − qtmax > 0. Taking into
account Assumption 4.2, the number m−qtmax of elements would require a maximum
covering time of�(m−qtmax). Therefore, to complete the covering process, the time
that remains after tmax , i.e.(L − tmax), should be larger than�(m − qtmax) , which is
guaranteed by condition (ii).

5 Applications

In Sects. 1–3, we have seen that a DMCS problem is a challenging problem that
involves decision parameters that the DMs may ignore or have to discover. More-
over, we have pointed out that such problems cannot be solved by existing decision
making models or optimization techniques. In Sect. 3, the basic mental operators,
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7-8-9 principles, were presented as tools that can help expand the HDs of DMs so as
to reduce the blinds and get out of decision traps to solve dis/covering problems. In
Sect. 4 the covering and discovering problem were formulated as OCS problems. In
this section, to illustrate this new class of optimization problems, we formulate the
DMCS problems presented in Examples 1.1–1.2 as OCS problems using the models
(4)–(9). Moreover, we provide a mathematical expression of some IG-operators from
(2) to show the possibility of solving OCS problems mathematically.

Example 5.1 In Example 1.2 (Horse Race), at the beginning, the decision making
parameters of the problem including the decision elements and decision environment
facets as described in Sect. 2 are as follows. As for the decision elements, the set
of alternatives is empty for both players because they don’t know how to solve
the problem. There is only one criterion in this game situation, the ranking of the
candidate’s horse when it crosses the finishing line. The outcomes of the horse race
for each candidate are either his horse crosses the finishing line first or second. Each
candidate prefers to make his horse cross the finishing line last. Finally, information
input consists of the rules of the race given by the president of the company and any
information that each candidate could get about the other. As for the environmental
facets, the situation involves two players, candidates A and B that are involved in a
horse race with very specific rules, therefore, each of them needs to understand and
monitor the behavior of the other and devise strategies accordingly.
The race finished with A as a winner as follows. Candidate A jumped on B’s horse
and rode as fast as he could to the finishing line, while leaving his own horse behind.
By the time B realized what was going on, it was already too late! Naturally, A
became the new chairman.

This game involves two stages. The first stage is the decision trap period, when
the two candidates did not know what to do. The second stage covers the resolution
process to get out of the decision trap implemented by the candidate A. The unknown
in such situations is the behavior and the competence set of the other candidate.
Here, the use of the eight hypotheses H1-H8 of HD theory and the derived behavioral
mechanism [31, 34] (see Fig. 1) is essential to understand the behavior of the involved
DMs. In order to win the race, a candidate has to understand the decision elements
and the environmental facets of the race situation, then based on his understanding
of this situation, he needs to evaluate his competence set C S∗ and the required
competence set CS, if possible. Finally, by using the 7-8-9 principles, he may expand
his competence set C S∗ to cover CS or discover a CS (in case CS is unknown) that
will make him feel confident to win the race.

Let us now formulate the problem as an OCS problem from the perspective of
candidate A, a similar OCS problem can be formulated for candidate B. Once the two
candidates have been told the details and the rules of the game, they were puzzled,
i.e. they were in a decision trap. The reason is that the rules of the game are not the
commonly known rules of horse race: generally, the rule is that the first candidate
crossing the finishing line is the winner. The candidates faced a discovery problem.
Thus, the initial competence sets C S∗(A) and C S∗(B) of A and B, respectively, con-
sisted of the traditional knowledge about the rules of horse races and the individual
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skills of riding a horse. Here, since the candidates are in a game situation or competi-
tion, staying puzzled for few seconds may be considered as being in a decision trap.
In game situations, falling in a decision trap, generally, leads to losing the game. The
targeted competence set CS of each candidate is the set of competencies needed to
win over the other candidate by making sure that his own horse crosses the finishing
line last. Thus, we obtain the following OCS problem for candidate A

min tA(H), Subject to H ∈ C M ,C S ⊂ H(C S∗(A)), (14)

where tA(H) is the duration of the IG-operation H(C S∗(A)) from A’s perspective.
In this problem, there is no specific time limitation. The game ends when one of the
two horses crosses the finishing line. Let us now see how the candidate A developed
a solution of (14) in steps.

Step 1. The candidate A analyzed the rules of the game using the principles “Deep and
Down Principle”, M16 , and “Projecting from a Higher Position”, M9, to activate new
ideas from his Potential Domain to his Actual Domain or to his Reachable Domain,
he then determined the most important objects that are involved in the horse race as
the two pairs (A, H1) and (B, H2), that is, candidate A and his horse and candidate B
and his horse. This operation resulted in a new competence set C St1(A) consisting
of C S∗(A) and the pairs (A, H1) and (B, H2) as the main focus. The transformation
from C S∗ (A) to C St1(A) by using the operators M16 and M9 can be expressed as
follows

M9 o M16 (C S∗(A)) = C St1(A). (15)

Let us elaborate more on (15). At the beginning both candidates were in a stress-
ful state. In terms of HD theory, we say that their charge level was high. In such
psychological state, the Actual Domains and Reachable Domains of the candidates
become very narrow; only ideas with strong circuit pattern can be activated from the
Potential Domain. Ideas with weak circuit patterns cannot capture their attention.
Such ideas can be activated only when the charge level is low. It could be that some
very valuable weak circuit pattern ideas in solving the problem cannot be activated
from the Potential Domain to the Actual Domain because of the high charge level of
the candidates. The “Deep and Down Principle”, M16 suggests reducing the charge
level by relaxing, then thoughts or ideas that require lower charge for their activation
can be activated to the Actual Domain. As a result, more relevant and good ideas
for solving the problem could be activated to the Actual Domain. By applying this
principle, candidate A could activate the idea of applying the principle of “Projecting
from a Higher Position”, M9. When faced with a problem in a given system, we tend
to look for the best solution within that system and pay minimal attention to other
systems. Projecting from higher position to solve the problem means considering
it from a different system or from higher perspective. In the problem at hand, can-
didate A used the principle M9 to consider the situation from CEO’s Position. He
then came to the conclusion that the problem could be solved by concentrating his
attention on the two pairs (A, H1) and (B, H2) before doing any physical effort: in
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general, a CEO is interested in managerial and problem solving skills than in horse
riding skills. As a result of application of the two principles M16 and M9 sequentially,
candidate A transformed his initial competence C S∗(A) into a new competence set
C St1(A) including the initial competence set and the focus on the pairs (A, H1) and
(B, H2).
Step 2. Next, applying the “Alternating Principle”, M17, to the pairs (A, H1) and
(B, H2), candidate A alternated the horses to obtain the pairs (A, H2) and (B, H1)
by jumping on B’s horse. This operation changed the rule of the game to “whoever
crosses the finishing line first will be the winner”. Then, riding B’s horse as fast as he
could to the finishing line, his horse will be definitely the last to cross the finishing
line because candidate B was still trapped in C S∗(B) and did not understand on time
what is going on. When B realized what was going on, it was too late! Candidate A
won the race. The alternating operation resulted in a new competence set C St2(A)
for candidate A that obviously includes the needed competence set CS for solving
the game, which completes the dis/covering problem. The alternating operation can
be represented as follows

C S ⊂ C St2(A) = M17(C St1(A)). (16)

One may summarize the whole dis/covering process (15)–(16), of the solution, as
follows

C S ⊂ C St2(A) = M17oM9oM16(C S∗(A)).

Now, let us formulate mathematically the two steps of the resolution process, then
derive the specific OCS problem of the form (14). In terms of HD theory, the operation
of Step 1 means that candidate A has brought the two pairs (A, H1) and (B, H2) into his
Actual Domain. In terms of the Activation Probability from the Potential Domain to
the Actual Domain, this means that the Activation Probability of the pairs (A, H1) and
(B, H2) became 1. Mathematically, one can formulate the operation (15) as follows.
Assume that the initial competence set of candidate A is C S∗(A) = {a1, a2, . . . , an}.
Let P0(a j ), j = 1, 2, . . ., n, be the initial activation probabilities of a1, a2, . . . , an ,
respectively, from his Reachable Domain to his Actual Domain. Generally speaking,
the Activation Probability can be seen as a time dependent function with domain
as the Potential Domain and range [0,1], that is,Pt (.) : PD → [0, 1]. Then the
operation (15) reduces to the transformation of the initial activation probabilities
P0(a j ), j = 1, 2, . . ., n to a new set of probabilities Pt1(a j ), j = 1, 2, . . ., n such
that Pt1((A, H1)) = Pt1((B, H2)) = 1, where t1 is the duration of operation (15).
This transformation can be expressed as a function S : {P0(a j ), j = 1, 2, . . ., n} →
[0, 1], such that S(P0(a j )) = Pt1(a j ), j = 1, 2, . . ., n .

Next, one may mathematically formulate the operation (16) as follows. Let us
represent the elements A, H1, B and H2 by the numbers 1, 2, 3, and 4, respectively
and let the vector d = (1, 2, 3, 4) represent the pairs (A, H1) and (B, H2). Then
alternating horses through the “Alternating Principle ” , M17 , by candidate A, can
be identified with the following linear transformation Fd = d ′, where d = (1, 2, 3,
4), d ′ = (1, 4, 3, 2) and F is the matrix
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F =

⎛

⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟⎠. (17)

Clearly, d ′ = (1, 4, 3, 2) expresses the desired change of horses represented by
the pairs (A, H2) and (B, H1). Thus, by alternating the horses, candidate A is now
confident that he can win the race, that is, he has covered the required competence set
CS, i.e. C S ⊂ M17(C St1(A)) = C St2(A), where t2 − t1 is the duration of operation
M17(C St1(A)). Therefore, min tA(H) = tA(M17oM9oM16) = t2; the discovery
problem (15)–(16) can be formulated mathematically as follows.

min t (Fof ), Subject to C S ⊂ F o f (C S∗(A)), f ∈ V, F ∈ W,

where t(Fof) is the duration of the operation Fo f, V = { f/ f : P D→ [0, 1]} is the
set of functions that assign activation probability from the Potential Domain to the
Actual Domain and

W = {F/ F is a matrix alternating the elements of a finite ordered set},

the elements of W are similar to the matrix F in (17). The functions in V help to
identify or select the elements of C S∗ that the DMs should focus or concentrate on
their attention.

Example 5.2 Let us go back to Example 1.2 (Emerson’s Calf). In Example 3.1,
we have showed that the decision blind C S\C St was nonempty and significant and
Emerson and his son were in a decision trap. Since the weather was very cold, they
had to solve the problem within a reasonable time as soon as possible. Emerson
started to look around for help (See Hypothesis H8, information input, in Sect. 2).
He saw his female home-maid, he looked at her perplexed, as if he was giving up
and asking for possible help. She smiled and told him: you men come in to relax; I
will solve the problem within few minutes. Indeed, she just put her forefinger into
the mouth of the Calf, which immediately started to suck it. The maid, started to
move into the barn, the Calf followed her peacefully. Note that it is by analogy
and association (Hypothesis H4) between sucking the maid’s finger and sucking its
mother’s teat that the Calf followed the maid peacefully.
In terms of HD theory, the maid could solve the problem because as women, by
analogy and association (see hypothesis H4 in Sect. 2) to human behavior, she knows
that babies like to suck their or other person finger when they are hungry. Moreover,
as a mother, this knowledge is in the core of her HD, that is, the corresponding circuit
pattern is so strong that it can be almost surely activated, that is, with probability 1 or
close to 1 (see the concept of Activation Probability of the HD theory, in Sect. 2) when
the situation requires it. Thus, the maid solved the problem because her competence
set covers completely the required competence set CS to solve it.
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Let us now formulate this DMCS problem as OCS problem and construct its
solution. Clearly, the problem consists of two phases. Since Emerson and his son
wanted to bring the Calf into the barn in a very cold day, naturally, achieving this as
soon as possible would be better. Thus, the time minimization model

min tA(H), Subject to H ∈ C M, C S ⊂ H(C S∗(A)) (18)

is the most suitable to formulate the corresponding OCS problem. Let us now con-
struct the IG-operator H∗ ∈ C M that solves the OCS problem (18). The resolution
process consists of two phases. The first phase covers the time before the maid came
into picture; the second covers the time after the maid intervened. In the first phase,
Emerson and his son were in a decision trap. During this phase, we have C St = C S∗,
that is, C St is constant. In the second phase, using the “Contradiction Principle”,
M22 , Emerson came to the conclusion that the strategy using force has to be stopped,
however, he didn’t know what to do to solve the problem. Then using the “Chang-
ing and Transforming Principle”, M21, and the Hypothesis H8 (Information Input
Hypothesis, see Sect. 2 and Appendix) of HD theory, Emerson could change one of
the parameters of the game situation (see Sect. 2.1.1), the set of players, by implic-
itly appealing to the maid as a new player that may have the potential to solve the
problem. In terms of HD theory, a union or integration of two HDs has taken place
to solve the same problem. Naturally, the resulting competence set would be larger
than the individual competence sets. This phase of the game can be characterized by
the following transformation

M21 o M22 (C S∗) = C S1(ES ∪ MA), (19)

where ES means Emerson and son, MA means Maid, and C S1(ES ∪ MA) is the
competence set resulting from aggregation of the competence set of Emerson and
his son and the competence set of the maid. Next, by the “Principle of Active Asso-
ciation”, M10, and the hypothesis H4 of HD theory, the maid related the behavior of
the Calf to the behavior of a human baby: they both like to suck milk from the teat /
breast of their mother. Since sucking the forefinger by babies is in the core of HD of
the maid, as mentioned above, she immediately activated it to her Actual Domain,
for decision making. Thus, she was confident that giving her forefinger to the Calf to
suck, it would follow her immediately to the barn, that is, she was confident that her
competence set covers completely the required competence set to solve the problem
i.e.

C S ⊂ C S2 = M10(C S1(E S ∪ M A)). (20)

Thus, from (19) to (20), we conclude that the IG-operator H∗ = M10 oM21 oM22 is
a solution to the OCS problem (18). It is important to note that this example shows
the importance of aggregating competence sets for solving DMCS problems. One
can, similar to Example 5.2, construct the mathematical operations corresponding to
the IG-operator H∗.
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6 Conclusion and Further Research Directions

In this book chapter, we have presented a new general model for solving DMCS
problems, focusing on dis/covering process, the OCS. The proposed model is a
considerable departure from traditional decision theory framework for it incorpo-
rates human psychology and its dynamics, the cognitive aspect and the possibility
of restructuring the parameters of the decision problem. The theoretical framework
of this model is HD theory. The basic components of this model are the decision
parameters (decision elements and environmental facets), the 7-8-9 principles and
the concept of competence set. HD theory makes it possible to model the dynamics
of the psychological states of the DMs and the decision making process, while the
7-8-9 principles offer the possibility to restructure the decision problem, and the
generation of new ideas and strategies to get out of decision traps and/or to cover
some targeted competence set. This aspect has never been taken into account in such a
comprehensive way, in traditional decision and optimization models. Thus, the intro-
duced model offers new possibilities to decision makers, managers and executives
in solving real-world challenging decision problems effectively and efficiently.

Mathematical formulation of covering and discovering processes as well as the
necessary and sufficient conditions for their completion are presented. Minimum
time and/or cost covering and discovering problems are formulated as new types of
optimization problems that can be called optimization in changeable spaces problems
because of the presence of the mental operators 7-8-9 principles that operate on sets
with unknown shapes or boundaries and dynamics. The new optimization models (3)–
(9) we presented in this work open new directions of research such as (i) formulation
and analysis of the innovation process [37] using DMCS and OCS (ii) the use of
DMCS and OCS models in management, conflict resolution and game theory [16,
17, 39], planning and decision making, (iii) the use of DMCS and OCS in artificial
intelligence: introduction of the new optimization models (4)–(9) in the emerging
discipline of artificial economics [20] and e-economy, (iv) the use of DMCS and OCS
in scientific discovery and (v) the use of DMCS and OCS in knowledge extraction
(data mining).

The validation of the developed model has not been addressed in this chapter.
We suggest the following approach. Consider an unsolved challenging problem and
present it to two groups of people having similar expertise. One of the groups will be
trained on HD theory, competence set analysis and on the use of the 7-8-9 principles,
while the other not. The two groups are given the same period of time to solve the
problem. After this period, an evaluation of the performance of the two groups on
solving the given problem is made. This experiment has to be repeated enough times
with different pairs of groups to allow for a statistical test to be conducted to reach
a conclusion about the validity of the model. Alternatively, the same method can
be used with the following change: instead of taking two different groups in each
experiment, one can take the same group to which two different challenging problems
are presented; one before training on HD theory, competence set analysis and the
use of the 7-8-9 principles and the other after.
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Appendix

Table A.1 Four hypotheses of brain operation

Hypotheses Descriptions

H1 Circuit pattern hypothesis Thoughts, concepts or ideas are represented by
circuit patterns of the brain. The circuit patterns
will be reinforced when the corresponding
thoughts or ideas are repeated. Furthermore, the
stronger the circuit patterns, the more easily the
corresponding thoughts or ideas are retrieved in
our thinking and decision making processes

H2 Unlimited capacity
hypothesis

Practically every normal brain has the capacity to
encode and store all thoughts, concepts and
messages that one intends to

H3 Efficient restructuring
hypothesis

The encoded thoughts, concepts and messages (H1)
are organized and stored systematically as data
bases for efficient retrieving. Furthermore,
according to the dictation of attention they are
continuously restructured so that relevant ones
can be efficiently retrieved to release charges
(Precursors of mental stress, see H6)

H4 Analogy/association
hypothesis

The perception of new events, subjects, or ideas can
be learned primarily by analogy and/or
association with what is already known. When
faced with a new event, subject, or idea, the brain
first investigates its features and attributes in
order to establish a relationship with what is
already known by analogy and/or association.
Once the right relationship has been established,
the whole of the past knowledge (preexisting
memory structure) is automatically brought to
bear on the interpretation and understanding of
the new event, subject or idea

H5 Goal setting and state
evaluation hypothesis

Each one of us has a set of goal functions and for
each goal function we have an ideal state or
equilibrium point to reach and maintain (goal
setting). We continuously monitor, consciously or
subconsciously, where we are relative to the ideal
state or equilibrium point (state evaluation)

H6 Charge structure and
attention allocation
hypothesis

Each event is related to a set of goal functions. When
there is an unfavorable deviation of the perceived
value from the ideal, each goal function will
produce various levels of charge (a precursor of
mental stress). The totality of the charges by all
goal functions is called the charge structure and
it can change dynamically. At any point in time,
our attention will be paid to the event which has
the most influence on our charge structure
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Table A.2 Four hypotheses of mind operation

Hypotheses Descriptions

H7 Discharge hypothesis To release charges, we tend to select the action
which yields the lowest remaining charge (the
remaining charge is the resistance to the total
discharge) and this is called the least resistance
principle

H8 Information inputs
hypothesis

Humans have innate needs to gather external
information. Unless attention is paid, external
information inputs may not be processed
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Decision Making Under Interval Uncertainty
(and Beyond)

Vladik Kreinovich

Abstract To make a decision, we must find out the user’s preference, and help
the user select an alternative which is the best—according to these preferences.
Traditional utility-based decision theory is based on a simplifying assumption that
for each two alternatives, a user can always meaningfully decide which of them is
preferable. In reality, often, when the alternatives are close, the user is often unable
to select one of these alternatives. In this chapter, we show how we can extend the
utility-based decision theory to such realistic (interval) cases.

Keywords Decision Making · Interval Uncertainty · Utility

1 Introduction

To make a decision, we must:

• find out the user’s preference, and
• help the user select an alternative which is the best—according to these preferences.

Traditional utility-based decision theory is based on a simplifying assumption that
for each two alternatives A′ and A′′, a user can always meaningfully decide which
of them is preferable. In reality, often, when the alternatives are close, the user is
often unable to select one of these alternatives. How can we extend the utility-based
decision theory to such realistic cases?

In this chapter, we provide an overview of such an extension. This paper is struc-
tured as follows: first, we recall the main ideas and results of the traditional utility-
based decision theory. We then consider the case when in addition to deciding which
of the two alternatives is better, the user can also reply that he/she is unable to decide
between the two close alternatives; this leads to interval uncertainty.
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Comment. Some of the results presented in this paper were previously reported at
conferences [1, 23].

2 Traditional Utility-Based Decision Theory: Brief Reminder

Following [8, 27, 35], let us describe the main ideas and results of the traditional
decision theory.

Main assumption behind the traditional utility-based decision theory. Let us
assume that for every two alternatives A′ and A′′, a user can tell:

• whether the first alternative is better for him/her; we will denote this by A′′ < A′;
• or the second alternative is better; we will denote this by A′ < A′′;
• or the two given alternatives are of equal value to the user; we will denote this by

A′ = A′′.

Comment. In mathematical terms, we assume that the preference relation< is a linear
(total) order; in economics, this property of the preference relation is also known as
completeness.

The notion of utility. Under the above assumption, we can form a natural numerical
scale for describing attractiveness of different alternatives. Namely, let us select a
very bad alternative A0 and a very good alternative A1, so that most other alternatives
are better than A0 but worse than A1.

Since we assumed that the alternatives between which we need to choose are
linearly ordered, there exists the best one—which can be selected as A1, and the
worst one—which can be selected as A0. However, since one of the main objectives
of this paper is to go beyond this simplifying linearity assumption, it is better to select
A1 and A0 beyond the available alternatives. For example, we can choose, as A1, an
alternative “I win a billion dollars”—we do not have this alternative in our decision,
but this alternative is easy to imagine. Similarly, as A0, we can select a really bad
alternative—and it is OK if this alternative is not a possible outcome of our current
decision-making process.

Then, for every probability p ∈ [0, 1], we can form a lottery L(p) in which we
get A1 with probability p and A0 with the remaining probability 1− p.

When p = 0, this lottery simply coincides with the alternative A0: L(0) = A0.
The larger the probability p of the positive outcome increases, the better the result,
i.e., p′ < p′′ implies L(p′) < L(p′′). Finally, for p = 1, the lottery coincides with
the alternative A1: L(1) = A1. Thus, we have a continuous scale of alternatives L(p)
that monotonically goes from A0 to A1.

We have assumed that most alternatives A are better than A0 but worse than A1:
A0 < A < A1. Since A0 = L(0) and A1 = L(1), for such alternatives, we thus get
L(0) < A < L(1). We assumed that every two alternatives can be compared. Thus,
for each such alternative A, there can be at most one value p for which L(p) = A;
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for others, we have L(p) < A or L(p) > A. Due to monotonicity of L(p) and
transitivity of preference, if L(p) < A, then L(p′) < A for all p′ ≤ p; similarly,
if A < L(p), then A < L(p′) for all p′ > p. Thus, the supremum (= least upper
bound) u(A) of the set of all p for which L(p) < A coincides with the infimum (=
greatest lower bound) of the set of all p for which A < L(p). For p < u(A), we
have L(p) < A, and for for p > u(A), we have A < L(p). This value u(A) is called
the utility of the alternative A.

It may be possible that A is equivalent to L(u(A)); however, it is also possible
that A �= L(u(A)). However, the difference between A and L(u(A)) is extremely
small: indeed, no matter how small the value ε > 0, we have L(u(A) − ε) < A <

L(u(A) + ε). We will describe such (almost) equivalence by ≡, i.e., we write that
A ≡ L(u(A)).

How can we actually find utility values. The above definition of utility is somewhat
theoretical, but in reality, utility can be found reasonably fast by the following iterative
bisection procedure.

We want to find the probability u(A) for which L(u(A)) ≡ A. On each stage
of this procedure, we have the values u < u for which L(u) < A < L(u). In the
beginning, we have u = 0 and u = 1, with |u − u| = 1.

To find the desired probability u(A), we compute the midpoint ũ = u + u

2
and

compare the alternative A with the corresponding lottery L (̃u). Based on our assump-
tion, there are three possible results of this comparison:

• if the user concludes that L (̃u) < A, then we can replace the previous lower bound
u with the new one p̃;
• if the user concludes that A < L (̃u), then we can replace the original upper bound

u with the new one ũ;
• finally, if A = L (̃u), this means that we have found the desired probability u(A).

In this third case, we have found u(A), so the procedure stops. In the first two cases,
the new distance between the bounds u and u is the half of the original distance. By
applying this procedure k times, we get values u and u for which L(u) < A < L(u)
and |u − u| ≤ 2−k . One can easily check that the desired value u(A) is within the
interval [u, u], so the midpoint ũ of this interval is an 2−(k+1)-approximation to the
desired utility value u(A).

In other words, for any given accuracy, we can efficiently find the corresponding
approximation to the utility u(A) of the alternative A.

How to make a decision based on utility values. If we know the utilities u(A′)
and u(A′′) of the alternatives A′ and A′′, then which of these alternatives should we
choose?

By definition of utility, we have A′ ≡ L(u(A′)) and A′′ ≡ L(u(A′′)). Since
L(p′) < L(p′′) if and only if p′ < p′′, we can thus conclude that A′ is preferable to
A′′ if and only if u(A′) > u(A′′).

In other words, we should always select an alternative with the largest possible
value of utility.



166 V. Kreinovich

Comment. Interval techniques can help in finding the optimizing decision; see,
e.g., [28].

How to estimate utility of an action: why expected utility. To apply the above idea
to decision making, we need to be able to compute utility of different actions. For each
action, we usually know possible outcomes S1, . . . , Sn , and we can often estimate

the probabilities p1, . . . , pn ,
n∑

i=1
pi = 1, of these outcomes. Let u(S1), . . . , u(Sn)

be utilities of the situations S1, . . . , Sn . What is then the utility of the action?
By definition of utility, each situation Si is equivalent (in the sense of the relation

≡) to a lottery L(u(Si )) in which we get A1 with probability u(Si ) and A0 with the
remaining probability 1−u(Si ). Thus, the action in which we get Si with probability
pi is equivalent to complex lottery in which:

• first, we select one of the situations Si with probability pi : P(Si ) = pi ;
• then, depending on the selected situation Si , we get A1 with probability u(Si ) and

A0 with probability 1− u(Si ): P(A1 | Si ) = u(Si ) and P(A0 | Si ) = 1− u(Si ).

In this complex lottery, we end up either with the alternative A1 or with the alternative
A0. The probability of getting A1 can be computed by using the complete probability
formula:

P(A1) =
n∑

i=1

P(A1 | Si ) · P(Si ) =
n∑

i=1

u(Si ) · pi .

Thus, the original action is equivalent to a lottery in which we get A1 with probability
n∑

i=1
pi ·u(Si ) and A0 with the remaining probability. By definition of utility, this means

that the utility of our action is equal to
n∑

i=1
pi · u(Si ).

In probability theory, this sum is known as the expected value of utility u(Si ).
Thus, we can conclude that the utility of each action is equal to its expected utility;
in other words, among several possible actions, we should select the one with the
largest value of expected utility.

Non-uniqueness of utility. The above definition of utility depends on a selection
of two alternatives A0 and A1. What if we select different alternatives A′0 and A′1?
How will utility change? In other words, if A is an alternative with utility u(A) in
the scale determined by A0 and A1, what is its utility u′(A) in the scale determined
by A′0 and A′1?

Let us first consider the case when A′0 < A0 < A1 < A′1. In this case, since A0 is
in between A′0 and A′1, there exists a probability u′(A0) for which A0 is equivalent
to a lottery L ′(u′(A0)) in which we get A′1 with probability u′(A0) and A′0 with the
remaining probability 1 − u′(A0). Similarly, there exists a probability u′(A1) for
which A1 is equivalent to a lottery L ′(u′(A1)) in which we get A′1 with probability
u′(A1) and A′0 with the remaining probability 1− u′(A1).

By definition of the utility u(A), the original alternative A is equivalent to a lottery
in which we get A1 with probability u(A) and A0 with the remaining probability
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1 − u(A). Here, A1 is equivalent to the lottery L ′(u′(A1)), and A0 is equivalent to
the lottery L ′(u′(A0)). Thus, the alternative A is equivalent to a complex lottery, in
which:

• first, we select A1 with probability u(A) and A0 with probability 1− u(A);
• then, depending on the selection Ai , we get A′1 with probability u′(Ai ) and A′0

with the remaining probability 1− u′(Ai ).

In this complex lottery, we end up either with the alternative A′1 or with the alternative
A′0. The probability u′(A) = P(A′1) of getting A′1 can be computed by using the
complete probability formula:

u′(A) = P(A′1) =P(A′1 | A1) · P(A1)+ P(A′1 | A0) · P(A0) =
u′(A1) · u(A)+ u′(A0) · (1− u(A)) =

u(A) · (u′(A1)− u′(A0))+ u′(A0).

Thus, the original alternative A is equivalent to a lottery in which we get A′1 with
probability u′(A) = u(A) · (u′(A1) − u′(A0)) + u′(A0). By definition of utility,
this means that the utility u′(A) of the alternative A in the scale determined by the
alternatives A′0 and A′1 is equal to u′(A) = u(A) · (u′(A1)− u′(A0))+ u′(A0).

Thus, in the case when A′0 < A0 < A1 < A′1, when we change the alterna-
tives A0 and A1, the new utility values are obtained from the old ones by a linear
transformation. In other cases, we can use auxiliary events A′′0 and A′′1 for which
A′′0 < A0, A′0 and A1, A′1 < A′′1. In this case, as we have proven, transformation
from u(A) to u′′(A) is linear and transformation from u′(A) to u′′(A) is also linear.
Thus, by combining linear transformations u(A)→ u′′(A) and u′′(A)→ u′(A), we
can conclude that the transformation u(A)→ u′(A) is also linear.

So, in general, utility is defined modulo an (increasing) linear transformation
u′ = a · u + b, with a > 0.

Comment. So far, once we have selected alternatives A0 and A1, we have defined the
corresponding utility values u(A) only for alternatives A for which A0 < A < A1.
For such alternatives, the utility value is always a number from the interval [0, 1].

For other alternatives, we can define their utility u′(A) with respect to different
pairs A′0 and A′1, and then apply the corresponding linear transformation to re-scale
to the original units. The resulting utility value u(A) can now be an arbitrary real
number.

Subjective probabilities. In our derivation of expected utility, we assumed that we
know the probabilities pi of different outcomes. In practice, we often do not know
these probabilities, we have to rely on a subjective evaluation of these probabilities.
For each event E , a natural way to estimate its subjective probability is to compare
the lottery �(E) in which we get a fixed prize (e.g., $1) if the event E occurs and 0 is it
does not occur, with a lottery �(p) in which we get the same amount with probability
p. Here, similarly to the utility case, we get a value ps(E) for which �(E) is (almost)
equivalent to �(ps(E)) in the sense that �(ps(E)− ε) < �(E) < �(ps(E)+ ε) for
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every ε > 0. This value ps(E) is called the subjective probability of the event E ;
see, e.g., [5, 25, 27, 37].

For each event E , we can efficiently find its subjective probability by using a
bisection procedure which is similar to how we can find utilities.

From the viewpoint of decision making, each event E is equivalent to an event
occurring with the probability ps(E). Thus, if an action has n possible outcomes
S1, . . . , Sn , in which Si happens if the event Ei occurs, then the utility of this action

is equal to
n∑

i=1
ps(Ei ) · u(Si ).

3 Towards a More Realistic Way to Describe User Preference:
Interval Uncertainty

Beyond traditional utility-based decision making: towards a more realistic
description. Previously, we assumed that a user can always decide which of the
two alternatives A′ and A′′ is better:

• either A′ < A′′,
• or A′′ < A′,
• or A′ ≡ A′′.
In practice, a user is sometimes unable to meaningfully decide between the two
alternatives A′ and A′′; see, e.g., [9, 27]. We will denote this option by A′ ‖ A′′.

In mathematical terms, this means that the preference relation is no longer a total
(linear) order, it can be a partial order.

From utility to interval-valued utility. Similarly to the traditional utility-based
decision making approach, we can select two alternatives A0 < A1 and compare
each alternative A which is better than A0 and worse than A1 with lotteries L(p).
The main difference is that here, the supremum u(A) of all the values p for which
L(p) < A is, in general, smaller than the infimum u(A) of all the values p for which
A < L(p). Thus, for each alternative A, instead of a single value u(A) of the utility,
we now have an interval [u(A), u(A)] such that:

• if p < u(A), then L(p) < A;
• if p > u(A), then A < L(p); and
• if u(A) < p < u(A), then A ‖ L(p).

We will call this interval the utility of the alternative A.

How to efficiently elicit the interval-valued utility from the user. To elicit the
corresponding utility interval from the user, we can use a slightly modified version
of the above bisection procedure. At first, the procedure is the same as before: namely,
we produce a narrowing interval [u, u] for which L(u) < A < L(u).

We start with the interval [u, u] = [0, 1], and we repeatedly compute the midpoint

ũ = u + u

2
and compare A with L (̃u). If L (̃u) < A, we replace u with ũ; if A < L (̃u),
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we replace u with ũ. If we get A ‖ L( p̃), then we switch to the new second stage of
the iterative algorithm. Namely, now, we have two intervals:

• an interval [u1, u1] (which is currently equal to [u, ũ]) for which L(u1) < A and
L (̃u1) ‖ A, and
• an interval [u2, u2] (which is currently equal to [̃u, u]) for which L(u2) ‖ A and

A < L(u2).

Then, we perform bisection of each of these two intervals. For the first interval, we

compute the midpoint ũ1 = u1 + u1

2
, and compare the alternative A with the lottery

L (̃u1):

• if L (̃u1) < A, then we replace u1 with ũ1;
• if L (̃u1) ‖ A, then we replace u1 with ũ1.

As a result, after k iterations, we get the value u(A) with accuracy 2−k .

Similarly, for the second interval, we compute the midpoint ũ2 = u2 + u2

2
, and

compare the alternative A with the lottery L (̃u2):

• if L (̃u2) ‖ A, then we replace u2 with ũ2;
• if A < L (̃u2), then we replace u2 with ũ2.

As a result, after k iterations, we get the value u(A) with accuracy 2−k .

Comment. Similar to the case of exactly known utilities, when we replace alternatives
A0 and A1 with alternatives A′0 and A′1, the new values u′ and u′ are related to the
original values u and u by the same linear transformation u′ = a ·u+b: u′ = a ·u+b
and u′ = a · u + b.

Interval-valued subjective probability. Similarly, when we are trying to estimate
the probability of an event E , we no longer get a single value ps(E), we get an
interval [ps(E), ps(E)] of possible values of probability.

By using bisection, we can feasibly elicit the values ps(E) and ps(E); alternative
ways of eliciting interval-valued probabilities are described in [13, 14].

4 Decision Making Under Interval Uncertainty

Need for decision making under interval uncertainty. In the traditional utility-
based approach, for each alternative A, we produce a number u(A)—the utility of
this alternative. Then, an alternative A′ is preferable to the alternative A′′ if and only
if u(A′) > u(A′′).

How can we make a similar decision in situations when we only know interval-
valued utilities?

Comment. Several approaches have been proposed for such decision-making; for
example, several approaches for decision making under interval-valued probabilities
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are described and compared in [42]. In this chapter, we concentrate on approaches
which naturally extend the above utility approach.

How to make a decision under interval uncertainty: a natural idea. For each
possible decision d, we know the interval [u(d), u(d)] of possible values of utility.
Which decision shall we select? A seemingly natural idea is to select all decisions d0
that may be optimal, i.e., which are optimal for some function u(d) ∈ [u(d), u(d)].
There is a minor problem with this definition: that checking all possible functions
is not feasible. However, this problem is easy to solve, since this condition can be
reformulated in simpler equivalent terms.

Let us describe this reformulation.

Definition 1. Let D be a set; its elements will be called possible decisions. Let u
be a function that assigns, to each possible decision d ∈ D, an interval u(d) =
[u(d), u(d)]. A function u which maps D into real numbers is called a possible
utility function if u(d) ≤ u(d) ≤ u(d) for all d. We say that a decision d0 is possibly
optimal if u(d0) = max

d∈D
u(d) for some possible utility function u.

Proposition. A decision d0 is possibly optimal if and only if

u(d0) ≥ max
d

u(d).

Comment. This equivalent inequality is indeed easy to check.

Proof. If d0 is possibly optimal, then u(d0) ≥ u(d) for all d. Thus, from u(d0) ≥
u(d0) ≥ u(d) ≥ u(d), we conclude that u(d0) ≥ u(d) for all d. Hence, we get
u(d0) ≥ max

d
u(d).

Vice versa, suppose that u(d0) ≥ max
d

u(d), i.e., that u(d0) ≥ u(d) for all d. Then,

we can take the following possible utility function u: u(d0) = u(d0) and u(d) = u(d)
for all d �= d0. For this possible utility function, u(d0) ≥ u(d) for all d, so d0 is
indeed a possibly optimal decision. The equivalence is proven.

Comment. Interval computations can help in describing the range of all such d0; see,
e.g., [28].

Need for definite decision making. In practice, we would like to select one decision;
which one should be select?

At first glance, the situation may sound straightforward: if A′ ‖ A′′, it does
not matter whether we select A′ or A′′. However, this is not a good way to make
a decision. For example, let us assume that there is an alternative A about which
we know nothing. In this case, we have no reason to prefer A or L(p), so we have
A ‖ L(p) for all p. By definition of u(A) and u(A), this means that we have u(A) = 0
and u(A) = 1, i.e., the alternative A is characterized by the utility interval [0, 1].

In this case, the alternative A is indistinguishable both from a good lottery
L(0.999) (in which the good alternative A1 appears with probability 99.9 %) and
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from a bad lottery L(0.001) (in which the bad alternative A0 appears with probabil-
ity 99.9 %). If we recommend, to the user, that A is equivalent both to to L(0.999)
and L(0.001), then this user will feel comfortable exchanging his chance to play in
the good lottery with A, and then—following the same logic—exchanging A with a
chance to play in a bad lottery. As a result, following our recommendations, the user
switches from a very good alternative to a very bad one.

This argument does not depend on the fact that we assumed complete ignorance
about A. Every time we recommend that the alternative A is equivalent to L(p) and
L(p′) with two different values p < p′, we make the user vulnerable to a similar
switch from a better alternative L(p′) to a worse one L(p). Thus, there should be
only a single value p for which A can be reasonably exchanged with L(p).

In precise terms: we start with the utility interval [u(A), u(A)], and we need to
select a single utility value u for which it is reasonable to exchange the alternative
A with a lottery L(u). How can we find this value u?

How to make decisions under interval uncertainty: Hurwicz optimism-pessim-
ism criterion. The problem of decision making under such interval uncertainty was
first handled by the future Nobelist L. Hurwicz in [16].

We need to assign, to each interval [u, u], a utility value u(u, u).
No matter what value u we get from this interval, this value will be larger than or

equal to u and smaller than or equal to u. Thus, the equivalent utility value u(u, u)
must satisfy the same inequalities: u ≤ u(u, u) ≤ u. In particular, for u = 0 and

u = 1, we get 0 ≤ αH ≤ 1, where we denoted αH
def= u(0, 1).

We have mentioned that the utility is determined modulo a linear transformation
u′ = a · u + b. It is therefore reasonable to require that the equivalent utility does
not depend on what scale we use, i.e., that for every a > 0 and b, we have

u(a · a + b, a · u + b) = a · u(u, u)+ b.

In particular, for u = 0 and u = 1, we get

u(b, a + b) = a · u(0, 1)+ b = a · αH + b.

So, for every u and u, we can take b = u, a = u − u, and get

u(u, u) = u + αH · (u − u) = αH · u + (1− αH ) · u.

This expression is called Hurwicz optimism-pessimism criterion, because:

• when αH = 1, we make a decision based on the most optimistic possible values
u = u;
• when αH = 0, we make a decision based on the most pessimistic possible values

u = u;
• for intermediate values αH ∈ (0, 1), we take a weighted average of the optimistic

and pessimistic values.
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So, if we have two alternatives A′ and A′′ with interval-valued utilities
[u(A′), u(A′)] and [u(A′′), u(A′′)], we recommend an alternative for which the
equivalent utility value is the largest. In other words, we recommend to select A′
if αH ·u(A′)+ (1−αH ) ·u(A′) > αH ·u(A′′)+ (1−αH ) ·u(A′′) and A′′ otherwise.

Which value αH should we choose? An argument in favor of αH = 0.5. Which
value αH should we choose?

To answer this question, let us take an event E about which we know nothing. For
a lottery L+ in which we get A1 if E and A0 otherwise, the utility interval is [0, 1],
thus, from a decision making viewpoint, this lottery should be equivalent to an event
with utility αH · 1+ (1− αH ) · 0 = αH .

Similarly, for a lottery L− in which we get A0 if E and A1 otherwise, the utility
interval is [0, 1], thus, this lottery should also be equivalent to an event with utility
αH · 1+ (1− αH ) · 0 = αH .

We can now combine these two lotteries into a single complex lottery, in which we
select either L+ or L− with equal probability 0.5. Since L+ is equivalent to a lottery
L(αH ) with utility αH and L− is also equivalent to a lottery L(αH ) with utility αH ,
the complex lottery is equivalent to a lottery in which we select either L(αH ) or
L(αH ) with equal probability 0.5, i.e., to L(αH ). Thus, the complex lottery has an
equivalent utility αH .

On the other hand, no matter what is the event E , in the above complex lottery,
we get A1 with probability 0.5 and A0 with probability 0.5. Thus, this complex
lottery coincides with the lottery L(0.5) and thus, has utility 0.5. So, we conclude
that αH = 0.5.

Comment. The fact that people with too optimistic attitude often make suboptimal
decisions is experimentally confirmed, e.g., in [15].

Which action should we choose? Suppose that an action has n possible outcomes
S1, . . . , Sn , with utilities

[u(Si ), u(Si )],

and probabilities [p
i
, pi ]. How do we then estimate the equivalent utility of this

action?
We know that each alternative is equivalent to a simple lottery with utility ui =

αH ·u(Si )+(1−αH )·u(Si ), and that for each i , the i-th event is—from the viewpoint
of decision making—equivalent to pi = αH · pi + (1 − αH ) · p

i
. Thus, from the

viewpoint of decision making, this action is equivalent to a situation in which we get
utility ui with probability pi . We know that the utility of such a situation is equal to

n∑
i=1

pi · ui . Thus, the equivalent utility of the original action is equivalent to

n∑

i=1

pi · ui =
n∑

i=1

(αH · pi + (1− αH ) · p
i
) · (αH · u(Si )+ (1− αH ) · u(Si )).
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Comment. One can easily see that if we replace the selected values A0 and A1 with
A′0 and A′1, so that the utilities change linearly u → u′ = a · u + b, then the above
equivalent utility uequiv also changes according to the same linear transformation
u′equiv = a · uequiv + b.

Discussion. We started with the situation in which a decision maker cannot decide
between A′ and A′′. In this case, it is possible that A′ is better, and it is also
possible that A′′ is better. In terms of interval-valued utilities [u(A′), u(A′)] and
[u(A′′), u(A′′)], this means that:

• there exists values u(A′) ∈ [u(A′), u(A′)] and u(A′′) ∈ [u(A′′), u(A′′)] for which
u(A′) > u(A′′), and
• there exists values u(A′) ∈ [u(A′), u(A′)] and u(A′′) ∈ [u(A′′), u(A′′)] for which

u(A′) < u(A′′).

In this case, the above approach recommends selecting one of the alternatives A′ and
A′′:

• we recommend to select A′ if

αH · u(A′)+ (1− αH ) · u(A′) ≥ αH · u(A′′)+ (1− αH ) · u(A′′);

• we recommend to select A′′ if

αH · u(A′)+ (1− αH ) · u(A′) < αH · u(A′′)+ (1− αH ) · u(A′′).

In this case, from the viewpoint of descriptive preference, we have uncertainty—we
cannot decide between A′ and A′′. In this case, we make a recommendation. The
recommended prescriptive (normative) preference will enable the user to make a
good decision in a situation when this user is unsure which decision is better—this
is exactly the type of situation in which user seek advise of specialists in decision
making.

Observation: the resulting decision depends on the level of detail. We make a
decision in a situation when we do not know the exact values of the utilities and
when we do not know the exact values of the corresponding probabilities. Clearly, if
gain new information, the equivalent utility may change. For example, if we know
nothing about an alternative A, then its utility is [0, 1] and thus, its equivalent utility
is αH . Once we narrow down the utility of A, e.g., to the interval [0.5, 0.9], we get
a different equivalent utility αH · 0.9 + (1 − αH ) · 0.5 = 0.5 + 0.4 · αH . On this
example, the fact that we have different utilities makes perfect sense.

However, there are other examples where the corresponding difference is not as
intuitively clear. Let us consider a situation in which, with some probability p, we
gain a utility u, and with the remaining probability 1 − p, we gain utility 0. If we
know the exact values of u and p, we can then compute the equivalent utility of this
situation as the expected utility value p · u + (1− p) · 0 = p · u.
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Suppose now that we only know the interval [u, u] of possible values of utility
and the interval [p, p] of possible values of probability. Since the expression p · u
for the expected utility of this situation is an increasing function of both variables:

• the largest possible utility of this situation is attained when both p and u are the
largest possible: u = u and p = p, and
• the smallest possible utility is attained when both p and u are the smallest possible:

u = u and p = p.

In other words, the resulting amount of utility ranges from p · u to p · u.
If we know the structure of the situation, then, according to our derivation, this

situation has an equivalent utility

uk = (αH · p + (1− αH ) · p) · (αH · u + (1− αH ) · u)

(k for know). On the other hand, if we do not know the structure, if we only know that
the resulting utility is from the interval [p · u, p · u], then, according to the Hurwicz
criterion, the equivalent utility is equal to

ud = αH · p · u + (1− αH ) · p · u

(d for don’t know). One can check that

ud − uk =

αH · p ·u+(1−αH )· p ·u−α2
H · p ·u−αH ·(1−αH )·(p ·u+ p ·u)−(1−αH )

2 · p ·u =

αH · (1− αH ) · p · u + αH · (1− αH ) · p · u − αH · (1− αH ) · (p · u + p · u) =

αH · (1− αH ) · (p − p) · (u − u).

This difference is always positive, meaning that additional knowledge decreases the
utility of the situation. (This is maybe what the Book of Ecclesiastes means by “For
with much wisdom comes much sorrow”?)

Comment. A similar example has been recently described in [12].

5 From Intervals to Arbitrary Sets

In the ideal case, we know the exact situation s in all the detail, and we can thus
determine its utility u(s). Realistically, we have an imprecise knowledge, so instead
of a single situation s, we only know a set S of possible situations s. Thus, instead
of a single value of the utility, we only know that the actual utility belongs to the set
U = {u(s) : s ∈ S}. If this set U is an interval [u, u], then we can use the above
arguments to come up with its equivalent utility value αH · u + (1− αH ) · u.
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What is U is a not an interval? For example, we can have a 2-point set U = {u, u}.
What is then the equivalent utility?

Let us first consider the case when the set U contains both its infimum u and
its supremum u. The fact that we only know the set of possible values and have
no other information means that any probability distribution on this set is possible
(to be more precise, it is possible to have any probability distribution on the set of
possible situations S, and this leads to the probability distribution on utilities). In
particular, for each probability p, it is possible to have a distribution in which we
have u with probability p and u with probability 1 − p. For this distribution, the
expected utility is equal to p · u+ (1− p) · u. When p goes from 0 to 1, these values
fill the whole interval [u, u]. Thus, every value from this interval is the possible value
of the expected utility. On the other hand, when u ∈ [u, u], the expected value of
the utility also belongs to this interval—no matter what the probability distribution.
Thus, the set of all possible utility values is the whole interval [u, u] and so, the
equivalent utility is equal to αH · u + (1− αH ) · u.

When the infimum and/or supremum are not in the set U , then the set U contains
points as close to them as possible. Thus, the resulting set of possible values of utility
is as close as possible to the interval [u, u]—and so, it is reasonable to assume that
the equivalent utility is as close to u0 = αH · u + (1 − αH ) · u as possible—i.e.,
coincides with this value u0.

6 Beyond Interval and Set Uncertainty: Partial Information
About Probabilities

Formulation of the problem. In addition to the interval x, we may also have partial
information about the probabilities of different values x ∈ x. How can we describe
this partial information?

An exact probability distribution can be described, e.g., by its cumulative distri-
bution function (cdf) F(z) = Prob(x ≤ z). A partial information means that for
each z, instead of knowing the exact value F(z), we only know the bounds on F(z),
i.e., we only know the interval F(z) = [F(z), F(z)]. Such an interval-valued cdf
is known as a p-box; see, e.g., [7, 32]. Once we know the p-box, we consider all
possible distributions for which, for all z, we have F(z) ∈ F(z).

The problem is that there are many ways to represent a probability distribution,
and each leads to a different way to represent partial information. Which of these
ways should we choose?

Which is the best way to describe the corresponding probabilistic uncertainty?
One of the main objectives of data processing is to make decisions. A standard way
of making a decision is to select the action a for which the expected utility (gain)
is the largest possible. This is where probabilities are used: in computing, for every
possible action a, the corresponding expected utility. To be more precise, we usually
know, for each action a and for each actual value of the (unknown) quantity x , the
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corresponding value of the utility ua(x). We must use the probability distribution for
x to compute the expected value E[ua(x)] of this utility.

In view of this application, the most useful characteristics of a probability dis-
tribution would be the ones which would enable us to compute the expected value
E[ua(x)] of different functions ua(x).

Which representations are the most useful for this intended usage? General idea.
Which characteristics of a probability distribution are the most useful for computing
mathematical expectations of different functions ua(x)? The answer to this question
depends on the type of the function, i.e., on how the utility value u depends on the
value x of the analyzed parameter.

Smooth utility functions naturally lead to moments. One natural case is when the
utility function ua(x) is smooth. We have already mentioned, in the previous text,
that we usually know a (reasonably narrow) interval of possible values of x . So, to
compute the expected value of ua(x), all we need to know is how the function ua(x)
behaves on this narrow interval. Because the function is smooth, we can expand it
into Taylor series. Because the interval is narrow, we can consider only linear and
quadratic terms in this expansion and safely ignore higher-order terms: ua(x) ≈
c0 + c1 · (x − x0) + c2 · (x − x0)

2, where x0 is a point inside the interval. Thus,
we can approximate the expected value of this function by the expected value of the
corresponding quadratic expression: E[ua(x)] ≈ E[c0+c1 ·(x−x0)+c2 ·(x−x0)

2],
i.e., by the following expression: E[ua(x)] ≈ c0+c1 · E[x− x0]+c2 · E[(x− x0)

2].
So, to compute the expectations of such utility functions, it is sufficient to know the
first and second moments of the probability distribution.

In particular, if we use, as the point x0, the average E[x], the second moment
turns into the variance of the original probability distribution. So, instead of the first
and the second moments, we can use the mean E and the variance V .

In decision making, non-smooth utility functions are common. In decision mak-
ing, not all dependencies are smooth. There is often a threshold x0 after which, say,
a concentration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical and/or physical analy-
sis. In this case, when we increase the value of this parameter, we see the drastic
increase in effect and hence, the drastic change in utility value. Sometimes, this
threshold simply comes from regulations. In this case, when we increase the value
of this parameter past the threshold, there is no drastic increase in effects, but there
is a drastic decrease of utility due to the necessity to pay fines, change technology,
etc. In both cases, we have a utility function which experiences an abrupt decrease
at a certain threshold value x0.

Non-smooth utility functions naturally lead to cumulative distribution functions
(cdfs). We want to be able to compute the expected value E[ua(x)] of a function
ua(x) which

• changes smoothly until a certain value x0,
• then drops it value and continues smoothly for x > x0.
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We usually know the (reasonably narrow) interval which contains all possible values
of x . Because the interval is narrow and the dependence before and after the threshold
is smooth, the resulting change in ua(x) before x0 and after x0 is much smaller than
the change at x0. Thus, with a reasonable accuracy, we can ignore the small changes
before and after x0, and assume that the function ua(x) is equal to a constant u+ for
x < x0, and to some other constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In this case, the desired expected
value E[u(0)a (x)] coincides with the probability that x < x0, i.e., with the correspond-
ing value F(x0) of the cumulative distribution function (cdf). A generic function
ua(x) of this type, with arbitrary values u− and u+, can be easily reduced to this
simplest case, because, as one can easily check, ua(x) = u− + (u+ − u−) · u(0)(x)
and hence, E[ua(x)] = u− + (u+ − u−) · F(x0).

Thus, to be able to easily compute the expected values of all possible non-smooth
utility functions, it is sufficient to know the values of the cdf F(x0) for all possible x0.

Describing the cdf is equivalent to describing the inverse quantile function—a
function that assigns, to every possible probability p ∈ [0, 1], the value x = x(p)
for which F(x) = p. For example, the quantile corresponding to p = 0.5 is the
median of the probability distribution.

Summarizing: which statistical characteristics we select. Our analysis shows that
the most appropriate characteristics are the moments and the values of the cdf (or,
equivalently, the values of the quantiles).

Comment. How to estimate the values of the selected statistical characteristics? How
to propagate these values via data processing? For answers to these questions, see
[7, 32] and references therein.

7 What if We Cannot Even Elicit Interval-Valued Uncertainty:
Symmetry Approach

Case study. In some situations, it is difficult to elicit even interval-valued utilities.
As a case study, we consider the problem of selecting the best location for a meteo-
rological tower.

In many applications involving meteorology and environmental sciences, it is
important to measure fluxes of heat, water, carbon dioxide, methane and other trace
gases that are exchanged within the atmospheric boundary layer. Air flow in this
boundary layer consists of numerous rotating eddies, i.e., turbulent vortices of var-
ious sizes, with each eddy having horizontal and vertical components. To estimate
the flow amount at a given location, we thus need to accurately measure wind speed
(and direction), temperature, atmospheric pressure, gas concentration, etc., at dif-
ferent heights, and then process the resulting data. To perform these measurements,
researchers build up vertical towers equipped with sensors at different heights; these
tower are called Eddy flux towers.
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When selecting a location for the Eddy flux tower, we have several criteria to
satisfy; see, e.g., [2, 19].

• For example, the station should not be located too close to a road, so that the gas
flux generated by the cars does not influence our measurements of atmospheric
fluxes; in other words, the distance x1 to the road should be larger than a certain

threshold t1: x1 > t1, or y1
def= x1 − t1 > 0.

• Also, the inclination x2 at the station location should be smaller than a corre-
sponding threshold t2, because otherwise, the flux will be mostly determined by
this inclination and will not be reflective of the atmospheric processes: x2 < t2, or

y2
def= t2 − x2 > 0.

General case. In general, we have several such differences y1, . . . , yn all of which
have to be non-negative. For each of the differences yi , the larger its value, the better.
Based on the above, our problem is a typical setting for multi-criteria optimization;
see, e.g., [6, 38, 40].

Practical problem: reminder. We want to select the best location based on the values
of the differences y1, . . . , yn . For each of the differences yi , the larger its value, the
better.

Weighted average: a natural approach for solving multi-criterion optimization
problems, and limitations of this approach. The most widely used approach to
multi-criteria optimization is weighted average, where we assign weights w1, . . . ,

wn > 0 to different criteria yi and select an alternative for which the weighted
average w1 · y1 + . . .+ wn · yn attains the largest possible value.

This approach has been used in many practical problems ranging from selecting
the lunar landing sites for the Apollo missions (see, e.g., [3]) to selecting landfill
sites (see, e.g., [10]).

In our problem, we have an additional requirement—that all the values yi must
be positive. Thus, we must only compare solutions with yi > 0 when selecting an
alternative with the largest possible value of the weighted average.

In general, the weighted average approach often leads to reasonable solutions of
the multi-criteria optimization problem. However, as we will show, in the presence
of the additional positivity requirement, the weighted average approach is not fully
satisfactory.

A practical multi-criteria optimization must take into account that measure-
ments are not absolutely accurate. In many practical application of the multi-
criterion optimization problem (in particular, in applications to optimal sensor
placement), the values yi come from measurements, and measurements are never
absolutely accurate. The results ỹi of the measurements are close to the actual
(unknown) values yi of the measured quantities, but they are not exactly equal to
these values. If:

• we measure the values yi with higher and higher accuracy and,
• based on the measurement results ỹi , we conclude that the alternative y =
(y1, . . . , yn) is better than some other alternative y′ = (y′1, . . . , y′n),
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then we expect that the actual alternative y is indeed either better than y′ or at least
of the same quality as y′. Otherwise, if we do not make this assumption, we will
not be able to make any meaningful conclusions based on real-life (approximate)
measurements.

The above natural requirement is not always satisfied for weighted average. Let
us show that for the weighted average, this “continuity” requirement is not satisfied
even in the simplest case when we have only two criteria y1 and y2. Indeed, let
w1 > 0 and w2 > 0 be the weights corresponding to these two criteria. Then, the
resulting strict preference relation � has the following properties:

• if y1 > 0, y2 > 0, y′1 > 0, and y′2 > 0, and w1 · y′1 +w2 · y′2 > w1 · y1 +w2 · y2,
then

y′ = (y′1, y′2) � y = (y1, y2); (1)

• if y1 > 0, y2 > 0, and at least one of the values y′1 and y′2 is non-positive, then

y = (y1, y2) � y′ = (y′1, y′2). (2)

Let us consider, for every ε > 0, the tuple y′(ε) def=
(
ε, 1+ w1

w2

)
, with y′1(ε) = ε

and y′2(ε) = 1 + w1

w2
, and also the comparison tuple y = (1, 1). In this case, for

every ε > 0, we have

w1 · y′1(ε)+ w2 · y′2(ε) = w1 · ε + w2 + w2 · w1

w2
= w1 · (1+ ε)+ w2 (3)

and
w1 · y1 + w2 · y2 = w1 + w2, (4)

hence y′(ε) � y. However, in the limit ε→ 0, we have y′(0) =
(

0, 1+ w1

w2

)
, with

y′1(0) = 0 and thus, y′(0) ≺ y.

Towards a more adequate approach to multi-criterion optimization. We want to
be able to compare different alternatives.

Each alternative is characterized by a tuple of n values y = (y1, . . . , yn), and
only alternatives for which all the values yi are positive are allowed. Thus, from the
mathematical viewpoint, the set of all alternatives is the set (R+)n of all the tuples
of positive numbers.

For each two alternatives y and y′, we want to tell whether y is better than y′ (we
will denote it by y � y′ or y′ ≺ y), or y′ is better than y (y′ � y), or y and y′ are
equally good (y′ ∼ y). These relations must satisfy natural properties. For example,
if y is better than y′ and y′ is better than y′′, then y is better than y′′. In other words, the
relation�must be transitive. Similarly, the relation∼must be transitive, symmetric,
and reflexive (y ∼ y), i.e., in mathematical terms, an equivalence relation.



180 V. Kreinovich

So, we want to define a pair of relations � and ∼ such that � is transitive, ∼ is
an equivalence relation, and for every y and y′, one and only one of the following
relations hold: y � y′, y′ � y, or y ∼ y′.

It is also reasonable to require that if each criterion is better, then the alternative
is better as well, i.e., that if yi > y′i for all i , then y � y′.

Comment. Pairs of relations of the above type can be alternatively characterized by
a pre-ordering relation

y′ � y ⇔ (y′ � y ∨ y′ ∼ y). (5)

This pre-ordering relation must be transitive and—in our case—total (i.e., for every
y and y′, we have y � y′ ∨ y′ � y). Once we know the pre-ordering relation �, we
can reconstruct � and ∼ as follows:

y′ � y ⇔ (y′ � y & y �� y′); (6)

y′ ∼ y ⇔ (y′ � y & y � y′). (7)

Scale invariance: motivation. In general, the quantities yi describe completely dif-
ferent physical notions, measured in completely different units. In our meteorological
case, some of these values are wind velocities measured in meters per second, or in
kilometers per hour, or in miles per hour. Other values are elevations described
in meters, in kilometers, or in feet, etc. Each of these quantities can be described in
many different units. A priori, we do not know which units match each other, so it is
reasonable to assume that the units used for measuring different quantities may not
be exactly matched.

It is therefore reasonable to require that the relations � and ∼ between the two
alternatives y = (y1, . . . , yn) and y′ = (y′1, . . . , y′n) do not change if we simply
change the units in which we measure each of the corresponding n quantities.

Comment. The importance of such invariance is well known in measurements theory,
starting with the pioneering work of S. S. Stevens [41]; see also the classical books
[34] and [26] (especially Chap. 22), where this invariance is also called meaningful-
ness.

Scale invariance: towards a precise description. When we replace a unit in which
we measure a certain quantity q by a new measuring unit which is λ > 0 times
smaller, then the numerical values of this quantity increase by a factor of λ, i.e.,
q → λ ·q. For example, 1 cm is λ = 100 times smaller than 1 m, so the length q = 2
m, when measured in cm, becomes λ · q = 2 · 100 = 200 cm.

Let λi denote the ratio of the old to the new units corresponding to the i-th
quantity. Then, the quantity that had the value yi in the old units will be described
by a numerical value λi · yi in the new units. Therefore, scale-invariance means that
for all y, y′ ∈ (R+)n and for all λi > 0, we have

y′ = (y′1, . . . , y′n) � y = (y1, . . . , yn)⇒ (λ1·y′1, . . . , λn ·y′n) � (λ1·y1, . . . , λn ·yn)
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and

y′ = (y′1, . . . , y′n)∼ y = (y1, . . . , yn)⇒ (λ1·y′1, . . . , λn ·y′n) ∼ (λ1·y1, . . . , λn ·yn).

Comment. In general, in measurements, in addition to changing the unit, we can also
change the starting point. However, for the differences yi , the starting point is fixed
by the fact that 0 corresponds to the threshold value. So, in our case, only changing
a measuring unit (= scaling) makes sense.

Continuity. As we have mentioned in the previous section, we also want to require
that the relations � and ∼ are continuous in the following sense: if y′(ε) � y(ε) for
every ε, then in the limit, when y′(ε) → y′(0) and y(ε) → y(0) (in the sense of
normal convergence in Rn), we should have y′(0) � y(0).

The main result. Let us now describe our requirements in precise terms.

Definition 2. By a total pre-ordering relation on a set Y , we mean a pair of a tran-
sitive relation � and an equivalence relation ∼ for which, for every y, y′ ∈ Y , one
and only one of the following relations hold: y � y′, y′ � y, or y ∼ y′.

Comment. We will denote y � y′ def= (y � y′ ∨ y ∼ y′).

Definition 3. We say that a total pre-ordering is non-trivial if there exist y and y′
for which y′ � y.

Comment. This definition excludes the trivial pre-ordering in which every two tuples
are equivalent to each other.

