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Abstract. This chapter is an introduction to the problems of timetabling educational
institutions such as high schools and universities. These are large problems with
multiple sources of NP-completeness, for which robust solvers do not yet exist, al-
though steady progress is being made. This chapter presents the three main problems
found in the literature: high school timetabling, university examination timetabling,
and university course timetabling. It also examines some major subproblems of
these problems: student sectioning, single student timetabling, and room assign-
ment. This chapter also shows how real-world instances of these problems, with
their many constraints, can be modelled in full detail, using a case study in high
school timetabling as an example.

1 Introduction

Educational timetabling is not a single problem. For each kind of timetable needed
by each kind of institution there is a separate problem with a separate literature.
These literatures are too large to survey comprehensively within the limits of a
book chapter, so only a selection, including recent survey papers, is referenced here.
Schaerf (1999) is a good general survey.

Solving a real instance of an educational timetabling problem (an instance taken
without simplification from an actual institution) by hand can take weeks of tedious
and error-prone work by an expert. Hand-generated timetables are still common,
although automated or semi-automated methods are making inroads. For example,
the traditional way to timetable students in North American universities, which is to
publish lists of course sections and times and expect the students to create their own
timetables and sign up for the sections they want, is giving way to a semi-automated
method, in which the number of sections of each course and the times they run may
still be decided by hand, but the students’ timetables are generated automatically.
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The lead in educational timetabling has always been given by researchers who
are trying to solve real problems from real institutions. This practical orientation
has informed the selection of topics for this chapter.

2 Educational Timetabling Problems

The educational timetabling literature mainly studies problems found in high schools
(schools for older children) and universities. High schools need to timetable their
normal activities once per year, or sometimes more often. This is the high school
timetabling problem (Sect. 4). Universities need to timetable their normal activ-
ities once per semester. This is called the university course timetabling problem
(Sect. 6), to distinguish it from the other main university problem, the (university)
examination timetabling problem (Sect. 5): the timetabling of examinations after the
end of semester. There are other kinds of institutions and problems, but educational
timetabling, as it appears in the literature, is essentially about these three problems.

When the number of students enrolled in a high school or university course is
large, the course may need to be broken into sections: copies of the course, each with
its own time, room, and teacher. Each student enrolled in the course must then be
assigned to one of its sections. If these assignments are made early in the timetabling
process, the result is the student sectioning problem (Sect. 7), which aims to assign
students to sections so as to facilitate the assignment of times to sections later, by
minimizing the number of pairs of sections that share at least one student.

A phase is one part of a solver’s work, carried out more or less independently of
its other phases. Student sectioning is one example of a phase. Other commonly
encountered examples are single student timetabling (Sect. 8), the creation of a
timetable for one student after courses are broken into sections and the sections are
assigned times, and room assignment (Sect. 9), the assignment of suitable rooms
to events after the events’ times are fixed. It is often necessary to divide a solve
process into phases when faced with large, real instances of timetabling problems,
even though it usually rules out all hope of finding a globally optimal solution. This
makes individual phases worthy subjects of study in their own right.

All these problems are concerned with assigning times and resources (students,
teachers, rooms, and so on) to events so as to avoid clashes (cases where a resource
attends two events at the same time) and violations of various other constraints, such
as unavailable times for resources, or restrictions on when events may occur. Some
times and resources may be preassigned; others are left open to the solver to assign.
Informally, a timetabling problem is any problem that fits this description.

Several problems outside the scope of this chapter are timetabling problems by
this definition. Nurse rostering is one example. The events are the shifts. The events’
times are preassigned, and resources (nurses in this case) must be assigned to them.
Another example is sport competition timetabling. The events are the matches, to
which times must be assigned. Their resources, largely preassigned, are the teams
and venues. These problems are always treated separately, however, and rightly so,
because their constraints, other than the avoid-clashes constraint, are very different.
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Many timetabling problems can be proved to be NP-complete using a reduction
from graph colouring due to Welsh and Powell (1967). For each node of the graph
to be coloured, create one event of duration 1. For each edge, create one resource
preassigned to the two events corresponding to the edge’s endpoints. Then assigning
a minimal number of colours to the nodes so that no two adjacent nodes have the
same colour is equivalent to assigning a minimal number of times to the events so
that no resources have clashes.

