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1. Introduction

It seems that combinatorics, and graph theory in particular, reached math-
ematical maturity relatively recently. Perhaps as a result of this there are
not too many essential stories which have determined the course of the sub-
ject over a long period, enduring stories which appear again and again as a
source of inspiration and motivate and challenge research.

In this article we attempt to demonstrate one example of such a story
which we believe motivated some of the key parts of modern combinatorics.
(Of course there are other stories, see for example [59].) Moreover the
main result is related to the central theme of this book – the work and
mathematical legacy of Paul Erdős.

Let G = (V,E) be an (undirected) graph. We need to recall only a few
facts and definitions. The chromatic number χ(G) of G is the minimal
number of classes (“colors”) of a partition of V into independent sets. A set
A ⊆ V is called independent if it doesn’t contain any edge. The maximal
size of an independent set is denoted by α(G). It is obvious that

(1) α(G) · χ(G) ≥ |V |
holds for every graph G.

This leads to the lower bound

(2) χ(G) ≥ |V |
α(G)

,
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which is one of the very few lower bounds available for the chromatic
number.

It is a classical (and folklore) result that a graph has chromatic number
≤ 2 iff it doesn’t contain a cycle of odd length. An even easier statement is
that a forest (i.e. a graph without any cycle) has chromatic number ≤ 2.

The minimal length of a cycle in G is called the girth of G and denoted
here by girth(G). The central result of this paper has the following innocent
form:

Theorem 1 (Erdős [23]). For every choice of positive integers k and l there
exists a graph Gk,l = G with the following properties:

1) χ(G) ≥ k;
2) girth(G) > l.

Thus the absence of a short cycle (of length ≤ l) cannot guarantee
bounded chromatic number. By interpreting the chromatic number as a
dimension or as a measure of complexity we see that Theorem 1 claims that
there exists high dimensional (or highly complex) graphs which are locally
as trivial as forests (i.e. graphs without any cycles) can be. An old saying
existing in several languages is very fitting here: We do not see the wood
for the trees! Yes, these are paradoxical objects.

Theorem 1 is both a culmination of long development and the start of
important consequent research and methods. The literature is large and we
find Theorem 1 in most books dealing with graphs. With various proofs
one can find it in many combinatorial graph theory books and particularly
in books relating to probabilistic methods in combinatorics, see e.g. [11],
[5], [39], [13], [21], [63], [10], [57]. In this survey we concentrate on various
structural extensions and theoretical implications of Theorem 1 (and we
indicate various proof methods).

2. Early Constructions

Theorem 1 was proved in 1958 by Erdős in his seminal paper [23]. But al-
ready at that time this result was firmly based in advanced combinatorics
and it also had an interesting history. Let us review it briefly for complete-
ness from a contemporary perspective.

The first nontrivial instance of Theorem 1 is the case l = 3. In this form
claims the existence of a triangle free graph Gk,3 with χ(Gk,3) > k. This
was proved independently by W. Tutte (alias Blanche Descartes) [20] and
A. Zykov [92]. The proofs are constructive and can be visualised as follows:
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Here is a more formal sketch: We proceede by induction on k. Given
G = Gk,3 with n vertices we consider a set X with k(n− 1) + 1 vertices
and for every subset Y ⊆ X, |Y | = n we take an isomorphic copy GY of G
every vertex of which is joined by a matching EY to Y . Denote by Gk+1,3

the graph consisting of all edges in all graphs GY , Y ⊆ X, |Y | = n, and all
matchings EY . It is easy to see that Gk+1,3 has no triangles and, assuming
χ(Gk,2) ≥ k, we get χ(Gk+1,3) ≥ k + 1.

Tutte’s construction is a prototype of many subsequent proofs and vari-
ants, as we shall see in Sections 4 and 5. Let us give some further con-
structions of triangle-free graphs (i.e. l = 3), most of which are regarded as
classical.

Note that already in [43] it was observed that the above inductive con-
struction does not even create cycles of length ≤ 5. However this remained
the best result (with respect to girth l) until [23].

Another early construction for l = 3 was provided by [66]. The con-
struction proceeds again by induction on k: In each step we create a sibling
x′ for every vertex x and join x′ to a vertex y if and only if x and y are
joined. Then we add a (universal) vertex joined to all the siblings vertices
produced. Call the resulting graph M(G) (Mycielskian of G). M(G) has no
triangle and χ(M(G)) = χ(G) + 1. (Thus from K2 we obtain C5 and from
C5 the Grötzsch graph.)

An interesting variation of this construction of graphs Gk,3 is to iterate
siblings. By this we mean that every vertex has siblings x1, . . . , xt and
sibling xi+1 is joined to those siblings y for which {x, y} ∈ E. A universal
vertex is then joined to all siblings xt. These graph (and their variants)
were studied in [32], [87], [8].