Definition 4. We say that a total pre-ordering relation on the set (R+)n is:

• monotonic if y′i > yi for all i implies y′ � y;
• scale-invariant if for all λi > 0:
• (y′1, . . . , y′n) � y = (y1, . . . , yn) implies

(λ1 · y′1, . . . , λn · y′n) � (λ1 · y1, . . . , λn · yn), (8)

and
• (y′1, . . . , y′n) ∼ y = (y1, . . . , yn) implies

(λ1 · y′1, . . . , λn · y′n) ∼ (λ1 · y1, . . . , λn · yn). (9)

• continuous if whenever we have a sequence y(k) of tuples for which y(k) � y′ for
some tuple y′, and the sequence y(k) tends to a limit y, then y � y′.

Theorem [20] Every non-trivial monotonic scale-invariant continuous total pre-
ordering relation on (R+)n has the following form:
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y′ = (y′1, . . . , y′n) � y = (y1, . . . , yn)⇔
n∏

i=1

(y′i )αi >

n∏

i=1

yαi
i ; (10)

y′ = (y′1, . . . , y′n) ∼ y = (y1, . . . , yn)⇔
n∏

i=1

(y′i )αi =
n∏

i=1

yαi
i , (11)

for some constants αi > 0.

Comment. In other words, for every non-trivial monotonic scale-invariant continuous
total pre-ordering relation on (R+)n , there exist valuesα1 > 0, . . . , αn > 0 for which
the above equivalence hold. Vice versa, for each set of valuesα1 > 0, . . . , αn > 0, the
above formulas define a monotonic scale-invariant continuous pre-ordering relation
on (R+)n .

For reader’s convenience, the proof of the main result is presented in an Appendix.
It is worth mentioning that the resulting relation coincides with Cobb-Douglas

production (utility) function [4, 43] and with the asymmetric version (see, e.g., [36])
of the bargaining solution proposed by the Nobelist John Nash (see next section).

Applications. We have applied this approach to selecting a site for the Eddy tower
that we built at Jornada Experimental Range, a study site in the northern Chihuahuan
Desert; see, e.g., [17, 18]. In this applications, the parameters yi have already been
identified in the previous research; see, e.g., [2].

The values αi were selected based on the information provided by experts, who
supplied us with pairs of (approximately) equally good (or equally bad) designs y
and y′ with different combinations of the parameters yi . Each resulting resulting

condition
n∏

i=1
yαi

i =
n∏

i=1
(y′i )αi can be equivalently described, after taking logarithms

of both sides, as a linear equation
n∑

i=1
αi · ln(yi ) =

n∑
i=1

αi · ln(y′i ). By solving this

system of linear equations, we found the values αi that reflect the expert opinion on
the efficiency of Eddy towers.

A similar symmetry-based approach was used to design a network of radiotele-
scopes [24].

Comment. The above equations determine αi modulo a multiplicative constant: if
we multiply all the values αi by the same constant, the equations remain valid. To
avoid this non-uniqueness, we used normalized values of αi , i.e., values that satisfy

the additional normalizing equation
n∑

i=1
αi = 1.
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8 Group Decision Making

Need for group decision making. In many practical situations, several people are
affected by the planned decision. In such situations, we need to take into account
preferences of all the participating agents.

For each participant Pi , we can determine the utility ui j
def= ui (A j ) of all the

alternatives A1, . . . , Am . How to transform these utilities into a reasonable group
decision rule?

Nash’s bargaining solution. The answer to this question was, in effect, provided
by a future Nobelist John Nash who, in [30, 31], has shown that under reasonable
assumptions like symmetry, independence from irrelevant alternatives, and scale
invariance (i.e., invariance under replacing the original utility function ui (A)with an
equivalent function a ·ui (A)), the only group decision rule is selecting an alternative
A for which the product

u(A)
def=

n∏

i=1

ui (A)

is the largest possible; see also [27, 29].
Here, the utility functions must be scaled in such a way that the “status quo”

situation A(0) is assigned the utility 0. This re-scaling can be achieved, e.g., by

replacing the original utility values ui (A) with re-scaled values u′i (A)
def= ui (A) −

ui (A(0)).

Multi-agent decision making under interval uncertainty. What if we do not know
the exact values of utility, we only know intervals [ui (A), ui (A)]? In this case, the first
idea is to find all A0 which can be Nash-optimal, i.e., for which u(A0) ≥ max

A
u(A),

where

u(A)
def=

n∏

i=1

ui (A)and u(A)
def=

n∏

i=1

ui (A).

If we want to select a single alternative, then we should maximize uequiv(A)
def=

n∏
i=1

uequiv
i (A), where uequiv

i (A) are values obtained by using Hurwicz optimism-

pessimism criterion.

Comment. An interesting aspect of this problem is that sometimes, we have a conflict
situation; this happens, for example, in security situations. In such situations, only
partial results are known; see, e.g., [21].
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9 Beyond Optimization

Need to go beyond optimization. While optimization problems are ubiquitous,
sometimes, we need to go beyond optimization: e.g., we need to make sure that the
system is controllable for all disturbances within a given range.

In control situations, the desired value z depends both on the variables the variables
that we can select (control variables) u = (u1, . . . , um) and on the variables x =
(x1, . . . , xn)describing the changing state of the world: z = f (x, u). For each control
variable u j , we know the range U j within which we can select its value, and for each
variable xi , we know the range Xi of its possible values. We want to find a range
Z for which, for every state of the world xi ∈ Xi , we can get z ∈ Z by selecting
appropriate control values u j ∈ U j :

∀x ∃u (z = f (x, u) ∈ Z).

Interval computations: reminder. Interval computations [28] can be viewed as a
degenerate case of this control problem in which there are no controls at all. In this
case:

• we know the intervals X1, . . . , Xn containing x1, . . . , xn ;
• we know that a quantity z depends on x : z = f (x);
• we want to find the range Z of possible values of z:

Z =
[

min
x∈X

f (x),max
x∈X

f (x)

]
.

In logical terms, we want to make sure that ∀x (z = f (x) ∈ Z).

Reformulation in logical terms—of modal intervals. In the general control case,
we want to make sure that ∀x∈X ∃u∈U ( f (x, u) ∈ Z). There is a logical difference
between intervals X and U : the property f (x, u) ∈ Z must hold

• for all possible values xi ∈ Xi , but
• for some values u j ∈ U j .

We can thus consider pairs of intervals and quantifiers (modal intervals [11]):

• each original interval Xi is a pair 〈Xi ,∀〉, while
• controlled interval is a pair 〈U j , ∃〉.
We can then treat the resulting interval Z as the “range” defined over such modal
intervals:

Z = f (〈X1,∀〉, . . . , 〈Xn,∀〉, 〈U1, ∃〉, . . . , 〈Um, ∃〉).

Even further beyond optimization. In more complex situations, we need to go
beyond control. For example, in the presence of an adversary, we want to make a
decision x such that:
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• for every possible reaction y of an adversary,
• we will be able to make a next decision x ′ (depending on y)
• so that after every possible next decision y′ of an adversary,
• the resulting state s(x, y, x ′, y′) will be in the desired set:

∀y ∃x ∀y′ (s(x, y, x ′, y′) ∈ S).

In this case, we arrive at general quantifier classes described, e.g., in [39].
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A Proof of the Theorem

1◦. Due to scale-invariance (9), for every y1, …, yn , y′1, …, y′n , we can take λi = 1

yi
and conclude that

(y′1, . . . , y′n) ∼ (y1, . . . , yn)⇔
(

y′1
y1
, . . . ,

y′n
yn

)
∼ (1, . . . , 1). (12)

Thus, to describe the equivalence relation ∼, it is sufficient to describe the set of all
the vectors z = (z1, . . . , zn) for which z ∼ (1, . . . , 1). Similarly,

(y′1, . . . , y′n) � (y1, . . . , yn)⇔
(

y′1
y1
, . . . ,

y′n
yn

)
� (1, . . . , 1). (13)

So, to describe the ordering relation �, it is sufficient to describe the set of all the
vectors z = (z1, . . . , zn) for which z � (1, . . . , 1).

Alternatively, we can take λi = 1

y′i
and conclude that

(y′1, . . . , y′n) � (y1, . . . , yn)⇔ (1, . . . , 1) �
(

y1

y′1
, . . . ,

yn

y′n

)
. (14)

Thus, it is also sufficient to describe the set of all the vectors z = (z1, . . . , zn) for
which (1, . . . , 1) � z.

2◦. The above equivalence involves division. To simplify the description, we can
take into account that in the logarithmic space, division becomes a simple difference:

ln

(
y′i
yi

)
= ln(y′i )− ln(yi ). To use this simplification, let us consider the logarithms
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Yi
def= ln(yi ) of different values. In terms of these logarithms, the original values

can be reconstructed as yi = exp(Yi ). In terms of these logarithms, we thus need to
consider:

• the set S∼ of all the tuples Z = (Z1, . . . , Zn) for which

z = (exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1), (15)

and
• the set S� of all the tuples Z = (Z1, . . . , Zn) for which

z = (exp(Z1), . . . , exp(Zn)) � (1, . . . , 1). (16)

We will also consider the set S≺ of all the tuples Z = (Z1, . . . , Zn) for which

(1, . . . , 1) � z = (exp(Z1), . . . , exp(Zn)). (17)

Since the pre-ordering relation is total, for every tuple z,

• either z ∼ (1, . . . , 1),
• or z � (1, . . . , 1),
• or (1, . . . , 1) � z.

In particular, this is true for z = (exp(Z1), . . . , exp(Zn)). Thus, for every tuple Z ,
either Z ∈ S∼ or Z ∈ S� or Z ∈ S≺.

3◦. Let us prove that the set S∼ is closed under addition, i.e., that if the tuples Z =
(Z1, . . . , Zn) and Z ′ = (Z ′1, . . . , Z ′n) belong to the set S∼, then their component-
wise sum

Z + Z ′ = (Z1 + Z ′1, . . . , Zn + Z ′n) (18)

also belongs to the set S∼.
Indeed, by definition (15) of the set S∼, the condition Z ∈ S∼ means that

(exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1). (19)

Using scale-invariance (9) with λi = exp(Z ′i ), we conclude that

(exp(Z1) · exp(Z ′1), . . . , exp(Zn) · exp(Z ′n)) ∼ (exp(Z ′1), . . . , exp(Z ′n)). (20)

On the other hand, the condition Z ′ ∈ S∼ means that

(exp(Z ′1), . . . , exp(Z ′n)) ∼ (1, . . . , 1). (21)

Thus, due to transitivity of the equivalence relation ∼, we conclude that

(exp(Z1) · exp(Z ′1), . . . , exp(Zn) · exp(Z ′n)) ∼ (1, . . . , 1). (22)
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Since for every i , we have exp(Zi ) · exp(Z ′i ) = exp(Zi + Z ′i ), we thus conclude that

(exp(Z1 + Z ′1), . . . , exp(Zn + Z ′n)) ∼ (1, . . . , 1). (23)

By definition (15) of the set S∼, this means that the tuple Z + Z ′ belongs to the
set S∼.

4◦. Similarly, we can prove that the set S� is closed under addition, i.e., that if the
tuples Z = (Z1, . . . , Zn) and Z ′ = (Z ′1, . . . , Z ′n) belong to the set S�, then their
component-wise sum

Z + Z ′ = (Z1 + Z ′1, . . . , Zn + Z ′n) (24)

also belongs to the set S�.
Indeed, by definition (16) of the set S�, the condition Z ∈ S� means that

(exp(Z1), . . . , exp(Zn)) � (1, . . . , 1). (25)

Using scale-invariance (8) with λi = exp(Z ′i ), we conclude that

(exp(Z1) · exp(Z ′1), . . . , exp(Zn) · exp(Z ′n)) � (exp(Z ′1), . . . , exp(Z ′n)). (26)

On the other hand, the condition Z ′ ∈ S� means that

(exp(Z ′1), . . . , exp(Z ′n)) � (1, . . . , 1). (27)

Thus, due to transitivity of the strict preference relation �, we conclude that

(exp(Z1) · exp(Z ′1), . . . , exp(Zn) · exp(Z ′n)) � (1, . . . , 1). (28)

Since for every i , we have exp(Zi ) · exp(Z ′i ) = exp(Zi + Z ′i ), we thus conclude that

(exp(Z1 + Z ′1), . . . , exp(Zn + Z ′n)) � (1, . . . , 1). (29)

By definition (16) of the set S�, this means that the tuple Z + Z ′ belongs to the
set S�.

5◦. A similar argument shows that the set S≺ is closed under addition, i.e., that if the
tuples Z = (Z1, . . . , Zn) and Z ′ = (Z ′1, . . . , Z ′n) belong to the set S≺, then their
component-wise sum

Z + Z ′ = (Z1 + Z ′1, . . . , Zn + Z ′n) (30)

also belongs to the set S≺.
6◦. Let us now prove that the set S∼ is closed under the “unary minus” operation, i.e.,

that if Z = (Z1, . . . , Zn) ∈ S∼, then −Z
def= (−Z1, . . . ,−Zn) also belongs to S∼.
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Indeed, Z ∈ S∼ means that

(exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1). (31)

Using scale-invariance (9) with λi = exp(−Zi ) = 1

exp(Zi )
, we conclude that

(1, . . . , 1) ∼ (exp(−Z1), . . . , exp(−Zn)), (32)

i.e., that −Z ∈ S∼.

7◦. Let us prove that if Z = (Z1, . . . , Zn) ∈ S�, then −Z
def= (−Z1, . . . ,−Zn)

belongs to S≺.
Indeed, Z ∈ S� means that

(exp(Z1), . . . , exp(Zn)) � (1, . . . , 1). (33)

Using scale-invariance (8) with λi = exp(−Zi ) = 1

exp(Zi )
, we conclude that

(1, . . . , 1) � (exp(−Z1), . . . , exp(−Zn)), (34)

i.e., that −Z ∈ S≺.
Similarly, we can show that if Z ∈ S≺, then −Z ∈ S�.

8◦. From Part 3 of this proof, it now follows that if Z = (Z1, . . . , Zn) ∈ S∼, then
Z + Z ∈ S∼, then that Z + (Z + Z) ∈ S∼, etc., i.e., that for every positive integer
p, the tuple

p · Z = (p · Z1, . . . , p · Zn) (35)

also belongs to the set S∼.
By using Part 6 of this proof, we can also conclude that this is true for negative

integers p as well. Finally, by taking into account that the zero tuple 0
def= (0, . . . , 0)

can be represented as Z + (−Z), we conclude that 0 · Z = 0 also belongs to the
set S∼.

Thus, if a tuple Z belongs to the set S∼, then for every integer p, the tuple p · Z
also belongs to the set S∼.
9◦. Similarly, from Parts 4 and 5 of this proof, it follows that

• if Z = (Z1, . . . , Zn) ∈ S�, then for every positive integer p, the tuple p · Z also
belongs to the set S�, and
• if Z = (Z1, . . . , Zn) ∈ S≺, then for every positive integer p, the tuple p · Z also

belongs to the set S≺.

10◦. Let us prove that for every rational number r = p

q
, where p is an integer and

q is a positive integer, if a tuple Z belongs to the set S∼, then the tuple r · Z also
belongs to the set S∼.
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Indeed, according to Part 8, Z ∈ S∼ implies that p · Z ∈ S∼.
According to Part 2, for the tuple r · Z , we have either r · Z ∈ S∼, or r · Z ∈ S�,

or r · Z ∈ S≺.

• If r · Z ∈ S�, then, by Part 9, we would get p · Z = q · (r · Z) ∈ S�, which
contradicts our result that p · Z ∈ S∼.
• Similarly, if r · Z ∈ S≺, then, by Part 9, we would get p · Z = q · (r · Z) ∈ S≺,

which contradicts our result that p · Z ∈ S∼.

Thus, the only remaining option is r · Z ∈ S∼. The statement is proven.
11◦. Let us now use continuity to prove that for every real number x , if a tuple Z
belongs to the set S∼, then the tuple x · Z also belongs to the set S∼.

Indeed, a real number x can be represented as a limit of rational numbers: r (k)→
x . According to Part 10, for every k, we have r (k) · Z ∈ S∼, i.e., the tuple

Z (k)
def= (exp(r (k) · Z1), . . . , exp(r (k) · Zn)) ∼ (1, . . . , 1). (36)

In particular, this means that Z (k) � (1, . . . , 1). In the limit,

Z (k)→ (exp(x · Z1), . . . , exp(x · Zn)) � (1, . . . , 1). (37)

By definition of the sets S∼ and S�, this means that x · Z ∈ S∼ or x · Z ∈ S�.
Similarly, for −(x · Z) = (−x) · Z , we conclude that −x · Z ∈ S∼ or

(−x) · Z ∈ S�. (38)

If we had x · Z ∈ S�, then by Part 7 we would get (−x) · Z ∈ S≺, a contradiction.
Thus, the case x · Z ∈ S� is impossible, and we have x · Z ∈ S∼. The statement is
proven.
12◦. According to Parts 3 and 11, the set S∼ is closed under addition and under

multiplication by an arbitrary real number. Thus, if tuples Z , . . . , Z ′ belong to the
set S∼, their arbitrary linear combination x · Z + . . .+ x ′ · Z ′ also belongs to the set
S∼. So, the set S∼ is a linear subspace of the n-dimensional space of all the tuples.
13◦. The subspace S∼ cannot coincide with the entire n-dimensional space, because
then the pre-ordering relation would be trivial. Thus, the dimension of this subspace
must be less than or equal to n − 1. Let us show that the dimension of this subspace
is n − 1.

Indeed, let us assume that the dimension is smaller than n − 1. Since the pre-
ordering is non-trivial, there exist tuples y = (y1, . . . , yn) and y′ = (y′1, . . . , y′n)

for which y � y′ and thus, Z = (Z1, . . . , Zn) ∈ S�, where Zi = ln

(
yi

y′i

)
. From

Z ∈ S�, we conclude that −Z ∈ S≺.
Since the linear space S∼ is a less than (n − 1)-dimensional subspace of an

n-dimensional linear space, there is a path connecting Z ∈ S� and −Z ∈ S≺ which
avoids S∼. In mathematical terms, this path is a continuous mapping γ : [0, 1] → Rn
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for which γ (0) = Z and γ (1) = −Z . Since this path avoids S∼, every point γ (t) on
this path belongs either to S� or to S≺.

Let t denote the supremum (least upper bound) of the set of all the values t for
which γ (t) ∈ S�. By definition of the supremum, there exists a sequence t (k) → t
for which γ

(
t (k)

) ∈ S�. Similarly to Part 11, we can use continuity to prove that in
the limit, γ

(
t
) ∈ S� or γ

(
t
) ∈ S∼. Since the path avoids the set S∼, we thus get

γ
(
t
) ∈ S�.

Similarly, since γ (1) �∈ S�, there exists a sequence t (k) ↓ t for which γ
(
t (k)

) ∈
S≺. We can therefore conclude that in the limit, γ

(
t
) ∈ S� or γ (t) ∈ S∼—a

contradiction with our previous conclusion that γ
(
t
) ∈ S�.

This contradiction shows that the linear space S∼ cannot have dimension smaller
than n − 1 and thus, that this space have dimension n − 1.
14◦. Every (n − 1)-dimensional linear subspace of an n-dimensional superspace

separates the superspace into two half-spaces. Let us show that one of these half-
spaces is S� and the other is S≺.

Indeed, if one of the subspaces contains two tuples Z and Z ′ for which Z ∈ S�
and Z ′ ∈ S≺, then the line segment γ (t) = t · Z + (1− t) · Z ′ containing these two
points also belongs to the same subspace, i.e., avoids the set S∼. Thus, similarly to
Part 13, we would get a contradiction.

So, if one point from a half-space belongs to S�, all other points from this subspace
also belong to the set S�. Similarly, if one point from a half-space belongs to S≺, all
other points from this subspace also belong to the set S≺.
15◦. Every (n − 1)-dimensional linear subspace of an n-dimensional space has the
form

α1 · Z1 + . . .+ αn · Zn = 0 (39)

for some real values αi , and the corresponding half-spaces have the form

α1 · Z1 + . . .+ αn · Zn > 0 (40)

and
α1 · Z1 + . . .+ αn · Zn < 0. (41)

The set S� coincides with one of these subspaces. If it coincides with the set of
all tuples Z for which α1 · Z1 + . . .+ αn · Zn < 0, then we can rewrite it as

(−α1) · Z1 + . . .+ (−αn) · Zn > 0, (42)

i.e., as α′1 · Z1 + . . .+ α′n · Zn > 0 for α′i = −αi .
Thus, without losing generality, we can conclude that the set S� coincides with

the set of all the tuples Z for which α1 · Z1+ . . .+ αn · Zn > 0. We have mentioned
that

y′ = (y′1, . . . , y′n) � y = (y1, . . . , yn)⇔ (Z1, . . . , Zn) ∈ S�, (43)
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where Zi = ln

(
y′i
yi

)
. So,

y′ � y ⇔

α1 · Z1 + . . .+ αn · Zn = α1 · ln
(

y′1
y1

)
+ . . .+ αn · ln

(
y′n
yn

)
> 0. (44)

Since ln

(
y′i
yi

)
= ln(y′i )− ln(yi ), the last inequality in the formula (44) is equivalent

to
α1 · ln(y′1)+ . . .+ αn · ln(y′n) > α1 · ln(y1)+ . . .+ αn · ln(yn). (45)

Let us take exp of both sides of the formula (45); then, due to the monotonicity of
the exponential function, we get an equivalent inequality

exp(α1 · ln(y′1)+ . . .+ αn · ln(y′n)) > exp(α1 · ln(y1)+ . . .+ αn · ln(yn)). (46)

Here,

exp(α1 · ln(y′1)+ . . .+ αn · ln(y′n)) = exp(α1 · ln(y′1)) · . . . · exp(αn · ln(y′n)),

where for every i , eαi ·zi = (ezi )αi , with zi
def= ln(y′i ), implies that

exp(αi · ln(y′i )) = (exp(ln(y′i )))αi = (y′i )αi , (47)

so
exp(α1 · ln(y′1)+ . . .+ αn · ln(y′n)) = (y′1)α1 · . . . · (y′n)αn (48)

and similarly,

exp(α1 · ln(y1)+ . . .+ αn · ln(yn)) = yα1
1 · . . . · yαn

n . (49)

Thus, due to (44), (45), (46), (48) and (49), the condition y′ � y is equivalent to:

n∏

i=1

yαi
i >

n∏

i=1

(y′i )αi . (50)

Similarly, we prove that

y1, . . . , yn) ∼ y′ = (y′1, . . . , y′n)⇔
n∏

i=1

yαi
i =

n∏

i=1

(y′i )αi . (51)
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The condition αi > 0 follows from our assumption that the pre-ordering is
monotonic.

The theorem is proven.
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Dealing with Imprecision in Consumer Theory:
A New Approach to Fuzzy Utility Theory

David Gálvez Ruiz and José Luís Pino Mejías

Abstract This chapter presents a new approach to dealing with imprecision in the
Classical Consumer Utility Theory based on the concept of Marginal Rate of Substitu-
tion (MRS) and using the concept of fuzzy sets and fuzzy numbers. The methodology
developed applies imprecision to MRS, whereas previous studies placed the impreci-
sion factor on final utility values and functions. The chapter considers fuzzy elements
applied to MRS and uses the necessary formulations to obtain the results in Utility
Theory. In this fuzzy environment, the final consumer decision problem is framed as
a fuzzy nonlinear programming problem, maintaining the classical structure in which
consumers maximize their fuzzy utility subject to budget constraints, and showing
that the consumer optimum choice is a fuzzy set. The chapter will also address the
problem of aggregation of utility functions in order to offer a multi-criteria approach.

Keywords New directions of decision analysis under uncertainty · Muti-criteria
decision making

1 Introduction

The study of consumer decision-making from the classical perspective is based on the
concept of utility. The first approach to this concept was created by Stanley Jevons,
who thought that people consume according to the pain or pleasure they receive from
the action. He called this utility [33].
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This starting point led to several classical definitions of utility, summarized
masterfully by the great Keynesian economist Joan Robinson, who stated that utility
is just the characteristic of goods that makes people want to buy, and these people
buy goods to enjoy their utility [32].

These definitions led classical economists to establish utility as a measurable
cardinal concept. Thus, for early theorists, utility is considered as a reality born
from psychological introspection and as such, its treatment would generate a directly
measurable quantity inherent to the good consumed. In this extreme view, measuring
the utility is equivalent to associating a real number (units of utility) to the feeling
obtained from the consumption of goods. Thus, a good that provides 20 units of utility
would be twice as desirable as another one that provides only 10. However, towards
the end of the nineteenth century this concept would be progressively revised, as
both a conceptual and an instrumental field.

The next step came with Pareto when the cardinal utility view was definitively
rejected. Pareto, suggests that satisfaction need is based not only on the objective
inner properties of things, but on the subjective aspects of needs as well [29]. This
allowed for a redefined concept of the utility function as establishing only preference
relations. Therefore, utility levels can be represented by any increasing function. In
that sense, the utility function only needs to establish a preference relation order,
so that a good that provides 20 units of utility would be only more desirable than
another one that provides only 10, but not necessarily twice as desirable.

This conception led to the subjective conception of utility and made it possible
to introduce parameters in utility functions in order to fit the perceived needs of the
consumer. Therefore, the utility function for one consumer will reach a different
value for the consumption of a combination of goods from the value reached by the
utility function of another consumer for the same combination of goods, so that any
interpersonal comparison is invalid.

All these developments led to the construction of a new model for classical con-
sumer theory, whose main architect was Hicks, offering the following premise: “We
must now begin the work of killing and reject all concepts with trace of quantitative
value on utility, to replace them where they are, by notions entirely free of them” [21].

His whole argument is based on the definition of marginal rate of substitution
(MRS). The MRS of x1 on x2 is the amount of x2 which is sufficient to compensate
the consumer for the loss of a marginal unit of x1. In other words, the marginal rate
of substitution shows the amount of product x1 the consumer would exchange for
an additional unit of product x2, maintaining a constant level of utility. With this
definition, Hicks manages to move the quantitative element of consumer subjectivity
from utility to MRS, establishing a relation between them.

At this point, economists and other social scientists have added more complex-
ity to the model in order to adjust it to different scenarios with uncertainty and/or
imprecision [1, 15]. One of these scenarios is the internal uncertainty or imprecision
involved in the judgements made by consumers and decision-makers. While external
or general uncertainty is derived from environmental factors which are exogenous
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to the consumer, such as the weather, or the place where consumption will occur,
internal uncertainty or imprecision arises from several factors inherent to the con-
sumer. These factors break the classical assumption of preference and judgement
certainty and produce a lack of exactness, affecting the utility valuations from con-
sumers. This imprecision is always present in a consumer decision-making process:
first, because people may not be well acquainted with the alternatives they are being
asked to value, and cannot easily express a preference for different combinations of
goods; and second, and specially relevant in this chapter, consumers may be truly
uncertain about the utility of a combination of goods or concerning MRS, uncertain
about their tradeoffs.

Nevertheless, far from the Hicksian statement, the treatment up to now of uncer-
tainty and imprecision in Utility Theory has always relied on utility values given
by consumers or on utility functions inferred from these values. In this sense, at
the beginning of imprecision treatment in utility, several studies gave imprecision to
utility from its crisp values ([34] lists some of these most important works), yet this
conception was replaced in more recent studies, which deal directly with imprecise
values inferred or given by the consumers [8, 25]; imprecise preferences [2, 10, 15,
27, 28, 35]; or imprecise utility functions [7, 24].

However, it is unrealistic to suppose that consumers are able to assign a number
(value) for utility and simply deal with the incomplete information associated with
utility. Through the alternative approach developed in this chapter, it is possible to
initially ignore the utility valuation and determine how many units of product x1
the consumer would exchange for an additional unit of product x2 maintaining a
constant level of utility. This is the concept of Marginal Rate of Substitution. The
present methodology launches a new approach which applies imprecision to MRS,
whereas previous studies placed the imprecision factor on final utilities in one way or
another. The new methodology considers fuzzy elements applied to MRS and uses
the necessary formulations to obtain the results in Utility Theory.

First, the marginal rate of substitution and its relation to utility will be presented.
From the reasoning above, the uncertainty and imprecision element is placed on
MRS instead of on utility values or functions using fuzzy sets. Then, from the fuzzy
marginal rate of substitution, the methodology reaches the fuzzy consumer utility
function by solving non-polynomial fuzzy partial differential equations through a
new variation of the Buckley-Feuring method for the polynomial form. Classical
consumer theory has always implemented this step inversely, that is, obtaining MRS
from utility functions with the assumption that consumers can assess these utility
values.

In this fuzzy environment, the final consumer decision problem is framed as a
fuzzy nonlinear programming problem in which consumers maximize their fuzzy
utility subject to budget constraints. The methodology deals with the solution in this
new scenario, so that the classical economic approach to the final consumer decision
is tackled in a fuzzy environment while maintaining the maximization problem struc-
ture. A Multi-criteria approach to the problem is also given, thus addressing the issue
of aggregation of utility functions. All the steps outlined above have been applied to
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different commonly used consumer utility structures, such as Cobb-Douglas utilities
or Constant Elasticity Substitution (CES) utilities.

2 Preliminaries

2.1 Fuzzy Numbers

Fuzzy sets were introduced by Zadeh [39–42] to deal with the imprecision and
vagueness in numeric and qualitative values. From that point, considerable strides
have been made in order to clarify the concept of fuzziness and identify properties
and operations.

The most accepted definition for fuzzy sets works as follows:
If X is a collection of objects generally denoted by x , then, a fuzzy set Ã over X

is a set of pairs:
Ã = {(x,μ Ã(x))|x ∈ X}, (1)

where μ Ã(x) is called the membership function (or membership degree) of x in Ã,
and maps X in the pattern space M . The range of μ Ã(x) is a subset of nonnegative
real numbers with finite supremum.

From this definition, the fuzzy number concept is developed as a special case of
fuzzy set in which:

1. sup μ Ã(x) = 1, inf μ Ã(x) = 0
2. ∀α ∈ [0, 1], μ(α) = {x ∈ X |μ Ã(x) ≥ α} is convex.
3. μ Ã(x) is continuous.
4. ∃{x0 ∈ X |μ Ã(x0) = 1}.

Obviously, there will be as many fuzzy numbers types as possible membership
functions. One of them is the triangular fuzzy number, identified by:

μ Ã(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
, a1 ≤ x ≤ a2

a3 − x

a3 − a2
, a2 ≤ x ≤ a3

0 otherwise

(2)

where a2 reaches the sup μ Ã(x) = 1, and a1 and a3 reach the inf μ Ã(x) = 0.
Other ways to define fuzzy numbers have also been developed. This chapter

uses properties from the Goetschel-Voxman definition [19] to solve fuzzy partial
differential equations. From this definition, a fuzzy number is a fuzzy set defined by
(1) with μ : X → [0, 1] that satisfies the properties:

1. μ is upper semicontinuous.
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2. μ(x) = 0 outside of some interval [c, d].
3. There are real numbers a and b, c ≤ a ≤ b ≤ d such that μ is increasing on
[c, a], decreasing on [b, d] and μ(x) = 1 for each x ∈ [a, b].
This definition makes a = b for triangular fuzzy numbers [corresponding to a2

in (2)] and for other fuzzy numbers that have only one element with membership
function equal to one.

For 0 ≤ α ≤ 1, it is possible to define:

μ(α) =
{ {x | μ(x) ≥ α} if 0 < α ≤ 1

cl(supp μ) if α = 0
(3)

Where cl(supp μ) denotes the closure of support of μ and μ(α) is called α-cut set.
Then, Ã = {(x,μ Ã(x)), μ : X → [0, 1])|x ∈ X} is a fuzzy number if and only if:

• μ(α) is a closed and bounded interval for each α, 0 < α ≤ 1, and
• μ(1) �= ∅

With this characterization, it is possible to identify a fuzzy number with the para-
meterized triples {(a1(α), a2(α),α) | 0 ≤ α ≤ 1}, where a1(α) denotes the left
hand endpoint of μ(α) and a2(α) denotes the right hand endpoint for a1, a2 ∈ Ã
over X .

Suppose that the functions a1 : [0, 1] → X and a2 : [0, 1] → X satisfy the
conditions:

1. a1 is a bounded increasing function,
2. a2 is a bounded decreasing function,
3. a1(1) ≤ a2(1),
4. For 0 < h ≤ 1 : limα→h− a1(α) = a1(h), and limα→h− a2(α) = a2(h),
5. limα→0+ a1(α) = a1(0), and limα→0+ a2(α) = a2(0).

If Ã = {(x,μ Ã(x))|x ∈ X} is a fuzzy number identified with the parameterized triple
{(a1(α), a2(α),α) | 0 ≤ α ≤ 1}, then the functions a1 and a2 satisfy conditions 1–5.

2.2 Elements of the Consumer Decision Problem

• First, it is necessary to identify the set of alternatives which can be adopted as
solutions in the decision-making problem. In this case, this set of alternatives has
infinite elements, such as pairs (x1, x2), with x1 ∈ S1 ⊂ I1 = (0,M1], x2 ∈
S2 ⊂ I2 = (0,M2] amounts of goods X1 and X2 respectively. X1 and X2 are
perfectly divisible.1

1 This is a general assumption in classic economic theory, but not restrictive in many cases, i.e.
when producers are consumers of raw materials or goods like wood, steel, fuel, energy, water, oil,
seeds ....
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• Utility function and preference rules.
The utility function is applied to each alternative (x1, x2) in order to evaluate the
combination of goods X1 and X2. The utility function establishes a preference
order as follows:

– An alternative (x1, x2) is strictly preferred to (x ′1, x ′2):

(x1, x2) � (x ′1, x ′2)

if the alternative (x1, x2) is better than (x ′1, x ′2) in the consumer decision-
making problem, that is, U (x1, x2) > U (x ′1, x ′2).

– An alternative (x1, x2) is weakly preferred to (x ′1, x ′2):

(x1, x2)  (x ′1, x ′2)

if the alternative (x1, x2) is not worse than (x ′1, x ′2) in the consumer decision
making problem, that is, U (x1, x2) ≥ U (x ′1, x ′2).

– An alternative (x1, x2) is indifferent to (x ′1, x ′2):

(x1, x2) ∼ (x ′1, x ′2)

if the consumer gets the same satisfaction choosing either of them, that is:

U (x1, x2) = U (x ′1, x ′2)

If a set of alternatives is indifferent,it is said that they are in the same indif-
ference curve, which shows the geometrical representation of the set:

I (x ′1, x ′2) = {(x1, x2) ∈ S1 × S2 \ (x1, x2) ∼ (x ′1, x ′2)} (4)

A generic utility function U (x1, x2) can be used to order preferences as shown above
if the following axioms are held2:

1. Comparability.

∀(x1, x2), (x
′
1, x ′2) ∈ S1 × S2 : (x1, x2)  (x ′1, x ′2), or (x ′1, x ′2)  (x1, x2),

or both.

2. Transitivity.
∀(x1, x2), (x

′
1, x ′2), (x ′′1 , x ′′2 ) ∈ S1 × S2 :

if (x1, x2)  (x ′1, x ′2) and (x ′1, x ′2)  (x ′′1 , x ′′2 ),=⇒ (x1, x2)  (x ′′1 , x ′′2 )

3. Consistency between indifference and weak preference.

2 The first four axioms are generic in decision making.
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∀(x1, x2), (x
′
1, x ′2) ∈ S1 × S2 : (x1, x2) ∼ (x ′1, x ′2)⇐⇒ (x1, x2)  (x ′1, x ′2) and

(x ′1, x ′2)  (x1, x2)

4. Consistency between weak preference and strict preference. One alternative is
preferred to another alternative only if:

∀(x1, x2), (x
′
1, x ′2) ∈ S1×S2 : (x1, x2) � (x ′1, x ′2)⇐⇒ ¬((x ′1, x ′2)  (x1, x2))

5. U (x1, x2) is monotone non-decreasing ∀(x1, x2) ∈ S1 × S2. Also, it is generally
assumed that Utility is a continuous function in (x1, x2) ∈ I1 × I2 with partial
Dx1, Dx2 [26].

6. Both partial:

∂U (x1, x2)

∂xi
= Dxi , i = 1, 2, ∀(x1, x2) ∈ S1 × S2 are non-increasing

functions for goods.

If these axioms are held, it is possible to define a utility function which assigns a
number to the consequence of each alternative (x1, x2). This utility function is used
to assign ordinal preferences, so that:

U (x1, x2) ≥ U (x ′1, x ′2)⇐⇒ (x1, x2)  (x ′1, x ′2)

that is, a higher value reached in the utility function by one alternative over another
one, implies that the former alternative is preferred to the latter.

The utility function will also be measurable if, in addition to the previous condi-
tions, it satisfies that if:

U (x1, x2)−U (x ′1, x ′2) ≥ U (x ′′1 , x ′′2 )−U (x ′′′1 , x ′′′2 )

then,
((x1, x2)←− (x ′1, x ′2))  ((x ′′1 , x ′′2 )←− (x ′′′1 , x ′′′2 ))

that is, a change from (x ′1, x ′2) to (x1, x2) is, at least as good as a change from (x ′′′1 , x ′′′2 )

to (x ′′1 , x ′′2 ).

3 Utility and MRS

The new approach presented here will show that it is possible (and more realis-
tic) to maintain the Hicksian framework, initially ignoring the utility valuation and
determining how many units of product X1 the consumer would exchange for an
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Fig. 1 Standard indifference
curves for two goods

1
Iω

2
Iω

3
Iω

1X

2X

additional unit of product X2 while maintaining a constant utility level, in other
words, the marginal rate of substitution. Thus, let:

• xi = Amount of good Xi .
• U (x1, x2, ..., xn) = Utility given by (x1, x2, ..., xn).
• � = Range of utility values.
• Uω = Utility level ω (U (·) = ω), ω ∈ �.

Following the classical economic approach, only two products are considered at the
moment. In terms of utility function, the indifference curve described in (4) of these
two goods is the set given by:

I (x ′1, x ′2) = {(x1, x2) ∈ S1 × S2 \U (x1, x2) = U (x ′1, x ′2)} (5)

The MRS of x2 over x1 shows the amount of X2 that the consumer is willing
to exchange for an additional unit of X1. It will be given by the indifference curve
slope:

M RS21 = −dx2

dx1
=| slope of indifference curve |, (6)

where the negative symbol is introduced in order to obtain the absolute value of
MRS. This occurs because the slope is changing along the indifference curve: the
lesser the amount of X1 and greater the amount of X2, the greater the valuation of
marginal changes on x1 in comparison to marginal changes on x2. That implies a
decrease in the absolute value of M RS21 while x1 is increasing (Fig. 1).

Moreover, because utility is constant along the indifference curve, we have:

U (x1, x2) = U (x1, x2(x1)) = C
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∂U

∂x1
+ ∂U

∂x2

dx2

dx1
= 0

−dx2

dx1
= ∂U/∂x1

∂U/∂x2
,

and from (6),

M RS21 = −dx2

dx1
= ∂U/∂x1

∂U/∂x2
(7)

If there is an explicit functional form of the utility function, then it is also pos-
sible to obtain the M RS21 in functional form from the expression above. In micro-
economics the usual way to infer the utility function is through regressions from
consumer valuations on utility levels or preferences3. From there, M RS21 may be
obtained as a quotient of partial derivatives:

M RS21 = ∂U/∂x1

∂U/∂x2
= F(x1, x2;β), (8)

where β is a parameter vector determined by subjective preferences giving the inher-
ent character of the consumer utility function as shown by the convexity level of
indifference curves. That is, utility is a parametric function with parameters orga-
nized in β. These parameters determine how the goods contribute to the utility while
their values make the utility function inherent and different from one consumer to
another4.

With these foundations, this chapter introduces the inverse process, arriving at the
utility function by solving the partial differential equations obtained through MRS.

3 This issue is discussed extensively in microeconometrics. See, i.e. [26], or [6, 20]
4 To illustrate this point, some examples of utility function are given:

• Perfect substitute goods:

U (x1, x2) = β1x1 + β2x2, β = (β1,β2)

• One good is bad:
U (x1, x2) = −β1x1 + β2x2, β = (β1,β2)

• Perfect complement goods:

U (x1, x2) = min{β1x1,β2x2}, β = (β1,β2)

.

Different consumers will have different parameters values.
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3.1 Placing Imprecision on Marginal Rate of Substitution:
The Fuzzy MRS

As outlined above, it becomes more obvious to infer a function for M RS because
marginal rate of substitution is more perceptive to valuations by consumers than final
utilities are. However, this method is absent in the classical approach to consumer
decision problems, perhaps because the step from M RS to utility function implies
partial differential equations. To obtain the functional form of M RS described by
(8), the well-known regression techniques used for consumer decision-making can
also be applied. M RS obtained by means of consumers statements will only be
an approximate value, considering the information available to consumers in an
environment of internal uncertainty. For this reason, the treatment of M RS as a
fuzzy concept is more appropriate:

M̃ RS21 = ∂Ũ/∂x1

∂Ũ/∂x2
= F(x1, x2; β̃), (9)

where tilde means the fuzzy character of an element. xr , r = 1, 2, x1 ∈ S1 ⊂
I1 = (0,M1], x2 ∈ S2 ⊂ I2 = (0,M2] are quantities of products X1 and X2.
β̃ = (β̃1, β̃2, ..., β̃k) is a triangular fuzzy parameter vector determined by the sub-
jective preferences of each consumer, Ũ (x1, x2; β̃) is the fuzzy utility of combina-
tion (x1, x2), that is positive and strictly increasing because X1 and X2 are treated
as goods, and an increase in consumption implies an increase in utility. Finally,
F(x1, x2; β̃) is the functional expression of MRS inferred from the consumer pref-
erences by means of econometrics methods (for more information, see [20]). This
means that, for example, if a carpenter is asked for how many units of type A wood
would change for an additional unit of type B wood maintaining the same level of
utility, it seems to be more realistic that he would say “around 6 units", or “six, more
or less" than “I would change exactly six units", that is, an imprecise representa-
tion that gives a “close to real" marginal rate of substitution given the incomplete
perceptions involved with valuations.

The fuzzy M RS will, therefore, be a fuzzy number with its associated membership
functions. It is then appropriate to identify these fuzzy variables with a triangular
membership function in order to reach the maximum membership value at values
obtained from crisp consumer statements, and descend as we move away from those
values5.

5 It is also reasonable to associate a quasi-Gaussian membership function to these variables. How-
ever, the triangular fuzzy numbers are especially handy in operations where they are involved. The
fuzzy trapezoidal numbers could also represent the behavior of consumers. Therefore, the approach
chosen in this paper is adaptable to any type of membership function by changing the conditions of
differentiability given later.
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4 From Fuzzy MRS to Fuzzy Utility: Solving Non-polynomial
Fuzzy Partial Differential Equations (FPDE)

The final goal of this chapter is to reach a functional expression of Ũ from M̃ RS
by solving the fuzzy partial differential equation, and then to obtain the consumer
decision in a fuzzy environment by maximizing the fuzzy utility subject to budget
constraints. The chapter also addresses the problem of aggregation of utility function
in order to offer a multi-criteria approach.

The key step to obtaining the final consumer decision in this fuzzy environment
is to go from the fuzzy MRS as shown in (9) to the fuzzy utility expression:

Ũ (x1, x2; β̃)

solving the fuzzy partial differential equation.
For this purpose, this chapter makes use of the methodology developed for that

purpose in [16, 17] originating from the previous work of Buckley and Feuring [3,
4].

The components of the fuzzy partial differential equation are:

• xr , r = 1, 2, x1 ∈ S1 ⊂ I1 = (0,M1], x2 ∈ S2 ⊂ I2 = (0,M2] are
quantities of products X1 and X2.
• β̃ = (β̃1, β̃2, ..., β̃k), a triangular fuzzy parameter vector, reflects the particular

characteristics of consumer preferences.
• μβ̃ j

(b) is the membership function of the element b in β̃ j . As noted, the marginal
rate of substitution function is obtained from inferences made from the consumer
responses about the exchange of products. The parameters inferred in this way
are considered under uncertainty and imprecision. This imprecision gives them a
fuzzy character, and they may be characterized as triangular fuzzy numbers. As
such, it is preferable to consider the element of the fuzzy number β̃ j with a higher
value in the membership function, corresponding to the value of the parameter as
previously approximated.
• μ j (α) = {b ∈ β̃ j | μβ̃ j

(b) ≥ α, α ∈ [0, 1]} is the set called α-cut
These sets are closed and bounded, so that it is possible to define, for a fuzzy
number β̃ j : β̃ j [α] = [b1(α), b2(α)], where:

– b1(α) is the lower value b in which μβ̃ j
(b) ≥ α, b ∈ β̃ j .

– b2(α) is the higher value b in which μβ̃ j
(b) ≥ α, b ∈ β̃ j .

• Ũ (x1, x2, β̃) is a positive and continuous fuzzy utility function with partial differ-
entials Dx1, Dx2 . The output of this function is the utility level given by (x1, x2) ∈
S1 × S2. This function must also be strictly increasing in (x1, x2) ∈ S1 × S2.
Since we are dealing with goods, an increase in consumption implies an increase
in utility levels.The fuzzy character shown by the tilde placed over U , is fixed
by β̃.
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• ϕ(Dx1, Dx2) is an expression with constant coefficients in (Dx1, Dx2) applied to
Ũ (x1, x2, β̃).
• F(x1, x2, β̃) is a continuous function in (x1, x2) ∈ S1 × S2.

Following this notation, the specific fuzzy partial differential equation treated here
has the following form:

ϕ(Dx1, Dx2)Ũ (x1, x2, β̃) = ∂Ũ/∂x1

∂Ũ/∂x2
= F(x1, x2, β̃). (10)

4.1 The Buckley-Feuring Based Solution for Non-polynomial
Fuzzy Partial Differential Equations

The new Buckley-Feuring (B-F) based solution developed for non-polynomial fuzzy
partial differential equations uses a solution of the crisp partial differential equation
described in (8):

∂U/∂x1

∂U/∂x2
= F(x1, x2,β).

U (x1, x2) = G(x1, x2,β),

with G being continuous and monotone for all (x1, x2) ∈ S1 × S2.

The next step is the fuzzification of G. This fuzzy expression will be the candidate
solution for the fuzzy partial differential equation:

Ỹ (x1, x2) = G̃(x1, x2, β̃),

Note that Ỹ is only the fuzzy representation of G, but as stated above, not nec-
essarily the solution to the fuzzy partial differential equation. If it turns out that
Ỹ (x1, x2) is a fuzzy number and it solves the Eq. (10), then it will be a solution and
Ũ (x1, x2, β̃) = Ỹ (x1, x2).

With this notation, it is possible to see that: Ỹ (x1, x2)[α] = [y1(x1, x2,α),
y2(x1, x2,α)], and F̃(x1, x2, β̃)[α] = [ f1(x1, x2,α), f2(x1, x2,α)],∀α ∈ [0, 1].

and, by definition:

y1(x1, x2,α) = min{G(x1, x2,β), β ∈ β̃[α]},
y2(x1, x2,α) = max{G(x1, x2,β), β ∈ β̃[α]}
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f1(x1, x2,α) = min{F(x1, x2,β), β ∈ β̃[α]},
f2(x1, x2,α) = max{F(x1, x2,β), β ∈ β̃[α]}

∀x1, x2 ∈ S1 × S2,∀α ∈ [0, 1]

If it is possible to apply the ϕ(Dx1, Dx2) operator to yi , i = 1, 2, obtaining
continuous expressions such that ∀(x1, x2) ∈ S1 × S2,∀α ∈ [0, 1]:
• For 0 < h ≤ 1 : limα→h− ϕ(Dx1, Dx2)y1(x1, x2;α) = ϕ(Dx1, Dx2)y1(x1, x2;

h), and limα→h− ϕ(Dx1, Dx2)y2(x1, x2;α) = ϕ(Dx1, Dx2)y2(x1, x2; h);
• limα→0+ ϕ(Dx1, Dx2)y1(x1, x2;α) = ϕ(Dx1, Dx2)y1(x1, x2; 0), and

limα→0+ ϕ(Dx1, Dx2)y2(x1, x2;α) = ϕ(Dx1, Dx2)y2(x1, x2; 0),
then, it will be feasible to define the following expression for �(x1, x2,α):

�(x1, x2,α) = [�1(x1, x2,α), �2(x1, x2,α)] (11)

with: �1(x1, x2,α) = ϕ(Dx1, Dx2)y1(x1, x2,α), �2(x1, x2,α) = ϕ(Dx1, Dx2)

y2(x1, x2,α)
For a solution Ỹ , it must be a fuzzy number for this one. If, for each pair (x1, x2) ∈

S1× S2, �(x1, x2,α) defines an α-cut for this one, then Ỹ (x1, x2) is differentiable,
and we can write:

ϕ(Dx1, Dx2)Ỹ (x1, x2)[α] = �(x1, x2,α), ∀(x1, x2) ∈ S1 × S2, ∀α ∈ [0, 1]
(12)

So that, it is necessary to test if �(x1, x2,α) really defines an α-cut for a fuzzy
number and verifies the differentiability of Ỹ (x1, x2). For a triangular fuzzy number,
the conditions are [19] :

1. ϕ(Dx1, Dx2)y1(x1, x2,α) is an increasing function of α, for each (x1, x2) ∈
S1 × S2.

2. ϕ(Dx1, Dx2)y2(x1, x2,α) is a decreasing function of α, for each (x1, x2) ∈
S1 × S2.

3. �1(x1, x2, 1) ≤ �2(x1, x2, 1) for each (x1, x2) ∈ S1 × S2.

Once delimited the differentiability concept of Ỹ (x1, x2), it is possible to define
the Buckley-Feuring based solution for this type of fuzzy partial differential equation.
Ỹ (x1, x2) is a solution if the following conditions are satisfied:

1. Ỹ (x1, x2) is differentiable.
2. ϕ(Dx1, Dx2)Ỹ (x1, x2) = F̃(x1, x2, β̃).

It is clear that if the differentiability conditions are held by the candidate to solution
Ỹ (x1, x2), then it is a fuzzy number. To complete the conditions it is only necessary
to test that:

ϕ(Dx1, Dx2)Ỹ (x1, x2) = F̃(x1, x2, β̃) (13)
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or the equivalent conditions using (11) and (12) for all (x1, x2) ∈ S1×S2, and α ∈
[0, 1]:
1. ϕ(Dx1, Dx2)y1(x1, x2,α) = f1(x1, x2,α).
2. ϕ(Dx1, Dx2)y2(x1, x2,α) = f2(x1, x2,α).

In this case Ỹ (x1, x2) corresponds to Ũ (x1, x2, β̃).

4.2 Example: The Cobb Douglas-Utility Function

4.2.1 From MRS to Utility

In order to clarify the methodology developed above for obtaining fuzzy utility
functions from the fuzzy marginal rate of substitution, an application to the Cobb-
Douglas preference structure is shown as an example. The Cobb-Douglas utility
function is one of the most used representation of preferences, generating demands
in which the amount spent on each good is a constant proportion of income, so they
are caused by preferences called “regular preferences”.

These preference structures offer a very usual MRS given by the following expres-
sion:

∂U/∂x1

∂U/∂x2
=

(
λ

γ

)
x2

x1
, β = (λ, γ) λ, γ ∈ (0, 1),

λ+ γ = 1, ∀(x1, x2) ∈ S1 × S2

Thus, if the consumer is willing to exchange quantities of one good for another at
this rate, while maintaining the same level of utility, he will be describing a Cobb-
Douglas marginal rate of substitution. However, under the basic hypothesis raised
about imprecision, it would be more appropriate to treat this as a fuzzy expression
due to a lack of acquaintance with the alternatives they are being asked to value, or to
the uncertainty about the utility of a combination of goods. In this case, β̃ = (λ̃, γ̃)
and it may be written as:

M̃ RS21 = ∂Ũ/∂x1

∂Ũ/∂x2
=

(
λ̃

γ̃

)
x2

x1
, λ̃, γ̃ ⊆ (0, 1) such as

∀l ∈ λ̃,∀g ∈ γ̃ : l + g = 1, ∀(x1, x2) ∈ S1 × S2

and, by definition, the fuzzy partial equation is given by (10):

ϕ(Dx1, Dx2)U (x1, x2, β̃) = ∂Ũ/∂x1

∂Ũ/∂x2
, ∀(x1, x2) ∈ S1 × S2
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A possible solution to this fuzzy partial differential equation in a crisp environment
is the Cobb-Douglas utility function:

U (x1, x2;β) = xλ
1 xγ

2 , β = (λ, γ), λ, γ ∈ (0, 1), λ+ γ = 1,

∀(x1, x2) ∈ S1 × S2

Applying the fuzzification to λ and γ, they acquire a triangular fuzzy number form
and β̃ = (λ̃, γ̃), with λ̃, γ̃ ⊆ (0, 1) such as ∀l ∈ λ̃,∀g ∈ γ̃ : l + g = 1. While it can
be tested that G holds all the conditions required regarding continuity, the solution
candidate is the Cobb-Douglas fuzzy expression:

Ỹ (x1, x2) = x λ̃
1 x γ̃

2 , λ̃, γ̃ ⊆ (0, 1) such as ∀l ∈ λ̃,∀g ∈ γ̃ : l + g = 1,

∀(x1, x2) ∈ S1 × S2

The fuzzy parameters have membership functions with μλ̃(l) and μγ̃(g) respec-
tively. From the α-cuts, it is possible to define:

λ̃[α] = [l1(α), l2(α)], γ̃[α] = [g1(α), g2(α)]

And from these, for all α ∈ [0, 1]:

Ỹ (x1, x2)[α] = [y1(x1, x2,α), y2(x1, x2,α)], and

F̃(x1, x2, β̃)[α] = [ f1(x1, x2,α), f2(x1, x2,α)],

where:

y1(x1, x2,α) = min{G(x1, x2,β), β ∈ β̃[α]},
y2(x1, x2,α) = max{G(x1, x2,β), β ∈ β̃[α]}

f1(x1, x2,α) = min{F(x1, x2,β), β ∈ β̃[α]},
f2(x1, x2,α) = max{F(x1, x2,β), β ∈ β̃[α]}

∀α ∈ [0, 1], x1 ∈ S1, x2 ∈ S2.

At this point, it is necessary to clarify the relations between these α-cuts. Although
two parameters are considered, the following relation ∀l ∈ λ̃,∀g ∈ γ̃ : l + g = 1
is imposed, so that, as a Cobb-Douglas utility, only parameters satisfying this con-
dition can be considered. Therefore, once delimited l1(α), g2(α) will be assigned as
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1− l1(α), and vice-versa if they are in the same expression of a Cobb-Douglas MRS
or utility function. That is, it appears that y1(x1, x2,α) = min{G(x1, x2,β), β ∈
β̃[α]} must be expressed by:

xl1(α)
1 xg1(α)

2 ,

while l1(α) is the minimum value of l ∈ λ̃[α] and g1(α) is the minimum value
of g ∈ γ̃[α]. However, the expression above must be rejected since, as the Cobb-
Douglas utility specifies, the sum of these values of parameters have to be equal to
one, and only g2(α) = 1 − l1(α) can be considered in the same expression, once
l1(α) has been delimited or vice-versa.

In the Cobb-Douglas function proposed, for all (x1, x2) ∈ S1 × S2:

y1(x1, x2;α) = xl1(α)
1 xg2(α)

2 , l1(α), g2(α) ∈ (0, 1), l1(α)+ g2(α) = 1

y2(x1, x2;α) = xl2(α)
1 xg1(α)

2 , l2(α), g1(α) ∈ (0, 1), l2(α)+ g1(α) = 1

f1(x1, x2;α) =
(

l1(α)

g2(α)

)
x2

x1
, l1(α), g2(α) ∈ (0, 1), l1(α)+ g2(α) = 1

f2(x1, x2;α) =
(

l2(α)

g1(α)

)
x2

x1
, l2(α), g1(α) ∈ (0, 1), l2(α)+ g1(α) = 1

Since the expression holds continuity conditions, to test the differentiability
from the expression �(x1, x2,α) = [�1(x1, x2,α), �2(x1, x2,α)] by verifying if
�(x1, x2,α) defines an α-cut of a triangular fuzzy number for each pair (x1, x2), the
following conditions must be satisfied:

1.

�1(x1, x2,α) = ϕ(Dx1, Dx2)y1(x1, x2,α) =
(

l1(α)

g2(α)

)
x2

x1
,

l1(α), g2(α) ∈ (0, 1)

is an increasing function of α, for each pair (x1, x2) ∈ S1 × S2.
This occurs if ϕ(Dx1, Dx2)y1(x1, x2,α) has a positive derivative on α. While
∀l ∈ λ̃,∀g ∈ γ̃ : l + g = 1, and l1(α) ∈ λ̃, and g2(α) ∈ γ̃, it is possible to make
g2(α) = 1− l1(α), and:

ϕ(Dx1, Dx2)y1(x1, x2;α) =
(

l1(α)

1− l1(α)

)
x2

x1
, l1(α) ∈ (0, 1).

Testing the condition:
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d

dα

(
l1(α)

1− l1(α)

)
= l1(α)′(1− l1(α))+ l1(α)′l1(α)

(1− l1(α))2
.

As λ̃ is a triangular fuzzy number and l1(α) is defined from its α-cuts, l1(α)
satisfies the condition and is an increasing function with l1(α)′ > 0. Since, its
range is (0, 1), the numerator and denominator are positive expressions, so that:

d

dα

(
l1(α)

1− l1(α)

)
> 0,

and the condition is satisfied.

2.

�2(x1, x2,α) = ϕ(Dx1, Dx2)y2(x1, x2,α) =
(

l2(α)

g1(α)

)
x2

x1
,

l2(α), g1(α) ∈ (0, 1)

is a decreasing function of α, for each pair (x1, x2) ∈ S1 × S2.
Again, this occurs if ϕ(Dx1, Dx2)y2(x1, x2,α) has a negative derivative on α,
where it is possible to make g1(α) = 1− l2(α):

d

dα

(
l2(α)

1− l2(α)

)
= l2(α)′(1− l2(α))+ l2(α)′l2(α)

(1− l2(α))2
.

It is now possible to use λ̃ as a triangular fuzzy number and l2(α) is defined from
its α-cuts, so that, in analogy, l2(α) satisfies the condition and is a decreasing
function with l2(α)′ < 0. Since, its range is (0, 1), the numerator is a negative
expression and the denominator is a positive one, so that:

d

dα

(
l2(α)

1− l2(α)

)
< 0,

and the condition is satisfied.
3. �1(x1, x2; 1) ≤ �2(x1, x2; 1), ∀(x1, x2) ∈ S1 × S2.

In this case:
(

l1(1)

g2(1)

)
x2

x1
≤

(
l2(1)

g1(1)

)
x2

x1
, ∀(x1, x2) ∈ S1 × S2.

Again, ∀l ∈ λ̃,∀g ∈ γ̃ : l + g = 1, and while l1(1), l2(1) ∈ λ̃, and
g1(1), g2(1) ∈ γ̃, it is possible to make g2(1) = 1− l1(1), g1(α) = 1− l2(α) and
the analogous condition will be:
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(
l1(1)

1− l1(1)

)
x2

x1
≤

(
l2(1)

1− l2(1)

)
x2

x1
, l1(1), l2(1) ∈ (0, 1)

∀(x1, x2) ∈ S1 × S2

with x1, x2 as constants. It is necessary to test that:

l1(1)

1− l1(1)
≤ l2(1)

1− l2(1)
⇔ l2(1)

l1(1)
≥ 1− l2(1)

1− l1(1)
.

Knowing that l1(1) and l2(1) are defined by a triangular fuzzy number, and:

l2(1) ≥ l1(1)⇔ l2(1)

l1(1)
≥ 1 and 1− l2(1) ≤ 1− l1(1)⇔ 1− l2(1)

1− l1(1)
≤ 1,

so that:
l2(1)

l1(1)
≥ 1− l2(1)

1− l1(1)
⇔ l1(1)

1− l1(1)
≤ l2(1)

1− l2(1)
,

and the third condition holds.

At this point, it is possible to say that

Ỹ (x1, x2) = G̃(x1, x2, λ̃, γ̃) = x λ̃
1 x γ̃

2

λ̃, γ̃ ⊆ (0, 1) such as ∀l ∈ λ̃,∀g ∈ γ̃ : l + g = 1, ∀(x1, x2) ∈ S1 × S2

is differentiable and a good candidate for a solution. Still, there is one more necessary
step: the solution must satisfy condition (13), that is

ϕ(Dx1, Dx2)Ỹ (x1, x2) = F̃(x1, x2, β̃), ∀(x1, x2) ∈ S1 × S2

In our case:

ϕ(Dx1, Dx2)Ỹ (x1, x2) =
(

λ̃

γ̃

)
x2

x1
, and

F̃(x1, x2; β̃) =
(

λ̃

γ̃

)
x2

x1
.

Thus, the Cobb-Douglas fuzzy utility function

Ũ (x1, x2, λ̃, γ̃) = x λ̃
1 x γ̃

2 ,

λ̃, γ̃ ⊆ (0, 1) such as ∀l ∈ λ̃,∀g ∈ γ̃ : l + g = 1, ∀(x1, x2) ∈ S1 × S2
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is a solution for this non-polynomial fuzzy partial differential equation and the fuzzy
utility function.

5 The Multi-Criteria Fuzzy Utility Function

A common scenario for the consumer is one in which it is hard to determine how
many units of one product he would exchange for an additional unit of another
product, maintaining a constant level of utility, as this decision would depend on
several factors or criteria that influence the utility that the goods or services provide
to the consumer. That is why in several cases, it is more desirable and more realistic
to determine the fuzzy marginal rate of substitution in each of these criteria and then
proceed to their aggregation in order to obtain an expression of total or final fuzzy
utility. Through this method, a carpenter might more accurately determine the units
of type A wood that he would exchange for an additional unit of type B wood if
considered separately each of the criteria that influence his decision, such as: quality,
appearance, malleability, ease of collection, etc..

Considering the reasoning above, it is important to adapt the previous analysis
to a multi-criteria framework as described in [13], thus enabling a model that more
closely reflects the real decision-making process faced by consumers.