The inverse of this construction is the clash graph, a widely used conceptual
aid. It has one node for each event. An edge joins each pair of events, weighted
by the number of resources the two events have in common (Figure 1). Colouring
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Fig. 1 A clash graph. Each node represents one event; each edge is weighted by the number
of resources the events at its endpoints have in common.

this graph to minimize the total weight of edges that join nodes of the same colour is
equivalent to assigning a time to each event which minimizes the number of clashes.

It would be a mistake to consider educational timetabling as a branch of graph
colouring, however. Timetabling problems have many kinds of constraints. Each
may be a source of NP-completeness in its own right, and much of the difficulty lies
in handling all of them together. For example, ensuring that students have breaks
between examinations is a travelling salesman problem (Sect. 5), balancing teacher
workloads is bin packing, and so on (Cooper and Kingston, 1996).

3 Educational Timetabling Models

For most of its history, educational timetabling research has been very fragmented.
Each research group has used its own definitions of the problems, and its own data in
its own format. There has been little exchange of data, except for one set of instances
of the examination timetabling problem.

What is primarily needed to break down these barriers is for researchers to reach
consensus on a model, or format, in which instances and solutions can be expressed,
including unambiguous rules for calculating the cost of solutions. The terms ‘model’
and ‘format’ are roughly interchangeable; ‘model’ emphasizes the ideas, ‘format’
emphasizes the concrete syntax that realizes those ideas.
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Pure algorithmic problems, such as graph colouring and the travelling salesman
problem, are easy to model. Real timetabling problems have many details which
vary from institution to institution, and modelling them is a daunting problem—so
much so, that it is the largest obstacle to progress in many cases.

Collaborative work on modelling began with a discussion session at
the first Practice and Theory of Automated Timetabling (PATAT) conference
(Cumming and Paechter, 1995). The work has been carried on continuously since
then, primarily within the PATAT conferences. There have been many arguments
and some wrong turnings, but the fog is lifting, and data exchange is now becoming
common.

One issue has been whether the problems should be modelled in full detail,
or simplified to highlight their essence and reduce the implementation burden for
solvers. Researchers strive to improve on previous work, and one way to improve is
to work with more realistic data, so this issue is resolving itself as time passes.

A second issue has been the choice of level of abstraction. An example of a very
abstract format is the input language of an integer programming package. Input in
this format allows many kinds of constraints to be expressed, but it is too general
to permit the use of solution methods specific to timetabling. Successful formats
instead offer a long but finite list of concrete (timetabling-specific) constraint types.
Modelling each timetabling problem separately, rather than using a single model
for all of them, also makes for concreteness, and has turned out to be best, if only
because the work needed to reach a consensus is less, and researchers are more
likely to take an interest when their own problem is discussed specifically.

Some generalizations are natural and desirable, however. For example, a model
which treats teachers, students, and rooms separately must define a ‘no clashes’
constraint for each kind of entity. Generalizing to resources, which are entities that
attend events and may represent individual students, groups of students, teachers,
rooms, or anything else (but not times), simplifies the model. Allowing arbitrary sets
of times to be defined and named, rather than, for example, just the days and weeks
(and similarly for resources), is another useful generalization, as is recognizing each
source of cost in a solution as a violation of some kind of constraint. The value of a
good generalization is often underestimated: it simplifies solvers as well as models.

The oldest well-known educational timetabling model, and the most successful
as measured by the amount of data sharing effected, is the one used by the Toronto
data set, which contains 13 real instances of the examination timetabling problem
collected by Carter et al. (1996). In recent years it has been criticised for being too
simple: it does not model rooms, and its constraints are implicit and so have fixed
weights. It is discussed in more detail in Sect. 5.

Another landmark is a format created for nurse rostering in 2005. It models
many more constraints than the Toronto data set does, and it models them explicitly,
which allows individual instances to choose to include them or not, and to vary their
weights. It also uses XML, which is verbose but has the great advantage of being
clear and definite. At the time of writing, 20 instances were available in the current
version of the format, collected from researchers in 13 countries (Curtois, 2012).
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As a case study in modelling educational timetabling problems, the remainder of
this section presents a model of the high school timetabling problem called XHSTT
(Post, 2012a), developed recently by a group of high school timetabling researchers.
The model, which was influenced by the nurse rostering model just described, was
refined over several years and tested against real instances. It offers 15 types of
constraints, has been used to model about 30 real instances from 10 countries so far,
and has achieved widespread acceptance within the high school timetabling research
community. The following description, written by this author, is from Post (2012b).
Syntactic details are omitted; they may be found online (Kingston, 2009).