One of the simplest constructions is provided by the shift graphs Sn:
the vertices of Sn are all pairs (a, b) of integers 1 ≤ a < b ≤ n with edges
formed by pairs (a, b)(b, c). Clearly Sn has no triangle (but contains large
complete bipartite graphs) and χ(Sn) = log n�. These remarkable graphs
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are important in the infinite case as well and they can be traced to Erdős-
Specker graphs [28].

Other early constructions of triangle-free graphs with high chromatic
number are geometrical (distance graphs, see already [27]). A particularly
elegant combinatorial geometric construction [19] was discovered in the
context of computational complexity:

We consider the set of all flags (i.e. all incidence pairs (p, L)) in a
projective plane of order k with an arbitrary linear ordering <. These are
the vertices of our graph G. Vertices (p, L) and (p′, L′) will form an edge of
G if (p, L) < (p′, L′), all p, L, p′, L′ are distinct, and if p ∈ L′. This graph
has no K3, and it can be shown that α(G) ≤ k+1. Thus χ(G) ≥ k2 + k+1
as G has (k2 + k + 1)(k + 1) vertices.

Another by now classical example is provided by Kneser graphs. The
Kneser graph K

(n
p

)
has as vertices all p-element subsets of [n] = {1,2, . . . , n}.

Edges of K
(
n
p

)
are formed by pairs of disjoint sets. In (another) landmark

paper [56] Lovász proved that χ
(
K
(
n
p

))
= n− 2p+ 2. This (lower bound)

was achieved by relating the coloring problem to algebraic topology. This
powerful tool found many applications (see Matoušek’s book [61] devoted
to this subject). This is clearly an “advanced” construction (with which we
deal in the next section) but it is related to girth 4 only. It follows that

the Kneser graphs K
(
2m+k−2

m

)
(for any m) provide another nice example in

playing the role of Gk,3.

All these constructions have been thoroughly studied. Any new con-
struction (such as [19] or [49]) is welcome with high hopes and then in-
vestigated thoroughly (see e.g. [8], [46] [32], [87]). But all these old-new
constructions, which we have not listed exhaustively, are related to small
girth. Indeed very small: l ≤ 6 and mostly even l = 3. One should stress
that the odd girth condition (i.e. the absence of short odd cycles) is in the
context of chromatic number a much easier condition than the girth. Rect-
angles present a problem and there are structural reasons for it (see more
on that in the last section).
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3. Erdős Theme

Theorem 1 for l = 3 (i.e. the existence of triangle-free graphs with large
chromatic number) provided only one part of the motivation for Erdős’ proof
for general l. The other motivation (and certainly at that time for Erdős
more important motivation) was the setting which relies on the inequality
(2) and relates to Ramsey theory [30]. It is interesting to follow [23]:

Denote by r(k, 3) the minimal number of vertices n such that every
triangle-free graph Gn with n vertices contains an independent set of size k.
Formally,

r(k, 3) = min{n; either K3 ⊆ Gn or α(Gn) ≥ k}.

Erdős proved in [23] that r(k, 3) > k1+1/6, which using (2) implies that
there are graphs Gk,3. The asymptotic behavior of Ramsey numbers r(k, 3)
was determined in a sequence of important papers [44], [1],

c1
k2

log k
≤ r(k, 3) ≤ c2

k2

log k
,

and gave rise to Rödl’s nibble, or semi-random methods [85], [5], [41]. The
numbers r(k,3) were the first asymptotically known Ramsey numbers (since
then there have been others, see [3], [4]).

Returning to the history of Theorem 1, Erdős made a stronger statement:

Theorem 2 [23]. Let l be fixed, let 0 < η < 1
2l . For every sufficiently large n

there exists a graph G = (V,E) with n vertices and the following properties:

1) girth(G) > l;
2) α(G) < n1−η.

(Note that this not only implies Theorem 1 but proves further that
χ(G) > nε.)

The proof of Theorem 2 is probabilistic and in fact it may be viewed as
the cradle of the probabilistic method [88]. Nowadays it is found in every
good graph theory book. Here is a very brief sketch:

We consider a random graph G with n vertices and n1+ε edges, ε = 2η,
and prove that almost all such graphs satisfy 2) and that they contain o(n)
edges in cycles of length ≤ l. They can then be deleted while 2) still holds.
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Putting it more poetically: A thin soup of n1+ε edges on n points
contains (on average) few cycles but still shares some properties of the
complete graph, namely small independence number.

How to depict this proof? Like a soup.

