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Small Ball Probability, Inverse Theorems, and

Applications

HOI H. NGUYEN∗ and VAN H. VU†

Let ξ be a real random variable with mean zero and variance one and A =
{a1, . . . , an} be a multi-set in Rd. The random sum

SA := a1ξ1 + · · ·+ anξn

where ξi are iid copies of ξ is of fundamental importance in probability and its
applications.

We discuss the small ball problem, the aim of which is to estimate the
maximum probability that SA belongs to a ball with given small radius, following
the discovery made by Littlewood–Offord and Erdős almost 70 years ago. We
will mainly focus on recent developments that characterize the structure of those
sets A where the small ball probability is relatively large. Applications of these
results include full solutions or significant progresses of many open problems in
different areas.

1. Littlewood–Offord and Erdős estimates

Let ξ be a real random variable with mean zero and variance one and
A = {a1, . . . , an} be a multi-set in R (here n → ∞). The random sum

SA := a1ξ1 + · · ·+ anξn

where ξi are iid copies of ξ plays an essential role in probability. The Central
Limit Theorem, arguably the most important theorem in the field, asserts
that if the ai’s are the same, then

SA√∑n
i=1 |ai|2

−→ N(0, 1).
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Furthermore, Berry-Esséen theorem shows that if ξ has bounded third
moment, then the rate of convergence is O(n−1/2). This, in particular,
implies that for any small open interval I

P(SA ∈ I) = O(|I|/n1/2).

The assumption that the ai’s are the same are, of course, not essential.
Typically, it suffices to assume that none of the ai’s is dominating; see [13]
for more discussion.

The probability P(SA ∈ I) (and its high dimensional generalization)
will be referred to as small ball probability throughout the paper. In
1943, Littlewood and Offord, in connection with their studies of random
polynomials [33], raised the problem of estimating the small ball probability
for arbitrary coefficients ai. Notice that when we do not assume anything
about the ai’s, even the Central Limit Theorem may fail, so Berry-Esséen
type bounds no longer apply. Quite remarkably, Littlewood and Offord
managed to show

Theorem 1.1. If ξ is Bernoulli (taking values ±1 with probability 1/2) and
ai have absolute value at least 1, then for any open interval I of length 2,

P(SA ∈ I) = O

(
log n

n1/2

)
.

Shortly after Littlewood–Offord result, Erdős [10] gave a beautiful com-
binatorial proof of the following refinement, which turned out to be sharp.

Theorem 1.2. Under the assumption of Theorem 1.1

(1) P(SA ∈ I) ≤
(

n
�n/2�

)
2n

= O

(
1

n1/2

)
.

Proof (of Theorem 1.2). Erdős’ proof made an ingenious use of Sperner’s
lemma, which asserts that if F is an anti-chain on a set of n elements, then
F has at most

(
n

�n/2�
)
elements (an anti-chain is a family of subsets none of

which contains the other). Let x be a fixed number. By reversing the sign
of ai if necessary, one can assume that ai ≥ 1 for all i. Now let F be the set
of all subsets X of [n] := {1, 2 . . . , n} such that∑

i∈X
ai −

∑
j∈X̄

aj ∈ (x− 1, x+ 1).
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One can easily verify that F is an anti-chain. Hence, by Sperner’s
lemma,

|F| ≤
(

n
n/2

)
2n

,

completing the proof.

The problem was also studied in probability by Kolmogorov, Rogozin,
and others; we refer the reader to [30, 31] and [43]. Erdős’ result is popular
in the combinatorics community and has became the starting point for a
whole theory that we now start to discuss.

Notation. We use the asymptotic notation such as O, o,Θ under the
assumption that n → ∞; Oα(1) means the constant in big O depends on α.
All logarithms have natural base, if not specified otherwise.

2. High Dimensional Extensions

Let ξ be a real random variable and A = {a1, . . . , an} a multi-set in Rd,
where d is fixed. For a given radius R > 0, we define

ρd,R,ξ(A) := sup
x∈Rd

P
(
a1ξ1 + · · ·+ anξn ∈ B(x,R)

)
,

where ξi are iid copies of ξ, and B(x,R) denotes the open disk of radius R
centered at x in Rd. Furthermore, let

p(d,R, ξ, n) := sup
A

ρd,R,ξ(A)

where A runs over all multi-sets of size n in Rd consisting of vectors with
norm at least 1. Erdős’ theorem can be reformulated as

p(1, 1,Ber , n) =

(
n

�n/2�
)

2n
= O(n−1/2).

In the case d = 1, Erdős obtained the optimal bound for any fixed R. In
what follows we define s := �R�+ 1.

Theorem 2.1. Let S(n,m) denote the sum of the largest m binomial
coefficients

(n
i

)
, 0 ≤ i ≤ n. Then

(2) p(1, R,Ber , n) = 2−nS(n, s).
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The case d ≥ 2 is much more complicated and has been studied by
many researchers. In particular, Katona [24] and Kleitman [25] showed
that p(2, 1,Ber , n) = 2−n

(
n

�n/2�
)
. This result was extended by Kleitman [26]

to arbitrary dimension d,

(3) p(d, 1,Ber , n) =

(
n

�n/2�
)

2n
.

The estimate for general radius R is much harder. In [27], Kleitman
showed that 2np(2, R,Ber , n) is bounded from above by the sum of the
2�R/

√
2� largest binomial coefficients in n. For general d, Griggs [19] proved

that

p(d,R,Ber , n) ≤ 22
d−1−2R

√
d�

(
n

�n/2�
)

2n
.

This result was then improved by Sali [48, 49] to

p(d,R,Ber , n) ≤ 2dR
√
d�

(
n

�n/2�
)

2n
.

A major improvement is due to Frankl and Füredi [14], who proved

Theorem 2.2. For any fixed d and R

(4) p(d,R,Ber , n) = (1 + o(1))2−nS(n, s).

This result is asymptotically sharp. In view of (2) and (3), it is natural
to ask if the exact estimate

(5) p(d,R,Ber , n) = 2−nS(n, s),

holds for all fixed dimension d. However, this has turned out to be false.
The authors of [26, 14] observed that (5) fails if s ≥ 2 and

(6) R >
√

(s− 1)2 + 1.

Example 2.3. Take v1 = · · · = vn−1 = e1 and vn = e2, where e1,e2 are two
orthogonal unit vectors. For this system, let B be the ball of radius R
centered at v = (v1 + · · ·+ vn)/2. Assume that n has the same parity with
s, then by definition we have

P(SV ∈ B(v,R)) = 2
∑

(n−s)/2≤i≤(n+s)/2

(
n− 1

i

)
/2n > 2−nS(n, s).

Frankl and Füredi raised the following problem.
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Conjecture 2.4 [14, Conjecture 5.2]. Let R, d be fixed. If s− 1 ≤ R <√
(s− 1)2 + 1 and n is sufficiently large, then

p(d,R,Ber , n) = 2−nS(n, s).

The conjecture has been confirmed for s = 1 by Kleitman (see (3)) and
for s = 2, 3 by Frankl and Füredi [14] (see [14, Theorem 1.2]). Furthermore,
Frankl and Füredi showed that (5) holds under a stronger assumption that
s− 1 ≤ R ≤ (s− 1) + 1

10s2
. A few years ago, Tao and the second author

proved Conjecture 2.4 for s ≥ 3. This, combined with the above mentioned
earlier results, established the conjecture in full generality [66].

Theorem 2.5. Let R, d be fixed. Then there exists a positive number
n0 = n0(R, d) such that the following holds for all n ≥ n0 and s− 1 ≤ R <√

(s− 1)2 + 1

p(d,R,Ber , n) = 2−nS(n, s).

We will present a short proof of Theorems 2.2 and 2.5 in Section 17.

3. Refinements by Restrictions on A

A totally different direction of research started with the observation that the
upper bound in (1) improves significantly if we make some extra assumption
on the additive structure of A. In this section, it is more natural to present
the results in discrete form. In the discrete setting, one considers the
probability that SA takes a single value (for instance, P(SA = 0)).

Erdős’s result in the first section implies

Theorem 3.1. Let ai be non-zero real numbers, then

sup
x∈R

P(SA = x) ≤
(

n
�n/2�

)
2n

= O(n−1/2).

Erdős and Moser [11] showed that under the condition that the ai are
different, the bound improved significantly.

Theorem 3.2. Let ai be distinct real numbers, then

sup
x∈R

P(SA = x) = O(n−3/2 log n).

They conjectured that the log n term is not necessary. Sárkőzy and
Szemerédi’s [50] confirmed this conjecture
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Theorem 3.3. Let ai be distinct real numbers, then

ρA := sup
x∈R

P(SA = x) = O(n−3/2).

In [54], Stanley found a different (algebraic) proof for a more precise
result, using the hard-Lefschetz theorem from algebraic geometry.

Theorem 3.4 (Stanley’s theorem). Let n be odd and A0 :=
{
− n−1

2 , . . . ,
n−1
2

}
. Let A be any set of n distinct real numbers, then

ρ(A) := sup
x∈R

P(SA = x) ≤ sup
x∈R

P(SA0 = x).

A similar result holds for the case n is even, see [54]. Later, Proctor [41]
found a simpler proof for Stanley’s theorem. His proof is also algebraic,
using tools from Lie algebra. It is interesting to see whether algebraic
approaches can be used to obtain continuous results. (For the continuous
version of Theorem 3.3, see Section 6.)

A hierarchy of bounds. We have seen that the Erdős’ bound of O(n−1/2)
is sharp, if we allow the ai to be the same. If we forbid this, then the
next bound is O(n−3/2), which can be attained if the ai form an arithmetic
progression. Naturally, one would ask what happen if we forbid the ai to
form an arithmetic progression and so forth. Halász’ result, discussed in
Section 6, gives a satisfying answer to this question.

Remark 3.5. To conclude this section, let us mention that while discrete
theorems such as Theorem 3.4 are formalized for real numbers, it holds
for any infinite abelian groups, thanks to a general trick called Freiman
isomorphism (see [67] and also Appendix A). In particular, this trick allows
us to assume that the ai’s are integers in the proofs. Freiman isomorphism,
however, is not always applicable in continuous settings.

4. Littlewood–Offord Type Bounds for Higher Degree

Polynomials

For simplicity, we present all results in this section in discrete form. The
extension to continuous setting is rather straightforward, and thus omitted.

One can view the sum S = a1ξ1 + · · ·+ anξn as a linear function of the
random variables ξ1, . . . , ξn. It is natural to study general polynomials of
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higher degree k. Let us first consider the case k = 2. Following [8], we refer
to it as the Quadratic Littlewood–Offord problem.

Let ξi be iid Bernoulli random variables, let A = (aij) be an n× n
symmetric matrix of real entries. We define the quadratic concentration
probability of A by

ρq(A) := sup
a∈R

P

(∑
i,j

aijξiξj = a

)
.

Similar to the problem considered by Erdős and Littlewood–Offord, we
may ask what upper bound one can prove for ρq(A) provided that the entries
aij are non-zero? This question was first addressed by Costello, Tao and the
second author in [8], motivated by their study of Weiss’ problem concerning
the singularity of a random symmetric matrix (see Section 5).

Theorem 4.1. Suppose that aij �= 0 for all 1 ≤ i, j ≤ n. Then

ρq(A) = O(n−1/8).

The key to the proof of Theorem 4.1 is a decoupling lemma, which can
be proved using Cauchy-Schwarz inequality. The reader may consider this
lemma an exercise, or consult [8] for details.

Lemma 4.2 (Decoupling lemma). Let Y and Z be independent random
variables and E = E(Y, Z) be an event depending on Y and Z. Then

P(E(Y, Z)) ≤ P(E(Y, Z) ∧ E(Y ′, Z) ∧ E(Y, Z ′) ∧ E(Y ′, Z ′))1/4

where Y ′ and Z ′ are independent copies of Y and Z, respectively. Here we
use A ∧B to denote the event that A and B both hold.

Consider the quadratic form Q(x) :=
∑

ij aijξiξj , and fix a non-trivial

partition {1, . . . , n} = U1∪U2 and a non-empty subset S of U1. For instance
one can take U1 to be the first half of the indices and U2 to be the second half.
Define Y := (ξi)i∈U1 and Z := (ξi)i∈U2 . We can write Q(x) = Q(Y, Z). Let
ξ′i be an independent copy of ξi and set Y ′ := (ξ′i)i∈U1 and Z ′ := (ξ′i)i∈U2).
By Lemma 4.2, for any number x

P(Q(Y, Z) = x) ≤ P(Q(Y, Z) = Q(Y, Z ′) = Q(Y ′, Z) = Q(Y ′, Z ′) = x)1/4.

On the other hand, if Q(Y, Z) = Q(Y, Z ′) = Q(Y ′, Z) = Q(Y ′, Z ′) = x
then regardless the value of x

R := Q(Y, Z)−Q(Y ′, Z)−Q(Y, Z ′) +Q(Y ′, Z ′) = 0.
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Furthermore, we can write R as

R =
∑
i∈U1

∑
j∈U2

aij(ξi − ξ′i)(ξj − ξ′j) =
∑
i∈U1

Riwi,

where wi is the random variable wi := ξi− ξ′i, and Ri is the random variable∑
j∈U2

aijwj .