The elements involved in this multi-criteria scenario are the same as shown above
but include criteria and their utilities. Criteria or attributes are directly measurable
objectives which serve as a reference for evaluating the suitability of the alternatives.
Thus, criteria define the set K ⊂ N = C1,C2, ...,Ck , where k is the number of
criteria taken into account in the problem. These criteria will reach values ci in Ci

criterion, and if it refers to an alternative or a combination of amount of goods (x1, x2),
it will be Ci (x1, x2), which shows the value reached on Ci criterion by the alternative
(x1, x2). This value is called consequence in terms of the i-th criterion if the combi-
nation (x1, x2) is chosen. Therefore, the values of criteria C1,C2, ...,Ck compose a
k-dimensional consequence space in which, for a given alternative (x1, x2) ∈ S1×S2:

c(x1, x2) = (C1(x1, x2),C2(x1, x2), ...,Ck(x1, x2))

assigns the point that corresponds to the alternative (x1, x2) in the consequence space,
denoted Ck .

For a multi-criteria utility model of k criteria with a consequences space Ck , it
is possible to add uni-criterion utilities through an additive or multiplicative form if
certain conditions of independence are satisfied. In particular, it is only possible to
assign these aggregation forms to utility functions if the criteria are mutually utility
independent.6

6 Actually, the term mutually utility independent is used in expected utility to show the independence.
Outside of expected utility, the correct term is weak independent in difference, although the same
term often used in expected utility can also be used here.
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Therefore, the multi-criteria consumer decision problem will deal with k marginal
rates of substitution corresponding to each one of the k criteria involved:

M̃ RS21
i = ∂Ũi/∂x1

∂Ũi/∂x2
= Fi (x1, x2; β̃i ), i = 1, ..., k (14)

As such, β̃i = (β̃1, β̃2, ..., β̃k) is a triangular fuzzy parameter vector determined
by the subjective preferences of each consumer in the i-th criterion, and it determines
the inner characters of utility function for that consumer, while Ũi (x1, x2; β̃i ) is the
fuzzy marginal utility of (x1, x2) considering only the i-th criterion with the same
properties described in the sections above.

Once the fuzzy utility functions are obtained at each criterion by means of
the methodology described above, the next step is the aggregation of the k util-
ity functions of the k criteria, that is, to reach an expression Ũ (x1, x2; β̃) from
Ũi (x1, x2; β̃i ), i = 1, ..., k.

5.1 Mutual Utility Independence

As previously stated, mutual utility independence in criteria is needed in order to
add uni-criterion utilities through an additive or multiplicative form.

If J is a subset of the criteria index set K = 1, ..., k, for each i ∈ J , the preordering
induced by (Ci )i∈J is the one induced by� on

∏
i �∈J Ci for each i ∈ J , the k attributes

of K will be mutually utility independent if, for each subset J ⊆ K , the preordering
induced by (Ci )i∈J on

∏
i �∈J Ci is independent of (Ci )i∈J .

That is, mutual utility independence implies that:

If (ci∈J , cs �∈J )(ci∈J , ct �∈ j )  (ci∈J , cl �∈J )(ci∈J , cm �∈J ),

then, it follows that:

(ch∈J , cs �∈J )(ch∈J , ct �∈J )  (ch∈J , cl �∈J )(ch∈J , cm �∈J ) for some ch, h ∈ J.

In other words, mutual utility independence implies that for each subset J of
criteria, ci , i ∈ J does not determine any relations over criteria out of J , that is,
relations such as ca  cb, a, b �∈ J , only depends on ca and cb values.

A final approach to the condition of mutual utility independence ensures that
the total fuzzy utility function acquires an additive or multiplicative form in the
consumer decision-making problem, since the uni-criterion fuzzy utility functions
have been obtained independently from marginal rates of substitution in a single
criterion environment in which the consumer considers the other criteria as constant
(ceteris paribus). In this sense, the order of the criteria values do not depend on the
values of the other criteria once criteria have been properly scaled [23].
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If mutual utility independence is satisfied, it is possible to add uni-criterion utilities
by an additive or multiplicative form:

• A total utility function (Multi-criteria Utility) has an additive form if:

U (x1, x2;β) =
k∑

i=1

wiUi (x1, x2;βi ), i = 1, ..., k (15)

• A total utility function (Multi-criteria Utility) has a multiplicative form if:

1+WU (x1, x2;β) =
k∏

i=1

[1+WwiUi (x1, x2;βi )], i = 1, ..., k (16)

where, following the notation used in the single criterion treatment case, U (x1, x2;
β) is the multi-criteria or total utility function for goods x1 and x2, Ui (x1, x2;βi ) is
the uni-criterion utility function on the i-th criterion, wi are weights of criteria, and
they represent the relevance of the i-th criterion. Finally, W is a constant scale.

Although both the additive and multiplicative models require mutual utility inde-
pendence, a total utility function in additive form must also satisfy an additional
independence condition to be implemented. This is called additive independence
between criteria, which makes it more restrictive than the multiplicative expression.
Still, the multiplicative model is far from ideal in practical applications due to its
many technical problems resulting from a more complex form.

The disadvantages of the multiplicative model implementation have led many
researchers to analyze results obtained by applying the additive model in frameworks
where the theoretical multiplicative model fits better. Works like [36] and [37], are
good references in this area. In these papers, numerous simulations are carried out
using the additive model in cases where the multiplicative model fits better in theory,
showing how the errors introduced by the use of additive models were small for a
wide range of multi-criteria decision problems. It was also found that these errors
were introduced by the simplification of utility functions used to collect uni-criterion
decision-maker preferences and not by the aggregation model alone. Given such
results, it is possible to conclude that the multiplicative model can be replaced in
many cases by an additive one, in order to obtain greater simplicity with a minimum
loss of precision. However, these studies have also shown that the farther the real
framework is from the required additive independence for an additive model, the
more errors produced when the multiplicative model is replaced by an additive one
[36, 37].

To avoid the need to replace a multiplicative aggregation model with an addi-
tive one, and to not be hindered by the errors caused by violation of the additive
independence, it is necessary to satisfy additive conditions in the decision-making
process. These conditions have been proposed by several authors from different per-
spectives and were established in 1960 by Gerard Debreu [9] from a topological
point of view. In 1964 Duncan Luce and Tukey [12] established a set of axioms of
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additivity from an algebraic point of view, while Fishburn, in 1965 [14], derived the
additivity conditions with a probabilistic approach. This last perspective has been
the most commonly used to determine additivity in expected utility models.

However, this probabilistic approach is hardly appropriate here, since it is not
based on expected utility theory. Therefore, this chapter will establish axioms to
ensure an additive aggregation model of uni-criterion utility functions based on the
work of Debreu and Luce and Tukey (see Appendix A and B for an explanation of
Debreu and Luce and Tukey conditions for additivity). If the decision maker holds
these axioms, there will be an additive model.

5.2 Additive Utility

This chapter considers that Luce-Tukey axioms, or the Debreu condition if more
than two criteria are considered, are satisfied by the decision-maker. This consid-
eration is not far from reality, while the Debreu condition is very consistent with
consumer behavior, and multi-criteria decision-making problems usually have three
or more criteria involved. The same can be said about the Luce-Tukey axioms, in
which the ordering axiom is satisfied automatically because it corresponds with
the multi-criteria decision-making axioms, the second and third axioms (solution to
equations and cancelation) are feasibly held in the consumer decision-making prob-
lem or they can be imposed on the decision-maker in addition to the primary axioms
to ensure consistency, while the archimedean axiom will be satisfied automatically
if consequence space is continuous since preferences are evaluated by means of an
increasing utility function, that is, the preference relation between, i.e. C1(x1, x2)

and C2(x ′1, x ′2) is established by U1(x1, x2) and U2(x ′1, x ′2), with utility being an
increasing function.

Failure to comply with these axioms would incur in a modeling error where
an additive scheme is adopted, although, as mentioned above, the need for more
information, and the model complexity often leads to the use of an additive model,
given that results differ little in comparison with the higher level of complexity
required for the multiplicative model. This use of additive aggregation is especially
prevalent since the mid-twentieth century in the classical consumer theory which
laid the foundation for this chapter.

Once considered the additive form of the multi-criteria utility function, the prob-
lem lies in obtaining the expression of the sum of fuzzy numbers, given that the
uni-criterion fuzzy utility functions are fuzzy numbers with their membership func-
tions and α-cuts as defined in a previous section.

If the additive nature of the total utility function is determined, it will be obtained
through the sum of the utility functions corresponding to each criterion. Because
these functions are fuzzy numbers, the total utility function is the result of a sum of
finite fuzzy numbers, whose expression depends on the interaction between them.

In [11] there is a good explanation of the consequences of the interactions between
fuzzy numbers as they affect the addition of those numbers. Again, since the uni-
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criterion fuzzy utility functions have been independently obtained from marginal
rates of substitution in a single criterion environment and considering other criteria
to be constant (ceteris paribus), there are not any kind of constraints that determine
a relation of interactivity, that is, if yi , i = 1, ..., k are variables with values on
Ũi (x1, x2; β̃i ), i = 1, ..., k, then, (y1, y2, ..., yk) is a vector of variables with values
on Ũ1× Ũ2× · · ·× Ũk , as yi will have values on Ũi without any constraint imposed
by values of yh on Ũh, i �= h, with i, h ∈ K , and therefore the expression of the
sum of two fuzzy utility functions is, in terms of α-cuts:

(Ũi (x1, x2, β̃i )+ Ũh(x1, x2, β̃h))[α] = Ũi (x1, x2, β̃i )[α] + Ũh(x1, x2, β̃h)[α] =

[ui1(x1, x2;α), ui2(x1, x2;α)] + [uh1(x1, x2;α), uh2(x1, x2;α)] =

[ui1(x1, x2;α)+ uh1(x1, x2;α), ui2(x1, x2;α)+ uh2(x1, x2;α)]

where, following the notation:

• [ui1(x1, x2;α) is the lower value Ui (x1, x2,βi ) in which
μ(Ui (x1, x2,βi )) ≥ α, Ui (x1, x2,βi ) ∈ Ũi (x1, x2, β̃i ).

• [ui2(x1, x2;α) is the higher value Ui (x1, x2,βi ) in which
μ(Ui (x1, x2,βi )) ≥ α, Ui (x1, x2,βi ) ∈ Ũi (x1, x2, β̃i ).

• [uh1(x1, x2;α) is the lower value Uh(x1, x2,βh) in which
μ(Uh(x1, x2,βh)) ≥ α, Uh(x1, x2,βh) ∈ Ũh(x1, x2, β̃h).

• [uh2(x1, x2;α) is the higher value Uh(x1, x2,βh) in which
μ(Uh(x1, x2,βh)) ≥ α, Uh(x1, x2,βh) ∈ Ũh(x1, x2, β̃h).

This expression is used to characterize the multi-criteria fuzzy utility function
obtained through fuzzy marginal rates of substitution. In addition, the sum of non-
interactive fuzzy numbers results in another fuzzy number, so that the multi-utility
function is also a fuzzy number. 7

5.3 Weights in the Fuzzy Multi-criteria Utility Function

At this point, we can summarize that the multi-criteria fuzzy utility function has
additive form, and this addition is expressed as seen above for non-interactive fuzzy
numbers. Thus, using the notation above:

Ũ (x1, x2; β̃) =
k∑

i=1

Ũi (x1, x2; β̃i )

7 The addition of more than two non-interactive fuzzy numbers is required to use the associative
property and to link operations of addition if expressed in terms of membership function. That is,
Ũ1 + Ũ2 + Ũ3 = (Ũ1 + Ũ2)+ Ũ3, obtaining expressions of the sum of three fuzzy numbers. This
procedure allows us to continue to link sums from the association adding k fuzzy numbers.
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Nevertheless, it is easy to find decision scenarios in which criteria do not have
the same importance for the consumer, that is, each criterion has a different weight
according to this importance. If weights of criteria are specified, the total utility will
be given by the fuzzy expression of Eq. (15):

Ũ (x1, x2; β̃) =
k∑

i=1

wi Ũi (x1, x2; β̃i )

Since this expression is more adequate in most cases, it is necessary to mention
some of its implications:

• First, different interval scale based methods are used in multi-criteria utility the-
ory to asses weighting in different aggregation rules [5, 38]. Since scaling these
weights is a procedure based on decision-maker rationality, the method chosen
must satisfy specific conditions in order to maintain the additive independence in
utility. Because of the introduction of weights, the preference relations between two
criteria are evaluated bywiUi (x1, x2;βi ) instead of by utility function alone. That
is, the relation between Ci (x1, x2) and Ch(x1, x2) is defined by wiUi (x1, x2;βi )

andwhUh(x1, x2;βh). One of the conditions that is common for all such methods
is that the sum of the criteria weights must be equal to one or differ from this by
only a small quantity [38].
• Second, it is necessary to introduce operations such as:

wi Ũi (x1, x2; β̃i ),

where wi is a positive real number and Ũi (x1, x2; β̃i ) is a fuzzy number.
An introduction to these operations can be found in [22]. Continuing with the
characterization of fuzzy numbers by α-cuts, the expression of these operations
is:

wi · Ũi (x1, x2; β̃i )[α] = [wi ui1(x1, x2;α), wi ui2(x1, x2;α)].

Therefore, weights can be included as an element in the fuzzy utility function and
the fuzzy multi-criteria utility function can be characterized by α-cuts:

Ũ (x1, x2; β̃)[α] = [
k∑

i=1

wi ui1(x1, x2;α),
k∑

i=1

wi ui2(x1, x2;α)] (17)
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5.4 Example: The Cobb Douglas Multi-criteria Fuzzy Utility
Function

5.4.1 Adding Uni-Criteria Fuzzy Utility Functions

If k criteria with Cobb-Douglas utilities are considered, the following k expressions
can be obtained by applying the methodology developed:

Ũi (x1, x2; β̃i ) = x λ̃i
1 x γ̃i

2 , i = 1, ..., k

β̃i = (λ̃i , γ̃i ), λ̃i , γ̃i ⊆ (0, 1) such as ∀li ∈ λ̃i ,∀gi ∈ γ̃i : li + gi = 1,

∀(x1, x2) ∈ S1 × S2

characterized by the following α-cuts for all (x1, x2) ∈ S1 × S2:

Ũi (x1, x2; β̃i )[α] = [ui1(x1, x2;α), ui2(x1, x2;α)] = [xli1(α)
1 xgi2(α)

2 , xli2(α)
1 xgi1(α)

2 ],

li1(α), gi1(α), li2(α), gi2(α) ∈ (0, 1), li1(α)+gi2(α) = 1, li2(α)+gi1(α) = 1.

Multi-criteria or total utility will be given by (15). In this case:

Ũ (x1, x2; β̃) =
k∑

i=1

wi Ũi (x1, x2; β̃i ) =
k∑

i=1

wi x λ̃i
1 x γ̃i

2 ,

λ̃i , γ̃i ⊆ (0, 1) such as ∀li ∈ λ̃i ,∀gi ∈ γ̃i : li + gi = 1, ∀(x1, x2) ∈ S1 × S2

characterized by these α-cuts:

Ũ (x1, x2; β̃)[α] = [
k∑

i=1

wi xli1(α)
1 xgi2(α)

2 ,

k∑

i=1

wi xli2(α)
1 xgi1(α)

2 ]

li1(α), gi1(α), li2(α), gi2(α) ∈ (0, 1), li1(α)+gi2(α) = 1, li2(α)+gi1(α) = 1.
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5.4.2 Adding Different Uni-Criteria Fuzzy Utility Functions

A multi-criteria utility could also result from an additive aggregation of criteria with
different preference structures, that is, involving different fuzzy utility functions.
Again, in this case, the generic form of the fuzzy utility will be given by (15),
characterized by α-cuts as stated in (17).

An example can be provided obtaining a multi-criteria fuzzy utility function for
two goods using a CES uni-criterion fuzzy utility function in one criterion (U1) and
a Cobb-Douglas fuzzy utility function in another one (U2). The CES utility function
(Constant Elasticity Substitution) is one of the most commonly used utility functions.
It arises in direct analogy with the theory of production and it is widely accepted as
the basis for the representation of reported utility for two normal and divisible goods.
In this sense, it is especially recommended for consumption choices of raw materials,
where the company behaves as a consumer. If there is no initial predisposition for
either of the goods, the fuzzy CES MRS has the following form:

∂Ũ1/∂x1

∂Ũ1/∂x2
=

(
x1

x2

)β̃−1

, β̃ ⊆ (0, 1].

It is then possible to prove that the CES fuzzy utility function provided as a
solution for this fuzzy partial differential equation is the fuzzification of the crisp
CES utility function [18], that is:

Ũ1(x1, x2; β̃1) = (x β̃
1 + x β̃

2 )
1/β̃, β̃1 = (β̃) β̃ ⊆ (0, 1], ∀(x1, x2) ∈ S1 × S2

with α-cuts:

u11(x1, x2;α) = (xb1(α)
1 + xb1(α)

2 )1/b1(α), 0 < b1(α) ≤ 1, ∀(x1, x2) ∈ S1× S2

u12(x1, x2;α) = (xb2(α)
1 + xb2(α)

2 )1/b2(α), 0 < b2(α) ≤ 1, ∀(x1, x2) ∈ S1× S2

Therefore8:

8 If there exists an initial predisposition for any good, the fuzzy CES MRS would adopt this form:

∂Ũ1/∂x1

∂Ũ1/∂x2
=

(
λ̃1

λ̃2

) (
x1

x2

)β̃−1

, β̃ ⊆ (0, 1], λ̃1, λ̃2 ⊆ [0,∞), ∀(x1, x2) ∈ (S1 × S2),

for which the fuzzification of the CES utility function:

Ũ1(x1, x2; β̃1) = (λ̃1x β̃
1 + λ̃2x β̃

2 )
1/β̃, β̃1 = (β̃, λ̃1, λ̃2) β̃ ⊆ (0, 1], λ̃1, λ̃2 ⊆

[0,∞),∀(x1, x2) ∈ (S1 × S2)is not a solution [18].
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Ũ (x1, x2; β̃) =
k=2∑

i=1

wi Ũi (x1, x2; β̃i ) = w1(x
β̃
1 + x β̃

2 )
1/β̃ + w2x λ̃

1 x γ̃
2 ,

β̃ ⊆ (0, 1], λ̃, γ̃ ⊆ (0, 1) such as ∀l ∈ λ̃,∀g ∈ γ̃ : l+g = 1, ∀(x1, x2) ∈ S1×S2

characterized by α-cuts as stated in (17), with:

k∑

i=1

wi ui1(x1, x2;α) = w1(x
b1(α)
1 + xb1(α)

2 )1/b1(α) + w2xl1(α)
1 xg2(α)

2

k∑

i=1

wi u j2(x1, x2;α)] = w1(x
b2(α)
1 + xb2(α)

2 )1/b2(α) + w2xl2(α)
1 xg1(α)

2

0 < b1(α) ≤ 1, 0 < b2(α) ≤ 1, l1(α), g1(α) ∈ (0, 1), l2(α), g2(α) ∈ (0, 1),

l1(α)+ g2(α) = 1, l2(α)+ g1(α) = 1, ∀(x1, x2) ∈ S1 × S2

6 Final Consumer Decision

In a fuzzy environment, the consumer decision problem is framed in fuzzy mathe-
matical programming, with generic form:

max
x1,x2

Ũ (x1, x2; β̃)
s.t. p1x1 + p2x2 ≤ R

xr ∈ Sr

(18)

where p1 represents the price of good X1, p2 the price of good X2 and R, the
available income to the consumer.

An initial approach to the final consumer decision problem can be established
from an economic perspective.

An intuitive analysis will produce the initial arguments. The parameters which are
part of the utility function determine the convexity of the indifference curves. Thus,
each value of these parameters has a particular convexity level associated with it. By
introducing an element of uncertainty or imprecision and treating these parameters as
fuzzy numbers with their respective membership functions, the range of possibilities
is widened. In a context like this, there are as many forms of indifference curves as
elements contained in the fuzzy number (do not forget that a fuzzy number is a fuzzy
set with additional features), each one with its respective membership function.

That is, in a fuzzy environment, there are as many families of indifference curves
as possible parameter values and, in each family of curves, the decision maker will
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Fig. 2 Consumer equilibria
in a fuzzy environment

1X

2X

1 2( , ; )I x x bω

1 2( , ; )I x x bω
′

1 2( , ; )x x b ∗

1 2( , ; )x x b ∗′

be placed on the farthest curve but not exceeding the budget constraint. Thus, the
solution to this problem will be a fuzzy set given by the tangent points of the budget
constraint line with the different families of indifference curves associated with each
possible value of the parameters. Each of these solutions has the membership function
corresponding to the value of the parameter which generates the family of indifference
curves associated to it. Figure 2 offers a demonstration of this explanation.

We can first consider a uni-dimensional parameter on the fuzzy utility function, β̃.
The multi-dimensional parameter case will be tackled in the subsequent mathematical
formalization. As the chart shows, for b ∈ β̃ and b′ ∈ β̃, b �= b′ two families
of indifference curves are generated with different convexity levels: Iω(x1, x2; b)
and Iω(x1, x2; b′). Each family has a membership function equal to the membership
function of the parameter which generates it, that is μβ̃(b) andμβ̃(b

′). As there exist as

many families of indifference curves as elements in β̃, the consumer optimal decision
set is the set of tangent points of each family of indifference curves with the budget
constraint line. In the chart, optimums are given by (x1, x2; b)∗ and (x1, x2; b′)∗,
yet there will be as many points as families of indifference curves generated by the
elements of β̃. Thus, the set of solutions will be a fuzzy set in which each solution
included has membership function corresponding to the element of β̃ which generates
the family of indifference curves containing the solution. With the elements shown
in the chart above:

(x1, x2; b)∗ ∈ (x1, x2; β̃)∗ −→ μ
(x1,x2;β̃)∗(x1, x2; b)∗ = μβ̃(b)

(x1, x2; b′)∗ ∈ (x1, x2; β̃)∗ −→ μ
(x1,x2;β̃)∗(x1, x2; b′)∗ = μβ̃(b

′)

These conclusions can be reached by the general formulation of a fuzzy mathe-
matical programming problem described in [31]:
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max
x1,x2

f̃ (x; β̃)
s.t. g̃q(x; ãq)R̃q d̃q q ∈M (19)

where:

• β̃ is a multidimensional fuzzy set with membership function μβ̃ = (μβ̃1
(b1),μβ̃2

(b2), ...,μβ̃k
(bk)). However, it is necessary to combine these membership func-

tions in one, reflecting a global membership of (b1, b2, ..., bk), with b1 ∈ β̃1, b2 ∈
β̃2, ..., bk ∈ β̃k . The solution can be a triangular norm which works as an aggre-
gation operator:

μβ̃(b) = T [μβ̃1
(b1), . . . ,μβ̃k

(bk))]

• ãq is a multidimensional fuzzy set with all coefficients of q-th constraint, q ∈M
(set of constraints) with membership function μãq . As before, it is necessary to use
a triangular norm as an aggregation operator to unify these membership functions.
• d̃q is a uni-dimensional fuzzy set with membership function μd̃q

, q ∈M.

• R̃q is a fuzzy relation. This fuzzy relation is considered a fuzzy extension of Rq ,
and μR̃q

= μRq . The membership function is given by:

μR̃q
(g̃q(x; ãq), d̃q)

= T [μRq (u, v), T (μg̃q (x;ãq )(u),μd̃q
(v))]

= T [μg̃q (x;ãq )(u),μd̃q
(v)] | u Rqv

where T is a triangular norm.
• f̃ (x; β̃) is the objective value for an element of β̃. Its membership function will

be determined by:

μ f̃ (x;β̃)(z) =
{

μβ̃(β) | β ∈ β̃, f = z if f (x; z)−1 �= ∅
0 otherwise

• g̃q(x; ãq) is the value of the q-th constraint for an element of ãq . Its membership
function μg̃q (x;ãq )(z) is:

μg̃q (x;ãq )(z) =
{

μãq (aq) | aq ∈ ãq, gq = z if gq(x; z)−1 �= ∅
0 otherwise

Now, it is possible to define the feasible set of the problem as the fuzzy subset
X̃ ∈ R

n , with membership function:

μX̃ (x) = A(μR̃1
(g̃1(x; ã1), d̃1), ...,μR̃m

(g̃m(x; ãm), d̃m),
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where A is defined as an aggregation operator, such as a triangular norm. The
elements of the α-cut are called α-feasible solutions. Moreover, the expression
μR̃q

(g̃q(x; ãq), d̃q) can be understood as the level at which the qth constraint is
satisfied.

However, in a consumer decision problem, there is not any fuzzy element in the
constraints. That is, they adopt the following form: gq(x; aq)Rqdq and:

μg̃q (x;ãq ) = χgq (x;aq ), ∀q ∈M

μd̃q
= χdq

where χ represents the characteristic function9 of gq(x; aq), and therefore, there
is no level at which a constraint is satisfied, and the qth constraint is either satisfied
or not:

μR̃q
(g̃q(x; ãq), d̃q) =

{
1 if gq(x; aq)Rqdq

0 otherwise

Applying the A T-norm:

μX̃ (x) = A(μR̃1
(g̃1(x; ã1), d̃1), ...,μR̃m

(g̃m(x; ãm), d̃m) = χX (x).

Therefore, the feasible set of a fuzzy optimization problem with no fuzzy elements
placed on the constraints is the same feasible set X as in the standard crisp optimiza-
tion problem.

Once the feasible set is established, the next step is to define the optimal solution.
At this point, many interpretations and possible approaches arise in fuzzy optimiza-
tion. The broadest approach does not require any external assessments and defines
the optimal solution set as the fuzzy set X̃∗ whose function membership is given by:

μX̃∗(x) = Ag(μ f̃ (x;β̃)(x),μX̃ (x)),

where Ag represents an aggregation operator as a triangular norm. The elements of
the α-cuts are called α-optimal solutions.

In a problem with non-fuzzy constraints:

9 The characteristic function of a crisp set A that shows its membership:

χA(x) =
{

1 if x ∈ A,
0 otherwise
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μX̃∗(x) = Ag(μ f̃ (x;β̃)(x),χX (x))

μX̃∗(x) =
{

μ f̃ (x;β̃)(x) if x ∈ X
0 otherwise

Applying it to the consumer decision problem defined in (18):

max
x1,x2

Ũ (x1, x2; β̃)
s.t. p1x1 + p2x2 ≤ R

xr ∈ Sr

the solution is given by:

μX̃∗(x1, x2) =
⎧
⎨

⎩

μŨ (x1,x2;β̃)(x1, x2) if (x1, x2) ∈ X

0 otherwise

=
⎧
⎨

⎩
μβ̃(β) | β ∈ β̃, f (x;β) = z if f (x; z)−1 �= ∅

0 otherwise

However, this optimal solution set contains the same elements as the feasible
set, so that it provides little added information involving the imprecision of fuzzy
numbers. In practice, there are several possibilities for redefining this set of solutions,
including the two shown below.

One possibility is the one adopted in the graphical example explained above,
developed through an economic and intuitive approach. It is based on prior knowledge
of the fuzzy optimization problem and on a clear idea of what the problem constitutes,
applying this previous knowledge to reduce the optimal solutions set. In this case, as
noted before, that prior knowledge enables the highest utility levels to be achieved
on the budget constraint line, making it possible to modify the feasible solutions set
in (18) a posteriori, restricted to the items placed on the budget line:

max
x1,x2

Ũ (x1, x2; β̃)
s.t. p1x1 + p2x2 = R

xr ∈ Sr

In this approach, optimal solutions coincide with the solutions anticipated in the
previous graphical analysis, thus the optimal solution set will be given by the fuzzy
set with membership function expressed as:
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μX̃∗(x1, x2) =
⎧
⎨

⎩

μŨ (x1,x2;β̃)(x1, x2) if (x1, x2) ∈ X

0 otherwise

=
⎧
⎨

⎩
μβ̃(β) | β ∈ β̃, f (x;β) = z if f (x; z)−1 �= ∅

0 otherwise

According to [31], a different method for dealing with this problems is to introduce
an external and arbitrary value d̃0 called fuzzy objective that provides a reference for
evaluating values from f̃ (x; β̃) by fuzzy relation R̃0, establishing a new constraint
f̃ (x; β̃)R̃0d̃0 that ensures values obtained will be over d̃0. With these elements, the
optimal set will be given by the fuzzy subset with membership function:

μX̃∗(x) = Ag[μR̃0
( f̃ (x; β̃), d̃0),μX̃ (x)],

with Ag a triangular norm, and:

μX̃ (x) = A(μR̃1
(g̃1(x; ã1), d̃1), ...,μR̃m

(g̃m(x; ãm), d̃m) = χX (x)

for the consumer decision problem with crisp constraints.
Finally, for the problem treated, we have:

μX̃∗(x) = Ag[μR̃0
( f̃ (x; β̃), d̃0),χX (x)]

=
⎧
⎨

⎩

T [μŨ (x1,x2;β̃)(u),μd̃0
(v)] | u ≥ v if x ∈ X

0 otherwise

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β ∈ β̃
T [μβ̃(β),μd̃0

(v)], U (x1, x2;β) = u if x ∈ X,
U−1(x1, x2; u) �= ∅ | u ≥ v

0 otherwise

7 Conclusions

This chapter presents a mathematical approach to consumer utility theory which,
instead of relying on utility values, addresses imprecision in consumer decision-
making through the use of fuzzy MRS. The development of new tools, including
non-polynomial fuzzy partial differential equation solutions, has been key to the
implementation of this new approach. The methodology established has been created
from the perspective of Classical Consumer Utility Theory, and can be applied in
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most of the cases in which the classical theory is usually applied, although some
restrictions and limitations arise as a direct consequence of this treatment from a
perspective reflecting classical theory.

It is also important to note that the methodology described in this chapter
approaches consumer imprecision strictly as a mathematical modeling problem, and
is not intended to serve as a functional decision-making support tool.

The main drawback encountered for the procedures introduced is that the mathe-
matical formulations are for only two goods or services. As outlined in the methodol-
ogy, dealing with the problem for more than two goods (or services) will require the
introduction of fuzzy partial differential equation systems in order to obtain fuzzy
utilities from fuzzy marginal rates of substitution. Although the introduction of these
systems would clearly complicate the mathematical apparatus, and although the nec-
essary procedures have yet to be developed, the problem statement and methodology
given in this chapter would be perfectly adaptable and valid if it were possible to
overcome those mathematical limitations.

One possible solution to this limitation is to divide the basket of consumer goods
in pairs of comparable and interchangeable goods for the consumer, thus obtaining a
close to real situation of consumption. An example situation for this method would
be a carpenter facing a decision about the consumption of raw materials, deciding the
amount of different types of wood to consume, for example type A, type B, type C, and
type D. If wood types A and B are high-quality woods with similar characteristics,
while wood types C and D are of a different, lower-quality, the consumer might
divide his intake into two parts: high-quality wood, and other-quality wood, having
two types of wood (two consumer goods) in each part. Modeling such a decision
would thus involve two utility functions of two goods each, one for the consumption
of high-quality wood and another for the consumption of other-quality wood. In this
case, the solution can be addressed in two ways: the first arises if the consumer can
divide his disposable income into the amounts allocated for the consumption of high-
quality wood and other-quality wood, respectively, then the problem can be divided
into two independent problems as shown in the chapter; the second scenario arises if
it is not possible to divide the disposable income, in which case it will be necessary
to add the utilities provided by both pairs of wood types and optimize the added
utility subject to the common budget constraint. This approach, dividing the basket
of consumer goods, is not as far removed from consumer decision-making as it may
seem; as consumers face decisions about consumption, marginal rates of substitution
between, for example, a personal cleanliness good and a concrete food item would
not usually be considered. Marginal rates of substitution are rarely even considered
between goods within the same “group", unless they are sufficiently interchangeable,
as, for example, one kind of vegetable and one kind of fruit (both in “food group").
In this sense, if the process of splitting the basket of consumer goods is applied,
there are many cases in which it is not easy to find real consumption situations in
which more than two goods come out as interchangeable within the same group of
goods as marginal rates of substitution are considered by the consumer. Therefore,
the methodology developed in the chapter may be applicable to a large percentage
of consumer decision-making situations.
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Lastly, it is important to highlight that the model presented in this chapter is
highly flexible and adaptable to a large number of scenarios. In this sense, it can be
applied in cases in which non-triangular membership functions are considered, by
simply adjusting the conditions involved in differentiability and subsequent sections.
The methodology is also versatile when dealing with the imprecision or internal
uncertainty placed on the budget constraints. Addressing the issue of uncertainty,
the model is adaptable to situations in which consumers are truly uncertain about
the prices of one good or both, or else about the final available income. This last
approach requires fuzzy elements on the budget constraints, and the final decision
problem has also been raised in a generic form which is applicable to this case and
others cases with different fuzzy elements on the budget restrictions. Additionally,
with the necessary adjustments, the model is also applicable to scenarios where there
is dependence or interaction between criteria. However, the use of more complex
tools, such as Choquet integrals, will be required to aggregate the criteria.

Appendix A. Additive Independence

Appendix A.1 Topological Approach by Debreu

If we assume a complete preference preordering  on K = ∏k
i=1 Ci such that

{Ci ∈ K | Ci  Ch} and {Ci ∈ K | Ci � Ch} are closed for all Ch ∈ K (this will
always occur if there is a finite number of criteria), it will be necessary to hold the
following conditions for additive form on utility function:

1. The n factors of K are mutually utility independent.
2. More than two of them are essential.

If K = {C1, ...,Ck} is the set of criteria, their factors K1, ...Kn are separable
spaces such that:

K =
n∏

f=1

K f

Though it would be possible for one factor to contain more than one criterion, in
this case, the uni-criterion utility functions are built for each one, so that, each factor
(component of total utility) corresponds with each criterion.

In general, a factor K f is essential if there exists a criterion Ci included in another
factor K f ′ such that not all criteria of K f are indifferent according to the preordering
established by ci .

As we said, in the case of consumer decision-making framework analyzed here,
each factor corresponds to each criterion, therefore, as already shown, it is necessary
to have as many summands as uni-criterion utility functions, that is, n = k, and
K f = Ci .
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It is then possible to redefine the essential character of criteria: if ci is the set of
possible values for criteria Ci , and ch represents the same for Ch , a criteria Ci is
essential if there exists:

Ci (x1, x2),Ci (x
′
1, x ′2) ∈ ci ,Ch(x1, x2) ∈ ch such that

(Ci (x1, x2),Ch(x1, x2)) � (Ci (x
′
1, x ′2),Ch(x1, x2)).

The biggest limitation of this condition may be that it requires at least three
essential factors, which means that it can only be applied in decision-making frame-
works with three or more criteria. Nevertheless, it is easily satisfied in any consumer
decision-making problem by all criteria involved.

For cases in which only two criteria are taken into account, it will be more accurate
to use the Luce and Tukey axioms.

Appendix A.2. Algebraic Approach by Luce and Tukey

Adapting Luce and Tukey conditions to the consumer decision problem: If C1
and C2 are the two criteria involved in the decision-making process, with: c1 =
{C1(x1, x2),C1(x ′1, x ′2),C1(x ′′1 , x ′′2 ), ...} and c2={C2(x1, x2),C2(x ′1, x ′2),C2(x ′′1 , x ′′2 ),
...} the sets of values that can be reached by C1 and C2 respectively, c1×c2 is formed
by pairs (C1(x1, x2),C2(x1, x2)), (C1(x1, x2),C2(x ′1, x ′2)), (C1(x ′1, x ′2),C2(x1, x2)),
etc. Considering the binary relation, criteria will be additive if the following axioms
are satisfied:

I Ordering axiom:  is a weak order meeting the following axioms:

– Reflexivity:

(C1(x1, x2),C2(x1, x2))  (C1(x1, x2),C2(x1, x2)),

∀C1(x1, x2) ∈ c1,C2(x1, x2) ∈ c2.

– Transitivity:

If (C1(x1, x2),C2(x1, x2))  (C1(x
′
1, x ′2),C2(x

′
1, x ′2)),

and (C1(x
′
1, x ′2),C2(x

′
1, x ′2))  (C1(x

′′
1 , x ′′2 ),C2(x

′′
1 , x ′′2 )),

then: (C1(x1, x2),C2(x1, x2))  (C1(x
′′
1 , x ′′2 ),C2(x

′′
1 , x ′′2 )).

–  is closed:

(C1(x1, x2),C2(x1, x2))  (C1(x
′
1, x ′2),C2(x

′
1, x ′2))
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or (C1(x1, x2),C2(x1, x2)) � (C1(x
′
1, x ′2),C2(x

′
1, x ′2)), or both.

– Definition:
∗ (C1(x1, x2),C2(x1, x2)) ∼ (C1(x ′1, x ′2),C2(x ′1, x ′2)) only if :

(C1(x1, x2),C2(x1, x2))  (C1(x
′
1, x ′2),C2(x

′
1, x ′2)) and

(C1(x1, x2),C2(x1, x2)) � (C1(x
′
1, x ′2),C2(x

′
1, x ′2)).

∗ (C1(x1, x2),C2(x1, x2)) � (C1(x ′1, x ′2),C2(x ′1, x ′2)) only if:

¬[(C1(x
′
1, x ′2),C2(x

′
1, x ′2))  (C1(x1, x2),C2(x1, x2))].

II Solution to equations:

For each C1(x1, x2) ∈ c1 and C2(x1, x2),C2(x ′1, x ′2) ∈ c2, the equation
(C1(x∗1 , x∗2 ),C2(x1, x2)) = (C1(x1, x2),C2(x ′1, x ′2))has a solution C1(x∗1 , x∗2 )∈ c1 and,
For each C1(x1, x2),C1(x ′1, x ′2) ∈ c1 and C2(x1, x2) ∈ c2, the equation
(C1(x1, x2),C2(x1, x2)) = (C1(x ′1, x ′2),C2(x∗1 , x∗2 ))has a solution C2(x∗1 , x∗2 )∈ c2.

III Cancelation:

For all C1(x1, x2),C1(x
′
1, x ′2),C1(x

′′
1 , x ′′2 ) ∈ c1 and C2(x1, x2),C2(x

′
1, x ′2),

C2(x
′′
1 , x ′′2 ) ∈ c2,

if (C1(x1, x2),C2(x
′′
1 , x ′′2 ))  (C1(x

′′
1 , x ′′2 ),C2(x

′
1, x ′2))

and (C1(x
′′
1 , x ′′2 ),C2(x1, x2))  (C1(x

′
1, x ′2),C2(x

′′
1 , x ′′2 )),

then: (C1(x1, x2),C2(x1, x2))  (C1(x
′
1, x ′2),C2(x

′
1, x ′2)).

IV Archimedean axiom: if {C1(x1, x2)i ,C2(x1, x2)i }, i = 0, 1, 2, ... is a non-trivial
and increasing dual standard sequence, for each C1(x ′1, x ′2) ∈ c1,C2(x ′1, x ′2) ∈
c2, then, there exist two integers (positive or negative) m and n such that:

(C1(x1, x2)n,C2(x1, x2)n)  (C1(x
′
1, x ′2),C2(x

′
1, x ′2))

 (C1(x1, x2)m,C2(x1, x2)m).

An infinite sequence {C1(x1, x2)t ,C2(x1, x2)t }, t = 0, 1, 2, ..., with C1(x1, x2)t
∈ c1,C2(x1, x2)t ∈ c2 is a dual standard sequence (dss) when (C1(x1, x2)m,

C2(x1, x2)n) = (C1(x1, x2)p,C2(x1, x2)q) for m+n = p+q for any m, n, p, q
integer, positive, negative or null.
A dss will be trivial if C1(x1, x2)t = C1(x1, x2)0, or C2(x1, x2)t = C2(x1, x2)0.
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Decision Making Under Z-Information

R. A. Aliev and Lala M. Zeinalova

Abstract Rational decisions are based on information usually uncertain, imprecise
and incomplete. The existing decision theories deal with three levels of generaliza-
tion of decision making relevant information: numerical valuation, interval valuation
and fuzzy number valuation. The classical decision theories, such as expected utility
theory proposed by von Neumann and Morgenstern, and subjective expected util-
ity theory proposed by Savage use the first level of generalization, i.e. numerical
one. These approaches require that the objective probabilities or subjective prob-
abilities and utility values be precisely known. But in real world in many cases it
becomes impossible to determine the precise values of needed information. Interval
analysis and classical fuzzy set theories have been applied in making decisions and
many fruitful results have been achieved. But a problem is that in the mentioned
above decision theories the reliability of the decision relevant information is not well
taken into consideration. Prof. L. Zadeh introduced the concept of Z-numbers to
describe the uncertain information which is more generalized notion closely related
with confidence (reliability). Use of Z-information is more adequate and intuitively
meaningful for formalizing information structure of a decision making problem. In
this chapter we consider two approaches to decision making with Z-information.
The first approach is based on reducing of Z-numbers to classical fuzzy numbers,
and generalization of expected utility approach and use of Choquet integral with
an integrant represented by Z-numbers. A fuzzy measure is calculated on a base of
a given Z-information. The second approach is based on direct computation with
Z-numbers. To illustrate a validity of suggested approaches to decision making with
Z-information the numerical examples are used.
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1 A Brief Review of Existing Decision Theories

For decision making the first axiomatic foundation of the utility paradigm was the
expected utility (EU) theory of von Neumann and Morgenstern [34]. This model
compares finite-outcome lotteries (alternatives) on the base of their utility values
under conditions of precisely known utilities and probabilities of outcomes.

The assumptions of von Neumann and Morgenstern expected utility model stating
that objective probabilities of events are known makes this model unsuitable for
majority of real-world applications.

We have no representative experimental data or complete knowledge to determine
objective probabilities. For such cases, Savage suggested a theory able to compare
alternative actions on the base of a DM’s experience or vision [32]. Savage’s theory is
based on a concept of subjective probability suggested by Ramsey [28] and de Finetti
[13]. Subjective probability is DM’s probabilistic belief concerning occurrence of
an event and is assumed to be used by humans when no data on objective (actual)
probabilities of outcomes is available. Savage’s subjective expected utility (SEU)
theory based on the use of subjective probabilities in the expected utility paradigm
of von Neumann and Morgenstern instead of objective probabilities. SEU became a
base of almost all the utility models for decision making under uncertainty.

Prospect Theory (PT) of Kahneman and Tversky [18, 33] is the one of the most
famous theories in the new view on the utility concept. This theory is successful
because it includes psychological aspects that form human behavior. Kahneman and
Tversky uncovered series of features of human behavior in decision making and used
them to construct their utility model.

Choquet Expected Utility (CEU) was suggested by Schmeidler [30] as a model
with a new view on belief and representation of preferences in contrast to the SEU
model. In CEU a belief is described by a capacity [10]—not necessarily additive
measure.

Kahneman and Tversky, the authors of PT, suggested cumulative prospect theory
(CPT) as a more advanced theory which can be applied, in contrast to PT, both for
decisions under risk and uncertainty.

The principle of uncertainty aversion was formalized in form of an axiom by
Gilboa and Schmeidler [17]. This axiom is one of the axioms underlying a famous
utility model called Maximin Expected Utility (MMEU) [17]. According to the
axiomatic basis of this model, there is a unique closed and convex set C of priors
(probability measures) over states of nature and overall utility of an act is a minimum
among all its expected utilities each obtained for prior one P ∈ C .

Ghirardato, Maccheroni and Marinacci suggested a generalization of MMEU [15]
consisting in using all its underlying axioms except uncertainty aversion axiom. The
obtained model is referred to as α – MMEU.
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The main disadvantages of the MMEU are that in real problems it is difficult to
strictly constrain the set of priors and various priors should not be considered equally
relevant to a problem at hand. From the other side, in MMEU each act is evaluated
on the base of only one prior. In order to cope with these problems Klibanoff et al.
suggested a smooth ambiguity model as a more general way to formalize decision
making under ambiguity than MMEU [19].

There are many different approaches for describing imprecision of probability
relevant information. One of the approaches is the use of hierarchical imprecise
models. These models capture the second-order uncertainty inherent in real problems.
According to this approach an expert opinion on probability assessments is usually
imprecise [2, 11, 35].

The existing decision theories are not developed for applications in fuzzy envi-
ronment and consequently require more deterministic information. Development of
new theories is now possible due to an increased computational power of informa-
tion processing systems which allows for computations with imperfect information,
particularly, imprecise and partially true information, which are much more com-
plex than computations over numbers and probabilities. There is the series of fuzzy
approaches to decision making like fuzzy AHP [14, 22], fuzzy TOPSIS [22, 37],
fuzzy Expected Utility [9, 16, 23]. However, they are mainly fuzzy generalizations
of the mathematical structures of the existing theories used with intent to account
for vagueness, impreciseness and partial truth. Direct fuzzification of the existing
theories often leads to inconsistency and loss of properties of the latter.

Approaches that are based on fuzzy description of the most part of a decision
problem are lack of mathematical proof of an existence of a utility function. From
the other side, many of the existing fuzzy approaches follow too simple models like
EU model.

In [1] authors present a fuzzy-logic-based decision theory with imperfect infor-
mation. This theory is developed for the framework of mix of fuzzy information and
probabilistic information and is based on a fuzzy utility function represented as a
fuzzy-valued Choquet integral.

On basis of analysis of the existing decision theories described above we may
conclude that the existing decision models yielded good results, but nowadays there
is a need in generation of more realistic decision models.

These approaches require that the objective probabilities or subjective probabili-
ties and utility values be precisely known. But in real world in many cases it becomes
impossible to determine the precise values of needed information. Interval analysis
and classical fuzzy set theories have been applied in making decisions and many
fruitful results have been achieved. But a problem is that in the mentioned above
decision theories the reliability of the decision relevant information is not well taken
into consideration.

In [21] Zadeh introduced the concept of Z-numbers to describe the uncertain
information which is more generalized notion. A Z-number is an ordered pair of
fuzzy numbers ( Ã, R̃). Here Ã is a value of some variable and R̃ represents an idea
of certainty or other closely related concept such as sureness, confidence, reliability,
strength of truth, or probability [29]. It should be noted that in everyday decision
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making most decisions are in the form of Z-numbers. Zadeh suggests operations
for computation with Z-numbers, using the extension principle. In [29] author uses
Z-numbers to provide information about an uncertain variable in the form of Z-
valuations, assuming that this uncertain variable is random. In [29] author also offers
an illustration of a Z-valuation, showing how to make decisions and answer ques-
tions. Also an alternative formulation is used for the information contained in the
Z-valuations in terms of a Dempster-Shafer belief structure that made use of type-2
fuzzy sets. Simplified version of Z-valuation of decision relevant information is con-
sidered in [8]. In [7] authors considered a multi-criteria decision making problem
using Z-numbers. For this purpose the Z-numbers are converted to classical fuzzy
number and a priority weight of each alternative is determined.

In this chapter we consider two approaches to decision making with Z-information.
The first approach is based on reducing of Z-numbers to classical fuzzy numbers,
and generalization of expected utility approach and use of Choquet integral with
an integrant represented by Z-numbers. A fuzzy measure is calculated on a base of
a given Z-information. The second approach is based on direct computation with
Z-numbers. To illustrate a validity of suggested approaches to decision making with
Z-information the numerical examples are used.

The study is organized as follows. In Sect. 2 we present required preliminaries
and cover some prerequisite material. In Sect. 3 we consider a generalization of
Expected Utility Theory using Z-number. In Sect. 4 we present a method of Choquet
integral based decision making using Z-information. In Sect. 5 we consider the sec-
ond approach based on direct computation with Z-numbers applying it to the same
problem. In Sect. 6 we cover application of the suggested method to a real-life busi-
ness problem of hotel management using the suggested approaches. Concluding
comments are included in Sect. 7.

2 Preliminaries

Definition 1 Fuzzy sets [4].
Let X be a classical set of objects, called the universe, whose generic elements are

denoted x . Membership in a classical subset A of X is often viewed as a characteristic
function μA from X to {0, 1} such that

μA(x) =
{

1 iff x ∈ A
0 iff x /∈ A

where {0, 1} is called a valuation set; 1 indicates membership while 0—non mem-
bership.

If the valuation set is allowed to be in the real interval [0,1], then A is called a
fuzzy set, μA is the grade of membership of x in A: μA(x) :X → [0,1].

Let En be a space of all fuzzy subsets of Rn . These subsets satisfy the conditions
of normality, convexity, and are upper semicontinuous with compact support.
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Definition 2 A Z-number [21].
A Z-number is an ordered pair of fuzzy numbers,( Ã, R̃). Ã-is a fuzzy restriction

on the values which a real-valued uncertain variable is allowed to take. R̃ is a measure
of reliability of the first component.

Example
(anticipated budget deficit, about three million USD, likely);
(price of oil in the near future, significantly over 50 dollars/barrel, very likely).
Denote � a universe of discourse and denote F a σ -algebra of subsets of �.

Definition 3 Choquet integral [6, 23, 25, 31, 39, 40]. Let ϕ :�→ R be a measur-
able real-valued function on� and η :F → [0,1] be a non-additive measure defined
over F . The Choquet integral of ϕ with respect to η is defined as

∫

�

ϕdη =
n∑

i = 1

(
η(B(i))− η(B(i−1))ϕ(ω(i)) (1a)

where index (i) implies that elements ωi ∈ �, i = 1, . . . , n are permuted such
that ϕ(ω(i)) ≥ ϕ(ω(i+1)), ϕ(ω) = 0 and B(i) = {ω(1), . . . , ω(i)} ⊆ �.

A value of fuzzy utility function for an action is determined as a fuzzy number-
valued Choquet integral

∫

�

ϕ̃dη̃ =
n∑

i = 1

(
η̃(B(i))− η̃(B(i−1))ϕ̃(ω(i)) (1b)

(i)means that utilities are ranked such that ϕ̃(ω(1)) ≥ . . . ≥ ϕ̃(ω(n)), ϕ̃(ω) = 0.
Let F̃(�) = {

Ṽ
∣∣μṼ :�→ [0,1]

}
be the class of all fuzzy subsets of �.

Definition 4 [1, 41]. A subclass F̃ of F̃(�) is called a fuzzy σ -algebra if it has the
following properties:

(1) ∅,� ∈ F̃
(2) if Ṽ ∈ F̃ , then Ṽ c ∈ F̃
(3) if

{
Ṽn

}
⊂ F̃ , then

⋃∞
n=1 Ṽn ∈ F̃

Definition 5 Fuzzy number-valued fuzzy measure [1, 41]. A fuzzy number-valued
fuzzy measure ((z) fuzzy measure) on F̃ is a fuzzy number-valued fuzzy set function
η̃ : F̃ → E1 with the properties:

(1) η̃(∅) = 0;
(2) if Ṽ ⊂ W̃ then η̃(Ṽ ) ≤ η̃(W̃ );
(3) if Ṽ1 ⊂ Ṽ2 ⊂ . . . , Ṽn ⊂ . . . ∈ F̃ , then η̃(

⋃∞
n=1 Ṽn) = lim

n→∞ η̃(Ṽn);

(4) if Ṽ1 ⊃ Ṽ2 ⊃ . . . , Ṽn ∈ F̃ , and there exists n0 such that η̃(Ṽn0) 
= ∞̃, then
η̃(

⋂∞
n=1 Ṽn) = lim

n→∞ η̃(Ṽn).
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Definition 6 Lower prevision [2, 3, 12, 20, 24–26]. A coherent lower prevision is
defined as a lower expectation functional from the set of gambles to the real numbers
that satisfies some rationality criteria. This function is conjugate to another that is
called a coherent upper prevision. When a coherent lower prevision coincides with
its conjugate coherent upper prevision, we call it a linear prevision. An unconditional
lower prevision P(B) is coherent if and only if it is the lower envelope of dominating
linear previsions.

If the lower prevision P is represented as the lower envelope of a closed convex
set P of linear previsions then

P = min{P(B)}, B ⊂ S (2)

Lower prevision P is characterized by probability density function of each linear
prevision in extreme points [36].

In particular case, when linear prevision is a probability measure the lower pre-
vision is the lower envelope of multiple priors. In this work we use lower prevision
as non-additive measure. So we can define η as P .

Example [1]
Let � be a nonempty set and � = [0,1]. Consider values of a fuzzy number-

valued fuzzy measure η̃ for some fuzzy subsets si ⊂ �, i = 1, 3 and their unions.
Then the corresponding values of the fuzzy number-valued fuzzy measure η̃P̃l can
be as the triangular fuzzy numbers given in Table 1:

Definition 7 Expected utility [23, 27]
Let P : S→ R be any probability measure on a set of states S such that P(s) > 0

for all s ∈ S. For each s ∈ S define v : X → R. Then

U ( f ) =
∑

s∈S

P(s)v( f (s)) (3)

where f is an act, x = f (s) is an outcome, v( f (s)) is a utility in state s and U ( f )
is the expected value of utility.

Table 1 The values of the fuzzy number-valued fuzzy measure η̃P̃l

B̃ ⊂ S {s1} {s2} {s3} {s1 ∪ s2} {s1 ∪ s3} {s2 ∪ s3}
η̃P̃l (B̃) (0.3,0.4,0.4) (0,0.1,0.1) (0.3,0.5,0.5) (0.3,0.5,0.5) (0.6,0.9,0.9) (0.3,0.6,0.6)
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3 A Generalization of Expected Utility Theory
Using Z-Number

A set of acts f1, f2, . . . , fn with a number of possible utilities Z̃v( fi (s1)), Z̃v( fi (s2)),

. . . , Z̃v( fi (sm )) in states s1, s2, . . . , sm ∈ S and the corresponding state probabilities
Z̃ P(s1), Z̃ P(s2), . . . , Z̃ P(sm ) are given and described by Z-numbers (Tables 2 and 3).
Then we can determine the value of expected utility function for each act.

In payoff Table 2 R̃1 is a confidence degree for the value of utility.
As decision maker usually is uncertain about first-order imprecise probabilities,

we describe the probabilities of states of nature as Z-numbers (Table 2).
In Table 3 R̃2 is a confidence degree for the value of probability of the state of

nature.
Now using the Z-valuations of the values of utilities and probabilities of states

of nature we can determine the values of expected utility for any act, represented as
Z-numbers.

Z̃U ( f1) = (P̃(s1), R̃2)× (ṽ( f1(s1)), R̃1)+ (P̃(s2), R̃2)× (ṽ( f1(s2)), R̃1)+, . . . ,
+ (P̃(sm), R̃2)× (ṽ( f1(sm)), R̃1)

Z̃U ( f2) = (P̃(s1), R̃2)× (ṽ( f2(s1)), R̃1)+ (P̃(s2), R̃2)× (ṽ( f2(s2)), R̃1)+, . . . ,
+ (P̃(sm), R̃2)× (ṽ( f2(sm)), R̃1)

(4)

Z̃U ( fn) = (P̃(s1), R̃2)× (ṽ( fn(s1)), R̃1)+ (P̃(s2), R̃2)× (ṽ( fn(sm)), R̃1)+, . . . ,
+ (P̃(sm), R̃2)× (ṽ( fn(sm)), R̃1)

Now we have to choose the act with maximal expected utility i.e. the decision
making problem in this case consists in the determination of an optimal action f ∗ ∈ A
as the following

Z̃U ( f ∗) = max
f ∈A

(Z̃U ( f1), Z̃U ( f2), . . . , Z̃U ( fn)) (5)

Table 2 The payoff table with utilities as Z-numbers

s1 s2 … sm

f1 (ṽ( f1(s1)), R̃1) (ṽ( f1(s2)), R̃1) . . . (ṽ( f1(sm)), R̃1)

f2 (ṽ( f2(s1)), R̃1) (ṽ( f2(s2)), R̃1) . . . (ṽ( f2(sm)), R̃1)

… . . . . . . . . . . . .

fn (ṽ( fn(s1)), R̃1) (ṽ( fn(s2)), R̃1) (ṽ( fn(sm)), R̃1)

Table 3 Probabilities of
states as Z-numbers

(P̃(s1), R̃2) (P̃(s2), R̃2) … (P̃(sm), R̃2)
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Let outcomes Z̃v( fi (s j )) = (ṽ( fi (s j )), R̃1) and the probabilities Z̃ P(s j ) = (P̃(s j ),

R̃2) of the states s j ∈ S, where R̃1 = {(x2, μR̃1
(x)) : x2 ∈ [0,1]}, R̃2 =

{(y2, μR̃2
(y)): y2 ∈ [0,1]} are represented by trapezoidal and triangle fuzzy numbers

respectively.
In this study it is assumed that it is given only NL-described reasonable knowledge

about probability distribution over S. It means that a state s j is assigned a linguistic
probability P̃j that can be described by Z-number. Initial data for the problem are
represented by given linguistic probabilities for m−1 states of nature whereas for one
of the given states the probability is unknown. So at first it is required to obtain the
unknown probability. To determinate an unknown probability of state s j − Z̃ P(s j ) on

a base of given probabilities Z̃ P(s1), Z̃ P(s2), . . . , Z̃ P(s j−1), . . . , Z̃ P(s j+1), . . . , Z̃ P(sm )

we use the method suggested in [1]. In the framework of Computing with Words the
problem of obtaining the unknown linguistic probability for state s̃ j given linguistic
probabilities of all other states is a problem of propagation of generalized constraints.
Formally this problem is formulated as follows:

given

P̃ (s̃i ) = P̃i ; s̃i ∈ εn, P̃i ∈ ε1[0,1], i ∈ {1, . . . , j − 1, j + 1, . . . , n} (6)

find unknown
P̃

(
s̃ j

) = P̃j , P̃j ∈ ε1[0,1]

This problem reduces to a variation problem of constructing the membership
function μP̃j

(·) of an unknown fuzzy probability P̃j [1]:

μP̃j
(p j ) = supρ mini={1,..., j−1, j+1,...,n}(μP̃i

(∫
S
μs̃i (s)ρ(s)ds)) (7)

subject to ∫
S
μs̃ j (s)ρ(s)ds = p j , ∫

S
ρ(s)ds = 1

Given the payoff table and the complete probability distribution we can evaluate
the values of expected utility on base of (4). For this aim we use computation with
Z-numbers which falls within the province of Computing with words. Computation
with Z-information in this study is based on converting of Z-numbers to classical
fuzzy numbers [8].

To convert the given Z-numbers on outcomes and probabilities first we determine
the expected values of fuzzy numbers R1 and R2 describing reliability of variables
of outcome and probability:

α1 =
∫

xμR̃1
(x)dx

∫
μR̃1

(x)dx
, (8)

α2 =
∫

yμR̃2
(y)dy

∫
μR̃y

(y)dy
(9)
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Now we can represent the values of outcome and probability variables as trape-
zoidal fuzzy numbers: Z̃α1

vs j ( fi (s))
= (a1, a2, a3, a4;α1), Z̃α2

P(s j )
= (c1, c2, c3;α2).

Then we convert this weighted Z-number to fuzzy number: Z̃ ′vs j ( fi (s))
= (
√
α1a1,

√
α1a2,

√
α1a3,

√
α1a4; 1), Z̃ ′P(s j )

= (√α2c1,
√
α2c2,

√
α2c3; 1)

As we have an ordinary fuzzy numbers with trapezoidal and triangular member-
ship functions then we can obtain fuzzy values of utility function U ( f (s)) for each
alternative by (4):

Z̃ ′U ( fi )
=

k,n∑

i = 1
j = 1

Z̃ ′v( fi (s)) × Z̃ ′P(s j )
= (√α1α2 × (

k,n∑

i, j=1

ṽ( fi (s))× P̃(s j )); 1) (10)

An optimal action f ∗ ∈ A is obtained in accordance with (5).
The value of Z-number for optimal utility function may be described as

Z̃U ( fi ) = (Z̃ ′U ( fi )
/
√
α1α2); R̃3). (11)

where (Z̃ ′U ( fi )
/
√
α1α2); R̃3) describes the reliability of the utility function. More

preferable act is determined by ranking Z̃U ( fi ) using ranking procedure given in
Sect. 5.

4 Choquet Integral Based Decision Making
Using Z-Information

Formally the problem is formulated as follows. Decision-making under Z-information
can be considered as 4-tuple (S, Z̃ X ,A,�), where S = {s1, s2, . . . , sn}– a space of
mutually exclusive and exhaustive states of nature, Z̃ X – a set of outcomes, described
by Z-valuation. A is the set of actions that are functions f : S → Z̃ X ,� is the
non-additive preference relation on the set of actions. In decision-making under
uncertainty, a probability over S is imprecise. FS is a σ—algebra of subsets B of
S. Denote by A0 the set of all FS-measurable step-valued functions from S to X
and denote AC the constant actions in A0. Let A be a convex subset of X S which
includes AC . X can be considered as a subset of some linear space, and X S can then
be considered as a subspace of the linear space of all functions from S to the first
linear space. The problem is to determine preferences among alternatives by means
of a utility function.

The suggested decision-making methodology uses Choquet expected utility for
description of preferences. The utility function used here is as follows
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Z̃ ′U ( fi )
=

∫

s

Z ′v( fi (s))d Z ′η (12)

The decision making problem in this case consists in the determination of an
optimal action f ∗ ∈ A such that

Z̃ ′U ( f ∗i )
= max

f ∈A

{∫

s

Z̃ ′v( fi (s))d Z̃ ′η
}

(13)

As it was mentioned above the outcomes Z̃v( fi (s j )) = (ṽ( fi (s j )), R̃1) and the prob-

abilities Z̃ P(s j ) = (P̃(s j ), R̃2) of the states s j ∈ S where R̃1 = {(x2, μR̃1
(x)) : x2 ∈

[0,1]} and R̃2 = {(y2, μR̃2
(y)) : y2 ∈ [0,1]} are represented by trapezoidal and trian-

gle fuzzy numbers. At first it is required to determine the unknown probability of state
s j− Z̃ P(s j ) on a base of given probabilities Z̃ P(s1), Z̃ P(s2), . . . , Z̃ P(s j−1), . . . , Z̃ P(sm )

by formulas (6 and 7).
Given the payoff Table 2 and the complete probability distribution we can evaluate

the values of Choquet integral on base of (12) [7, 8, 30, 38].
Given the complete probability distribution we construct measure as lower previ-

sion.
The determination of a lower prevision Z ′η from linguistic probability distribution

P̃ has a great role in the determination of the preferences in this model.
When the states of nature are just some elements, the measure is defined [1] as

Z̃ ′ηP̃
(H) = ∪

α∈(0,1]
a ·

[
Z̃ ′ αηP̃le f t

(H) , Z̃ ′ αηP̃right
(H)

]
, H ⊂ S = {s1, . . . , sm} (14)

where

Z̃ ′ αηP̃
(H) = in f

{∑

si∈H

p(s j ), . . . ,p(sm)

}
, (p(s1), . . . , p(sm)) ∈ Pα

Pα =
{
(p(s1), . . . , p(sm)) ∈ Pα1 × . . .× Pαm |

m∑

j=1

p(s j ) = 1
}
,

Here Pα1 , . . . , Pαm are α-cuts of fuzzy probabilities P̃1, . . . , P̃m, p(s1), . . . , p(sm)

are basic probabilities for P̃1, . . . , P̃m,× denotes the Cartesian product.
Now we can construct a fuzzy measure with triangle membership function from

fuzzy set of possible probability distributions as its lower probability function (lower
prevision) taking into consideration (14) and the method used in [1].

