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1. Introduction

It might be argued that elementary number theory began with Pythagoras
who noted two-and-a-half millennia ago that 220 and 284 form an amicable
pair. That is, if s(n) denotes the sum of the proper divisors of n (“proper
divisor” means d | n and 1 ≤ d < n), then

s(220) = 284 and s(284) = 220.

When faced with remarkable examples such as this it is natural to wonder
how special they are. Through the centuries mathematicians tried to find
other examples of amicable pairs, and they did indeed succeed. But is
there a formula? Are there infinitely many? In the first millennium of the
common era, Thâbit ibn Qurra came close with a formula for a subfamily
of amicable pairs, but it is far from clear that his formula gives infinitely
many examples and probably it does not.

A special case of an amicable pairm,n is whenm = n. That is, s(n) = n.
These numbers are called perfect, and Euclid came up with a formula for
some of them (and perhaps all of them) that probably inspired that of
Thâbit for amicable pairs. Euler showed that Euclid’s formula covers all
even perfect numbers, but we still don’t know if Euclid’s formula gives in-
finitely many examples and our knowledge about odd perfects, even whether
any exist, remains rudimentary.

These are colorful and attractive problems from antiquity, but what is a
modern mathematician to make of them? Are they just curiosities? After
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all, not all problems are good. Ancient people wondered why and how
the planets wandered through the stellar constellations, and such musings
became the foundation of astronomy, trigonometry, and modern physics.
They also wondered why the sun and moon are the same apparent size,
with such musings leading nowhere!

Euclid also studied another special subset of the natural numbers: the
primes. Already he had a proof of their infinitude. Euler was able to
quantify the reciprocal sum for primes in [1, x] as x → ∞, and so we had
the birth of a statistical viewpoint in number theory. This led to the prime-
counting conjectures of Gauss and Lagrange, the estimates of Chebyshev,
the provocative outline of Riemann, and the proofs of Hadamard, de la
Vallée Poussin, Erdős, and Selberg. There is a great story here which we
feel sure will be told in another essay.

So we have a prime number theorem, but is there a perfect number
theorem, an amicable number theorem, and others of this sort? By asking
such questions about the statistical distribution of special sets of numbers
one opens the door to a host of interesting problems in which modern
mathematicians can participate in this millennia-old quest. And leading
the way was Paul Erdős.

2. Distribution

The function s defined in the Introduction partitions the positive integers
into 3 sets: those n with s(n) < n, those with s(n) = n, and those with
s(n) > n. Perhaps, it is not so natural to consider such a partition, but it is
historically correct, going back thousands of years. Numbers with s(n) < n
are called deficient and those with s(n) > n are called abundant, with the
case of equality already met as the perfect numbers. Putting these concepts
into modern garb, we have the immediate question of asymptotic density. It
is clear at least that the lower density of the abundant numbers is positive,
since any multiple of 6 that is larger than 6 is abundant. But it is not so
clear that the abundant numbers possess an asymptotic density.1

In 1933, Davenport [5] resolved the problem by proving that the sets of
abundant numbers and deficient numbers each possesses a positive asymp-
totic density, while the set of perfect numbers has asymptotic density 0.
In fact, Davenport proved a much more general theorem. Let σ denote

the sum-of-divisors function, so that σ(n) = s(n) + n. And let h(n) := σ(n)
n .

1It is also clear that the deficient numbers have positive lower density since it is easy
to see that s(n)/n has mean value π2/6− 1, which is smaller than 1.
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So, for example, n is perfect when h(n) = 2 and abundant when h(n) > 2.
Davenport’s result is the following:

Theorem 1. For each real number u, let D(u) = {n ∈ N : h(n) ≤ u}. The
set D(u) always possesses an asymptotic density. Denoting this density
by D(u), the function D(u) is continuous and strictly increasing for u ≥ 1.
Moreover, D(1) = 0 and limu→∞D(u) = 1.2

Since D(u) is continuous, it follows immediately that the perfect num-
bers have density zero. We subsequently deduce that the deficient numbers
have density D(2), where 0 < D(2) < 1, and that the abundant numbers
comprise a set of density 1−D(2). The numerical values of these densities
were investigated by Behrend [2, 3], who succeeded in showing that the den-
sity of the abundant numbers lies between 0.241 and 0.314. Later authors
(Salié [58], Wall [62], and Deléglise [6]) have tightened these bounds; the
current state of the art, due to Kobayashi [42], is that the density of the
abundants has decimal expansion starting with 0.2476.