We now can conclude the proof by applying Theorem 3.1 twice. First,
combining this theorem with a combinatorial argument, one can show that
(with high probability), many Ri are non-zero. Next, one can condition on
the non-zero Ri and apply Theorem 3.1 for the linear form

∑
i∈U1

Riwi to
obtain a bound on P(R = 0).

The upper bound n−1/8 in Theorem 4.1 can be easily improved to n−1/4.
The optimal bound was obtained by Costello [7] using, among others, the
inverse theorems from Section 7.

Theorem 4.3 (Quadratic Littlewood–Offord inequality). Suppose that
aij �= 0, 1 ≤ i, j ≤ n. Then

ρq(A) ≤ n−1/2+o(1).

The exponent 1/2+ o(1) is best possible (up to the o(1) term) as demon-

strated by the quadratic form
∑

i,j ξiξj = (
∑n

i=1 ξi)
2
. Both Theorems 4.1

and 4.3 hold in a general setting where the ξi are not necessary Bernoulli
and only a fraction of the aij ’s are non-zero.

One can extend the argument above to give bounds of the form n−ck for
a general polynomial of degree k. However, due to the repeated use of the
decoupling lemma, ck decreases very fast with k.

Theorem 4.4. Let f be a multilinear polynomial of real coefficients in n
variables ξ1, . . . , ξn with m× nk−1 monomials of maximum degree k. If ξi
are iid Bernoulli random variables, then for any value x

P(f = x) = O(m
− 1

2(k
2+k)/2 ).

By a more refined analysis, Razborov and Viola [42] recently obtained
a better exponent of order roughly 1

2k
(see Section 16). On the other hand,

it might be the case that the bound n−1/2+o(1) holds for all degrees k ≥ 2,
under some reasonable assumption on the coefficients of the polynomial.

Quadratic (and higher degree) Littlewood–Offord bounds play impor-
tant roles in the study of random symmetric matrices and Boolean circuits.
We will discuss these applications in Sections 5 and 16, respectively.
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5. Application: Singularity of Random Bernoulli

Matrices

Let Mn be a random matrix of size n whose entries are iid Bernoulli random
variables. A notorious open problem in probabilistic combinatorics is to
estimate pn, the probability that Mn is singular (see [23, 57] for more
details).

Conjecture 5.1. pn = (1/2 + o(1))n.

To give the reader a feeling about how the Littlewood–Offord problem
can be useful in estimating pn, let us consider the following process. We
expose the rows of Mn one by one from the top. Assume that the first n− 1
rows are linearly independent and form a hyperplane with normal vector
v = (a1, . . . , an). Conditioned on these rows, the probability that Mn is
singular is

P(X · v = 0) = P(a1ξ1 + · · ·+ anξn = 0),

where X = (ξ1, . . . , ξn) is the last row.

As an illustration, let us give a short proof for the classical bound
pn = o(1) (first showed by Komlós in [28] using a different argument).

Theorem 5.2. pn = o(1).

We with a simple observation [23].

Fact 5.3. Let H be a subspace of dimension 1 ≤ d ≤ n. Then H contains
at most 2d Bernoulli vectors.

To see this, notice that in a subspace of dimension d, there is a set of d
coordinates which determine the others. This fact implies

pn ≤
n−1∑
i=1

P(xi+1 ∈ Hi) ≤
n−1∑
i=1

2i−n ≤ 1− 2

2n
,

where Hi is the subspace generated by the the first i rows x1, . . . ,xi of Mn.

This bound is quite the opposite of what we want to prove. However,
we notice that the loss comes at the end. Thus, to obtain the desired upper
bound o(1), it suffices to show that the sum of the last (say) log logn terms
is at most (say) 1

log1/3 n
. To do this, we will exploit the fact that the Hi are

spanned by random vectors. The following lemma (which is a more effective
version of the above fact) implies the theorem via the union bound.
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Lemma 5.4. Let H be the subspace spanned by d random vectors, where
d ≥ n− log logn. Then with probability at least 1− 1

n , H contains at most
2n

log1/3 n
Bernoulli vectors.

We say that a set S of d vectors is k-universal if for any set of k different
indices 1 ≤ i1, . . . , ik ≤ n and any set of signs ε1, . . . , εn (εi = ±1), there is
a vector V in S such that the sign of the ij-th coordinate of V matches εj ,
for all 1 ≤ j ≤ k.

Fact 5.5. If d ≥ n/2, then with probability at least 1− 1
n , a set of d random

vectors is k-universal, for k = log n/10.

To prove this, notice that the failure probability is, by the union bound,
at most (

n

k

)(
1− 1

2k

)d

≤ nk

(
1− 1

2k

)n/2

≤ n−1.

If S is k-universal, then any non-zero vector v in the orthogonal com-
plement of the subspace spanned by S should have more than k non-zero
components (otherwise, there would be a vector in S having positive inner
product with v). If we fix such v, and let x be a random Bernoulli vector,
then by Theorem 3.1

P(x ∈ span(S)) ≤ P(x · v = 0) = O

(
1

k1/2

)
= o

(
1

log1/3 n

)
,

proving Lemma 5.4 and Theorem 5.2.

The symmetric version of Theorem 5.2 is much harder and has been
open for quite sometime (the problem was raised by Weiss the 1980s).
Let psymn be the singular probability of a random symmetric matrix whose
upper diagonal entries are iid Bernoulli variables. Weiss conjectured that
psymn = o(1). This was proved by Costello, Tao, and the second author [8].
Somewhat interestingly, this proof made use of the argument of Komlós
in [28] which he applied for non-symmetric matrices. Instead of exposing
the matrix row by row, one needs to expose the principal minors one by
one, starting with the top left entry. At step i, one has a symmetric matrix
Mi of size i and the next matrix Mi+1 is obtained by adding a row and its
transpose. Following Komlós, one defines Xi as the co-rank of the matrix
at step i and shows that the sequence Xi behaves as a bias random walk
with a positive drift. Carrying out the calculation carefully, one obtains
that Xn = 0 with high probability.
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The key technical step of this argument is to show that if Mi has full
rank than so does Mi+1, with very high probability. Here the quadratic
Littlewood–Offord bound is essential. Notice that if we condition on Mi,
then det(Mi+1) is a quadratic form of the entries in the additional ((i+ 1)-
th) row, with coefficients being the co-factors of Mi. By looking at these
co-factors closely and using Theorem 4.1 (to be more precise, a variant of
it where only a fraction of coefficients are required to be non-zero), one can
establish Weiss’ conjecture.

Theorem 5.6.

psymn = o(1).

Getting strong quantitative bounds for pn and psymn is more challenging,
and we will continue this topic in Section 13 and 14, after the introduction
of inverse theorems.

6. Halász’ Results

In [21] (see also in [67]), Halász proved the following very general theorem.

Theorem 6.1. Suppose that there exists a constant δ > 0 such that the
following holds

• (General position) for any unit vector e in Rd one can select at least
δn vectors ak with |〈ak, e〉| ≥ 1;

• (Separation) among the 2d vectors b of the form ±ak1 ± · · · ± akd one

can select at least δ2d with pairwise distance at least 1.

Then

ρd,1,Ber (A) = Oδ,d(n
−3d/2).

Halász’ method is Fourier analytic, which uses the following powerful
Esséen-type concentration inequality as the starting point (see [21], [12]).

Lemma 6.2. There exists an absolute positive constant C = C(d) such that
for any random variable X and any unit ball B ⊂ Rd

(7) P(X ∈ B) ≤ C

∫
‖t‖2≤1

|E(exp(i〈t,X〉))| dt.

Proof (of Lemma 6.2). With the function k(t) to be defined later, let
K(x) be its Fourier’s transform

K(x) =

∫
Rd

exp(i〈x, t〉)k(t)dt.
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Let H(x) be the distribution function and h(x) be the characteristic
function of X respectively. By Parseval’s identity we have

(8)

∫
Rd

K(x)dH(x) =

∫
Rd

k(t)h(t)dt.

If we choose k(t) so that{
k(t) = 0 for ‖t‖2 ≥ 1,

|k(t)| ≤ c1 for ‖t‖2 ≤ 1,

then the RHS of (8) is bounded by that of (7) modulo a constant factor.

Also, if {
K(x) ≥ 1, ‖x‖2 ≤ c2, for some constant c2,

K(x) ≥ 0 for ‖x‖2 ≥ c2,

then the LHS of (8) is at least
∫
‖x‖2≤c2 dH(x).

Similarly, by translating K(x) (i.e. by multiplying k(x) with a phase of
exp(i〈t0, x〉), we obtain the same upper bound for

∫
‖x−t0‖2≤c2 dH(x). Thus,

by covering the unit ball B with balls of radius c2, we arrive at (7) for some
constant C depending on d.

To construct k(t) with the properties above, one may take it to have the
convolution form

k(x) :=

∫
x∈Rd

k1(x)k1(t− x) dx,

where k1(x) = 1 if ‖x‖2 ≤ 1/2 and k1(x) = 0 otherwise.

To illustrate Halász’ method, let us give a quick proof of Erdős bound
O(n−1/2) for the small ball probability ρ1,1,Ber (A) with A being a multi-set
of n real numbers of absolute value at least 1. In view of Lemma 6.2, it
suffices to show that

∫
|t|≤1

∣∣∣∣∣∣E
⎛⎝exp

⎛⎝it
n∑

j=1

ajξj

⎞⎠⎞⎠∣∣∣∣∣∣ dt = O(1/
√
n).
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By the independence of the ξj , we have

∣∣∣∣∣∣E
⎛⎝exp

⎛⎝it
n∑

j=1

ajξj

⎞⎠⎞⎠∣∣∣∣∣∣ =
n∏

j=1

|E(exp(itajξj)| =

∣∣∣∣∣∣
n∏

j=1

cos(taj)

∣∣∣∣∣∣ .
By Hölder’s inequality

∫
|t|≤1

∣∣∣∣∣∣E
⎛⎝exp

⎛⎝it
n∑

j=1

ajξj

⎞⎠⎞⎠∣∣∣∣∣∣ dt ≤
n∏

j=1

(∫
|t|≤1

| cos(taj)|n dt
)1/n

.

But since each aj has magnitude at least 1, it is easy to check that∫
|t|≤1 | cos(taj)|n dt = O(1/

√
n), and the claim follows.

Using Halász technique, it is possible to deduce

Corollary 6.3 [67, Corollary 7.16]. Let A be a multi-set in R. Let
l be a fixed integer and Rl be the number of solutions of the equation
ai1 + · · ·+ ail = aj1 + · · ·+ ajl . Then

ρA := sup
x

P(SA = x) = O(n−2l−
1
2Rl).

This result provides the hierarchy of bounds mentioned in the previous
section, given that we forbid more and more additive structures on A. Let
us consider the first few steps of the hierarchy.

• If the ai’s are distinct, then we can set l = 1 and R1 = n (the only
solutions are the trivial ones ai = ai). Thus, we obtain Sárközy-

Szemerédi’s bound O(n−3/2).
• If we forbid the ai’s to satisfy equations ai + aj = al + ak, for any

{i, j} �= {k, l} (in particular this prohibits A to be an arithmetic
progression), then one can fix l = 2 and R2 = n2 and obtain ρA =

O(n−5/2).
• If we continue to forbid equations of the form ah + ai + aj = ak + al +

am, {h, i, j} �= {k, l,m}, then one obtains ρA = O(n−7/2) and so on.

Halász’ method is very powerful and has a strong influence on the recent
developments discussed in the coming sections.
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7. Inverse Theorems: Discrete Case

A few years ago, Tao and the second author [60] brought a new view to
the small ball problem. Instead of working out a hierarchy of bounds by
imposing new assumptions as done in Corollary 6.3, they tried to find
the underlying reason as to why the small ball probability is large (say,
polynomial in n).

It is easier and more natural to work with the discrete problem first.
Let A be a multi-set of integers and ξ be the Bernoulli random variable.

Question 7.1 (Inverse problem, [60]). Let n → ∞. Assume that for some
constant C

ρA = sup
x

P(SA = x) ≥ n−C .

What can we say about the elements a1, . . . , an of A?

Denote by M the sum of all elements of A and rewrite
∑

i aiξi as
M − 2

∑
i;ξi=−1 ai. As A has 2n subsets, the bound ρA ≥ n−C implies

that at least 2n/nC among the subset sums are exactly (M − x)/2. This
overwhelming collision suggests that A must have some strong additive
structure. Tao and the second author proposed

Inverse Principle:
(9)
A set with large small ball probability must have strong additive structure.

The issue is, of course, to quantify the statement. Before attacking this
question, let us recall the famous Freiman’s inverse theorem from Additive
Combinatorics. As the readers will see, this theorem strongly motivates our
study.