As we have an ordinary fuzzy numbers with trapezoidal and triangular member-
ship functions then we can obtain the fuzzy values of utility function Ũ ( f (s)) for
each alternative by (1b):
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Z̃ ′U ( fi )
=

∫

s

Z ′v( fi (s))d Z ′η =
∫

s

√
α1 × ṽ( f (s); 1)d Z̃ ′ηP̃

=
m∑

j=1

(
Z̃ ′ηP̃

(B( j))− Z̃ ′ηP̃
(B( j−1))

)
Z̃v( fi (s))

=
m∑

j=1

(
Z̃ ′ηP̃

(B( j))− Z̃ ′ηP̃
(B( j−1))

)(√
α1 × ṽ( fi (s); 1)

)
(15)

An optimal action f ∗ ∈ A is obtained in accordance with (13) using ranking
procedure given in Sect. 5.

5 Direct Computation with Z-Numbers

Let us now apply the second approach of direct computation with Z-numbers without
transformation of Z-number into ordinal fuzzy number. A Z -number ( Ã, R̃) can
be interpreted as Pr ob(X is Ã)is R̃. This expresses that we do not know the true
probability density over X , but have a constraint in form of a fuzzy subset P̃ of the
space P of all probability densities over X . This restriction induces a fuzzy probability
R̃. Let p be density function over X . The probability Pr ob(Xis Ã) (probability that
Xis Ã) is determined on the base of the definition of the probability of a fuzzy subset
as

Pr ob(X is Ã) =
+∞∫

−∞
μA(x)pX (x)dx .

Then the degree to which p satisfies the Z -valuation Pr ob(X is Ã) is R̃ is

μP (p) = μR(Pr ob(X is Ã) is R̃)) = μR(
+∞∫
−∞

μA(x)pX (x)dx).

Here p is taken as some a parametric distribution. The density function of a normal
distribution is

pX (x) = normpd f (x,m, σ ) = 1

σ
√

2π
exp

(
− (x − m)2

2σ 2

)
.

In this situation, for any m, σ we have

Pr obm,σ (X is Ã) =
+∞∫

−∞
μA(x)pm,σ (x)dx =

∫ +∞
−∞

μA(x)
1

σ
√

2π
exp

(
(x − m)2

2σ 2

)
dx

= (trapm f (x, [a1, a2, a3, a4])∗normpd f (x,m, σ ),− inf,+ inf)



244 R. A. Aliev and L. M. Zeinalova

Then the space P of probability distributions will be the class of all normal distrib-
utions each uniquely defined by its parameters m, σ .

Let X = ( ÃX , R̃X ) and Y = ( ÃY , R̃Y ) be two independent Z-numbers. Consider
determination of W = X + Y. First, we need compute ÃX + ÃY using Zadeh’s
extension principle:

μ(AX+AY )(w) = sup
x
(μAX (x) ∧ μAY (w− x)), ∧ = min .

As the sum of random variables involves the convolution of the respective density
functions we can construct P̃W , the fuzzy subset of P, associated with the random
variable W . Recall that the convolution of density functions p1 and p2 is defined as
the density function

p = p1 ⊕ p2

such that

p(w) =
+∞∫

−∞
p1(x)p2(w− x)dx =

+∞∫

−∞
p1(w− x)p2(x)dx

One can then find the fuzzy subset P̃W . For anypW ∈ P, one obtains

μPW (pW ) = max
pU ,pV
[μPX (pX ) ∧ μPY (pY )],

subject to
pW = pX ⊕ pY ,

that is,

pW (w) =
+∞∫

−∞
pU(x)pV(w− x)dx =

+∞∫

−∞
pU(w− x)pV(x)dx .

Given μPX (pX ) = μPX (m X , σX ) and μPY (pY ) = μPY (mY , σY ) as

μPX (m X , σX ) = μBX

( +∞∫

−∞
μAX (x)

1

σX
√

2π
exp

(
(x − m X )

2

2σ 2
X

)
dx

)
,

μPY (mY , σY ) = μBY

( +∞∫

−∞
μAY (x)

1

σY
√

2π
exp

(
(x − mY )

2

2σ 2
Y

)
dx

)

one can define P̃W as follows
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pW = pm X ,σY ⊕ pm X ,σY ,

pW (w) = pmW ,σW = normpd f [w,mW , σW ]
= (normpd f (x,m X , σX ) ∗ normpd f (w− x,mY , σY ),− inf,+ inf)

=
+∞∫

−∞

1

σX
√

2π
exp

(
(x − m X )

2

2σ 2
X

)
1

σY
√

2π
exp

(
(w− x − mY )

2

2σ 2
Y

)
dx

where

mW = m X + mY and σW =
√
σ 2

X
+ σ 2

Y ,

μPW (pW ) = sup(μPX (pX ) ∧ μPY (pY ))

subject to
pW = pm X ,σY ⊕ pmY ,σY

BW is found as follows.
μBW (bW ) = sup(μP̃W

(pW ))

subject to

bW =
+∞∫

−∞
pW (w)μAW (w)dw

Let us now consider determination of W = X · Y . ÃU · ÃV is defined by:

μ(AX ·AY )(w) = sup
x
(μAX (x) ∧ μAY (

w

x
)), ∧ = min .

the probability density pW associated with W is obtained as

pW = pm X ,σX ⊗ pmY ,σY ,

pW (w) = pmW ,σW =
+∞∫
−∞

1
σX
√

2π
exp

(
(x−m X )

2

2σ 2
X

)
1

σY
√

2π
exp

(
( w

x −mY )
2

2σ 2
Y

)
dx

where

mW = m X mY

σXσY
+ r,

and
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σW =
√

m2
X
σ 2

Y + m2
Y
σ 2

X + 2m X mYσXσY r + σ 2
Xσ

2
Y + σ 2

Xσ
2
Y r2

σXσY
,

where r is correlation coefficient.
If X and Y are two independent random variables, then

mW = m X mY

σXσY
, and σW =

√
m2

X
σ 2

Y + m2
X
σ 2

X + σ 2
Xσ

2
Y

σXσY
,

if take into account compatibility conditions σXσY = 1.
The other steps are analogous to those of determination of W = X + Y.
Assume we compare two courses of action f1 and f2 [29]. We must select between

these two based on the objective of getting the largest utilities. Assume we have
information about the utilities associated with these two courses of action expressed
in terms of Z-valuations. These are

Z̃U ( f1) is ( Ã1, R̃1) if we select f1

Z̃U ( f2) is ( Ã2, R̃2) if we select f2

A main problem is how to choose between these two alternatives, f1 and f2.
We have to represent the information obtained from Z-valuations on a space

of probability distributions P . These two observations initiate the possibility dis-
tributions G1 and G2 over P . For any probability density pk ∈ P , we have
Gi (pk) = Ri (

∫
S Ai (x)pk(x)dx). We now have to select between these Gi . We

obtain for each pk its expected value Ek =
∫

S xpk(x)dx and using this we can
determine two possibility distributions F1 and F2 as

Fi =
⋃

pk

{
Gi (pk)

Ek

}

The numerical value of each Fi is determined as

ei =
∑

pk

Ek · Gi (Pk)

and we choose the action with the largest value for ei .

6 Applications

We consider the business problem under imprecise information described by
Z-valuation. Suppose a hotel is considering the construction of an additional wing.
The possibility of adding 30 ( f1), 40 ( f2) and 50 ( f3) rooms is evaluating. The suc-



Decision Making Under Z-Information 247

cess of the extension depends on a combination of local government legislation and
competition in the field. There are three states of nature: positive legislation and low
competition (s1), positive legislation and strong competition (s2), no legislation and
low competition (s3). Also we have the values anticipated payoffs (in percentage).
The problem is to find how many rooms to build in order to maximize the return on
investment. Z-valuation for the utilities of the each act taken at various states and
probabilities on states are provided in Tables 4 and 5, respectively.

Here Z̃v( fi (s j )) = (ṽ( fi (s j )), R̃1), where the outcomes are the trapezoidal fuzzy
numbers and corresponding reliability is a triangular fuzzy number:

Z̃v( f1(s1)) = (ṽ( f1(s1)), R̃1) = (high; likely) = [(7, 8, 9, 10;1), (0.6, 0.7, 0.8; 1)],
Z̃v( f1(s2)) = (ṽ( f1(s2)), R̃1) = (below than high; likely) = [(6, 7, 8, 9;1), (0.6,

0.7, 0.8; 1)],
Z̃v( f1(s3)) = (ṽ( f1(s3)), R̃1) = (medium; likely) = [(4, 5, 6, 7;1), (0.6, 0.7, 0.8; 1)],
Z̃v( f2(s1)) = (ṽ( f2(s1)), R̃1) = (below than high; likely) = [(6, 7, 8, 9;1), (0.6,

0.7, 0.8; 1)],
Z̃v( f2(s2)) = (ṽ( f2(s2)), R̃1) = (low; likely) = [(3, 4, 5, 6;1), (0.6, 0.7, 0.8; 1)],
Z̃v( f2(s3)) = (ṽ( f2(s3)), R̃1) = (below than high; likely) = [(6, 7, 8, 9;1), (0.6,

0.7, 0.8; 1)],
Z̃v( f3(s1)) = (ṽ( f3(s1)), R̃1) = (below than high; likely) = [(6, 7, 8, 9;1), (0.6,

0.7, 0.8; 1)],
Z̃v( f3(s2)) = (ṽ( f3(s2)), R̃1) = (high; likely) = [(7, 8, 9, 10;1), (0.6, 0.7, 0.8; 1)],
Z̃v( f3(s3)) = (ṽ( f3(s3)), R̃1) = (medium; likely) = [(4, 5, 6, 7;1), (0.6, 0.7, 0.8; 1)].
Let the probabilities for s1 and s2 be Z-numbers Z̃ P(s j ) = (P̃(s j )), R̃2), where

the probabilities and the corresponding reliability are the triangular fuzzy numbers:
Z̃ P(s1) = (P̃(s1)), R̃2) = (medium; quite sure) = [(0.25, 0.3, 0.35; 1), (0.8,

0.9, 1; 1)].
Z̃ P(s2) = (P̃(s2)), R̃2) = (more than medium; quite sure) = [(0.35, 0.4, 0.45; 1),

(0.8, 0.9, 1; 1)].
In accordance with [1] we have calculated probability fors3:
Z̃ P(s3) = (P̃(s3)), R̃2) ={low; quite sure} =[(0.2, 0.3, 0.4; 1), (0.8, 0.9, 1; 1)].

Table 4 The utility values of actions under various states

s1 s2 s3

f1 (high; likely) (below than high; likely) (medium; likely)
f2 (below than high; likely) (low; likely) (below than high; likely)
f3 (below than high; likely) (high; likely) (medium; likely)

Table 5 The values of probabilities of states of nature

s1 = (medium; quite sure) s2 = (more than medium; quite sure) s3 = (low; quite sure)
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Then we convert the value of fuzzy reliability into a numerical number based on
(8 and 9):

α1 =
∫

xμR̃1
(x)dx

∫
μR̃1

(x)dx
= 0.7,

α2 =
∫

yμR̃2
(y)dy

∫
μR̃y

(y)dy
= 0.9

Given the complete fuzzy probability distribution P̃(s j ), j = 1, 3 , we add the
weight of the reliability to the restriction and have the weighted Z-number for the
outcomes and the probabilities:

Z̃α1
v( f1(s1))

= (7, 8, 9, 10; 0.7), Z̃α1
v( f1(s2))

= (6, 7, 8, 9; 0.7), Z̃α1
v( f1(s))

= (4, 5, 6, 7; 0.7),
Z̃α1

v( f2(s1))
= (6, 7, 8, 9; 0.7), Z̃α1

v( f2(s2))
= (3, 4, 5, 6; 0.7), Z̃α1

v( f2(s))
= (6, 7, 8, 9; 0.7),

Z̃α1
v( f3(s1))

= (6, 7, 8, 9; 0.7), Z̃α1
v( f3(s2))

= (7, 8, 9, 10; 0.7), Z̃α1
v( f3(s3))

= (4, 5, 6, 7; 0.7),
Z̃α2

P(s1)
= (0.25, 0.3, 0.35; 0.9), Z̃α2

P(s2)
= (0.35, 0.4, 0.45; 0.9), Z̃α2

P(s3)
= (0.2, 0.3, 0.4; 0.9).

Now we convert the obtained weighted numbers to fuzzy numbers:

Z̃ ′v( f1(s1))
= (5.85, 6.69, 7.52, 8.36; 1),

Z̃ ′v( f1(s2))
= (5.01, 5.85, 6.69, 7.52; 1),

Z̃ ′v( f1(s3))
= (3.34, 4.18, 5, 01, 5, 85; 1),

Z̃ ′v( f2(s1))
= (5.01, 5.85, 6.69, 7.52; 1),

Z̃ ′v( f2(s2))
= (2.50, 3.34, 4.18, 5.01; 1),

Z̃ ′v( f2(s3))
= (5.01, 5.85, 6.69, 7.52; 1),

Z̃ ′v( f3(s1))
= (5.01, 5.85, 6.69, 7.52; 1),

Z̃ ′v( f3(s2))
= (5.85, 6.69, 7.52, 8.36; 1),

Z̃ ′v( f3(s3))
= 3.34, 4.18, 5.01, 5.85; 1).

Z̃ ′P(s1)
= (0.23, 0.28, 0.33; 1),

Z̃ ′P(s2)
= (0.33, 0.37, 0.42; 1),

Z̃ ′P(s3)
= (0.18, 0.28, 0.37; 1).

Given these data and following the proposed decision making method, we get the
expected values of utility for acts f1, f2, f3:

Z̃ ′U ( f1)
= Z̃ ′v( f1(s1))

∗ Z̃ ′P(s1)
+ Z̃ ′v( f1(s2))

∗ Z̃ ′P(s2)
+ Z̃ ′v( f1(s3))

∗ Z̃ ′P(s3)

= (3.69, 4.32, 9.48, 12.42; 1) ,
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Z̃ ′U ( f2)
= Z̃ ′v( f2(s1))

∗ Z̃ ′P(s1)
+ Z̃ ′v( f2(s2))

∗ Z̃ ′P(s2)
+ Z̃ ′v( f2(s3))

∗ Z̃ P(s3)

= (2.97, 3.61, 8.49, 10.79; 1) .
Z̃ ′U ( f3)

= Z̃ ′v( f3(s2))
∗ Z̃ ′P(s1)

+ Z̃ ′v( f3(s2))
∗ Z̃ ′P(s2)

+ Z̃ ′v( f3(s3))
∗ Z̃ ′P(s3)

= (3.77, 4.40, 10.08, 12.54; 1) .
The value of Z-number for optimal utility function in accordance with (11) is

determined as

Z̃U ( f1) = (4.65, 5.45, 11.95, 15.65; 0.79, 0.89, 0.99),

Z̃U ( f2) = (3.75, 4.55, 10.7, 13.6; 0.79, 0.89, 0.99),

Z̃U ( f3) = (4.75, 5.55, 12.7, 15.8; 0.79, 0.89, 0.99).

As we have the Z-number valued utility functions then we can select between the
preferences ranking them.

Ranking of fuzzy values of utilities gives a preference to the third alternative,
i.e. f3 � f1 � f2.

Given these data and following the proposed decision making method, we can
obtain an overall utility as a fuzzy-valued Choquet integral:

Z̃ ′U ( fi )
= Z̃ ′ηP̃

({s(1)} − Z̃ ′ηP̃
{s(0)}) ∗ Z̃ ′vs(1) ( fi (s)) + Z̃ ′ηP̃

({s(1), s(2)} − Z̃ ′ηP̃
{s(1)})

∗ Z̃ ′vs(2) ( fi (s)) + Z̃ ′ηP̃
({s(1), s(2), s(3)} − Z̃ ′ηP̃

{s(1), s(2)}) ∗ Z̃ ′vs(3) ( fi (s))

The states are ranked as:
For the first alternative Z̃ ′vs1 ( f1(s1))

> Z̃ ′vs2 ( f1(s2))
> Z̃ ′vs3 ( f1(s3))

,

For the second alternative Z̃ ′vs1 ( f1(s1))
> Z̃ ′vs3 ( f1(s3))

> Z̃ ′vs2 ( f1(s2))
,

For the third alternative Z̃ ′vs2 ( f1(s2))
> Z̃ ′vs1 ( f1(s1))

> Z̃ ′vs3 ( f1(s3))
.

The α-cuts of Z̃ ′
η̃P̃
({s1, s2} , Z̃ ′

η̃P̃
({s1, s3} are found as the solutions of (14).

So we can determine the triangular fuzzy numbers

Z ′ηP̃
({s1, s2} = (0.62, 0.71, 0.71)

Z ′ηP̃
({s1, s3} = (0.57, 0.62, 0.62)

Given this, the values of the utility function for the alternatives are as follows:

Z̃ ′U ( f1)
= (−0.75, 5.61, 6.45, 11.79)

Z̃ ′U ( f2)
= (−1.99, 5.53, 6.36, 13.30)

Z̃ ′U ( f3)
= (−0.11, 6.29, 7.21, 12.66).

According to (11) we can determine the Z-number valued utility function for each
alternative
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Z̃U ( f1) = (−0.94, 7.07, 8.13, 14.85; 0.79, 0.89, 0.99),

Z̃U ( f2) = (−2.51, 6.97, 8.02; 0.79, 0.89, 0.99),

Z̃U ( f3) = (−0.14, 7.93, 9.08; 0.79, 0.89, 0.99).

Ranking of Z-number valued utility functions gives a preference to the third
alternative, i.e. f3 � f1 � f2.

We applied the suggested in Sect. 5 approach to the same hotel management
problem and get f3 � f1 � f2.

7 Conclusion

We first analyzed the main existing decision making theories and concluded that in
almost all these theories a reliability of the decision relevant information is not well
taken into consideration. We then recalled the concept of Z-numbers introduced by
Zadeh and showed how we can use a Z-valuation to make decisions. We investi-
gated two approaches to decision making with Z-information. The first approach is
based on reducing of Z-numbers to classical fuzzy numbers, and generalization of
expected utility approach and use of Choquet integral with an integrant represented
by Z-numbers. A fuzzy measure is calculated on a base of a given Z-information.
The second approach is based on direct computation with Z-numbers. To illustrate a
validity of suggested approaches to decision making with Z-information the numer-
ical examples were used.
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Utility Integral of Alternatives Described with
Linearly-Interpolated p-Boxes

N. D. Nikolova, S. Ivanova and K. Tenekedjiev

Abstract In the process of quantitative decision making, the bounded rationality of
real individuals leads to elicitation of interval estimates of probabilities and utilities.
This fact is in contrast to some of the axioms of rational choice, hence the deci-
sion analysis under bounded rationality is called fuzzy-rational decision analysis.
Fuzzy-rationality in probabilities leads to the construction of x-ribbon and p-ribbon
distribution functions. This interpretation of uncertainty prohibits the application
of expected utility unless ribbon functions were approximated by classical ones.
This task is handled using decision criteria Q under strict uncertainty—Wald, max-
imax, Hurwiczα , Laplace—which are based on the pessimism-optimism attitude
of the decision maker. This chapter discusses the case when the ribbon functions
are linearly interpolated on the elicited interval nodes. Then the approximation of
those functions using a Q criterion is put into algorithms. It is demonstrated how
the approximation is linked to the rationale of each Q criterion, which in three of the
cases is linked to the utilities of the prizes. The numerical example demonstrates the
ideas of each Q criterion in the approximation of ribbon functions and in calculating
the Q-expected utility of the lottery.
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1 Introduction

The main objective of classical quantitative decision analysis is to find the balance
between the preferences of the decision maker (DM), her risk preferences, and the
uncertainties she faces in a particular decision situation. Utility theory offers lotteries
as a model of uncertain alternatives [1]. They consist of a full set of disjoint events
(states) each associated with a holistic consequence for the DM, called a prize.
Lotteries are categorized according to the cardinality of the set of lotteries L and
the set of prizes X. Ordinary lotteries apply to discrete sets of prizes. If the prize
is a random variable that is probabilistically described by a distribution function
F(.), then generalized lotteries of either I, II or III type apply [2]. In problems with
generalized lotteries of I type, in particular, the set of lotteries is discrete, whereas
the set of prizes is continuous.

The uncertainty in the lottery model is measured by (usually subjectively elicited)
probabilities, whereas the preferences over the prizes are measured by (always sub-
jectively elicited) utilities. The works [3–5] argued that the choice of an action of
the rational individual must be related to her subjective belief. Then her subjective
probabilities might be deducted from her preference over the alternatives. For that
reason they considered as useless the idea to divide decision theory in two parts—one
that refers to the value system of the DM, and another that refers to the subjective
description of uncertainty. Savage [4] introduced axioms as sufficient conditions for
existence of both a utility function over the consequences, and a probability function
over the events. De Finetti [6], De Groot [7], and Villigas [8] on the other hand,
considered that even though it was possible to separate the description of uncertainty
from the model of DM’s value system, the subjective probability is related to the
willingness to enter bets, even if though hypothetical. A detailed overview to the
issues of axiomatization in quantitative decision analysis and a comparison of views
may be found in [9].

In case the rationality of preference was ensured (via s certain axiom set), it is
possible to construct the utility function u(.) over the prizes, such that the more
preferred the consequence the higher the utility. The seminal work [10] offers a
thorough insight into the process of construction of utility functions for the case of
one-dimensional (1-D) and multi-dimensional prizes. The main paradigm of utility
theory is that all kind of lotteries should be ranked in descending order of their
expected utilities, which is the utility of prizes, weighted by their probabilities [1].

In the ideal risky situation, the DM assigns unique probability measures to the
chance of receiving a prize (this is the classical risky lottery) [11]. However, real DMs
can only define subjective probabilities in an interval form. As discussed in [12], if all
necessary probabilities and numerical characteristics of probability distributions that
would allow the complete description of uncertainty in a decision problem is only
known to belong to a given multi-dimensional credal set M, then those probabilities
are called imprecise, indefinite, interval, confidence, etc. Empirical evidence and
studies show that individuals would rather define interval than precise estimates (of
utilities and probabilities) [13]. In any case, the elicitation of interval probabilities is
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a widely discussed issue. Approaches to handle it based on pair-wise comparisons
of events using linear and quadratic programming, on modeling lower and upper
probabilities via heuristical processes, or via multinormal data to obey invariance
principles have been discussed [14–16]. Still, a great deal of details are yet to be
investigated in the area of interval probabilities.

As claimed in [17], in the context of imprecise probabilities, the DM feels more
comfortable with lotteries than with events. Knetsch [18] offers empirical proof in
favor of the suggestion that the certainty equivalent of a lottery (the price of the
lottery) is a wide interval, whose lower bound is the maximal reasonable price one
would buy the lottery for, whereas its upper bound is the lowest price one would sell it.
For that reason, the DM identifies the certainty equivalent’s lower bounds of several
simple lotteries (not in L), called lower previsions [19]. The general assumption is
either that the DM is risk neutral [12] or that the utility function over the certainty
equivalents has been constructed and each “lottery–lower prevision” pair sets a linear
constraints to the set M, which in this case turns out to be convex. The lower prevision
of a lottery’s derivative is taken for the upper prevision of that same lottery [20]. The
work [21] introduces a complex z-dimensional optimization procedure to construct
an imprecise CDF (cumulative distribution function) based on z imprecise nodes.
Those nodes are subjectively elicited in a dialog with the DM [22]. The set M may
in any case be defined and constructed using an arbitrary method.

As a result of interval probabilities, utility theory assumptions are disobeyed, and
partially non-transitive preferences are observed. For that reason, in [23], real DMs
are referred to as fuzzy-rational—FRDM. Then the alternatives are represented as
fuzzy-rational lotteries where the chance of receiving each prize is quantified by
interval probability measures [22].

Since fuzzy-rational DMs only partially quantify uncertainty, then ranking fuzzy-
rational lotteries is a problem of mixed type, and generalizes decisions under risk
and under strict uncertainty. Here, it is necessary to choose the method Q under strict
uncertainty to be applied, such as Wald, maximax,(Hurwiczα , Savage and Laplace
criteria (see [24–27] regarding Q criteria under strict uncertainty). However, none
of the Q criteria obeys the minimal rationality requirements of choice [28]. Yet they
offer an approach to approximating fuzzy-rational lotteries by classical risky ones,
which can then be ranked according to the expected utility criterion. Then the Q-
expected utility criterion to rank fuzzy-rational lotteries is defined. These procedures
benefit from the existing mathematical homology between the descriptions of the
triples “event from a probability field–interval subjective probability–point estimate
probability” and “object from an universe–degree of membership to an intuitionistic
fuzzy set—degree of membership to a (classical) fuzzy set” [29] (see [30] regarding
description of intuitionistic fuzzy sets). That allows transforming interval probabil-
ities into point estimates using the operators that transform an intuitionistic fuzzy
degree of membership into classical fuzzy degree of membership (see [31, 32] for
further reading on intuitionistic fuzzy degree of membership).

This chapter focuses on the case of 1-D GL-I, where the underlying quantity X
takes values in the interval [xmin; xmax ], the uncertainty is described by a 1-D CDF,
F(.), and the utility over the values of X is measured by u(.). The expected utility of
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each uncertain prospect may then be calculated by the Stieltjes integral E(u|F) =∫ xmax
xmin

u(x)d Fx . However, a common way to construct F(.) is via linear interpolation
on subjectively interval-elicited nodes. The CDF constructed on interval-elicited
nodes is called ribbon CDF [22]. It complies with the concept of p-boxes [33].
Depending on the parameter with an interval estimate, there are x-ribbon CDF and
p-ribbon CDF. This chapter offers several approximations of the expected utility
integral in the described setup by transforming the interval-elicited nodes according
to certain assumptions. Since the task of approximating ribbon functions is one under
strict uncertainty, those assumptions happen to be the pessimism and optimism of the
FRDM. The general criterion Q will be the Hurwiczα criterion (forα ∈ [0; 1]), which
is a pessimistic-optimistic decision rule. Special cases of the Hurwiczα criterion are
the Wald (pessimistic criterion with α = 1) and maximax (optimistic criterion with
α = 0 criteria. Another criterion that is to be discussed is the Laplace criterion,
which assumes uniform distribution of values within the uncertainty interval of the
node. Of specific interest are the cases when the utility function is non-monotonic,
which challenges the application of the Q methods, as some of them are substantially
linked to the utilities of the prizes. Algorithms to solve the approximation task under
those criteria for the case of x-ribbon and p-ribbon functions will be outlined. An
example will demonstrate the importance of decision modeling and detailed analysis
of available subjective information for the final decision.

In what follows, Sect. 2 offers a discussion on the ways to construct probability
distributions based on interval estimates. In Sect. 3, the general case of ranking fuzzy-
rational GL-I is presented. Two different interpretations are given in Sects. 4 and 5
depending on the type of ribbon function that describes the uncertainty in the lotteries.
Section 6 offers an economically-oriented example, where the discussed procedures
are applied.

2 Constructing Distributions on Interval Probabilities

Assume that a decision problem encapsulates several uncertain prospects, associated
with a given 1-D quantity X (random variable), whose realizations x ∈ (−∞;+∞).
In an ideal case, the uncertainty in X would be entirely measured by a known 1-D
classical CDF, F(.):

F(x) = CDF(x) = P(X ≤ x),∀x ∈ (−∞;+∞) (1)

In a fuzzy-rational setup, the uncertainty in X is partially quantified by a 1-D ribbon
CDF—F R(.)—that entirely lies between two 1-D classical CDF, called lower and
upper distributional bounds Fd(.) and Fu(.)[22]:

Fd(x) ≤ F R(x) ≤ Fu(x),∀x ∈ (−∞;+∞). (2)

Fd(x) ≤ Fu(x). (3)
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It often happens so that F R(.) is interpolated or approximated on nodes that are
intervally elicited on the prize (i.e. the uncertainty intervals are on the quantile, that
is the abscissa x). Then F R(.) is called x-ribbon CDF—F x R(.)— with lower and
upper x-bounds F xd(.) and F xu(.). This representation is in accordance with the
concept of p-boxes [33]. Assume there are z > 1 number of elicited quantiles of
F x R(.), which obey the following conditions:

{(xd
l ; xu

l ; Fl)|l = 1, 2, . . . , z}, (4)

∣∣∣∣∣∣∣∣∣∣

xd
1 ≤ xd

2 ≤ . . . ≤ xd
z ,

xu
1 ≤ xu

2 ≤ . . . ≤ xu
z ,

xd
l ≤ xu

l , l = 2, 3, . . . , z − 1,
xd

1 = xu
1 , xd

z = xu
z ,

0 = F1 < F2 < . . . < Fz = 1.

(5)

Then a convenient way to assign the x-bounds is by linear interpolation on the
lower and upper ends of the uncertainty intervals of those nodes, such that for all
x ∈ (−∞;+∞):

F xd(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for x < xd
1 ,

Fl , for xd
l = x < xd

l+1, l = 1, 2, . . . , z − 1,

Fl + (x−xd
l )(Fl+1−F)

xd
l+1−xd

l
, for xd

l < x < xd
l+1, l = 1, 2, . . . , z − 1,

1, for xd
z ≤ x;

(6)

F xu(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for x < xu
1 ,

Fl , for xu
l = x < xu

l+1, l = 1, 2, . . . , z − 1,

Fl + (x−xu
l )(Fl+1−F)

xd
l+1−xd

l
, for xu

l < x < xu
l+1, l = 1, 2, . . . , z − 1,

1, for xu
z ≤ x;

(7)

F xd(x) ≤ F x R(x) ≤ F xu(x). (8)

In may also happen so that F R(.) is interpolated or approximated on nodes that
are intervally elicited on the probability value (i.e. whose uncertainty interval is on
the quantile index, that is the ordinate p). Then F R(.) is called p-ribbon CDF—
F pR(.)—with lower and F pd(.) and F pu(.). Assume there are z > 1 number of
elicited quantile indices of F pR(.), which obey the following conditions:

{(xl; Fd
l ; Fu

l )|l = 1, 2, . . . , z}, (9)

∣∣∣∣∣∣∣∣

x1 < x2 < . . . < xz,

0 = Fd
1 ≤ Fd

2 ≤ . . . ≤ Fd
z = 1,

0 = Fu
1 ≤ Fu

2 ≤ . . . ≤ Fu
z = 1,

Fd
l ≤ Fu

l , l = 2, 3, . . . , z − 1.

(10)
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Then a convenient way to assign the p-bounds is by linear interpolation on the
lower and upper ends of the uncertainty intervals of those nodes, such that for all
x ∈ (−∞;+∞):

F pd(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x < x1,

Fd
l for xl = x < xl+1, l = 1, 2, . . . , z − 1,

Fd
l +

(x−xl )(Fd
l+1−Fd

l )

xl+1−xl
for xl < x < xl+1, l = 1, 2, . . . , z − 1,

1 for xz ≤ x;
(11)

F pu(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x < x1,

Fu
l for xl = x < xl+1, l = 1, 2, . . . , z − 1,

Fu
l +

(x−xl )(Fu
l+1−Fu

l )

xl+1−xl
for xl < x < xl+1, l = 1, 2, . . . , z − 1,

1 for xz ≤ x;
(12)

F pd(x) ≤ F pR(x) ≤ F pu(x). (13)

3 Ranking 1-D Fuzzy-Rational GL-I: The General Case

Assume there are q alternatives that generate prizes from a piece-wise continuous
set X according to continuous or mixed probability laws. Such alternatives may be
represented as GL-I [5]. A 1-D GL-I with a 1-D ribbon CDF is referred to as a 1-D
fuzzy-rational GL-I [22] and takes the form:

g f r
i = 〈F R

i (x); x〉, i = 1, 2, . . . , q. (14)

Here, F R
i (.) has lower and upper distributional bounds Fd

i (.) and Fu
i (.). Ranking

g f r
i according to expected utility is then brought down to the following two stages:

(1) Using a Q criterion under strict uncertainty, each F R
i (.) is approximated by a

1-D classical CDF F Q
i (.), such that for all x ∈ (−∞;+∞)

Fd
i (x) ≤ F Q

i (x) ≤ Fu
i (x), i = 1, 2, . . . , q. (15)

In that way each g f r
i is approximated by a 1-D classical-risky GL-I, called

Q-generalized (1-D Q-GL-I):

gQ
i = 〈F Q

i (x); x〉. (16)

(2) The alternatives are ranked in descending order of the expected utilities of gQ
i ,

which is calculated as a Stieltjes integral with an integrating function F Q
i (.):
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E Q
i (u|F R

i ) =
+∞∫

−∞
u(x)d F Q

i (x). (17)

These three steps represent the Q-expected utility criterion to rank 1-D fuzzy-rational
GL-I. A summary of decision criteria Q under strict uncertainty is offered in the
Appendix to the chapter. For some of the Q criteria, the approximation of F R

i (.) by

F Q
i (.) relies strongly on the 1-D utility function u(.).

4 Ranking 1-D x-Fuzzy-Rational GL-I

If the uncertainty in a 1-D fuzzy-rational GL-I is described by an x-ribbon CDF, then
the 1-D x-fuzzy-rational GL-I takes the form:

gx f r
i = 〈F x R

i (x); x〉, i = 1, 2, . . . , q. (18)

The following steps to calculate the Q-expected utility of gx f r
i are needed:

(1) Using a Q criterion under strict uncertainty, F x R
i (.) is piece-wise linearly approx-

imated by a 1-D classical CDF F x Q
i (.) as in (21), with nodes that obey the

conditions (19)–(20):

{
(x Q,(i)

l ; F (i)l )|l = 1, 2, . . . , zi

}
, (19)

∣∣∣∣∣∣∣

x Q,(i)
1 ≤ x Q,(i)

2 ≤ . . . ≤ x Q,(i)
zi ,

xd,(i)
l ≤ x Q,(i)

l ≤ xu,(i)
l , l = 2, 3, . . . , zi − 1,

x Q,(i)
1 = xd,(i)

1 = xu,(i)
1 , x Q,(i)

zi = xd,(i)
zi = xu,(i)

zi .

(20)

F x Q
i (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x < x Q,(i)
1 ,

F (i)l for x Q,(i)
l = x < x Q,(i)

l+1 , l = 1, 2, . . . , zi − 1,

F (i)l +
(x−x Q,(i)

l )(F (i)l+1−F (i)l )

x Q,(i)
l+1 −x Q,(i)

l

for x Q,(i)
l < x < x Q,(i)

l+1 , l = 1, 2, . . . , zi − 1,

1 for x Q,(i)
z ≤ x .

(21)

In that way, gx f r
i is approximated by a 1-D classical risky GL-I, called xQ-

generalized (1-D xQ-GL-I),

gx Q
i = 〈F x Q

i (x); x〉. (22)
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(2) The Q-expected utility of gx f r
i is the expected utility of gx Q

i , calculated using
Riemann integral under the first summation symbol:

Ex Q
i (u|F x R

i ) =
x Q,(i)

zi∫

x Q,(i)
1

u(x)d F x Q
i (x)

=
zi−1∑

l = 1
x Q,(i)

l+1
> x Q,(i)

l

F (i)l+1−F (i)l

x Q,(i)
l+1 −x Q,(i)

l

x Q,(i)
l+1∫

x Q,(i)
l

u(x)dx +
zi−1∑

l = 1
x Q,(i)

l+1
= x Q,(i)

l

(F (i)l+1 − F (i)l )u(x Q,(i)
l

).

(23)

This procedure is called the xQ-expected utility.

The calculation of the xQ-expected utility of the ith fuzzy-rational GL-I is brought
down to the estimation of the inner quantiles x Q,(i)

l , l = 2, 3, . . . , zi − 1, of the

classical CDF in gx Q
i . Task 1 generalizes this problem.

Task 1: Calculating the xQ-expected utility of a fuzzy-rational GL-I
Given:

• criterion under strict uncertainty Q ;
• 1-D utility function u(.);
• number of approximating nodes zi > 1;
• quantile indices F (i)l , l = 1, 2, . . . , zi , such that

0 = F (i)1 ≤ F (i)2 ≤ . . . ≤ F (i)zi−1 ≤ F (i)zi
= 1; (24)

• lower quantile bounds xd,(i)
l , l = 1, 2, . . . , zi , such that

xd,(i)
1 ≤ xd,(i)

2 ≤ . . . ≤ xd,(i)
zi−1 ≤ xd,(i)

zi
; (25)

• upper quantile bounds xu,(i)
l , l = 1, 2, . . . , zi , such that

xd,(i)
1 = xu,(i)

1 ≤ xu,(i)
2 ≤ . . . ≤ xu,(i)

zi−1 ≤ xu,(i)
zi
= xd,(i)

zi
, (26)

xd,(i)
l ≤ xu,(i)

l , l = 2, 3, . . . , zi − 1; (27)

• end quantiles
x Q,(i)

1 = xd,(i)
1 = xu,(i)

1 , (28)

x Q,(i)
zi
= xd,(i)

zi
= xu,(i)

zi
. (29)
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Find:
• inner quantiles x Q,(i)

l , l = 2, 3, . . . , zi − 1, such that

x Q,(i)
1 ≤ x Q,(i)

2 ≤ . . . ≤ x Q,(i)
zi−1 ≤ x Q,(i)

zi
, (30)

xd,(i)
l ≤ x Q,(i)

l ≤ xu,(i)
l . (31)

Task 2 would be given different solutions depending on the Q criterion

4.1 Approximating x-Ribbon CDF Using
the Wald Criterion ( Q = W)

The Wald decision criterion under strict uncertainty assumes that the worst outcome
always occurs (see Appendix 1). Its interpretation for 1-D x-fuzzy-rational GL-I
implies to choose the quantiles xW,(i)

l , l = 2, 3, . . . , zi − 1, so that to minimize the
xW-expected utility of the lottery [34]:

ExW
i (u|Fx R

i ) =
xW,(i)

zi∫

xW,(i)
1

u(x)d FxW
i (x) =

zi−1∑
l=1

xW,(i)
l+1∫

xW,(i)
l

u(x)d FxW
i (x)

=
zi−1∑

l = 1

xW,(i)
l+1 > xW,(i)

l

F (i)l+1−F (i)l

xW,(i)
l+1 −xW,(i)

l

xW,(i)
l+1∫

xW,(i)
l

u(x)dx +
zi−1∑

l = 1

xW,(i)
l+1 = xW,(i)

l

(F(i)l+1 − F(i)l )u(xW,(i)
l )

=
zi−1∑
l=1

(F(i)l+1 − F(i)l )I xW,(i)
l .

(32)

I xW,(i)
l =

⎧
⎪⎪⎨

⎪⎪⎩

1
xW,(i)

l+1 −xW,(i)
l

xW,(i)
l+1∫

xW,(i)
l

u(x)dx for xW,(i)
l+1 > xW,(i)

l ,

u(xW,(i)
l ) for xW,(i)

l+1 = xW,(i)
l .

, l = 1, 2, 3, . . . , zi − 1

(33)

The variables I xW,(i)
l physically coincide with the expected utilities of hypotheti-

cal 1-D classical risky GL-I gh,xW,(i)
l = 〈Fh,xW,(i)

l (x); x〉, where the 1-D classical

CDF Fh,xW,(i)
l (.) are linearly interpolated on two nodes (xW,(i)

l ; 0) and (xW,(i)
l+1 ; 1).

The 1-D classical CDF Fh,xW,(i)
l (.), the hypothetical 1-D classical-risky GL-I

gh,xW,(i)
l and their expected utilities I xW,(i)

l are unknown until the quantiles xW,(i)
l ,
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l = 2, 3, . . . , zi − 1 were defined, so that to obey the conditions

∣∣∣∣∣∣∣∣∣∣∣

xd,(i)
l −xW,(i)

l ≤ 0, l = 2, 3, . . . , zi − 1,
xW,(i)

l −xu,(i)
l ≤ 0, l = 2, 3, . . . , zi − 1,

xW,(i)
l −xW,(i)

l+1 ≤ 0, l = 2, 3, . . . , zi − 2,

xd,(i)
1 −xW,(i)

2 ≤ 0,
xW,(i)

zi−1 −xd,(i)
zi ≤ 0.

(34)

The so-defined (zi − 2)-dimensional non-linear optimization task with 3zi – 5
linear constraints can be redefined in a task of lower dimension provided that the
following properties were considered:

(a) Since the weight coefficients F (i)l+1−F (i)l of the variables I xW,(i)
l in E xW

i (u|F x R
i )

are known and nonnegative, then the required quantile estimates should be
defined so that to minimize the quantities I xW,(i)

l ;
(b) Let all quantiles, but the lth, be fixed at a certain level, where l ∈ {2, 3, . . . , zi −

1}. Assume that for the lth quantile

xW,(i)
l ∈ [max{xd,(i)

l , xW,(i)
l−1 };min{xu,(i)

l , xW,(i)
l+1 }]. (35)

Then the change in xW,(i)
l only influences I xW,(i)

l−1 and I xW,(i)
l ;

(c) Let for some l ∈ {2, 3, . . . , zi − 1} the utility u(.) be:

• monotonically increasing in the interval x ∈ [xd,(i)
l ; xu,(i)

l ];
• bounded above by u(xd,(i)

l ) in the interval x ∈ [xd,(i)
l−1 ; xd,(i)

l ];
• bounded below by u(xu,(i)

l ) in the interval x ∈ [xu,(i)
l ; xu,(i)

l+1 ] .
Then I xW,(i)

l−1 and I xW,(i)
l are monotonically increasing functions of xW,(i)

l ;

(d) Let for some l ∈ {2, 3, . . . , zi − 1}, the utility function u(.) be:

• monotonically decreasing in the interval x ∈ [xd,(i)
l ; xu,(i)

l ];
• bounded below by u(xd,(i)

l ) in the interval x ∈ [xd,(i)
l−1 ; xd,(i)

l ];
• bounded above by u(xu,(i)

l ) in the interval x ∈ [xu,(i)
l ; xu,(i)

l+1 ].
Then I xW,(i)

l−1 and I xW,(i)
l are monotonically decreasing functions of xW,(i)

l ;

(e) Let for some l ∈ {2, 3, . . . , zi − 1} the utility function u(.) be a constant in the
interval x ∈ [xd,(i)

l−1 ; xu,(i)
l+1 ] then I xW,(i)

l−1 and I xW,(i)
l do not depend on changes in

xW,(i)
l .
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When reducing the dimensionality of the optimization task, it is convenient to
assign the quantiles xW,(i)

l , l = 1, 2, . . . , zi , to 5 disjoint sets: “known”, “arbitrary”,
“left prone”, “right prone” and “optimizing”, according to Algorithm 1.

Algorithm 1. Classification of the quantiles of an x-ribbon CDF according
to Wald

1. All quantiles are marked as optimizing.
2. From left to right (for l = 2, 3, . . . , zi − 1) all optimizing quantiles, whose

lower and upper limits coincide (i.e. xd,(i)
l = xu,(i)

l ), are marked as known. The

following assignment is made: xW,(i)
l = xd,(i)

l ;
3. From left to right (for l = 2, 3, . . . , zi − 1) all optimizing quantiles that obey

property e (i.e. I xW,(i)
l−1 and I xW,(i)

l do not depend on changes in xW,(i)
l ), are

marked as arbitrary;
4. From left to right (for l = 2, 3, . . . , zi − 1) all optimizing quantiles that obey

property c (i.e. I xW,(i)
l−1 and I xW,(i)

l are monotonically increasing functions of

xW,(i)
l ,) are marked as left prone;

5. From right to left (for l = zi − 1, zi − 2, . . . , 3, 2), all optimizing quantiles that
obey property d (i.e. I xW,(i)

l−1 and I xW,(i)
l are monotonically decreasing functions

of xW,(i)
l ,) are marked as right prone;

6. From left to right (for l = 2, 3, . . . , zi − 1) all arbitrary quantiles, whose left
neighbor is known, left prone or optimizing, is marked as left prone;

7. From left to right (for l = 2, 3, . . . , zi − 1) all arbitrary quantiles, whose right
neighbor is known, right prone or optimizing, are marked as right prone;

8. From left to right (for l = 2, 3, . . . , zi − 1) all arbitrary quantiles, whose left
neighbor ll and right neighbor lr do not overlap (i.e. xu,(i)

ll ≤ xd,(i)
lr ), are marked

as left prone, and both neighbors are marked as known. The following assign-
ments are made: xW,(i)

ll = xu,(i)
ll , xd,(i)

ll = xu,(i)
ll , xd,(i)

t = max{xd,(i)
t ; xW,(i)

ll },
t = ll + 1, ll + 2, . . . , zi − 1, xW,(i)

lr = xd,(i)
lr , xu,(i)

lr = xd,(i)
lr and xu,(i)

t =
min{xu,(i)

t ; xW,(i)
lr }, t = 2, 3, . . . , lr − 1;

9. From left to right (for l = 2, 3, . . . , zi − 1) all quantiles, whose lower and
upper limits coincide (i.e. xd,(i)

l = xu,(i)
l ), are marked as known. The following

assignment is made: xW,(i)
l = xd,(i)

l ;
10. From left to right (for l = 2, 3, . . . , zi − 1) the first quantiles from the arbitrary

group, whose left neighbor ll and right neighbor lr overlap (i.e. xu,(i)
ll > xd,(i)

lr ),
are marked as optimizing, and the other quantiles in the group are marked as left
prone;

11. From left to right (for l = 2, 3, . . . , zi − 1) all right prone quantiles, which do
not overlap with their right left prone neighbor (i.e. xu,(i)

l ≤ xd,(i)
l+1 ), are marked

as known, together with their right neighbors. The following assignments are
made: xW,(i)

l = xu,(i)
l , xd,(i)

l = xu,(i)
l , xW,(i)

l+1 = xd,(i)
l+1 , and xu,(i)

l+1 = xd,(i)
l+1 ;
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12. From left to right (for l = 2, 3, . . . , zi − 1) all right prone quantiles, which do
not overlap with their right left prone neighbor (i.e. xu,(i)

l > xd,(i)
l+1 ), are marked

as optimizing;
13. From left to right (for l = 2, 3, . . . , zi − 1) all left prone quantiles, whose

left neighbor is known or which do not overlap with their left neighbor (i.e.
xd,(i)

l ≥ xu,(i)
l−1 ), are marked as known. The following assignments are made:

xW,(i)
l = xd,(i)

l and xu,(i)
l = xd,(i)

l ;
14. From right to left (for l = zi − 1, zi − 2, . . . , 3, 2) all right prone quantiles,

whose right neighbor is known, or which do not overlap with their right neighbor
(i.e. xu,(i)

l ≤ xd,(i)
l+1 ), are marked as known. The following assignments are made:

xW,(i)
l = xu,(i)

l and xd,(i)
l = xu,(i)

l ;
15. If at least one quantile has been marked as known in steps 13 and 14, then go to

step 13;
16. If at least one optimizing quantile has been marked as arbitrary, left prone or

right prone in steps from 3 to 5, then go to step 3, otherwise—the end.

As a result of Algorithm 1:

• there are no arbitrary quantiles;
• if there are no optimizing quantiles, then there are only known quantiles;
• if there are optimizing quantiles, then there are no right prone quantiles with right

left prone neighbors.
• the lower and upper bounds of all known quantiles coincide with a fixed values;
• all quantile bounds obey the initial conditions.

Let N be the cardinality of the set of optimizing quantiles. If N = 0, then all
quantiles have been found and Task 1 was solved. If N > 0, then the function
E xW

i (u|F xW
i )may be calculated only on selected permissible values of the optimizing

quantilies according to Algorithm 2.

Algorithm 2. Calculating the maximal expected utility in the case of x-ribbon
CDF after the quantiles have been categorized

1. From left to right (for l = 2, 3, . . . , zi − 1), all optimizing quantiles are set
to coincide with the chosen values of the optimizing quantiles xW,(i)

l , such that

xd,(i)
l ≤ xW,(i)

l ≤ xu,(i)
l ;

2. From left to right (for l = 2, 3, . . . , zi − 1) all left prone quantiles are set to
coincide with what is greater between their lower bound and the left neighbor:
xW,(i)

l = max{xd,(i)
l , xW,(i)

l−1 };
3. From right to left (for l = zi − 1, zi − 2, . . . , 3, 2) all right prone quantiles are

set to coincide with what is smaller between their upper bound and the right
neighbor: xW,(i)

l = min{xu,(i)
l , xW,(i)

l+1 };
4. The values I xW,(i)

l , l = 1, 2, 3, . . . , zi−1 are calculated using the defined xW,(i)
l ;

5. E xW
i (u|F x R

i ) is calculated using the I xW,(i)
l defined in step 4.
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It is again necessary to optimize E xW
i (u|F x R

i , but the dimensionality N of this
task does not exceed (and is usually lower than) zi −2. From the (3zi −5) number of
linear constraints only those that include an optimizing quantile are analyzed. This
solves Task 1 for Q = W in the general case of an arbitrary utility function.

Assume that the utility function u(.) is monotonically increasing in the interval
[xd,(i)

1 ; xu,(i)
zi ], so that for xa ∈ [xd,(i)

1 ; xu,(i)
zi ] and xb ∈ [xd,(i)

1 ; xu,(i)
zi ]

i f xa > xb, then u(xa) ≥ u(xb). (36)

Then all unknown quantiles xW,(i)
l , for l = 2, 3, . . ., zi −1 would obey property c

in the general case (i.e. I xW,(i)
l−1 and I xW,(i)

l are monotonically increasing functions of

xW,(i)
l ). Then, in order to minimize I xW,(i)

l , all quantiles would be set to their lower
limits, which are the smallest values that obey the linear constraint:

xW,(i)
l = xd,(i)

l , l = 2, 3, . . . , zi − 1. (37)

This solves Task 1 for Q = W in the case of monotonically increasing utility
function.

If the utility function u(.) is monotonically decreasing in the interval [xd,(i)
1 ; xu,(i)

zi ],
then for xa ∈ [xd,(i)

1 ; xu,(i)
zi ] and xb ∈ [xd,(i)

1 ; xu,(i)
zi ]

i f xa > xb, then u(xa) ≤ u(xb). (38)

Then all unknown quantiles xW,(i)
l , for l = 2, 3, . . . , zi − 1 would obey property

d in the general case (i.e. I xW,(i)
l−1 and I xW,(i)

l are monotonically decreasing functions

of xW,(i)
l ). Then, in order to minimize I xW,(i)

l , all quantiles would be set to their
upper limits, which are the greatest values that obey the linear constraints:

xW,(i)
l = xu,(i)

l , l = 2, 3, . . . , zi − 1. (39)

This solves Task 1 for Q = W in the case of a monotonically decreasing utility
function.

4.2 Approximating x-Ribbon CDF Using
the Maximax Criterion ( Q = ¬W)

The rationale behind the maximax criterion is opposite to that of the Wald criterion
and the required quantiles x¬W,(i)

l , l = 2, 3, . . . , zi − 1 (i.e. the solution of Task 1)
may be identified using the algorithms from Sect. 4.1 using the following substitution:

u(x) = −u(x),∀x ∈ (−∞;+∞). (40)
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4.3 Approximating x-Ribbon CDF Using
the Hurwiczα Criterion ( Q = H)α

The Hurwiczα decision criterion under strict uncertainty assumes that the choice of
an alternative should be guided by a numerical pessimism index α ∈ [0; 1] that is a
weighted sum of the worst and the best outcome one can get from that alternative,
and which measured the pessimism of the DM [25]. The application of that concept
for 1-D x-fuzzy-rational GL-I (i.e. the solution of Task 1) implies to choose the
quantiles x Hα,(i)

l , l = 2, 3, . . . , zi − 1 as weighted measures of the quantiles xW,(i)
l

and x¬W,(i)
l :

x Hα,(i)
l = α xW,(i)

l + (1− α) x¬W,(i)
l . (41)

4.4 Approximating x-Ribbon CDF Using
the Laplace Criterion ( Q = L)

The approximation of a 1-D x-ribbon CDF using the Laplace criterion were initially
described in [22]. The values of the required quantiles x L ,(i)

l , l = 2, 3, . . . , zi − 1,
do not depend on the utility function. According to Laplace’s insufficient reasoning
principle, if no information is available for the quantiles (i.e. all quantiles are with
maximum width, that is xd,(i)

l = xd,(i)
1 = xu,(i)

1 , xu,(i)
l = xd,(i)

zi = xu,(i)
zi , l =

2, 3, . . . , zi−1), then the distribution must be uniform in the interval [xd,(i)
1 ; xd,(i)

zi ].
Let the quantile with the F (i)l index of this uniform distribution be called quantile of

complete ignorance xaL ,(i)
l :

xaL ,(i)
l = xd,(i)

1 + (xd,(i)
zi
− xd,(i)

1 )F (i)l , l = 2, 3, . . . , zi − 1 (42)

Let hx,(i)
l be the homothety of the maximum uncertainty interval under strict

uncertainty of the lth quantile [xd,(i)
1 ; xd,(i)

zi ] into the actual uncertainty interval

[xd,(i)
l ; xu,(i)

l ] of that same quantile. Then according to [22] the required quantile

x L ,(i)
l will be the image of the quantile of complete ignorance xaL ,(i)

l at the homothety

hx,(i)
l , which solves Task 1 for Q = L:

x L ,(i)
l = xd,(i)

l +(xu,(i)
l −xd,(i)

l )
xaL ,(i)

l − xd,(i)
1

xd,(i)
zi − xd,(i)

1

= xd,(i)
l +(xu,(i)

l −xd,(i)
l )F (i)l . (43)
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5 Ranking 1-D p-Fuzzy-Rational GL-I

If the uncertainty in a 1-D fuzzy-rational GL-I is described by an p-ribbon CDF, then
the 1-D p- fuzzy-rational GL-I takes the form

g p f r
i = 〈F pR

i (x); x〉, i = 1, 2, . . . , q. (44)

The following steps to calculate the Q-expected utility of g p f r
i may be applied:

(1) Using a Q criterion under strict uncertainty, F pR
i (.) is piece-wise linearly approx-

imated by a 1-D classical CDF F pQ
i (.) according to (47) with nodes as in (45)

and (46):
{(x (i)l ; F Q,(i)

l )|l = 1, 2, . . . , zi }, (45)

∣∣∣∣∣
0 = F Q,(i)

1 ≤ F Q,(i)
2 ≤ . . . ≤ F Q,(i)

zi = 1,
Fd,(i)

l ≤ F Q,(i)
l ≤ Fu,(i)

l , l = 2, 3, . . . , zi − 1.
(46)

F pR
i (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for x < x(i)1 ,

F Q,(i)
l for x(i)l = x < x(i)l+1, l = 1, 2, . . . , zi − 1,

F Q,(i)
l + (x−x(i)l )(F Q,(i)

l+1 −F Q,(i)
l )

x(i)l+1−x(i)l

for x(i)l < x < x(i)l+1, l = 1, 2, . . . , zi − 1,

1 for x(i)zi ≤ x .

(47)

In that way, g p f r
i is approximated by a 1-D classical risky GL-I, called pQ-

generalized (1-D pQ-GL-I),

g pQ
i = 〈F pQ

i (x); x〉. (48)

(2) The Q-expected utility of g p f r
i is calculated as the expected utility of g pQ

i , using
Riemann integral under the first summation symbol:

E pQ
i (u|F pR

i ) =
x (i)zi∫

x (i)1

u(x)d F pQ
i (x)

=
zi−1∑

l = 1
xl+1 > xl

F Q,(i)
l+1 −F Q,(i)

l

x (i)l+1−x (i)l

x (i)l+1∫

x (i)l

u(x)dx +
zi−1∑

l = 1
xl+1 = x (i)l

(F Q,(i)
l+1 − F Q,(i)

l )u(x (i)l ).

(49)
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This procedure is called pQ-expected utility. The calculation of the pQ-expected
utility of the ith fuzzy-rational GL-I is brought down to the estimation of the inner
quantile indices F Q,(i)

l , l = 2, 3, . . . , zi − 1, of the classical CDF in the pQ-GL-I

g pQ
i . Task 2 generalizes this problem.

Task 2
Given:

• criterion under strict uncertainty Q;
• 1-D utility function u(.);
• number of approximating nodes zi > 1;
• quantiles x (i)l , l = 1, 2, . . . , zi , such that

x (i)1 ≤ x (i)2 ≤ . . . ≤ x (i)zi
; (50)

• lower quantile index bounds Fd,(i)
l , l = 1, 2, . . . , zi , such that

0 = Fd,(i)
1 ≤ Fd,(i)

2 ≤ . . . ≤ Fd,(i)
zi−1 ≤ Fd,(i)

zi
= 1; (51)

• upper quantile index bounds Fu,(i)
l , l = 1, 2, . . . , zi , such that

0 = Fu,(i)
1 ≤ Fu,(i)

2 ≤ . . . ≤ Fu,(i)
zi−1 ≤ Fu,(i)

zi
= 1; (52)

• end quantile indices
F Q,(i)

1 = Fd,(i)
1 = Fu,(i)

1 = 0, (53)

F Q,(i)
zi
= Fd,(i)

zi
= Fu,(i)

zi
= 1. (54)

Find:
• inner quantile indices F Q,(i)

l , l = 2, 3, . . . , zi − 1, such that

F Q,(i)
2 ≤ F Q,(i)

3 ≤ . . . ≤ F Q,(i)
zi−2 ≤ F Q,(i)

zi−1 , (55)

Fd,(i)
l ≤ F Q,(i)

l ≤ Fu,(i)
l . (56)

Task 2 will be given different solutions depending on the Q criterion.
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5.1 Approximating p-Ribbon CDF Using
the Wald Criterion ( Q = W)

The application of the Wald decision criterion under strict uncertainty in the case
of a 1-D p-fuzzy-rational GL-I implies to choose the quantile indices F W,(i)

l , l =
2, 3, . . . , zi − 1, so that to minimize the pW-expected utility of the lottery:

E pW
i (u|F pR

i ) =
x (i)zi∫

x (1i)

u(x)d F pW
i (x) =

zi−1∑
l=1

x (i)l+1∫

x (i)l

u(x)d F pW
i (x)

=
zi−1∑

l = 1

x(i)l+1 > x(i)l

FW,(i)
l+1 −FW,(i)

l

x (i)l+1−x (i)l

x (i)l+1∫

x (i)l

u(x)dx +
zi−1∑

l = 1

x(i)l+1 = x(i)l

(FW,(i)
l+1 − FW,(i)

l )u(x(i)l )

= I p,(i)
zi−1 +

zi−1∑
l=2

FW,(i)
l (I p,(i)

l−1 − I p,(i)
l ).

(57)

I p,(i)
l =

⎧
⎪⎪⎨

⎪⎪⎩

1
x (i)l+1

− x (i)l

x (i)l+1∫

x (i)l

u(x)dx for x(i)l+1 > x(i)l ,

u(x (i)l ) for x (i)l+1 = x (i)l .

, l = 1, 2, 3, . . . , zi − 1

(58)

The variables I p,(i)
l physically coincide with the expected utilities of hypothetical

1-D classical risky GL-I gh,p,(i)
l = 〈Fh,p,(i)

l (x); x〉, where the 1-D classical CDF

Fh,p,(i)
l (.) are linearly interpolated on two nodes (x (i)l ; 0) and (x (i)l+1; 1). That is why

I p,(i)
l will be referred to as auxiliary expected utilities.

After calculating I p,(i)
l , l = 1, 2, 3, . . . , zi − 1, the required quantile indices

F W,(i)
l , l = 2, 3, . . . , zi − 1, may be identified by solving the following linear pro-

gramming task: Minimize the linear function
zi−1∑
l=2

F W,(i)
l (I p,(i)

l−1 − I p,(i)
l )onF W,(i)

2 ,

F W,(i)
3 , . . . , F W,(i)

zi−1 provided the following 3zi − 5 linear constraints hold:

∣∣∣∣∣∣∣∣∣∣∣

Fd,(i)
l − F W,(i)

l ≤ 0, l = 2, 3, . . . , zi − 1,
F W,(i)

l − Fu,(i)
l ≤ 0, l = 2, 3, ..., zi − 1,

F W,(i)
l − F W,(i)

l+1 ≤ 0, l = 2, 3, ..., zi − 2,

−F W,(i)
2 ≤ 0,

F W,(i)
z−1 − 1 ≤ 0.

(59)
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A solution of that task may be found by the MATLAB function linprog that applies
twice the Dantzig-Orden-Wolfe generalized simplex method [35]. That solves Task
2 for Q = W in the general case of an arbitrary utility function.

In a special case (e.g. when the utility function u(.) is monotonically increasing in
the interval [x (i)1 ; x (i)zi ] so that (36) applies for xa ∈ [x (i)1 ; x (i)zi ] and, xb ∈ [x (i)1 ; x (i)zi ])
the following might hold for g p f r

i

I p,(i)
l−1 ≤ I p,(i)

l , l = 2, 3, . . . , zi − 1. (60)

Since the coefficients of the linear function
zi−1∑
l=2

F W,(i)
l (I p,(i)

l−1 − I p,(i)
l ) are entirely

non-positive, then the minimum would be identified only for the greatest values of
the unknown variables that obey the linear constraints, i.e.

F W,(i)
l = Fu,(i)

l , l = 2, 3, . . . , zi−1. (61)

That solves Task 2 for Q = W in the case of increasing auxiliary expected utilities.
In another special case (e.g. when u(.) is monotonically decreasing in the interval

[x (i)1 ; x (i)zi ] so that (38) applies for xa ∈ [x (i)1 ; x (i)zi ] and, xb ∈ [x (i)1 ; x (i)zi ]) the following

might hold for g p f r
i

I p,(i)
l−1 ≥ I p,(i)

l , l = 2, 3, . . . , zi − 1. (62)

Since the coefficients of the linear function
zi−1∑
l=2

F W,(i)
l (I p,(i)

l−1 − I p,(i)
l ) are entirely

nonnegative, then the minimum would be identified only for the smallest values of
the unknown variables that obey the linear constraints, i.e.

F W,(i)
l = Fd,(i)

l , l = 2, 3, . . . , zi − 1. (63)

That solves Task 2 for Q = W in the case of decreasing auxiliary expected
utilities.