The proof of Theorem 2 has many variants and many more problems
were solved by this method. Continuing in our line, for example, Erdős and
Hajnal [25] generalized the result to hypergraphs as follows:

A p–uniform hypergraph is a pair (X,M), where M ⊆
(
X
p

)
= {M ;M ⊆

X, |M | = p}. Elements of M are still called edges. A cycle in (X,M) and
its length and girth are defined analogously as for graphs; a cycle of length 2
is formed by any pair of edges which intersect in (at least) 2 points.

Hypergraphs without 2-cycles are called simple (or linear).

The chromatic number χ(X,M) is defined analogously as for graphs: it
is the minimal number of colors needed in a coloring of vertices so that no
edge is monochromatic (this seems to be the most common definition of the
chromatic number for hypergraphs; of course there are other possibilities).

Theorem 3 [25]. Let p ≥ 2, k, l be positive integers. Then there exists a
p-uniform hypergraph Gp,k,l = (X,M) such that

1) χ(X,M) ≥ k;
2) girth(X,M) > l.

The probabilistic proofs of Theorems 2 and 3 are similar. Yet the
connection between these two statements provide some challenging open
problems (as we shall stress at several places in this article).
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4. Advanced Constructions

Already in Erdős’ paper [23] the question about a constructive proof of
Theorem 1 is raised. The progress has been very slow here. The l = 6
barrier was broken only a decade later [67] and there were speculations
about the untractability (in some sense) of the problem. Even from today’s
point of view there is no easy (and elementarily justified) construction of a
graph, say, G4,27.

The first constructive proof of Theorem 1 was obtained by Lovász [55].
His striking proof is based on proving (the more general) Theorem 3, i.e. the
existence of the hypergraph Gp,k,l. The proof proceeds by double induction
on p and l (for a fixed k) and is too complicated to be explained here.

Another construction was provided in [77]. This is an outgrowth of
structural Ramsey theory. It is called partite construction or amalgamation
construction [80],[74], [75], [73] and in the structural Ramsey theory it
seems to be one of the basic methods for obtaining structural results. The
partite construction when applied to coloring of vertices is indicated by the
following:

Here is a very rough sketch: Put a = (p− 1)(k − 1) + 1. We start with

a system (V,M) of p-tuples which are organised on the set V =
a⋃

i=1
Vi, (the

Vi are disjoint sets called parts), in such a way that for any p-tuple of parts

Vi1 , . . . , Vip there exists an edge M ∈ M with M ⊆
p⋃

j=1
Vij . We call this the

partite system P0.

In the inductive step we assume that we are given a partite system
Pi−1 = (V,M) with V = V1 ∪ · · · ∪ Va. Put |Vi| = P and apply induction to
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get system (Y,N ) with properties (P, k, l − 1). Now extend (like in Tutte’s
construction) every N ∈ M to a copy of Pi−1 while keeping the distribution
to parts. One then proves (see [38] for more details) that Pa has properties
of Gp,k,l.

In a way the partite construction is a multipartite generalization of
Tutte’s construction. (The situation is not so straightforward for Ramsey
theory and the amalgamation is more complicated.)

However for both Lovász’s construction and as well as for the partite
construction the size of the constructed (hyper)graph is not bounded by a
tower function of bounded height. Even the (somewhat less precise) question
whether one can prove Theorem 1 without referring to Theorem 3 was asked
(and answered positively in [49]). Further variants of constructions of graphs
Gk,l are given in [50] and more recent [89].

One should stress that the size of the graphs Gk,l is not merely a
combinatorial question. The graphs Gk,l are closely linked to special graphs
used in the theory of algorithms and complexity theory. In particular,
expander graphs (see for example extensive) [38] form a cornerstone of the
modern theory of computing (see for example Ajtai-Komlos-Szemeredi [2]).
One can see easily that large d-regular expander graphs with girth l may be
used to construct graphs Gk,l.

A polynomial size construction of expanders, and thereby of graphs
Gk,l, came as a real surprise from a different corner of mathematics as
a combination of mainly harmonic analysis, number theory and algebraic
graph theory. The resulting graphs, often called Ramanujan graphs defined
by Margulis [60] and Lubotzky, Phillips and Sarnak [58], are fascinating in
their own right.

There is a large literature (an interested reader may consult a survey
article [38] and references given there) and several books. For completeness
we state the main consequence for the context of this paper:

Let p, q be primes with Legendre symbol (pq ) = 1, q sufficiently larger

than p. Then there exists a graph Xp,q = (V,E) (we preserve the standard
notation of these graphs) with the following properties:

1) |V | = n = q(q2 − 1)/2. (The vertex set of Xp,q is the set of points of
the projective linear group PSL2(q));

2) Xp,q is (p+ 1)-regular;
3) girth(Xp,q) ≥ 2 logp q;

4) α(Xp,q) ≤ 2
√
p

p+1n;

5) χ(Xp,q) ≥ p+1
2
√
p .
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Hence Xp,q can be chosen as an example of graph Gk,l with at most k3l

vertices.