In the 1970s, Freiman considered the collection of pairwise sums A+
A := {a+ a′|a, a′ ∈ A} [15]. Normally, one expects this collection to have
Θ(|A|2) elements. Freiman proved a deep and powerful theorem showing
that if A+A has only O(|A|) elements (i.e, a huge number of collision
occurs) then A must look like an arithmetic progression. (Notice that if A
is an arithmetic progression then |A+A| ≈ 2|A|.)

To make Freiman’s statement more precise, we need the definition of
generalized arithmetic progressions (GAPs).

Definition 7.2. A set Q of an abelian group Z is a GAP of rank r if it can
be expressed in the form

Q = {g0 +m1g1 + · · ·+mrgr|Mi ≤ mi ≤ M ′
i ,mi ∈ Z for all 1 ≤ i ≤ r}

for some g0, . . . , gr ∈ Z and some real numbers M1, . . . ,Mr,M
′
1, . . . ,M

′
r.
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It is convenient to think of Q as the image of an integer box B :=
{(m1, . . . ,mr) ∈ Zr|Mi ≤ mi ≤ M ′

i} under the linear map

Φ : (m1, . . . ,mr) �→ g0 +m1g1 + · · ·+mrgr.

The numbers gi are the generators of Q, the numbers M ′
i ,Mi are the

dimensions of Q, and Vol(Q) := |B| is the volume of B. We say that Q is
proper if this map is one to one, or equivalently if |Q| = Vol(Q). For non-
proper GAPs, we of course have |Q| < Vol(Q). If −Mi = M ′

i for all i ≥ 1
and g0 = 0, we say that Q is symmetric.

If Q is symmetric and t > 0, the dilate tQ is the set

{m1g1 + · · ·+mrgr| − tM ′
i ≤ mi ≤ tM ′

i for all 1 ≤ i ≤ r}.

It is easy to see that if Q is a proper map of rank r, then |Q+Q| ≤ 2r|Q|.
This implies that if A is a subset of density δ in a proper GAP Q of rank r,
then as far as δ = Θ(1),

|A+A| ≤ |Q+Q| ≤ 2r|Q| ≤ 2r

δ
|A| = O(|A|).

Thus, dense subsets of a proper GAP of constant rank satisfies the
assumption |A+A| = O(|A|). Freiman’s remarkable inverse theorem showed
that this example is the only one.

Theorem 7.3 (Freiman’s inverse theorem in Z). Let γ be a given positive
number. Let X be a set in Z such that |X +X| ≤ γ|X|. Then there exists
a proper GAP of rank Oγ(1) and cardinality Oγ(|X|) that contains X.

For further discussions, including a beautiful proof by Ruzsa, see [67,
Chapter 5]; see also [5] for recent and deep developments concerning non-
commutative settings (when A is a subset of a non-abelian group).

In our case, we want to find examples for A such that

ρ(A) := sup
x

P(SA = x)

is large. Again, dense subsets of a proper GAP come in as natural candi-
dates.

Example 7.4. Let Q be a proper symmetric GAP of rank r and vol-
ume N . Let a1, . . . , an be (not necessarily distinct) elements of Q. By
the Central Limit Theorem, with probability at least 2/3, the random sum
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SA =
∑n

i=1 aixi takes value in the dilate 10n1/2Q. Since |tQ| ≤ trN , by the
pigeon hole principle, we can conclude that there is a point x where

P(SA = x) = Ω

(
1

nr/2N

)
.

Thus if |Q| = N = O(nC−r/2) for some constant C ≥ r/2, then

ρ(A) ≥ P(SA = x) = Ω

(
1

nC

)
.

This example shows that if the elements of A are elements of a symmetric
proper GAP with a small rank and small cardinality, then ρ(A) is large.
Inspired by Freiman’s theorem, Tao and the second author [62, 60] showed
that the converse is also true.

Theorem 7.5. For any constant C, ε there are constants r,B such that
the following holds. Let A be a multi-set of n real numbers such that
ρ(A) ≥ n−C , then there is a GAP Q of rank r and volume nB such that all
but nε elements of A belong to Q.

The dependence of B on C, ε is not explicit in [60]. In [62], Tao and the
second author obtained an almost sharp dependence. The best dependence,
which mirrors Example 7.4 was proved in a more recent paper [39] of the
current authors. This proof is different from those in earlier proofs and
made a direct use of Freiman’s theorem (see Appendix A).

Theorem 7.6 (Optimal inverse Littlewood–Offord theorem, discrete case)
[39]. Let ε < 1 and C be positive constants. Assume that

ρ(A) ≥ n−C .

Then for any nε ≤ n′ ≤ n, there exists a proper symmetric GAP Q of
rank r = OC,ε(1) which contains all but at most n′ elements of A (counting
multiplicities), where

|Q| = OC,ε(ρ(A)−1n′−
r
2 ).

In particular, there exists a proper symmetric GAP of rank OC,ε(1) and

cardinality OC,ε(ρ(A)−1n−
r
2 ) which contains all but at most εn elements of

A (counting multiplicities).
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The existence of the exceptional set cannot be avoided completely. For
more discussions, see [60, 39]. There is also a trade-off between the size of
the exceptional set and the bound on |Q|. In fact, the main result of [62]
has a better bound on the exceptional set with a loss of a small polynomial
factor in the volume bound.

Let us also point out that the above inverse theorems hold in a very
general setting where the random variables ξi are not necessarily Bernoulli
and independent (see [60, 62, 39, 38] for more details).

8. Application: From Inverse to Forward

One can use the “inverse” Theorem 7.6 to quickly prove several “forward”
theorems presented in earlier sections. As an example, let us derive Theo-
rems 3.1 and 3.3.

Proof (of Theorem 3.1). Assume, for contradiction, that there is a set

A of n non-zero numbers such that ρ(A) ≥ c1n
−1/2 for some large con-

stant c1 to be chosen. Set ε = .1, C = 1/2. By Theorem 7.6, there is a

GAP Q of rank r and size O
(

1
c1
nC− r

2

)
that contains at least .9n elements

from A. However, by setting c1 to be sufficiently large (compared to the
constant in big O) and using the fact that C = 1/2 and r ≥ 1, we can force

O
(

1
c1
nC− r

2

)
< 1. Thus, Q has to be empty, a contradiction.

Proof (of Theorem 3.3). Similarly, assume that there is a set A of n

distinct numbers such that ρ(A) ≥ c1n
−3/2 for some large constant c1 to be

chosen. Set ε = .1, C = 3/2. By Theorem 7.6, there is a GAP Q of rank r

and size O
(

1
c1
nC− r

2

)
that contains at least .9n elements from A. This

implies |Q| ≥ .9n. By setting c1 to be sufficiently large and using the fact
that C = 3/2 and r ≥ 1, we can guarantee that |Q| ≤ .8n, a contradiction.

The readers are invited to work out the proof of Corollary 6.3.

Let us now consider another application of Theorem 7.6, which enables
us to make very precise counting arguments. Assume that we would like
to count the number of multi-sets A of integers with max |ai| ≤ M = nO(1)

such that ρ(A) ≥ n−C .
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Fix d ≥ 1, fix1 a GAP Q with rank r and volume |Q| ≤ cρ(A)−1n−
r
2

for some constant c depending on C and ε. The dominating term in the
calculation will be the number of multi-sets which intersect withQ in subsets
of size at least (1− ε)n. This number is bounded by

∑
k≤εn

|Q|n−k(2M)k ≤
∑
k≤εn

(
cρ(A)−1n−

r
2

)n−k
(2M)k(10)

≤ (OC,ε(1))
nnOε(1)nρ(A)−nn−

n
2 .

We thus obtain the following useful result.

Theorem 8.1 (Counting theorem: Discrete case). The number N of multi-
sets A of integers with max |ai| ≤ nC1 and ρ(A) ≥ n−C2 is bounded by

N =
(
OC1,C2,ε(1)

)n
nOε(1)n

(
ρ(A)−1n−1/2

)n
,

where ε is an arbitrary constant between 0 and 1.

Due to their asymptotic nature, our inverse theorems do not directly im-
ply Stanley’s precise result (Theorem 3.4). However, by refining the proofs,
one can actually get very close and with some bonus, namely, additional
strong rigidity information. For instance, in [37] the first author showed
that if the elements of A are distinct, then

P(SA = x) ≤
(√

24

π
+ o(1)

)
n−3/2,

where the constant on the RHS is obtained when A is the symmetric arith-
metic progression A0 from Theorem 3.4. It was showed that if ρ(A) is close
to this value, then A needs to be very close to a symmetric arithmetic pro-
gression.

Theorem 8.2 [37]. There exists a positive constant ε0 such that for any
0 < ε ≤ ε0, there exists a positive number ε′ = ε′(ε) such that ε′ → 0 as
ε → 0 and the following holds: if A is a set of n distinct integers and

ρ(A) ≥
(√

24

π
− ε

)
n−

3
2 ,

1A more detailed version of Theorem 7.6 tells us that there are not too many ways to
choose the generators of Q. In particular, if |ai| ≤ M = nO(1), the number of ways to fix
these is negligible compared to the main term.
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then there exists an integer l which divides all a ∈ A and∑
a∈A

(a
l

)2
≤ (1 + ε′)

∑
a∈A0

a2 = (1 + ε′ + o(1))
n3

12
.

We remark that a slightly weaker stability can be shown even when we
have a much weaker assumption ρ(A) ≥ εn−3/2.

As the reader will see, in many applications in the following sections,
we do not use the inverse theorems directly, but rather their counting
corollaries, such as Theorem 8.1. Such counting results can be used to
bound the probability of a bad event through the union bound (they count
the number of terms in the union). This method was first used in studies of
random matrices [57, 60, 45], but it is simpler to illustrate the idea by the
following more recent result of Conlon, Fox, and Sudakov [6].

A Hilbert cube is a set of the form x0 +Σ({x1, . . . , xd}) where Σ(X) ={∑
x∈Y x|Y ⊂ X

}
, and 0 ≤ x0, 0 < x1 < · · · < xd are integers. Following

the literature, we refer to the index d as the dimension. One of the earliest
results in Ramsey theory is a theorem of Hilbert [22] stating that for any
fixed r and d and n sufficiently large, any coloring of the set [n] := {1, . . . , n}
with r colors must contain a monochromatic Hilbert cube of dimension d.
Let h(d, r) be the smallest such n. The best known upper bound for this
function is [22, 20]

h(d, r) ≤ (2r)2
d−1

.

The density version of [55] states that for any natural number d and
δ > 0 there exists an n0 such that if n ≥ n0 then any subset of n of density
δ contains a Hilbert cube of dimension d. One can show that

d ≥ c log log n

where c is a positive constant depending only on δ.

On the other hand, Hegyvári shows an upper bound of the form
O(

√
log n log log n) by considering a random subset of density δ. Using

the discrete inverse theorems (Section 7), Conlon, Fox, and Sudakov [6] re-
moved the log log n term, obtaining O(

√
log n), which is sharp up to the

constant in big O, thanks to another result of Hegyvári.

Conlon et al. started with the following corollary of Theorem 7.5.

Lemma 8.3. For every C > 0, 1 > ε > 0 there exist positive constants r
and C ′ such that if X is a multiset with d elements and |Σ(X)| ≤ dC , then

there is a GAP Q of dimension r and volume at most dC
′
such that all but

at most d1−ε elements of X are contained in Q.
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From this, one can easily prove the following counting lemma.

Lemma 8.4. For s ≤ log d, the number of d-sets X ⊂ [n] with Σ(X) ≤ 2sd2

is at most nO(s)dO(d).

Let A be a random set of [n] obtained by choosing each number with
probability δ independently. Let E be the event that A contains a Hilbert
cube of dimension c

√
log n. We aim to show that

(11) P(E) = o(1),

given c sufficiently large.

Trivially P(E) ≤ n
∑

X⊂[n] δ
|Σ(X)|, where the factor n corresponds to

the number of ways to choose x0. Let mt be the number of X such that
|Σ(X)| = t. The RHS can be bounded from above by n

∑
tmtδ

t.

If t is large, say t ≥ d3, we just crudely bound
∑

t≥d3 mt by nd (which

is the total number of ways to choose x1, . . . , xd). The contribution in

probability in this case is at most n× nd × δd
3
= o(1), if c is sufficiently

large. In the case t < d3, we make use of the counting lemma above to
bound mt and a routine calculation finishes the job.

9. Inverse Theorems: Continuous Case I.

In this section and the next, we consider sets with large small ball proba-
bility.

We say that a vector v ∈ Rd is δ-close to a set Q ⊂ Rd if there exists a
vector q ∈ Q such that ‖v − q‖2 ≤ δ. A set X is δ-close to a set Q if every
element of X is δ-close to Q. The continuous analogue of Example 7.4 is
the following.

Example 9.1. Let Q be a proper symmetric GAP of rank r and vol-
ume N in Rd. Let a1, . . . , an be (not necessarily distinct) vectors which

are 1
100βn

−1/2-close to Q. Again by the Central Limit Theorem, with prob-

ability at least 2/3, SA is β-close to 10n1/2Q. Thus, by the pigeon hole

principle, there is a point x in 100n1/2Q such that

P(SA ∈ B(x, β)) ≥ |10n1/2Q|−1 ≥ Ω(n−r/2|Q|−1).