5.2 Approximating p-Ribbon CDF Using
the Maximax Criterion ( Q = ¬W)

The required quantile indices F¬W,(i)
l , l = 2, 3, . . . , zi − 1, may be identified using

the algorithms from Sect. 6.1 with the substitution (64), which solves Task 2 for
Q = ¬W :

u(x) = −u(x),∀x ∈ (−∞;+∞) (64)
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5.3 Approximating p-Ribbon CDF Using
the Hurwiczα Criterion ( Q = Hα)

The application of the Hurwiczα decision criterion under strict uncertainty in the case
of a 1-D p-fuzzy-rational GL-I implies to choose the quantile indices F Hα,(i)

l , l =
2, 3, . . ., zi − 1 as weighted measures of the quantile indices F W,(i)

l and F¬W,(i)
l ,

which solves Task 2 for Q = Hα:

F Hα,(i)
l = αF W,(i)

l + (1− α)F¬W,(i)
l , l = 2, 3, . . . , zi − 1. (65)

5.4 Approximating p-Ribbon CDF Using
the Laplace Criterion ( Q = L)

The approximation of the 1-D p-ribbon CDF using Laplace criterion were ini-
tially described in [22]. The values of the required quantile indices F L ,(i)

l , l =
2, 3, . . . , zi −1, do not depend on the utility function. According to Laplace’s insuf-
ficient reasoning principle, if no information is available for the quantile indices (i.e.
Fd,(i)

l = 0, Fu,(i)
l = 1, l = 2, 3, . . . , zi − 1), then the distribution must be uniform

in the interval [x (i)1 ; x (i)zi ]. Let the quantile index of the quantile x (i)l of this uniform
distribution be called quantile index of the complete ignorance and be denoted as
FaL ,(i)

l :

FaL ,(i)
l = x (i)l − x (i)1

x (i)zi − x (i)1

, l = 2, 3, . . . , zi − 1. (66)

Let h p,(i)
l be the homothety of the maximal uncertainty interval under strict uncer-

tainty of the lth quantile index [0; 1] into the actual uncertainty interval [Fd,(i)
l ; Fu,(i)

l ]
of that same quantile index. Then according to [22] the required quantile index F L ,(i)

l

will be the image of the quantile index of complete ignorance FaL ,(i)
l at the homothety

h p,(i)
l , which solves Task 2 for Q = L:

F L ,(i)
l = Fd,(i)

l + (Fu,(i)
l − Fd,(i)

l )FaL ,(i)
l = Fd,(i)

l + (Fu,(i)
l − Fd,(i)

l )
x (i)l − x (i)1

x (i)zi − x (i)1

.

(67)
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6 Examples of Approximating Ribbon CDF Under
Non-monotonic Utility

6.1 Approximating x-Ribbon CDFs

6.1.1 Setup

Consider a 1-D random variable X that represents the profit rate of a small enterprise
in a competitive business area. It takes values (in thousand US dollars) in the interval
[30; 42]. A 1-D x-ribbon CDF F x R(.) is constructed over the values of X. It is
assigned by 9 inner nodes elicited by the FRDM, which obey (5): (xd

1 = xu
1 =

30; F1 = 0), (xd
2 = 31; xu

2 = 32; F2 = 0.1), (xd
3 = 32; xu

3 = 33; F3 = 0.2),
(xd

4 = 32.8; xu
4 = 33.5; F4 = 0.3), (xd

5 = 33; xu
5 = 34.5; F5 = 0.4), (xd

6 =
34; xu

6 = 36; F6 = 0.5), (xd
7 = 35.5; xu

7 = 37; F7 = 0.6), (xd
8 = 36; xu

8 =
37.5; F8 = 0.7), (xd

9 = 37; xu
9 = 40; F9 = 0.8), (xd

10 = 40; xu
10 = 41; F10 = 0.9),

(xd
11 = xu

11 = 42; F11 = 1). The so-constructed x-ribbon F x R(.) defines the x-fuzzy-
rational GL-I gx f r = 〈F x R(x); x〉.

Assume, for the sake of the example, that the FRDM has non-monotonic pref-
erences over the possible profit rates, resulting from the competitive profile of the
business sector. In such a setup, a small company with a rather low profit rate would
not manage to gain a sufficient market share. An eventual increase of the profit over
a certain threshold, on the other hand, would put the enterprise on the spotlight
of larger companies, i.e. of severe competition and eventual take-overs. The non-
monotonic utility function in the interval [30; 42] has been linearly interpolation on
eleven elicited inner nodes as follows: u(30) = 0, u(31) = 0.06, u(32) = 0.09,
u(33) = 0.15, u(34) = 0.3, u(35) = 0.55, u(36) = 0.7, u(37) = 0.6, u(38) = 0.4,
u(39) = 0.2, u(40) = 0.15, u(41) = 0.1, u(42) = 0 (see third graphics from below
on Fig. 1).

The task is to approximate F x R(x) using the Wald, maximax, Hurwiczα , and
Laplace criteria and then calculate the L−,W−,¬W− and the Hα-expected utility
of gx f r .

6.1.2 Approximation of Fx R(x) Using the Wald Criterion

From (28) and (29) it follows that xW
1 = 30, xW

11 = 42. After applying Algorithm 1,
six quantiles are identified as known: xW

2 = 31, xW
3 = 32, xW

4 = 32.8, xW
5 = 33,

xW
6 = 34, and xW

10 = 41. The other three quantiles are optimizing and their estimates
should be in the intervals 35.5 ≤ xW

7 ≤ 37, 36 ≤ xW
8 ≤ 37.5, 37 ≤ xW

9 ≤ 40.
For example, according to Algorithm 2, the permissible combination xW

7 =
36.5, xW

8 = 37, xW
9 = 39 generates a xW-expected utility of the lottery of

E xW (u|F x P )=0.2413. The minimal possible value of the xW-expected utility
E xW (u|F x P ) is possible under the following values of the optimizing quantiles:
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Fig. 1 Graphics of F xW (x), density (PDF) and utility function u(x) of the FRDM over the values
of X in the interval [30; 42]

xW
7 = 35.5, xW

8 = 37.5, xW
9 = 40. The optimization is performed using three-

dimensional scanning method with a step of 1/10 of the interval’s width.
Therefore, F x R(.) is approximated by F xW (.) on the nodes (xW

1 = 30; F1 = 0),
(xW

2 = 31; F2 = 0.1), (xW
3 = 32; F3 = 0.2), (xW

4 = 32.8; F4 = 0.3), (xW
5 =

33; F5 = 0.4), (xW
6 = 34; F6 = 0.5), (xW

7 = 35.5; F7 = 0.6), (xW
8 = 37.5; F8 =

0.7), (xW
9 = 40; F9 = 0.8), (xW

10 = 41; F10 = 0.9), (xW
11 = 42; F11 = 1). Then

gx f r is approximated by the 1-D xW-GL-I gxW = 〈F xW (x); x〉. Following (23),
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the expected utility of the xW-GL-I is E xW
i (u|F x R

i ) = 0.215, which is also the
xW-expected utility of gx f r . The graphics of F xW (x) and its density (probability
density function—PDF) are depicted in Fig. 1.

6.1.3 Approximation of Fx R(x) Using the Maximax Criterion

From (28) and (29) it follows that x¬W
1 = 30, x¬W

11 = 42. After applying Algorithm
1 with the substitution (40), two quantiles are identified as known: x¬W

2 = 32,
x¬W

10 = 40. Four of the other quantiles are marked as right prone and their estimates
should be in the intervals 32 ≤ x¬W

3 ≤ 33, 32.8 ≤ x¬W
4 ≤ 33.5, 33 ≤ x¬W

5 ≤
34.5, 34 ≤ x¬W

6 ≤ 36. The other three quantiles are marked as optimizing and
their estimates should be in the intervals 35.5 ≤ x¬W

7 ≤ 37, 36 ≤ x¬W
8 ≤ 37.5,

37 ≤ x¬W
9 ≤ 40.

For example, at the permissible combination x¬W
7 = 36, x¬W

8 = 36.5, x¬W
9 = 38,

the right prone quantiles will be set at x¬W
3 = 33, x¬W

4 = 33.5, x¬W
5 = 34.5, and

x¬W
6 = 36. According to Algorithm 2 and (40), the x¬W -expected utility of the lot-

tery isE x¬W (u|F x P) = 0.336. The maximal possible value of the x¬W -expected
utility E x¬W (u|F x P ) is possible under the following values of the optimizing quan-
tiles: x¬W

7 = 37, x¬W
8 = 37, x¬W

9 = 37. At those values, the estimates of the right
prone quantiles are again x¬W

3 = 33, x¬W
4 = 33.5, x¬W

5 = 34.5, x¬W
6 = 36. The

optimization was performed using three-dimensional scanning method with a step
of 1/10 of the interval’s width.

Therefore, F x R(.) is approximated by F x¬W (.) on the nodes (x¬W
1 = 30; F1 =

0), (x¬W
2 = 32; F2 = 0.1), (x¬W

3 = 33; F3 = 0.2), (x¬W
4 = 33.5; F4 = 0.3),

(x¬W
5 = 34.5; F5 = 0.4), (x¬W

6 = 36; F6 = 0.5), (x¬W
7 = 37; F7 = 0.6), (x¬W

8 =
37; F8 = 0.7), (x¬W

9 = 37; F9 = 0.8), (x¬W
10 = 40; F10 = 0.9), (x¬W

11 = 42; F11 =
1). Then gx f r is approximated by the 1-D x¬W-GL-I gx¬W = 〈F x¬W (x); x〉.
Following (23), the expected utility of x¬W-GL-I is E x¬W

i (u|F x R
i ) = 0.370, which

is also the x¬W -expected utility of gx f r . The graphics of F x¬W (.) and its density
are depicted in Fig. 2.

6.1.4 Approximation of Fx R(x) Using the Hurwiczα Criterion

Let α = 0.7. From (28) and (29) it follows that x H0.7
1 = 30, x H0.7

11 = 42. According to
(41), the required quantiles depend on xW

l and x¬W
l , already calculated above. Here

x H0.7
2 = 0.7 xW

2 + (1− 0.7) x¬W,(i)
2 = 0.7× 31+ 0.3× 32 = 31.3, and in the same

fashion x H0.7
3 = 32.3, x H0.7

4 = 33.01, x H0.7
5 = 33.45, x H0.7

6 = 34.6, x H0.7
7 = 35.95,

x H0.7
8 = 37.35, x H0.7

9 = 39.1, x H0.7
10 = 40.7.

Therefore, F x R(.) is approximated by F x H0.7(.) on the nodes (x H0.7
1 = 30; F1 =

0), (x H0.7
2 = 31.3; F2 = 0.1), (x H0.7

3 = 32.3; F3 = 0.2), (x H0.7
4 = 33.01; F4 =
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Fig. 2 Graphics of F x¬W (.), density (PDF) and utility function u(x) of the FRDM over the values
of X in the interval [30; 42]

0.3), (x H0.7
5 = 33.45; F5 = 0.4), (x H0.7

6 = 34.6; F6 = 0.5), (x H0.7
7 = 35.95;

F7 = 0.6), (x H0.7
8 = 37.35; F8 = 0.7), (x H0.7

9 = 39.1; F9 = 0.8), (x H0.7
10 =

40.7; F10 = 0.9), (x H0.7
11 = 42; F11 = 1). Then gx f r is approximated by the 1-

D xH0.7 − GL-I gx H0.7 = 〈F x H0.7 x); x〉. Following (23), the expected utility of
x H0.7 −GL-I is E x H0.7

i (u|F x R
i ) = 0.2542, which is also the x H0.7-expected utility

of gx f r . The graphics of F x H0.7(.) and its density are depicted in Fig. 3.
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Fig. 3 Graphics of F x H0.7 (.), density (PDF) and utility function u(x) of the FRDM over the values
of X in the interval [30; 42]

6.1.5 Approximation of Fx R(x) Using the Laplace Criterion

From (28) and (29) it follows that x L
1 = 30, x L

11 = 42. According to (43) the required
quantiles are: x L

2 = xd
2 + (xu

2 − xd
2 )F2 = 31 + (32 − 31) × 0.1 = 31.1, and in

the same fashion x L
3 = 32.2, x L

4 = 33.01, x L
5 = 33.6, x L

6 = 35, x L
7 = 36.4, x L

8 =
37.05, x L

9 = 39.4, x L
10 = 40.9.
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Fig. 4 Graphics of F x L (x), density (PDF) and utility function u(x) of the FRDM over the values
of X in the interval [30; 42]

Therefore F x R(.) is approximated by F x L(.) on the nodes (x L
1 = 30; F1 = 0),

(x L
2 = 31.1; F2 = 0.1), (x L

3 = 32.2; F3 = 0.2), (x L
4 = 33.01; F4 = 0.3), (x L

5 =
33.6; F5 = 0.4), (x L

6 = 35; F6 = 0.5), (x L
7 = 36.4; F7 = 0.6), (x L

8 = 37.05;
F8 = 0.7), (x L

9 = 39.4; F9 = 0.8), (x L
10 = 40.9; F10 = 0.9), (x L

11 = 42; F11 = 1).
Then gx f r is approximated by the 1-D xL-GL-I gx L = 〈F x L(x); x〉. Following (23),
the expected utility of the xL-GL-I is E x L

i (u|F x R
i ) = 0.265, which is also the xL-

expected utility of gx f r . The graphics of F x L(x) and its density are depicted in Fig. 4.
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6.2 Approximating p-Ribbon CDFs

6.2.1 Setup

Consider the same 1-D random variable X as in Sect. 5.2.1. A 1-D p-ribbon CDF
F pR(.) is constructed over the values of X. It is assigned by 7 inner nodes elicited
by the FRDM, which obey (10): (x1 = 30; Fd

1 = Fu
1 = 0), (x2 = 31.5; Fd

2 = 0.07,
Fu

2 = 0.13), (x3 = 33; Fd
3 = 0.23, Fu

3 = 0.31), (x4 = 34.5; Fd
4 = 0.41, Fu

4 =
0.51), (x5 = 36; Fd

5 = 0.51, Fu
5 = 0.65), (x6 = 37.5; Fd

6 = 0.68, Fu
6 = 0.80),

(x7 = 39; Fd
7 = 0.76, Fu

7 = 0.88), (x8 = 40.5; Fd
8 = 0.85, Fu

8 = 0.95), (x9 = 42;
Fd

9 = Fu
9 = 1). The so-defined p-ribbon F pR(.) defines the p-fuzzy-rational GL-I

g p f r = 〈F pR(x); x〉.
The utility function is the same as the one from Sect. 6.1.1 (see the third graph in

Fig. 5).
The task is to approximate F pR(x) using the Wald, maximax, the Hurwiczα , and

the Laplace, criteria and then calculate the L-, W-, ¬W -, and Hα-expected utility of
g p f r .

6.2.2 Approximation of F pR(x) Using the Wald Criterion

From (53) and (54) it follows that F W
1 = 0, F W

9 = 1. The linear programming task,
defined in Sect. 5.1 with constraints in (59) is solved using linprog. It generates the
following results: F W

2 = 0.13, F W
3 = 0.31, F W

4 = 0.51, F W
5 = 0.65, F W

6 = 0.68,
F W

7 = 0.76, F W
8 = 0.85.

Therefore, F pR(.) is approximated by F pW (.) on the nodes (x1 = 30; F W
1 = 0),

(x2 = 31.5; F W
2 = 0.13), (x3 = 33; F W

3 = 0.31), (x4 = 34.5; F W
4 = 0.51),

(x5 = 36; F W
5 = 0.65), (x6 = 37.5; F W

6 = 0.68), (x7 = 39; F W
7 = 0.76),

(x8 = 40.5; F W
8 = 0.85), ( x9 = 42; F W

9 = 1). Then g p f r is approximated by
the 1-D pW-GL-I g pW = 〈F pW (x); x〉. Following (49), the expected utility of the
pW-GL-I is E pW

i (u|F pW
i ) = 0.2286, which is also the pW-expected utility of g p f r .

The graphics of F pW (x) and its density are depicted in Fig. 5.

6.2.3 Approximation of F pR(x) Using the Maximax Criterion

From (53) and (54) it follows that F¬W
1 = 0, F¬W

9 = 1. The linear programming
task, defined in Sect. 5.2 and (64) with constraints in (59), is solved using linprog.
It generates the following results: F¬W

2 = 0.07, F¬W
3 = 0.23, F¬W

4 = 0.41,
F¬W

5 = 0.51, F¬W
6 = 0.80, F¬W

7 = 0.88, F¬W
8 = 0.95.

Therefore, F pR(.) is approximated by F p¬W (.) on the nodes (x1 = 30; F¬W
1 =

0), (x2 = 31.5; F¬W
2 = 0.07), (x3 = 33; F¬W

3 = 0.23), (x4 = 34.5; F¬W
4 = 0.41),

(x5 = 36; F¬W
5 = 0.51), (x6 = 37.5; F¬W

6 = 0.80), (x7 = 39; F¬W
7 = 0.88),
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Fig. 5 Graphics of F pW (x), density (PDF) and utility function u(x) of the FRDM over the values
of X in the interval [30; 42]

(x8 = 40.5; F¬W
8 = 0.95), (x9 = 42; F¬W

9 = 1). Then g p f r is approximated by the
1-D p¬W -GL-I g p¬W = 〈F p¬W (x); x〉. Following (49), the expected utility of the
p¬W-GL-I is E p¬W

i (u|F p¬W
i ) = 0.3532, which is also the p¬W -expected utility

of g p f r . The graphics of F p¬W (x) and its density are depicted in Fig. 6.



280 N. D. Nikolova et al.

30 32 34 36 38 40 42
0

0.2

0.4

0.6

0.8

1

¬W-Expected Utility=0.353175

C
D

F(
x)

approximation
lower margin
upper margin

30 32 34 36 38 40 42
0

0.05

0.1

0.15

0.2

0.25

PD
F(

x )

30 32 34 36 38 40 42
0

0.2

0.4

0.6

0.8

U
til

ity

x

Fig. 6 Graphics of F p¬W (.), density (PDF) and utility function u(x) of the FRDM over the values
of X in the interval [30; 42]

6.2.4 Approximation of F pR(x) Using the Hurwiczα Criterion

Let α = 0.7. From (53) and (54) it follows that F H0.7
1 = 0, F H0.7

9 = 1. According

to (65), the required quantiles depend on F W
l and F¬W

l . Here F H0.7
2 = 0.7F W

2 +
(1 − 0.7)F¬W,(i)

2 = 0.7 × 0.13 + 0.3 × 0.07 = 0.112, and in the same fashion

F H0.7
3 = 0.286, F H0.7

4 = 0.48, F H0.7
5 = 0.608, F H0.7

6 = 0.716, F H0.7
7 = 0.796,

F H0.7
8 = 0.88.
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Therefore, F pR(.) is approximated by F pH0.7(.) on the nodes (x1 = 30;
F H0.7

1 = 0), (x2 = 31.5; F H0.7
2 = 0.112), (x3 = 33; F H0.7

3 = 0.286), (x4 = 34.5;

F H0.7
4 = 0.48), (x5 = 36; F H0.7

5 = 0.608), (x6 = 37.5; F H0.7
6 = 0.716), (x7 = 39;

F H0.7
7 = 0.796), (x8 = 40.5; F H0.7

8 = 0.88), (x9 = 42; F H0.7
9 = 1). Then g p f r

is approximated by the 1-D pH0.7-GL-I g pH0.7 = 〈F pH0.7(x); x〉. Following (49),
the expected utility of the pH0.7-GL-I is E pH0.7

i (u|F pR
i ) = 0.266, which is also the

pH0.7-expected utility of g p f r . The graphics of F pH0.7(.) and its density are depicted
in Fig. 7.

6.2.5 Approximation of F pR(x) Using the Laplace Criterion

From (53) and (54) it follows that F L
1 = 0, F L

9 = 1. According to (67) the required
quantile indices are: F L

2 = Fd
2 + (Fu

2 − Fd
2 )

x2−x1
x9−x1

= 0.07 + (0.13 − 0.07) ×
[(31.5−30)/(42−0)] = 0.0775, and in the same fashion F L

3 = 0.25, F L
4 = 0.4475,

F L
5 = 0.58, F L

6 = 0.755, F L
7 = 0.85, F L

8 = 0.9375.
Therefore F pR(.) is approximated by F pL(.) on the nodes (x1 = 30; F L

1 = 0),
(x2 = 31.5; F L

2 = 0.0775), (x3 = 33; F L
3 = 0.25), (x4 = 34.5; F L

4 = 0.4475),
(x5 = 36; F L

5 = 0.58), (x6 = 37.5; F L
6 = 0.755), (x7 = 39; F L

7 = 0.85),
(x8 = 40.5; F L

8 = 0.9375), (x9 = 42; F L
9 = 1). Then g p f r is approximated by

the 1-D pL-GL-I g pL = 〈F pL(x); x〉. Following (49), the expected utility of the
pL-GL-I is E pL

i (u|F pR
i ) = 0.3126, which is also the pL-expected utility of g p f r .

The graphics of F pL(x) and its density are depicted in Fig. 8.

7 Conclusions

This chapter discussed the influence of fuzzy-rationality on the calculation of the
expected utility integral of fuzzy-rational GL-I. It stemed from the interval form of
the nodes for interpolation/approximation of the ribbon CDF. The 1-D GL-I envis-
aged probability distributions of the prize. Due to the use of ribbon functions, those
lotteries transformed into fuzzy-rational ones of either x-fuzzy-rational or p-fuzzy-
rational type. A two-step ranking procedure was formalized in both cases. It envisaged
approximation of the ribbon functions by classical, partially linear ones in order to
apply expected utility.

The two-step scheme was further extended into tasks, related to the applica-
tion of the criteria Q under strict uncertainty to transform the interval nodes of the
ribbon functions into point estimates. This process aimed at complying with the
pessimism-optimism rationale behind the specific Q criterion, namely Wald, max-
imax, Hurwiczα , and Laplace criteria. Several algorithms were elaborated for that
purpose. The numerical example further demonstrated the application of those algo-
rithms in an economic setup. It showed the different values the expected utility of a
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Fig. 7 Graphics of F pH0.7 (.), density (PDF) and utility function u(x) of the FRDM over the values
of Xin the interval [30; 42]

given 1-D GL-I might get depending on the pessimism-optimism philosophy of the
criteria under strict uncertainty. Generating a final decision in the example was not
performed, as there was only a single lottery to analyze. In a larger study, however,
the usage of a specific Q-expected utility would lead to different ranking of lotteries.
All calculation and visualization procedures in the chapter were performed with the
help of original software written in MATLAB R2011b, which is available free of
charge upon request from the authors.
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Fig. 8 Graphics of F pL (x), density (PDF) and utility function u(x) of the FRDM over the values
of X in the interval [30; 42]

Appendix 1: Decision Criteria Under Strict Uncertainty

A lottery is a generic model of an uncertain decision alternative. Let’s assume that
the DM has to rank n uncertain alternatives according to preference, which can
result in r different holistic consequences x j called prizes, indexed according to the
preferences of the DM, x1 being the most preferred, and xr being the most unwanted
one. The consequences of the i th alternative will be x j if the event θi, j occurs, where
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θi,1, θi,2, …, θi,r , i = 1, 2, . . ., n, called states, form a full set of disjoint events. An
ordinary lottery may be denoted as (A1) with the conditions in (A2):

li = 〈θi,1, x1; θi,2, x2; . . .; θi,r , xr 〉, (A1)

x1 � x2 � . . . � xr (A2)

θi, j �l ∅,

θi,1 ∪ θi,2 ∪ . . . ∪ θi,r = Θ,
θi, j ∩ θi,k = ∅ for j �= k.

Here, ∅ denotes the null event,Θ denotes the certain event, �l denotes the binary
relation “at least as likely as” defined over events, and � denotes the binary relation
“at least as preferred as”, defined over prizes or lotteries.

Assume the DM has constructed a utility function u(.) over the consequences x j ,
such that it measures her relative preferences in the sense [36]:

u(x j ) ≥ u(xk) iff x j � xk . (A3)

Unfortunately, the elicitation of utilities from real DMs results in uncertainty inter-
vals, which is another demonstration of fuzzy rationality. For reasons of simplicity,
it is assumed here that the values of the utility function are point estimates of some
kind of their uncertainty intervals. It is also assumed that those correctly reflect the
preferences of the DM.

If the only thing the DM knows about the uncertainty in the problem is which
states are possible and which are not, then the decision is said to be under strict
uncertainty. Let b(.) be a discrete Boolean function defined over θi, j and with range
{‘t’ , ‘f’}, where ‘t’ stands for ‘true’ and is assigned when the state is possible,
whereas ‘f’ stands for ‘false’ and is assigned when the state is impossible:

b(θi, j ) =
{ ′t ′, for θi, j l ∅
′ f ′, for θi, j ∼l ∅

. (A4)

Here ∼l and l denote respectively the binary relations “equally likely to” and
“more likely than” defined over events. In the strict uncertainty case, for each state
θi, j (for i = 1, 2, . . ., n and j = 1, 2, . . ., r) the DM can define the value b(θi, j )

subject to the condition:

b(θi,1) ∨ b(θi,2) ∨ . . . ∨ b(θi,r ) = ′t ′. (A5)

In (A5),∨ is the Boolean operator “and”. The lottery (A1) with the known function
b(.) can be better represented as

li = 〈〈θi,1, b(θi,1)〉, x1; 〈θi,2, b(θi,2)〉, x2; . . .; 〈θi,r , b(θi,r )〉, xr 〉. (A6)
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The lottery (A6) subject to (A2) and (A5) can be called a strictly uncertain lottery.
There are criteria to rank strictly uncertain lotteries. Four of the most widespread are
the Savage, Laplace, Wald and Hurwiczα criteria.

Savage’s minimax criterion [24] constructs the so-called regret table, and recom-
mends the alternative which minimizes the maximal regret. Its idea will not be used
in this chapter.

Laplace’s criterion [37] is based on the principle of insufficient reasoning, which
says that if no information is available regarding a set of random events, then they
might be assumed equally probable. In this way the probabilities are known and the
resulting problem under risk must be solved by the expected utility criterion, which
here degenerates to the mean utility of all possible states:

ci =

r∑

j = 1
b(θi, j ) = ′t ′

u(x j )

r∑

j = 1
b(θi, j ) = ′t ′

1
. (A7)

Then the recommended choice is lk for which the mean utility is maximal.
Wald’s criterion of maximin return suggests ranking actions in descending order

of their worst outcomes [26]. The security level denotes the worst possible outcome
from the ith alternative

si =
r

min
j = 1

b(θi, j ) = ′t ′
{u(x j )}. (A8)

Then the recommended choice is lk for which the security level is maximal. This
criterion is suitable for extreme pessimists.

If the DM is an extreme optimist, she can use the maximax criterion, which
suggests ranking actions in descending order of their best outcomes. The optimism
level oi denotes the best possible outcome from the ith alternative

oi = r
max
j = 1

b(θi, j ) = ′t ′
{u(x j )}. (A9)

Then the recommended choice is lk for which the optimism level is maximal.
Despite the symmetry between (A8) and (A9), the maximax criterion (A9) is not
used in practice, whereas Wald’s criterion is often preferred as a decision tool.

Hurwicz argues that people usually do not express such extremes of pessimism
or optimism as the previous criteria suggested [25]. He introduced the optimism-
pessimism index α ∈ [0; 1] to weight the security level and the optimism index for
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each alternative in the form

hαi = αsi + (1− α)oi . (A10)

Hurwicz suggested to rank alternatives in descending order of hαi , which can be
called the Hurwiczα strict uncertainty criterion. Then the recommended choice is lk
for which hαi is maximal.

The optimism-pessimism indexα is a measure of people’s pessimism. It is specific
to each DM and applies to all decision situations. In order to elicit α, the DM can be
offered the choice between: a) lottery l1, giving consequences with utility 1, v, and
0 respectively at states θ1,1, θ1,2, and θ1,3, where b(θ1,1) = ′t ′, b(θ1,2) = ′ f ′ and
b(θ1,3) = ′t ′; b) lottery l2 giving consequences with utility 1, v, and 0 respectively at
states θ2,1, θ2,2, and θ2,3, where b(θ1,1) = ′ f ′, b(θ1,2) = ′t ′, and b(θ1,3) = ′ f ′. The
value of v varies until the DM becomes indifferent between the lotteries, at which
point α = 1− v.

The rationality of each criterion can be assessed against a set of reasonable prop-
erties of the decisions generated by that criterion [36]. However, analysis shows that
any decision criterion under strict uncertainty does not (and will not) possess this set
of properties of choice and thus is (and will be) irrational. One possible explanation
is that problems, where the DM knows nothing about the uncertainty, do not actually
exist.
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Human-Centric Cognitive Decision Support
System for Ill-Structured Problems
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Abstract The solutions to ill-structured decision problems greatly rely upon the
intuition and cognitive abilities of a decision maker because of the vague nature of
such problems. To provide decision support for these problems, a decision support
system (DSS) must be able to support a user’s cognitive abilities, as well as facilitate
seamless communication of knowledge and cognition between itself and the user.
This study develops a cognitive decision support system (CDSS) based on human-
centric semantic de-biased associations (SDA) model to improve ill-structured deci-
sion support. The SDA model improves ill-structured decision support by refining
a user’s cognition through reducing or eliminating bias and providing the user with
validated domain knowledge. The use of semantics in the SDA model facilitates the
natural representation of the user’s cognition, thus making the transfer of knowl-
edge/cognition between the user and system a natural and effortless process. The
potential of semantically defined cognition for effective ill-structured decision sup-
port is discussed from a human-centric perspective. The effectiveness of the approach
is demonstrated with a case study in the domain of sales.
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1 Introduction

Over the years, decision support systems (DSS) have proven to be very successful in
providing decision support for well-structured decision problems. The major chal-
lenge for DSS, however, has been to provide adequate support for ill-structured1

decision problems. This shortcoming of DSS arises because the solution to an ill-
structured decision problem relies mainly upon the cognitive abilities of a decision
maker rather than standard optimized procedures. The current DSS do not provide
support for cognition because of the inherent limitations of current computer systems.

Information storage and processing in a computer system differs significantly from
the knowledge and cognitive abilities of the human mind. Likewise, facilities of
the human mind such as knowledge, perception, intuition and natural language are
unfamiliar to the computer system’s processing system which is based purely on
formal logic. A computer system’s skills, such as storing huge amounts of information
and fast and accurate processing of data, are nearly impossible for the human mind to
achieve. Although this difference between humans and computers is complementary
in many applications, such as simulation software, multimedia content management,
and image processing, it becomes a barrier in decision making, especially for ill-
structured problems.

During the course of decision making, a decision maker evaluates the situation with
the help of his knowledge and cognitive maps (also called mental models2) [35,
52]. By contrast, the information provided by a DSS is in the form of quantitative
results, such as reports, forms, documents and graphs. Therefore, a decision maker
is required to constantly internalize3 the DSS output into mental models to acquire a
better perspective on the situation; and to convert his mental models into appropriate
information extracting queries, to extract the required information from DSS. During
this process of conversion, a great deal of knowledge is lost which could otherwise
prove fundamental to reach optimal decision.

To prevent this loss of knowledge, it is essential to enable DSS to: (a) extract knowl-
edge from the decision maker in a natural way, such as through natural language;
(b) store it in a format similar to that of the knowledge in human mind, such as
mental models; (c) output the required knowledge in a format instinctive to human
perception, such as semantic diagrams of decision alternatives.

This chapter discusses how integrating human-centric techniques in a DSS can pre-
vent the loss of knowledge. The human-centric techniques can enable the DSS to
seamlessly transfer knowledge and cognition to and from a decision maker and store
it without conversion, to provide improved support for ill-structured decision prob-
lems. A semantic de-biased associations (SDA) model is introduced here, which
facilitates the transfer of knowledge, to and from the user (decision maker), in a

1 The description of ill-structured decision problems is given in Sect. 2.
2 For the scope of this chapter, we shall refer to them as mental models.
3 Please refer to Nonaka’s [36] knowledge spiral model for the definition of internalization.
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human-centric format. The SDA model allows user to input knowledge in natural
language, eliminating the need to convert knowledge in structured data format; thus
preventing the loss of knowledge. The knowledge in SDA model is stored in seman-
tic representation of mental models, which keeps the original format of the knowl-
edge intact. The output is provided in graphical representation of mental models.
The graphical representation assists user to intuitively understand the situation in
an efficient manner, saving valuable decision making time. The SDA model and its
architecture are described in Sect. 4.

The rest of the chapter is organized as follows. Section 2 describes the types of
decision problems, followed by a discussion on decision support systems. Section 3
discusses the role of cognition and human-centric approaches in ill-structured deci-
sion support, as well as proposes the conceptual model of a human-centric cognitive
DSS. Section 4 describes the semantic de-biased associations (SDA) model, its struc-
ture, and its effectiveness in providing support for ill-structured decision problems.
Section 5 presents a case study to demonstrate the performance of the SDA model,
followed by conclusions and future work.

2 Decision Problems and Decision Support Systems

The success of a DSS relies greatly upon the type of decision problem it is handling.
Decision problems can be classified into two categories according to the character-
istics they possess. This section describes the types of decision problems. A brief
overview of DSS and Intelligent DSS is then presented, followed by an illustration
of the conceptual model of human-centric cognitive DSS.

2.1 Types of Decision Problems

A decision problem can be divided into two types: well-structured and
ill-structured [47].

2.1.1 Well-Structured Decision Problems

Well-structured decision problems are those problems for which the existing state,
goal state and constraint parameters are well defined [16]. These problems have a
single correct solution [46]. Since the initial and final states of such problems are
known, procedures, rules and policies can be devised to solve them. A well-structured
problem will have the same result every time it is solved. Problems such as finding
the value of x in a quadratic equation, the procedure of fixing an overheating car
engine, or calculating the distance of a star from our solar system, are examples of
well-structured problems.
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2.1.2 Ill-Structured Decision Problems

Ill-structured problems, on the other hand, are those in which the existing state is
vague, and the goal state is unclear and non-quantitative; thus, a course of action can-
not be devised to reach the goal state [47]. Ill-structured problems do not have a single
correct solution; that is, there can be more than one appropriate solution depending
upon the current circumstances of the system. According to Simon [45], the category
of ill-structured problems is a residual category of well-structured problems; that is,
all the problems which are not well-structured can be called ill-structured problems.
Every ill-structured problem is unique in terms of existing situation, goal, objective,
desired outcome, and the process necessary to reach an optimal solution. Examples
of ill-structured problems are: devising a strategy to increase profit for a product,
creating efficient traffic infrastructure for a population of two million, or selecting a
suitable candidate for an executive position.

2.2 Decision Support Systems

The term decision making refers to the process of making the choice for further course
of action based upon certain criteria, circumstances and available information. The
computerized systems that support decision makers in this process are referred to
as decision support systems (DSS). A DSS is “an interactive computer-based system
or subsystem intended to help decision makers use communications technologies,
data, documents, knowledge and/or models to identify and solve problems, complete
decision process tasks, and make decisions” [39].

Since its conception in 1965, the DSS field has evolved in several directions based on
the technologies introduced over time. These include the model-driven4 or model-
oriented DSS [2, 13, 44], data-driven DSS5 [40], communication-driven DSS6 [7],
Group Decision Support Systems [38], document-driven DSS7 [48] and web-based
DSS.8

4 A model-driven DSS emphasizes access to and manipulation of financial, optimization and/or
simulation models.
5 A data-driven DSS emphasizes access to and manipulation of a time-series of internal company
data and sometimes external and real-time data.
6 Communication-driven DSS use network and communication technologies to facilitate decision-
relevant collaboration and communication. Tools used include groupware, video conferencing, and
computer-based bulletin boards.
7 A document-driven DSS uses computer storage and processing technologies to provide document
retrieval and analysis. Documents may include scanned documents, hypertext documents, images,
sounds and video.
8 A web-based DSS is simply a system which is implemented using web-based technologies.
A web-based DSS can be any type of DSS, such as a communication-driven, model-driven or
data-driven system.
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Apart from these categories, a classification which has proven to be the most promis-
ing in supporting decision making for ill-structured problems, is intelligent DSS
(IDSS). These systems have also been called suggestion DSS [2]. The term was
coined by Clyde Holsapple in 1977. The idea of a DSS intelligently synthesizing
decision alternatives and supporting a decision maker’s cognitive abilities appealed
to many researchers; thus the work on merging AI techniques with DSS to produce
IDSS started. This field has not matured as rapidly as was anticipated; however, it is
proving itself to be very promising for ill-structured decision support.

2.3 Intelligent Decision Support for Ill-Structured Problems

A DSS that is designed to behave intelligently through incorporating an artificial
intelligent technique is called an intelligent decision support system (IDSS). The
early IDSS were rule-based decision support systems, also known as expert systems
[12]. However, the IDSS evolved in different directions over time, based on advances
in the field of artificial intelligence (AI). AI techniques, such as neural networks, fuzzy
logic, andgenetic algorithms, were incorporated into the DSS to achieve intelligent
support for ill-structured decision problems [12].

In 1991, Nonaka wrote a paper with the title “The Knowledge-creating Company”, in
which he identified knowledge as the most valued asset, and the key factor, for busi-
ness organisations to gain competitive advantage. Knowledge can comprise skills,
ideas, observations, experiences and intuition [34, 36]. This research paper was
arguably the starting point for IDSS research to evolve in the revolutionary direction
of knowledge warehouse-based DSS (KWDSS). Knowledge warehouse (KW) tech-
nology is still in its infancy, and there is as yet no standard storage structure proposed
for it.

Following the studies conducted in psychology and organisational behaviour, which
recognized the significance of the cognitive abilities of decision makers in solving
complex decision problems [14], DSS researchers employed techniques to incor-
porate cognition into DSS [8, 43, 53]. These systems have been named cognitive
decision support systems (CDSS). The CDSS use mental models as the means to
store a decision maker’s cognition [35].

Storing cognition in the system is a step towards achieving the goal of preventing
the loss of knowledge. However, merely storing cognition is not sufficient to develop
effective DSS for ill-structured problems. It is essential to employ a human-centric
interface to facilitate the seamless transfer of knowledge between the decision maker
and the cognition storage in the DSS. The techniques, such as natural language
processing, semantics, and graphical representation of decision alternatives, can be
used to accomplish the task knowledge transfer.

This chapter proposes a conceptual model of the semantics-driven cognitive decision
support system (SCDSS), which incorporates human-centric techniques to reduce
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biases and support decision maker’s cognition. (Fig. 2). The overview of SCDSS
conceptual model will be presented in Sect. 3.3. But prior to that, following is an
account of the role of cognition in ill-structured decision support, and the challenges
of employing it effectively in DSS, followed by a discussion on the role of the
human-centric approach in ill-structured decision support.

3 Cognition and Human-Centric Computing in Ill-Structured
Decision Support

As discussed in the previous section, cognition based DSS can provide better support
for a decision maker’s thinking process and knowledge creation than conventional
DSS. We discuss below how cognition can be incorporated into a DSS, following
which the role that human-centric computing (HC2) techniques can play in providing
an appropriate interface for the transfer of human-computer cognition is discussed.

3.1 Cognitive Mapping in Ill-Structured Decision Support

The interpretation of the objective world in the human mind is highly subjective.
It can be constructed socially, but a large part of the mental representation of the
world is personally constructed. This mental representation, which is constructed
upon personal values and experiences, is stored in the human mind in the form of
cognitive maps or mental models.

The theory of mental models was proposed by Kenneth Craik [9], which states that
the mind develops models of real world, and utilizes them to deal with the present and
the future situations in a better way. Later, based on this theory, Johnson-Laird [23]
emphasized that to make inferences, mind relies upon intuition and mental models
rather than formal logic (see [22] for a comprehensive history of mental models).
Especially in complex situations with imprecise information, mental models become
the key factor to make sense out of the insufficient information [52]. They assist us
in transforming the tacit knowledge into explicit knowledge, so as to communicate it
to others. They have proved to be the fundamental analysis tool, and critical success
factor, in complex and ill-structured decision situations [29], p. 182; [33].

Mental model representation has been used extensively in DSS to deal with ill-
structured decision problems [8, 35]. Mental models assist decision makers to under-
stand and formulate ill-structured decision problems, and to select the relevant parts
of the problem space [53]. The computerized mental model representation allows
the system to collect and store decision makers’ cognition in natural format, which
prevents loss of knowledge. Being able to retain the cognition of decision makers
in the system implies that while decision makers may leave the organisation, their
knowledge and cognition remains within the organisation for future use.
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There is nevertheless a downside to the use of mental models. During the construction
of mental models through an experience, biases are introduced into the mental models
based on the prevailing conditions. Biases are inclinations towards or against certain
ideas or entities which often lead to poor decision making (see Chen and Lee [8, 10]
and Korte [26] for a detailed account of biases and their effects on decision results).
However, the decision makers are bound to use their biased mental models because of
the limited or ambiguous knowledge available in complex and ill-structured decision
situations. Cognitive biases and their effects on ill-structured decision support are
described below.

Cognitive Biases

The human mind forms mental models during an experience and, depending on the
circumstances surrounding that experience, introduces biases in them [18]. While
mental models are the fundamental tool for solving ill-structured decision problems,
the inherent biases become a barrier in achieving optimal solutions [5, 21, 27, 30].
Following is a brief discussion on the impact of biases in ill-structured decision
making.

Cognitive biases refer to the inclinations towards or against certain ideas or entities
that are generated within mental models during everyday experiences [18, 25]. Once
formed, bias can consistently influence our judgement, and our future perceptions
of the world and happenings in it [3, 19]. Bias is considered to be “a negative
consequence of adopting heuristics” as it “entices decision makers away from making
optimal decisions” [11], p. 760. For a comprehensive taxonomical classification of
decision biases, refer to Arnott [4]. The presence of cognitive bias may result in
enormous damage, especially in business and medical domains; thus it is essential
to mitigate all such bias [6, 15, 26, 30].

Croskerry [10] has outlined thirty biases in the clinical domain. Das and Teng [11]
have grouped the biases involved in strategic decision making into four categories,
which are:

i. Prior hypotheses and focusing on limited targets: The decision makers choose
to rely on their previous beliefs, or rely heavily on one piece of information, and
may ignore information that indicates otherwise. The cognitive biases anchoring,
attentional bias, and focusing effect come under this category.

ii. Exposure to limited alternatives: Problems are broken down into smaller con-
structs and fewer alternatives are considered, relying more upon intuition. The
cognitive bias availability comes under this category.

iii. Insensitivity to outcome probabilities: Subjective judgement is used rather than
rational probability. The cognitive bias neglect of probability comes under this
category.

iv. Illusion of manageability: Over optimism, overestimation of the control level.
The cognitive bias illusion of control comes under this category.

Cognitive biases hinder the achievement of optimal decision solutions, which results
in enormous loss in such fields as business and clinical medicine [10, 26]. Thus, it
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is essential to devise techniques to reduce or eliminate bias, in order to reach better
solutions to decision problems [5, 11, 26, 31].

This chapter addresses four biases, which are: availability, framing, contextual and
group biases. Following is a brief description of these biases.

Availability Bias. Availability bias is the phenomenon of considering only those
alternatives that are easily recalled from memory [49]. To reduce this bias, a CDSS
must be able to assist a user in bringing maximum relevant knowledge from long-term
memory to working memory [7].

Framing Bias. Framing bias refers to the inclination created by the way a decision
situation is presented [50]. Framing bias can be reduced or eliminated by making a
decision maker draw, or study, causal maps regarding a decision situation [20], or
by providing them with adequate contextual information about a decision situation
[51].

Contextual Bias. Contextual bias is a false permanent impression about a deci-
sion alternative being successful, or otherwise depending on the environment it was
generated in. For example, a user may find presales services very useful for increas-
ing sales in the case of “e-reader”, and may develop a mental model based on this
experience as:

Pre-sales service --- increases ---> Sales

However, this mental model may not be applicable in an alternative situation, such
as for the sale of the product “books”. It is essential to have the historical contextual
information about this mental model stored with the model, so that a user can delineate
where it may or may not be applicable.

Group Bias. Group bias refers to the biases of a team or group with similar back-
grounds, jobs, experiences, training, values and goals [24, 41, 42]. Group biases
can be removed by allowing users from different backgrounds review one another’s
experiences (recommendations) [24].

3.2 Human-Centric Approach in Ill-Structured Decision Support

The concepts in the human mind about the real world are highly abstract. We humans
tend to associate these concepts with certain words or expressions which do not
describe the concepts in their entirety. Nevertheless, our mind interprets the abstract
concepts behind those words and expressions correctly. This ability to make sense
out of abstract or vague information essentially becomes the key to dealing with
complex and unclear situations, and to reaching suitable solutions to such problems
[48].
In contrast to the human ability to perceive, intuitively recognize, understand and
communicate, a computer system works on a pre-defined set of instructions, each of
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Fig. 1 Architecture of
human-centric system. Taken
from [37]
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which is designed to perform a certain task. Computer systems can only recognize
or understand the information for which they are programmed. There are obvious
inadequacies in computer systems when it comes to intelligence, and it may be a
long time before machines are enabled with human-like intelligence. Nevertheless,
they can be programmed to interface with humans in a more human-like, intuitive
and natural way, so that knowledge can be seamlessly transferred between humans
and computers. This is where HC2 comes in. The basic idea behind HC2 is to make
computer interfaces natural, intuitive and somewhat intelligent for humans. The
architecture of HC2 is given in Fig. 1.

Since this chapter focuses on incorporating cognition into DSS through mental model
representation, HC2 techniques that are suitable for creating seamless communica-
tion between human cognition and mental model representation will be discussed.
These techniques are natural language processing (NLP) and semantics. Following
is an overview of these techniques.

3.2.1 Natural Language Processing

The very basic form of communication among individuals is natural language, such
as English. A natural language is a rich set of linguistic constructs, such as the parts
of speech. Humans comprehend the meaning behind the language not only by these
constructs, that is, words, but also by their interrelationships and their placement in
the text [12]. A word may represent different contexts when used in different places
in a sentence or with different words. For instance, adding one word, “to”, to the
word “ran” in the following sentences signifies two different meanings:

(a) She ran to the hotel.
(b) She ran the hotel.

The inherent nature of computer instructions, on the other hand, is predefined. Each
command performs exactly the same task each time it is run. This nature of computer
systems has some drawbacks when it comes to communication between the user and
the computer.
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• Only a fraction of information or knowledge can be transferred to the system due
to inherent limitations in processing and understanding the information; hence the
loss of knowledge.

• The user must learn proper syntax before being able to communicate with the
system

• The user must convert their ideas, queries, or information from an intuitive format
to a system-defined format before they can be presented to the system. This fact
implies that the focus of the user will be more on the communication format, rather
than the actual task.

As discussed in Sect. 3.1, it is essential to prevent the loss of knowledge during the
communication between a decision maker and the system in order to provide better
support for ill-structured decision making. A NLP equipped user interface allows
the user to input their knowledge and cognition in the intuitive manner, as well as
query the system in natural language, without having to convert their thoughts into
computer system syntax. In this way, the decision maker will be able to focus more
on the problem at hand, rather than on the method of interaction with the system.
Following is a brief overview of NLP.

The goal of NLP is to investigate the factors behind the comprehension of complex
natural language constructs by humans, and explore the ways to implement them
into computer systems [12]. NLP addresses the issue of how to make machines
understand a word, sentence, paragraph, and eventually a document in their entirety.

To enable machines to understand natural language, it is first essential to recog-
nize the factors which assist humans to correctly comprehend the meaning behind a
word, sentence, paragraph or whole document. According to Feldman [12], humans
process language on seven levels of understanding to extract the context behind it:
phonological, morphological, lexical, syntactic, semantic, discourse and pragmatic.
Following is a brief description of these levels.

– Phonological level. This level refers to the pronunciation of words and is important
for speech recognition systems.

– Morphological level. This level deals with the morphemes. A morpheme is the
smallest meaningful unit of a language. Prefixes, suffixes and root words are exam-
ples of morpheme.

– Lexical level. This level deals with the dictionary meanings of words and their
analysis in terms of parts of speech.

– Syntactic level. Syntax deals with the meaning conveyed by the structure of a
sentence. This level helps to identify a word’s meaning and grammatical classi-
fication (part of speech) depending on its location in the sentence, even when its
actual meaning is unknown.

– Semantic level. This level refers to the meaning of the words themselves, within
the context of the sentence in which they appear. For example, the word “draw”
by itself may bring to mind “to draw a picture”. When it used in “Draw the drapes
please”, however, it signifies the entirely different concept of “opening/closing the
curtains”.



Human-Centric Cognitive Decision Support System for Ill-Structured Problems 299

– Discourse level. This level determines the structure and the role of a particular
part of the text in terms of the structure of the whole document. For example, if
a NLP tool knows the standard structure of a research paper, it may determine
the nature of a piece of text in the document, based on certain characteristics,
such as location; that is to say, it can sense whether a piece of text is the abstract,
introduction, results or conclusion of a research paper [12].

– Pragmatic level. This refers to the external or general knowledge (or common
sense), that we use to extract the meaning from a document or conversation.

Among these levels, semantics has grown to be a field in its own right in computational
research. Following is an overview of semantics.

3.2.2 Semantics

The study of semantics deals with the meaning or context of words in a language. The
subject of semantics stems from philosophy and has been under scrutiny for thousands
of years. Ancient philosophers such as Plato and Aristotle discussed the topic, as well
as labelling the relationship between a word and its meaning. Plato described this
relationship as naturalist, stating that the meaning of a word is derived from the sound
it makes. Conversely, Aristotle called this relationship conventionalist, opining that
the relationship between the meaning and sound of a word is absolutely arbitrary.

There are many facets of semantics and its classification, but for the scope of
this chapter, we shall describe semantics in terms of linguistic semantics and non-
linguistic semantics. Linguistic semantics is the study of meaning behind spoken or
written language. Non-linguistic semantics, on the other hand, is the study of mean-
ing behind non-verbal expressions and body language. Similarly, in computer sys-
tems, semantics have been applied at both linguistic and non-linguistic levels. Before
examining linguistic semantics, we will briefly describe non-linguistic semantics in
computer systems.

(a) Non-Linguistic Semantics

As stated above, non-linguistic semantics deals with the meaning and intention
behind non-verbal communication such as gestures and body language. The seman-
tics behind non-linguistic communication, such as physical and emotional gestures,
when interpreted correctly, can be of high significance in understanding the inten-
tions of a speaker. It can provide the information that linguistic communication may
be unable to express. The virtual doctor system (VDS) by [14] is an example of
such system. VDS extracts the physical and emotional information from a patient
by the use of cameras and other sensory equipment. The system has two ontologies
that store the semantics of the various physical and mental gestures of the patient,
which, along with linguistic input by the patient, assist in diagnosing the patient. This
system shows that non-linguistic semantics increases a machine’s understanding of
a human’s intentions during communication.
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(b) Linguistic Semantics

The linguistic semantics in computers are applied in three categories: logical lan-
guage semantics, programming language semantics and natural language semantics.
Logical language semantics represents the meaning (truth values) of certain proposi-
tions in terms of set-theoretic models. Programming language semantics defines the
meaning of programming language commands, that is, which command will perform
what task. Natural language semantics deals with the meaning (context or intention
of the speaker) behind the natural language constructs.

As discussed in Sect. 2, storing cognition is a step towards improving ill-structured
decision support. To store cognition in the system, mental model representation
is used. The NLP interface facilitates the transfer of knowledge from the decision
maker’s mind to the system and stores it in the mental model representation. An
improvement over mental model representation is to integrate semantics, so that the
context and meaning behind the cognition can be stored along with the cognition
itself.

From the discussion in previous sections, it can be concluded that to support ill-
structured decision problems, four aspects need to be considered:

(a) Enable the DSS to provide cognitive support to the decision maker by storing
cognition in the DSS in an intuitive format;

(b) Prevent the loss of knowledge during communication between the decision maker
and the system by providing a human-centric interface to facilitate the seamless
transfer of knowledge;

(c) Mitigate the bias from the cognition stored in the DSS.
(d) Incorporate semantics in the mental model representation to transfer the context

of the knowledge along with the knowledge itself.

In the next section, we will discuss the semantic de-biased associations (SDA) model,
which incorporates the human-centric techniques of NLP and semantics, to enable
us to lay a foundation for the transfer and storage of cognition in DSS.

3.3 The Conceptual Model of Semantics-Driven Cognitive
Decision Support System (SCDSS)

We have proposed a human-centric CDSS, namely semantics-driven cognitive deci-
sion support system (SCDSS). The conceptual model of SCDSS is illustrated in Fig. 2.
The system is designed to support a decision maker’s cognition during decision mak-
ing process by the following process. A decision maker develops ideas, perceptions,
skills and intuition over time through experiences, which generate mental models.
SCDSS proposes to apply NLP techniques to retrieve these mental models in an intu-
itive manner, and pass then to the de-biasing mechanism. The de-biasing techniques
allow to eliminate any biases that have been introduced by the personal preferences
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Fig. 2 The conceptual model of semantics-driven cognitive decision support system (SCDSS)

or inclinations of the decision maker. The de-biased mental models and their corre-
sponding knowledge can then be stored in the system. Later at the time of decision
making, the required de-biased mental models can be retrieved from the storage
and presented to the decision maker, thus supporting them to make better informed
decisions.

The focus of this paper is, however, a component of the SCDSS, which is semantic
de-biased associations (SDA) model. The SDA model [32] is proposes an improve-
ment over the conventional mental model representation technique, by incorporating
semantics in it. This approach has certain advantages in terms of de-biasing and
accurate representation of human cognition in a human-centric format. The follow-
ing section describes the SDA model and its benefits in detail.

4 Semantic De-Biased Association Model

The SDA model is designed to store cognition in human-like format and to provide
an interface which allows a decision maker to communicate with the system in an
intuitive way. This enables the decision maker to concentrate on the decision problem,
rather than on the format of the communication.

The SDA model allows the storage of cognition in a natural format by incorporating
semantics in the conventional mental model representation (Fig. 4). Following is
an overview of the SDA model architecture, illustrating the semantic mental model
representation.

4.1 The Architecture of the SDA Model

The architecture comprises three main components: cognitive knowledge base
(CKB), the knowledge management layer, and the user interface (Fig. 3). The core
component of the system is CKB, which stores cognition through concepts, associ-
ations, and cases, described as follows:



302 T. Memon et al.

Fig. 3 Architecture of the SDA model [32]

– Concepts are the notions within a problem domain (such as loss of sales), in the
form of a single word, such as “sales”, or a collection of words, such as “bad
delivery”. Each concept is assigned a URI for unique identification.

– Associations are semantic triples, which are made up of two concepts and a rela-
tionship between them. Associations show the type, effect and purpose of the
relationship between the two attached concepts. An association provides the foun-
dation for attaching de-biasing information, and each association has many cases
or none attached to it (cases are described below). An association is assigned a
success rate, which is an average of its success for all the attached cases.

– Cases are the past decision problems attached to associations. These cases show
past decision situations, and the role of the association in their solution. Every
case has a weight for each association used in solving the case. The weight shows
the degree of importance of the corresponding association in solving the case.

The CKB is managed by the SDA knowledge management layer, which consists of
four algorithms. The SDA knowledge retrieval algorithm is designed to fetch knowl-
edge from the CKB according to the user query. The algorithm uses the synonym list
to change the verbs used in the user query in the association names in the CKB. The
SDA knowledge transfer algorithm helps users to transfer their personal experiences
and mental models to the CKB. These experiences are transferred to the un-validated
knowledge pool, until they are verified by other users. Once the knowledge is ver-
ified by the verification process defined by the knowledge transfer algorithm, it is
forwarded to the CKB. The SDA knowledge revision algorithm is used to update,
delete or refine the old or out-dated knowledge in the CKB. The SDA knowledge
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backup algorithm backs up the knowledge, which has been proven to be useful for
the problem domain, to the CKB backup.

At the time of decision making, the retrieval of particular mental models is carried
out by identifying concepts and associations in the user’s query, and by fetching
related mental models from the CKB, which makes the process fast and reliable,
retrieving only relevant and precise knowledge.
System users have unique login identities, with different privileges. Users are divided
into three categories: domain experts, managers and employees.

– Domain experts are specialists in the field who have more than 10 years’ successful
decision making experience;

– Managers are executives who are qualified for the decision maker’s job but who
do not have as much experience as domain experts;

– Employees are subordinates of the managers, who have vast experience of the
organisation and its market. Employees are authorized by managers to use the
system.

4.2 Human-Centric Approach in the SDA Model

Following is an overview of the human-centric approaches used in the SDA model
and their advantages in preventing the loss of knowledge and improvement of ill-
structured decision support.

4.2.1 Human-Centric Cognition Storage Using Semantics

Figure 4 illustrates how a semantic mental model relationship is defined in the
SDA model, compared to the conventional mental model relationship. A conven-
tional causal relationship is an undefined directed link from one concept to another
(Fig. 4a); whereas in the SDA model, a relationship is semantically defined and
labelled (Fig. 4b). This semantic relationship, along with the two attached concepts,

(a) 

(b)

Delivery Sales

Bad Delivery Salesreduces

Fig. 4 a Relationship in conventional mental model representation; b Relationship (association)
in proposed SDA mental model representation
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forms a semantic triple, such as “bad delivery reduces sales”. The purpose of applying
semantics is twofold: (a) it allows the storage of cognition in a natural format, which
matches the mental model representation in the human mind; (b) it allows storage
of the context behind the cognition, preventing the loss of knowledge. The semantics
provides a basis for the assignation of distinctive contextual information (cases) and
performance measuring parameters (weight and success rate) to the stored mental
models (associations). These elements, i.e. cases, weights and success rate, provide
objective information about a particular association to the decision maker, thereby
assisting to reduce bias. Moreover, labelling a relationship makes it possible to per-
form an exhaustive search on the knowledge (mental models) in a fast and reliable
manner. To the best of our knowledge, this is the first effort to represent mental mod-
els semantically, in the form of triples. The next section describes the human-centric
interface in detail.

4.2.2 Seamless Transfer of Cognition Through NLP

As can be seen from the architecture of the SDA model, the cognition of a decision
maker can be stored in a natural manner with the help of semantic mental model
representation. The SDA model provides a human-centric interface for communi-
cation between the system storage and the decision maker, which allows the input
of knowledge in natural language format. Figure 5 gives an example that illustrates
the effortless process of transferring cognition from a user’s mind to the CKB.

Figure 5 illustrates the process of the seamless transfer of cognition provided by
the SDA model. A salesman discovers that when he provides pre-sales services to
a customer, the customer is more likely to buy the product. This experience of the
salesman forms the mental model in his mind, which he can describe in natural
language as “pre-sales service increases sales”. The human-centric user interface of
the SDA model allows this salesman to transfer this mental model as it is into the
system. Thus, the salesman enters “pre-sales service increases sales”. The system

Describes in 
NL

Pre-sales service 
increased Sales

Add 
semantics

Pre-sales service 
increases Sales

Attach 
Cases

Store in 
MM form

CKB

Fig. 5 Seamless transfer of cognition
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asks the salesman for any previous experience which has led him to conclude that
“pre-sales service increases sales”. The salesman can choose whether he wants to give
this information to the system. The system stores this mental model as semantically-
defined cognition.

4.2.3 Intuitive Graphical Representation as Output

It is said that a picture is worth a thousand words. When it comes to complex situa-
tions, a pictorial representation makes more sense to the human mind, more quickly,
than reading lengthy reports defining the situation. Studies in decision making show
that not only do the pictorial representations of a situation make a user quickly under-
stand the situation, but also that they assist in avoiding bias [20]. Accordingly, the
SDA model provides the results of a decision query in the form of a graphical rep-
resentation of the stored cognition (Fig. 8). The graphical output assists the user to
observe a situation clearly without missing any aspects of that situation, which may
not be the case with text-only output. The graphics help the user locate the root of
the problem quickly and easily.

4.3 Bias Mitigation in SDA

The SDA model mitigates four biases: availability, framing, and contextual, and
group biases. The process of mitigating these biases is given below.

4.3.1 Availability Bias

The SDA model allows concepts to have multiple associations among themselves
for multiple problem domains, such as loss-of-sales and new-product-launch. Users
(domain experts, managers and employees) can record their experiences about differ-
ent problem domains in the form of concepts and associations. These experiences are
merged according to the concepts, with the help of concept identifiers (URIs), forming
a comprehensive mental model about the problem domain. Note that mental models
are not separated according to the problem domain; rather, they are connected to one
another according to user experiences, thus creating a larger, all-inclusive mental
model of the application domain. Since there is a wide range of experiences stored
in the CKB the decision maker is presented with an extensive choice of possible
decision alternatives. This helps the decision maker to recall previous experiences
regarding all possible decision alternatives presented by the system, which would not
have been remembered otherwise due to the availability bias. As a result, the avail-
ability bias is reduced, and in some case eliminated, with the help of the SDA-based
CDSS.
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4.3.2 Framing Bias

Cases are added to an association to add contextual information related to the decision
situations in which the association (knowledge) was used to reach the solution.
Cases present different perspectives on the particular association, such as where and
whether the association has been successful in the past, and in which circumstances
it has failed to assist in reaching an optimal solution. By providing the user with
all the perspectives, positive and negative, on the association, the proposed system
helps reduce or eliminate framing bias.

4.3.3 Contextual Bias

The importance or usefulness of an association for a particular case is measured by
a weight assigned to the case regarding that association. A higher weight indicates
the importance of the association in the attached case (decision situation), or its
success, whereas, a lower weight shows that the association was not particularly
useful in solving a certain decision problem. Having a weight assigned to the case
helps to identify the decision situations in which the association was most or least
useful, which in turn assists in determining where the association can be applied
successfully in the future to obtain optimal results. This helps to reduce or eliminate
contextual bias. Different categories of users assist with the elimination of group
biases, which tend to be similar among a homogeneous group of people due to
their similar backgrounds, jobs, experiences, training, values and goals [41, 42]. By
allowing users from different backgrounds to participate in the knowledge sharing
and validation, such biases can be reduced to a great extent.

4.3.4 Group Bias

Group bias is the collective bias of a team or group with similar backgrounds, jobs,
experiences, skill sets and goals [24, 42]. This bias can be mitigated by allowing
people from different groups to review the experiences (cognition) of people from
other groups [24]. Keeping this in mind, users of the SDA model are divided into three
categories according to their background, experiences, skills, goals and position in
the organisation: namely, domain experts, managers, and employees. The users of the
SDA-based system are fundamental to the knowledge validation process. They cause
the group bias present in the knowledge input to be neutralized, thereby mitigating
the group bias.