An XHSTT file is an XML file containing one archive, which consists of a set
of instances of the high school timetabling problem, plus any number of solution
groups. A solution group is a set of solutions to some or all of the archive’s instances,
typically produced by one solver. There may be several solutions to one instance in
one solution group, for example solutions produced using different random seeds.

Each instance has four parts. The first part defines the instance’s times, that is, the
individual intervals of time, of unknown duration, during which events run. Taken in
chronological order these times form a sequence called the instance’s cycle, which
is usually one week. Arbitrary sets of times, called time groups, may be defined,
such as the Monday times or the afternoon times. A day is a time group holding
the times of one day, and a week is a time group holding the times of one week. To
assist display software, some time groups may be labelled as days or weeks.

The second part defines the instance’s resources: the entities that attend events.
The resources are partitioned into resource types. The usual resource types are a
Teachers type whose resources represent teachers, a Rooms type of rooms, a Classes
type of classes (sets of students who attend the same events), and a Students type of
individual students. However, an instance may define any number of resource types.
Arbitrary sets of resources of the same type, called resource groups, may be defined,
such as the set of Science laboratories, the set of senior classes, and so on.

The third part defines the instance’s events: meetings between resources. An
event contains a duration (a positive integer), a time, and any number of resources
(sometimes called event resources). The meaning is that the resources are occupied
attending the event for duration consecutive times starting at time. The duration is a
fixed constant. The time may be preassigned or left open to the solver to assign. Each
resource may also be preassigned or left open to the solver to assign, although the
type of resource to assign is fixed. Arbitrary sets of events, called event groups, may
be defined. A course is an event group representing the events in which a particular
class studies a particular subject. Some event groups may be labelled as courses.

For example, suppose class 7A meets teacher Smith in a Science laboratory for
two consecutive times. This is represented by one event with duration 2, an open
time, and three resources: one preassigned Classes resource 7A, one preassigned
Teachers resource Smith, and one open Rooms resource. Later, a constraint will
specify that this room should be selected from the ScienceLaboratories resource
group, and define the penalty imposed on solutions that do not satisfy that constraint.

If class 7A meets for Science several times each week, several events would be
created and placed in an event group labelled as a course. However, it is common in
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high school timetabling for the total duration of the events of a course to be fixed, but
for the way in which that duration is broken into events to be flexible. For example,
class 7A might need to meet for Science for a total duration of 6 times per week,
in events of duration 1 or 2, with at least one event of duration 2 during which the
students carry out experiments. One acceptable outcome would be five sub-events,
as these fragments are called, of durations 2, 1, 1, 1, and 1. Another would be three
sub-events, of durations 2, 2, and 2. This is modelled in XHSTT by giving a single
event of duration 6. Later, constraints specify the ways in which this event may be
split into sub-events, and define the penalty imposed on solutions that do not satisfy
those constraints.

The last part of an instance contains any number of constraints, representing
conditions that an ideal solution would satisfy. At present there are 15 types of
constraints, stating that events should be assigned times, prohibiting clashes, and so
on. The full list appears in Table 1.

Table 1 The 15 types of XHSTT constraints, with informal explanations of their meaning

Name Meaning
Assign Resource constraint Event resource should be assigned a resource
Assign Time constraint Event should be assigned a time
Split Events constraint Event should split into a constrained number of sub-events
Distribute Split Events constraint Event should split into sub-events of constrained durations
Prefer Resources constraint Event resource assignment should come from resource group
Prefer Times constraint Event time assignment should come from time group
Avoid Split Assignments constraint Set of event resources should be assigned the same resource
Spread Events constraint Set of events should be spread evenly through the cycle
Link Events constraint Set of events should be assigned the same time
Avoid Clashes constraint Resource’s timetable should not have clashes
Avoid Unavailable Times constraint Resource should not be busy at unavailable times
Limit Idle Times constraint Resource’s timetable should not have idle times
Cluster Busy Times constraint Resource should be busy on a limited number of days
Limit Busy Times constraint Resource should be busy a limited number of times each day
Limit Workload constraint Resource’s total workload should be limited

Each type of constraint has its own specific attributes. For example, a Prefer
Times constraint lists the events whose time it constrains, and the preferred times
for those events, while a Link Events constraint lists sets of events which should
be assigned the same time. Each constraint also has attributes common to all con-
straints, including a Boolean value saying whether the constraint is hard or soft, and
an integer weight.