This whole area is a source of many applications (and beautiful mathe-
matics) which exceeds the scope of this paper. But in passing let us stress
that no full analogy of graphs Xp,q is known for hypergraphs (see for exam-
ple recent [54]). In particular, no small explicit construction of hypergraphs
is known. The best result here is the work of G. Kun [51], where he con-
structs hypergraphs Gp,k,l with number of vertices bounded by a primitive
recursive function of p, k, l. This construction uses a “twisted” product to
reduce the number of short cycles in a constructed hypergraph. One proves
that this is a polynomial process, yet randomized at each step.

A fully deterministic small (or even bounded by a tower function of
bounded height) construction of hypergraphs Gp,k,l is still an open prob-
lem. Admittedly, however the derandomization techniques and advances of
theoretical computer science make the “constructive questions” less clear
(and probably less important too) than they were in the 1960s.

5. Random Placement Construction

Here we present perhaps the simplest probabilistic proof of both Theorem
1 and 3 (however not Theorem 2). Surprisingly, this proof seems to be a
little known. We need the following lemma [72].

Lemma 4. Fix p ≥ 3, l ≥ 3 positive integers. For any ε > 0 there exist
n0(p, l, ε) such that for every n ≥ n0(p, l, ε) there exists a p-uniform hyper-
graph H(n, p, l, ε) = (X,M) with the following properties:

1) |X| = n;
2) |M| ≥ n1+ε;
3) girth(X,M) ≥ l.

This (for graphs) is the easier part of Erdős proof of Theorem 2: one con-
siders (for large n) random k-uniform hypergraph (X,M), X = {1,2, . . . , n}
with m = 2n1+ 1

ε � edges. It is easy to prove that for these values of m, the
average number of edges in a cycle of length < l is o(n). Taking a witness
(X,M) of this inequality and by deleting the corresponding edges in short
cycles we get the desired hypergraph H(n, p, l, ε).

However simple this lemma has many consequences.

Proof of Theorem 3 ([72]). Let p, k, l be fixed. Put P = (p−1)(k−1)+1
and consider H(n, P, l, ε) = (X,M) as in Lemma 4. Let H be the class of
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all p-uniform hypergraphs (X,N ) where every M ∈ M contains exactly one

edge N ∈ N (i.e. we assume |N ∩
(
M
p

)
| = 1 for everyM ∈ M). Every (X,N )

obviously has girth ≥ l. H is a large set: |H| = an
1+ε

where a =
(
P
p

)
.

However, given a partition π of X by (k − 1) colors we have only at

most (a− 1)n
1+ε

hypergraphs in H for which π is a coloring of (X,N ) (with

no monochromatic edge). Thus there are at most (k − 1)n(a− 1)n
1+ε

<

an
1+ε

= |H| hypergraphs in H with chromatic number < k. Thus there
exists a witness for Theorem 3.

In this way the desired high chromatic large girth hypergraph is con-
structed by randomly replacing edges of M (i.e. P -tuples) with copies of
a fixed hypergraph H0. In this proof H0 is a hypergraph with P vertices
containing a single edge (p-tuple).

The above random placement construction is very flexible. Satisfaction
of the difficult condition on the girth is inherited from H(n, p, l, ε) and the
chromatic number follows by the above easy counting argument. We have
tried to illustrate it by following figure:

Yet another application is given in [72]. This is related to recent work
on ergodic properties of topological subgroups of Sω. The combinatorial
part of this development is motivated by the following definition which
originated in structural Ramsey theory. We formulate it for graphs (for
hypergraphs and, more generally, relational structures the definition and
subsequent statements hold with little change).

An ordered graph
−→
G is a graph G = (V,E) together with a linear order-

ing ≤ of V . We say that a graph G′ = (V ′, E′) has the ordering property for
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−→
G if for any ordering 
 of V ′ (i.e. for any ordered graph

−→
G ′) there exists

an embedding ϕ : G → G′ which is monotone with respect to ≤ and 
.

For example, it is a classical result of graph theory that χ(G) ≥ k if and
only if G has the ordering property for the monotone path with k vertices
(known as the Gallai-Hasse-Vitaver-Roy theorem).

We have the following:

Theorem 5. For every graph G = (V,E) there exists a graph G′ with the
following properties:

1) G′ has the ordering property for any ordered graph
−→
G ;

2) if girth(G) ≥ l then girth(G′) ≥ l.