It follows that if Q has cardinality nC− r
2 for some constant C ≥ r/2,

then

(12) ρd,β,Ber (A) = Ω

(
1

nC

)
.
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Thus, in view of the Inverse Principle (9) and Theorem 7.6, we would
expect that if ρd,β,Ber (A) is large, then most of the ai is close to a GAP with
small volume. This statement turned out to hold for very general random
variable ξ (not only for Bernoulli). In practice, we can consider any real
random variable ξ, which satisfies the following condition: there are positive
constants C1, C2, C3 such that

(13) P(C1 ≤ |ξ1 − ξ2| ≤ C2) ≥ C3,

where ξ1, ξ2 are iid copies of ξ.

Theorem 9.2 [39]. Let ξ be a real random variable satisfying (13). Let
0 < ε < 1; 0 < C be constants and β > 0 be a parameter that may depend
on n. Suppose that A = {a1, . . . , an} is a (multi-)subset of Rd such that∑n

i=1 ‖ai‖22 = 1 and that A has large small ball probability

ρ := ρd,β,ξ(A) ≥ n−C .

Then there exists a symmetric proper GAP Q of rank r ≥ d and of size

|Q| = O(ρ−1n(−r+d)/2) such that all but εn elements of A are are O
(
β logn
n1/2

)
-

close to Q.

In applications, one often chooses β to be at least exp(−nε) for some
small constant ε. Our next result gives more information about Q, but with
a weaker approximation.

Theorem 9.3. Under the assumption of the above theorem, the following
holds. For any number n′ between nε and n, there exists a proper symmetric
GAP Q = {∑r

i=1 xigi : |xi| ≤ Li} such that

• At least n− n′ elements of A are β-close to Q.
• Q has small rank, r = O(1), and small cardinality

|Q| ≤ max

(
O

(
ρ−1√
n′

)
, 1

)
.

• There is a non-zero integer p = O(
√
n′) such that all steps gi of Q

have the form gi = (gi1, . . . , gid), where gij = β
pij
p with pij ∈ Z and

pij = O(β−1
√
n′).

Theorem 9.3 immediately implies the following result which can be seen
as a continuous analogue of Theorem 8.1. This result was first proved by
Tao and the second author for the purpose of verifying the Circular Law in
random matrix theory [58, 60] using a more complicated argument.

Let n be a positive integer and β, ρ be positive numbers that may depend
on n. Let Sn,β,ρ be the collection of all multisets A = {a1, . . . , an}, ai ∈ R2

such that
∑n

i=1 ‖ai‖22 = 1 and ρ2,β,Ber (A) ≥ ρ.
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Theorem 9.4 (Counting theorem, continuous case) [58, 60]. Let 0 <
ε ≤ 1/3 and C > 0 be constants. Then, for all sufficiently large n and
β ≥ exp(−nε) and ρ ≥ n−C there is a set S ⊂ (R2)n of size at most

ρ−nn−n(
1
2
−ε) + exp(o(n))

such that for any A = {a1, . . . , an} ∈ Sn,β,ρ there is some A′ = (a′1, . . . , a′n) ∈
S such that ‖ai − a′i‖2 ≤ β for all i.

Proof (of Theorem 9.4). Set n′ := n1− 3ε
2 (which is � nε as ε ≤ 1/3).

Let S ′ be the collection of all subsets of size at least n− n′ of GAPs whose
parameters satisfy the conclusion of Theorem 9.3.

Since each GAP is determined by its generators and dimensions, the
number of such GAPs is bounded by

((β−1
√
n′)

√
n′)O(1)

(
ρ−1√
n′

)O(1)

= exp(o(n)).

(The term
(

ρ−1√
n′

)O(1)
bounds the number of choices of the dimensions Mi.)

Thus

|S ′| =
(
O

((
ρ−1√
n′

)n)
+ 1

)
exp(o(n)).

We approximate each of the exceptional elements by a lattice point in
β · (Z/d)d. Thus if we let S ′′ to be the set of these approximated tuples
then |S ′′| ≤ ∑

i≤n′(O(β−1))i = exp(o(n)) (here we used the assumption β ≥
exp(−nε)).

Set S := S ′×S ′′. It is easy to see that |S| ≤ O(n−1/2+ερ−1)n+exp(o(n)).

Furthermore, if ρ(A) ≥ n−O(1) then A is β-close to an element of S, con-
cluding the proof.

10. Inverse Theorems: Continuous Case II.

Another realization of the Inverse Principle (9) was given by Rudelson and
Vershynin in [45, 47] (see also Friedland and Sodin [16]). Let a1, . . . , an be
real numbers. Rudelson and Vershynin defined the essential least common
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denominator (LCD) of a = (a1, . . . , an) as follows. Fix parameters α and γ,
where γ ∈ (0, 1), and define

LCDα,γ(a) := inf
{
θ > 0 : dist(θa,Zn) < min(γ‖θa‖2, α)

}
,

where the distance from a vector v to a set S is defined by dist(v, S) :=
infs∈S ‖v − s‖2.

The requirement that the distance is smaller than γ‖θa‖2 forces us to
consider only non-trivial integer points as approximations of θa. One typi-
cally assume γ to be a small constant, and α = c

√
n with a small constant

c > 0. The inequality dist(θa,Zn) < α then yields that most coordinates of
θa are within a small distance from non-zero integers.

Theorem 10.1 (Diophantine approximation [45, 46]). Consider a sequence
A = {a1, . . . , an} of real numbers which satisfies

∑n
i=1 a

2
i ≥ 1. Let ξ be a

random variable such that supaP(ξ ∈ B(a, 1)) ≤ 1− b for some b > 0, and
x1, . . . , xn be iid copies of ξ. Then, for every α > 0 and γ ∈ (0, 1), and for

β ≥ 1

LCDα,γ(a)
,

we have

ρ1,β,ξ(A) ≤
Cβ

γ
√
b
+ Ce−2bα

2
.

One can use Theorem 10.1 to prove a special case of the forward result
of Erdős and Littlewood–Offord when most of the ai have the same order
of magnitude (see [45, p. 6]).2 Indeed, assume that K1 ≤ |ai| ≤ K2 for all i,

where K2 = cK1 with c = O(1). Set a′i := ai/
√∑

j a
2
j and a′ := (a′1, . . . , a′n).

Choose γ = c1, α = c2
√
n with sufficiently small positive constants c1, c2

(depending on c), the condition dist(θa′,Zn) < min(γ‖θa′‖2, α) implies that
|θa′i − ni| ≤ 1/3 with ni ∈ Z, ni �= 0 for at least c3n indices i, where c3 is a
positive constant depending on c1, c2. It then follows that for these indices,
θ2a′i

2 ≥ 4n2
i /9. Summing over i, we obtain θ2 = Ω(n) and so LCDα,γ(a

′) =
Ω(

√
n). Applying Theorem 10.1 to the vector a′ with β = 1/LCDα,γ(a

′), we
obtain the desired upper bound O(1/

√
n) for the concentration probability.

Theorems 10.1 is not exactly inverse in the Freiman sense. On the other
hand, it is convenient to use and in most applications provides a sufficient

2One can also handle this case by conditioning on the abnormal ai and use Berry-
Esseen for the remaining sum.
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amount of structural information that allows one derive a counting theorem.
An extra advantage here is that this theorem enables one to consider sets
A with small ball probability as small as (1− ε)n, rather than just n−C as
in Theorem 9.2.

The definition of the essential least common denominator above can be
extended naturally to higher dimensions. To this end, we define the product
of such multi-vector a and a vector θ ∈ Rd as

θ · a = (〈θ, a1〉, · · · , 〈θ, an〉) ∈ Rn.

Then we define, for α > 0 and γ ∈ (0, 1),

LCDα,γ(a) := inf
{
‖θ‖2 : θ ∈ Rd, dist(θ · a,Zn) < min(γ‖θ · a‖2, α)

}
.

The following generalization of Theorem 10.1 gives a bound on the small
ball probability for the random sum

∑n
i=1 aixi in terms of the additive

structure of the coefficient sequence a.

Theorem 10.2 (Diophantine approximation, multi-dimensional case) [46,
16]. Consider a sequence A = {a1, . . . , an} of vectors ai ∈ Rd, which satisfies

(14)
n∑

i=1

〈ai, x〉2 ≥ ‖x‖22 for every x ∈ Rd.

Let ξ be a random variable such that supaP(ξ ∈ B(a, 1)) ≤ 1− b for some
b > 0 and x1, . . . , xn be iid copies of ξ.

Then, for every α > 0 and γ ∈ (0, 1), and for

β ≥
√
d

LCDα,γ(a)
,

we have

ρd,β
√
d,ξ(A) ≤

(
Cβ

γ
√
b

)d

+ Cde−2bα
2
.

We will sketch the proof of Theorem 10.1 in Appendix B.
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11. Inverse Quadratic Littlewood–Offord

In this section, we revisit the quadratic Littlewood–Offord bound in Sec-
tion 4 and consider its inverse. We first consider a few examples of A where
(the quadratic small ball probability) ρq(A) is large.

Example 11.1 (Additive structure implies large small ball probability).

Let Q be a proper symmetric GAP of rank r = O(1) and of size nO(1).
Assume that aij ∈ Q, then for any ξi ∈ {±1}∑

i,j

aijξiξj ∈ n2Q.

Thus, by the pigeon-hole principle,

ρq(A) ≥ n−2r|Q|−1 = n−O(1).

But unlike the linear case, additive structure is not the only source for
large small ball probability. Our next example shows that algebra also plays
a role.

Example 11.2 (Algebraic structure implies large small ball probability).
Assume that

aij = kibj + kjbi

where ki ∈ Z, |ki| = nO(1) and such that P (
∑

i kiξi = 0) = n−O(1).

Then we have

P

(∑
i,j

aijξiξj = 0

)
= P

(∑
i

kiξi
∑
j

bjξj = 0

)
= n−O(1).

Combining the above two examples, we have the following general one.

Example 11.3 (Structure implies large small ball probability). Assume
that aij = a′ij + a′′ij , where a′ij ∈ Q, a proper symmetric GAP of rank O(1)

and size nO(1), and

a′′ij = ki1b1j + kj1b1i + · · ·+ kirbrj + kjrbri,

where b1i, . . . , bri are arbitrary and ki1, . . . , kir are integers bounded by nO(1),
and r = O(1) such that

P

(∑
i

ki1ξi = 0, . . . ,
∑
i

kirξi = 0

)
= n−O(1).
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Then we have

∑
i,j

aijξiξj =
∑
i,j

a′ijξiξj + 2

(∑
i

ki1ξi

)(∑
j

b1jξj

)

+ · · ·+ 2

(∑
i

kirξi

)(∑
j

brjξj

)
.

Thus,

P

(∑
i,j

aijξiξj ∈ n2Q

)
= n−O(1).

It then follows, by the pigeon-hole principle, that ρq(A) = n−O(1).

We have demonstrated the fact that as long as most of the aij can be
decomposed as aij = a′ij + a′′ij , where a

′
ij belongs to a GAP of rank O(1) and

size nO(1) and the symmetric matrix (a′′ij) has rank O(1), then A = (aij) has

large quadratic small ball probability. The first author in [36] showed that
sort of the converse is also true.

Theorem 11.4 (Inverse Littlewood–Offord theorem for quadratic forms).
Let ε < 1, C be positive constants. Assume that

ρq(A) ≥ n−C .

Then there exist index sets I0, I of size OC,ε(1) and (1− ε)n respectively,
with I ∩ I0 = ∅, and there exist integers kii0 (for any pair i0 ∈ I0, i ∈ I) of

size bounded by nOC,ε(1), and a structured set Q of the form

Q =

{
OC(1)∑
h=1

ph
qh

gh|ph ∈ Z, |ph|, |qh| = nOC,ε(1)

}
,

such that for all i ∈ I the followings holds:

• (low rank decomposition) for any j ∈ I,

aij = a′ij −
( ∑

i0∈I0
kii0ai0j +

∑
i0∈I0

kji0ai0i

)
;

• (common additive structure of small size) all but εn entries a′ij belong
to Q.



Small Ball Probability, Inverse Theorems, and Applications 435

We remark that the common structure Q is not yet a GAP, as the
coefficients are rational, instead of being integers. It is desirable to have
an analogue of Theorem 7.6 with common structure as a genuine GAP
with optimal parameters (see for instance [7, Conjecture 1] for a precise
conjecture for bilinear forms.) For counting purposes, this inverse theorem
is sufficiently strong.

12. Application: The Least Singular Value of a Random

Matrix

For a matrix A, let σn(A) denote its smallest singular value. It is well known
that σn(A) ≥ 0 and the bound is strict if and only if A is non-singular.
An important problem with many practical applications is to bound the
least singular value of a non-singular matrix (see [17, 52, 53, 63, 47, 9]
for discussions). The problem of estimating the least singular value of a
random matrix was first raised by Goldstine and von Neumann [17] in the
1940s, with connection to their investigation of the complexity of inverting
a matrix.