Davenport’s proof of this result was decidedly analytic, requiring a study
of the complex moments of the function h(n). In this respect, he was
following a model laid down by Schoenberg [59], who had earlier proved
the analogue of Theorem 1 for the closely-related function n/ϕ(n), where
ϕ is Euler’s function. The non-elementary nature of Davenport’s argument
would surely have irked Erdős, and in the mid-1930s, Erdős took it upon
himself to give a purely arithmetic proof of Theorem 1. This resulted in
a series of three papers [9, 11, 12], culminating in what we now know
as the sufficiency half of the Erdős–Wintner Theorem (see [30]), one of
the foundational results in the field known as probabilistic number theory.
Studying distribution functions eventually led to the landmark collaboration
of Erdős and Kac and their celebrated theorem on the normal distribution
of the number of prime factors of an integer. As these subjects are discussed
elsewhere in this volume, we do not dwell on them here, but rather return
to the theme of elementary number theory.

3. Amicables

Recall from the Introduction that a pair n, m of positive integers is said to be
amicable if s(n) = m and s(m) = n, with the perfect numbers corresponding
to the degenerate case of n = m. We have seen that the perfect numbers
have asymptotic density 0, but do the amicables?

2Davenport did not prove that D(u) is strictly increasing; this was established a few
years later by Schoenberg [60].
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A first approach to counting amicable numbers is suggested by the
following simple observation: Suppose that n and m form an amicable pair,
with n < m. Then s(n) = m > n, so that n is abundant. Thus, the upper
density of the amicable numbers is at most twice the density of the abundant
numbers, and so from [6] or [42], the upper density of the amicables is smaller
than 1

2 .

When one considers that essentially none of the theory of amicable pairs
was used in this argument, this result seems quite respectable!

In fact, all we used above was that the smaller member of a non-perfect
amicable pair is abundant. An equally simpleminded observation, dual to
the first, is that the larger member is deficient. Putting these together, we
see that if n is the smaller member of a non-perfect amicable pair, then n is
an abundant number for which s(n) is deficient. Erdős had the great insight
that this two-fold condition on n should be quite restrictive. His argument
in [15] that the amicable numbers have asymptotic density zero is actually
a proof of the following theorem:

Theorem 2. The set of abundant natural numbers n for which s(n) is
deficient has asymptotic density zero.

Erdős’s proof of Theorem 2 is naturally split into three identifiable com-
ponents. The first of these is an immediate consequence of the continuity
of the function D(u) appearing in Davenport’s Theorem 1.

Lemma 3. Let ε > 0 be arbitrary. For a certain δ > 0, depending on ε, the
set of solutions n to

2 < h(n) < 2 + δ

has asymptotic density less than ε.

For every positive integer n, the bijection between divisors d of n and
their co-divisors n/d permits us to write h(n) = 1

n

∑
d|n d =

∑
d|n

1
d . This

expression for h(n) suggests that the small divisors of n play the largest role
in determining the size of h(n). To make this precise, we let y > 0, and we
define the truncated function

hy(n) :=
∑
d|n
d≤y

1

d
.

The second leg on which Erdős’s argument rests is the following lemma.

Lemma 4. Let x > 0 and let y be a positive integer. For each δ > 0 the
number of n ≤ x for which h(n)− hy(n) ≥ δ does not exceed δ−1x/y.
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Proof. A simple interchange of the order of summation shows that∑
n≤x

(h(n)− hy(n)) =
∑
d>y

1

d

∑
n≤x
d|n

1.

The inner sum here is at most x
d , from which it is easy to see that the entire

sum is at most x
y . The claim follows immediately.

It seems likely that Erdős would have considered the key innovation in
the proof of Theorem 2 to be its third component, which we formulate as
follows.

Lemma 5. Fix y > 0. For all natural numbers n outside of a set of
asymptotic density zero, n and s(n) share the same set of divisors in [1, y].