Traditionally, a hard constraint is one that must be satisfied if the timetable is
to be used at all, although in practice a few violations of hard constraints are often
acceptable, since the school can overcome them by undocumented means (moving a
class to after school hours, assigning the deputy principal to a class with no teacher,
and so on). A soft constaint, on the other hand, is a constraint that is violated quite
routinely, although the total cost of those violations should be minimized.
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As stated above, solutions are stored separately from instances, in solution groups
within the archive file. A solution is a set of sub-events, each containing a duration, a
time assignment, and some resource assignments. A solution’s infeasibility value is
the sum over the hard constraints of the number of violations of the constraint times
its weight. Its objective value is similar, but using the soft constraints. One solution
is better than another if it has a smaller infeasibility value, or an equal infeasibility
value and a smaller objective value. A web site (Kingston, 2009) has been created
which calculates the infeasibility and objective values of the solutions of an archive,
and displays comparative tables, lists of violations, and so on.

It used to be said that real instances of timetabling problems required too many
types of constraints for complete modelling to be possible. The nurse rostering and
high school timetabling models disprove this; they show that careful elucidation of
constraints, aided by suitable generalizations, can lead to complete models of real
instances which are small enough to be usable. As instances appear that require
other types of constraints, those constraints can be added gradually.

4 High School Timetabling

In the high school timetabling problem, a set of events of arbitrary integer duration
is given, each of which contains a time and some resources: students, classes (sets
of students who attend the same events, at least for the most part), teachers, and
rooms. The time and resources may be preassigned to specific values, or left open
to the solver to assign. The meaning is that the resources assigned to the event are
occupied for duration consecutive times starting at time. The problem is to assign the
unpreassigned values so as to avoid clashes and satisfy a variety of other constraints,
such as those listed in Table 1 (Sect. 3).

When student sectioning (Sect. 7) is needed, it is carried out as a separate initial
phase. Accordingly, it is usually considered not to be part of high school timetabling
proper. This is one way in which high school timetabling differs from university
course timetabling. Another is that the high school problem timetables groups of
students (classes) which are usually occupied together for all, or almost all, of the
times of the cycle, whereas the university problem timetables individual students
whose timetables contain a significant amount of free time. Some clashes are prob-
ably inevitable among the thousands of individual university students’ timetables,
whereas clashes are not acceptable for classes.

A major division exists within high school timetabling instances with respect to
teachers. On one side lie schools whose teachers are mostly part-time and tend to be
preassigned to specific courses, and the emphasis is on providing timetables for the
teachers which require their attendance for a minimal number of days per week and
give them few idle times (free times in between busy times) on those days. On the
other side lie schools whose teachers are mostly full-time, making it impractical to
preassign teachers to specific courses except in the senior years, and the emphasis
is on finding a timetable with teacher assignments that assign a qualified teacher to
every lesson of every course.
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Schmidt et al. (1980) comprehensively surveys the early history of high school
timetabling research, including a description of a very basic version of the problem
called class-teacher timetabling, which can be solved in polynomial time by edge
colouring. Appleby et al. (1960), Gotlieb (1962), and De Werra (1971) are examples
of papers that were influential in their day. Carter et al. (1997) is a good snapshot of
a more recent era. The PATAT 2012 conference (Kjenstad, 2012) contains several
high school timetabling papers, most of them stimulated by the Third International
Timetabling Competition (Post, 2012b).

The only recent survey is Pillay (2010). It classifies about 40 papers which solve
high school timetabling problems. Their methods include (in decreasing order of
popularity) evolutionary algorithms, tabu search, integer programming, simulated
annealing, and constraint programming. Many papers hybridize several methods.
All of these papers pre-date the creation of standard benchmarks (for which see
Sect. 3), so any attempt to rank them would be futile. At the time of writing the only
paper with any objective claim to eminence is Fonseca et al. (2012), which describes
the work that won the Third International Timetabling Competition (Post, 2012b).
A more recent on-line version of this survey (Pillay, 2012) lists many more papers.