Proof. Given
−→
G with p vertices, consider H(n, p, l, ε) = (X,M) and con-

sider all random placements H of G on edges of M. Put p!
|Aut(G)| = a (this is

the number of distinct placements of G on a p-element set). The number of

all graphs H is thus a|M| = an
1+ε

. However only at most (a− 1)n
1+ε · n! do

not have the ordering property for a
−→
G . Thus there is a witness G′ which

has the ordering property for all
−→
G .

In particular, for the cycle Cl, l > 3, we obtain an undirected graph of
girth l which fails to be a cover graph of any partial order.

The existence of high girth non cover graph of posets (proved in [72]) led
to the proof that the following recognition problem is NP-complete [78], [14]:

Input: A graph G.

Question: Is G a cover graph of a finite poset?

The question was refined in [86] to lattices and this paper also contains a
polynomial algorithm (using Ramanujan graphs) which constructs for given
k and l a graph Gk,l with girth(Gk,l) = l and χ(Gk,l) = k (see also [22]).

It is clear that every ordering of G′ constructed in this way contains

many copies of
−→
G . Recently Angel, Kechris and Lyons [6] isolated in the

interesting context of topological dynamics (characterizing structures with
unique ergodic measure) the following property of a random placement
graph G′: For graphs G, G′ we denote by emb(G,G′) the number of all

embeddings of G into G′. Similarly emb(
−→
G,

−→
G ′) denotes the number of

monotone embeddings (with respect to orderings of
−→
G,

−→
G ′) of G into G′
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Proposition 6. Let ε > 0 be given. For every 2-connected graph G there

exists a graph G′ such that for every pair of ordered graphs
−→
G and

−→
G ′

∣∣∣∣∣emb(
−→
G,

−→
G ′)

emb(G,G′)
− 1

n!

∣∣∣∣∣ < ε.

The proof follows again by letting G′ be the random placement of copies
of G and applying Chernoff’s inequality.

A generalization of Proposition 6 has been proven recently in [79], which
further exploits the random placement construction to ordering property.
Let us review it briefly.

In this setting it is convenient to view orderings as permutations. Let
σ : [n] → [n] be a permutation of [n] = {1, 2, . . . , n}. For X ⊆ [n] let σX be
the subpermutation of σ induced by the set X (i.e. if X = {i1 < i2 < · · · <
ik} then σX(a) < σX(b) iff σ(ia) < σ(ib)).

Let k ≤ n (and typically k is much smaller than n) and let π1, . . . , πk!
be a fixed enumeration of all permutations of [k]. The k-statistics of σ is a

sequence sσ1 , . . . , s
σ
k! where sσi =

∣∣{X ∈
([n]
k

)
;σX = πi

}∣∣/(nk).
An ordered graph

−→
G on [n] may be coded as (G,σ) for a permutation σ

of [n]. We still call (G, σ) an ordered graph (by permutation σ).

Let (G′, σ′) be an ordered graph on [N ]. An embedding (G, σ) into
(G′, σ′) is a monotone injection f : [n] → [N ] which is embedding of G into
G′ and which satisfies

σ(i) < σ(j) if and only if σ′(f(i)) < σ′(f(j)).

Theorem 7 [79]. Let G be a 2-connected graph with k vertices. Let−→a = (a1, . . . ak!) be a stochastic vector. Then for any ε > 0 there exists a
graph H with n vertices with the following properties

1) girth(G) = girth(H);
2) if σ is a permutation of [n] with k-statistics (s1, s2, . . . , sk!) then∣∣∣∣emb((G, πl), (H,σ))

emb(G,H)
− bl

∣∣∣∣ < ε

where

bl =
∑

{aisσj ;πi ◦ πj = πl}.



A Combinatorial Classic – Sparse Graphs with High Chromatic Number 395

It is easy to see that for the uniform probability −→a = (1/k!, 1/k!, ·, 1/k!)
we get Proposition 6.

We also obtain the following “sparsification lemma”, which is perhaps
of independent interest

Lemma 8. For every l, k ≥ 2, ε > 0, there exists n and M ⊆
([n]
k

)
such that

1) ([n],M) has no cycles of length ≤ l;
2) for every permutation σ of [n] it holds that |sσi − sσi (M)| < ε, where

sσi (M) = |{M ∈ M;σM = πi}|/|M|.

Thus the k-statistics of every permutation σ on [n] are approximated by
k-statistics on edges of M (and yet M has no short cycles).

The random placement construction has further applications to most
coloring problems studied. For example it readily implies one of the main
results of [91]. Other applications of random placement construction to
coloring of graphs and hypergraphs are contained in [48], [45].