4.4 The SDA Knowledge Cycle

A decision maker starts with some experience already acquired through training,
study or observation. This experience generates mental models. These mental mod-
els are extracted by allowing the user to define these mental models in natural lan-
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Fig. 6 SDA knowledge cycle

guage. Following the validation process, the mental models are sent to the cognitive
knowledge base (CKB). The mental models are de-biased during the definition and
validation process, and semantics are added to them. They are stored in the CKB in
the natural format of semantic triples. Later, when a user (decision maker) queries the
system regarding a decision situation, the system fetches the semantically defined,
de-biased knowledge (cognition) from the CKB, and presents it to the user, to sup-
port ill-structured decision making. The decision maker, while using this knowledge,
may learn or synthesize new knowledge from the mental models presented by the
system, or discover a new pattern during the process. This will augment or update
his previous knowledge, adding to his experience. Upon discovering a new pattern,
or synthesizing new knowledge, the decision maker may decide to add this newly-
acquired mental model to the system, thus continuing the knowledge cycle (Fig. 6).

5 Case Study

To test out the effectiveness of SDA model in supporting ill-structured decision
maker, a DSS based on the SDA model is developed, called semantics-driven cog-
nitive decision support system (SCDSS). In this section, the process of solving an
ill-structured decisionproblem with the help of SCDSS is illustrated through an exam-
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ple. The decision problem is taken from Niu et al [35] and is based on a fictitious
company, Adventure Works.9 The decision query is as follows:

Why have the sales of bike (BK-M82S-38) dropped over the past two weeks?

Following is the detail of the decision problem:

Adventure Works (AW) has dominated the market for over one year; however, they face a
big challenge. Mr. Cobarol, the chief executive officer of AW, has been sleepless for days
because he received very bad news from the marketing department: sales of AW’s newly
released bike model (BK-M82S-38) have dropped over 40% over the past two weeks. How
should Mr. Cobarol respond appropriately and reverse this difficult situation?

The decision process may involve one or more decision queries being made by the
decision maker. Each decision query results in a mental model as output. The concepts
of the resultant mental model link to the current business situation regarding those
concepts, whereas the associations link to their corresponding cases, success rate,
and weights in the problem domain.

Fig. 7 The result of the decision query

9 AdventureWorks is a sample database which comes with SQL Server installation [1]
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As the first step, the system presents the user with three options: (1) Add knowledge
to the system; (2) Query the system about a decision situation; (3) Ask strategic
questions from other users. To query the system about a decision problem, the user
will have to choose the second option: “Query the system about a decision process”.
This option allows the user to input the decision query. For this case study, the user
inputs the following query.

Why have the sales of our product BK-M82S-38 been dropping for the past two weeks?

The system then fetches the corresponding mental model, along with the current state
of the object(s) in the query from the backend, and displays the output in graphical
format (Fig. 7). Clicking on a concept will open a corresponding summarized report
on the business object in question. For example, clicking on the bad delivery will
open the delivery status of the product BK-M82S-38. Clicking on an association, such
as bad delivery reduces sales, will show the list of cases in which the association
has been used in the past, as well as the success rate and weight of the association
(Fig. 8). The decision maker can then compare the environmental parameters of the
situations in which the association (decision alternative) has been successful with
the current decision situation and base his choice on the comparison.

Fig. 8 The up-to-date knowledge of the business
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5.1 Comparison

The solution to the decision problem stated above is also achieved with FACETS, the
CDSS proposed by Li Niu [35]. FACETS focuses on improving the situation aware-
ness of a decision maker. Given this decision problem, the decision maker inputs their
observation of the situation in the CDSS. According to the input, the system fetches
the mental model along with the data from the data warehouse (DW). However, due
to the conventional mental model representation in FACETS, which stores concepts
connected with undefined links, the system takes four decision cycles to produce
a comprehensive mental model, relevant to the situation. The SDA-based SCDSS,
on the other hand, provides an improvedmental model representation, which stores
concepts connected with semantically defined links. The semantics incorporated in
these links allows for an efficient and accurate searching, which help SCDSS to
extract the relevant mental models in the first decision cycle. Thus the SCDSS offers
improved performance in terms of efficiency and accuracy of the produced results.
Table 1 summarizes the advantages of SDA-based SCDSS over the previous CDSS.

Table 1 Default simulation settings

Criteria Yadav & Chen & Lee Li Niu at al. SDA-based
Khazanchi [53] [8] [35] SCDSS

Helps users recall maximum past
experiences that are relevant to
the decision problem at hand

x x – x

Stores diverse range of experiences x x x x
Provides the functionality to

continuously input and
integrate mental models,
allowing progressive evolution
of the stored knowledge

– – – x

Reduces/removes biases from the
mental models

– x – x

Allows to store the contextual
information behind every
decision alternative generated

– – – x

Regularly measures the usefulness
and accuracy of each decision
alternative; and discard the
out-dated ones

– – – x

Stores the cognition in a
meaningful way by
incorporating semantics

– – – x

Validates each decision alternative
before it is sent to the storage

– – – x
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6 Conclusions

This chapter discusses the role of human-centric techniques in improving ill-
structured decision support. A cognition-driven model, namely, the semantic de-
biased associations (SDA) model, is described. The SDA model employs three
human-centric techniques: NLP, semantics and the graphical representation of cog-
nition. The NLP allows the seamless transfer of cognition from the decision maker
to the system. The semantics assist in storing cognition in a human-centric format,
along with the context behind the cognition/knowledge. The graphical representation
is used to output the stored cognition, to help the user comprehend the decision sit-
uation quickly, as well as to identify the root of the problem. With the help of these
human-centric techniques, the SDA model prevents the loss of knowledge during the
communication between the decision maker and the DSS. The SDA model helps
to save decision making time of users by fetching only precise and relevant knowl-
edge about a decision situation through the use of semantics. The SDA model can
effectively assist decision makers in the complex domains of business and medicine,
where the situation information is limited or vague, and time and the precision of
knowledge are the most critical success factors.
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Decision-Making Under Conditions
of Multiple Values and Variation in Conditions
of Risk and Uncertainty

Ewa Roszkowska and Tom R. Burns

Abstract Empirical research shows that humans face many kinds of uncertain-
ties, responding in different ways to the variations in situational knowledge. The
standard approach to risk, based largely on rational choice conceptualization, fails
to sufficiently take into account the diverse social and psychological contexts of
uncertainty and risk. The article addresses this challenge, drawing on sociological
game theory (SGT) in describing and analyzing risk and uncertainty and relating
the theory’s conceptualization of judgment and choice to a particular procedure of
multi-criteria decision-making uncertainty, namely the TOPSIS approach. Part I of
the article addresses complex risk decision-making, considering the universal fea-
tures of an actor’s or decision-maker’s perspective: a model or belief structure, value
complex, action repertoire, and judgment complex (with its algorithms for making
judgments and choices). Although these features are universal, they are particular-
ized in any given institutional or sociocultural context. This part of the article utilizes
SGT to consider decision-making under conditions of risk and uncertainty, taking
into account social and psychological contextual factors. Part II of the article takes up
an established method, TOPSIS with Belief Structure (BS), for dealing with multi-
criteria decision-making under conditions of uncertainty. One aim of this exercise is
to identify correspondences between the SGT universal architecture and the opera-
tive components of the TOPSIS method. We expose, for instance, the different value
components or diverse judgment algorithms in the TOPSIS procedure. One of the
benefits of such an exercise is to suggest ways to link different decision methods and
procedures in a comparative light. It deepens our empirical base and understanding
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of values, models, action repertoires, and judgment structures (and their algorithms).
The effort here is, of course, a limited one.

Keywords Complex decision making · Multiple values · Risk · Uncertainty ·
Judgment algorithms · Fuzzy judgment · TOPSIS method

1 Introduction

Risk has become understood among many researchers as a type of measured uncer-
tainty concerning possibilities that entail a loss, damage, or other undesirable out-
come. Some risk researchers distinguish sharply between risk and uncertainty, to
stress the different degrees of knowledge facing decision-makers and the bounded-
ness of risk calculations. Empirical research shows that humans face many kinds of
uncertainty and respond in different ways to the variation in situational knowledge.
The standard approach to risk, based largely on rational choice theory, fails to suffi-
ciently take into account the diverse social and psychological contexts of uncertainty
and risk. This article addresses this challenge, offering a new theoretical perspec-
tive on analyzing risk and uncertainty and relating a general theory of judgment and
choice to a particular procedure of multi-criteria decision-making under uncertainty,
namely the TOPSIS approach.

Part I of this article considers several key aspects of decision-making under risk
and uncertainly, suggesting that risk and uncertainty judgments can be contextualized
applying a few key concepts and principles of Sociological Game Theory (SGT). The
analysis implies a variety of risk conceptions and models highly dependent on social
and psychological contexts. According to SGT, social and psychological contexts
can be specified by, among other things, the system of values of decision-makers;
the degree of integration (commensurability) of values and likelihood estimates; the
level and types of knowledge they have access to in the decision situation; and the
particular judgment algorithms decision-makers are predisposed to use in a given
context.

Part II applies the TOPSIS procedure of multi-criteria decision-making under
conditions of uncertainty. One aim of this exercise is to show the application of
a multi-criteria decision-making to a complex decision situation and at the same
time to identify correspondences between the SGT universal architecture and the
components of the TOPSIS method. This exercise exposes, for instance, the different
value components and diverse judgment algorithms in the TOPSIS procedure. One
of the benefits of such an exercise is to suggest ways to link different decision
methods and procedures in a comparative light. It deepens our understanding of
values, models, action repertoires, and judgment structures (and their algorithms)
and their role in decision-making under conditions of uncertainty and risk.
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2 Part I.Decision-Making Under Conditions
of Risk and Uncertainty

2.1 From Risk to Uncertainty Back to Risk Again

The standard distinction between risk and uncertainty—and many do not accept this
distinction—is misleading. Risk has become understood in decision and related sci-
ences as a type of measured uncertainty concerning possibilities that denote a loss,
damage, or other undesirable outcome.1 Risk conceptions have diffused throughout
modern society. From the 1700s on, the conceptions were applied to gambling prob-
lems. Applications spread until today they are found in business, government, law
and judicial systems, engineering, new technologies, environment, climate change,
among others [39].

The rational foundation for decision making under risk according to expected
utility rules was formulated by John von Neumann and Oskar Morgenstern (1944)
in their work Theory of Games and Economic Behaviour [48]. Their formulation
has been modified and developed in diverse ways: expected utility hypothesis, state-
preference approach to uncertainly, weighted expected utility, or non-linear expected
utility, non-additive expected utility, prospect theory, among others. Some economists
dispute the distinction between Knightian risk and uncertainty, arguing that they are
one and the same thing. In Knightian uncertainty, the problem is that the agent does
not assign probabilities, and not that she actually cannot, i.e. that uncertainty is really
a problem of “knowledge” of the relevant probabilities, not of their “existence”. Some
economists also claim that there are actually no probabilities out there to be “known”
because probabilities are really only “beliefs”. Only very rarely are probabilities
known with certainty. Therefore, the clear cases of “risk” (known probabilities) seem
to be idealized textbook cases. Real life cases are characterized by uncertainty that
does not come with exact probabilities. Hence, most of decisions are decisions “under
uncertainty”. Decisions “under risk”, this does not mean exactly that these decisions
are made under conditions of completely known probabilities. Rather, it means that
researchers (and practitioners) have chosen to simplify their description of these
decision problems by treating them as cases of known probabilities. That means that
Knightian “uncertainty” may be the only relevant form of randomness for economics.
Knightian “risk” is only possible in some specific and controlled scenarios when the
alternatives are clear and experiments can be repeated; but this conception does not
apply in many economic decision-making situations in the “real world”, where the
situations are usually unique and unprecedented, and the alternatives are not really
all known or understood. In such situations, mathematical probability assignments
usually cannot be made.

1 In decision theory, lack of knowledge is divided into the two major categories ‘risk’ and ‘uncer-
tainty’ [31], p.20 Chap. 7 where “risk” refers to situations where the decision-maker can assign
mathematical probabilities to the randomness which he is faced with, where and “uncertainty”
refers to situations when this randomness “cannot” be expressed in terms of specific mathematical
probabilities.

http://dx.doi.org/10.1007/978-3-642-39307-5_7
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2.2 Background: Simon, Tversky and Kahneman Revisited

Simon [43] did more than give us the idea of “bounded rationality.” He stressed
that humans typically operate with multiple values, “a vector of values”. One should
not assume, he proposed, commensurability of these values and the reducibility of
multiple values to a common metric. He stressed also the role of decision procedures
or algorithms to deal with complexity and uncertainty. He anticipated meta-level
processes in judgment, in particular, the significance of meta-level judgment and
innovation in decision-making. Simon believed that agents are faced with uncer-
tainty about the future as well as costs in acquiring information. These factors limit
the extent to which agents can make a fully rational decision and leaves them with
“bounded rationality”, they must make decisions by “satisficing,” or choosing an
option which will leave them satisfied “enough” but which might not be optimal.
The term bounded rationality designated a type of rational choice theory that takes
into account the cognitive and knowledge limitations of decision-makers. Bounded
rationality has become an established notion in behavioral economics. Behavioral
economics, which systematically links psychology to economics, emerged as a chal-
lenge to some parts of conventional economics, in particular standard expected util-
ity or rational choice theory. It can be traced back to [30, 43, 45] Tversky and
Kahneman (1985), [18, 44]. The work demonstrated that rational economic man, the
all-seeing, all knowing figure on which much of contemporary economics had been
constructed, was a purely fictional character. Faced with even simple sets of options
to choose from, human beings make decisions that are inconsistent, suboptimal, and,
sometimes, plain irrational. Rather than thinking things through logically, they rely
on misleading rules of thumb and they leap to inappropriate conclusions. Moreover,
they are heavily influenced by how the choices are presented to them and, sometimes,
respond on the basis of completely irrelevant information ([13], pp. 30–34).

Daniel Kahneman and Amos Tversky, like Simon, recognized the multi-value
character of human judgment and decision. Of particular importance in their “prospect
theory” were the differences between positive values and negative values. They iden-
tified and analyzed many such asymmetries. In contrast to standard expected utility
theory, they rejected the straightforward application of probabilities in their mod-
els, stressing that probabilities or likelihoods enter into the judgment calculus with
“weights”.

Both theories stressed and illustrated their differences with expected utility the-
ory. While their work is widely recognized, and they became established icons of
contemporary social science (Simon and Kahneman both won Nobel prizes in eco-
nomics), they never really won the war. Rational choice as well as expected utility
theory continues to dominate mainstream economics and a considerable part of polit-
ical science and sociology. One major reason for this is that the Simon, and Tversky
and Kahneman after him, did not conceptualize socially embedded processes, that is
contextualize their models in social relations, institutions, and normative orders. At
the same time, they failed to provide the grounds for a comprehensive new choice
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theory. In part, SGT is intended to fill these gaps. Drawing on Simon, this article
addresses challenges such as the following:

• multi-value problems and dilemmas
• algorithms and meta-processes in judgment and decision processes
• framing, structuring and re-designing of choice components.

Simon’s originality was in identifying the complexity of values, exploring the
role of decision algorithms, and emphasizing human creativity and adaptability.
Like Simon, Tversky and Kahneman saw judgment/decision-making as a process.
In general, they explored and developed cognitive aspects of judgment and choice.
“Framing” of the choice situation and “reference points” were critical concepts in
their theory.

Their treatment of probability or likelihood was also particularly innovative, and
contrasted sharply with expected utility theory. They rejected the practice of intro-
ducing “probability” directly into the calculus of judgment and choice (this was a
brilliant insight since “probabilities” themselves were not value terms at the same
level or possessing the same qualities as value (or utility). By transforming prob-
abilities into weights (which were adjusted linearly), they solved the problem of a
potential incommensurability between likelihood and values, and recognized that
people weigh different likelihood estimates according to their risk avoidance or risk
proneness.

Although Simon as well as Tversky and Kahneman made occasional references
to “norms” and the social situation, neither of the approaches particularly recognized
or stressed such social conditions of judgment and choice. Social institutional and
role concepts as well as “sacrality” and human passions were basically alien ideas.
Such social science concepts are part and parcel of the SGT approach.

Uncertainty and the heuristics of likelihood judgments. Tversky and Kahne-
man departed from expected utility theory especially in the area of uncertainty. They
did not accept that people operate with well-defined, well-structured probability
measures. And, even in cases where they might do so, they do not treat the proba-
bilities on the same level or as directly integratable with values. Rather, likelihoods
are weighted—typically reflecting other judgments such as risk-adverseness or risk-
proneness. There is a great variety of likelihood beliefs and “models”. Some are only
fragments; others are relatively complete and may even correspond to well-known
probability distributions.

2.3 Social and Psychological Context of Risk and Uncertainly

In a sociological perspective, uncertainty is a more fundamental concept than risk.
Empirical research shows that humans face many types of uncertainty. The standard
approach to risk, based largely on rational choice conceptualization, fails to take
into account the diverse social and psychological contexts of uncertainty. That is,
the social context of uncertainty and risk conceptualization and analysis is often
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ignored or neglected. As we point out below, one must consider not only how people
establish order, predictability and certainty but also conditions where human agents
are unable to do so, or their constructions fail. To the extent that order is established
and maintained—and actions and interactions and their consequences are patterned
(and frequencies can be identified and analyzed), many uncertainties are minimized.
Stable patterns or institutional routines—the basis for some degree of certainty (and
predictability)—may be established and maintained. Under these conditions, some
of the more standard models of risk can be employed, for instance, where risk is
measurable.

Risk = (impact or assessment of a hazard, loss, or undesirable outcome)

x (probability of a hazard, loss, undesirable outcome) (1)

Such a conception, however, decontextualizes many key social as well as physical
factors (and shares a good deal of the weaknesses of rational choice theory [12].
Social contextualization, as suggest below, implies at least a variety of different risk
conceptions and models ranging from qualitative ones to quantitative ones.

Also, meta-processes, as Tversky and Kahneman have demonstrated, operate to
determine not only the values (or ordering) of different hazards but also a “revision”
of the assessments of likelihood estimates, depending, for instance, on how risk-prone
or risk-averse one is.

SGT can deal descriptively and analytically with varied and complex judgment
and choice situations. Here we are extending that work to the realm of risk and
uncertainty modelling. We make use of socially embedded multi-value judgment
theory, a key part of SGT, to formulate a unified theory that deals with multiple values
and different qualities and degrees of risk. A major feature of the approach is that it
models judgment and decision in specified institutional and normative contexts. Such
contexts define and activate actors’ ROLES, with their VALUE vectors, MODELS of
reality (actions, outcomes, likelihoods): Information in the form of particular rules,
about action-outcome linkages, about likelihoods, ACT (pragmatics, rules about
action possibilities, constraints), and J(udgment). In SGT, social and psychological
context appears explicitly in:

(1) the particular values and value conceptions of actors;
(2) the level and types of knowledge they have;
(3) the degree of integration (commensurability) of values and likelihood estimates;
(4) the particular meta-processes and meta-judgments that frame and regulate risk

judgment processes.
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2.4 Sociological Game Theory: SGT

2.4.1 Classical Theory as a Variant of SGT

Sociological Game Theory (SGT) is an extension and generalization of classical
game theory using the mathematical theory of rules and rule complexes [4, 7, 10,
11, 21, 22]. Those tools can formalize in a uniform way social theory concepts such
as norm, value, belief, role, social relationship, and institution as well game. SGT is
a cultural institutional approach to game conceptualization and analysis [1–3]; also
see [35, 36, 40]. A well-specified game in the context or situation St at time t, G(t),
is an interaction situation where the participating actors have defined roles and role
relationships formalized as mathematical objects or complexes of rules.2 The role
complex includes, among other things:

• particular beliefs or rules that frame and define the reality of relevant interaction
situations;
• norms and values relating, respectively, to what to do and what not to do and what

is good or bad;
• repertoires of strategies, programs, and routines;
• a judgment complex to organize the determination of decisions and actions in the

game.

SGT has identified and analyzed several types of judgment modalities, for
instance: routine or habitual, normative, and instrumental modalities (see later dis-
cussion). The rule complex(es) of a game in a particular social context guide and
regulate the participants in their actions and interactions at the same time that in “open
games” the players may restructure and transform the game itself and, thereby, the
conditions of their actions and interactions.

2.4.2 The General Approach of SGT

In the SGT approach, a well-specified game at time t is a particular multi-agent
interaction situation where the participating players have defined roles and role rela-
tionships. Given a situation St in context t (time, space, social environment), a general
game structure is represented as a particular rule complex G(t) [7, 21]. The G(t) com-
plex includes as subcomplexes of rules the players’ social roles vis-à-vis one another
along with other relevant norms and rules, R. Suppose that a group or collective I
= {1, …, m} of players is involved in a game G(t). ROLE(i, t, G) denotes player i’s
role complex in G(t) (we drop the “G” indexing of the role). The game structure G(t)
consists then of a configuration of two or more roles together with R, some general

2 Rules and rule systems are key concepts in the new institutionalism [6, 24, 33–35, 38, 42],
evolutionary sociology [5, 41], and ethnomethodology [20] and are closely related to important
work in philosophy on “language games” [47] and linguistics [16, 17, 37] as well as work in
mathematics and computer science [7, 8, 21, 22] among others.
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norms (and rule complexes) of the game:

G(t) = [RO L E(1, t), RO L E(2, t), . . . ., RO L E(k, t); R], (2)

R contains rules which describe and regulate the game such as the ”rules of the game”,
general norms, practical rules and meta-rules, indicating, for instance, how seriously
or strict the roles and rules of the game are to be implemented, and possibly of other
rules specifying ways to adapt or to adjust the rule complexes to particular situa-
tions. In this way, the SGT approach enables the construction of multi-level models
of the judgment and choice mechanisms on the basis of which actors address dilem-
mas, conflicts, problems of integration, and complex judgments. Meta-rules define
connections, priorities, and other relationships among rules and rule complexes.

The main components of a generalized game are the general rules for the players
and the roles for the different participants in the game (see Fig. 1). Each role consists
of the following:

• a complex MODEL(i, t) which describes the players’ “situational view”, provid-
ing the perspective on, and basis for understanding of the reality of an action or
interaction situation. It consists of a complex of rules representing players’ beliefs
about themselves, their environment, action and interaction conditions, and action-
consequence associations, which frames and defines the situational reality, key
conditions, causal mechanisms, and possible scenarios of the interaction situation.
• a complex VALUE(i, t) consisting of the players’ values, goals and commitments.

In this set there are rules assigning values to things and deeds, determining what
is “good”, “bad”, “acceptable”, “unacceptable”.
• a complex ACT(i, t) which includes acts, routines, programs, strategies which can

be used by the players in order to respond or to deal with problems and challenges
in the context of a choice situation; action enablers and constraints have normative
as well as pragmatic aspects.
• J(i, t), to organize the determination of decisions and actions in relation to other

agents in situation St . The judgment complex—typically, an algorithm—consists
of rules which enable the agent i to come to conclusions about truth, validity,
value, or choice of strategic action(s) in the given situation. In general, judgment
is a process of operation on objects. The types of objects on which judgments
can operate are: values, norms, beliefs, data, and strategies as well as other rules
and rule complexes. Also there are different kinds of outputs or conclusions of
judgment operations such as evaluations, beliefs, data, programs, procedures, and
other rules and rule complexes.

In general, MODEL(i, t), VALUE(i, t), ACT(i, t), and J(i, t) are complexes of actor
i’s rules which are activated in situation S and at moment of time t ∈ T.

The article focuses on the judgment and choice behavior of a single social actor in
a situation S, which may or may not be a game. An actor’s basis for making judgments
and decisions are specified in her role(s) in the action context. In preparing or taking
a decision, the actor compares her options with respect to her relevant norms and
values for the situation in question. Multiple values and interests are often taken into
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CULTURE/INSTITUTIONAL ARRANGEMENTS

SOCIAL AGENT A SOCIAL AGENT B

SPECIFIC

INTERACTION

CONDITIONS
PHYSICAL 

ECOSYSTEM 

STRUCTURES:
TIME, SPACE 
AND OTHER 
CONDITION

INTERACTIONS

MODEL(1,t)

J(1,t)

VALUE(1,t) ACT(1,t)

MODEL(2,t)

J(2,t)

VALUE(2,t) ACT(2,t)

ROLE1 ROLE2

Fig. 1 Two role model of interaction embedded in cultural-institutional and ecological contexts.
Source [4]

consideration. Action and interaction are multi-dimensional and open to differing
interpretations and evaluation processes. The focus may be on, for instance [4, 11]:

• on the outcomes of the action (“consequentialism” or “instrumental rationality”);
• compliance with a norm or law prescribing particular action(s) (“duty theory”);
• the emotional qualities of the action (“feel good theory”);
• the expressive qualities of the action (action oriented to communication and the

reaction of others as in “dramaturgy”);
• habitual or routine action;
• or combinations of these.

In an instrumental modality, for instance, the value of acts derives from assessments
or evaluative judgments of action outcomes or “payoffs,” whereas the value of action
in the case of normative modality derives from judgments of the qualities of the
action itself (including possibly the intentionality of the player). Note the opera-
tional differences between normative and instrumental modalities, particularly in
open interaction situations where the players construct their actions. In the case of
normative modality, the player constructs an action which corresponds to prescribed
properties or qualities. In the case of instrumental modality where the players are
supposed to accomplish an outcome or state of the world with prescribed features,
they must find or construct an action that produces the prescribed effects—the prop-
erties of the action itself may be left unspecified. They require a cognitive model
which links actions to outcomes, or allows them to specify such linkages.
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What determines modality? From what has been stated earlier, the short answer is
apparent: a player’s role or particular rules in the role indicate which consequences
one should attend to, thus indicating the appropriate modality or basis for determining
action in a given situation. There may be practical constraints on such a determina-
tion, however. Situational constraints may be such that the player i is unable to
determine the action on the basis of outcomes or qualities of the action. Information
is lacking or there is substantial difficulty in assessing available information, or there
are substantial constraints on acquiring information, so the actor would be unable to
operate with, for instance, an instrumental modality (paying attention to outcomes),
but may resort to acting “as if” utilizing a dramaturgical-communicative modality.
Or, she makes use of rules of thumb, “standard operating procedures” or habits that
have in the past led to appropriate outcomes. Habitual or routine type modalities
entail executing a program, script, or procedure without deliberation or reflection,
or weighing of alternatives. Such modalities are analytically distinguishable from
consequentialist and normative modalities, where the actor makes evaluative judg-
ments as well as calculations in the course of their activities. People often utilize
the habitual modality for reason of efficiency—it requires much less situational data
and time; information and operational costs are low in comparison to full-fledged
instrumental or normative modalities. Sometimes no choice is available. Or, there
is less risk involved in following orthodox routines. It is less risky in the sense that
doing the normal is less likely to be questioned or criticized afterwards than doing
something highly promising but full of uncertainties.
Role incumbents focus on specific qualia in particular contexts, because, among other
things: such behavior is prescribed by their roles, and institutionalized in the form
of routines; or the actor has no time or computational capability to deal with other
qualia. The modalities of judgment and action differ in a business enterprise; market
setting, community, family setting, competitive sport situation, interaction situations
involving players who are enemies. In such ways, SGT encompasses a variety of
judgment and choice modalities observable in social life.

2.4.3 Social Relationships, Contextualized Framing and Judgment Calculus

In the SGT perspective, human agents and their interactions are embedded in their
social relations and institutional arrangements, and these conditions frame their
choice components.

The framing of choice situations is a multi-level process (Fig. 2). Our earlier work
has shown how people’s social relationships frame their operative models (beliefs,
perceptions), value complexes and evaluations, judgments and decisions, and patterns
of interaction and potential equilibria [10].

Frame 1. In any given situation S, the initial framing is the social definition of the
situation—what kind of choice or interaction situation is this; which institution or
rule regime applies?

Frame 2. The institutional arrangement or normative order frames the particular
social relationships, the roles of the actors and the norms they are to follow.
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Frame 3. The components of roles—for instance, the belief models, the value
complexes, and the judgment functions—also frame actors’ dispositions and behavior
in the situation.

So, the social relationships in a game G where actors have defined roles and
normative rules provide the value, model, and judgment frames of the players vis-à-
vis one another.

In sum, the normative or institutional context and actors’ role relationships are
usually the most important factors in framing choice situations. Note that these con-
texts of framing elicit value complexes and reference points, for example, differences
between exchanging with a friend as opposed to engaging in a pure market exchange.
In gift exchange or gift-giving, there are appropriate norms and reference points hav-
ing to do with reciprocity and the nature of the particular social relationship in which
the actors are involved. Issues of giving too much or giving too little are some of the
considerations and meanings of the situation. For instance, someone in a high posi-
tion might give too little—that is, the gift is below a socially established expectation
or reference line for someone in a high position (Even in straightforward market
exchanges there are reference points and complex judgments [9, 11]).

2.5 Context Dependent Risk Situations: Multi-level Risk Judgment

Risk3 entails a composite judgment about the likelihood of damage or a potential neg-
ative impact from an action or event in terms of some characteristic value associated
with the action or event. That is, a particular algorithm relates hazard value judg-
ments and likelihood judgments to one another through multiplication (see Eq. 1).

Social or collective definition of the situation 
(Frame 1)

Institutionalized relationship defining appropriate roles and norms: Role(1,t),Role(2,t),..
(Frame 2)

Model Complex                  Value complex            Judgment complex
(Frame 3A)                     (Frame 3B)                    (Frame 3C)

Judgment processes

Action and interaction determination

Fig. 2 The social framing process. Source The author

3 Risk is a concept with multiple definitions and differences of approach, ranging from “an unwanted
event which may or may not occur to “the statistical expected value of undesirable or unwanted
events which may or may not occur” [14].
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Other algorithms can be more complex and can take into account the fact that val-
uation and likelihood estimates may not be integratable in such terms. (In SGT, a
variety of empirically meaningful algorithms can be used to relate hazard assess-
ments and likelihood estimates depending on the social definition of situations as
well norms and values specified by institutionalized relationships. For instance, the
most common model involves a combinatorial algorithm (see Eq. 1) which simply
“multiplies” cost/impact measure by likelihood (probability in some cases) to get an
expected loss).

Human agents do not operate with a single conception or scale of risk. The variety
of their conceptions and models reflects the complexity of their environment, particu-
larly their social environment. Their judgments of likelihoods (likelihood estimates)
are part of streams of judgment that make up complex, composite judgments and
action determinations. For instance, actors in a given situation S consider possible
gains, potential losses and likelihood estimates of these. The judgments may be com-
bined in different ways depending on the algorithm(s) which the agents utilize—and
which is a function of the social and psychological context in which the agents
operate.

Social and psychological context. People make decisions not only on the basis
of well-deliberated calculations, but also by intuition and routine. At the same time,
since the actors follow different norms or values, risk means different things to them
that is, they perceive and assess risk in different ways depending on the context in
which they operate or are engage. As argued here, decision-making and risk-taking
depend on actor’s social and psychological context. In other words, the culture and
institutional context must be taking into account in any analysis, since they influence
the decision-making processes to a greater or lesser extent.

We can distinguish different contexts of decision-making with respect to the
decision- maker and her particular situation. The models generated by SGT the-
ory for the different contexts typically imply very different performance properties.
We have proposed earlier that actors’ social context (group, organization) and role
relationships frame their judgment and choice situations. Part of this framing may
entail operating with a common metric, e.g. money or “survival rates at intensive care
units of a hospital,” etc. Even if “distinctions” are made between costs and benefits
(in common monetary terms), the net benefit (or “net cost”) might be calculable,
and the similar type of judgment algorithm can be utilized as in the purely uni-value
models.

Some consequences are strictly distinguished and at the same time socially defined
as non-commensurable. Many instances of cost-benefit analysis are of this character;
hence, the development of cost-benefit methods which do not necessarily reduce
costs and benefits to a single metric. Costs might be in money terms (Euros) and
benefits are formulated in terms of reduction in mortality (or increased longevity)
in the field of health. (Of course, these benefits have their monetary aspects, but the
health care policymakers and physicians emphasize that people’s lives and quality
of life should not be reduced to monetary terms). Thus, the socially based framing
of the situation is all important [19]. The question is whether a single value applies
(or, alternatively, multiple values reducible to a common metric); or multiple, non-
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commensurable values apply in relation to a political, social, or moral question. Other
dimensions of importance relate to the complexity of the judgment situation. The
complexity of action-outcome structures makes for more or less difficult decision
settings. But the question of complexity is very much a function of the social framing
of the choice situation—that is, for instance, the extent to which an actor or actor(s)
identify multiple, relevant and salient consequences of different actions and the extent
to which these are or are not reducible to a single value, for example, monetary value.

Framing of the judgment and choice situation. In the conceptualization of
context dependent choice situations, we distinguish models in terms of their degree
of quantification and degree of commensurability or integratability. We can assume
in some cases deterministic models, that is, the actor knows (or believes she knows)
all of the consequences of her actions (or joint actions if with others). One of our
main principles is that actors in the face of multiple, non-commensurable values,
piecemeal beliefs and likelihood estimates, operate with algorithms enabling them
to make composite judgments and decisions. While there are clear patterns, we stress
the highly context dependent nature of the models: for instance, not only the level of
certainty and the complexity of the situations with which they must deal.

Likelihood assessments. With respect to likelihood estimates: even if there are
well-defined probabilities (based, e.g., on frequencies), these are evaluated (follow-
ing Tversky and Kahneman) in a manner similar to the evaluation of “benefits”
and “costs”. Such evaluations of likelihood are expressed as, for instance, uncer-
tainty acceptance or uncertainty averseness. The situations are characterized by
particular organizations, group conditions, roles, norms; the stress is typically on
“certainty”, “security”—but in many situations, not. We speak of risk aversion or
certainty demands, on the one hand; or, risk proneness or acceptance, on the other.

The likelihood estimates are necessarily systematic and coherent as in standard
expected utility theory. People may operate, however, with very rough and piecemeal
schemes, based on piecing together an array of likelihood estimates from different
sources and belief systems. In a given social and psychological context, beliefs,
pieces of information and hints from others, heuristics, and guesswork, etc provide a
rough framework (or more precisely, a messy patchwork) which can be represented
and analyzed in SGT.

Judgments and action determinations. The SGT conceptualization of decision-
making implies that there are distinct ways in which evaluative judgments are com-
bined with likelihood judgments. Different modalities for making such composite
judgments generate varying decisions among alternatives, depending on the social
context, key components of value and likelihood judgments, and ways in which these
are combined through the judgment modalities as a basis for making decisions (one
of the standard modalities consists of the usually expected value or utility format
using a well-defined value or utility function combined with a probability distri-
bution over outcomes). The approach is applicable to multi-value (multi-criteria)
decision-making with various forms of likelihood judgments as a part of complex
decision-making processes.

Discussion. The SGT conceptualization leads to the formulation of several distinct
context-dependent decision-making models, distinguishable in terms of the proper-
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ties of elementary judgment and judgment modalities. One model can represents
classical decision theory with full quantification and commensurability of evaluative
judgments and probability estimates and where a maximization of value principle
applies in making decisions. Other models can entail judgments which are quanti-
fied but not commensurable and integratable and where actors apply algorithms or
rule complexes for multi-criteria decision-making. Some models can involves non-
quantification and non-commensurability but partial ordering of value judgments on
diverse dimensions and fuzzy judgments about likelihoods and where actors apply an
algorithm or rule complex that operates with partial orderings and fuzzy judgments to
reach decisions. Yet other models concern a non-reducible “package” which is either
a constructed partial ideal or comparable to an established ideal; decision-making is
based on a “close enough” fuzzy judgment.

By taking into account the social context, SGT enables the construction of several
distinct context-dependent models. In other words, it is a generative theory. This
includes a purely meta-judgment model associated with high uncertainty about values
(and desirable or undesirable conditions) at stake in the situation as well as uncertainty
about the likelihood of different situations or events. Such high uncertainty may be
the result of straightforward ignorance in the situation; or, even in the case that
there is considerable information (e.g., about one’s own values), they are judged
unreliable, not a solid basis on which to make judgments about critical hazards in
the situation and their likelihoods. Consequently, the actor falls back on deeper (or
in our language, meta-judgments).

Our social and social psychological approach provides a point of departure for,
among other things, identifying and understanding the role of human institutions in
reducing uncertainty (and uncertainties). Institutions frame and define social action
and interaction situations, specifying people’s relationships and roles as well as
appropriate norms. Given elaborate institutional arrangements, actors can know much
of what is going on, what to expect. They can simulate and predict many action and
interaction processes and outcomes in the situation. They can relate their behavior
to one another, even in strategic games.

Institutional rules which specify situations are, however, never complete. In part,
this is because the situations in which an institutional arrangement is applied vary
and change over time. Thus, there are always residual uncertainties. Often, the actors
involved apply pragmatic or heuristic rules, reducing residual uncertainty in a certain
sense, “filling in” gaps. In some cases, when they fail to reduce uncertainty (or they
choose to ignore what they know) they may simply act—risking that the action and its
interactions fail to turn out as desired or as expected. When situations deviate greatly
from what has been “normal,” unanticipated and unintended outcomes are likely.
Patterns or what have been more or less stable frequencies are violated. There may
be no frequency measures. Of course, people may have (subjective) beliefs about
likelihoods even in highly unstable or dynamic, evolving situations.

Situational anomalies are of particular interest to us. These arise because of
changes in key dimensions of the situation—models and expectations no longer
fit. Actions have unexpected outcomes, possibly very contrary to what is intended or
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expected. Such anomalies set the stage for actors to attempt to restructure the insti-
tutional arrangement to accomplish greater order, predictability and effectiveness.

In addition to the gaps and fuzziness of institutional arrangements in defining
interaction situations, they often intentionally define special fields or arenas, which
are intentionally “open” or “underspecified”, settings where designated actors are
allowed (or expected to) make judgments (possibly after negotiating) and determine
actions and interactions. The actors characterize these social judgments and choice
situations in terms of “alternatives”, “action opportunities” (either given or con-
structed) and ranges of possible consequences. Actors’ level of knowledge about
the action opportunities and consequences, e.g. symptoms and diagnoses as well as
prognoses, may of course vary considerably.

Our contextual approach makes it apparent that real-life situations (complex,
dynamic contexts) are unlike the highly stylized “gambling situations.” The latter
are greatly simplified as well as de-contextualized from actual situations (although
the actors participating have, of course, their lives (debts, obligations, etc) outside
the gambling setting. Gambling houses then must be seen as particular types of
institutionalized settings, which not only simplify the choice situation but also de-
contextualize it as much as possible (in part, so as to trap their “customers”).

3 Part II. Application of SGT to the Topsis Multi-Criteria
Decision Procedure

3.1 Introduction

One of the main SGT principles is that a decision maker in the face of multiple,
non-commensurable values, piecemeal beliefs and likelihood estimates, operate with
particular algorithms enabling them to make composite judgments and decisions. In
this part of the paper we consider situations where a decision-maker, in making her
choices, utilizes a complex algorithm drawing upon her beliefs and rules concerning
the likelihood of events and the uncertain associations between actions and conse-
quences. Judgments of likelihood are combined with judgments of value and make
up what we refer to as composite risk judgments, utilizing judgment algorithms. This
analysis relates to the expanding fields of multi-criteria decision-making.

A variety of multi-criteria decision making (MCDM) methods as well as fuzzy
MCDM methods [32] have been developed in relation to complex risk judgments.
In general, multi-criteria decision-making researchers have formulated a variety of
quantitative methods to compare, select, or rank multiple alternatives distinguished
on multiple criteria. The procedures help decision-makers to formulate their prefer-
ences, to rank priorities, and to apply them to a particular decision context. The aim
is to provide support to the decision-maker in the process of making a choice among
different complex options. There are three steps in utilizing techniques involving
analysis of alternatives: determining the relevant criteria and alternatives, attaching
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measures to the relative value or importance of the criteria, and assessing the alterna-
tives on the basis of multiple criteria and determining a ranking among them. MCDM
methods use crisp data, but such data are often inadequate for modeling many com-
plex decision situations characterized by risk. Uncertainty prevails in risk judgment
due to incomplete or non-obtainable information. A decision-maker is not always
able to estimate the consequences of the option in a precise way, but, nonetheless, she
is able to approximate or can use assessments in natural language terms instead of
exact numerical values. Since the human risk judgments are often vague, the applica-
tion of fuzzy concepts in risk assessment has come to be seen as highly relevant. The
classical MCDM methods are extended to decision-making problems with interval
data, fuzzy data or natural language terms which are represented usually by fuzzy
numbers [15, 26, 27]. In risk assessment however, it is more appropriate to express
decision-maker opinions by a series of linguistic variables in terms of degrees of
belief. For example, the risk criterion of some alternative may be evaluated by the
decision-maker as 70 % sure that the risk criterion is “highly risky” and 30 % sure that
it is “medium risky”, which can be expressed as follows: {(very high, 0.7), (medium,
0.3)}.

3.2 The TOPSIS Procedure of Multi-Criteria Decision-Making
Under Conditions of Uncertainty

TheTechnique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is
a multi-criteria decision method [25]. It is based on the notion that a preferred or
selected alternative should have the shortest distance from a positive ideal point and
the longest distance from a negative or undesirable point. The method enables a
comparison of a set of multi-criteria alternatives where weights are assigned for each
criterion and an algorithm is used to rank order and choose among the multi-criteria
alternatives.

The basic principle of this method is that the selected alternative should have
the shortest distance from a Positive Ideal Solution (PIS) and the farthest distance
from Negative Ideal Solution (NIS). PIS is the solution that maximises the benefit
criteria and minimizes the cost criteria, while NIS is an alternative, which maximises
the cost criteria and minimizes the benefit criteria. Extensions of TOPSIS were also
developed, aiming at the adaptation of the original procedure to interval data or fuzzy
conditions [15, 26, 27]. The TOPSIS method has thus been applied in risk analysis
[29], as we do here, using the model to analyze multi-criteria risk situations. Thus,
we suggest that TOPSIS can be usefully formulated and interpreted in the perspective
of SGT.

The Model or Belief Structure (BS) of TOPSIS was developed to deal with
MCDM problems under conditions of uncertainty [49–51] and later developed in
relation to fuzzy conditions [52]. The BS model with degrees of belief is used to
represent the performance of an option on a criterion. Suppose a selected criterion
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is assessed by a complete set of standards with evaluation grades represented by
H = {H1, ..., Hs, ..., Hn}, where Hs is the s-th evaluation grade with numerical
value or utility functions 0 ≤ u(Hs) ≤ 1, s = 1, 2, ..., n. A given assessment for
criterion C is represented as the BS model in the following way:

S(C) = { f (Hs, βs) : where s = 1, 2 ..., n}. (3)

We say that an assessment S is complete if
n∑

s=1
βs = 1 and incomplete if

n∑
s=1

βs < 1.

The similarity s̃ij judgment between two grades is represented by numerical value or
utility functions u(Hi ), and u(Hj ) is calculated as:

s̃ij(Hi , Hj ) = 1− ∣∣u(Hi )− u(Hj )
∣∣ i, j = 1, 2 ..., n (4)

The BS model consisting of n evaluation grades can be also described as a vector

B = (β1, . . . , βs, . . . , βn) (5)

Suppose now that we have two BS models, S1 and S2, with the corresponding vectors
B1 and B2, respectively. The comparison between two such BS models, S1 and S2,
can be transformed into the distance measure between two vectors B1 and B2. The
distance between S1 and S2 is defined as:

dBS(S1, S2) = dBS(B1, B2) =
(

1

2
(B1 − B2)S̃(B1 − B2)

T
) 1

2

(6)

where S̃ = [
s̃ij

]
is a similarity matrix, which describes the differences among the

evaluation grades Hs, s = 1, 2, . . . , n.
The TOPSIS procedure for multi-criteria risk assessment. Suppose that there

are m alternatives Ai , i = 1, 2, . . . ,m, that is, these options are part of an action or
repertoire ACT. Each alternative is evaluated by the C j risk criteria j = 1, 2, . . . , r .
To represent uncertainty, the BS model defined by (3) is applied to describe the risk
judgments of decision-makers.

We assume that the assessment for risk criterion C j on alternative Ai is represented
as the BS model:

Sij = { f (Hs, βs) : s = 1, 2 . . . , n}ij,where i = 1, 2, . . . .,m; j = 1, 2, . . . r (7)

where:

• H = {H1, ..., Hs, ..., Hn} is a set of standards with evaluation risk grades,
• u(Hs) value or utility function s-th risk grades 0 ≤ u(Hs) ≤ 1, s = 1, 2, ..., n.
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It means (7) that, in the decision-maker’s judgment, alternative Ai is assessed to
have an evaluation grade Hs with degree of belief βs regarding criterion Cj , s =
1, 2, . . . ., n.
The risk analysis based on TOPSIS is illustrated in the following steps:

Step 1. Structuring the MCDM problem. Formulate the risk analysis problem by
first constructing a MCDM decision matrix

M = [
Sij

]
mxr (8)

where Sij = { f (Hs, βs) : s = 1, 2 . . . , n}ij is a BS model.
Let w = [w1, ...,wr ] be the weight vector, where wj is the weight of criterion Cj .
We have

∑r
k=1 wk = 1.

Without loss of generality, it is assumed that every BS model is complete. If incom-
pleteness obtains, the BS model has to be normalized.

Step 2. Determination of Ideal Points (Positive and Negative). Determine the
Positive Ideal Points (PIBS) A+ and Negative Ideal Point (NIBS) A− respectively
as:

A+ = {
S+1 , ..., S+r

}
, (9)

A− = {
S−1 , ..., S−r

}
(10)

where S+j and S−j are BS models.
Step 3. Calculate the “Distance” of Each Alternative from the Ideal Points, PIBS

(A+) and NIBS (A−). For each alternative Ai , the distance measure can be calculated
using the following formula:

D+i =
√√√√

r∑

j=1

w j dBS(Sij, S+j ) (11)

D−i =
√√√√

r∑

j=1

w j dBS(Sij, S−j ) (12)

where w j is the weight of criterion C j , dBS(Sij, S+j ) and dBS(Sij, S−j ) are the belief
distance measures between the two BS models, Sij and S+(S−).

Step 4. Judgment Algorithm. Calculate the relative closeness of alternatives to
the PIBS and NIBS. A closeness coefficient of the ith alternative (with closeness
coefficient Ri ) is defined so as to rank all possible alternatives. Ri represents the
distances to PIBS

(
A+

)
and NIBS

(
A−

)
, simultaneously and is calculated as:

Ri = D−i
D−i + D+i

(13)
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where 0 ≤ Ri ≤ 1, i = 1, 2, ..., r.
Step 5. Rank ordering algorithm. Rank all alternatives according to descending Ri .
Step 6. Selection rule or procedure. Select the highest ranked alternative; alter-

natively, select the first alternative j that has a closeness coefficient R j which is
“satisficing”. If there are several options that satisfice,4 then one uses additional
criteria to distinguish and rank order the options. Or, possibly, uses a coin-flipping
algorithm to make the selection.
In risk situations, the risk evaluation grades are typically fuzzy. The set of fuzzy
risk evaluation grades may be either triangular or trapezoidal fuzzy sets or their
combinations. The Model or Belief Structures presented here can be extended to
Fuzzy Belief Structures (FBS); these have been successfully applied in the areas of
Fuzzy MCDM. Then, the evaluation grades as well the utilities of evaluation grades
are representable by triangular or trapezoidal fuzzy numbers [23, 52]. Such risk
analysis deal with incompleteness, ignorance, and vagueness in complex uncertain
choice situations.
In the table below we indicate the correspondences between the universal SGT cat-
egories and the key components of the TOPSIS procedure (Table 1).
Numerical Example. In order to illustrate the method a numerical example is
provided. Suppose a MCDM problem has three alternatives A1, A2 and A3, and
four risk criteria C1,C2,C3,C4. The decision-maker makes a judgment using a
BS model for each alternative on each criterion. Suppose there are four evalu-
ation risk grades {H1, H2, H3, H4} ={“very high”, “high”, “medium”, “low”}.
Regarding C1, if the decision-maker is 80 % sure that alternative A1 is very high
risk and 20 % sure that A2 is high risk, the BS model should be expressed as
{(H1; 0.8), (H2; 0.2), (H3; 0), (H4; 0)} or (0.8, 0.2, 0,0). In this way, all judgments
of the decision-maker are summarized and are collected in Table 2.

The relative importance of the four risk criteria is specified as w = [0.3, 0.3, 0.2,
0.2]. Suppose the utilities of the evaluation grades are: u(H1) = 1 (“very high”),
u(H2) = 0.7 ( “high” ), u(H3) = 0.4(“medium”), and u(H4) = 0 (“low”). Then, the
similarity matrix can be generated by (4) as:

S̃ =

⎡

⎢⎢⎣

1 0.7 0.4 0
0.7 1 0.7 0.3
0.4 0.7 1 0.6
0 0.3 0.6 1

⎤

⎥⎥⎦

The NIBS has the form {1, 0, 0, 0} and PIBS {0, 0, 0, 1}. The separation measures
D+ and D− an be calculated using (11) and (12). Finally, one calculates the relative
closeness R to the ideal solution for each alternative A using (13), and ranks the
preference order in terms of the values of Ri . The results are shown in Tables 3
and 4.

4 This derives from the concept of “satisficing” introduced by [43]. Elsewhere [10], we formulate a
satisficing algorithm which compares the characteristics of an option to a vector of values specifying
standards and determined “sufficient similarity” and, therefore satisfied.
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Table 1 Links between SGT general model and the TOPSIS procedure for risk assessment

SGT components of the general theoretical
model

The TOPSIS procedure for risk assessment

Model Complex describes the players’
“situational view” and understanding of
the action or interaction situation. Model
contains beliefs about the situation
Likelihood or assessments in the Model
complex are generated from different
belief systems and other sources in a
given social and psychological context

The complex decision situation formalized in:
The belief structure (BS) (as well as the
belief decision matrix based on BSs) make
up the complex decision situation. The BS
model with degrees of belief represents
the anticipated or expected performance
of an alternative on diverse criterion

Value Complex consisting of players’ values,
goals and commitments. Assessments and
evaluations are generated on the basis of
appropriate or prescribed values and
preferences in the social and
psychological context

Value and normative views of risk situation
are formalized: the weight vector of
criteria; S-evaluation grades; concept of
ideal points (positive, negative) and u(HS)

utility functions s-th risk grades

ACT complex of potential options, typically
defined or prescribed for the decision or
interaction situation

Repertoire of m options or alternatives
Ai, i = 1, 2, 3, . . .,m

Single or/and composite judgment may be
combined in different ways depending on
the algorithm(s) which the player utilize;
it will be a function of the social and
psychological context, the value
system(s), and social relationships, often
in a context of vagueness or ambiguity

TOPSIS procedure entails several judgment
algorithms such as: calculation of the
distance measures of an option from PIBS
(and NIBS); calculation of the relative
distance to the PIBS (and NIBS); rank
ordering of alternatives; application of a
choice rule or criterion

Source The authors

In this case of risk assessment, the ranking of three alternative structures, as
indicated in Table 4, is A1,A2, A3, so, the alternative A3 is the preferred option with
respect to minimizing risk.

Table 2 Judgments from decision-maker

Ai Criteria
C1 C2 C3 C4

A1 (0.8, 0.2, 0,0) (0, 0.6, 0.4, 0) (0, 0, 0.7, 0.3) (0.8, 0.2, 0, 0)
A2 (0.5, 0.5, 0, 0) (0, 0, 08., 0.2) (0.2, 0.8, 0, 0) (0.5, 0.5, 0, 0)
A3 (0, 0.8, 0.2, 0) (0.3, 0.7, 0, 0) (0.4, 0.6, 0, 0) (0, 0.8, 0.2, 0)

Source By the authors
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Table 3 Belief distance from NIBS and PIBS

Ai NIBS /PIBS C1 C2 C3 C4

A1 A− 0.012 0.348 0.636 0.700
A+ 0.892 0.508 0.196 0.100

A2 A− 0.075 0.616 0.192 0.604
A+ 0.775 0.644 0.256 0.324

A3 A− 0.312 0.147 0.108 0.420
A+ 0.592 0.727 0.748 0.064

Table 4 Separation measure

Ai D−i D+i Ri Rank

A1 0.612 0.692 0,530 3
A2 0.605 0.736 0.540 2
A3 0.493 0.747 0.610 1

4 Summarizing Remarks

This article has considered complex risk decision-making, using SGT as a point of
departure. SGT considers the universal features of an actor’s or decision-maker’s
system: a model or belief structure, value complex, action repertoire and judgment
complex (with its algorithms for making judgments and choices). Although these
features are universal, they are particularized in any given institutional or socio-
cultural context.

The article considered an established method, TOPSIS, for dealing with multi-
criteria decision-making under conditions of uncertainty. One aim of this exercise
was to identify correspondences between the SGT universal architecture and the
components of the TOPSIS method. We could expose, for instance, the different value
components as well as diverse judgment algorithms encompassed by the TOPSIS
procedure.

One of the benefits of such an exercise is to suggest ways to link different decision
methods and procedures in a comparative light. It deepens our empirical base and
understanding of values, models, action repertoires, and judgment structures (and
their algorithms). Of course, our effort here has been a modest one. In future papers,
we expect to consider and compare a number of MCDMs and FMCDMs.

Acknowledgments This work was partially supported by the grant from Polish National Science
Center (DEC-2011/03/B/HS4/03857).
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Supporting Ill-Structured Negotiation Problems

Ewa Roszkowska, Jakub Brzostowski and Tomasz Wachowicz

Abstract The negotiation is a complex decision-making process in which two or
more parties talk with one another in afford to resolve their opposing interests.
It can be divided into consecutive stages, namely: pre-negotiation phase involving
structuring the problem and the analysis of preferences, the intention phase involving
the iterative exchange of offers and counter-offers, and the postoptimization phase
aiming at the improvement of the agreement obtained in the intention phase. In
this chapter, we focus on the analysis of negotiators′ preferences in ill-structured
negotiation problems. We employ the modified FTOPSIS approach and the AHP
method for determining the negotiation offers′ scoring system, which allows for the
easy evaluation of both the incoming offers as well as the packages under preparation.
The imprecision and vagueness of the packages and options′ descriptions is modeled
by the fuzzy triangular numbers. The Analytic Hierarchy Process is used to derive
the negotiation issue weights instead of directly assigning such values to the issues
(a classic approach). The FTOPSIS method is used to build the final scoring system
allowing for the evaluation of any potential negotiation package. The whole process
of negotiation supported by the approach we proposed is illustrated with an numerical
example.
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Keywords negotiation support · preference elicitation · negotiation offers′ scoring
system · Fuzzy TOPSIS · AHP · post-negotiation optimization

1 Introduction

Negotiation is an everyday activity that most people undertake to influence others
and to achieve personal objectives [16]. It may be perceived as an iterative process
of exchanging offers and messages between the interested parties that is conducted
until a satisfying agreement is reached. In bilateral negotiations the agreement will
be reached until an offer is satisfying for both parties, i.e. the negotiator and his
counterpart. Therefore we may say that a negotiation is a non-individual decision
making process, in which two (or more) parties decide how to divide the limited
resources [4, 7, 27].

Decision context is crucial for negotiations. Since early 1980s a new discipline
called negotiation analysis [18] has been being developed, aiming at formalizing the
negotiation process and applying supportive decision making and game-theoretic
methods and tools. The significant part of negotiation analysis is devoted to the
problem of defining, evaluating and building the negotiation template, which is usu-
ally elaborated in the pre-negotiation preparation phase. The negotiation template
specifies the negotiation space by defining the negotiation issues and their accept-
able resolution levels (options), and it constitutes the framework for further decision
analysis conducted by the negotiators themselves and/or the third party that supports
the negotiation process. Since the negotiation template very often involves numerous
and usually conflicting issues, multiple criteria decision making (MCDM) methods
are applied to help negotiators with analyzing and eliciting their preferences, which
allows to span the scoring system over the whole negotiation space. The simple
additive weighting, SAW [13], is most commonly suggested for template analysis
since it is considered to be a straightforward method easy to understand by decision
makers (here, the negotiators). This approach is very often applied in negotiation
support systems or electronic negotiation systems, such as Inspire [14], Negoisst
[24] or NegoCalc [29]. There are also other MCDM methods used in negotiation
support, such as AHP [21], even swaps [26] or ELECTRE-TRI [30].

Most methods and models that have been currently applied in negotiation soft-
ware support tools operate with a well-defined negotiation problem. They require a
precise definition of the negotiation template, i.e. a clear specification of negotia-
tion issues as well as an accurate representation of their resolution levels. The latter
need to be predefined by means of real numbers or linguistic labels with the real
number equivalents. These systems also require the users to precisely define their
preferences, so that the standard MCDM procedures can be applied to provide the
user with their own negotiation offers′ scoring system. The scoring system is used
later for supporting the negotiators in making their decision on rejecting or accepting
the negotiation offers during the actual negotiation phase. It may be also used for
visualizing the negotiation progress by means of negotiation history and negotiation
dance graphs [19], and then in post-negotiation phase to conduct post-optimization
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analysis, which may help the negotiators to find improvements for the agreement
negotiated. Unfortunately, the vast majority of negotiation processes are too com-
plex and involve too many uncertain or risky factors that it is nearly impossible to
describe them by means of crisp values without being accused of oversimplification.
Therefore there is a strong need to develop methods and techniques that could handle
the imprecise and fuzzy information occurring in the process of template construction
and evaluation.

In this chapter we present an effective application of the fuzzy approach to sup-
port an ill-structured negotiation problem. We develop a negotiation model based
on the analytic hierarchy process (AHP) and a technique for ordering performance
by similarity to the ideal solution (TOPSIS), to support negotiation processes where
the vagueness and subjectivity in problem definition are handled by means of trian-
gular fuzzy numbers. The AHP is used to analyze the structure of the negotiation
problem and to determine the importance weights of the negotiations issues. The
fuzzy TOPSIS method is used to obtain the final ranking of the negotiation pack-
ages. Although there are many studies in the literature that use fuzzy TOPSIS as well
as AHP to solve different MCDM problems, here we propose some modifications of
those techniques to make them useful in and applicable to the negotiation context.
Combining the fuzzy TOPSIS and AHP for the analysis of negotiators’ preferences
as well as applying of this approach to handling ill-structured negotiation problems
are the major contributions of our chapter.

This approach is employed for the following reasons: the basic concepts of TOP-
SIS are rational and understandable; the computation processes are straightforward
and take into account the negotiation space of each issue; the concepts of the ideal
and anti-ideal solutions are easy to interpret and to represent in a simple mathe-
matical form; the modified FTOPSIS procedure makes it possible to expand the
negotiation template by introducing new options after the preference elicitation has
been conducted (within the actual negotiation phase); and the importance weights
are determined by subjective judgments using the AHP technique based on pairwise
comparison procedures instead of being simply assigned. The full Fuzzy AHP or
AHP technique is practically usable only if the number of criteria and alternatives
is sufficiently low, usually not higher than 9. Therefore, to avoid a possibly large
number of pairwise comparisons, the fuzzy TOPSIS is employed to obtain the final
ranking of packages. It eliminates the negotiator’s workload in the preference elici-
tation stage, makes it easier and allows to build the offers′ scoring system in a shorter
time.

Our chapter consists of four more sections. In Sect. 2 we discuss the negotiation
process and identify its elements that may be formalized and supported by means
of the proposed approach. Then in Sect. 3 we introduce the fuzzy TOPSIS model
for the evaluation of the negotiation template. In Sect. 4 we show how these scoring
systems may be used by a third party (or a negotiation support system) to improve
the negotiated agreement by applying a straightforward notions of fair solutions
derived from game theory. In Sect. 5 an example of using a fuzzy TOPSIS model of
negotiators’ decisions in supporting a bilateral negotiation is presented, showing also
the possibility of using the negotiators’ scoring system to visualize the negotiation
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progress and concession scale, as well as the suggestion for the improvement of the
agreement that was negotiated.

2 Negotiation Process and its Elements

To have a wider perspective on negotiation support it is worthwhile to look at the
negotiation process and its elements in detail, i.e. to identify the negotiation phases,
sub-processes, negotiators’ activities, and the dataflow. The Media Reference Model
[23], adopted later by Stroebel and Weinhardt [25] for electronic negotiation context,
identifies four major phases of interaction with accompanying sub-phases. In this
form it is known as the Montreal Taxonomy (Fig. 1).

The information phase consist of all the preparation activities the negotiators
undertake to identify the problem and the counterparts and to elaborate scenarios for
direct interactions with other parties. The intention phase consists of the exchange and
evaluation of offers. In the agreement phase the parties decide whether to accept or
reject the offer of their counterpart. Finally in the settlement phase of the negotiation
the parties confirm the contract and execute it.

Montreal Taxonomy was verified and extended by Jertila and Schoop [11] to
include the specificity of bilateral negotiations. In this form it distinguishes between
private and public information (Fig. 2).

Here the negotiation process starts with the information phase, in which each
party tries to recognize the negotiation problem individually. Then they contact each
other and declare their willingness to negotiate. If both decided to negotiate, they
pre-negotiate the organization of the negotiation process, i.e. what will be the meta-
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Fig. 2 Bilateral extension of Montreal Taxonomy. Source On the basis of [11]

level of the forthcoming negotiation. They agree on the negotiation protocol and
agenda and specify the negotiation issues and options (negotiation space) building
this way a negotiation template. This stage opens the intention phase. Then the parties
start the process of exchanging offers (the actual negotiation). This process binds the
intention phase with the forthcoming agreement phase, since the parties iteratively
propose and receive the offers, conduct a detailed analysis of their pros and cons and
decide whether to accept them or reject or even to terminate the negotiation. This
analysis is based on the decision making model applied in the negotiation support tool
or used individually by the parties. The important issue here is that the information
exchanged during the offer submission may influence the fundamental descriptors of
the meta-level negotiation. Hence, if the parties realize that the negotiation situation
or the problem itself changes, they may also change the formal protocol, agenda or
template and restart the negotiation process again. If one of the offers submitted is
accepted, the process moves to the settlement phase, where the negotiators jointly
build the final negotiation contract and then, individually monitor the process of its
execution.
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As we see, the strategic element in the intention and agreement phases of negoti-
ation is the decision making model offered to the parties by the negotiation support
system or the third party facilitating the process. Its parameters are initiated by the
data developed as a result of the meta-level negotiation activity and may be changed
by the feedback which the parties receive during the offer submission stage. The
model itself provides the negotiator with adequate information about the quality
of the offers submitted that is sufficient for the negotiator to decide whether an
offer could be accepted. To do it well, the model has to take into consideration the
detailed information about the focal negotiator’s structure of preferences. Therefore
the process of building such a model ought to be conducted thoroughly and minutely.
Below we present a simple schema presenting the main steps of building such a model
(Fig. 3), which is similar to other MCDM algorithms such as PrOACT [9] or SMART
[3].

