
Studies in Computational Intelligence 505

Automated Scheduling
and Planning

A. Şima Etaner-Uyar
Ender Özcan
Neil Urquhart Editors

From Theory to Practice

Studies in Computational Intelligence

Volume 505

Series Editor

Janusz Kacprzyk, Warsaw, Poland

For further volumes:

http://www.springer.com/series/7092

A. Şima Etaner-Uyar · Ender Özcan
Neil Urquhart
Editors

Automated Scheduling
and Planning

From Theory to Practice

ABC

Editors
A. Şima Etaner-Uyar
Elektrik-Elektronik Fakultesi
Istanbul Teknik Universitesi
Istanbul
Turkey

Ender Özcan
School of Computer Science
University of Nottingham
Nottingham
UK

Neil Urquhart
Centre for Emergent Computing
Edinburgh Napier University
Edinburgh
UK

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-642-39303-7 ISBN 978-3-642-39304-4 (eBook)
DOI 10.1007/978-3-642-39304-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013942526

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Pudra and Alice - Ş.E.U.
To Ayla and Burhan - E.Ö.
To Siân- N.U.

Foreword

I was delighted and honoured to be asked by the editors of this book to write a short
foreword to help set the scene. The goal of the book is to provide introductions to
search methodologies and their applications to real world scheduling problems. I
think that this is very much a worthwhile aim that resonates with the international
scientific research agenda in scheduling research. The goal of closing the gap be-
tween real world practice and scientific theory in this research field plays a promi-
nent role in that agenda. Scheduling problems are ubiquitous. They appear in many
different forms across industry, leisure and the public sector. All of these sectors are
represented here. Indeed, the breadth of the application areas is one of the partic-
ularly impressive features of this volume. This book brings together a selection of
world leading authors from across a wide range of disciplines and scientific back-
grounds. The editors have carefully constructed a volume which not only introduces
modern search methodologies for the selected application areas, but it also provides
insightful case studies which illustrate the effectiveness of some of these techniques.
The book reflects a variety of important methodologies for a broad spectrum of chal-
lenging application areas.

The automation of scheduling problems across all of these important applica-
tion areas represents a major challenge and it also represents significant potential
impact. Intelligent decision support systems offer the potential to generate signifi-
cant environmental, financial and social benefits. Some of the example application
areas presented in this book provide compelling evidence for this claim. More effec-
tive radiotherapy scheduling has the potential to save patients lives. More efficient
personnel scheduling can lead to a happier and more productive workforce. High
quality airport scheduling could lead to lower levels of aircraft fuel burn. Factory
floor scheduling can lead to improvements in production. Search methods can un-
derpin the engines of intelligent decision support systems and this book provides an
insight into how search methods can address challenging scheduling problems.

VIII Foreword

I have enjoyed reading through the chapters of this book. I would like to congrat-
ulate the editors on putting together such an interesting and informative volume. I
am sure that this will provide a valuable resource to the scientific community and to
practitioners for many years to come. I hope that you enjoy reading it as much as I
have.

March 2013 Edmund Burke

Preface

This book was conceived as a result of the EvoStim (Nature-inspired Techniques
in Scheduling, Planning and Timetabling) tracks held in Turin in 2011 and Malaga
in 2012, as part of EvoStar: The Leading European Event on Bio-Insipired Com-
putation. This book encompasses a wide range of research areas that fall under the
generic title of automated scheduling, including healthcare, aviation, timetabling,
manufacturing and computing. A very deliberate emphasis is placed on real-world
applications.

We would like to offer our gratitude to all our distinguished authors for their
valuable contributions and their diligence, without whom this book would not have
been possible. They have met our deadlines and then patiently awaited this book to
appear in print. We would also like to thank Edmund Burke for writing the foreword
and providing invaluable advice. Finally, special thanks go to the staff at Springer,
in particular Holger Schäpe, for their support.

We hope that you enjoy reading this book.

Istanbul, Nottingham, Edinburgh, A. Şima Etaner-Uyar
February 2013 Ender Özcan

Neil Urquhart

Contents

Airport Airside Optimisation Problems . 1
Jason A.D. Atkin

Instruction Scheduling in Microprocessors . 39
Gürhan Küçük, İsa Güney, Dmitry Ponomarev

Sports Scheduling: Minimizing Travel for English Football
Supporters . 61
Graham Kendall, Stephan Westphal

Educational Timetabling . 91
Jeffrey H. Kingston

Automated Shift Design and Break Scheduling . 109
Luca Di Gaspero, Johannes Gärtner, Nysret Musliu, Andrea Schaerf,
Werner Schafhauser, Wolfgang Slany

Nurse Rostering: A Complex Example of Personnel Scheduling with
Perspectives . 129
Pieter Smet, Patrick De Causmaecker, Burak Bilgin, Greet Vanden Berghe

Radiotherapy Scheduling . 155
Dobrila Petrovic, Elkin Castro, Sanja Petrovic, Truword Kapamara

Recent Advances in Evolutionary Algorithms for Job Shop
Scheduling . 191
Bahriye Akay, Xin Yao

Multi-objective Grid Scheduling . 225
Marı́a Arsuaga-Rı́os, Miguel A. Vega-Rodrı́guez

Dynamic Multi-objective Job Shop Scheduling:
A Genetic Programming Approach . 251
Su Nguyen, Mengjie Zhang, Mark Johnston, Kay Chen Tan

XII Contents

Dynamic Vehicle Routing: A Memetic Ant Colony Optimization
Approach . 283
Michalis Mavrovouniotis, Shengxiang Yang

Author Index . 303

List of Contributors

Bahriye Akay
Dept of Computer Engineering, Erciyes University, 38039, Melikgazi, Kayseri,
Turkey,
e-mail: bahriye@erciyes.edu.tr

Marı́a Arsuaga-Rı́os
Beams Department, European Organization for Nuclear Research, CERN,
CH-1211, Geneva 23, Switzerland,
e-mail: maria.arsuaga.rios@cern.ch

Jason Atkin
School of Computer Science, Jubilee Campus, The University of Nottingham,
NG8 1B, UK,
e-mail: jason.atkin@nottingham.ac.uk

Burak Bilgin
CODeS, KAHO Sint-Lieven Gebr. De Smetstraat 1, 9000 Gent, Belgium,
Tel: +32 9-265.86.10
e-mail: burak.bilgin@kahosl.be

Elkin Castro,
ASAP research group, School of Computer Science, University of Nottingham,
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK,
e-mail: edc@cs.nott.ac.uk

Patrick De Causmaecker
KU Leuven Campus Kortrijk, Department of Computer Science E. Sabbelaan 53,
8500 Kortrijk, Belgium, Tel: +32 56-28.28.73
e-mail: patrick.decausmaecker@kuleuven-kortrijk.be

Johannes Gärtner
XIMES GmbH, Austria,
e-mail: gaertner@ximes.com

XIV List of Contributors

Luca Di Gaspero
DIEGM, Università degli Studi di Udine, Italy,
e-mail: l.digaspero@uniud.it

İsa Güney
Faculty of Engineering and Architecture, Yeditepe University,
Istanbul,Turkey,

Mark Johnston
Victoria University of Wellington, New Zealand,
e-mail: mark.johnston@msor.vuw.ac. nz

Truword Kapamara
Faculty of Engineering and Computing, Coventry University, Priory Street,
Coventry, CV15FB, UK,
e-mail: d.petrovic@coventry.ac.uk

Graham Kendall
University of Nottingham, Nottingham, UK and Malaysia,
e-mail: graham. kendall@nottingham.ac.uk

Jeffrey H. Kingston
School of Information Technologies, University of Sydney, Australia,
e-mail: jeff@it.usyd.edu.au

Gürhan Küçük
Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey,
e-mail: gkucuk@cse.yeditepe.edu.tr

Michalis Mavrovouniotis
Centre for Computational Intelligence (CCI), School of Computer Science and
Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.,
e-mail: mmavrovouniotis@dmu.ac.uk

Nysret Musliu
DBAI, Technische Universität Wien, Austria,
e-mail: musliu@dbai.tuwien.ac.at

Su Nguyen
Victoria University of Wellington, New Zealand,
e-mail: su.nguyen@ecs.vuw.ac.nz

Dobrila Petrovic
Faculty of Engineering and Computing, Coventry University, Priory Street,
Coventry, CV15FB, UK,
e-mail: d.petrovic@coventry.ac.uk

List of Contributors XV

Sanja Petrovic
Division of Operations Management and Information Systems,
Nottingham University Business School, Jubilee Campus, Wollaton Road,
Nottingham NG8 1BB, UK,
e-mail: sanja.petrovic@nottingham.ac.uk

Dmitry Ponomarev
SUNY Binghamton,
e-mail: dima@cs.binghamton.edu

Andrea Schaerf
DIEGM, Università degli Studi di Udine, Italy,
e-mail: schaerf@uniud.it

Werner Schafhauser
XIMES GmbH, Austria,
e-mail: schafhauser@ximes.com

Pieter Smet
CODeS, KAHO Sint-Lieven Gebr. De Smetstraat 1, 9000 Gent, Belgium,
Tel: +32 9-265.86.10
e-mail: pieter.smet@kahosl.be

Wolfgang Slany
IST, Technische Universität Graz, Austria,
e-mail: wolfgang.slany@tugraz.at

Kay Chen Tan
National University of Singapore, Singapore,
e-mail: eletankc@nus.edu.sg

Greet Vanden Berghe
CODeS, KAHO Sint-Lieven Gebr. De Smetstraat 1, 9000 Gent, Belgium,
Tel: +32 9-265.86.10
e-mail: greet.vandenberghe@kahosl.be

Miguel A. Vega-Rodrı́guez
ARCO Research Group, University of Extremadura, Dept. Technologies of
Computers and Communications, Escuela Politécnica, Cáceres, Spain,
e-mail: mavega@unex.es

Stephan Westphal
Institute for Numerical and Applied Mathematics,
Georg-August University, Germany,
e-mail: s.westphal@math.uni-goettingen.de

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and
Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.,
e-mail: syang@dmu.ac.uk

XVI List of Contributors

Xin Yao
Center of Excellence for Research in Computational Intelligence and Applications,
School of Computer Science, University of Birmingham, Birmingham B15 2TT,
U.K.,
e-mail: x.yao@cs.bham.ac.uk

Mengjie Zhang
Victoria University of Wellington, New Zealand,
e-mail: mengjie.zhang@ecs.vuw.ac.nz

Airport Airside Optimisation Problems

Jason A.D. Atkin

1 Introduction and Problem Context

This chapter aims to give the reader an accessible overview of airside airport oper-
ational research problems, with a particular focus upon runway scheduling, which
is the subject of the case study. A number of problems are described, highlight-
ing the direction of the research in each area and pointing the reader towards key
publications where more information can be gained. Some of the surrounding prob-
lems are also outlined, to better understand the airport context. A case study is then
provided, describing a system which was developed to aid runway controllers at
Heathrow. Importantly, this considers a combination of two separate problems and
the way in which these are simultaneously handled by the solution method. Results
are provided for the presented case study, showing the potential benefits of decision
support in that area. The chapter ends with a discussion of the likely ongoing impor-
tance of considering increasingly realistic objectives and constraints, of combining
problems, and of targeting the environmental challenge at airports.

Airports and the airspace which connect them, together form the framework for
the air transportation system worldwide. There has been increasing interest in air
transportation optimisation and efficiency over the last few years, partly due to the
SESAR1 and NextGen2 initiatives, and partly because the level of technology and
computational speeds have now reached the point where improvements are actu-
ally possible. However, the field of air transportation is huge, and could in no way

Jason Atkin
School of Computer Science, Jubilee Campus, The University of Nottingham, NG8 1B, UK
e-mail: jason.atkin@nottingham.ac.uk

1 Single European Sky ATM Research, a joint undertaking by Eurocontrol, the European
Commission and Industrial bodies to build the future of the air traffic management system,
see http://www.eurocontrol.int/content/sesar-and-research,

2 A US program to design and develop the Next Generation of Air Transportation Systems,
see http://www.faa.gov/nextgen/ for more information.

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 1
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_1, c© Springer-Verlag Berlin Heidelberg 2013

jason.atkin@nottingham.ac.uk
http://www.eurocontrol.int/content/sesar-and-research
http://www.faa.gov/nextgen/

2 J.A.D. Atkin

be encompassed by a single chapter of a book. Consequently, this chapter concen-
trates upon airside airport operations, and particularly upon the runway sequencing
problem.

It is useful to consider the airside optimisation and sequencing problems at an
airport in the order in which they will be experienced by an aircraft: A runway-
sequencing problem has to be handled first, to get aircraft on the ground safely; the
aim being to determine the order in which the aircraft will land. This is explained
in Section 7. Aircraft then have to taxi from the runway to their allocated stands,
where they will be unloaded, refueled and re-loaded with passengers and baggage.
This ground movement problem is considered in Section 6, determining how the
aircraft will taxi around the airport and which aircraft will take priority at any points
of contention (e.g. taxiway intersections). A stand allocation (or gate allocation)
problem also has to be solved, to determine which stand (or gate) each aircraft will
be allocated to. This will usually determine one of the end points for each taxi oper-
ation and the relative loads which are put on different stands/gates and is discussed
in Section 5. A number of resource allocation problems then need to be resolved at
the stands, so that refueling facilities, baggage handling facilities and ground crews
are available. In general, these have the same format as the stand/gate allocation
problem, and are discussed in Section 5.3. Once loaded with passengers, cargo and
fuel, an aircraft will then taxi out again (so the ground movement problem has to
be solved once more) and queue near to a departure runway, awaiting its position
in the take-off sequence. This will be determined by the solution of another runway
sequencing problem. The runway sequencing problem is an important one, since the
runways often form bottlenecks for the entire arrival/departure system. In addition
to the description in Section 7, the case study in Section 8 also considers the take-off
sequencing problem for London Heathrow.

In addition to the aforementioned optimisation problems, this chapter also con-
siders some of the structure of the local airspace, including down-stream constraints
upon the airport (e.g. congestion on departure routes), and summarises some of the
issues which airlines have to consider when building their schedules, along with the
effects that these decisions have upon airports. Further, but less recent, information
about these problems can be found in Wu and Caves (2002) and Yu (1998), which
review the air traffic management research at the times of the publications. Of course
many logistics problems (e.g. supplying shops), flow problems (e.g. passenger flow
through terminals) and staffing/rostering problems (e.g. security staff rostering) also
have to be considered by airports, but these are beyond the scope of this chapter.

1.1 The Usual Problem Decomposition

The airside operations are perhaps best understood by considering the air trans-
portation system as a cyclic process, rather than focussing upon only a single air-
port. Safety considerations are always paramount within any of these processes,
and constraints upon one part of the process may be a result of ensuring safety or

Airport Airside Optimisation Problems 3

controlling workload in a later part. For example, en-route congestion may be con-
trolled by metering departures from airports, resulting in increased delays at those
airports. Similarly, passenger preferences (and the resulting financial considerations
in such a competitive marketplace) may result in higher delays for all concerned, as
airlines compete for the more lucrative timeslots. The effects of these interactions
will be highlighted at various points in this chapter, since these constraints can cause
detrimental effects upon the throughput of other parts of the system.

The overall airport optimisation problem could be considered one of attempting
to utilise scarce airport resources, such as the stands, taxiways and runway(s), in as
efficient a manner as possible. Unfortunately, each of the various problems is usually
large, has to be solved (or re-solved) quickly (within a few seconds in some cases) as
the situation develops over time (especially when things do not go to plan) and often
has multiple, possibly conflicting, objectives which should be met. It will be obvious
from even a cursory glance at the existing literature, that the optimisation problem
for even a single airport is usually decomposed into a number of constituent sub-
problems, and that each airport is usually considered independently. This is at least
partly an attempt to simplify the individual problems, making them more tractable
for different solution methods. This is especially important when real-time solutions
are required for these problems, to account for the dynamic, constantly changing,
nature of the airport. However the decomposition is also a symptom of the fact that
different problems tend to be handled by different companies or organisations, who
may (and often do) have differing objectives. This decomposition can mean that
even apparently optimal solutions for individual sub-problems can result in sub-
optimal utilisation of the airport as a whole, whereas cooperation could potentially
have greater benefits for all.

1.2 More Recent Initiatives

Until recently there were few attempts to link together the various stages and stake-
holders, although this is starting to change as information sharing and collaborative
decision making is becoming more evident. The NextGen program has involved
significant investment in infrastructure, aircraft design and process development in
order to bring cost, performance and environmental improvements for the US air
transportation industry. Significant funding has become available for companies and
researchers in related areas in order to achieve these improvements. System-Wide
Information Management (SWIM) is an important part of NextGen, aiming to en-
sure that information is made available in a more timely manner, to an improved
accuracy, to all interested stakeholders. Improving information availability is an im-
portant requirement of increasing the quantity and efficiency of automation and de-
cision support tools in airports; since it means that important information about
likely decisions is already available electronically, so can be more easily shared.

SWIM is also an important element of the SESAR Joint Undertaking and airport-
CDM is perhaps the most important element for the purpose of this chapter. Air-
port Collaborative Decision Making (CDM) involves the various stakeholders at an

4 J.A.D. Atkin

airport sharing information so as to make improved global decisions. With so many
different stakeholders involved, including the airport staff, airlines, air traffic con-
trollers and ground handlers, each with their own computer systems and methods
of operation, this is not necessarily a simple task, but is one which is being suc-
cessfully faced at a number of European airports. With better information about the
progress of aircraft through the system, each stakeholder should be able to better
allocate their resources so as to reduce delays and conflicts, determining the ap-
propriate allocation of resources when they may be required in multiple places at
almost the same time. These systems also allow a better coordination with the rest
of the air transportation system, beyond the airport, by providing downstream sys-
tems with better predictions for take-off times for aircraft, and accepting improved
estimations for arrival times for incoming aircraft, distributing the information ap-
propriately throughout the airport. In this way, resources (such as gates, refueling
trucks or tugs) can be ready and waiting for an aircraft when it arrives, or potentially
reallocated to other aircraft as soon as it is known that an aircraft will be late.

2 Solution Methods

The following sections describe a number of operational research problems at air-
ports. Each has one of more objectives and a number of hard constraints which must
be satisfied. Both exact and heuristic methods have been utilised for all of these
problems, so this section provides an overview of many of these methods, direct-
ing the reader to sources from which to find out more, to avoid repetition in the
following sections.

Firstly, it is relatively common to formulate the problems as Mixed Integer Lin-
ear Programs (MILPs), especially where exact solution methods will be applied.
A good introduction to formulating problems in this way has been provided in the
book by Williams (1999). The underlying theory behind the solution of Linear Pro-
grams and MILP models, in addition to that of many other solution techniques is
covered in Hillier and Lieberman (2010). These formulations require that all ob-
jectives and constraints are linear combinations of variables (although some solvers
are increasingly able to cope with quadratic terms). There are common ways for lin-
earising constraints or objectives, for example by introducing additional variables,
or by finding piece-wise linear approximations for functions. In theory, such lin-
ear models can be passed straight to a MILP solver (such as CPLEX3 or Gurobi4)
to solve the problem. If the models contain only continuous variables, the solution
is usually trivial, however when variables can only take discrete (e.g. integer) val-
ues the resulting models can be too large or complex to solve in a reasonable time.
Models may have many thousands of variables and constraints under these formu-
lations, which can often cause even machines with huge amounts of disk space and

3 See for example: http://www.ibm.com/software/integration/
optimization/cplex-optimizer/

4 http://www.gurobi.com/

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.gurobi.com/

Airport Airside Optimisation Problems 5

memory to run out of space for the model, or to take prohibitively long (sometimes
potentially years or more) to solve these problems.

When a MILP solver is not used, or not solely used, two particular exact solution
methods are very common for these types of problems. Firstly, dynamic program-
ming is often used, where a problem is divided into a number of discrete stages,
each of which can be optimally solved in turn, producing one or more optimal states
to pass to the next stage. Secondly, hand-crafted branch and bound or branch and
cut approaches can be used (perhaps in combination with a MILP solver), which
will recursively divide the problem into smaller and smaller parts, discarding parts
which are provably sub-optimal. (The MILP solvers tend to do this themselves, but
hand-crafted approaches can sometimes utilise information which the solvers cannot
automatically infer, or can more easily deal with non-linearities.) These approaches
are described in Hillier and Lieberman (2010), or many other Operational Research
books.

Heuristic methods will usually be used when a problem structure or size is prob-
lematic for exact solution methods, or when insufficient solution time is available to
apply an exact method. Some heuristic approaches will use problem-specific infor-
mation to make decisions, knowing that such a decision is likely to be good, or at
least not be ‘too’ bad. The path allocation heuristic in Section 8.4 is an example of
such a problem-specific approach. Other approaches, such as local search or meta-
heuristics, may be guided less by the problem and more by the value of potential
solutions, gradually homing in on possible good solutions.

A local search algorithm will start at a known potential solution and investigate
other potential solutions which are similar to it. ‘Similarity’ will usually be defined
in a problem-specific way, by generating a ‘neighbourhood’ of solutions to investi-
gate at each step. A neighbourhood is usually defined in terms of the ‘moves’ which
will be used to make a change to the current solution, for example to swap the po-
sitions of two parts of a solution. The aim is usually to make incremental changes,
moving to better solutions and ignoring worse solutions, eventually moving to better
and better solutions over time, in the hope of finding an optimal solution. Eventually
the search will find a ‘local optimum’: a solution (or set of identically valued solu-
tions) such that all solutions in its neighbourhood are worst than it. Many problems
have local optima which are not globally optimal (i.e. better valued solutions exist,
but these are not in the local neighbourhood), resulting in an inability for the basic
algorithm to guarantee that it will find a globally optimal solution.

Metaheuristics utilise the idea of some higher level guidance on top of a low
level heuristic algorithm. Commonly used strategies for avoiding or escaping lo-
cal optima are: to alter the neighbourhood dynamically; to include a memory of
where the search has been, or of the characteristics of good or bad solutions which
have already been considered so as to prefer or avoid solutions; to restart from
another solution when the search gets stuck; or to consider multiple solutions si-
multaneously (population-based approaches), potentially interchanging information
between these solutions. Useful surveys and explanations of metaheuristic methods
can be found in Glover and Kochenberger (2002); Blum and Roli (2003); Gen-
dreau and Potvin (2005); Talbi (2009). The case study in Section 8 utilises a tabu

6 J.A.D. Atkin

search meta-heuristic, which is discussed further in Section 8.4. Further information
about tabu search, as explained by its inventor, can be found in Glover (1989, 1990);
Glover and Laguna (1997).

Many solution methods for the problems described in this chapter utilise Genetic
Algorithms. These are population-based approaches which use a mechanism based
upon natural selection to interchange parts of the solutions between them, generat-
ing further solutions which are hybrids of the ‘parents’. Further information about
Genetic Algorithms can be found in Goldberg (1989); Sastry et al (2005). A good
introductory tutorial to problem solving using genetic algorithms can be found in
Michalewicz and Fogel (2000).

3 The Airport Layout and Some Definitions

Airports vary greatly in their layouts, however there are some common factors. Air-
ports will have one or more ‘terminals’, where the passengers check in and where
passenger facilities are located. ‘Gates’ will be situated around these terminals and
passengers will wait at a gate to leave a terminal in order to board an aircraft. The
term ‘gate’ is used here to denote the exit point from the terminal to the airside,
where the aircraft are located. In common with the usual meanings at UK airports,
the term ‘stand’ will be used in this chapter to denote a parking position for an air-
craft. Stands will usually be either at gates, so that passengers can embark straight
onto the aircraft, or will be remote stands, requiring a walk or a short bus journey
to be taken by passengers to get from the gate to the remote stand. It is common,
especially in the US, to refer to the area close to the terminal, on which stands may
be located, as the Apron.

In order to increase the number of gates at a terminal, piers are often built out
from the terminals. These piers can be relatively long passages for passengers to
walk along, often with gates on either side. Aircraft will then park along the sides of
the piers. It is common to see multiple parallel piers extruding from terminals. Cul-
de-sacs, or alleys, will be formed between the piers, such that aircraft may have to
taxi past other stands in order to reach an allocated stand at the end of a cul-de-sac.

An airport will have one or more runways. Each runway could be used as an ar-
rival runway (for landings only), a departure runway (for take-offs only) or in mixed
mode (for both arrivals and take-offs). It is common for runways to be usable in ei-
ther direction, allowing aircraft to ensure that they take off or land into the wind
to maximise their lift. When an airport has parallel runways which are sufficiently
far apart, these runways can be treated independently. When runways are not par-
allel, or are close together, some dependencies may be formed between the runway
sequencing for the runways.

Taxiways usually run between runways and stands. The layout of the taxiways
can vary greatly between airports. Sometimes taxiways are only used in one direc-
tion, but they are often bidirectional, adding complexity for the ground movement
controller (GMC) who has to direct the aircraft. Sometimes bottlenecks form on

Airport Airside Optimisation Problems 7

taxiways, for example to go around or between buildings. Again, these will compli-
cate the problem for the GMC. Sometimes runways are positioned such that aircraft
have to cross one runway in order to travel between another runway and the allo-
cated stand. In order to do this, a gap has to be added to the runway sequence, for
the runway crossing. This can complicate both the ground movement problem and
the runway sequencing problem, introducing interdependencies between them.

4 The Airline Scheduling Problem

It is useful to understand something about airline scheduling, at least as far as the
effects that it has upon airports are concerned. A more detailed overview of the
various problems involved in airline scheduling can be found in Barnhart et al (2003)
or Qi et al (2004).

Airlines will usually start planning their routes many months in advance, the aim
usually being to maximise their income from passengers in a competitive market-
place. Importantly, they will not usually consider the effects of their decisions upon
an airport, since doing so may put them at a disadvantage against competitors who
do not do so. The planning problem is usually decomposed into a number of dis-
tinct stages, first determining the flight legs (trips from one airport to another) to
include in the schedule, and at what times the flights should take place, then allocat-
ing aircraft types to legs. Specific aircraft of the correct types will then be allocated
to flight legs at a later date, taking into consideration issues such as maintenance
requirements. Finally, crew will often be allocated to aircraft in an even later stage.
The timing of flights can have considerable effects upon the demand for the flights,
with specific types of passengers (e.g. long-haul vs short-haul, eastward vs westward
bound, business vs holiday) preferring different days, or times of day, for journeys.
Consequently, airlines will not always have the same flights on every day of the
week and will not usually evenly space out their flights across the day. These prefer-
ences will naturally ensure that the demand upon the airport resources is not steady
across a day or week and can cause congestion both at airports and in the en-route
airspace at certain times of the day.

Many airlines run hub and spoke networks, where they have a central base (the
hub airport) at which connections are made, and a number of spokes to many other
airports. Journeys are then possible between any two of the spoke airports by making
a single connection at the hub airport. Airline schedules will, therefore, attempt
to facilitate passenger connections at the hub by timing flights so that a number
of flights will arrive at similar times, be on the ground at similar times, while the
connections are made, and take off at similar times.

There has been increasing interest in creating more robust schedules (e.g.
Burke et al (2010)), especially since any modern optimisation methods which as-
sume deterministic environments tend to produce more efficient schedules by re-
moving slack which is perceived to be unnecessary, but which would have
absorbed delays. However, even with reasonable levels of slack, some delays will
occur and airlines have a number of ways in which to recover from these delays, see

8 J.A.D. Atkin

Filar et al (2001); Clausen et al (2010). One recovery method which is used is to
switch aircraft between flight legs, effectively moving the delay between aircraft and
possibly moving it to aircraft where there is more slack in the schedule to absorb
the delay, or to recover later. With this flexibility, it is potentially possible to strate-
gically allocate slack through a schedule rather than allowing slack for all flights,
reducing the wasted (i.e. slack) time while still allowing for recovery. More swap
opportunities are available when there are more aircraft available on the ground at
the same time, which is another reason for grouping multiple arrivals and departures
together.

In summary, the benefit for the airlines from having multiple aircraft arrive and
depart around the same time is another cause for uneven load on airports across the
days. Indeed, peaks and troughs in load are usually obvious from a consideration
of the frequency of take-offs and landings over the day. This uneven load will con-
tribute to congestion on the ground, with more aircraft wanting to taxi at the same
time (affecting the ground movement problem), increased demand for stands (more
aircraft requiring simultaneous usage of parking places), and increased delay at the
runway (as aircraft queue to use the limited runway throughput). This can result in
significant problems at some times of day for even relatively quiet airports.

Other interesting side effects are that small delays are relatively common and,
conversely, the slack that is often added to a schedule can sometimes mean that
aircraft are ready to depart from gates earlier than expected. This means that it is
hard to predict in advance exactly (i.e. within a few minutes) when each aircraft is
likely to want to pushback. In addition, when the aircraft which is allocated to a
flight is changed by an airline, the stand/gate for the flight will often change to that
at which the new aircraft is already located. This can significantly alter the planned
departure time of that aircraft, with only limited warning. Together, these issues
mean that it is complex for any party other than the airline itself to obtain relatively
accurate pushback times for aircraft. Airport-CDM aims to avoid this problem by
having the airline do this prediction and publish the information to other airport
partners.

5 The Gate/Stand Allocation Problem

The Gate Allocation Problem (GAP) involves allocating gates or stands to aircraft
so as to meet airline and airport preferences, as well as to fulfil any hard constraints
such as ensuring that an aircraft will actually fit on its allocated stand. There has
been considerable research into the gate allocation problem and a good review of
the research and open problems at the time can be found in Dorndorf et al (2007a).
Both heuristic (e.g. Genetic Algorithms, Bolat (2000a)) and exact (e.g. Dynamic
Programming, Jaehn (2010)) methods have been utilised in the past, and the ideal
solution method will probably depend upon the problem size and the precise ob-
jectives used. An overview of the basic problem will be provided in this section,
along with a discussion of the effects that gate allocation has upon the other airside
operations.

Airport Airside Optimisation Problems 9

5.1 Primary Objective and Hard Constraints

The key objective is usually to allocate as many flights to stands as possible, then
to meet as many of the soft constraints as possible, subject to ensuring that all hard
constraints are met. At most airports, it is hoped that sufficient stands are avail-
able, if they are correctly allocated, however, this is not always the case, see Ding
et al (2005). The result of solving this problem will be a set of aircraft-stand pairs,
specifying which stand each aircraft will be allocated to. In most formulations, the
on-stand (arrival time of the aircraft at the stand) and off-stand (departure time of the
aircraft from the stand) times are fixed, however, in some versions of the problem
some flexibility is permitted in these timings and the on-stand and off-stand times
would also be outputs of the solution method, Lim et al (2005).

The key hard constraints which usually have to be considered can be summarised
as follows:

No Stand Can Be Simultaneously Occupied by Two Aircraft: The on-stand
and off-stand times for aircraft are usually specified in the input problem, in which
case this constraint usually involves ensuring that no two flights are allocated to the
same stand if their on-stand times overlap. When on-stand and off-stand times are
an output of the model, these constraints are more complex and may need to be
modelled as objectives in the extreme case, since an aircraft pair could always be
allocated to the same stand if the second aircraft could be delayed long enough that
the times no longer overlapped. However, there would be a cost associated with this
delay.

An Aircraft Can Only Be Allocated to an Appropriate Stand: It is uncommon
for every aircraft to be able to use every stand, so there will usually be a number
of aircraft-stand pairings which are disallowed. For example, it is necessary to pre-
vent an aircraft from being allocated to a stand which is too small for it, or has
inappropriate facilities. In addition, airport agreements or facility availability may
restrict certain aircraft to certain sets of stands, either because an airline needs spe-
cific facilities which are only available at certain stands, because of legal agreements
between the airlines and airport, or because their ground handlers have resources
which are only available at certain stands. It is also necessary to prevent an aircraft
from being allocated to a stand with inappropriate security measures. For example,
domestic or Schengen flights do not require the same level of security measures
that are required by international flights. Obviously, it is inappropriate to allocate an
international flight to a domestic/Schengen gate. Certain destinations (for example
international departures to the US) or sources (for arrivals) may require even more
security, which may only be available at certain gates, so these flights will be even
more constrained. All of these constraints can usually be easily enforced within a
model by reducing the potential range of stand values for each flight, e.g. forcing
specific aircraft-stand pairing variables to zero.

Prohibited Combinations of Aircraft-Stand Pairings: The final common hard
constraint is often termed the shadowing constraint, see Dorndorf et al (2007a). This

10 J.A.D. Atkin

constraint usually applies to pairs of aircraft and stands, specifying that if specific
aircraft are allocated to one of the stands, then either the other stand cannot be used
or it can only be used by specific (types of) aircraft. A common case is where large
stands can be divided into two sides (often named ‘left’ and ‘right’), for use by
two small aircraft, or kept as a whole for use by a single large aircraft. This can be
modelled as three stands, such that the larger stand cannot be used if either of the
smaller ones is used, with appropriate size restrictions for which aircraft can use
which stands. Another case is where the use of a stand by a large aircraft prevents
the use of one or more adjacent stands due to its size. In fact both of these cases
can be modelled identically since the former case could be modelled by saying that
if one side is being used by a large aircraft then the other side cannot be used.
Again, it is usually relatively easy to add constraints to a model to enforce these
hard constraints, adding constraints between aircraft-stand pairings preventing any
two inconsistent pairings from being made simultaneously.

5.2 Soft Constraints and Objectives

The soft constraints tend to vary far more widely than the hard constraints, depend-
ing upon the objectives of the airport or the group who are attempting to solve
the problem. A realistic objective function for this problem could well include a
number of different factors, perhaps weighted together, or perhaps handled using
multi-objective methods. The most common factors considered are:

Gate/Stand Preferences: Airlines may have preferred stands such that they could
use other stands but would prefer not to, or may prefer to allocate certain stands first
in preference to others when there is spare capacity. There may also be preferences
from the airport side for utilising some stands rather than others, such as to reduce
congestion at the airport, or to keep taxi times lower for larger aircraft. These objec-
tives can be modelled by applying a cost for aircraft-stand pairings, for example to
penalise any usage of a stand.

Flight-Stand Pair Preferences: Airlines may prefer to put specific flights on spe-
cific stands, or to avoid putting some flights on some stands. For example, when
considering allocations across a week or longer, it may be useful to have the same
allocations across multiple days, to increase familiarity for staff and frequent trav-
ellers, thus airlines may express such preferences. Similarly, there may be advan-
tages to having a regular schedule, so that allocations are relatively similar on each
Monday, for example. A reference schedule may be available (e.g. the schedule for
the previous week or day) and there may be a benefit for staying close to it (see
Dorndorf et al (2012)), penalising flight-stand pairs which deviate from the refer-
ence schedule and potentially increasing the penalty for larger deviations. These
objectives could be modelled by applying a cost for specific aircraft-stand pairings.

Walking Distance Reduction: The tendency to position gates along piers means
that some gates may involve a lot more passenger walking distance than others. This

Airport Airside Optimisation Problems 11

is particularly important for transfer passengers, who may be moving from one pier
to another, or even from one terminal to another, often passing security one or more
times (especially when transferring from an international to a domestic flight) with a
deadline for making the transfer (the departure time of the second flight). One of the
more commonly studied objectives has been to reduce passenger walking distance,
Kim et al (2010). The common model for this problem is to consider the number of
passengers transferring between each pair of flights, along with the number of pas-
sengers who originate from the current airport and the number of passengers who
are terminating their journey there. Given a distance measure for each walk, from
the airport entrance/exit to each gate, and between each pair of gates, the objec-
tive is to reduce the total walking distance, in terms of the product of the distance
of the walk and the number of passengers making it. One practical difficulty for
this objective is in determining the number of transfer passengers for flight pairs,
so estimations of passenger numbers (e.g. based on historical data) may be needed
for this purpose. This objective can cause problems when there are cul-de-sacs be-
tween piers (see Section 3), since this formulation will tend to position the larger
aircraft (which will have more passengers) nearer to the terminals (reducing their
distance to security/the exit), and hence further down the cul-de-sacs. This will of-
ten increase the taxi distance for the aircraft and also makes them more likely to be
delayed by other users of the cul-de-sacs, both of which will increase the fuel burn.
Furthermore, walking distance did not seem to be an important consideration for the
airports with whom we have spoken, and environmental and financial considerations
seem to be more important at the moment.

Spacing Preferences: It may be desirable to accumulate flights into a small phys-
ical area of the airport, perhaps to reduce time for ground crews to move between
aircraft, or to reduce passenger walking distance, as previously discussed. Alterna-
tively, it may be better to spread flights out more widely, so as to spread the load
upon scarce resources or to reduce the load or congestion on the taxiways around
the stands, e.g. Kim et al (2009, 2010). These objectives can be modelled by penal-
ising combinations of multiple stand-flight pairs, for example such that a penalty is
applied when multiple flights with similar planned departure times are allocated to
stands on the same cul-de-sac.

Ensure Buffer Times between Uses: Since arrival and departure times for flights
are not entirely deterministic, some deviation from the planned times is usually
expected. These disruptions can cause problems and must be handled, Dorndorf
et al (2007b). Good gate/stand allocations will be robust to small changes (see Bolat
(2000b); Dorndorf et al (2008); Kim and Feron (2011)), so that assignments are less
likely to overlap even when there are small delays for one of the aircraft. A penalty
could, therefore, be applied to any schedule where the gaps between allocations are
below a certain value, even when they do not actually overlap, with larger penalties
for smaller gaps. Alternatively, one of the stands may need to be reallocated (see
Bolat (1999)), in which case the aim will usually be to recover a feasible allocation
while keeping as many stand allocations as possible unchanged.

12 J.A.D. Atkin

5.3 Problem Variants and Other Resource Allocation Problems

When there is a shortage of stands, it may be sensible to move aircraft which have
long ground times away from their stand after unloading, to park them at a remote
location, then move them back again prior to loading. In this case, the stand to which
they return may differ from the stand at which they were unloaded and two stand
allocations are necessary - one for unloading and one for loading. In other airports,
it may be necessary to move aircraft between gates between unloading and loading,
for example if an aircraft arrives as a domestic flight and departs as an international
flight, or vice versa, requiring a gate with different security measures in place. In
this case the towing operations are extremely important since the tugs are expensive
resources at an airport and thus likely to be limited resources. Additional objectives
for this problem include reducing the number of tugs required or reducing the total
towing distance. In this case, the unloading and loading would usually be modelled
as separate stand usages, perhaps modelling the aircraft as two separate flights (an
arrival and a departure). A cost would then be associated with the towing operations,
whereby the allocated stands for each activity would determine the costs involved, in
terms of time and distance, using a model which is very similar to that for passenger
walking distance.

Although gate allocation is the academically most widely studied of the airport
resource allocation problems, there are many other similar resource allocation prob-
lems which need to be considered near the gates. Ground handling operations, which
consist of operations such as refueling and re-provisioning the aircraft, offloading
baggage, loading the new baggage, attaching steps or walkways (so that passen-
gers can get in or out of the aircraft), and cleaning the aircraft all require resources,
often consisting of both equipment to perform the operations and crew to use the
equipment. At many airports these operations will be performed by either the air-
port operating company or separate ground handling agents rather than the airlines
themselves. It is common for the equipment and crews for these operations to be
used across multiple gates, and allocating the appropriate equipment and crews to
aircraft is another resource allocation problem. For example, the baggage sorting
station problem (see Abdelghany et al (2006); Ascó et al (2011)) involves allocat-
ing baggage sorting stations (the airside positions at which baggage is accumulated
for loading into aircraft, and where offloaded baggage is placed to feed it into the
airport baggage system) to flights. Many of these problems have a similar structure
to the gate allocation problem, although the details of the objectives and constraints
can differ slightly.

Other resource allocation problems may need to include a scheduling element
and involve not only assigning items but also determining the times at which item
assignment will start and end. For example, there may be time windows while an
aircraft is on a gate within which it must be refueled. Ensuring that refueling occurs
within this time window will require consideration of the locations of refueling fa-
cilities and crew at any time and of allowing sufficient time not only for the refueling
operations but also for equipment and crew to be moved between aircraft.

Airport Airside Optimisation Problems 13

6 The Ground Movement Problem

The airport ground movement problem involves moving all aircraft from their start-
ing positions (usually at stands or runways) to their final positions (usually at other
stands or runways) within some specified timeframes (earliest and latest times for
the start and end of each move). Objectives may differ for different aircraft. For ex-
ample, the objective for aircraft which have just landed would usually be to arrive
at their allocated stand as soon as possible (i.e. to reduce the taxi time). Depending
upon whether a take-off time has already been planned for an aircraft or not, the
objective for aircraft taxiing from their stands to a take-off runway would usually
be one of the following: to arrive at the runway as early as possible; to arrive on
time for a predicted take-off time; or, more recently, as fuel burn and environmental
considerations become increasingly important, to arrive on time for take-off but to
start the engines (i.e. commence the movement) as late as possible. A recent review
of previous research into ground movement is available in Atkin et al (2010b).

6.1 Models of the Ground Movement Problem

Many different models have been utilised for this problem, however they are usually
conceptually very similar. The airport is usually modelled as a directed graph, with
taxiways being modelled as a set of arcs, and a set of nodes being used to model
the intersection points of taxiways. One difference between the models is whether
aircraft are conceptually located at nodes or on arcs. In the former case, additional
nodes will usually be added to split long arcs according to how many aircraft can
fit on them. In the latter case, arcs may have capacity constraints. However, in gen-
eral, the choice of arcs or nodes to contain the aircraft makes little difference to
the conceptual model. Very small examples of ground movement graphs are given
in Figures 2 and 3 (which are discussed in Section 8), showing the ways in which
aircraft could move through the taxiway structures near to the runways of Heathrow
around 2004.

The output of the ground movement problem will usually be a route (a sequence
of arcs or nodes) for each aircraft, and either times at which each intersection point
should be passed, or an order in which aircraft should pass each intersection. Solu-
tion approaches tend to consider either the sequence in which aircraft should pass
different points, and use this to determine the times at which points are passed, or
to directly consider the timings for aircraft. The basic constraints in the model are
that aircraft must maintain at least a specified minimum safe distance between them,
and that maximum taxi speeds for aircraft will limit how quickly the arcs can be tra-
versed. Genetic Algorithms have been used successfully (e.g. Gotteland et al (2001),
Deau et al (2008)), but the majority of research has tended to use Mixed Integer Lin-
ear Programming approaches, e.g. Smeltink et al (2004), Roling and Visser (2008),
Rathinam et al (2008), Keith and Richards (2008), Clare and Richards (2011), Marı́n
(2006), Marı́n and Codina (2008).

14 J.A.D. Atkin

6.2 Taxi Time Prediction and Environmental Effects

Taxi time prediction is a closely related problem to ground movement, but at a more
abstract level. The aim is to predict how long an aircraft will take to complete a
taxi operation, without necessarily having to plan the route or sequence of interac-
tions. Various statistical methods have been utilised for this, with Multiple Linear
Regression being popular due to its firm mathematical foundations, see Ravizza
et al (2012a), Idris et al (2002). Taxi-out time (from stand to runway) usually in-
cludes queueing time at the runway. At busy airports, this queueing time can be a
considerable proportion of the entire taxi time, to the point where taxi time estima-
tions can be produced by considering the runway queue size, e.g. Idris et al (2002);
Simaiakis and Balakrishnan (2009). Other research has identified that aircraft taxi
faster overall if they have to make fewer turns (e.g. Rappaport et al (2009)), and that
this speed decrease seems to be quantifiable (e.g. Ravizza et al (2012a)). Other ap-
proaches have used reinforcement learning methods (e.g. Balakrishna et al (2010)),
or fuzzy rule based systems (e.g. Chen et al (2011)), and there are some indica-
tions that the non-linearity of the fuzzy rule based systems has benefits for taxi time
prediction.

6.3 Recent Work

Taxi speed information tends to be an input to the ground movement problem, and
many systems assume constant taxi speeds. However taxi speed can depend upon the
route which is taken around the airport, as shown by Ravizza et al (2012a). Route-
specific taxi times could be utilised in a ground movement algorithm, improving the
travel time predictions and the accuracy of the ground movement models. Recent
work has started to consider the combination of taxi time prediction and ground
movement research, e.g. Ravizza et al (2013).

There has also been an increasing interest in the environmental effects of taxiing
(see Nikoleris et al (2011)), and particularly upon the impact that runway queues
have upon this, for example Simaiakis and Balakrishnan (2010). Various queueing
models have been developed to try to predict waiting times and pushback metering
has been used to hold aircraft upon the stands for longer, for example Andersson
et al (2000), Simaiakis and Balakrishnan (2009), Simaiakis et al (2011).

Even more recently, researchers have started to look at the environmental ad-
vantages of slower taxiing, reducing the engine power and thus the fuel burn, for
example Ravizza et al (2012b). Along similar lines, the benefits of single-engine
taxi operations have been considered by airlines, and some airlines are using these
already, although this is often more practical for taxi operations after landing rather
than prior to take-off, since it is better not to leave engine start-up, with its associated
checks, until too late before take-off.

Airport Airside Optimisation Problems 15

7 Runway Sequencing

Since the runways are often the limiting factor for the capacity of the arrival and
departure systems, runway capacity has had considerable research for many years,
from theoretical models such as that used by Newell (1979) to simulation-based
methods such as were used in Bazargan et al (2002). An insufficient landing capacity
will cause delays for arrivals, potentially requiring these to be ‘parked’ in stacks near
the airports, as discussed in Section 7.7. Similarly, an insufficient take-off capacity
can result in long queues at the runways or the application of stand holds to hold
some aircraft at the stands/gates for longer.

The basic aim for runway sequencing is to determine a runway sequence (con-
sisting of landings, take-offs or both) and landing/take-off times for each aircraft, so
that all constraints are met and the value of some objective function (which depends
upon the landing/take-off times) is improved. Sequence dependent separations must
be applied between any two aircraft which use the runway, thus the runway capac-
ity can be highly dependent upon the take-off or landing sequence. Mixed mode
operations (where the runway is used for both arrivals and departures) are usually
more efficient than segregated mode (see Newell (1979)), since the required gaps in
the departure stream may only need to be slightly widened to fit an arrival between
departures, and vice versa. It is also usually possible to trade off arrival throughput
against departure throughput in this circumstance, see Gilbo (2003).

A recent review of runway scheduling research can be found in Bennell et al
(2011). An earlier paper by Fahle et al (2003) compares some of the formula-
tions for the arrival problem and Mesgarpour et al (2010) provides an overview of
some of the solution approaches which have been applied. Various solution meth-
ods have been utilised, including exact methods such as dynamic programming (e.g.
Psaraftis (1980); Trivizas (1998); Chandran and Balakrishnan (2007); Balakrishnan
and Chandran (2010)), or branch and bound (e.g. Beasley et al (2000); Ernst et al
(1999)) and heuristic methods such as genetic algorithms, especially when a non-
linear objective function is used (e.g. Beasley et al (2001)).

Since runway sequencing is key for the case study in this chapter, a mathematical
model of the problem is presented in this section, alongside the discussion of the
problem. The exact objective function and constraints in operation will depend upon
the airport, but the various elements are explained here and the specific elements
which are important for London Heathrow are discussed in the case study.

7.1 Decision Variables and Constants

Since this model applies to both arrivals and departures, the concept of a runway
time is used to denote either the landing time (for an arrival) or the take-off time
(for a departure). The variables and constants can be summarised as follows, where
the aim is to find values for s j and d j for each aircraft j:

16 J.A.D. Atkin

s j Decision variable. The position of j in the planned runway sequence.
d j Decision variable. The predicted runway time of aircraft j.

et j Constant. The earliest runway time for aircraft j.
ht j Constant. A hard constraint upon the latest runway time for aircraft j, such

that j MUST take-off or land before that time.
lt j Constant. A soft constraint upon the latest runway time for aircraft j such

that schedules where it takes off or lands after this time are penalised.
bt j Constant. A base time for aircraft j from which the delay can be calcu-

lated. This will often be equal to et j.
RSi j Constant. The minimum required separation between the runway times of

aircraft i and j, when i uses the runway before j.
a j Constant. The position of j in a first-come-first-served sequence, for ex-

ample by ordering the aircraft in increasing order of bt j.

7.2 Time Window Constraints

Time windows may be either hard or soft constraints, indicating mandatory or pre-
ferred compliance. Hard time windows are potentially useful for reducing the prob-
lem complexity since they may implicitly specify a partial ordering for aircraft (e.g.
if time windows do not sufficiently overlap), but soft time windows are not so help-
ful. When time windows are formulated as soft constraints they should be met when
possible, but this may not always be achievable. When they are not met, it may be
useful to minimise the amount by which they are missed.

7.2.1 Hard Constraints

Aircraft will usually have an earliest take-off or landing time, eti, before which they
will not be available, and this will usually be modelled as a hard constraint. These
may be due to physical limitations upon how early an aircraft can reach the runway,
due to flying time for arrivals or taxi time and line-up time for departures. Departures
will sometimes perform final take-off preparations only once the taxi operation has
commenced, and take-off cannot occur until these have been performed. There may
also be latest runway time constraints, for example due to safe fuel considerations,
on-board emergencies for arrivals (e.g. a seriously ill passenger), or regulations,
although latest runway times are less common for departures than arrivals.

Issues of ensuring fairness in delay distribution between aircraft are usually far
more common in preventing long delays for aircraft than fuel concerns. Due to sug-
gested fuel loads, it should be rare for a properly prepared aircraft to be forced to
land due to fuel shortages, and this is even more rare with take-offs, since the fuel-
burn is far lower when idling on the ground. In general, however, equity/fairness
considerations tend to be soft constraints, which prefer rather than enforce more
equitable/fair sequences, although hard constraints are sometimes also applied, to

Airport Airside Optimisation Problems 17

limit either the latest runway times or the positional deviation from a first-come-
first-served sequence.

An important consideration for European airports is the Calculated Take-Off
Time (CTOT). Since European airspace is in high demand, restrictions may be ap-
plied at source airports to limit the load upon en-route sectors. The CFMU (Central
Flow Management Unit) at Eurocontrol uses heuristic methods to estimate the load
on sectors, considering the known flight plans of all aircraft passing the sectors. A
calculation will be performed to ensure that the predicted load on sectors does not
exceed an acceptable limit. In the case of likely congestion, the shortest take-off de-
lay which would remove the capacity problem will be calculated and a ground delay
will be applied to an aircraft by allocating it a Calculated Take Off Time (CTOT),
as discussed in de Matosa and Ormerod (2000) and Eurocontrol (2012). Aircraft
are permitted to take off up to five minutes before this time, or ten minutes after it,
thus it applies both an earliest and latest runway time constraint upon these aircraft.
Although the airspace in the US tends to be less restricted, bad weather can still re-
quire ground holds to be applied (see Hoffman and Ball (2000)), limiting the earliest
take-off times for aircraft in a very similar way.

Together the earliest and latest landing/take-off time (if it exists) will imply a
window around the potential runway times. Inequality 1 ensures that any hard time-
window constraints are met.

et j ≤ d j ≤ ht j (1)

7.2.2 Soft Time Slots

At some airports the end of the CTOT time may actually be modelled as a soft con-
straint, since it may be possible for controllers to obtain a small extension for a time
window. Since missing a time window is intrinsically bad, a large fixed penalty can
be applied for each miss, preventing the adoption of such schedules where possible.
It may also be useful to add an additional penalty related to the amount by which it
is missed. In this way the aim is to reduce both the total number of misses and the
amounts by which CTOTs are missed. Extending this, there could also be multiple
penalty periods in some cases, whereby a small miss incurs a cost, but a miss by
more than a certain time (e.g. more than a possible extension) incurs an extremely
large cost.

Let lti and l2i denote the ends of two different time periods, whereby the aircraft
should be scheduled before lti, but if that is impossible then it should be scheduled
before l2i. Let ω2 and ω4 be constant penalties which are applied for missing the lti
and l2i deadlines, respectively. Let ω1 and ω3 be constant costs per second for miss-
ing the lti and l2i deadlines, respectively. The cost of CTOT compliance could then
be expressed by Formula 2, which is a simplified version of the objective function
used in Atkin (2008); Atkin et al (2007, 2012). Using a value of β = 1 will give a
linearly increasing cost for misses. Values of β > 1 could be used to avoid larger
misses, for example encouraging the adoption of two shorter misses rather than one
larger miss. It is worth noting that Formula 2 is not convex, thus use of it as (part of)
an objective function will be problematic for some solution methods.

18 J.A.D. Atkin

E =

⎧⎨
⎩

0 if eti ≤ di ≤ lti (i)
ω1(di − lti)β +ω2 if lti < di ≤ l2i (ii)
ω3((di − li)β)+ω4 if l2i < di (iii)

(2)

7.3 Separation Rules

Gaps are required between aircraft taking off, for a number of reasons:

Wake Vortex Separations: The act of producing lift from the aerofoil of a wing
will result in wake vortices being produced behind the trailing edge of the wing. For
safety reasons, minimum separations are always required between aircraft using the
runway, in order to ensure that the wake vortices from the previous aircraft have had
time to dissipate prior to the following aircraft passing that point. Aircraft are all
assigned a weight class, according to their size, and the mandated separation times
are larger when the leading aircraft is of a larger weight class than the following
aircraft, since larger aircraft will produce larger wake vortices, but be affected less
by wake vortices. Although the separation requirements vary between the arrival and
take-off problems, both problems have these asymmetric separations, so the runway
sequence can affect the throughput. Where only wake vortex separations apply (e.g.
for landings), it is usually a good idea to group aircraft of the same weight class
together in the sequence, thus reducing the number of larger separations due to a
smaller weight class aircraft following a larger weight class aircraft.

Route and Speed Separations: Aircraft which take off from an airport will usually
follow a SID (Standard Instrument Departure) route. Each SID mandates a specific
conflict-free departure route, including details of when to make turns and the exit
points for the TMA (the local airspace around the airport), so that aircraft need only
an overview by a controller rather than approval for each turn or flight level change.
This greatly reduces the workload and communication required of the controller. If
SIDs are divergent, aircraft may be able to depart soon after each other, however
if SIDs are close together, a longer gap may be required at take-off in order to en-
sure in-air separations and to control the workload for the downstream controllers to
whom the SIDs will deliver aircraft. These SID separations may be further modified
by the speed groups of the two aircraft, to allow for the gap closing or expanding
in flight. The required separations for any pair of SIDs and speed groups can be
determined using look-up tables. SID separations mean that it is common to alter-
nate departure directions, and at some airports the SID separations can be much
more constraining upon the problem than the wake vortex separations, as shown in
Atkin et al (2009) for Heathrow. Importantly, route/speed-based separations mean
that take-offs cannot usually be ordered by weight class, and do not always obey
the triangle inequality, so it is not always possible to consider only the separations
between adjacent take-offs.

Airport Airside Optimisation Problems 19

Increased Separations: When local airspace becomes congested, or the local sector
controller is at risk of having too high a workload, a short-term flow control measure
can be applied at the runway by temporarily increasing the mandated separation for
certain SIDs. For example, a separation which is normally two minutes could be
increased to three or more minutes (or to as high as ten or more minutes in extreme
cases), by applying a Minimum Departure Interval (MDI) restriction. SIDs could
even be temporarily closed if the airspace becomes extremely busy or unavailable,
for example due to an emergency flight or adverse weather.

Runway Occupancy Time: The runway occupancy time must also be considered
since only one aircraft is permitted to be using the runway at any time. This can
enforce a minimum separation between consecutive users of the runway even when
other separations may not apply (e.g. between a take-off and a landing).

Modelling the Separation Rules

Regardless of the cause of the separation requirement, these constraints can be
modelled using a single minimum separation value, RSi j which gives the required
separation between aircraft i and j if i uses the runway before j. RSi j must be the
maximum of all required separation values, including wake vortex separations, route
and speed separations and runway occupancy times, to ensure that all are met. The
separation time constraint can then be modelling as the disjunction in Formula 3,
and the runway sequence can be determined from the order of the di or d j values.

d j ≥ di +RSi j OR di ≥ d j +RS ji ∀i �= j (3)

Many formulations of the disjunction will introduce auxiliary variables to handle the
disjunction. Sequence variables, s j , are obvious candidates, allowing the disjunction
of Formula 3 to be formulated as Inequality 4. Alternatively, binary variables could
be used to specify whether i or j comes first in the sequence (e.g. a variable ki j for
each pair of aircraft i and j, which is 1 if di < d j and 0 otherwise).

d j ≥ di +RSi j ∀i, j s.t. si < s j (4)

It is worth noting that this model assumes that separations are constant over time.
If this is not the case then RSi j may actually have a dependency upon di, greatly
complicating the model. In this case, take-off times must be predicted for aircraft
in runway sequence order, so that di will already be known for all previous take-
offs/landings, allowing RSi j to be determined.

7.4 Runway Sequencing Objectives

The objectives for the runway sequencing problem can take various forms and will
depend upon the airport and whether it is arrivals or departures which are being
sequenced. The objectives can be summarised as aiming to minimise some combi-
nation of one or more of the following values, A, B, C or D:

20 J.A.D. Atkin

A = max j d j (5)

B = ∑
j

d j (6)

C = ∑
j

(s j − a j)
2 (7)

D = ∑
j
(d j − bt j)

α (8)

Maximise Throughput: Runway throughput (i.e. the number of aircraft per hour)
is often assessed by considering the difference between the runway time of the first
aircraft in the sequence and the runway time of the last aircraft in the sequence.
Thus, the objective is usually to complete the landing/take-off of the last of the set
of aircraft as early as possible, as expressed by Equation 5. Throughput can often be
increased by re-sequencing, to reduce the total separations between aircraft.

Since Formula 5 only considers the landing/take-off time of the last aircraft, time
windows can cause a problem for this objective: late availability of the final aircraft
can greatly affect the runway time of that aircraft and the value of a sequence can
become highly dependent upon the last aircraft rather than the sequencing of the
preceding aircraft. This can hide any poor sequencing of the earlier aircraft, po-
tentially delaying them unnecessarily as long as such delays do not delay the last
take-off/landing. This is especially a problem in the dynamic case, where new air-
craft can become available over time. Better sequencing of earlier aircraft may allow
a new arrival to be slipped into a sequence ahead of the last aircraft, whereas poor
sequencing may prohibit this. This is discussed further in Atkin (2008).

Reduce Delay: An alternative objective is to consider the total delay for aircraft,
rather than considering the runway time of only the last aircraft. This formulation
considers the times for all aircraft, aiming to reduce the sum of these times, as
expressed by Equation 6. However, this formulation can introduce another problem.
Certain types of aircraft (e.g. particularly slow or heavy aircraft) will have separation
rules associated with them such that as soon as they are scheduled a larger separation
is required. This objective will tend to move aircraft with larger separations later in
the sequence, so that fewer aircraft will be affected by the increased delay. If not
controlled, this can limit the fairness of the resulting sequences.

Avoid Inequity/Unfairness: Re-sequencing is vital for reducing delay, but it must
be controlled to avoid unfairness. An obvious solution is to minimise positional
delay, as expressed by Equation 7. Indeed, some previous research (e.g. Psaraftis
(1980); Dear and Sherif (1989, 1991); Trivizas (1998); Balakrishnan and Chandran
(2010)) has worked with a maximum position shift constraint, which applies a hard
constraint to the positional shifts which any aircraft can have. This can be expressed
as Inequality 9, where MPS is a constant for the the maximum allowed position
shift:

a j −MPS ≤ s j ≤ a j +MPS (9)

Airport Airside Optimisation Problems 21

This is an excellent idea for the purpose of limiting inequity and can greatly reduce
the complexity of the problem which has to be solved. It appears to work well for
arrivals in some cases, but does not work so well for departures, since the delays
can vary greatly across departure routes, so it is important to allow arbitrarily large
relative positional shifts between different departure routes. Similarly, when time-
windows are involved, conformance with these can require large relative position
shifts in the sequence, which must not be prohibited.

An alternative approach is to use a non-linear factor of delay in the objective
function, to account for equity of delay as well as overall delay reduction, as ex-
pressed by Formula 8, where α > 1. In this case, the value of α will determine
the trade-off between delay reduction and equity. For obvious reasons, linear pro-
gramming models have tended to avoid non-linear factors in the objective functions
(although quadratic objective functions can now be handled more easily by some
solvers than was previously possible), instead utilising hard constraints in terms of
maximal delays or maximum positional delays to limit the inequity. However, pre-
vious experiments with non-linear delay costs have had good results in terms of
controlling the inequity of delays, e.g. Beasley et al (2001); Atkin et al (2010a).
A trade-off between equity of delay and overall delay was observed in Atkin et al
(2010a), such that the overall delay increased as the pressure for more equitable
delay was increased. A power of 2 (i.e. squaring the delay) appears to be popular
for this (e.g. Beasley et al (2001)), however it has been suggested that this may be
too high for departure sequencing (see Atkin et al (2010a)), since it may result in
unnecessarily high overall delays.

Penalise Deviation from a Reference Schedule: Similar approaches could also
be used to find results which are similar to a reference schedule, or to previous
decisions in a dynamic problem (see Beasley et al (2004)), explicitly penalising
positional shifts or changes in runway times.

Meet Any Timeslots: As previously mentioned, the cost of missing any timeslot
which is modelled as a soft constraint would need to be included into the objective
function. For example, in the form of Inequality 2.

7.5 Similarities with Other Problems

There has been significant research into the arrival sequencing problem, perhaps
due to the similarities between the single runway sequencing problem and the Trav-
elling Salesman Problem (TSP), which has itself been well studied for many years
(see Bellmore and Nemhauser (1968), Laporte (1992)). The TSP is equivalent to the
single machine scheduling problem with sequence-dependent processing or set-up
times, see Bianco et al (1988). The main requirement for problem equivalence is
that separations must require looking back only to the immediately preceding air-
craft, thus the arrival sequencing problem (where this is usually the case) is much
more similar to it than the departure sequencing problem is (where separations of-
ten do not obey the triangle inequality). However, since reducing delay is usually

22 J.A.D. Atkin

a more appropriate objective function than directly maximising the throughput, the
problem is actually closer to a cumulative travelling salesman problem, see Bianco
et al (1993), Bianco et al (1999).

7.6 Multiple Runways and Runway Allocation

When there are multiple arrival or departure runways, a runway allocation problem
must be considered in addition to the runway sequencing problem for each runway.
In some cases aircraft will have already been allocated to runways according to
some other criterion, for instance allocating each aircraft to a runway according to
its arrival or departure route (avoiding aircraft paths crossing, with the consequent
interactions between runways) or according to the terminal at which the aircraft is
parked (to reduce taxi times, de-conflict traffic to simplify the taxi operations, or to
avoid runway crossings, reducing inter-runway dependencies). In this case, if there
are no other dependencies between the runways, each single-runway sequencing
problem can be solved independently. Where there are dependencies between run-
ways, but runway allocations are known, the entire problem can be solved as single
sequencing problem, with the RSi j values considering the separations which are re-
quired between two aircraft given the runways to which they have been allocated,
taking into account the inter-runway dependencies.

If runway allocation also has to be performed, the problem is more complex. In
general, the multiple runway problem with runway allocation is analogous to a Vehi-
cle Routing Problem in the same way that the single runway problem is analogous to
the Travelling Salesman Problem, since runway allocation is analogous to allocating
customers to vehicles. Approaches which add one aircraft at a time to a sequence,
utilising sub-sequences could dynamically adapt the RSi j values according to the al-
located runways for each aircraft as they are added, and branch upon the options for
the runway for the next aircraft. This includes any method which already utilises a
pruned tree-search, branching upon the options for next aircraft, such as Atkin et al
(2012). However, the increase in problem size will ultimately be exponential in the
number of aircraft, so good pruning would probably be needed for larger problems.
Some previous work has successfully considered the runway allocation problem for
arrivals (e.g. Ernst et al (1999), where a Mixed Integer Linear Programming model
was used), however the majority of work has considered only single runway or fixed
allocation problems.

7.7 Arrival Scheduling and Stacks

Arrival runway throughput may not always keep up with the arrival rate at busy
airports. Unlike on the ground, aircraft cannot simply be parked stationary in the air
to await a landing time, so instead they circle near beacons, in stacks, one above the
other. Each level of a stack will be dedicated to a specific aircraft, so that there can
be no conflicts between aircraft regardless of their airspeed (they maintain a vertical
separation). Controllers will usually take aircraft from the bottom of a stack, or

Airport Airside Optimisation Problems 23

Airport, landing from the East

Stack 1

Stack 3 Stack 4

Stack 2

Fig. 1 Stylised diagram of arrival routes from stacks, showing how trajectories can be varied
in order to achieve desired separations at the runway

occasionally from the second or higher level if it is simple to do so and there are
obvious benefits. The aircraft will then follow merging trajectories to the runway, to
slot into the landing sequence. The remaining aircraft in the stacks will then spiral
down to fill the vacant levels. An example, stylised, diagram of a stack structure
is shown in Figure 1, showing how aircraft can make turns at different points in
order to shorten or lengthen trajectories as required (see Smith (1998)), in addition
to being able to accelerate or decelerate to achieve the correct spacing.

The arrival stacks add extra constraints to the sequencing problem for arrivals,
which may help or hinder solution approaches, depending upon their flexibility. If
only the bottom aircraft can be taken, these can potentially simplify the problem
significantly, since it could become a problem of interleaving/merging queues, with
some restrictions upon the frequency with which each queue can be used, to allow
aircraft time to spiral down to fill gaps. However the ability to take aircraft from
other levels when it is useful can add significant complexity to the problem. Al-
though it currently appears that significant throughput increases could result from
taking aircraft from higher levels, it is extremely important to understand the ef-
fects of this kind of decision, in terms of equity of delay and increased workload for
controllers before this could be assumed.

7.8 Combined Runway Sequencing and Ground Movement
Problems

For arrival sequencing, the landing times tend to feed into the ground movement
problem as the times at which aircraft enter the ground movement system. How-
ever, it would be rare for ground movement considerations to have an effect upon

24 J.A.D. Atkin

the landing sequence, since the fuel and equity considerations tend to be far more
important. Thus the arrival sequencing problem tends to form an input for the ground
movement problem. This is not true for the take-off sequencing problem. Obviously,
the ground movement will occur prior to take-off, thus the ground movement will
implicitly determine the earliest take-off time for each aircraft (i.e. how soon it will
actually reach the runway).

At airports where the ground movement considerations are extremely important,
for example where there are distinct bottlenecks on the taxiways, it may be useful to
consider take-off sequencing within the ground movement problem, e.g. Deau et al
(2008), Clare and Richards (2011). At other airports, the runway is the bottleneck
and runway queues will usually be sufficient to absorb ground movement delays, so
the runway sequence may be far more important than any ground movement. How-
ever, in these cases the runway queues themselves may restrict the re-sequencing.
In some cases, the order of aircraft within a runway queue may be fixed, with re-
sequencing only being possible by interleaving the queues. It may then be possible
to simplify the runway sequencing problem by explicitly considering the queues,
e.g. Bolender and Slater (2000); Bolander (2000). The case study in the next section
considers a less restrictive runway queue problem, where the runway queues affect
the potential take-off sequences, but are insufficiently constraining to simplify the
problem.

Finally, at some airports it may be necessary to cross a runway in order to reach
another runway. In these cases the runway crossing time may need to be considered
in the landing or take-off sequencing, allowing sufficient gaps to perform the cross-
ings (see Anagnostakis and Clarke (2002)), introducing dependencies between the
ground movement and runway sequencing problems.

8 Case Study: Heathrow Departure Sequencing at the Runway

This case study considers a system which was developed to potentially provide de-
cision support for departure runway controllers at London Heathrow. It considers
a combined runway sequencing and local ground movement problem, and utilises
a hybrid solution method to solve the overall problem. This research was funded
by NATS (formerly National Air Traffic Services) and the Engineering and Physi-
cal Sciences Research Council (EPSRC) through the Smith Institute for Industrial
Mathematics and Systems Engineering. Two questions were posed: “Could a deci-
sion support system be developed to give ‘real time’ advice to the runway controller,
given the complexity of the task?” and “Is there likely to be any benefit from using
such a system?”

London Heathrow is an extremely popular and busy two-runway airport. Its lo-
cation, close to London, means that aircraft fly over built-up areas, and thus it is
important to consider the noise for residents near the flight paths. A noise-control
policy means that each of the runways may only be used for arrivals at certain times
of the day, with the other runway being used for departures. The runways are, there-
fore, normally used in segregated mode and the departure runway controller has

Airport Airside Optimisation Problems 25

the task of attempting to find the best runway sequence from the aircraft which are
available to him/her.

Since taxi times have rarely been entirely predictable, with delays around the
stands being especially hard to predict unless they are explicitly modelled (see Atkin
et al (2012)), the operational method at the time was to release aircraft from the
stands as soon as possible, unless there was obvious congestion already, taxi them to
a holding area near the end of the current departure runway and have them wait there
for the controller to re-sequence them for take-off. The controller would normally
consider only the aircraft which were available at the time, along with the locations
of these aircraft in the holding area, and would attempt to build a good take-off
sequence, directing aircraft through the holding area to achieve the sequence.

The holding areas are normally a set of one or more queues, with possibilities to
move aircraft between queues, in order to overtake or be overtaken. Directed graph
models for two of the holding areas are provided in Figures 2 and 3. Each node in the
graph is assumed to be able to hold exactly one aircraft, and the arcs show the normal
paths through the holding areas. Re-sequencing will be successful if aircraft can be
moved from their current positions onto the runway, in the take-off order, without
ever requiring multiple occupancy of any node. Importantly, not all good take-off
sequences will be achievable, due to the limited re-sequencing which is possible
within the holding area, although many sequences will be achievable in multiple
ways. The controller has to consider the work involved in achieving the sequence as
well as the feasibility of performing the re-sequencing. Any decision support tool
also has to consider whether the re-sequencing will appear to be sensible to the
controller (i.e. will be likely to be adopted). In general, these factors will depend
upon both the absolute paths which are taken through the holding area (avoiding
difficult paths), and the relative paths which are taken (ensuring that the longer paths
are taken by aircraft which have the time available to do so).

Fig. 2 Diagram of the 27R holding area Fig. 3 Diagram of the 27L holding area

26 J.A.D. Atkin

This problem can be considered to be a combination of a runway sequenc-
ing problem plus a small ground movement problem. The individual problems are
discussed in Sections 8.1 and 8.2, respectively, before the combined problem is dis-
cussed in Section 8.3. The main question is how best to solve the combined prob-
lem and the developed solution method will be discussed and justified in Section
8.4. Some results are then presented and discussed in Section 8.5, evaluating the
potential benefits of such a system. A more detailed discussion of the holding area
sequencing problem, the modelling of the holding areas and the reasons for selecting
the chosen solution method, can be found in Atkin (2008) and Atkin et al (2007).

8.1 The Runway Sequencing Sub-problem

The runway sequencing problem at Heathrow involves finding the best take-off se-
quence, given the available aircraft and their current positions on the airport surface.
It is a variant of the general runway sequencing problem which was described in
Section 7. The key elements which apply to Heathrow are explained in this section.

Take off separations apply, depending upon the weight class, speed group and
departure route of the aircraft (see Section 7.3). These do not obey the triangle
inequality and are not symmetric.

Given the position of each aircraft in the holding area, it is possible to determine
how long it would take it to reach the runway, line up and take off. It is also relatively
easy to estimate taxi times for aircraft which are taxiing along the taxiways towards
the runway, once they have left the cul-de-sacs, and to predict earliest take-off times
for these aircraft. These determine the earliest take-off time, et j, for any aircraft j.

CTOTs (Calculated Take-Off Times) are extremely important, as discussed in
Section 7.2, and specify a fifteen minute take-off window. The earliest take-off time
was enforced as a hard constraint in this work, by modifying the earliest take-off
time (et j) accordingly. As discussed in Section 7.2, the end time was modelled as
a soft constraint in this work, since some CTOTs may be tight and the controllers
were permitted a limited number of 5 minute extensions, to use only where nec-
essary to smooth the airport operations and avoid the need for last minute CTOT
renegotiations. Therefore, hard constraints on the latest take-off times are assumed
not to apply to aircraft (so hti = ∞ in Inequality 1), since aircraft may have a long
wait for busy routes in the presence of MDIs (see Section 7.3).

The objective of the sequencing is primarily to miss as few time-slots as possible
(and hence use as few extensions as possible), secondarily to reduce delay, and
tertiarily to control inequity in the sequencing. The objective function which was
used for this case study was a weighted sum of the different components, penalising
delay (Equation 6), positional delay (Equation 7) and CTOT misses (Equation 2).
For Equation 2, lti is set to the CTOT time plus ten minutes (the end of the slot)
and l2i was set to five minutes later than that (i.e. the duration of the extension).
The exact weights which were used can be found in Atkin (2008) and Atkin et al
(2007), but are not vital for this discussion. A linear cost was used for delay since
it was discovered that, with the positional delay penalty, the holding area structure

Airport Airside Optimisation Problems 27

itself enforced a degree of equity upon the sequences, making a non-linear cost
unnecessary. However, in the absence of the sequencing constraints enforced by the
holding area structure, a power for delay of 1.5 was found to be more appropriate
for runway sequencing, see Atkin et al (2010a).

8.2 The Ground Movement Sub-problems

The ground movement element of the problem introduces a number of other objec-
tives, which were identified from discussion with controllers and can be summarised
as follows:

1. Ensure that the re-sequencing which is required is possible within the holding
area structure. This is a hard constraint, which can be tested using the directed
graph model of the holding area.

2. Ensure that the re-sequencing is simple to achieve. This objective turned out to
be related to the choice of paths which aircraft use to traverse the holding area,
and can be considered to mean that certain paths would never be used (e.g. due
to the number of turns which would have to be made) and other paths would
only ever be used if there was no way to use a simpler path. The acceptable
routes were identified by discussing the problem with the controllers, and from
identifying the routes which were actually used in practice, and the circumstances
under which they would be used, by considering the playback of historic ground
positional data.

3. Ensure that re-sequencing is sensible to the controllers. In addition to the route
elimination in point 2, which will help for this, it is also important to consider
the routes which are allocated in relation to the re-sequencing which is being
performed. For example, if one aircraft is to overtake another in the holding area,
the overtaking aircraft will obviously be in the holding area for less time than the
overtaken aircraft, thus the overtaking aircraft should be assigned to the shorter
routes, reducing the probability of delay. In effect, this means that overtaken
aircraft are held out of the way, rather than the overtaking aircraft having to go
around them.

8.3 The Combined Problem

Considering the combined problem, a number of observations can be made:

1. The solution space for the sequencing problem alone is of size n! for n aircraft.
2. The solution space for the ground movement problem, with the flexible holding

areas shown in Figures 2 and 3 was even larger: most feasible sequences could be
achieved in many different ways, greatly outweighing the fact that only a fraction
of the potential sequences are feasible.

3. Many sequences are unachievable given the structure of the holding area. In
particular, there are often limitations upon how many other aircraft any aircraft

28 J.A.D. Atkin

can overtake. Overtaking other aircraft can also limit the relative re-sequencing
which can be performed upon the overtaken aircraft.

4. There will usually be a single preferred method in which any specified re-
sequencing should be performed (i.e. a specific solution for the ground move-
ment problem), which will minimise the workload for the controllers and pilots.

5. Most objectives are related to the take-off sequence rather than the means by
which it was achieved. The ground movement problem effectively determines
whether a sequence can be achieved easily, and if so how best to achieve it.

There was a requirement for a successful decision support system to return results
‘instantly’, which was measured as ‘within a second’. Heuristic methods were con-
sidered for that reason and local search algorithms were chosen.

8.4 Solution Method

Despite the success of research into the combined problem where the ground move-
ment was the main constraint, as discussed in Section 7.8, experiments with using a
local search algorithm to manipulate the ground movement sequencing and evaluate
the resulting take-off sequences, were not very successful. Various neighbourhoods
were investigated, consisting of changing the allocated path for an aircraft, changing
the relative sequence in which aircraft pass points, and changing part of an allocated
route from a decision point onwards (i.e. changing the arc which an aircraft uses to
leave a node, along with later arcs), however various problems were discovered:

• It is not simple to make small isolated changes to the movement. A single change
of order, or path, at one point in the holding area could require many subsequent
changes, since aircraft may no longer be in appropriate positions for the previous
subsequent movement.

• It was not easy to guide the search using the ground movement. The runway
sequence identifies the cost of the solution, however, relatively small changes
in the ground movement could have far-reaching effects upon the consequent
take-off sequence, due to the enforced changes upon subsequent holding area
movement.

• Even when good solutions were found, the method of achieving the sequence
was often not simple. Many theoretically good sequences required far too much
manoeuvring in the holding area, and hence had to be rejected under that
criterion.

The sequencing and routing problems are intrinsically linked. The ground move-
ment objective (objective 3 in Section 8.2) indicates that the appropriate routing
will be highly dependent upon the re-sequencing which is performed. A decision
was made to solve the sequencing problem as the master problem, and to determine
the feasibility of the ground movement as a subordinate problem. A tabu search
algorithm was developed which had the following properties:

Airport Airside Optimisation Problems 29

• The search was repeated for 200 iterations.
• In each iteration, 50 neighbouring solutions were randomly generated, by ran-

domly selecting a move type then randomly generating an alternative solution
using that move type. Three move types were utilised:

– Swap two aircraft: select two random aircraft and swap their positions in the
sequence. This was used 30% of the time.

– Shift aircraft: select a consecutive sequence of between 2 and 5 aircraft and,
maintaining their relative order, shift them to another position in the sequence.
This was used 50% of the time.

– Randomise order: select a consecutive sequence of between 2 to 5 aircraft and
randomly re-order them. This was used 20% of the time.

• Whenever a move was made, the old positions of each aircraft which moved were
recorded. Any move within the next ten iterations which put all of these aircraft
back into the original positions was prohibited, by declaring it tabu, unless it
improved upon the best solution found so far.

• Each remaining solution was tested for feasibility using the ground movement
model, and infeasible solutions were rejected from further consideration.

• The best solution found in each iteration was adopted for the next iteration.
• The best solution found during the search was returned at the end.

Full details of the ground movement element, including the path allocation and
routing algorithms, can be found in Atkin (2008). It can be summarised as follows:

1. Separately consider the set of aircraft for each of the holding area entrances.
Heuristically allocate paths to these aircraft such that their relative re-sequencing
can be performed sensibly. e.g. if one has to overtake another, then allocate the
overtaken aircraft a path which moves it out of the way.

2. Move aircraft through the holding area graph, one arc at a time. The next node
is known for each aircraft (based upon the allocated path), so the only decision
which has to be made is the order in which aircraft should enter a node.

3. The input sequence of aircraft at the holding area entrances is fixed. The target
take-off sequence fixes the relative sequence for all aircraft at the holding area
exits. At intermediate points, all aircraft with a common initial path must main-
tain their relative entrance sequence and all aircraft with a common set of nodes
at the end of their path must maintain their relative exit sequence. These common
sub-paths are identified and used by the algorithm.

4. A look-ahead algorithm is used, counting the number of empty nodes later on
each path (i.e. vacant nodes which an aircraft could be moved into) to determine
whether moving an aircraft will block another aircraft from exiting to the runway
at the correct time. Using the look-ahead count and the partial sequences from (3)
above, an algorithm is applied to move each aircraft in turn so long as doing so
does not block other aircraft. Pre-processing ensures that this algorithm is very
fast; fast enough to execute within each iteration of the tabu search.

Experiments showed that the chosen moves were able to move from one good so-
lution to another very easily. A local search algorithm, without the tabu list, also

30 J.A.D. Atkin

performed very well, showing that this neighbourhood was very good for this prob-
lem. However, adding the tabu list made the search perform (statistically) signifi-
cantly better. The success relied upon a fast and successful solution for the ground
movement sub-problem, and upon the search only needing to move within the fea-
sible region of the search space (i.e. it ignores solutions which cannot be achieved),
which required that the feasible search space was connected.

8.5 Summary of Results

The developed algorithm was executed using historic data (ten half-day datasets)
and each of the three commonly used holding area structures; the two previously
shown and a much simpler structure for the 09R runway. A simple simulation was
built, which assumed that the system was executed once a minute (for less than a
second each time), considering all of the aircraft which it would have been aware
of at the time. An assumption was made that the sequences would be adopted by
the controller, and that the movement through the holding area which the algorithm
suggested would actually be performed. Each problem therefore had the aircraft
from the previous iteration, plus any new aircraft which entered the system in the
last minute, less any aircraft which would have taken off by that time.

Figure 4 shows the percentage of delay which the system was able to achieve,
in comparison to the real delay on the day, for each of ten datasets and each of
three holding area structures. These results assume that the system could be given

Fig. 4 Graph showing the relative delays achieved for different holding area structures across
ten different datasets

Airport Airside Optimisation Problems 31

Fig. 5 Graph showing the relative delays achieved for different holding area structures across
ten different datasets

knowledge of taxiing aircraft 15 minutes before they arrived at the holding area, or
at pushback time if the taxi time was less than 15 minutes, since pushback times
were thought to be highly unpredictable until they actually occurred. In all cases,
the system found sequences which had lower delays than the controller-generated
sequences, indicating that there was at least a potential for a developed system to
help the controllers to improve delays.

Further research showed that greater knowledge of taxiing aircraft increased the
performance of the system, as discussed in Atkin et al (2006). Results with no
knowledge of taxiing aircraft were roughly equivalent to those which controllers
produced, indicating that the controllers were performing very well and that the
benefits came from considering the aircraft which were still taxiing at the time. As
long as the system was made aware of aircraft, there were significant benefits even
when only approximate taxi time predictions were available, as shown in Atkin et al
(2008), although increased prediction accuracy improved the benefits. Taxi time
prediction research is of particular interest for this reason, and current research (see
Ravizza et al (2012a)) using data from Heathrow indicates that taxi times can be
predicted relatively accurately if sufficient factors are taken into account.

Figure 5 shows the percentage of CTOTs which were missed (i.e. for which ex-
tensions were required) compared with the number that were actually missed by the
real controllers. This shows that the system was able to achieve the lower delays by
using no more CTOT extensions than the controllers, and usually far fewer.

In summary, these results show that the system was able to perform extremely
well, even with the tight execution time constraints. They justify both the choice of

32 J.A.D. Atkin

a heuristic solution method for this problem and the decision to solve the ground
movement problem within the tabu search sequencing algorithm.

9 Conclusions and Potential Research Directions

This chapter could only provide a short overview of the airside research which is
being undertaken for airports. The key airside problems of gate allocation, ground
movement and runway sequencing were considered and the differences in the mod-
els, constraints and objectives are obvious.

Increasing pressure for more environmentally efficient operations is a major
driver for airport research. Reductions in delays, fuel burn and taxi times are ob-
vious candidates, and were the focus of the system described in Section 8. As com-
puting power increases, and the understanding of exact, heuristic and meta-heuristic
solution method design and performance grows, increasingly complex problems are
being solved. Simultaneously, the different System-Wide Information Management
(SWIM) systems which are being developed (as discussed in the introduction) are
making more reliable information available earlier. Three important current research
directions are becoming obvious. Firstly, dealing with combinations of problems is
becoming increasingly feasible and important, where the solution of one problem
at least considers the effects upon other elements of the system, to obtain better
global solutions and/or consider the objectives of multiple stake holders. Secondly,
considering complex real-world constraints rather than academic simplifications is
becoming more common, such as the consideration of non-linear functions of delay
rather than makespan reduction, or multiple objectives, perhaps weighted together.
Thirdly, it is becoming increasingly necessary to deal with the uncertainty in real
world dynamic problems, since predicted data usually has some inaccuracy asso-
ciated with it which needs to be handled. As models become more complex and
accurate, they are likely to be of increasing use to airports, with fewer and fewer
special cases which are not handed by the systems having to be considered.