6. Other Voices, Other Rooms

Coloring problems are among the most frequently studied combinatorial
problems. One general approach is based on the notion of a homomor-
phism: Given graphs G = (V,E) and G′ = (V ′, E′), a homomorphism is
any mapping f : V → V ′ which satisfies {x, y} ∈ E ⇒ {f(x), f(y)} ∈ E′.

It is easy to see that G has a homomorphism to a complete graph Kk

if and only if χ(G) ≤ k. Motivated by this, a homomorphism G → H is
also called an H-coloring. Of course, if G �→ Kk then also G �→ H for every
H with χ(H) ≤ k. But as homomorphisms compose (i.e. form a category)
we can prove stronger and (arguably more elegant) statements. These also
indicate that sparsity is not a strong restriction in many coloring problems.

The main results proved in [83] may be formulated as follows. Because of
its connection to rigid graphs and homomorphism order it is called sparse
incomparability lemma (see e.g. [36]) and it holds for relational systems
generally.

Theorem 9. For every graph H and for all positive integers k and l there
exists a graph G with the following properties:

1) girth(G) > l;
2) for every graph F with at most k vertices, there exists a homo-

morphism g : G → F if and only if there exists a homomorphism
f : H → F .
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For the statement of the second result of [83] we need the following
notion:

A graph F is said to be pointed for a graph H (or shortly H-pointed)
if any two distinct homomorphisms H −→ F differ in at most 2 vertices.
In other words this means that if two homomorphisms g, g′ : H → F satisfy
g(x) = g′(x) for all x �= x′ (for some fixed vertex x0 ∈ V (H)) then it also
holds that g(x0) = g′(x0). A graph H is called a core if any homomorphism
H → H is an automorphism. Note that any core graph H is H-pointed and
it follows that most graphs H on a large set are H-pointed.

Theorem 10. For every graph H and for every choice of positive integers
k and l there exists a graph G together with a surjective homomorphism
c : G → H with the following properties:

1) girth(G) > l;
2) for every graph F with at most k vertices, there exists a homo-

morphism g : G → F if and only if there exists a homomorphism
f : H → F ;

3) for every H-pointed graph F with at most k vertices and for every
homomorphism g : G → F there exists a unique homomorphism f :
H → F such that g = f ◦ c.

Conditions 2) and 3) may be expressed by the following diagram:

H
f �� F

G

c

��

g

������������

Theorem 10 may look like a technical extension of Theorem 9. How-
ever, it has several interesting corollaries from which we obtain structural
extension of Erdős’ Theorem 1.

A graph G is uniquely H-colorable if there is a surjective homomorphism
c from G onto H, and any other homomorphism from G to H is the
composition σ ◦ c of c with an automorphism σ of H. (Note that this implies
that H is a core graph.)

The problem of the existence of uniquely k-colorable graphs with large
girth has an interesting history: the triangle-free case (i.e. l = 3) was settled
in [68] and this was improved in [31] to graphs not containing short odd
cycles. The general case was solved by Vladimı́r Müller [64, 65]. Müller’s
proof is constructive and uses a constructive proof of Theorem 1. A non-
constructive proof has been published in [12] and the particular caseH = H ′
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of our Theorem 10 (i.e. the existence of uniquely H-colorable graph G with
girth > l) is proved in [91]. The above Theorem 10 then implies that there
is a graph G which is strongly uniquely H-colorable in the sense that any
homomorphism G → F to any small H-pointed graph F is induced by a
homomorphism H → F .

A probabilistic proof of Theorem 10 ([83]) is yet another variant of Erdős
method and follows by a now standard pattern [51], [62]. Suppose H has
vertices {1, 2, . . . , a} and let H have q edges. Let V1, . . . , Va be disjoint sets
each of (large) size n. Let G0 be the graph with vertex set V = V1 ∪ . . . Va

and let {x, y} ∈ E(G0) if and only if x ∈ Vi, y ∈ Vj and {i, j} ∈ E(H). Let
G be a random subgraph of G0 with qn1+ε edges where 0 < ε < 1/4l. This
may be viewed as we are replacing each vertex of H by a large cloud
(with n vertices) and then taking a sparse random subgraph between clouds
corresponding to edges of H. Theorem 9 then follows: If we have a coloring
c : V → {1, . . . k′}, k′ ≤ k, then for each i = 1, . . . , a let V ′i ⊆ V be the largest
monochromatic subset and call the corresponding color c(i). One then
observes that if {i, h} ∈ E(H) then c(i) �= c(j) because between V ′i and
V ′j there have to be some edges. Thus if c is a homomorphism G → H ′,
V (H) = {1, . . . , a′} then with high probability c induces a homomorphism
H → H ′. The proof of part 3) of Theorem 10 needs more care as we have
to treat small subsets, see [83].