5 Examination Timetabling

The (university) examination timetabling problem has one event for each course,
representing the course’s final examination. The durations of the events may differ,
although that is often a minor consideration. Each event’s resources are the students
who attend the course, and possibly a room. The aim is to assign a time to each event,
avoiding clashes in the students’ examination timetables. Room assignment (Sect. 9)
may be required, and it is characteristic to include proximity constraints, expressing
in some way the undesirability of attending two examinations close together in time.
Proximity constraints might prohibit two examinations for one student on one day,
for example, or two consecutive examinations ignoring day boundaries.

Insight into proximity constraints can be gained from the unrealistic special case
where the number of examinations equals the number of times, and examinations
may not occur simultaneously, ruling out all possibility of clashes. (This could arise
in practice if the examinations are clustered before they are timetabled.) If there are
two examination sessions per day, then minimizing the number of cases where a
student attends two examinations in one day is equivalent to finding a maximum
matching of minimum weight in the clash graph, for which there is a polynomial
time algorithm. Alternatively, ignoring day boundaries and simply minimizing the
number of cases where a student attends examinations at two consecutive times is a
travelling salesman problem in the clash graph and so is NP-hard (Figure 2).

Despite involving many of the same resources, examination timetabling is much
easier to model than university course timetabling. Coming as it does later in the
semester, after enrolments have settled, it has not the dynamic character of course
timetabling. Student sectioning is not required, even if different examinations are
given to different sections, because it has already been done; and room requirements
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Fig. 2 A clash graph, showing (left) a minimum matching, which defines a pairing of the
events which minimizes the number of cases where a resource attends both events of a pair;
and (right) a travelling salesman path, which defines an ordering of the events which mini-
mizes the number of cases where a resource attends two consecutive events. Example taken
from Kingston (2010).

are usually more uniform, except perhaps for a few practical examinations which
take place in laboratories.

Examination timetabling has a relatively long history of use of benchmark data,
specifically the 13 real instances of the Toronto data set (Carter et al., 1996), still
available and in use. These have quite elaborate proximity constraints, assigning a
high penalty for two consecutive examinations, a lower penalty for examinations
separated by one time, and so on; but these and the student no-clashes constraints
are the only constraints. A more recent data set used by the Second International
Timetabling Competition follows a more realistic model (McCollum et al., 2012).
A guide to examination timetabling data sets is available online (Qu, 2012).

The leading recent survey is Qu et al. (2009), online at (Qu, 2012), a major work
which describes other surveys, models, methods, and data sets, and cites 160 papers
and 15 PhD theses. Carter (1986) and Carter et al. (1996) are still worth reading.

6 University Course Timetabling

University course timetabling aims to break university courses into sections, and
assign times, students, rooms, and possibly instructors to the sections, subject to
constraints like those of high school timetabling, only applied to individual students
(each of whom has a distinct timetable) rather than to groups of students.

A static timetabling problem is one that is set up once, solved, and used. There
may be some exploration of alternative scenarios, but once an acceptable timetable
has been found, the work is finished. In contrast, a dynamic problem is one whose
requirements and solution evolve over time. Most timetabling problems are static,
and they are also small enough to be set up by a single person, the local expert.

University course timetabling is different. It is so large that no single person ever
understands it all; local experts are scattered across the faculties and departments of
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the university, working largely independently of each other. It takes months to set
up the problem, and even after semester begins there are continuous changes to the
timetables of individual students, and some changes to the events as well (opening
and closing sections in response to late changes in student demand).

Traditionally, the tiger was tamed by re-using as much of the previous year’s
timetable as possible (more than deserved to be, in many cases), and by partitioning
the problem. The central administration controlled the main lecture theatre block,
the departments controlled the rest. Each faculty made sure that students working
entirely within the faculty could get workable timetables, but liaison across faculties
was limited to the bare essentials. And if something did not work, a student was
simply advised not to do it.

Vestiges of this approach can still be found, but its deficiencies are so glaring
(poor room utilization and unhappy students, who are often paying customers these
days) that it cannot survive for much longer. At the same time, the presence of a
web browser on every desk has resolved the dilemma of a non-partitionable problem
whose data are distributed: the departments are required to send their data via the
web to the centre, which owns all the resources and does all the timetabling.

So the problem as it stands today is to timetable the entire university, not one
department or faculty, including delivering an individual timetable to every student.
Most changes after the start of semester can be handled by single student timetabling
(Sect. 8), so the focus is on finding a good timetable before semester begins.