To answer Goldstine and von Neumman’s question, Edelman [9] com-
puted the distribution of the LSV of the random matrix MGau

n of size n
with iid standard gaussian entries, and showed that for all fixed t > 0

P(σn(M
Gau
n ≤ tn−1/2) =

∫ t

0

1 +
√
x

2
√
x

e−(x/2+
√
x) dx+ o(1)

= t− 1

3
t3 +O(t4) + o(1).

He conjectured that this distribution is universal (i.e., it must hold for
other models of random matrices, such as Bernoulli).

More recently, in their study of smoothed analysis of the simplex
method, Spielman and Teng [52, 53] showed that for any t > 0 (t can go
to 0 with n)

(15) P(σn(M
Gau
n ) ≤ tn−1/2) ≤ t.

They conjectured that a slightly adjusted bound holds in the Bernoulli
case [52]

(16) P(σn(M
Ber
n ) ≤ t) ≤ tn1/2 + cn,



436 H. H. Nguyen and V. H. Vu

where 0 < c < 1 is a constant. The term cn is needed as MBer
n can be

singular with exponentially small ball probability.

Edelman’s conjecture has been proved by Tao and the second author
in [64]. This work also confirms Spielman and Teng’s conjecture for the

case t is fairly large; t ≥ n−δ for some small constant δ > 0. For t ≥ n−3/2,
Rudelson in [44], making use of Halász’ machinery from [21], obtained
a strong bound with an extra (multiplicative) constant factor. In many
applications, it is important to be able to treat even smaller t. As a matter
of fact, in applications what one usually needs is the probability bound to
be very small, but this requires one to set t very small automatically.

In the last few years, thanks to the development of inverse theorems,
one can now prove very strong bound for almost all range of t.

Consider a matrix M with row vectors Xi and singular values σ1 ≥ · · · ≥
σn. Let di be the distance from Xi to the hyperplane formed by the other
n− 1 rows. There are several ways to exhibit a direct relation between the
di and σi. For instance, Tao and the second showed [58]

(17) d−21 + · · ·+ d−2n = σ−21 + · · ·+ σ−2n .

A technical relation, but in certain applications more effective, is [45,
Lemma 3.5].

From this, it is clear that if one can bound the di from below with high
probability, then one can do the same for σn. Let v = (a1, . . . , an) be the
normal vector of the hyperplane formed by X2, . . . ,Xn and ξ1, . . . , ξn be the
coordinates of X1, then

d1 = |a1ξ1 + . . . anξn|.

Thus, the probability that d1 is small is exactly the small ball probability
for the multi-set A = {a1, . . . , an}. If this probability is large, then the
inverse theorems tell us that the set A must have strong additive structure.
However, A comes as the normal vector of a random hyperplane, so the
probability that it has any special structure is very small (to quantify this
we can use the counting theorems such as Theorem 9.4). Thus, we obtain,
with high probability, a lower bound on all di. In principle, one can use this
to deduce a lower bound for σn.

Carrying out the above plan requires certain extra ideas and some careful
analysis. In [60], Tao and the second author managed to prove

Theorem 12.1. For any constant A > 0, there is a constant B > 0 such
that

P(σn(M
Ber
n ) ≤ n−B) ≤ n−A.
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The first inverse theorem, Theorem 7.5, was first proved in this paper,
as a step in the proof of Theorem 12.1. In a consequent paper, Rudelson
and Vershynin developed Theorem 10.1, and used it, in combination with
[45, Lemma 3.5] and many other ideas to show

Theorem 12.2. There is a constant C > 0 and 0 < c < 1 such that for any
t > 0,

P(σn(M
Ber
n ) ≤ tn−1/2) ≤ tn1/2 + cn.

This bound is sharp, up to the constant C. It also gives a new proof of
Kahn-Komlós-Szemerédi bound on the singularity probability of a random
Bernoulli matrix (see Section 13). Both theorems hold in more general
setting.

In practice, one often works with random matrices of the type A+Mn

where A is deterministic and Mn has iid entries. (For instance, in their
works on smoothed analysis, Spielman and Teng used this to model a large
data matrix perturbed by random noise.) They proved in [52]

Theorem 12.3. Let A be an arbitrary n by n matrix. Then for any t > 0,

P(σn(A+MGau
n ) ≤ tn−1/2) = O(t).

One may ask whether there is an analogue of Theorem 12.2 for this
model. The answer is, somewhat surprisingly, negative. An analogue of the
weaker Theorem 12.1 is, however, available, assuming that ‖A‖ is bounded
polynomially in n. For more discussion on this model, we refer to [63]. For
applications in Random Matrix Theory (such as the establishment of the
Circular Law) and many related results, we refer to [59, 65, 58, 18, 40, 2, 47]
and the references therein.

13. Application: Strong Bounds on the Singularity

Problem – The Non-symmetric Case

We continue to discuss the singularity problem from Section 5. The first
exponential bound on pn was proved by Kahn, Komlós and Szemerédi [23],
who showed that pn ≤ .999n. In [56], Tao and the second author simpli-
fied the proof and got a slightly improved bound .952n. A more notable
improvement which pushed the bound to (3/4 + o(1))n was obtained in a
subsequent paper [57], which combined Kahn et al. approach with an in-
verse theorem. The best current bound is (1/

√
2 + o(1))n by Bourgain, Vu

and Wood [3]. The proof of this bound still relied heavily on the approach



438 H. H. Nguyen and V. H. Vu

from [57] (in particular it used the same inverse theorem), but added a new
twist which made the first part of the argument more effective.

In the following, we tried to present the approach from [23] and [57].
Similar to the proof in Appendix A, we first embed the problem in a finite
field F = Fp, where p is a very large prime. Let {−1, 1}n ⊂ Fn be the
discrete unit cube in Fn. We let X be the random variable taking values in
{−1, 1}n which is distributed uniformly on this cube (thus each element of
{−1, 1}n is attained with probability 2−n). Let X1, . . . , Xn ∈ {−1, 1} be n
independent samples of X. Then

pn := P(X1, . . . , Xn linearly dependent).

For each linear subspace V of Fn, let AV denote the event that X1, . . . ,
Xn span V . Let us call a space V non-trivial if it is spanned by the set
V ∩ {−1, 1}n. Note that P(AV ) �= 0 if and only if V is non-trivial. Since
every collection of n linearly dependent vectors in Fn will span exactly one
proper subspace V of Fn, we have

(18) pn =
∑

V a proper non-trivial subspace of Fn

P(AV ).

It is not hard to show that the dominant contribution to this sum came
from the hyperplanes:

pn = 2o(n)
∑

V a non-trivial hyperplane in Fn

P(AV ).

Thus, if one wants to show pn ≤ (3/4 + o(1))n, it suffices to show∑
V a non-trivial hyperplane in Fn

P(AV ) ≤ (3/4 + o(1))n.

The next step is to partition the non-trivial hyperplanes V into a number
of classes, depending on the number of (−1, 1) vectors in V .

Definition 13.1 (Combinatorial dimension). Let D := {d± ∈ Z/n : 1 ≤
d± ≤ n}. For any d± ∈ D, we define the combinatorial Grassmannian
Gr(d±) to be the set of all non-trivial hyperplanes V in Fn with

(19) 2d±−1/n < |V ∩ {−1, 1}n| ≤ 2d± .

We will refer to d± as the combinatorial dimension of V .
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It thus suffices to show that

(20)
∑
d±∈D

∑
V ∈Gr(d±)

P(AV ) ≤
(
3

4
+ o(1)

)n

.

It is therefore of interest to understand the size of the combinatorial Grass-
mannians Gr(d±) and of the probability of the events AV for hyperplanes
V in those Grassmannians.

There are two easy cases, one when d± is fairly small and one where d±
is fairly large.

Lemma 13.2 (Small combinatorial dimension estimate). Let 0 < α < 1 be
arbitrary. Then ∑

d±∈D:2d±−n≤αn

∑
V ∈Gr(d±)

P(AV ) ≤ nαn.

Proof (of Lemma 13.2). Observe that if X1, . . . , Xn span V , then there
are n− 1 vectors among the Xi which already span V . By symmetry, we
thus have
(21)
P(AV ) = P(X1, . . . , Xn span V ) ≤ nP(X1, . . . , Xn−1 span V )P(X ∈ V ).

On the other hand, if V ∈ Gr(d±) and 2d±−n ≤ αn, then P(X ∈ V ) ≤ αn

thanks to (19). Thus we have

P(AV ) ≤ nαnP(X1, . . . , Xn−1 span V ).

Since X1, . . . , Xn−1 can span at most one space V , the claim follows.

Lemma 13.3 (Large combinatorial dimension estimate). We have∑
d±∈D:2d±−n≥100/√n

∑
V ∈Gr(d±)

P(AV ) ≤ (1 + o(1))n22−n.

This proof uses Theorem 3.1 and is left as an exercise; consult [23, 57] for
details. The heart of the matter is the following, somewhat more difficult,
result.
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Proposition 13.4 (Medium combinatorial dimension estimate). Let 0 <
ε0 � 1, and let d± ∈ D be such that

(
3
4 + 2ε0

)n
< 2d±−n < 100√

n
. Then we

have ∑
V ∈Gr(d±)

P(AV ) ≤ o(1)n,

where the rate of decay in the o(1) quantity depends on ε0 (but not on d±).

Note that D has cardinality |D| = O(n2). Thus if we combine this
proposition with Lemma 13.2 (with α := 3

4 + 2ε0) and Lemma 13.3, we see
that we can bound the left-hand side of (20) by

n

(
3

4
+ 2ε0

)n

+ n2o(1)n + (1 + o(1))n22−n =

(
3

4
+ 2ε0 + o(1)

)n

.

Since ε0 is arbitrary, the upper bound (3/4 + o(1))n follows.

We now informally discuss the proof of Proposition 13.4. We start with
the trivial bound

(22)
∑

V ∈Gr(d±)

P(AV ) ≤ 1

that arises simply because any vectors X1, . . . , Xn can span at most one
space V . To improve upon this trivial bound, the key innovation in [23]
is to replace X by another random variable Y which tends to be more
concentrated on subspaces V than X is. Roughly speaking, one seeks the
property

(23) P(X ∈ V ) ≤ cP(Y ∈ V )

for some absolute constant 0 < c < 1 and for all (or almost all) subspaces
V ∈ Gr(d±). From this property, one expects (heuristically, at least)

(24) P(AV ) = P(X1, . . . , Xn span V ) ≤ cnP(Y1, . . . , Yn span V ),

where Y1, . . . , Yn are iid samples of Y , and then by applying the trivial
bound (22) with Y instead of X, we would then obtain a bound of the form∑

V ∈Gr(d±)P(AV ) ≤ cn, at least in principle. Clearly, it will be desirable to

make c as small as possible; if we can make c arbitrarily small, we will have
established Proposition 13.4.

The random variable Y can be described as follows. Let 0 ≤ μ ≤ 1 be a
small absolute constant (in [23] the value μ = 1

108e
−1/108 was chosen), and
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let η(μ) be a random variable taking values in {−1, 0, 1} ⊂ F which equals 0
with probability 1−μ and equals +1 or −1 with probability μ/2 each. Then

let Y := (η
(μ)
1 , . . . , η

(μ)
n ) ∈ Fn, where η

(μ)
1 , . . . , η

(μ)
n are iid samples of η(μ). By

using a Fourier-analytic argument of Halász [21], a bound of the form

P(X ∈ V ) ≤ C
√
μP(Y ∈ V )

was shown in [23], where C was an absolute constant (independent of μ),
and V was a hyperplane which was non-degenerate in the sense that its
combinatorial dimension was not too close to n. For μ sufficiently small, one
then obtains (23) for some 0 < c < 1, although one cannot make c arbitrarily
small without shrinking μ also.

There are however some technical difficulties with this approach, arising
when one tries to pass from (23) to (24). The first problem is that the
random variable Y , when conditioned on the event Y ∈ V , may concentrate
on a lower dimensional subspace on V , making it unlikely that Y1, . . . , Yn
will span V . In particular, Y has a probability of (1− μ)n of being the zero
vector, which basically means that one cannot hope to exploit (23) in any
non-trivial way once P(X ∈ V ) ≤ (1−μ)n. However, in this case V has very
low combinatorial dimension and Lemma 13.2 already gives an exponential
gain.

Even when (1− μ)n < P(X ∈ V ) ≤ 1, it turns out that it is still not
particularly easy to obtain (24), but one can obtain an acceptable substitute
for this estimate by only replacing some of the Xj by Yj . Specifically, one
can try to obtain an estimate roughly of the form

(25) P(X1, . . . , Xn span V ) ≤ cmP(Y1, . . . , Ym, X1, . . . , Xn−m span V )

where m is equal to a suitably small multiple of n (we will eventually take
m ≈ n/100). Strictly speaking, we will also have to absorb an additional
“entropy” loss of

(
n
m

)
for technical reasons, though as we will be taking c

arbitrarily small, this loss will ultimately be irrelevant.