In the style of this paper we add a schematic figure:

Note that this proof can be derandomized and an explicit (polynomial
size) construction can be given (using Ramanujan graphs) [62]. Kun [51]
gives a polynomial algorithm to construct set system (and more generally
relational systems) satisfying 1), 2) of Theorem 10. This allowed to close
the hierarchy of descriptive complexity of classes defined and asked in [29].
In technical terms this amounts to MMSNP = CSP [51].
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There is here more than meets the eye. One can prove also a strong
extension of Müller’s Extension Theorem [64, 65]. To do so we need another
(this time categorical) notion:

A t-projective graph is a graph G with the property that for every homo-
morphism (in this setting usually called polymorphism) f : G× · · ·×︸ ︷︷ ︸

t

G → G

which satisfies f(x, . . . , x) = x, there exists i0 such that f(x1, x2, . . . , xt) =
xi0 (i.e. every idempotent homomorphism is a projection). It was proved in
[53] that a graph is 2-projective if and only if it is t-projective for every t
(this is not true in general for relational structures).

The following result takes us from colorings to arbitrary H-colorings
(and holds for general finite relational structures as well):

Corollary 11. Let H be projective graph with k vertices, and l a positive
integer. Let A be a finite set and let f1, f2, · · · , ft be distinct mappings
A → V (H). Then there exists a graph G = (V,E) such that the followings
hold:

1) A is a subset of V ;
2) for every i = 1,2, · · · , t there exists unique homomorphism gi : G → H

such that gi restricted to the set A coincides with the mapping fi;
3) for every homomorphism f : G → H there exists i, 1 ≤ i ≤ t and an

automorphism h of H such that h ◦ fi = f ;
4) G has girth > l.

Müller’s Extension Theorem corresponds to k-colorings (i.e. H = Kk)
which uniquely extend a given set partition and is depicted in the following
figure:
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This is not just a generalization, this is as far as we can go:

Corollary 12. For a core graph H, the following statements are equivalent:

I. Corollary 11 holds.
II. The graph H is projective.

These results and corresponding notions are not only interesting as an
ultimate strengthening of Erdős’ Theorem 1 in a more structural setting.
In fact the above results hold for relational structures (or finite relational
models). This is important for the complexity of algorithms, particularly in
the context of Constraint Satisfaction Problems – CSP:

For a given a relational structure H, CSP (H) denotes the following
decision problem:

Input: A structure A

Question: Does there exists a homomorphism A → H.

It is conjectured [29] that this problem falls into just two classes:

NP-Complete problems and polynomially solvable problems. This Di-
chotomy Conjecture [29] was investigated in the context of (universal) alge-
bra [40], [15], [7], combinatorics and graph theory [36], threshold phenomena
and random walks [52], for survey of this development see e.g. [36]. The di-
chotomy conjecture has then a refined form which conjectures an actual
form of the dichotomy, see [37] Theorem 3.4. One of these formulations
(using term “block projectivity”) was isolated in [82]. Let us remark that
recently the analogous question of dichotomy for counting homomorphisms
(and CSP) was solved in the full generality in a major paper [16].

Theorem 11 plays an important role in this reduction (via so called
fibre construction). It further follows from this result that the conjectured
Dichotomy is very robust: it does not change if we restrict to objects with
girth ≥ l and to structures with degree of its vertices bounded by D(H).
For this we need an effective version of Corollary 11 which is provided by
[62, 51]. As a particular case the following problem is NP-complete for any
non-bipartite graph H (and any fixed l):

Input: Graph G with girth ≥ l.

Question: Does there exists an H-coloring of G?

So after all the work the large girth restriction is not much of an obstacle.
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7. Limitations, Perspectives and Problems

We can interpret negatively many of the above results: Despite the apparent
difficulty high girth graphs with large chromatic number exist and their
complexity and special properties seem not to be influenced by this (severe)
restriction.

Here we add a few structural results which indicate opposite. We start
with two infinite limitations.

7.1. No universal C4-free graph

Theorem 13 [33]. There is no countable graph of girth > 4 which contains
every countable graph of girth > 4 as a subgraph.

In other words, there is no countable universal graph for the class of
all graphs of girth > 4. The same holds for the class of graphs with girth
> l ≥ 4. On the other hand, such a universal graph exists for the class of
all triangle-free graphs. (The same is true, more generally, for the class of
all graphs not containing short odd cycles [18].) In fact one can “forbid”
homomorphisms from any finite set of graphs, see [17]. But this does not
surprise an interested reader: odd cycles are easier in the whole paper.