Proof. Let M be the least common multiple of the natural numbers not
exceeding y. It suffices to show that σ(n) is a multiple of M unless n
belongs to a set of density zero. Indeed, if M | σ(n), then the relation
s(n) = σ(n)− n implies that

s(n) ≡ −n (mod d)

for all d ≤ y. Thus, d | s(n) if and only if d | n. Now if p is a prime that
exactly divides n, then p+ 1 divides σ(n). Thus, M divides σ(n) whenever
there is a prime p ≡ −1 (mod M) for which p ‖ n. For any particular prime
p ≡ −1 (mod M), we see that p ‖ n precisely when n falls into one of the
(p− 1) residue classes p, 2p, 3p, . . . , (p− 1)p (mod p2). So if the relation
p ‖ n fails for all p ≤ z from the residue class −1 (mod M), then n avoids
p− 1 residue classes modulo p2 for every such p. By the Chinese remainder
theorem, this restricts n to a set of asymptotic density∏

p≡−1 (mod M)
p≤z

(
1− 1

p
+

1

p2

)
.

This product can be made arbitrarily small by taking z sufficiently large,
since by Dirichlet, the sum of the reciprocals of the primes p ≡ −1 (mod M)
diverges. The lemma follows.

Remark. The proof of Lemma 5 shows that for a fixed M , the number
σ(n) is almost always divisible by M . When M is a power of 2, this was
previously observed by Kanold [40], who used this to prove that the amicable
numbers have upper density less than 0.204.
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It is now a simple matter to assemble Lemmas 3–5 to prove Theorem 2.

Proof of Theorem 2. Let n denote a generic abundant natural number for
which s(n) is deficient. We will show that for each fixed ε > 0, the set of all
such n has upper density smaller than 2ε. By Lemma 3, we may fix δ > 0
small enough so that the set of solutions to 2 < h(n) < 2+ δ has density less
than ε. Thus, discarding a set of density less than ε, we can assume that

h(n) ≥ 2 + δ.

We now apply Lemma 4 with

y :=

⌈
1

δε

⌉
and find that discarding a set of upper density bounded by ε, we can assume
that

hy(n) > h(n)− δ ≥ 2.

Discarding a further set of density zero, we can assume (by Lemma 5) that
n and m = s(n) have the same set of divisors up to y. But then

h(m) ≥ hy(m) = hy(n) > 2,

contradicting that m is deficient. So n must have belonged to one of
the exceptional sets described above, which have combined upper density
smaller than 2ε.

In the introduction to [15], Erdős asserted that his method, suitably
refined, would show that the count A(x) of amicable numbers in [1, x]
satisfies

(1) A(x) � x

log log log x
.

Details appeared twenty years later in joint work with Rieger [28] (cf.
Rieger’s weaker solo result [57]). The Erdős–Rieger upper bound was soon
improved by Pomerance [53], who established that

(2) A(x) ≤ x/ exp(c(log3 x log4 x)
1/2)

for a certain constant c > 0 and all large x (note the subscripts indicate
iterated logs). In both cases, what is actually estimated is the count of
abundant n ≤ x for which s(n) is deficient. (The key innovation in [53] is
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the use of Erdős’s theory of primitive abundant numbers; see [8].) A few
years later, and by different methods, Pomerance [54] established the bound

A(x) ≤ x/ exp(c(log x log2 x)
1/3),

for some positive constant c and all large x. This bound has not yet been
improved, nor do we know that there are infinitely many amicable numbers.
Erdős has a heuristic argument suggesting that A(x) > x1−o(1) as x → ∞.

Fix ε > 0. Arguing as in the proof of Theorem 2, one finds that for
almost all natural numbers n, we have h(s(n)) > h(n)− ε. In the con-
cluding remarks to [15], Erdős claimed that the complementary inequality
h(s(n)) < h(n) + ε also holds for almost all n. A proof of this last result
eventually appeared in joint work with Granville, Pomerance, and Spiro
(see [22, Theorem 5.1]). Hence, h(s(n)) = h(n) + o(1), as n → ∞ in a set
of asymptotic density 1. For another application of their method of proof,
see [51].

4. Sociables

One can revisit the definition of an amicable pair from the viewpoint
of function iteration. Let sk(n) denote the kth iterate of s(n). Then
n is amicable precisely when s2(n) = n. Generalizing, we say that n is
k-sociable if sk(n) = n but sj(n) �= n for 1 ≤ j < k, and we call the set
{n, s(n), . . . , sk−1(n)} an aliquot k-cycle. Note that the 1-sociable numbers
are exactly the perfect numbers, whose distribution is discussed in detail in
the next section.