The above approach (with some minor modifications) was carried out
rigorously in [23] to give the bound pn = O(.999n) which has been improved
slightly to O(.952n) in [56], thanks to some simplifications. There are two
main reasons why the final gain in the base was relatively small. Firstly,
the chosen value of μ was small (so the n(1− μ)n error was sizeable), and
secondly the value of c obtained was relatively large (so the gain of cn or

c(1−γ)n was relatively weak). Unfortunately, increasing μ also causes c to
increase, and so even after optimizing μ and c one falls well short of the
conjectured bound.
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The more significant improvement to (3/4 + o(1))n relies on an inverse
theorem. To reduce all the other losses to

(
3
4 + 2ε0

)n
for some small ε0, we

increase μ up to 1/4− ε0/100, at which point the arguments of Halász and
[23, 56] give (23) with c = 1. The value 1/4 for μ is optimal as it is the
largest number satisfying the pointwise inequality

| cos(x)| ≤ (1− μ) + μ cos(2x) for all x ∈ R,

which is the Fourier-analytic analogue of (23) (with c = 1). At first glance,
the fact that c = 1 seems to remove any utility to (23), as the above argu-

ment relied on obtaining gains of the form cn or c(1−γ)n. However, we can
proceed further by subdividing the collection of hyperplanes Gr(d±) into
two classes, namely the unexceptional spaces V for which

P(X ∈ V ) < ε1P(Y ∈ V )

for some small constant 0 < ε1 � 1 to be chosen later (it will be much
smaller than ε0), and the exceptional spaces for which

(26) ε1P(Y ∈ V ) ≤ P(X ∈ V ) ≤ P(Y ∈ V ).

The contribution of the unexceptional spaces can be dealt with by the
preceding arguments to obtain a very small contribution (at most δn for
any fixed δ > 0 given that we set ε1 = ε1(γ, δ) suitably small), so it remains
to consider the exceptional spaces V .

The key technical step is to show that there are very few exceptional
hyperplanes (and thus their contribution is negligible). This can be done
using the following inverse theorem (the way the counting Theorem 8.1 was
proved using the inverse Theorem 7.6).

Let V ∈ Gr(d±) be an exceptional space, with a representation of the
form

(27) V = {(x1, . . . , xn) ∈ Fn : x1a1 + . . .+ xnan = 0}
for some elements a1, . . . , an ∈ F . We shall refer to a1, . . . , an as the defining
co-ordinates for V .

Theorem 13.5. There is a constant C = C(ε0, ε1) such that the following
holds. Let V be a hyperplane in Gr(d±) and a1, . . . , an be its defining
co-ordinates. Then there exist integers

(28) 1 ≤ r ≤ C

and M1, . . . ,Mr ≥ 1 with the volume bound

(29) M1 . . .Mr ≤ C2n−d±

and non-zero elements v1, . . . , vr ∈ F such that the following holds.
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• (Defining coordinates lie in a progression) The symmetric generalized
arithmetic progression

P := {m1v1 + . . .+mrvr : −Mj/2 < mj < Mj/2 for all 1 ≤ j ≤ r}

is proper and contains all the ai.
• (Bounded norm) The ai have small P -norm:

(30)

n∑
j=1

‖aj‖2P ≤ C

• (Rational commensurability) The set {v1, . . . , vr}∪{a1, . . . , an} is con-
tained in the set

(31)

{
p

q
v1 : p, q ∈ Z; q �= 0; |p|, |q| ≤ no(n)

}
.

14. Application: Strong Bounds on the Singularity

Problem – The Symmetric Case

Similar to Conjecture 5.1, we raise

Conjecture 14.1.

psymn = (1/2 + o(1))n.

We are very far from this conjecture. Currently, no exponential upper
bound is known. The first superpolynomial bound was obtained by the first
author [36] very recently.

Theorem 14.2 [36]. For any C > 0 and n sufficiently large

psymn ≤ n−C .

Shortly after, Vershinyn [69] proved the following better bound

Theorem 14.3. There exists a positive constant c such that

psymn = O(exp(−nc)).

Both proofs made essential use of inverse theorems. The first author
used the inverse quadratic Theorem 11.4 and Vershynin’s proof used The-
orem 10.1 several times.
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In the following, we sketched the main ideas behind Theorem 14.2. Let
r = (ξ1, . . . , ξn) be the first row of Mn, and aij , 2 ≤ i, j ≤ n, be the cofactors
of Mn−1 obtained by removing r and rT from Mn. We have

(32) det(Mn) = ξ21 det(Mn−1) +
∑

2≤i,j≤n
aijξiξj .

Recalling the proof of Theorem 5.6 (see Section 5). One first need to
show that with high probability (with respect to Mn−1) a good fraction of
the co-factors aij are nonzero. Theorem 4.1 then yields that

Pr(det(Mn) = 0) ≤ n−1/8+o(1) = o(1).

To prove Theorem 14.2, we adapt the reversed approach, which, similar
to the previous proofs, consists of an inverse statement and a counting step.

(1) (Inverse step). If Pr(det(Mn) = 0|Mn−1) ≥ n−O(1), then there is a
strong additive structure among the cofactors aij .

(2) (Counting step). With respect to Mn−1, a strong additive structure
among the aij occurs with negligible probability.

By (32), one notices that the first step concentrates on the study of
inverse Littlewood–Offord problem for quadratic forms

∑
ij aijξiξj . Roughly

speaking, Theorem 11.4 implies that most of the aij belong to a common
structure. Thus, by extracting the structure on one row of the array A =
(aij), we obtain a vector which is orthogonal to the remaining n− 2 rows
of the matrix Mn−1. Executing the argument more carefully, we obtain the
following lemma.

Lemma 14.4 (Inverse Step). Let ε < 1 and C be positive constants.
Assume that Mn−1 has rank at least n− 2 and that

Pr

(∑
i,j

aijξiξj = 0|Mn−1

)
≥ n−C .

Then there exists a nonzero vector u = (u1, . . . , un−1) with the following
properties.

• All but nε elements of ui belong to a proper symmetric generalized
arithmetic progression of rank OC,ε(1) and size nOC,ε(1).

• ui ∈ {p/q : p, q ∈ Z, |p|, |q| = nOC,ε(n
ε)} for all i.

• u is orthogonal to n−OC,ε(n
ε) rows of Mn−1.
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Let P denote the collection of all u satisfying the properties above. For
each u ∈ P , let Pu be the probability, with respect to Mn−1, that u is
orthogonal to n−OC,ε(n

ε) rows of Mn−1. The following lemma takes care
of our second step.

Lemma 14.5 (Counting Step). We have∑
u∈P

Pu = OC,ε((1/2)
(1−o(1))n).

The main contribution in the sum in Lemma 14.5 comes from those
u which have just a few non-zero components (i.e. compressible vectors).
For incompressible vectors, we classify it into dyadic classes Cρ1,...,ρn−1 ,
where ρi is at most twice and at least half the probability P(ξ1u1 + · · ·+
ξuui = 0). Assume that u ∈ Cρ1,...,ρn−1 . Then by definition, as Mn−1 is
symmetric, the probability Pu is bounded by

∏
O(ρi). On the other hand,

by taking into account the structure of generalized arithmetic progressions,
a variant of Theorem 8.1 shows that the size of each Cρ1,...,ρn−1 is bounded

by
∏

iO(ρi)n
−1/2+o(1). Summing Pu over all classes C, notice that the

number of these classes are negligible, one obtains an upper bound of order
n−(1−o(1))n/2 for the compressible vectors.

We remark that it is in the Inverse Step that we obtain the final bound
n−C on the singular probability. In [69], Vershynin worked with a more
general setting where one can assume a better bound. In this regime, he
has been able to apply a variant of Theorem 10.1 to prove a very mild
inverse-type result which is easy to be adapted for the Counting Step. As
the details are complex, we invite the reader to consult [69].

15. Application: Common Roots of Random Polynomials

Let d be fixed. With �jd = (j1, . . . , jd), ji ∈ Z+ and |�jd| =
∑

ji, let ξ�jd be

iid copies of a random variable ξ. Set x
�jd =

∏
xjii . Consider the random

polynomial

P (x1, . . . , xd) =
∑

�jd,|�jd|≤n
ξ�jdx

�jd

of degree n in d variables. (Here d is fixed and n → ∞.) Random polyno-
mials is a classical subject in analysis and probability and we refer to [4] for
a survey.
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In this section, we consider the following natural question. Let P1, . . . ,
Pd+1 be d+ 1 independent random polynomials, each have d variables and
degree n.

Question 15.1. What is the probability that P1, . . . , Pd+1 have a common
root?

For short, let us denote the probability under consideration by p(n, d)

p(n, d) := P(∃x ∈ Cd : Pi(x) = 0, i = 1, . . . , d+ 1).

When ξ has continuous distribution, it is obvious that p(n, d) = 0. How-
ever, the situation is less clear when ξ has discrete distribution, even in
the case d = 1. Indeed, when n is even and P1(x), P2(x) are two indepen-
dent random Bernoulli polynomials of one variable, then one has P(P1(1) =
P2(1) = 0) = Θ(1/n) and P(P1(−1) = P2(−1) = 0) = Θ(1/n). Thus in this
case p(n, 1) = Ω(1/n).

In a recent paper, Kozma and Zeitouni [32] proved p(n, d) = O(1/n),
answering Question 15.1 in the asymptotic sense.

Theorem 15.2. For any fixed d there exists a constant c(d) such that the
following holds. Let P1 . . . , Pd+1 be d+ 1 independent random Bernoulli
polynomials in d variables and degree n.

p(n, d) ≤ c(d)/n.

In the sequel, we will focus on the case d = 1. This first case already
captures some of the main ideas, especially the use of inverse theorems. The
reader is invited to consult [32] for further details.

Theorem 15.3. Let P1, P2 be two independent Bernoulli random polyno-
mials in one variable of degree n. Then

p(n, 1) =

{
O(n−1) n even

O(n−3/2) n odd.

Notice that the bounds in both cases are sharp. To start the proof, first
observe that, because the coefficients of P1 are ±1, all roots x of P1 have
magnitude 1/2 < |x| < 2. Furthermore, x must be an algebraic integer. We
will try to classify the common roots by their unique irreducible polynomial,
relying on the following easy algebraic fact [32]:
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Fact 15.4. For every k there are only finitely many numbers whose ir-
reducible polynomial has degree k that can be roots of a polynomial of
arbitrary degree with coefficients ±1.

Now we look at the event of having common roots. Assume that P1 is
fixed (i.e. condition on P1) and let x1, . . . , xn be its n complex roots. For
each xi, we consider the probability that xi is a root of P2(x). If P(P2(xi) =

0) ≤ n−5/2 for all i, then P(∃x ∈ C : P1(x) = P2(x)) = O(n−3/2), and there

is nothing to prove. We now consider the case P(P2(xi) = 0) ≥ n−5/2 for
some root xi of P1(x). Notice that

P(P2(xi) = 0) = Pξ0,...,ξn

(
n∑

j=0

ξjx
j
i = 0

)
= ρ(X),

where X is the geometric progression X = {1, xi, . . . , xni }.
Now Theorem 7.6 comes into play. As ρ(X) ≥ n−5/2, most of the terms

of X are additively correlated. On the other hand, as X is a geometric pro-
gression, this is the case only if xi is a root of a bounded degree polynomial
with well-controlled rational coefficients.

Lemma 15.5. For any C > 0, there exists n0 such that if n > n0, and if

ρ(X) ≥ n−C ,

where X = {1, x, . . . , xn}. Then x is an algebraic number of degree at
most 2C.

Proof (of Lemma 15.5). Set ε = 1/(2C + 2). Theorem 7.6, applied
to the set X, implies that there exists a GAP Q of rank r and size
|Q| = OC(n

C−r/2) which contains at least (2C + 1)/(2C + 2)-portion of the
elements of X. By pigeon-hole principle, there exists 2C + 1 consecutive
terms of X, say xi0 , . . . , xi0+2C , all of which belong to Q.

As |Q| ≥ 1, the rank r ofQmust be at most 2C. Thus there exist integral

coefficients m1, . . . ,m2C+1, all of which are bounded by nOC(1), such that

the linear combination
∑2C

i=0mix
i0+i vanishes. In particular, it follows that

x is an algebraic number of degree at most 2C.

We now prove Theorem 15.3. Write

p(n, 1) = P(∃x ∈ C : P1(x) = P2(x) = 0)

≤ P(P1(1) = P2(1) = 0) +P(P1(−1) = P2(−1) = 0)
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+P(∃x of algebraic degree 2, 3, 4, 5 : P1(x) = P2(x) = 0)

+P(∃x of algebraic degree ≥ 6 : P1(x) = P2(x) = 0)

= S1 + S2 + S3.

For the first term, it is clear that S1 = Θ(n−1) if n is even, and S1 = 0
otherwise. For the second term S2, by Lemma 15.4, the number of possible
common roots x of algebraic degree at most 5 is O(1), so it suffices to show

that P(P1(x) = P2(x)) = n−3/2 for each such x. On the other hand, by

Lemma 15.5 we must have P(Pi(x) = 0) ≤ n−3/4 because x cannot be a
rational number (i.e. algebraic number of degree one). Thus we have

P(P1(x) = P2(x) = 0) = P(P1(x) = 0)P(P2(x) = 0) ≤ n−3/2.