This chapter included a case study which described a solution method that com-
bines a ground movement and runway sequencing algorithm. Further research, de-
tailed in Atkin et al (2012), which considered the task of predicting take-off times
while aircraft are still at the stands and using this to allocate stand holds, has al-
ready been successfully implemented at Heathrow. A particularly interesting exten-
sion would be to integrate together the algorithms from the case study and Atkin
et al (2012), potentially extending the ground movement model to span the area be-
tween the two. The combination of larger ground movement problems with runway
sequencing has already been considered for airports where the runway sequencing is
less sensitive to the selection of aircraft than at Heathrow (for example when mixed
mode runways are used), as discussed in Section 7.8, and developing methods to do
this for airports such as Heathrow has obvious benefits.

When dealing with uncertain data, reducing the uncertainty by improving pre-
diction methods can help. This could involve introducing factors which may have
previously been ignored, such as those which influence taxi speeds (see Ravizza

Airport Airside Optimisation Problems 33

et al (2012a)) or the modelling of the contention in the cul-de-sacs (see Atkin et al
(2012)). However, decision support tools will need to explicitly deal with the re-
maining imprecision and unreliability of data, so deterministic models are unlikely
to be sufficient for long. Similarly, the ability to not only have slack to absorb delays,
but also to have alternative recovery solutions, with minimal changes, has obvious
value, such as the airline practice of swapping aircraft between flights.

In summary, there is still significant potential for researchers to make an impact
on these real world problems, building upon the existing research.

Acknowledgements. I wish to thank EPSRC and NATS (formerly National Air Traffic Ser-
vices) for funding the research which was discussed in the case study, and the Smith Institute
for Industrial Mathematics and System Engineering, for facilitating the original work as well
as the later work on arrival scheduling. I would also like to thank Manchester Airport Group
and Flughafen Zürich AG for providing the knowledge and data to help various students with
airport scheduling and optimisation problems. I would particularly like to thank John Green-
wood (NATS) for his constant help and feedback in my considerations of airport operations.

References

Abdelghany, A., Abdelghany, K., Narasimhan, R.: Scheduling baggage-handling facilities in
congested airports. Journal of Air Transport Management 12, 76–81 (2006)

Anagnostakis, I., Clarke, J.P.: Runway operations planning, a two-stage heuristic algorithm.
In: Proceedings of the AIAA Aircraft, Technology, Integration and Operations Forum, Los
Angeles, CA, report AIAA-2002-5886 (2002)

Andersson, K., Carr, F., Feron, E., Hall, W.D.: Analysis and modelling of ground operations
at hub airports. In: Proceedings of the 3rd USA/Europe Air Traffic Management R&D
Seminar, Napoli, Italy (2000)

Ascó, A., Atkin, J.A.D., Burke, E.K.: The airport baggage sorting station allocation problem.
In: Proceedings of the 5th Multidisciplinary International Scheduling Conference (MISTA
2011), Phoenix, Arizona, USA (2011)

Atkin, J.A.D.: On-line decision support for take-off runway scheduling at london heathrow
airport. PhD thesis, The University of Nottingham (2008)

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D.: The effect of the planning horizon
and freezing time on take-off sequencing. In: Proceedings of the 2nd International Con-
ference on Research in Air Transportation (ICRAT 2006), Belgrade, Serbia, Montenegro
(2006)

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D.: Hybrid meta-heuristics to aid run-
way scheduling at London Heathrow airport. Transportation Science 41(1), 90–106 (2007)

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D.: On-line decision support for take-
off runway scheduling with uncertain taxi times at London Heathrow airport. The Journal
of Scheduling 11(5), 323–346 (2008)

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D.: An examination of take-off schedul-
ing constraints at London Heathrow Airport. Public Transport 1, 169–187 (2009)

Atkin, J.A.D., Burke, E.K., Greenwood, J.: TSAT allocation at London Heathrow: the re-
lationship between slot compliance, throughput and equity. Public Transport 2, 173–198
(2010a)

34 J.A.D. Atkin

Atkin, J.A.D., Burke, E.K., Ravizza, S.: The airport ground movement problem: Past and
current research and future directions. In: Proceedings of the 4th International Conference
on Research in Air Transportation (ICRAT 2010), Budapest, Hungary, pp. 131–138 (2010)

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D.: Addressing the Pushback Time
Allocation Problem at Heathrow airport. Transportation Science (2012) (to appear),
http://dx.doi.org/10.1287/trsc.1120.0446

Balakrishna, P., Ganesan, R., Sherry, L.: Accuracy of reinforcement learning algorithms for
predicting aircraft taxi-out times: A case-study of tampa bay departures. Transportation
Research Part C: Emerging Technologies 18(6), 950–962 (2010)

Balakrishnan, H., Chandran, B.G.: Algorithms for scheduling runway operations under con-
strained position shifting. Operations Research 58(6), 1650–1665 (2010)

Barnhart, C., Belobaba, P., Odoni, A.R.: Applications of operations research in the air trans-
port industry. Transportation Science 37(4), 368–391 (2003)

Bazargan, M., Fleming, K., Subramanian, P.: A simulation study to investigate runway
capacity using taam. In: Proceedings of the Winter Simulation Conference, San Diego,
California, USA, vol. 2, pp. 1235–1243 (2002)

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., Abramson, D.: Scheduling aircraft land-
ings - the static case. Transportation Science 34, 180–197 (2000)

Beasley, J.E., Sonander, J., Havelock, P.: Scheduling aircraft landings at London Heathrow
using a population heuristic. Journal of the Operational Research Society 52, 483–493
(2001)

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., Abramson, D.: Displacement problem
and dynamically scheduling aircraft landings. Journal of the Operational Research Soci-
ety 55(1), 54–64 (2004)

Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: A survey. Operations Re-
search 16, 538–558 (1968)

Bennell, J., Mesgarpour, M., Potts, C.: Airport runway scheduling. 4OR: A Quarterly Journal
of Operations Research 9, 115–138 (2011)

Bianco, L., Ricciardelli, S., Rinaldi, G., Sassano, A.: Scheduling tasks with sequence-
dependent processing times. Naval Research Logistics 35, 177–184 (1988)

Bianco, L., Mingozzi, A., Ricciardelli, S.: The travelling salesman problem with cumulative
costs. Networks 23, 81–91 (1993)

Bianco, L., Dell’Olmo, P., Giordani, S.: Minimizing total completion time subject to release
dates and sequence-dependent processing times. Annals of Operations Research 86, 393–
415 (1999)

Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3), 268–308 (2003)

Bolander, M.A.: Scheduling and control strategies for the departure problem in air traffic
control. PhD thesis, University of Cincinnati (2000)

Bolat, A.: Assigning arriving flights at an airport to the available gates. Journal of the Opera-
tional Research Society 50(1), 23–34 (1999)

Bolat, A.: Models and a genetic algorithm for static aircraft-gate assignment problem. Journal
of the Operational Research Society 52(10), 1107–1120 (2000a)

Bolat, A.: Procedures for providing robust gate assignments for arriving aircrafts. European
Journal of Operational Research 120(1), 63–80 (2000b)

Bolender, M.A., Slater, G.L.: Analysis and optimization of departure sequences. In: Proceed-
ings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Denver, CO,
pp. 1672–1683 (2000)

http://dx.doi.org/10.1287/trsc.1120.0446

Airport Airside Optimisation Problems 35

Burke, E.K., Causmaecker, P.D., Maere, G.D., Mulder, J., Paelinck, M., Berghe, G.V.: A
multi-objective approach for robust airline scheduling. Computers & Operations Re-
search 37(5), 822–832 (2010)

Chandran, B., Balakrishnan, H.: A dynamic programming algorithm for robust runway
scheduling. In: Proceedings of the American Control Conference, New York, USA, pp.
1161–1166 (2007)

Chen, J., Ravizza, S., Atkin, J.A.D., Stewart, P.: On the utilisation of fuzzy rule-based systems
for taxi time estimations at airports. In: Proceedings of the 11th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2011),
Saarbrücken, Germany. OpenAccess Series in Informatics (OASIcs), vol. 20, pp. 134–145
(2011)

Clare, G.L., Richards, A.G.: Optimization of taxiway routing and runway scheduling. IEEE
Transactions on Intelligent Transportation Systems 12(4), 1000–1013 (2011)

Clausen, J., Larsen, A., Larsen, J., Rezanova, N.J.: Disruption management in the airline
industry–concepts, models and methods. Computers & Operations Research 37(5), 809–
821 (2010)

Dear, R.G., Sherif, Y.S.: The dynamic scheduling of aircraft in high density terminal areas.
Microelectronics and Reliability 29(5), 743–749 (1989)

Dear, R.G., Sherif, Y.S.: An algorithm for computer assisted sequencing and scheduling of
terminal area operations. Transportation Research Part A, Policy and Practive 25, 129–139
(1991)

Deau, R., Gotteland, J.B., Durand, N.: Runways sequences and ground traffic optimisation.
In: Proceedings of the 3nd International Conference on Research in Air Transportation
(ICRAT 2008), Fairfax, VA, USA (2008)

Ding, H., Lim, A., Rodrigues, B., Zhu, Y.: The over-constrained airport gate assignment prob-
lem. Computers & Operations Research 32(7), 1867–1880 (2005)

Dorndorf, U., Drexl, A., Nikulin, Y., Pesch, E.: Flight gate scheduling: state-of-the-art and
recent developments. Omega 35(3), 326–334 (2007a)

Dorndorf, U., Jaehn, F., Chen, L., Hui, M., Pesch, E.: Disruption management in flight gate
scheduling. Statistica Neerlandica 61(1), 92–114 (2007b)

Dorndorf, U., Jaehn, F., Pesch, E.: Modelling robust flight-gate scheduling as a clique parti-
tioning problem. Transportation Science 42(3), 292–301 (2008)

Dorndorf, U., Jaehn, F., Pesch, E.: Flight gate scheduling with respect to a reference schedule.
Annals of Operations Research 194(1), 177–187 (2012)

Ernst, A.T., Krishnamoorthy, M., Storer, R.H.: Heuristic and exact algorithms for scheduling
aircraft landings. Networks 34, 229–241 (1999)

Eurocontrol. Air traffic flow & capacity management operations, ATFCM Users Manual,
edition 16.0 (2012)

Fahle, T., Feldmann, R., Götz, S., Grothklags, S., Monien, B.: The aircraft sequencing prob-
lem. In: Klein, R., Six, H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS,
vol. 2598, pp. 152–166. Springer, Heidelberg (2003)

Filar, J.A., Manyem, P., White, K.: How airlines and airports recover from schedule pertur-
bations: a survey. Annals of Operations Research 108, 315–333 (2001)

Gendreau, M., Potvin, J.Y.: Metaheuristics in combinatorial optimization. Annals of Opera-
tions Research 140, 189–213 (2005)

Gilbo, E.P.: Arrival/departure tradeoff optimisation: a case study at the st. louis lambert in-
ternational airport (stl). In: Proceedings of the 5th USA/Europe Air Traffic Management
R&D Seminar, Budapest, Hungary (2003)

Glover, F.: Tabu search - part i. ORSA Journal on Computing 1(3), 190–206 (1989)

36 J.A.D. Atkin

Glover, F.: Tabu search - part ii. ORSA Journal on Computing 2(1), 4–32 (1990)
Glover, F., Kochenberger, G. (eds.): Handbook of Metaheuristics. Kluwer Academic Publish-

ers (2002)
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)
Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison

Wesley (1989)
Gotteland, J.B., Durand, N., Alliot, J.M., Page, E.: Aircraft ground traffic optimization. In:

Proceedings of the 4th USA/Europe Air Traffic Management Research and Development
Seminar, Santa Fe, NM, USA (2001)

Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 9th edn. McGraw-Hill
(2010)

Hoffman, R., Ball, M.: A comparison of formulations for the single-airport ground-holding
problem with banking constraints. Operations Research 48, 578–590 (2000)

Idris, H.R., Clarke, J.P., Bhuva, R., Kang, L.: Queuing model for taxi-out time estimation.
Air Traffic Control Quarterly 10(1), 1–22 (2002)

Jaehn, F.: Solving the flight gate assignment problem using dynamic programming.
Zeitschrift fr Betriebswirtschaft 80, 1027–1039 (2010)

Keith, G., Richards, A.: Optimization of taxiway routing and runway scheduling. In: Pro-
ceedings of the AIAA Guidance, Navigation and Control Conference, Honolulu, Hawaii,
USA (2008)

Kim, S., Feron, E.: Robust gate assignment. In: Proceedings of the AIAA Guidance, Naviga-
tion, and Control Conference, pp. 2991–3002 (2011)

Kim, S.H., Feron, E., Clarke, J.P.: Assigning gates by resolving physical conflicts. In: Proceed-
ings of the AIAA Guidance, Navigation and Control Conference, Chicago, USA (2009)

Kim, S.H., Feron, E., Clarke, J.P.: Airport gate assignment that minimizes passenger flow
in terminals and aircraft congestion on ramps. In: Proceedings of the AIAA Guidance,
Navigation, and Control Conference, Toronto, Canada, vol. 2, pp. 1226–1238 (2010)

Laporte, G.: The traveling salesman problem: An overview of exact and approximate algo-
rithms. European Journal of Operational Research 59(2), 231–247 (1992)

Lim, A., Rodrigues, B., Zhu, Y.: Airport gate scheduling with time windows. Artificial Intel-
ligence Review 24(1), 5–31 (2005)

Marı́n, Á.: Airport management: Taxi planning. Annals of Operations Research 143(1),
191–202 (2006)

Marı́n, Á., Codina, E.: Network design: Taxi planning. Annals of Operations Re-
search 157(1), 135–151 (2008)

de Matosa, P.L., Ormerod, R.: The application of operational research to european air
traffic flow management understanding the context. European Journal of Operational
Research 123(1), 125–144 (2000)

Mesgarpour, M., Potts, C.N., Bennell, J.A.: Models for aircraft landing optimization. In:
4th International Conference on Research in Air Transportation (ICRAT 2010), Budapest,
Hungary, pp. 529–532 (2010)

Michalewicz, Z., Fogel, D.B.: How to solve it: Modern metaheuristics, 2nd edn. Springer,
Heidelberg (2000)

Newell, G.: Airport capacity and delays. Transportation Science 13(3), 201–240 (1979)
Nikoleris, T., Gupta, G., Kistler, M.: Detailed estimation of fuel consumption and emissions

during aircraft taxi operations at Dallas/Fort Worth International Airport. Transportation
Research Part D: Transport and Environment 16(4), 302–308 (2011)

Psaraftis, H.N.: A dynamic programming approach for sequencing groups of identical jobs.
Operations Research 28(6), 1347–1359 (1980)

Airport Airside Optimisation Problems 37

Qi, X., Yang, J., Yu, G.: Scheduling problems in the airline industry. In: Handbook of
Scheduling - Algorithms, Models and Performance Analysis, pp. 50.1–50.15. Chapman
& Hall/CRC (2004)

Rappaport, D.B., Yu, P., Griffin, K., Daviau, C.: Quantitative analysis of uncertainty in airport
surface operations. In: Proceedings of the AIAA Aviation Technology, Integration, and
Operations Conference (2009)

Rathinam, S., Montoya, J., Jung, Y.: An optimization model for reducing aircraft taxi times
at the Dallas Fort Worth International Airport. In: Proceedings of the 26th International
Congress of the Aeronautical Sciences, ICAS 2008 (2008)

Ravizza, S., Atkin, J.A.D., Maathuis, M.H., Burke, E.K.: A combined statistical approach
and ground movement model for improving taxi time estimations at airports. Journal of
the Operational Research Society (2012a) (to appear),
http://dx.doi.org/10.1057/jors.2012.123

Ravizza, S., Chen, J., Atkin, J.A.D., Burke, E.K., Stewart, P.: The trade-off between taxi time
and fuel consumption in airport ground movement. In: Proceedings of the Conference on
Advanced Systems for Public Transport (CASPT 2012), Santiago, Chile (2012b)

Ravizza, S., Atkin, J.A.D., Burke, E.K.: A more realistic approach for airport ground move-
ment optimisation with stand holding. Journal of Scheduling (to appear, 2013),
http://dx.doi.org/10.1007/s10951-013-0323-3

Roling, P.C., Visser, H.G.: Optimal airport surface traffic planning using mixed-integer linear
programming. International Journal of Aerospace Engineering 2008(1), 1–11 (2008)

Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Burke, E.K., Kendall, G. (eds.)
Search Methodologies, pp. 97–125. Springer (2005)

Simaiakis, I., Balakrishnan, H.: Queuing models of airport departure processes for emissions
reduction. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference
(2009)

Simaiakis, I., Balakrishnan, H.: Impact of congestion on taxi times, fuel burn, and emissions
at major airports. Transportation Research Record: Journal of the Transportation Research
Board 2184, 22–30 (2010)

Simaiakis, I., Khadilkar, H., Balakrishnan, H., Reynolds, T.G., Hansman, R.J., Reilly, B.,
Urlass, S.: Demonstration of reduced airport congestion through pushback rate control. In:
Proceedings of the 9th USA/Europe Air Traffic Management Research and Development
Seminar, Berlin, Germany (2011)

Smeltink, J.W., Soomer, M.J., de Waal, P.R., van der Mei, R.D.: An optimisation model for
airport taxi scheduling. In: Proceedings of the INFORMS Annual Meeting, Denver, Col-
orado, USA (2004)

Smith, C.: Final approach spacing tool. In: Proceedings of the 2nd USA/Europe Air Traffic
Management R&D Seminar, Orlando, USA (1998)

Talbi, E.G.: Metaheuristics. In: From Design to Implementation, 1st edn. John Wiley & Sons,
Inc. (2009)

Trivizas, D.A.: Optimal scheduling with maximum position shift (MPS) constraints: A run-
way scheduling application. Journal of Navigation 51, 250–266 (1998)

Williams, H.P.: Model Building in Mathematical Programming, 4th edn. John Wiley & Sons,
Ltd. (1999)

Wu, C., Caves, R.: Research review of air traffic management. Transport Reviews 22, 115–
132 (2002)

Yu, G. (ed.): Operations Research in the Airline Industry. International Series in Operations
Research & Management Science. Kluwer Academic Publishers (1998)

http://dx.doi.org/10.1057/jors.2012.123
http://dx.doi.org/10.1007/s10951-013-0323-3

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning,
Studies in Computational Intelligence 505,

39

DOI: 10.1007/978-3-642-39304-4_2, © Springer-Verlag Berlin Heidelberg 2013

Instruction Scheduling in Microprocessors

Gürhan Küçük, İsa Güney, and Dmitry Ponomarev*

Abstract. The Central Processing Unit (CPU) in a microprocessor is responsible
for running machine instructions as fast as possible so that the machine perfor-
mance is at its maximum level. While simple in design, in-order execution proces-
sors provide sub-optimal performance, because any delay in instruction processing
blocks the entire instruction stream. To overcome this limitation, modern high-
performance designs use out-of-order (OoO) instruction scheduling to better
exploit available Instruction-Level Parallelism (ILP), and both static (compiler-
assisted) and dynamic (hardware-assisted) scheduling solutions are possible. The
hardware-assisted scheduling integrates an OoO core that requires a complex dy-
namic instruction scheduler and additional datapath structures are utilized to hold
the in-flight instructions in program order to support the reconstruction of precise
program state. The logic becomes even more complex when superscalar (those
capable of executing multiple instructions every clock cycle) designs are used.
This chapter gives a brief introduction to instruction scheduling on pipelined su-
perscalar architectures, and, then, explains some of the keystone static and dynam-
ic instruction scheduling algorithms.

1 Introduction

The processor performance is always considered to be one of the major criteria
for evaluating microprocessors. This chapter mainly focuses on instruction sched-
uling techniques that target performance metric in such processors. The processor
performance is best measured by the CPU execution time formula given in
Equation 1.

 τ ⋅⋅= CPINTexec (1)

Gürhan Küçük · İsa Güney
Yeditepe University

Dmitry Ponomarev
SUNY Binghamton

40 G. Küçük, İ. Güney, and D. Ponomarev

In this equation, Texec refers to the execution time of an application running on a
processor. Texec is directly proportional to N which refers to the number of instruc-
tions that are executed. CPI is an average value that refers to Cycles Per Instruc-
tion, which is specific to both the organization of the machine and the applications
running on the machine. Finally, clock cycle time, τ, indicates the time spent on
running a single processor clock cycle. The clock cycle time is inversely propor-
tional to the clock rate (or the clock frequency), f.

In a scalar processor, there are three major algorithmic steps running in a cyclic
fashion to execute machine instructions: Fetch, Decode and Execute. The Fetch
step retrieves the next instruction to be executed from the program memory in its
binary form. Then, the Decode step decodes the instruction and extracts its opera-
tion code and operands, and, consequently, reads operand values from a register
storage unit which is known as the Register File. Finally, the Execute step moves
the instruction to an available Arithmetic Logic Unit (ALU) that calculates the
result of an operation. At the end of the Execute step, the CPU returns to the Fetch
step and continues executing instructions one after another. Figure 1 shows the
execution of five consecutive instructions in a scalar processor. When execution
time formula is considered, the CPI value is always 1 and it never changes. Be-
sides, the clock cycle time, τ, is chosen to be as large as possible to make sure that
all execution steps are completed within a single clock cycle. This makes the clock
frequency, f, to be chosen as small as possible.

 cycles

 instructions

1

2

3

4

5

 inst.#1 F D E

 inst.#2 F D E

 inst.#3 F D E

 inst.#4 F D E

 inst.#5 F D E

Fig. 1 Execution of five consecutive instructions in a scalar processor

Instruction pipelining is a technique targeting improved processor throughput
by creating an assembly line for instructions inside the processor. In this tech-
nique, the execution steps of an instruction are completed in different processor
cycles, and, therefore, the clock cycle time is much shorter compared to the clock
cycle time of a scalar processor. In a traditional pipelined datapath, there are five
stages: Fetch, Decode, Execute, Memory and Writeback. The first three stages are
identical to the ones that reside in a scalar processor. The Memory stage is dedi-
cated to memory instructions, such as loads and stores, which can directly access
the memory. The final stage, Writeback, is the stage where the destination register
of an instruction is updated with the output values generated at the end of either

Instruction Scheduling in Microprocessors 41

the Execute or Memory stages. Figure 2 depicts a pipelined execution with five
consecutive instructions; and, there are several things that worth to mention in this
Figure:

• The clock cycle time is much shorter, since a pipelined processor runs a frac-
tion of the total Fetch-Decode-Execute steps within a single clock cycle. As a
result, a pipelined processor usually has a higher clock frequency.

• Note that, after cycle 5, the pipeline becomes full, and each of five instructions
is served in different stages of pipeline, in parallel.

• Assuming that five consecutive instructions are totally independent from each
other, once the pipeline becomes full, a pipelined processor may still promise a
CPI value of 1.

 cycles

instructions

1

2

3

4

5

6

7

8

9

10

11

12

inst. #1 F D E M W

inst. #2 F D E M W

inst. #3 F D E M W

inst. #4 F D E M W

inst. #5 F D E M W

Fig. 2 Execution of five consecutive instructions in a pipelined scalar processor

Unfortunately, the instructions are usually dependent on each other. For example,
an instruction may be the producer of a value, and there may be one or many con-
sumer instructions waiting for that value as an input so that they can start their
execution. Such instruction dependencies are hazardous to pipeline performance
and must be avoided as much as possible. Actually, there are three categories of
pipeline hazards: structural, control and data.

The structural hazards are due to shared pipeline resources. For instance, when
the memory provides a single read/write port, the example schedule in Figure 2
becomes impossible. Specifically, the problem is due to two instructions that re-
quire access to the memory unit competing for the same memory port within the
fourth clock cycle. The first instruction may be a load instruction that initiates its
Memory stage, meanwhile, the fourth instruction goes into the Fetch stage, again
requiring access to the same resource. The simplest and the cheapest solution is to
stall the youngest instruction (i.e. the fourth instruction) in that cycle. As a result,
the stalled instruction retries the Fetch stage in the next cycle. But, of course, this
solution degrades the processor performance since all the consumer instructions of
a stalled instruction are also indirectly stalled. Other solutions, such as pipelining
the resource or replicating the resource, require more complex hardware, but they
may bring the performance impact of a structural hazard to its minimum.

42 G. Küçük, İ. Güney, and D. Ponomarev

The control hazards are other type of pipeline hazards due to, as the name
implies, control instructions. A control instruction changes the program flow
depending on its given condition. For instance, consider the example instruction
sequence in Figure 3. A MIPS1 assembly branch instruction, BEQ R1, R2, L,
jumps to the L label when the value of R1 register is equal to the value of R2 regis-
ter. When the branch condition is true, the next instruction to be fetched is
inst.#9. But, when the branch condition is false, the next instruction to be
fetched becomes inst.#3.

 inst.#1
 BEQ R1, R2, L
 inst.#3
 ...

L:
 inst.#9

Fig. 3 An example code for demonstrating a control hazard

The problem here is that the outcome of a branch condition cannot be known
until the branch instruction is executed. Figure 4 presents the corresponding pipe-
line chart for the code example given above. It shows that the branch instruction is
executed at cycle 4 and its result is known at cycle 5. However, the next instruc-
tion, which is either inst.#3 or inst.#9 depending on the branch outcome,
should be allowed to enter the pipeline at cycle 3. This introduces a two-cycle
stall, which is also known as the delay slot, after each branch instruction as shown
in pipeline chart given in Figure 4. Any types of pipeline stalls have to be taken
very seriously since they can quickly degrade the processor performance by in-
creasing the average CPI value of Equation 1.

cycles

instructions
1 2 3 4 5 6 7 8 9

inst. #1 F D E M W

BEQ R1, R2, L F D E M W

STALL

STALL

inst. #3 or

inst. #9
 F D E M W

Fig. 4 A control hazard stalls the pipeline for two cycles

1 MIPS is an acronym for Microprocessor without Interlocked Pipeline Stages.

delay slot

Instruction Scheduling in Microprocessors 43

The delay slot in Figure 4 may be filled with two independent instructions that
come before the branch instruction in program order. This type of instruction
scheduling is known as static scheduling, since the instructions are reordered at
compilation time. It is compiler’s job to find two independent instructions that
come before the branch instruction for filling each delay slot. If there are less than
two instructions that can be scheduled to a delay slot, the compiler may issue No
Operation (NOP) instructions instead. This way the hardware becomes unaware of
the fact that the instructions are being executed out of program order, and no addi-
tional circuitry is required.

The third type of pipeline hazards is due to data dependencies among instruc-
tions. In an ideal pipeline, no dependency among tasks is assumed, and an ideal
schedule similar to the one shown in Figure 2 is expected. Unfortunately, instruc-
tion dependencies are unavoidable in any type of application. Specifically, there
are two types of data dependencies: True and False. True dependencies are also
known as Read-after-Write (RAW) data dependencies, and they cannot be totally
avoided. When an instruction writes to a register, there must be at least one in-
struction reading that register2. True dependencies are the building stones of any
type of algorithm. In contrast, false dependencies exist among instructions due to
the use of a common name (or register), and, they only matter when the Out-of-
Order (OoO) scheduling is considered. Once, those instructions with false data
dependencies start using unique names, this type of dependencies may be totally
avoided. False dependencies can be examined under two subcategories: Anti and
Output. Anti dependencies are also known as Write-after-Read (WAR), and Out-
put dependencies are known as Write-after-Write (WAW) data dependencies.

Figure 5 depicts a code sequence containing various types of data dependencies
and its corresponding data flow graph. In this example, there is a true dependency
on R1 between inst. #1 and inst. #2. This is shown with a directed arc between
these two instructions. Anti dependencies are depicted using directed arcs with an
attached slash (/) symbol, and output dependencies are represented with arcs con-
taining a circle (o) symbol. Generally, static scheduling algorithms rely on such
data flow graphs for compiler optimizations that aim to reduce the penalty of all
type of pipeline hazards.

For further improving the processor performance, two types of processor archi-
tecture is considered: Very Long Instruction Word (VLIW) and SuperScalar (SS)
architectures. The main difference between these processors is that VLIW archi-
tecture focuses on static scheduling and suggests using a simple hardware whereas
the SS architecture chooses the other direction and proposes a dynamic scheduler
with a simpler compiler. Figure 7 shows an example schedule for fifteen consecu-
tive instructions with the data dependencies as given in Figure 6. Here, the width
of an instruction word is three, and the VLIW compiler finds and schedules three
independent instructions that can execute out of program order within the same

2 Otherwise, if there is no consumer instruction, the producer instruction is treated as a dead

code and eliminated by the compiler.

44 G. Küçük, İ. Güney, and D. Ponomarev

inst. #1: ADD R1, R2, R3 /* R1 R2 + R3 */
inst. #2: SUB R3, R1, R5 /* R3 R1 – R5 */
inst. #3: MUL R1, R4, R6 /* R1 R4 * R6 */

Fig. 5 An example code for demonstrating various data dependencies among instructions

Fig. 6 An example data flowgraph showing true data dependencies among 15 consecutive
instructions

clock cycle. On the hardware side, a VLIW machine fetches a very long instruc-
tion word, decodes it into three instructions and executes those instructions, in
parallel. VLIW architecture heavily depends on the abilities of the compiler for
high performance. However, there are several things that are unknown at compila-
tion time, and those give hard times to VLIW compilers. For instance, memory
address dependencies among memory instructions are not known until runtime of
an application, and the compiler should usually generate pessimistic schedules
since there is always a chance that the address of a store instruction that writes to a
memory coinciding with the address of a later load instruction that reads from the
memory.

I1

I5

I9

I2

I6

I11

I3

I12

I14

I4

I7

I8

I10

I13

I15

R3

R1
inst. #1 inst. #2 inst. #3

R1

R1

R1

R3

Instruction Scheduling in Microprocessors 45

cycles

instructions
1 2 3 4 5 6 7 8 9

I1, I5, I9 F D E M W

I2, I6, I11 F D E M W

I3, I2, I14 F D E M W

I4, I7, I8 F D E M W

I10, I13, I15 F D E M W

Fig. 7 A VLIW processor running instructions from I1 to I15 in an OoO fashion

The SS architecture, on the other hand, relies on dynamic instruction schedul-
ing and is much more popular in the commercial market. In an n-way SS machine,
the hardware of a pipeline scalar machine is modified so that it can fetch, decode
and execute n instructions within the same clock cycle. The idea is very similar to
that of the VLIW architecture. However, instead of the compiler, now the hard-
ware is made responsible for finding n independent instructions that can execute
in parallel. These processors come in two different flavors: in-order and
out-of-order. In in-order SS architecture, the program order among instructions is
preserved during each stage of the pipeline. Since the dynamic scheduler is only
responsible for selecting n instructions in program order, the hardware complexity
required to implement in-order processors is minimal. Figure 8 presents a pipeline
chart for an out-of-order SS processor with a similar schedule given in Figure 7.
Here, the hardware fetches three instructions per cycle, and, in the beginning, it
will not be able to reach I5 and I9. However, from Figure 7, it is shown that the
VLIW compiler can manage to bundle those three instructions into an instruction
word, since it can generate the data flowgraph and extract dependency information
in a much wider context. Note that, in cycle 7, I13, I14 and I15 are not scheduled
for execution, since a 3-way processor can schedule up to three instructions in a
single clock cycle, and within that cycle, the processor schedules I10, I11 and I12
for execution assuming the oldest-instruction-first scheduling policy is being used.
The following section describes the state of the art in both static and dynamic
instruction scheduling.

 cycles

instructions 1 2 3 4 5 6 7 8 9 10

I1 F D E M W

I2 F D stall E M W

I3 F D stall stall E M W

I4 F D stall stall E M W

I5 F D E M W

I6 F D stall E M W

I7 F D stall E M W

Fig. 8 A 3-way out-of-order SS processor running instructions from I1 to I15

46 G. Küçük, İ. Güney, and D. Ponomarev

I8 F D stall E M W

I9 F D E M W

I10 F D stall E M W

I11 F D stall E M W

I12 F D stall E M W

I13 F D stall E M W

I14 F D stall E M W

I15 F D stall E M W

Fig. 8 (continued)

2 Literature Survey

In contemporary processors, the execution order of machine instructions has a
significant impact on the overall processor throughput. There are many studies
targeting the compiler-assisted static instruction scheduling. For instance, Bern-
stein et al. work on different compiler techniques, such as Basic Block Scheduling
(BB), Global Scheduling (GL) and Branch Optimizations (BO), which examine
ways to extract Instruction Level Parallelism (ILP) that is hidden in dynamic in-
struction streams [1]. Global Scheduling aims to optimize the code by moving
instructions beyond basic blocks. Branch Optimizations are divided into three
which are code replication, branch swapping and gluing. Code replication deals
with the delay caused by closing branches of loops. Branch swapping aims to
eliminate delays caused by an unresolved branch instruction followed by a re-
solved one. Lastly, gluing is used for optimizing if-then-else statements. When
obtaining the scheduled stream of instructions, a set of machine independent op-
timizations are applied followed by the global scheduling. In order to fine-tune the
code produced by global scheduling, a pass of basic block scheduling is also ap-
plied. After register allocation, another pass of basic block scheduling is applied,
this time on real registers, followed by the last step on branch optimizations. The
authors conclude that GL and BO improvements overlap, and GL is capable of
doing all improvements which BO and BB can do, except for branch swapping.

In [2], Moon and Ebcioglu study the concepts of static scheduling on extracting
ILP on nonnumerical codes; such as global scheduling, speculative code motion,
scheduling in absence of branch probability, mispredicted speculative code mo-
tion, nonspeculative code motion, mildly speculative code motion, trace based and
DAG based code motion and modulo scheduling pipelining loops where multiple
execution paths have similar probabilities of being taken at execution time.
The authors also propose a technique called selective scheduling and present its
compiler.

Finding the optimal instruction schedule is an NP-complete problem. Mahajan
et al. propose the use of genetic programming, which is a branch of machine learn-
ing, to generate heuristics for compile-time instruction scheduling [3]. The study

Instruction Scheduling in Microprocessors 47

focuses on scheduling instructions in superblocks. Scheduling superblocks are
harder than scheduling basic blocks, since there are multiple paths that can be
taken in a superblock. Genetic programming used in this study includes techniques
such as survival of fittest and crossover, which were introduced in its predecessor,
genetic algorithms; as well as new attributes such as variable size expressions.

In a historic paper [4], Weiss and Smith works on the trade-offs between two
dynamic scheduling mechanisms, the Tomasulo’s algorithm [5] and Thornton’s
Scoreboard mechanism [6], against static code scheduling of CRAY-1 superscom-
puter and their proposed approach. This work focuses on four topics: clock period,
scheduling of instructions, issue logic complexity and hardware cost, and debug-
ging and maintenance. According to Weiss and Smith, the Tomasulo’s algorithm
shows the best performance in tests, compared to the static code scheduling of
CRAY-1. However, the hardware cost for implementing Tomasulo’s algorithm is
stated as a serious issue. Thornton’s algorithm reduces this cost by abandoning the
simultaneous tag matching logic, which causes a performance loss. Weiss and
Smith propose an algorithm to overcome this problem, which they call Direct Tag
Search (DTS). DTS brings tags implemented in Tomasulo’s algorithm back, but
reduces the hardware cost by restricting the number of reservation stations per tag
to 1, and implementing a tag search table. Since Thornton’s algorithm and DTS
has less out-of-order execution capabilities, their performance are affected more
by the order of instructions, which depends on the performance of compiler’s
static code scheduling.

The selection logic in a dynamic scheduler is responsible of choosing a good
candidate instruction so that performance of the machine is maximized. In a study
on instruction criticality, Tune et al. presents a framework for comparing previ-
ously proposed methods for determining instruction criticality, ranking instruction
criticality and investigating the characteristics of critical instructions [7]. This
study focuses on the metric slack and proposes a new metric called tautness to
quantify instruction criticality. The slack of an instruction represents the number
of cycles the instruction can be delayed without increasing the execution time of a
program. Instructions with more than zero cycles of slack are non-critical. Taut-
ness metric is used to distinguish critical instructions, which is a complementary
measure to slack. Tautness of an instruction is defined as the number of cycles by
which the execution time is reduced when the result of that instruction is made
available to other instructions immediately. This is a useful metric as it quantifies
the maximum benefit of applying an optimization to an instruction. It also roughly
models what might be achieved by value predicting or speculatively precomputing
the result of an instruction. The work has shown that majority of static schedules
are never critical, but among those critical instructions that are ever critical, criti-
cality varied frequently; very few static instructions are always critical. Thus,
predicting exactly the dynamic instances of these static instructions is difficult but
important for a highly accurate predictor. The work also shows that critical path
predictors must be able to identify patterns of criticality to achieve high coverage
and accuracy. It also demonstrates the need for predictors that quantify criticality
rather than just produce a binary prediction.

48 G. Küçük, İ. Güney, and D. Ponomarev

A problem in superscalar processors emerges from the existence of long latency
load instructions. Such instructions will cause the dependent instructions to stall
and Instruction Queue (IQ), which holds the instructions waiting for execution,
will fill up quickly. These instructions will prevent other instructions from enter-
ing the IQ and being examined for dependency, therefore lowering the IPC and
causing the processor to wait in an idle state until the long latency instruction is
completed. One solution to this problem would be increasing the IQ size. How-
ever, the IQ stays in the critical path of a processor, and an increase in its access
latency directly increase the clock cycle. Lebeck et al. suggest a solution where
the IQ size is kept the same; but a Waiting Instruction Buffer (WIB) is introduced
[8]. The authors propose that all registers have an extra wait bit defined, which are
set when a cache miss occurs, and reset when such instructions are completed. In
this way, it could be said that an instruction related to waiting registers are de-
pendent on the long latency instruction, and all registers related to this new in-
struction are also said to be waiting. Therefore, the chain of instructions dependent
to a long latency instruction is identified. To prevent IQ from filling up with wait-
ing instructions, such instructions are moved to a larger structure named as WIB.
The advantage of the WIB structure is that it does not need a complex wakeup
logic as of IQ. For all outstanding long latency instructions, a bit vector is defined
to mark all instructions dependent on that instruction. When the long latency in-
struction is completed, all related instructions are moved back to IQ. If these in-
structions are also dependent on another long latency instruction, they are moved
back to the WIB. This study also shows that using the extra space for WIB instead
of a larger cache has a better influence on the overall performance.

Wang and Sangireddy propose a method to mitigate the effects of long latency
instructions [9]. They propose the implementation of a sideline buffer for holding
long latency instructions, and the instruction chain dependent to it. Therefore, a
performance improvement is achieved without increasing the IQ size, by allowing
independent instructions more room in IQ. Instructions in the proposed buffers are
issued only in-order, so the instruction selection complexity is increased slightly,
whereas the instruction wakeup complexity remains the same.

Sharkey and Ponomarev studied the performance issues on pipelining supersca-
lar processors [10]. The study has shown that the performance losses are incurred
only due to a small fraction of instructions, which are intolerant to the non-atomic
scheduling. The authors propose a Non-Uniform Scheduler – a design that
partitions the scheduling logic into two queues, each with dedicated wakeup and
selection logic: a small Fast Issue Queue to issue critical instructions in the back-
to-back cycles, and a large Slow Issue Queue to issue the remaining instructions
over two cycles with a one cycle bubble between dependent instructions. Finally,
several steering mechanisms to effectively distribute instructions between the
queues are studied.

In [11], Ernst et al. propose a novel design called Cyclone in which they in-
crease throughput by reducing issue selection logic complexity, which is on the

Instruction Scheduling in Microprocessors 49

critical path of the processor. The main factor behind reduced issue selection
logic complexity is that Cyclone does not contain any global broadcast signals.
In Cyclone, once the instructions are fetched, their latency (time needed before
source operands of the instruction are ready) is predicted, and the instruction en-
ters a multi-entry queue in a position based on the predicted latency. If the pre-
dicted latency of an instruction is wrong, upon reaching execution by shifting
towards execution each cycle, Cyclone is capable of replaying only that instruc-
tion and the instructions in the dependence chain. The destination register of a
replaying instruction is marked as invalid, and thus the dependence chain is identi-
fied. Cyclone has lower IPC than traditional designs; however, the throughput is
increased due to much faster clock speeds.

A major consumer of microprocessor power is the IQ. In [12], Buyuktosunoglu
et al. study different IQ optimization in terms of performance, power consumption
and the deviation from the baseline design. Some superscalar processors imple-
ment a latch based compacting IQ. Compacting queues feed-forwards each entry
to fill the holes created by instruction issue. New instructions are always added to
the tail of the queue. Therefore, the queue maintains an oldest to youngest pro-
gram order, which allows a position based selection mechanism. Each time an
instruction is issued; all entries are shifted, which causes a large amount of power
dissipation. To eliminate this power cost, the IQ can be made non-compacting,
where holes in IQ are not filled immediately. However in this design, the position
based selection mechanism does not give priority to older instructions. To solve
this problem, the ROB numbers each instruction. An extra high-order sorting bit is
added to ROB to eliminate problems arising from the circular nature of ROB. In
the proposed design, each instruction is steered to the bank corresponding to the id
number of the unavailable operand, which takes advantage of the fact that dis-
patched instructions rarely have two source operands unready. In case the instruc-
tion has two unready source operands, it is stored into conflict queue, which is a
conventional IQ.

3 Static Instruction Scheduling

The pipeline hazards that are described in prior sections may severely degrade the
processor performance. In this section, some of the well-known examples of static
instruction scheduling techniques that attack these hazards are discussed.

3.1 List Scheduling

List scheduling algorithm is a greedy, heuristic approach that focuses on reorder-
ing of instructions and elimination of false data dependencies inside a basic block.
A basic block is a block of code which has only one entry point and one exit point,
and it is highly susceptible to optimizations. The algorithm consists of four steps:

50 G. Küçük, İ. Güney, and D. Ponomarev

1. Register renaming: This initial and optional step eliminates false data depen-
dencies among instructions inside a basic block. Each instruction with a desti-
nation register gets a new name for its destination register, and data dependent
instructions refer to that new given name instead of the original destination
register.

2. Building of a dataflow graph: In this step of the algorithm, the basic block is
usually traversed bottom up, and its corresponding dataflow graph, which
represents the true data dependencies among instructions, is generated. When
the first step of the algorithm is bypassed, this graph also contains false de-
pendencies among instructions. During this process, each edge in the graph is
also annotated with the latency of each operation.

3. Prioritize instructions: According to the availability of operands of instruc-
tions and latency of each operation, each instruction gets a priority value. In
one policy, the longest latency-weighted path is stated as the critical path of
execution, and all the instructions within this path get the highest priority.
This tends toward a depth-first traversal of the graph. In another policy, an in-
struction gets the highest priority if it has the maximum number of immediate
successor (data dependent) instructions, and this tends toward a breadth-first
traversal of the graph.

4. Select and schedule an instruction: This final iterative step is responsible for
selecting and scheduling ready instructions among all instructions according
to their priority determined in the previous step. The algorithm keeps a list
known as the Ready List, which lists all instruction that may immediately be
scheduled for execution. Then, the algorithm updates the Ready List after
scheduling those instructions (removing them from the list) and satisfying the
need of data dependent instructions (adding them to the list). This greedy al-
gorithm continues as long as there are instructions in the Ready List.

To better explain the algorithm, consider the sample basic block given in Figure 9.

 I1: LOAD R1, R3, #100 /* R1 mem[R3+100]*/
 I2: LOAD R2, R3, #104 /* R2 mem[R3+104]*/
 I3: ADD R2, R2, R1 /* R2 R2 + R1 */

I4: STORE R2, R3,#108 /* mem[R3+108] R2 */
 I5: LOAD R1, R3, #112 /* R1 mem[R3+112]*/
 I6: LOAD R2, R3, #116 /* R2 mem[R3+116]*/
 I7: SUB R2, R2, R1 /* R2 R2 – R1 */

I8: STORE R2, R3,#120 /* mem[R3+120] R2 */

Fig. 9 A sample code for list scheduling

When, the first step of the algorithm is applied, all the destination registers are
renamed, and the basic block is morphed into the one shown in Figure 10. Here,
notice that, all false data dependencies are eliminated at the end of this step. How-
ever, Figure 11 shows that this schedule is not ideal, and instructions I3, I4, I7
and I8 are stalled due to delays in their producer instructions. For instance, the

Instruction Scheduling in Microprocessors 51

execution of I3 is delayed since the result of I2 is not available until the end of
cycle 5. I4 is also indirectly delayed since its producer I3 is delayed. As a result,
the compiler schedules NOP instructions before I3 and I7 for stalling the pipeline.

Then, in the second step of the algorithm, the corresponding dataflow graph,
which is shown in Figure 12, is generated. In this example, we assume that mem-
ory instructions (load and store) have two cycles execution latency (one for the
effective address calculation at execute stage and one for the memory access at
memory stage) whereas other ALU instructions, such as ADD and SUB, take only
one cycle to execute.

 I1: LOAD R10, R3, #100/* R10 mem[R3+100]*/
 I2: LOAD R11, R3, #104/* R11 mem[R3+104]*/
 I3: ADD R12, R11, R10 /* R12 R11 + R10 */

I4: STORE R12, R3,#108/* mem[R3+108] R12 */
 I5: LOAD R13, R3, #112/* R13 mem[R3+112]*/
 I6: LOAD R14, R3, #116/* R14 mem[R3+116]*/
 I7: SUB R15, R14, R13 /* R15 R14 – R13 */

I8: STORE R15, R3,#120/* mem[R3+120] R15 */

Fig. 10 The resulting code after register renaming step is applied

 cycles

instructions

1 2 3 4 5 6 7 8 9 10 11 12 13 14

I1 F D E M W

I2 F D E M W

I3 F D stall E M W

I4 F stall D E M W

I5 F D E M W

I6 F D E M W

I7 F D stall E M W

I8 F stall D E M W

Fig. 11 The pipeline chart showing the execution of instructions of Figure 10

In the next step of the algorithm, the instructions are prioritized according to
the number of their immediate successors, and during the final step of the algo-
rithm the Ready List is generated. The Initial Ready List contains four instruc-
tions: I1, I2, I5, I6, and since all of them have the same priority one of them
selected randomly for execution3. Figure 13 shows an example schedule at the end
of the fourth step of the algorithm. As shown in the pipeline chart given in Figure
14, the final schedule is free from any stalls and no additional NOP instruction is
needed.

3 Another tie breaker rule other than random selection may be utilized, as well.

52 G. Küçük, İ. Güney, and D. Ponomarev

Fig. 12 The corresponding dataflow graph for the code given in Figure 10

 I1: LOAD R10, R3, #100/* R10 mem[R3+100]*/
 I5: LOAD R13, R3, #112/* R13 mem[R3+112]*/
 I2: LOAD R11, R3, #104/* R11 mem[R3+104]*/
 I6: LOAD R14, R3, #116/* R14 mem[R3+116]*/
 I3: ADD R12, R11, R10 /* R12 R11 + R10 */

I7: SUB R15, R14, R13 /* R15 R14 – R13 */
I4: STORE R12, R3,#108/* mem[R3+108] R12 */

 I8: STORE R15, R3,#120/* mem[R3+120] R15 */

Fig. 13 The final code after list scheduling is applied

 cycles

instructions
1 2 3 4 5 6 7 8 9 10 11 12 13 14

I1 F D E M W

I2 F D E M W

I3 F D E M W

I4 F D E M W

I5 F D E M W

I6 F D E M W

I7 F D E M W

I8 F D E M W

Fig. 14 The pipeline chart showing the execution of instructions of Figure 13

I5 I6

I7

I8

I1 I2

I3

I4

2 2

1

2 2

1

Instruction Scheduling in Microprocessors 53

3.2 Loop Unrolling

Loop Unrolling is one of the oldest and well-known loop transformation tech-
niques. In this method, the compiler unrolls a loop by replicating the loop body
and rearranging the logic that controls the number of loop iterations. The main aim
of the method is to get rid of as many control instructions as possible so that pipe-
line stalls due to control hazards are minimized. For instance, the loop body,
which is shown in Figure 15, may be unrolled as many times as possible to re-
move branch instructions from the dynamic instruction stream.

I1: L: LOAD R1, R3, #100 /* R1 mem[R3+100]*/
I2: LOAD R2, R3, #400 /* R2 mem[R3+400]*/
I3: ADD R2, R2, R1 /* R2 R2 + R1 */
I4: STORE R2, R3,#800 /* mem[R3+800] R2 */
I5: ADDI R3, R3, #4 /* R3 R3 + 4 */
I6: BLT R3, R5, L /* if R3 < R5 jump L */

Fig. 15 A sample loop that can be unrolled

In Figure 16, the pipeline chart and stalls due to control hazards are shown. As
long as the loop condition is true, the execution returns to instruction I1, and for
the execution of each branch instruction, the pipeline receives a two-cycle penalty.

 cycles

instructions
1 2 3 4 5 6 7 8 9 10 11 12 13 14

I1 F D E M W

I2 F D E M W

I3 F D stall E M W

I4 F stall D E M W

I5 stall F D E M W

I6 F D E M W

I1 stall stall F D E M W

Fig. 16 The schedule for a single iteration of the loop

After unrolling the loop once, it is transformed into a form as shown in
Figure 17. In this version of the loop, two loop iterations become one, and the
compiler generates a slightly modified version of the first iteration during the rep-
lication process. Note that the number of branch instructions and the number of
ADDI instructions that are executed, which is the N term in Equation 1, are also
halved. This is an additional performance benefit of the algorithm on top of re-
moving half of the two-cycle stalls from the pipeline. Also note that a short pro-
logue code, which is not shown in Figure 17 for the sake of code clarity, might be
necessary when the total number of iterations in the original loop is not even.

54 G. Küçük, İ. Güney, and D. Ponomarev

I1: L: LOAD R1, R3, #100 /* R1 mem[R3+100]*/
I2: LOAD R2, R3, #400 /* R2 mem[R3+400]*/
I3: ADD R2, R2, R1 /* R2 R2 + R1 */
I4: STORE R2, R3,#800 /* mem[R3+800] R2 */
I5: LOAD R1, R3, #104 /* R1 mem[R3+104]*/
I6: LOAD R2, R3, #404 /* R2 mem[R3+404]*/
I7: ADD R2, R2, R1 /* R2 R2 + R1 */
I8: STORE R2, R3,#804 /* mem[R3+804] R2 */
I9: ADDI R3, R3, #8 /* R3 R3 + 8 */
I10: BLT R3, R5, L /* if R3 < R5 jump L */

Fig. 17 The sample loop of Figure 15 is unrolled once

Finally, Figure 18 shows the pipeline schedule for the transformed loop. While,
in the original loop, n iterations finish in 11+9(n-1) cycles, in this new version of
the loop, n iterations finish in 16+14(n/2-1) cycles. This indicates that approxi-
mately 1.3 times better performance is achieved when the loop is unrolled only
once. This improvement is very close to the maximum performance that can be
achieved (1.5 times better performance) when the loop is unrolled several times
until no branch instructions is remained in the schedule. The drawback of applying
this algorithm in its limits is that static code size may increase into an amount that
is larger than the size of the instruction cache. In this case, the performance degra-
dation due to instruction cache misses may be much higher than the performance
gain obtained from the loop unrolling algorithm.

 cycles

instructions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I1 F D E M W

I2 F D E M W

I3 F D stall E M W

I4 F stall D E M W

I5 stall F D E M W

I6 F D E M W

I7 F D stall E M W

I8 F stall D E M W

I9 F D E M W

I10 F D E M W

I1 stallstall F D E M W

Fig. 18 The pipeline schedule for the loop given in Figure 17

Instruction Scheduling in Microprocessors 55

4 Dynamic Instruction Scheduling and Out-of-Order
Execution

While techniques such as instruction pipelining, branch prediction and data for-
warding significantly improve the performance of microprocessors, the properties
of typical instruction streams require additional mechanisms to push the perfor-
mance envelope even further. For example, consider a long-latency instruction,
such as a division operation or a load instruction that misses into the cache. In
statically-scheduled in-order pipelines, if such an instruction is the oldest non-
executed instruction in the processor, then “head-of-the-line” blocking effect
occurs that inhibits any progress in the pipeline until the instruction in question
finishes its execution and makes its result available to the dependent instructions.
The problem here is that not only dependent instructions, but also the independent
instruction are forced to wait, thus blocking the instruction flow and inhibiting fast
reuse of pipeline resources.

To illustrate this problem, consider the following example.

 I1: LOAD R1, R2, #100 /* R1 mem[R2+100]*/
 I2: ADD R3, R1, R5 /* R3 R1 + R5 */
 I3: SUB R7, R8, R9 /* R7 R8 - R9 */

Fig. 19 Code example 1

In this case, if the instruction I1 misses into the cache and blocks, both instruc-
tions I2 and I3 (and all subsequent instructions in the pipeline) will also have to
wait. Notice that the instruction I3 is independent of I1, and therefore could be
executed while I1 and I2 were waiting, if appropriate support was added to the
pipeline. This example motivates the idea of dynamic instruction scheduling with
OoO execution.

In dynamically scheduled OoO processors, while the instruction I2 waits on the
result of I1, the instruction I3 can be allowed to execute and even write back its
generated result into the register file. This is accomplished by the following me-
chanism. All decoded instructions are placed into a queue called Instruction
Queue (IQ)4, from where they are eventually selected for the execution whenever
all their data dependencies are resolved and the required physical execution unit is
available. The instructions are thus placed into the IQ in program order, and are
selected from of the IQ out of program order. The IQ can be quite sizable, typical-
ly several tens of entries; the larger size of the IQ allows for more tolerance to the

4 The name, Instruction Queue, is due to early implementations of this structure for in-order

SS processors, and in its recent implementations, IQ is no longer a queue structure. Al-
though, instructions are placed into the IQ in program order, they may be placed into
any unoccupied entries, and, therefore, IQ is also known as Instruction Dispatch Buffer
(IDB).

56 G. Küçük, İ. Güney, and D. Ponomarev

long-latency operations. When the IQ becomes full, the instruction fetching and
decoding process stalls until some IQ entries are made available (e.g., when
instructions residing in these entries execute). Larger IQ also allows to reduce the
number of cycles when the decode process is blocked, as the IQ becomes full less
often.

The IQ-based scheduling mechanism effectively decouples the in-order pipe-
line front-end from the OoO execution back-end, allowing each to operate rela-
tively independently: the front-end simply provides a supply of instructions to the
back-end. To support dynamic scheduling, two key mechanisms are implemented
within the IQ and its associated logic: instruction wakeup and instruction selec-
tion. Instruction wakeup refers to the process of matching the addresses of the
source registers of the instructions waiting in the IQ against the destination regis-
ters of the instructions that are completing the execution. Specifically, whenever
an instruction completes execution, its destination address (destination tag) is
broadcasted across the IQ and all instructions currently waiting in the IQ associa-
tively compare their source register addresses (source tags) against the destination
tag being broadcasted. On a match, the corresponding source operand is marked
as valid. When all source operands of an instruction become valid, then the
instruction wakes up and becomes ready for execution. For example, referring to
the code of Figure 19 above, when the load instruction finally completes the
memory access stage, its destination register tag (1 in this case) is broadcasted
and the first source of instruction I2 becomes valid, as it is a match against this
destination tag.

The second component of the dynamic scheduling logic is the process of in-
struction selection. When the number of instructions that wake up in a cycle ex-
ceeds the number of available execution units, the arbitration has to be performed
to select only some of the woken instructions for execution in the next cycle and
delay the rest of the instructions until the following cycle. The most common ex-
amples of selection algorithms are as follows:

1) Position-Based Selection: The ready instructions are selected according to
their physical order in IQ. Depending on a chosen start point for the search
process, instructions that are closer to the start point become more favorable.
As a result, some of the instructions that are placed into an IQ entry far from
the starting search point may starve. This is not a fair policy, but it requires a
very simple hardware.

2) The Oldest-First Selection: On the contrary, this is possibly the fairest policy
among many, but its hardware implementation requires a very complex cir-
cuitry. The oldest and ready instruction in IQ is selected to be scheduled for
execution, but that instruction may not be a critical instruction with a limited
slack. The literature survey discusses instruction criticality and the term slack,
in more detail.

3) Loads-First Selection: Memory instructions, especially load instructions that
read from memory and consequently set a destination register, are instructions

Instruction Scheduling in Microprocessors 57

with unpredictable latencies5, and many data dependent instructions might be
waiting their immediate execution. This policy gives priority to such
instructions.

4) Longest-Latency-First Selection: In this selection policy, instead of giving
priority to load instructions with unpredictable latencies, instructions with
long latency values are favored. Examples to long latency instructions are
multiplication, division and several floating-point instructions such as square
root and logarithm.

Because of significant circuit delays involved in wakeup and selection activities,
the scheduling logic is usually pipelined over two cycles. Such pipelining can
make it impossible to execute dependent instructions in the back-to-back cycles in
high-frequency implementations, but smart solutions have been proposed in the
literature to address this problem [13][14].

While the conceptual idea of OoO execution is fairly simple, there are several
new challenges that arise. We discuss these challenges and outline solutions to
them below.

I1: LOAD R1, R2, #100 /* R1 mem[R2+100] */

 I2: ADD R3, R1, R5 /* R3 R1 + R5 */
 I3: SUB R1, R8, R9 /* R1 R8 - R9 */

Fig. 20 Code Example 2

The first challenge is associated with false data dependencies. To understand
the concept of false dependencies, consider a slight modification to the example of
Figure 19, where the last instruction uses the same destination register as the first
instruction. The new code is shown in Figure 20. In this case, which is quite com-
mon in typical programs as the registers are reused often, instruction I3 cannot
simply write its result to register R1 before the instruction I1 does so; otherwise,
the value of register R1 will be incorrect after the execution of this code. These
“false” dependencies arise purely as an artifact of OoO execution and they have to
be somehow satisfied to guarantee correctness.

A well-established solution to this problem in modern designs is a technique
called register renaming, which is already discussed in Section 3.1. Renaming
logic requires an additional pipeline stage at the front end, and the renamed in-
struction stream is inserted into the IQ, allowing previously discussed wakeup and
selection mechanisms to be deployed without concerns for false dependencies. Of
course, physical registers have to be added back to the free pool when they are no
longer needed, and the microarchitecture provides mechanisms for doing so.

5 A load instruction may be served by multiple levels of the memory hierarchy. When its

address hits to the first level or the second level cache, its access latency may be a few or
tens of cycles, respectively. Otherwise, if the main memory is accessed, the latency may
be in the range of hundreds or thousands of cycles.

58 G. Küçük, İ. Güney, and D. Ponomarev

Another issue that has to be considered in these OoO designs is how to cope
with branch mispredictions, exceptions and interrupts and ensure that a precise
program state can always be reconstructed following these events. This is accom-
plished by maintaining all in-flight instructions in their program order in a new
FIFO queue which is called the Reorder Buffer (ROB). The instructions are in-
serted into the ROB after they are renamed. Another stage (commit stage) is added
at the back end of the pipeline to allow the instructions to commit their results to
the architecturally visible program state strictly in program order. The order of
instruction commitment is dictated by their positions in the ROB. Until the oldest
instruction in the pipeline commits, the younger instructions have to wait in the
ROB for their turn, even if their execution has already completed. On a branch
misprediction, the wrong-path instructions can be determined by examining the
ROB and removing instructions following the mispredicted branch from all pipe-
line structures. Thus, the presence of the ROB allows performing aggressive in-
struction reordering to maximize performance, and at the same time maintaining a
safety net to guarantee correct execution in case of exceptional events.

Finally, additional considerations need to be taken into account for the
processing of memory instructions in OoO microarchitectures. For example, for a
load instruction to execute ahead of some earlier store instructions, it is necessary
to ensure that the addresses targeted by these stores are not matching the address
of the load. This is accomplished by maintaining another queue structure, called
load-store queue (LSQ), which keeps all memory instructions in their program
order. The LSQ is associatively checked for the address matches between the
loads and the stores. On a match, the values are locally forwarded within the LSQ
from a store to a matching load. On a mismatch, the cache access by the load is
performed. This technique is known as memory disambiguation.

5 A Case Study: Intel Pentium 4 Processor

In Intel’s “tick-tock” model, Intel promises continued innovations in both manu-
facturing process technology and processor architecture in alternating “tick” and
“tock” cycles, respectively. Regarding this model, Intel’s Pentium 4 processor
architecture can be considered as a major “tock”.

The microarchitectural design of the P4 processor consists of two major stages:
in-order front-end and out-of-order execution core. In the front-end of the micro-
processor, a decoder is responsible for decoding IA-32 instructions into basic op-
erations called uops (micro-operations). Then, these uops are sent to a structure
called Trace Cache, which is an advanced form of a Level 1 instruction cache. In
case the IA-32 instruction must be replaced with more than four uops, the IA-32
instruction is sent to the microcode ROM, which sequences the uops necessary to
complete the operation. The uops from the Trace Cache and microcode ROM are
buffered in a simple in-order uop queue.

Instruction Scheduling in Microprocessors 59

From there, uops are sent to the Allocator, which is responsible for allocating
an entry in ROB, a register entry for the result, an entry in one of the uop queues
in front of the instruction schedulers, and an entry for LSQ, if the uop is a memory
operation. If such allocation is impossible, the Allocator stalls and prevents new
uops from entering the pipeline. When the destination register entry is being allo-
cated, register renaming is applied on the uop to eliminate false dependencies. The
renaming logic keeps track of the most recent version of each register so that a
new instruction coming down the pipeline can determine the correct register entry
for its source operands. After register renaming, uops enter one of the two queues
according to their type: load-store queue or non-memory instruction queue. These
queues are in-order. However, they can be read out-of-order, which allows for the
out-of-order execution. There are several types of uop schedulers that are used to
schedule different types of uops for various execution units. These schedulers
determine when uops are ready to be executed based on the readiness of uop’s
input operands and the availability of function units. After completing their execu-
tion, uops are retired from the ROB to maintain the original program order.

Pentium 4 processor has a very deep pipeline (more than 20 stages), and sched-
uling of instructions with long and unpredictable latency values becomes a major
performance issue. The replay mechanism of the machine is used to speculatively
execute operations that depend on a load instruction assuming that the address of
the load exists in the L1 data cache. This is somewhat necessary to keep the deep
pipeline full most of the time. However, when the load in question misses the L1
data cache and its destination register value is delayed, the dependent instructions
get temporarily incorrect data. Then, the replay mechanism tracks down and re-
executes those instructions that use incorrect data when the correct data value is
served from the L2 cache or main memory.

6 Conclusion

In this paper, we reviewed the approaches to instruction scheduling in contempo-
rary microprocessors. Scheduling can generally be implemented using either static
or dynamic approaches. While static scheduling does not require complex hard-
ware, it often results in sub-optimal performance and in some cases does not retain
binary compatibility (i.e. when specific pipeline configuration is taken into ac-
count while creating an execution schedule in hardware). In contrast, dynamic
instruction scheduling provides high performance through out-of-order execution
of instructions and also retains binary compatibility, because the schedule is im-
plemented transparently in hardware. The drawback is the increased complexity,
delay and power consumption of the instruction scheduling logic.

60 G. Küçük, İ. Güney, and D. Ponomarev

References

[1] Bernstein, D., Cohen, D., Lavon, Y., Rainish, V.: Performance Evaluation of Instruc-
tion Scheduling on the IBM RISC System/6000. In: MICRO, vol. 25, pp. 226–235
(1992)

[2] Moon, S.M., Ebcioglu, K.: Parallelizing Nonnumerical Code With Selective Schedul-
ing and Software Pipelining. TOPLAS 19(6), 853–898 (1997)

[3] Mahajan, A., Ali, M.S., Patil, M.: Instruction Scheduling Using Evolutionary Pro-
gramming. In: ACC 2008, pp. 137–144 (2008)

[4] Weiss, S., Smith, J.E.: Instruction Issue Logic in Pipelined Supercomputers. In: ISCA
1984, pp. 110–118 (1984)

[5] Tomasulo, R.M.: An Efficient Algorithm for Exploiting Multiple Arithmetic Units.
IBM J. Res. Development 11(1), 25–33 (1967)

[6] Thornton, J.E.: Parallel Operation in the Control Data 6600. In: AFIPS 1964, Part 2,
pp. 33–40 (1964)

[7] Tune, E., Tullsen, D.M., Calder, B.: Quantifying Instruction Criticality. In: PACT
2002, p. 104 (2002)

[8] Lebeck, A.R., Koppanalil, J., Li, T., Patwardhan, J., Rotenberg, E.: A Large, Fast In-
struction Window for Tolerating Cache Misses. In: ISCA 2002, pp. 59–70 (2002)

[9] Wang, H., Sangireddy, R.: Streamlining Long Latency Instructions For Seamlessly
Combined Out-Of-Order and In-Order Execution. Microprocessors & Microsys-
tems 32, 375–385 (2008)

[10] Sharkey, J.J., Ponomarev, D.V.: Non-Uniform Instruction Scheduling. In: Cunha,
J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 540–549. Springer,
Heidelberg (2005)

[11] Ernst, D., Hamel, A., Austin, T.: Cyclone: A Broadcast-Free Dynamic Instruction
Scheduler with Selective Replay. In: ISCA 2003, pp. 253–263 (2003)

[12] Buyuktosunoglu, A., Albonesi, D.H., Bose, P., Cook, P.W., Schuster, S.E.: Tradeoffs
in Power-Efficient Issue Queue Design. In: ISLPED 2002, pp. 184–189 (2002)

[13] Brown, M.D., Stark, J., Patt, Y.N.: Select-Free Instruction Scheduling Logic. In:
MICRO, vol. 34, pp. 204–213 (2001)

[14] Stark, J., Brown, M.D., Patt, Y.N.: On Pipelining Dynamic Instruction Scheduling
Logic. In: MICRO, vol. 33, pp. 57–66 (2000)

Sports Scheduling: Minimizing Travel
for English Football Supporters

Graham Kendall and Stephan Westphal

Abstract. The football authorities in England are responsible for generating the fix-
tures for the entire football season but the fixtures that are played over the Christmas
period are given special consideration as they represent the minimum distances that
are traveled by supporters when compared with fixtures played at other times of the
year. The distances are minimized at this time of the year to save supporters having
to travel long distances during the holiday period, which often coincides with peri-
ods of bad weather. In addition, the public transport system has limited services on
some of the days in question. At this time of the year every team is required to play,
which is not always the case for the rest of the season. When every team is required
to play, we refer to this as a complete fixture. Additionally, each team has to to play
a home game and an away game. Therefore, over the Christmas period we are re-
quired to produce two complete fixtures, where each team has to have a Home/Away
pattern of HA or AH. In some seasons four complete fixtures are generated where
each team is required to have a Home/Away pattern of HAHA (or AHAH). Whether
two or four fixtures are generated there are various other constraints that have to be
respected. For example, the same teams cannot play each other and we have to avoid
(as far as possible) having some teams play at home on the same day. This chapter
has three main elements. i) An analysis of seven seasons to classify them as two or
four fixture seasons. ii) The presentation of a single mathematical model that is able
to generate both two and four fixture schedules which adheres to all the required
constraints. Additionally, the model is parameterized so that we can conduct a se-
ries of experiments. iii) Demonstrating that the model is able to produce solutions
which are superior to the solutions that were used in practise (the published fixtures)

Graham Kendall
University of Nottingham, Nottingham, UK and Malaysia
e-mail: graham.kendall@nottingham.ac.uk

Stephan Westphal
Institute for Numerical and Applied Mathematics,
Georg-August University, Germany
e-mail: s.westphal@math.uni-goettingen.de

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 61
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_3, c© Springer-Verlag Berlin Heidelberg 2013

graham.kendall@nottingham.ac.uk
s.westphal@math.uni-goettingen.de

62 G. Kendall and S. Westphal

and which are also superior to our previous work. The solutions we generate are
near optimal for the two fixture case. The four fixture case is more challenging and
the solutions are about 16% of the lower bound. However, they are still a significant
improvement on the fixtures that were actually used. We also show, through three
experimental setups, that the problem owner might actually not want to accept the
best solution with respect to the overall minimized distance but might want to take
a slightly worse solution but which offers a guarantee as to the maximum distance
that has to be traveled by the supporters within each division.

1 Introduction

In England, the football (soccer in the USA) league structure comprises four main
divisions. These are generically called “FA Premiership” (20 teams), “FL Champi-
onship” (24 teams),“FL Championship” (24 teams) and “FL Championship 2” (24
teams). These names change with sponsorship arrangements for the given season.
Within each division, a double round robin tournament is held, resulting in 2036
fixtures that have to be scheduled each season. Even though each division is an in-
dependent double round robin tournament, they cannot be scheduled in isolation
from one another as there are a number constraints which operate across the divi-
sions. For example, we should avoid, irrespective of which division they play in,
certain teams playing at home on the same day (pairing constraint), only a certain
number of FA Premiership teams based in London can play at home on the same
day, only a total number of London based clubs (across all four divisions) can play
at home on the same day and only a certain number of Manchester based clubs can
play at home on the same day. These constraints are collective referred to as geo-
graphical constraints. All these constraints are captured in the model presented in
Section 4.

When generating a schedule for the entire season, it is our belief that the football
authorities initially schedule fixtures for the Christmas period. This means creating
two or four sets of fixtures that will be used over two or four days. At this time of
the year, every team is required to play (which is not always the case for other times
in the season). We refer to such a schedule as a complete fixture. That is, a complete
fixture ensures that all 92 teams play, representing 46 fixtures. Therefore, over the
Christmas period we are required to generate either two or four complete fixtures.
As well as respecting the pairing and geographical constraints, there are a number
of further constraints that we have to respect over the Christmas period. For a two
fixture schedule a team must play one game at home and one at an away venue (or
away and then home); a so called home/away pattern of HA (resp. AH). For four
complete fixtures the home away pattern must be HAHA (or AHAH). Furthermore,
it is not permissible for teams to play each other twice over these two, or four,
complete fixtures. For example, Chelsea cannot play Liverpool and later in the two
or four sequence, Liverpool play Chelsea.

When generating these fixtures, the overall aim is to minimize the overall distance
for all the clubs. Analyzing previous seasons (and personal correspondence with the

Sports Scheduling: Minimizing Travel for English Football Supporters 63

football authorities) shows that this is indeed the primary objective of these fixtures.
In this chapter, we are able to generate fixtures that are significant improvements
over the published fixtures (i.e. those that were actually used) but we also present a
number of experiments which indicates that the problem owner might prefer slightly
worse solutions but which appear to be fairer to the clubs as it limits the maximum
distance that a club would have to travel.

It is not clear why some seasons require two sets of fixtures to be generated,
yet other seasons require four sets of fixtures to be generated. We thought that four
fixtures were generated in order to complete the football season slightly earlier that
usual to enable the national side more time to prepare for a Summer tournament (the
FIFA World Cup or the UEFA European Championship). However, the data does not
support this view (see Section 3). However, due to the methodology proposed in this
chapter, the football authorities could easily generate both two or four completes
fixtures and decide which one they prefer.

To assist other researchers we note that all the published fixtures were obtained
from the Rothmans/Sky Sports Yearbooks Rollin and Rollin [2002, 2003, 2004,
2005, 2006, 2007, 2008]. The distance information was collated by ourselves using
one of the UK motoring web sites where we entered the to/from postcodes of the
football clubs to get the driving distance between the clubs. This, we believe is
preferable to using the straight line distance. As the driving distances will change
over time, we have made these distances available at (for reviewers: we will make
the data available on or our own web site).

This chapter is organised as follows. In the next section we provide some back-
ground to sports scheduling. In Section 3 we analyze the previous season’s fixtures
to try and ascertain when it is required to generate two or four complete fixtures.
The analysis is inconclusive but we believe that it is interesting to present this data
for future researchers. In Section 4 we present our mathematical model, which is
capable of generating two or four complete fixtures. In Section 5 we describe the
various experiments that we conduct, followed by the results for each experiment.
We discuss the results in Section 6 and conclude the chapter in Section 7.

2 Background

Various algorithms exist which produce double round robin tournaments, with the
most well known probably being the polygon construction method (Dinitz et al
[2006]). We are unable to use this method, in its raw form, as the generated fix-
tures would not be acceptable to all interested parties. That is, it would generate
a valid double round robin tournament but the schedule would not adhere to other
constraints imposed by the football clubs, football authorities, the supporters, the
police etc. Nor would it minimize the distances, which is the prime objective.

Previous work has considered the minimization of travel distances for sports
schedules. Costa Costa [1995], for example, investigated the scheduling require-
ments of the National Hockey League, where one of the factors was to minimize
the distances traveled. Recent work Westphal [2011] has investigated reducing the

64 G. Kendall and S. Westphal

distances that have to be driven on 2nd January 2012 for the German Basketball
League. The fixtures were such that they form a minimum weight perfect matching
(with respect to distances). This provides evidence that this area of sports schedul-
ing is important even for relatively small leagues, and even when only one day is in-
volved. The introduction of the Traveling Tournament Problem Easton et al [2001],
using distances based on road trips that have to be undertaken by Major League
Baseball teams in the United States, has helped promote research interest in this
area. See, for example Crauwels and van Oudheusden [2002]; Ribeiro and Urrutia
[2004]; Easton et al [2003]; Westphal and Noparlik [2010], with the best results be-
ing reported in Anagnostopoulos et al [2006]. An up to date list of the best known
solutions, as well as details of all the instances, can be found at Trick [2009].

Urrutia and Ribeiro Urrutia and Ribeiro [2004] have shown that minimizing dis-
tance and maximizing breaks (two consecutive home or away games) is equivalent.
This followed previous work de Werra [1981, 1988]; Elf et al [2003] showing how
to construct schedules with the minimum number of breaks.

Overviews and surveys of sports scheduling can be found in Easton et al [2004];
Knust [2009]; Rasmussen and Trick [2008]; Kendall et al [2010a].

The problem that we consider in this chapter is the minimization of the distance
traveled for two (or four) complete fixtures. These two (or four) complete fixtures
can be used over the Christmas period when, for a variety of reasons, teams wish
to limit the amount of traveling. Note, that this is a different problem to the Trav-
eling Tournament Problem (Easton et al [2003]), which assumes that teams go on
road trips, and so the total distance traveled over a season can be minimized. In
English football, there is no concept of road trips, so the overall distance cannot be
minimized. However, we are able to minimize the distance on certain days. Kendall
Kendall [2008] adopted a two-phase approach to produce two complete fixtures with
minimal distances. A depth first search was used to produce a complete fixture for
one day, for each division. A further depth first search created another set of fix-
tures for another day. This process produced eight separate fixtures which adhered
to some of the constraints (e.g. a team plays at home on one day and away on the
other) but had not yet addressed the constraints with respect to pair clashes (where
certain teams cannot play at home on the same day, see Appendix C and Table A2
in Kendall [2008]), the number of teams playing in London etc. (see Appendix D in
Kendall [2008]). The fixture lists from the depth first searches were input to a local
search procedure which aimed to satisfy the remaining constraints, whilst minimiz-
ing the overall distance traveled. The output of the local search, and a post-process
operation to ensure feasibility, produced the results in Table 32.

3 Fixture Analysis

In Kendall [2008] an analysis was given of the four seasons considered in that paper.
In this section we provide a more comprehensive analysis as we are now considering
three additional seasons and we also extend the analysis to include four fixtures. For
each season we consider the fixtures that were played around the Christmas period,
seeking to find home and away patterns that we can use to classify it as a two or a

Sports Scheduling: Minimizing Travel for English Football Supporters 65

four fixture. We also look at the distances and state whether the distances traveled
for these fixtures are the minimum when compared to other complete fixtures in the
season. We end up with a classification for each season.

3.1 Season 2002-2003

This season has four sets of complete fixtures (see Table 1) around the Christ-
mas/New Year period. The fixtures played on 26th December and 1st January repre-
sent the lowest distances of any complete fixtures throughout the season. They also
exhibit the property that if a team plays home on one day, they play away on the
other (and vice versa) (i.e. HA or AH). The other complete fixtures (20/21/22/23
Dec and 28/29 Dec) are significantly higher with respect to distances, and there are
no other complete fixtures in the season that have lower distances. In addition, the
four complete fixtures do NOT have a HAHA (resp. AHAH) sequence for home
and away patterns for each team. Therefore, this season is classified as a two fixture
season, with a total of (3820+3964)=7784.

Table 1 Candidate complete fixtures for the 2002-2003 season. The selected fixtures are in
bold and this season is classified as a two fixture season (see text for details).

Dates # of fixtures Distance
20th Dec 2002 4 484
21st Dec 2002 40 6016
22nd Dec 2002 1 1
23rd Dec 2002 1 199

Total 6700

26th Dec 2002 46 3820
Total 3820

28th Dec 2002 43 6871
29th Dec 2002 3 712

Total 7583

1st Jan 2003 46 3964
Total 3964

3.2 Season 2003-2004

This season has three sets of complete fixtures (see Table 2) around the Christ-
mas/New Year period. The fixtures played on 26th and 28th December represent the
lowest distances of any complete fixtures throughout the season. They also exhibit
the property that if a team plays at home on one day, they play away on the other
(and vice versa) (i.e. HA or AH). The other complete fixture (20th December) is
higher with respect to distances, and there are other complete fixtures in the season
that have lower distances. Therefore, this season is classified as a two fixture season,
with a total of (3837+4342)=8179.

66 G. Kendall and S. Westphal

Table 2 Candidate complete fixtures for the 2003-2004 season. The selected fixtures are in
bold and this season is classified as a two fixture season (see text for details).

Dates # of fixtures Distance
20th Dec 2003 46 6295

Total 6295

26th Dec 2003 46 3837
Total 3837

28th Dec 2003 46 4342
Total 4342

3.3 Season 2004-2005

This season has five sets of complete fixtures (see Table 3) around the Christ-
mas/New Year period. The fixtures played on 26th December are the lowest dis-
tances of any complete fixtures throughout the entire season. The fixtures on the
28th/29th are also amongst the minimal distances. There are some lower dis-
tances (e.g. 11th-13th September, 4985; 5th March, 5852; 23rd April, 5813) but
we have to bear in mind that the fixtures on 26th December and 28th/29th De-
cember adhere to the HA (resp. AH) constraint. The fixtures on the 1st and 3rd
Jan, although not being the lowest distances in the season for complete fixtures, do
adhere to the HA (resp. AH) constraint. The fixtures on the 18th-20th Dec can be
ignored as they do not have a HA (resp. AH) relationship with any of the other
fixtures. Therefore, this season is classified as a four fixture season, with four sets

Table 3 Candidate complete fixtures for the 2004-2005 season. The selected fixtures are in
bold and this season is classified as a four fixture season (see text for details).

Dates # of fixtures Distance
18th Dec 2004 44 5758
19th Dec 2004 1 79
20th Dec 2004 1 15

Total 5852

26th Dec 2004 46 4563
Total 4563

28th Dec 2004 45 6164
29th Dec 2004 1 285

Total 6449

1st Jan 2005 46 5122
Total 5122

3rd Jan 2005 46 7139
Total 7139

Sports Scheduling: Minimizing Travel for English Football Supporters 67

of complete fixtures (4563+6449=11,012 and 5122+7139=12,261), giving a total of
(11,012+12,261)=23,273). When we later analyze this season (see Section 6.3.2)
as a two fixture schedule we use 26th December (4563) and 28th/29th December
(6449) (total of 11012) as the comparator as these follow a HA (resp. AH) pattern
and these are the lowest distances from the two sets of complete fixtures.

3.4 Season 2005-2006

This season has four sets of complete fixtures (see Table 4) around the Christ-
mas/New Year period. The fixtures are amongst the lowest across the entire sea-
son. There are some equally low distances, however, those on the 17th April and
1st April are a reverse of those on 26th December and 31st December resp.,
and so could not be used over Christmas as it would violate the no reverse con-
straint. The four sets of fixture adhere to the HAHA (resp. AHAH) constraint.
Therefore, this season is classified as a four fixture season, with two sets of
complete fixtures (4295+6331=10,626 and 4488+6645=11,333), giving a total of
(10,626+11,333)=21,959 for the four complete fixtures. When we analyze the two
fixture case (see Section 6.2), we use the 26th/28th December as these are the min-
imum of the two sets of complete fixtures.

Table 4 Candidate complete fixtures for the 2005-2006 season. The selected fixtures are in
bold and this season is classified as a four fixture season (see text for details).

Dates # of fixtures Distance
26th Dec 2005 46 4295

Total 4295

28th Dec 2005 46 6331
Total 6331

31st Dec 2006 46 4488
Total 4488

2nd Jan 2006 45 6648
3rd Jan 2006 1 197

Total 6845

3.5 Season 2006-2007

This season has four sets of complete fixtures (see Table 5) around the Christ-
mas/New Year period. Although each team plays four complete fixtures, the home/
away patterns are HAAH (resp. AHHA), rather than the more usual HAHA (resp.
AHAH). However, we have still classified this season as a four fixture season, with
two sets of complete fixtures (7904+3857=11,761 and 7324+4582=11,906), giving
a total of (11,761+11,906)=23,667 for the four complete fixtures. When we later
analyze this season as a two fixture schedule (see Section 6.3.3) we will 26th/27th

68 G. Kendall and S. Westphal

Table 5 Candidate complete fixtures for the 2006-2007 season. The selected fixtures are in
bold and this season is classified as a four fixture season (see text for details).

Dates # of fixtures Distance
23rd Dec 2006 46 7904

Total 7904

26th Dec 2006 45 3843
27th Dec 2006 1 14

Total 3857

30th Dec 2006 46 7324
Total 7324

1st Jan 2007 46 4582
Total 4582

December 2006 (3857) and 1st January 2007 (4582) (total of 8439) as the compara-
tor as these follow a HA (resp. AH) pattern and these are the two lowest distances,
so it is a fairer comparison.

3.6 Season 2007-2008

This season has four sets of complete fixtures (see Table 6) around the Christ-
mas/New Year period. Like 2006/2007 the home away patterns follow HAAH (resp.
AHHA), rather than HAHA (resp. AHAH). However, we still classify this season
as a four fixture season, with two sets of complete fixtures (6943+4459=11,402 and
7226+4085=11,311), giving a total of (11,402+11,311)=22,713 for the four com-
plete fixtures. When we later analyze this season as a two fixture schedule (see Sec-
tion 6.3.4) we will 26th December 2007 (4459) and 1st/2nd January 2008 (4085)
(total of 8544) as the comparator as these follow a HA (resp. AH) pattern and these
are the two lowest distances, so it is a fairer comparison.

Table 6 Candidate complete fixtures for the 2007-2008 season. The selected fixtures are in
bold and this season is classified as a four fixture season (see text for details).

Dates # of fixtures Distance
21st Dec 2007 4 276
22nd Dec 2007 42 6667

Total 6943

26th Dec 2007 46 4459
Total 4459

29th Dec 2007 46 7226
Total 7226

1st Jan 2008 45 3991
2nd Jan 2008 1 94

Total 4085

Sports Scheduling: Minimizing Travel for English Football Supporters 69

3.7 Season 2008-2009

This season has three sets of complete fixtures (see Table 7) around the Christ-
mas/New Year period. The three sets of fixture follow a HAH (resp. AHA) pattern.
However, the fixtures on the 26th and 28th December are the lowest distances and
we use those fixtures and classify the season as a two fixture season, with two com-
plete fixtures (4548+4764=9,312).