Questions about the iterates of s(n) began to be asked at the end of
the 19th century. For a natural number n, the aliquot sequence at n is the
sequence n, s(n), s2(n), . . . , where we stop if we reach 0. For instance, the
aliquot sequence at 24 is 24, 36, 55, 17, 1, 0, while the aliquot sequence at 25
is 25, 6, 6, 6, . . . . In 1888, Catalan [4] proposed the empirical theorem that
these two examples exhaust the possible behaviors of an aliquot sequence;
more precisely, every aliquot sequence either terminates or hits a perfect
number.

‘Empirical theorems’, like champion athletes, are always in danger of
losing their title. Soon after Catalan’s conjecture appeared, Perrott [47]
pointed out that the aliquot sequence at 220 was a counterexample. This led
Dickson [7] to propose a somewhat tamer, modified conjecture – commonly
known today as the Catalan–Dickson conjecture – that all aliquot sequences
terminate or are eventually periodic. This has been verified numerically for
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n < 276. However, when n = 276, more than 1700 terms of the sequence
have been computed [64], with no end in sight.

When Dickson put forward his modified conjecture in 1913, no aliquot
cycles of length > 2 were known. The first examples, of lengths 5 and 28,
were given by Poulet in 1918. Currently there are 217 such cycles known [45],
all but 11 of which have length 4.

What can we prove about the distribution of these cycles? The first
asymptotic result on this problem is due to Erdős [21]. Note that the case
k = 2 is contained in Erdős’s earlier work on amicable pairs.

Theorem 6. Fix ε > 0 and fix an integer k ≥ 2. Then for all n outside of
a set of asymptotic density zero, we have

(3) h(sj(n)) > h(n)− ε for all 0 < j < k.

One consequence of Theorem 6 is that for each fixed k, almost all
abundant numbers are k-times abundant : n < s(n) < s2(n) < · · · < sk(n).
Suppose now that n is the smallest member of a sociable k-cycle, where
k > 1. Then n is abundant, but not k-times abundant (since sk(n) = n),
and so n belongs to a set of density zero. As a corollary, the set of k-sociable
numbers has asymptotic density zero for each fixed k. For quantitative
results of this kind, see [43] and [49].

The proof of Theorem 6 employs the same reasoning seen in the previous
section, but with Lemma 5 replaced by the following generalization.

Lemma 7. Fix y > 0, and fix k ≥ 2. For all natural numbers n outside of
a set of asymptotic density zero, all of n, s(n), . . . , sk−1(n) share the same
set of divisors in [1, y].

One can ask whether Theorem 6 remains true with (3) replaced by the
complementary inequality h(sj(n)) < h(n) + ε. As mentioned above, this is
known to be so when k = 2, by later work of Erdős et al. [22]. For larger
values of k, this constitutes an attractive open problem. Note that the claim
of a general proof, made in [21], is retracted in [22].

For more recent developments on sociable numbers, see [43]. For exam-
ple, it is shown there that if one lumps together all sociable numbers (i.e.,
one takes the union of the k-sociables over all k), then after discarding a
certain set of asymptotic density zero, the remaining elements are all both
odd and abundant.
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5. Perfects

From Euclid and Euler, we know that an even number is perfect precisely
when it can be written as 2p−1(2p − 1), where 2p − 1 is prime. Thus, the
distribution of the even perfect numbers is inextricably linked with the dis-
tribution of primes of the form 2p−1, known as Mersenne primes. While al-
most nothing is known rigorously about the distribution of Mersenne primes,
Lenstra, Pomerance, and Wagstaff have (independently) given heuristic ar-
guments suggesting that probably

#{p ≤ x : 2p − 1 prime} ∼ eγ

log 2
log x, as x → ∞.

Here γ is the familiar Euler–Mascheroni constant. (See, for example, [61].)
The validity of this conjecture would imply that the count of even perfect
numbers up to x is asymptotic to eγ

log 2 log log x.