Lastly, in order to bound S3 we first fix P1(x). It has at most n roots x
of algebraic degree at least 6. For each of these roots, by Lemma 15.5,
P(P2(x) = 0) = O(n−5/2). Thus the probability that P2 has at least a
common root with P1 which is an algebraic number of degree at least 6
is bounded by n×O(n−5/2) = O(n−3/2). As a result, S3 = O(n−3/2).

16. Application: Littlewood–Offord Type Bound for

Multilinear Forms and Boolean Circuits

Let k be a fixed positive integer, and p(ξ1, . . . , ξn) =
∑

S∈[n]≤k cSξS be a ran-

dom multi-linear polynomial of degree at most k, where ξi are iid Bernoulli
variables (taking values {0, 1} with equal probability) and ξS =

∏
i∈S ξi. As

mentioned in Section 4, by generalizing the proof of Theorem 4.1, Costelo,
Tao and the second author proved the following

Theorem 16.1. Let K denote the number of non-zero coefficients cS , and
set m := K/nk−1. Then for any real number x we have

P(p = x) = O
(
m
− 1

2(k
2+k)/2

)
.

Using a finer analysis, Razborov and Viola [42] improved the exponent
1

2(k
2+k)/2

to 1
2k2k

.
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Theorem 16.2. Let p(ξ1, . . . , ξn) =
∑

S∈[n]≤k cSξS be a multi-linear polyno-

mial of degree k, and assume that there exist r terms ξS1 , . . . , ξSr of degree
k each where the Si are mutually disjoint and cSi �= 0. Then for any real
number x we have

P(p = x) = O(r−bk),

where bk = (2k2k)−1.

One observes that r = Ω(m/k), where m was defined in Theorem 16.1.
Indeed, assume that the collection {S1, . . . , Sr} is maximal (with respect to
disjointness). Then every set S with cS �= 0, either ξS has degree less than
k or S intersects one of the Si. Thus K = O(rknk−1), and so r = Ω(m/k).

It is a very interesting question (in its own right and for applications)
to improve the exponent further. In the rest of this section, we are going to
discuss Razborov and Viola’s main application of Theorem 16.2.

For two functions f, g : {0, 1}n → R, one defines their correlation as

Corn(f, g) := P(f(ξ1, . . . , ξn) = g(ξ1, . . . , ξn))− 1/2,

where ξi are iid Bernoulli variables taking values {0, 1} with equal proba-
bility.

Most of the research in Complexity Theory has so far concentrated on
the case in which both f and g are Boolean functions (that is f(x), g(x) ∈
{0, 1}). To incorporate into this framework arbitrary multivariate polyno-
mials, one converts them to Boolean functions. There are two popular ways
of doing this. For a polynomial p with integer coefficients, define a Boolean
function b(x) = 1 if m|p(x), where m is a given integer, and 0 otherwise.
These functions b are called modular polynomials. For arbitrary p, one can
set b(x) = 1 if p(x) > t for some given threshold t, and 0 otherwise. We re-
fer to these functions b as threshold polynomials. For further discussion on
these polynomials, we refer the reader to [34, 35].

It is an open problem to exhibit an explicit Boolean function f : {0, 1}n
→ {0, 1} such that Corn(b, f) = o(1/

√
n) for any modular polynomial b

whose underlying polynomial p has degree log2 n (see [70]). The same
problem is also open for threshold polynomials.

In [42], Razborov and Viola initiated a similar study for the correlation
of multi-variable polynomials where any output outside of {0, 1} is counted
as an error. They highlighted the following problem.

Problem 16.3. Exhibit an explicit Boolean function f such thatCorn(p, f)
= o(1/

√
n) for any real polynomial p : {0, 1}n → R of degree log2 n.
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It is well-known that analogies between polynomial approximations and
matrix approximations are important and influential in theory and other
areas like Machine Learning (see for instance [51]). Viewed under this an-
gle, Razborov and Viola’s model is a straightforward analogy of matrix
rigidity [68] that still remains one of the main unresolved problems in the
modern Complexity Theory. For further discussion and motivation, we re-
fer to [42] and the references therein. It is noted that solving Problem 16.3
is a pre-requisite for solving the corresponding open problem for threshold
polynomials. Similarly, the special case of Problem 16.3 when the polynomi-
als have integer coefficients is a pre-requisite for solving the corresponding
open problem for modular polynomials. As a quick application of Theo-
rem 16.2, we demonstrate here a result addressing the question for lower
degree polynomials.

Theorem 16.4 [42, Theorem 1.2]. We have Corn(p, parity) ≤ 0 for every
sufficiently large n and every real polynomial p : {0, 1}n → R of degree at
most log2 log2 n/2.

Proof (of Theorem 16.4). First we suppose that the hypothesis of Theo-
rem 16.2 is satisfied with r =

√
n. Then the probability that the polynomial

outputs a Boolean value is bounded by

2×O
(
(1/

√
n)

1

2k2k

)
≤ 1/2,

where k ≤ 1
2 log2 log2 n.

Otherwise, we can cover all the terms of degree k by k
√
n variables.

Freeze these variables and iterate. After at most k iterations, either the
hypothesis of Theorem 16.2 is satisfied with r =

√
n (and with smaller

degree), in which case we would be done, or else we end up with a degree-one
polynomial with n−O(k2)

√
n ≥ 1 variables, in which case the statement is

true by comparison with the parity function.

17. Application: Solving Frankl and Füredi’s Conjecture

In this section, we return to the discussion in Section 2 and give a proof of
Conjecture 2.4 and a new proof for Theorem 2.2. Both proofs are based on
the following inverse theorem.

Theorem 17.1. For any fixed d there is a constant C such that the fol-
lowing holds. Let A = {a1, . . . , an} be a multi-set of vectors in Rd such
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that pd,1,Ber (A) ≥ Ck−d/2. Then A is ”almost” flat. Namely, there is a
hyperplane H such that dist(ai,H) ≥ 1 for at most k values of i = 1, . . . , n.

The proof of this theorem combines Esseén’s bound (Lemma 6.2) to-
gether with some geometric arguments. For details, see [66]; dist(a,Hi), of
course, means the distance from a to Hi.

We first prove Theorem 2.2 by induction on the dimension d. The case
d = 1 follows from Theorem 2.1, so we assume that d ≥ 2 and that the claim
has already been proven for smaller values of d. It suffices to prove the upper
bound

p(d,R,Ber, n) ≤ (1 + o(1))2−nS(n, s).

Fix R, and let ε > 0 be a small parameter to be chosen later. Suppose
the claim failed, then there exists R > 0 such that for arbitrarily large n,
there exist a multi-set A = {a1, . . . , an} of vectors in Rd of length at least
1 and a ball B of radius R such that

(33) P(SA ∈ B) ≥ (1 + ε)2−nS(n, s).

In particular, from Stirling’s approximation one has

P(SA ∈ B) � n−1/2.

Applying the pigeonhole principle, we can find a ball B0 of radius 1
logn

such that

P(SA ∈ B0) � n−1/2 log−d n.

Set k := n2/3. Since d ≥ 2 and n is large, we have

P(SA ∈ B0) ≥ Ck−d/2

for some fixed constant C. Applying Theorem 17.1 (rescaling by log n), we
conclude that there exists a hyperplane H such that dist(vi, H) ≤ 1/ log n
for at least n− k values of i = 1, . . . , n.

Let V ′ denote the orthogonal projection to H of the vectors vi with
dist(vi, H) ≤ 1/ log n. By conditioning on the signs of all the ξi with
dist(vi, H) > 1/ log n, and then projecting the sum XV onto H, we con-
clude from (33) the existence of a d− 1-dimensional ball B′ in H of radius
R such that

P(XV ′ ∈ B′) ≥ (1 + ε)2−nS(n, s).

On the other hand, the vectors in V ′ have magnitude at least 1− 1/ log n.
If n is sufficiently large depending on d, ε this contradicts the induction
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hypothesis (after rescaling the V ′ by 1/(1− 1/ logn) and identifying H with
Rn−1 in some fashion; notice that the scaling changes R slightly but does
not change s, and also that the function 2−nS(n, s) is decreasing with n).
This concludes the proof of (4).

Now we turn to the proof of Conjecture 2.4. We can assume s ≥ 3, as the
remaining cases have already been treated (see Section 2). If the conjecture
failed, then there exist arbitrarily large n for which there exist a multi-set
A = {a1, . . . , an} of vectors in Rd of length at least 1 and a ball B of radius
R such that

(34) P(SA ∈ B) > 2−nS(n, s).

By iterating the argument used to prove (4), we may find a one-
dimensional subspace L of Rd such that dist(vi, L) � 1/ log n for at least

n−O(n2/3) values of i = 1, . . . , n. By reordering, we may assume that

dist(vi, L) � 1/ log n for all 1 ≤ i ≤ n− k, where k = O(n2/3).

Let π : Rd → L be the orthogonal projection onto L. We divide into two
cases. The first case is when |π(vi)| > R

s for all 1 ≤ i ≤ n. We then use the
trivial bound

P(SA ∈ B) ≤ P(Sπ(V ) ∈ π(B)).

If we rescale Theorem 2.1 by a factor slightly less than s/R, we see that

P(Sπ(V ) ∈ π(B)) ≤ 2−nS(n, s)

which contradicts (34).

In the second case, we assume |π(vn)| ≤ R/s. We let A′ be the multi-set
{a1, . . . , an−k}, then by conditioning on the ξn−k+1, . . . , ξn−1 we conclude
the existence of a unit ball B′ such that

P(SA′ + ξnan ∈ B′) ≥ P(SA ∈ B).

Let xB′ be the center of B′. Observe that if SV ′ + ξnan ∈ B′ (for
any value of ξn) then |Sπ(V ′) − π(xB′)| ≤ R+ R

s . Furthermore, if |Sπ(V ′) −
π(xB′)| >

√
R2 − 1, then the parallelogram law shows that SV ′ + an and

SV ′−n cannot both lie in B′, and so conditioned on |Sπ(V ′) − π(xB′)| >√
R2 − 1, the probability that SV ′ + ξnan ∈ B′ is at most 1/2.

We conclude that

P(SA′ + ξnan ∈ B′) ≤ P(|Aπ(A′) − π(xB′)| ≤
√

R2 − 1)

+
1

2
P

(√
R2 − 1 < |Sπ(V ′) − π(xB′)| ≤ R+

R

s

)
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=
1

2

(
P(|Aπ(A′) − π(xB′)| ≤

√
R2 − 1)

+P

(
|Sπ(A′) − π(xB′)| ≤ R+

R

s

))
.

However, note that all the elements of π(A′) have magnitude at least
1− 1/ log n. Assume, for a moment, that R satisfies

(35)
√

R2 − 1 < s− 1 ≤ R < R+
R

s
< s.

From Theorem 2.1 (rescaled by (1− 1/ log n)−1), we conclude that

P(|Sπ(A′) − π(xB′)| ≤
√
R2 − 1) ≤ 2−(n−k)S(n− k, s− 1)

and

P

(
|π(SA′)− π(xB′)| ≤ R+

R

s

)
≤ 2−(n−k)S(n− k, s).

On the other hand, by Stirling’s formula (if n is sufficiently large) we
have

1

2
(2−(n−k)S(n− k, s− 1)) +

1

2
2−(n−k)S(n− k, s) =

√
2

π

s− 1/2 + o(1)

n1/2

while

2−nS(n, s) =
√

2

π

s+ o(1)

n1/2

and so we contradict (34).

An inspection of the above argument shows that all we need on R
are the conditions (35). To satisfy the first inequality in (35), we need

R <
√

(s− 1)2 + 1. Moreover, once s− 1 ≤ R <
√

(s− 1)2 + 1, one can

easily check that R+ R
s < s holds automatically for any s ≥ 3, concluding

the proof.
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Appendix A. Proof of Theorem 7.6

In this section, we sketch the proof of Theorem 7.6.

Embedding. The first step is to embed the problem into a finite field Fp

for some prime p. In the case when the ai are integers, we simply take p to
be a large prime (for instance p ≥ 2n(

∑n
i=1 |ai|+ 1) suffices).

If A is a subset of a general torsion-free group G, we rely on the concept
of Freiman isomorphism. Two sets A,A′ of additive groups G, G′ (not
necessarily torsion-free) are Freiman-isomorphism of order k (in generalized
form) if there is an bijective map f from A to A′ such that f(a1) + · · ·+
f(ak) = f(a′1) + · · ·+ f(a′k) in G′ if and only if a1 + · · ·+ ak = a′1 + · · ·+ a′k
in G, for any subsets {a1, . . . , ak} ⊂ A; {a′1, . . . , a′k} ⊂ A′.

The following theorem allows us to pass from an arbitrary torsion-free
group to Z or cyclic groups of prime order (see [67, Lemma 5.25]).

Theorem A.1. Let A be a finite subset of a torsion-free additive group G.
Then for any integer k the following holds.