The formulation of the negotiator’s decision model begins with the problem for-
mulation. A precise definition of the problem must be stated, which will help to
elaborate a suitable negotiation template. In the second step, the negotiator needs to
define the objectives to be achieved during the forthcoming negotiations and trans-
form them into the negotiation issues (the equivalents of decision criteria in the
standard decision making problem). We can say that a negotiation package is an
offer, which the negotiator may send to or receive from their opponent, an issue is
a criterion the negotiator uses to evaluate the offers and an option is the potential
resolution level of the criterion.

Then (Step 3) a feasible negotiation space is defined, which may be specified
by means of a decision matrix if the negotiation problem is discrete, or may be
more vaguely described by means of feasible ranges of the resolution levels for each
negotiation issue defined in the previous step. These three steps of the algorithm
allow for an objective definition of the negotiation template, while the next three
operate with the subjective preferences of a negotiator to fine-tune the parameters
of the model and build the scoring system of the negotiation offers that precisely
reflects the negotiator’s individual evaluations.

Step 4 requires the implementation of a selected MCDM method, that will be
used for preparing the scoring system. In this paper we will apply the fuzzy TOPSIS
modified algorithm together with the AHP single-level procedure; the latter one used
only to estimate the weights of negotiation issues. Any other MCDM model can be
applied here, but it naturally requires prior modifications and adequate adaptation of
the scoring algorithm to the negotiation context and requirements.

In Step 5 we apply the TOPSIS scoring algorithm to evaluate the negotiation space
and the predefined template (for details see Sect. 3). If the negotiator is not satisfied
with the global scores, he can modify the model parameters to rescore the system
and adjust it best to his preference structure (Step 5f, optional). A scored template
allows to build the final ranking of all salient packages (Step 6). The negotiators are
now able to identify groups of offers of acceptable and similar quality that can be
used in the successive negotiation phases as alternative concessions.

Note that we assume that the specification of the negotiation space, as well as the
negotiator’s preferences, cannot be done in a precise and thorough way (which is
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Fig. 3 Formulation of the negotiator’s decision model

typical for very many negotiation situations involving uncertainty and risk). There-
fore we allow the negotiators to express their preferences using imprecise and vague
evaluations. They may operate directly with triangular fuzzy numbers (TFNs) for
quantitative issues or express their preferences verbally using linguistic labels that
are transformed later into their numerical equivalents. The specificity of fuzzy num-
bers allows also to transform other types of data into the TFNs. If there are some
issues, for which the negotiator is able to precisely define their resolution levels,
we may transform the crisp values into TFNs using simple transformation formu-
las (see [1]).
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3 Negotiation Decision Making Model Based on Fuzzy TOPSIS

3.1 Triangular Fuzzy Numbers (TFN)

As mentioned before, our approach applies the fuzzy TOPSIS (FTOPSIS) operating
with Fuzzy Triangular Numbers (TFNs). The reason for using a TFN is that it is
intuitively easy for the decision-makers to interpret. It provides an effective way
for formulating decision problems where the available information is subjective and
imprecise or it is represented by linguistic values. Technically, a fuzzy number is
characterized by an interval of real numbers with a grade of membership between 0
and 1. The membership function of a TFN is expressed in the following way:

μ�
A
(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x < a
x−a
b−a for a ≤ x ≤ b
c−x
c−b for b ≤ x ≤ c
0 for x > c

(1)

A TFN, denoted by
�

A = (a, b, c), is defined by three real numbers indicating the
smallest possible value (a), the most promising value (b), and the largest possible

value (c) of this TFN. A TNF
�

A = (a, b, c), is a non-negative fuzzy number, if
(and only if ) a ≥ 0. Below we list major TFN operations used later in TOPSIS

procedure. Let
�

A1 = (a1, b1, c1) and
�

A2 = (a2, b2, c2) be two positive triangular
fuzzy numbers, then [15]:

• multiplication of TFN by a real number k : k ⊗ �

A1 = (ka1, kb1, kc1),

• the fuzzy inverse:
(
�

A1

)−1 ∼=
(

1
c1
, 1

b1
, 1

a1

)

• max of TFN: max(
�

A1,
�

A2) ∼= (max(a1, a2), max(b1, b2), max(c1, c2)),

• min of TFN: min(
�

A1,
�

A2) ∼= (min(a1, a2), min(b1, b2), min(c1, c2)),

• the vertex distance: d(
�

A1,
�

A2) =
√

1
3

(
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2

)
.

The linguistic variable is a variable whose values are words or sentences in a
natural or artificial language [31]. The notion of a linguistic variable provides means
to approximate a characterization of phenomena, which are too complex or too ill-
defined to be described in conventional, crisp quantitative terms. These linguistic
variables should have quantitative equivalents. One possibility is to define these
equivalents in the form of positive triangular fuzzy numbers. An example of such a
linguistic variable is given in Table 1.

In the linguistic scale shown in Table 1 there are three major categories describing
the option ratings: Poor (P), Fair (F) and Good (G). Four more categories describe the
intermediate ratings: Very poor (VP), Medium Poor (MP), Medium Good (MG) and
Very Good (VG). Each of these categories has the TFN equivalents that are based on
the consecutive odd numbers ranging form 0 to 10 including endpoints. Therefore
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Fig. 4 Major (bold) and intermediate (dashed) categories of the linguistic scale based on TFNs

the TFN equivalent of (P) is (0, 1, 3), and for (F) we obtain (3, 5, 7). The intermediate
levels begin with (0, 0, 1) for (VP) and end with (9, 9, 10) for (VG)—see Fig. 4.

3.2 TOPSIS

Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) has
been developed by Hwang and Yoon [10] for solving the MCDM problems. The
basic principle of TOPSIS is that the chosen alternative should have the “shortest
distance” to the positive ideal solution (PIS) and the “longest distance” to the negative
ideal solution (NIS), where PIS is the solution maximizing the benefit criteria and
minimizes the cost ones, while NIS is the solution maximizing the cost criteria and
minimizes the benefit ones. In the classical TOPSIS algorithm, the ratings and the
weights of the criteria are defined precisely, so the application of this technique is
limited to the well-structured decision (negotiation) problems only. However, since
human preferences are often vague and cannot be expressed by exact and precise
numerical values, the application of fuzzy concepts in negotiation support seems
more relevant. Following the principles of FTOPSIS procedure [1] we need first to
convert the decision matrix into a fuzzy decision matrix and then operate on these

Table 1 Linguistic variables for the ratings

Linguistic variables Fuzzy triangular numbers

Very Poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)
Medium Poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)
Medium Good (MG) (5, 7, 9)
Good (G) (7, 9, 10)
Very Good (VG) (9, 10, 10)

Source [1]
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fuzzy evaluations (construct a normalized and weighted fuzzy decision matrix, apply
vertex fuzzy distance notion form measuring the distances etc.).

We propose some modifications of the FTOPSIS procedure to fit it better to the
support of the negotiation process (for details see [20]). Taking into account the
fact that during the negotiation process the negotiator can introduce new alternatives
(outside of the predefined template) we propose to define subjectively the ideal and
anti-ideal solutions in the form of aspiration and reservation packages, which expands
the initial negotiation space defined on the basis of TOPSIS-based max and min
solutions. This will make our negotiation problem stable, which means that the new
offer will not change the scoring system obtained before this offer was introduced
into the predefined set of alternatives, nor will it result in rank reversal which can
appear in the classic TOPSIS procedure [2, 6]. To obtain criteria weights the AHP
method may be used, the pairwise comparisons of which would allow the negotiator
to define their preferences in a natural and intuitive way. This technique can be also
easily integrated with FTOPSIS procedure.

The process of preparing the negotiator’s decision model (see Fig. 3) may be
described as follows:

• Step 1. Definition of the negotiation problem
The negotiator conducts a thorough analysis of the problem. He thinks of potential
ways of solving it and considers how the negotiation with the potential counterpart
may solve this problem.
• Step 2. Identification of the objectives and their transformation into the nego-

tiation issues.
The negotiator thinks of the major objectives connected with the forthcoming
negotiation. These objectives are the evaluation criteria of the potential negotia-
tion contract. The relevant negotiation issues are elaborated on the basis of these
evaluation criteria and associated measurement scales are assigned to each of the
issues.
Let us denote by Z = {Z1, Z2, ..., Zn} the set of n issues. The set Z can be divided
into two sets: I —a subset of benefit issues (the higher value the more preferable)
and J—a subset of cost issues (the lower value the more preferable).
• Step 3. Definition of the negotiation space.

Let D j denote the negotiation space with respect to the jth issue. It is defined in the
form of a set of feasible options and bounded by the lowest acceptable target value
(reservation limit) r j ∈ D j and an aspiration value a j ∈ D j , where j = 1, 2, ..., n.
These values give the maximum limit of demands as well as the minimum limit
of concessions and define the negotiation space for each issue.
• Step 4a. Transforming the problem descriptors into fuzzy data.

All packages are measured with regard to every issue using a related measurement
scale. We assume that in the preliminary step of the negotiation modeling the nego-
tiators may choose the way of describing the resolution levels of the issues. These
evaluations can be based on different types of data (numerical values, linguistic or
mixed values) and subjective judgments.
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A sufficiently representative and manageable set of packages is generated in the
form of a finite set of negotiation packages P = {P1, P2, ..., Pm}, that are prede-
fined as examples of the potential negotiation contract. The definition of the set P
is a fairly important issue, since it puts frames on the future negotiation analysis.
Each package can be represented as Pi = [xi1, ..., xin]– where xi j ∈ D j . The
standard TOPSIS method requires the xi j to be defined by means of precise values.
Here we assume that if some of the criteria (or all of them) are uncertain or
imprecise or have subjective characteristics, then the triangular fuzzy number
(TFN) transformations are used to express the negotiator’s assessments. All input
data have to be represented in the form of TFNs

�
x = (a, b, c). The crisp values

x ∈ � are transformed into TFNs by the formula
�
x = (x, x, x).

Now every package Pi is represented by a vector P̂i =
[
�
xi1,

�
xi2, ...,

�
xin

]
, where

�
xi j is a TFN representation of the jth issue’s option in the ith package.
• Step 4b. Elaborating the ideal and anti-ideal solutions.

In this step we construct two packages PI and PAI , that represent the aspiration
and reservations levels of a negotiator [20]. The reservation package, BATNA,1

has the form: PAI = [�x PAI 1, ...,
�
x PAI n] where

�
x PAI j is a TFN representation of

the reservation level for the jth issue and PI = [�x PI 1, ...,
�
x PI n] where

�
x PI j is a

TFN representation of the aspiration level of the jth issue. Let us denote by
�
x PI j =

(a j
PI
, b j

PI
, c j

PI
) and

�
x PAI j = (a j

PAI
, b j

PAI
, c j

PAI
) (any other option is described by

a TFN as follows
�
xi j = (ai j , bi j , ci j )) the fuzzy triangular numbers that represent

the resolution levels for the jth issue in the packages PI , PAI , respectively. If
the criteria are defined numerically, we can take

�
x PI j = (x+j , x+j , x+j ),

�
x PAI j =

(x−j , x−j , x−j ), where x+j , x−j are extreme values such that

x−j ≤ max xi j
i

for i = 1, 2, ...,m; j = 1, 2, ..., n (2)

x+j ≥ max xi j
i

for i = 1, 2, ...,m; j = 1, 2, ..., n (3)

where xi j is a value of the jth issue’s option in the ith package.
Then

�
x PI j =

{
(x+j , x+j , x+j ), if j is a benefit criterion
(x−j , x−j , x−j ), if j is a cost criterion

(4)

and

�
x PAI j =

{
(x−j , x−j , x−j ), if j is a benefit criterion
(x+j , x+j , x+j ), if j is a cost criterion

(5)

1 Best Alternative to Negotiated Agreement (see [4])
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Table 2 Summarization of the experiments

Importance
intensity

Definition

1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance
2, 4, 6, 8 Can be used to express intermediate values

Source [22]

are the TFNs that represent the resolution levels for the j th issue in the packages
PI , PAI , respectively. For the criteria represented by linguistic variables we can
use the numerical equivalents of extreme linguistic values such as: Very good (VG)
or Very poor (VP).
• Step 4c. Determining the issue weights.

We use the well-known Analytic Hierarchy Process (AHP) proposed by Saaty
[22] for determining issue weights. When applying AHP, the negotiator’s prefer-
ences are elicited by means of a pairwise comparison of the issues. Saaty [22] has
recommended a 9-level verbal scale with the equivalent numerical evaluations to
describe the evaluation of the given pair. In the negotiation context, if two criteria
(issues) are of equal importance, the value of 1 is assigned to the pair being com-
pared, whereas the value of 9 indicates the absolute importance of one criterion
over the other (see Table 2).
The judgments are put into the matrix A = [

ai j
]
, which contains the pairwise

comparison elements,

ai j = wi

w j
(6)

where wi and w j are the relative importances of criteria i and j, respectively, their
reciprocals, a ji = 1

ai j
and aii = 1.

The weights of the criteria can be calculated by averaging over the normalized
columns using the following formula:

wi = 1

n

n∑

j=1

(
ai j∑n

i=1 ai j

)
(7)

Saaty established also a Consistency Index (CI) of the square matrix A. This
measure can be used to verify the extent to which the judgments supplied are
consistent.

C I = (λmax − n)

n − 1
(8)

where λmax is the highest eigenvalue of the matrix A.
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To decide whether the CI is acceptable or not, the Random Consistency Index (RI)
is provided, which is the average CI of randomly generated reciprocal matrices
of dimension n [22]. The degree of inconsistency of the square matrix A can be
measured by the ratio of CI toRI, which is called the Consistency Ratio (CR).

C R = C I

RI
.100% (9)

We can conclude that the matrix is sufficiently consistent and accept the matrix
when C R ≤ 10%. Otherwise, it can be concluded that the inconsistency is too
large and unacceptable, so that decision makers must revise their judgments.
• Step 4d. Initiating the fuzzy TOPSIS model.

The negotiation context dependent factors discussed in the two previous steps are
now transformed into the TOPSIS algorithm parameters. Thus we obtain the vector
of criteria weights derived from the evaluation of the issues:

w = [w1, w2, . . . , wn], (10)

as well as the ideal and anti-ideal solutions defined by the aspiration and reserva-
tion packages PI and PAI , and the fuzzy decision matrix representing the set of
predefined negotiation offers

X̂ P∪{PI ,PAI } = [�xi j ], (11)

for i = 1, . . .,m + 2, j = 1, . . ., n.
• Step 5. Evaluation of negotiation packages.

The scoring points for negotiation packages are determined using fuzzy arithmetic
(see [1]). We follow the modified FTOPSIS algorithm:

– Step 5a. Construction of the normalized decision matrix. Normalization allows
for inter-criteria comparisons, since it reduces the empirical ranges of feasible
options to the unified common range. The normalized fuzzy decision matrix
Z = [

ẑi j
]

can be expressed by the following formula:

�
z i j =

(
ai j

cmax
j
,

bi j

cmax
j
,

ci j

cmax
j

)
, where j ∈ I, j = 1, 2..., n (12)

�
z i j =

(
amin

j

ci j
,

amin
j

bi j
,

amin
j

ai j

)
, where j ∈ J, j = 1, 2..., n (13)

where amin
j = min

i
ai j , cmax

j = max
i

ci j and the values ai j , bi j , ci j are the

descriptors of the fuzzy option
�
xi j = (ai j , bi j , ci j ).

Note that if all options in the package being normalized belong to the negotiation
space, the following relations are satisfied: amin

j = a j
PAI

and cmax
j = c j

PI
.
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– Step 5b. Construction of the weighted normalized decision matrix. In the

weighted normalized fuzzy decision matrix V =
[
�
r i j

]
the criteria importance

is taken into consideration:

�
r i j = w j ⊗ �

z i j for i = 1, . . . ,m + 2; j = 1, . . . , n. (14)

– Step 5c. Determination of the fuzzy positive ideal solution (FPIS) and the fuzzy
negative ideal solution (FNIS). The fuzzy ideal solution FPIS (A+) and the
fuzzy anti-ideal solution FNIS (A−) have the form:

A+ =
(
�
v
+
1 ,�v
+
2 ,...,�v

+
n

)
=

(
max

�
r i1

i
,max

�
r i2

i
, ...,max

�
r in

i

)
(15)

A− =
(
�
v
−
1 ,�v
−
2 ,...,�v

−
n

)
=

(
min

�
r i1

i
,min

�
r i2

i
, ...,min

�
r in

i

)
(16)

– Step 5d. Calculation of the distances of each alternative from FPIS and FNIS,
respectively.

d+i =
n∑

j=1

d(
�
r i j ,

�
v
+
j ), i = 1, 2, ...,m + 2 (17)

d−i =
n∑

j=1

d(
�
r i j

�
v
−
j ), i = 1, 2, ...,m + 2 (18)

where d( Â, B̂) is the vertex distance between two triangular numbers Â, B̂.
– Step 5e. Calculation of the relative closeness to the FPIS. For each alternative

the closeness coefficient is determined, that aggregates the values of d+i and d−i
into a scalar criterion. For the alternative i we compute:

CCi = d−i
d−i + d+i

(19)

where 0 ≤ CCi ≤ 1, i = 1, 2, ...,m + 2.

• Step 6. Ranking all alternatives according to descending CCi .

Let us denote by C = {CCi , Pi ∈ P} the set of closeness coefficients, the
differences of which �CC=i/kCCi−CCk can be interpreted as a cardinal mea-
sures of concessions made by the negotiator when moving from offer i to
k (i, k = 1, 2, ...,m). The negotiator’s decision problem can be thus formally
described as the nine-tuple:

(Z , P, I, J, w, PI , PAI , X̂ P∪{PI ,PAI },C). (20)
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Having defined the model in this form, the negotiator is able to conduct the intention
phase, i.e. specify their offers, analyze the quality of their counterpart’s proposals,
measure the scale of concessions made by their counterpart in the successive stages
of the offer submission phase etc.

Let tr be the time variable denoting the negotiation round within the offer submis-
sion phase (r = 1, ..., T ). In the round t1 one party makes a proposal, i.e. submits an
offer, which their counterpart may accept or reject. Its acceptance is equivalent to an
agreement and the negotiation ends successfully. Its rejection constitutes a disagree-
ment and the negotiation proceeds to the round t2 , in which the counterpart makes
their proposal (that the focal negotiator may accept or reject). The process continues
as long as one of the offers will be accepted or rejected without any counteroffer. The
negotiations are thus the paths of offers and counteroffers concluded with an agree-
ment or disagreement. These paths may be visualized using the negotiation history
and negotiation dance graphs that allow negotiators to track negotiation progress and
consider the current negotiation offer in a wider perspective of previous proposals.

4 The Post-Agreement Improvements

After completing the intention phase the parties may conclude with an agreement. In
this case they move to the settlement phase and build the final form of the negotiation
contract. Having known the negotiators’ scoring system the third party (mediator,
negotiation support system etc.) may analyze the efficiency of the negotiated agree-
ment and search for its possible improvements. In this situation the negotiation can
be regarded as a cooperative game, for which bargaining solutions may be applied
[28]. The first approach to solve the negotiation problem in this way was proposed by
Nash [17]. Let us assume that the preferences of both parties are formally described
by utility functions fs , fb:

fs : P → [0, 1] fb : P → [0, 1]

These functions assign to each feasible alternative (a negotiation package) a poten-
tial level of satisfaction. In our particular application context the value of CCi is
assigned to the i-th negotiation package ( fs(Pi ) = CCs

i fb(Pi ) = CCb
i ). Let U be

the set of all possible score profiles for both parties (CCs
i ,CCb

i ) where CCs
i

(
CCb

i

)

is the closeness coefficient for the Seller (Buyer), respectively. By d we denote the
disagreement point d = (ds, db) = (CCs

p,CCb
p) in the set of profiles, which is the

outcome obtained when no agreement is met. In the particular application context
this point corresponds to the solution obtained in the previous phase of negotiation,
that is, to the pth package. Nash assumed a set of axioms that the negotiation solution
δ(U, d) should satisfy:

1. The solution δ(U, d) should be Pareto efficient meaning that there does not exist
a pair of score profiles (CCs

i ,CCb
i ) ∈ U such that (CCs

i ,CCb
i ) ≺ δ(U, d).
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Fig. 5 Examples of Nash, Kalai-Smorodinsky and Gupta-Livine bargaining solutions. Source [5]

(CCs
i ,CCb

i ) ∈ U

2. Symmetry should be satisfied, meaning that if we consider a situation for which
ds = db and (CCs

i ,CCb
i ) ∈ U ⇔ (CCb

i ,CCs
i ) ∈ U then δ1(U, d) = δ2(U, d).

3. Invariance of the solution under equivalent scoring functions representa-
tions. If the bargaining problem (U, d) is transformed into (U ′, d ′) by taking:
CCs

i
′ = αsCCs

i + βs, CCb
i
′ = αbCCb

i + βb and ds
′ = αsds + βs, db

′ =
αbdb+βb where αs > 0 αb > 0 then δs(U ′, d ′) = αsδs(U ′, d ′)+βs, δb(U ′, d ′)
= αbδb(U ′, d ′)+ βb.

4. Independence of irrelevant alternatives (packages). For two problems (U, d)
and (U ′, d) with U ⊂ U ′ and δ(U ′, d) ∈ U , we obtain δ(U, d) = δ(U ′, d).

Nash proved that there exists a unique bargaining solution satisfying these axioms
and which has the following form (see also Fig. 5):

Pk = arg max
Pi∈P

( fs(Pi )− ds)( fb(Pi )− db) (21)

Another popular bargaining solution is the Kalai-Smorodinsky solution [12],
which is obtained when the fourth axiom (in the Nash solution) is replaced by the
monotonicity axiom. Visually, the Kalai-Smorodinsky solution can be presented as
the point of intersection of the Pareto frontier and the line connecting disagreement
point with utopia (in the space of score profiles of both parties). Utopia can be deter-
mined by taking the pair of scores of the ideal points of both parties or the pair of
aspiration levels of both parties (see Fig. 5). The Gupta-Livne solution [8] is deter-
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Fig. 6 The Raiffa pay-off pair
determined by the arbitration
scheme. Source [19]
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mined in analogous way to the Kalai-Smorodinsky solution by taking the point of
intersection of the efficient frontier with the line segment joining some intermediary
negotiation solution (reference) with the global utopia point.

Before the Kalai-Smorodinsky solution was proved to satisfy the axioms men-
tioned Howard Raiffa (Raiffa 1952) had proposed an arbitration scheme consistent
with this solution. For the sake of illustration we will use a different scale for the
explanation of this scheme. Let us assume that during the negotiation the negotiators
can gain pay-offs (scores) from the following intervals:

Ds = [60, 82], Db = [50, 82.5]

When the negotiators leave the negotiation table without an agreement their pay-
offs are consistent with the lowest values D P P = (60, 50) that correspond to the
disagreement point. The aspiration levels of the negotiators are the maximal values of
pay-offs they can potentially reach: (S, B) = (82, 82.5). The region of feasible pairs
of pay-offs is bounded by the Pareto frontier (see Fig. 6). All bargaining solutions
constitute a pair of pay-offs located on this frontier. The pair of pay-offs determined
by the aspiration levels corresponds to the utopia point which cannot be reached
since it is located outside the set of feasible pairs of pay-offs. The Raiffa pay-off pair
is the efficient pay-off pair on the line segment connecting the disagreement (DPP)
and the aspiration pay-off pair (S,B).

As mentioned above, Kalai and Smorodinsky proposed axiomatizing this solution
and proved the Raiffa characterization theorem stating that the Raiffa method is
the only efficient, unbiased, scale invariant and individually monotone method (the
axioms describing the Kalai-Smorodinsky solution).

The Raiffa method is an arbitration scheme meaning that the negotiation solution
is dictated by a trusted third party. However, in the case of a protocol based on iterative
exchange of offers and counter-offers we do not require the parties to use the help of
a third party in the intention phase of the negotiation process. The help of such a party
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Fig. 7 Illustration of the Gupta-Livne solution (GL) as a possible improvement of the agreement

may be useful in the post-optimization phase which is non-mandatory, which means
that both parties have to agree to participate in this phase. The additional phase of
the agreement improvement may be useful since the parties very often do not reach
a Pareto efficient outcome. The post-optimization phase assumes that the agreement
obtained by the parties so far cannot be made worse; it can only be improved at least
for one party if not for both.

The post-negotiation phase involves the disclosure of preferences to the third
party (human mediator or software support system), which can determine the Pareto
frontier in the space of score profiles in order to suggest an improved agreement.
The Raiffa-Kalai-Smorodinsky solution can be adjusted to fit the problem of post-
optimization. Let us assume that in the actual negotiation phase the negotiators agreed
on an alternative and now they enter the post-optimization phase. Figure 7 shows that
we do not need to consider the whole set of profiles. We know that the improved
solution will dominate the reference (the current agreement). Therefore, we need only
to consider a set of packages for which the score profiles dominate the reference.

If we consider only the set of profiles which dominate the reference (see Fig. 8)
then we obtain an analogous situation to the original arbitration scheme. As men-
tioned before the Gupta- Livne solution is located on the line segment connecting
the reference with aspiration level. As illustrated on Fig. 7 this solution resembles
the Raiffa-Smorodinsky-Kalai solution except that it considers the global aspiration
level (Aspiration1 in Fig. 8) taken from the full set of profiles.

We propose to change the aspiration level to make it consistent with the reduced set
of profiles (Aspiration2 in Fig. 8). The reduction of aspiration levels from Aspiration
1 to Aspiration 2 is appropriate here since the set of profiles is reduced to the relevant
profiles only and therefore the same should happen with the aspiration level. If the
aspiration level (Aspiration1) is changed into the level Aspiration2 the GL1 solution
is transformed into Raiffa 2 (Fig. 8).



Supporting Ill-Structured Negotiation Problems 357

70

75

Aspiration1

Raiffa1

80

85

65 70 75 80 85

GL

Aspiration2

Raiffa2
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Formally, the procedure of improvement has the following form. Let us consider
a finite set P of feasible alternatives. The third party has at its disposal the set P and
the scores assigned to all alternatives from the viewpoint of both negotiating parties:

CCs
i = fs(Pi ), CCb

i = fb(Pi ) i ∈ {1, ..., n}.

The pairs of scores for all alternatives considered are formed as follows:

U = {(CCs
i ,CCb

i ), i ∈ {1, ...n}}.

In the next stage the Pareto front of the set U is determined in the form of the following
set:

P = {u ∈ U |¬∃v ∈ U |v ≺ u}.

where≺ is the relation indicating that the profiles are in Pareto order. In the next step
the reference (the current agreement) in the space of score profiles ur = (CCs

r ,CCb
r )

and the utopia (or aspiration level) uu are connected with a straight line in the space
of score profiles. The profiles located on this line are of the following form:

R = {v ∈ U |v = ur + t · (uu − ur ), t ∈ [0, 1]}.

If the aspiration is used as utopia it can be determined in the following way:

uu = ( max
i∈{1,..,n}CCs

i , max
i∈{1,..,n}CCb

i ).

For each package Pk ∈ P (belonging to the Pareto front) the distance from
the line R is computed: dk = d(Pk, R). By calculating the shortest distance d j =
min{dk = d(Pk, R)|Pk ∈ P} we can find the efficient package which constitutes the
approximation of Gupta-Livne (or the Kalai-Smorodinsky) solution. Since instead
of a full set of efficient packages we have at our disposal a discrete set, the bargaining
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solutions are approximated. Therefore the package from the Pareto front P for which
the profile score is nearest to the line R is selected as the agreement improvement.

5 Scoring Negotiation Offers with Modified Fuzzy TOPSIS:
An Example

Let us now consider a buyer-seller negotiation that allows us to show how the
proposed formalization and the FTOPSIS-based model can support the process
of bilateral negotiation. The parties are negotiating the conditions of the poten-
tial business contract. Three issues are discussed: Z1 − unitary price (EUR), Z2 −
payment conditions (days), Z3−warranty policy. The issues Z1,Z2 are represented
directly by TFNs, although the initial definition of the negotiation’s key issue (price)
is precise and the price options are mapped to TFNs before the construction of the
decision matrix. The issue Z3 is of qualitative nature and can be defined as a combi-
nation of options describing the warranty period and place where the possible repairs
will be done. Therefore Z3’s options are subjectively pre-evaluated by negotiators
using linguistic variables, which are also encoded by TFNs and the corresponding
linguistic scale presented in Table 1. The negotiation spaces defined by the crisp
values for Z1, Z2 and the linguistic ones for Z3 are the following:

• Price (EUR): 〈56, 68〉 for both parties;
• Payment (weeks): 〈1, 8〉 for both parties,
• Returns: 〈Very Poor (VP), Very Good (VG)〉 for both parties.

Z1 is the benefit (cost) issue for the Seller (Buyer), Z2 is cost (benefit) for the Seller
(Buyer). Z3 is assessed by both of them as benefit.

To build the initial set P the negotiators define the salient options for each issue.
Let us assume they are given as:

• Price: 58, 60, 62, 64, 66, 68.
• Payment: (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 7), (6, 7, 8).
• Returns: ‘2 years at seller’s repair centre (2S)’, ‘2 years at buyer’s office (2B)’,

‘1 year at seller’s repair centre (1S)’, ‘4 years at buyer’s office (4B)’. The buyer
evaluates linguistically the options in the following way: 2S—Fair, 2B—Medium
Good, 1S—Medium Poor, 4B—Good. The evaluations of the seller are: 2S—Fair,
2B—Medium Poor, 1S—Medium Good, 4B—Poor.

These options allow for building 6 × 6 × 4 = 144 various packages that will
constitute the set P. Suppose that the matrix for subjective preference weight com-
parisons is:

• AS =
⎡

⎣
1 8 9
1/8 1 2
1/9 1/2 1

⎤

⎦ for the Seller and AB =
⎡

⎣
1 6 8
1/6 1 2
1/8 1/2 1

⎤

⎦ for the Buyer.
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The weights vector determined by AHP is wS = [0.80, 0.12, 0.08] with C R =
3, 5 % and for the Buyer wB = [0.77, 0.15, 0.08] with C R = 1, 9 %.

We assume that the negotiators have defined the ideal and anti-ideal packages and
their TFN representations based on their aspiration and reservation levels (Table 3).
The options VG and VP of issue Z3 stand for Very Good and Very Poor and are
represented by their TFNs as (9, 10, 10) and (0, 0, 1).

The negotiation offers can be obtained in the form of combinations of options
drawn from different issues, located between aspiration and reservation levels with
respect to different criteria. However, during the negotiation process only finitely
many packages appear as Buyer or Seller offers.

Without loss of generality we can assume that the negotiations have been started
by Buyer and the negotiation process took 10 rounds with offers P1, . . ., P10 (see
Table 4). According to the linguistic scale presented in Table 1, the linguistic variable
P (Poor) is represented by the TFN equal to (0, 1, 3), MP (Medium Poor)—by (1, 3,
5), F (Fair)—by (3, 5, 7), MG (Medium Good)—by (5, 7, 9) and G (Good)—by (7,
9, 9).

The Buyer’s and Seller’s scoring systems for the selected set of packages with
Ideal and Anti-Ideal package (Table 3) obtained by the FTOPSIS procedure (formulas
(10)–(19)) are presented in Table 5. Observe that in the set of ten packages considered
four: P3, P8,P9,P10 are not Pareto optimal. Moreover, in every round of negotiation
each party was making concessions. However, some concessions were viewed by
the counterparts as being worse than the previously offered packages (see Table 5).
The Buyer’s second proposal (package P3) was given a lower score than package
P1. Similarly, packagesP8 and P10 were scored by the Buyer lower that package P6.
The difference between scoring points of packages P6 and P4 is very small from
the Buyer’s point of view, so they can be treated as alternative packages. But from
the Seller’s perspective these packages differ to a high extent. That means that small
concessions on the part of the Buyer may result in quite a high benefit for the Seller.
The negotiation history depicted respectively for the Buyer and the Seller is presented
in Figs. 9 and 10. They visualize the negotiation progress in each negotiator’s scoring
spaces, showing the scale of concessions made by both players from the perspective
of Buyer and Seller, respectively. We may observe how differently the parties see the
negotiation process. For instance, from the Buyer’s perspective, all his offers were
true concessions. The successive points that represent the concession path depict a
monotonously decreasing line, which means that each consecutive offer was worse
to him that the one proposed in the previous round. We can make an interesting

Table 3 The ideal and anti-ideal packages based on the negotiation spaces

package Z1Price Z2payment Z3returns
Buyer Seller Buyer Seller Buyer Seller

Ideal (56, 56, 56) (68, 68, 68) (8, 8, 8) (1, 1, 1) VG VG
Anty-ideal (68, 68, 68) (56, 56, 56) (1, 1, 1) (8, 8, 8) VP VP
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Table 4 The negotiation offers and co-offers

Round Offering party Package Z1 price buyer/seller Z2 payment buyer/seller Z3 Returns
Seller Buyer

r = 1 Buyer P1 (60, 60, 60) (4, 5, 6) F F
r = 2 Seller P2 (68, 68, 68) (3, 4, 5) P MG
r = 3 Buyer P3 (58, 58, 58) (3, 4, 5) MG MP
r = 4 Seller P4 (66, 66, 66) (6, 7, 8) MG MP
r = 5 Buyer P5 (58, 58, 58) (1, 2, 3) F F
r = 6 Seller P6 (64, 64, 64) (4, 5, 6) F F
r = 7 Buyer P7 (60, 60, 60) (1, 2, 3) MP MG
r = 8 Seller P8 (62, 62, 62) (3, 4, 5) MG MP
r = 9 Buyer P9 (62, 62, 62) (2, 3, 4) MP MG
r = 10 Seller P10 (64, 64, 64) (2, 3, 4) P G

observation: the same concession path analyzed from the Seller’s point of view is
interpreted differently. The Seller sees the Buyer’s second offer (P3) to be worse
than his counterpart’s first proposal (P1). Similarly, the Seller can claim that his
whole strategy was build of true concessions (his own concession path decreases –
see Fig. 10), while the Buyer will consider the offer P8 to be worse than P6.

As long as the parties operate with their individual history graphs they are unable
to correctly recognize the true intentions of each other. If they decide to disclose
their preferences to the third party (e.g. mediator or negotiation support system) the
negotiation dance graph may be drawn, which shows the parties’ concessions path
in their joint evaluation space (Fig. 11).

Now they exactly know which offers proposed as concessions have been inter-
preted as true concessions by their counterparts. If we look at the Buyer’s concession
path we can see that he indeed made a concession but on his counterpart he made
the impression of withdrawing. As the result they both lose (P1 dominates P3). They

Table 5 The Buyer-Seller scoring system

Package Seller Buyer
CCS Rank CCB Rank

P1 0.2966 9 0.5739 1
P2 0.5602 1 0.3229 10
P3 0.2931 10 0.5485 2
P4 0.5390 2 0.4448 7
P5 0.3773 8 0.4907 3
P6 0.4416 3 0.4449 6
P7 0.4013 6 0.4639 4
P8 0.4377 4 0.4109 9
P9 0.3818 7 0.4471 5
P10 0.4138 5 0.4221 8
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also know that the compromise they negotiated is not Pareto efficient, and there are
some other packages (negotiated before) that dominate the contract. They will see a
strong need to improve the negotiated agreement.

Figure 12 illustrates the score profiles for a large set of packages. The points of
Pareto front are marked with boxes. The approximations of Nash solution and the
Raiffa-Kalai-Smorodinsky solution are computed and illustrated in Fig. 12 as well.
Boxes correspond to non-dominated packages, while circles to dominated packages.
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These solutions can be applied in a situation where the arbitration scheme is used
instead of the iterative protocol. Let us assume that an agreement described by the
package P26 was reached in the intention phase of the negotiation process. From the
full set of packages, those dominating P26 have been selected as shown in Table 6.

Since all bargaining solutions are located on the Pareto frontier, first we derive
this frontier (non-dominated packages) to derive the approximation of bargaining
solution in the next step. We can see from Table 6 that the profile of scores of the
package P117 (0.4920, 0.49) is not dominated by any other profile since the buyer’s
scores of other packages are all lower than 0.4920. If we consider the package P118
(0.4481, 0.54) we can see that some packages have the seller’s score higher than
0.54, namely: P114, P120, P137, P141 and P142. However, the buyer’s scores of these
packages are all lower than 0.4481 which results in the conclusion that P118 is the
next non-dominated package. This procedure of pairwise comparisons has to be
performed for all packages to find the efficient ones. Column 8 in Table 6 contains
the efficient packages.

For the derivation of the approximations of Kalai-Smorodinsky solution the dis-
tances of efficient points from the line segment between the reference (0.3793, 0.49)
and the aspiration (0.492, 0.61) have been computed (column 9 of Table 6). From
Table 6 we can see that for the package P141 the distance is minimal (0.005935),
meaning that this package is the approximation of Kalai-Smorodinsky solution. The
approximation of Nash solution is obtained as the package for which the product of
both parties’ scores is maximal taking into account the reference point (0.004032,
the last column of Table 6 contains the products for all efficient packages). From
Table 6 we can see that the package P143 maximizes the product of scores.

The same set of packages is illustrated in Fig. 13 together with the approximations
of Nash and the Kalai-Smorodinsky solutions (P141) which overlap in this case

Seller’s
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score

P1

P3

P5

P2

P8

P6

P7

P9 P4

Dance by Buyer Dance by Seller

0.60

0.50

0.40

0.30

0.3 0.4 0.5 0.6

P10

Fig. 11 Negotiation dance graph
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Fig. 13 The illustration of packages dominating the interim agreement P26

(grey rectangle). The reference (agreement obtained before the post-optimization
phase) was represented by (0.3793, 0.49) in the space of profiles that corresponds
to the package P26. After the reduction of the set of profiles the aspiration level
was computed to be: (0.492, 0.61). As the improvement over the package P26 we
recommend to use the approximation of Kalai-Smorodinsky solution which in our
case is the package P141.
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6 Conclusions

The traditional approach to structuring the negotiation problem, analyzing nego-
tiators’ preferences and conducting the intention phase of negotiation assumes the
precise resolution levels of negotiation issues. However, the negotiators’ abilities
to understand the precise values describing the resolution levels of some issues for
some negotiators may be limited. Moreover, package evaluations may originate from
various sources and may have various nature (crisp value, fuzzy, linguistic or mixed).
Therefore in our paper we proposed a complete Negotiation Decision Making model
for the support of ill-structured negotiation problems, that is based on the AHP and
FTOPSIS techniques. The FTOPSIS allows for analyzing the negotiation problem
using the representation of these different kinds of data in the form of triangular fuzzy
numbers that can be further aggregated to derive the scores of any feasible package.
The mathematical description of offers involves the translation of vague expressions
into fuzzy numbers that can be easily used when performing arithmetic operations on
such evaluations. Particularly, the description of option values by natural language
seems relevant to ill-structured negotiations. The representation of values by verbal
terms requires to form numerically expressed equivalents of imprecise and vague
judgments.

On the other hand, a full scoring system able to assign a synthetic score to any
feasible package is an extremely useful tool supporting the actual negotiation phase.
That means that the negotiator can evaluate any package at any time of the intention
negotiation phase in terms of its overall performance. Moreover, the proposed scoring
system formation is resistant to the introduction of new packages and does not lead
to the ranking reversal, which means that the scoring system is stable. The FTOPSIS
method involving the computation of distance from the ideal and anti-ideal solutions
is straightforward and computationally very efficient even when fuzzy numbers are
used in the computations. Moreover, the AHP method is employed to elicit the
importances of the issues instead of the usual direct assignment. Conducting the
actual negotiation phase with an iterative exchange of offers and counter-offers allows
to attain an agreement that can be further improved in the post-agreement phase using
the concepts of Nash and Kalai-Smorodinsky bargaining solutions.

The proposed procedure will be validated empirically, namely different users will
test the procedure by solving sample negotiation problems. The users will evaluate
the approach in terms of different criteria such as: ease of use or transparency of the
approach.
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Abstract Property investment in the real estate industry entails high cost and high
risk, but provides high yield for return on investment. Risk factors in the real estate
industry are mostly uncertain and change dynamically with the surrounding develop-
ments. There are many existing risk analysis tools or techniques that help investors
to find better solutions. Most techniques available refer to expert’s opinions in rank-
ing and weighting the risk factors. As a result, they create misinterpretation and
varying judgments from the experts. In addition, investment purposes differ between
investors for both commercial and residential properties. There is therefore a need
for personalisation elements to enable investors to interact with the analysis. This
chapter presents a personalised risk analysis model that enables investors to analyse
the risk of their property investments and make correct decisions. The model has
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1 Introduction

Risk analysis is a popular and useful method and tool that enables investors to make
decisions on their investments. Property investment involves various risk factors
including policy, environment, management, technical issues, schedule, contractual
issues, location and finance. The current methods used to solve these issues are
Delphi, brainstorming, fault tree analysis and strengths, weaknesses, opportunities
and threats analysis [1]. Risk analysis consists of three stages: risk identification, risk
estimation and risk assessment. Risk identification is commonly used to minimise
the risk of the real estate losses [2]. Minimising the risk for property investment in
the real estate industry is important as it involves high costs that lead to high risk, if
not assessed properly.

Property investment risk analysis in the real estate industry involves decision
making under uncertainty. In the real world, there are many risks and opportunities
that can be measured as qualitative or quantitative factors that are subjective to
different investors. Some examples of risk factors in the real estate industry include
government policies, political risk, social risk, regulatory risk and contract risk.
The uncertainty of the risk factor of property investment in the real estate industry
will affect the risk analysis results. Existing risk analysis methods do not take into
account the personalisation criteria for decision making and most refers to expert’s
judgment to rank and weight the risk factors. This is due to investors not having
enough information about which property to invest in, given a set of constraints and
goals.

Moreover, experts in the field know more about the surrounding environment
of the property for investment. Main issue related to the application of experts or
professional judgment is that their judgments were not aligned and create misinter-
pretations. The expert’s interest must be aligned with the investors to gain trust and
achieve the investor’s goals and requirements. Therefore, personalisation criterion
is needed for property investment risk analysis to achieve an investor’s goals and
requirements by using decision support technology. The decision support tool or
technology helps to provide knowledge and process the input from both investors
and data stored in the system.

The application of decision support technology to provide explicit knowledge to
investors for property investment risk analysis will be more accurate and trustworthy
when compared to an approach that refers to expert’s judgment or opinion. However,
the knowledge transferred from the system to the investors is fully dependent on data
availability and completeness. Again, it depends on the investors’ understanding and
their level of knowledge to achieve a better result for their investment. Knowledge
management such as learner’s knowledge, learning material knowledge and learning
process knowledge is used to enable personalisation [3].

Therefore, it is important to have a personalisation model that will provide guide-
lines for the investor to achieve their goals, mitigate risk and, at the same time, gain
benefits from the investment made. The decision made for property investment risk
analysis must achieve investor’s goals and match with their limitations/constraints.
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Property investment in the real estate industry normally focuses on individual or
single user requirements either for residential or commercial types of investments.

Personalisation of risk factor ranking and measurement will be based on individual
requirements. Personalisation, as a significant capability to maximize the effective-
ness of decision support systems, provides useful information to support individuals’
decision making processes. Individual investors, as the decision makers, interact with
the system through personalisation. The personalisation technique proposed is impor-
tant to ensure the comprehensive feasibility studies of the risk factors are parallel
with investor’s limitations/constraints. The significance of the proposed model is the
user’s ability to interact and be involved in setting their limitations and requirements.
Investors rank and weight the risk factor based on their requirements to achieve an
optimal decision. This model can be applied to other applications that involve an
unstructured decision making process.

2 Risk Analysis in the Real Estate Industry

This section discusses the concepts of property investment risk analysis, decision
under uncertainty, and personalisation. These concepts relate mainly to property
investment risk analysis as applied in the real estate industry.

2.1 Property Investment Risk Analysis

It is universally agreed that real estate property investment creates big profits, com-
pared to other types of investment such as cash and fixed interest investments, bonds
and superannuation [4]. However, the risk and cost factors involved are also very high,
compared to other types of investment [5–10]. Investment in the real estate industry
incurs a slow liquidity and long term investment. Scientific investment decision mak-
ing processes are needed to carefully analyse and ensure investment decisions are
correct and effective. The feasibility studies of investment projects and property have
been researched and various methods have been proposed and applied to measure
risk analysis with the alternatives given [11, 12].

Comprehensive risk analysis is needed to help investors to make profits and, at
the same time, achieve their goals, since the investment decisions to be made by the
investors are complex and risky. The investment decisions are complex because of the
uncertain risk factors in risk analysis in the real estate industry. Since uncertainties
are involved in the factor determination over a period of time, it is very important to
understand how sensitive the factors are to the variation of the investor’s personal-
isation. Sensitivity analysis can be used to see the variation of the result if there is
variation in the factors personalized by the investors that will affect the real estate
property sold in a certain period of time.
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Generally, risk analysis in the real estate industry is affected by many factors such
as financial and interest rates, schedules, contracts, policies, and location. Property
investment in the real estate industry is specifically affected by micro analysis of
property features such as: price; size; number of bathrooms, bedrooms, number car
spaces and/or garages; internal property features, eg. alarm, polished timber floors.
In most cases, the property value will increase over time as development of the
surrounding environment of the respective property will contribute to the price of
the property.

Investor’s goals and limitations have an influence on the measurement of risk factor
ranking and weight, and the possible outcomes, or probabilities, will differ from each
other. An example is the goal is to invest in either residential or commercial property.
If the property investment is intended for commercial, the investor might plan to rent
the property for profit. However, if the investment is for residential property, then
the ranking and the weight of the risk factors affected would be different. This is due
to the ability to meet the mortgage repayment would be affected by the constraint of
investor’s capability. The investor’s character, for example, whether they are a risk
taker or not, also will influence the results of property investment risk analysis. To
include this factor in the property investment risk analysis, a personalisation criterion
is needed.

A great deal of literature and researches have been undertaken related to invest-
ment in large real estate projects, and various techniques have been deployed to
measure risk analysis. The most popular technique to rank and weight risk factors
for risk analysis in the real estate industry is an analytical hierarchical process (AHP),
developed by Saaty in 1980. However, no risk analysis for property investment to date
includes personalisation criteria for individual investment. According to the analysis
of current researchers, there has not been any attempt to include the personalisation
element to rank and weight the risk factor for property investment risk analysis. This
book chapter aims to redress this lack, and discusses in detail the personalisation
model proposed.

2.2 Decision Under Uncertainty

The uncertainty of the risk factor in the real estate industry led to a high cost and a high
risk for the risk analysis. Most existing technique for the risk analysis in the real estate
industry refers to experts in the field to rank and weight the risk factors especially for
the novice investor. This technique creates misinterpretation and different judgments
from different experts in the field which led to inaccurate risk measurement.

Dynamic risk analysis in the real estate industry has always dealt with the uncer-
tainty factors [13]. The uncertainty factors create high risk as it involves the high
cost of investment in the real estate industry [14–16]. The uncertainty of the risk
factor for investment risk analysis in the real estate industry includes financial risk,
economic risk, location risk, scheduled risk, technical risk, policy risk, contractual
risk and others. For example, the financial risk refers to the uncertainty of prof-
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its which originates from the process of financing, money allocation and transfer,
interest payment as financial aspects of a project [1]. Another example, the economic
risk includes economic risk, regional development risk, market supply and demand
risk and inflation risk which is uncertain [17].

The investors need to have in depth knowledge in the field to decide the best
investment and to reduce the risk of loss [18, 19]. Hence, knowledge management
of dynamic risk analysis is important to help investors make better decision and
reliable. Risk measurement to rank and weigh the risk factors is a major step to
consider. Existing risk analysis techniques are still lack of sufficient and comprehen-
sive evaluation for investors to make a good decision [20]. Tools to rank and weight
the uncertain risk factors for dynamic risk analysis, such as an analytical hierarchy
process (AHP) and Delphi methods have existed for some time. These techniques
referred to expert’s opinion in ranking and weighting the risk factors for risk analysis
[9]. Thus, it creates misinterpretation and different judgments from the experts or
professionals in the fields.

Moreover, these tools have significant shortcomings for settings personalized by
constraining the investor’s goals and objectives that change dynamically. In addition,
different user will have different requirements and goals of the investment. Some
requirements are simple and seem straight forward, while for others, are complex
and require more analysis to making the decisions. Therefore, there is a need for a
new method that is more reliable and trusted as compared to referring to the experts
in the field. Expert opinion was unable to incorporate more empirical evidence that
contribute to project failure [21].

Besides, other issues related to the application of expert opinion include lack
of reliable reference [22], expert opinion may change [21] and it depends on the
expert’s level of experience in the field [23]. As a result, a more systematic approach
to accumulating and reporting evidence that can provide in-depth knowledge and
can solve the problems from different user’s requirements.

2.3 Personalisation

The element of personalisation has been researched for many years and many per-
sonalisation algorithms have been investigated [24]. In this chapter, the term per-
sonalisation refers to “the mapping and satisfying of a user’s/business’s goal in a
specific context with a service’s/business’s goal in its respective context” [25]. Per-
sonalisation is motivated by the recognition that a user has needs, and meeting them
successfully is likely to lead to a satisfying relationship with what they require. Per-
sonalisation involves a process of gathering user-information during interaction with
the user, which is then used to provide appropriate assistance or services, tailor-made
to the user’s needs [25–28].

The technology of personalized service has been applied to many different fields.
Modern personalized service can provide pertinent service for different users so that
their specific demands can be met. In an Internet field the technology of personalized
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service can improve the quality of a web service and the efficiency of users’ access
[29, 30]. Personalisation criteria help to solve several issues because the vast majority
of queries to search engines are short and ambiguous, and different users may have
completely different information needs and goals when using precisely the same
query [24].

Personalisation enables users to fully utilize their constraints, such as budget or
capital, and time constraints, for investment in the real estate industry that are char-
acterized as long term planning. There is a gap in the literature of a need for the
justification of risk factor weight and ranking that is based on historical data driven
to decision support using knowledge discovery and investors’ personalisation for real
estate investment risk analysis. The application of data mining technology to find pat-
terns of data helps to provide accurate and valid information for users to understand,
analyse, and use as knowledge to enable them to make better decision. Personalisa-
tion helps to achieve a user’s goals and requirements by making recommendations
automatically, based on data available for analysis. Personalisation allows data to be
delivered and matched with the user’s requirements and interest to fully utilize the
user’s constraints.

Personalisation is a great advantage that enables users to fulfil their requirements
with given constraints. For example, in property investment risk analysis, investors
can set the rank and weight of the risk factors of the property features that align
with their limitations and goals. It is, therefore, a more effective way of meeting the
objective of property investment and achieves better results. In addition, no other
existing approaches in real estate property investment analysis take into account the
investors personalisation and applied the multi-dimensional analysis of the factors
that will affect the decision making process. There are many substantial studies
related to the application of AHP and Analytic Network Process for risk analysis in
different fields, including analysis of investment in the real estate industry. However,
limited study has been undertaken for property investment that does not include
the personalisation criteria for risk analysis in the real estate industry, based on
knowledge discovery from data mining processes. This book chapter proposes a
new personalisation model for risk analysis in the real estate industry that meets the
investor’s requirements to achieve their goals and objectives.

3 Personalized Property Investment Risk Analysis Model
in the Real Estate Industry

This section presents the personalized property investment risk analysis model. The
components, main activities and personalisation session involved are also discussed
in detail.
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3.1 Personalized Property Investment Risk Analysis Model

A personalisation model for property investment risk analysis in the real estate indus-
try is needed to fully utilize the investor’s limitation and at the same time fulfilling
their goals and requirements. Different investors will have different goals and may
have completely different information needs. There has been an impressive develop-
ment of methods for risk analysis in the real estate industry that focus more on real
estate projects, rather than individual investment analysis specifically for property
investment. The personalisation model proposed integrates the knowledge discovery
approach with the investor’s personalisation to enable effective decision making to
deal with the property investment risk analysis and meet investor’s requirements. A
personalisation model for property investment risk analysis in the real estate industry
is depicted in Fig. 1.

Fig. 1 The personalized property investment risk analysis model for the real estate industry
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As shown in Fig. 1, there are three components included in the proposed person-
alisation model:

(1) User;
(2) Technology; and
(3) Data.

Each of these components has its own functions and is interconnected with each
of the other components to support decision making for property investment risk
analysis. Based on these three components, the user and data will generate input for
the technology to process them and produce the output for the risk analysis.

The user will provide the input for the system that applies the decision support
technology to process and match with the available data in the system. By providing
input to the system, the user actually acquires knowledge that will help them to make
decisions for the property investment risk analysis. The decision support technology,
or tools, processes the input and data available in the system. The data stored in the
system will be processed by this technology as output in the form of information
for the user to exploit as explicit knowledge. Based on the explicit knowledge, the
user, as investors, will have experience based on a heuristic approach to exploit the
tacit knowledge. The knowledge transfer from technology to user involves different
types of decision support tools, a web-based application, a network, knowledge
management technology, data warehouse application and data mining, and online
analytical processing (OLAP). The knowledge provided by the system to the user is
based on the data, or input, available stored as either primary or secondary data.

The personalisation model will provide the pattern of data to determine the factors
that contribute to analysis of buying or selling of real estate property, and raise the
questions of what, why, and when? For example, the data driven approach will
explain what factors contribute to the short time frame for the property sold. Is it
because of the features of the property, location, price, type of property, type of sale,
sale result, size of property for a certain period of time, or what real estate agency
handles the transactions? This model presents a data driven system and a process from
data to patterns, and from patterns to applicable rules/methods for decision support.
The what-if analysis through personalisation criteria will determine the effects of
any pattern changes made to the risk factor measurement that match the investor’s
requirements. The output from the technological components will be transferred to
the user through the risk analysis process.

The three steps of risk analysis consist of risk identification, risk measurement and
risk assessment. The risk identification will be classified based on the data available
in the system that matches with the criteria provided by the user. Risk measure-
ment involves ranking and weighting the risk factor for the investor to analyse. Risk
assessment will then take place in order to achieve the results. The results, as rec-
ommendations, will be displayed as risk reporting, which will comprise the threats
(risks) and opportunities for the available selections. Finally, the user (specifically,
the investor) will run the personalisation session with the rank and the weight of the
risk factor until it meets their requirements and they are satisfied with the results.
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3.2 Components of the Personalized Property Investment Risk
Analysis Model

The proposed personalized model for property investment risk analysis in the real
estate industry has three main components: user, data and technology. The user is
an independent component and consists of six main sub-components: constraints
or limitations, goals and requirements, level of knowledge for the decision made,
feedback and control, levels of risk acceptance, and their profiles. The constraints
or limitations refer to capital or budget available for the investment and the time
period for return on investment. A personalisation criterion helps to fully utilize
their constraints and achieve better results. The user goals and requirements are all
different and personalisation is needed to meet their goals.

The level of the investor’s knowledge will also affect the result of the decision
made, so what-if analysis through personalisation will help to provide them with
valuable knowledge to make the right choices based on data available in the system.
The explicit knowledge transfer from the system to the user as tacit knowledge will
help the investor to provide feedback and maintain control of the what-if analysis to
enable them to understand and assess the decision making process. Moreover, the
level of risk acceptance will also impact the input given for the personalisation process
as different investors will have different levels of risk acceptance. Different investors
will have different profiles because they have different priorities and different risk
tolerances that will reflect the risk analysis. Different investors will also define their
goals and explicit knowledge transfer from the system in different ways. Each of these
components is related and will impact the level of risk measurement. For example,
an investor profile is a reflection of an investor’s goals and objectives.

The technology component is dependent on the user and data for processing and
consists of six main sub-components: knowledge management technology, data min-
ing and OLAP technologies, data warehouse application, decision support tools, web-
based application, and network. All of these technologies are integrated to process
the input from users and match their inquiries with available data stored in the sys-
tem. The technology refers to the tools used to process the input from the user, and
stored primary or secondary data for the analysis.

The knowledge management technology applied in the personalisation model is
a vital sub-component because it will support new strategies, processes, methods
and techniques to better disseminate and apply the best knowledge at anytime and in
anyplace. The web application to support decision making will be used to disseminate
the knowledge. Data warehouse application, specifically the data mining technology,
is applied to mine the data and provide hidden knowledge for investors to analyse.
For example, data mining operations include link analysis (association), predictive
modelling (regression), database segmentation (clustering) and deviation detection
(visualization and statistics) [31].

All these techniques will provide an output or explicit knowledge for investors to
personalize the risk factor analysis. OLAP, which applies the multi-dimensional data
model, will enable investors to analyse data with more than two dimensions. The



378 N. A. R. Demong et al.

network is important to ensure that the data travel is input for the technology to be
processed and transferred to the user. The personalisation session integrates all six
main components to provide the best result by using the investor’s limitation to meet
their requirements. The technology collects, gathers and prepares data for analysis
to build predictive models and make recommendations for investors to analyse.

The data can be categorized into two types, namely primary data and secondary
data. Primary data includes statistics and property features, while secondary data
includes review reports and expert’s opinions. It is important to ensure that the data
is valid and of a high dimension for accurate results and analysis. Features of data that
provides accurate analysis should be up-to-date, standardized, integrated and include
historical information for better analysis. As with the user, the data component is
independent and gathered from different types of sources. Accuracy of prediction
is dependent on the data available and stored in the system. The data itself must be
correct, valid and integrated.

3.3 Main Activities of the Personalized Property Investment Risk
Analysis Model

Five main activities involved with the personalisation session are: input, process,
output, feedback and control. Two main sources of input for the personalisation
model include input from the user and input from data collected and stored in the
system. The input gathered from the user as knowledge acquisition for the system is
comprised of the six sub-components of the user, discussed earlier. Input from data
storage will be used to match the user’s criteria. The data collected and stored in the
system uses a web-based application. The input gathered from users and data stored
in the system provides the technology to process and produce the output.

The technology is then applied to process the input and match with the data
available in the system to produce the output to be given to the user as risk reporting.
Processing of data and input from users is dependent on the technology applied to
solve the problem. For example, data mining technology uses the data to build a data
mining model and produce a hidden pattern of data as an output for users, while the
OLAP technology will produce aggregate information. The output of the system as
explicit knowledge will be displayed in the form of recommendations and choice of
actions to the user as tacit knowledge, as shown in Fig. 2.

The user will then provide feedback through a personalisation session for the
choice of action presented by the system as the output of risk reporting. The what-if
analysis will be applied to personalize the rank and weight of the risk factors that
meet with the investor’s requirements. The user will have control of the degree level
of the risk factor in order to achieve user goals, with available budget as a limitation.
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Fig. 2 The transfer of explicit knowledge to the user as tacit knowledge

3.4 Personalisation Session for Risk Analysis

Personalisation helps to meet the user’s goals and fully utilize their constraints.
Their profiles and preferences will be matched with data stored in the system. The
personalisation session deals with the justification of risk factor weight and ranking,
which is based on historical data driven by decision support using the knowledge
discovery approach. The investor’s personalised recommendations and choice of
action are provided, fulfilling their requirements. The personalisation session starts
with the user identifying their goals and limitations for processing by the technology,
as shown in Fig. 3.

The system will then process the input by matching the user’s criteria with avail-
able data stored in the system. The system produces the output as recommendations
and choice of action to be analysed by the user, who will identify the risk factor
for the risk analysis. The user will provide a degree level of the risk factor by rank
and weight of each risk factor, which is based on the percentage; different users will
definitely provide different measurements. Based on the input given by the user, the
system will process the data by creating a data mining model and producing the risk
report, which consists of the threats or risk, and opportunity. The predictive mod-
elling of the data mining category—for example, the decision table technique—is

Fig. 3 Data flow of the personalisation session for property investment risk analysis in the real
estate industry
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applied to discover the pattern of data to support the decision making process. After
that, the user will analyse the results displayed and, if satisfied with the analysis, will
finally make a decision.

3.5 Development of Knowledge Using Data Mining Technology

Knowledge management for investment risk analysis in the real estate industry is
an important field that needs to be focused on as it involves with high cost and
high risk. An investor needs to know the vital process involved as it is dealing with
different kinds of information either structured, semi-structured and unstructured.
The information gathered from the risk analysis must be reliable and can be trusted.
The application of the deterministic approach for disseminating the knowledge by
discovering the hidden pattern of data using the data mining technique is more reliable
as it refers to valid data stored in the data warehouse. This section will explain in
detail the development of knowledge management for investment risk analysis.

It is important to think carefully about how to gain knowledge for investment risk
analysis. The decision support tools and technologies could help to minimize the risk
impacts since invested in the real estate industry involve with high capital. There are
several questions that need to be asked at the initial step. Figure 4 depicts the several

Fig. 4 Several questions that investors will face when dealing with investment risk analysis in the
real estate industry
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questions that the investors would face when dealing with investment risk analysis
in the real estate industry.

As shown in Fig. 4, the ‘Wh’ questions namely what, where, when, why, how and
who are the common types of issues that the decision maker would deal with when
trying to figure out an idea of how to start with the analysis. Example of questions
that would be asked when dealing with the investment risk analysis as follows:

• What method to use?
• What features of property to choose for the investment such as how many bed-

rooms, bathroom and car park?
• How to run the investment risk analysis?
• Why you need to have knowledge in the field?
• Who to refer?
• When you need to run the investment risk analysis?
• Where to get the knowledge about the investment risk analysis?

In order to answer these questions, the investor must have in-depth knowledge to
make a decision as an investment in the real estate industry incurred with high cost
and high risk. Based on the several question highlights above, it is very important to
have the correct method, tools and technologies to handle this situation. A reliable
and accurate decision support tool and technology is needed in determining the rank
and weight of risk factors for investment in the real estate industry. The application
of the deterministic approach as proposed in this paper helps the investor to gain
knowledge and answer the questions highlighted.