What about odd perfect numbers? We have already noted that from
Davenport’s Theorem 1, these numbers have asymptotic density zero. But
this is a rather weak result. There is a short and pretty argument of Hornfeck
[38] showing that in fact, the count P (x) of odd perfects in [1, x] is smaller

than x1/2, for every x > 1. We cannot resist reproducing it here. By a
classical result of Euler, we can write an odd perfect n as n = pem2 where
p is a prime not dividing m and p ≡ e ≡ 1 (mod 4). (This uses only that n
is odd and σ(n) ≡ 2 (mod 4).) Since n is perfect,

2pem2 = σ(pe)σ(m2), so that
2m2

σ(m2)
=

σ(pe)

pe
.

But the fraction σ(pe)/pe is already in lowest terms, since the numerator
σ(pe) = 1 + p+ · · ·+ pe is not divisible by p. Hence, the prime power pe is
uniquely determined from m. If we assume that n ≤ x, then 1 < m ≤ √

x,
and so Hornfeck’s bound follows.

The problem of obtaining improved bounds for P (x) attracted some at-
tention in the late 1950s, with several number theorists throwing their hats
into the ring. It was Erdős [16] who gave the first significant improvement

over Hornfeck’s bound, getting P (x) ≤ x1/2−c for a certain c > 0 and all
large x. His idea is both ingenious and, at least in hindsight, quite natu-
ral. We sketch an improvement that obtains the estimate P (x) ≤ x1/4+o(1).
(A result of this same quality was obtained by Kanold [41] shortly after
Erdős’s paper appeared.)
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Erdős’s starting point is the following ‘greedy’ algorithm for extracting
from an integer M a divisor D of M with D coprime to both M/D and
σ(D):

Algorithm:

Factor M = pe11 pe22 · · · pekk , where p1 > p2 > · · · > pk.
D ← 1 // Initialize
for i = 1 to k do // Loop over prime power divisors of M
if gcd(σ(peii D), peii D) = 1 then

D ← peii D
end
return D

In certain special cases, Erdős proved that the outputD of this algorithm
is bounded below by a fixed power of the input M . However, for our present
purposes, the argument is clearer (and stronger) if it is instead made to rest
upon the following near-injectivity property, whose proof – given in [52] –
involves the same circle of ideas as in [16].

Proposition 8. Let ε > 0. For all sufficiently large values of x, depending
on the choice of ε, at most xε inputs M ≤ x of the Algorithm correspond to
the same output D.

We now show that P (x) ≤ x1/4+o(1) as x → ∞. Write an odd perfect
number n ≤ x as pem2 as above and apply the Algorithm to M = m2. It
produces a divisor D of m2 coprime to m2/D and to σ(D). Thus D = d2 for
some d | m. Letting v2 be the co-divisor of d2 in m2, we have n = pev2d2.
Since n is perfect, we have

2pev2d2 = σ(n) = σ(pev2)σ(d2).

Since d2 is coprime to σ(d2), we have d2 | σ(pev2). If pev2 ≤ x1/2, then

d2 ≤ 2x1/2 so that d < 2x1/4. But if pev2 > x1/2, then d2 = n/(pev2) < x1/2,

so in either case, d < 2x1/4. So, by Proposition 8 there are at most x1/4+ε

inputs m2 to the Algorithm (for each fixed ε > 0 and x sufficiently large
depending on ε). But by the Hornfeck–Euler argument, m2 determines n,

which proves the theorem that P (x) ≤ x1/4+o(1) as x → ∞.

A year after Erdős’s article appeared, Hornfeck and Wirsing [39] pub-

lished a proof that P (x) ≤ xo(1) as x → ∞. Two years later, Wirsing [63]

showed that for an absolute constant W , one has P (x) < xW/ log log x for
all x > e. In fact, the same is true for the distribution of those n with
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σ(n)/n = r for any fixed rational number r. Wirsing’s upper bound has
not been improved in fifty years, but it is still a rather long way from the
widespread belief that P (x) is identically zero.

While Erdős’s results on P (x) are now primarily of historical interest,
his approach to the problem has borne other fruit. For instance, as Erdős
noted at the time in [16], one can use these methods to show that n and
σ(n) rarely have a large common factor. For a detailed discussion of these
problems, see [50], which was written in part to correct and substantiate
some of the unproved assertions of [16]. See also [52].

6. Iteration

It was not always the case, but we now view functions as interesting math-
ematical objects in and of themselves. For example, for a function whose
values are contained in its domain, we can view the function as creating a
dynamical system. We discussed this above in the context of the function s,
the sum-of-proper-divisors function, where we have sociable cycles and the
Catalan–Dickson conjecture.