Two general approaches to university course timetabling may be distinguished.
Emphasis may be placed on ensuring that certain sets of courses can be taken in
combination, because students need them to satisfy the degree rules. Such sets of
courses are called curricula, and this approach to the problem is called curriculum-
based university course timetabling. Although ultimately each student must receive
an individual timetable, in its pure form the curriculum-based approach does not
utilize enrolment data for individual students.

In universities where students have large-group lectures and small-group tutorials
and laboratories, there is an important sub-problem: assigning times and rooms to
the lectures, given some basic information about what combinations of courses the
students are likely to choose. Curriculum-based timetabling addresses this kind of
problem, and serves as a model of what it may be worthwhile to do before the
dynamic phase of university course timetabling begins.

Declaring a set of events to be a curriculum amounts to saying that a number
of students will be taking those events in combination. In high school timetabling
the same declaration is made by placing a preassigned class resource into the
events. This relationship between curriculum-based timetabling and high school
timetabling has been exploited in a few papers, such as Nurmi and Kyngäs (2008).

The alternative to curriculum-based timetabling is enrolment-based university
course timetabling, in which the enrolment data for individual students are used
to determine which courses should be able to be taken in combination.

The two approaches are not mutually exclusive. Student enrolment data often
becomes available fairly late, in which case curriculum-based timetabling may be
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used early to lay out the basic structure of the timetable (such as the times of large-
group lectures), while enrolment-based timetabling is used later to fine-tune it.

When constructing a timetable with sections based on student enrolment data,
a basic dilemma emerges: whether to assign students to sections before or after
assigning times to sections. Neither alternative is fully satisfactory, so, in practice,
implementations of both approaches always include some way of reconsidering the
first phase after completing the second.

Assigning times first has the advantage that students can then be assigned to
sections using single student timetabling (Sect. 8), which is known to work well. If
the result is poor, the time assignment can be adjusted.

A semi-automatic version of this method is used at the author’s university. Initial
values for the number of sections of each course, and their times, are chosen man-
ually, based on curricula, history, and incomplete student enrolment data. Then a
dynamic process of refinement begins. As student enrolment information improves,
dummy runs of single student timetabling applied to each student (but not published
to the students) are carried out at the centre. Results are distributed to departmental
coordinators, who respond by opening and closing sections as enrolment numbers
become clearer, and moving sections left underfilled by single student timetabling
to other and hopefully better times, subject to room and teacher availability.

It is possible that a fully automated timetabling system could be built by this
process of repeated time assignment then testing by single student timetabling. Even
if single student timetabling is highly optimized and virtually instantaneous for one
student, it will still take several seconds to timetable every student, which is too
slow to support an extensive search through the space of time assignments. So there
would probably be time to re-timetable only those students directly affected by each
time adjustment. But this method does not seem to have ever been tried, except by
Aubin et al. (1989), who used it to timetable ‘a large high school in Montreal’.

Assigning students first leads naturally to a three-phase method (Carter, 2001).
First, assign students to sections before times are assigned, aiming to minimize the
number of pairs of sections with students in common. This is the student sectioning
problem, discussed in detail in Sect. 7. Second, assign times to the sections. This
is a graph colouring problem similar to examination timetabling without proximity
constraints. Finally, make one pass over the entire student list, re-timetabling each
student using single student timetabling. (Experience at the author’s university has
shown that two or even three passes help to even out section numbers.)

Only two systems which solve the full university course timetabling problem
have been published in detail. The first is the system described in Carter (2001),
which has been in use since 1985. It is specific to one university, although of course
the ideas are portable. It performs enrolment-based timetabling using the three-
phase method just described.

The second system, UniTime (2012), is free, open-source, and not specific to one
university—a combination of features apparently unavailable elsewhere. It offers
both curriculum-based and enrolment-based timetabling, following Carter (2001)
for the latter, and is in use at several universities, although development continues.
A long list of papers is given on its web site (UniTime, 2012); only a selection can be
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cited here. Murray et al. (2002) is the original work. Müller et al. (2004) considers
the problem of finding minimally perturbed timetables when circumstances change
after the timetable has been published, an important problem whose study has barely
begun. Murray et al. (2007) and Murray et al. (2010) present the mature system.