Table 7 Candidate complete fixtures for the 2008-2009 season. The selected fixtures are in
bold and this season is classified as a two fixture season (see text for details).

Dates # of fixtures Distance
20th Dec 2008 46 7709

Total 7709

26th Dec 2008 46 4548
Total 4548

28th Dec 2008 46 4764
Total 4764

3.8 Discussion

Of the seven seasons that we study in this chapter, three of them are classified as
two fixture seasons, with the other four being classified as four fixture seasons (see
Table 8). We initially believed that the reason a season was classified as a four fix-
ture season was because the football authorities wanted the season to end slightly
early to enable the national team to train together in preparation for the tourna-
ment. However, this appears not to be the case as we would have expected seasons
2003-2004, 2005-2006 and 2007-2008 to be classified as four fixture seasons and to
finish earlier than the other seasons (at least with respect to the Premier division).

Table 8 This table shows whether the football authorities generated a two or four fixture
schedule over the holiday period. In all cases, these fixtures represent the minimum distances
between clubs when compared against fixtures that are used at other times in the season. We
also show whether the season was a World Cup or European Championship year.

Season
Two or
Four

End Date (Prem) End Date (Others)
World or

Euro?
2002-2003 Two 11th May 2003 4th May 2003
2003-2004 Two 15th May 2004 9th May 2004 Euro
2004-2005 Four 14th May 2005 8th May 2005
2005-2006 Four 7th May 2006 6th May 2006 World
2006-2007 Four 13th May 2007 6th May 2007
2007-2008 Four 11th May 2008 4th May 2008 Euro
2008-2009 Two 28th May 2009 3rd May 2009

70 G. Kendall and S. Westphal

The data does not support this assumption and we are unsure why some seasons
have four complete fixtures at Christmas, and others have two.

When we carry out our experiments, we treat each season as both two and four
fixture season so that other researchers have the data for comparative purposes and
also to demonstrate that we are able to generate both type of fixtures for the seven
seasons that we study.

4 Mathematical Model

In earlier work we presented a naive approach Kendall [2008], and a slightly more
sophisticated approach Kendall et al [2010b], in order to tackle the problem ad-
dressed in this chapter. These previous works had shortcomings, which are ad-
dressed here. Firstly, we only generated two complete fixtures, with the generation
of four fixtures being left as future work. Secondly, both previous approaches used
a two phase methodology. In the first phase fixtures were generated for individ-
ual divisions, without taking into account any constraints that operated across divi-
sion boundaries. In the second phase, a local search was utilized that removed any
hard constraints that were present and also minimized the soft constraint violations.
The previous approaches could be time consuming. In particular, Kendall [2008],
took upwards of 20 hours for the depth first search phase. Finally, the previous ap-
proaches utilized meta-heuristics and so the solutions were not provably optimal.
Indeed, the results presented in this chapter are superior to our previous work which
had already improved on the published fixtures. For reference, our previous results
are summarized in Appendix A.

In this chapter we address these issues by presenting a mathematical formulation
that attempts to solve the model in a single phase. That is, we consider all four
divisions, eliminating the need for a local search phase to resolve hard constraint
violations as the minimization of soft constraint violations.

The model is as follows, with explanations after:

Indices
L the set of leagues
T the set of teams
Tl the set of teams belonging to league l
H the set of days {1,2, . . . ,k}
P the set of paired teams
R the set of divisions

Decision Variables
xi, j,d 1 if team i is playing team j on day d at i’s site
hi,d 1 if i is playing at home on day d
yi, j,d 1 if the paired teams i and j play both at home on day d

Sports Scheduling: Minimizing Travel for English Football Supporters 71

Parameters
Di, j the distance (in miles) between team i and team j
Li 1 if team i is a London-based club
Mi 1 if team i is a Greater Manchester-based club
Qi 1 if team i is a Premier club
βl The maximum number of clubs based in London which

can play at home on the same day. βl = 6.
βm The maximum number of clubs based in Greater Manch-

ester which can play at home on the same day. βm = 4.
βq The maximum number of Premier Division clubs based

in London which can play at home on the same day. βq =
3.

δr The maximum allowed travel distance for teams in divi-
sion r.

γ The maximum number of allowed pair clashes.

Objective Function
The objective function minimizes the total distance by all the teams and further-

more helps to adjust the y-variables correctly.

min ∑
h∈H,l∈L,i, j∈Tl

Di, j · xi, j,h + ∑
h∈H,{i, j}∈P

0.01 · yi, j,h (1)

Subject to
Every team plays exactly one match per day.

∑
j∈Tl\{i}

(xi, j,d + x j,i,d) = 1 ∀ l ∈ L, i ∈ Tl , d ∈ H (2)

Every pair of teams meets each other at most once.

∑
d∈H

(
xi, j,d + x j,i,d

)≤ 1 ∀ l ∈ L, i, j ∈ Tl (3)

Paired teams are not allowed to play against each other.

xi, j,d = 0 ∀ d ∈ H, l ∈ L,{i, j} ∈ (Tl ×Tl)∩P (4)

Teams in division r are not allowed to travel a distance greater than δr miles.

xi, j,d = 0 ∀ d ∈ H, l ∈ L, i, j ∈ Tl : Di, j > δr (5)

The following constraints couple fixture variables x to home-variables h.

∑
j∈Tl\{i}

xi, j,d = hi,d ∀ l ∈ L, i ∈ Tl , d ∈ H (6)

72 G. Kendall and S. Westphal

Every team plays exactly one home game in two successive days (which implies
exactly one away every in those two days)

hi,d + hi,d+1 = 1 ∀ l ∈ L, i ∈ Tl , d ∈ H \ {k} (7)

Together with the objective function the following inequality ensures that yi, j = 1 if
and only if the paired teams i and j play both at home on day d.

hi,d + h j,d ≤ 1+ yi, j,d ∀ d ∈ H,{i, j} ∈ P (8)

There are not more than γ pair clashes.

∑
d∈H,{i, j}∈P

yi, j,d ≤ γ (9)

The maximum number of Greater Manchester-based clubs playing at home on any
of the holidays must not exceed a certain threshold.

∑
i∈T

Li ·hi,d ≤ βl ∀ d ∈ H (10)

The maximum number of London-based clubs playing at home on any of the holi-
days must not exceed a certain threshold.

∑
i∈T

Qi ·hi,d ≤ βq ∀ d ∈ H (11)

The maximum number of London-based Premier Division clubs playing at home on
any of the holidays must not exceed a certain threshold.

∑
i∈T

Mi ·hi,d ≤ βm ∀ d ∈ H (12)

Notes

1. L = {FA Premeirship, FL Championship, FL Championship 1, FL Championship
2}. These are the four main divisions in the English league. The names of the
divisions change in line with sponsorship agreements.

2. |T | = 92, these being made up from 20 teams in the Premier division and 24
teams in each of the other three divisions.

3. H is the set of days, which will either be {1,2} when generating a two fixture
schedule or {1,2,3,4} when generating a four fixture schedule.

4. P = a set of teams that are paired. If two teams are paired they, ideally, should
not play at home on the same day. However, it is impossible to have zero pairing
violations so we allow the same number that were present in the published fix-
tures (see Table 33 for the number of pairing violations that we allow). Details
of the actual paired teams are given in Kendall [2008]. They are not reproduced
here for reasons of space.

Sports Scheduling: Minimizing Travel for English Football Supporters 73

5. γ defines the number of pair clashes that we allow. In the model, γ takes differ-
ent values for each season (see Table 33). In previous work we defined separate
values for Boxing Day and News Years Day (see Kendall [2008]) but this is no
longer valid as we are producing schedules for both these days and also for four
days. However the values used in Kendall [2008] are still used but are added
together.

6. δr defines the maximum distance that can be traveled by any single team in divi-
sion r. In our experiments, we try different values for δr, to test its effect.

7. Equation 1 minimizes the overall distance. The second term ensures that yi, j,h = 0
if the paired teams i and j do not both play at home on day d.

5 Experimental Setup and Results

Using the model from Section 4 we used CPLEX 12.2 in order to solve various
instances of the model so that we could explore several scenarios. All experiments
were run on an Acer Ferrari 1100 laptop, with a 2.29 GHz processor (AMD Turion
64X2 Mobile, Technology TL-66), with 2.29GB of RAM and running Windows
XP Professional (Version 2002, SP3)). We allowed CPLEX to run for 300 seconds
(five minutes) and 7200 seconds (2 hours) for each experiment. Each scenario is
presented below, along with the results. For each scenario we run two experiments
H = {1,2} (to capture the two day case) and H = {1,2,3,4} (to capture the four day
case).

We note that for all the solutions we present, they are an improvement on the
published fixtures, as well as being an improvement on our previous work (see Table
32 in Appendix A).

In presenting the results, if the Gap is less than 0.01% (the default termination
criteria for CPLEX), this indicates that a near optimal solution was found before the
time expired. If the value in the Seconds column is less than 7200 (and the gap is
greater than 0.01%), it indicates that CPLEX ran out of memory at the time shown
and the result reported is the incumbent solution at that time. We do not report the
time for the 300 second experiments as CPLEX never reported an out of memory
condition and, unless a value of 0.01% is reported, it ran for the full 300 seconds.

5.1 Experiment 1: δr = ∞

This experiment sets no limit on the distance that teams are allowed to travel. This,
provides the most flexibility, as any team can play against any other team. The po-
tential drawback is that some teams may travel far greater distances than others, al-
though the total overall distance might be suitably minimized. In these experiments
δ0=δ1=δ2=δ3 = ∞.

74 G. Kendall and S. Westphal

5.2 Results for Experiment 1: δr = ∞

Allowing the algorithm to run for 300 seconds for the two day case (Table 9) we are
able to find near optimal solutions. Allowing the algorithm to run for 7200 seconds
(2 hours) we are able to further improve on the solutions generated. Season 2002-
2003 was the only one where we could not get within 1% of the optimal solution.

For the four day case (Table 10) we are able to find solutions which are typically
around 15% of the lower bound, although it seems appropriate to allow the algorithm
to run for 7200 seconds, as this does provide better solutions that just allowing 300
seconds. There is further work to be done to decrease the optimality gap even further.
However we note that for the four seasons that are classified as four fixture seasons
(see Table 8) that we are able to produce much better solutions than the published
fixtures (compare with see Table 32).

Table 9 Results: Experiment 1a: δr = ∞ (two day case: H = {1,2})

300 Seconds 7200 Seconds
Season LB Found % Gap LB Found % Gap Seconds

2002-2003 4556.49 4905.09 7.11 4692.07 4801.09 2.27 5640
2003-2004 5172.79 5225.11 1.00 5185.91 5209.11 0.45
2004-2005 5107.88 5182.10 1.43 5134.64 5161.10 0.51 4065
2005-2006 5037.63 5038.13 0.01 5037.63 5038.13 0.01
2006-2007 5271.32 5373.11 1.89 5294.53 5308.11 0.26
2007-2008 5002.78 5043.12 0.80 5019.79 5034.12 0.28
2008-2009 5212.14 5245.10 0.63 5243.42 5244.10 0.01 3624

Table 10 Results: Experiment 1b: δr = ∞ (four day case: H = {1,2,3,4})

300 Seconds 7200 Seconds
Season LB Found % Gap LB Found % Gap Seconds

2002-2003 11368.16 13995.18 18.77 11376.85 13813.18 17.64
2003-2004 11890.66 14288.22 16.78 11896.10 13966.22 14.82
2004-2005 12036.40 14255.20 15.56 12039.56 13605.20 11.51
2005-2006 12221.16 14075.26 13.17 12221.19 13785.26 11.35
2006-2007 12388.06 14706.22 15.76 12408.73 14262.22 13.00
2007-2008 11982.16 14971.22 19.97 11984.65 14089.24 14.94
2008-2009 12264.46 19015.14 35.50 12282.52 14671.20 16.28

5.3 Experiment 2: δr = Maximum

A potential problem with experiment 1 is that some teams may have to travel large
distances so that others can travel shorter instances. In this experiment we set a
global maximum distance such that no team can exceed that distance. If this value
is too restrictive there will not be any feasible solutions. To give an example. In the
2003-2004 season, Plymouth’s distances from the other teams in its division are (in

Sports Scheduling: Minimizing Travel for English Football Supporters 75

ascending order) {119, 134, 162, 210, 214, 216, 219, 231, 246, 248, 254, 276, 277,
282, 284, 290, 292, 296, 300, 303, 321, 347, 389}. By simple inspection we can
see that if set the maximum travel distance too low (in this case below 210) then
it is impossible to generate a four fixture schedule as Plymouth will not be able to
play four fixtures. Plymouth is often the team that will define the maximum travel
distance, but it may not always be the case. By inspecting each season we can set
the maximum distance, both for two season fixtures and for four season fixtures.
These are presented in Table 11. It should be noted that there is just one value for
each season. That is, δ0=δ1=δ2=δ3. To continue the example from above, Plymouth
must travel 210 miles, in the 2003-2004 season, and this is the value that is applied
to every team, in every division. This means that teams in the other leagues can also
travel up to this maximum distance.

Table 11 Maximum distances for each season that will enable a feasible schedule to be
generated. These values define the maximum distance that at least one team has to travel
and we set this as a maximum distance that all teams are able to travel. With reference to
the model we set δr to the value in each cell depending on the season and whether we are
generating a two or a four fixture schedule. For each experiment δ0=δ1=δ2=δ3.

Season Two Four
2002-2003 153 165
2003-2004 134 210
2004-2005 199 214
2005-2006 160 209
2006-2007 154 212
2007-2008 153 202
2008-2009 153 190

One potential drawback with this approach is that we are effectively dictating
the fixtures for certain teams. Plymouth (in 2003-2004) will be forced to play
Bournemouth (134 miles), Brentford (210 miles), Bristol City (119 miles), Swin-
don Town (162 miles). For the two fixture season (with a maximum distance of
134), Plymouth will be forced to play Bournemouth (134 miles), Bristol City (119
miles).

Another potential drawback is that we are giving too much scope to other di-
visions, as they are allowed to use the same maximum traveling distance as the
division which has imposed the upper limit. We consider an extension of the model
in Section 5.5 by setting δr for each division.

5.4 Results for Experiment 2: δr = Maximum

Table 12 presents the results for the two day case. Like experiment 1 we are able to
produce results to within 1% of optimality, with the exception of season 2002-2003.

76 G. Kendall and S. Westphal

For the four day case (Table 13), the 2002-2003 season proved to be intractable
in that we never found an incumbent solution even after 7200 seconds. The other
seasons produced similar results to the first experiment (i.e. around 15% of the lower
bound).

Table 12 Results: Experiment 2a: δr = maximum (two day case: H = {1,2})

300 Seconds 7200 Seconds
Season LB Found % Gap LB Found % Gap Seconds

2002-2003 4742.30 4862.09 2.46 4767.61 4862.09 2.54 1800
2003-2004 5284.99 5311.11 0.49 5295.95 5311.11 0.29
2004-2005 5176.87 5212.10 0.68 5199.59 5212.10 0.24
2005-2006 5039.63 5040.13 0.01 5039.63 5040.13 0.01
2006-2007 5305.31 5358.11 0.99 5323.76 5358.11 0.64
2007-2008 5084.33 5096.12 0.23 5095.62 5096.12 0.01
2008-2009 5337.95 5365.10 0.51 5364.56 5365.10 0.01

Table 13 Results: Experiment 2b: δr = maximum (four day case: H = {1,2,3,4})

300 Seconds 7200 Seconds
Season LB Found % Gap LB Found % Gap Seconds

2002-2003 11394.16 - - 11404.53 - -
2003-2004 11984.64 14825.22 19.16 11990.19 13805.22 13.15
2004-2005 12088.16 14614.20 17.28 12089.37 13782.20 12.28
2005-2006 12237.16 18128.22 32.50 12237.80 13884.26 11.86
2006-2007 12439.16 15004.22 17.10 12445.41 14619.22 14.87
2007-2008 12007.80 14938.24 19.62 12010.51 14011.24 14.28
2008-2009 12427.14 - - 12469.91 14962.20 16.66

5.5 Experiment 3: δr = Maximum for Each Division

In experiment 2, a global δr (i.e. δ0=δ1=δ2=δ3) was used across all divisions. In this
experiment we explore if having a δr for each division is beneficial. We did plan
to derive δr in the same way as experiment 2. However, it cannot easily be done
by inspection, An example will explain why. Consider the 2005-2006 season, Pre-
mier Division. If we look for the team that has to travel the furthest, we find that
Portsmouth has the following travel distances (in ascending order); {70, 71, 79, 79,
82, 82, 153, 161, 165, 243, 245, 247, 255, 256, 257, 268, 311, 336, 341}. Portsmouth
has to travel at least 71 miles to complete a two fixture schedule (and 79 miles for
a four fixture schedule). Therefore we can set δ0=71. However, if we analyze this,
we can see that this will mean that Portsmouth will play Fulham (70 miles away)
and Chelsea (71 miles away). Looking at other teams, we note that Newcastle also

Sports Scheduling: Minimizing Travel for English Football Supporters 77

only has two potential fixtures (Sunderland 15 miles away and Middlesbrough 45
miles away). The other fixtures for Newcastle are all greater than 71 miles. The
problem is, Newcastle cannot play Sunderland, as they are paired. Therefore, if we
set δ0=71, there is no feasible solution. However, this is a simple case and it is not
always obvious what values should be used, especially when we look at the four
fixture case. We could use something such as constraint programming to determine
suitable values but as we already have a model we decided to use that. Therefore, in
order to derive the value for each division we proceeded as follows:

1. For each team in the Premiership, obtain their distance vectors (as we did for
Portsmouth above) and sort each one in ascending order.

2. Find the team for the Premiership that has to travel the largest distance in the
second position of the sorted distance vectors. In the example above, this will be
Portsmouth whose distance vector is {70, 71, 79, 79, 82, 82, 153, 161, 165, 243,
245, 247, 255, 256, 257, 268, 311, 336, 341}. Element two is 71, which is the
largest value for all teams.

3. Find the team that has the largest distance in the third position of the sorted
distance vectors. In our 2005-2006 example, this is Newcastle {15, 45, 128, 144,
152, 153, 155, 170, 171, 200, 203, 212, 279, 280, 280, 285, 286, 287, 341}, so
we take the value of 128.

4. We continue this process, taking the maximum values from the fourth, fifth, sixth
values etc. from the sorted distance vectors. We do not need to carry out a com-
plete analysis (although it is not time consuming, we simply used the SMALL
function in Excel) as we do not need all the values.

5. This leads to a vector of {71, 128, 144, 152, ...}.
6. We now solve the model using δ0 = 71 and δr=∞ for all the other divisions (i.e.

δ1=δ2=δ3=∞). If CPLEX reports an infeasible solution, or has not generated an
incumbent solution in 1800 seconds (30 minutes), we set δ0 to the next value
and try to solve again. Eventually, we will solve the model, or at least have an
incumbent solution, so that we know that there is a feasible solution.

7. We now fix that δ0 value and move onto the next division and repeat the process.
8. After carrying out this process for each division, we will have four δr values that

we can use to solve the model.
9. A similar process is repeated for the four fixture case but the initial index into the

distance vectors is element four, rather than element two.

We believe that this process has the benefit that as we consider the Premiership first,
this will establish the lowest maximum distance for that division. This seems the
right thing to do as more fans are affected by the Premierships teams (as they have
larger fan bases, larger stadiums, attract more media interest etc.) so minimizing
their distances first seems worthwhile.

The δr values we derived are shown in Table 14.

78 G. Kendall and S. Westphal

Table 14 Maximum distances for each division using the process presented in Section 5.5

Prem Champ Div 2 Div 3
Season Two

(δ0)
Four
(δ0)

Two
(δ1)

Four
(δ1)

Two
(δ2)

Four
(δ2)

Two
(δ3)

Four
(δ3)

2002-2003 128 144 117 127 153 162 124 168
2003-2004 104 153 124 148 134 210 116 202
2004-2005 128 170 199 214 109 183 106 147
2005-2006 128 153 160 209 111 166 134 199
2006-2007 135 150 154 212 109 176 143 183
2007-2008 142 152 153 202 124 150 86 141
2008-2009 143 161 153 199 124 156 145 180

5.6 Results for Experiment 3: δr = Maximum for Each Division

For the two day case (see Table 15), this experiment manages to produce similar
solutions to the other experiments, in that solutions within 1% of optimality are ob-
tained, with the exception of the 2002-2003 season. The four fixture case is more
challenging (see Table 16). Only two seasons could generate a solution within 300

Table 15 Results: Experiment 3a: δr = maximum for each division (two day case: H = {1,2})

300 Seconds 7200 Seconds
Season LB Found % Gap LB Found % Gap Seconds

2002-2003 4613.07 4965.09 7.09 4829.12 4958.09 2.62 2617
2003-2004 5339.89 5398.11 1.08 5360.32 5377.00 0.31
2004-2005 5305.41 5345.10 0.74 5331.64 5345.10 0.25
2005-2006 5081.13 5082.13 0.02 5081.13 5082.13 0.02 41
2006-2007 5325.86 5393.11 1.25 5365.08 5376.11 0.21
2007-2008 5107.56 5153.12 0.88 5131.62 5132.12 0.01 362
2008-2009 5368.23 5385.10 0.31 5384.56 5385.10 0.01 1241

Table 16 Results: Experiment 3a: δr = maximum for each division (four day case: H =
{1,2,3,4})

300 Seconds 7200 Seconds
Season LB Found % Gap LB Found % Gap Seconds

2002-2003 - - - 11525.04 14246.18 19.10
2003-2004 - - - 12040.16 14465.22 16.76
2004-2005 - - - 12110.68 14107.20 14.15
2005-2006 12314.16 16909.26 27.18 12323.17 14284.26 13.73
2006-2007 12367.57 16435.22 24.75 12511.40 14659.22 14.65
2007-2008 - - - 12071.43 14471.24 16.58
2008-2009 - - - 12525.00 14946.20 16.20

Sports Scheduling: Minimizing Travel for English Football Supporters 79

seconds. If we allow 7200 seconds, a solution was always returned and, similar to
the other experiments, the solutions were about 15% of the lower bound. The solu-
tions, with regard to the overall distance, are slightly higher than the other experi-
ments but as we will discuss in the next section, this is not necessarily a problem.

6 Discussion

The results we reported in Section 5 are difficult to interpret, just by looking at the
tables. In this section, we analyze the results for two seasons but they are represen-
tative of the underlying themes throughout the seven seasons (we summarize the
other seasons in Section 6.3).

6.1 Season 2002-2003

We choose this season to analyze as it appears to be the most difficult season given
that the gap is consistently over 1% whereas all other results (for the two day case)
are under 1%. In Table 17 we present a summary of the various experiments. The
table shows the total distance for the generated schedule, the maximum distance
traveled by a team, the number of times that a team has to travel 180 miles or more
(we chose this figure as 180 miles represents about three hours of driving time which
seems a reasonable time limit for travel at this time of the year) and the number of
Derby Clashes (i.e. when paired teams play each other). Our model actually treats
Derby Clashes as a hard constraint (eq. 4), so for our experiments this value is
always zero, but the published fixtures sometimes allow them.

Table 17 also shows the published fixture for the 2002-2003 season. The total
distance was 7884 miles and the maximum distance for any one fixture was 171
miles (Newcastle vs Liverpool). No team had to travel over 180 miles but Rotherham
and Sheffield Wednesday (which are paired) played each other. Having paired teams
play each other is often beneficial, as far as minimizing the distance is concerned,
as they are often local derbies and, by definition, the teams are close to each other
(the distance between Rotherham and Sheffield Wednesday is 7 miles).

In all cases our model (we would suggest) is a significant improvement over the
published fixtures (distances of under 5000 miles compared to 7884 miles). For our
experiments, the maximum distance traveled by a single team is also an improve-
ment over the published fixture (153 or 157 miles compared to 171 miles).

Choosing which experimental setup a user should choose would initially suggest
2a (as it has the lowest overall distance of 4862 miles) but we would urge cau-
tion. Experiment 3a sets a limit at the division level whereas both experiment 1a
and 2a could allow greater distances, especially 1a, which allows infinite (of course
the maximum distance is actually capped) travel distances. If we compare experi-
ment 2a and 3a, we find that for the Premiership the total distance traveled is 908
miles (resp. 825 miles) for experiment 3a (resp. 2a). Therefore, it might appear that
it would be more sensible to select experiment 2a as the methodology of choice.
However, for the 3a experiment, as we set the maximum distance at the division

80 G. Kendall and S. Westphal

level, no team had to travel more than 115 miles (Tottenham vs Aston Villa). For
experiment 2a Southampton had to travel to Aston Villa (143 miles). Looking at the
other divisions for experiment 2a, the maximum distances for each division are (we
give all four divisions) Exp-2a={143, 116, 153, 145}. The maximum distances for
experiment Exp-3a={115, 117, 153, 123}. For experiment 1a the values are Exp-
1a={143, 156, 157, 124}. Apart from a single mile (116 vs 117), experiment 3a
produces the same, or lower, maximum distances than the other two experiments.
Therefore, there would be a decision to be made. Does the problem owner want to
minimize the total distance or take a more local view and ensure that no one club
has to travel over a certain distance? There is no definitive answer as to which ex-
periment returns the best result but as each experiment only takes five minutes, there
is no reason why we cannot simply provide the user with all the solutions and let
them decide which one is best.

Running the experiments for longer (7200 seconds) makes little difference to the
overall results (see Table 18). The maximum distances for each division, for each
experiment is as follows; Exp-1a={135, 117, 157, 124}, Exp-2a={143, 117, 153,
124}, Exp-3a={115, 117, 153, 124}. Exp-3a has the lowest (or equal) maximums
across all divisions.

Table 17 Analysis: Season 2002-2003 (two day case, 300 seconds)

Experiment Total Distance
Maximum
Distance

> 180
of paired teams playing

each other
Published 7884 171 0 1
1a (table 9) 4905 157 0 0
2a (table 12) 4862 153 0 0
3a (table 15) 4965 153 0 0

Table 18 Analysis: Season 2002-2003 (two day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 7884 171 0 1
1a (table 9) 4801 157 0 0
2a (table 12) 4862 153 0 0
3a (table 15) 4958 153 0 0

For the four day case, we only consider the 7200 second experiment as we are
likely to run the experiment for this amount of time if we were planning to use the
results, as the 300 second experiment does not always return a solution. In fact, ex-
periment 2b did not return a solution for the 7200 experiment so we cannot analyze
it here.

The summary is presented in Table 19. We do not show the published fixtures
as this season is classified as a two fixture season, so no data is available. Similar
to the two days case, experiment 3b has a larger overall distance (14246 cf 13813)

Sports Scheduling: Minimizing Travel for English Football Supporters 81

but has no fixtures that require a team to travel 180 miles or more. By comparison,
experiment 1b has four fixture that requires teams to travel 180 miles or more. In
fact, for experiment 3b, the maximum distance is only 168 miles. Experiment 1b has
five fixtures greater than this, the four above 180 miles and another of 169 miles.

We note that the maximum distances for each division are as follows; Exp-
1b={152, 166, 210, 202}; Exp-3b={144, 124, 162, 168}. Experiment 3b returns
the lowest maximums across all four divisions.

Table 19 Analysis: Season 2002-2003 (four day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
1b (table 9) 13813 210 4 0
2b (table 12) - - - -
3b (table 15) 14246 168 0 0

6.2 Season 2005-2006

We chose to analyze the 2005-2006 season as this appears to be the easiest season
as the gap in Table 9 is the lowest (0.01%) of all the seasons. However, it would
appear that the football authorities had problems scheduling these fixtures as for the
two day case there were 17 teams (see Table 20) that had to travel 180 miles or more
and for the four day case (see Table 21 and also Appendix B) there were 37 teams
that had to travel 180 miles or more.

At first sight, the fixtures that we have generated for the two fixture case seem to
be a lot better than the published fixtures. However, we need to bear in mind that the
2005-2006 season is classified as a four fixture season (see section 3.4) so it is not
really a fair comparison. However, we give our results to enable others to compare
against our results. We also note that of the two figures available (see Table 32) we
take the lowest as a comparison (i.e. of 10,626 and 11,333, we report 10,626 in this
analysis).

All the experiments produced similar results with the maximum travel distance
being either 160 or 161 miles. Experiment 3a produced a slighter higher overall
distance (5082 miles) but, like 2002-2003 we are guaranteed to have a maximum
distance traveled for each division. We have not shown the results for the 7200
second experiment, for the two day case, as the results are identical.

The maximum distances for each division are as follows; Exp-1a={161, 160, 112,
134}; Exp-2a={153, 160, 112, 134}; Exp-3a={128, 160, 111, 134}. Experiment 3a
returns the lowest (or equal) maximums across all for divisions.

The more interesting analysis is for the four fixture schedule. These results are
summarized in Table 21. We only provide the results for the 7200 second exper-
iments as the gap tends to be quite large when we only allow 300 seconds, if a
solution is found at all.

82 G. Kendall and S. Westphal

Table 20 Analysis: Season 2005-2006 (Two day case, 300 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 10626 304 17 3
1a (table 9) 5038 161 0 0
2a (table 12) 5040 160 0 0
3a (table 15) 5082 160 0 0

All the experiments give superior results to the published fixtures. Experiment 3b
only has four fixtures where teams have to travel more 180 miles or more, whereas
all the other solutions have at least eight teams traveling 180 miles or more and the
published fixtures has 37 teams. This does come at the expense of a slightly higher
overall total. If we look at the best solution, with regard to overall distance, (13785)
the result from experiment 3b is 499 miles higher. This represents an average of just
under three extra miles across the 184 fixtures. It would be up to the problem owner
to make the final judgement which solution they prefer.

We note that the maximum distances for each division are as follows; Exp-
1b={200, 220, 233, 219}; Exp-2b={203, 209, 182, 207}; Exp-3b={153, 209, 165,
199}. Experiment 3b returns the lowest (or equal) maximums across all for
divisions.

Table 21 Analysis: Season 2005-2006 (Four day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 21959 352 37 4
1b (table 10) 13785 233 8 0
2b (table 13) 13884 209 8 0
3b (table 16) 14284 209 4 0

6.3 Other Seasons

For completeness, we provide the summary tables, for the seasons not analyzed
above. As above, if the season was not classified as a four season fixture we cannot
provide the published fixture figures, although we still calculate our values for that
season. Also, similar to above, when a season is classified as a four fixture season,
we use the two fixture schedule that we indicated in the relevant section. We note
again that this is not really a fair comparison with the published fixtures, but we are
using the minimum distances in order to be as fair as possible.

Sports Scheduling: Minimizing Travel for English Football Supporters 83

6.3.1 2003-2004

As noted above, for the two day case, we are using an overall distance total of 8179
(see Section 3.2). As this season has been classified as a two fixture season, we
cannot provide the statistics for the published fixture for the four day case, but we
still generate our own set of fixtures.

Tables 22 and 23 summarizes the results for the 2003-2004 season.
The maximum distances for each division, for the two day case, are as follows;

Exp-1a={188, 156, 134, 165}; Exp-2a=128, 128, 134, 134; Exp-3a={104, 124, 134,
116}. Experiment 3a returns the lowest (or equal) maximums across all four divi-
sions

The maximum distances for each division, for the four day case, are as follows;
Exp-1b={158, 157, 248, 243}; Exp-2b=170, 159, 210, 202; Exp-3b={153, 148, 210,
202}. Experiment 3b returns the lowest (or equal) maximums across all for divi-
sions.

Table 22 Analysis: Season 2003-2004 (Two day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 8179 210 3 0
1a (table 9) 5209 188 1 0
2a (table 12) 5311 134 0 0
3a (table 15) 5377 134 0 0

Table 23 Analysis: Season 2003-2004 (Four day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
1b (table 10) 13966 248 4 0
2b (table 13) 13805 210 3 0
3b (table 16) 14465 210 3 0

6.3.2 2004-2005

Tables 24 and 25 summarizes the results for the 2004-2005 season.
The maximum distances for each division, for the two day case, are as follows;

Exp-1a={162, 219, 109, 124}; Exp-2a=161, 199, 109, 118; Exp-3a={128, 199, 209,
106}. Experiment 3a returns the lowest (or equal) maximums across all for divisions

The maximum distances for each division, for the four day case, are as follows;
Exp-1b={200, 242, 208, 182}; Exp-2b=165, 214, 197, 144; Exp-3b={165, 214, 183,
147}. Experiment 3b returns the lowest (or equal) maximums across all for divisions

84 G. Kendall and S. Westphal

Table 24 Analysis: Season 2004-2005 (Two day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 11012 257 9 0
1a (table 9) 5161 219 1 0
2a (table 12) 5212 199 1 0
3a (table 15) 5345 199 1 0

Table 25 Analysis: Season 2004-2005 (Four day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 21959 ??? ?? ?
1b (table 10) 13605 242 8 0
2b (table 13) 13782 214 8 0
3b (table 16) 14107 214 6 0

6.3.3 2006-2007

As noted above, for the two day case, we are using an overall distance total of 8439
(see Section 3.5). For the four day case, we are using a distance total of 23667

Tables 26 and 27 summarizes the results for the 2006-2007 season.

Table 26 Analysis: Season 2006-2007 (Two day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 8439 213 4 1
1a (table 9) 5308 157 0 0
2a (table 12) 5358 154 0 0
3a (table 15) 5376 154 0 0

Table 27 Analysis: Season 2006-2007 (Four day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 23667 364 42 2
1b (table 10) 14262 291 7 0
2b (table 13) 14619 212 8 0
3b (table 16) 14659 212 5 0

Sports Scheduling: Minimizing Travel for English Football Supporters 85

The maximum distances for each division, for the two day case, are as follows;
Exp-1a={135, 157, 109, 150}; Exp-2a=150, 154, 137, 150; Exp-3a={135, 154, 109,
143}. Experiment 3a returns the lowest (or equal) maximums across all for divisions

The maximum distances for each division, for the four day case, are as follows;
Exp-1b={174, 291, 202, 207}; Exp-2b=175, 212, 194, 199; Exp-3b={150, 212, 176,
183}. Experiment 3b returns the lowest (or equal) maximums across all for divisions

6.3.4 2007-2008

As noted above, for the two day case, we are using an overall distance total of 8644
(see Section 3.6). For the four day case, we are using a distance total of 22713

Tables 28 and 29 summarizes the results for the 2007-2008 season.
The maximum distances for each division, for the two day case, are as follows;

Exp-1a={150, 154, 140, 86}; Exp-2a=148, 153, 140, 86; Exp-3a={142, 153, 124,
86}. Experiment 3a returns the lowest (or equal) maximums across all for divisions

The maximum distances for each division, for the four day case, are as follows;
Exp-1b={205, 226, 176, 148}; Exp-2b=176, 202, 156, 141; Exp-3b={152, 202, 150,
141}. Experiment 3b returns the lowest (or equal) maximums across all for divisions

Table 28 Analysis: Season 2007-2008 (Two day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 8644 213 1 1
1a (table 9) 5034 154 0 0
2a (table 12) 5096 153 0 0
3a (table 15) 5132 153 0 0

Table 29 Analysis: Season 2007-2008 (Four day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 22713 311 17 2
1b (table 10) 14089 226 6 0
2b (table 13) 14011 202 2 0
3b (table 16) 14471 202 2 0

6.3.5 2008-2009

As noted above, for the two day case, we are using an overall distance total of 9312
(see Section 3.7). As this season has been classified as a two fixture season, we
cannot provide the statistics for the published fixture for the four day case, but we
still generate our own set of fixtures.

Tables 30 and 31 summarizes the results for the 2008-2009 season.

86 G. Kendall and S. Westphal

The maximum distances for each division, for the two day case, are as follows;
Exp-1a={143, 190, 152, 199}; Exp-2a=143, 153, 152, 145; Exp-3a={143, 153, 124,
145}. Experiment 3a returns the lowest (or equal) maximums across all for divisions

The maximum distances for each division, for the four day case, are as follows;
Exp-1b={192, 307, 208, 213}; Exp-2b=171, 190, 184, 188; Exp-3b={161, 199, 156,
180}. Experiment 3b returns the lowest (or equal) maximums for divisions, except
for one, where it returns a maximum of 199 in experiment 3b, whereas experiment
2b returned a maximum of 190. This season’s results are also different in that ex-
periment 3b returns the lowest overall total.

Table 30 Analysis: Season 2008-2009 (Two day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
Published 9312 189 2 1
1a (table 9) 5244 199 2 0
2a (table 12) 5365 153 0 0
3a (table 15) 5385 153 0 0

Table 31 Analysis: Season 2008-2009 (Four day case, 7200 seconds)

Experiment Total Distance Max Distance # > 180
of paired teams playing

each other
1b (table 10) 14671 307 7 0
2b (table 13) 14962 190 4 0
3b (table 16) 14946 199 4 0

7 Conclusion

We have presented a single model that minimizes the distance traveled by football
supporters over the holiday season. The model is able to produce two or four com-
plete fixtures, depending on the requirements of the football authorities. Several ex-
periments were conducted, varying the parameters of the model. The model is able
to produce solutions which are superior to those that are currently used. Previous
discussions with the football league have suggested that we meet all the require-
ments, but it would be useful to hold further discussions with the authorities, as well
as the police, in order to establish whether the model needs further refinement.

Of the three experiments that we conducted we would suggest that the option
to limit each division to a maximum travel distance would probably be the most
suitable to be used in practise as, although it usually produces slightly higher to-
tal distances, the solutions produced would probably be seen as being fairer when
viewed by the supporters.

For our future work, the model presented in this chapter opens up the possibility
to carry out more in-depth and what-if analysis on the fixtures for the holiday period.

Sports Scheduling: Minimizing Travel for English Football Supporters 87

For example, are we able to reduce pair clashes whilst still minimizing the distance.
If this is possible it could make significant savings for the police as they will not have
to devote the same amount of resources to police the fixtures. We would also like to
investigate weighting each pair clash, and including that in the objective function.
This would be interesting as, at the moment, a pair clash between Liverpool and
Everton, for example, is the same as a pair clash between Liverpool and Tranmere.
However, the police would rather have Liverpool and Tranmere playing at home on
the same day as this will be easier to police that the Merseyside Derby.

We will also turn our attention to generating schedules for the entire season.
Given the experiences reported in this chapter, we do not believe that we will be
able to produce optimal solutions and we feel that a (meta-)heuristic approach will
be required.

Appendix

Summary of Published Fixtures and Previous Results

The 2005-2006 Fixtures Where Supporters Had to Travel
180 Miles or More

This appendix lists the 37 fixtures from the published fixture for the 2005-2006
season where a team is required to travel 180 miles or more. The figure in brackets
is the distance in miles.

Table 32 This table summaries the distances traveled for the published fixtures (i.e. those that
were actually played) and also the two fixture schedules that were generated in two previous
papers (Kendall [2008]; Kendall et al [2010b]) in order to provide a comparison with the
results reported here. Note that there are slight differences from the figures shown in Kendall
[2008] for 2002-2003 (7791 cf 7784), 2003-2004 (8168 cf 8179) and 2005-2006 (10631 cf
10626) due to minor errors found in the input data. Where N/A is specified, this indicates that
this season did not produce a four fixture schedule. Only two fixture distances are shown for
Kendall [2008]; Kendall et al [2010b] as these papers did not generate four fixture schedules,
with ** indicating that that paper did not generate schedules for those seasons.

Published Kendall [2008] Kendall et al [2010b]
Season Two Day Four Day Two Day Two Day

2002-2003 7784 N/A 6040 5243
2003-2004 8179 N/A 6359 5464
2004-2005 11,012/12,261 23,273 6784 5365
2005-2006 10,626/11,333 21,959 6917 5234
2006-2007 11,761/11,906 23,667 ** 5713
2007-2008 11,402/11,311 22,713 ** 5366
2008-2009 9312 N/A ** 5564

88 G. Kendall and S. Westphal

1. Darlington vs Torquay (352)
2. Plymouth Argyle vs Leeds (321)
3. Plymouth Argyle vs Preston (304)
4. Newcastle vs Charlton (287)
5. Fulham vs Sunderland (281)
6. Tottenham vs Newcastle (280)
7. Hartlepool vs Southend (276)
8. Blackpool vs Southend (271)
9. Blackburn vs Portsmouth (268)

10. Hartlepool vs Swindon (267)
11. Bournemouth vs Scunthorpe (258)
12. Stockport vs Torquay (257)
13. Bournemouth vs Barnsley (242)
14. Norwich vs Preston (237)
15. Huddersfield vs Gillingham (235)
16. Swansea vs Gillingham (233)
17. QPR vs Burnley (232)
18. Darlington vs Barnet (230)
19. Norwich vs Burnley (229)
20. Tranmere vs Yeovil (229)
21. Doncaster vs Yeovil (228)
22. Everton vs Charlton (227)
23. Torquay vs Rushden & D’monds (224)
24. West Ham United vs Wigan (214)
25. Boston vs Carlisle (212)
26. Manchester City vs Chelsea (210)
27. Wolverhampton vs Plymouth Argyle (209)
28. Bradford vs Brentford (205)
29. Southampton vs Sheffield United (200)
30. Torquay vs Wycombe (199)
31. Manchester City vs Tottenham (199)
32. Arsenal vs Man Utd (197)
33. Stoke vs Ipswich (193)
34. Hull vs Ipswich (192)
35. Grimsby vs Carlisle (187)
36. Colchester vs Scunthorpe (185)
37. Brentford vs Swansea (182)

Number of Allowed Pairing Violations

Table 33 shows the number of pairing violations that were present in the published
fixtures. We allow ourselves the same number of violations in our solutions. Note
that if (for example) Manchester United and Manchester are both playing at home,
this counts as one pairing violation. In Kendall [2008] the same counts were used

Sports Scheduling: Minimizing Travel for English Football Supporters 89

Table 33 Number of Allowed Pairing Violations

Year γ (Two fixtures) γ (Four fixtures)
2002-2003 9 18
2003-2004 11 22
2004-2005 10 20
2005-2006 13 26
2006-2007 11 22
2007-2008 12 24
2008-2009 10 20

but each violation was counted as two. Further note that the number of pairing vio-
lations allowed for the four fixture schedule is simply double that of the two fixture
schedule.

References

Anagnostopoulos, A., Michel, L., van Hentenryck, P., Vergados, Y.: A simulated annealing
approach to the traveling tournament problem. Journal of Scheduling 9, 177–193 (2006),
doi:10.1007/s10951-006-7187-8

Costa, D.: An evolutionary tabu search algorithm and the nhl scheduling problem. In: INFOR,
vol. 33, pp. 161–178 (1995)

Crauwels, H., van Oudheusden, D.: A generate-and-test heuristic inspired by ant colony opti-
mization for the traveling tournament problem. In: Burke, E.K., Causmaecker, P.D. (eds.)
Proceedings of the 4th International Conference on the Practice and Theory of Automated
Timetabling, PATAT 2002, pp. 314–315 (2002)

Dinitz, J., Lamken, E., Wallis, W.: Scheduling a Tournament. In: CRC Handbook of Com-
binatorial Designs. CRC Press (2006) (a previous edition of this book was published in
1995)

Easton, K., Nemhauser, G.L., Trick, M.A.: The traveling tournament problem description
and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–3349. Springer,
Heidelberg (2001)

Easton, K., Nemhauser, G.L., Trick, M.A.: Solving the travelling tournament problem: A
combined integer programming and constraint programming approach. In: Burke, E.K., De
Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 100–109. Springer, Heidelberg
(2003); a previous version of this paper was published in the PATAT conference

Easton, K., Nemhauser, G., Trick, M.: Sports Scheduling, ch. 52, pp. 52-1–52-19. Chapman
& Hall (2004)

Elf, M., Jünger, M., Rinaldi, G.: Minimizing breaks by maximizing cuts. Operations Research
Letters 31, 343–349 (2003)

Kendall, G.: Scheduling English football fixtures over holiday periods. Journal of the Opera-
tional Research Society 59(6), 743–755 (2008)

Kendall, G., Knust, S., Ribeiro, C., Urrutia, S.: Scheduling in sports: An annotated bibliogra-
phy. Computers & Operations Research 37, 1–19 (2010a)

90 G. Kendall and S. Westphal

Kendall, G., McCollum, B., Cruz, F., McMullan, P.: Scheduling English football fixtures:
Consideration of two conflicting objectives. In: McCollum, B., Burke, E. (eds.) Pro-
ceedings of the 8th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2010), pp. 1–15 (2010b)

Knust, S.: Classification of literature on sports scheduling (2009),
http://www.inf.uos.de/knust/sportssched/sportlit_class/
(last accessed on October 15, 2009)

Rasmussen, R., Trick, M.A.: Round robin scheduling a survey. European Journal of Opera-
tional Research 188, 617–636 (2008)

Ribeiro, C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. In: Pro-
ceedings of the 5th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2004), pp. 323–342 (2004)

Rollin, R., Rollin, J. (eds.): Rothmans Football Yearbook 2002-2003. Headline Book
Publishing, London (2002) ISBN: 0-7553-1100-0

Rollin, R., Rollin, J. (eds.): Sky Sports Football Yearbook 2003-2004. Headline Book
Publishing, London (2003) ISBN: 0-7553-1228-7

Rollin, R., Rollin, J. (eds.): Sky Sports Football Yearbook 2004-2005. Headline Book
Publishing, London (2004) ISBN: 0-7553-1311-9

Rollin, R., Rollin, J. (eds.): Sky Sports Football Yearbook 2005-2006. Headline Book
Publishing, London (2005) ISBN: 0-7553-1385-2

Rollin, R., Rollin, J. (eds.): Sky Sports Football Yearbook 2006-2007. Headline Book
Publishing, London (2006) ISBN: 0-7553-1526-X

Rollin, R., Rollin, J. (eds.): Sky Sports Football Yearbook 2007-2008. Headline Book
Publishing, London (2007) ISBN: 0-7553-1664-9

Rollin, R., Rollin, J. (eds.): Sky Sports Football Yearbook 2008-2009. Headline Book
Publishing, London (2008) ISBN: 0-7553-1820-9

Trick, M.: Traveling tournament instances (2009),
http://mat.gsia.cmu.edu/TOURN (last accessed on October 16, 2009)

Urrutia, S., Ribeiro, C.: Minimizing travels by maximizing breaks in round robin tournament
schedules. Electronic Notes in Discrete Mathematics 18-C, 227–233 (2004)

de Werra, D.: Scheduling in sports. In: Studies on Graphs and Discrete Programming, pp.
381–395. North-Holland (1981)

de Werra, D.: Some models of graphs for scheduling sports competitions. Discrete Applied
Mathematics 21, 47–65 (1988)

Westphal, S.: Scheduling the german basketball league. Under review (2011)
Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem.

In: Proceedings of the Practice and Theory of Automated Timetabling (PATAT 2010), pp.
417–426 (2010)

http://www.inf.uos.de/knust/sportssched/sportlit_class/
http://mat.gsia.cmu.edu/TOURN

Educational Timetabling

Jeffrey H. Kingston

Abstract. This chapter is an introduction to the problems of timetabling educational
institutions such as high schools and universities. These are large problems with
multiple sources of NP-completeness, for which robust solvers do not yet exist, al-
though steady progress is being made. This chapter presents the three main problems
found in the literature: high school timetabling, university examination timetabling,
and university course timetabling. It also examines some major subproblems of
these problems: student sectioning, single student timetabling, and room assign-
ment. This chapter also shows how real-world instances of these problems, with
their many constraints, can be modelled in full detail, using a case study in high
school timetabling as an example.

1 Introduction

Educational timetabling is not a single problem. For each kind of timetable needed
by each kind of institution there is a separate problem with a separate literature.
These literatures are too large to survey comprehensively within the limits of a
book chapter, so only a selection, including recent survey papers, is referenced here.
Schaerf (1999) is a good general survey.

Solving a real instance of an educational timetabling problem (an instance taken
without simplification from an actual institution) by hand can take weeks of tedious
and error-prone work by an expert. Hand-generated timetables are still common,
although automated or semi-automated methods are making inroads. For example,
the traditional way to timetable students in North American universities, which is to
publish lists of course sections and times and expect the students to create their own
timetables and sign up for the sections they want, is giving way to a semi-automated
method, in which the number of sections of each course and the times they run may
still be decided by hand, but the students’ timetables are generated automatically.

Jeffrey H. Kingston
School of Information Technologies, University of Sydney, Australia
e-mail: jeff@it.usyd.edu.au

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 91
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_4, c© Springer-Verlag Berlin Heidelberg 2013

jeff@it.usyd.edu.au

92 J.H. Kingston

The lead in educational timetabling has always been given by researchers who
are trying to solve real problems from real institutions. This practical orientation
has informed the selection of topics for this chapter.

2 Educational Timetabling Problems

The educational timetabling literature mainly studies problems found in high schools
(schools for older children) and universities. High schools need to timetable their
normal activities once per year, or sometimes more often. This is the high school
timetabling problem (Sect. 4). Universities need to timetable their normal activ-
ities once per semester. This is called the university course timetabling problem
(Sect. 6), to distinguish it from the other main university problem, the (university)
examination timetabling problem (Sect. 5): the timetabling of examinations after the
end of semester. There are other kinds of institutions and problems, but educational
timetabling, as it appears in the literature, is essentially about these three problems.

When the number of students enrolled in a high school or university course is
large, the course may need to be broken into sections: copies of the course, each with
its own time, room, and teacher. Each student enrolled in the course must then be
assigned to one of its sections. If these assignments are made early in the timetabling
process, the result is the student sectioning problem (Sect. 7), which aims to assign
students to sections so as to facilitate the assignment of times to sections later, by
minimizing the number of pairs of sections that share at least one student.

A phase is one part of a solver’s work, carried out more or less independently of
its other phases. Student sectioning is one example of a phase. Other commonly
encountered examples are single student timetabling (Sect. 8), the creation of a
timetable for one student after courses are broken into sections and the sections are
assigned times, and room assignment (Sect. 9), the assignment of suitable rooms
to events after the events’ times are fixed. It is often necessary to divide a solve
process into phases when faced with large, real instances of timetabling problems,
even though it usually rules out all hope of finding a globally optimal solution. This
makes individual phases worthy subjects of study in their own right.

All these problems are concerned with assigning times and resources (students,
teachers, rooms, and so on) to events so as to avoid clashes (cases where a resource
attends two events at the same time) and violations of various other constraints, such
as unavailable times for resources, or restrictions on when events may occur. Some
times and resources may be preassigned; others are left open to the solver to assign.
Informally, a timetabling problem is any problem that fits this description.

Several problems outside the scope of this chapter are timetabling problems by
this definition. Nurse rostering is one example. The events are the shifts. The events’
times are preassigned, and resources (nurses in this case) must be assigned to them.
Another example is sport competition timetabling. The events are the matches, to
which times must be assigned. Their resources, largely preassigned, are the teams
and venues. These problems are always treated separately, however, and rightly so,
because their constraints, other than the avoid-clashes constraint, are very different.

Educational Timetabling 93

Many timetabling problems can be proved to be NP-complete using a reduction
from graph colouring due to Welsh and Powell (1967). For each node of the graph
to be coloured, create one event of duration 1. For each edge, create one resource
preassigned to the two events corresponding to the edge’s endpoints. Then assigning
a minimal number of colours to the nodes so that no two adjacent nodes have the
same colour is equivalent to assigning a minimal number of times to the events so
that no resources have clashes.

The inverse of this construction is the clash graph, a widely used conceptual
aid. It has one node for each event. An edge joins each pair of events, weighted
by the number of resources the two events have in common (Figure 1). Colouring

3

4

0

3

1

0

4

1

0

2

Fig. 1 A clash graph. Each node represents one event; each edge is weighted by the number
of resources the events at its endpoints have in common.

this graph to minimize the total weight of edges that join nodes of the same colour is
equivalent to assigning a time to each event which minimizes the number of clashes.

It would be a mistake to consider educational timetabling as a branch of graph
colouring, however. Timetabling problems have many kinds of constraints. Each
may be a source of NP-completeness in its own right, and much of the difficulty lies
in handling all of them together. For example, ensuring that students have breaks
between examinations is a travelling salesman problem (Sect. 5), balancing teacher
workloads is bin packing, and so on (Cooper and Kingston, 1996).

3 Educational Timetabling Models

For most of its history, educational timetabling research has been very fragmented.
Each research group has used its own definitions of the problems, and its own data in
its own format. There has been little exchange of data, except for one set of instances
of the examination timetabling problem.

What is primarily needed to break down these barriers is for researchers to reach
consensus on a model, or format, in which instances and solutions can be expressed,
including unambiguous rules for calculating the cost of solutions. The terms ‘model’
and ‘format’ are roughly interchangeable; ‘model’ emphasizes the ideas, ‘format’
emphasizes the concrete syntax that realizes those ideas.

94 J.H. Kingston

Pure algorithmic problems, such as graph colouring and the travelling salesman
problem, are easy to model. Real timetabling problems have many details which
vary from institution to institution, and modelling them is a daunting problem—so
much so, that it is the largest obstacle to progress in many cases.

Collaborative work on modelling began with a discussion session at
the first Practice and Theory of Automated Timetabling (PATAT) conference
(Cumming and Paechter, 1995). The work has been carried on continuously since
then, primarily within the PATAT conferences. There have been many arguments
and some wrong turnings, but the fog is lifting, and data exchange is now becoming
common.

One issue has been whether the problems should be modelled in full detail,
or simplified to highlight their essence and reduce the implementation burden for
solvers. Researchers strive to improve on previous work, and one way to improve is
to work with more realistic data, so this issue is resolving itself as time passes.

A second issue has been the choice of level of abstraction. An example of a very
abstract format is the input language of an integer programming package. Input in
this format allows many kinds of constraints to be expressed, but it is too general
to permit the use of solution methods specific to timetabling. Successful formats
instead offer a long but finite list of concrete (timetabling-specific) constraint types.
Modelling each timetabling problem separately, rather than using a single model
for all of them, also makes for concreteness, and has turned out to be best, if only
because the work needed to reach a consensus is less, and researchers are more
likely to take an interest when their own problem is discussed specifically.

Some generalizations are natural and desirable, however. For example, a model
which treats teachers, students, and rooms separately must define a ‘no clashes’
constraint for each kind of entity. Generalizing to resources, which are entities that
attend events and may represent individual students, groups of students, teachers,
rooms, or anything else (but not times), simplifies the model. Allowing arbitrary sets
of times to be defined and named, rather than, for example, just the days and weeks
(and similarly for resources), is another useful generalization, as is recognizing each
source of cost in a solution as a violation of some kind of constraint. The value of a
good generalization is often underestimated: it simplifies solvers as well as models.

The oldest well-known educational timetabling model, and the most successful
as measured by the amount of data sharing effected, is the one used by the Toronto
data set, which contains 13 real instances of the examination timetabling problem
collected by Carter et al. (1996). In recent years it has been criticised for being too
simple: it does not model rooms, and its constraints are implicit and so have fixed
weights. It is discussed in more detail in Sect. 5.

Another landmark is a format created for nurse rostering in 2005. It models
many more constraints than the Toronto data set does, and it models them explicitly,
which allows individual instances to choose to include them or not, and to vary their
weights. It also uses XML, which is verbose but has the great advantage of being
clear and definite. At the time of writing, 20 instances were available in the current
version of the format, collected from researchers in 13 countries (Curtois, 2012).

Educational Timetabling 95

As a case study in modelling educational timetabling problems, the remainder of
this section presents a model of the high school timetabling problem called XHSTT
(Post, 2012a), developed recently by a group of high school timetabling researchers.
The model, which was influenced by the nurse rostering model just described, was
refined over several years and tested against real instances. It offers 15 types of
constraints, has been used to model about 30 real instances from 10 countries so far,
and has achieved widespread acceptance within the high school timetabling research
community. The following description, written by this author, is from Post (2012b).
Syntactic details are omitted; they may be found online (Kingston, 2009).

An XHSTT file is an XML file containing one archive, which consists of a set
of instances of the high school timetabling problem, plus any number of solution
groups. A solution group is a set of solutions to some or all of the archive’s instances,
typically produced by one solver. There may be several solutions to one instance in
one solution group, for example solutions produced using different random seeds.

Each instance has four parts. The first part defines the instance’s times, that is, the
individual intervals of time, of unknown duration, during which events run. Taken in
chronological order these times form a sequence called the instance’s cycle, which
is usually one week. Arbitrary sets of times, called time groups, may be defined,
such as the Monday times or the afternoon times. A day is a time group holding
the times of one day, and a week is a time group holding the times of one week. To
assist display software, some time groups may be labelled as days or weeks.

The second part defines the instance’s resources: the entities that attend events.
The resources are partitioned into resource types. The usual resource types are a
Teachers type whose resources represent teachers, a Rooms type of rooms, a Classes
type of classes (sets of students who attend the same events), and a Students type of
individual students. However, an instance may define any number of resource types.
Arbitrary sets of resources of the same type, called resource groups, may be defined,
such as the set of Science laboratories, the set of senior classes, and so on.

The third part defines the instance’s events: meetings between resources. An
event contains a duration (a positive integer), a time, and any number of resources
(sometimes called event resources). The meaning is that the resources are occupied
attending the event for duration consecutive times starting at time. The duration is a
fixed constant. The time may be preassigned or left open to the solver to assign. Each
resource may also be preassigned or left open to the solver to assign, although the
type of resource to assign is fixed. Arbitrary sets of events, called event groups, may
be defined. A course is an event group representing the events in which a particular
class studies a particular subject. Some event groups may be labelled as courses.

For example, suppose class 7A meets teacher Smith in a Science laboratory for
two consecutive times. This is represented by one event with duration 2, an open
time, and three resources: one preassigned Classes resource 7A, one preassigned
Teachers resource Smith, and one open Rooms resource. Later, a constraint will
specify that this room should be selected from the ScienceLaboratories resource
group, and define the penalty imposed on solutions that do not satisfy that constraint.

If class 7A meets for Science several times each week, several events would be
created and placed in an event group labelled as a course. However, it is common in

96 J.H. Kingston

high school timetabling for the total duration of the events of a course to be fixed, but
for the way in which that duration is broken into events to be flexible. For example,
class 7A might need to meet for Science for a total duration of 6 times per week,
in events of duration 1 or 2, with at least one event of duration 2 during which the
students carry out experiments. One acceptable outcome would be five sub-events,
as these fragments are called, of durations 2, 1, 1, 1, and 1. Another would be three
sub-events, of durations 2, 2, and 2. This is modelled in XHSTT by giving a single
event of duration 6. Later, constraints specify the ways in which this event may be
split into sub-events, and define the penalty imposed on solutions that do not satisfy
those constraints.

The last part of an instance contains any number of constraints, representing
conditions that an ideal solution would satisfy. At present there are 15 types of
constraints, stating that events should be assigned times, prohibiting clashes, and so
on. The full list appears in Table 1.

Table 1 The 15 types of XHSTT constraints, with informal explanations of their meaning

Name Meaning
Assign Resource constraint Event resource should be assigned a resource
Assign Time constraint Event should be assigned a time
Split Events constraint Event should split into a constrained number of sub-events
Distribute Split Events constraint Event should split into sub-events of constrained durations
Prefer Resources constraint Event resource assignment should come from resource group
Prefer Times constraint Event time assignment should come from time group
Avoid Split Assignments constraint Set of event resources should be assigned the same resource
Spread Events constraint Set of events should be spread evenly through the cycle
Link Events constraint Set of events should be assigned the same time
Avoid Clashes constraint Resource’s timetable should not have clashes
Avoid Unavailable Times constraint Resource should not be busy at unavailable times
Limit Idle Times constraint Resource’s timetable should not have idle times
Cluster Busy Times constraint Resource should be busy on a limited number of days
Limit Busy Times constraint Resource should be busy a limited number of times each day
Limit Workload constraint Resource’s total workload should be limited

Each type of constraint has its own specific attributes. For example, a Prefer
Times constraint lists the events whose time it constrains, and the preferred times
for those events, while a Link Events constraint lists sets of events which should
be assigned the same time. Each constraint also has attributes common to all con-
straints, including a Boolean value saying whether the constraint is hard or soft, and
an integer weight.

Traditionally, a hard constraint is one that must be satisfied if the timetable is
to be used at all, although in practice a few violations of hard constraints are often
acceptable, since the school can overcome them by undocumented means (moving a
class to after school hours, assigning the deputy principal to a class with no teacher,
and so on). A soft constaint, on the other hand, is a constraint that is violated quite
routinely, although the total cost of those violations should be minimized.

Educational Timetabling 97

As stated above, solutions are stored separately from instances, in solution groups
within the archive file. A solution is a set of sub-events, each containing a duration, a
time assignment, and some resource assignments. A solution’s infeasibility value is
the sum over the hard constraints of the number of violations of the constraint times
its weight. Its objective value is similar, but using the soft constraints. One solution
is better than another if it has a smaller infeasibility value, or an equal infeasibility
value and a smaller objective value. A web site (Kingston, 2009) has been created
which calculates the infeasibility and objective values of the solutions of an archive,
and displays comparative tables, lists of violations, and so on.

It used to be said that real instances of timetabling problems required too many
types of constraints for complete modelling to be possible. The nurse rostering and
high school timetabling models disprove this; they show that careful elucidation of
constraints, aided by suitable generalizations, can lead to complete models of real
instances which are small enough to be usable. As instances appear that require
other types of constraints, those constraints can be added gradually.

4 High School Timetabling

In the high school timetabling problem, a set of events of arbitrary integer duration
is given, each of which contains a time and some resources: students, classes (sets
of students who attend the same events, at least for the most part), teachers, and
rooms. The time and resources may be preassigned to specific values, or left open
to the solver to assign. The meaning is that the resources assigned to the event are
occupied for duration consecutive times starting at time. The problem is to assign the
unpreassigned values so as to avoid clashes and satisfy a variety of other constraints,
such as those listed in Table 1 (Sect. 3).

When student sectioning (Sect. 7) is needed, it is carried out as a separate initial
phase. Accordingly, it is usually considered not to be part of high school timetabling
proper. This is one way in which high school timetabling differs from university
course timetabling. Another is that the high school problem timetables groups of
students (classes) which are usually occupied together for all, or almost all, of the
times of the cycle, whereas the university problem timetables individual students
whose timetables contain a significant amount of free time. Some clashes are prob-
ably inevitable among the thousands of individual university students’ timetables,
whereas clashes are not acceptable for classes.

A major division exists within high school timetabling instances with respect to
teachers. On one side lie schools whose teachers are mostly part-time and tend to be
preassigned to specific courses, and the emphasis is on providing timetables for the
teachers which require their attendance for a minimal number of days per week and
give them few idle times (free times in between busy times) on those days. On the
other side lie schools whose teachers are mostly full-time, making it impractical to
preassign teachers to specific courses except in the senior years, and the emphasis
is on finding a timetable with teacher assignments that assign a qualified teacher to
every lesson of every course.

98 J.H. Kingston

Schmidt et al. (1980) comprehensively surveys the early history of high school
timetabling research, including a description of a very basic version of the problem
called class-teacher timetabling, which can be solved in polynomial time by edge
colouring. Appleby et al. (1960), Gotlieb (1962), and De Werra (1971) are examples
of papers that were influential in their day. Carter et al. (1997) is a good snapshot of
a more recent era. The PATAT 2012 conference (Kjenstad, 2012) contains several
high school timetabling papers, most of them stimulated by the Third International
Timetabling Competition (Post, 2012b).

The only recent survey is Pillay (2010). It classifies about 40 papers which solve
high school timetabling problems. Their methods include (in decreasing order of
popularity) evolutionary algorithms, tabu search, integer programming, simulated
annealing, and constraint programming. Many papers hybridize several methods.
All of these papers pre-date the creation of standard benchmarks (for which see
Sect. 3), so any attempt to rank them would be futile. At the time of writing the only
paper with any objective claim to eminence is Fonseca et al. (2012), which describes
the work that won the Third International Timetabling Competition (Post, 2012b).
A more recent on-line version of this survey (Pillay, 2012) lists many more papers.

5 Examination Timetabling

The (university) examination timetabling problem has one event for each course,
representing the course’s final examination. The durations of the events may differ,
although that is often a minor consideration. Each event’s resources are the students
who attend the course, and possibly a room. The aim is to assign a time to each event,
avoiding clashes in the students’ examination timetables. Room assignment (Sect. 9)
may be required, and it is characteristic to include proximity constraints, expressing
in some way the undesirability of attending two examinations close together in time.
Proximity constraints might prohibit two examinations for one student on one day,
for example, or two consecutive examinations ignoring day boundaries.

Insight into proximity constraints can be gained from the unrealistic special case
where the number of examinations equals the number of times, and examinations
may not occur simultaneously, ruling out all possibility of clashes. (This could arise
in practice if the examinations are clustered before they are timetabled.) If there are
two examination sessions per day, then minimizing the number of cases where a
student attends two examinations in one day is equivalent to finding a maximum
matching of minimum weight in the clash graph, for which there is a polynomial
time algorithm. Alternatively, ignoring day boundaries and simply minimizing the
number of cases where a student attends examinations at two consecutive times is a
travelling salesman problem in the clash graph and so is NP-hard (Figure 2).

Despite involving many of the same resources, examination timetabling is much
easier to model than university course timetabling. Coming as it does later in the
semester, after enrolments have settled, it has not the dynamic character of course
timetabling. Student sectioning is not required, even if different examinations are
given to different sections, because it has already been done; and room requirements

Educational Timetabling 99

3

4

0

3

1

0

4

1

0

2 3

4

0

3

1

0

4

1

0

2

Fig. 2 A clash graph, showing (left) a minimum matching, which defines a pairing of the
events which minimizes the number of cases where a resource attends both events of a pair;
and (right) a travelling salesman path, which defines an ordering of the events which mini-
mizes the number of cases where a resource attends two consecutive events. Example taken
from Kingston (2010).

are usually more uniform, except perhaps for a few practical examinations which
take place in laboratories.

Examination timetabling has a relatively long history of use of benchmark data,
specifically the 13 real instances of the Toronto data set (Carter et al., 1996), still
available and in use. These have quite elaborate proximity constraints, assigning a
high penalty for two consecutive examinations, a lower penalty for examinations
separated by one time, and so on; but these and the student no-clashes constraints
are the only constraints. A more recent data set used by the Second International
Timetabling Competition follows a more realistic model (McCollum et al., 2012).
A guide to examination timetabling data sets is available online (Qu, 2012).

The leading recent survey is Qu et al. (2009), online at (Qu, 2012), a major work
which describes other surveys, models, methods, and data sets, and cites 160 papers
and 15 PhD theses. Carter (1986) and Carter et al. (1996) are still worth reading.

6 University Course Timetabling

University course timetabling aims to break university courses into sections, and
assign times, students, rooms, and possibly instructors to the sections, subject to
constraints like those of high school timetabling, only applied to individual students
(each of whom has a distinct timetable) rather than to groups of students.

A static timetabling problem is one that is set up once, solved, and used. There
may be some exploration of alternative scenarios, but once an acceptable timetable
has been found, the work is finished. In contrast, a dynamic problem is one whose
requirements and solution evolve over time. Most timetabling problems are static,
and they are also small enough to be set up by a single person, the local expert.

University course timetabling is different. It is so large that no single person ever
understands it all; local experts are scattered across the faculties and departments of

100 J.H. Kingston

the university, working largely independently of each other. It takes months to set
up the problem, and even after semester begins there are continuous changes to the
timetables of individual students, and some changes to the events as well (opening
and closing sections in response to late changes in student demand).

Traditionally, the tiger was tamed by re-using as much of the previous year’s
timetable as possible (more than deserved to be, in many cases), and by partitioning
the problem. The central administration controlled the main lecture theatre block,
the departments controlled the rest. Each faculty made sure that students working
entirely within the faculty could get workable timetables, but liaison across faculties
was limited to the bare essentials. And if something did not work, a student was
simply advised not to do it.

Vestiges of this approach can still be found, but its deficiencies are so glaring
(poor room utilization and unhappy students, who are often paying customers these
days) that it cannot survive for much longer. At the same time, the presence of a
web browser on every desk has resolved the dilemma of a non-partitionable problem
whose data are distributed: the departments are required to send their data via the
web to the centre, which owns all the resources and does all the timetabling.

So the problem as it stands today is to timetable the entire university, not one
department or faculty, including delivering an individual timetable to every student.
Most changes after the start of semester can be handled by single student timetabling
(Sect. 8), so the focus is on finding a good timetable before semester begins.

Two general approaches to university course timetabling may be distinguished.
Emphasis may be placed on ensuring that certain sets of courses can be taken in
combination, because students need them to satisfy the degree rules. Such sets of
courses are called curricula, and this approach to the problem is called curriculum-
based university course timetabling. Although ultimately each student must receive
an individual timetable, in its pure form the curriculum-based approach does not
utilize enrolment data for individual students.

In universities where students have large-group lectures and small-group tutorials
and laboratories, there is an important sub-problem: assigning times and rooms to
the lectures, given some basic information about what combinations of courses the
students are likely to choose. Curriculum-based timetabling addresses this kind of
problem, and serves as a model of what it may be worthwhile to do before the
dynamic phase of university course timetabling begins.

Declaring a set of events to be a curriculum amounts to saying that a number
of students will be taking those events in combination. In high school timetabling
the same declaration is made by placing a preassigned class resource into the
events. This relationship between curriculum-based timetabling and high school
timetabling has been exploited in a few papers, such as Nurmi and Kyngäs (2008).

The alternative to curriculum-based timetabling is enrolment-based university
course timetabling, in which the enrolment data for individual students are used
to determine which courses should be able to be taken in combination.

The two approaches are not mutually exclusive. Student enrolment data often
becomes available fairly late, in which case curriculum-based timetabling may be

Educational Timetabling 101

used early to lay out the basic structure of the timetable (such as the times of large-
group lectures), while enrolment-based timetabling is used later to fine-tune it.

When constructing a timetable with sections based on student enrolment data,
a basic dilemma emerges: whether to assign students to sections before or after
assigning times to sections. Neither alternative is fully satisfactory, so, in practice,
implementations of both approaches always include some way of reconsidering the
first phase after completing the second.

Assigning times first has the advantage that students can then be assigned to
sections using single student timetabling (Sect. 8), which is known to work well. If
the result is poor, the time assignment can be adjusted.

A semi-automatic version of this method is used at the author’s university. Initial
values for the number of sections of each course, and their times, are chosen man-
ually, based on curricula, history, and incomplete student enrolment data. Then a
dynamic process of refinement begins. As student enrolment information improves,
dummy runs of single student timetabling applied to each student (but not published
to the students) are carried out at the centre. Results are distributed to departmental
coordinators, who respond by opening and closing sections as enrolment numbers
become clearer, and moving sections left underfilled by single student timetabling
to other and hopefully better times, subject to room and teacher availability.

It is possible that a fully automated timetabling system could be built by this
process of repeated time assignment then testing by single student timetabling. Even
if single student timetabling is highly optimized and virtually instantaneous for one
student, it will still take several seconds to timetable every student, which is too
slow to support an extensive search through the space of time assignments. So there
would probably be time to re-timetable only those students directly affected by each
time adjustment. But this method does not seem to have ever been tried, except by
Aubin et al. (1989), who used it to timetable ‘a large high school in Montreal’.

Assigning students first leads naturally to a three-phase method (Carter, 2001).
First, assign students to sections before times are assigned, aiming to minimize the
number of pairs of sections with students in common. This is the student sectioning
problem, discussed in detail in Sect. 7. Second, assign times to the sections. This
is a graph colouring problem similar to examination timetabling without proximity
constraints. Finally, make one pass over the entire student list, re-timetabling each
student using single student timetabling. (Experience at the author’s university has
shown that two or even three passes help to even out section numbers.)

Only two systems which solve the full university course timetabling problem
have been published in detail. The first is the system described in Carter (2001),
which has been in use since 1985. It is specific to one university, although of course
the ideas are portable. It performs enrolment-based timetabling using the three-
phase method just described.

The second system, UniTime (2012), is free, open-source, and not specific to one
university—a combination of features apparently unavailable elsewhere. It offers
both curriculum-based and enrolment-based timetabling, following Carter (2001)
for the latter, and is in use at several universities, although development continues.
A long list of papers is given on its web site (UniTime, 2012); only a selection can be

102 J.H. Kingston

cited here. Murray et al. (2002) is the original work. Müller et al. (2004) considers
the problem of finding minimally perturbed timetables when circumstances change
after the timetable has been published, an important problem whose study has barely
begun. Murray et al. (2007) and Murray et al. (2010) present the mature system.

The dynamic nature of the university course timetabling problem is an obstacle
to designing a realistic data model for it. No data sets are available for the full
problem, although partial data are available. The UniTime web site offers data sets
for several sub-problems: departmental problems and so on. Several timetabling
competitions have targeted university course timetabling problems. The most recent
of these is the Second International Timetabling Competition (McCollum, 2007),
within which Track 2 is enrolment-based, and Track 3 is curriculum-based. Both
tracks offer only drastically simplified instances: they are static, they model one
faculty rather than the whole university, their events have equal duration, and every
course has just one section. The data are still available and are the focus of many
papers. No comprehensive survey of these papers is known to the author.

7 Student Sectioning

As explained earlier, a course may break into sections: copies of it, each with its
own time, room, and teacher. Each student enrolled in the course must be assigned
to one of its sections. The student sectioning problem asks for an assignment of
students to sections which is likely to work well when times are assigned to the
sections later, typically by minimizing the number of pairs of sections that have at
least one student in common.

Some formulations of the problem also ask for a clustering of the sections, such
that if the sections in each cluster run at the same time, but different clusters run at
different times, then no students have clashes. This is a natural extension, since a
good clustering proves that a student sectioning is successful.

Student sectioning arises in university course timetabling (Sect. 6), when the
choice is made to assign students to sections before assigning times to sections.

Essentially the same situation arises in high schools. High school instances often
have complex events called electives: sets of courses that the school decides to run
simultaneously. Each student chooses one course from each elective. Electives are
usually determined by surveying the students to find out which courses they intend
to take, and ensuring that there are enough sections of each course to accommodate
the students who wish to take it, and that the sections of popular combinations of
courses lie in different electives. This problem of defining the electives is a student
sectioning problem, including the clustering extension.

The student sectioning literature is very fragmentary. There is no survey, and
one must search for discussions of student sectioning in papers on university course
timetabling and high school timetabling. To add to the confusion, the term ‘student
sectioning’ is sometimes used for the full university course timetabling problem, for
which it is clearly a misnomer.

Educational Timetabling 103

Carter (2001) is the seminal paper for student sectioning. It has several pages of
practical discussion of the problem. For each course, each enrolled student is made
into a node of a graph. An edge joins each pair of nodes, with a weight between 0
and 1 determined by how similar the two students’ selection of courses is: 0 means
identical, 1 means disjoint. The students are then grouped into sections by a standard
graph clustering algorithm. This heuristic method produces relatively few pairs of
sections with students in common. Murray et al. (2007) follow Carter (2001) in the
student sectioning phase of their university course timetabling algorithm.

The student sectioning problem is smaller in high schools than in universities,
which may explain why the few high school sectioning papers known to the author
use more ambitious methods: de Haan et al. (2007) use branch and bound, while
Kristiansen and Stidsen (2012) use adaptive large scale neighbourhood search.

8 Single Student Timetabling

The single student timetabling problem, usually encountered as a phase of university
course timetabling (Sect. 6), asks for a timetable for a single student after courses
are broken into sections and the sections are assigned times. Its first priority is to
find a clash-free timetable for the student; its second is to assign the student to less
full sections (say, by minimizing the total enrolment of the sections chosen), so that
as it is run for many students, the sections are kept approximately equally full.

If all sections have duration 1, this is a weighted bipartite matching problem. One
set of nodes represents the courses, the other represents the times of the week. An
edge is drawn from a course to a time whenever a section of that course occurs at
that time, weighted by the current enrolment of that section.

In practice, sections of different courses may have different durations, and there
may be additional constraints, such as that the assignment of sections of two courses
be correlated in some way (ordered in time, for example). Even so, real instances
can be solved to optimality very quickly using a tree search. Each node of the tree
represents one course, and each downward edge out of that node represents the
assignment of the student to a section of that course. Edges that produce clashes
with higher edges are not followed.

In the senior years, where course enrolments are lower and the number of sections
is correspondingly fewer, the tree search just described may be adequate as it stands.
But junior courses may have many sections. A course with 500 students that breaks
into sections of 20 students each will have about 25 sections, and if a student takes
several such courses the search will need to be optimized.

One obvious optimization is to assign the courses with the fewest sections first.
Then courses with only one section are (in effect) preassigned, and there are more
choices at the lower levels of the tree.

A second optimization, sometimes called intelligent backtracking, is as follows.
Suppose the search is at some node of the tree, and that every section of that node’s
course has been tried and has failed owing to a clash with sections assigned higher
in the tree. A simple tree search would return to the parent of that node and continue

104 J.H. Kingston

with its next alternative. But if the parent was not involved in any of the clashes, that
is futile: the same clashes will recur. Instead of backtracking to the parent, intelligent
backtracking backtracks to the closest ancestor involved in a clash.

A third optimization focuses on minimizing the total enrolment of the sections.
First, the cost of assigning a section is changed from the current enrolment of that
section to the amount by which that current enrolment exceeds the current enrolment
of the least full section of its course. For example, enrolling a student in a least full
section costs 0. Then branch and bound is used to terminate a search path when its
cost equals or exceeds the cost of the best solution found so far; and if a complete
solution is found whose cost is 0, the entire search is terminated early. Combined
with sorting the sections so that the least full ones are tried first, this optimization is
effective at reducing the size of the search tree when there are many solutions.

It seems likely that many universities would have such solvers, given their need
to timetable thousands of students, and to re-timetable them when their enrolments
change. Laporte et al. (1986) describes one, only without intelligent backtracking.
Another, employing all these optimizations, has been used routinely at the author’s
university for many years (unpublished). It timetables a single student on demand
virtually instantaneously, producing virtually equal section enrolment numbers. So
single student timetabling is a solved problem.

9 Room Assignment

The room assignment problem asks for an assignment of rooms to events after the
events’ times are fixed. Each event has its own room requirements, such as for a
specialist room (a Science laboratory, a lecture theatre, and so on), or for a room
capable of holding at least a certain number of students. This problem occurs in all
kinds of educational timetabling.

Carter et al. (1992) is a fascinating compendium of results on room assignment.
It observes that room assignment is exactly list colouring of interval graphs, a well-
known NP-complete problem, and shows that it remains NP-complete even when
the cycle contains only two times, a remarkable result.

Each room may be tested against each event’s room requirements, and in this
way any combination of room requirements for an event may be reduced to a set
of suitable rooms for that event before solving begins. Among suitable rooms some
may be more suitable than others, in which case the outcome of the testing is an
integer rating of each room’s suitability for each event.

When all events have duration 1, and all rooms lie within easy walking distance
of each other, the instance of the room assignment problem for the events assigned
a given time t is independent of the instances at other times. It can be solved to
optimality by finding a maximum matching in the bipartite graph whose nodes are
the events assigned time t and the rooms available at time t, with an edge joining an
event node to a room node whenever the room is suitable for the event (Figure 3). If
rooms have integer ratings, the edges are weighted by the ratings.

Educational Timetabling 105

Fig. 3 A bipartite graph (left), and the same graph showing a maximum matching (right).
Each left-hand node represents an event assigned a particular time t and demanding one room,
each right-hand node represents a room, and edges indicate which rooms are suited to which
events.

Kingston (2012) reports perfect results from a room assignment algorithm which
assigns rooms using a constructive heuristic followed by adjustment using ejection
chains, while maintaining the existence of an unweighted maximum matching of
optimal size at each time as an invariant throughout the solve. The algorithm runs in
polynomial time and takes less than one second on real instances. In practice, then,
room assignment, like single student timetabling, is a solved problem.

Room assignment is usually a phase of a larger problem. Kingston (2012) gives
techniques for efficiently maintaining the invariant while times are being assigned
to events. In this way, a nearly exact guarantee can be given that room assignment
will succeed, without actually assigning any rooms.

Can other resources be assigned in the same way as rooms? Students and classes
are usually preassigned, leaving nothing to do. Teachers, too, are often preassigned.
When they are not, there is usually a requirement, called teacher stability or the
avoid split assignments constraint, that the teacher assigned to the events of one
course be the same. Kingston (2012) investigates this variant with some success,
although it is significantly more difficult in practice than room assignment.

10 Conclusion

Educational timetabling has been an active area of research for over 50 years. While
there is no sign that provably optimal solutions to large, real instances will be found
any time soon, the more practical goal of quickly and reliably finding timetables that
are preferred to manually produced ones is in sight. More realistic models and data
sets are needed in some areas, and more powerful solving techniques are needed
in others, but steady progress continues to be made on both fronts, the transfer of
research methods into commercial software is growing, and there is every reason to
believe that success is not far off.

106 J.H. Kingston

Acknowledgements. The author thanks Keith Murray, Ender Özcan, and Gerhard Post for
their comments on earlier drafts of this chapter.