Euler’s function ϕ provides another attractive dynamical system. Given
a positive integer n and the sequence n, ϕ(n), ϕ(ϕ(n)), . . . , we note that
it is strictly decreasing until it reaches 1. Thus, we may define k(n) as
the minimal number k ≥ 1 of iterates necessary for n to reach 1. For
example, k(13) = 4, since the sequence is 13, 12, 4, 2, 1, 1, . . . . Seemingly a
very exotic function, there is some unexpected structure here! Let k∗(n) =
k(n) for n even and k∗(n) = k(n)− 1 for n odd. It is not hard to see that
k∗(n) is completely additive (k∗(mn) = k∗(m) + k∗(n) for all m,n) and it
is inductively defined on the primes by k∗(2) = 1 and k∗(p) = k∗(p− 1) for
p > 2. Erdős and his collaborators show in [22] that under the assumption
of the Elliott–Halberstam conjecture (a widely believed conjecture on the
distribution of primes in residue classes) there is a positive constant α such
that k(n) ∼ α log n as n → ∞ on a set of asymptotic density 1.

Euler chains n, ϕ(n), ϕ(ϕ(n)), . . . arise in other contexts, for example,
primality testing and algebraic number theory. See the very recent paper of
Ford [32] and the references therein.

7. Values

The set of values of an arithmetic function can also give rise to interesting
questions. Take the function s. If p, q are different primes, then s(pq) =
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p+ q + 1. So a slightly stronger form of Goldbach’s conjecture, namely all
even numbers at least 8 are a sum of two distinct primes, implies that all
odd numbers at least 9 are in the image of s. Since s(2) = 1, s(4) = 3,
and s(8) = 7, presumably the only odd number missing from the image of s
is 5. From what we know about the possible exceptional set in Goldbach’s
conjecture, it follows that the set of odds not in the form s(n) has asymptotic
density 0. But what of even numbers? Here, Erdős in [20] showed by a clever
argument that a positive proportion of even numbers are missing from the
image of s. We still don’t know if the image of s has a density or if the range
of s contains a positive proportion of even numbers. The issue of numbers
of the form n− ϕ(n) was also raised in [20], but here even less is known.
See [56] for a recent paper in this area with references to other work.

Here is a proof of the result in [20] that a positive proportion of even
numbers are missing from the image of s. If s(n) is even and n is odd, then
σ(n) must be odd too, and so n is a square, say m2. If s(m2) ≤ x and q
is the least prime factor of m, then x ≥ s(m2) > m2/q. If m is composite,

then q ≤ m1/2, so that m3/2 < x and there are at most x2/3 possibilities.
If m = q is prime, then q < x and there are at most π(x) = O(x/ log x)
possibilities. Hence the number of even numbers s(n) in [1, x] with n odd
is o(x) as x → ∞. So we may assume that n is even, which in turn implies
that x ≥ s(n) ≥ n/2. Hence n ≤ 2x. Consider values of s in [1, x] that are
divisible by 12. By Lemma 5, but for o(x) choices for n ≤ 2x, we may assume
that 12 | n. Thus, x ≥ s(n) ≥ 4

3n, so that n ≤ 3
4x. We conclude that the

number of values of s(n) ≤ x divisible by 12 is at most 1
12 · 34x+ o(x) ∼ 1

16x,
leaving asymptotically at least 25% of the multiples of 12 not in the range
of s.

In 1929 S. S. Pillai [48] proved that the image of Euler’s function ϕ has
density 0. Here is the idea of the proof. For each fixed positive integer k
consider numbers n with at most k distinct prime factors. It is easy to see
that the set of these numbers has density 0 as does their image under ϕ.
But if n is not in this set, then 2k | ϕ(n), so we see that the image of ϕ has
upper density at most 2−k. Since k is arbitrary, this proves that the image
of ϕ has density 0. Pillai was able to quantify this result by taking k as a

function of x and obtaining an estimate of O(x/(logx)
1
e
log 2) for the number

of values of ϕ in [1, x]. Since ϕ is 1-1 on the primes, we immediately have a
lower bound of magnitude x/ log x.

So what is the correct exponent here?