7.2. No (transfinite) unbounded χ

Theorem 14 [25]. Every graph G with chromatic number > ω (i.e. of
uncountable chromatic number) contains a complete bipartite subgraph
Kω,n for arbitrary finite n and thus in particular the quadrangle K2,2.

Thus the graphs Gk,l are strictly finite objects which do not have, in full
generality, an analogy in the infinite.

7.3. Erdős-Hajnal

Conjecture 7.1 [24]. For every k, l there exists f(k, l) such that any graph
G with χ(G) ≥ f(k, l) contains a subgraph G′ of girth > l and χ(G′) ≥ k.

This beautiful and (at least at first glance) plausible conjecture is in
fact a very hard problem. The only known non-trivial case is that f(k, 4)
exists (Rödl [84]). (Note that Theorem 1 is equivalent to saying that
Conjecture 7.1 holds for complete graphs.)

This conjecture appeared recently in the context of (homomorphism)
restricted dualities, cf. [71, Chapter 11].



A Combinatorial Classic – Sparse Graphs with High Chromatic Number 401

7.4. Victor Neumann-Lara Conjecture

Conjecture 7.2. There exists a function g : N −→ N with the following
property: Let G = (V,E) be an undirected graph with χ(G) ≥ g(k). Then

there exists an orientation
−→
G = (V,

−→
E ) of G such that in every k-coloring

of V
−→
G contains a monochromatic directed cycle.

There are many (perhaps too many) variants of chromatic number.

The minimal number of colors which suffice for coloring of vertices of
digraphs so that no directed cycle is monochromatic is called (directed)
acyclic chromatic number (thus the defining property is that the color
classes induce acyclic subgraphs). Directed acyclic chromatic number was
investigated and the analogy of Theorem 1 for directed acyclic coloring
immediately follows from the random placement method (for a different
proof see [9]). The existence of uniquely acyclic colorable was proved
recently in [34].

7.5. The Pentagon problem

Conjecture 7.3. There exists an integer l with the following property: If
G is a subcubic graph (i.e. every vertex has degree ≤ 3) with girth ≥ l then
G → C5.

Brook’s theorem implies that every subcubic graph not containing K4

satisfies G → C3. On the other hand this problem has a negative solution
for C11 [47], C9 [90], and finally C7 [35].

It is not even known whether high girth subcubic graphs have circular
chromatic number < 3.

7.6. No Ramsey classes with girth > 3

A class C of graphs (or, more generally, structures) is said to be Ramsey if
the following holds ([80], [81], [70]): For every A,B ∈ C and positive integer
k there exists C ∈ C such that C → (B)Ak where (Erdős-Rado) partition
arrow has the following meaning:

For every partition
(
C
A

)
= A1 ∪ . . .Ak there exists B′ ∈

(
C
B

)
such that(

B′
A

)
⊆ Ai for some i ∈ {1, . . . , k}. Here

(
C
A

)
denotes the set of all substruc-

tures of C which are isomorphic to A.

Ramsey’s theorem claims that the class of complete graphs is a Ramsey
class.
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Theorem 15 [69]. The class Cl of all ordered graphs with girth ≥ l > 4
fails to be a Ramsey class.

This follows from [69] where the connection between Ramsey classes and
ultrahomogeneous structures is isolated and as a result of this all Ramsey
classes of graphs are determined (or better: it is shown that we know them
all). This line of research was studied later intensively, see e.g. the important
paper [42], and connections to extreme amenability of subgroups of Sω were
established.

7.7. Edge Ramsey for large girth

Problem 16. Does the class Cl have the edge-Ramsey property?

Explicitly: Is it true that for every G ∈ Cl there exists H = (V,E) ∈ Cl
such that for every partition E1 ∪E2 of E there exists a subgraph G′ of H,
G′ isomorphic to G such that E(G′) is a subset of either E1 or E2 (i.e.

H → (G)K2
2 in the above notation). This is known to be true for l ≤ 6 [65].

This problem (together with Pisier type problems [26]) is one of the few
that remained open in structural Ramsey theory.

7.8. Persistence of Old Motivations

The problems addressed in this paper are active problems attacked (and
sometimes) solved by many. As an example of recent striking result let us
mention the work of T. Bohman and P. Keevash and, independently of G. F.
Pontiveros, S. Griffiths and R. Morris on asymptotics of Ramsey numbers
r(k, 3). But other problems remain. Particularly, the basic challenge in this
area of complex large girth graphs is to find new constructions. The old
questions remain. The recent advances of theoretical computer science put
these problems in a new context and make these questions very actual.

Acknowledgment: I thank to Martin Bálek and Andrew Goodall for the
help when preparing this article.
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[85] V. Rödl, On a packing and covering problem, Europ. J. Combinatorics 5 (1985),
69–78.
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