References

Appleby, J.S., Blake, D.V., Newman, E.A.: Techniques for producing school timetables on
a computer and their application to other scheduling problems. The Computer Journal 3,
237–245 (1960)

Aubin, J., Ferland, J.A.: A large scale timetabling problem. Computers and Operations Re-
search 16, 67–77 (1989)

Carter, M.W.: A survey of practical applications of examination timetabling algorithms. Op-
erations Research 34, 193–202 (1986)

Carter, M.W., Tovey, C.A.: When is the classroom assignment problem hard? Operations
Research 40, S28–S39 (1992)

Carter, M.W., Laporte, G.: Recent developments in practical examination timetabling. In:
Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg
(1996)

Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: algorithmic strategies and
applications. Journal of Operational Research Society 47, 373–383 (1996)

Carter, M.W., Laporte, G.: Recent developments in practical course timetabling. In: Burke,
E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg
(1998)

Carter, M.W.: A comprehensive course timetabling and student scheduling system at the Uni-
versity of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
64–81. Springer, Heidelberg (2001)

Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems. In: Burke,
E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 283–295. Springer, Heidelberg
(1996)

Cumming, A., Paechter, B.: Standard formats for timetabling data. In: Unpublished Discus-
sion Session at the First International Conference on the Practice and Theory of Automated
Timetabling, PATAT 1995, Edinburgh (August 1995)

Curtois, T.: Employee scheduling benchmark data sets,
http://www.cs.nott.ac.uk/˜tec/NRP/ (Cited September 15, 2012)

De Cesco, F., Di Gaspero, L., Schaerf, A.: Benchmarking curriculum-based course
timetabling: formulations, data formats, instances, validation, and results. In: Proceed-
ings, 7th International Conference on the Practice and Theory of Automated Timetabling,
PATAT 2008, Montreal (August 2008)

de Haan, P., Landman, R., Post, G., Ruizenaar, H.: A case study for timetabling in a Dutch
secondary school. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp.
267–279. Springer, Heidelberg (2007)

De Werra, D.: Construction of school timetables by flow methods. INFOR—Canadian Jour-
nal of Operational Research and Information Processing 9, 12–22 (1971)

Fonseca, G.H.G., Santos, H.G., Toffolo, T.A.M., Brito, S.S., Souza, M.J.F.: A SA-ILS ap-
proach for the high school timetabling problem. In: Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), Son,
Norway (August 2012)

Gotlieb, C.C.: The construction of class-teacher timetables. In: Popplewell, C.M. (ed.) Infor-
mation Processing 1962 (Proceedings of the 1962 IFIP Congress), pp. 73–77 (1962)

http://www.cs.nott.ac.uk/~tec/NRP/

Educational Timetabling 107

Kingston, J.H.: The HSEval high school timetable evaluator (2009),
http://www.it.usyd.edu/au/˜jeff/hseval.cgi
(Cited September 15, 2012)

Kingston, J.H.: Timetable construction: the algorithms and complexity perspective. In: Pro-
ceedings of the Eighth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2010), Belfast, UK (August 2010)

Kingston, J.H.: Resource assignment in high school timetabling. Annals of Operations Re-
search 194, 241 (2012)

Kjenstad, D., Riise, A., Nordlander, T.E., McCollum, B., Burke, E.: In: Proceedings, of
the 9th International Conference on the Practice and Theory of Automated Timetabling,
PATAT 2012, Son, Norway (August 2012)

Kristiansen, S., Stidsen, T.R.: Adaptive large neighborhood search for student sectioning at
Danish high schools. In: Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway (August 2012)

Laporte, G., Desroches, S.: The problem of assigning students to course sections in a large
engineering school. Computers and Operations Research 13, 387–394 (1986)

McCollum, B.: The Second International Timetabling Competition (ITC 2007), Track 3
(2007), http://www.cs.qub.ac.uk/itc2007 (Cited September 17, 2012)

McCollum, B., McMullan, P., Parkes, A.J., Burke, E.K., Qu, R.: A new model for automated
examination timetabling. Annals of Operations Research 194, 291–315 (2012)

Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course timetabling. In:
Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 126–146. Springer,
Heidelberg (2005)

Müller, T., Rudová, H.: Real-life curriculum-based timetabling. In: Proceedings of the 9th
International Conference on the Practice and Theory of Automated Timetabling, PATAT
2012, Son, Norway (August 2012)

Murray, K., Rudová, H.: University course timetabling with soft constraints. In: Burke,
E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 310–328. Springer,
Heidelberg (2003)

Murray, K., Müller, T., Rudová, H.: Modeling and solution of a complex university course
timetabling problem. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867,
pp. 189–209. Springer, Heidelberg (2007)

Murray, K., Müller, T.: Comprehensive approach to student sectioning. Annals of Operations
Research 181, 249–269 (2007)

Nurmi, K., Kyngäs, J.: A conversion scheme for turning a curriculum-based timetabling prob-
lem into a school timetabling problem. In: Proceedings, of the 7th International Conference
on the Practice and Theory of Automated Timetabling, PATAT 2008, Montreal (August
2008)

Pillay, N.: An overview of school timetabling. In: Proceedings, of the 8th International Con-
ference on the Practice and Theory of Automated Timetabling, PATAT 2010, Belfast, UK,
pp. 321–335 (August 2010)

Pillay, N.: Classification of school timetabling research,
http://titan.cs.unp.ac.za/˜nelishiap/st/classification.htm
(Cited September 15, 2012)

Post, G.: Benchmarking project for (high) school timetabling,
http://www.utwente.nl/ctit/hstt/ (Cited September 15, 2012)

Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B., Schaerf, A.: The third international
timetabling competition. In: Proceedings, of the 9th International Conference on the Prac-
tice and Theory of Automated Timetabling, PATAT 2012, Son, Norway (August 2012)

http://www.it.usyd.edu/au/~jeff/hseval.cgi
http://www.cs.qub.ac.uk/itc2007
http://titan.cs.unp.ac.za/~nelishiap/st/classification.htm
http://www.utwente.nl/ctit/hstt/

108 J.H. Kingston

Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A survey of search methodolo-
gies and automated system development for examination timetabling. Journal of Schedul-
ing 12, 55–89 (2009)

Qu, R.: Benchmark data sets in exam timetabling,
http://www.cs.nott.ac.uk/˜rxq/data.htm (Cited September 15, 2012)

Schaerf, S.: A survey of automated timetabling. Articifial Intelligence Review 13, 87–127
(1999)

Schmidt, G., Ströhlein, T.: Timetable construction–an annotated bibliography. The Computer
Journal 23, 307–316 (1980)

UniTime: a comprehensive university timetabling system, http://www.unitime.org/
(Cited September 18, 2012)

Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph and its
application to a timetabling problem. The Computer Journal 10, 85–86 (1967)

http://www.cs.nott.ac.uk/~rxq/data.htm
http://www.unitime.org/

Automated Shift Design and Break Scheduling

Luca Di Gaspero, Johannes Gärtner, Nysret Musliu,
Andrea Schaerf, Werner Schafhauser, and Wolfgang Slany

Abstract. Shift design and break scheduling are important employee scheduling
problems that arise in many contexts, especially at airports, call centers, and ser-
vice industries. The aim is to find a minimum number of legal shifts, the number of
workers assigned to them, and a suitable number of breaks so that the deviation from
predetermined workforce requirements is minimized. Such problems have been ex-
tensively investigated in Operations Research and recently have been also tackled
with Artificial Intelligence techniques. In this chapter we outline major character-
istics of these problems and provide a literature survey over solution techniques to
solve them. We then describe in detail two state-of-the-art approaches based on lo-
cal search techniques. Finally, we discuss our experiences with the application of
one of these techniques in a real life case study.

1 Introduction

Designing shifts and breaks is one of the most important phases in the general em-
ployee scheduling problem. The typical employee scheduling process in an organi-
zation consists of several stages. Given a planning period (often called the temporal

Luca Di Gaspero · Andrea Schaerf
DIEGM, Università degli Studi di Udine, Italy
e-mail: {l.digaspero,schaerf}@uniud.it

Johannes Gärtner · Werner Schafhauser
XIMES XIMES GmbH, Austria
e-mail: {gaertner,schafhauser}@ximes.com

Nysret Musliu
DBAI, Technische Universität Wien, Austria
e-mail: musliu@dbai.tuwien.ac.at

Wolfgang Slany
IST, Technische Universität Graz, Austria
e-mail: wolfgang.slany@tugraz.at

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 109
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_5, c© Springer-Verlag Berlin Heidelberg 2013

{l.digaspero,schaerf}@uniud.it
{gaertner,schafhauser}@ximes.com
musliu@dbai.tuwien.ac.at
wolfgang.slany@tugraz.at

110 L.D. Gaspero et al.

horizon), in a first phase the temporal requirements are collected which then deter-
mine the number of employees needed for each day and time interval during the
planning period. After these requirements have been established, the shifts can be
designed. At this stage the number of employees for each shift on each day in the
planning period has to be determined. In some cases, moreover, for each employee
assigned to a shift, a set of breaks must also be scheduled.

Shift design and break assignment problems are known also under other names,
for example as shift design [19, 10], shift scheduling [3, 2, 25, 28], and break
scheduling [4, 5, 20, 31]. Such problems arise at airports, call centers, and in the
service industry in general, and have been extensively investigated in Operations
Research and Artificial Intelligence.

On the one hand, the quality of solutions for shift design and break scheduling
is particularly relevant because of the legal issues concerning the working time of
employees, the well-being of employees, and the importance of reducing costs while
guaranteeing a high level of service. In some working environments the quality of
solutions is even critical: For example, an inadequate break assignment to air traffic
controllers can be the cause of safety problems due to diminished concentration.
On the other hand, the search space of these problems is big and they are subject
to conflicting constraints which makes it practically impossible to tackle them by
means of exact methods.

In this chapter, after the formal introduction, we will describe solving meth-
ods for these problems. In particular two state-of-the-art approaches based on lo-
cal search techniques will be described in detail. Moreover, we will provide a real
life case study that includes shift design. We will describe the solving process and
present our experiences with the application of these techniques in a real life case
study. Furthermore, we provide a literature survey over solution techniques for these
problems.

2 The Shift Design Problem

The shift design problem is a variant of the shift scheduling problem and has been
first introduced in [12], [21], and [19]. The definition of this problem is given below
(this definition is taken almost verbatim from [21] and [19]).

The input of the problem:

• n consecutive time slots [a1,a2), [a2,a3), . . . , [an,an+1), all with the same length
slotlength in minutes. Time point a1 represents the begin of the planning period
and time point an+1 represents the end of the planning period. A value wi, related
with each slot [ai,ai+1), indicates the optimal number of employees that should
be present during that slot.

• y shift types v1, . . . ,vy. Each shift type v j has the related parameters v j.min-start
and v j.max-start, which represent the earliest and latest start of the shift, and
v j.min-length and v j.max-length, which represent the minimum and maximum
length of the shift. An example of shift types is given in Table 1.

Automated Shift Design and Break Scheduling 111

• Two scalar real-valued quantities, necessary to define the distance from the aver-
age number of duties.

AS: the upper limit for the average number of working shifts per week per em-
ployee

AH : the average number of working hours per week per employee

Table 1 Possible shift types

Shift type min-start max-start min-length max-length
M 06:00 08:00 07:00 09:00
D 10:00 11:00 07:00 09:00
A 13:00 15:00 07:00 09:00
N 21:00 23:00 07:00 09:00

The aim is to generate a set of k shifts s1, . . . ,sk. Each shift sl is completely deter-
mined by the parameters sl .start and sl .length and must belong to one of the shift
types. Additionally, each shift sp has a set of parameters sp.wi,∀i ∈ {1, . . . ,C} (C
is the number of days in the planning period) indicating the number of employees
assigned to shift sp during day i.

The objective of the problem is to minimize the following four components:

F1 : sum of the excesses of workers in each time slot during the planning period.
F2 : sum of the shortages of workers in each time slot during the planning period.
F3 : number of shifts.
F4 : distance to the average number of duties per week in case it is above a certain

threshold. This component is meant to avoid an excessive fragmentation of
workload in too many short shifts.

The problem is a multi criteria optimization problem, in which each criterion has dif-
ferent importance depending on the situation. The objective function is the weighted
sum of the four components.

Usually the designing shifts for a week is considered (less days are also possible)
and the schedule is cyclic (the element following the last time slot of a planning
period is equal to the first time slot of the planning period).

Formal Definitions

The generated shifts belong to at least one of the shift types if:

∀l ∈ {1, . . . ,k}∃ j ∈ {1, . . . ,y} /
v j.min-start ≤ sl .start ≤ v j.max-start

v j.min-length≤ sl .length ≤ v j.max-length

112 L.D. Gaspero et al.

In order to define the shortage and excess of workers, we first define the load ld for
a time slot d as

ld =
k

∑
p=1

xp,d

where

xp,d :=

{
sp.wi if the time slot d belongs to the interval of shift sp on day i

0 otherwise.

The total excess F1 and total shortage F2 (in minutes) of workers in all time slots
during the planning period is then defined as

F1 =
n

∑
d=1

(max(ld −wd,0)∗ slotlength)

F2 =
n

∑
d=1

(max(wd − ld,0)∗ slotlength)

Regarding F3, this is simply equal to the number of shifts k.
The average number of working shifts per week per employee (AvD) is defined

below:

AvD =
(∑k

i=1 ∑C
j=1 si.wj)∗AH

∑k
i=1 ∑C

j=1 si.wj ∗ si.length

The penalty associated with the average number of duties is defined as.

F4 = max(AvD−AS,0)

It is worth noticing that the criterion F4 is not always taken into consideration in the
literature.

A problem similar to this problem, called the shift scheduling problem, has been
considered by several authors previously in the literature. We will describe later
in the literature section the main differences between the shift design and shift
scheduling problem.

3 Break Scheduling

In this section we present a break scheduling problem which has been first men-
tioned in [5] and [26]. This problem appeared in the area of supervisory personnel,
whereas a slightly different variant of the problem, in the case of call centers, has
been solved in [4].

The definition of the break scheduling problem for supervisory personnel is as
follows (this definition is taken almost verbatim from [5] and [26]):

Automated Shift Design and Break Scheduling 113

In the same setting of the shift design problem, we are additionally given:

• Fixed shifts (s1,s2, ...,sn) representing employees working within the planning
period. Each shift, si, has an adjoined parameter, si.breaktime, that specifies the
required amount of break time for si in time slots.

• An employee is considered to be working during time slot [at ,at+1) if that em-
ployee neither has a break during time slot [at ,at+1) nor he/she has stopped work-
ing at time point. After a break, an employee needs a full time slot, usually 5
minutes, to become reacquainted with the altered situation. Thus, during the first
time slot following a break, an employee is not considered to be working.

Similarly to shifts, also breaks b j are characterized by two parameters, b j.start and
b j.end, representing the time slots in which a shift or break starts and ends. Sub-
tracting the value for start from the value for end gives the duration of shifts and
breaks in time slots. The durations of shifts and breaks are stored in an additional
parameter, duration. Moreover, each break is associated with a certain shift in which
it is scheduled. We distinguish between two different types of breaks: lunch breaks
and monitor breaks.

Formal Definitions

Given a planning period, a set of shifts, the associated total break times, and the
staffing requirements, a feasible solution to the break scheduling problem is a set of
breaks with the following characteristics:

• Each break, b j, lies entirely within its associated shift, si. That is,

si.start ≤ b j.start ≤ b j.end = si.end

• Two distinct breaks (b j,bk) associated with the same shift, si, do not overlap in
time:

b j.start ≤ b j.end ≤ bk.start ≤ bk.end∨bk.start ≤ bk.end ≤ b j.start ≤ b j.end

• In each shift, si, the sum of durations of its associated breaks equals the required
amount of break time:

∑
b j∈si

b j.duration = si.breaktime

Criteria for Finding an Optimal Solution

Among all feasible solutions for the break scheduling problem, we try to find an
optimal one according to seven criteria, which we model as soft constraints:

114 L.D. Gaspero et al.

C1: Break Positions. Each break, b j, may start, at the earliest, a certain number of
time slots after the beginning of its associated shift si, and may end, at the latest,
a given number of time slots before the end of its shift:

b j.starts ≥ si.start+ distance to shift start

b j.end ≤ si.end− distance to shift end

C2: Lunch Breaks. A shift si can have several lunch breaks, each required to last a
specified number of time slots (min lunch break duration), and should be located
within a certain time window after the shift start. Let blb be a lunch break. Then,

blb.start ≥ si.start+ distance to shift start lb

blb.end ≤ si.end− distance to shift end lb

C3: Duration of Work Periods. Breaks divide a shift into work and rest periods.
The duration of work periods within a shift must range between a required mini-
mum and maximum duration:

min work duration ≤ b1.start− si.start ≤ max work duration

min work duration ≤ b j+1.start− b j.end ≤ max work duration

min work duration ≤ si.end− bm.end ≤ max work duration

where (b1, ...,b j,b j+1, ...,bm) are the breaks of si in temporal order.

C4: Minimum Break Times after Work Periods. If the duration of a work period
exceeds a certain limit, the break following that period must last a given mini-
mum number of time slots (min ts count):

b1.start− si.start ≥ work limit ⇒ b1.duration ≥ min ts count

b j+1.start− b j.end ≥ work limit ⇒ b j+1.duration ≥ min ts count

where, once again, (b1, ...,b j,b j+1, ...,bm) are the breaks of si in temporal order.
C5: Break Durations. The duration of each break, b j, must lie within a specified

minimum and maximum value:

min duration ≤ b j.duration ≤ max duration

C6: Shortage of Employees. In each time slot, [at ,at+1), at least rt employees
should be working.

C7: Excess of Employees. In each time slot, [at ,at+1), at most rt employees should
be working.

Automated Shift Design and Break Scheduling 115

Objective Function

For each constraint, we define a violation degree, violation(Ck), specifying the de-
viation (in time slots or employees) from the requirements stated by the respective
constraint. The importance of each criterion and its corresponding constraint varies
from task to task. Consequently, the objective function for the break scheduling
problem is the weighted sum of the violation degrees of all the constraints:

F(solution) = ∑7
k=1 Wk × violation(Ck)

where Wk is a weight indicating the importance assigned to constraint Ck. Given an
instance of the break scheduling problem, our goal is to find a feasible solution that
minimizes this objective function.

4 Literature Review

The shift design problem described in this chapter has been first introduced in [12],
[21], and [19]. In these works a tabu search based algorithm to solve this prob-
lem is proposed. Additionally, their method orders moves and applies these first
to regions with larger conflicts (larger over/under-staffing). The proposed solution
methods have been used since several years in the commercial software package
OPA of XIMES Inc. Di Gaspero et al. [14, 10] proposed the application of hybrid
approaches based on local search and min-cost max-flow techniques. The hybrid
algorithm improved results reported in [19] on benchmark examples.

A similar problem called shift scheduling problem has been extensively inves-
tigated in the literature. Although shift design problem and shift scheduling show
some similarities there are some further specifics that characterize the shift design
problem. In the shift design problem the number of employees for each shift over
a whole week should be determined and the problem is cyclic (the shift starting on
the last day that will last overnight will finish in the first day of the schedule). Fur-
thermore, a different objective function is used for the shift design problem that also
allows undercover and tries to minimize the number of used shifts.

Regarding the shift scheduling problem the first approaches have been proposed
many years ago. Dantzig developed the original set-covering formulation [8] for the
shift scheduling problem, in which feasible shifts are enumerated based on possible
shift starts, shift durations, breaks, and time windows for breaks. Integer program-
ming formulations for shift scheduling include [3], [29], and [1]. Aykin [1] intro-
duced an implicit integer programming model for the shift scheduling problem in
1996 and later he compared an extended version [2] of his previous model with a
similarly extended formulation introduced by Bechtold and Jacobs [3]. He observed
that Bechtold and Jacobs’ approach needed fewer variables whereas his approach
needed fewer constraints. Several problems were solved using both models with the
integer programming software LINDO. The model proposed by Aykin was shown
to be superior.

116 L.D. Gaspero et al.

Rekik et al. [25] developed two other implicit models and managed to im-
prove upon previous approaches among them Aykin’s original model. Tellier
and White [28] developed a tabu search algorithm to solve a shift schedul-
ing problem originating in contact centers which is integrated into the work-
force scheduling system Contact Center Scheduling 5.5 from PrairieFyre Soft Inc.
(http://www.prairiefyre.com). The solution of a shift scheduling prob-
lem with a planning period of one day, and at most three breaks (two 15 minutes
breaks and a lunch break of 1 hour) has been considered in [24] and [6]. In [6] the
authors make use of automata and context-free grammars to formulate constraints
on sequences of decision variables. Quimper and Rousseau [24] investigate model-
ing of the regulations for the shift scheduling problem by using regular and context-
free languages and solved the overall problem with Large Neighborhood Search.
In addition to the previous model, the authors applied their methods in single and
multiple activity shift scheduling problems. A new implicit formulation for multi-
activity shift scheduling problems using context-free grammars has been proposed
recently by Côté et al. [7].

Previously, break scheduling has been addressed mainly as part of the shift
scheduling problem. Several approaches have been proposed for problem formula-
tions that include a small number of breaks. These approaches schedule the breaks
within a shift scheduling process. Such approaches include the previous mentioned
methods for shift scheduling [8], [3], [29], [1], [2], [25], [28], [24], [6], [7]. Genera-
tion of three to four breaks per shift after the design of shifts with a greedy approach
has been investigated in [13].

Some important break scheduling problems arising in call centers, airports, and
other areas include a much higher number of breaks compared to the problem for-
mulations in previous works on shift scheduling. Also, additional requirements like
time windows for lunch breaks or restrictions on the length of breaks and work
time emerged. These new constraints significantly enlarge the search space. There-
fore, researchers recently started to consider a new approach which regards shift
scheduling and break scheduling as two different problems and tries to solve them
in separate phases.

The break scheduling problem that imposes same constraints for breaks defined
in this chapter has been investigated in [5, 26, 20, 31, 30]. Beer et al. [5] applied
a min-conflict based heuristic to solve this problem. This method has been applied
in a real-life application for the supervision personnel. Beer et al. [5] also introduce
real life benchmark instances containing shifts that include more than 10 breaks.
The results presented in [5] have been further improved by memetic algorithms
proposed in [20, 31, 30]. A similar break scheduling problem, which origins in call
centers and includes also meetings and some slightly changed constraints, has been
described in [4] and [26]. Note that a simplified break scheduling problem can be
formulated as temporal constraint satisfaction problem (STP) [9] therefore it can be
solved in polynomial time. This algorithm can be applied to find legal position of
breaks, but without taking into consideration over-staffing and under-staffing that are
very important criteria when solving shift design and break scheduling problems.

http://www.prairiefyre.com

Automated Shift Design and Break Scheduling 117

Recently, an algorithm based on constraint programming and local search for
solving of this break scheduling problem together with shift design has been inves-
tigated in [15]. This approach could not improve the results obtained by solving the
break scheduling problem separately (after generating shifts).

5 Local Search for Shift Design

Local search is a search paradigm which has evidenced to be very effective for a
large number of AI problems [17]. This paradigm is based on the idea of navigating
through the search space by iteratively stepping from one state to one of its “neigh-
bors”, which are obtained by applying a simple local change to the current solution.

The first local search algorithm for the shift design problem has been proposed
in [12], [21], and [19]. These initial works proposed different move types that were
used for the exploration of the neighborhood. Regarding the local search techniques,
the basic principles of tabu search [16] were used to escape from local minima. In
order to make the search more effective, a new method was introduced to explore
only parts of the neighborhood. The search is focused on days in which a shortage
or excess is present. Moreover, some of the moves are applied only to specific shift
types in the region in which the shortage or excess appears. Additionally, an ap-
proach for generating a good initial solution, which is based on the idea of starting
(ending) a shift whenever the requirements increase (decrease), was proposed. These
techniques were implemented in a commercial product called Operating Hours As-
sistant, which has been used in different areas to solve shift design problems.

A hybrid local search approach for shift design has been presented in [10]. This
solver comprises two stages, namely a greedy construction for the initial solution
followed by a tabu search procedure [16] that iteratively improves it. The greedy
construction method relies on the equivalence of the (non-cyclic) shift design prob-
lem to a variant of the Min-Cost Max-Flow network problem [23]. The greedy
heuristic employs a polynomial subroutine which can easily compute the optimal
staffing with minimum (weighted) deviation, but it is not able to simultaneously
minimize the number of shifts used.

The second stage of the proposed heuristic is based on the local search paradigm
and relies on multiple neighborhood relations. The local search model is defined by
specifying three entities, namely the search space, the neighborhood relation, and
the cost function. In details, the local search entities are described in the following.

5.1 Search Space and Initial Solution

We consider as a state for shift design the set of shifts Q = {s1,s2, . . .} together with
their associated parameters. The shifts of a state are split into two categories:

• Active shifts: at least one employee is assigned to a shift of this type on at least
one day.

118 L.D. Gaspero et al.

• Inactive shifts: no employees are assigned to a shift of this type on any day. These
shifts do not contribute to the solution and to the objective function. Their role is
explained later.

More formally, we say that a shift si ∈ Q is active (resp. inactive) if and only if
∑C

j=1 si.wj �= 0 (= 0).

5.2 Neighborhood Relations

For tackling the shift design problem we consider three different neighborhood re-
lations that are combined in the spirit of the multi-neighborhood search [11], and
are a subset of those applied in [19] with some modifications.

Given a state Q of the search space the types of moves considered are the follow-
ing:

ChangeStaff (CS): The staff of a shift is increased (↑) or decreased (↓) by one
employee. This kind of move is described as a triple 〈si, j,a〉, where si ∈ Q is a
shift, j ∈ {1, . . . ,C} is a day, a ∈ {↑,↓}.

ExchangeStaff (ES): One employee in a given day is moved from one shift to
another one of the same type. The move is described by the triple 〈si1 ,si2 , j〉,
where si1 ,si2 ∈ Q, and j ∈ {1, . . . ,C}.

ResizeShift (RS): The length of the shift is increased or decreased by 1 time-slot,
either on the left-hand side or on the right-hand side. The move is described by
the triple 〈si, l, p〉, where si ∈Q, l ∈{↑,↓}, and p∈{←,→}. In order to apply this
move, the shift s′i, obtained from si must be feasible with respect to its original
type.

When the effect of the move will transform an inactive shift in an active one (e.g.,
by increasing the staff of an inactive shift at a given day), a new inactive shift of the
same type is randomly created.

Inactive shifts allow us to insert new shifts and to move staff between shifts in
a uniform way. This approach limits the creation of new shifts only to the current
inactive ones, rather than considering all possible shifts belonging to the shift types
(which are many more). The possibility of creating any legal shift is rescued if we
insert as many (distinct) inactive shifts as compatible with the shift type. Experi-
mental results, though, show that there is a trade-off between computational cost
and search quality which seems to have its best compromise in having 2 inactive
shifts per type.

5.3 Search Strategies

Our local search solver is driven by tabu search. A full description of this technique
is out of the scope of this chapter and we refer to the book of Glover and Laguna
[16] to for a general introduction. We describe the specialization of this technique
to our problem.

Automated Shift Design and Break Scheduling 119

Differently from [19], that uses tabu search as well, we employ the three neigh-
borhood relations selectively in various phases of the search, rather than exploring
the overall neighborhood at each iteration.

Our strategy is to combine the neighborhood relations CS, ES, and RS, accord-
ing to the following scheme made of compositions and interleaving. In detail, our
algorithm interleaves three different tabu search runners using the following neigh-
borhoods:

• the ES alone
• the RS alone
• the set-union of the two neighborhoods CS and RS

The runners are invoked sequentially and each one starts from the best state obtained
from the previous one. The overall process stops when a full round of all of them
does not find an improvement. Each single runner stops when it does not improve
the current best solution for a given number of iterations (called idle iterations).

This composite solver is further improved by performing a few changes on the
final state of each runner, before handing it over as the initial state of the following
runner. In details, the modifications at the performed are the merge of identical shifts
and the recreation of a suitable number of inactive shifts.

For all three runners, the size of the tabu list is dynamic and each move remains in
this list for a random number of iterations selected within a given range. Moreover,
the tabu status of a move is dropped if it leads to a state better than the current best,
in accordance with the standard aspiration criterion of tabu search.

6 Local Search for Break Scheduling

In this section we present in details a solution method based on local search for the
break scheduling problem. The algorithm that will be described is based on the min-
conflicts heuristic [18] and has been first proposed for break scheduling problem in
[5], [4], and [26]. The following description is based on these references.

The solution of the break scheduling problem is represented as a set of breaks. For
each shift, si, the breaks to be scheduled are instantiated at the beginning of a local
search algorithm. At first, lunch breaks are generated, and then the remaining break
time is distributed among monitor breaks. Hence, the duration of each lunch break
is set to the exact number of time slots required by constraint C2 (lunch breaks), and
the duration of each monitor break lies within the specified minimum and maximum
limits imposed by constraint C5 (break durations).

In the min-conflicts-based algorithm, the start of a break, b j.start, is an integer
variable that can be altered during the search process. In contrast, we require that the
duration of a break, b j.duration, remains unchanged and keeps its initially assigned
value. However, we allow multiple breaks to be scheduled consecutively so that
breaks of longer duration can be created.

120 L.D. Gaspero et al.

6.1 Initial Solution

Once the breaks are created, they must be placed in the given shift plan. We im-
plemented two methods to schedule breaks within their associated shifts. The first
simply schedules breaks randomly so that they do not overlap. The second sched-
ules breaks so that the resulting break pattern completely satisfies constraints C1

through C5. This task is accomplished by formulating the problem as a simple tem-
poral problem (STP) [9] and solving it by means of a randomized version of the
Floyd-Warshall shortest-path algorithm [23].

A STP consists of a set of variables X =X1, ...,Xn and a set of constraints on those
variables. The variables of an STP represent time points having continuous domains.
Each constraint is represented as an interval that either restricts the domain values
for a single variable Xi or restricts the difference (Xj −Xi) of two distinct variables
(Xi,Xj).

To schedule breaks correctly with respect to constraints C1 through C5, the start
and end parameters of shifts and breaks are modeled as variables of an STP. The
STP constraints will take care of the various limits imposed on break positions and
on the duration of breaks and work periods. In detail the STP constraints are the
following:

b j.start ∈ [(si.start+ distance to shift start),si.end] (C1)

b j.end ∈ [si.start,(si.end− distance to shift end)]

blb.start ∈ [(si.start+ distance to shift start lb),si.end] (C2)

blb.end ∈ [si.start,(si.end− distance to shift end lb)]

b1.start− si.start ∈ [min work duration,max work duration] (C3)

b j+1.start− b j.end ∈ [min work duration,max work duration]

si.end− bm.end ∈ [min work duration,max work duration]

b1.duration ≤ min ts count ⇐⇒ b1.start− si.start ∈ [min duration,work limit)
(C4)

b j+1.duration ≤ min ts count ⇐⇒ b j+1.start− b j.end ∈ [min duration,work limit)

The two temporal constraints for C4 are inserted if and only if (b1.duration
≤ min length) and (b j+1.duration ≤ min length), respectively. Constraint C5 is sat-
isfied by construction, since the solution creation process creates only breaks whose
durations range between the required time limits.

Automated Shift Design and Break Scheduling 121

6.2 Neighborhood Relations

We developed two types of moves for the break scheduling problem. The first move
(called assignment) assigns to a break a new start within its respective shift. The
second move (denoted swap) exchanges the start times of two breaks associated
with the same shift, meaning those breaks are actually swapped. Figure 1 illustrates
these two moves. Given a feasible solution S to the break scheduling problem, the
neighborhood N(S) is the set of all solutions obtained by applying an assignment to
a single break in S or by swapping two breaks within the same shift in S.

Fig. 1 The two moves used for the break scheduling problem. The assignment move assigns
to a break a new start within its respective shift. The swap move exchanges the start times of
two breaks associated with the same shift.

6.3 Min-conflicts Heuristics

The minimum-conflicts heuristics aims at improving the current solution by con-
centrating only on the parts that cause constraint violations. During an iteration, the
minimum-conflicts heuristic selects a break that violates a constraint and determines
a move that decreases (or leave unchanged) the violation degree of the current so-
lution. If such a move exists, it is applied to the current solution, and the search
continues until some stopping condition is satisfied.

The minimum-conflicts search method applies only moves that do not decrease
the current solution quality. Thus, if the search reaches a local optimum solution,
the algorithm will not proceed any further, since it will not find solutions of better
quality than the local optimum. To avoid this undesirable behavior, we apply an
additional strategy known as random walk, which has been used successfully in
algorithms for satisfiability problems [27], rotating workforce scheduling [22], etc.

The random walk strategy also selects a break that violates a constraint. However,
unlike the minimum-conflicts heuristic, it applies an arbitrary move to that break.
On the one hand, the violation degree of the resulting solution could be worse than
the previous one. However, on the other hand, performing such moves can help the
algorithm to escape from local optima. We call the combination of both strategies
min-conflicts random walk. The random walk strategy is carried out with a small
probability p, whereas the ordinary minimum-conflicts search is carried out with a
higher probability of 1− p. The specific value of p is determined experimentally.

122 L.D. Gaspero et al.

7 A Case Study

In this section we consider a real life problem arising from the shift design domain.
This example represents a particular sub-problem that was solved in an European
airport. We selected this domain, because shift design problems in airports are of
high practical relevance. To solve the particular shift design problem we apply the
local search techniques proposed in [21, 19]. This method is included in a commer-
cial scheduling system called Operating Hours Assistant(OPA) [12] owned by the
XIMES Corp. OPA has been successfully applied by the consultants of the XIMES
GmbH in many companies and institutions since more than ten years.

7.1 Temporal Requirements

The temporal requirements for our case study are given for one week. The cycle
should be considered (a night shift that begins on Sunday at 23:00 and is 8 hours
long, impacts the first day of the week). Figure 2 shows the temporal requirements in
tabular form and as a requirement curve. The first row of the table indicates that on
Monday between 05:00-05:30 9 employees are required, on Tuesday 10 employees
are needed, etc. As we can see the number of employees varies during the planning
period. The maximal number of employees in the planning period is 38, whereas the
minimal number of employees is 5.

Fig. 2 Temporal requirements for the airport case study

Automated Shift Design and Break Scheduling 123

7.2 Shift Types

In the next step we have to define the shift types that determine the possible start
and length of the real shifts. Table 1 represents the four shift types that are used for
this case study: M-morning shift, D-day shift, A-afternoon shift, and N-night shift.
Shifts generated by the algorithm should fulfill the criteria given by the shift types.
For example, morning shifts can start between 6:00 and 8:00 and their length should
be between 7 to 9 hours.

7.3 Weights of the Criteria

As explained in the problem definition the solution to the shift design problem is
evaluated with an objective function, which combines four weighted criteria: excess
in minutes, shortage in minutes, number of shifts, and distance from average number
of duties per week. The weights of these criteria usually depend on the particular
situation. In some cases it is very important to avoid completely the shortage of
employees and in other cases the minimization of employees is more important. To
find a solution for our case study we will illustrate further two scenarios regarding
the importance of criteria.

7.4 Generation of Shifts

The local-search based algorithm for generating shifts iteratively improves the ini-
tial solution. OPA is an interactive software system that includes a graphical user
interface that shows the improvements of the current solution and the relevant in-
formation regarding the overall shortage and excess, and the number of shifts. The
decision maker can stop the algorithm at any time. If the decision maker is not sat-
isfied with the current solution, he/she can change the weights and try to further
improve the current solution.

Firstly, we assign weights to optimization criteria as follows: 1 - shortage, 1 -
excess, 60 - number of shifts, 0 - distance from average number of duties per week.
For the given requirements, constraints and the weights above, the local search al-
gorithm generates the solution shown in Figure 3. This solution contains 8 shifts,
the overall shortage is 4,2%, and the overall excess of employees is 2,32%. As we
can see Figure 3 the shortage of employees appears in several time slots.

Note that the solution obtained by the Min-Cost Max-Flow algorithm has a total
shortage of 3,63%, and a total excess of 2,45%. This polynomial algorithm com-
putes the optimal staffing with minimum (weighted) deviation, however it is not able
to simultaneously minimize the number of shifts used and the cycle is not taken into
consideration. The number of shifts generated by this method is 24. Therefore, the
solution obtained by the local search procedure is much better regarding the number
of shifts, and regarding the covering of requirements it is only slightly worse than
the solution obtained by the Min-Cost Max-Flow method.

124 L.D. Gaspero et al.

Fig. 3 The shift design solution generated using local search

Fig. 4 The shift design solution generated by the local search. The weight of shortage is
increased to 5.

In the second scenario we increased the weight of the shortage to 5. Other weights
are not changed. Using these weights we can run the local search algorithm that uses
the current solution as an initial solution. This algorithm finds a solution with 8 shifts
that produce 1,49% shortage and 6,45% excess. The overall sum of the shortage and

Automated Shift Design and Break Scheduling 125

the excess is increased. However, the shortage which is now the most important cri-
terion is significantly improved. The new generated solution is presented in Figure 4
(only the first day is shown). By increasing of the weight of the shortage, we could
also find a solution with no shortage.

Such a result is quite typical for real life projects. It is not overall the mini-
mization of shortage and excess but a multidimensional optimization problem with
many factors to be considered. Typically users like to get an idea of consequences
of weight changes (either by recalculation from scratch or by stepwise refinement
of the solution at hand). This helps users to assess the potential and limits for fur-
ther improvements and sometimes even causes a change in the requirements stated
(. . . if there is no solution with . . . we cannot . . .). A quick optimization is crucial to
facilitate such assessment process.

8 Conclusion

In this chapter we presented two real-life problems from the area of personnel
scheduling. We gave a precise problem definition for shift design and break schedul-
ing and then surveyed the existing literature for these two tasks and other related
problems. The solution techniques based on local search that have been used
successfully to solve different large real-life problems in these domains have been
further introduced. Finally, we presented a case study and described the solution
process in a commercial personnel scheduling system that exploits the local search
techniques to solve the shift design problem.

The local search techniques presented in this chapter have been shown to be pow-
erful tools for such problems. In our previous studies we have shown that the results
of these techniques can be still improved by hybridization with other solution meth-
ods like network flow algorithms. Therefore, considering simpler problems that can
be efficiently solved exactly can be very useful to get robust methods that combine
the advantages of different solution paradigms.

Solving shift design problem and break scheduling (with a large number of
breaks) simultaneously is still a challenging task. Although some work has been
done in this direction, the results obtained by the approach that considers these two
phases separately could still not be improved. Furthermore, it would be interest-
ing to additionally consider the assignment of the shifts to the employees, include
employee qualifications, and consider also the task assignment simultaneously.

Acknowledgments. This work was supported by the Austrian Science Fund (FWF): P24814-
N23. Moreover, the research herein is partially conducted within the competence network
Softnet Austria II (www.soft-net.at, COMET K-Projekt) and funded by the Austrian Fed-
eral Ministry of Economy, Family and Youth (bmwfj), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vienna in terms of the center
for innovation and technology (ZIT).

126 L.D. Gaspero et al.

References

1. Aykin, T.: Optimal shift scheduling with multiple break windows. Management Sci-
ence 42, 591–603 (1996)

2. Aykin, T.: A comparative evaluation of modelling approaches to the labour shift schedul-
ing problem. European Journal of Operational Research 125, 381–397 (2000)

3. Bechtold, S.E., Jacobs, L.W.: Implicit modelling of flexible break assignments in optimal
shift scheduling. Management Science 36(11), 1339–1351 (1990)

4. Beer, A., Gaertner, J., Musliu, N., Schafhauser, W., Slany, W.: Scheduling breaks in shift
plans for call centers. In: Proceedings of the 7th International Conference on the Practice
and Theory of Automated Timetabling, Montreal, Canada (2008)

5. Beer, A., Gärtner, J., Musliu, N., Schafhauser, W., Slany, W.: An AI-based break-
scheduling system for supervisory personnel. IEEE Intelligent Systems 25(2), 60–73
(2010)

6. Côté, M.-C., Gendron, B., Quimper, C.-G., Rousseau, L.-M.: Formal languages for in-
teger programming modeling of shift scheduling problems. Constraints 16(1), 55–76
(2011)

7. Côté, M.-C., Gendron, B., Rousseau, L.-M.: Grammar-based integer programming mod-
els for multiactivity shift scheduling. Management Science 57(1), 151–163 (2011)

8. Dantzig, G.B.: A comment on Eddie’s traffic delays at toll booths. Operations Re-
search 2, 339–341 (1954)

9. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-
gence 49(1-3), 61–95 (1991)

10. Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The mini-
mum shift design problem. Annals of Operations Research 155, 79–105 (2007)

11. Di Gaspero, L., Schaerf, A.: Multi-neighbourhood local search with application to course
timetabling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740,
pp. 262–275. Springer, Heidelberg (2003)

12. Gärtner, J., Musliu, N., Slany, W.: Rota: a research project on algorithms for workforce
scheduling and shift design optimization. AI Commun. 14(2), 83–92 (2001)

13. Gärtner, J., Musliu, N., Slany, W.: A heuristic based system for generation of shifts with
breaks. In: Proceedings of the 24th SGAI International Conference on Innovative Tech-
niques and Applications of Artificial Intelligence, Cambridge (2004)

14. Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The min-
imum shift design problem: Theory and practice. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 593–604. Springer, Heidelberg (2003)

15. Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., Slany, W.: A hy-
brid LS-CP solver for the shifts and breaks design problem. In: Blesa, M.J., Blum, C.,
Raidl, G., Roli, A., Sampels, M. (eds.) HM 2010. LNCS, vol. 6373, pp. 46–61. Springer,
Heidelberg (2010)

16. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Dordrecht (1997)
17. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier

/ Morgan Kaufmann (2004)
18. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuristic

repair method for constraint satisfaction and scheduling problems. Artif. Intell. 58(1-3),
161–205 (1992)

19. Musliu, N., Schaerf, A., Slany, W.: Local search for shift design. European Journal of
Operational Research 153(1), 51–64 (2004)

20. Musliu, N., Schafhauser, W., Widl, M.: A memetic algorithm for a break scheduling
problem. In: 8th Metaheuristic International Conference, Hamburg, Germany (2009)

Automated Shift Design and Break Scheduling 127

21. Musliu, N.: Intelligent Search Methods for Workforce Scheduling: New Ideas and Prac-
tical Applications. PhD thesis, Vienna University of Technology (2001)

22. Musliu, N.: Heuristic methods for automatic rotating workforce scheduling. International
Journal of Computational Intelligence Research 2(4), 309–326 (2006)

23. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Com-
plexity. Prentice Hall (1982)

24. Quimper, C.-G., Rousseau, L.-M.: A large neighbourhood search approach to the multi-
activity shift scheduling problem. Journal of Heuristics 16(3), 373–391 (2010)

25. Rekik, M., Cordeau, J.F., Soumis, F.: Implicit shift scheduling with multiple breaks and
work stretch duration restrictions. Journal of Scheduling 13, 49–75 (2010)

26. Schafhauser, W.: TEMPLE - A Domain Specific Language for Modeling and Solv-
ing Real-Life Staff Scheduling Problems. PhD thesis, Vienna University of Technology
(2010)

27. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In:
Proceedings of the Second DIMACS Challange on Cliques, Coloring, and Satisfiability
(1993)

28. Tellier, P., White, G.: Generating personnel schedules in an industrial setting using a tabu
search algorithm. In: Burke, E.K., Rudova, H. (eds.) The 5th International Conference
on the Practice and Theory of Automated Timetabling, pp. 293–302 (2006)

29. Thompson, G.: Improved implicit modeling of the labor shift scheduling problem. Man-
agement Science 41(4), 595–607 (1995)

30. Widl, M.: Memetic algorithms for break scheduling. Master’s thesis, Vienna University
of Technology, Vienna, Austria (2010),
http://www.kr.tuwien.ac.at/staff/widl/thesis.pdf

31. Widl, M., Musliu, N.: An improved memetic algorithm for break scheduling. In: Blesa,
M.J., Blum, C., Raidl, G., Roli, A., Sampels, M. (eds.) HM 2010. LNCS, vol. 6373, pp.
133–147. Springer, Heidelberg (2010)

http://www.kr.tuwien.ac.at/staff/widl/thesis.pdf

Nurse Rostering: A Complex Example
of Personnel Scheduling with Perspectives

Pieter Smet, Patrick De Causmaecker,
Burak Bilgin, and Greet Vanden Berghe

Abstract. Nurse rostering is an attractive research domain due to its soci-
etal relevance, while academics are intrigued by its combinatorial complexity.
Descriptions of nurse rostering problems vary largely across the literature,
which makes it almost impossible to track down scientific advances of mod-
els and corresponding approaches. The present chapter introduces a mathe-
matical formulation of a generic nurse rostering model. It provides common
elements present in most nurse rostering research as well as important hos-
pital constraints that are usually omitted from academic models. The new
mathematical model satisfies all the basic requirements for future nurse ros-
tering research and practical developments. Finally, the importance of public
datasets is discussed, together with the characteristics of the various bench-
mark instances and research results obtained working on these instances.

1 Introduction

The wellsprings of automated nurse rostering research go back to the ‘70s
of the former century. Over the years, this particular subfield of automated
scheduling has continued to draw attention in academia, reaching a climax
in the last decade. As is often the case with many domains of operations
research, the present evolution takes place in lockstep with the exponential
increase in computer power, and with a growing understanding and sophis-
tication in the field of models and algorithms.

Pieter Smet · Burak Bilgin · Greet Vanden Berghe
CODeS, KAHO Sint-Lieven, Gebr. De Smetstraat 1, 9000 Gent, Belgium
e-mail: {pieter.smet,burak.bilgin,greet.vandenberghe}@kahosl.be

Patrick De Causmaecker · Greet Vanden Berghe
CODeS & iMinds-ITEC-KU Leuven,
Department Computer Science, KULAK, KU Leuven
E. Sabbelaan 53, 8500 Kortrijk, Belgium
e-mail: Patrick.DeCausmaecker@kuleuven-kulak.be

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 129
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_6, c© Springer-Verlag Berlin Heidelberg 2013

{pieter.smet,burak.bilgin,greet.vandenberghe}@kahosl.be
Patrick.DeCausmaecker@kuleuven-kulak.be

130 P. Smet et al.

Early papers strongly focussed on practical problems while displaying a
thorough and systematic analysis [Warner, 1976]. In the later decades, an
evolution took place towards a comprehensive research domain with the mod-
els from nurse rostering acting as test cases for many new developments in
optimisation and metaheuristics ([Brucker et al., 2010, Maenhout and Van-
houcke, 2007, Valouxis et al., 2012] are a few examples).

The purpose of the recent ‘Cross-domain Heuristic Search Challenge’
(CHeSC 2011) was to develop search algorithms that work well across differ-
ent problem domains. Hyperheuristics [Burke et al., 2003] are such general
search methods capable of addressing different problems without domain spe-
cific knowledge. The challenge provided domain specific heuristics together
with a number of instances for a set of problem domains. A selection hy-
perheuristic [Burke et al., 2010b] is composed of a mechanism that selects
one of the low level domain specific heuristics and applies it to a candidate
solution. Whether or not the new solution is accepted, is determined by the
hyperheuristics’ acceptance criterion. The challenge revealed that for hyper-
heuristics, it was harder to solve the nurse rostering problem than the other
optimisation problems partaking in the competition [Misir et al., 2012]. Typ-
ical heuristics for nurse rostering consume a considerable amount of time,
therefore limiting the adaptive capabilities of general search algorithms when
the computation time is limited. For real-world nurse rostering problems,
hyperheuristics offer a suitable solution approach [Smet et al., to appear].
Typically, in these cases computation time is not critical, however, instances
can display a large diversity and therefore a general solution method is re-
quired. Furthermore, in practice, hyperheuristics offer the advantage that
one can focus on the problem model, rather than on the solution approach.
Once implemented, hyperheuristics can cope with increasingly complex mod-
els without requiring changes to the algorithmic design.

Ever stronger results are being obtained in laboratory conditions, whereas
only a few of those results find their way into practice. The present chapter
attempts to find the reasons why this is the case, investigating to what extent
this situation is problematic, while suggesting possible remedies. Simultane-
ously, the power of the academic rostering solutions allows for another level
of analysis to support decisions at higher organisational levels. Without cap-
turing the full complexity of real nurse rostering problems, such approaches
may, for example, enable unravelling structural under- or overstaffing within
a ward. So far, as we know, such research has never had full attention and
will extend the range of possible applications.

Section 2 introduces a generic model to nurse rostering problems covering
the most relevant constraints identified by practitioners. The mathematical
model serves as an unambiguous description of nurse rostering constraints and
their contribution to the objective function. This integer model incorporates
all the elements of the nurse rostering datasets available at present.

Section 3.1 of the present chapter brings a comprehensive overview of nurse
rostering research. The main contributions hold the centre state, focussing

Nurse Rostering: A Complex Example of Personnel Scheduling 131

on those breakthroughs leading to new theory, while at the same time un-
derscoring the main causes of the evolution at hand. The section then moves
over into questions on generality trying to identify characteristics, modelling
techniques and algorithms, capable to be applied in a broader context.

Section 3.2 elaborates on public sets of nurse rostering instances serving as
benchmarks for algorithm developers. Some of the benchmark datasets under
discussion have been generated automatically while others have been derived
from actual hospital situations.

A case study discussing the modelling of six different wards in two Belgian
hospitals is presented in Sect. 3.3. This section tries to identify challenging
characteristics of real-world nurse rostering problems and show how these can
be included in modelling approaches.

A brief discussion and directions for future research closes this chapter in
Sect. 4.

2 Mathematical Formulation

A mathematical formulation has been developed for a generic personnel ros-
tering model and is introduced in this section as an integer model. It repre-
sents abstract adaptable nurse rostering components to meet various specific
problem descriptions. In contrast to the majority of models discussed in the
academic literature, the present model is devised in such a way that it is appli-
cable in a large number of real hospital scenarios. The model covers problems
matching ASBCI|RV NO|PL in the α|β|γ notation of [De Causmaecker and
Vanden Berghe, 2011].

In an effort to close the gap between theory and practice, the elements
defined in the mathematical formulation presented in this chapter, are also
described in an XML schema definition file [Smet et al., to appear].

2.1 Nurse Rostering Model

Academic research on personnel rostering has mostly been focused on new
solution techniques. These approaches are then used to find solutions for
instances based on often simplified models. Many real-world requirements
concerning the problem definitions are therefore ignored during the concep-
tion of the novel approaches. The result is that only a small fraction of the
academic solution methods are used in practice [Kellogg and Walczak, 2007].

The present model aims to overcome this issue by enabling to represent
real-world requirements accurately and completely. Therefore, several exten-
sions have been made to standard academic models. The purpose of the
presented model is for it to be utilised in real-world personnel rostering ap-
plications. Researchers having to address rostering problems with real-world
complexity can represent their problems using this generic model with few
or no adjustments.

132 P. Smet et al.

The KAHO dataset (Section 3.2) illustrates an application of this generic
nurse rostering model. Its instances incorporate several complex regulations
from practice with which the model can cope.

Nurse rostering problems present highly constrained combinatorial opti-
misation problems with both hard and soft constraints. A solution needs
to satisfy all hard constraints in order to be considered feasible, while soft
constraints should be attempted to be satisfied as much as possible. This is
accomplished by minimising an objective function (Eq. (1)), which is a linear
combination of the weight (wc) and the number of violations (nc) of each
soft constraint (c ∈ C). The quality of a roster is inversely proportional to
its objective function value, i.e. the lower the objective function value, the
higher the quality of the roster. ∑

c∈C

wcnc (1)

Soft constraints in the present model include rest time between two con-
secutive shifts, penalties with regard to skill types, coverage requirements,
collaborations and absence requests. Furthermore, there are three general
types of soft quantitative constraints [Bilgin et al., 2012].

Counters. These constraints restrict the number of instances of a specific
subject (e.g. days worked, weekends idle, hours worked, etc.) over a spec-
ified period.

Series. These constraints restrict the number of consecutive occurrences of
instances of a specific subject (e.g. consecutive shifts of the same type,
consecutive idle days, etc.)

Successive series. These constraints restrict the succession of two series (e.g.
days worked - days idle). Any occurance of the first series implies the
second series to follow.

Threshold values are foreseen for counters, series, successive series and cov-
erage constraints. A threshold value can be either a minimum, a maximum,
or an interval defined by a minimum and a maximum value.

The constraint sets and the weights of the constraints show differences
among sectors, countries and organisations, and even among different em-
ployees in the same unit. Therefore, the model does not employ one pre-
defined constraint set with fixed weights that apply to all employees in a
problem instance. Instead, it provides a manner to construct constraints and
constraint sets that can be specific to each employee and problem instance.
Consequently, the model does not foresee a predefined objective function,
but an objective function that is constructed according to the constraint sets
that are defined by the planner using the model, as expressed in Eq. (1)
[Bilgin, 2012].

Nurse Rostering: A Complex Example of Personnel Scheduling 133

2.2 Definitions and Variables

The following parameters are defined:

E The set of employees
D The set of days in the current schedule period and in the relevant parts of

the previous and upcoming schedule period
S The set of shift types
K The set of skill types
W The set of weekends in the current schedule period and in the relevant parts

of the previous and upcoming schedule period
C The set of constraints

The following decision variables are defined ∀e ∈ E, d ∈ D, s ∈ S, k ∈ K:

xe,d,s,k =

{
1 if employee e is assigned on day d, in shift type s and skill type k
0 otherwise

The auxiliary variable pe,d in Eq. (2) denotes the presence of employee e ∈ E
on day d ∈ D. pe,d takes the value 1 if employee e ∈ E is assigned on day
d ∈ D, otherwise it is 0.

− |S| |K| pe,d +
∑
s∈S

∑
k∈K

xe,d,s,k ≤ 0

−pe,d +
∑
s∈S

∑
k∈K

xe,d,s,k ≥ 0
(2)

pe,d,S′ in Eq. (3), another auxiliary variable, denotes the presence of employee
e ∈ E on day d ∈ D, in any of the shift types s ∈ S′ ⊂ S. pe,d,S′ takes the
value 1 if employee e ∈ E is assigned on day d ∈ D, in any of the shift type
s ∈ S′ ⊂ S. It takes the value 0 otherwise.

− |S′| |K| pe,d,S′ +
∑
s∈S′

∑
k∈K

xe,d,s,k ≤ 0

−pe,d,S′ +
∑
s∈S′

∑
k∈K

xe,d,s,k ≥ 0
(3)

pe,D′,S′,K′ in Eq. (4) denotes the presence of employee e ∈ E on any of the
days d ∈ D′ ⊂ D, in any of the shift types s ∈ S′ ⊂ S and with any of the
skill types k ∈ K ′ ⊂ K. pe,D′,S′,K′ takes the value 1 if employee e ∈ E has
at least one assignment on any of the days d ∈ D′ ⊂ D, in any of the shift
types s ∈ S′ ⊂ S, with any of the skill types k ∈ K ′ ⊂ K, otherwise it takes
the value 0.

− |D′| |S′| |K ′| pe,D′,S′,K′ +
∑
d∈D′

∑
s∈S′

∑
k∈K′

xe,d,s,k ≤ 0

−pe,D′,S′,K′ +
∑
d∈D′

∑
s∈S′

∑
k∈K′

xe,d,s,k ≥ 0
(4)

134 P. Smet et al.

Similarly, qe,w denotes the presence of employee e ∈ E in weekend w ∈ W
(Eq. (5)). This variable becomes 1 if employee e works at least one shift
in weekend w, and 0 otherwise. l refers to the length of the weekend. dw,i

denotes day i of weekend w.

∀e ∈ E,w ∈ W :

−lqe,w +

l∑
i=1

pe,dwi ≤ 0

−qe,w +
l∑

i=1

pe,dwi ≥ 0

(5)

2.3 Hard Constraints

2.3.1 One Assignment Start Per Day Per Employee

A maximum of one assignment can start for each employee on each day.

∀e ∈ E, d ∈ D :
∑
s∈S

∑
k∈K

xe,d,s,k ≤ 1 (6)

2.3.2 Schedule locks

In some cases, manual planners can fix the assignments of an employee e ∈ E
on a day d ∈ D, for a shift type s ∈ S and a skill type k ∈ K in advance.
These preset assignments are represented by a tuple 〈e, d, s, k〉 in Von and
are modelled using Eq. (7). Days off can also be fixed in advance for employee
e ∈ E on a day d ∈ D using Eq. (8).

∀(e, d, s, k) ∈ Von : xe,d,s,k = 1 (7)

∀(e, d) ∈ Voff :
∑
s∈S

∑
k∈K

xe,d,s,k = 0 (8)

2.3.3 Honour Skill Types

Let the skill types of an employee e ∈ E be Ke ⊆ K. In that case, Eq. (9)
forbids any assignment to e with a skill type k that e does not have.

∀e ∈ E :
∑
d∈D

∑
s∈S

∑
k∈K\Ke

xe,d,s,k = 0 (9)

Nurse Rostering: A Complex Example of Personnel Scheduling 135

2.3.4 Defined Assignments Only

If an assignment on day d ∈ D, with shift type s ∈ S and skill type k ∈ K
is not defined in any of the coverage constraints ccd,S′,K′ ∈ CC ⊆ C, then
such an assignment cannot be made to an employee. Assignments that are
provided in the input schedule cannot be modified, deleted or reassigned to
another employee if no coverage constraint is defined for that day, skill and
shift type.

The motivation behind this constraint can be found in the fact that the cov-
erage constraints are considered soft constraints. For example, an assignment
can be made even if the maximum threshold of the corresponding coverage
constraint is equal to zero. This is necessary in practice when an employee
does not meet the required amount of working hours specified in his or her
contract. However, there are situations when the assignment of a particular
shift type to an employee with a particular skill type cannot be considered at
all. For example, in some wards, the head nurse is never assigned to a night
shift and therefore such a coverage constraint is never defined.

∀d ∈ D, s ∈ S, k ∈ K :

¬∃ (ccd,S′,K′ ∈ CC|s ∈ S′, k ∈ K ′) ⇒
∑
e∈E

xe,d,s,k = 0 (10)

2.3.5 Overlapping Shift Types

Let T be the set of shift type pairs (si, sj) such that si and sj overlap if they
are assigned on consecutive days d and d + 1, respectively. Equation (11)
ensures that overlapping shift type assignments are never made.

∀e ∈ E, d ∈ D, (si, sj) ∈ T :
∑
k∈K

xe,d,s,k +
∑
k∈K

xe,(d+1),s,k ≤ 1 (11)

2.4 Soft Constraints

Let v(x), w(x), m(x), n(x), p(x) refer to the value, weight, maximum thresh-
old, minimum threshold and the penalty of a constraint x from the set of soft
constraints X ⊂ C. The objective value of a candidate solution is the sum of
the penalties of all soft constraints X in the problem instance (Eq. (12)).∑

x∈X

p(x) (12)

This section describes various soft constraints in the model and how their
penalty p(x) can be calculated.

136 P. Smet et al.

2.4.1 Rest Times between Shift Types

Let R be the set of shift type pairs (si, sj) such that at least one of si and sj
violates the rest time of the other if they are assigned on consecutive days d
and d+1, respectively. Let w(rest) be the weight for the constraint restricting
the rest time between shift types. p(rest) in Eq. (13) refers to the total rest
penalty, which is the number of violations of this constraint multiplied by the
corresponding weight.

p(rest) =
∑
e∈E

∑
d∈D

∑
(si,sj)∈R

∑
k∈K

w(rest) · xe,d,si,k · xe,(d+1),sj ,k (13)

2.4.2 Employee Skill Type Penalties

Let the skill types of an employee e ∈ E be Ke ⊆ K. Each skill type k ∈ Ke

has a penalty w(skille,k) that is added to the objective value, in case an
assignment is made with that skill type. p(skill) in Eq. (14) refers to the
total penalty due to skill type assignments.

p(skill) =
∑
e∈E

∑
d∈D

∑
s∈S

∑
k∈K

w(skille,k) · xe,d,s,k (14)

2.4.3 Coverage Constraints

Coverage constraints are defined as soft constraints. The coverage constraint
ccd,S′,K′ restricts the number of employees assigned on day d ∈ D, for shift
type set S′ ⊂ S and for skill type set K ′ ⊂ K. As it can be understood
from its formulation, any assignment with any shift type s ∈ S′ ⊂ S and any
skill type k ∈ K ′ ⊂ K on day d ∈ D is counted by the coverage constraint.
v(ccd,S′,K′) refers to the total number of assignments on day d, with any shift
type s ∈ S′ ⊂ S and any skill type k ∈ k′ ⊂ K. The total penalty p(ccd,S′,K′)
of coverage constraint ccd,S′,K′ is calculated using Eq. (16).

v(ccd,S′,K′) =
∑
e∈E

∑
s∈S′

∑
k∈K′

xe,d,s,k (15)

p(ccd,S′,K′) =
w(ccd,S′,K′) ·max {0, v(ccd,S′,K′)−m(ccd,S′,K′)}+
w(ccd,S′,K′) ·max {0, n(ccd,S′,K′)− v(ccd,S′,K′)}

(16)

2.4.4 Collaboration

Let E′ ⊂ E be the employee set, D′ ⊂ D be the day set, S′ ⊂ S be the shift
set, K ′ ⊂ K be the skill set and the triple 〈D′, S′,K ′〉 be the domain of the
collaboration constraint lE′,D′,S′,K′ . v(lE′,D′,S′,K′) refers to the total number

Nurse Rostering: A Complex Example of Personnel Scheduling 137

of assignments made to the members of the employee set E′ on day d ∈ D′,
for shift type set S′ and skill type set K ′. The total penalty p(lE′,D′,S′,K′) is
calculated using Eq. (18).

∀d ∈ D′ : v(lE′,D′,S′,K′) =
∑
e∈E′

∑
s∈S′

∑
k∈K′

xe,d,s,k (17)

p(lE′,D′,S′,K′) = ∑
d∈D′

w(lE′,D′,S′,K′) ·max {0, v(lE′,d,S′,K′)−m(lE′,D′,S′,K′)}+
∑
d∈D′

w(lE′,D′,S′,K′) ·max {0, n(lE′,D′,S′,K′)− v(lE′,d,S′,K′)}

(18)

2.4.5 Absence Requests

Let D′ ⊂ D be the day set, S′ ⊂ S the shift type set and K ′ ⊂ K be the
skill type set of the domain 〈D′, S′,K ′〉 of the absence request are,D′,S′,K′ of
employee e ∈ E. The handling of the day set in the domain of the absence
request determines how the absence request is evaluated.

The handling of absence request can be either individual or complete. In
case the handling is individual, the days in the day setD′ are handled individ-
ually. A complete handling requires all days in the day set to be considered as
one block. Whenever a single request cannot be fulfilled, a penalty is incurred
for all other requests on days in D′ as well.

If the handling is individual, then the total penalty p(are,D′,S′,K′) of the
absence request is calculated using Eq. (19).

p(are,D′,S′,K′) = w(are,D′,S′,K′)
∑
d∈D′

∑
s∈S′

∑
k∈K′

xe,d,s,k (19)

If the handling is complete, then the total penalty p(are,D′,S′,K′) of the ab-
sence request is calculated using Eq. (20).

p(are,D′,S′,K′) = w(are,D′,S′,K′) · pe,D′,S′,K′ (20)

2.4.6 Counters

Let csv(c) be the counter start value and crv(c) the counter remainder value
of counter c ∈ C. These values are used to define a starting value of a specific
counter (e.g. to account for occurence in the previous period), and to define
how many occurences are present in future scheduling periods. By including
these values, the model better corresponds to real-world practice where as-
signments from previous and future periods influence the current scheduling
period.

138 P. Smet et al.

The penalty p(c) of counter c is calculated using Eq. (21).

p(c) =
w(c) ·max {0, v(c)−m(c)}+
w(c) ·max {0, n(c)− v(c)− crv(c)}

(21)

Days worked counter
LetD′ ⊆ D be the day set of the days worked counter dwce,D′ of employee e ∈
E. The counter value v(dwce,D′) of days worked counter dwce,D′ is calculated
using Eq. (22).

v(dwce,D′) = csv(dwce,D′) +
∑
d∈D′

pe,d (22)

Days idle counter
Let D′ ⊆ D be the day set of the days idle counter dice,D′ of employee e ∈ E.
The counter value v(dice,D′) of days idle counter dice,D′ is calculated using
Eq. (23).

v(dice,D′) = csv(dice,D′) +
∑
d∈D′

(1− pe,d) (23)

Shift types worked counter
Let D′ ⊆ D be the day set and S′ ⊆ S be the shift types set of the shift types
worked counter swce,D′,S′ of employee e ∈ E. The counter value v(swce,D′,S′)
of shift types worked counter swce,D′,S′ is calculated using Eq. (24).

v(swce,D′,S′) = csv(swce,D′,S′) +
∑
d∈D′

∑
s∈S′

∑
k∈K

xe,d,s,k (24)

Weekends worked counter
Let W ′ ⊆ W be the weekends in the counter period of the weekends worked
counter wwce,W ′ of employee e ∈ E. The counter value v(wwce,W ′) of week-
ends worked counter wwce,W ′ is calculated using Eq. (25).

v(wwce,W ′) = csv(wwce,W ′) +
∑

w∈W ′
qe,w (25)

Weekends idle counter
Let W ′ ⊆ W be the weekends in the counter period of the weekends idle
counter wice,W ′ of employee e ∈ E. The counter value v(wice,W ′) of the
weekends idle counter wice,W ′ is calculated using Eq. (26).

v(wice,W ′) = csv(wice,W ′) +
∑

w∈W ′
(1− qe,w) (26)

Hours worked counter
Let D′ ⊆ D be the day set of the hours worked counter hwce,D′ of employee
e ∈ E. Let Dar ⊆ D, Sar ⊆ S, and Kar ⊆ K be the day set, shift type set

Nurse Rostering: A Complex Example of Personnel Scheduling 139

and skill type set of absence request ar, respectively. Let D′
ar = D′∩Dar. Let

ARe be the set of all absence requests of an employee e ∈ E. Let JobT ime(s)
be the net job time of a shift type s ∈ S and JobT ime(ar) the net job time
of an absence request ar.

ARc
e = {ar ∈ ARe|D′

ar �= ∅ ∧ handling of Dar is complete}
ARi

e = {ar ∈ ARe|D′
ar �= ∅ ∧ handling of Dar is individual} (27)

v(hwce,D′) =

csv(hwce,D′) +
∑
d∈D′

∑
s∈S

∑
k∈K

xe,d,s,k · JobT ime(s)+∑
ar∈ARc

e

(1− pe,Dar ,Sar,Kar) · JobT ime(ar)+

∑
ar∈ARi

e

∑
d∈D′

ar

∑
s∈Sar

∑
k∈Kar

(1− xe,d,s,k) · JobT ime(ar)

(28)

Domain counter
Let D′ ⊆ D be the day set, S′ ⊆ S be the shift types set, and K ′ ⊆ K
be the skill type set of the domain counter dce,D′,S′,K′ of employee e ∈ E.
The counter value v(dce,D′,S′,K′) of domain counter dce,D′,S′,K′ is calculated
using Eq. (29).

v(dce,D′,S′,K′) = csv(dce,D′,S′,K′) +
∑
d∈D′

∑
s∈S′

∑
k∈K′

xe,d,s,k (29)

2.4.7 Series

In what follows, the calculation of the penalty p(s) of a series constraint s ∈ C
is presented for different types for series constraints.

Days worked series
The calculation of the total penalty p(dwse) of days worked series dwse with
a maximum threshold m(dwse) of an employee e ∈ E is given in Eq. (30).

p(dwse) = w(dwse)
∑
d∈D

max

⎧⎨
⎩
⎛
⎝m(dwse)∑

i=0

pe,d+i

⎞
⎠−m(dwse), 0

⎫⎬
⎭ (30)

The calculation of the total penalty p(dwse) of days worked series dwse with
a minimum threshold n(dwse) of an employee e ∈ E is given in Eq. (31).

140 P. Smet et al.

p(dwse) =

w(dwse)
∑
d∈D

(1− pe,d)·

pe,d+1 ·max
n(dwse)
i=1 {(n(dwse)− i)(1 − pe,d+i+1)}

(31)

Days idle series
The calculation of the total penalty p(dise) of days idle series dise with a
maximum threshold m(dise) of an employee e ∈ E is given in Eq. (32).

p(dise) = w(dise)
∑
d∈D

max

⎧⎨
⎩
⎛
⎝m(dise)∑

i=0

(1− pe,d+i)

⎞
⎠−m(dise), 0

⎫⎬
⎭ (32)

The calculation of the total penalty p(dise) of days idle series dise with a
minimum threshold n(dise) of an employee e ∈ E given in Eq. (33).

p(dise) = w(dise)
∑
d∈D

pe,d · (1− pe,d+1) ·max
n(dise)
i=1 {(n(dise)− i)(pe,d+i+1)}

(33)
Weekends worked series
The calculation of the total penalty p(wwse) of weekends worked series wwse
with a maximum threshold m(wwse) of an employee e ∈ E is given in Eq.
(34).

p(wwse) = w(wwse)
∑
w∈W

max

⎧⎨
⎩
⎛
⎝m(wwse)∑

i=0

qe,w+i

⎞
⎠−m(wwse), 0

⎫⎬
⎭ (34)

The calculation of the total penalty p(wwse) of weekends worked series wwse
with a minimum threshold n(wwse) of an employee e ∈ E is given in Eq. (35).

p(wwse) =

w(wwse)
∑
w∈W

(1 − qe,w) · qe,w+1·

max
n(wwse)
i=1 {(n(wwse)− i)(1− qe,w+i+1)}

(35)

Weekends idle series
The calculation of the total penalty p(wise) of days idle series wise with a
maximum threshold m(wise) of an employee e ∈ E is given in Eq. (36).

p(wise) = w(wise)
∑
w∈W

max

⎧⎨
⎩
⎛
⎝m(wise)∑

i=0

(1− qe,w+i)

⎞
⎠−m(wise), 0

⎫⎬
⎭ (36)

Nurse Rostering: A Complex Example of Personnel Scheduling 141

The calculation of the total penalty p(wise) of days idle series wise with a
minimum threshold n(wise) of an employee e ∈ E given in Eq. (37).

p(wise) =

w(wise)
∑
w∈W

qe,w · (1− qe,w+1)·

max
n(wise)
i=1 {(n(wise)− i)(qe,w+i+1)}

(37)

Shift types worked series
The calculation of the total penalty p(swse,S′) of shift types worked series
swse,S′ defined on S′ ⊂ S with a maximum threshold m(swse,S′) of an
employee e ∈ E is given in Eq. (38).

p(swse,S′) = w(swse,S′)
∑
d∈D

max

⎧⎨
⎩
⎛
⎝m(swse,S′)∑

i=0

pe,d+i,S′

⎞
⎠−m(swse), 0

⎫⎬
⎭
(38)

The calculation of the total penalty p(swse,S′) of shift types worked series
swse,S′ defined on S′ ⊂ S with a minimum threshold n(swse,S′) of an em-
ployee e ∈ E is given in Eq. (39).

p(swse,S′) =

w(swse,S′)
∑
d∈D

(1 − pe,d,S′) · pe,d+1,S′·

max
n(swse,S′)
i=1 {(n(swse,S′)− i)(1− pe,d+i+1,S′)}

(39)

2.4.8 Successive Series

As stated in Sect. 2.1, a penalty for a successive series constraint ss ∈ C is
incurred when an occurrence of the first series s1 is not followed by the second
series s2. Let p(ss) be the total penalty for a successive series constraint and
w(ss) the weight. Eq. (40) shows how p(ss) is calculated. αs1 is a binary
variable, whereas βs2 is a non-negative integer variable. For every s1 − s2
succession in the schedule, if s1 satisfies the condition of the first series αs1 is
1, and otherwise αs1 is 0. Again, for every s1− s2 succession in the schedule,
βs2 corresponds to the amount of the deviation between the actual schedule
and the second series s2.

p(ss) = sums1−s2(w(ss).αs1 .βs2) (40)

142 P. Smet et al.

3 Solution Approaches and Datasets for Nurse
Rostering

3.1 Algorithmic Progress

Domains of applied research in optimisation tend to go through a fixed set
of stages. Initial modelling efforts produce simplified versions of the problem
statement accessible for standard approaches, leading to efficient solution
methods or to conclusions about the intrinsic complexity of the problem.
When confronted with practice, the simplified models cannot catch the com-
plications of the real application and must be extended to accommodate new
characteristics. The aforementioned approaches will only partly grasp these
extensions. The resulting optimisation problems may either be more or less
complex. In the latter case, a deeper study of the problem characteristics may
reveal essential complicating factors which were not observed initially.

In nurse rostering, the initial models covered assignment of nurses to shifts
with the main goal of satisfying the nursing demand in the hospital. Work
regulations would typically reduce to best practice conventions used by the
operators in the hospital. An example is cyclic scheduling, where the working
schedules of the nurses follow a cyclic pattern [Rocha et al., to appear]. As the
studies evolved, and depending on the country, work regulations for nurses
turned out to be as extremely diverse as extensive. The number of shift
structures is of the same order of magnitude as the number of hospitals.
Nurses have regulations allowing very dynamic and detailed tuning to their
private lives. Healthy work pattern requirements restrict the number of times
a nurse can be set to work in a specific kind of shift [Valouxis and Housos,
2000]. The transition in time from one shift to another is subject to specific
constraints. Many of these constraints are considered to be preferably satisfied
while some must be met under any condition. The model has shifted from the
initial assignment problem with a limited number of constraints to a general
optimisation problem taking soft constraints into the objective function, like
the one represented by Eq. (1).

Initial approaches to nurse rostering problems used linear and integer pro-
gramming [Abernathy et al., 1973]. In later times, intrinsic complexities made
it a target for heuristic techniques [Burke et al., 2001]. As often with problems
that cannot be solved to optimality, benchmarks were set up for approaches to
allow themselves to be compared (Sect. 3.2). Benchmarks partially grasp the
essential characteristics of problems and, if refined over time, serve to arrive
at sharper problem definitions. Being a complex problem with many facets,
nurse rostering did not lead to one single problem definition. It presently
stands for a collection of problems agreeing on certain common elements and
differing on others. Two of the authors recently set up a categorisation for
nurse rostering, systematically listing the elements that can make up a nurse
rostering problem [De Causmaecker and Vanden Berghe, 2011]. The first
International Nurse Rostering Competition (2010 NRC) [Haspeslagh et al.,

Nurse Rostering: A Complex Example of Personnel Scheduling 143

2012] (Sect. 3.2.4), took specific properties of this list and effectively produced
a new benchmark set.

The results of the competition in fact reflect an interesting evolution in
optimisation techniques. The organisers mentioned six ‘lessons learned’ high-
lighting the importance and possibilities of dedication, hybridization and de-
composition, modelling power, restart, hyperheuristics and time spent. These
lessons of course reflect a general feeling in the community of combinatorial
optimisation and quite naturally fit into the research focus of the time. Ded-
ication is a natural plus in combinatorial problems: the fact that a solver de-
signed for personnel scheduling problems did well on nurse rostering confirms
both the power of the solver and the relevance of the competition’s problem
setting. A hybrid approach consisting of an iterated heuristic decomposition
and an exact solver for the component problems [Valouxis et al., 2012] won
all tracks in the competition. This alone confirms good results previously ob-
tained by other hybrid approaches and opens a promising new line of thought
to the heuristics community. Modelling power present in constraint based sys-
tems and the strength of available solvers allowed one team to concentrate
on the model to arrive at a very competitive solution [Nonobe, 2010]. Hyper-
heuristics are acquiring maturity and could stand up against more standard
techniques in this competition. Finally, the effectiveness of random restarts
in local search has been around for a long time and showed up again in this
setting and the fact that algorithms in general do not succeed to take profit
from longer computation times was confirmed here. Details of the above ap-
proaches are discussed in Sect. 3.2. Besides insights resulting from the best
performing approaches to the 2010 NRC’s instances, the increase of exact
and hybrid mathematical approaches to the nurse rostering problem is note-
worthy [Burke and Curtois, 2011, Della Croce and Salassa, to appear, Glass
and Knight, 2010].

The field has evolved from a simplification of a practical problem into a
detailed description of this problem, identifying crucial problem properties.
Benchmarks and competitions put several approaches to a test and may open
up the landscape for new techniques not mainstream in the community at a
specific time.

3.2 Benchmark Datasets and Solution Methods

As the previous section demonstrates, several solution approaches have been
proposed by various authors for different variants of the nurse rostering prob-
lem. In the majority of these publications, researchers focus on a specific ward
or hospital which has its own regulations. As a result, the presented solution
approaches are often (willingly or not) tailored to one specific instance of the
problem. Furthermore, in most cases the data on which the performance of an
algorithm is verified is not made publicly available. Due to the nature of the
nurse rostering problem, this is an understandable course of action. Hospitals

144 P. Smet et al.

do not want to compromise data concerning their daily operations. However,
the research community could benefit from a wider availability of instances
for verifying and comparing various solution approaches [Burke et al., 2004].
Consequently, robust approaches that handle more variated instances of the
nurse rostering problem would become attractive for practitioners.

In an effort to help close the gap between theory and practice, a collection
of benchmark instances have been made publicly available. These benchmark
datasets offer a large number of variegated instances which researchers can use
to evaluate the performance or robustness of their novel solution approaches.
The research community has made an effort to include a large diversity in
the available instances. As will be shown in what follows, some datasets
present real-world scenarios, while others are artificially generated based on
a number of parameter settings. Since the introduction of these different
datasets, several new best results have been published. This section aims to
give an overview of the existing benchmark datasets for the nurse rostering
problem along with some of their defining characteristics. Furthermore, a
survey is presented of papers in which the different datasets are targeted.

Four benchmark datasets were selected based on popularity and diversity.
In doing so, we aim to present an array of possibilities to anyone wishing to
evaluate an optimisation approach to the nurse rostering problem. Table 1
shows an overview of the selected datasets. The second column refers to an
elaborate description of the instances. Different approaches verified on the
instances of a dataset are shown in the third column. These algorithms are
discussed later in this section for each dataset individually.

Table 1 Overview of nurse rostering datasets

Dataset Description Relevant publications

KAHO Bilgin et al. [2012] Smet et al. [to appear] Smet et al. [2012]
Nottingham Curtois [2012] Brucker et al. [2010], Burke et al. [2010a,

2011], Burke and Curtois [2011], Glass and
Knight [2010]

NSPLIB Vanhoucke and Maenhout
[2007]

Maenhout and Vanhoucke [2006, 2007, 2008,
2010]

2010 NRC Haspeslagh et al. [2012] Awadallah et al. [2011], Bilgin et al. [2010],
Burke and Curtois [2011], Geiger [2011], Lü
and Hao [2012], Messelis and De Causmaecker
[2011], Nonobe [2010], Valouxis et al. [2012]

Looking at the four benchmark datasets, some common properties of the
nurse rostering problem in general can be identified. Typically, only few hard
constraints are defined while there exists a large set of soft constraints. Com-
mon hard constraints include the coverage constraints and the requirement
for a single assignment per day and per nurse. However, not all datasets con-
sider the same hard constraints, and in doing so attribute to the variety of
instances in the benchmarks.

Nurse Rostering: A Complex Example of Personnel Scheduling 145

Due to the public availability of the instances, important contributions
have been made to the research community. By presenting new, possibly best,
results for the benchmarks, a more thorough comparison can be performed,
resulting in a fairer evaluation of an approach. On the downside, researchers
often select instances from only one dataset. Combining instances from dif-
ferent datasets is advocated so as to enable more comprehensive studies.

3.2.1 KAHO Dataset

The benchmark instances in the KAHO dataset are constructed based on
data collected from six different wards in two Belgian hospitals. The data
was provided by companies specialised in decision support software for per-
sonnel rostering1. The information they provided, combined with feedback
from human planners, was used to construct the instances so that they com-
pare very closely to reality.

Table 2 shows the number of employees, shifts, skill types and days for
each instance in the benchmark dataset. For each ward, three different sce-
narios are considered. The normal scenario models a standard situation in
the ward considering the average coverage requirements as well as the nor-
mal availability of the nurses. The overload scenario simulates a situation
where a large amount of work (i.e. coverage) is to be met by the regular
staff. This could be the case in situations where the hospital is required
to treat a larger number of patients than normal, e.g. in case of a natu-
ral disaster or an epidemic. The last scenario, absence, represents a case in
which a nurse is absent for some part of the roster horizon. The problem
instances, as well as an XSD of the input files, can be downloaded from
http://allserv.kahosl.be/˜pieter/nurserostering.

Table 2 General characteristics of the KAHO problem instances

Instance Employees Shift types Skill types Days

Emergency 27 27 4 28
Psychiatry 19 14 3 31
Reception 19 19 4 42
Meal preparation 32 9 2 29
Geriatrics 21 9 2 28
Palliative care 27 23 4 91

Bilgin et al. [2012] present a study on various local search neighbourhoods
for the nurse rostering problem. Their experiments are conducted on instances
from the KAHO dataset. They use a variable neighbourhood search and an
adaptive large neighbourhood search (ALNS) to generate the first results for

1 SAGA Consulting and GPS NV Belgium.

http://allserv.kahosl.be/~pieter/nurserostering

146 P. Smet et al.

these benchmark instances. To the best of the authors’ knowledge, these are
the best known results and they represent the state of the art for this dataset.

Smet et al. [to appear] discuss various modelling issues with the existing
nurse rostering models from the literature. They present extensions to the
KAHO dataset model which are used to model complex constraints such
as collaboration between groups of nurses and requirements for training ju-
nior nurses. Furthermore, experimental results are presented using a hyper-
heuristic algorithm deploying the neighbourhood sets which were identified
by Bilgin et al. [2012] as the most effective for these types of nurse rostering
problems. The results are compared to the results obtained with the ALNS
presented in Bilgin et al. [2012].

The original instances along with a modified version of each normal sce-
nario were used by Smet et al. [2012] to investigate different objective func-
tions for fair nurse rostering. The authors tested three different objectives
using a metaheuristic search algorithm and discussed their performance for
these real-world instances.

3.2.2 Nottingham Dataset

In an effort to centralise a number of instances presented in the literature,
Curtois [2012] converted data described by different authors into a uniform
data format. All collected instances, a link to the original paper, lower bounds
and best known solutions are provided on a web page. The dataset represents
instances collected from all over the world and includes both real-world and
artificial instances. The different instances show a great variety in problem
properties. Table 3 shows an overview of the characteristics of some selected
instances.

Table 3 General characteristics of the Nottingham problem instances

Instance Employees Shift types Skill types Days

ORTEC 16 4 1 31
QMC 19 3 1 28
Ikegami-3Shift 25 3 7 30
BCV-3.46.2 46 3 1 29

The instances are available at http://www.cs.nott.ac.uk/
∼tec/NRP/. Furthermore, an extensive description of the data format can
be found on the same web page together with software to solve problems and
verify solutions.

Both exact and (meta)heuristic approaches have been applied to different
instances from the Nottingham dataset. Among them are an adaptive con-
structive heuristic [Brucker et al., 2010], scatter search [Burke et al., 2010a],
iterated local search [Burke et al., 2011], branch and price [Burke and Curtois,
2011] and mathematical programming [Glass and Knight, 2010]

http://www.cs.nott.ac.uk/~tec/NRP/
http://www.cs.nott.ac.uk/~tec/NRP/

Nurse Rostering: A Complex Example of Personnel Scheduling 147

3.2.3 NSPLib

NSPLib is a benchmark dataset specifically designed to conduct controlled
experiments on nurse rostering problems. The dataset contains a large num-
ber of generated instances, based on different parameter settings for nine
indicators [Vanhoucke and Maenhout, 2007]. These indicators describe dif-
ferent properties of an instance such as the problem size, the preferences and
the coverage constraints.

Problem size is defined by the number of nurses, the number of shifts and
the number of days.

The preferences of nurses are characterised by three parameters. First, the
nurse-preference distribution specifies how the preferences are distributed
among all nurses. Second, based on this initial distribution, these prefer-
ences are further distributed among the shifts. This is specified by the shift-
preference distribution. Finally, the preferences are distributed among the
different days. By controlling these three parameters, the distribution of pref-
erences is fully manageable.

Constraints on coverage are also determined by three parameters. The
total-coverage constrainedness defines how many nurses are required in total
for the complete rostering period. The day-coverage distribution controls how
the total coverage requirements are distributed over specific days. Finally, the
coverage per shift on each day is determined by the shift-coverage distribution.
By combining these three sub-indicators, coverage requirements are generated
for each shift on each day.

Two sets of instances can be identified in NSPLib: a diverse set and a
realistic set. Properties of both subsets are shown in Table 4. For each com-
bination of number of employees, shifts and days, ten instances were gen-
erated. This results in a total of 29160 instances in the diverse set and
1960 instances in the realistic set. The benchmark dataset can be down-
loaded from http://www.projectmanagement.ugent.be/nsp.html.
The problem generator NSPGEN provides the possibility to generate new in-
stances based on chosen values for the nine indicators.

Several algorithms have been applied to the instances in NSPLib, including
scatter search [Maenhout and Vanhoucke, 2006], a hybrid genetic algorithm
[Maenhout and Vanhoucke, 2008] and a metaheuristic based on the princi-
ples of electromagnetism [Maenhout and Vanhoucke, 2007]. To the best of
the authors’ knowledge the branch and price framework of Maenhout and
Vanhoucke [2010] is the only exact approach used to solve the instances.