The dynamic nature of the university course timetabling problem is an obstacle
to designing a realistic data model for it. No data sets are available for the full
problem, although partial data are available. The UniTime web site offers data sets
for several sub-problems: departmental problems and so on. Several timetabling
competitions have targeted university course timetabling problems. The most recent
of these is the Second International Timetabling Competition (McCollum, 2007),
within which Track 2 is enrolment-based, and Track 3 is curriculum-based. Both
tracks offer only drastically simplified instances: they are static, they model one
faculty rather than the whole university, their events have equal duration, and every
course has just one section. The data are still available and are the focus of many
papers. No comprehensive survey of these papers is known to the author.

7 Student Sectioning

As explained earlier, a course may break into sections: copies of it, each with its
own time, room, and teacher. Each student enrolled in the course must be assigned
to one of its sections. The student sectioning problem asks for an assignment of
students to sections which is likely to work well when times are assigned to the
sections later, typically by minimizing the number of pairs of sections that have at
least one student in common.

Some formulations of the problem also ask for a clustering of the sections, such
that if the sections in each cluster run at the same time, but different clusters run at
different times, then no students have clashes. This is a natural extension, since a
good clustering proves that a student sectioning is successful.

Student sectioning arises in university course timetabling (Sect. 6), when the
choice is made to assign students to sections before assigning times to sections.

Essentially the same situation arises in high schools. High school instances often
have complex events called electives: sets of courses that the school decides to run
simultaneously. Each student chooses one course from each elective. Electives are
usually determined by surveying the students to find out which courses they intend
to take, and ensuring that there are enough sections of each course to accommodate
the students who wish to take it, and that the sections of popular combinations of
courses lie in different electives. This problem of defining the electives is a student
sectioning problem, including the clustering extension.

The student sectioning literature is very fragmentary. There is no survey, and
one must search for discussions of student sectioning in papers on university course
timetabling and high school timetabling. To add to the confusion, the term ‘student
sectioning’ is sometimes used for the full university course timetabling problem, for
which it is clearly a misnomer.
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Carter (2001) is the seminal paper for student sectioning. It has several pages of
practical discussion of the problem. For each course, each enrolled student is made
into a node of a graph. An edge joins each pair of nodes, with a weight between 0
and 1 determined by how similar the two students’ selection of courses is: 0 means
identical, 1 means disjoint. The students are then grouped into sections by a standard
graph clustering algorithm. This heuristic method produces relatively few pairs of
sections with students in common. Murray et al. (2007) follow Carter (2001) in the
student sectioning phase of their university course timetabling algorithm.

The student sectioning problem is smaller in high schools than in universities,
which may explain why the few high school sectioning papers known to the author
use more ambitious methods: de Haan et al. (2007) use branch and bound, while
Kristiansen and Stidsen (2012) use adaptive large scale neighbourhood search.

8 Single Student Timetabling

The single student timetabling problem, usually encountered as a phase of university
course timetabling (Sect. 6), asks for a timetable for a single student after courses
are broken into sections and the sections are assigned times. Its first priority is to
find a clash-free timetable for the student; its second is to assign the student to less
full sections (say, by minimizing the total enrolment of the sections chosen), so that
as it is run for many students, the sections are kept approximately equally full.

If all sections have duration 1, this is a weighted bipartite matching problem. One
set of nodes represents the courses, the other represents the times of the week. An
edge is drawn from a course to a time whenever a section of that course occurs at
that time, weighted by the current enrolment of that section.

In practice, sections of different courses may have different durations, and there
may be additional constraints, such as that the assignment of sections of two courses
be correlated in some way (ordered in time, for example). Even so, real instances
can be solved to optimality very quickly using a tree search. Each node of the tree
represents one course, and each downward edge out of that node represents the
assignment of the student to a section of that course. Edges that produce clashes
with higher edges are not followed.

In the senior years, where course enrolments are lower and the number of sections
is correspondingly fewer, the tree search just described may be adequate as it stands.
But junior courses may have many sections. A course with 500 students that breaks
into sections of 20 students each will have about 25 sections, and if a student takes
several such courses the search will need to be optimized.

One obvious optimization is to assign the courses with the fewest sections first.
Then courses with only one section are (in effect) preassigned, and there are more
choices at the lower levels of the tree.