Erdős’s answer: “1.” This was in [10], a wonderful and seminal paper
submitted to the Quarterly Journal of Mathematics when he was 21. That
is, the number of values of ϕ in [1, x] is x/(log x)1+o(1) as x → ∞. The
idea is to look not only at the number of factors 2 in ϕ(n), but at the total
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number of prime factors. If Ω(n) is the number of prime factors of n counted
with multiplicity, Erdős knew after Hardy and Ramanujan that normally
Ω(n) ∼ log log n. Moreover, exceptional numbers with Ω(n) < ε log log x or
Ω(n) > 1

ε log logx are so sparse that they are negligible. Erdős then showed
(in an early and inventive use of Brun’s sieve method) an analog of the
Hardy–Ramanujan theorem for “shifted primes”, that is, he showed that
Ω(p− 1) is normally near log log p, with exceptional primes p, with Ω(p− 1)
far from this normal order, being quite rare. So, but for very few numbers
n, they are divisible by a fair number of non-exceptional primes p. Since
Ω(ϕ(n)) ≥ ∑

p|nΩ(φ(p)), we find that Ω(ϕ(n)) is much larger than log logn,

meaning that φ(n) is quite exceptional! This is all worked out in exquisite
detail, not only solving Pillai’s problem, but introducing extraordinarily
useful tools in the statistical study of elementary number theory.

The problem of the distribution of ϕ values was taken up later by Erdős
and Hall [23, 24], Maier and Pomerance [46], and by Ford [31]. However,
we still don’t have an asymptotic formula nor do we know if a natural one
exists.

The same theorems carry over to the range of σ. Erdős also raised
the attractive question (for instance, in [18]) of whether the images of ϕ
and σ have an infinite intersection. If p and p+ 2 are both primes, then
σ(p) = p+ 1 = ϕ(p+ 2), so the answer is affirmative if there are infinitely
many twin primes. Also if 2p − 1 is prime, then σ(2p − 1) = 2p = ϕ(2p+1),
so the answer is again ‘yes’ if there are infinitely many Mersenne primes
(and so ‘yes’ if there are infinitely many even perfect numbers). In a recent
paper, Ford, Luca, and Pomerance [33] showed unconditionally that there
are infinitely many pairs of integers m,n with σ(m) = ϕ(n), and Ford and
Pollack [34, 35] have some finer results in this direction.

8. Order

Euler’s function ϕ(n) gives the order of the multiplicative group (Z/nZ)∗.
A closely related function, λ(n) gives the maximal order of an element in
this group. When (Z/nZ)∗ is cyclic, we have λ(n) = ϕ(n). We always have
λ(n) | ϕ(n), and since (Z/nZ)∗ is abelian, for all integers a coprime to n,

aλ(n) ≡ 1 (mod n). For this reason, λ(n) is referred to as the universal
exponent function.

Carmichael used the notation λ, but the function appears in Gauss a
century earlier. It is easy to give a formula for λ(n) based on the prime
factorization of n: for a prime power pα, we have λ(pα) = ϕ(pα) except
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if p = 2 and α ≥ 3 in which case, λ(2α) = 1
2ϕ(2

α). (Note that ϕ(pα) =

pα−1(p− 1).) Further, for all n, λ(n) is the lcm of λ(pα) for prime powers
pα | n.

Being so closely related to ϕ, one might expect that statistically λ is quite
similar. Here is ϕ’s story: We know (from Schoenberg, or more generally
the Erdős–Wintner theorem) that for each real number u ∈ (0, 1], the set
{n : ϕ(n) ≤ un} has a positive asymptotic density that varies continuously
and strictly monotonically with u. Further, from Mertens’ theorem in
analytic number theory, it follows that ϕ(n) ≥ (e−γ + o(1))n/ log log n as
n → ∞. And on average, ϕ(n) behaves like cn, with c = 6/π2.

Erdős took up the normal and average orders of λ(n) in [17], stating
some results without proof. Full proofs of more precise results, including the
minimal order of λ(n), were worked out in Erdős–Pomerance–Schmutz [27]
in 1991. The function is amazingly different from ϕ. On average it is not
like cn, but rather like n/(log n)1+o(1), where the “o(1)” is asymptotically
c/ log log log n, with c explicitly worked out. The normal order is not of

the shape � n, but rather much smaller at n/(log n)log log log n+c+o(1) for a
different explicit c. And the minimal order, instead of the large function
n/ log logn, is instead the tiny function (log n)c log log log n (here the precise
value of c is still not known), a result that has found application in the
analysis of some primality tests. These results have not been improved over
the past 2 decades, and there is indeed room for improvement. For example,
does λ(n) have a “nice” distribution function? That is, for ϕ(n) we compare
it with n; what should λ(n) be compared with?