Table 4 General characteristics of the NSPLib instances

Subset Employees Shift types Skill types Days

Diverse set 25, 50, 75, 100 3 1 7
Realistic set 30, 60 3 1 28

http://www.projectmanagement.ugent.be/nsp.html

148 P. Smet et al.

3.2.4 The First International Nurse Rostering Competition

In 2010, the first International Nurse Rostering Competition (2010 NRC)
was organised. The main goal of the organisers was to encourage the de-
velopment of new algorithms for the nurse rostering problem. Furthermore,
the competition also introduced challenges from practice by incorporating
some real-world constraints in the instances. The benchmark dataset contains
three types of instances: sprint, middle distance and long distance. These
types refer to the size of the instances and the allowed computation time.
The problem formulation, i.e. the hard and soft constraints, are the same
for all types. Three sets of instances were published for each type: early,
late and hidden. Table 5 shows some properties of the benchmark instances.
In total the dataset contains 60 instances which can be downloaded from
http://www.kuleuven-kulak.be/nrpcompetition.

Table 5 General characteristics of the INRC instances

Type Employees Shift types Skill types Days

Sprint 10 3, 4 1 28
Middle distance 30, 31 4, 5 1, 2 28
Long distance 49, 50 5 2 28

As far as the first aim of the competition is concerned, the goal has cer-
tainly been achieved. In the first round, 15 competitors submitted an algo-
rithm. From these 15, five finalists were selected, whose contributions were
then compared based on their performance on hidden instances. Among the
five finalists, various solution approaches were used.

Nonobe [2010] reformulated the instances as constraint optimisation prob-
lems and used a general purpose solver to find solutions. A hyperheuristic
combined with a greedy shuffle heuristic which performed particularly well
on the long distance instances [Bilgin et al., 2010]. The approach described by
Lü and Hao [2012] switches between a local search and an elite solution restart
mechanism. Burke and Curtois [2011] applied an ejection chain method and a
branch-and-price framework. The winners, Valouxis et al. [2012], decomposed
the problem into subsequent subproblems which could be solved to optimal-
ity. A two-phase approach was used in which first days-off are scheduled and
in the second phase particular shifts are assigned to the nurses.

Other algorithms have been evaluated on the 2010 NRC instances.
Awadallah et al. [2011] use a population based metaheuristic called harmony
search to solve the sprint instances. The algorithm mimics the improvisation
by musicians and includes recombinations of solutions, random assignments
and local search procedures. However, it does not manage to find new best
solutions, or to match the current best solutions. A variable neighbourhood
search is presented by Geiger [2011] for the sprint instances. First, a con-
structive approach generates an initial feasible solution based on the coverage

http://www.kuleuven-kulak.be/nrpcompetition

Nurse Rostering: A Complex Example of Personnel Scheduling 149

requirements. Afterwards, an iterative improvement procedure sequentially
explores four neighbourhoods, including one for shaking. The approach finds
the optimal solution for 8 out of 20 instances and matches one other best
known result. Della Croce and Salassa [to appear] present a matheuristic
based on a variable neighbourhood search to solve a real-world nurse roster-
ing problem. The algorithm was capable of finding new best solutions for five
sprint instances. Messelis and De Causmaecker [2011] also investigated the
benchmark instances to evaluate hardness measures for the nurse rostering
problem.

3.3 Modelling Real World Scenarios: A Case Study

The KAHO dataset was composed with real data from Belgian hospitals. The
actual personnel manager or head nurse assisted in setting the parameter
values. In this section, we elaborate on this dataset, on its parameter values
and on the challenging real-world elements it incorporates.

The schedule period length of the KAHO benchmarks varies between four
and 13 weeks. The same value varies between one week and 29 days in the
Nottingham benchmarks. As can be seen in Table 6, it is common practice
in Belgian hospitals to organise the work into a high number of shift types.
Furthermore, Table 6 shows that in some wards, the sum of the number of
employees in each skill category exceeds the total number of employees in the
ward. This implies that at least some employees possess multiple skills. This
skill structure has a direct impact on the employee, assignment and coverage
constraint elements of the problem model.

The flexibility of the employment contracts in Belgian hospitals can be seen
in Table 7. Nurses can opt for different working agreements: full time, half
time and various ratios in between. Real-world applications require the ability
to deal with multiple serial contracts per employee, per schedule period. This
happens when an employee switches from one contract type to another within
the same scheduling period due to a promotion or for another self-induced
reason. Multiple serial contracts are encountered in the meal preparation and
geriatrics wards of the KAHO benchmarks. Similarly, the sum of the number
of nurses for each contract is therefore greater than the total number of nurses
in these wards.

Table 6 The number of shift types and number of nurses with each skill type

Ward Shift types Skill 1 Skill 2 Skill 3 Skill 4 Total employees

Emergency 27 1 15 4 26 27
Psychiatry 14 1 17 1 - 19
Reception 19 1 1 3 15 19
Meal Preparation 9 1 31 - - 32
Geriatrics 9 4 20 - - 21
Palliative Care 23 1 21 4 1 27

150 P. Smet et al.

Table 7 The weekly job time and the corresponding number of nurses

Ward
38 hours
(100%)

34.2
hours
(90%)

30.4
hours
(80%)

28.5
hours
(75%)

22.8
hours
(60%)

19 hours
(50%)

Emergency 24 - - 3 - -
Psychiatry 13 - - 2 - 4
Reception 5 - - 7 - 7
Meal P. 3 2 - 1 - 28
Geriatrics 9 - - 9 1 3
P. Care 13 - 2 4 1 7

For each ward in the KAHO benchmarks, three different scenarios have
been developed in close cooperation with experienced planners: normal, over-
load and absence. These scenarios stem from situations that arise in the real-
world. The normal scenario represents the personnel rostering problem most
regularly faced in the wards.

In real-world situations, the workload of a ward is not stable over different
schedule periods and varies depending on external events such as epidemics
and seasonal diseases. A significant increase in the workload must be matched
by a proportional increase in the workforce demand. A higher workforce de-
mand is represented by higher threshold values in the coverage constraints.
The overload scenarios represent cases where the workload demand is higher
than usual. These instances have been carefully adapted by incrementing the
threshold values of the coverage constraints of the normal scenario instances.
This modification was performed for all the skill types but one, namely the
head nurse. One head nurse is sufficient in any situation and consequently,
the corresponding coverage constraints have not been incremented.

In practice, it is possible that a scheduled employee cannot work his or
her planned shifts due to an unforeseen event such as sickness. In this case,
the complete roster needs to be rescheduled to take into account the unfore-
seen absence of the employee. Several factors need to be considered when
addressing this problem. In contrast to the normal and overload scenarios,
the roster was already published to the staff in the ward. That means the
employees have already adjusted their private plans according to it. Therefore
the changes to the schedule must be kept to a minimum. In order to ensure
this, only the affected parts, i.e. the days when the employee is scheduled
but cannot be present, should be rescheduled. The remainder of the schedule
needs to be fixed to the original one. This practice reduces the size of the
problem instance considerably, while at the same time increasing the possi-
bility for generating an alternative roster with a low number of constraint
violations.

Nurse Rostering: A Complex Example of Personnel Scheduling 151

4 Discussion

The present chapter covered general academic advances in nurse rostering re-
search and provided a new comprehensive mathematical model. This generic
nurse rostering model enables incorporating complex real-world constraints
into the formulation in order to cover uncommon contractual constraints and
varied rostering practices in hospitals. The lack of a common modelling ap-
proach is one of the major lacunas in the nurse rostering literature. This
has prevented the community from building up knowledge and making clear
statements about the academic progress in the field. The authors therefore
advocate adoption of the presented model by the research community as well
as by software developers, in order to provide a ground for comparison and
exchange of data and results. Obviously, extensions to the present model will
be necessary whenever additional challenges would emerge in real hospital
environments.

Algorithmic developments have often concentrated on dedicated perfor-
mance for sets of very specific instances. Surprisingly large differences among
the nurse rostering problems’ descriptions impede thorough analysis and com-
parison of approaches. The introduction of nurse rostering benchmarks is
a major step towards a sound performance assessment of past and future
approaches to nurse rostering problems. The present chapter reviewed four
benchmark datasets for the nurse rostering problem along with publications
based on these instances. In order to stimulate the growth of the collection
of benchmark instances, the authors encourage researchers to model new
problem instances using the presented generic model and to make these new
datasets available to the community.

References

Abernathy, W.J., Baloff, N., Hershey, J.C., Wandel, S.: A three-stage manpower
planning and scheduling model - a service-sector example. Operations Re-
search 22, 693–711 (1973)

Awadallah, M.A., Khader, A.T., Al-Betar, M.A., Bolaji, A.L.: Nurse rostering using
modified harmony search algorithm. In: Panigrahi, B.K., Suganthan, P.N., Das,
S., Satapathy, S.C. (eds.) SEMCCO 2011, Part II. LNCS, vol. 7077, pp. 27–37.
Springer, Heidelberg (2011)

Bilgin, B.: Advanced Models and Solution Methods for Automation of Personnel
Rostering Optimisation. PhD thesis, KU Leuven (2012)

Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., Vanden Berghe, G.,
Wauters, T.: A hyper-heuristic combined with a greedy shuffle approach to the
nurse rostering competition. In: Proceedings of PATAT 2010 (2010)

Bilgin, B., De Causmaecker, P., Rossie, B., Vanden Berghe, G.: Local search neigh-
bourhoods for dealing with a novel nurse rostering model. Annals of Operations
Research 194, 33–57 (2012)

152 P. Smet et al.

Brucker, P., Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G.: A shift sequence
based approach for nurse scheduling and a new benchmark dataset. Journal of
Heuristics 16(4), 559–573 (2010)

Burke, E.K., Curtois, T.: New computational results for nurse rostering benchmark
instances. Technical report (2011)

Burke, E.K., Cowling, P., De Causmaecker, P., Vanden Berghe, G.: A memetic
approach to the nurse rostering problem. Applied Intelligence, Special Issue on
Simulated Evolution and Learning 15, 199–214 (2001)

Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, vol. 57, pp. 457–474.
Springer, New York (2003)

Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The
state of the art of nurse rostering. Journal of Scheduling 7(6), 441–499 (2004)

Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G.: A scatter search methodol-
ogy for the nurse rostering problem. Journal of the Operational Research Soci-
ety 61(11), 1667–1679 (2010a)

Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A clas-
sification of hyper-heuristics approaches. In: Gendreau, M., Potvin, J.-Y. (eds.)
Handbook of Metaheuristics. International Series in Operations Research & Man-
agement Science, vol. 146, pp. 449–468. Springer (2010b)

Burke, E.K., Curtois, T., Fijn Van Draat, L., Van Ommeren, J.-K., Post, G.:
Progress control in iterated local search for nurse rostering. Journal of the Op-
erational Research Society 62(2), 360–367 (2011)

Curtois, T.: Employee scheduling benchmark data sets (2012),
http://www.cs.nott.ac.uk/˜tec/NRP/

De Causmaecker, P., Vanden Berghe, G.: A categorisation of nurse rostering prob-
lems. Journal of Scheduling 14, 3–16 (2011)

Della Croce, F., Salassa, F.: A variable neighborhood search based matheuristic for
nurse rostering problems. Annals of Operations Research (to appear)

Geiger, M.J.: Personnel rostering by means of variable neighborhood search. In:
Hu, B., Morasch, K., Pickl, S., Siegle, M. (eds.) Operations Research Proceedings
2010, pp. 219–224. Springer, Heidelberg (2000) ISBN 978-3-642-20009-0

Glass, C.A., Knight, R.A.: The nurse rostering problem: A critical appraisal of the
problem structure. European Journal of Operational Research 202(2), 379–389
(2010)

Haspeslagh, S., De Causmaecker, P., Schaerf, A., Stolevik, M.: The first interna-
tional nurse rostering competition 2010. Annals of Operations Research, 1–16
(2012)

Kellogg, D.L., Walczak, S.: Nurse scheduling: From academia to implementation or
not? Interfaces 37(4), 355–369 (2007)

Lü, Z., Hao, J.-K.: Adaptive neighborhood search for nurse rostering. European
Journal of Operational Research 218(3), 865–876 (2012) ISSN 0377-2217

Maenhout, B., Vanhoucke, M.: New computational results for the nurse scheduling
problem: A scatter search algorithm. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP
2006. LNCS, vol. 3906, pp. 159–170. Springer, Heidelberg (2006)

Maenhout, B., Vanhoucke, M.: An electromagnetic meta-heuristic for the nurse
scheduling problem. Journal of Heuristics 13, 359–385 (2007) ISSN 1381-1231

http://www.cs.nott.ac.uk/~tec/NRP/

Nurse Rostering: A Complex Example of Personnel Scheduling 153

Maenhout, B., Vanhoucke, M.: Comparison and hybridization of crossover operators
for the nurse scheduling problem. Annals of Operations Research 159, 333–353
(2008) ISSN 0254-5330

Maenhout, B., Vanhoucke, M.: Branching strategies in a branch-and-price approach
for a multiple objective nurse scheduling problem. Journal of Scheduling 13, 77–
93 (2010) ISSN 1094-6136

Messelis, T., De Causmaecker, P.: An algorithm selection approach for nurse ros-
tering. In: Proceedings of the 23rd Benelux Conference on Artificial Intelligence,
pp. 160–166 (2011)

Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: Design and anal-
ysis of an evolutionary selection hyper-heuristic. Technical report, KAHO Sint-
Lieven (2012)

Nonobe, K.: An approach using a general constraint optimization solve. In: Pro-
ceedings of PATAT 2010 (2010)

Rocha, M., Oliveira, J.F., Carravilla, M.A.: Cyclic staff scheduling: optimization
models for some real-life problems. Journal of Scheduling 16(2), 231–242

Smet, P., Martin, S., Ouelhadj, D., Özcan, E., Vanden Berghe, G.: Investigation
of fairness measures for nurse rostering. In: Kjenstad, D., Riise, A., Norlander,
T.E., McColumn, B., Burke, E.K. (eds.) Proceedings of the 9th International
Conference on the Practice and Theory of Automated Timetabling, PATAT,
Son, Norway, pp. 369–372 (August 2012)

Smet, P., Bilgin, B., De Causmaecker, P., Vanden Berghe, G.: Modelling and eval-
uation issues in nurse rostering. Annals of Operations Research (to appear),
doi:10.1007/s10479-012-1116-3

Valouxis, C., Housos, E.: Hybrid optimisation techniques for the workshift and rest
assignment of nursing personnel. Artificial Intelligence in Medicine 20, 155–175
(2000)

Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., Housos, E.: A systematic two
phase approach for the nurse rostering problem. European Journal of Operational
Research (2012) ISSN 0377-2217, doi:10.1016/j.ejor.2011.12.042

Vanhoucke, M., Maenhout, B.: NSPLib - a tool to evaluate (meta-) heuristic pro-
cedures. In: Brailsford, S., Harper, P. (eds.) Operational Research for Health
Policy: Making Better Decisions, Proceedings of the 31st Meeting of the Euro-
pean Working Group on Operational Research Applied to Health Services, pp.
151–165 (2007)

Warner, M.: Nurse staffing, scheduling, and reallocation in the hospital. In: Hospital
& Health Services Administration, 77–90 (1976)

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning,
Studies in Computational Intelligence 505,

155

DOI: 10.1007/978-3-642-39304-4_7, © Springer-Verlag Berlin Heidelberg 2013

Radiotherapy Scheduling

Dobrila Petrovic,1Elkin Castro, Sanja Petrovic, and Truword Kapamara

Abstract. This chapter concerns radiotherapy scheduling problems identified at
two cancer centres in the UK. The scheduling of radiotherapy pretreatment and
treatment appointments is a complex problem due to various medical and
scheduling constraints, such as patient category, machine availability, a doctors’
rota, waiting time targets (i.e., the time when a patient should receive the first
radiotherapy fraction, etc.), and, also, due to the size of the problem (i.e., number
of machines, facilities and patients). Different objectives need to be considered
including minimisation of the number of patients who do not meet their waiting
time targets, minimisation of usage of overtime slots, minimisation of machines
idle time, and so on. Motivated by heuristics developed for production scheduling
problems, two novel heuristics-based approaches to scheduling of radiotherapy
patients are developed. Both approaches involve priority rules; while one of the
approaches applies the a priori selected priority rules, the other one employs a
genetic algorithm (GA) to select priority rules which will lead to the best
scheduling performance. Different experiments are carried out to analyse the
performance of the two radiotherapy scheduling approaches.

Dobrila Petrovic · Truword Kapamara

Faculty of Engineering and Computing,
Coventry University, Priory Street, Coventry, CV15FB, UK
e-mail: d.petrovic@coventry.ac.uk

Elkin Castro

ASAP research group, School of Computer Science,
University of Nottingham,
Jubilee Campus, Wollaton Road,
Nottingham, NG8 1BB, UK
e-mail: edc@cs.nott.ac.uk

Sanja Petrovic

Division of Operations Management and Information Systems,
Nottingham University Business School, Jubilee Campus,
Wollaton Road, Nottingham NG8 1BB, UK
e-mail: sanja.petrovic@nottingham.ac.uk

156 D. Petrovic et al.

1 Introduction

Radiotherapy is often used as an essential means to treat cancer patients. Its
application has grown worldwide. According to Delaney et al, (2005), an
estimated 52% of cancer patients received radiotherapy at least once in their
regimen. Around 40% of cancer cases in the UK require radiotherapy alone
or in combination with other treatment modes (National Radiotherapy Advisory
Group 2007).

Radiotherapy comprises two phases: pretreatment and treatment on linac (linear
particle accelerator) machines which deliver radiation. The purpose of the
pretreatment is to define precisely the area to be treated with radiotherapy, and to
generate a radiotherapy treatment plan which delivers a uniform dose to tumour
cells while minimising the radiation to the surrounding healthy tissues and organs.
In radiotherapy, radiation is given on linac machines as a series of small doses,
referred to as fractions, over a period of time (days, weeks) or a single fraction.

Cancer patients are typically classified according to the treatment intent and
their waiting list status. The treatment intent can be palliative or radical. Palliative
treatments are meant to relieve symptoms of cancer, whereas radical treatments
are given with the aim to cure. There are three waiting list statuses: emergency,
urgent and routine. The waiting list status of a patient is determined according to
the site of cancer and a level of progress of the tumour. The site of the cancer and
the treatment intent determine the patient pathway in a radiotherapy centre. It
defines an ordered sequence of medical procedures and consultations, hereafter
referred to as operations, which have to be performed in order to determine the
best way of delivering a radiotherapy treatment.

Waiting time targets determine the date by which a patient needs to receive
their first radiotherapy fraction. Waiting time is measured in consecutive days
including weekends and public holidays, from the time when the decision to treat
the patient using radiotherapy is made to the time when the first fraction is
administered. Table 1 displays the Joint Council for Clinical Oncology (JCCO)
good practice and maximum acceptable waiting time targets in days (separated by
“/”) for different treatment intents and waiting list statuses (JCCO 1993). The
Department of Health (DH) has also set a 31-day target to the start of radiotherapy
for all cancers (Department of Health 2000).
Table 1 JCCO recommended waiting time targets given in days (good practice / maximum
acceptable)

Intent Waiting list status

Emergency Urgent Routine

Palliative 1/2 2/14 2/14

Radical - - 14/28

Radiotherapy Scheduling 157

Most radiotherapy centres in the UK use handcrafted appointment booking
systems. A radiotherapy patients’ scheduling problem is very complex, requiring
multi-objective considerations. The challenges in radiotherapy centres are to
develop scheduling approaches to improving the waiting times in such a way as
to meet the waiting time targets, to minimising percentages of late patients, to
maximising the utilisation of the machines involved in the entire process and so
on, at minimal overhead costs. Different medical and technical constraints have to
be considered. Thus, this area offers new challenges to development of
radiotherapy patient scheduling systems.

In this chapter, relevant literature concerning radiotherapy scheduling problems
is reviewed. Two novel radiotherapy scheduling systems developed in
collaboration with two radiotherapy centres in the UK: Arden Cancer Centre,
University Hospitals Coventry and Warwickshire NHS Trust, in Coventry, and
Nottingham University Hospitals NHS Trust, City Hospital Campus, in
Nottingham are described next. Both radiotherapy departments comprise common
radiotherapy operations, while having some characteristics relevant to their
departments. Two approaches to generating schedules for radiotherapy patients are
presented: (1) heuristics based on priority rules which consider the whole
radiotherapy process from the decision to treat the patient to the first treatment
session and (2) a GA for scheduling appointments for radiotherapy pretreatment
operations. Various tests are carried out using real-life data from the two hospitals
to evaluate scheduling performance achieved using the two approaches.

2 Literature Review

Long waiting times for radiotherapy treatments adversely affect the success of the
treatment. Diverse approaches to mitigating delays in the start of radiotherapy
have been proposed. Effects of increasing the number of both machines and staff
[Department of Health 2004; Summers and Williams 2006) and improving the
staff skills mix and changing work patterns have been investigated (Dodwell and
Crellin 2006). However, investments in the expansion of resources may not be
financially nor technically feasible (Agarwal et al. 2008). Therefore, optimal use
of existing resources subject to keeping the quality of treatment at satisfactory
standards is seen to be a viable option. Challenges and opportunities in
development of health care systems for appointment scheduling is given in (Gupta
and Denton 2008).

There is a paucity of papers on scheduling radiotherapy patients presented in
the literature. A linac management system, implemented using Excel, is presented
in (Larsson 1993). It is likely to be one of the seminal papers on radiotherapy
scheduling. However, the proposed system does not offer scheduling capabilities;
instead it provides improved start and completion date estimations and better
characterisation of resource utilisation. A discrete-event simulation model for the
radiotherapy planning process is proposed in (Werker et al. 2009). This study is

158 D. Petrovic et al.

focused on one step of the radiotherapy pretreatment only. Reducing planning
time is crucial in order to mitigate delays in radiotherapy. Analysis of several
scenarios concerning extending human and physical resources shift hours, adding
a new treatment machine and reducing demand for doctors presence using a
discrete-event simulation model is presented in (Proctor et al. 2007) and
(Kapamara et al. 2007).

The following research studies present approaches to solving radiotherapy
scheduling problems using optimisation methods. In (Conforti et al. 2008;
Conforti et al. 2010; Conforti et al. 2011), two mathematical programming models
are presented. In the basic model, existing appointments are kept unchanged,
while the extended model allows changes to the already booked appointments in
such a way that these patients are guaranteed to finish their remaining fractions.
The scheduling horizon is six days. However, not all patients are guaranteed to get
appointments’ schedule. In (Conforti et al. 2008; Conforti et al. 2010), the
objective is to maximise the number of scheduled patients. It is concluded that the
extended model has better performance than the basic model. Experimental results
obtained using both models indicate that at most 80% of the patients are
scheduled, and for the remaining 20% a schedule is not created. In (Conforti et al.
2011), the objective in the basic model is the maximisation of the sum of the
number of scheduled patients and the number of scheduled fractions while the
extended model has an additional objective to minimise the delay in starting
the treatment of already booked patients.

Heuristic approaches to radiotherapy scheduling problems have been
investigated as well. In (Petrovic et al. 2006), two algorithms for scheduling
radiotherapy treatment patients that request treatment on a given day, ASAP and
JIT, are presented. In both algorithms patients are prioritised according to their
categories and due dates. Following the prioritised list, the ASAP algorithm
assigns to each patient, , the earliest feasible start date for the first fraction, then
subsequent sessions are booked from this date onwards, while the JIT algorithm
assigns the latest feasible start date for the first fraction, then subsequent sessions
are booked from this date onward. In (Petrovic and Leite-Rocha 2008 a,b) four
parameters to be used in a constructive method for generating a schedule for
radiotherapy patients are investigated. The constructive method schedules patients
one by one from a sorted list. Patients are sorted by their due date, while ties are
broken by category, and then by the number of planned fractions. The first
parameter considers the patient’s release date (the date when the patient completes
the pre-radiotherapy treatment) and the patient’s due date (the waiting time target
of the patient). The constructive method operates in a forward (backward) manner
from the release date (due date) of each patient, trying to schedule the required
number of sessions prescribed to the patient subject to the given constraints. The
second parameter determines the utilisation level of each machine. Patients of a
given category are allocated to a machine until the predefined level of the machine
utilisation is achieved. The third parameter determines days on which patients are

Radiotherapy Scheduling 159

considered for scheduling (everyday, on 3 days or on 2 days per week) to
investigate whether the accumulation of patients to be scheduled might lead to
better schedules due to the larger search space. The forth parameter determines the
number of days from the release date after which the patient is considered for
scheduling. Each of these parameters is tested individually and the parameters
values that led to the best performance of the schedule are used in the constructive
method that incorporates all four parameters. The authors also propose a GRASP
metaheuristic which takes, as the starting solution, the solution generated by the
constructive method described above. Schedules are evaluated with respect to the
weighted tardiness of patients, where tardiness is positive if a patient breaches
the waiting time target and it is zero otherwise. All constructive and GRASP-
based methods give satisfactory results. However, GRASP does not improve
appreciably the quality of the solutions given by the constructive methods.

Multi-objective GAs for scheduling of radiotherapy patients are proposed in
(Petrovic et al. 2011). Two objectives are defined including minimisation of the
average patients’ waiting time and minimisation of average length of breaches of
waiting time targets. Three GAs are developed which treat emergency, palliative
and radical patients in different ways: (1) a GA which considers all three patient
categories equally, (2) a GA with an embedded knowledge on the scheduling of
emergency patients and (3) a GA which associate different weights to the patient
categories. Statistical analysis is carried out to test performances of the three GAs.
The results show that the GA with the embedded knowledge generated the
schedules with best performance considering emergency patients and slightly
outperforms the other two GAs when all patient categories are considered
simultaneously.

In our initial work on radiotherapy pretreatment, a daily scheduling problem is
considered in which mathematical programming and priority rules are combined
(Castro and Petrovic 2011). Priority rules are used to generate an initial feasible
solution that is passed to CPLEX. Then, this solution is improved through
sequential phases of optimisation in which different criteria are used in a
lexicographic manner. However, the overall performance of schedules is worse
than that of the schedules generated by priority rules alone. In our further research
work described in this chapter, we investigate the effect of penalizing the idle time
on the machines close to the current scheduling date on the schedule performance.
The latter is related to allocating idle time on machines available for further
patient arrivals.

While the literature on the radiotherapy scheduling presented so far typically
considers either a pretreatment or a treatment phase, we have considered the
whole process. Four heuristics for four unites that comprise the whole
radiotherapy process are developed and integrated into the scheduling system. The
heuristics involve various priority rules and novel strategies developed to improve
scheduling performance for all radiotherapy patients categories.

160 D. Petrovic et al.

3 Heuristics for Radiotherapy Scheduling

3.1 Background

In this chapter, we will describe the radiotherapy process at Arden Cancer Centre;
however, the process is similar in other oncology departments. It comprises four
units: planning, physics, pretreatment, and treatment. Each unit includes several
machines and/or facilities as shown in Figure 1. Each patient visits or revisits at
least one of the machines and/or facilities depending on their predetermined
pathway. The pathway, which must commence and terminate in the planning and
treatment unit respectively, is determined based on the cancer case and/or doctor
consultation.

Fig. 1 Units in Arden Cancer Centre

The tumour volume is imaged in the planning unit using a simulator or
computed tomography (CT) scanner. The simulator is a machine that takes
radiographs, while the CT scanner takes images from different angles and builds a
3D image of the tumour volume. Some patients may require a mask for
immobilisation during planning and treatment. The mask is made in the mould
room prior to the patient’s operations on the simulator or CT scanner. If the mask
is not required, the patient proceeds straight to the simulator or CT scanner. Most
importantly, the doctor should be available for each operation in the planning unit.
A patient visits the simulator or CT scanner and the mould room at most once. The
output of the planning unit operations are digital images required for outlining and
planning, and dosimetry calculations.

The digital images are sent to either the physics or pretreatment unit depending
on the perceived complexity of the dosimetry calculations. Complex dosimetry
calculations are handled in the physics unit, while the simple dosimethry
calculations are carried out in the pretreatment unit. The physics unit performs two
operations: outlining and planning, and dosimetry calculations. Firstly, technicians

Radiotherapy Scheduling 161

do the outlining and planning; then the allocated doctor approves and signs their
output, before they carry out the dosimetry calculations. After completing the
dosimetry calculations, the physics unit technicians hand the treatment plans over
to the pretreatment unit.

In the pretreatment unit, a single accuracy calculation check is done if the
treatment plans are received from the physics unit; otherwise, if they are received
from the planning unit, three dosimetry calculations and checks are performed
separately, on three different desks.

The treatment unit comprises linacs machines for dispensing the calculated
radiation doses (currently there are 7 linacs at the Arden Cancer Centre). There are
complex constraints on scheduling patients on linacs machines. Patients receive
the dose fractions daily, except on weekends and bank holidays. Some cancer
cases (head and neck, gynaecological, repirator and urinary) should start treatment
on Monday. Doctors may prescribe multiple treatment phases for some patients.
The number of fractions in each phase is predetermined beforehand. New
radiographs of the tumour volume should be obtained on the simulator before the
commencement of each phase. Plan checks during the treatment should be done
within the last three fractions before the completion of each treatment phase.

The Arden Cancer Centre considers the following three patient categories and
the corresponding target waiting times: emergency, palliative and radical patients
and 2, 14 and 28 days, respectively.

3.2 Problem Statement

Characteristics of the radiotherapy scheduling problem under consideration are as
follows:

• Details and pathways of newly arriving patients to be scheduled are released on
daily basis.

• The number of patients is uncertain.
• All appointments are scheduled daily at 9.00am.
• A patient’s schedule of appointments cannot be altered once scheduled.
• Machines and/or facilities are available continuously, from Monday to Friday

from 9.00am to 17.00pm, except for bank holidays.
• It is assumed that there are no machine breakdowns.
• Machines are under periodic maintenance according to a predetermined

maintenance plan. During the maintenance period, the machines cannot be used
for planning or treatment.

• There is no separation time between processing of operations for two
consecutive patients or treatment plans.

• Each doctor is available in specified time periods per week.
• The allocated doctor examines the patient during the first five minutes of the

processing time on a planning machine or facility.

162 D. Petrovic et al.

The department would like to have schedules generated for each unit. The
planning and treatment units involve patients, while the physics and pretreatment
units handle treatment plans. Currently, only schedules for the planning and
treatment units are generated and the corresponding appointments are booked
manually. Furthermore, the patient’s treatment appointments are booked once the
planning operations are completed. The system proposed is generating the
appointments for a patient and the corresponding schedule for treatment plan in
advance for the all four units. Therefore, we formulated the radiotherapy
scheduling problem as follows; a schedule of appointments is to be generated for
the planning and treatment units and for the corresponding operations in the
physics and pretreatment units for all patients which arrive within a scheduling
horizon in such a way as:

• To minimise the average waiting times of all patients scheduled during the
considered time horizon

Minimise)(
1

1
1 ⋅=

=

N

j
jRW

N
z (1)

where jRW is the waiting time for patient jP , and N is the total number of

patients within a scheduling horizon under consideration.

• To minimise the percentage of patients that do not meet their JCCO due date
for their first treatment

Minimise 100)(
1

1
2 ⋅⋅=

=

N

j
jU

N
z (2)

where binary variable jU is equal to 1 if patient jP exceeds the waiting time

target, 0 otherwise.

• To minimise the total overtime penalty calculated as the sum of durations of all
overtime slots used

Minimise)(
1

1
3 ⋅=

=

N

j
jO

N
z (3)

where jO is the penalty for performing an operation for patient jP after

normal working hours.

The planning unit comprises both human (doctors) and machine resources including
the CT scanner, simulator and mould room. The scheduling problem of the planning
unit can be described as a dynamic (sequences of patients are arriving every day),
flexible multi-resource (including doctors and machines simultaneously) two-stage
hybrid flowshop problem. The first stage of the problem involves the mould room
which patients have to visit before going to the other planning unit machines. The
second stage involves the two parallel unrelated alternative planning machines,

Radiotherapy Scheduling 163

the CT scanner and simulator. Some of the patients may not visit the first stage of
the planning unit, but all the patients visit a machine in the second stage.

The scheduling problem of the physics unit can be described as a flowshop
problem that involves two facilities and resources (i.e. the physics desk and
doctor). Each treatment plan has to be processed using these two resources in the
same order: the physics desk, followed by the doctor and then the physics desk
again.

The scheduling problem of the pretreatment unit comprises two subproblems.
The first subproblem involves the calculation of treatment plans received from the
physics unit and can be described as a multiple parallel machine scheduling
problem where machines correspond to three identical desks. The second problem
concerns treatment plans received from the planning unit that have to be processed
once on each of the three desks using any route possible, as in an open shop
problem. Hence, the pretreatment scheduling problem has characteristics of mixed
shop scheduling problems.

Since each patient visits and/or revisits a treatment machine specified by the
doctor over a given number of consecutive days, the scheduling problem of the
treatment unit can be described as a single machine scheduling problem.

3.3 Scheduling Heuristics

In the radiotherapy centre, it is essential to create good schedules of appointments
quickly, on daily basis. Therefore, a suitable scheduling method needs to be less
computationally intensive compared to some optimisation methods and heuristics
that have been designed for the identified scheduling subproblems associated with
each unit.

Four constructive heuristics, H1, H2, H3, and H4 are proposed for the planning,
physics, pretreatment, and treatment units, respectively. They are connected as
presented in Figure 2. The heuristics involve priority rules combined with
specially designed mechanisms relevant to the scheduling of patients in the
corresponding units. All the priority rules are first tested separately and then in
different orders. The most appropriate sequence in which they should be applied is
determined empirically.

Input into planning heuristics H1 is a list of patients’ booking requests which is
created on the daily basis. Heuristics H1 are applied to book operations for the
planning unit for all the patients considered on a given day and they calculate for
each patient the completion times of their last operations in the planning unit. The
list of patients who require complex treatment plans and their completion times
are handled first by physics heuristics H2. Then the list of all patients and their
completion times are passed to pretreatment heuristics H3. Heuristics H3 schedule
operations on the pretreatment desks and pass the list of treatment plans and their
completion times to treatment heuristics H4. If a treatment plan needs checking,
i.e. needs to go back to the planning unit, it is sent to heuristics H1 which book
required slots on the simulator and the allocated doctor. Otherwise, heuristics H4
are applied to book appointments on the treatment machines.

164 D. Petrovic et al.

Fig. 2 Heuristics flow chart

The heuristics consider due dates for the completion of required operations in
the corresponding unit. The due dates are determined in line with the practice of
the radiotherapy centre in such a way as to meet the JCCO waiting time targets.

The planning and treatment units were identified as potential bottleneck for the
patient flow. Consequently, two relevant heuristics, H1 and H4, will consider
overtime slots. Heuristics H4 use the overtime slots for emergency and palliative
patients when they do not meet their respective waiting time targets, while the
overtime slots for radical patients are considered only when they breach their
waiting time target by an empirically determined threshold. Similarly, H1 uses
overtime slots when the lateness of the patient exceeds a predetermined threshold.

3.3.1 Heuristics for the Planning Unit – H1

In the planning unit, it is imperative to consider and synchronise doctor’s
availability for each operation on the machines or facility, which makes the
scheduling problem of this unit very complex. For example, Figure 3 shows a
feasible schedule of the appointments for the planning unit resources. Patient 1 is
seen by the doctor in the mould room in slot 1, but stays on that machine for 3
more slots afterwards. The same doctor oversees the taking of radiographs for
patient 1 on the simulator in slot 5 and so on.

H4

H1

H2

H3

 Plans
perceived
complex?

 Plans
 check
needed?

H
1

yes

no

yes

no

Patients’ details
and pathways

Schedule of
appointments

H1

Radiotherapy Scheduling 165

Fig. 3 Example of a feasible schedule of the planning unit

The priority rules in H1 reorder the list of arrived patients into a new list by
combining the following simple rules in lexicographic manner: the most urgent
patient category (MUPC), the most number of steps in the entire radiotherapy
process (MNSRP), the most number of operations in the planning unit (MNOP),
and the least slack (LS), where the slack for a patient is calculated as the time
period between the patient’s due date for completion of the operations in the
planning unit and the patient’s release date in the planning unit. The first rule is
applied to order the patients, the second one is used to break the ties, and so on.
The aforementioned priority rules generate a sequence of patients which are then
scheduled in such a way that the first available appointment slot on the requested
machine and doctor in the planning unit is booked.

However, in order to leave some available slots for possible emergency and
palliative patient who may arrive in future, a scattering mechanism for radical
patients concerning available doctors’ slots is introduced. This mechanism skips
some available doctor’s slots for radical patients, but books the doctor’s slot in
such a way that the patient’s target waiting time for the planning unit could be
met. If that is not possible, the first available doctor slot is booked.

3.3.2 Heuristics for the Physics Unit – H2

The first operation in the physics unit is outlining and planning. It has to be
performed upon receipt of digital images from the planning unit and has to be
approved by the doctor. The time required to produce treatment plans is mostly
affected by doctors’ availability. The time period between the doctor’s availability
and the release date of the patient’s digital image in the physics unit, referred to as
“the doctor delay”, is calculated. Thus, the priority rule in H2 employs in
lexicographic manner two simple rules: the least doctor delay (LDD) and the most
urgent patient category (MUPC). Due to staff shortages, technicians who process
operations on the physics desk also perform the mould room operations. Thus,
physics unit operations are handled when the mould room is free. After finding a
slot in the doctor schedule for the approval of the first operation, a slot for the
second operation, i.e. dosimetry calculations, is searched for. For example, in
the doctor’s schedule in Figure 3, slots 3 and 4 are targeted for approval of the
outlining and planning operations which are carried out in the physics unit. The
slot for the following second operation performed by technicians is searched based

166 D. Petrovic et al.

on the date the doctor approves the plan. Figure 4 gives a simplified example of
the schedule generated by heuristics H2. Patient 3 has the first operation done,
approved by the doctor at a time when the technicians could be working on the
first operation of patient 6. Upon the completion of patient 6’s outlining and
planning operation, the second operation for patient 3 is performed and so on.

Fig. 4 Example of a feasible schedule of the physics unit

3.3.3 Heuristics for the Pretreatment Unit – H3

Each operation for each treatment plan should be processed on a different desk.
An example of the pretreatment unit desks schedule is demonstrated in Figure 5.
The treatment plan for patients 2 and 4 undergo dosimetry calculations and checks
on the desks in the following order: B → C → A and C → A → B, respectively.
However, plans for patients 3, 5, and 6 have complex calculations performed in
the physics unit and thus, a single operation – checking, is performed on desks, B,
A, and C, respectively.

Fig. 5 Example of a feasible schedule of the pretreatment unit

Heuristics H3 comprise a priority rule which reorders treatment plans received
from heuristics H2 using these simple rules: the least number of pretreatment
operations (LNPO), the most urgent patient category (MUPC), the least slack
(LS), i.e, the difference between the JCCO due date and the due date of
completion of pretreatment operations, and the least work on a desk queue
(LWINQ) which is employed to find the desk with the earliest free slot for a given
date. The above hybrid heuristic greedily allocates the earliest possible slots on the
desks for the most urgent treatment plans. To free slots for incoming urgent
treatment plans, H3 disperses slots for the treatment plans for the radical patients
without affecting their possible treatment start dates by considering their slack
time (i.e. the difference between the JCCO due date and the due date of
completion of pretreatment operations). Plans with slack times longer than a
predetermined threshold are ‘scattered’ across three consecutive days so as to
reduce the amount of work on each of the desks per day and make some slots free.

Radiotherapy Scheduling 167

3.3.4 Heuristics for the Treatment Unit – H4

Constructive heuristics H4 use the following simple rules to reorder the sequence
generated by heuristics H3: the most urgent patient category (MUPC), the least
number of prescribed treatment phases (LNPTP), the least number of prescribed
fractions (LNPF), and the earliest treatment due date (ETDD). Some cancer cases
such as head and neck, lung, and respiratory cancers may require an initial plan
verification check before the start of treatment. Thus, heuristics H1 is used to book
their appointments on the simulator, before commencing booking their treatments.
These plan verification checks and other plan checks which should be done within
the last three fractions to the completion of a phase, hinder the search for
treatment slots. The plan checks are conducted solely on the simulator and a free
slot on the simulator within the last three consecutive days of the treatment
phase should be found before proceeding with the search for the next phase’s
treatment slots.

One critical requirement in radiotherapy is that all the fractions must be
delivered on the same machine. Heuristics H4 search and book for each patient the
earliest available slot on a treatment machine of the requested machine type, such
as a low or high energy linac. The difference between the date of the earliest
feasible starting slot and the JCCO target start date is the number of days the
target is breached. In order to free some slots for incoming patients (especially
urgent patients), parameters which denote the maximum allowed number of days
the JCCO target could be breached for different patient categories are incorporated
into heuristics H4. Values of these parameters are determined empirically.
Heuristics H4 finds the first available treatment start date using normal working
hours. If the first available treatment start date for an emergency or palliative
patient is breached by more than a prespecified threshold, H4 uses overtime slots.
In the case of a radical patient, if the first available treatment start date is late by
more than a predetermined number of days, the slot for treatment is searched again
considering overtime slots. However, if the treatment for the radical patient is late
by less than or equal to the predetermined number of days, the patient is
‘retained’, i.e. put at the end of list of patients to be scheduled. Such patients are
scheduled last considering overtime slots also. The main aim of this strategy is to
minimise the lateness of the patients requiring radical treatments while creating
free slots that can be used for emergency or palliative patients.

3.4 Analysis of Test Results

A discrete-event simulation model of the Arden Cancer Centre was developed
based on historical data with details of over 2000 patients collected between
September 2005 and January 2007 (Kapamara et al. 2007). The number of patients
arriving on a given day was modelled using a Poisson distribution with the
expected rates 8.88, 7.76, 7.47, 6.59 and 11.6 for 5 days (Monday to Friday) in a
week respectively. This probability distribution was proven to be a good model for

168 D. Petrovic et al.

new cancer referral rates in several studies (for example, Thomas et al. 2001). The
simulation model was used to generate probability distributions for all data
describing newly arriving patents such as category of the patient, the date of the
arrival to the Cancer Centre, allocated doctor, type of cancer, due date of the
patient’s first fraction operation planned for the patient treatment, the treatment
machine prescribed by the doctor, number of prescribed treatment phases per
cancer type etc. For example, according to the historical data, 67%, 31% and 2%
of the newly arriving patients were radical, palliative and emergency patients,
respectively.

The simulation model is used to carry out various tests to analyse performance
of the proposed scheduling heuristics. In this chapter, results of the analyses of
impact of: (1) maximum allowed JCCO target breaches, (2) numbers of reserved
slots on treatment machines and (3) number of overtime slots are presented. In
each test, all slots of machines and facilities are initially free and doctors are
available according to the rota. A ‘warm-up’ period of 3 months is used during
which the machines, facilities and doctors appointment slots are booked resulting
in a partially booked timetable. Then, patient scheduling is carried out for a
consecutive year period during which the scheduling performance is recorded.
Each test is repeated 10 times using different data generated by the simulation
model. Average waiting times per patient category, the average percentages of late
patients with respect to each category and the corresponding standard deviations
are presented.

3.4.1 Maximum Allowed JCCO Target Breach

There is no medically established threshold below which treatment delays are safe
(Mackillop 2007) and thus, the JCCO recommended waiting time guidelines
deemed to be short (Joint Council of Clinical Oncology 1993), but reasonably
achievable . However, in order to prevent creating schedules in which a patient
could have had an unacceptably very long delayed waiting time, a constraint
which set the maximum JCCO target breach is included in the developed
heuristics. Based on some studies, (for example, Huang et al. 2003), different
combinations of the maximum allowed JCCO target breaches for each patient
category are suggested, as shown in Table 2. For example, in test 2, patients
requiring emergency treatments have to adhere to the target JCCO waiting time,
while 3 and 7 days are set to be the maximum number of days for breaching the
waiting time targets for palliative and radical patients, respectively.

Introducing the maximum allowed target breaches produces slightly better
average waiting times for emergency and palliative patients, as shown in Table 3.
By allowing JCCO target breaches, some additional slots, that otherwise would
have been booked for radical patients, become available for incoming urgent
patients. However, the average waiting times for emergency and palliative patients
are reduced at the expense of higher number of late radical patients (Table 4).

JCCO waiting time targets are reached, but the percentages of late emergency
and palliative patients are high; for example, in test 2, 22.9% of all emergency
patients are late and 13.5% of all palliative patients are late.

Radiotherapy Scheduling 169

Table 2 Maximum number of days JCCO target breaches are allowed

JCCO target breach (in days)

Test Emergency Palliative Radical

1 0 0 0

2 0 3 7

3 0 3 14

4 0 7 14

Table 3 Average waiting times (standard deviations) obtained using different maximum
allowed JCCO target breaches

Average waiting time (in days)

Test Emergency Palliative Radical All

1 1.2 (0.21) 10.0 (0.20) 20.5 (0.05) 16.8

2 1.0 (0.19) 9.7 (0.17) 20.5 (0.05) 16.6

3 1.0 (0.19) 9.7 (0.19) 20.5 (0.05) 16.6

4 1.0 (0.19) 9.7 (0.16) 20.5 (0.05) 16.6

Table 4 Average percentages (standard deviations) of late patients obtained using different
maximum allowed JCCO target breaches

Average percentage of late patients (%)

Test Emergency Palliative Radical All

1 25.0 (7.85) 17.0 (2.14) 1.0 (0.49) 7.0

2 22.9 (8.78) 13.5 (1.57) 1.1 (0.23) 5.5

3 22.9 (8.78) 13.7 (1.81) 1.0 (0.18) 5.5

4 22.9 (8.78) 13.8 (0.13) 1.1 (0.13) 5.6

170 D. Petrovic et al.

As test 2 produced the same average waiting times for all patient categories as
tests 3 and 4 (Table 3), but slightly better percentage of late palliative patients who
have priority over radical patients (Table 4), the maximum JCCO target breaches
set in test 2 are used in further tests, which aim at reducing the percentages of late
patients.

3.4.2 Reserved Slots on Treatment Machines

Most cancer centres use the block/slot approach to create schedules of
appointments in the planning and treatment units. In this study, the size of a slot
for a machine or facility is estimated as the average time taken to treat a patient on
the machine or facility. For example, it takes approximately 15 minutes to treat a
patient on a high energy linac. Thus, on a normal working there are 29 slots
available for bookings of the high linac, assuming that the work (i.e. clinical
treatments) starts at 9.20am and ends at around 4.30pm. Similar approach is used
to determine the number of slots on other treatment machines.

In this study, reserved appointment slots are only used in heuristics H4 to
restrict the number of slots available for certain categories of patients on the
treatment machines, as shown in Table 5. Reserved slots are allocated in such a
way that emergency patients that need treatment have access to the entire capacity
of the machine for the day. Palliative patients have access to the full machine’s
capacity excluding the number of slots reserved for emergency patients on that
machine. Finally, the difference between the machine’s full capacity for the day
and the sum of number of slots reserved for emergency and palliative patients is
the number of slots that are made available to radical patients.

Table 5 Appointment slots reserved on the treatment machines

Number of reserved slots on a treatment machine per day

 Emergency Palliative Radical

 DXR Linac DXR Linac DXR Linac

Test High Low

5 0 0 0 0 0 0 0

6 1 1 3 3 9 25 32

7 1 1 3 6 9 22 29

8 1 1 6 6 6 22 29

9 1 1 6 12 6 16 23

Radiotherapy Scheduling 171

The introduction of reserved slots on the treatment machines does not
considerably improve the average waiting time of emergency patients, as shown in
Table 6. However, the reserved slots in test 8 produce a slight improvement on the
average waiting time for palliative patients. Although, the reserved slots in test 9
produce good average waiting times for emergency and palliative patients, the
average waiting time for radical patients is worse compared to test 8. This is a
consequence of reserving more appointment slots for palliative patients at the
expense of radical patients. In addition, the percentage of late radical patients is
improved in test 8 compared to test 9, as shown in Table 7. Therefore, in the tests
to follow the numbers of reserved slots suggested in test 8 are used.

Table 6 Average waiting times (standard deviations) obtained using different combinations
of reserved slots

Average waiting time (in days)

Test Emergency Palliative Radical All

5 1.0 (0.19) 9.7 (0.17) 20.5 (0.05) 16.6

6 1.0 (0.18) 9.8 (0.19) 20.8 (0.04) 16.9

7 1.0 (0.18) 9.8 (0.18) 20.9 (0.04) 17.0

8 0.9 (0.17) 9.4 (0.15) 20.8 (0.08) 16.8

9 1.0 (0.20) 9.4 (0.11) 21.5 (0.25) 17.2

Table 7 Average percentages (standard deviations) of late patients obtained using different
combinations of reserved slots

Average percentage of late patients (%)

Test Emergency Palliative Radical All

5 22.9 (8.78) 13.5 (1.57) 1.1 (0.23) 5.5

6 22.9 (8.78) 15.5 (2.34) 1.1 (0.20) 6.2

7 22.9 (8.78) 15.4 (1.87) 1.2 (0.15) 6.2

8 22.5 (8.76) 13.0 (1.64) 0.6 (0.16) 5.0

9 22.9 (8.75) 13.0 (1.62) 1.1 (0.43) 5.3

172 D. Petrovic et al.

3.4.3 Overtime Slots

Extending the working day can allow the machines to be used to full capacity to
meet demand for radiotherapy. However, it can also negatively impact the quality
of service due to increased staff exhaustion and reduction in other hospital
services such as pharmacy, medical and nursing cover, transportation and so on.
However, some cancer centres showed that extended working days is cheaper than
investing in new linacs (Routsis et al. 2006). Therefore, some centres have
extended their working days. In this study, it is assumed that the use of overtime
slots offers a short-term practical solution to the problem of meeting the JCCO
targets and reducing the percentage of late patients. It is therefore decided to
evaluate the effect of using overtime slots on each treatment machine for certain
categories of patients and to explore the minimum amount of time that added to
normal working hours improves the scheduling performance. Heuristics H4
allocate overtime slots to emergency and palliative patients. Table 8 shows
different overtime slots considered. In test 11, thirty minutes of overtime is
accrued on each treatment machine (that is, the DXR, low and high energy linacs).
This means that the treatment unit would be working until about 5.00pm. In tests
12 and 13, the machines would be working until about 5.30pm and 6.30pm,
respectively.

Table 8 Overtime appointment slots

Number of overtime appointment slots

 Emergency and palliative

 DXR Linacs

Test High Low

10 0 0 0

11 2 2 2

12 4 4 5

13 8 8 10

Radiotherapy Scheduling 173

In tests 10 to 13, different numbers of overtime slots are used while the
maximum allowed JCCO target breaches and reserved slots are set as in tests 2
and 8, respectively. Extending working hours by half an hour (test 11) is not
improving waiting times (Table 9), but it improves proportions of late emergency
and palliative patients at the expense of late radical patients, i.e., 6.7% and 78% of
all late patients are emergency and palliative patients, while in test 10, when
overtime slots are not used, these proportions are 7.9% and 84.0%, respectively
(Table 11). In this case, when half an hour overtime is added, more patients that
need palliative treatment are booked on dates immediately close to their target
dates. Thus, on most of these dates, only one slot is left available for emergency
treatments. Any other incoming patients (either palliative or radical) are booked
on later dates, because there are no available slots on the treatment machines.
Hence, the average waiting times and percentage of late patients are worse.
However, the results obtained in tests 12 and 13 (Table 10) are slightly improved
compared to test 11, while the average waiting time obtained are similar (Table 9).
This means that if the centre’s treatment unit worked until 5.30pm, the average
waiting times obtained would be the same as when the working hours are
extended to about 6.30pm. Average percentages of late patients (Table 10) show
that extending the working hours by 2 hours is slightly better for both palliative
and radical patients. However, Table 11 shows that the proportion of total number
of late radical patients is slightly higher when 2 hours of overtime work is
introduced compared to 1 hour. These results demonstrate that the centre can
obtain the same average waiting times and similar percentages of late patients for
each patient category and proportions of total late patients when working hours on
the treatment machines are extended by one or two hours. Given the costs
associated with longer overtime working hours, the results show that the centre
should only add up to an hour of overtime on the DXR, low and high energy
linacs.

Table 9 Average waiting times (standard deviations) obtained using different overtime

Average waiting time (in days)

Test Emergency Palliative Radical All

10 0.9 (0.17) 9.4 (0.15) 20.8 (0.08) 16.8

11 1.0 (0.17) 9.8 (0.19) 21.1 (0.08) 17.2

12 1.0 (0.21) 9.3 (0.15) 20.8 (0.05) 16.8

13 1.0 (0.21) 9.3 (0.15) 20.8 (0.08) 16.8

174 D. Petrovic et al.

Table 10 Average percentages (standard deviations) of late patients obtained using
different overtime

Percentage of late patients (%)

Test Emergency Palliative Radical All

10 22.5 (8.76) 13.0 (1.64) 0.6 (0.16) 5.0

11 23.8 (7.94) 15.5 (1.88) 1.5 (0.25) 6.4

12 22.9 (8.75) 13.0 (1.70) 0.7 (0.24) 5.0

13 22.9 (8.75) 12.9 (1.76) 0.6 (0.16) 4.9

Table 11 Average proportions (standard deviations) of late patients obtained using different
overtime

Average proportions of total late patients (%)

Test Emergency Palliative Radical

10 7.9 (2.48) 84.0 (3.28) 8.1 (3.22)

11 6.7 (2.00) 78.0 (3.80) 15.3 (2.86)

12 8.1 (2.45) 83.6 (3.45) 8.3 (3.06)

13 8.1 (2.46) 82.5 (5.55) 9.4 (5.35)

3.5 Summary

The results obtained from these tests show that the Arden Cancer Centre requires
at least 1 and 6 reserved slots on each type of the treatment machines (DXR and
linacs) for emergency and palliative patients, respectively. In addition, waiting
time targets for emergency patients should not be breached, while those for
palliative and radical patients can be breached by a maximum of three and seven
days, respectively. The tests also showed that further improvements to the
performance measures can be obtained if the centre’s working day is extended by
an hour.

It might be interesting to note that the average waiting times of palliative and
radical patients is improved by 34% and 41%, respectively, compared to the
waiting times achieved in the practice, in 2008. However, it is worth noting that in
the tests conducted, machine breakdowns are not considered.

Radiotherapy Scheduling 175

4 Heuristics for Radiotherapy Pretreatment Scheduling

4.1 Background

The scheduling of radiotherapy patients can be divided into two consecutive
phases: scheduling of patients for radiotherapy pretreatment and scheduling of
patients on linacs machines; the latter can commence once the patients complete
their pretreatment. In radiotherapy pretreatmentscheduling, the patients are
allocated due dates which correspond to their waiting time targets, i.e. dates when
they have to start their treatment on linac machines. We consider these two
scheduling phases separately in order to search solution spaces of smaller sizes
which will ultimately lead to the higher quality of schedules of both phases. Once
the schedules of both phases are generated, they can be coordinated.

The radiotherapy pretreatment scheduling problem is defined in collaboration
with the Nottingham University Hospitals NHS Trust, City Hospital Campus, in
Nottingham, UK. The problem is very similar to the radiotherapy pre-treatment in
Arden Cancer Centre described in Section 3. Some specifics relevant to City
Hospital Campus are outlined below.

Two types of resources required in radiotherapy pretreatment scheduling:
doctors and machines are considered including five types of machines and
facilities which are in use: the mould room, the CT scanner, the physics unit, the
simulator and the verification system.

Machines are continuously available throughout the clinic opening hours, in the
City Hospital, from Monday to Friday, from 8:30 to 18:00, and weekends from
9:00 to 13:00. On the other hand, each doctor has three availability shifts: for
planning, for simulation, and emergency-urgent availability. Planning and
simulation availability shifts are different for each doctor. The emergency-urgent
availability is from Monday to Friday from 9:00 to 16:00, and on weekends from
9:00 to 13:00 on an on-call basis. Doctors see emergency and urgent patients
within the emergency-urgent availability.

A pretreatment pathway, i.e., an ordered sequence of medical procedures and
consultations are determined for each patient. The pathway depends on the site of
the cancer and the waiting list status of the patient (radical or palliative). For
illustration purposes a radical head and neck pathway is displayed in Fig. . This
figure displays the required operations, processing and lead times on the left side,
and the sequence of resources on the right side. This pathway is chosen because it
is the most complex one as it has the largest number of operations and includes
most possible operations and features that may be present in any other radical
pathway. In the head and neck radical pretreatment, the patient first goes to the
mould room where the beam direction shell (BDS) is made and fit. This procedure
takes one hour; however, the shell will only be ready one day after this operation
is completed. Once this lead time has elapsed, the patient attends the CT
(computed tomography) scanner. When the images from the CT scanner are ready,
the doctor and physics unit define an appropriate arrangement of beams, produce a

176 D. Petrovic et al.

dose distribution (an isodose plan) and calculate the appropriate linac settings to
deliver the treatment. The isodose plan usually takes two working days to
complete, because it includes discussion between the physics unit staff and the
doctor. During this time, both the physics unit and doctor are not exclusively
devoted to this operation, hence they both can perform other tasks. The patient is
then referred to the simulator for the treatment verification. Depending on the
patient, the doctor may like to be present for this operation. After the treatment
verification, the doctor approves the verification and prescribes the radiation dose.
Then, the physics unit checks the generated treatment plan. Patient identification,
dose data and linac parameters are entered into the verification system. Finally,
these data are checked by a second person. Radical patients are seen from Monday
to Friday (not on weekend days) and each patient is seen by exactly one doctor
who is a specialist for the cancer site of the patient. Doctors are scheduled
depending on the operation they are going to perform. Planning is scheduled
within the planning availability of the corresponding doctor, whereas the treatment
verification, and approval of the verification and prescription of the dose are
scheduled within their simulation availability.

4.2 Problem Statement

The performance indicator of the City Hospital is the percentage of patients
exceeding the DH 31-day waiting time target which is reported every month. The
hospital aims not to exceed this waiting time targets by more than 5%. However,
patients are scheduled with respect to their treatment intent and waiting list status
according to the JCCO waiting time targets given in Table 1. The problem is to
find a schedule of radiotherapy pretreatment processes in such a way that patients
meet their JCCO waiting time targets.

4.3 A Genetic Algorithm for a Radiotherapy Pretreatment
Scheduling Problem

The proposed genetic algorithm (GA) is built on two ideas. First, we concluded
that scheduling patients using priority rules can generate schedules with good
performance (Castro and Petrovic 2011). Second, computational studies indicate
that a further improvement of an initial solution gives better results, when
compared with schedules generated with the initial solution without the
improvement.

The first idea is realised by encoding schedules with a priority rule-based
representation (Dorndorf and Pesch 1995; Hart and Ross 1998). In (Dorndorf and
Pesch 1995), this representation is used for static job-shop benchmark problems,
in which all jobs are simultaneously available for processing. On the other hand, a
modification of the representation is proposed for a dynamic job-shop problem, in
which jobs have different arrival times (Morton and Pentico 1993). The second

Radiotherapy Scheduling 177

Fig. 6 The radiotherapy pretreatment pathway for a radical head and neck patient

idea is implemented by penalising the early resource idle time in the fitness
function (Branke and Mattfeld 2000). The influence of the early idle time in the
GA is regulated by two parameters:]1,0[∈α which denotes the importance of the

early idle time term in the fitness function, and ω which denotes the number of
days during which the idle time is to be penalised, starting from the earliest release
date.

Fitness Function. A given schedule is evaluated with respect to a fitness function
that incorporates two terms. The first term penalises breaches of the maximum
acceptable JCCO waiting time targets, while the second one penalises early
resource idle time within a given time window (Branke and Mattfeld 2000).

The first term is the sum of three objectives defined in (1)-(3). Objective (1) is
the minimisation of the weighted numbers of patients exceeding the JCCO waiting
time targets. Priority weights of patients jw depend on the waiting list status of

178 D. Petrovic et al.

patients. Binary variable jU is equal to 1 if patient jP exceeds the waiting time

target, 0 otherwise. Objective (2) is the minimisation of the maximum JCCO
lateness. The lateness of a patient, Lj , is calculated as the difference between the

completion day of the pretreatment and the due date as given by the corresponding
JCCO waiting time target. Objective (3) is the minimisation of the sum of the
weighted JCCO lateness of patients. Objectives (1)-(3) are calculated using the
maximum acceptable JCCO waiting time targets given in Table 1.

Minimise =

Ρ∈jP
jjUwz1

(4)

Minimise }{max2 j

jP
Lz

Ρ∈
=

(5)

Minimise =

Ρ∈jP
jjLwz3

(6)

where Ρ is set of patients to be scheduled on a given day.

Objectives (4)-(6) are normalised to take values from the [0,1] interval with
respect to the largest and smallest values of that objective in a given population.

Let kv be the value associated to chromosome k to be normalised

}),,{(321 zzzv kkkk ∈ , and l is the l -th chromosome in the population. The

normalised value kv of kv is calculated as follows:

}{min}{max

}{min
l

l
l

l

l
l

k
k

vv

vv
v

−

−
= (7)

The normalised values of (4)-(6) are summed up and correspond to the first term
of the fitness function

 kkkk zWzWzWz 332211 ++= (8)

where weights ()3,2,1=iWi represent the relative importance of objectives (4)-

(6). This value is normalised to take values from the [0,1] interval before it is

incorporated in the fitness function: ()321/ WWWzz kk ++= .

The second term of the fitness function corresponds to the early resource idle
time. The idle time is calculated within a predefined interval of days, denoted by
ω . The idle time is normalised to take values from the [0,1] interval in the same

Radiotherapy Scheduling 179

way as given in (7). Let ()ωζ k be the normalised resource idle time of

chromosome k within an interval of ω days, and]1,0[∈α its importance in the

fitness function, then the fitness function of chromosome k is:

 ()ωζα kkk zf += (9)

Parameters α and ω control the balance between the performance of the

schedule in terms of the JCCO waiting time targets)(kz and the early resource

idle time))((ωζ k .

Encoding and Decoding. Schedules are encoded by implementing a variation of
the priority rule-based representation (Dorndorf and Pesch 1995; Hart and Ross
1998). Chromosomes are decoded using the modified Giffler and Thompson's
algorithm given in (Storer et al. 1992). In this algorithm, parameter]1,0[∈δ

determines the size of the search space by defining the number of the schedulable
operations. In the proposed GA, δ is evolved (Hart and Ross 1998), as opposed
to having a fixed value (Bierwirth and Mattfeld 1999; Branke and Mattfeld 2000;
Mattfeld and Bierwirth 2004). The motivation for evolving δ is based on
complex interactions between this parameter, other GA parameters and problem
instances which are difficult to characterise. The length of the chromosome in our
GA is equal to the total number of schedulable operations plus one. This
additional gene stores parameter]1,0[∈δ which regulates the size of the search

space.

Chromosome k is represented by the string),,,,(21
kk

M
kk δπππ in which

M is the total number of operations and π k
d is a rule from a set of priority rules.

We consider a comprehensive set of 44 priority rules which can be classified as in
(Blackstone Jr. et al. 1982). Rules that involve waiting time targets such as earliest
waiting time target, slack-based rules, etc; rules involving the processing time:
shortest processing time, least work remaining, fewest remaining operations, etc;
rules that depend on characteristics other than processing time and waiting time
targets such as: random selection and arrived at queue first, and rules that depend
on two or more characteristics such as: slack per number of operations remaining,
slack per work remaining, etc. If 1=δ the algorithm produces active schedules,
while if 0=δ the algorithm generates non-delay schedules. For values of δ from
the (0,1) interval, schedules from a subset of active schedules, including all non-
delay ones, are generated (Storer et al. 1992).

The pseudo-code of the modified Giffler and Thompson's algorithm is given in
Algorithm 1. Iteration t of the algorithm is explained as follows. Let tΓ be the

cut set (set of operations ready to be scheduled in iteration t). Operation ttO Γ∈

with earliest completion time is selected; ties are broken arbitrarily. A conflict set

180 D. Petrovic et al.

tΗ is defined with all operations from tΓ which require the same resource as tO

and whose processing time overlap with that of tO . A smaller (respectively

larger) value of δ gives a smaller (respectively larger) size of the conflict set tΗ .

Priority rule tπ is used to select an operation from tΗ to be scheduled next.

Algorithm 1. Modified Giffler and Thompson's algorithm, adapted from
(Storer et al. 1992)
1. 1←t
2. tΓ is the set of operations ready to be scheduled

3. while ≠Γt Ø do

4. ←tO operation from tΓ with earliest completion time tφ

5. ←tm a resource required by tO .

If tO requires multiple resources, tm is the least available resource

6. ←tσ earliest start time on resource tm

7. () () (){ }ttttt OmIO σφδσσ −+≤∈←Η : , where ()tmI is the set of

operations ready to be scheduled on tm and ()Oσ is the earliest start time

of operation O

8. Choose operation tO Η∈* by using priority rule tπ

9. Schedule *O

10. OOtt ∪Γ←Γ }\{ * , where O is the immediate successor of *O

11. 1+← tt
12.end while

Variation Operators

Figure 7 displays the implemented one point crossover (Sastry et al. 2005). In the
GA proposed here, genes δ are combined by means of two convex combinations,

one for each offspring. The combined values of δ are: ()λδλδδ −+= 121'
1 and

() λδλδδ 21'
2 1 +−= . Value λ is chosen randomly from the [0,1] interval. A

convex combination is chosen because its definition guarantees that]1,0[, '
2

'
1 ∈δδ .

Fig. 7 Implemented one point crossover

Radiotherapy Scheduling 181

In the mutation operator introduced here, a chromosome is mutated by randomly
selecting one of its genes. If this gene is a priority rule, it is replaced with a
randomly selected rule from the set of predefined rules. If the selected gene is δ , a
new value is randomly chosen from the [0,1] interval.

4.4 Experimental Design and Results

4.4.1 Experimental Design

In this Section, an experimental design will be described together with the results
of investigating the effects of changing GA parameters on the schedule
performance and run time of the algorithm.

The experiments are designed to compare the performance of different
combinations of α and ω in solving the radiotherapy pretreatment scheduling
problem. First, all combinations are compared with respect to the monthly
percentage of patients exceeding the DH waiting time target as this is the main
measure of performance as the City Hospital. The secondary performance
indicator is the monthly percentage of patients exceeding the JCCO waiting time
targets. In case when the comparison based on these performance measures is not
statistically significant, schedules performances are compared with respect to
objectives (4)-(6).

The following factors affect the performance of the proposed GA: the intake of
patients as a problem factor, and two GA factors, α and ω . The intake of
patients is tested at two levels: current intake of patients (Scenario 1) and 10%
increase in the current intake (Scenario 2) that the City Hospital expressed interest
to investigate. GA levels for factors α and ω are set as follows:

{ }1.00.8,0.6,0.4,0.2,0.0,∈α and ω ∈{0, 1, 4, 7}. These values give 16

combinations of levels. When ω is 0 days, then the fitness function is JCCO
driven (equivalent to α =0). We decide the maximum penalisation window to be 7
days. We also tested value 1 (patients are scheduled on daily basis) and value 4,
which is the midpoint in the range.

Priority weights for emergency, urgent and routine patients are set to 5, 2, and
1, respectively. Weights 321 ,, WWW which represent the relative importance of

objectives (4)-(6) are set to 6, 3, and 1, respectively. The defined weight values are
set in consultation with the City Hospital, but are of subjective nature.

The City Hospital provided two sets of data on patients. The first dataset gives
information on the number of patients who arrived every day in a period of five
years, 2001-2005. For each patient their treatment intent, waiting list status and
admission date are known. This dataset provides us with the daily arrival profile of
patients by their type (treatment intent and waiting list status). The second dataset
provides information on 188 patients. For each patient the waiting list status,
treatment intent, site, doctor, and all pretreatment operations dates are known.
These datasets are the input to a problem instance generator described in (Leite-
Rocha 2011). The instance generator preserves the observed seasonality of real-
world arrivals, namely week of the year and day of the week.

182 D. Petrovic et al.

All the parameter combinations proposed are run on the same set of instances
which is referred to as the blocking on instances technique (Rardin and Uzsoy
2001), and are run with the same random seed on the same instance (Chiarandini
et al. 2007). Blocking on instances and random seeds associated to each instance
are a documented variance reduction techniques (Chiarandini et al. 2007; Johnson
2002). Therefore, for each level of the patient intake, a GA with specific values of
α and ω is run once on 30 different instances. An instance corresponds to one
year of patient arrivals, with a one-year warm-up period within which the GA is
used to fill in the booking system. In summary, each combination of values for α
and ω is run on the same set of 60 instances: 30 instances for Scenario 1 (current
patient intake) and 30 instances for Scenario 2 (10% more than the current patient
intake). Performance data are collected in the year following the warm-up period.
All together, (16 GA level combinations) × (60 instances) gives 960 years of
experiments.

The values of the GA parameters are set as follows. The crossover probability
is 0.6, and the mutation probability is 0.1. These values give satisfactory results in
(Bierwirth and Mattfeld 1999; Branke and Mattfeld 2000; Mattfeld and Bierwirth
2004). The GA is allowed to run after a given number of generations has been
reached with no improvement in the value of the fitness function. This number is
equal to the number of patients on a given day (Bierwirth and Mattfeld 1999).
Accordingly, larger instances (in terms of the number of patients) are allowed to
run for more generations than smaller ones. A fitness proportionate selection with
an elitist strategy of one individual is used. Chromosomes of the initial population
are randomly chosen. Specifically, each gene representing a priority rule is
initialised by randomly selecting a rule from the set of rules, while δ is randomly
selected from the [0,1] interval. In pilot studies, it is found that having a
population of 50 individuals does not affect solution quality and halves the run
time, compared to 100 individuals.

4.4.2 Experimental Results

Table 12 gives a summary of the results obtained. There are two columns under
each Scenario. Entries in the first and third columns are the average over 30
realisations (one for each instance). Each realisation is the average over 12
observations where each observation is the monthly percentage of patients
exceeding the JCCO and the DH waiting time targets, respectively. Elements in
the second and fourth columns are the average percentages (one for each instance)
of the total number of patients exceeding the JCCO and the DH waiting time
targets over 30 realisations, respectively. The bottom rows give the overall
average, best, worst and sample standard deviation values observed across all
instances in each scenario.

By examining Table 12 we can see that there is no apparent difference between
GA parameter combinations with respect to the average percentage of patients
exceeding the JCCO and DH waiting time targets. However, all combinations are

Radiotherapy Scheduling 183

sensitive to a 10% increase in the current patient intake. The JCCO and DH
indicators are increased almost three and over fourfold from Scenario 1 to 2,
respectively. Also, 10% more patients than the current intake still leads to an
average DH indicator and its worse value within the acceptable 5% limit.

Table 12 Average monthly percentage of patients exceeding the JCCO and the DH waiting
time targets

α ω

% of patients exceeding JCC /

% patients exceeding DH targets

Scenario 1 Scenario 2

0.0 0 0.74 / 0.15 2.14 / 0.66

0.2 1 0.76 / 0.16 2.13 / 0.67

 4 0.76 / 0.16 2.18 / 0.69

 7 0.77 / 0.15 2.16 / 0.68

0.4 1 0.77 / 0.16 2.15 / 0.68

 4 0.78 / 0.16 2.16 / 0.68

 7 0.77 / 0.17 2.12 / 0.65

0.6 1 0.78 / 0.15 2.09 / 0.67

 4 0.77 / 0.16 2.13 / 0.68

 7 0.78 / 0.18 2.15 / 0.68

0.8 1 0.75 / 0.15 2.12 / 0.67

 4 0.81 / 0.15 2.19 / 0.69

 7 0.77 / 0.17 2.16 / 0.69

1.0 1 0.78 / 0.14 2.12 / 0.69

 4 0.76 / 0.15 2.17 / 0.66

 7 0.78 / 0.16 2.16 / 0.68

Overall average 0.77 / 0.16 2.14 / 0.68

Overall best 0.08 0.00 0.41 / 0.00

Overall worst 2.98 / 1.45 5.18 / 3.26

Sample st. dev. 0.58 / 0.28 1.15 / 0.99

Descriptive statistics given in Table 12 show that there is no evident distinction

between GA parameter combinations of α and ω with respect to both the
average percentage of patients exceeding the JCCO and the DH waiting time
targets. We use analysis of variance (ANOVA) to confirm or refute these
hypotheses. The response variables (monthly percentage of patients exceeding the
JCCO and the DH waiting time targets) can be expressed in terms of the problem
parameters levels (Scenario 1 and 2), the GA parameter levels,

1.0}0.8,0.6,0.4,0.2,0.0,{∈α and 4},10,{∈ω , and the interactions between

these factors. That is, the effect of GA parameter level α (or ω) may vary with
the level of the problem factor - intake of patients. Table 13 shows the ANOVA

184 D. Petrovic et al.

results for the monthly percentage of patients exceeding the DH waiting time
target. This table reveals that the only main factor that has statistical significance
is the intake of patients, and that no interaction between factors is significant. The
same conclusion is reached for the monthly percentage of patients exceeding the
JCCO waiting time targets, the monthly weighted number of patients exceeding
the JCCO waiting time targets, the monthly maximum JCCO lateness, and
monthly sum of weighted JCCO lateness.

Table 13 ANOVA results for the monthly percentage of patients exceeding the DH waiting
time target

Source Df Sum sq Mean Sq F value Pr(>F)

α 5 0.02 0.004 0.0069 1.000

ω 2 0.01 0.003 0.0060 0.994

Scenario 1 64.11 64.107 118.4295 <2e-16 ***

ωα * 8 0.03 0.004 0.0077 1.000

*α Scenario 5 0.002 0.004 0.0076 1.000

*ω Scenario 2 0.01 0.004 0.0080 0.992

Residuals 936 506.67 0.541

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Combinations of GA parameter levels are not statistically significant with

respect to the performance measures of interest. However, our experiments reveal
that run times are sensitive to a 10% increase in the number of patients and to
certain GA level combinations (the CPU times are shown in Table 14). This Table
indicates that for a given value of α the run time becomes shorter as ω becomes
larger. On the other hand, there are mixed results on the effect of α on the run
time. However, the run time is shortest at 0=α and 0=ω .

4.5 Summary

Sixteen parameter combinations of the weight of the early resource idle time in the
fitness function (α) and the length during which idle time is penalised (ω) are
tested. It is observed that combinations of these parameters do not generate
schedules with significantly different performance measures. However,
combinations are differentiable with respect to the run time.

The performance of the proposed GA may be enhanced. A different
representation can be implemented. The priority rule-based representation may
lead to false competition among chromosomes (Hart et al. 2005). That is, different
chromosomes can represent the same schedule. Furthermore, in radiotherapy
pretreatment, different schedules may give the same fitness function value as the
level of resolution of the lateness is a day. Also, it is observed that for minimax

Radiotherapy Scheduling 185

objectives (objective (5)) different solutions give the same objective function
value (Garfinkel and Gilbert 1978). We suggest to investigate a preference list-
based representation (Davis 1985) in order to mitigate the false competition, and
possibly minimise the issues that arise from the mathematical definition of the
objectives. In the preference list-based representation each resource keeps its own
list of patients, thus patterns of sequences of patients may emerge on each
resource and can be investigated.

Table 14 Run times of the experiments

α ω

Total run time /

Run time per day instance

Scenario 1 Scenario 2

0.0 0 6:55:11 / 0:01:41 9:50:56 / 0:02:24

0.2 1 7:47:01 / 0:01:54 11:40:55/ 0:02:51

 4 7:47:36 / 0:01:54 11:24:41/ 0:02:47

 7 7:34:10 / 0:01:51 10:33:12/ 0:02:34

0.4 1 8:07:41 / 0:01:59 11:06:33/ 0:02:43

 4 7:53:43 / 0:01:55 10:57:30/ 0:02:40

 7 7:23:05 / 0:01:48 10:33:33/ 0:02:35

0.6 1 7:59:02 / 0:01:57 11:37:17/ 0:02:50

 4 7:41:32 / 0:01:52 11:07:27/ 0:02:43

 7 7:22:43 / 0:01:48 10:18:25/ 0:02:31

0.8 1 7:48:07 / 0:01:54 11:19:55/ 0:02:46

 4 7:51:39 / 0:01:55 10:58:37/ 0:02:41

 7 7:40:57 / 0:01:52 10:23:43/ 0:02:32

1.0 1 7:44:35 / 0:01:53 11:11:54/ 0:02:44

 4 7:42:58 / 0:01:53 10:48:24/ 0:02:38

 7 7:42:10 / 0:01:53 10:37:11/ 0:02:35

Overall average 7:41:23 / 0:01:52 10:54:23/ 0:02:40

Overall best 5:13:29 / 0:01:17 7:06:24 / 0:01:43

Overall worst 11:44:47 / 0:02:53 16:18:53/ 0:03:59

Sample st. dev. 1:09:22 / 0:00:17 1:59:25 / 0:00:29

5 Conclusions

Various heuristics have been developed and applied to a wide range of scheduling
problems, and, in particular, production scheduling. In this chapter, it is shown
that radiotherapy scheduling problems can be typified as production scheduling
problems with some unique characteristics relevant to the medical domain.

Novel heuristics for scheduling radiotherapy patients are proposed and
analysed. In the first scheduling system presented, the scheduling of the whole

186 D. Petrovic et al.

radiotherapy process, from the decision to treat a patient using radiotherapy to the
administration of the first fraction, is considered as four scheduling subproblems,
corresponding to the four units of the centre. Priority rules are developed for each
unit and combined with special strategies proposed to improve scheduling
performance of urgent patients, such as emergency and palliative patients. The
strategies include: (1) allowing breaches of the target waiting times for different
patient categories, (2) reserving slots on treatment machines for certain patient
categories and (3) introducing overtime slots on the treatment machines. The
heuristics created schedules of good performance with respect to waiting times
and percentages of late patients of different categories.

The heuristics presented are developed for specific real-life radiotherapy
centres. However, they are generic in the sense that they consider typical
objectives and constraints of any radiotherapy centre.

The future work will be carried out in the following directions. The heuristics
will be extended to consider various aspects of real-life radiotherapy scheduling
problems, such as considering forecasts of uncertain numbers of arriving patients
and the corresponding patient categories, anticipating failures of certain patients to
attend their appointments, rescheduling of patients that missed their appointments,
including preferences of certain patients categories for being treated in a
certain period of the day, etc. A comparison of the two different approaches
to radiotherapy scheduling based on priority rules and metaheuristics will be
carried out.

Our further research work into development of genetic algorithms for
preradiothearpy scheduling will be focused on investigation of a different
chromosome representation. Namely, a priority rule-based representation may lead
to false competition among chromosomes That is, different chromosomes may
represent the same schedule. Furthermore, different schedules may give the same
fitness function value because lateness is measured in days. We will investigate a
preference list-based representation in which each resource maintains its own list
of patients. Such a representation may be both more appealing to the City Hospital
in terms of an easier explanation and also it would be interesting to investigate if
patterns of patient sequences could be identified on each resource.

We will also investigate the coordination of radiotherapy pretreatmentand
radiotherapy scheduling. For instance, a patient who has to wait for their treatment
on a linac machine, due to its unavailability for a required number of consecutive
sessions, can give priority to patients who are late in their pretreatment phase, but
can start radiotherapy treatment earlier.

Acknowledgments. The authors would like to thank the Engineering and Physics Science
Research Council (EPSRC), UK, for supporting this research (Ref. No. EP/NB2076949511/
1 and EP/C54952X/1). The authors would also like to acknowledge the support of the
Nottingham University Hospitals NHS Trust, City Hospital Campus, UK and to thank the
staff from the Arden Cancer Centre, University Hospitals Coventry and Warwickshire NHS
Trust, UK for their help, support and involvement in this project.