A second optimization, sometimes called intelligent backtracking, is as follows.
Suppose the search is at some node of the tree, and that every section of that node’s
course has been tried and has failed owing to a clash with sections assigned higher
in the tree. A simple tree search would return to the parent of that node and continue
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with its next alternative. But if the parent was not involved in any of the clashes, that
is futile: the same clashes will recur. Instead of backtracking to the parent, intelligent
backtracking backtracks to the closest ancestor involved in a clash.

A third optimization focuses on minimizing the total enrolment of the sections.
First, the cost of assigning a section is changed from the current enrolment of that
section to the amount by which that current enrolment exceeds the current enrolment
of the least full section of its course. For example, enrolling a student in a least full
section costs 0. Then branch and bound is used to terminate a search path when its
cost equals or exceeds the cost of the best solution found so far; and if a complete
solution is found whose cost is 0, the entire search is terminated early. Combined
with sorting the sections so that the least full ones are tried first, this optimization is
effective at reducing the size of the search tree when there are many solutions.

It seems likely that many universities would have such solvers, given their need
to timetable thousands of students, and to re-timetable them when their enrolments
change. Laporte et al. (1986) describes one, only without intelligent backtracking.
Another, employing all these optimizations, has been used routinely at the author’s
university for many years (unpublished). It timetables a single student on demand
virtually instantaneously, producing virtually equal section enrolment numbers. So
single student timetabling is a solved problem.

9 Room Assignment

The room assignment problem asks for an assignment of rooms to events after the
events’ times are fixed. Each event has its own room requirements, such as for a
specialist room (a Science laboratory, a lecture theatre, and so on), or for a room
capable of holding at least a certain number of students. This problem occurs in all
kinds of educational timetabling.

Carter et al. (1992) is a fascinating compendium of results on room assignment.
It observes that room assignment is exactly list colouring of interval graphs, a well-
known NP-complete problem, and shows that it remains NP-complete even when
the cycle contains only two times, a remarkable result.

Each room may be tested against each event’s room requirements, and in this
way any combination of room requirements for an event may be reduced to a set
of suitable rooms for that event before solving begins. Among suitable rooms some
may be more suitable than others, in which case the outcome of the testing is an
integer rating of each room’s suitability for each event.

When all events have duration 1, and all rooms lie within easy walking distance
of each other, the instance of the room assignment problem for the events assigned
a given time t is independent of the instances at other times. It can be solved to
optimality by finding a maximum matching in the bipartite graph whose nodes are
the events assigned time t and the rooms available at time t, with an edge joining an
event node to a room node whenever the room is suitable for the event (Figure 3). If
rooms have integer ratings, the edges are weighted by the ratings.
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Fig. 3 A bipartite graph (left), and the same graph showing a maximum matching (right).
Each left-hand node represents an event assigned a particular time t and demanding one room,
each right-hand node represents a room, and edges indicate which rooms are suited to which
events.

Kingston (2012) reports perfect results from a room assignment algorithm which
assigns rooms using a constructive heuristic followed by adjustment using ejection
chains, while maintaining the existence of an unweighted maximum matching of
optimal size at each time as an invariant throughout the solve. The algorithm runs in
polynomial time and takes less than one second on real instances. In practice, then,
room assignment, like single student timetabling, is a solved problem.

Room assignment is usually a phase of a larger problem. Kingston (2012) gives
techniques for efficiently maintaining the invariant while times are being assigned
to events. In this way, a nearly exact guarantee can be given that room assignment
will succeed, without actually assigning any rooms.

Can other resources be assigned in the same way as rooms? Students and classes
are usually preassigned, leaving nothing to do. Teachers, too, are often preassigned.
When they are not, there is usually a requirement, called teacher stability or the
avoid split assignments constraint, that the teacher assigned to the events of one
course be the same. Kingston (2012) investigates this variant with some success,
although it is significantly more difficult in practice than room assignment.

10 Conclusion

Educational timetabling has been an active area of research for over 50 years. While
there is no sign that provably optimal solutions to large, real instances will be found
any time soon, the more practical goal of quickly and reliably finding timetables that
are preferred to manually produced ones is in sight. More realistic models and data
sets are needed in some areas, and more powerful solving techniques are needed
in others, but steady progress continues to be made on both fronts, the transfer of
research methods into commercial software is growing, and there is every reason to
believe that success is not far off.
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Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course timetabling. In:
Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 126–146. Springer,
Heidelberg (2005)
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