• there is a Freiman isomorphism φ : A → φ(A) of order k to some finite
subset φ(A) of the integers Z;

• more generally, there is a map φ : A → φ(A) to some finite subset
φ(A) of the integers Z such that

a1 + · · ·+ ai = a′1 + · · ·+ a′j ⇔ φ(a1) + · · ·+ φ(ai) = φ(a′1) + . . . φ(a′j)

for all i, j ≤ k.

The same is true if we replace Z by Fp, if p is sufficiently large depending
on A.

Thus instead of working with a subset A of a torsion-free group, it is
sufficient to work with subset of Fp, where p is large enough. From now on,
we can assume that ai are elements of Fp for some large prime p. We view
elements of Fp as integers between 0 and p− 1. We use the short hand ρ to
denote ρ(A). The next few steps are motivated by Halász’ analysis in [21].

Fourier Analysis. The main advantage of working in Fp is that one can
make use of discrete Fourier analysis. Assume that

ρ = ρ(A) = P(S = a),

for some a ∈ Fp. Using the standard notation ep(x) for exp(2π
√
−1x/p),

we have

(36) ρ = P(S = a) = E
1

p

∑
t∈Fp

ep(t(S − a)) = E
1

p

∑
t∈Fp

ep(tS)ep(−ta).
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By independence

(37) Eep(tS) =
n∏

i=1

ep(tξiai) =
n∏

i=1

cos
2πtai
p

.

It follows that

(38) ρ ≤ 1

p

∑
t∈Fp

∏
i

∣∣∣∣cos 2πaitp

∣∣∣∣ = 1

p

∑
t∈Fp

∏
i

∣∣∣∣cosπaitp

∣∣∣∣ ,
where we made the change of variable t → t/2 (in Fp) to obtain the last
identity.

By convexity, we have that | sinπz| ≥ 2‖z‖ for any z ∈ R, where ‖z‖ :=
‖z‖R/Z is the distance of z to the nearest integer. Thus,

(39)

∣∣∣∣cos πxp
∣∣∣∣ ≤ 1− 1

2
sin2

πx

p
≤ 1− 2

∥∥∥∥xp
∥∥∥∥2 ≤ exp

(
−2

∥∥∥∥xp
∥∥∥∥2

)
,

where in the last inequality we used that fact that 1− y ≤ exp(−y) for any
0 ≤ y ≤ 1.

Consequently, we obtain a key inequality

(40) ρ ≤ 1

p

∑
t∈Fp

∏
i

∣∣∣∣cos πaitp

∣∣∣∣ ≤ 1

p

∑
t∈Fp

exp

(
−2

n∑
i=1

∥∥∥∥aitp
∥∥∥∥2

)
.

Large level sets. Now we consider the level sets

Sm :=

{
t
∣∣∣ n∑

i=1

‖ait/p‖2 ≤ m

}
.

We have

n−C ≤ ρ ≤ 1

p

∑
t∈Fp

exp

(
−2

n∑
i=1

∥∥∥∥aitp
∥∥∥∥2

)
≤ 1

p
+

1

p

∑
m≥1

exp(−2(m− 1))|Sm|.

Since
∑

m≥1 exp(−m) < 1, there must be is a large level set Sm such
that

(41) |Sm| exp(−m+ 2) ≥ ρp.
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In fact, since ρ ≥ n−C , we can assume that m = O(log n).

Double counting and the triangle inequality. By double counting we have

n∑
i=1

∑
t∈Sm

∥∥∥∥aitp
∥∥∥∥2 = ∑

t∈Sm

n∑
i=1

∥∥∥∥aitp
∥∥∥∥2 ≤ m|Sm|.

So, for most ai

(42)
∑
t∈Sm

∥∥∥∥aitp
∥∥∥∥2 ≤ m

n′
|Sm|.

By averaging, the set of ai satisfying (42) has size at least n− n′. We
call this set A′. The set A\A′ has size at most n′ and this is the exceptional
set that appears in Theorem 7.6. In the rest of the proof, we are going to
show that A′ is a dense subset of a proper GAP.

Since ‖ · ‖ is a norm, by the triangle inequality, we have for any a ∈ kA′

(43)
∑
t∈Sm

∥∥∥∥atp
∥∥∥∥2 ≤ k2

m

n′
|Sm|.

More generally, for any l ≤ k and a ∈ lA′

(44)
∑
t∈Sm

∥∥∥∥atp
∥∥∥∥2 ≤ k2

m

n′
|Sm|.

Dual sets. Define S∗m :=

{
a | ∑t∈Sm

∥∥∥at
p

∥∥∥2 ≤ 1
200 |Sm|

}
(the constant

200 is ad hoc and any sufficiently large constant would do). S∗m can be
viewed as some sort of a dual set of Sm. In fact, one can show as far as
cardinality is concerned, it does behave like a dual

(45) |S∗m| ≤ 8p

|Sm| .

To see this, define Ta :=
∑

t∈Sm
cos 2πat

p . Using the fact that cos 2πz ≥
1− 100‖z‖2 for any z ∈ R, we have, for any a ∈ S∗m

Ta ≥
∑
t∈Sm

(
1− 100

∥∥∥∥atp
∥∥∥∥2

)
≥ 1

2
|Sm|.
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One the other hand, using the basic identity
∑

a∈Fp
cos 2πax

p = pIx=0,

we have ∑
a∈Fp

T 2
a ≤ 2p|Sm|.

(45) follows from the last two estimates and averaging.

Set k := c1

√
n′
m , for a properly chosen constant c1. By (44) we have

∪k
l=1lA

′ ⊂ S∗m. Set A
′′
= A′ ∪ {0}; we have kA′′ ⊂ S∗m ∪ {0}. This results in

the critical bound

(46) |kA′′ | = O

(
p

|Sm|

)
= O(ρ−1 exp(−m+ 2)).

The role of Fp is now no longer important, so we can view the ai as
integers. Notice that (46) leads us to a situation similar to that of Freiman’s
inverse result (Theorem 7.3). In that theorem, we have a bound on |2A| and
conclude that A has a strong additive structure. In the current situation, 2
is replaced by k, which can depend on |A|. We can, however, finish the job
by applying the following variant of Freiman’s inverse theorem.

Theorem A.2 (Long range inverse theorem, [39]). Let γ > 0 be constant.
Assume that X is a subset of a torsion-free group such that 0 ∈ X and
|kX| ≤ kγ |X| for some integer k ≥ 2 that may depend on |X|. Then there
is proper symmetric GAP Q of rank r = O(γ) and cardinality Oγ(k

−r|kX|)
such that X ⊂ Q.

One can prove Theorem A.2 by combining Freiman theorem with some
extra combinatorial ideas and several facts about GAPs. For full details we
refer to [39].

The proof of the continuous version, Theorem 9.2, is similar. Given a
real number w and a variable ξ, we define the ξ-norm of w by ‖w‖ξ :=
(E‖w(ξ1 − ξ2)‖2)1/2, where ξ1, ξ2 are two iid copies of ξ. We have the
following variant of Lemma 6.2.

(47) ρr,ξ(A) ≤ exp(πr2)

∫
Rd

exp

(
−

n∑
i=1

‖〈ai, z〉‖2ξ/2− π‖z‖22

)
dz.

This will play the role of (38) in the previous proof. The next steps are
similar and we refer the reader to [39] for more details.
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Appendix B. Proof of Theorem 10.2

We provide here a proof from [46] (see also [16]). This proof is also influenced
by Halász’ analysis from [21]. The starting point is again Esseén’s bound.
Applying Lemma 6.2, we obtain

(48) ρd,β
√
d,ξ(A) ≤ Cd

∫
B(0,

√
d)

n∏
k=1

|φ(〈θ, ak〉/β)| dθ,

where φ is the characteristic function.

Let ξ′ be an independent copy of ξ and denote by ξ̄ the symmetric ran-
dom variable ξ−ξ′. Then we easily have |φ(t)| ≤ exp

(
−1

2(1−E cos(2πtξ̄))
)
.

Conditioning on ξ′, the assumption supaP(ξ ∈ B(a, 1)) ≤ 1− b implies
that P(|ξ̄| ≥ 1) ≥ b. Thus,

1−E cos(2πtξ̄) ≥ P(|ξ̄| ≥ 1) ·E
(
1− cos(2πtξ̄) | |ξ̄| ≥ 1

)
≥ b · 4

π2
E
(
min
q∈Z

|2πtξ̄ − 2πq|2 | |ξ̄| ≥ 1
)

= 16b ·E
(
min
q∈Z

|tξ̄ − q|2 | |ξ̄| ≥ 1
)
.

Substituting of this into (48) and using Jensen’s inequality, we get

ρd,β
√
d,ξ(A)

≤ Cd

∫
B(0,

√
d)
exp

(
−8bE

(
n∑

k=1

min
q∈Z

|ξ̄〈θ,ak〉/β − q|2
∣∣∣ |ξ̄| ≥ 1

))
dθ

≤ CdE

(∫
B(0,

√
d)
exp

(
−8b min

p∈Zn

∥∥∥∥ ξ̄β θ · a− p

∥∥∥∥
2

)
dθ

∣∣∣ |ξ̄| ≥ 1

)

≤ Cd sup
z≥1

∫
B(0,

√
d)
exp(−8bf2(θ)) dθ,

where f(θ) = minp∈Zn

∥∥∥ z
β θ · a− p

∥∥∥
2
.

The crucial step is to bound the size of the recurrence set

I(t) :=
{
θ ∈ B(0,

√
d) : f(θ) ≤ t

}
.
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Lemma B.1. We have

μ(I(t)) ≤
(
Ctβ

γ
√
d

)d

, t < α/2.

Proof (of Lemma B.1). Fix t < α/2. Consider two points θ′, θ′′ ∈ I(t).
There exist p′, p′′ ∈ Zn such that∥∥∥∥ zβ θ′ · a− p′

∥∥∥∥
2

≤ t,

∥∥∥∥ zβ θ′′ · a− p′′
∥∥∥∥
2

≤ t.

Let

τ :=
z

β
(θ′ − θ′′), p := p′ − p′′.

Then, by the triangle inequality,

(49) ‖τ · a− p‖2 ≤ 2t.

Recall that by the assumption of the theorem, LCDα,γ(a) ≥
√
d
β . Thus,

by the definition of the least common denominator, either ‖τ‖2 ≥
√
d
β or

(50) ‖τ · a− p‖2 ≥ min(γ‖τ · a‖2, α).

In the latter case, since 2t < α, (49) and (50) imply

2t ≥ γ‖τ · a‖2 ≥ γ‖τ‖2,

where the last inequality follows from (14).

Thus we have proved that every pair of points θ′, θ′′ ∈ I(t) satisfies:

either ‖θ′ − θ′′‖2 ≥
√
d

z
=: R or ‖θ′ − θ′′‖2 ≤

2tβ

γz
=: r.

It follows that I(t) can be covered by Euclidean balls of radii r, whose

centers are R-separated in the Euclidean distance. Since I(t) ⊂ B(0,
√
d),

the number of such balls is at most

μ(B(0,
√
d+R/2))

μ(B(0, R/2))
=

(
2
√
m

R
+ 1

)d

≤
(
3
√
d

R

)d

.

Summing these volumes, we obtain μ(I(t)) ≤
(
3Cr
R

)m
.
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Proof (of Theorem 10.2). First, by the definition of I(t) and as

μ(B(0,
√
d) ≤ Cd, we have∫
B(0,

√
m)\I(α/2)

exp(−8bf2(θ)) dθ ≤
∫
B(0,

√
d)
exp(−2bα2) dθ(51)

≤ Cd exp(−2bα2).

Second, by using Lemma B.1, we have∫
I(α/2)

exp(−8bf2(θ)) dθ =

∫ α/2

0
16bt exp(−8bt2)μ(I(t)) dt(52)

≤ 16b

(
Cβ

γ
√
d

)d ∫ ∞

0
td+1 exp(−8bt2) dt

≤
(
C ′β
γ
√
b

)d√
d ≤

(
C ′′β
γ
√
b

)d

.

Combining (51) and (52) completes the proof of Theorem 10.2.
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[14] P. Frankl and Z. Füredi, Solution of the Littlewood-Offord problem in high dimen-
sions, Ann. of Math. (2) 128 (1988), no. 2, 259–270.

[15] G. Freiman, Foundations of a Structural Theory of Set Addition, Translations of
Mathematical Monographs 37, Amer. Math. Soc , Providence, RI, USA, 1973.

[16] O. Friedland and S. Sodin, Bounds on the concentration function in terms of
Diophantine approximation, C. R. Math. Acad. Sci. Paris 345 (2007), no. 9, 513–
518.

[17] H. Goldstine and J. von Neumann, Numerical inverting of matrices of high order,
Bull. Amer. Math. Soc. 53 (1947), 1021–1099.

[18] F. Götze and A. Tikhomirov, The circular law for random matrices, Ann. Probab.
38 (2010), no. 4, 1444–1491.

[19] J. Griggs, The Littlewood-Offord problem: tightest packing and an M-part Sperner
theorem, Europ. J. Combin. 1 (1980), 225–234.
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