Radiotherapy Scheduling 187

References

Agarwal, J., Ghosh-Laskar, S., Budrukkar, A., Murthy, V., Mallick, I.: Finding solutions
for the endless wait–reducing waiting times for radiotherapy. Radiotherapy and
Oncology 87(1), 153–154 (2008)

Bierwirth, C., Mattfeld, D.: Production scheduling and rescheduling with Genetic
Algorithms. Evolutionary Computation 7(1), 1–17 (1999)

Blackstone Jr., J., Phillips, D., Hogg, G.: A state-of-the-art survey of priority rules for
manufacturing job shop operations. International Journal of Production Research 20(1),
27–45 (1982)

Branke, J., Mattfeld, D.: Anticipation in dynamic optimization: The scheduling case. In:
Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 253–262. Springer, Heidelberg (2000)

Castro, E., Petrovic, S.: Combined mathematical programming and heuristics for a
radiotherapy pretreatment scheduling problem. Journal of Scheduling (2011),
doi:10.1007/s10951-011-0239-8

Chiarandini, M., Paquete, L., Preuss, M., Ridge, E.: Experiments on metaheuristics:
Methodological overview and open issues. Technical report University of Southern
Denmark (2007)

Conforti, D., Guerriero, F., Guido, R.: Optimization models for radiotherapy patient
scheduling. 4OR: A Quarterly Journal of Operations Research 6(3), 263–278 (2008)

Conforti, D., Guerriero, F., Guido, R.: Non-block scheduling with priority for radiotherapy
treatments. European Journal of Operational Research 201(1), 289–296 (2010)

Conforti, D., Guerriero, F., Guido, R., Veltri, M.: An optimal decision making approach for
the management of radiotherapy patients. OR Spectrum 33(1), 123–148 (2011)

Davis, L.: Job Shop Scheduling with Genetic Algorithm. In: Grefenstette, J. (ed.)
Proceedings of the International Conference of Genetic Algorithms (ICGA), pp. 136–
240 (1985)

Delaney, G., Jacob, S., Featherstone, C., Barton, M.: The role of radiotherapy in cancer
treatment: Estimating optimal utilization from a review of evidence-based clinical
guidelines. Wiley InterScience 104(6), 1129–1137 (2005)

Department of Health, The NHS cancer plan: a plan for investment, a plan for reform
(2000)

Department of Health, The NHS cancer plan and the new NHS: Providing a patient-centred
service (2004)

Dodwell, D., Crellin, A.: Waiting for radiotherapy. British Medical Journal 332(7533),
107–109 (2006)

Dorndorf, U., Pesch, E.: Evolution based learning in a job shop scheduling environment.
Computers & Operations Research 22(1), 25–40 (1995)

Garfinkel, R., Gilbert, K.: The bottleneck traveling salesman problem: Algorithms and
probabilistic analysis. Journal of the ACM 25(3), 435–448 (1978)

Gupta, D., Denton, B.: Appointment scheduling in health care: Challenges and
opportunities. IIE Transactions 40, 800–819 (2008)

Hart, E., Ross, P.: A heuristic combination method for solving job-shop scheduling
problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998.
LNCS, vol. 1498, pp. 845–854. Springer, Heidelberg (1998)

188 D. Petrovic et al.

Hart, E., Ross, P., Corne, D.: Evolutionary Scheduling: A Review. Genetic Programming
and Evolvable Machines 6(2), 191–220 (2005)

Huang, J., Barbera, L., Brouwers, M., Browman, G., Mackillop, W.J.: Does delay in
starting treatment affect the outcomes of radiotherapy? Journal of Clinical Oncology 21,
555–563 (2003)

Johnson, D.: A theoretician’s guide to the experimental analysis of algorithms. In:
Goldwasser, M., Johnson, D., McGeoch, C. (eds.) Data Structures, near Neighbour
Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges,
vol. 59, pp. 215–250 (2002)

Joint Council of Clinical Oncology, Reducing delays in cancer treatment: Some targets,
1993 Report. Royal College of Physicians, London (1993)

Kapamara, T., Sheibani, K., Petrovic, D., Haas, O., Reeves, C.R.: A Simulation of a
radiotherapy treatment system: A case study of a local cancer centre. In: Proceedings of
the ORP3 2007 Conference Guimaraes, Portugal, pp. 29–35 (2007)

Larsson, S.N.: Radiotherapy patient scheduling using a desktop personal computer. Clinical
Oncology 5(2), 98–101 (1993)

Leite-Rocha, P.: Novel approaches to radiotherapy treatment scheduling. PhD thesis,
University of Nottingham (2011)

Mackillop, W.J.: Killing time: the consequences of delays in radiotherapy. Radiotherapy
Oncology 84, 1–4 (2007)

Mattfeld, D., Bierwirth, C.: An efficient genetic algorithm for job shop scheduling with
tardiness objectives. European Journal of Operational Research 155(3), 616–630 (2004)

Morton, T., Pentico, D.: Heuristic scheduling systems. Wiley (1993)
National Radiotherapy Advisory Group, Radiotherapy: Developing a world class service

for England. 2007 Report to Ministers. National Health Service, England (2007)
Petrovic, D., Morshed, M., Petrovic, S.: Multi-objective genetic algorithm for scheduling of

radiotherapy treatments for categorised cancer patients. Expert Systems with
Applications 38, 6994–7002 (2011)

Petrovic, S., Leite-Rocha, P.: Constructive approaches to radiotherapy scheduling. In: Ao,
S., Douglas, C., Grundfest, W., Schruben, L., Burgstone, J. (eds.) World Congress on
Engineering and Computer Science (WCECS), pp. 722–727 (2008a)

Petrovic, S., Leite-Rocha, P.: Constructive and GRASP approaches to radiotherapy
scheduling. In: Ao, S. (ed.) Advances in Electrical and Electronics Engineering
(IAENG) Special Edition of the World Congress on Engineering and Computer Science
2008 (WCECS), pp. 192–200. IEEE Computer Society (2008b)

Petrovic, S., Leung, W., Song, X., Sundar, S.: Algorithms for radiotherapy treatment
booking. In: Qu, R. (ed.) Proceedings of the Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG), pp. 105–112 (2006)

Proctor, S., Lehaney, B., Reeves, C.R., Khan, Z.: Modelling patient flow in a radiotherapy
department. OR Insight 20, 6–14 (2007)

Rardin, R., Uzsoy, R.: Experimental Evaluation of Heuristic Optimization Algorithms: A
Tutorial. Journal of Heuristics 7(3), 261–304 (2001)

Routsis, D., Thomas, S., Head, J.: Are extended working days sustainable in radiotherapy?
Journal of Radiother. Practice 5, 77–85 (2006)

Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Burke, E., Kendall, G. (eds.)
Search Methodologies. Introductory Tutorials in Optimization and Decision Support
Techniques, pp. 97–126. Springer (2005)

Radiotherapy Scheduling 189

Storer, R., Wu, S., Vaccari, R.: New search spaces for sequencing problems with
application to job shop scheduling. Management Science 38(10), 1495–1509 (1992)

Summers, E., Williams, M.: Re-audit of radiotherapy waiting times. Royal College of
Radiologist London UK (2005)

Thomas, S.J., Williams, M.V., Burnet, N.G., Baker, C.R.: How much surplus capacity is
required to maintain low waiting times? Clinical Oncology 13, 24–28 (2001)

Werker, G., Sauré, A., French, J., Shechter, S.: The use of discrete-event simulation
modelling to improve radiation therapy planning processes. Radiotherapy and
Oncology 92(1), 76–82 (2009)

Recent Advances in Evolutionary Algorithms
for Job Shop Scheduling

Bahriye Akay and Xin Yao

Abstract. Scheduling decides the order of tasks to efficiently use resources consid-
ering criteria such as minimization of the number of late tasks, minimization of the
completion time, minimization of the idle times of the machines, etc. Approaches
for solving scheduling problems can be divided into three broad groups: (a) exact
methods that produce exact optimal solutions, (b) approximation methods that find
high quality near optimal, and (c) hybrid methods based on the first two. Approx-
imate methods can be easily combined with other types of heuristics and can be
applied to a wide range of problems.

In the category of approximation algorithms, evolutionary algorithms (EAs) are
very promising tools for the problems with dynamic characteristics, contradicting
multi-objectives and highly nonlinear constraints. For EAs to be effective and effi-
cient for a combinatorial optimisation problem like scheduling, the structure of an
EA needs to be designed carefully to exploit the problem structures. An appropri-
ate representation for the problem and the type of search operators suitable for the
representation should be studied because they directly affect the search efficiency of
the EA.

In this chapter, our focus will be on EAs for job shop scheduling problems
(JSP). First, JSP will be formulated as an optimization problem and approaches
for JSP will be given briefly. Second, EAs will be introduced and the key issues in
the application of EAs for JSP will be emphasized. Third, various representations
used in EAs for handling JSP will be described and advantages and drawbacks of

Bahriye Akay
Dept. of Computer Engineering, Erciyes University,
38039, Melikgazi, Kayseri, Turkey
e-mail: bahriye@erciyes.edu.tr

Xin Yao
Center of Excellence for Research in Computational Intelligence and Applications,
School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K
e-mail: x.yao@cs.bham.ac.uk

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 191
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_8, c© Springer-Verlag Berlin Heidelberg 2013

bahriye@erciyes.edu.tr
x.yao@cs.bham.ac.uk

192 B. Akay and X. Yao

different representations will be described based on the results from the literature.
Forth, crossover and mutation operators designed for particular representations will
be illustrated and their strength and limitations will be discussed. Almost all suc-
cessful applications of evolutionary combinatorial optimisation include some kind
of hybrid algorithms, where both EAs and local search were used. The seventh topic
of this chapter is devoted to local search strategies which are frequently integrated
into EAs.

1 Job Shop Scheduling

Combinatorial optimization deals with problem of finding the optimal subset from
a finite set of subsets. Some common problems in combinatorial optimization
are maximum matching, minimum spanning, travelling salesman, knapsack and
scheduling. Scheduling decides the order of tasks to use resources efficiently. I/O
scheduling, CPU scheduling,time table scheduling, project scheduling, job shop
scheduling, etc., are some examples of scheduling problems. The objective of
scheduling may be minimization of the number of late jobs, minimization of the
makespan, minimization of the idle times of processors, minimization of the com-
pletion time of a project etc.,.

In a job shop scheduling problem, given n jobs are assigned to m machines to
minimize a criterion such as completion time. In a job shop scheduling problem,
each job is composed of a set of operations and has its predefined job sequence.
Each operation is processed by the required machine and a machine can process
each job at different speeds, so, processing time of each job is different at different
machines.

Job Shop Scheduling (JSP) problems have characteristics given below (Yamada,
2003):

• All the jobs Jj must follow the pre-defined technological sequence.
• Each machine Mr can process only one job at a time.
• An operation O jr must be processed on its machine Mr for its processing time

p jr without being preempted by another operation.
• A job does not visit the same machine twice.
• Let the starting time be s jr and the completion time be c jr of an operation O jr.

A schedule is a set of completion times for each operation {c jr}1< j<n,1<r<m that
satisfies above constraints, and where n is the number of jobs and m is the number
of machines.

• Makespan (Cmax) is the time required to complete all the jobs. Cmax =
max

1≤ j≤n,1≤r≤m
c jr

An example of a 3x3 JSP is given in Table 1. The data for the first job means that
its first operation (O11) is processed on machine 1 for its processing time, p11, on
machine 1 (3), and then second operation (O12) is processed on machine 2 for its
processing time, p12, on machine 2 (3) and finally its third operation (O13) processed
on machine 3 for its processing time, p13, on machine 3(3). Similarly, first operation

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 193

of the second job (O21) is processed on machine 1 for its processing time, p21, on
machine 1 (2), and then second operation of the second job (O22)is processed on
machine 3 for its processing time, p23, on machine 3 (3), and finally third operation
(O23)processed on machine 2 for its processing time, p22, on machine 2 (4). The
same process is repeated for the third job.

Table 1 An Example 3x3 JSP (Yamada, 2003)

Jj Mr(p jr)
1 1(3) 2(3) 3(3)
2 1(2) 3(3) 2(4)
3 2(3) 1(2) 3(1)

The aim is to find a schedule that minimizes the makespan or another objective
without violating the constraints that any two jobs can not be processed on a ma-
chine at the same time and an operation can not start before the its previous operation
is completed.

A solution to a JSP can be visually represented by a Gantt-chart (Gantt, 1910)
as shown in Figure 1 or a disjunctive graph (Roy and Sussmann, 1964) as in Figure
2. x-axis of the Gantt chart shows time units, and the machine numbers are shown
along the y-axis. Each box corresponds to an operation O jr. The left edge of the box
is aligned at starting time s jr of O jr and the length of the box is the processing time
p jr of O jr. Therefore, the makespan of the schedule, Cmax = max

1≤ j≤n,1≤r≤m
cr j is equal

to 12 for the example schedule given in Figure 1.

M1 O11 O21 O32

M2 O31 O12 O23

M3 O22 O13 O33

0 3 6 9 12

Fig. 1 Gantt-Chart of a 3x3 JSP

A schedule S which does not violate any of the constraints related with the ma-
chine sequences and the predefined job sequences is called feasible. However, a
feasible schedule may not be an optimal schedule because there may be some other
alternative schedules with less makespan. A feasible schedule may be semi-active
or active. In a semi-active schedule, there is no operation that can be started earlier
without altering the order of jobs in schedule. In order to reduce the makespan of
a semi-active schedule, some operations may be shifted to the left without delay-
ing other jobs, which is called a permissible left shift. A schedule whose makespan

194 B. Akay and X. Yao

can not be reduced by permissible left shifts is called an active schedule. Giffler-
Thompson algorithm is a heuristic that creates active schedules with a bias towards
non-delay schedules depending on various rules; for example, priority dispatching
rules, shortest operation time, most work remaining and first come first serve rule.

0 O21 O23 O22 �

O11 O12 O13

O32 O31 O33

Fig. 2 Disjunctive Graph of a 3x3 JSP

Although Gantt-chart is easy to define a schedule, it does not give any informa-
tion if the schedule is feasible or not. A more informative disjunctive graph represen-
tation (Roy and Sussmann, 1964) can be used to identify a schedule. A disjunctive
graph G = (N,A ∪E) is a set of nodes N representing operations of the jobs to-
gether with source and sink with zero cost to indicate the beginning and the end of
the schedule where A is a set of ordinary conjunctive arcs representing technological
sequences of machines for each job and E =

⋃m
r=1 Er is a set of disjunctive arcs rep-

resenting pairs of operations that must be performed on the same machine (Adams
et al., 1988; Yamada, 2003). Solid lines represent constructive arcs (technological
sequence) and dotted lines represent disjunctive arcs. The scheduling problem based
on graph can be defined mathematically as given by (1):

minimize : s∗
subjectto : sw − sv ≥ pv, (v,w) ∈ A,

sv ≥ 0, v ∈ N,
sw − sv ≥ pv ∨ sv − sw ≥ pw (v,w) ∈ Er,1 ≤ r ≤ m.

(1)

Scheduling is fixing all undirected (disjunctive) arcs into directed ones. A selec-
tion is defined as a set of directed arcs selected from the set of disjunctive arcs E .
A schedule S from G = (N,A∪E) (Phan, 2000)

• S is a partial selection iff i → j ∈ S implies j → i /∈ S for all i ↔ j ∈ E .
• S is a complete selection iff either i → j ∈ S or j → i ∈ S for all i ↔ j ∈ E .
• A complete selection S is acyclic iff the directed graph Gs is acyclic.

The objective to be minimized is a function of the completion times of the jobs.
Let pi j be processing time of job i on machine j, ri is the release time of job i
at which job i can start its processing, di is due date of job i at which job i is ex-
pected to finish, d̂i is deadline of job i by which job i must be completed and wi is the

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 195

weight of job i, Ci denotes the completion time of job i. Lateness of a job is given
by i Li =Ci − di and the tardiness of job i is defined as Ti = max(Li,0). Alternative
objective functions to be minimized are as follows:

• Makespan (Cmax)=max(C1 . . .Cn)
• Maximum lateness (Lmax)=max(L1 . . .Ln)
• Total weighted completion time: (∑wiCi)
• The total (unweighted) completion time: ∑Ci

• Total weighted tardiness (∑wiTi)
• The total (unweighted) tardiness : ∑Ti

• Weighted number of tardy jobs (∑wiUi)
• The total (unweighted) number of tardy jobs is denoted by ∑Ui where the unit

penalty of job i, Ui = 1 if Ci > di; otherwise, Ui = 0.

2 Approaches for JSP

Approaches for solving JSPs can be divided into three broad groups: exact methods,
approximation methods and methods based on the hybridization of the first two.

Exact algorithms are guaranteed to find an optimal solution, but they need expo-
nential computation time in the worst-case for even small problem instances. Find-
ing an exact solution may be very difficult due to searching an exponential number
of possible solutions, and can be inappropriate because the problems may have large
size, the dynamic character, constraints difficult to formulate in mathematical terms,
contradictory objectives (Widmer and Costa, 2008). In these conditions, the approx-
imate methods are possible alternatives which provide good quality solutions in a
reasonable amount of time. Response time of the approximation methods is often
much faster than the exact methods, and the approximation methods can be easily
adapted or combined with other types of methods, so that they can be applied to a
wide range of problems.

• Complete (exact) methods (integer programming, Branch and Bound)
• Approximation methods

– Constructive methods
· List scheduler algorithms
· The shifting bottleneck procedure
· Insertion techniques and beam search
· NEH Heuristic

– Local search methods
· Simulated annealing
· Threshold accepting methods
· Tabu search

– Evolutionary algorithms

• Hybrid Methods

196 B. Akay and X. Yao

Constructive methods reduce the size of the problem and the search space into a
smaller subset of whole search space, at each step. Although they are fast and sim-
ple, the quality of the solutions obtained are not satisfactory. List schedulers, in the
category of constructive methods, finds an operation to be processed next depend-
ing on some rules called priority rules and dispatching rules. Giffler and Thompson,
Non-Delay algorithms are typical examples of list scheduler. Shifting bottleneck
heuristic identifies the machine with the longest makespan, schedules this machine
and then the other machines are reoptimized. NEH algorithm proposed by Nawaz et
al. searches a minimal length sequence for JSP problem. Local search methods ex-
ploit the neighbourhood of a solution and move another solution in the search space
iteratively. N(s) = {s′ ∈ X|∃δ ∈ Δ : s′ = s⊕ δ}. Their performance depends on the
size and structure of the considered neighborhood N(s) and they can stuck to the
local optima far from the optimum. Due to the disadvantages of exact methods and
constructive methods on scheduling and local search methods, researchers attempt
to find high quality sub-optimal solutions in a reasonable time by using evolutionary
algorithms.

3 Introduction to Evolutionary Algorithms

Evolutionary Algorithms (EA) based on biological evolution operate on a popula-
tion of solutions applying evolution operators: selection, mutation, recombination.
They obtain well approximating solutions because they do not make any assump-
tion about the search space and this makes them useful for solving continuous and
combinatorial hard problems.

begin
Initialization;
Evaluation;
while Termination Criteria is not Met do

Selection of parents;
Recombination;
Mutation;
Evaluate new solutions;
Selection to form new population;

end
end

Algorithm 1: Evolutionary Algorithm

A population is constructed by generating a set of randomly generated solutions
and each solution is assigned a fitness values. Once all solutions are evaluated, the
evolution cycle is repeated until a termination criterion, such as reaching the maxi-
mum number of generations, is satisfied. In an evolution cycle, some solutions are
selected as parents to produce offsprings by recombination. After recombination, the

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 197

offsprings are mutated by with a certain probability and a new population is gener-
ated. In traditional EAs, solutions are represented by binary strings and operators
operating in the binary space to produce a candidate solution.

Although it is easy to adapt a problem to be solved by an EA, the main difficulty
is related to deciding the structure of EA. Because the JSP is an ordering prob-
lem which tries to find the sequence of the jobs on machines in order to minimize
makespan time, classical EA representation and search operators may not be directly
applied or they may produce illegal or infeasible solutions. Therefore, the structure
of an EA, the encoding and representation and the suitable search operators should
be decided carefully to solve JSP in order to obtain efficient results.

• Representation of schedule(phenotype) by suitable genotype
• Decoding the individual to a schedule
• Type of Crossover
• Type of Mutation

Many studies have been presented to the literature based on various representations,
recombination operators, fitness functions and local search methods. Cheng et al.
(1999) presents a good survey for the encoding schemes, crossover and mutation
operators, and hybrid genetic algorithms. In addition to those given in Cheng et al.
(1999), this chapter also contains more recent schemes and results.

4 Representation

Representation should be decided carefully because an inappropriate representation
may increase the dimension of search space and may worsen the approximation
ability of the algorithm. In order to decide the representation of the problem vari-
ables (phenotype) and the format of the variables (genotype) which the EA will
work through the search process. Deciding the phenotype and genotype and the
mapping from genotype to phenotype determines the type of evolutionary operators
and hence directs the evolution.

In order to solve JSPs, there are some different representations: binary, real and
ordering representations. These main categories vary what they encode such as jobs,
operations, machines, completion times, etc. Choosing the appropriate representa-
tion is especially important for JSPs due to the precedence constraints they have. In
the initialization or after applying a genetic operator, the output solution may not
be feasible if precedence constraints are violated. Therefore, the infeasible solution
needs to be repaired and this may affect EA’s performance. Moreover, a representa-
tion that needs many mappings and decodings to be evaluated leads to high running
time.

There are two types of encoding in representation, indirect and direct encoding.
In the indirect approach, solutions are encoded in a data structure and these geno-
types are passed to the operators. To evaluate a solution, the solution at the genotype

198 B. Akay and X. Yao

level is mapped to the phenotype level. In the direct approach, search operators
are applied to the solutions which are already in the format of the problem variables
(Rothlauf, 2008). The direct representation includes operation-based representation,
job-based representation, job pair relation-based representation, completion time-
based representation, and random keys representation. In the indirect approach, a
schedule is constructed with dispatching rules as in the priority rule-based repre-
sentation. Preference list-based representation, priority rule-based representation,
disjunctive graph-based representation, and machine-based representation are ex-
amples of indirect representations (Gen et al., 2008).

4.1 Binary Representation

Nakano and Yamada (1991) proposed a GA using binary representation based on the
disjunctive graphs. The directed arcs on the graph are labeled as 0 or 1 according to
the direction and all the bits corresponding to these labels form a one dimensional
bit-string with the length of mn(n− 1)/2. An arc connecting Oi j and Ok j is labeled
as 1 if the arc is directed from Oi j to Ok j and (i < k), otherwise it is labeled as 0.
The Hamming distance defines the similarity between two bit strings.

0 O21 O23 O22 �

O11 O12 O13

O32 O31 O33

1

1

1

1

0

0

0
1

1

Fig. 3 Labelled Disjunctive Graph

The binary string corresponding to the directed disjunctive graph in Figure 3 is
given in Figure 4.

1 1 1 1 0 0 0 1 1
O11−
O21

O11−
O31

O21−
O31

O12−
O22

O12−
O32

O22−
O32

O13−
O23

O13−
O32

O23−
O33

Fig. 4 Binary string representation for the directed disjunctive graph

The approach can be used with the conventional genetic operators, such as one-
point, two-point and uniform crossovers without any modification. However, it has
a drawback that an offspring generated by the genetic operators may not be le-
gal or feasible. Binary representation used in conventional EAs needs a repairing

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 199

mechanism to keep the individuals feasible. For this reason, they employed a har-
monization approach to deal with infeasible or illegal solutions. The approach was
applied to solve ft06 (6x6), ft10 (10x10) and ft20(20x5) problems and found the
optimum solution for ft06 and near optimum solutions for ft10 and ft20.

4.2 Priority Rule-Based Representation

Dorndorf and Pesch (1995) proposed a priority rule-based representation in which
a chromosome is a sequence of rules for job assignment and a schedule is created
based on the priority rules. There is an array of predefined rules such as select the
operation with the shortest processing time, select the operation with the longest
processing time, select the operation of the job with the shortest remaining time etc.,
and the chromosome [π1,π2, . . . ,πi, . . . ,πnm] holds nxm indices of the rules defined
in the array (Gen et al., 2008). Table 2 shows an example of the rules that can be
used in the encoding :

Table 2 An example of the rules table

Rule Index Rule
1 Shortest processing time
2 Longest processing time
3 Shortest remaining time
4 Longest remaining time
5 Latest start time
6 Latest finish time

3 1 4 5 4 1 2 1 3

Fig. 5 A Chromosome encoded based on Priority-rule based Representation

Mattfeld and Bierwirth (2004) defined the GA solutions by priorities between
any two operations to solve job shop scheduling problems with release and due-
dates. The tardiness was considered as objective function. They aimed to reduce
the complexity by narrowing the scope at the machine level through the schedule
builder and to decompose a problem through a multi-stage approach to focus on the
long-term planning at the shop-floor level. Precedence preservative crossover opera-
tor (PPX) and the delete-insert mutation operators were used. Morton and Pentico’s
48 scheduling problems provided with the Parsifal software package was used to
validate the approach. Proposed GA model was compared to probabilistic schedul-
ing. Comparing both GA variants, the active GA performed superior for three cri-
teria (weighted mean tardiness, the maximum tardiness, the weighted number of
tardy jobs). For minimizing the weighted mean flowtime of jobs the non-delay GA
is clearly advantageous. It was stated that GA failed to explore the larger space of

200 B. Akay and X. Yao

active schedules. The standard deviation of the GA was small compared to with
probabilistic scheduling. The active GA was said to be more time consuming on
average than its non-delay counterpart.

4.3 Preference-List Based Representation

A chromosome encoded with preference-list based representation proposed by
Davis (1985) consists of m sub-chromosomes with length n for an nxm JSP. A sub-
chromosome is a preference list rather than an operation sequence on the machine
as shown in Figure 6. An example 3x3 JSP is given in Table 3 (Ponnambalam et al.,
2001):

Table 3 An Example 3x3 JSP (Ponnambalam et al., 2001)

Jj Mr(p jr)
1 1(3) 2(3) 3(2)
2 1(1) 3(5) 2(3)
3 2(3) 1(2) 3(3)

2 3 1 1 3 2 2 1 3

Fig. 6 A Chromosome encoded based on Preference-List based Representation

The first triple is the preference-list for the first machine, and the second triple
belongs to the second machine and, so forth. In order to create a schedule, the first
preferred operations on each machine are considered. That is the J2 for machine 1, J1

for machine 2 and J2 for machine 3. Among these operations only J2 on machine 1
can be dispatched due to the operator precedence constraints given in Table 3. Once
J2 on machine 1 is scheduled on machine 1, the next operation to be dispatched is J2

on machine 3. Now, J3 on machine 1 and J1 on machine 2 are in the preference list
queue. However, they can not start due to the constraints. Hence, the next operations
on the machines are taken into preference list. J1 on machine 1 and J3 on machine 2
are scheduled and then, J3 on machine 1 and J1 on machine 2 can be dispatched now
since their job precedences have been completed. And J1 on machine 3 and J2 on
machine 2 are dispatched and finally J3 is scheduled on machine 3 (Ponnambalam
et al., 2001). The schedules dispatched according to the priority list always lead to
a feasible schedule since no illegal move is allowed.

4.4 Completion Time Based Representation

Completion time-based representation proposed by Yamada and Nakano (1992)
consists of the completion times of the operations as shown in Figure 7 where each

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 201

Oi jk represents the completion time of the associated operation k of job i on machine
j. It may require to use a specially designed genetic operators and extra computa-
tional computation to obtain valid solutions.

O111 O122 O133 O213 O221 O222 O312 O321 O333

Fig. 7 A Chromosome encoded based on Completion Time based Representation

4.5 Random Keys Representation

Random keys representation proposed by Bean (1994) can lead genetic operators
to produce feasible and valid solutions without a repairing mechanism. Bean and
Norman (1993) developed a GA based random keys representation for JSPs. In a
chromosome encoded by random keys representation, each gene consists of an inte-
ger number in 1,m which corresponds to the machine number and a fractional part in
(0,1). The indices of fractional parts after a sort in ascending order gives sequences
on the machines. Assuming that jobs are processed at their earliest possible time,
Norman and Bean (1995) incorporated non-zero ready times and tool availability
procedures into their GA, and in order to handle with constraints they presented
an algorithm which schedules a job by avoiding any possible local left-shift on its
machine.

Consider the chromosome given in Figure 8. Sorting the keys for machine 1 in
ascending produces the job sequence [3 2 1], the job sequence [2 1 3] for machine
2, and the job sequence [1 2 3] for machine 3. As seen from the Figure 8, the job
sequences may violate the precedence constraints.

1.75 1.66 1.22 2.35 2.26 2.83 3.10 3.20 3.95

1 2 3 1 2 3 1 2 3

(a) Before Sorting

1.22 1.66 1.75 2.26 2.35 2.83 3.10 3.20 3.95

3 2 1 2 1 3 1 2 3

(b) After Sorting

Fig. 8 A Chromosome encoded based on Random Keys Representation

202 B. Akay and X. Yao

4.6 Job Permutation Representation

In the job permutation representation (Giffler and Thompson, 1960), a chromosome
of n jobs is scheduled by first assigning the operations of first job in the chromosome
and then the the operations of second job, so forth. An operation is assigned to a
machine to make best processing time for the associated machine. An example of
job-based representation for a 3x3 JSP is shown in Figure 9.

Table 4 An Example 3x3 JSP

Jj Mr(p jr)
1 1(3) 2(3) 3(3)
2 1(2) 3(3) 2(4)
3 2(3) 1(2) 3(1)

J1 J3 J2

Fig. 9 A chromosome encoded based on job permutation representation

According to the chromosome given in Figure 9 for a 3x3 JSP given in Table 4,
first job is dispatched and then the third job and finally the second job. The operation
precedence of the first job is [M1 M2 M3] according to the Table 4. All operations
of the first job are dispatched depending on their processing times given in Table 4
is shown in Figure 10. Then the third job is scheduled on machines [M2 M1 M3]
based on the precedences given in Table 4. The Gantt chart is shown in Figure 11
after the third job was scheduled. Finally, the second job is dispatched based on
the machine sequence [M1 M3 M2] and corresponding processing times [2 3 4] as
shown in Figure 12. As seen from the Gantt chart in Figure 12, the makespan of the
schedule is 16.

O11M1

O12

M2
O13

M3

0 3 6 9

Fig. 10 Gantt Chart after the first job was dispatched

Bierwirth (1995) proposed a generalised-permutation genetic algorithm and Bier-
wirth et al. (1996) analysed three crossover operators preserving the relative, posi-
tion and absolute permutation order of operations.

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 203

O11M1 O32

M2 O31 O12

M3 O33 O13

0 3 6 9 12 16

Fig. 11 Gantt Chart after the third job was dispatched

O11M1 O32 O21

M2 O31 O12 O23

M3 O33 O13 O22

0 3 6 9 12 16

Fig. 12 Gantt Chart after the second job was dispatched

4.7 Job Pair Relation Based Representation

In the job pair relation-based representation, to encode a schedule a solution is rep-
resented by a binary string where each entry is the order of a job pair (i, j) for a
machine (Cheng et al., 1999; Ponnambalam et al., 2001). Each value in the matrix
is determined as follows (Eq. 2):

xi jm =

{
1, if job Ji is processed before job Jj on machine m
0, otherwise

(2)

If xi jm is 1, it means that the job Ji must be processed before Jj on machine m. A
job with the maximum number of ones has the highest priority for the machine.
The length of a chromosome is Mx(N −1)xN/2 where N is the number of jobs and
M is the number of machines. When traditional crossover and mutation operators
are used, this representation may be helpful (Hassan et al., 2009). However, it is
complex and redundant, and a repair function or a penalty function is needed due
to the illegality of the chromosomes produced (Kleeman and Lamont, 2007). An
example of a chromosome encoded by job pair relation based representation is given
in Figure 13:

204 B. Akay and X. Yao

X122

X121 X123 X131

X132

X133 X231

X232

X233

Jop Pair

(j1, j2)

Jop Pair

(j1, j3)

Jop Pair

(j2, j3)

00 1 1 0 1 0 1 1

Fig. 13 A chromosome encoded by job pair relation based representation

4.8 Machine Permutation Representation

In the machine permutation representation, a chromosome with a length of the num-
ber of machines is a sequence of machines as shown in Figure 14 for a three ma-
chine JSP. The shifting bottleneck heuristic identifies a bottleneck machine in the
sequence and optimally dispatches the operations on the machine based on the time
to process all operations and the next bottleneck machine is determined.

M1 M3 M2

Fig. 14 A chromosome encoded based on machine permutation representation

4.9 Operation-Based Representation

In the operation-based representation, a chromosome is a sequence of operations
which leads to a schedule. All operations of the same job are labeled with the same
symbol and its converted to an operation sequence according to the number of occur-
rences of a symbol (Gen et al., 1994). An example of operation based representation
is shown in Figure 15 for a 3x3 JSP. The job sequence is interpreted as an opera-
tion sequence considering the order of occurrences. For example, the first symbol
belongs to job 2 and its the first occurrence of an operation of job 2, it is consid-
ered as O21. If we use the problem given in Table 4, depending on the technological
sequence matrix, O21 is assigned to machine 1. The second symbol belongs to job
3 and it is the first occurrence of job 2, the second symbol is considered as O31
and assigned to machine 2. The third symbol is an operation of job 3 and it is the
second occurrence of job 3, it is interpreted as O32 and assigned to machine 1. All
the operations are interpreted in the same manner and scheduled on the machines.
It is obvious that a chromosome encoded based on operation based representation
always yields a feasible schedule and it is easy to implement.

4.10 Parallel Jobs Representation

Mesghouni et al. (1997) applied evolutionary programs to minimize the makespan
of a job shop scheduling. Since binary representation does not consider some con-
straints such as precedence and resources constrains, they offered a new representa-
tion for the chromosomes, which respects the different constraints of the flexible job

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 205

J2 J3 J3 J1 J3 J2 J1 J2 J1

O21 O31 O32 O11 O33 O22 O12 O23 O13

Fig. 15 A chromosome encoded based on operation based representation

shop problem. This representation, called Parallel Jobs Representation(PJsR), was
defined by a matrix where each row is an ordered series of the operating sequence
of this job. Each element of the row contain two terms: the machine index and the
starting time of the operation if the assignment of this machine on this operation is
definitive.

Table 5 Parallel Jobs Representation

J1 (Mk1,Tk1) (Mk2,Tk2) . . .
. . . (Mk3,Tk3) (Mk1,Tk1) . . .
Jn (Mk4,Tk4)

Mesghouni et al. (1997) proposed two crossover operators called row crossover
and column crossover. The mutation operator used in the approach selects an opera-
tion at random and reassigns it to another machine. The minimization of makespan
was the objective function. The initial population is generated from the solutions
that do not violate the precedence constraints. They solved a problem with 10 ma-
chines and 10 jobs each with 3 operations. The proposed parallel genetic operators
are claimed to be suitable to JSP and effective on this kind of problems.

4.11 Parallel Machines Representation

Mesghouni et al. (1999) proposed parallel machine encoding which provides feasi-
ble schedule. A chromosome represented by parallel machine representation
(Table 6) consists of a set of machines each consisting of the operations represented
by three numbers: the job number, the operation order and starting time of the as-
sociated operation which is calculated considering the precedence and resources
constraints.

Table 6 Parallel Machines Representation

M1 (i1, j1, t1
i, j,M1

) . . .

Mi (ii, ji, ti
i, j,Mi

) . . .

Mm (im, jm, tm
i, j,Mm

) . . .

206 B. Akay and X. Yao

Mesghouni et al. (1999) used a GA started with an initial population of the solu-
tions given by constraint logic programming and applied them genetic operators and
priority rules. They proposed two new crossover operators adapted to the encoding,
which always generate new legal offspring, and employed the assigned mutation
and the swap mutation. They solved a problem with 10 machines and 10 jobs each
with 3 operations and concluded that parallel machines and parallel jobs represen-
tations combined with proposed genetic operators are suitable and effective for the
job-shop scheduling problem.

4.12 Substring Representation

Wu and Li (1996) used an encoding in which a solution was a large string (Figure
16) made up by several sub strings each of which stands by a machine. In Figure 16,
the substring for kth machine is shown where PRTki is a step of a part is processed by
the kth machine ,and IDTMki is the waiting time of the kth machine to processed a
part. For a problem with m machines, the whole string is composed by m substrings.

PRTk1 PRTk2 . . . PRTki . . . PRTkn IDT Mk1 IDT Mk2 IDT Mki . . . IDT Mki . . . IDT Mkn

Fig. 16 A substring for a machine in substring representation

Wu and Li (1996) used some genes of idle time of machines to narrow the so-
lution space in order to get a completed determined solution. Because the solutions
may not be feasible, a penalty term was introduced into the cost function to handle
with the constraints. Chen et al. (1999) used two string representation where one
string contains a list of all operations of all jobs and machines selected for corre-
sponding operations while the second string contains a list of operations on each
machine. The approach requires a feasibility maintenance mechanism because after
crossover and mutation decoded solutions may not be feasible due to their repre-
sentation. In the encoding, each individual consists of two substrings, substring A
which defines the routing policy of the problem and substring B which defines the
sequence of the operations on each machine, as shown in Figure 17.

4.13 Operations Machines Coding

Kacem et al. (2002) employed an assignment table which provides feasible solutions
after crossover and mutation, integrates the notion of the assignment schemata and
enables the exchange of information contained in current good solutions. The coding
gives the execution of the operations from the rows and the tasks of each machine
with the starting and completion times from the columns. They utilized the domain
knowledge in the mutation operation. One drawback of the assignment table is its
space complexity.

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 207

O11 O12 . . . Oi j . . . Onln

MO11 MO12
. . . MOi j . . . MOnln

(a) Partial string A

M1 M2 . . . Mm

OM1 OM2
. . . OMm

(b) Partial string B

Fig. 17 Chen et al. (1999)’s substring representation

4.14 Complex Number Representation

Gu et al. (2009) and Gu et al. (2010) presented a parallel and co-evolutionary quan-
tum genetic algorithms for stochastic job shop scheduling problem. Q-bit represen-
tation based on complex numbers was used to represent a linear superposition of
solutions. Because of the complex numbers, the representation cannot be used di-
rectly and is converted into binary, decimal and job shop sequence, respectively. The
state of a qubit can be represented as given in (3):

|ψ〉= α |0〉+β |1〉 (3)

where α and β are complex numbers that specify the probability amplitudes of the
corresponding states. As a string of l Q-bits, a Q-bit individual is defined by (4)[

α1

β1

∣∣∣∣ α2

β2

∣∣∣∣

∣∣∣∣ αl

βl

]
(4)

where
∣∣α2

i

∣∣+ ∣∣β 2
i

∣∣= 1 and i = 1,2, . . . , l.
Using a conversion mechanism, q-bit individual is converted to a job permutation

string. Let η be a random number generated from the uniform distribution [0,1]. If
αi from Q-bit individual Pi

Q(t) satisfies
∣∣α2

i

∣∣> η , then a bit of the binary string Xi(t)
is set to 1, otherwise set to 0. Every bits of binary string formed is transferred into a
decimal number, and then a decimal string D(t) of length n is obtained. Permutation
of D(t) is ordered in ascending and the job shop code is obtained.

Gu et al. (2009) employed cyclic crossover while Gu et al. (2010) employed two-
point crossover and a not gate mutation operator. They also used a catastrophe op-
erator to avoid premature convergence which occurs when the evolution of the best
solution gets stuck in some consecutive generations. They aimed to minimize the
makespan of mt06 (6x6), mt10(10x10) and mt20(20x5) problems and compared the
proposed algorithm with GA and quantum GA, and the proposed algorithm with its
variants using two and three universes. The proposed algorithm was said to be able
to generate optimal or near-optimal solutions with fast convergence speed and to be
suitable for stochastic JSPs with large number of machines, parts and operations.

208 B. Akay and X. Yao

4.15 Hybrid Representation

Yan and Hongze (2009) proposed a symbiotic evolutionary algorithm in which a
flexible job scheduling problem is decomposed into two sub different problems. In
the approach, a chromosome is composed of three parts: operation permutation, ma-
chine permutation generated according to the operation permutation and successor
sequence which contains the information to choose successors. In decoding of a
solution to a schedule, a hybrid decoding procedure was adopted. A new neighbour-
hood multi-parent crossover(NMX) operator was proposed in this paper because
the traditional crossover cannot be applicable to inherit the characteristics of the
chromosomes in the neighborhood. Different mutation operators were applied for
operation and machine parts of a chromosome. They solved 24 problems from the
literature and and the results of the algorithm on the problems were compared to
those of other studies. The proposed approach was said to be suitable for solving
FJSPs.

4.16 Three Dimensional Encoding

Wang et al. (2009) introduced a three-dimensional chromosome syntax, to solve the
job shop problem, Each chromosome consists of a number of m square (nxn) matri-
ces called a jobjob matrix, where m is the number of machines and n is the number
of jobs as shown in Figure 18. Remaining elements are filled with -1 and then If
job n1 is processed before job n2, then the cell at row n1, column n2 is filled with
a 1, and the cell at row n2 column n1 is filled with a 0. The column sums for each
machine are summarized in a three-dimensional matrix, with the first (horizontal)
dimension representing the jobs, the second (vertical) representing the machines,
and the third representing the chromosomes. This chromosome is used for creating
the schedule. A union crossover operator takes two parent chromosomes and cre-
ates two child chromosomes in three steps. The three-dimensional encoding genetic
algorithm (3DGA) was compared to standard branch and bound (BB), shifting bot-
tleneck (SB), and tabu search (TS) in literature and obtained the minimum makespan
on five instances of JSP (10x10, 20x15, 50x10).

5 Crossover Operators

In EAs, a pair of parent solutions are selected from the population and new offspring
solutions are generated using genetic operators. The crossover operator is required
to inherit features of the parents as much as possible but it should also explore new
patterns of permutation. In this section crossover operators proposed for combina-
torial problems and used with JSPs will be described.

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 209

1
2

...
n

Job

Jo
b

1
2

...
n

Machines

1
2

3
.

.

m

Fig. 18 Three Dimensional Encoding

5.1 Partial-Mapped Crossover (PMX)

PMX (Goldberg and Lingle, 1985) was initially proposed to solve Travelling Sales-
man Problem. It works like a two-cut-point crossover, which has a repairing proce-
dure based on mapping in order to resolve the illegality of the offsprings.

• Step 1: Select two cut-points randomly
• Step 2: Exchange substring between the cut-points to create offsprings and de-

termine the mapping relations
• Step 3: Apply the mapping relations to other parts of the offsprings to legalize

the offspring

Figure 19 shows an example of the crossover operator which creates offsprings using
PMX operator. In the example, (6 � 3), (4 � 9) and (5 � 2) are mapped, and the
offsprings are legalized by applying this mapping after exchanging the substrings.

3Parent 1: 7 1 9 6 4 5 2 8

4Parent 2: 7 8 5 3 9 2 1 6

3Offspring 1: 7 1 9 3 9 2 2 8

4Offspring 2: 7 8 5 6 4 5 1 6

6Legal Offspring 1: 7 1 4 3 9 2 5 8

9Legal Offspring 2: 7 8 2 6 4 5 1 3

Fig. 19 An example of how PMX operator works

210 B. Akay and X. Yao

5.2 Order Crossover (OX)

OX operator proposed by Davis (1985) works like PMX operator but it applies a
different repairing procedure.

• Step 1: Select two cut-points randomly
• Step 2: Exchange substring between the cut-points to create offsprings
• Step 3: In each offspring, determine the positions of the symbols which are the

same with the ones taken by the exchange.
• Step 4: Starting from the second cut point, place the symbols into the positions

determined in Step 3.

Figure 20 shows how OX operator produces offsprings. In the example, substrings
between the cut-points are exchanged. Positions of the genes transferred from the
second parent (3, 9 and 2) are determined as shown in Figure 20 labelled with X in
order to avoid illegality due to the repetition of the same symbols. To these positions
labelled with X, the genes transferred to the other individual (6, 4 and 5 for the first
offspring) are placed as in the order of the substring starting from the second cut
point. This repairing procedure is repeated for the second procedure, as well.

3 7 1 9 6 4 5 2 8

4 7 8 5 3 9 2 1 6

X 7 1 X 3 9 2 X 8

X 7 8 X 6 4 5 1 X

4 7 1 5 3 9 2 6 8

9 7 8 2 6 4 5 1 3

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

Fig. 20 An example of how OX operator works

5.3 Position-Based Crossover (PBX)

PBX proposed by Syswerda (1991) works like a uniform crossover operator and
applies a procedure to repair illegal offsprings.

• Step 1: Generate a random mask and produce offsprings by applying multi-cut
exchange between the parents according to the mask

• Step 2: Determine the positions of the genes transferred to the other individual
• Step 3: Place the symbols transferred to the other parent, from left to right

Figure 21 shows an example of crossover operation conducted by PBX operator.
In the example, a mask=[1 0 0 0 1 1 0 1 0] is created and a multi-cut crossover is
applied to the parents in the positions where the mask element is 1. The symbols in
the positions where the mask is 0 are labelled with X. In the repairing procedure,

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 211

the symbols transferred from the other parent (4, 3, 9 and 1 for the first offspring)
are deleted. [371964528]−> [76528]. The remaining symbols (7, 6, 5, 2 and 8) are
inserted instead of Xs in the same order to preserve the ordering in the parent.

3 7 1 9 6 4 5 2 8

4 7 8 5 3 9 2 1 6

4 X X X 3 9 X 1 X

3 X X X 6 4 X 2 X

4 7 6 5 3 9 2 1 8

3 7 8 5 6 4 9 2 1

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

Fig. 21 An example of how PBX operator works

5.4 Order-Based Crossover (OBX)

Order-based crossover proposed by Syswerda (1989) is a slight variation of PBX in
that the order of symbols in the selected position in one parent is imposed on the
corresponding ones in the other parent.

• Step 1: Generate a random mask
• Step 2: Take symbols from parent 2 where the mask is 1 to produce the first

offspring and take symbols from parent 2 where the mask is 0 to generate the
second child.

• Step 3: Place the missing symbols in child 1 and 2 in the order they were found
in the parent 1 and 2, respectively.

3 7 1 9 6 4 5 2 8

4 7 8 5 3 9 2 1 6

1 0 0 0 1 1 0 1 0

4 X X X 3 9 X 1 X

X 7 1 9 X X 5 X 8

4 7 6 5 3 9 2 1 8

4 7 1 9 3 2 5 6 8

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

Fig. 22 An example of how OBX operator works

212 B. Akay and X. Yao

Figure 22 shows an example of crossover operation using by OBX operator. In the
example, a mask=[1 0 0 0 1 1 0 1 0] is created and the symbols where the mask
is 1, {4,3,9,1}, are taken from parent 2 to create the first child. The first child’s
missing symbols at the positions where the mask is 0 are {7,6,5,2,8} are inserted
into the positions where the mask is 0 as in the order in the parent 1 from left to right.
The symbols where the mask is 0, {7,1,9,5,8}, are taken from parent 1 to create
the second child. Missing ones, {4,3,2,6}, are inserted as in the order of parent 2.
OBX and PBX differ in the way they apply the mask. PBX swap the symbols at
the positions where the mask is 1 while OBX takes the symbols of only one parent
depending on the mask bit.

5.5 Cycle Crossover (CX)

CX operator proposed by Goldberg (1989) starts with the first position of parent1.
The entry in the position is copied to the first offspring and the entry in the position
of parent2 points out the next symbol in parent1. This cycle continues until parent2
points out an already placed symbol. Once a cycle is completed, a new cycle starts
with the first unused symbol of the other parent (Kleeman and Lamont, 2007).

Steps given below are repeated for both parent 1 and parent 2 until the offsprings
are fully constructed.

• Step 1: Assign 1 to position p1 of parent1.
• Step 2: Let s1 be the symbol in position p1. If s1 is not used, copy s1 into position

p1 of offspring1. Otherwise assign the position of the first unused symbol of the
other parent to p1 and the symbol to s1.

• Step 3: Go to the position p1 of parent2. Let s2 be the symbol in position p1 of
parent2.

• Step 4: Find the position p2 where s2 is in the parent1.
• Step 5: Assign p2 to p1 and goto Step 2.

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

3 4 5 8 9 2 7 1 6

Parent 1:

Parent 2:

Offspring 1:

Fig. 23 An example of how CX operator works to create offspring 1

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 213

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

7 9 3 4 6 2 1 5 8

Parent 1:

Parent 2:

Offspring 2:

Fig. 24 An example of how CX operator works to create offspring 2

Figure 23 and 24 show how offsprings are created based on CX operator. In
Figure 23, the operation starts with the symbol (s1=3) in the first position (p1=1).
Since s1 is not used before, it is copied to the position p1 of offspring1. The position
of the symbol s2 (s2=7, p1=1) which is in the position p1 of parent2 is assigned
to p2. Because s2=7 is in seventh position, p2 is set to 7. In the seventh position
of parent2, symbol 1 stands. Symbol 1 points out eighth position of parent1 and
symbol 1 is copied into eighth position of the offspring1. Because the symbol 5
in eighth position of parent2 was used before, the cycles again starts with the first
unused symbol of the other parent. Parents are switched when a used symbol is met.
In order to create the second offspring, CX operator starts with the first symbol of
parent2 as shown in Figure 24.

5.6 Linear Order Crossover (LOX)

Linear order crossover (LOX) (Falkenauer and Bouffouix, 1991) works similar to
the order crossover operator but LOX does not treat the chromosome in a cyclic
fashion unlike OX and handles a chromosome as a linear entity.

• Step 1: Select two cut-points randomly
• Step 2: Exchange substring between the cut-points to create offsprings
• Step 3: Place the other symbols of parent 1 into the other positions of offspring

1 from left to right to preserve the relative ordering, start and end points. Repeat
Step 3 for offspring 2 by taking the symbols from parent 2.

Figure 25 shows an example of how LOX operator works. In the example, the
symbols between the positions 5 and 7 are exchanged. The symbols [7, 1, 6, 4, 5, 8]
coming from parent 1 are inserted into offspring 1 from left to right and the symbols
[7, 8, 3, 9, 2, 1] of parent 2 are inserted into offspring 2 as in the same manner.

5.7 Subsequence Exchange Crossover (SXX)

SXX operator proposed by Kobayashi et al. (1995) is an extension of exchange
operator proposed for TSP, and it is used with job sequence matrix encoding in

214 B. Akay and X. Yao

3 7 1 9 6 4 5 2 8

4 7 8 5 3 9 2 1 6

X X X X 3 9 2 X X

X X X X 6 4 5 X X

7 1 6 4 3 9 2 5 8

7 8 3 9 6 4 5 2 1

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

Fig. 25 An example of how LOX operator works to create offsprings

J1 J2 J3 J4 J5 J6 J3 J2 J1 J5 J6 J4 . . . J2 J3 J5 J6 J1 J4

J6 J2 J1 J3 J4 J5 J3 J2 J6 J4 J5 J1 . . . J6 J3 J5 J4 J2 J1

J2 J1 J3 J4 J5 J6 J3 J2 J5 J1 J6 J4 . . . J2 J6 J3 J5 J1 J4

J6 J1 J2 J3 J4 J5 J3 J2 J6 J4 J1 J5 . . . J3 J5 J6 J4 J2 J1

SXX SXX SXX

Fig. 26 An example of how SXX operator works to create offsprings

which each row is an operation sequence for each machine. In order to produce
offsprings, if the symbols of a substring in parent1 occurs consequently in parent2,
these substrings are exchanged between two parents.

• Step 1: Identify subsequences one for one machine for the parents.
• Step 2: Exchange these subsequences among parents to create offspring.

Figure 26 shows how SXX operator works. In the figure, each parent holds the
operation sequences on each machine. SXX operator is applied to each operation
sequence separately. In the first operation sequences of parent1 and parent2, the
subsequence J1J2J3 of parent1 consequently occurs in the parent2 as the sequence
J2J1J3. Therefore, these subsequences are exchanged to form the first substrings of
the offsprings. The SXX operator is repeated on the operation sequences of other
machines, and then the offsprings are produced. It is obvious that, the offsprings
created do not need repairing procedure after SXX crossover.

5.8 Partial Schedule Exchange Crossover (PSXX)

PSXX operator proposed by Gen et al. (1994) is used with operation-based en-
coding. Partial sequences randomly selected from the parents are exchanges and a

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 215

repairing mechanism is applied to make the offsprings legal. Steps of the how the
operator is applied are given below:

• Step 1: Randomly select partial operation subsequences from parent1 and parent2
• Step 2: Swap these partial subsequences
• Step 3: Delete the exceeding genes out of the cut points
• Step 4: Insert missing genes after the second cut point

3 2 1 2 3 2 1 1 3

3 1 2 3 3 1 2 1 2

3 2 3 3 1 2 3 2 1 1 3

3 1 2 1 2 1 2

2 3 3 1 2 2 1 1 3

3 1 2 1 2 3 3 1 2

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

Fig. 27 An example of how PSXX operator works to create offsprings

How offsprings are created by PSXX operator is illustrated in Figure 27. In the
figure each parent is a sequence of operations for a 3-jobs and 3-machines problem.
In the figure, the partial subsequence [2,1,2] from parent1 and the partial sequence
[2,3,3,1,2] are randomly selected. These partial subsequences are swapped between
parent1 and parent2 and the offsprings [3,2,3,3,1,2,3,2,1,1,3] and [3,1,2,1,2,1,2] are
created. But these offsprings are not valid because the first offspring has two exceed-
ing genes {3,3} and the second offspring has two missing genes {3,3}. In the first
offspring, symbols {3,3} are deleted out of the cut points and missing symbols in
the second offspring {3,3} are inserted after second cut point to make the offsprings
valid.

5.9 Precedence Preservative Crossover (PPX)

PPX is suggested by Bierwirth et al. (1996) to be used for JSPs. A mask is gen-
erated randomly with the elements of set 1,2. This mask decides the parent whose
unused leftmost gen will be transferred. The main steps of the PPX operator are
given below:

• Step 1: Generate a random mask with the elements of set 1,2
• Step 2: Take unused leftmost symbols from parent 1 where the mask is 1 to from

parent 2 where the mask is 2.

An example of crossover using PPX operator is shown in Figure 28.

216 B. Akay and X. Yao

3 7 1 9 6 4 5 2 8

4 7 8 5 3 9 2 1 6

1 2 2 2 1 1 2 1 2

3 4 7 8 1 9 5 6 2

Parent 1:

Parent 2:

Offspring

Mask:

Fig. 28 An example of how PPX operator works

5.10 Precedence Operation Crossover (POX)

Zhang et al. (2005) proposed the POX operator for the operation-based represen-
tation. The offsprings generated by the POX operator satisfy the characteristics-
preservingness, completeness and the feasibility properly. Main steps of the POX
operator are as follows:

• Step 1: Randomly choose the set of job numbers, {1,2, . . . ,n}, into one nonempty
exclusive subset J1.

• Step 2: Copy those numbers in J1 from parent1 to child1 and from parent2 to
child2, preserving their locus.

• Step 3: Copy those numbers in J1, which are not copied at step 2, from parent2
to child1 and from parent1 to child2, preserving their order.

Figure 29 gives an example of how the POX operator works.

3 2 2 2 3 1 1 1 3

1 1 3 2 2 1 2 3 3

1 2 2 2 1 3 1 3 3

3 3 1 2 2 1 2 1 3

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

Fig. 29 An example of how POX operator works

6 Mutation Operators

Mutation operator which is a random walk through the search space provides di-
versity in genetic information of the population in order to prevent the premature
convergence, and assures all the points in search space to be likely searched.

6.1 Swap Mutation

The swap mutation operator randomly selects two random positions (p1,p2) and
swaps the symbols in these positions. Figure 30 shows how swap operator works.
The symbols {1,5} in the positions randomly selected are swapped.

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 217

3Before mutation 7 1 9 6 4 5 2 8

3After mutation 7 5 9 6 4 1 2 8

Fig. 30 An example of how swap mutation works

6.2 Shift Mutation

The shift mutation operator randomly selects a symbol and then shifts left or right
it s times where s is a random integer.

3Before mutation 7 1 9 6 4 5 2 8

6After mutation 3 7 1 9 4 5 2 8

Fig. 31 An example of how shift mutation works

6.3 Inversion Mutation

The inversion mutation operator selects two points in a solution and changes the
order of the symbols in the mutant solution. Symbols before and after the selected
points are copied from the original solution to the mutant solution. Figure 32 shows
an example of inversion mutation working on 9-jobs chromosome encoded based
on job based representation. In the example third and sixth positions are randomly
determined and the symbols between these positions [1 9 6 4] are inverted in the
mutant solution as [4 6 9 1]. The other symbols out of the selected points remain the
same.

3Before mutation 7 1 9 6 4 5 2 8

3After mutation 7 4 6 9 1 5 2 8

Fig. 32 An example of how inversion mutation works

6.4 Insertion Mutation

The insertion mutation operator randomly selects two positions (p1,p2). The sym-
bols between the positions p1+1 and p2 are shifted to the previous position and the
symbol in the position p1 is assigned to the position p2. The other symbols out of the
positions p1 and p2 remain the same. Figure 33 shows an example of insertion mu-
tation working on 9-jobs chromosome encoded based on job based representation.
In the example, third (p1) and seventh (p2) positions are determined. The symbols
between the positions p1+1 and p2 [9 6 4 5] are shifted to previous positions and
the symbol previously in the position p1 [1] is assigned to the position p2.

218 B. Akay and X. Yao

3Before mutation 7 1 9 6 4 5 2 8

3After mutation 7 9 6 4 5 1 2 8

Fig. 33 An example of how insertion mutation works

6.5 Displacement Mutation

The displacement mutation operator randomly selects three points (p1 < p2 < p3)
in a chromosome and then moves the substring between the positions p1 and p2 to
the position after the symbol in the position p3. The symbols between the positions
p2+1 and p3 in the original solution are shifted to the positions starting from p1.
Figure 34 shows the positions of p1, p2, p3. In the example given in Figure 34, p1,
p2 and p3 equals to 3, 5 and 7, respectively. The substring [1 9 6] between the third
and fifth positions in inserted after the symbol at seventh position. The symbols [4
5] are shifted to the positions starting from the third position.

3Before mutation 7 1 9 6 4 5 2 8

3After mutation 7 4 5 1 9 6 2 8

Fig. 34 An example of how displacement mutation works

6.6 Assigned Mutation

Mesghouni et al. (1999) used an assigned mutation which randomly selects one
chromosome and one operation and re-assigns this selected operation to another
machine in the same position considering the precedence and resource constraints.

7 Local Search Methods

Local search methods move from a solution to another one in the neighborhood cur-
rent solution using local changes based on defined rules. Local search methods are
also used with EAs for solving JSPs to find improved solutions or active schedules.
In this section some local search methods used for JSPs will be explained.

7.1 Giffler-Thompson Algorithm

The Giffler and Thompson (GT) algorithm (Giffler and Thompson, 1960) can gen-
erate an active schedule by scheduling operations while avoiding a long idle period.
(Yamada, 2003). In EAs, GT algorithm is used as a crossover operator to generate
active schedules. The notation used in GT algorithm is given below:

• PJ(O): job predecessor
• PM(O): machine predecessor

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 219

• ES(O) := max{c(PJ(O)),c(PM(O))}: The earliest starting time ES(O) of O
• EC(O) = ES(O)+ p(O): The earliest completion time of O
• O∗r = argmin{EC(O)|O ∈ D}: The earliest completable operation
• C[Mr, i] = {Okr ∈ D|ES(Okr) < EC(O∗r)}: a set of candidate operations for the

next processing on Mr (i-1 have already been scheduled, ith operation)
• A subset of G that consists of operations processed on machine Mr is denoted as

Gr.

At each step the GT algorithm generates a conflict set and selects the next operation
to preserve operation precedence without violating the precedence constraints. The
algorithm iterates until all operations are scheduled. Main steps of the GT algorithm
are given in Algorithm 2.

begin
G = {O1T11 ,O2T21 , . . . ,OnTn1} ;
foreach O ∈ G do

ES(O) = 0, EC(O) = p(O)
end
Find the earliest completable operation with machine Mr,
O∗r = arg min {EC(O)|O ∈ D};
Calculate the conflict set C[Mr, i] = {Okr ∈ D|ES(Okr)< EC(O∗r)} ;
Select one of operations in C[Mr, i] randomly. Let the selected operation be Okr.;
Schedule Okr as the i-th operation on Mr; i.e. Sri = k, with its starting and
completion times equal to ES(Okr) and EC(Okr) respectively:
s(Okr) = ES(Okr);c(Okr) = E(COkr);
foreach O jr ∈ Gr \{Okr} do

ES(O jr) = max{ES(O jr);EC(Okr)} and EC(O jr) = ES(Okr)+ p(Okr)
end
Remove {Okr} from G and Gr;
(G = G\{Okr},Gr = Gr \{Okr}) ;
if Oks ∈ G|Oks is next to Okr in T ,i.e.,r = Tki and i < m then

Add Oks to G, s = Tki+1, G = G\{Okr}∪{Oks}
end
ES(Oks) = max{EC(Okr),EC(PM(Oks))} ;
ECb(Oks) = ES(Oks)+ p(Oks)

end
Algorithm 2: Giffler-Thompson Algorithm

7.2 Variable Neighbourhood Search

Variable neighborhood search (VNS) is a randomized local search algorithm which
systematically changes the neighborhood using multiple trajectories, different neigh-
borhood structures, various perturbations (Hansen and Mladenovic, 2001)

There are different variants of VNS such as forward VNS, backward VNS, VNS
that accept worse solutions with some probability.

220 B. Akay and X. Yao

begin
s0 ← GenerateInitialSolution,choose{Nk},k = 1, . . .kmax;
repeat

s′ ← RandomSolution(Nk(s∗)) (shaking);
s∗′ ← LocalSearch(s′) ;
if f (s∗′)< f (s∗)(Move or not) then

s∗← s∗′;
k ← 1;

else
k ← k+1;

end
until termination criteria;

end
Algorithm 3: Basic variable neighbourhood search

7.3 Hill Climbing

Hill climbing uses steepest local move which performs a perturbation yielding the
best improvement. While generating a neighbor solution, an exhaustive search is
conducted to find the best move with the greatest improvement. For this reason, this
method is computationally expensive.

7.4 Tabu Search

Tabu search (TS) proposed by Glover (1989) is used as a local search to improve
a solution checking its immediate neighbors and using adaptive memory structures
and intelligent decisions (Xhafa, 2007). Like the other local search techniques TS
uses a neighborhood procedure (N(s) to move current solution (s) to a better solution

begin
s ← Generate Initial Solution, ŝ ← s;
Determine the tabu criteria and aspiration conditions ;
repeat

Generate a subset N ∗ (s)⊆ N(s) which are not in the tabu list;
Choose the best s′ ∈ N ∗ (s);
if f (s′)< f (ŝ)(Move or not) then

ŝ ← s′;
end
Update the recency and frequency lists;
Update tabu list;
Perform aspiration if needed;

until termination criteria;
end

Algorithm 4: Tabu Search Algorithm

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 221

(ŝ) until a termination criterion is satisfied (Algorithm 4). Unlike the other local
search techniques, to avoid getting stuck in local minima and cycling among already
visited solutions, TS uses an adaptive memory to memorize these regions and to
store them in the tabu list for a certain number of iterations.

8 Conclusion

This chapter considers the principles of different representations, crossover and mu-
tation operators and local search methods especially used for job shop scheduling
problems.

Although many representations and operators have been given in the literature for
JSPs and EAs using these representations and operators can find optimal solutions
for some benchmark problems, there are some problems that can not be solved effi-
ciently by EAs. Choosing the appropriate representation is important because an in-
appropriate representation will lead to inefficient results, or generated solutions may
violate the precedence constraints JSPs have. Therefore, some representations may
require repairing mechanisms to make the generated solutions feasible. It should be
noted that the repairing mechanism has also affect an EA’s performance and running
time. Crossover and mutation operators are required to inherit some features of the
parents and provide diversity to the population, respectively. The main issues related
to them are efficiency and feasibility. EAs with robust representations giving feasi-
ble schedules and efficient crossover and mutation operators are still open research
topics that should be studied in the future.

Local search techniques together with the search operators of EAs are used to
search improved solutions in the neighborhood of solutions. Due to the costs of the
local searches using an exhaustive search, local search techniques combined with
intelligent decisions are preferred due to the solution quality and the running time.

Based on our detailed review, the scalability of EAs for JSP, which investigates
the algorithm performance with respect to problem characteristics, for example,
problem size, availability of precedence constraints, is suggested as the most chal-
lenging and important gap to fill in the existing literature of EAs for JSPs. From
both experimental and theoretical perspective, a rigorous scalability analysis of EA’s
computation time on different JSP instance classes is needed to quantify the perfor-
mance characteristics of EAs for JSPs.

Acknowledgement. This work was partially supported by an EPSRC grant (No. EP/
I010297/1) and TUBITAK 2219 post-doctoral fellowship.

References

Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling.
Management Science 34(3), 391–401 (1988)

Bean, J.: Genetic algorithms and random keys for sequencing and optimization. ORSA Jour-
nal of Computing 6(2), 154–160 (1994)

222 B. Akay and X. Yao

Bean, J., Norman, B.: Random keys for jos shop scheduling, technical report 93-7. Technical
report, Dept. of Industrial and Operations Engineering, University of Michigan (1993)

Bierwirth, C.: A generalized permutation approach to job-shop scheduling with genetic algo-
rithms. OR Spektrum 17(2-3), 87–92 (1995)

Bierwirth, C., Mattfeld, D., Kopfer, H.: On permutation representations for scheduling prob-
lems. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996.
LNCS, vol. 1141, Springer, Heidelberg (1996)

Chen, H., Ihlow, J., Lehmann, C.: A genetic algorithm for flexible job-shop scheduling. In:
Proceedings. 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp.
1120–1125 (1999)

Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using
genetic algorithms: part ii. hybrid genetic search strategies. Comput. Ind. Eng. 37, 51–55
(1999)

Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the 9th In-
ternational Joint Conference on Artificial Intelligence, vol. 1, pp. 162–164. Morgan Kauf-
mann Publishers Inc., San Francisco (1985)

Dorndorf, U., Pesch, E.: Evolution based learning in a job shop scheduling environment.
Computers & OR 22(1), 25–40 (1995)

Falkenauer, E., Bouffouix, S.: A genetic algorithm for job shop. In: Proceedings of the 1991
IEEE International Conference on Robotics and Automation, pp. 824–829 (1991)

Gantt, H.L.: Work, Wages and Profits. The Engineering Magazine (1910)
Gen, M., Cheng, R., Lin, L.: Network Models and Optimization: Multiobjective Genetic Al-

gorithm Approach (Decision Engineering). Springer (2008)
Gen, M., Tsujimura, Y., Kubota, E.: Solving job-shop scheduling problem using genetic algo-

rithms. In: Proceedings of the 16th International Conference on Computer and Industrial
Engineering, Ashikaga, Japan, pp. 576–579 (1994)

Giffler, J., Thompson, G.: Algorithms for solving production scheduling problems. Opera-
tions Research 8, 487–503 (1960)

Glover, F.: Tabu search - part 1. ORSA Journal on Computing 1(2), 190–206 (1989)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn.

Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
Goldberg, D.E., Lingle, J.: Alleles, Loci and the Travelling Salesman Problem. In: Proceed-

ings of the 1st International Conference on Genetic Algorithms and Their Applications.
Lawrence Erlbaum Associates, New Jersey (1985)

Gu, J., Gu, M., Cao, C., Gu, X.: A novel competitive co-evolutionary quantum genetic algo-
rithm for stochastic job shop scheduling problem. Comput. Oper. Res. 37, 927–937 (2010)

Gu, J., Gu, X., Gu, M.: A novel parallel quantum genetic algorithm for stochastic job shop
scheduling. Journal of Mathematical Analysis and Applications 355(1), 63–81 (2009)

Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. Eu-
ropean Journal of Operations Research 130, 449–467 (2001)

Hasan, S., Sarker, R., Essam, D., Cornforth, D.: A Genetic Algorithm with Priority Rules for
Solving Job-Shop Scheduling Problems. In: Chiong, R., Dhakal, S. (eds.) Natural Intelli-
gence for Scheduling, Planning and Packing Problems. SCI, vol. 250, pp. 55–88. Springer,
Heidelberg (2009)

Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 32(1), 1–13 (2002)

Recent Advances in Evolutionary Algorithms for Job Shop Scheduling 223

Kleeman, M.P., Lamont, G.B.: Scheduling of Flow-Shop, Job-Shop, and Combined Schedul-
ing Problems using MOEAs with Fixed and Variable Length Chromosomes. In: Dahal,
K.P., Tan, K.C., Cowling, P.I. (eds.) Evolutionary Scheduling. SCI, vol. 49, pp. 49–99.
Springer, Heidelberg (2007)

Kobayashi, S., Ono, I., Yamamura, M.: An efficient genetic algorithm for job shop scheduling
problems. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp.
506–511. Morgan Kaufmann Publishers Inc., San Francisco (1995)

Mattfeld, D.C., Bierwirth, C.: An efficient genetic algorithm for job shop scheduling with
tardiness objectives. European Journal of Operational Research 155, 616–630 (2004)

Mesghouni, K., Hammadi, S., Borne, P.: Evolution programs for job-shop scheduling. In:
1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational
Cybernetics and Simulation, vol. 1, pp. 720–725 (1997)

Mesghouni, K., Pesin, P., Trentesaux, D., Hammadi, S., Tahon, C., Borne, P.: Hybrid ap-
proach to decision making for job-shop scheduling. Prod. Plann. Contr. J. 10(7), 690–706
(1999)

Nakano, R., Yamada, T.: Conventional genetic algorithm for job shop problems. In: Interna-
tional Conference on Genetic Algorithms, ICGA 1991, pp. 474–479 (1991)

Norman, B., Bean, J.: Random keys genetic algorithm for scheduling:unabridged version,
technical report 95-10. Technical report, Dept. of Industrial and Operations Engineering,
University of Michigan (1995)

Phan, H.T.: Constraint Propagation in Flexible Manufacturing. Springer-Verlag New York,
Inc. (2000)

Ponnambalam, S.G., Aravindan, P., Rao, P.S.: Comparative evaluation of genetic algorithms
for job-shop scheduling. Production Planning and Control 12(6), 560–574 (2001)

Rothlauf, F.: Representations for evolutionary algorithms. In: Proceedings of the 2008
GECCO Conference Companion on Genetic and Evolutionary Computation, GECCO
2008, pp. 2613–2638 (2008)

Roy, B., Sussmann, B.: Note ds no 9 bis: Les probl’emes d’ordonnancement avec contraintes
disjonctives. Technical report, SEMA, Paris (1964)

Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann Publishers Inc., San
Francisco (1989)

Syswerda, G.: Schedule Optimization Using Genetic Algorithms. In: Handbook of Genetic
Algorithms, pp. 332–349. Van Nostrand Reinhold, New York (1991)

Wang, Y., Yin, H., Wang, J.: Genetic algorithm with new encoding scheme for job shop
scheduling. The International Journal of Advanced Manufacturing Technology 44, 977–
984 (2009)

Widmer, M., Hertz, A., Costa, D.: Metaheuristics and Scheduling. In: Production Scheduling,
pp. 33–68. Wiley (2008)

Wu, Y., Li, B.: Job-shop scheduling using genetic algorithms. In: Proc. IEEE Int’l Conf. on
System, Man and Cybernetics. IEEE SMC 1996, vol. 3, pp. 1994–1999 (1996)

Xhafa, F.: A hybrid evolutionary heuristic for job scheduling on computational grids. In:
Abraham, A., Grosan, C., Ishibuchi, H. (eds.) Hybrid Evolutionary Algorithms. SCI,
vol. 75, pp. 269–311. Springer, Heidelberg (2007)

Yamada, T.: Studies on Metaheuristics for Jobshop and Flowshop Scheduling Problems. PhD
thesis, Kyoto University (2003)

224 B. Akay and X. Yao

Yamada, T., Nakano, R.: A genetic algorithm applicable to large-scale job-shop problems.
In: Parallel Problem Solving from Nature: PPSN II, pp. 281–290. North-Holland, Elsevier
Science Publishers (1992)

Yan, Z., Hongze, Q.: A symbiotic evolutionary algorithm for flexible job scheduling problem.
In: Second International Workshop on Computer Science and Engineering, WCSE 2009,
vol. 1, pp. 79–83 (2009)

Zhang, C.-Y., Li, P., Rao, Y., Li, S.: A New Hybrid GA/SA Algorithm for the Job Shop
Scheduling Problem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448,
pp. 246–259. Springer, Heidelberg (2005)

Multi-objective Grid Scheduling

Marı́a Arsuaga-Rı́os and Miguel A. Vega-Rodrı́guez

Abstract. Grid computing is a distributed paradigm that coordinates heterogeneous
resources using decentralized control. Grid computing is commonly used by scien-
tists for executing experiments. Scheduling jobs within Grid environments is a chal-
lenging task. Scientists often need to ensure not only a successful execution for their
experiments but also they have to satisfy constraints such as deadlines or budgets.
Both of these constraints, execution time and cost, are not trivial to satisfy, as they
are conflict with each other, eg cheaper resources are usually slower than expen-
sive ones. Hence, a multi-objective scheduling optimization is a more challenging
task in Grid infrastructures. This chapter presents a new multi-objective approach,
MOGSA (Multi-Objective Gravitational Search Algorithm), based on the gravita-
tional search behaviour in order to optimize both objectives, execution time and
cost, with the same importance and also at the same time. Two studies are carried
out in order to evaluate the quality of this new approach for grid scheduling. Firstly,
MOGSA is compared with the multiobjective standard and well-known NSGA-II
(Non-Dominated Sorting Genetic Algorithm II) to prove the multi-objective opti-
mization suitability of the proposed algorithm. Secondly two real grid schedulers
(WMS and DBC) are also compared with MOGSA. The WMS (Workload Manage-
ment System) is considered because of it is part of the most used European grid
middleware - gLite - and also the DBC (Deadline Budget Constraint) algorithm
from Nimrod-G participates in this evaluation due to its good performance keeping
the deadline and budget per job. Results point out the superiority of MOGSA in all
the studies carried out. MOGSA offers more quality solutions than NSGA-II and
also better performance than current real schedulers.

Marı́a Arsuaga-Rı́os
Beams Department, European Organization for Nuclear Research,
CERN, CH-1211, Geneva 23, Switzerland
e-mail: maria.arsuaga.rios@cern.ch

Miguel A. Vega-Rodrı́guez
ARCO Research Group, University of Extremadura,
Dept. Technologies of Computers and Communications,
Escuela Politécnica, Cáceres, Spain
e-mail: mavega@unex.es

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 225
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_9, c© Springer-Verlag Berlin Heidelberg 2013

maria.arsuaga.rios@cern.ch
mavega@unex.es

226 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

1 Introduction

Traditionally many real world optimization problems are solved by techniques that
minimize or maximize a single objective, but many of these problems have more
than one objective to satisfy. Recognising time constraints is one of the most im-
portant aspects within scheduling problems. Other significant oconstraints could in-
clude the length of the schedule, the availability of resources or their cost (machine
scheduling), preferences of human resources (personnel scheduling), or compliance
with regulations (educational timetabling). Traditional techniques try to combine
multiple objectives into a single scalar value by using weights according to the im-
portance suggested by the experts. However, normally, these objectives have the
same importance and also they are conflictive each other. Currently multi-objective
optimization techniques are emerging in scheduling problems ([22], [20]) giving the
possibility to optimize more than one objective with the same importance and also
providing decision support for the end users.

In this chapter, a multi-objective approach is presented to optimize the schedul-
ing of tasks within grid environments. Grid scheduling [9] is a challenging task that
manages the job submission on distributed and heterogeneous resources. Grid users
have restrictions in terms of timing for their applications but also they have to oper-
ate within their budgets. Multi-objective optimization techniques may be utilised to
accomplish both objectives (deadline and budget). Nowadays, multi-objective ap-
proaches are emerging to solve the grid scheduling problem ([30], [31], [32], [25]).
These studies are often based on genetic algorithms to optimize the execution time
and cost for a group experiments to be scheduled on the grid. However, their test en-
vironments lack of specific topologies that consider network features such as baud
rate, delay, MTU (Maximum Transfer Unit) etc. Detailed resource data (operating
system, number of machines, CPUs, speed, cost, etc.) is not taken into account.
Moreover, most of these studies are based on the execution of simple experiments
comprising independent jobs. Experiments based upon workflows that follow DAG
(Directed Acyclic Graph) models are more challenging for grid scheduling due to
its complexity and critical behaviour from the dependencies among jobs.

The research and the study of the proposed multi-objective algorithm - MOGSA
(Multi-objective Gravitational Search Algorithm) addresses the weaknesses men-
tioned above. The MOGSA is compared with two meta-schedulers to evaluate the
goodness of this contribution. The first meta-scheduler to be considered is the Work-
load Management System (WMS)1 which belongs to the most extended European
middleware gLite - Lightweight Middleware for Grid Computing -. The second
meta-scheduler selected for this study is the Deadline Budget Constraint Algorithm
(DBC)[3] from Nimrod-G. The DBC algorithm uses a greedy algorithm to attain
the budget and deadline for an experiment.

MOGSA is the multi-objective version of the novel Gravitational Search Algo-
rithm (GSA) [21], based on a swarm behaviour that comes from the gravitational
forces among planets. MOGSA is also compared with the multi-objective standard

1 http://web.infn.it/gLiteWMS/

http://web.infn.it/gLiteWMS/

Multi-objective Grid Scheduling 227

and genetic algorithm Non-dominated Sorting Genetic Algorithm II (NSGA II) [8]
to give more reliability to this multi-objective study.

The rest of this chapter is organized as follows, section 2 defines basic multi-
objective optimization concepts, section 3 contains a survey of multi-objective
scheduling optimization applied in several fields. In Section 4, a case study of multi-
objective grid scheduling optimization using MOGSA compared with NSGA II is
described. The conclusions are presented in Section 5.

2 Multi-objective Optimization

Diverse real world problems from different fields may be solved by multi-objective
optimization techniques. In this section, a background and some basic multi-
objective concepts are described.

A Multi-objective Optimization Problem (MOP) is defined as the task of finding a
decision variables vector that satisfies the problem constraints and also optimizes an
objective functions vector [13]. Those functions are usually in conflict each other,
it being impossible to improve one objective function without worsening another
objective function. The optimization goal is to find a solution vector with accept-
able values for all the objective functions. Multi-objective problems must optimize
k objective functions at the same time, dealing with the minimization/maximization
of all the objective functions. For more information about multi-objective optimiza-
tion the reader is directed to [33], [7] and [5]. Within thsi chapter we employ the
following definitions:

Definition 1: Multi-objective Optimization Problem (MOP). A Multi-objective Op-
timization Problem includes a set of n parameters (decision variables), a set of k ob-
jective functions, and a set of m constraints. Objective function and constraints are
function of the decision variables. The mathematical definition is shown as follows
(Equation 1):

Optimize y = f(x) = (f1(x), f2(x), . . . , fm(x))

sub ject to e(x) = (e1(x),e2(x), . . . ,ek(x))≤ 0

where x = (x1,x2, . . . ,xn) ∈ X

y = (y1,y2, . . . ,ym) ∈Y

(1)

where x is the decision vector that belongs to the decision space X and y is the
objective vector that is represented in the objective space Y. The decision variables
vector can be discrete or continuous while the objective functions may be, lineal
and discrete or continuous. The function f : X → Y is a transformation of the
decision variables vector x on a response vector y (see Figure 1).

In mono-objective optimization problems, the optimization process finds one op-
timum solution that minimizes or maximizes a single objective function. When the
problem is multi-objective, the optimum meaning must be redefined because of the
presence of multiple objectives that are in conflict each other. The conflict among

228 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

Y, the objective spaceX, the decision space

Xn

X1

Ym

Y1

X2 Y2

Fig. 1 Multi-objective optimization function

objectives may not allow the improvement of one of them without worsening the
others. Thus, a multi-objective optimization consists in finding the best compromise
among those objectives. The best compromise is called Pareto optimum.

Definition 2: Pareto Optimality. A decision vector x ∈ Xf is a Pareto Optimum
regarding a set A ⊆ Xf if and only if:

�a ∈ A : a ≺ x (2)

where Xf is the set of feasible solutions that satisfy the constraints of the problem
(e(x)). This definition specifies x as a Pareto Optimum if does not exist other
feasible vector a that decreases any of the objective functions without increasing
simultaneously other one (assuming the minimization in all the objective functions).
This comparison is also known as dominance (≺).

Definition 3: Pareto Dominance. For any two decision vectors a and b (assuming
a minimization problem):

a ≺ b (a dominates b)⇐⇒ f(a) < f(b)

a � b (a weakly dominates b)⇐⇒ f(a) ≤ f(b)

a ∼ b (a is indi f f erent to b)⇐⇒ f(a) � f(b) ∧ f(b) � f(a)

(3)

Figure 2 shows a graphical representation of dominance regions regarding the so-
lution F in a minimization problem. The solutions that are in the green region (A,
C and D) dominate the solution F. In case of A and D, both values for the objective
functions are better than the obtained by F. Also, despite of C and F obtain the same
value for the objective function f2, the solution C has better value for the objective
function f1. On the other hand, F is not dominated by the solutions B, E, G and I,
being equally good than them. Finally, the solutions in the blue region, H and J, are
dominated by F.

Multi-objective Grid Scheduling 229

Indifferent

Indifferent

F

A

B

C

D

E

G

H

I

J

Region that dominates F

Region dominated by Ff 2

f1

Fig. 2 Graphical representation of dominance regions regarding the solution F

Definition 4: Optimal Pareto Set. The Optimal Pareto set for a multi-objective prob-
lem is denoted as P∗ and it is defined as (Equation 4):

P∗ := {x ∈ X | �x′ ∈ X , f(x′)� f(x)} (4)

The optimal Pareto set comprises all the solutions from the decision space whose
objective vectors cannot be improved at the same time. The objective vectors from
the optimal Pareto set are called non-dominated solutions and compose the Pareto
Front (PF∗).

Definition 5: Pareto Front. The Pareto Front PF∗ from an Optimal Pareto set P∗ is
defined as:

PF∗ := {a = f(x) | x ∈ P∗} (5)

The solutions found by multi-objective optimization may be presented as Pareto
Front plots in order to evaluate them. In Figure 3, a Pareto front example is shown.
Usually, the solutions that represent the best possible trade-offs among the objec-
tives are the aim of the search (in case of Figure 3, solutions lying on the ”knee” of
the Pareto curve).

3 Multi-objective Optimization Applied on Scheduling
Problems

Scheduling problems exist in many diverse real-world situations. The entities within
a scheduling problem (people, tasks, vehicles, meetings, etc.) usually follow a space-
time pattern in which some constraints must be satisfied and certain objectives
have to be achieved. Such scheduling problems comprise large search spaces, the

230 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

Fig. 3 Pareto Front example with two objective functions

objective being to find schedules that satisfy the user needs. Many scheduling prob-
lems are multi-objective by nature, because the users have more than one goal, such
as minimizing the length of the schedule, satisfying preferences among human re-
sources (personal scheduling), maximizing the compliance with regulations (edu-
cational timetabling), minimizing the tardiness of orders (production scheduling),
optimizing job scheduling (machine scheduling) etc.

As mentioned in Section 1 some previous multi-objective optimisers have utilised
an evaluation function comprising a weighted combination of their objectives in
order to produce only one objective function value. In many real multi-objective
scheduling problems, it is more desirable to consider the different objectives sep-
arately in order to obtain a better trade-off among all the conflictive objectives.
This approach is supported by the Pareto optimization techniques. Currently multi-
objective algorithms are utilising Pareto optimality to support decision makers, by
allowing the user to choose between the solutions presented within the Pareto Front.
For further information, the reader is directed to [23] and [20].

3.1 Multi-objective Personnel Scheduling

Personnel scheduling attempts to satisfy constraints and objectives arising from the
interests of employees and employers taking into account the working regulations.

Multi-objective Grid Scheduling 231

Mobasher [18] explored an example of a multi-objective approach in a medical con-
text. The problem consists of a multi-objective nurse scheduling problem where both
shift preferences, as a proxy for job satisfaction, and patient workload, as a proxy
for patient dissatisfaction, are considered. A more general approach also applicable
to nurse scheduling is presented by Li et al. [15]. They introduce a hybrid algorithm
combining goal programming and meta-heuristic search to deal with compromise
solutions in difficult employee scheduling problems. Moudani et al. [19] use a ge-
netic algorithm and a greedy algorithm to manage a multi-objective airline crew op-
timization problem. Two objectives are optimized, minimizing operations cost and
maximizing the crew staff overall degree of satisfaction. Yannibelli and Amandi
[29] propose another multi-objective evolutionary algorithm for Project scheduling
incorporating human resources. This approach tries to minimize the makespan for
the Project and also assign the most effective set of human resources to each Project
activity.

3.2 Multi-objective Educational Timetabling

Educational timetabling can be challenging due to inaccurate prediction of student
enrollment, mistakes in the event list or resources availability and inadequate selec-
tion of hard and soft constraints [23]. A multi-objective linear programming model
was proposed by Ismayilova et al. [11] to consider the administrations and instruc-
tors preferences by using a weight priority to schedule the class-course timetable.
Educational timetabling also considers the exams timetabling, Côté et al. [6] present
a multi-objective evolutionary algorithm that optimizes the maximum free time for
the students while satisfying the clashing constraint (exam conflicts). Moreover, this
multi-objective approach takes into account the timetable length as an optimization
objective. The Balanced Academic Curriculum Problem requires the assigning of
courses to teaching terms, satisfying prerequisites and balancing the credit course
load within each term. Castro et al. [4] presented a multi-objective genetic algorithm
to deal with this problem.

3.3 Multi-objective Production Scheduling

In manufacturing, the purpose of scheduling is to minimize the production time
and costs, by instructing a production facility on timming and the utilisation of
staff and equipment utilisation. Production scheduling aims to maximize the ef-
ficiency of the operation and reduce costs. Multi-objective production scheduling
problems are widely studied in several domains [14]. Possible objectives to be con-
sidered in production scheduling problems include the makespan (response time),
the mean completion time (the mean of the slower time activity during the produc-
tion), the maximal tardiness or the mean tardiness (the maximum and minimum
mean times obtained after several productions). In the study carried out by Loukil et
al. [16], these objectives are optimized using a multi-objective simulated anneal-
ing approach. Multi-objective algorithms offer decision support, Mansouri et al.

232 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

[17] aim to identify the gaps in decision-making support based on multi-objective
optimization (MOO) for build-to-order supply chain management. Although, these
scheduling problems are based on the economy, multi-objective approaches allow
considering also other aspects as the intangible value of freshness in their
products [1].