The image of λ is also different than the image of ϕ. In [27] it is
shown that there is some c > 0 such that the number of λ-values in [1, x]
is O(x/(log x)c), a result which strongly uses an earlier result of Erdős
and Wagstaff in [29]. It has been announced by Luca and Pomerance

that there is some c′ > 0 such that the count is at least x/(log x)1−c′ for
all large x. Probably the truth is x/(log x)α+o(1) as x → ∞, where α =
1− (1 + log log 2)/ log 2 = 0.086 . . . , the Erdős–Tenenbaum–Ford constant,
and maybe this is provable.

The iteration of λ also has its surprises, see Harland [37] for some recent
work.

From its definition, we see that λ is related to the order-of-an-element
function. For n a positive integer and gcd(a,n) = 1, we follow Erdős in using
the notation 
a(n) for the order of a in (Z/nZ)∗. Thus, 
a(n) | λ(n), and for
some number a we have 
a(n) = λ(n). In a surprisingly difficult paper, Erdős
in [19] (he spoke on this at the International Conference of Mathematicians
in Nice in 1970), began the statistical study of 
a(n). Further developments
can be tracked in [25] and in [44].
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A pseudoprime to the base a is a composite integer n for which an−1 ≡
1 (mod n). Note that the congruence holds if and only if 
a(n) | n− 1.
Pseudoprimes are a useful concept since all primes n not dividing a satisfy
the congruence and the congruence itself is easily checkable numerically.
Thus, pseudoprimes stand as an obstruction against using the congruence
as a primality test. Known from experience that pseudoprimes are rare
compared with primes, it took some time for this to be proved. Erdős was
the first to do so in [14] (announced earlier in [13]). Currently the best upper
bound known for their distribution is in Pomerance [55], and a number of
other statistical results are discussed in Erdős–Pomerance [26].

Some composites n have the property that an−1 ≡ 1 (mod n) for all
integers a coprime to n. From what we have said above, this congruence
is equivalent to λ(n) | n− 1. It is easy to see that this then forces n to
be squarefree. In 1899, Korselt essentially gave this criterion for a number
n to satisfy an−1 ≡ 1 (mod n) for all a coprime to n, but did not give
any composite examples. In 1910 and apparently unaware of Korselt’s
criterion, Carmichael did give some examples, such as 561, 1105, and 1729.
Now known as Carmichael numbers, Erdős was the first to prove a result
about their distribution, in [17]. He showed that the number of Carmichael

numbers in [1, x] is at most x1−c log log log x/ log log x for some fixed c > 0. And
he gave a heuristic argument that the count exceeds x1−ε for each fixed
ε > 0 and all sufficiently large x depending on ε.

This was all the more remarkable in that at that time we did not have a
proof that there are infinitely many Carmichael numbers and the numerical
evidence seemed to indicate a much slower growth rate for the counting
function. Shanks was notably vocal in challenging Erdős on this point. It is
now known that there are infinitely many Carmichael numbers, Alford–
Granville–Pomerance [1]. The proof largely follows the Erdős heuristic
in [17], which in turn is based on a proof in [10] that there are numbers
v ≤ x such that ϕ(n) = v has more than xc solutions n. In Granville–
Pomerance [36] the two incompatible viewpoints of Erdős and Shanks were
shown to both have elements of truth, though there is still much to be
learned here.

9. Conclusion

We have touched on a few of our favorite problems and results of Erdős
in elementary number theory, particularly those involving the elementary
number theoretic functions. We have not attempted to be encyclopedic, and
for a more thorough and complete treatment, we recommend the article of
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Schinzel in this volume, as well as the original papers of Erdős, most of
which are freely available online.

The point we have tried to make is that viewing classical problems in
elementary number theory through a statistical lens allows the tools of
modern mathematics to prove interesting and sometimes beautiful theorems.
It is through this lens that the mathematics of the ancients lives on. Paul
Erdős was an early and consistent exponent of this point of view, changing
for the better the entire landscape of elementary number theory.
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