3.6 Investment Risk Analysis Knowledge Management
Development

The development of knowledge management for investment risk analysis proposed
in this chapter is focused on knowledge embedded in individual specifically the
investor. The transfer of knowledge here refers to the explicit knowledge generated
by the system transferred to the investor as tacit knowledge. The tacit knowledge
transferred as an experience for the investor to understand and evaluate the risk
factors in the decision making process. The development of knowledge management
by using heuristic through deterministic approach for investment risk analysis in the
real estate industry consists of three different parts as illustrated in Fig. 5.

The first element is the investor as the decision maker that will have problems
and need an in-depth knowledge to solve their problems. Second, the determinis-
tic approach that processes the data based on investor’s requirements and provides
knowledge by showing hidden patterns of data using data mining techniques. Third,
the application of heuristic approach in which the investor’s will gain knowledge
through deterministic approach to solve their problems that meets their requirements.

The process begins with the investor will set their query and requirements to the
decision support technology. The user specifically the investor needs to define their
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Fig. 5 Development of knowledge management by using heuristic through deterministic approach
for investment risk analysis in the real estate industry

goals, limitations and requirements as a query to the system that would be processed
using deterministic approach. Next, the result will be generated by the system that
matches with investor’s requirement. The deterministic approach will process the
input gather from the investor to prepare the knowledge related to investor’s require-
ments and limitations. By using deterministic approach, the transfer from explicit
knowledge to tacit knowledge refers to the experience that the investor will get
to analyze the risk analysis for investment. Data warehouse end user application
such as data mining, online analytical processing (OLAP), structured query lan-
guage (SQL), visualization and statistics will create and construct the knowledge
as explicit knowledge. For instance, the data mining techniques such as association
and prediction techniques will try to find the hidden pattern of data and make fore-
casts of house price as knowledge collection. Based on these results, the investor
will receive, understand and analyze this information heuristically as tacit knowl-
edge. The heuristic approach refers to the knowledge acquisition, application and
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utilization in making decision. The investor will rank and weight the risk factor
analysis based on hidden knowledge generated by the system and map it with their
requirements for the investment risk analysis.

The evolution of knowledge management applications for stage 5 (future age)
important activities is to support business intelligence [32]. The paper move towards
this milestone in which the development of knowledge management proposed com-
prehend with the personalization technique. The application of the deterministic
approach solved the problem of fulfilling the investor demand better than referring
to the experts in the field. The main contributions of this chapter are (1) it proposes a
new technique to produce explicit knowledge through deterministic approach through
personalization model; (2) it proposes the acquisition of tacit knowledge through
heuristic approach; (3) it proposes a novel knowledge management development for
investment risk analysis in the real estate industry by using heuristic through deter-
ministic approach; (4) risk measurement of ranking and weighting the risk factors
personalized by investors that meets with their requirements. The application of deci-
sion support technology for deterministic approach helps to speed up the transfer of
knowledge hence faster decision can be made. Moreover, the personalization tech-
nique applied helps the investor to achieve their goals, within their limitations and
fulfill their requirements.

4 Experiments

This section describes the application of the decision table technique to demonstrate
how the personalisation criterion affects both of the results, and the data mining tech-
niques, for knowledge discovery. Two data mining techniques, namely the clustering
technique and the forecasting technique, were chosen to discover the hidden pattern
of data.

4.1 Decision Table Technique

An example of a decision table, as depicted in Table 1, is created to examine the
combination of inputs, which produce different results by using this technique. The
user’s limitation will be the conditions for the decision table and each condition has
a different number of values. For example, the cost of investment can be defined as
three values, known as low (L), medium (M) or high (H); the level of risk acceptance
also can be defined as three values, known as low (L), medium (M) or high (H) and
the objective of the investment can be defined as two values, known as residential
(R) or commercial (C). The combination of these conditions will generate a number
of rules with respective actions. For each combination, the action can be single or
multiple. The investor profiles or constraints will be linked with their goals, objectives
and strategy for investment. For example, as shown in Table 1, the conditions, or
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Table 1 A decision table showing a scenario of recommendations for a property investment based
on a user’s constraints and requirements

Conditions (User’s constraints/limitation/ Rules
profiles)

Cost of investment L M H L M H L M H L M H L M H L M H …
Level of risk acceptance L L L M M M H H H L L L M M M H H H …
Objective of investment R R R R R R R R R C C C C C C C C C …
.
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Actions
Highly recommended X X X …
Moderately recommended X X X X X X X X X X …
Low recommended X X X X X …
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Legend:
Cost of investment: L Low, M Medium, H High
Level of risk acceptance: L Low, M Medium, H High
Objective of investment: R Residential, C Commercial

user’s limitations, include the cost of the investment, level of risk acceptance and
objective of investment. The combination of these constraints will produce different
recommendations for the user to choose.

The decision table is one of the best techniques to model complicated logic as
personalisation because property investment risk analysis in the real estate industry
has many limitations. Each action in the decision table corresponds to associate
conditions, as shown in Table 1. The what-if analysis is described through the decision
table to identify the risk level of the risk analysis factor that will affect the analysis
results. The recommendations and choice of actions given are a guideline for the user
to understand and discover the alternatives that meet their goals and requirements.
Based on this scenario using the decision table technique, the investors achieve better
results if they employ a personalisation session for risk measurement to achieve their
goals.

4.2 Data Mining Techniques for Knowledge Discovery

This section explains in detail how the application of data mining techniques helps
to discover hidden patterns of data. Two data mining techniques have been chosen
for the analysis, namely the clustering technique to group or cluster similar records,
and the predictive technique for forecasting. The resulting reports derived from an
experimental data which consist of 619 rows of data selected for the analysis with
four attributes as shown in Table 2. Data was collected from the Australian Property
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Table 2 Sample data used for the analysis collected from the Australian Property Monitor domain
database

Property type Land size (Sqm) Year Rental

Commercial 250 2005 750
Commercial 5312 2006 132800
Commercial 80 2006 31200
House 342 2004 350
House 334 2004 430
House 567 2005 650
Industrial 2801 2012 60
Industrial 48 2012 24800
Other residential 929 2012 420
Semi 171 2006 360
Terrace 134 2012 485
Terrace 108 2012 500
Townhouse 149 2012 700
Unit 464 2003 225
Unit 930 2003 230
Unit 976 2003 190
Unit 1882 2003 220
Villa 811 2012 380
.
.
.

.

.

.
.
.
.

.

.

.

Monitor domain database and analysed using MS SQL Server 2008, integrated with
Microsoft SQL Data Mining Add-ins.

The sample of property data located in the Eastlakes suburb of Sydney in New
South Wales was selected for the experiments. Four attributes have been chosen for
the experiments, namely the type of property, land size, year and rental rates.

As shown in Fig. 6, the most common type of property available for rental at
the Eastlakes suburb is dominated by unit, followed by house, commercial, terrace,
industrial, villa and semi-detached. This information will give investors an idea of
what type of property they should focus on if they intend to invest in commercial or
business real estate.

4.2.1 Clustering Technique

A clustering technique organizes data by abstracting underlying structures, either as
a grouping of individuals, or as a hierarchy of groups. The representation can then
be investigated to see if the data group is in accordance with preconceived ideas,
or to suggest new experiments. Cluster analysis groups data objects into clusters
so that objects belonging to the same cluster are similar, while those belonging to
different ones are dissimilar [33]. Based on sample data collected for the analysis,
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Fig. 6 Summary of data selected based on Table 2

Fig. 7 Clustering technique based on selected Eastlakes property data

nine clusters have been created and the associations between clusters are linked using
lines as shown in Fig. 7.

The associations between clusters provide knowledge about the most influential
features of property for rental that the investors need to choose when planning a
rental property investment.



Personalised Property Investment Risk Analysis Model in the Real Estate Industry 387

Fig. 8 Cluster profiles based on Fig. 5

Figure 8 illustrates the cluster’s profile, in which cluster 1 dominates the popula-
tion, followed by cluster 3, 2, 5, 6, 4, 7, 8 and 9, respectively. The rental rate mean
for cluster 1 is 230 dollars per week, with a standard deviation 25.77. Based on this
result, the investor can calculate the mortgage instalment if they plan to invest in
property for rental and need to organise a loan for the capital. The investor should
utilize this information as knowledge and guidelines in order to buy the best property
for investment, if their objective is to invest in property for rent.

4.2.2 Predictive Technique for Forecasting

The predictive technique is used for forecasting based on time series and historical
data available to generate further analysis. The forecast data generated by the system
will provide more valuable information and knowledge to the investor. Out of 619
rows of data, 239 rows are characterized as ’unit’ type of property that has been
selected to forecast the rental rate. Figure 9 depicts the five year forecast of rental
rate predicted up to 2017 for investors to analyse, based on selected data shown in
Table 2.

As shown in Fig. 9, the historical information appears to the left of the vertical
line (straight line), which represents the data that the algorithm uses to create the
model, while predicted information appears to the right of the vertical line (dotted
line) and represents the forecast that the model makes. The forecasting value will help
investors make better decisions based on their limitations and goals or objectives.

Based on the experiment and the results shown, it is important to consider the
time series for investment and for forecasting, depending on investor’s requirements.
By using an expert survey method, there is no customization on the time frame
that fits with decision makers’ requirements. Based on the historical data and valid
data available in the database, investor’s confidence is increased by using the output
generated by the system.
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Fig. 9 Rental rate prediction until 2017, based on data selected in Table 2

Origin of the knowledge is coming from the data stored in the system and created
using data mining technique to discover and find the hidden pattern of data that would
be useful for the investors as the heuristic approach. The application of the heuristic
through deterministic approach to disseminate knowledge and its implications pro-
vide reliable and accurate information. Investor as the decision maker need to have
knowledge in the field to speed up the decision making process. Heuristic commonly
utilized in the process of decision making to help users obtaining relevant ideas,
experience and gain knowledge in managing problems they dealt with. In addition,
the hidden pattern of data discovered will enables the investor to make efficient deci-
sions with the assistance of heuristic approach to personalize the criteria based on
their requirements. The technology of data mining could be used for daily practice
of analysing property for investment, and those in the field of analysing uncertain
factors for decision making process. The proposed model can be easily understood
by the investor thus providing a practical assessment tool for decision making about
investment risk analysis.

5 Conclusions

This chapter has detailed a personalisation model for property investment risk analy-
sis in the real estate industry. The main objective of proposing this model is to improve
the measurement of risk factors that align with investor’s goals and limitations. Per-
sonalisation is an important element that needs to be considered when dealing with
property investment risk analysis in the real estate industry. The main consideration
in any real estate investment analysis is that it is a risk analysis with uncertainty
factors. The proposed personalisation model provides a guideline for investors to
achieve their goals, because the ability to accept different levels of risk varies sig-
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nificantly from one investor to another. The investor must prepare and specify valid,
accurate information of their limitations and requirements before proceeding with
the property investment risk analysis. Different goals and limitations have different
values for risk factor rank and weight for property investment risk analysis in the real
estate industry. It is important to have a computer system in place for personalized
property investment risk analysis that achieves investor’s goals, taking into account
their limitations.

As knowledge, the proposed personalisation model for property investment risk
analysis introduces a new perspective to investors to measure the risk analysis factor.
This model will also be used as a decision support tool in property or real estate
investment risk analysis. Further research on personalisation algorithms is needed
to evaluate more clearly, systematically and mathematically how effectively the per-
sonalisation model may be applied to property investment risk analysis.
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The Logic and Ontology of Assessment
of Conditions in Older People

Patrik Eklund

Abstract In this paper we present some views on ontologies and assessments,
and the relation between logic and guidelines within municipal decision-making
in elderly care. Logic is seen, on the one hand, as carrier of information, and, on the
other hand, as including mechanisms for inference as underlying decision-making.
The ontology and logic for the framework is based on a non-classical typing system
where uncertainty is canonically developed in a category theory framework involving
term monads both composed with other monads, and as viewed over other categories
than just the category of sets. The main question is where uncertainty actually resides,
so that they are canonically retrieved rather than amalgamated in ad hoc approaches.

Keywords Assessment · Diagnosis · Home care · Smart homes · Database
management.

1 Introduction

Elderly care includes personnel with various skills and expertise, e.g., social workers,
nurses, gerontologists, therapists, psychologists and physicians, general practition-
ers, neurologists and geriatricians. It should be noted that the home care staff in
its vast majority consists of a selected mix of social workers and nurses and thus
social care overweighs the health care. In residential and nursing homes though,
social and health care should be in balance, while in hospital wards the provision
of health/medical care is the pivotal aim. In a population of 100,000 citizens we
typically have 2–3 geriatricians and up to 100 GPs, but GPs spend only fractions of
their time for geriatric/gerontological problems. In home care we would, on the other
hand, have hundreds of social workers. This clearly calls for management of Social

P. Eklund (B)
Department of Computing Science, Umeå University, Umeå, Sweden
e-mail: peklund@cs.umu.se

P. Guo and W. Pedrycz (eds.), Human-Centric Decision-Making Models 391
for Social Sciences, Studies in Computational Intelligence 502,
DOI: 10.1007/978-3-642-39307-5_16, © Springer-Verlag Berlin Heidelberg 2014



392 P. Eklund

Fig. 1 Growth of 75+ population and its consequences for Alzheimers disease prevalence

Records, but also for the social workers and nurses to be prepared for information
gathering into the Social Record and its related repository data. In larger municipali-
ties and cities, the care processes and organization of workflow must be hierarchical
and geographical, including area managers and team leaders. Service requirements
per customer in home care vary between one visit per week to three visits per day. A
social workers visit is up to 1 h, whereas a nursing visit should be down to 30 min.
A team of 6–10 social workers and nurses should thus be able to manage up to 50
customers, or even more.

Demographic change means in particular an increase of dementia. In these sce-
narios focus must be not only on the 65+ population, but also on the 75+ popu-
lation which in fact accelerates faster than the 65+ population. The prevalence of
Alzheimers disease increases rapidly in the 75+ population (Fig. 1).

Faster growth of the 75+ population means an increase in dementia and non-
cognitive/behavioral syndromes, which in turn requires not only more services
because of growth, but also new types of services because of the changing condition
spectra.

The objective of ontology and assessment is to establish municipal and regional
best practices for strategic planning and management of ageing. This is achieved
by developing accurate socio-economic modelling tools based on rigorous design
of information and processes. Older person conditions and related monitoring of
information is crucial. Further, information must be appropriately structured so
that ontology supports e.g. interoperability. The demographic model will enable
the analysis and prediction of demographic change, and the socio-economic model,
based on ageing information and process design, is sensitive and specific in particular
concerning variables related to demographic change. This approach to socio-economic
modelling based strategic planning is both customer-centric with respect to infor-
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mation and process design as well as care-centric with respect to care management.
Socio-economic modelling of the social welfare effect due to demographic change is
therefore utmost important, on the one hand, for municipality resource planning and
objective decision making, and on the other hand, for enabling required accuracy of
business models as used by public and private actors in the social sector.

The minimal set of assessment scales is usually some ADL scales combined with
suitable cognitive scales, like MMSE [10]. Combination scales, like the CDR for
ADL/DEMENTIA, are also widely used. Non-cognitive signs are captured, e.g., by
the neuro-psychiatric inventory NPI [4], the Cohen-Mansfield agitation inventory
CMAI [3], and BEHAVE-AD [13] for assessment of behavious. NPI is particularly
useful in home care. Depression is usually captured in its own right, where e.g the
geriatric depression scale GDS [15] is widely used in home care. Depression is known
to accelerate cognitive decline. Nutrition scales are important, like also scales for
social conditions, and so on and so forth. The selection of assessment scales to be
used is of utmost importance and must be optimized with respect to professional
resources available.

Figure 2 illustrates the minimal set of assessment scales, or rather, the set of
subsets of assessment scales The selection of assessment scales to be used is of
utmost importance and must be optimized with respect to professional resources
available in the particular service field where the OAD gerontechnological platform
is to be installed and used.

Accurate monitoring of assessment scale further supports dementia differential
diagnosis [5], and these are based on consensus guidelines as provided e.g. by DSM-
IV [1] and NINCDS-ARDRA. Early detection of dementia is important e.g. to achieve
desirable effects of pharmacologic treatment.

Fig. 2 Subareas of assessments—The OAD (Observe-Assess-Decide) framework
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This paper proposes to use a typing framework for assessment scales to support
their integration into decision-making processes, including pathways for regional
and municipal decision and policy making.

2 Signatures and Type Constructors

In [8] we proposed a three-level arrangement of signatures, where the basic signature
Σ is on level one, and Σ ′ is on level three. On level two we have the superseding
type signature as a one-sorted signature SΣ=({type},Q),where Q is a set of type
constructors satisfying

(i) s:→type is in Q for all s ∈ S
(ii) there is a �: type × type → type in Q.

If Q does not contain any other type constructors, apart from those given by (i) and
(ii), we say that SΣ is a (Σ-)superseding simple type signature.

For any Σ-superseding type signature SΣ we have the type term monad TSΣ ,
over a category Var of variables, so that TSΣ X , X ∈ Ob(Var), contains all type
terms.

The signature Σ ′ = (S′,�′) on level three is based on S′ = TSΣ∅. See [8] for
detail on the term constructions.

3 Assessment of Gerontological Conditions

It is typical to distinguish between information and knowledge, but the meaning
of information and knowledge in a particular context is usually not explained. We
adopt a quite strict logical view on information and knowledge, and we therefore
need a few remarks on our take on logic. A logic has its signature with sorts (types)
and operators, and algebras providing the meaning of the signature. Terms are for-
mally constructed [8] using operators in the signature. Algebras must be carefully
introduced. Substitutions and assignments have to be handled very carefully. Signa-
tures and terms are then basis for providing representation of information. Sentences
have terms as ingredients, and conglomerates of sentences can be formally treated.
Sentences and conglomerates of sentences is what we would mean by knowledge.
Entailment is the relation between these conglomerates representing what we already
know, and sentences representing knowledge we are trying to arrive at. Satisfaction
as the semantic counterpart to entailment provides the notion of valid conclusions.
Axioms represent what we assume at start, and inference rules support chains of
entailments. Concerning logic we must be aware of the distinction between logic as
in ‘logic as foundation for mathematics’ and logic as in ‘mathematics as foundation
for logic’. Our take on logic is focused on ‘category theory as foundations for logic’,
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and this logic we call substitution logic, which is an extension of developments
presented in [9].

Gerontological conditions and circumstances is the about information and knowl-
edge and in this paper we focus on the information part. We therefore provide some
examples on how gerontological data can be properly typed so as to open up possi-
bilities to invoke appropriate constant values and operators.

Before we start to develop our examples, let us make the reader aware of the
apparent non-uniqueness of these representations. The medical term ‘dementia’ may
serve as a good example. Medically speaking, dementia is a syndrome rather than a
disease, but it can be encoded as a diagnosis. There are different types of dementia,
like Alzheimer’s disease and vascular dementia, and Alzheimer’s disease in turn can
be diagnosed as connected with other diseases. Encoding dementia hierarchically in
this can be done e.g. by the World Health Organization ICD-10 standard, or using
DSM-IV encoding, or a combination of both. ICD-10 and DSM-IV.

Hierarchies of sets, or sets of sets, sets of sets of sets, and so on, can be modelled
by the ‘powerset’ type constructor P :→ type on level two, i.e., intuitively thinking
that the algebra P would be the ordinary powerset functor over the category Set
of sets and functions. However, more structure can be added to powerset functors,
e.g., by allowing ‘double powerset’ type constructors, or considering powersets with
structure. The typical example in [8] considered the distinction between fruit basket
and fruit plate, where a plate intuitively is more of of a set or structured set, but a
basket is may be more of sets of sets.

The outcome of an assessment scale is usually a number, like in the case of
MMSE, which has a range 0–30, with single digit values indicating a severe dementia,
and values around 20 are more appear mostly in a mild dementia. Note that an
Alzheimer’s disease can be diagnosed at early or late stages, so the severity and
progrediation of that particular dementia is not included as more specific information
in the diagnosis code. The content of the MMSE test builds up from questions related
e.g. to orientation and language, but the final MMSE value obviously hides the
underlying specific information. A loss of points in orientation is not distinguished
from corresponding loss of points in language aspects, which means that these two
apparently different neurological aspects are hidden in “MMSE=22”. Most of the 8
point loss may be attributed of orientation or language, and this is knowledge may
be additionally useful e.g. when providing decisions about further examinations. It
is quite common in non-professional discussions to see an identification between
dementia and Alzheimer’s disease, and the latter is indeed the most common form of
dementia, representing something like two thirds, or more, of all dementia diseases.
Difficulties an impairments in speech, like in aphasia, can be caused by circumstances
related to vascular diseases. Indeed the Hackinski scale indicates vascular dementia
if an older person has had a previous stroke, is medicated for hypertension, and shows
signs of depression. Differentiating e.g. between Alzheimer’s disease, dementia with
Lewy bodies and vascular dementia is then important, e.g. since inhibitor drugs may
be used for Alzheimer’s disease and dementia with Lewy body but have no effect for
vascular dementia.
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Now we inevitably come to the discussion on side-effects of drugs, and won-
der how those cholinesterase inhibitors may do good or harm for vascular demen-
tia patients, if prescribed for a dementia patient under the assumption the specific
diagnosis really is Alzheimer’s disease and not vascular dementia. Before we con-
tinue, note here that even the autopsy diagnosis of Alzheimer’s disease is not always
clear, so the clinical diagnosis is obviously even more difficult. Accuracy in diagnosis
is indeed not very high. In [2] there is a result that cholinesterase inhibitors reduce
falls in Parkinson’s disease. Recall that many other drugs like sedatives, in particu-
lar benzodiazepines, affect balance and increase falls in older persons. Parkinson’s
disease sometimes combines with dementia, and there is a diagnosis for Parkinson’s
disease with dementia, where dementia is related to Alzheimer’s disease, but there is
no single diagnosis code for “Parkinson’s disease with Alzheimer’s disease”. Adding
to this complicated picture, we should mention “vascular parkinsonism”, which is
also recognized and named, but not encoded as a particular diagnosis. An older per-
son may be prescribed to use cholinesterase inhibitors because of Parkinson’s disease
which appears to be a Parkinson’s disease with dementia. An inhibitor drug may have
good effects on preventing falls. There are, however, other studies, e.g. [11], show-
ing bad affects of psychotropic medications, including sedatives and cholinesterase
inhibiting drugs, on falls risk. The medical literature with all its studies clearly pro-
vide mostly lots of good and useful recommendations, but the example above shows
that sometimes there are contradictions. These contradictions cannot be overcome
with some smart mathematical encoding of rules, but a more strict encoding about
“what is what” certainly improves the understanding of underlying information and
knowledge structures.

We need also distinguish between Observation and Assessment. Roughly speak-
ing, Assessments assess situations which are described and represented by data,
which in turn represent values in an Observation.

Even if assessment scales often come with an outcome index, we should not
oversimplify the possible meaning of “assessment of assessments” as an outmost
representation of the overall assessment of an older person’s gerontological condition.
This overall condition we could call a Gerontium, and we expect it to present all
relevant information about the older person’s gerontological condition, and not to
hide any specific information behind some oversimplified index. The structure for
this Gerontium must embrace the structures for Observation and Assessment.

A Gerontium is obviously not just a sort or an operator at some level of a signature.
A Gerontium is the specific signature embracing the structures for Observation and
Assessment. Even more so, a Gerontium is all three levels of signatures, including
the relevant sorts and operators on all three levels. We may therefore introduce the
notation

Gerontium = (Σ,SΣ,Σ ′, XΣ, XSΣ , XΣ ′)

where X� = {Xs}s∈S is in Ob(SetS), XS� is in Ob(Set), and X�′ = {Xs′ }s′∈S′
is in Ob(SetS′)

A gerontological condition can be initially specified as
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GerontologicalCondition :→ type

on level two. This enables to have specific person data structures in form of a term
and non-aggregated e.g. as

HighFallRisk,DementiaWithLewyBodies � GerontologicalCondition

on level two. On level three, we may then declare variables x and y e.g. according
to x :: HighFallRisk and y :: DementiaWithLewyBodies. In this fashion
we may continue to build up type declarations including assessment scales, and
considering scales and scale data being part of sets, sets of sets, and so on, and
further being specific about structured sets when ever they inevitably have to be
invoked.

On level one we assume to have standard types, e.g. likenat,bool andstring,
which are implemented in respective programming languages or environments. These
implementations are obviously algebras of these types and signatures at large. For
instance, strings and string operations in C++ in general and languages within .NET
cannot be assumed to be perfectly comparably, in particular when we would need
to manipulate byte and bit representations related to strings. Within .NET, however,
languages like VB and C# are expected to handle strings equivalently since these core
language share the same language for machine code. Note then how we expect to have
rather precise meanings e.g. of the algebras AC++(string) and AC#(string).
In the same way we interpret the arrangement of algebras for sorts and operators in
Gerontium, so that e.g. AGerontium(GerontologicalCondition) is specific
for the end-user, or for a particular use in a older population regional repository.

In summary, part of the typing on level two can be as follows.

� : type × type → type

� : type × type → type

nat,bool : → type

bool3,bool4, . . . ,booln : → type

bool�,bool3�,bool4�, . . . ,booln� : → type

boolStandardAssessmentScale : → type

Observation : → type

GerontologicalCondition : → type

Dementia,ADL,Depression,Nutrition : → type

CognitiveDementia,Non-CognitiveDementia : → type

GlobDetS,Hackinski : →type

P,Assessment,AssessmentScale : type→ type

and on level three
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DementiaDiagnosis : → Assessment(Dementia)

CognitiveImpairment,FallRiskAssessment : → P(AssessmentScale)

MMSE,GDS,NPI : → AssessmentScale

StandardAssessmentScale : →(boolStandardAssessmentScalen � nat)

FES-I : →(bool4�16 � nat)

Obviously, the above are technical examples of typing in the signature Gerontium,
and we have e.g. not included any typing for drugs. The ATC (Anatomic, Therapeutic,
Chemical) encoding of drugs, however, is a good example which leaves only little
room for various implementations, since the ATC code is already very strict and well-
defined. Further, given that older person conditions are recognized and monitored
quite differently depending on the purpose of and motivation for underlying needs
of decision-making, e.g., as related to care levels, the structure and exemplification
above is indicative only for pragmatic use. The structure is theoretically solid in
general, but must be adapted as required to specific needs.

On level three, given a sort s we have to be careful to distinguish between sn as
appearing before→ and �, where in the first case ‘product’ is × and in the latter
case �. Clearly, neither of � and � can be assumed to be associative. Indeed, the
algebra of � is a hom functor. However, � can be viewed as being associative, if
we intuitively think of its algebra as being the categorical product.

Example 1 The algebra of FES-I, adopted by a certain organization org, is then
a mapping Aorg(FES-I) : Aorg(bool4�)16 → Aorg(nat), so that with org e.g.
being THL (National Institute for Health and Welfare) in Finland, the mapping
is specifically AT H L(FES−I) : AT H L(bool4�)16 → AT H L(nat) which uses,
AT H L(bool4�) = {�, 1, 2, 3, 4} and AT H L(nat) = {�} ∪N, so that whenever the
number of missing answers, i.e. answer values being �, is less of equal to 4, then
we divide the sum of all answer values with the number of answers and multiply it
by 16, the total number of questions. If the number of missing answers exceed 4,
then AT H L(bool4�) will return the �. THL says in their recommendations “then
it cannot be computed”, and our formalization translates that to the FES-I index
being “missing”. It should be remarked that, even if THL is a national authority,
AT H L(FES−I) is only a recommendation, so there is no legacy that disables any
municipality in Finland to adopt their own specific Amunicipali t y(FES-I), if they,
for any reason, would wish to do so. The situation is the same basically in all EU
member states, and in countries and regions all over the world.

Clearly, more operators need to be included also for transformations between these
types and operators. In particular, transformations like ϕ : P(Assessment) →
Gerontium. Note also how terms like t :: P(Gerontium) could be seen as a
population or set of older person’s for which a municipality or regional decision-
making body or group providing optimizations within care planning e.g. in home
and residential care environments.

This example can then be extended further to work over selections of underlying
categories with Set(A) as the prime example for such an underlying category. Here



The Logic and Ontology of Assessment of Conditions in Older People 399

A can be a lattice, quantale, or even a Kleene algebra, representing uncertainties. For
more detail, see [8].

4 Conclusions and Future Work

This paper is related to on-going research and development in ICT support in the area
of Active Healthy Ageing. Underlying ontologies are shown to be of utmost important,
and a strict typing of information is a key factor in implementation of information
management systems. We have focused on signatures and terms, and future work
embraces decision-making involving selections of sentence functors and all the way
through inference mechanisms to substitutions logics in its full strength as a support
for ontology and decision-support with ageing.
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Decision Making on Energy Options:
A Case Study

V. Jain, D. Datta and A. Deshpande

Abstract Major decisions are made without advance knowledge of their conse-
quences including decision on energy options. In spite of the best efforts initiated in
the development of renewable energy resources, it is too early to visualize that the
ever-increasing gap between supply and demand of energy, for peaceful purposes,
should be bridged in the near future. A mix of low carbon sources, including nuclear
energy and renewable energy, while limiting greenhouse gases is considered a viable
solution with less/no computations. In this chapter, a brief write up on Kahneman and
Tversky’s Prospect Theory is presented. Authors believe that the perception of gain,
loss and risk are intrinsically fuzzy due to limited or no information about the future
scenario. Computing with words, a facet of Restriction—Centered Theory of Rea-
soning and Computation (RCC) proposed by Prof. Lotfi A. Zadeh, could therefore
be a useful armamentarium in decision making under risk and uncertainty. The case
study, describing decision-making for the energy prospects (options) in India under
risk and uncertainty, is presented by using prospect theory, type-1 and type-2 fuzzy
relational calculus- a subset of Computing with Words. A commentary on safety of
nuclear plants in India is an integral part of the chapter.
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Type-1 and Type-2 fuzzy relations ·Renewable and nonrenewable energy resources ·
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1 Introduction

Exponential population growth, rapid urbanization and industrialization resulted into
increased energy needs and environmental degradation in almost all countries. Man
has been exploiting the use of natural resources such as: water, minerals, oil · gas,
and coal -the precious gift available from the Nature termed as a real estate for
the welfare of mankind since time immemorial. Realizing the importance of these
depleting resources, there have been concerted efforts on conducting research in
the development of, preferably environmental friendly, non-conventional/alternate
energy resources as the viable energy options. Some countries have made substantial
financial allocation for application-oriented investigations on a variety of energy
issues. It is too early to state that only renewable energy will not be able to fulfill the
increasing energy needs of countries like China, India and so on. In practicality, the
need of the hour is the energy mix.

In real life, most decisions are made without advance knowledge of their conse-
quences with some degree of risk or uncertainty. The first and predominant economic
theory for decision making under risk, formulated axiomatically by Von Neumann
and Morgenstern [11], is expected utility theory. Further, experimental evidence
shows that people violate the axioms of Von Neumann and Morgenstern [11]. Allais
paradox is the most perfect and celebrated violation of expected utility theory. Kah-
neman and Tversky [7, 13] proposed a leading behavioral model of decision-making
under risk and uncertainty based on decision utility, named as prospect theory, which
accommodates Allais paradox and the violation of Von Neumann and Morgenstern
axioms [11]. Recently, Guo [4] has proposed a thought provoking “one shot theory”
to understand different behavior of decision makers and to find the best solution based
on his/her attitude. This theory is typically for those situations where a decision is
made only once.

It is noticeable that our discussion about decision making under risk is centered
on decision utility (refers to the weight of an outcome in a decision or wanting) rather
than expectation utility (represents to its hedonic quality or liking).

The chapter is organized as follows. Section 2 presents a summary of possible
approaches in decision making under risk and uncertainty with focus on Prospect
Theory. Contents of Sect. 3 are focused on Computing with Words (CWW) method-
ology with a few limitations of prospect theory perceived by the authors. In Sect. 4,
a case study describing decision-making on India’s viable energy option is detailed,
using Cumulative Prospect Theory (CPT), type-1 and type-2 fuzzy relational cal-
culus. We propose a computational scheme to demonstrate that nuclear energy will
be the viable option, especially, for India to fulfill energy needs till 2030. Further, a
brief write up on safety issues of the identified energy option for India is presented
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in Sect. 5. Concluding remarks and future directions for further research work are
presented in Sect. 6.

2 Decision Making Under Risk and Uncertainty: Prospect
Theory

Decision making theory is a holy grail of numerous studies in management science,
economics and other areas. It comprises a broad diversity of approaches to modeling
behavior of a decision maker realized under various information frameworks. In
essence, the solution to the decision-making problem is defined by a preference
framework and a type of decision-relevant information. In its turn preference and
decision-relevant information frameworks are closely related. One of the approaches
to formally describe preferences on the base of decision-relevant information is
the use of a utility function. A utility function is a quantitative representation of
preferences of a decision-maker (DM) [1].

Expected utility based on utility functions gained greater currency in economic
theorizing when Von Neumann and Morgenstern [11] articulated a set of axioms that
are necessary and sufficient to allow one to represent preferences by expected utility
maximization. But very soon, these axioms were called into question. The Allais
Paradox is perhaps the starkest and most celebrated violation of expected utility
theory.

Further, Tversky and Kahneman have demonstrated in numerous highly con-
trolled experiments that most people systematically violate all of the basic axioms of
expected utility theory in their actual decision making behavior at least some times.
In response to their findings, Tversky and Kahneman proposed a theory of choice,
based on psychophysical model, which accurately describes how people go about
making their decisions. The Original Prospect Theory (OPT), suggested by Kahne-
man and Tversky [7] in 1979, is based on non-linear transformation of outcome and
probabilities, which allow describing psychological aspects of decision-making. The
OPT developed for simple prospects with monetary outcomes and stated probabilities
has three major characteristics:

Reference point dependence: An individual views consequences (monetary or other)
in terms of changes from the reference point, which is usually that individual’s status
quo.
Diminishing sensitivity: The values of the outcomes for both positive and negative
consequences of the choice have the diminishing returns characteristic. That means
limit values of gains and losses decrease with an increase of their absolute values.
Loss aversion: Losses loom larger than gains, which mean people prefer “not to bear
losses”.

OPT predicts that people go through two distinct stages while making decisions.
In the first phase, decision makers are predicted to edit a complicated decision into a
simpler prospect, usually specified in terms of gains or losses. In the second phase, the
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decision makers evaluate each of the edited prospects available to them and choose
the prospect of the highest value between the edited prospects. This evaluation is
expressed in terms of two scales π and v. The first scale π associates with each
probability p a decision weight π(p) which shows the impact of p on the overall
value of the prospect. The second scale, v, assigns to each outcome a number v(x)
that gives the subjective value of that outcome x. Therefore, the evaluation function
for a prospect (xi , pi ) is given by

V (xi , pi ) =
∑

v(xi ) ∗ π(pi )

where pi is perceived probability of outcome xi , π (pi ) is the probability weighting
function and v (xi ) is value function.

The value function v(xi ), depicted in Fig. 1, is defined on deviations from a ref-
erence point, concave for gains and convex for losses and steeper for losses than for
gains.

Here, the probability weighting function is a monotonic function defined over
(0,1). Consequently, the weighting function does not always satisfy stochastic dom-
inance.

Also, in their experiments Kahneman and Tversky observed that the interplay of
over weighting of small probabilities and concavity-convexity of the value function
leads to the so-called fourfold pattern of risk attitudes: risk-averse for high probability
gains and low probability losses; risk-seeking for low probability gains and high
probability losses.

In brief, OPT encounters two problems:

1. Weighting function does not always satisfy stochastic dominance, and
2. OPT cannot be applied to prospects with a large number of outcomes.

These problems can be resolved by the rank dependent model or cumulative
functional first proposed by Quiggin [12] for decision under risk. On the basis of rank
dependent model, Tversky and Kahneman [13] proposed cumulative representation
of prospect theory, which applies rank dependent model separately to gains and
losses. Also, this cumulative prospect theory can be applied to uncertain as well as
risky prospects with any number of outcomes.

Fig. 1 Value function v as a
function of gains and losses
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Fig. 2 Weighting function w for gains as a function of the probability p of a chance event

Following Tversky and Kahneman [13], the value function can be parameterized
as a power function

v(x) =
{

xα, x ≥ 0
−λ(−x)β, x < 0

where α, β measure the curvature of the value function for gains and losses, respec-
tively, and λ is the coefficient of loss aversion. This value function for gains and
losses is increasingly concave and convex respectively for α, β <1. The weighting
function, defined by Tversky and Kahneman [13], is an inverse-S-shaped weighting
function. It is concave near 0 and convex near 1 as presented in the Fig. 2. It is very
clearly explaining the fourfold pattern of risk attitudes as the low are overweighted
(leading to risk seeking for gains and risk aversion for losses) and high probabil-
ities are underweighted the weighting function (leading to risk seeking for losses
and risk aversion for gains). It also satisfies Allais paradox. Therefore, this modified
inverse-S-shaped weighting is more consistent with a range of empirical findings.

Following Lattimore et al. [10], the weighting function can be parameterized in
the following form

w(p) =
(

δpγ

δpγ + (1− p)γ

)

It assumes that the relation between w and p is linear in a log-odds metric. Here
δ measures the elevation of the weighting function and γ measures its degree of
curvature.
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3 Decision Making Under Risk and Uncertainty: Computing
with Words

While making decision, the decision maker always thinks about gains and losses,
however, we realize that his/her brain never perceive concave or steep convex func-
tions as suggested in PT. In addition, the estimation of the functions suggested in
the PT models [7, 13] is almost impossible to achieve in practice, especially energy
scenario. The authors believe that, in real life, most of the decisions are taken by the
domain knowledge experts with recourse to their perceptions.

3.1 Computing with Words (CWW) Methodology

Computing with Words (CWW) [15–17] offers an important capability to compute
with information described in natural language. This opens the door to a wide-ranging
enlargement of the role of natural languages in scientific theories and engineering
systems.

The importance of Computing with Words derives from the fact that much of
human knowledge is based on perceptions.
Levels of Complexity in CWW:

Level 0 CWW: Dana is 25; Tandy is 3 years older, than Dana Tandy is (25+3) years
old.
Level 1 CWW: Dana is young; Tandy is a few years Older than Dana; Tandy is
(young+ few) years old.
Level 2 CWW: Most Swedes are tall; Most tall Swedes are blond; Most2 Swedes are
blond.

Here, Level 1 CWW and Level 2 CWW require precisiation of meaning, which is
much simpler in Level 1 CWW than in Level 2 CWW.

The fuzzy relation formalism based on type-1 and type-2 fuzzy sets - level 1 CWW
approach [8, 9, 15–17] is used in the following section to rank the conventional energy
options.

4 Ranking of Conventional Energy Options: Case Study

In this section, applications of Prospect theory and of variants of Computing with
Words methodology are presented in deciding viable conventional energy options in
Indian Scenario.

Let us assume that the projected total energy needs of India in the year 2030 are
1,000,000 MWe [5]. Assume 70 % power generation using non-conventional energy
resources. Therefore, the balance energy needs of 300,000 MWe will have to be met
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from conventional energy resources. Keeping in view the ground realities that the
country has already installed power plants of around 160,000 MWe. Thus, the addi-
tional electrical energy requirements in 2030 will be approximately 140,000 MWe.

In real life, domain expert’s knowledgebase plays central role in most of the pol-
icy issues. Projection of future energy needs is invariabilty based on some computa-
tional method and this is the first level of uncertainty involved in decision analysis.
The computational framework in this section is, therefore, based on energy expert’s
tacit knowledge and their logical assumptions. The discussion with energy experts
was centered around on availability of energy resources, subjective probability in
expected gains and losses (while using prospect theory) and the possbility of associ-
ation between gains and loss while using fuzzy relational calculus via computing with
words. The numerical values reported in this document are, therefore, not probability
measures but are subjective measures.

Formalism I (Prospect Theory)

The collation of the information with proposed break up is as follows.
Generated power through hydro energy is 30,000 MWe (gain) on the basis of water

availability with probability, Say, 0.98. The probability of its failure i.e. risk due to
accident (man made/ natural disaster) is, say, 0.02. It is difficult to quantify the loss of
human life due to natural/ man made disasters; but in an economic analysis/decision
making, we are left with no other option but to convert these losses into cost units;
furthermore assuming that the cost units are transformed into energy equivalent, and
is 8,000 MWe (loss)—a pessimistic scenario. In this case, low value of availability is
assumed with the reasoning that even if the neighbor nation, Nepal, has entered into
bi-lateral agreement till 2030, however, the construction phase of such water storages
(dam) would take at least 10–15 years—more than the plan period. In addition to
this, there has been growing concern on seismic hazards!

Computed need for the thermal power could be a maximum of 10,000 MWe (gain).
The assumed production capacity is very less but the probability of availability can
be considered as 0.5 because at one side coal, oil and gas reserves are depleting,
while on the other side India could be in a position to import good quality coal for
their future thermal power plants. Coal with low ash content is being imported from
Indonesia and Australia. As the coal reserves are depleting, these countries might
rethink on their export policy. Coal washing does help to somewhat in reducing the
problem. The health risks due to releases of SO2, NOx, Particulate Matter (PM), and
other harmful gases from these plants is a common scene in India. Therefore, the
probability of risk due to accidental releases of hazardous gases, chemicals, and high
ash is assumed to be, say, 0.50. Assume that the cost can be converted in economic
units and then could be transformed into energy equivalent as 1,000 MWe (loss).

Argue that India has developed nuclear fuel—say Thorium in adequate quan-
tity to meet future needs for another five decades. India has also entered into an
agreement for the supply of nuclear fuel such as uranium for the sustained nuclear
power generation for peaceful purpose, using advanced nuclear technologies. Thus,
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maximum expected nuclear power could be 100,000 MWe with the probability, say,
0.8. Its availability is high due to the exploration for the fuel and the assurance given
by another country under the bilateral agreement, say for 20 years. Assuming high
probability value signifies risk adverse attitude of a common man as he has almost
no realization of other even involuntary and voluntary risks. Therefore, the prob-
ability for risk (loss) could be assumed as 0.2 which indicates that thermal power
plants are prone to high risk than nuclear power plants—a debatable issue, world
over! Assuming that the energy equivalent, to the loss of life and other effects due
to nuclear radiation, could be predicted as 10,000 MWe (loss). Typical decision tree
for nuclear energy resource is presented in Fig. 3.

Consider x1 is the generated power (outcome as gain) depending on the availability
and cost of the source with probability p1 and x2 is failure of power (outcome as loss)
with the probability p2. In order to decide the most viable prospect under risk, the
computations are performed for the estimation of the evaluation function for 30 %
and 50 % using following expression with the above given assumptions:

V ( f ) = v(x1)π(p1)+ v(x2)π(p2)

where v(x1), π(p1), v(x2) and π(p2) will be calculated as explained in Sect. 2.
The cumulative prospect theory parameters,α,β,λ, δ andγ, can all be estimated for

individuals using simple choices tasks on computer. Although the typically measured
values of these parameters suggest an S-shaped value function 0< α, β < 1with
loss aversion (λ > 1) and an inverse S-shaped weighting function (0< γ < 1) that
crosses the identity line below 0.5 (0< δ < 1), there is considerable heterogeneity
between individuals in these measured parameters. For instance, in a sample of ten
psychology graduate students evaluating gambles involving only the possibility of
gains, Gonzalez and Wu [3, 14] obtained measures of α ranging from 0.23 to 0.68,
δ ranging from 0.21 to 1.51, and γ ranging from 0.15 to 0.89. Also, Tversky and
Kahneman [13] estimated median values of α = β= 0.88 and λ=2.25 among their
samples of college students.

Fig. 3 Typical decision tree
for nuclear power
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Table 1 30 % energy is from conventional sources

Energy options x1 (MWe) p1 x2 (MWe) p2 V (f) (MWe)

Hydro 30,000 0.95 −8,000 0.02 6920
Thermal 10,000 0.5 −1,000 0.5 1080
Nuclear 1,00,000 0.8 −10,000 0.2 13850

Conduct an opinion poll amongst different well informed stakeholders including
the decision makers in order to estimate these parameters based on their tacit knowl-
edge. This might result into somewhat similar probability values.

The values of these parameters, used in this illustration, are α = β=0.88,
λ=2.25, δ=0.86 and γ=0.52 [10, 13].
Therefore, two cases are illustrated as follows:

30 % energy of the total energy needs (300,000 MWe) is from conventional sources
as described in Table 1 after considering that the existed installed capacity is
160,000 MWe.
50 % energy of the total energy needs (500,000 MWe) is from conventional sources
as described in Table 2 after considering that the existed installed capacity is
270,000 MWe.

Finally, it can be seen that Country A should go for nuclear power as a viable
option.

Formalism II (Computing with Words (CW) Methodology)

In this methodology, the collation of the logically assumed information is as follows.
Power generation (gain) through hydro energy is medium (as the water resources

are diminishing due to environmental degradation) on the basis of water availability.
The probability of its failure i.e. risk due to accident (man made/natural disaster) is
also assumed to be medium by the domain expert group.

Computed energy generation using coal and oil/and gas termed as thermal power
is very low. Also its risk of failure is very low.

Consider Country A is in the final phase of its development of nuclear fuel and
also in agreement with some other country for supply of nuclear fuel for the sustained

Table 2 50 % energy is from conventional sources

Energy options x1 (MWe) p1 x2 (MWe) p2 V (f) (MWe)

Hydro 60,000 0.95 −13000 0.02 12930
Thermal 20,000 0.5 −2700 0.5 1700
Nuclear 1,50,000 0.8 −20000 0.2 18880
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power generation. Therefore, power generation through nuclear option is very high.
Somehow, nuclear power plants have been over criticized because of one single
unfortunate accident at Chernobyl plant. Keeping in view the pubic sentiments alone,
risk of its failure is assumed as very high.

A word of caution: It is hoped that the concerned organizations will take cog-
nizance of diligently carried out environment impact assessment studies and the
public debate about the feasibility these plant locations. Only intellectuals, with
clean image who can work selflessly with the local community, should be involved
in the process of site location for any plant.

Type-I Fuzzy Relational Calculus

Consider Fuzzy set A for generated power wherein outcome is as gain, X, which
depends upon the availability and overall cost / MWe. Fuzzy set B refers to the overall
energy requirement, Y, while set C expresses the failure of power (outcome as loss),
Z, termed equivalent. The membership functions for X, Y and Z are considered as
linear increasing functions.

Note: Understanding of meaning is a prerequisite to precisiation of meaning. Pre-
cisiation of meaning is a prerequisite to computation; the expressions given below
justify the concept of precisiation proposed by Professor Zadeh in his seminal work
on CW methodology. It is of interest to note that the concept of precisiation, in the
sense in which it is used in CW, does not exist within linguistics or computational
linguistics. Expressions stated below explain the concept of precisiation.

The mathematical functions of membership functions for gains, total energy require-
ment, and losses (expressed as energy equivalent) areμA(x),μB(y) andμC (z) respec-
tively and given as:

μA(x) =
⎧
⎨

⎩

0, 0 ≤ x ≤ 10000
(x−a)
(b−a) , 10000 ≤ x ≤ 110000

1, x ≥ 110000

μB(y) =
⎧
⎨

⎩

0, 0 ≤ y ≤ 110000
(y−a)
(b−a) , 110000 ≤ y ≤ 160000

1, y ≥ 160000

and

μC (z) =
⎧
⎨

⎩

0, 0 ≤ z ≤ 1000
(z−a)
(b−a) , 1000 ≤ z ≤ 14000

1, z ≥ 14000

We have considered total energy requirement as approx. 140,000 MWe, Y can be
considered as [140,000, 150,000]; where y1=140,000 MWe and y2=150,000 MWe.
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Nuclear Energy Option

In case of the nuclear option, consider high energy gain and high risk, defined by the
user as follows

Gain     Loss

90,000 10,000 

X Z

Consider a fuzzy set AN
∼ (near optimum-gain) with x1 = 90,000 MWe and x2 =

100,000 MWe, and a set C N
∼ (expected-loss) with z1 = 10,000 MWe and z2 =

11,000 MWe, based on user’s input.

μA(x) =
⎧
⎨

⎩

0, 0 ≤ x ≤ 10, 000
(x−10000)

100000 , 10,000 ≤ x ≤ 110,000
1, x ≥ 110,000

The fuzzy Cartesian product between AN
∼ and B N

∼ and B N
∼ and C N

∼ could be

worked out as given below:

RN
∼ =

x1
x2

y1 y2[
0.6 0.8
0.6 0.8

]

SN
∼ =

y1
y2

z1 z2[
0.6 0.6
0.69 0.77

]
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Since fuzzy relation RN
∼ is defined from X to Y and fuzzy relation SN

∼ is defined

from Y to Z, then fuzzy max-min composition between RN
∼ and SN

∼ results into the

following fuzzy relation matrix T N
∼ as

T N
∼ =

x1
x2

z1 z2[
0.69 0.77
0.69 0.77

]

Hydro Energy Option

In case of the Hydro energy option, the user defines medium energy gain and
medium risk as X (50,000, 60,000) and Z (8,000, 9,000). Following similar com-
putational procedure presented in nuclear option, the final matrix after using the
compositional rule of inference or max–min composition works out to be:

T H y
∼ =

x1
x2

z1 z2[
0.4 0.4
0.5 0.5

]

Thermal Energy Option

In case of the thermal energy option, very low energy gain and very low risk are
defined by the user as follows X (13,000, 18,000) and Z (1,500, 2,200). Since fuzzy
relation RT h

∼ is defined from X to Y and fuzzy relation ST h
∼ is defined fuzzy relation

matrix T T h
∼ as

T T h
∼ =

x1
x2

z1 z2[
0.03 0.03
0.08 0.08

]

Now, defuzzify all the fuzzy relation matrices T N
∼ , T H y

∼ and T T h
∼ by considering

α =0.08, therefore, we have

T N = x1
x2

z1 z2[
1 1
1 1

]
, T H y = x1

x2

z1 z2[
1 1
1 1

]
, T T h = x1

x2

z1 z2[
0 0
0 1

]

It is prudent to calculate the ratio as that could alone help in deciding the viable
option.
Calculate ratio of loss and gain
For thermal:

z2

x2
= 2200

18000
= 0.122
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For hydro:
z1

x1
= 0.16,

z1

x2
= 0.133,

z2

x1
= 0.18,

z2

x2
= 0.15

For Nuclear:

z1

x1
= 0.11,

z1

x2
= 0.1,

z2

x1
= 0.122,

z2

x2
= 0.11

We can draw useful conclusion form the computational procedure that the ration of
loss and gain is less for Nuclear energy option. Therefore, Nuclear Energy will be
the viable option or prospect.

Type-II Fuzzy Relational Calculus

Nuclear Energy Option

Consider a fuzzy set ÃN (near optimum-gain) with x1 = 90,000 MWe and x2 =
100,000 MWe, and a set C̃N (expected-loss) with z1 = 10,000 MWe and z2 =
11,000 MWe, based on expert’s input.

The fuzzy Cartesian product between ÃN and B̃N and, B̃N and C̃N could be
worked out as given below:

R̃N = x1
x2

y1 y2∣∣∣∣
0.6 0.8
0.6 0.8

∣∣∣∣ and S̃N = y1
y2

z1 z2∣∣∣∣
0.6 0.6
0.69 0.77

∣∣∣∣

Let us consider the type-2 fuzzy relations by adding some uncertainty to the type-1
fuzzy relations.

≈
RN = x1

x2

y1 y2∣∣∣∣∣

0.25
0.45 + 1

0.6 + 0.5
0.7

0.33
0.6 + 1

0.8 + 0.5
0.9

0.25
0.45 + 1

0.6 + 0.5
0.7

0.33
0.6 + 1

0.8 + 0.5
0.9

∣∣∣∣∣

and

≈
SN = y1

y2

z1 z2∣∣∣∣∣

0.25
0.45 + 1

0.6 + 0.5
0.7

0.25
0.45 + 1

0.6 + 0.5
0.7

0.53
0.55 + 1

0.69 + 0.63
0.8

0.23
0.6 + 1

0.77 + 0.87
0.8

∣∣∣∣∣

Since fuzzy relation
≈
RN is defined from X to Y and fuzzy relation

≈
SN is defined

from Y to Z, then fuzzy max-min composition between
≈
RN and

≈
SN results into the

following fuzzy relation matrix
≈
T N as
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≈
TN = x1

x2

z1 z2∣∣∣∣∣

0.25
0.55 + 0.53

0.6 + 1
0.69 + 0.5

0.7 + 0.63
0.8

0.33
0.6 + 0.33

0.7 + 1
0.77 + 0.87

0.8
0.25
0.55 + 0.53

0.6 + 1
0.69 + 0.5

0.7 + 0.63
0.8

0.33
0.6 + 0.33

0.7 + 1
0.77 + 0.87

0.8

∣∣∣∣∣

Hydro energy option

In case of the Hydro energy option, the user defines medium energy gain and medium
risk as X= (50,000, 60,000) and Z= (8,000, 9,000). Following similar computational
procedure presented for nuclear option, the final matrix after using the compositional
rule of inference or fuzzy max-min composition works out to be:

≈
TH y = x1

x2

z1 z2∣∣∣∣∣

0.5
0.2 + 1

0.4 + 0.25
0.53 + 0.25

0.6
0.5
0.2 + 1

0.4 + 0.25
0.53 + 0.25

0.6
0.3
0.2 + 0.7

0.4 + 1
0.5 + 0.5

0.53 + 0.5
0.7

0.3
0.2 + 0.25

045 + 1
0.5 + 0.5

0.6 + 0.5
0.62 + 0.5

0.7

∣∣∣∣∣

Thermal energy option

In case of the thermal energy option, very low energy gain and very low risk are
defined by the user as follows X = (13,000; 18,000) and Z = (1,500; 2,200). Since

fuzzy relation
≈

RT h is defined from X to Y and fuzzy relation
≈

ST h is defined from Y to

Z, then fuzzy max-min composition between
≈

RT h and
≈

ST h results into the following

fuzzy relation matrix
≈

TT h as

≈
TT h = x1

x2

z1 z2∣∣∣∣∣

0.4
0.01 + 0.4

0.02 + 1
0.03 + 0.5

0.04 + 0.5
0.05

0.4
0.01 + 0.4

0.02 + 1
0.03 + 0.5

0.04 + 0.5
0.05

0.4
0.05 + 0.5

0.07 + 1
0.08 + 0.3

0.09 + 0.3
0.1

0.4
0.05 + 0.5

0.07 + 1
0.08 + 0.3

0.09 + 0.3
0.1

∣∣∣∣∣

By finding centroids,
≈

TN ,
≈

TH y and
≈

TT h can be converted to the following

T̃N = x1
x2

z1 z2∣∣∣∣
0.687 0.749
0.687 0.749

∣∣∣∣, T̃H y = x1
x2

z1 z2∣∣∣∣
0.391 0.391
0.485 0.535

∣∣∣∣

and

T̃T h = x1
x2

z1 z2∣∣∣∣
0.031 0.031
0.0768 0.0768

∣∣∣∣

It can be seen that fuzzy relation matrix
∼
T shows the relationship between energy

gain and energy loss with respect to energy options in fuzzy scenario. Components
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of matrix
∼
T are called membership values, which are expressing degrees of strength

of the relation between loss and gain on the unit interval [0,1].
In case of thermal energy option, these membership values are comparatively very

low. Therefore, the possibility of relationship of loss and gain for thermal energy
option is less. This clearly shows that in 2030, thermal energy option can be ignored.
In case of the other options i.e. Hydro and Nuclear Energy options, the membership
value of relationship is high. Therefore, the possibility of that relation is more. Fur-
ther, it is visible that the highest membership value or the highest possibility is 0.77,
which is the nuclear option.

Mathematically, after ignoring thermal energy option, by considering α = 0.485,

fuzzy relation matrices
≈

TN and
≈

TH y can be defuzzified as follows:

T̃N = x1
x2

z1 z2∣∣∣∣
1 1
1 1

∣∣∣∣ and T̃H y = x1
x2

z1 z2∣∣∣∣
0 0
1 1

∣∣∣∣

To decide the viable option, calculate the ratio of loss and gain:

For the Nuclear energy option

z1

x1
= 0.11,

z1

x2
= 0.1,

z2

x1
= 0.122,

z2

x2
= 0.11

For Hydro energy option
z1

x2
= 0.133,

z2

x2
= 0.15

We can draw useful conclusion from the computational procedure that the ration
of loss and gain is minimum in case of Nuclear energy option. It could be revealed
from the computations that the final ranking of energy options is nuclear, i.e., Nuclear
energy, using either type-1 [2] or type-2 fuzzy relational algorithm, ranks first. Hence,
it can be finally concluded through fuzzy relation approach that Nuclear energy is
the topmost viable option or prospect in order to meet the growing energy needs of
India till 2030.

5 A Word on Safety Provisions in Nuclear Plants in India

Enhanced safety provisions are built in the nuclear reactors to avoid any accident.
In nuclear reactors, energy is generated by fission of fissile (Uranium or Pluto-
nium) nuclei in a continuous chain reaction. In addition to energy, the nuclear
fission produces fission products that are radioactive. Nuclear power plants use fissile
materials to produce energy in the form of heat, which is converted to electricity by
conventional generating plant. Radioactive materials are produced as a by-product of
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this process. Whilst radioactive materials can have beneficial uses, such as in cancer
therapy, they are generally harmful to health. Their use, and the process by which
they are produced, must be strictly regulated to ensure nuclear safety. Apart from
the management of fuel, nuclear safety particularly covers the design, construction,
operation and decommissioning of all nuclear installations. It is important to under-
stand why Fukoshuima type disaster is most unlikely in India before we discuss on
nuclear safety.

Fukushima Daiichi accident caused due to earthquake followed by Tsunami is a
series of equipment failures, nuclear meltdowns and release of radioactive materials.
All the six reactors are light water, boiling water reactor. Many of the internal compo-
nents and fuel assembly cladding being made from Zircalloy, cooling the reactor was
essential because at temperature above 500◦C in presence of steam zircalloy under-
goes an exothermic reaction, zircalloy oxidizes and free hydrogen got produced. The
reaction between the zirconium cladding and the fuel lowered the melting point of
the fuel and melting of core got speed up. Inadequate cooling caused the release
of radioactivity in the environment. Keeping in view of this disaster, it is obvious
to put a question about the safety of nuclear plants during its design and operation
under the normal as well as accident condition. It is also true that location wise (from
the earthquake and tsunami pruned areas) nuclear plants should be safe first. It is
known fact from the latest version of the earthquake resistant design code of India
that four levels of seismicity have been assigned in terms of zone factors and zonings
are ordered from 2 (extreme least) to 9 (extreme most). According to IS code the
effective peak horizontal ground acceleration for zone 1 is 0.36 (36 % of gravity)
also known as zone factor. Similarly the zone factor for zone 2 is 0.24, for zone 3 is
0.16 and for zone 4 is 0.1. Indian nuclear power plants are situated in Zone 2 and 3
except Narora plant in Uttar Pradesh, which is situated in Zone 4. Japan’s nuclear
plants are in Zones 7, 8 and 9.

The basic objective of nuclear safety, as a concept, is to protect the public, workers
in the nuclear industry and the environment from radiological risks. In order to ensure
safe operation of nuclear reactor, three basic safety functions have to be achieved in
a sustained manner and these are:

Control of fission reaction:
The reactors are controlled by controlling the population of neutrons by use of neutron
absorbers like boron and cadmium. The shutdown of the reactor takes place by
inserting the control rods into the core and shutdown systems are designed to be
fail-safe. Hence in case of power failure the rods drop due to gravity or the liquid
poison is injected due to accumulator gas pressure.

Cooling of the reactor core:
During normal operation, heat is generated in the core due to nuclear fission. Even
when the reactor is in shutdown state a small amount of heat is generated due to the
decay of fission products (decay heat). The intensity of decay heat reduces slowly
with time. The reactor therefore needs cooling continuously in all states. Reliable
cooling normally takes place by two or more coolant circuits that help in removal of
heat in case of failure of one circuit. Improvement is further achieved by the coolant
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pumps provided with backup power supply from diesel generators and battery banks,
which supply power during grid failure. In addition to this all the reactors are also
provided with emergency core cooling system, which is independent from normal
cooling systems. The emergency core cooling system ensures cooling of the core
even if there is a leak in the coolant circuit.

Containment of the radioactive fission products:
Radioactive material is produced in the core of the reactor when fission occurs. Most
of these fission products remain within the fuel itself under normal circumstances.
However, to prevent their release to the environment under transient or accident
conditions, at least three successive barriers are provided. The first barrier is the fuel
clad within which the fuel is enclosed. The second barrier is the leak tight coolant
circuit. The third barrier is the containment building around the coolant system. In
some of the reactors, a secondary containment is provided for further protection.

So, in summary, safety in design of nuclear power reactor is provided by a graded
approach called as “Defense in Depth”. Safety in operation is achieved by a stringent
administrative control with rigorous training and especially high skilled manpower.
Indian nuclear plants are equipped with all the fore referred safety features.

6 Concluding Remaks

It is a deep-seated tradition in science to employ the conceptual structure of bivalent
logic and probability theory as a basis for formulation of definitions and concepts.
What is widely unrecognized is that, in reality, most concepts are based on perception
of domain experts/individual. Fuzzy logic via computing with words could, therefore,
be useful in perception-based modeling.

Perceptions of the domain experts remain as the backbone for CW methodol-
ogy used in any decision-making problems. In this paper, authors infer that nuclear
energy ranks as the first viable option in order to meet the energy needs of the country
till 2030. In a real life scenario, the decision makers may not invariably carry out
extensive social surveys for the estimation of several parameters required in Cumula-
tive Prospect Theory/ Prospect Theory. The CW based techniques used in this paper
offers a reasonable solution with less computational complexities as compare to the
prospect theory.

Future energy needs of India are so large that unlike some other countries, no
one or two energy resources will be adequate to bridge the gap between supply and
demand. Therefore, the country is left with no other option than to decide on the
proportions of these renewable and nonrenweable energy sources in order to meet
ever increasing future energy needs. The case study presented herein is, therefore,
a need based applied research. The data on future energy needs have been freely
used from the literature published by the Government of India. The policy issues
are invariably based on the expert’s perception which is considered via the restricted
centered theory of reasoning and computation (RCC) [17, 15].
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Realising the complexity of energy policy issues reported in this sequel, appli-
cation of other methods such as: Fuzzy Multi criteria Decision Making (FCDM),
Fuzzy Analytical Hierarchical Procedure (FAHP) and alike will be attempted in our
continued research efforts.
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