3.4 Multi-objective Machine Scheduling

Machine scheduling refers to problems where a set of jobs or tasks has to be sched-
uled for processing by a sequence of one or more machines [20]. Each job or task
consists of one or more operations (sub-tasks), usually a number of additional con-
straints must be also satisfied. Examples of such constraints are precedence relations
between the jobs and limited availability of resources. Machine scheduling is widely
studied and multiple multi-objective approaches are applicable to it [20]. Xiong
et al. [28] address a robust scheduling for a flexible job-shop scheduling problem
with random machine breakdowns. Makespan and robustness objectives are simul-
taneously optimized by using a multi-objective evolutionary algorithm. There exists
other approaches, such as that adopted by Hamta et al. study [10]. The approach
taken by Hamta et al. optimizes more objectives, such as cycle time, total equipment
cost and the smoothness index. The problem being considered is a single-model as-
sembly line balancing problem, where the operation times of tasks are unknown
variables and the only known information is the lower and upper bounds for opera-
tion time of each task.

4 A Case Study: Multi-objective Machine Scheduling in Grid
Environments

Grid computing [9] is a distributed computing paradigm in which all the resources of
an unknown number of computers are subsumed to be treated as a single supercom-
puter in a transparent way. This innovative infrastructure allows the coordination of
these heterogeneous resources (storage, computing and specific applications) using
a decentralized control.

One of the emerging problems within in grid computing is that of job scheduling.
Job scheduling consists in allocating jobs on grid resources whilst satisfying the
end user needs. In this chapter we will consider the allocation of jobs that used
to carry out software based experiments. The two most critical requirements for
the grid based experiments as discussed in this chapter are deadline and budget.
These parameters are conflictive each other because slower resource (in terms of
processing time) is usually cheaper than resources with greater processing power.
Therefore, a multi-objective approach is required to deal with this problem. Our
approach takes into account two objectives (time and cost).

Given a set of jobs J = {Ji}, i = 1,..,m and a set of resources R = {R j}, j = 1,..,n
the fitness functions are described as follows:

Multi-objective Grid Scheduling 233

Min F = (F1, F2) (6)

F1 = max time(Ji, f j(Ji)) (7)

F2 = ∑cost(Ji, f j(Ji)) (8)

where f j(Ji) is a mapping function that assigns Ji onto resource R j. Function time
(Ji, f j(Ji)) denotes the completion time and cost (Ji, f j(Ji)) is the input data trans-
mission cost and resource cost for processing the solution.

Fig. 4 A simple workflow graph

Many experiments are composed of jobs that depend on each other, this type of
workflow influences both the running time and the cost of the experiment. This is
because each workflow (or experiment) is modelled by a weighted directed acyclic
graph (DAG) JG = (V, E, l, d), where V is a set of nodes and E is a set of edges. Jobs
are represented by the nodes and they have assigned a length l(j), which denotes
its length in terms of thousands of MI (Million of instructions). The precedence
constraint is indicated by an edge 〈 j, j’〉 in E (j, j’ ∈ V) from j to j’. This means
that job j’ cannot be executed until the job j has been completed successfully and
j’ receives all necessary data from j. The length (bytes) of the data transference
d(j→j’) between jobs is expressed by a label in the edge j→j’. An example is shown
in Figure 4. This problem formulation also takes into consideration dependent jobs
as a constraint to calculate the fitness of its objective functions.

Each agent used in MOGSA as mass or NSGA-II as individual, represents a
candidate solution. Candidate solutions have to take into account the scheduling of
the jobs by allocating them to the resource where they will be executed. The order of
job execution has to be considered. To build on the candidate solutions two vectors
are created, the allocation and order vectors, based on Talukder et al [25] and [26].
The length of both vectors is the total of jobs that comprise the experiment to be
executed |J|.
• Allocation Vector: Represents the job assigments within the available grid re-

sources. Such that a(i) = j, where 0 ≤ i < |J| and 0 ≤ j < |R|, i.e. job Ji is
assigned to resource R j, being |R| the total number of available grid resources.

234 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

Fig. 5 Agent representation

• Order Vector: Indicates the order of the jobs execution following the precedence
constraints of the DAG model from the workflow to run on the grid. Such that
o(k) = i, where 0 ≤ i,k < |J|, and each Ji just appears once in the vector.

According to these vectors, candidate solutions provide a feasible solution with its
total execution time and cost. The GridSim2 [2] tool supplies these values and sim-
ulates the execution of the workflow, considering the mass vectors. In Figure 5, it is
shown an example of a candidate solution with |J| = 5 and |R| = 5.

4.1 MOGSA: Multi-objective Gravitational Search Algorithm

MOGSA is a new version of GSA [21] with multi-objective properties. GSA is
an algorithm that is mainly used to solve combinatorial optimization problems,
or unconstrained numerical optimization, following the Newtonian gravity laws as
a meta-heuristics among masses (solutions). Masses are represented as candidate
solutions and their size represents their goodness, the attraction among them de-
pends directly on their size. Big masses have major attraction force than others with
smaller size, hence bigger masses are considered better solutions with best values of
fitness functions than the smaller ones. Although, GSA is similar to the well-known
Particle Swarm Optimization (PSO) [12], a comparative study is carried out in [21]
. MOGSA adapts the behaviour of these masses with a multi-objective perspective.
The steps of the algorithm are shown in Algorithm 1.

This new algorithm needs the parameters from GSA [21]:

2 http://www.buyya.com/gridsim/

http://www.buyya.com/gridsim/

Multi-objective Grid Scheduling 235

Algorithm 1. MOGSA pseudocode
INPUT: Population Size, Termination criteria, Initial Gravity (G0), MinKbest , α , ε
OUTPUT: Set of Solutions

1: Initialize population;
2: Evaluate population (Time and Cost);
3: Initialize Pareto set to empty;
4: while termination criteria: maximum time of execution is 2 min do
5: Update Gravity using α , best and worst of population;
6: Calculate size of masses;
7: Calculate Force based on ε and Acceleration between masses;
8: Update Velocity and Position per each mass;
9: Update Pareto set with the best solutions;

10: end while

• Population size: Indicates the number of masses that are going to be in each
algorithm iteration.

• Termination criteria: Corresponds to the maximum time that the algorithm is
going to run, it is also called the stop condition.

• Initial Gravity (G0): Represents the initial gravity force among masses, which is
decreasing per algorithm iteration.

• MinKbest : Indicates the minimum number of masses that are going to exert their
forces over the others. When the algorithm starts, all the masses are considered
to exert their forces, but as the time progresses, this number of masses decreases
until they achieve the number indicated by this parameter.

• α: Represents the reduction coefficient of the gravity.
• ε: A small constant used to calculate the force per each mass.

As multi-objective algorithm, the output is a set of solutions that belong to the first
Pareto front (non-dominated solutions). These solutions will give decision support
to the final user. The steps of MOGSA adapted to the grid job scheduling problem
are detailed in the following sections.

4.1.1 Initial Population

A combination of both allocation and order vectors is considered as one vector
called AO (allocation + order vector) in order to represent the location of the masses.
The algorithm starts with a random initialization of the population and it is evalu-
ated by ranking the masses in Pareto fronts with a rank value ri for each mass Mi.
This ranking is carried out by the Pareto front ranking operator, which classifies all
the candidate solutions by applying the dominance concept. The value cdi of the
Crowding distance operator is stored per each mass Mi with the aim of calculating
the MOFitness (equation 9). Crowding distance is a measure of how close a mass
is respect to other masses. Large average crowding distance will result in better
diversity in the population.

236 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

MOFitnessi = (2(ri) +
1

1+ cdi
)−1 (9)

4.1.2 Update Gravity Using α , Best and Worst of Population

The gravity G is updated through equation 10, where t is the current time and T
indicates the total time.

G = G0 exp(−α)
t
T (10)

At the same time, best and worst MOFitness masses from the population are selected
by using the operator before mentioned.

4.1.3 Calculate Size of Masses

The highest and lowest values obtained by selecting the best and worst masses are
used to calculate the size of the masses (equation 11 and equation 12). A heavier
mass is interpreted as a better candidate solution.

qi =
MOFitnessi −MOFitnessworst

MOFitnessbest −MOFitnessworst
(11)

si =
qi

∑N
1 q j

(12)

4.1.4 Calculate Force based on ε and Acceleration, Update Velocity and
Position per Each Mass

The exerting forces on each mass in every dimension are calculated, but only the
Kbest masses can exert their forces over the others. In equations 13 and 14, an Eu-
clidean distance between each pair of agents is calculated for being used in the cor-
responding force. The calculation of the Euclidean distance is carried out for each
dimension, corresponding to the AO vectors of the pair of masses. To encourage
exploration by the MOGSA, the total force that acts on Mi uses a random weight in
every dimension (equation 15).

Ri, j = ‖AOi,AO j‖,∀i,1 ≤ i ≤ N;∀ j,1 ≤ j ≤ Kbest (13)

Fd
i j = G× si × s j

Ri j + ε
× (AOd

j −AOd
i) (14)

f d
i =

N

∑
j∈Kbest , j �=i

rand [0,1]×Fd
i j (15)

Multi-objective Grid Scheduling 237

The acceleration per mass is calculated per dimension by using the force in each
dimension d and also considering its size (equation 16).

ad
i =

f d
i

si
(16)

The velocity (equation 17) and the position of the masses (equation 18) are updated.
The updating of the position consists of increasing the resource identifiers in the
allocation vector and the order positions in the order vector, without forgetting their
precedence constraints.

vd
i = rand [0,1]× vd

i + ad
i (17)

AOd
i = AOd

j + vd
i (18)

4.1.5 Best Solutions and New Generation

Once all the positions are updated, MOGSA applies an improvement in case a stag-
nation stage occurs. The stagnation process avoids this problem by using heuristics
specific to the grid scheduling problem. The worst node of the population is substi-
tuted by another created using heuristic methods applied to each vector (allocation
and order vector). The order vector is updated by comparing itself with another order
vector generated by a greedy algorithm. The greedy algorithm creates an order vec-
tor allocating the jobs with dependent jobs to the first positions without neglecting
the precedence constraint. The heuristic method for the allocation vector considers
the information within the new order vector when calculating the total execution
time. Assuming that jobs with no dependencies can be executed in parallel. Each
job is assigned to the resource that best reduces the total execution time, having
preferences for the resources with best value of processing speed/cost and also the
possible overhead when independent jobs are executed sequentially in the same re-
source. The resulting Pareto front is updated according to these changes and it is
compared with Pareto front calculated in the last iteration.

4.2 NSGA II: Non-dominated Sorting Genetic Algorithm II

The NSGA-II (Non-Dominated Sorting Genetic Algorithm) was proposed by [8].
The main steps of NSGA-II algorithm are described in Algorithm 2.

The parameters of NSGA II are the essential parameters for a general genetic
algorithm.

• Population size: Indicates the number of individuals per each generation.
• Termination criteria: Indicates the stop condition for the algorithm.
• Crossover probability (pc): Represents the probability of crossover.
• Mutation Probability (pm): Represents the probability of mutation.

238 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

Algorithm 2. NSGA II pseudocode.
INPUT: Population size, Termination criteria, Crossover (pc) and Mutation (pm) Probability
OUTPUT: Set of Solutions

1: Initialize population;
2: Evaluate population (Time and Cost);
3: while termination criteria: maximum time of execution is 2 min do
4: Multi-objective operators;
5: Binary Tournament Selection;
6: Crossover with pc;
7: Mutation with pm;
8: Best solutions will pass to the next generation population;
9: end while

4.2.1 Initial Population

In genetic algorithms, each individual represents a candidate solution to the prob-
lem. In this problem, each individual are encods both allocation and order vectors,
where each cell represents a gene of this genetic algorithm. Allocation and Order
vectors are created for each individual and they are simulated in GridSim to obtain
the execution time and cost from a specific workflow. Both values are considered as
the fitness values as they indicate the goodness of the generated candidate solution.
The initial population is generated randomly according to the dependencies among
jobs of the workflow to execute and the size of the population N. The population
is ranked into Pareto fronts by applying the dominance concept among the fitness
values supplied by GridSim.

4.2.2 Multi-objective Operators

Two multi-objective operators are applied during the execution of this algorithm:
Classification of Pareto fronts and Crowding distance. These operators allow the
comparison of individuals and the obtaining of the best solutions from a set of so-
lutions. The population is sorted according to levels of non-dominance (ranking of
Pareto fronts, F1, F2, ...) using the classification of Pareto fronts operator . Each
solution has a rank that indicates the allocated front. Cowding distance is calculated
per front to compare solutions that belong to the same front. The tournament selec-
tion, crossover and mutation operators are used to create the offspring population
which is the same size as the initial population.

4.2.3 Binary Tournament Selection

Binary Tournament Selection is used to select the parents, using two tournaments
(one per parent). These tournaments are conducted using the logic of the NSGA-II,
i.e., every tournament selects an individual if both individuals are in the same front
then crowding distance is used to determine the winner individual.

Multi-objective Grid Scheduling 239

4.2.4 Crossover

Two types of crossover are applied per individual. These crossovers are based on
Talukder et al. work ([25] and [26]). They consist ofm odifying the allocation and
order vectors:

• Allocation crossover: This crossover selects random a position from allocation
vector. The parent vectors swap their vectors from the random position, creating
two new individuals (see Figure 6).

Fig. 6 NSGA-II: Allocation Crossover. The number indicated in each cell is the identifica-
tion number of each grid resource and the index of each cell represents the job that is to be
executed. For example, job 0 (the first job) is executed on grid resource 0 in case of Parent 1
or on grid resource 2 in case of Parent 2.

• Order crossover: The order crossover operator is similar to allocation crossover,
but it has to keep the precedence constraints among jobs. After the swapping
process, this method checks the constraints and for repeated order positions. To
avoid this, it first checks if there is not the order position in the order vector. If it
occurs, this position is stored and when there is a repeated position, one position
stored before is selected randomly (see Figure 7).

These new individuals are simulated, obtaining their execution time and cost, and
they are added to the population, the population size being 2N.

4.2.5 Mutation

The mutation process is composed of two types of mutation operaror, Replacing
mutation and Reordering mutation.

• Replacing Mutation: The allocation vector follows this mutation process, each
job from the employed allocation vector selects a random number and, if the
number is less than the mutation probability, a new grid resource is assigned to

240 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

Fig. 7 NSGA-II: Order Crossover. The number indicated in each cell is the identification
number of each job and the index of each cell represents the order of execution. For example
the job 0 is executed in first place in all the cases. This example assumes the workflow shown
in Figure 5.

this job. This new grid resource is selected randomly from the list of available
resources (see Figure 8).

• Reordering Mutation: The Order vector is mutated by this process. This mutation
method differs from the replacing mutation as reordering mutation considers the
constraints of the DAG model. The process begins with the selection of the jobs
to mutate in the same way as the replacing mutation, taking into account the
mutation probability. When a job is selected to be mutated, the process identifies
the last position of the vector in where a parent job (according to the DAG model)
of the current job is placed. Then, the positions of the child jobs (of the job
to mutate) are searched across the order vector and the process selects the first
position of them. Finally, a new position for the job to mutate is chosen randomly
between the last parent position and the first child position (see Figure 9).

All new individuals are executed in GridSim to calculate their cost and time.

Multi-objective Grid Scheduling 241

Fig. 8 NSGA-II: Allocation Mutation. The number indicated in each cell is the identification
number of each grid resource and the index of each cell represents the job that is going to be
executed. In this example, two mutations are performed (positions 2 and 4 of the allocation
vector).

Fig. 9 NSGA-II: Order Mutation. The number indicated in each cell is the identification
number of each job and the index of each cell represents the order of execution. As this
example assumes the workflow shown in Figure 5, job 0 and job 1 are the parents of job 3
and job 3 does not have any child job. Therefore, job 3 has three candidate order positions.
Finally, job 3 changes its order position from 2 to 3.

4.2.6 Best Solutions and New Generation

Once the non-dominated sorting process is complete, the new population is gener-
ated from the solutions of non-dominated fronts. This new population is first built
with the best non-dominated front (F1), it continues with the solutions of the second
front (F2), third (F3) and so on. As the population size after the genetic operators is
2N, and there are only N solutions that make the descendants, not all the solutions
belonging to these population fronts can be accommodated in the new population.

242 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

Those solutions that cannot be accommodated are deleted. In case not all the solu-
tions of a particular front can be accommodated in the new population, the crowding
distance operator is used in order to select the solutions to accommodate.

4.3 Test Environment and Experiments

In this section, we present a set of results comparing our proposed MOGSA al-
gorithm with NSGA II and real grid schedulers. All these algorithms have been
implemented within the GridSim simulator.

4.3.1 Methodology

Within GridSim a grid topology has been implemented taking into account net-
work and resource characteristics. Figure 10 shows the topology implemented. This
topology is based on the EU DataGrid test-bed [24] and it incorporates grid resource
characteristics from WWG test-bed from the work studied in [3]. These character-
istics are presented in Table 1.

Fig. 10 The topology of EU DataGrid TestBed

Multi-objective Grid Scheduling 243

Table 1 Resource Characteristics (G$ means Grid dollars).

Resource Name Features (Vendor, Type, OS, Resource Manager MIPS Price
CPUs/WN) Type per G$ (G$/

CPU time)
LYON Compaq, AlphaServer, OSF1, 4 Time-shared 515 8
CERN Sun, Ultra, Solaris, 4 Time-shared 377 4
RAL Sun, Ultra, Solaris, 4 Time-shared 377 3

IMPERIAL Sun, Ultra, Solaris, 2 Time-shared 377 3
NORDUGRID Intel, Pentium/VC820, Linux, 2 Time-shared 380 2

NIKHEF SGI, Origin 3200, IRIX, 6 Time-shared 410 5
PADOVA SGI, Origin 3200, IRIX, 16 Time-shared 410 5

BOLOGNA SGI, Origin 3200, IRIX, 6 Space-shared 410 4
ROME Intel, Pentium/VC820, Linux, 2 Time-shared 380 1

TORINO SGI, Origin 3200, IRIX, 4 Time-shared 410 6
MILANO Sun, Ultra, Solaris, 8 Time-shared 377 3

Fig. 11 Workflows: Gaussian, Gauss-Jordan and LU Decompostion

In order to study the different behaviours of the schedulers implemented, we
utilise specific parallel numerical computation techniques such as the Parallel
Gaussian Algorithm and the Parallel Gauss-Jordan Algorithm to solve systems of
equations and Parallel LU decompositions [27]. These workflows are shown in
Figure 11.

244 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

4.3.2 Parameterization

Previously studies (each single experiment was repeated 30 times independently)
have found the best parameter configuration for each algorithm:

• MOGSA: Population size = 25, maximum time of execution = 2 minutes, G0 =
10000, MinKbest = 5, α = 2, ε = 1.

• NSGA II: Population size = 100, maximum time of execution = 2 minutes,
crossover probability = 0.9, mutation probability = 0.1, selection with binary
tournament.

4.3.3 Analysis

The analysis may be divided into two sections, the first studies the multi-objective
features of MOGSA and compares it to NSGA II. MOGSA is compared with real
grid schedulers in the second section.

Multi-objective Algorithms

In this section, we compare two multi-objective algorithms, MOGSA and NSGA II.
The algorithms are compared using the hypervolume metrics. Due to the stochastic
nature of multi-objective metaheuristics, each experiment performed in this study
includes 30 independent executions. Tables 2 and 3 show the average results from
these 30 independent executions and also the standard deviation.

In Table 2 and Table 3, we appreciate that the reliability in the MOGSA is greater
than in the NSGA II (MOGSA has a lower standard deviation in all the cases).

Table 2 MOGSA hypervolume per each workflow

Workflows Average Standard Deviation Reference Point

Hypervolume (%) of Hypervolume (Time (s), Cost (G$))

Gaussian 55.06 0.28 (1000, 10000)

Gauss-Jordan 55.53 0.22 (1200, 22000)

LU 54.48 0.47 (1200, 22000)

Table 3 NSGA II hypervolume per each workflow

Workflows Average Standard Deviation Reference Point

Hypervolume (%) of Hypervolume (Time (s), Cost (G$))

Gaussian 45.89 1.08 (1000, 10000)

Gauss-Jordan 47.13 0.66 (1200, 22000)

LU 48.02 0.70 (1200, 22000)

Multi-objective Grid Scheduling 245

Table 4 Set Coverage comparison of NSGA II and MOGSA per each workflow

Coverage A ≥ B

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU

MOGSA NSGA II 100% 100% 100% 100%

NSGA II MOGSA 0% 0% 0% 0%

Fig. 12 NSGA II vs MOGSA: Pareto fronts per workflow

Moreover, the average hypervolume of MOGSA is around a 55 percent, being bet-
ter than the 47 percent from NSGA II algorithm. This means that the solutions from
MOGSA are better than the solutions offered by NSGA II. Furthermore, to study
in more detail the resulting solutions, we have compared the Pareto fronts per each
workflow. In Figure 12 it is shown that the Pareto fronts obtained by the NSGA II
algorithm per wokflow are always dominated by the Pareto fronts of the MOGSA.
Finally, the direct comparison of both algorithms regard to set coverage metrics is

246 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

given in Table 4. Each cell gives the fraction of non-dominated solutions evolved by
algorithm B, which are covered by the non-dominated points achieved by algorithm
A [33]. Again, MOGSA covers all the results obtained by NSGA II.

Real Grid Schedulers

The Workload Management System (WMS)3 based on the European middleware
gLite4 and the Deadline Budget Constraint (DBC) [3] from Nimrod-G are imple-
mented in GridSim to compare and evaluate their results with our MOGSA. After
testing the schedulers, results prove that MOGSA solutions always dominate the
solutions offered by the WMS and DBC. Although, the cost is sometimes equal in
both. DBC and MOGSA algorithms, MOGSA always provides the minimum exe-
cution time in all the cases. Furthermore, WMS and DBC algorithms report unsuc-
cessful jobs when the deadline is more restrictive while, MOGSA always executes
all the jobs required (jobs are interdependent, and therefore, the execution of all the
jobs could be a must). These results are shown in Table 5.

Table 5 WMS vs DBC vs MOGSA: Successfully executed jobs regard to deadline variation

Workflows Constraint WMS DBC MOGSA

Deadline Time Jobs Time Jobs Time Jobs

500 482.68 12 480.82 12 479.12 12

Gaussian 450 455.11 10 450.58 10 435.56 12

400 401.01 7 400.77 9 391.51 12

600 534.70 15 533.41 15 531.71 15

Gauss-Jordan 550 534.70 15 533.41 15 531.71 15

500 428.57 14 500.08 14 496.25 15

650 612.29 14 610.46 14 608.76 14

LU 600 585.78 13 596.66 14 594.96 14

550 504.12 10 550.00 12 532.52 14

5 Conclusions

Multi-objective scheduling problems cover many activities in day-to-day life. There-
fore, diverse techniques are emerging to consider the conflicting objectives and to
give decision support to the users. In this chapter, we have explained the main con-
cepts of multi-objective optimization and its application in scheduling problems.

3 http://web.infn.it/gLiteWMS/
4 http://glite.cern.ch/

http://web.infn.it/gLiteWMS/
http://glite.cern.ch/

Multi-objective Grid Scheduling 247

A case study is presented to deal with the multi-objective optimization in grid en-
vironments. We have compared the novel Multi-Objective Gravitational Algorithm
(MOGSA) with the standard and well-known multi-objective algorithm NSGA II,
in order to know the performance of MOGSA. These algorithms allow the optimiza-
tion of two conflicting objectives, execution time and cost, by using workflows with
dependencies among jobs. MOGSA and NSGA II have been implemented using
the simulator GridSim and modifying it to simulate a realistic approach of a grid
environment with all its features.

In our analysis, NSGA II obtains worse results than MOGSA in terms of hyper-
volume and coverage metrics. Moreover, we have implemented real schedulers as
WMS and DBC in GridSim to compare with MOGSA, and MOGSA has demon-
strated in all the cases that its results are better than the offered by the other sched-
ulers. In addition, MOGSA gives a good range of solutions for decision support.

In future work, MOGSA will be compared with other multi-objective techniques
and also over other grid infrastructures.

References

[1] Amorim, P., Günther, H.O., Almada-Lobo, B.: Multi-objective integrated production
and distribution planning of perishable products. International Journal of Production
Economics 138(1), 89–101 (2012)

[2] Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of dis-
tributed resource management and scheduling for grid computing. Concurrency and
Computation: Practice and Experience 14(13), 1175–1220 (2002)

[3] Buyya, R., Murshed, M., Abramson, D.: A deadline and budget constrained cost-time
optimisation algorithm for scheduling task farming applications on global grids. In: Int.
Conf. on Parallel and Distributed Processing Techniques and Applications, Las Vegas,
Nevada, USA, pp. 2183–2189 (2002)

[4] Castro, C., Crawford, B., Monfroy, E.: A genetic local search algorithm for the multi-
ple optimisation of the balanced academic curriculum problem. In: Shi, Y., Wang, S.,
Peng, Y., Li, J., Zeng, Y. (eds.) MCDM 2009. CCIS, vol. 35, pp. 824–832. Springer,
Heidelberg (2009)

[5] Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving
Multi-Objective Problems. In: Genetic Algorithms and Evolutionary Computation.
Kluwer (2002)

[6] Côté, P., Wong, T., Sabourin, R.: Application of a hybrid multi-objective evolutionary
algorithm to the uncapacitated exam proximity problem. In: Proceedings of the 5th
International Conference on Practice and Theory of Automated Timetabling, pp. 151–
167 (2004)

[7] Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &
Sons (2001)

[8] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

[9] Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid. In: Grid Computing-
Making the Global Infrastructure a Reality. John Wiley Sons (2010)

248 M. Arsuaga-Rı́os and M.A. Vega-Rodrı́guez

[10] Hamta, N., Ghomi, S.F., Jolai, F., Shirazi, M.A.: A hybrid pso algorithm for
a multi-objective assembly line balancing problem with flexible operation times,
sequence-dependent setup times and learning effect. International Journal of Production
Economics (2012)

[11] Ismayilova, N.A., Sagir, M., Gasimov, R.N.: A multiobjective faculty-course-time slot
assignment problem with preferences. Mathematical and Computer Modelling 46(7-8),
1017–1029 (2007)

[12] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE Inter-
national Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

[13] Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.): EMO 2003. LNCS,
vol. 2632. Springer, Heidelberg (2003)

[14] Lei, D.: Multi-objective production scheduling: a survey. The International Journal of
Advanced Manufacturing Technology 43(9-10), 926–938 (2009)

[15] Li, J., Burke, E.K., Curtois, T., Petrovic, S., Qu, R.: The falling tide algorithm: A new
multi-objective approach for complex workforce scheduling. Omega 40(3), 283–293
(2012)

[16] Loukil, T., Teghem, J., Fortemps, P.: A multi-objective production scheduling case study
solved by simulated annealing. European Journal of Operational Research 179(3), 709–
722 (2007)

[17] Mansouri, S.A., Gallear, D., Askariazad, M.H.: Decision support for build-to-order sup-
ply chain management through multiobjective optimization. International Journal of
Production Economics 135(1), 24–36 (2012)

[18] Mobasher, A.: Nurse scheduling optimization in a general clinic and an operating suite.
PhD thesis, University of Houston (2012)

[19] El Moudani, W., Cosenza, C.A.N., de Coligny, M., Mora-Camino, F.: A bi-criterion
approach for the airlines crew rostering problem. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 486–500.
Springer, Heidelberg (2001)

[20] Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 4th edn. Prentice-Hall
(2012)

[21] Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: A gravitational search algorithm.
Information Sciences 179(13), 2232–2248 (2009)

[22] Silva, A., Burke, E.K.: A tutorial on multiobjective metaheuristics for scheduling and
timetabling. In: Multiple Objective Meta-Heuristics. LNEMS. Springer (2004)

[23] Silva, A., Burke, E.K., Petrovic, S.: An introduction to multiobjective metaheuristics for
scheduling and timetabling. In: Grandibleux, X., Sevaux, M., Sörensen, K., T’Kindt, V.
(eds.) Metaheuristic for Multiobjective Optimisation. LNEMS, vol. 535, pp. 91–129.
Springer, Heidelberg (2004)

[24] Sulistio, A., Poduval, G., Buyya, R., Tham, C.: On incorporating differentiated levels
of network service into gridsim. Future Gener. Comput. Syst. 23(4), 606–615 (2007)

[25] Talukder, A.K.A., Kirley, M., Buyya, R.: Multiobjective differential evolution for work-
flow execution on grids. In: MGC 2007: Proceedings of the 5th International Workshop
on Middleware for Grid Computing, pp. 1–6. ACM, New York (2007)

[26] Talukder, A.K.A., Kirley, M., Buyya, R.: Multiobjective differential evolution for
scheduling workflow applications on global grids. Concurr. Comput. Pract. Exper.
21(13), 1742–1756 (2009)

[27] Tsuchiya, T., Osada, T., Kikuno, T.: Genetics-based multiprocessor scheduling using
task duplication. Microprocessors and Microsystems 22(3-4), 197–207 (1998)

Multi-objective Grid Scheduling 249

[28] Xiong, J., Xing, L., Chen, Y.: Robust scheduling for multi-objective flexible job-shop
problems with random machine breakdowns. International Journal of Production Eco-
nomics (2012)

[29] Yannibelli, V., Amandi, A.: Project scheduling: A multi-objective evolutionary algo-
rithm that optimizes the effectiveness of human resources and the project makespan.
Engineering Optimization, 1–21 (2012)

[30] Ye, G., Rao, R., Li, M.: A multiobjective resources scheduling approach based on ge-
netic algorithms in grid environment. In: International Conference on Grid and Coop-
erative Computing Workshops, pp. 504–509 (2006)

[31] Yu, J., Kirley, M., Buyya, R.: Multi-objective planning for workflow execution on grids.
In: GRID 2007: Proceedings of the 8th IEEE/ACM International Conference on Grid
Computing, pp. 10–17. IEEE Computer Society, Washington, DC (2007)

[32] Zeng, B., Wei, J., Wang, W., Wang, P.: Cooperative grid jobs scheduling with multi-
objective genetic algorithm. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W.,
Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 545–555. Springer,
Heidelberg (2007)

[33] Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a
comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P.
(eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

Dynamic Multi-objective Job Shop Scheduling:
A Genetic Programming Approach

Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan

Abstract. Handling multiple conflicting objectives in dynamic job shop scheduling
is challenging because many aspects of the problem need to be considered when
designing dispatching rules. A multi-objective genetic programming based hyper-
heuristic (MO-GPHH) method is investigated here to facilitate the designing task.
The goal of this method is to evolve a Pareto front of non-dominated dispatching
rules which can be used to support the decision makers by providing them with
potential trade-offs among different objectives. The experimental results under dif-
ferent shop conditions suggest that the evolved Pareto front contains very effective
rules. Some extensive analyses are also presented to help confirm the quality of the
evolved rules. The Pareto front obtained can cover a much wider ranges of rules as
compared to a large number of dispatching rules reported in the literature. Moreover,
it is also shown that the evolved rules are robust across different shop conditions.

1 Introduction

Job Shop Scheduling (JSS) is a well-known problem in the scheduling literature.
Given a set of machines and a set of jobs that need to be processed on those ma-
chines in pre-defined orders, the aim of JSS is to find the sequence in which the ma-
chines process the jobs to minimise an objective of interest such as mean flowtime
or maximum tardiness. JSS problems are usually classified as static and dynamic.
The focus of this work is on a dynamic JSS (DJSS) in which jobs can arrive at ran-
dom over time and the attributes (processing time, routes through the machines, due
date) of jobs is not known in advance.

Su Nguyen · Mengjie Zhang · Mark Johnston
Victoria University of Wellington, New Zealand
e-mail: {su.nguyen,mengjie.zhang,mark.johnston}@msor.vuw.ac.nz

Kay Chen Tan
National University of Singapore, Singapore
e-mail: eletankc@nus.edu.sg

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 251
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_10, c© Springer-Verlag Berlin Heidelberg 2013

{su.nguyen,mengjie.zhang,mark.johnston}@msor.vuw.ac.nz
eletankc@nus.edu.sg

252 S. Nguyen et al.

Dispatching rules have been a major research topic in the DJSS literature because
of their practical advantages, e.g., low computational effort and ease to explain to
users. In the last few decades, a large number of dispatching rules have been pro-
posed to deal with different requirements in real world applications. Two critical
issues with dispatching rules are (1) the ability to incorporate global information
from the state of the system and the machines, and (2) the ability to cope with mul-
tiple conflicting objectives. Significant effort has been made in the literature to deal
with these two issues and new sophisticated dispatching rules have been proposed.
However, it is noted that the number of potential dispatching rules is very large,
especially when multiple objectives are considered. With the advances in comput-
ing power, several machine learning methods [10, 12, 13, 18, 19, 23, 29] have been
proposed to discover new effective dispatching rules for DJSS problems. Within
these methods, Genetic Programming (GP) [17, 3] is the most popular because it
is a straightforward method to evolve dispatching rules in the form of a priority
function.

Similar to the human design process, GP also needs to deal with the two issues
discussed above. The first issue is normally handled by including different system
and machine attributes into the terminal and function sets to allow GP to synthe-
sise those pieces of information into the evolved dispatching rules. Miyashita [19]
and Jakobovic and Budin [13] proposed different ways to enhance the quality of the
evolved rules by identifying the bottleneck machines. Meanwhile, the second issue
has not received much attention in the previous studies of GP for DJSS. Tay and
Ho [29] is the first work that focuses on multi-objective DJSS (MO-DJSS) prob-
lems. In their study, they converted the multi-objective problem to a single objective
problem by optimising a linearly weighted sum of all the objectives. However, this
approach is only effective when we have a good knowledge about the search space
of the objectives considered, which is not available in most cases. Hildebrandt et
al. [10] re-examined the GP system proposed by Tay and Ho [29] in different dy-
namic job shop scenarios and showed that rules evolved by Tay and Ho [29] are only
slightly better than the earliest release date (ERD) rule and quite far away from the
performance of the shortest processing time (SPT) rule with mean flowtime as the
objective. This suggested that a linear combination of objectives may not be a suit-
able approach to deal with MO-DJSS. We proposed a cooperative coevolution GP
method to evolve Pareto fronts of scheduling policies including dispatching rules
and due date assignment rules to deal with MO-DJSS problems where due dates are
internally assigned [21]. The results showed that the evolved scheduling policies
can dominate the scheduling policies from combinations of existing rules, suggest-
ing that Pareto-based approach is a promising approach for multi-objective DJSS
problems.

This work focuses on using GP for evolving dispatching rules for MO-DJSS
problems. The goal of this study is to examine the robustness of the evolved rules
by testing them using different characteristics of the shop (due date tightness, util-
isation, etc.) when multiple conflicting objectives are simultaneously considered.
Different from [21], we do not consider the due date assignment decision in this
work and the due date tightness is considered as a shop characteristic to assess the

Dynamic Multi-objective Job Shop Scheduling 253

robustness of the evolved dispatching rules. The first part of this work gives an
overview of DJSS and discusses different GP methods proposed in the literature to
deal with DJSS. Then, we develop a multi-objective genetic programming based
hyper-heuristic (MO-GPHH) method to design effective dispatching rules for the
DJSS. Five scheduling objectives used here are mean flowtime, maximum flowtime
(makespan), percentage of tardy jobs, mean tardiness and maximum tardiness. The
HaD-MOEA [31] approach is used within in our proposed MO-GPHH to explore
the Pareto front of non-dominated evolved dispatching rules. HaD-MOEA is used in
this case because it was shown to work well when the number of objectives is large
[31]. In this work, the evolved dispatching rules are be trained and tested on differ-
ent simulated dynamic job shop scenarios. The evolved dispatching rules are also
compared to a large number of existing dispatching rules in the DJSS literature and
the insights from the evolved rules are discussed. Some selected evolved rules are
also presented and analysed to show how they can effectively solve DJSS problems.

2 Background

This section gives a brief background about DJSS and a comprehensive literature
review about genetic programming based hyper-heuristics (GPHH) for scheduling,
particularly for JSS problems.

2.1 Dynamic Job Shop Scheduling

An example of a dynamic job shop is shown in Fig. 1. Different from static JSS
problems when the number of jobs is known and no job will arrive during the time-
span of the schedule, DJSS deals with situations in which the new job with unknown
processing information will arrive dynamically. Stochastic simulation has been con-
sidered as a traditional approach to dealing with DJSS [2] and most of the research
focuses on dispatching rules in order to identify the rules that can achieve good
performance. Basically, a dispatching rule can be considered as a simple priority
function to determine the priorities of jobs waiting in the queues of machines and
the job with the highest (or lowest) priority will be processed next. For instance,
idle machines select the job in its queue with smallest processing time to process
first if shortest processing time (SPT) rule is employed. Since the concept and the
implementation of dispatching rules are very straightforward, they have received a
lot of attention from both researchers and practitioners.

Until now, there have been hundreds of dispatching rules proposed in the litera-
ture to deal with different types of manufacturing environments. Jones and Rabelo
[16] categorised dispatching rules into three groups: (1) simple priority rules, which
are mainly based on the information related to the jobs; (2) combinations of rules
that are implemented depending on the situation that exists on the shop floor; and (3)
weighted priority indices which employ more than one piece of information about
each job to determine the schedule. Composite dispatching rules (CDR) [25, 15] can
also be considered as a version of rules based on weighted priority indices, where

254 S. Nguyen et al.

Machine 1

Machine 2

Machine 3
Job Arrival

Assign
Due-date

Delivery

Job/Operation

Queue

Machine # Machine

Route

Complete

Sequencing/
Scheduling

Fig. 1 Example of a dynamic job shop with 3 machines

scheduling information can be combined in more sophisticated ways instead of lin-
ear combinations. Panwalkar and Iskander [24] provided a very comprehensive sur-
vey on scheduling (dispatching) rules used in research and real world applications
using a similar classification. Pinedo [25] also showed various ways to classify dis-
patching rules based on the characteristics of these rules. The dispatching rules in
this case can be classified as static and dynamic rules, where dynamic rules are time
dependent (e.g. minimum slack) and static rules are not (e.g. shortest processing
time). Another way to categorise these rules is based on the information used by
these rules (either local or global information) to make sequencing decisions. A lo-
cal rule only uses the information available at the machine where the job is queued.
A global rule, on the other hand, may use the information from other machines. The
comparisons of different dispatching rules have been continuously done in many
studies [28, 27, 15, 11, 10]. The comparison was usually performed under differ-
ent characteristics of the shop because it is well-known that the characteristics of
the shop can significantly influence the performance of the dispatching rules. Dif-
ferent objectives were also considered in these studies because they are the natural
requirements in real world applications. Although many dispatching rules have been
proposed, it is still a challenge for scheduling researchers to develop rules that can
perform well on many objectives.

2.2 GPHH for Scheduling Problems

Genetic Programming based Hyper-Heuristics (GPHH) is a GP based method that
has recently become popular [5]. Since the representation of GP is flexible, it can
be easily used to represent heuristics in different forms for different computational
problems. Many GPHH methods have also been proposed to automatically gener-
ate dispatching rules for different scheduling problems. Dimopoulos and Zalzala [7]
employed a simple GP method to evolve dispatching rules for minimising the total
tardiness in the single machine scheduling problem. Different scheduling statistics
such as processing time and due date are included in the terminal set of GP and

Dynamic Multi-objective Job Shop Scheduling 255

these terminals are combined by a function set of standard mathematical operators.
The experimental results show that the rules evolved by GP are significantly better
than the traditional rules even for some large and unseen instances. Jakobovic et
al. [14] also applied GP for developing dispatching rules for the parallel machine
scheduling problem in both static and dynamic environments and also showed very
competitive results. Geiger et al. [9] presented a learning system that combines GP
with a simulation model of an industrial facility. Both static and dynamic environ-
ments are also investigated in this study and they showed that the evolved rules are
very promising. The paper also proposed a method to learn dispatching rules for
multiple machine problems in which GP will evolve multiple trees simultaneously
with modified crossover and mutation operators. Comparison with the optimal rule
in a simple two-machine environment showed that the evolved rules are rather com-
petitive. Geiger and Uzsoy [8] applied this system to learn dispatching rules for
batch processor scheduling and obtained good results. For a stochastic single ma-
chine scheduling problem, Yin et al. [32] proposed a GP system employing a bi-tree
structured representation scheme to deal with machine breakdowns. The empirical
results under different stochastic environments showed that the GP can evolve high-
quality predictive scheduling heuristics.

Several GPHH methods have also been proposed for JSS problems. Atlan et al.
[1] applied GP for JSS problems. However, the focus of their paper is on finding
the solution for a particular problem instance. Miyashita [19] made the first at-
tempt to develop an automatic method using GP to design customised dispatching
rules for job shops. In his study, he examined three potential multi-agent models
to evolve dispatching rules in multiple machine environments: (1) a homogeneous
model where all machines share the same dispatching rule, (2) a distinct agent model
where each machine employs its own evolved rule, and (3) a mixed agent model
where two rules can be selected to prioritise jobs depending on whether the machine
is a bottleneck. The experiments showed that the distinct agent model provided bet-
ter results in the training stage compared to the homogeneous model but had some
over-fitting problems. The mixed agent model was the most robust in all the experi-
ments. However, the use of the mixed agent model depends on the prior-knowledge
about the bottleneck machine, which can change in dynamic situations. To handle
this issue, Jakobovic and Budin [13] proposed a new GP method called GP-3 to pro-
vide some adaptive behaviour for the evolved rules. In their method, GP is used to
evolve three components of the rules including a decision tree and two dispatching
rules for bottleneck and non-bottleneck machines. The purpose of the decision tree
is to identify whether a considered machine is a bottleneck and decide which one of
the two evolved rules should be applied. The experiments showed that this method
can provide better rules than a simple GP method. However, it is noted that the su-
perior performance of GP-3 will depend the bottleneck machines. If the load levels
between machines in the shops are rather similar (existence of multiple bottleneck
machines), the information/output from the decision tree in GP-3 may not be very
helpful.

256 S. Nguyen et al.

Tay and Ho [29] performed a study on using GP for multi-objective JSS prob-
lems. In their method, three objectives are linearly combined (with the same weights)
into an aggregate objective, which is used as the fitness function in the GP method.
The experiments showed that the evolved rules are quite competitive as compared
to simple rules but still have trouble dominating the best rule for each single objec-
tive. In another study, Hildebrandt et al. [10] explained that the poor performance
of the rules evolved by Tay and Ho [29] is caused by the use of a linear combina-
tion of different objectives and the fact that the randomly generated instances cannot
effectively represent the situations that happen in a long term simulation. For that
reason, Hildebrandt et al. [10] evolved dispatching rules by training them on four
simulation scenarios (10 machines with two utilisation levels and two job types) and
only minimised the mean flow time. Some aspects of the simulation models were
also discussed in their study. The experimental results showed that the evolved rules
were quite complicated but effective as compared to other existing rules. More-
over, these evolved rules are also robust when tested with another environment (50
machines and different processing time distributions). However, their work did not
consider how to handle multiple conflicting objectives. We proposed a cooperative
coevolution MO-GPHH for multi-objective DJSS problems [21]. In that work, the
due dates of new jobs are assumed to be assigned internally and two scheduling
rules (dispatching rule and due date assignment rule) are simultaneously considered
in order to develop effective scheduling policies. While the representation of the
dispatching rules is similar to those in other GP methods, the operation-based repre-
sentation [22] is used to represent the due date assignment rules. The results showed
that the evolved scheduling policies can outperform scheduling policies from dif-
ferent combinations of existing dispatching rules and due-date assignment rules in
different simulation scenarios.

Designing an effective dispatching rule is important task to achieve a good
scheduling performance in DJSS. Since this is a very complicated process, man-
ual design of effective rules is very challenging. GP has been shown to be a suit-
able method to facilitate this process. However, most previous studies mainly focus
on a single objective while handling multiple objectives is an important issue for
real world scheduling applications. It is clear that there have been only a very lim-
ited number of studies on MO-DJSS in general and GP for MO-DJSS in particular,
mainly focusing on the application aspect. In this work, we provide a comprehen-
sive study on GP for MO-DJSS to point out some crucial problems in this research
direction.

3 MO-GPHH for DJSS

This section will show how the proposed MO-GPHH method is used to solve DJSS
problems. The first part will show how dispatching rules are represented by GP and
how they can be evaluated. Then, the proposed MO-GPHH algorithm is presented.
Finally, we describe the simulation model of DJSS which is used for training/testing
purposes and the statistical procedure to analyse the results.

Dynamic Multi-objective Job Shop Scheduling 257

3.1 Representation and Evaluation

Similar to previous applications of GP for JSS problems [10, 12, 13, 18, 19, 23, 29],
the dispatching rules (DR) here are also represented by GP trees [17]. A GP tree in
this case will play the role of a priority function which will determine the priorities
of jobs waiting in the queue. As mentioned, more sophisticated representations of
the dispatching rules are also proposed in the literature to enhance the quality of
the evolved dispatching rules by taking into account bottleneck machines [13, 19].
However, the use of bottleneck machines may not be very useful if multiple bottle-
neck machines simultaneously exist and may also significantly increase the search
space of GP. Therefore, in this work, we only consider the simple GP tree repre-
sentation of dispatching rules. Moreover, we believe that GP is totally capable of
evolving effective priority functions that can incorporate the global/local informa-
tion of the shop for making sequencing decisions. The terminal and function sets of
evolved dispatching rules are presented in Table 1. In this table, the upper part shows
a number of terms that usually appear in the dispatching rules in the literature. The
next part in this table shows the three terms that reflect the status of the current and
downstream machines. It is noted that more global terms can also be used in this
case. However, since dispatching rules will need to work in a dynamic environment
where the global information can change rapidly, the use of global information may
be outdated very soon after the sequencing decisions are made.

An example of the evolved rule is shown in Fig. 2. In the job shop, when a
machine is idle and a new job arrives at that machine, that job will be processed
immediately. In the case that a machine has just completed a job and there are still
jobs waiting in the queue to be processed at that machine, the dispatching rule will
be applied. To assign a priority to a waiting job, the information about that job will

Table 1 Terminal and function sets for DR

Symbol Description

rJ job release time (arrival time)
RJ operation ready time
RO number of remaining operation within the job j.
RT work remaining of the job
PR operation processing time
DD due date d j
RM machine ready time
SL slack of the job j = DD− (t+RT)
WT is the current waiting time of the job = max(0,t−RJ)
Random number from 0 to 1

NPR processing time of the next operation
WINQ work in the next queue
APR average operation processing time of jobs in the queue

Function set +,−,×, and protected division %, min, max, abs, and If

∗t is the time when the sequencing decision is made.

258 S. Nguyen et al.

+

PR %

SL RO

Machine is idle and
there are jobs in

the queue

Assign Priority

Each job has been
assigned a priority ?

Go to the next
unassigned job

Process the job with
the highest priorityYesFirst job in

the queue

No

Fig. 2 Illustration of a dispatching rule

be extracted to be used in the terminals in Table 1. Then, the GP tree representing
the dispatching rule will be evaluated and the output from this evaluation will be
assigned to the considered job as its priority (refer to [17] for detailed discussion
on how a GP tree is evaluated). This procedure will be applied until priorities are
assigned to all waiting jobs and the job with highest priority will be processed next.

3.2 The Proposed MO-GPHH Algorithm

In this work, we want to evolve dispatching rules to minimise five popular objectives
in the DJSS literature, which are the mean flowtime, maximum flowtime, percentage
of tardy jobs, mean tardiness, and maximum tardiness [28, 11, 27]. The HaD-MOEA
algorithm [31] is applied here to explore the Pareto front of non-dominated dispatch-
ing rules regarding the five objectives mentioned above. HaD-MOEA can be consid-
ered as an extension of NSGA-II [6] and it was shown to work well on the problems
with many objectives. Algorithm 1 shows how the proposed MO-GPHH works. At
first, a number of training simulation scenarios (more details will be shown in the
next section) are loaded and the initial archive Pe (parent population) is empty.
These scenarios will be used to evaluate the performance of an evolved dispatching
rule. The initial GP population is created using the ramped-half-and-half method
[17]. In each generation of MO-GPHH, all individuals in the population will be
evaluated by applying them to each simulation scenario. The quality of the each
individual in the population will be measured by the average value of the objec-
tives across all simulation scenarios. After all individuals have been evaluated, we
calculate the Harmonic distance [31] for each individual. Then, individuals in both
archive Pe and population P are selected to update the archive Pe based on the
Harmonic distance and the non-dominated rank [6]. The new population will gen-
erated by applying crossover and mutation to the current population. For crossover,
GP uses the subtree crossover [17], which creates new individuals for the next gen-
eration by randomly recombining subtrees from two selected parents. Mutation is
performed by subtree mutation [17], which randomly selects a node of a chosen in-
dividual in the population and replaces the subtree rooted at that node by a newly
randomly-generated subtree. Binary tournament selection [6] is used to select the
parents for the two genetic operations. The crossover rate and mutation rate used in

Dynamic Multi-objective Job Shop Scheduling 259

Algorithm 1. MO-GPHH to evolve dispatching rules for DJSS problems
load training simulation scenarios S←{S1,S2, . . . ,ST }
randomly initialise the population P ← {R1,R2, . . . ,Rpopsize}
Pe ←{} and generation ← 0
while generation ≤ maxGeneration do

foreach Ri ∈ P do
Ri.ob jectives ← apply Ri to each scenario Sk ∈ S

end
calculate the Harmonic distance [31] and the ranks for individuals in P

⋃
Pe

Pe ← select(P
⋃

Pe)
P ← apply crossover, mutation to Pe

generation ← generation+1
end
return Pe

the three methods are 90% and 10%, respectively. The maximum depth of GP trees
is 8. A population size of 200 is used in this study and the results will be obtained
after the proposed method runs for 200 generations.

3.3 Simulation Models for Dynamic Job Shop

Simulation is the most popular method to evaluate the performance of dispatching
rules in the DJSS literature. Since our goal is to evolve robust dispatching rules, a
general job shop would be more suitable than a specific shop. The following factors
characterise a job shop:

• Distribution of processing times (F1)
• Utilisation (F2)
• Due date tightness (F3)

Utilisation indicates the congestion level of machines (and the shop). The perfor-
mances of the scheduling decisions under different utilisation levels are of interest
in most research in the DJSS literature. Meanwhile, the distribution of processing
times and the due date tightness are also very important factors that can influence
the performance of a dispatching rule. In this study, we employ a symmetrical (bal-
anced) job shop model in which each operation of a job has equal probability to
be processed at any machine in the shop. Therefore, machines in the shop expect
to have the same level of congestion in long simulation runs. This model has been
used very often in the DJSS literature [11, 27, 10]. The scenarios for training and
testing of dispatching rules are shown in Table 2.

The simulation experiments have been conducted in a job shop with 10 machines.
The triplet 〈m,u,c〉 represents the simulation scenario in which the average process-
ing time is m (m is 25 or 50 when processing times follow discrete uniform distribu-
tion [1,49] or [1,99], respectively), the utilisation is u% and the allowance factor is c.
In the training stage, two simulation scenarios (corresponding to the two utilisation

260 S. Nguyen et al.

Table 2 Training and testing scenarios

Factor Training Testing

F1 Discrete Uniform[1,49] Discrete Uniform[1,49] and [1,99]
F2 70%,80% 85%,95%
F3 c is randomly selected from (3,5,7) c = 4, c = 6, c = 8

〈25,70,(3,5,7)〉, 〈25,80,(3,5,7)〉 〈25,85,4〉, 〈25,85,6〉, 〈25,85,8〉,
Summary 〈25,95,4〉, 〈25,95,6〉, 〈25,95,8〉,

〈50,85,4〉, 〈50,85,6〉, 〈50,85,8〉,
〈50,95,4〉, 〈50,95,6〉, 〈50,95,8〉

Total Work Content (TWK) [2] with allowance factor c is used to set the due dates.

levels) and five replications will be performed for each scenarios. The average value
for each objective from 2×5= 10 replications will be used to measure the quality of
the evolved rules (as described in the previous section). We use the shop with differ-
ent characteristics here in order to evolve rules with good generality. The allowance
factors, which decide the due date tightness, are selected randomly from the three
values 3, 5, and 7 instead of a fixed allowance factor (for each scenario) in com-
mon simulation experiments for DJSS problems. If we train on scenarios with fixed
allowance factors, the evolved rules will tend to focus more on the scenarios with
small allowance factors to improve the due date performance (mean tardiness, maxi-
mum tardiness, etc.) because the values of the due date based objectives are higher in
these cases. This may cause an overfitting problem for the evolved dispatching rules.
Moreover, training on different scenarios with different fixed allowance factors will
also increase the training time of our MO-GPHH method. Simulating multiple util-
isation levels in a simulation scenario can be used to reduce the number of training
scenarios but will increase significantly the running time of a replication to obtain
the steady state performance of the rules, and indirectly increase the training time
of the MO-GPHH method.

In the testing stage, 12 simulation scenarios with 50 replications for each sce-
nario (or shop condition) resulting in 12× 50 = 600 replications will be used to
have a comprehensive assessment of the evolved rules. In each replication of a sim-
ulation scenario, we start with an empty shop and the interval from the beginning of
the simulation until the arrival of the 500th job is considered as the warm-up time
and the statistics from the next completed 2000 jobs [11] will be used to calculate
the five objective values. The number of operations for each new job is randomly
generated from the discrete uniform distribution [2,14] and the routing for each job
is randomly generated, with each machine having equal probability to be selected
(re-entry is allowed here but consecutive operations are not processed on the same
machine). The arrival of jobs will follow a Poisson process with the arrival rate
adjusted based on the utilisation level.

Table 3 gives formal definitions of the five objectives considered in this work. In
this table, C is the collection of jobs recorded from a simulation run (2000 jobs) and
T = { j ∈ C : Cj − d j > 0} is the collection of tardy jobs where Cj, f j and d j are

Dynamic Multi-objective Job Shop Scheduling 261

Table 3 Performance measures of dispatching rules

Mean Flowtime F =
∑ j∈C f j

|C|
Maximum Flowtime Fmax = max j∈C{ f j}
Percentage of Tardy Jobs %T = 100× |T|

|C|
Mean Tardiness T =

∑ j∈TCj−dj

|T|
Maximum Tardiness Tmax = max j∈T{Cj −d j}

the completion time, flowtime and due date of job j, respectively. The objectives are
selected since they are very popular performance measures of dispatching rules for
DJSS problems, which have been used regularly in previous studies [27, 15, 11].

3.4 Benchmark Dispatching Rules

Table 4 shows 31 dispatching rules that will be used to compare with the evolved
rules in our work. The upper part of this table shows some original dispatching rules
proposed and the lower part shows some extensions of the original rules that have
been proposed in the literature. The parameters of ATC and COVERT are the same
as those used in Vepsalainen and Morton [30] (k = 3 for ATC, k = 2 for COVERT,
and the leadtime estimation parameter b = 2). More detailed discussion on these
rules can be found in [30, 27, 24, 15, 11].

3.5 Statistical Analysis

Since DJSS is a stochastic problem, statistical analysis is required to compare the
performance of dispatching rules obtained from simulation. In this work, we use
the one-way ANOVA and Duncan’s multiple range tests [20] to compare the perfor-
mance of rules or a set of rules for each objective since this statistical analysis has
been used in previous studies [27, 15, 11].

It is interesting to note that Pareto-dominance has not been considered before
in the dispatching rule literature, even though it is an important concept in the
multi-objective optimisation domain. Most studies on dispatching rules have been
done mainly based on a single objective even when multiple objectives are inves-
tigated. The reason is that the focus of previous studies is on minimising a single
objective and the performance on other objectives are not of interest. Also, since
DJSS is a stochastic problem, statistical analysis is necessary to examine the Pareto-
dominance of rules but there is no standard statistical procedure available for this
task. In this work, we describe two procedures to check for the statistical Pareto-
dominance of between two different rules.

262 S. Nguyen et al.

Table 4 Benchmark dispatching rules

SPT shortest processing time LPT longest processing time
EDD earliest due date FDD earliest flow due date
FIFO first in first out LIFO last in first out
LWKR least work remaining MWKR most work remaining
NPT next processing time WINQ work in next queue
CR critical ratio AVPRO average processing time/operation
MOD modified due date MOPNR most operations remaining
SL negative slack Slack slack
PW process waiting time RR Raghu and Rajendran
ATC apparent tardiness cost COVERT cost over time

OPFSLK/PT operational flow slack per processing time
LWKR+SPT least work remaining plus processing time
CR+SPT critical ratio plus processing time
SPT+PW processing time plus processing wating time
SPT+PW+FDD SPT+PW plus earliest flow due date
Slack/OPN slack per remaining operations
Slack/RPT+SPT slack per remaining processing time plus operation processing time
PT+WINQ procesting time plus work in next queue
2PT+WINQ+NPT double processing time plus WINQ and NPT
PT+WINQ+SL processing time plus WINQ and slack
PT+WINQ+NPT+WSL PT+WINQ plus next processing time and waiting slack

3.5.1 Objective-Wise Procedure

In multi-objective optimisation, solution (or dispatching rule in this work) a is said
to Pareto-dominate solution b if and only if ∀i ∈ {1,2, . . . ,n} : fi(a) ≤ fi(b) ∧
∃ j ∈ {1,2, . . . ,n} : f j(a) < f j(b) where n is the number of objective functions to
be minimised. However, if f j(a) and f j(b) are random variables (i.e. solutions a
and b produce different outputs in different runs/replications), we cannot use the
above definitions to check for the Pareto-dominance. Therefore, we need to redefine
the Pareto-dominance for this context. For the objective-wise procedure, solution a
statistically Pareto-dominates solution b if and only if ∀i ∈ {1,2, . . . ,n} : fi(a)≤T

fi(b) ∧ ∃ j ∈ {1,2, . . . ,n} : f j(a) <T f j(b), where fi(a) ≤T fi(b) means that a is
significantly smaller (better) than or not significantly different from b based on the
statistical test T (e.g. z-test); similarly, f j(a)<T f j(b) means that a is significantly
smaller than b based on T . It should be noted that since multiple comparisons (n
comparisons for n objectives) need to be done here, we have to adjust the value of
the pre-set probability α of a type-1 error [20] in order to control the false posi-
tive rate. Many methods have been proposed for this problem such as Bonferroni
method, Scheffe method, etc [26].

Dynamic Multi-objective Job Shop Scheduling 263

f1

f2 solution a
solution b

)(11 af)(21 af
)(31 af)(51 af

)(41 af)(11 bf
)(21 bf)(51 bf

)(31 bf)(41 bf

)(12 af

)(22 af
)(42 af

)(32 bf

)(32 af)(12 bf
)(42 bf
)(22 bf

)(52 af

)(52 bf

Number of Wins 3

Number of Losses 1

Number of Draws 1

0.6

0.2

0.2

wp
lp
dp

draw

lose

win

Fig. 3 Counting wins, loss and draws in replication-wise procedure

3.5.2 Replication-Wise Procedure

Different from the above method that examines the Pareto-dominance of two so-
lutions based on the relative performance of each objective, the replication-wise
procedure focuses on the Pareto-dominance in each replication/observation to de-
tect the difference between two solutions. This procedure is adapted from the
method proposed by Bhowan et al. [4] to compare the performance of differ-
ent multi-objective GP methods on a run-by-run basis and determine whether a
method significantly dominates another over all runs. In this procedure, the tradi-
tional Pareto-dominance is used to examine the dominance relation between two
solutions in each replication. For instance, f j(a) = { f 1

j (a), f 2
j (a), . . . , f N

j (a)} and

f j(b) = { f 1
j (b), f 2

j (b), . . . , f N
j (b)} are the values for objective j obtained by so-

lutions a and b from N replications. In replication k, { f k
1 (a), f k

2 (a), . . . , f k
n (a)} is

compared to { f k
1 (b), f k

2 (b), . . . , f k
n (b)} to determine the Pareto-dominance between

a and b in this replication. Three possible outcomes from the comparison are (1)
win for a if a dominates b, (2) loss for a if b dominates a, or (3) draw otherwise.
The proportions of win (pw), lose (pl), and draw (pd) over N replications is then
recorded. Fig. 3 gives an example to show how pw, pl and pd are calculated in the
case with two objectives and N = 5. The outcomes here form a multinominal dis-
tribution since the proportions or probabilities for all outcomes always sum to one.
In a multinominal distribution, the (1−α)% confidence interval of the difference in
the probability of win and lose (pw − pl) can be calculated as followed:

(pw − pl)± zα/2

√
var(pw − pl) (1)

264 S. Nguyen et al.

where

var(pw − pl) = var(pw)+ var(pl)− (var(pw+ pl)− var(pw)− var(pl))

= 2var(pw)+ 2var(pl)− var(pw+ pl)

var(pw) =
pw(1− pw)

N

var(pl) =
pl(1− pl)

N

var(pw + pl) =
(pw + pl)(1− pw− pl)

N

The confidence interval obtained by the equation (1) can be used to determine
whether one solution significantly dominates the other. Basically, if the lower bound
of the confidence interval is positive, solution a significantly dominates solution b.
If the upper bound of the confidence interval is negative, solution b significantly
dominates solution a. Otherwise, there is no significant dominance between the two
solutions.

There are some key differences between these two procedures. While the
objective-wise procedure focuses more on the magnitude of the difference between
average objectives obtained by the two methods, the replication-wise procedure only
cares about the Pareto dominance regardless of the difference between the obtained
objective values in each replication. If the variances of the objectives obtained from
the simulation are high, the replication-wise procedure may not accurately deter-
mine the statistical Pareto dominance between two solutions. For example, when pw

and pl are very close, it is very likely the replication-wise procedure will conclude
that there is no dominance between the two solutions. However, it is intuitively not
true if there are some “big” wins (there are large difference between pairs of ob-
jective values f k

j (a) and f k
j (b) for some j ∈ {1,2, . . . ,n}) for a solution in some

replications. The advantage of the replication-wise procedure is that one statistical
significance test needs to be performed as compared to multiple tests (which make
the procedure more complicated) in the objective-wise procedure. In the later sec-
tion, we will apply both procedures to determine the statistical Pareto-dominance
between evolved dispatching rules and the dispatching rules reported in the litera-
ture.

4 Results

We perform 30 independent runs of the proposed MO-GPHH method and the non-
dominated evolved rules from the evolved Pareto front Pe are recorded. We per-
form a post-processing step to extract the Pareto front P from Pe for each testing
scenario based on the average values of five objectives in that scenario. The perfor-
mance of the evolved rules in P will be presented in this section. We first examine
the quality of these rules for each single objective. Then, we show the Pareto domi-
nance of the evolved dispatching rules as compared to the dispatching rules reported
in the literature.

Dynamic Multi-objective Job Shop Scheduling 265

4.1 Single Objective

Even though our target is to solve the MO-DJSS problems, it is important to know
whether the evolved rules can provide satisfactory results for each single objective.
This is also a good opportunity to make a proper comparison of the evolved dis-
patching rules from a multi-objective GP method and the existing rules which are
usually designed for a specific objective. Fig. 4 and Fig. 5 show the performance of
the evolved rules for each objective under different shop conditions. For each GP
run, the evolved rule within P that performs best on the objective O (O can be
F ,Fmax, %T , T , or Tmax) is denoted as R∗

O . The left box-plot in each plot in Fig. 4
and Fig. 5 represents the average values of the objective O obtained by R∗

O from
the 30 GP runs. The right box-plot shows the corresponding values obtained by the
top five rules among the 31 existing rules shown in Table 4.

A quick observation of Fig. 4 and Fig. 5 shows that the proposed MO-GPHH
method can effectively find rules that are better than, or as competitive as, the best
existing dispatching rules for each objective under different shop conditions. The
evolved rule R∗

O can dominate the existing rules regarding F , Fmax, %T , and T . For
Tmax, the proposed MO-GPHH can find the rules that dominate the majority of the
existing rules and the obtained R∗

O from some GP runs can also dominate the best
existing rule. This suggests that it is totally possible to evolve a superior rule for each
single objective by the proposed MO-GPHH. However there are objectives that are
more difficult to minimise, e.g., Tmax in this case. Given that we try to evolve rules
to minimise five objectives simultaneously in the general case, the results obtained
here for single objective are very competitive.

Further statistical tests are also performed here to confirm the quality of the
evolved rules. For a specific objective O and shop condition 〈m,u,c〉, we perform
statistical analysis of the R∗

O rule from each GP run and the best five dispatching
rules in the literature (based on the average values of the corresponding objective)
using the one-way ANOVA and Duncan’s multiple range tests [20] with α = 0.01.
The summary of all statistical tests is shown in Table 5. For each shop condition,
the first row shows the number of times the proposed MO-GPHH method is able
is find the R∗

O that is significantly better than the best existing rule for minimis-
ing O , which is shown in the second row. In general, the results here are similar to
those shown in Fig. 4 and Fig. 5. It is clear that the MO-GPHH method can always
find a superior rule for minimising F while 2PT+WINQ+NPT is the best existing
rule. These observations are consistent with those in [10] and [11]. Similar to [10]
when using GP to evolve rules for minimising F , the evolved rules can easily beat
2PT+WINQ+NPT across different simulation scenarios. For Fmax, the evolved rules
also dominate the best rule, i.e., SPT+PW+FDD in this case, in the majority of GP
runs. It is interesting to note that the 2PT+WINQ+NPT rule and SPT+PW+FDD
rule are always the best existing rules for the two objectives (F and Fmax) under all
shop conditions. This suggests that the shop condition does not really have a big
impact on the performance of the rules. However, the complexity of the objective
may make the design of an effective rule more difficult.

266 S. Nguyen et al.

Evolved Top5

64
0

66
0

68
0

70
0

F

Evolved Top5

17
00

19
00

21
00

23
00

Fmax

o

oooooo

Evolved Top5

5
10

15
20

%T

Evolved Top5

40
50

60
70

80
90

T

Evolved Top5

60
0

70
0

80
0

90
0

11
00

Tmax

Scenario <25,85,4>

Evolved Top5

64
0

66
0

68
0

70
0

F

Evolved Top5

18
00

22
00

26
00

Fmax

o
o

Evolved Top5

0
2

4
6

%T

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Evolved Top5

2
4

6
8

10

T

o

oooooo

Evolved Top5

15
0

25
0

35
0

45
0

Tmax

Scenario <25,85,6>

oooooo

Evolved Top5

64
0

66
0

68
0

70
0

F

o

Evolved Top5

20
00

25
00

30
00

Fmax

oo

Evolved Top5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

%T

ooo

o

Evolved Top5

0.
0

0.
1

0.
2

0.
3

0.
4

T

Evolved Top5

20
40

60
80

10
0

Tmax

Scenario <25,85,8>

Evolved Top5

10
00

11
00

12
00

13
00

F

o

Evolved Top530
00

32
00

34
00

36
00

38
00

Fmax

o

oooooo

Evolved Top5

10
15

20
25

30
35

40

%T

o

o

o

o

o

o

o

o

o

o

o

o

Evolved Top5

35
0

40
0

45
0

50
0

55
0

60
0

T

Evolved Top5

19
00

21
00

23
00

25
00

Tmax

Scenario <25,95,4>

Evolved Top5

10
00

11
00

12
00

13
00

F

o

Evolved Top530
00

34
00

38
00

Fmax

o

oooooo

Evolved Top5

5
10

15
20

25

%T

o

o

o

o

o

o

o

o

o

o

o

o

o

Evolved Top5

15
0

20
0

25
0

30
0

35
0

T

o

Evolved Top5

14
00

16
00

18
00

20
00

Tmax

Scenario <25,95,6>

Evolved Top5

10
00

11
00

12
00

13
00

F

Evolved Top530
00

34
00

38
00

42
00

Fmax

o

oooooo

Evolved Top5

0
5

10
15

%T

Evolved Top5

40
60

80
10

0
14

0

T

o

Evolved Top5

80
0

10
00

12
00

14
00

16
00

Tmax

Scenario <25,95,8>

Fig. 4 Performance of evolved dispatching rules (processing times from [1,49])

Dynamic Multi-objective Job Shop Scheduling 267

Evolved Top5

13
00

13
50

14
00

F

o

Evolved Top5

34
00

38
00

42
00

46
00

Fmax

o

Evolved Top5

5
10

15
20

%T

Evolved Top5

80
10

0
12

0
14

0
16

0
18

0

T

Evolved Top5

12
00

16
00

20
00

Tmax

Scenario <50,85,4>

Evolved Top5

13
00

13
50

14
00

F

o

Evolved Top5

35
00

40
00

45
00

50
00

55
00

Fmax

o

oo

Evolved Top5

0
2

4
6

8

%T

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Evolved Top5

5
10

15
20

T
oooooo

Evolved Top5

30
0

50
0

70
0

90
0

Tmax

Scenario <50,85,6>

oooooo

Evolved Top512
50

13
00

13
50

14
00

F

o

Evolved Top5

35
00

45
00

55
00

65
00

Fmax

oo
o
o

Evolved Top5

0.
0

0.
4

0.
8

1.
2

%T

o

Evolved Top5

0.
0

0.
2

0.
4

0.
6

0.
8

T

o

Evolved Top5

50
10

0
15

0
20

0

Tmax

Scenario <50,85,8>

Evolved Top5

20
00

22
00

24
00

26
00

F

Evolved Top560
00

65
00

70
00

75
00

Fmax

o

o

o

o

o

o

o

o

o

o

o

o

o

Evolved Top5

10
15

20
25

30
35

%T

oooooo

Evolved Top5

70
0

80
0

90
0

10
00

12
00

T

o

Evolved Top538
00

42
00

46
00

50
00

Tmax

Scenario <50,95,4>

o

o

Evolved Top5

20
00

22
00

24
00

26
00

F

o

Evolved Top560
00

65
00

70
00

75
00

80
00

Fmax

o

oooooo

Evolved Top5

5
10

15
20

%T

o

Evolved Top5

30
0

40
0

50
0

60
0

70
0

T

Evolved Top525
00

30
00

35
00

40
00

Tmax

Scenario <50,95,6>

o

o

Evolved Top5

20
00

22
00

24
00

26
00

F

o

o

Evolved Top560
00

70
00

80
00

90
00

Fmax

o

oooooo

Evolved Top5

0
5

10
15

%T

Evolved Top5

10
0

15
0

20
0

25
0

30
0

35
0

T

o
o

Evolved Top5

15
00

20
00

25
00

30
00

Tmax

Scenario <50,95,8>

Fig. 5 Performance of evolved dispatching rules (processing times from [1,99])

268 S. Nguyen et al.

The due date based performance measures such as %T , T , and Tmax are more
sensitive to the shop condition since the best existing rules are different under dif-
ferent shop conditions. %T is also an easy objective as it does not take into account
the magnitude in which the job misses the due date. Therefore, MO-GPHH is able
to find superior rules for this objective in most scenarios. The number of superior
evolved rules is not large only in the scenarios with large allowance factor (c = 8)
and low utilisations (85%). The reason is that the number of tardy jobs is very low
(near zero as seen in Fig. 4 and Fig. 5) when due dates are too loose and the shop is
not very busy. It is noted that many other existing rules (besides Slack/OPN) can also
achieve near zero %T in this case. Therefore, it is very difficult to detect superior
evolved rules in this case. In other cases, the differences between the evolved rules
and existing rules for minimising %T are very clear. A similar conclusion can also
applied to T . Perhaps, Tmax is the most difficult objective among the five objectives
that we consider in this study since it is hard to minimise and also quite sensitive to
the shop condition. Even though our MO-GPHH method can find superior rules in
most runs overall, the number of superior rules is usually lower than those for other
objectives.

In general, the experimental results show that the proposed MO-GPHH can ef-
fectively find the good rules for each specific objective we consider in this work. It
is obvious that the existing rules that are supposed to be the best for an objective

Table 5 Performance of evolved rules under different shop conditions

F Fmax %T T Tmax

〈25,85,4〉 * 30/30 30/30 30/30 30/30 26/30
** 2PT+WINQ+NPT SPT+PW+FDD MOD COVERT PT+WINQ+NPT+WSL

〈25,85,6〉 * 30/30 30/30 30/30 29/30 29/30
** 2PT+WINQ+NPT SPT+PW+FDD RR RR Slack/OPN

〈25,85,8〉 * 30/30 30/30 25/30 17/30 18/30
** 2PT+WINQ+NPT SPT+PW+FDD Slack/OPN Slack/OPN Slack/OPN

〈25,95,4〉 * 30/30 29/30 30/30 30/30 30/30
** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT 2PT+WINQ+NPT PT+WINQ+SL

〈25,95,6〉 * 30/30 29/30 30/30 30/30 26/30
** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT RR PT+WINQ+NPT+WSL

〈25,95,8〉 * 30/30 30/30 30/30 30/30 22/30
** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT RR PT+WINQ+NPT+WSL

〈50,85,4〉 * 30/30 29/30 30/30 30/30 28/30
** 2PT+WINQ+NPT SPT+PW+FDD MOD COVERT PT+WINQ+NPT+WSL

〈50,85,6〉 * 30/30 29/30 30/30 29/30 29/30
** 2PT+WINQ+NPT SPT+PW+FDD RR RR PT+WINQ+NPT+WSL

〈50,85,8〉 * 30/30 30/30 24/30 10/30 8/30
** 2PT+WINQ+NPT SPT+PW+FDD Slack/OPN Slack/OPN Slack/OPN

〈50,95,4〉 * 30/30 30/30 30/30 30/30 30/30
** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT 2PT+WINQ+NPT PT+WINQ+NPT+WSL

〈50,95,6〉 * 30/30 29/30 30/30 30/30 25/30
** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT RR PT+WINQ+NPT+WSL

〈50,95,8〉 * 30/30 29/30 30/30 30/30 24/30
** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT RR PT+WINQ+NPT+WSL

Dynamic Multi-objective Job Shop Scheduling 269

can also be outperformed by the evolved rules. Since we evolved the Pareto front of
non-dominated rules for five objectives with a modest population of 200 individuals,
the method may not always find the superior rules for some hard objectives. How-
ever, as shown in Table 5, because the shop condition can impact the performance
of dispatching rules and their relative performance, the rules that are superior under
one shop condition may not be the superior one under the other shop conditions.
Therefore, evolving a set of non-dominated rules in our method is actually more
beneficial than evolving a single rule (either for single objective in [10] or aggregate
objective of multiple objective in [29]) since it can provide potential rules to deal
with different shop conditions.

4.2 Multiple Objectives

The comparison above has shown that the proposed MO-GPHH method can simul-
taneously evolve superior rules for each specific objective. However, these superior
performances may not come without any trade-off on other objectives. Previous
studies have shown that there is no dispatching rule that can minimise all objectives.
Therefore, dispatching rules in the literature are designed for minimising a specific
objective only. Although it is true that these rules can effectively minimise the ob-
jective that it focuses on, it usually deteriorates other objectives significantly. For
example, the 2PT+WINQ+NPT rule can successfully reduce the average flowtime
but it performs badly on almost all other objectives. Since the existence of multiple
conflicting objectives is a natural requirement in real world scheduling applications,
it is crucial to include this issue into the design process of dispatching rules as well.
In this part, we will examine the Pareto-dominance of the evolved rules against other
dispatching rules in the literature.

For each MO-GPHH run, the evolved rules in the Pareto front P are compared
to the set D of 31 benchmark dispatching rules. For each shop condition, we will
employ the objective-wise (OBJW) and replications-wise (REPW) procedures dis-
cussed in Section 3.5 to determine the statistical Pareto dominance between each
pair (Ri,B j) for all Ri ∈ P and B j ∈ D . Therefore, there are |P |× |D | compar-
isons in total for each MO-GPHH run and each statistical procedure. Both OBJW
and REPW procedures will be performed with α = 0.01. In the OBJW procedure,
we use the Bonferroni method [20] to adjust the value of αt = α/n in each z-test
(for each objective). From this point forward, we use dominate or dominance when
mentioning about the statistical Pareto-dominance, unless otherwise indicated. Af-
ter all the comparisons in each MO- GPHH run were done, an evolved dispatching
rule Ri is classified into three categories:

1. Non-dominated if there is no dominance between Ri and B j for ∀B j ∈ D .
2. Dominating if Ri is not dominated by any B j ∈ D and ∃B j ∈ D such that Ri

dominates B j.
3. Dominated if ∃B j ∈ D such that Ri is dominated by B j .

The proportions of evolved rules in the three categories for each P is determined
and the average proportions from 30 MO-GPHH runs are shown in Fig. 6. The

270 S. Nguyen et al.

OBJW REPW

<25,85,4>
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

OBJW REPW

<25,85,6>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<25,85,8>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<25,95,4>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<25,95,6>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<25,95,8>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<50,85,4>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<50,85,6>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<50,85,8>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<50,95,4>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<50,95,6>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OBJW REPW

<50,95,8>

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non−dominated Dominating Dominated

Fig. 6 Average Pareto dominance proportion of evolved dispatching rules

triplets in the figure indicate the shop conditions as explained in the previous sec-
tion. It is clear that the proposed MO-GPHH method can always find rules that
can dominate rules reported in the literature across all objectives. In the worst cases
〈25,95,4〉 and 〈50,95,4〉, there are still about 20% of the evolved rules are dominat-
ing rules. The number of dominated evolved rules are also very low and the highest
proportions (about 10%) of dominated rules are in 〈25,95,8〉 and 〈50,95,8〉. There
are also some interesting patterns in Fig. 6. Different from our comparison for sin-
gle objective when there are fewer superior rules found when the allowance factor
increases, it is easy to see that the number of non-dominated rules decreases and the
number of dominating rules increases when the allowance factor increases from 4
to 8. This suggests that even when the MO-GPHH method cannot find a superior
rule for a specific objective, it can easily find rules that can perform as good as the
best existing rule on that objective while significantly improving other objectives.
Another interesting pattern in Fig. 6 is that the number of dominated rules increases
when the allowance factor increases with the shop utilisation of 85%. However, a
reverse trend is found with the utilisation of 95% when the number of dominated
rules decreases when the allowance factor increases. For the cases with utilisation of
85%, the higher allowance made the DJSS problems easier, at least for the due date
based performance measure. Therefore, it is difficult for existing rules to dominate
the evolved dispatching rules. In the case with utilisation of 95% and low allowance
factor, it is very difficult to make a good sequencing decision to satisfy multiple
objectives and to find a rule that is superior on all objectives. For that reason, the
number of dominating and dominated rules are relatively small compared to the
number of non-dominated rules. When the utilisation is 95% and the allowance fac-
tor is high, the number of dominated rules increases because these shop conditions
(very busy shop and loose due dates) are quite different from the shop conditions
used in the training stage.

Dynamic Multi-objective Job Shop Scheduling 271

o

o

ND D d

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

<25,85,4>

o

o

o
o

ND D d

0.
0

0.
2

0.
4

0.
6

<25,85,6>

o

o

ND D d

0.
0

0.
2

0.
4

0.
6

0.
8

<25,85,8>

o

o

ND D d

0.
0

0.
2

0.
4

0.
6

0.
8

<25,95,4>

ND D d

0.
0

0.
2

0.
4

0.
6

<25,95,6>

o

ND D d0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

<25,95,8>

o

o

ND D d

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

<50,85,4>

o

ND D d

0.
0

0.
2

0.
4

0.
6

<50,85,6>

oooo

ND D d

0.
0

0.
2

0.
4

0.
6

0.
8

<50,85,8>

o

o

o

ND D d

0.
0

0.
2

0.
4

0.
6

0.
8

<50,95,4>

ND D d

0.
0

0.
2

0.
4

0.
6

0.
8

<50,95,6>

o

o

o

ND D d

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

<50,95,8>

Fig. 7 Pareto dominance proportions of evolved rules

It is also noted that the results from OBJW and REPW in Fig. 6 are very consis-
tent. The REPW procedure results in more dominating rules (fewer non-dominated
rules) as compared to the OBJW procedure. Perhaps, this is because the OBJW pro-
cedure with the Bonferroni adjustment method is quite conservative, which makes
the OBJW procedure more difficult to detect significant differences between two
rules. However, the differences between the two procedure in our application is
very small. Therefore, both OBJW and REPW are suitable procedures to analyse
the results from our experiments. A more detailed Pareto dominance of evolved
rules is shown in Fig. 7. In this figure, the box-plots represent the proportions from
the OBJW procedure of non-dominated (ND), dominating (D) and dominated (d)
from each MO-GPHH. This figure shows that the proposed MO-GPHH is quite sta-
ble since the obtained dominance proportions have low variances. Moreover, the
proportions of non-dominated and dominating rules are always larger than that of
dominated rules. In general, these results suggests that the evolved dispatching rules
are significantly better or at least very competitive when compared to the existing
dispatching rules.

Through all the comparisons, we also count the number of dominating evolved
rules (NDER) in each MO-GPHH run that dominate a specific rule B j . These val-
ues can be used as an indicator for the competitiveness of the existing dispatching
rules when multiple objectives are considered. The values of NDER for each rule
B j shown in Table 4 under different shop conditions from 30 MO-GPHH runs are
shown in Fig. 8 and Fig. 9. In these figures, the rules are arranged from left to right in
the order of decreasing values of the average NDER. It is quite obvious that the MO-
GPHH method can easily evolve rules that dominate the simple rules such as LPT,
MWKR, FIFO, etc. It is noted that most rules with low values of NDER are the ones
which are designed for minimising due date based performance measures and the

272 S. Nguyen et al.

o o
o

o o

o

o

<25,85,4>

o o
o

o o

o

o

<25,85,4>

LPT
MWKR

AVPRO
LIFO

NPT

MOPNR
LWKR

LWKR+SPT
FIFO PW

SPT+PW SPT

Slack/OPN
MOD

WINQ
ATC CR

PT+WINQ

COVERT

Slack/RPT+SPT

CR+SPT

2PT+WINQ+NPT
EDD

Slack

OPFSLK/PT SL
FDD RR

SPT+PW+FDD

PT+WINQ+NPT+WSL

PT+WINQ+SL

0
50

10
0

15
0

o
o

o
o

o
o

o

o

o

o

o
o

o
o

o

<25,85,6>

o
o

o
o

o
o

o

o

o

o

o
o

o
o

o

<25,85,6>

LPT
MWKR

AVPRO
LIFO

NPT

MOPNR
LWKR

LWKR+SPT

SPT+PW
MOD

SPT
WINQ

FIFO PW

PT+WINQ

CR+SPT

Slack/RPT+SPT

2PT+WINQ+NPT
ATC

COVERT
EDD

Slack SL

OPFSLK/PT
FDD

SPT+PW+FDD CR

PT+WINQ+SL

Slack/OPN RR

PT+WINQ+NPT+WSL

0
50

10
0

15
0

o

o

o

o

o

o

o

o

o

o o

o

o o

o o
o

o

o

o

o o

o

o

<25,85,8>

o

o

o

o

o

o

o

o

o

o o

o

o o

o o
o

o

o

o

o o

o

o

<25,85,8>

LPT

AVPRO
MWKR

LIFO

MOPNR
NPT

LWKR

LWKR+SPT PW
FIFO

WINQ
MOD

SPT

SPT+PW

PT+WINQ

CR+SPT

Slack/RPT+SPT

2PT+WINQ+NPT
EDD

PT+WINQ+SL
ATC

Slack SL

PT+WINQ+NPT+WSL

COVERT CR
FDD RR

SPT+PW+FDD

OPFSLK/PT

Slack/OPN

0
20

40
60

80
12

0

o

o

o

oo

o

o
o

o

o
o

o

o

o

o

oo

o

o
o

oo

o

o

oo

o

o

o

o o

oo

o

oo

o

o

o

o

o o

o
o

oo

o
o

oo

o

<25,95,4>

o

o

o

oo

o

o
o

o

o
o

o

o

o

o

oo

o

o
o

oo

o

o

oo

o

o

o

o o

oo

o

oo

o

o

o

o

o o

o
o

oo

o
o

oo

o

<25,95,4>

LPT
MWKR

NPT

COVERT
LIFO

MOPNR
AVPRO ATC

LWKR

LWKR+SPT
FIFO

MOD PW

Slack/OPN

SPT+PW SPT RR

PT+WINQ CR

2PT+WINQ+NPT
WINQ

OPFSLK/PT
EDD

Slack/RPT+SPT

CR+SPT
Slack SL

FDD

SPT+PW+FDD

PT+WINQ+NPT+WSL

PT+WINQ+SL

0
20

40
60

80
10

0

o

o

o

o

o

o
o

o o o

o

o o

o

o

o

o

o

o
o

<25,95,6>

o

o

o

o

o

o
o

o o o

o

o o

o

o

o

o

o

o
o

<25,95,6>

LPT
MWKR

MOPNR
NPT

AVPRO
LIFO

COVERT
ATC

LWKR

LWKR+SPT
FIFO

SPT+PW SPT
MOD PW

Slack/OPN

PT+WINQ CR

2PT+WINQ+NPT
WINQ RR

OPFSLK/PT

CR+SPT

Slack/RPT+SPT
EDD

Slack SL
FDD

SPT+PW+FDD

PT+WINQ+NPT+WSL

PT+WINQ+SL

0
50

10
0

15
0

o

o o

oo

o

oo

o o
o

o

o

o

o
o

oo o

o

o o

o

<25,95,8>

o

o o

oo

o

oo

o o
o

o

o

o

o
o

oo o

o

o o

o

<25,95,8>

LPT
MWKR

MOPNR
NPT

AVPRO
LIFO

LWKR

SPT+PW SPT
MOD

ATC

LWKR+SPT

COVERT
FIFO PW

PT+WINQ
WINQ

2PT+WINQ+NPT

Slack/OPN

CR+SPT

Slack/RPT+SPT CR
EDD

OPFSLK/PT
Slack SL

FDD

SPT+PW+FDD RR

PT+WINQ+SL

PT+WINQ+NPT+WSL

0
50

10
0

15
0

Fig. 8 NDER for each existing dispatching rules (processing times from [1,49])

Dynamic Multi-objective Job Shop Scheduling 273

o o
o

o

o o o o o

o

oo

o

ooooo

<50,85,4>

o o
o

o

o o o o o

o

oo

o

ooooo

<50,85,4>

LPT
MWKR

AVPRO NPT
LIFO

MOPNR
LWKR

LWKR+SPT

SPT+PW SPT
FIFO PW

MOD
ATC

Slack/OPN
WINQ CR

CR+SPT

Slack/RPT+SPT

PT+WINQ

COVERT

2PT+WINQ+NPT
EDD

Slack

OPFSLK/PT SL
FDD

SPT+PW+FDD RR

PT+WINQ+NPT+WSL

PT+WINQ+SL

0
50

10
0

15
0

o o

o

o

o

o

<50,85,6>

o o

o

o

o

o

<50,85,6>

LPT
MWKR

AVPRO
LIFO

NPT

MOPNR
LWKR

LWKR+SPT
MOD

SPT+PW SPT
FIFO

WINQ PW

CR+SPT

Slack/RPT+SPT

PT+WINQ

2PT+WINQ+NPT
ATC

COVERT
EDD

Slack
FDD

OPFSLK/PT SL

SPT+PW+FDD CR

PT+WINQ+SL

Slack/OPN RR

PT+WINQ+NPT+WSL

0
20

60
10

0
14

0

o o o o o o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
o

o
oo

o

o

<50,85,8>

o o o o o o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
o

o
oo

o

o

<50,85,8>

LPT
MWKR

AVPRO
MOPNR

LIFO
NPT

LWKR

LWKR+SPT
FIFO PW

WINQ
MOD

SPT+PW SPT

CR+SPT

Slack/RPT+SPT

PT+WINQ

2PT+WINQ+NPT
EDD

PT+WINQ+SL
Slack

ATC

PT+WINQ+NPT+WSL
FDD SL CR

SPT+PW+FDD RR

COVERT

OPFSLK/PT

Slack/OPN

0
20

40
60

80
12

0

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o o

o

o

oo

o

o

o

o

o

<50,95,4>

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o o

o

o

oo

o

o

o

o

o

<50,95,4>

LPT
MWKR

COVERT
NPT

MOPNR
LIFO

ATC
AVPRO

MOD
LWKR

SPT+PW SPT
FIFO PW

Slack/OPN

LWKR+SPT RR CR

PT+WINQ

2PT+WINQ+NPT

OPFSLK/PT
EDD

WINQ
Slack SL

FDD

SPT+PW+FDD

CR+SPT

Slack/RPT+SPT

PT+WINQ+NPT+WSL

PT+WINQ+SL

0
20

40
60

80
10

0

o

oo

o

o

o o o
o

o

o

o

o

o

o

o

o

o

o

o o

o o

o
o o o

<50,95,6>

o

oo

o

o

o o o
o

o

o

o

o

o

o

o

o

o

o

o o

o o

o
o o o

<50,95,6>

LPT
MWKR

MOPNR

COVERT
NPT

LIFO
AVPRO ATC

LWKR
MOD

SPT+PW SPT

LWKR+SPT
FIFO PW

Slack/OPN

PT+WINQ CR

2PT+WINQ+NPT
WINQ RR

OPFSLK/PT

CR+SPT

Slack/RPT+SPT
EDD

Slack SL
FDD

SPT+PW+FDD

PT+WINQ+NPT+WSL

PT+WINQ+SL

0
50

10
0

15
0

o

o

o
o o

o

o

o o

o o

o

<50,95,8>

o

o

o
o o

o

o

o o

o o

o

<50,95,8>

LPT
MWKR

MOPNR
NPT

AVPRO
LIFO

ATC
MOD

LWKR

SPT+PW SPT

COVERT

LWKR+SPT
FIFO PW

PT+WINQ
WINQ

2PT+WINQ+NPT

Slack/OPN

CR+SPT

Slack/RPT+SPT CR
EDD

Slack

OPFSLK/PT SL
FDD

SPT+PW+FDD RR

PT+WINQ+SL

PT+WINQ+NPT+WSL

0
50

10
0

15
0

Fig. 9 NDER for each existing dispatching rules (processing times from [1,99])

274 S. Nguyen et al.

ones that achieve the best performance for each objective as shown back in Table 5.
Since the MO-GPHH method can almost always find superior rules for minimising
F and Fmax, the best existing rules for these two objectives, i.e., 2PT+WINQ+NPT
and SPT+PW+FDD, are Pareto-dominated by the evolved rules easier (dominating
evolved rule for these two rules can be found in all MO-GPHH runs). The most
competitive existing rules are actually the ones that give reasonably good perfor-
mance across all objectives such as OPFSLK/PT, which is not the best rule for any
particular objective. PT+WINQ+NPT+WSL and PT+WINQ+SL are the most com-
petitive rules overall and the MO-GPHH method can not find rules that dominates
these two rules in some runs.

Although a lot of efforts have been made in the literature to improve the competi-
tiveness of dispatching rules, it is clear that the search space of potential dispatching
rules is very large and there are still many highly competitive rules that have not
been explored, especially when different multiple conflicting objectives are simul-
taneously considered. Manually exploring this search space seems to be an impos-
sible task. For that reason, there is a need for automatic design methods such as the
MO-GPHH proposed in this work. The extensive experimental results shown here
have convincingly confirmed the effectiveness of the proposed MO-GPHH method
for evolving dispatching rules for DJSS problems. It is totally possible for the pro-
posed method to evolve rules that are significantly better than rules reported in the
literature, not only on a specific objective but also on different objectives of interest.

5 Further Analysis

The previous section has shown the performance of the evolved rules when single
objective and multiple objectives are considered. In this section, we will provide
more insights on the distribution and robustness of the evolved rules on the obtained
Pareto front. Some examples of evolved rules are also shown here to demonstrate
their robustness as well as how the evolved rules are more effective as compared to
the existing rules.

5.1 Evolved Pareto Front

The comparison results have shown that the proposed MO-GPHH method can
evolve very competitive rules. However, we have not fully assessed the advan-
tages of the proposed MO-GPHH methods, more specifically the advantages of the
evolved Pareto front of non-dominated evolved rules. In Fig. 10, we show the aggre-
gate Pareto front including the non-dominated evolved rules extracted from Pareto
fronts generated by all MO-GPHH runs (based on the traditional Pareto dominance
concept) in the scenario with the shop condition 〈25,85,4〉. This figure is a scat-
ter plot matrix which contains all the pairwise scatter plots of the five objectives
(the two scatter plots which are symmetric with respect to the diagonal are simi-
lar except that the two axes are interchanged). The objective values obtained by 31
existing rules are also plotted in this figure (as +).

Dynamic Multi-objective Job Shop Scheduling 275

The first observation is that the Pareto front can cover a much wider range of
potential non-dominated rules compared to rules that have been discovered in the
literature. The figure not only shows that the evolved rules can dominate the exist-
ing rules but the Pareto front of evolved rules also helps with understanding better
about the possible trade-offs in this scenario. For example, it can be seen that the
percentage of tardy jobs %T can be substantially reduced with only minor dete-
rioration on other objectives. Obviously, this insight cannot be obtained with the
available dispatching rules since these rules only suggest that other objectives will
be deteriorated significantly when we try to reduce %T below 20%. However, we
can see from the Pareto front that it is possible to reduce %T further to 10% without
major deteriorations in other objectives. In fact, F and T will not be affected when
we try to reduce %T to a level above 10%. When we try to reduce %T below 10%,
Fmax and Tmax will be greatly deteriorated. In this scenario, we also see that there is a
strong correlation between Fmax and Tmax when the values are high and the trade-offs
between these two objectives are only obvious when they reach their lowest values.
This makes sense since high values of Fmax and Tmax are caused by some extreme
cases. Thus, as long as these extreme cases are handled well, both Fmax and Tmax can
also be reduced. This observation also suggests that focusing on one of them should
be enough if these two objectives are not very important.

This demonstration shows that decision makers can benefit greatly from the
Pareto front found by the proposed MO-GPHH method. For DJSS problems, the
ability to understand all possible trade-offs is very important since many aspects
need to be considered when a decision needs to be made. Without the knowledge
from these trade-offs, the decisions will be too extreme (only focus on a specific ob-
jective) and they can be practically unreasonable sometimes (e.g. double the maxi-
mum tardiness just for reducing %T by 1%). Moreover, the decision makers do not
need to decide their preferences on the objectives before the design process, which
could be quite subjective in most cases.

5.2 Robustness of the Evolved Dispatching Rules

It has been shown that the evolved Pareto fronts contain very competitive rules. In
this section, we will investigate the robustness of the evolved rules, which is their
ability to maintain their performance across different simulation scenarios. In the
single objective problem, the robustness of the evolved rules can be easily examined
by measuring and comparing the performance of the rules on different scenarios.
However, the assessment of the robustness of the evolved rules are not trivial in the
case of multi-objective problems because the robustness of rules depends not only
on the values of all the objectives but also on the Pareto dominance relations of the
rules. Unfortunately, there has been no standard method to measure the robustness of
the evolved rules for the multi-objective problems. Therefore, we propose a method
to help us roughly estimate the robustness of the evolved rules. In this work, the
robustness of a rule Ri will be calculated as follows:

276 S. Nguyen et al.

F1200

1400

1600
1200 1600

600

800

1000

600 800 1000

Fmax8000

10000

12000

14000 8000 12000

2000

4000

6000

8000

2000 6000

PercentT40

60

40 60

0

20

0 20

T
600

800

1000 600 800 1000

0

200

400

0 200 400

Tmax8000

10000

12000

14000 8000 12000

0

2000

4000

6000

0 2000 6000

Evolved rules Existing rules

Fig. 10 Distribution of rules on the evolved Pareto front for the scenario 〈25,85,4〉

robustnessi = 1− ∑s∈S Hamming Distance(domis,dom∗
is)

|S|× |B| (2)

where domis = {dis1, . . . ,dis j, . . . ,dis|B|} is a binary array which stores the Pareto
dominance between Ri and each rule B j in the set B of reference rules. In a
simulation scenario s ∈ S (12 test scenarios in our work), dis j is assigned 1 when
Ri statistically dominates B j, and 0 otherwise. Here, we include in B ten bench-
mark rules that are most competitive in Fig. 8 and Fig. 9 (FDD, Slack/OPN,
OPFSLK/PT, SPT+PW+FDD, PT+WINQ+NPT+WSL, PT+WINQ+SL, SL, RR,
2PT+WINQ+NPT, and COVERT). Meanwhile, dom∗

is is also a binary array which
contains the most frequent value of dis j across all s ∈ S. The second term in equa-
tion (2) measures the average Hamming distance per dimension between domis and
dom∗

is. From this calculation, if the Pareto-dominance relations between Ri and each

Dynamic Multi-objective Job Shop Scheduling 277

rule B j are consistent across all s ∈ S, this term will be zero and the robustness is
one. In the worst case when the Pareto dominance relations are different greatly for
each scenario s, the second term in equation (2) will approach 1 and the robustness
will be near zero.

A histogram of robustness values of all evolved rules obtained by 30 MO-GPHH
runs is shown in Fig. 11. It is clear that the distribution of robustness values is
skewed to the right, which indicates that the evolved rules are reasonably robust.
The majority of the rules have the robustness values from 0.8 to 0.95 and there
is only a small proportion of evolved rules with small robustness. This result is
consistent with our observation in Section 4.2 that a small number of evolved rules
that do not perform well on unseen scenarios can be dominated by the benchmark
rules, in which case their Pareto-dominance relations are changed.

Robustness

D
en

si
ty

0.6 0.7 0.8 0.9 1.0

0
2

4
6

Fig. 11 Robustness of the evolved rules

5.3 Examples of Evolved Dispatching Rules

This section shows examples of the evolved dispatching rules. Since many rules
have been evolved, it is impossible to list all of these rules. We only show here ten
typical rules which can achieve balanced performance on all objectives that we con-
sidered in this work. These ten rules are shown in Table 6 along with their average
objective values obtained from the training scenarios. In general, the example rules
shown in the table are quite long and include different terminals from Table 1. This
suggests that different information needs to be considered in order to make good se-
quencing decisions that can favour all objectives. Therefore, it seems to be infeasible
to design such rules manually, especially when different trade-offs have to be taken
into account. Although the rules here are quite long, they are mainly synthesised

278 S. Nguyen et al.

Table 6 Some typical examples of evolved rules

Rule #1 – Objectives(757.16,3520.19,0.17,164.52,1811.77)

(((IF(SJ,RJ,max(PR,WT))+(max(RO,RT)+(RJ/IF(SJ,PR,rJ))))−WINQ)+(((max(RO,RT)+
IF(SJ,IF(SJ,PR,rJ),rJ))+(−1× (IF(SJ,PR,rJ))+IF(SJ,DD/PR,rJ)))−min(SJ,(WINQ×min(PR,WINQ)))))
−Abs((rJ−RT)+min(min(SJ,IF(SJ,PR,rJ)),(rJ−RT)))
Rule #2 – Objectives(828.45,2322.88,0.19,165.04,1931.40)

(−rJ−SJ+max(RO,RT)+(((((RJ/PR)+max(RO,RT))+max(PR,max(RO,RT)))+(−PR−RT))−0.8968051))
−Abs(IF(min(SJ,WINQ),WINQ,DD/PR)+Abs(min(SJ,WINQ)))
Rule #3 – Objectives(720.28,4383.52,0.09,105.67,2401.59)

((max(RM,(Abs(min(WT,SJ))× (RT×PR)))/PR)/Abs(PR+RO))/Abs(max(((PR×max(RT,max(APR,SJ)))× (PR
+WINQ)),((Abs(PR)× (RT×PR))×DD)%Abs(min(WT,(SJ/APR)))))
Rule #4 – Objectives(716.52,3842.36,0.11,82.67,1714.88)

((max((PR×APR),(Abs(min(WT,SJ))×WINQ))/PR)%WINQ)/Abs(max(((PR×PR)× (max(Abs(RT),max(APR,SJ))
+min(WT,(SJ/APR)))),((PR×WINQ)×DD)%Abs(min(WT,(SJ/APR)))))
Rule #5 – Objectives(708.05,4141.63,0.13,109.08,1977.63)

(((((RT/rJ)+rJ)/max(min(DD,SJ),RT))−min(−(IF(SJ,RJ,NPR)/(SJ+WINQ)),DD))+(−WINQ+(−RO−
min(min(SJ,WINQ),rJ))))+((max(SJ,rJ)+((IF(SJ,RJ,−RO)/PR)− (rJ+max((WINQ+PR),0.371))))−NPR)
Rule #6 – Objectives(687.85,5708.02,0.16,134.13,4046.06)

Abs((((RJ/SJ)/PR)/PR)/max(APR,WINQ))×Abs(((((SJ/APR)−SJ)/min(RT,SJ))×min(RT,SJ))
/min(((RJ/SJ)× (RJ/SJ)),RT))
Rule #7 – Objectives(798.58,3383.23,0.15,73.83,602.15)

((SJ/APR)+(−(min(min(RT,PR),rJ)− (min(PR,SJ)−min(WINQ,SJ)))−min(RT,SJ)))+((RT+(((RJ/SJ)/PR)
×min(RT,SJ)))+(WINQ−max(APR,WINQ)))
Rule #8 – Objectives(697.64,6306.54,0.06,114.89,4488.11)

Abs((((RJ/SJ)/PR)/PR)/min((min(PR,(RJ/SJ))− (SJ/rJ)),(DD−WINQ)))×Abs(((PR/(min(PR,RM)+WINQ))
×min(RT,SJ))/min((RT×min(PR,(RJ/SJ))),RT))
Rule #9 – Objectives(845.94,2261.88,0.27,150.63,1074.42)

((((−rJ− (−rJ%(SJ−RT)))− (WINQ+(0.559+PR)))−max(Abs(−RT+rJ),−rJ))− ((SJ−max(Abs(SJ
−RT),SJ))− (−rJ/min((RM+WT),DD))))+RT−1−SJ+DD−APR×PR−WINQ−3× (0.559+PR)
Rule #10 – Objectives(737.34,3790.15,0.13,84.86,1118.69)

max((WT−2×SJ+0.563716−APR×PR),((Abs(IF(PR+SJ,RM/PR,2×SJ−WT))/max(PR+0.024362229,
max(SJ,RT)))/Abs(max(−APR+WINQ,APR)/(RM/PR))))

∗IF(a,b,c) will return b if a≥ 0; otherwise it will return c.

based on very basic mathematical operations, and therefore it is possible to simplify
these rules or to understand how they can effectively solve the DJSS problems.

The performance of the example rules and some benchmark rules on two unseen
simulation scenarios 〈50,95,4〉 and 〈50,95,6〉 are shown in Table 7. It is easy to
realise that most benchmark rules are dominated, regarding all objectives, by some
example evolved rules. For instance, sophisticated rules such as RR and COVERT
are greatly dominated by rules #3 and #4 in the two testing simulation scenarios.
PT+WINQ+SL is the only benchmark rule that is not dominated by our example
rules, based on the average objective values shown in the table. This is not surprising
since PT+WINQ+SL is one of the most competitive rules, but there are still several
evolved rules that can dominate PT+WINQ+SL as shown in Fig. 8 and Fig. 9. Rules
#1 and #7 are two rules with results quite similar to those from PT+WINQ+SL and
only slightly slightly worse than PT+WINQ+SL in some objectives. In 〈50,95,4〉,
rule #1 is only worse than PT+WINQ+SL for T . However, it is noted that rule #1
can achieve much better %T and Tmax.

Dynamic Multi-objective Job Shop Scheduling 279

Table 7 Performance of example evolved rules

〈50,95,4〉 F Fmax %T T Tmax

PT+WINQ+SL 2991.03 7551.84 88.47 1431.15 4491.71

Slack/OPN 4532.45 13977.43 97.45 2930.66 11409.89

RR 2943.40 15050.27 85.46 1374.69 12255.53

COVERT 2744.83 37158.13 77.18 1166.01 34645.73

2PT+WINQ+NPT 2355.21 31321.28 45.65 1010.55 28785.17

PT+WINQ+NPT+WSL 3356.03 7695.30 94.06 1771.03 4481.94

SPT+PW+FDD 3710.73 6769.10 96.94 2115.04 5268.29

OPFSLK/PT 3108.31 7648.78 91.88 1530.30 5909.04

FDD 3740.53 6810.86 96.98 2144.74 5322.64

SL 3638.32 7967.81 98.59 2038.43 4732.04

Rule #1 2933.19 7096.85 68.44 1446.81 4193.42

Rule #2 3381.54 6018.19 85.10 1812.70 5486.42

Rule #3 2548.54 9075.00 46.06 1126.13 6047.45

Rule #4 2472.12 9615.42 51.21 1018.41 6983.91

Rule #5 2527.99 8182.37 56.04 1081.19 5192.21

Rule #6 2229.99 13394.98 37.33 928.19 10625.92

Rule #7 3049.49 7492.19 90.03 1462.91 4406.31

Rule #8 2323.42 16446.96 24.61 1021.91 13515.90

Rule #9 3042.21 6800.97 86.39 1477.09 4645.73

Rule #10 2629.42 7945.21 63.78 1124.64 4772.82

〈50,95,6〉 F Fmax %T T Tmax

PT+WINQ+SL 2714.00 7982.00 61.49 657.95 3148.09

Slack/OPN 3941.20 12989.18 77.26 1581.59 8974.86

RR 2811.91 11882.35 53.49 611.18 7107.35

COVERT 2999.75 31445.59 56.98 676.51 27970.88

2PT+WINQ+NPT 2355.21 31321.28 26.12 701.61 27540.38

PT+WINQ+NPT+WSL 2932.42 8021.92 68.06 771.68 3037.79

SPT+PW+FDD 3710.73 6769.10 81.53 1421.97 5064.32

OPFSLK/PT 3108.31 7648.78 68.09 927.30 5441.89

FDD 3740.53 6810.86 82.00 1448.29 5118.74

SL 3524.23 8647.86 91.95 1163.81 3672.67

Rule #1 2768.33 8172.39 40.60 817.59 3702.13

Rule #2 3264.87 6243.41 57.39 1081.99 5428.79

Rule #3 2444.66 9914.98 26.03 576.57 5190.51

Rule #4 2419.77 9898.71 28.31 520.51 5564.72

Rule #5 2426.92 9221.52 34.36 585.90 4464.28

Rule #6 2213.12 14116.06 23.18 651.85 9846.80

Rule #7 2761.50 7893.13 51.89 588.13 3061.45

Rule #8 2280.87 17798.84 14.04 627.54 13237.53

Rule #9 2934.48 7009.52 60.37 798.31 3879.64

Rule #10 2487.80 9041.86 34.35 514.90 4150.00

280 S. Nguyen et al.

6 Conclusions

Most of the dispatching rules for DJSS problems proposed in the literature are
designed for minimising a specific objective. However, the choice of a suitable dis-
patching rule has to depend on the performance of the rule across multiple conflict-
ing objectives. In this work, we show how we can use GP to handle this issue. The
proposed MO-GPHH method aims at exploring the Pareto front of evolved rules
which can be used to support the decision making process. Extensive experiments
have been performed and the results show that the evolved Pareto front contains su-
perior rules as compared with rules reported in the literature when both single and
multiple objectives are considered. Moreover, it has been shown that the obtained
Pareto front can provide valuable insights on how trade-offs should be made.

We have also discussed and implemented different analyses on the experimental
results, which help us confirm the effectiveness of the evolved dispatching rules. In
these analyses, we focus on two issues. First, we try to define a standard procedure
in order to properly compare the performance of rules within the multi-objective
stochastic environments. Second, we need to find a way to assess the robustness of
the evolved rules under different simulation scenarios. Although they are two very
important issues, there have been no existing guidelines on how they should be done.
In this work, we proposed different approaches to handle these issues. Even though
there are still some limitations with these approaches, they can nevertheless be used
as a good way to assess the performance of rules in such a complicated problem.
Certainly, these two issues can also be interesting issues for future studies.

Acknowledgements. This work is supported in part by the Marsden Fund of New Zealand
Government (VUW0806 and 12-VUW-134), administrated by the Royal Society of
New Zealand, and the University Research Fund (200457/3230) at Victoria University of
Wellington.

References

1. Atlan, L., Bonnet, J., Naillon, M.: Learning distributed reactive strategies by genetic
programming for the general job shop problem. In: Proceedings of the 7th Annual Florida
Artificial Intelligence Research Symposium (1994)

2. Baker, K.R.: Sequencing rules and due-date assignments in a job shop. Management
Science 30, 1093–1104 (1984)

3. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming: An Introduction.
Morgan Kaufmann, San Francisco (1998)

4. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using ge-
netic programming for classification with unbalanced data. IEEE Transactions on Evo-
lutionary Computation (2012), doi:10.1109/TEVC.2012.2199119

5. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Exploring
hyper-heuristic methodologies with genetic programming. Artificial Evolution 1, 177–
201 (2009)

Dynamic Multi-objective Job Shop Scheduling 281

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

7. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming for a
classic one-machine scheduling problem. Advances in Engineering Software 32(6), 489–
498 (2001)

8. Geiger, C.D., Uzsoy, R.: Learning effective dispatching rules for batch processor
scheduling. International Journal of Production Research 46, 1431–1454 (2008)

9. Geiger, C.D., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority dispatching
rules: An autonomous learning approach. Journal of Heuristics 9(1), 7–34 (2006),
doi: http://dx.doi.org/10.1007/s10951-006-5591-8

10. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules for
complex shop floor scenarios: a genetic programming approach. In: GECCO 2010: Pro-
ceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp.
257–264. ACM, New York (2010)

11. Holthaus, O., Rajendran, C.: Efficient jobshop dispatching rules: Further developments.
Production Planning & Control 11(2), 171–178 (2000)

12. Ingimundardottir, H., Runarsson, T.P.: Supervised learning linear priority dispatch rules
for job-shop scheduling. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 263–
277. Springer, Heidelberg (2011)

13. Jakobović, D., Budin, L.: Dynamic scheduling with genetic programming. In: Collet,
P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS,
vol. 3905, pp. 73–84. Springer, Heidelberg (2006)

14. Jakobović, D., Jelenković, L., Budin, L.: Genetic programming heuristics for multiple
machine scheduling. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-
Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 321–330. Springer, Heidelberg
(2007)

15. Jayamohan, M.S., Rajendran, C.: New dispatching rules for shop scheduling: a step for-
ward. International Journal of Production Research 38, 563–586 (2000)

16. Jones, A., Rabelo, L.C.: Survey of job shop scheduling techniques. Tech. rep., NISTIR,
National Institute of Standards and Technology, Gaithersburg, US (1998)

17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Nat-
ural Selection. MIT Press (1992)

18. Li, X., Olafsson, S.: Discovering dispatching rules using data mining. Journal of
Scheduling 8, 515–527 (2005)

19. Miyashita, K.: Job-shop scheduling with GP. In: GECCO 2000: Proceedings of the Ge-
netic and Evolutionary Computation Conference, pp. 505–512 (2000)

20. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons (2001)
21. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A coevolution genetic programming

method to evolve scheduling policies for dynamic multi-objective job shop scheduling
problems. In: CEC 2012: IEEE Congress on Evolutionary Computation, pp. 3332–3339
(2012)

22. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Evolving reusable operation-based
due-date assignment models for job shop scheduling with genetic programming. In:
Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS,
vol. 7244, pp. 121–133. Springer, Heidelberg (2012)

23. Nie, L., Shao, X., Gao, L., Li, W.: Evolving scheduling rules with gene expression pro-
gramming for dynamic single-machine scheduling problems. The International Journal
of Advanced Manufacturing Technology 50, 729–747 (2010)

http://dx.doi.org/10.1007/s10951-006-5591-8

282 S. Nguyen et al.

24. Panwalkar, S.S., Iskander, W.: A survey of scheduling rules. Operations Research 25,
45–61 (1977)

25. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer (2008)
26. Rafter, J.A., Abell, M.L., Braselton, J.P.: Multiple comparison methods for means. SIAM

Review 44(2), 259–278 (2002)
27. Rajendran, C., Holthaus, O.: A comparative study of dispatching rules in dynamic flow-

shops and jobshops. European Journal of Operational Research 116(1), 156–170 (1999)
28. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job shop

scheduling problem under different flow time- and tardiness-related objective functions.
International Journal of Production Research (2011)

29. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for solv-
ing multi-objective flexible job-shop problems. Computer and Industrial Engineering 54,
453–473 (2008)

30. Vepsalainen, A.P.J., Morton, T.E.: Priority rules for job shops with weighted tardiness
costs. Management Science 33, 1035–1047 (1987)

31. Wang, Z., Tang, K., Yao, X.: Multi-objective approaches to optimal testing resource al-
location in modular software systems. IEEE Transactions on Reliability 59(3), 563–575
(2010)

32. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject to
machine breakdowns with genetic programming. In: CEC 2003: IEEE Congress on Evo-
lutionary Computation, pp. 1050–1055 (2003)

Dynamic Vehicle Routing: A Memetic Ant
Colony Optimization Approach

Michalis Mavrovouniotis and Shengxiang Yang

Abstract. Over the years, several variations of the dynamic vehicle routing problem
(DVRP) have been considered due to its similarities with many real-world applica-
tions. Several methods have been applied to address DVRPs, in which ant colony
optimization (ACO) has shown promising results due to its adaptation capabilities.
In this chapter, we generate another variation of the DVRP with traffic factor and
propose a memetic algorithm based on the ACO framework to address it. Multiple
local search operators are used to improve the exploitation capacity and a diversity
scheme based on random immigrants is used to improve the exploration capacity
of the algorithm. The proposed memetic ACO algorithm is applied on different test
cases of the DVRP with traffic factors and is compared with other peer ACO algo-
rithms. The experimental results show that the proposed memetic ACO algorithm
shows promising results.

1 Introduction

The vehicle routing problem (VRP) is a classical combinatorial optimization prob-
lem, in which a fleet of vehicles need to satisfy the demand of customers while
minimizing the overall routing cost, e.g., the distance travelled, starting from and
ending to the depot [11]. It has wide applications in the real world, including three
main categories: services [6, 29], transport of goods [2, 49], and transport of persons
[18, 20]. Moreover, the arc routing problem, which is the arc routing counterpart of
the VRP, has received a lot of attention recently, due to its importance in many
real-world applications [12, 44, 47].

Michalis Mavrovouniotis · Shengxiang Yang
Centre for Computational Intelligence (CCI),
School of Computer Science and Informatics,
De Montfort University,
The Gateway, Leicester LE1 9BH, U.K.
e-mail: {mmavrovouniotis,syang}@dmu.ac.uk

A.Ş. Etaner-Uyar et al. (eds.), Automated Scheduling and Planning, 283
Studies in Computational Intelligence 505,
DOI: 10.1007/978-3-642-39304-4_11, c© Springer-Verlag Berlin Heidelberg 2013

{mmavrovouniotis,syang}@dmu.ac.uk

284 M. Mavrovouniotis and S. Yang

The VRP has been proven to be NP-hard [28]. A number of variations of the tradi-
tional VRP have been studied, including the capacitated VRP (CVRP) with service
times, where each vehicle has a limited capacity and service time; the multiple depot
VRP, where multiple depots exist; the VRP with time windows (VRPTW), where
each customer must be visited during a specific time slot; the VRP with pick-up
and delivery, where goods have to be picked-up and delivered in specific amounts
at the customers; and the heterogeneous fleet VRP, where vehicles have different
capacities.

In contrast to the classical definition of the VRP where the inputs are known
beforehand, in real-world applications, the information available may change during
the execution of routes. In such cases, we have a dynamic environment. Over the
years, many variations of the dynamic VRP (DVRP) have been studied, including
the VRP with stochastic demands, the dynamic VRPTW, and many others (see [42]
for a comprehensive review). In this book chapter, we consider and generate our
own DVRP with traffic factors where the cost between two locations (or customers)
varies depending on the period of the day.

A simple solution to address the DVRP is to consider the arrival of new traffic in-
formation as a problem that needs to be solved from scratch. However, such solution
requires an extensive computation time to re-optimize while in real-world applica-
tions the time available is limited [26]. Ant colony optimization (ACO) algorithms
have proved to be good meta-heuristics to the simplest version of the DVRP with
traffic factors, which is the dynamic travelling salesman problem (DTSP) [35, 36]
and to other stationary or DVRP variations [1, 45]

Since ACO algorithms have been designed for static optimization problems, they
lose their adaptation capabilities quickly because of the stagnation behaviour, where
all ants follow the same path from the early stages of the execution [9, 15]. Re-
cently, several approaches have been proposed to avoid the stagnation behaviour
and address the single- or multi-vehicle DVRP, which includes: (1) local and global
restart strategies [23]; (2) pheromone manipulation schemes to maintain diversity
[17]; (3) increasing diversity via immigrants schemes [35, 36]; (4) memory-based
approaches [21, 24]; and (5) memetic algorithms (MAs) [33].

Among the approaches, the memetic ACO (M-ACO) algorithm has shown
promising results, which is a hybridization of an ACO algorithm with a local search
(LS) operator. Every iteration of the algorithm, the best ant is selected for local im-
provement by a LS operator. The MAs based on ACO are not so common, since
most MAs are based on the evolutionary computation framework [33]. Some MAs
based on ACO have been proposed for some problems under static environments
[31, 30, 53], because of the strong exploitation an LS scheme provides. However, in
dynamic optimization problems (DOPs), exploration needs to be increased in order
to address the stagnation behaviour. Therefore, in M-ACO a diversity scheme based
on random immigrants is integrated to achieve a balance between exploitation and
exploration.

The remaining of this chapter is outlined as follows. Section 2 describes the pro-
posed DVRP with traffic factors used in the experiments. Section 3 describes one of
the best performing ACO algorithms applied to the DVRP, whereas Section 4 gives

Dynamic Vehicle Routing 285

details of the proposed MA based on ACO. Section 5 presents the experimental re-
sults and analysis. Finally, Section 6 concludes this contribution and points out the
future work.

2 Problem Description

2.1 Static VRP

The VRP became one of the most popular combinatorial optimization problems, due
to its similarities with many real-world applications. The VRP is classified as NP-
hard [28]. The basic VRP is the capacitied VRP, where a number of vehicles with
a fixed capacity need to satisfy the demand of all the customers, starting from and
finishing to the depot. A VRP without the capacity constraint or with one vehicle
can be seen as a travelling salesman problem (TSP). There are many variations and
extensions of the VRP, such as the multiple depot VRP, the VRP with pickup and
delivery, the VRP with time windows and combinations of different variations (for
more details see [50]). In this paper the basic VRP is considered.

Usually, the VRP is represented by a complete weighted graph G = (V,E), with
n+ 1 nodes, where V = {u0, . . . ,un} is a set of vertices corresponding to the cus-
tomers (or delivery points) ui (i= 1, · · · ,n) and the depot u0 and E = {(ui,u j) : i �= j}
is a set of edges. Each edge (ui,u j) is associated with a non-negative di j which rep-
resents the distance (or travel time) between ui and u j. For each customer ui, a
non-negative demand δ j is given. For the depot u0, a zero demand is associated, i.e.,
δ0 = 0.

The aim of the VRP is to find the route (or a set of routes) with the lowest cost
without violating the following constraints:

• Every customer is visited exactly once by only one vehicle.
• Every vehicle starts and finishes at the depot.
• The total demand of every vehicle route must not exceed the vehicle capacity Q.

Formally, the VRP can be described as follows:

Minimize
n

∑
i=0

n

∑
j=0

di j

v

∑
k=1

xk
i j, (1)

subject to:
n

∑
j=0

δ j

(
n

∑
i=0

xk
i j

)
≤ Q,∀k ∈ {1, . . . ,v}, (2)

xk
i j =

{
1, if (ui,u j) is covered by vehicle k,

0, otherwise,
(3)

where xk
i j ∈ {0,1}, n is the number of customers, v is the number of vehicles, which

is not fixed but chosen by the algorithm during execution, di j is the distance between

286 M. Mavrovouniotis and S. Yang

customers ui and u j, δ j is the demand of customer u j, and Q is the capacity of vehicle
k. The objective function in Equation (1) is to minimize the distance travelled by all
vehicles that are used subject to the capacity constraint in Equation (2).

A lot of algorithms have been proposed to solve small instances of different vari-
ations of the VRP, either exact or approximation algorithms [41, 50]. Although exact
algorithms guarantee to provide the global optimum solution, an exponential time is
required in the worst case scenario, because the VRP is NP-hard [28]. On the other
hand, approximation algorithms, i.e., evolutionary algorithms or ACO algorithms,
can provide a good solution efficiently but cannot guarantee the global one [25, 39].

2.2 Dynamic VRP

The VRP becomes more challenging if it is subject to a dynamic environment, since
the moving optimum needs to be tracked [26]. From the stationary VRP described
above we generate a dynamic variation where the inputs of the problem change
dynamically during the execution of the algorithm. There are many variations of the
DVRP, such as the DVRP with dynamic demand [27, 43].

In this paper, we generate a DVRP with traffic factors, where each edge (ui,u j)
is associated with a traffic factor ti j. Therefore, the cost to travel from ui to u j is
ci j = di j × ti j. Note that the cost to travel from u j to ui may differ due to different
traffic factors. For example, one road may have more traffic in one direction and no
traffic in the opposite direction.

Every f iterations, a random number R ∈ [FL,FU] is generated to represent poten-
tial traffic jams, where FL and FU are the lower and upper bounds of the traffic factor,
respectively. Each edge has a probability m to have a traffic factor, by generating a
different R to represent high and low traffic jams in different roads, i.e., ti j = 1+R
where the remaining edges are set to have a traffic factor ti j = 1, which indicates no
traffic. Note that f and m represent the frequency and magnitude of changes in the
DVRP, respectively.

Depending on the period of the day, environments with different traffic factors
can be generated. For example, during the rush hour periods, a higher probability
is given to generate R closer to FU , whereas during evening hour periods, a higher
probability is given to generate R closer to FL.

3 Ant Colony Optimization for the DVRP

3.1 Ant Colony System (ACS)

An ACO algorithm consists of a population of μ ants where they construct solutions
and share information with each other via their pheromone trails [3]. Ants “read”
pheromone from others and “write” pheromone to their trails. The first ACO algo-
rithm developed is the Ant System (AS) [13]. Many variations and extensions of
the AS have been developed over the years and applied to different optimization
problems [4, 14, 10, 32, 46].

Dynamic Vehicle Routing 287

The best performing ACO algorithm for the VRP is the ACS [14, 16] and it
has a wide application in the real-world application [45]. There is a multi-colony
variation of this algorithm applied to the VRPTW [16]. In this paper, the single
colony variation is considered, which has been applied to the DVRP with stochastic
demands [37, 38]. Initially, all the ants are placed on the depot and all pheromone
trails are initialized with an equal amount. With a probability 1−q0, where 0≤ q0 ≤
1 is a parameter of the pseudo-random proportional decision rule (usually set to 0.9
for ACS), an ant, say ant k, chooses the next customer j from customer i, as follows:

pk
i j =

⎧⎪⎨
⎪⎩

[τi j]
α
[ηi j]

β

∑l∈Nk
i
[τil]

α [ηil]
β , if j ∈ Nk

i ,

0, otherwise,

(4)

where τi j is the existing pheromone trail between customers i and j, ηi j is the heuris-
tic information available a priori, which is defined as 1/ci j, where ci j is the distance
travelled (including ti j) between customers i and j, Nk

i denotes the neighbourhood
of unvisited customers of ant k when its current customer is i, and α and β are the
two parameters that determine the relative influence of pheromone trail and heuristic
information, respectively. With the probability q0, ant k chooses the next city, i.e., z,
with the maximum probability, which satisfies the following formula:

z = argmax
j∈Nk

i

[τi j]
α [ηi j]

β . (5)

However, if the choice of the next customer will lead to an infeasible solution, i.e.,
exceeding the maximum capacity of the vehicle, the depot is chosen and a new
vehicle route starts.

When all ants construct their solutions, the best ant retraces the solution and
deposits pheromone globally according to its solution quality on the corresponding
trails, as follows:

τi j ← (1−ρ)τi j +ρΔτbest
i j ,∀(i, j) ∈ T best , (6)

where 0 < ρ ≤ 1 is the pheromone evaporation rate and Δτbest
i j = 1/Cbest , where

Cbest is the total cost of the best tour T best . Moreover, a local pheromone update is
performed every time an ant chooses another customer j from customer i as follows:

τi j ← (1−ρ)τi j +ρτ0, (7)

where ρ is defined as in Equation (6) and τ0 is the initial pheromone value.
The pheromone evaporation is the mechanism that helps the population to forget

useless solutions constructed in previous environments and adapt to the new envi-
ronment. The recovery time depends on the size of the problem and magnitude of
change.

288 M. Mavrovouniotis and S. Yang

3.2 React to Dynamic Changes

In Bonabeau et al. [5], it was discussed that traditional ACO algorithms may have
good performance in DOPs, since they are very robust algorithms. The mechanism
which enables ACO algorithms to adapt in DOPs is the pheromone evaporation.
Lowering the pheromone values enables the algorithm to forget bad decisions made
in previous iterations. Moreover, when a dynamic change occurs, it will eliminate
the pheromone trails of the previous environment that are not useful, or not vis-
ited frequently, in the new environment, where the ants may be biased and can not
adapt well.

The ACS algorithm, which follows the traditional ACO framework, can be ap-
plied directly to the proposed DVRPs with traffic factors, without any modifications,
apart from the heuristic information where the traffic factor needs to be considered.
Further special measures when a dynamic change occurs are not required, due to the
pheromone evaporation. On the other hand, the ACS algorithm with a complete re-
initialization of pheromone trails when a dynamic change occurs may look a better
choice instead of relying just to the pheromone evaporation. However, such actions
can be a sufficient choice in DOPs where the frequency of change is available be-
forehand, which usually is not the case in real-world applications.

4 Proposed Approach for the DVRP

4.1 Framework of ACO-Based Memetic Algorithm

The M-ACO algorithm has been previously applied to the DTSP and showed some
promising results [33]. It is based on the P-ACO algorithm framework which is the
memory-based version of traditional ACO and has been developed especially for
DOPs, due to to the knowledge transferred directly from the previous environment
to a new one using the solutions stored in the population list. In this chapter, we
apply the M-ACO algorithm to the DVRP.

The framework of M-ACO differs from the traditional ACO framework since it
maintains a memory (population-list) of limited size, which is used to store the best
ants. The population-list is used every iteration to update the pheromone, instead
of the whole population. The pheromone trails on each iteration depend on the ants
stored in the population-list and pheromone evaporation is not applied.

The construction of solutions, the initial phase and the first iterations of the M-
ACO algorithm work in the same way as in the traditional ACO algorithm; see Equa-
tion (4). The pheromone trails are initialized with an equal amount of pheromone
and the population-list M of size K is empty. For the first K iterations, the best-so-far
ant is selected to be improved by a LS operator and deposits a constant amount of
pheromone, which is defined as follows:

τi j ← τi j +Δτk
i j,∀ (i, j) ∈ T k, (8)

Dynamic Vehicle Routing 289

where Δτk
i j =(τmax−τinit)/K. Moreover, τmax and τinit denote the maximum and ini-

tial pheromone amount, respectively. This positive update procedure of Equation (8)
is performed whenever an ant enters the population-list.

On iteration K+1, the best-so-far ant, which has been improved by a LS operator
previously, enters the population-list and updates its pheromone trails positively.
However, the ant that entered the population-list first needs to be removed in order
to make room for the iteration-best ant, and thus, a negative constant update to its
corresponding pheromone trails is done, which is defined as follows:

τi j ← τi j −Δτk
i j,∀ (i, j) ∈ T k, (9)

where Δτk
i j is defined as in Equation (8). This mechanism keeps the pheromone trails

between a certain minimum value τmin, which is equal to τinit , and a maximum value
τmax, which can be calculated by τinit +∑K

k=1 Δτk
i j . We have seen the importance

of keeping the pheromone trails within certain bound from the ACS (implicitly)
and Max-Min AS (explicitly) [46], which are the two of the best performing ACO
algorithms for stationary problems.

This population-list update policy is based on the Age of ants. However, other
strategies have also been proposed by researchers, such as Quality and Prob [22].
From the experimental results in [22], the default Age strategy is more consistent
and performs better than the others, since other strategies have more chances to
maintain identical ants into the population-list, which leads the algorithm to the
stagnation behaviour. This is due to the fact that high levels of pheromone will be
generated into a single trail and dominate the search space.

Furthermore, a diversity scheme based on random immigrants is applied with
the M-ACO, because of the strong exploitation the LS operator will provide. Even
if the Age strategy is used, the population-list may store identical solutions and
lead the algorithm to stagnation behaviour and degrade the performance in DOPs.
Therefore, the diversity scheme checks whether the ants in the population-list keeps
a certain diversity. If not, a random immigrant is generated to replace an ant in the
population-list. The M-ACO framework is presented in Algorithm 1.

4.2 Swap Local Search Operators

Within M-ACO, LS operators are applied to improve the solution represented by
ants in a local area. The main concern of ACO-based MAs is which ant should be
selected for local improvement. Usually, LS is applied to all the ants in the current
population to improve their solution quality [46]. However, this may be infeasible
for DOPs considering that the evaluations per iteration is limited [52]. A good choice
is to select only the best ant for local improvement for several LS steps.

In M-ACO, multiple LS operators are used, i.e., the simple swap and adaptive
swap operators [34]. In the simple swap operator, two customers, say customers i
and j, are randomly selected and swapped from ant p. Differently, in the adaptive
swap operator, a customer i is randomly selected from ant p and the same customer
i is located in another ant q, which is randomly selected. Then, the predecessor

290 M. Mavrovouniotis and S. Yang

Algorithm 1. M-ACO for DVRP
1: Initialize parameters
2: Initialize pheromone trails τinit
3: M := empty
4: while (termination condition not satisfied) do
5: for (k := 1 to μ) do
6: Construct a solution by ant k
7: Update statistics
8: end for
9: best := find the best ant

10: Swaps(best) using Algorithm 2
11: M.enQueue(best)
12: Add pheromone using Equation (8)
13: if (M is full) then
14: M.deQueue()
15: Remove pheromone using Equation (9)
16: end if
17: if (Div of M is zero using Equation (15)) then
18: temp := generate a random immigrant
19: Replace a randomly selected ant in M by temp
20: end if
21: end while

customer i+1 from ant q is located in ant p. Finally, the swap of the customers in p
is performed between the predecessor i+1 and the city adapted from the predecessor
of ant q. Note that all the swaps are allowed whenever the capacity constraint is still
satisfied, in order to represent a feasible solution.

The use of multiple LS operators has been found beneficial in many MAs [48,
52]. This is because different LS operators may improve the solution quality on
different problem instances, due to the problem dependency. Moreover, different
LS operator may perform better on different periods of the optimization process
[8, 40]. For example, in M-ACO for the DTSP [33] simple and adaptive inversions
are used as LS in the DTSP. The simple inversion has been found more effective on
later stages of the optimization process, and the adaptive inversion on early stages.
The two LS operators are selected probabilistically to promote both competition and
cooperation of different LS operators and activate them on different periods of the
optimization process.

Similarly, in M-ACO for the DVRP, both the simple and adaptive swap operators
are activated probabilistically at every step of an LS operation on every iteration of
the algorithm as follows. Let ps and pa denote the probability of applying simple and
adaptive swaps to the individual selected for LS, respectively, where ps + pa = 1.
Initially, the probabilities are both set to 0.5 in order to promote a fair competition
between the two operators. The probabilities are adjusted according to the improve-
ment each inversion operator has achieved on every LS step. The probability of the
operator with the higher improvement will be increased using a mechanism, which
is similar to the one introduced in [33, 52] and is presented in Algorithm 2.

Dynamic Vehicle Routing 291

Algorithm 2. Swaps(best)
1: if (environmental change is detected) then
2: pa := ps := 0.5;
3: end if
4: ξa := ξs := 0
5: for (i := 1 to ls) do
6: if (rand()≤ ps) then
7: Perform simple swap
8: Update ξs

9: else
10: Perform adaptive awap
11: Update ξa

12: end if
13: end for
14: Update pa and ps

Let ξ denote the degree of improvement of the selected ant after an LS step,
which is calculated as follows:

ξ =

∣∣∣Cbest′ −Cbest
∣∣∣

Cbest
, (10)

where Cbest′ is the tour cost of the best ant after applying an LS step, using the simple
or adaptive swap operator, and Cbest is the tour cost of the best ant before applying
the LS step. When the number of LS steps reaches the pre-set step size, denoted as
ls, the degree of improvement regarding simple swap and adaptive swap operators,
denoted as ξs and ξa, respectively, is calculated and used to adjust the probabilities
of selecting simple and adaptive swap operators in the next iteration, ps(t + 1) and
pa(t + 1), as follows:

ps(t + 1) = ps(t)+ ξs(t), (11)

pa(t + 1) = pa(t)+ ξa(t), (12)

ps(t + 1) =
ps(t + 1)

ps(t + 1)+ pa(t + 1)
, (13)

pa(t + 1) = 1− ps(t + 1), (14)

where ξs(t) and ξa(t) are the total degree of improvement achieved by simple and
adaptive swap operators at iteration t, respectively.

292 M. Mavrovouniotis and S. Yang

4.3 Increasing the Population Diversity

The main problem of ACO algorithms when applied to DOPs is the premature con-
vergence. Once the algorithm has converged to an optimum, it cannot adapt well to
the new environment when a dynamic change occurs. This is because high intensity
of pheromone trails are generated to the solution before the change and may bias
the population after the change until they are eliminated. As a result, the population
of ants will lose their adaptation capabilities to explore the promising areas in the
search space.

When an LS operator is applied to ACO, the premature convergence becomes
even worse because of the strong exploitation the LS operator provides. Immigrants
schemes have been found effective when integrated to ACO algorithms [35, 36],
since they maintain a certain level of diversity within the population. The general
idea of immigrants schemes is to generate immigrant ants, in every iteration of the
algorithm, that represent random solutions, to replace a small portion of ants in the
current population [19, 51].

In the M-ACO algorithm, there is no need to generate immigrant ants in every
iteration in order not to disturb the optimization process of the LS operator. There-
fore, to increase the diversity without disturbing the optimization process of the LS,
the random immigrants are generated only when all the ants currently stored in the
population-list are identical. To check whether the ants in the population-list are
identical a diversity metric is used on every iteration i of run j, as follows:

Div =
1

K(K − 1)

K

∑
p=1

K

∑
q �=p

S(p,q), (15)

where K is the size of the population-list and S(p,q) is a similarity metric between
ant p and ant q, which is calculated as follows:

S(p,q) = 1− CEpq

n+ avg(NVp,NVq)
. (16)

where CEpq are the common edges of ants p and q, n is the number of customers,
and NVp and NVq are the number of vehicles of ants q and p, respectively. This
diversity metric is based on the genotype of the solution and it is more accurate,
than a metric based on the phenotype. This is because for a permutation problem,
two different solutions may have identical phenotype. However, a method based on
the genotype is much more computationally expensive than the phenotype one, but
considering that it is applied to the population-list of small size (usually K = 4), it
is sufficient to use it.

If Div is 0.0, it means that all the ants are identical. As a result, a high intensity of
pheromone will be generated into one trail, forcing the population to converge into
one path only. Therefore, every time the population reaches Div = 0.0, a random
immigrant ant is generated to replace an ant in the population-list.

Dynamic Vehicle Routing 293

4.4 Behaviour in Dynamic Environments

The M-ACO algorithm may not have pheromone evaporation, but it has a more
aggressive mechanism to eliminate pheromone trails that may limit the adaptation
capabilities of ACO. The corresponding pheromone trails of the ant replaced from
the population-list are removed.

In dynamic environments, the worst solution in the previous environment may be
fit in a new environment. The traditional ACO framework considers the quality of
solution to deposit pheromone, i.e., the better the solution, the higher the pheromone
is deposited. In M-ACO, a constant amount of pheromone is deposited for all solu-
tions stored in the population-list giving an equal chance to less fitted solutions, but
possibly useful to the new environment, to be considered.

Finally, both pa and ps from Equations (11) and (12) are set to their initial value,
i.e., 0.5, when an environmental change occurs in order to re-start the cooperation
and competition when a new environment arrives. An environmental change can be
detected by re-evaluating the population-list in every iteration t. Therefore, whenever
there is a change to the solution quality of any ant stored in the population-list from
iteration t in the next iteration t + 1, it means that a dynamic change has occurred.

5 Experimental Study

5.1 Experimental Setup

The proposed M-ACO algorithm is tested on the DVRP instances that are con-
structed from three static benchmark VRP problem instances1. Using the method
described in Section 2, several dynamic test cases of DVRP with traffic factors are
generated with FL = 0 and FU = 5. The value of f was set to 10 and 100, indicating
fast and slow environmental changes, respectively. The value of m was set to 0.1,
0.25, 0.5, and 0.75, indicating the degree of environmental changes from small, to
medium, and large, respectively. As a result, eight dynamic test DVRPs, i.e., two
values of f × four values of m, were generated from each static VRP instance.

In order to analyze and investigate the performance of the M-ACO algorithm,
several ACO algorithms taken from the literature are considered as the peer algo-
rithms for comparison as follows:

• ACS [38]: a traditional ACO algorithm which is described in Section 3
• P-ACO [24]: the memory-based version of ACO algorithm that has been applied

to the DTSP. In this chapter, we apply P-ACO to the DVRP since our proposed
algorithm uses its framework.

• Random immigrants ACO (RIACO) [35]: it has a different framework from both
ACO and P-ACO, since it maintains a short-term memory where no ants can
survive in more than one iteration. Random immigrants are generated to increase
diversity.

1 Taken from the Fisher benchmark instances available at
http://neo.lcc.uma.es/vrp/

http://neo.lcc.uma.es/vrp/

294 M. Mavrovouniotis and S. Yang

The parameters of the investigated algorithms are chosen from our preliminary ex-
periments and some of them are taken from the literature [35, 36]. For all algorithms
α = 1, β = 5, q0 = 0.0 (expect in ACS which uses the pseudo-random proportional
rule; therefore q0 = 0.9).

The number of ants μ in the population for each algorithm varies in order to have
the same number of evaluations every iteration. For M-ACO and P-ACO K = 4 and
for M-ACO the number of LS steps is set to ls = 15. The population size for ACS
and RIACO was set to μ = 50, for P-ACO was set to μ = 50−K, and for M-ACO
was set to to μ = 50−K− ls.

For each algorithm on a DVRP, 30 independent runs were executed on the same
environmental changes. The algorithms were executed for 1000 iterations and one
observation was taken every iteration. The overall performance of an algorithm on
a DVRP instance is defined as follows:

P̄best =
1
G

G

∑
i=1

(
1
R

R

∑
j=1

Pbest
i j

)
, (17)

where G is the total number of iterations, R is the number of runs, and Pbest
i j is the

tour cost of the best-so-far ant, after a change, for iteration i of run j, respectively.

5.2 Effect of LS Operators

The experimental results regarding the effect of the LS operators are presented in
Fig. 1 for different static VRP instances. We use the framework of M-ACO de-
scribed in Section 4, without LS, with simple swap, with adaptive swap, and with
both simple and adaptive swaps activated as in Equations (11) and (12). From the
experimental results, several observation can be drawn.

First, it is obvious that all algorithms with LS operators outperform the one where
LS is not used in all problems. This is as expected since LS operators promote the
exploitation and help the algorithm converge to a much better solution.

Second, different LS operators work better on different instances as expected.
Simple swap performs better on F-n45-k4 over the other two LS operators. On
the other hand, the combination of simple and adaptive swaps performs better on the
remaining problem instances. This result indicates that LS operators are problem-
dependent, which is natural since it is almost impossible to develop an algorithm to
outperform the remaining algorithms on all problem instances.

Third, the combination of the two LS operators usually performs better. The
adaptive swap in F-n72-k4 and F-n135-k7 converges faster than the simple
swap. On the other hand, the simple swap is able to converge to a better optimum
than the adaptive one. This is because the adaptive swap after several iterations is
more likely to have similar ants in the population. As a result, two customers ob-
tained from similar (or even identical) ants will not have an effect for the swap.

Dynamic Vehicle Routing 295

 750

 800

 850

 900

 950

 1000

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n45-k4

No Swap
Simple Swap

Adaptive Swap
Simple+Adaptive Swap

 260

 270

 280

 290

 300

 310

 320

 330

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n72-k4

No Swap
Simple Swap

Adaptive Swap
Simple+Adaptive Swap

 1200

 1250

 1300

 1350

 1400

 1450

 1500

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n135-k7

No Swap
Simple Swap

Adaptive Swap
Simple+Adaptive Swap

Fig. 1 Dynamic behaviour of the P-ACO with different LS operators on the stationary VRP
instances.

5.3 Comparing M-ACO with Other Peer ACO Algorithms

The experimental results regarding the offline performance of the investigated algo-
rithms for different dynamic test cases of DVRP with traffic factors are presented in
Table 1. The corresponding Wilcoxon rank-sum test results at a 0.05 level of signif-
icance are presented in Table 2. In the comparisons, “+” or “−” indicates that the
first algorithm is significantly better or the second algorithm is significantly better,
respectively, and “∼” indicates no significance between the algorithms. Moreover,
to better understand the dynamic behaviour of algorithms, the offline performance
against the first 500 iterations is plotted in Fig. 2 for DVRPs with f = 100 and
m = 0.1 and m = 0.75. From the experimental results, several observations can be
made by comparing the behaviour of the algorithms.

First, ACS is outperformed by its competitors in all problem instances for all
dynamic cases; see the comparisons of ACS ⇔ P-ACO, ACS ⇔ RIACO and M-
ACO ⇔ ACS in Table 2. This is because ACS depends on pheromone evaporation
to eliminate pheromone trails that represent solutions of the previous environment
that are not useful to the new environment. As a result, the population of ants may be

296 M. Mavrovouniotis and S. Yang

Table 1 Experimental results of algorithms regarding the offline performance for DVRPs
with traffic factors

Alg. & Inst. F-n45-k4

f = 10 f = 100
m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
ACS 897.5 972.5 1205.6 1648.0 883.4 929.1 1120.2 1536.9

P-ACO 839.7 903.3 1092.9 1486.8 836.2 862.1 1003.5 1356.6
RIACO 841.2 902.4 1089.5 1482.9 834.9 867.5 1016.1 1375.1
M-ACO 838.2 901.8 1085.3 1478.0 823.8 855.2 994.4 1336.2

Alg. & Inst. F-n72-k4

f = 10 f = 100
m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
ACS 305.3 338.6 426.2 596.2 297.3 324.6 412.7 547.9

P-ACO 291.0 323.8 406.1 568.2 274.2 297.5 367.5 478.4
RIACO 294.4 322.8 401.7 562.5 280.6 303.5 375.2 489.6
M-ACO 291.0 323.4 405.1 566.0 273.2 296.7 365.4 476.6

Alg. & Inst. F-n135-k7

f = 10 f = 100
m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
ACS 1427.7 1567.3 1967.4 2745.7 1383.7 1519.4 1820.5 2536.2

P-ACO 1412.1 1565.7 1939.5 2705.5 1319.3 1452.5 1674.4 2280.8
RIACO 1417.8 1554.2 1922.1 2676.0 1353.1 1457.2 1698.6 2358.4
M-ACO 1411.8 1563.8 1931.9 2695.4 1316.7 1444.9 1674.3 2277.0

Table 2 Statistical test results regarding the offline performance of the algorithms for DVRPs
with traffic factors

Alg. & Inst. F-n45-k4 F-n72-k4 F-n135-k7

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
ACS⇔P-ACO − − − − − − − − − − − −
ACS⇔RIACO − − − − − − − − − − − −

P-ACO⇔RIACO + ∼ − ∼ + − − − + − − −
M-ACO⇔ACS + + + + + + + + + + + +

M-ACO⇔P-ACO + ∼ + + ∼ ∼ + + ∼ ∼ + +
M-ACO⇔RIACO + ∼ + + + − − − + − − −

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
ACS⇔P-ACO − − − − − − − − − − − −
ACS⇔RIACO − − − − − − − − − − − −

P-ACO⇔RIACO ∼ + + + + + + + + + + +
M-ACO⇔ACS + + + + + + + + + + + +

M-ACO⇔P-ACO + + + + + ∼ + ∼ ∼ + ∼ ∼
M-ACO⇔RIACO + + + + + + + + + + + +

Dynamic Vehicle Routing 297

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (f = 100, m = 0.1)

ACS
P-ACO
RIACO
M-ACO

 1200

 1400

 1600

 1800

 2000

 2200

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (f = 100, m = 0.75)

ACS
P-ACO
RIACO
M-ACO

 260

 270

 280

 290

 300

 310

 320

 330

 340

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (f = 100, m = 0.1)

ACS
P-ACO
RIACO
M-ACO

 400

 450

 500

 550

 600

 650

 700

 750

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (f = 100, m = 0.75)

ACS
P-ACO
RIACO
M-ACO

 1250

 1300

 1350

 1400

 1450

 1500

 1550

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (f = 100, m = 0.1)

ACS
P-ACO
RIACO
M-ACO

 2000

 2200

 2400

 2600

 2800

 3000

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (f = 100, m = 0.75)

ACS
P-ACO
RIACO
M-ACO

Fig. 2 Dynamic behaviour of the investigated ACO algorithms on DVRPs with traffic factors

biased and explore areas away from the optimum and the performance is degraded.
On the other hand, RIACO increases the diversity using random immigrants, and in
P-ACO and M-ACO, knowledge is transferred directly using the stored solutions in
the population-list.

Second, M-ACO outperforms RIACO in almost all dynamic cases with f = 10
and m = 0.1, and all the dynamic cases with f = 100; see the comparisons of M-
ACO ⇔ RIACO in Table 2. In fast changing environments, i.e., when f = 10, there
is no enough time to gain knowledge and transfer it to the new environment. How-
ever, in cases where the environment changes slightly or when the search space is

298 M. Mavrovouniotis and S. Yang

small, i.e., F-n45-k4, the knowledge transferred is effective since the environ-
ments before and after a change are similar. As it was expected RIACO is the win-
ning algorithm in fast and significantly changing environments since the diversity is
increased randomly, without the consideration of any information from the previous
environment. In contrast, the performance of RIACO is degraded in slowly chang-
ing environments since the diversity generated may disturb the optimization process
due to randomization. M-ACO performs better since there is enough time available
to gain knowledge and for the LS operator to improve the solution quality.

Third, M-ACO outperforms P-ACO in almost all dynamic cases; see compar-
isons of M-ACO ⇔ P-ACO in Table 2. This is because M-ACO uses LS operators
that improve the performance as observed in Fig. 1, previously. However, in some
dynamic cases M-ACO is not significantly better than P-ACO, e.g., with f = 10
and m = 0.1 and m = 0.25. The reason may possibly rely on the diversity scheme
used, where random immigrants are activated every time the ants in the population-
list are identical. As discussed previously, the random immigrants may disturb the
optimization process, even if they are not generated on every iteration, and may de-
stroy the improvements made from the LS operators. However, this issue requires
further investigation, since if a different diversity scheme is used it may improve the
performance of M-ACO even more.

6 Conclusions and Future Work

A memetic algorithm based on the ACO framework has been applied to a variation
of DVRP with traffic factors. Multiple LS operators have been applied to the best
ant on each iteration to improve the solution quality. Moreover, random immigrants
are activated each time the population reaches stagnation behaviour to maintain di-
versity, which is important when addressing DOPs.

The proposed M-ACO algorithm has been compared with other peer ACO
algorithms on different dynamic test cases of the aforementioned DVRP. From the
experimental results, the following concluding remarks can be drawn. First, the
LS operators promotes the performance of ACO in DVRPs. Second, RIACO per-
forms better than M-ACO in fast and significantly changing environments. Third,
the framework in which M-ACO and P-ACO are based, performs better than the
traditional ACO framework in DVRPs. Finally, the knowledge transferred from
M-ACO and P-ACO is effective in slowly changing environments and some fast
changing environments that change slightly.

In general, the performance of M-ACO is good from our preliminary results, but
it can be furthermore improved if a better balance between exploration and exploita-
tion can be achieved. The exploitation is achieved using the LS operators, whereas
the exploration using the random immigrants. However, in some dynamic cases the
diversity scheme used may destroy the improvement gained from the LS opera-
tor. A similar observation has been found when M-ACO has been applied to the
DTSP [33].

Dynamic Vehicle Routing 299

Therefore, for future work it would be interesting to apply other diversity scheme,
i.e., activate elitism-based immigrants, or even multiple diversity schemes to M-
ACO and investigate if an appropriate balance between exploration and exploita-
tion can be achieved for M-ACO in DOPs. Another future work is to apply other
more specialized LS operators to M-ACO that may improve the performance even
more [7].

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of U.K. under Grant EP/K001310/1.

References

1. Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle routing
problem. Advanced Engineering Informatics 18, 41–48 (2004)

2. Bielding, T., Görtz, S., Klose, A.: On-line routing per mobile phone: a case on subse-
quence deliveries of newspapers. In: Beckmann, M., et al. (eds.) Innovations in Distribu-
tion Logistics. LNEMS, vol. 619, pp. 29–51. Springer, Heidelberg (2009)

3. Bullnheimer, B., Haı̈ti, R., Strauss, C.: An improved ant system algorithm for the vehicle
routing problem. Annals of Operations Research 89, 319–328 (1999)

4. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank based version of the ant system
- a computational study. Central European Journal for Operations Research and Eco-
nomics 7(1), 25–38 (1999)

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York (1999)

6. Borenstein, Y., Shah, N., Tsang, E., Dorne, R., Alsheddy, A., Voudouris, C.: On the
partitioning of dynamic workforce scheduling problems. Journal of Scheduling 13(4),
411–425 (2010)

7. Bräysy, O., Gendreau, M.: VRPTW, Part I: Route construction and local search algo-
rithms. Transportation Science 39, 104–118 (2005)

8. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Summer, M.: A fast adaptive
memetic algorithm for online and offline control design of PMSM drives. IEEE Trans-
actions on Systems, Man and Cybernetics, Part B: Cybernetics 37, 28–41 (2007)

9. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Pro-
ceedings of the 1st European Conference on Artificial Life, pp. 134–142 (1992)

10. Cordón, O., de Viana, I.F., Herrera, F., Moreno, L.: A new ACO model integrating evo-
lutionary computation concepts: The best worst Ant System. In: Proceedings of the 2nd
International Workshop on Ant Algorithms, pp. 22–29 (2000)

11. Dantzig, G., Ramser, J.: The truck dispatching problem. Management science 6(1), 80–
91 (1959)

12. De Rosa, B., Improta, G., Ghiani, G., Musmanno, R.: The arc routing and scheduling
problem with transshipment. Transportation Science 36(3), 301–313 (2002)

13. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperat-
ing agents. IEEE Transactions Systems, Man and Cybernetics, Part B: Cybernetics 26(1),
29–41 (1996)

14. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to
the travelling salesman problem. IEEE Transactions on Evolutionary Computation 1(1),
53–66 (1997)

15. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, London (2004)

300 M. Mavrovouniotis and S. Yang

16. Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A multiple ant colony
system for vehicle routing problems with time windows. In: Corne, D., et al. (eds.) New
Ideas in Optimization, pp. 63–76 (1999)

17. Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP. In: Dorigo, M., Di Caro,
G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 88–99. Springer,
Heidelberg (2002)

18. Fabri, A., Recht, P.: On dynamic pickup and delivery vehicle rouyting with several time
windows and waiting times. Transportation Research Part B: Methodological 40(4), 279–
291 (2006)

19. Grefenestette, J.J.: Genetic algorithms for changing environments. In: Proceedings of
the 2nd International Conference on Parallel Problem Solving from Nature, pp. 137–144
(1992)

20. Gribkovskaia, I., Laporte, G., Shlopak, A.: A tabu search heuristic for a routing problem
arising in servicing of offshore oil and gas platforms. Journal of the Operational Research
Society 59(11), 1449–1459 (2008)

21. Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic optimiza-
tion problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002.
LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)

22. Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Cagnoni, S.,
Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops
2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 72–81.
Springer, Heidelberg (2002)

23. Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algorithms
applied to dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E.,
Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001,
EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037,
pp. 213–222. Springer, Heidelberg (2001)

24. Guntsch, M., Middendorf, M., Schmeck, H.: An ant colony optimization approach to
dynamic TSP. In: Proceedings of the 2001 Genetic and Evolutionary Computation Con-
ference, pp. 860–867 (2001)

25. He, J., Yao, X.: From an individual to a population: An analysis of the first hitting time
of population-based evolutionary algorithms. IEEE Transactions on Evolutionary Com-
putation 6(5), 495–511 (2002)

26. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE
Transactions on Evolutionary Computation 9(3), 303–317 (2005)

27. Kilby, P., Prosser, P., Shaw, P.: Dynamic VRPs: A study of scenarios, Technical Report
APES-06-1998, University of Strathclyde, U.K. (1998)

28. Labbe, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Operations
Research 39(4), 61–622 (1991)

29. Larsen, A., Madsen, O.B.G., Solomon, M.M.: The priori dynamic travelling salesman
problem with time windows. Transportation Sciences 38(4), 459–472 (2004)

30. Lee, Z.-J., Su, S.-F., Chuang, C.-C., Liu, K.-H.: Genetic algorithm with ant colony opti-
mization for multiple sequence alignment. Applied Soft Computing 8(1), 55–78 (2006)

31. Lim, K.K., Ong, Y.-S., Lim, M.H., Chen, X., Agarwal, A.: Hybrid ant colony algorithms
for path planning in sparse graphs. Soft Computing 12(10), 981–994 (2008)

32. Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem.
IEEE Transactions on Knowledge and Data Engineering 9(5), 769–778 (1999)

33. Mavrovouniotis, M., Yang, S.: A memetic ant colony optimization algorithm for the
dynamic travelling salesman problem. Soft Computing 15(7), 1405–1425 (2011)

Dynamic Vehicle Routing 301

34. Mavrovouniotis, M., Yang, S.: An ant system with direct communication for the capaci-
tated vehicle routing problem. In: Proceedings of the 2011 Workshop on Computational
Intelligence, pp. 14–19 (2011)

35. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes for the
dynamic vehicle routing problem. In: Di Chio, C., et al. (eds.) EvoApplications 2012.
LNCS, vol. 7248, pp. 519–528. Springer, Heidelberg (2012)

36. Mavrovouniotis, M., Yang, S.: Ant colony optimization with memory-based immigrants
for the dynamic vehicle routing problem. In: Proceedings of the 2012 IEEE Congress on
Evolutionary Computation, pp. 2645–2652 (2012)

37. Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: A new algorithm for a dy-
namic vehicle routing problem based on ant colony system. In: Proceedings of the 2nd
International Workshop on Freight Transportation and Logistics, pp. 27–30 (2003)

38. Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: Ant colony system for a dy-
namic vehicle routing problem. Journal of Combinatorial Optimization 10(4), 327–343
(2005)

39. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm.
Algorithmica 54(2), 243–255 (2009)

40. Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.-S.: An adaptive multimeme algorithm for
designing HIV multidrug therapies. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 4(2), 264–278 (2007)

41. Osman, I.: Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Annals of Operations Research 41, 421–451 (1993)

42. Pillac, V., Gendreau, M., Guèret, C., Medaglia, A.L.: A review of dynamic vehicle rout-
ing problems. Technical Report, CIRRELET-2011-62 (2011)

43. Psaraftis, H.: Dynamic vehicle routing: status and prospects. Annals of Operations Re-
search 61, 143–164 (1995)

44. Polacek, M., Doerner, K., Hartl, R., Maniezzo, V.: A variable neighborhood search
for the capacitated arc routing problem with intermediate facilities. Journal of Heuris-
tics 14(5), 405–423 (2008)

45. Rizzoli, A.E., Montemanni, R., Lucibello, E., Gambardella, L.M.: Ant colony optimiza-
tion for real-world vehicle routing problems - from theory to applications. Swarm Intel-
ligence 1(2), 135–151 (2007)

46. Stützle, T., Hoos, H.: The MAX-MIN ant system and local search for the traveling sales-
man problem. In: Proceedings of the 1997 IEEE International Conference on Evolution-
ary Computation, pp. 309–314 (1997)

47. Tagmouti, M., Gendreau, M., Potvin, J.: Arc routing problems with time- dependent
service costs. European Journal of Operational Research 181(1), 30–39 (2007)

48. Talbi, E.G., Bachelet, V.: Cosearch: a parallel cooperative metaheuristic. Journal of Math.
Model Algorithms 5(1), 5–22 (2006)

49. Taniguchi, E., Thompson, R.: Modelling city logistics. Transportation Research Record:
Journal of the Transportation Research Board 1790(1), 45–51 (2002)

50. Toth, P., Vigo, D.: Branch-and-bound algorithms for the capacitated VRP. In: Toth, P.,
Vigo, D. (eds.) The Vehicle Routing Problem, pp. 29–51 (2001)

51. Yang, S.: Genetic algorithms with memory and elitism based immigrants in dynamic
environments. Evolutionary Computing 16(3), 385–416 (2008)

52. Wang, H., Wang, D., Yang, S.: A memetic algorithm with adaptive hill climbing strategy
for dynamic optimization problems. Soft Computing 13(8-9), 763–780 (2009)

53. Zhang, X., Tang, L.: A new hybrid ant colony optimization algorithm for the vehicle
routing problem. Pattern Recognition Letters 30(9), 848–855 (2008)

Author Index

Akay, Bahriye 191
Arsuaga-Ŕıos, Maŕıa 225
Atkin, Jason A.D. 1

Berghe, Greet Vanden 129
Bilgin, Burak 129

Castro, Elkin 155

De Causmaecker, Patrick 129
Di Gaspero, Luca 109

Gärtner, Johannes 109
Güney, İsa 39

Johnston, Mark 251

Kapamara, Truword 155
Kendall, Graham 61
Kingston, Jeffrey H. 91
Küçük, Gürhan 39

Mavrovouniotis, Michalis 283
Musliu, Nysret 109

Nguyen, Su 251

Petrovic, Dobrila 155
Petrovic, Sanja 155
Ponomarev, Dmitry 39

Schaerf, Andrea 109
Schafhauser, Werner 109
Slany, Wolfgang 109
Smet, Pieter 129

Tan, Kay Chen 251

Vega-Rodŕıguez, Miguel A. 225

Westphal, Stephan 61

Yang, Shengxiang 283
Yao, Xin 191

Zhang, Mengjie 251

	Foreword
	Preface
	Contents
	List of Contributors
	Airport Airside Optimisation Problems
	1 Introduction and Problem Context
	1.1 The Usual Problem Decomposition
	1.2 More Recent Initiatives

	2 Solution Methods
	3 The Airport Layout and Some Definitions
	4 The Airline Scheduling Problem
	5 The Gate/Stand Allocation Problem
	5.1 Primary Objective and Hard Constraints
	5.2 Soft Constraints and Objectives
	5.3 Problem Variants and Other Resource Allocation Problems

	6 The Ground Movement Problem
	6.1 Models of the Ground Movement Problem
	6.2 Taxi Time Prediction and Environmental Effects
	6.3 Recent Work

	7 Runway Sequencing
	7.1 Decision Variables and Constants
	7.2 Time Window Constraints
	7.3 Separation Rules
	7.4 Runway Sequencing Objectives
	7.5 Similarities with Other Problems
	7.6 Multiple Runways and Runway Allocation
	7.7 Arrival Scheduling and Stacks
	7.8 Combined Runway Sequencing and Ground Movement Problems

	8 Case Study: Heathrow Departure Sequencing at the Runway
	8.1 The Runway Sequencing Sub-problem
	8.2 The Ground Movement Sub-problems
	8.3 The Combined Problem
	8.4 Solution Method
	8.5 Summary of Results

	9 Conclusions and Potential Research Directions
	References

	Instruction Scheduling in Microprocessors
	1 Introduction
	2 Literature Survey
	3 Static Instruction Scheduling
	3.1 List Scheduling
	3.2 Loop Unrolling

	4 Dynamic Instruction Scheduling and Out-of-Order Execution
	5 A Case Study: Intel Pentium 4 Processor
	6 Conclusion
	References

	Sports Scheduling: Minimizing Travel for English Football Supporters
	1 Introduction
	2 Background
	3 Fixture Analysis
	3.1 Season 2002-2003
	3.2 Season 2003-2004
	3.3 Season 2004-2005
	3.4 Season 2005-2006
	3.5 Season 2006-2007
	3.6 Season 2007-2008
	3.7 Season 2008-2009
	3.8 Discussion

	4 Mathematical Model
	5 Experimental Setup and Results
	5.1 Experiment 1: δr = ∞
	5.2 Results for Experiment 1: δr = ∞
	5.3 Experiment 2: δr = Maximum
	5.4 Results for Experiment 2: δr = Maximum
	5.5 Experiment 3: δr = Maximum for Each Division
	5.6 Results for Experiment 3: δr = Maximum for Each Division

	6 Discussion
	6.1 Season 2002-2003
	6.2 Season 2005-2006
	6.3 Other Seasons

	7 Conclusion
	References

	Educational Timetabling
	1 Introduction
	2 Educational Timetabling Problems
	3 Educational Timetabling Models
	4 High School Timetabling
	5 Examination Timetabling
	6 University Course Timetabling
	7 Student Sectioning
	8 Single Student Timetabling
	9 Room Assignment
	10 Conclusion
	References

	Automated Shift Design and Break Scheduling
	1 Introduction
	2 The Shift Design Problem
	3 Break Scheduling
	4 Literature Review
	5 Local Search for Shift Design
	5.1 Search Space and Initial Solution
	5.2 Neighborhood Relations
	5.3 Search Strategies

	6 Local Search for Break Scheduling
	6.1 Initial Solution
	6.2 Neighborhood Relations
	6.3 Min-conflicts Heuristics

	7 A Case Study
	7.1 Temporal Requirements
	7.2 Shift Types
	7.3 Weights of the Criteria
	7.4 Generation of Shifts

	8 Conclusion
	References

	Nurse Rostering: A Complex Example of Personnel Scheduling with Perspectives
	1 Introduction
	2 Mathematical Formulation
	2.1 Nurse Rostering Model
	2.2 Definitions and Variables
	2.3 Hard Constraints
	2.4 Soft Constraints

	3 Solution Approaches and Datasets for Nurse Rostering
	3.1 Algorithmic Progress
	3.2 Benchmark Datasets and Solution Methods
	3.3 Modelling Real World Scenarios: A Case Study

	4 Discussion
	References

	Radiotherapy Scheduling
	1 Introduction
	2 Literature Review
	3 Heuristics for Radiotherapy Scheduling
	3.1 Background
	3.2 Problem Statement
	3.3 Scheduling Heuristics
	3.4 Analysis of Test Results
	3.5 Summary

	4 Heuristics for Radiotherapy Pretreatment Scheduling
	4.1 Background
	4.2 Problem Statement
	4.3 A Genetic Algorithm for a Radiotherapy Pretreatment Scheduling Problem
	4.4 Experimental Design and Results
	4.5 Summary

	5 Conclusions
	References

	Recent Advances in Evolutionary Algorithms for Job Shop Scheduling
	1 Job Shop Scheduling
	2 Approaches for JSP
	3 Introduction to Evolutionary Algorithms
	4 Representation
	4.1 Binary Representation
	4.2 Priority Rule-Based Representation
	4.3 Preference-List Based Representation
	4.4 Completion Time Based Representation
	4.5 Random Keys Representation
	4.6 Job Permutation Representation
	4.7 Job Pair Relation Based Representation
	4.8 Machine Permutation Representation
	4.9 Operation-Based Representation
	4.10 Parallel Jobs Representation
	4.11 Parallel Machines Representation
	4.12 Substring Representation
	4.13 Operations Machines Coding
	4.14 Complex Number Representation
	4.15 Hybrid Representation
	4.16 Three Dimensional Encoding

	5 Crossover Operators
	5.1 Partial-Mapped Crossover (PMX)
	5.2 Order Crossover (OX)
	5.3 Position-Based Crossover (PBX)
	5.4 Order-Based Crossover (OBX)
	5.5 Cycle Crossover (CX)
	5.6 Linear Order Crossover (LOX)
	5.7 Subsequence Exchange Crossover (SXX)
	5.8 Partial Schedule Exchange Crossover (PSXX)
	5.9 Precedence Preservative Crossover (PPX)
	5.10 Precedence Operation Crossover (POX)

	6 Mutation Operators
	6.1 Swap Mutation
	6.2 Shift Mutation
	6.3 Inversion Mutation
	6.4 Insertion Mutation
	6.5 Displacement Mutation
	6.6 Assigned Mutation

	7 Local Search Methods
	7.1 Giffler-Thompson Algorithm
	7.2 Variable Neighbourhood Search
	7.3 Hill Climbing
	7.4 Tabu Search

	8 Conclusion
	References

	Multi-objective Grid Scheduling
	1 Introduction
	2 Multi-objective Optimization
	3 Multi-objective Optimization Applied on Scheduling Problems
	3.1 Multi-objective Personnel Scheduling
	3.2 Multi-objective Educational Timetabling
	3.3 Multi-objective Production Scheduling
	3.4 Multi-objective Machine Scheduling

	4 A Case Study: Multi-objective Machine Scheduling in Grid Environments
	4.1 MOGSA: Multi-objective Gravitational Search Algorithm
	4.2 NSGA II: Non-dominated Sorting Genetic Algorithm II
	4.3 Test Environment and Experiments

	5 Conclusions
	References

	Dynamic Multi-objective Job Shop Scheduling: A Genetic Programming Approach
	1 Introduction
	2 Background
	2.1 Dynamic Job Shop Scheduling
	2.2 GPHH for Scheduling Problems

	3 MO-GPHH for DJSS
	3.1 Representation and Evaluation
	3.2 The Proposed MO-GPHH Algorithm
	3.3 Simulation Models for Dynamic Job Shop
	3.4 Benchmark Dispatching Rules
	3.5 Statistical Analysis

	4 Results
	4.1 Single Objective
	4.2 Multiple Objectives

	5 Further Analysis
	5.1 Evolved Pareto Front
	5.2 Robustness of the Evolved Dispatching Rules
	5.3 Examples of Evolved Dispatching Rules

	6 Conclusions
	References

	Dynamic Vehicle Routing: A Memetic Ant Colony Optimization Approach
	1 Introduction
	2 Problem Description
	2.1 Static VRP
	2.2 Dynamic VRP

	3 Ant Colony Optimization for the DVRP
	3.1 Ant Colony System (ACS)
	3.2 React to Dynamic Changes

	4 Proposed Approach for the DVRP
	4.1 Framework of ACO-Based Memetic Algorithm
	4.2 Swap Local Search Operators
	4.3 Increasing the Population Diversity
	4.4 Behaviour in Dynamic Environments

	5 Experimental Study
	5.1 Experimental Setup
	5.2 Effect of LS Operators
	5.3 Comparing M-ACO with Other Peer ACO Algorithms

	6 Conclusions and Future Work
	References

	Author Index

