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Győry, K.: Perfect Powers in Products with Consecutive Terms
from Arithmetic Progressions, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
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Vértesi, P.: Paul Erdős and Interpolation: Problems, Results,
New Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
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Preface

Paul Erdős was one of the most influential mathematicians of the twenti-
eth century. His work in number theory, combinatorics, set theory, and other
branches of mathematics has determined the development in large areas of
these fields. His name is forever attached to combinatorial and additive
number theory, combinatorial geometry, extremal graph and hypergraph
theory, random graphs, and the probabilistic method. His contributions to
set theory, the theory of primes, analysis, probability, and other classical
areas in mathematics are also fundamental.

Paul Erdős passed away in 1996. Three years later, a conference was
organized in Budapest to survey his work, his contributions to mathematics,
and the far-reaching impact of his work on many branches of mathematics.
A 2-volume collection of papers, “Paul Erdős and his Mathematics” (János
Bolyai Mathematical Society and Springer-Verlag 2002), was also published,
which contained papers about his life, surveys of areas which he initiated or
contributed to, and personal reminiscences by his friends and collaborators.

We feel that in 2013, on the 100th anniversary of his birth, it was time to
have another look on the long-term impact of his work. We are organizing
another conference devoted to his mathematics. This volume (which is
not the Proceedings of this conference, but of course having the similar
goals) undertakes the almost impossible task to describe the ways in which
problems raised by him and topics initiated by him (indeed, whole branches
of mathematics) continue to flourish.

Written by outstanding researchers in these areas, the papers in this
volume include extensive surveys of classical results as well as of new de-
velopments. It would be even more hopeless to be comprehensive than in
1999, but we hope that this volume, as well as the lectures at the confer-
ence, will give a glimpse into how his mind was working, and a feeling for
his tremendous influence on modern mathematics.

The interested reader should also consult the home page of the con-
ference (http://www.renyi.hu/erdos100), which contains more material,
including the program and abstracts of posters submitted to the confer-
ence. We plan that recordings of plenary talks will also be made available.
The Paul Erdős page (http://www.renyi.hu/~p_erdos) contains scanned
copies of most Erdős papers, along with many photos and a lot of other
material.
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Our thanks are due to Dömötör Pálvölgyi for his very careful and effi-
cient work as managing editor of this volume, to Dezső Miklós for organizing
the production, and to Ildikó Miklós for the expert production of the LATEX
files.

Budapest, May 2013 László Lovász
Imre Z. Ruzsa
Vera T. Sós
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Paul Erdős and Probabilistic Reasoning

NOGA ALON∗

One of the major contributions of Paul Erdős is the development of the Proba-
bilistic Method and its applications in Combinatorics, Graph Theory, Additive
Number Theory and Combinatorial Geometry. This short paper describes some
of the beautiful applications of the method, focusing on the long-term impact of
the work, questions and results of Erdős. This is mostly a survey, but it contains
a few novel results as well.

1. The Probabilistic Method

The Probabilistic Method is one of the most significant contributions of
Paul Erdős, and part of his greatness is the fact that applications of the
probabilistic method and of random graphs have become so common that
it is now possible to use those without explicitly mentioning him. The
method is a powerful tool with numerous applications in Combinatorics,
Graph theory, Additive Number Theory and Geometry and had an immense
impact on the development of theoretical Computer Science as well. The
results and tools are far too numerous to cover in a short survey, even if
the focus is only on those influenced directly by the work and problems of
Erdős, and thus this paper is mainly a selection of topics that illustrate the
method, and is not meant to be a comprehensive treatment of the whole
area. Several books that contain more material on the subject are [13], [18],
[54], [60].

It is convenient to classify the applications of probabilistic techniques
in Discrete Mathematics into three groups. The first one deals with the
study of random combinatorial objects, like random graphs or random
matrices. The results here are essentially results in Probability Theory,

∗Research supported in part by an ERC Advanced grant, by a USA-Israeli BSF grant
and by the Israeli I-Core program.



12 N. Alon

although many of them are motivated by problems in Combinatorics. The
second group consists of probabilistic constructions. These are applications
of probabilistic arguments in order to prove the existence of combinatorial
structures which satisfy a list of prescribed properties. Existence proofs of
this type often supply extremal examples to various questions in Discrete
Mathematics. The third group, which contains some of the most striking
examples, focuses on the application of probabilistic reasoning in the proofs
of deterministic statements whose formulation does not give any indication
that randomness may be helpful in their study.

Random graphs are covered in another chapter of this volume. The
present chapter contains a brief description of several results in each of the
other two groups, as well as a very brief discussion of some of the applications
of the probabilistic method in theoretical Computer Science. The influence
of the work and questions of Paul Erdős in all these has been crucial.

This is mostly a survey paper, but it contains several new results,
presented in subsections 3.2 and 3.5, as well.

2. Probabilistic constructions

The applications of probabilistic constructions have yielded numerous re-
sults in Combinatorics, Graph Theory, Combinatorial Geometry and Addi-
tive Number Theory. Below is a selection of several representative examples.

2.1. Ramsey Numbers

Let H1,H2, . . . ,Hk be k finite, undirected, simple graphs. The (multicolor)
Ramsey number

r(H1, H2, . . . , Hk)

is the minimum integer r such that in every edge coloring of the complete
graph on r vertices by k colors, there is a monochromatic copy of Hi in color
i for some 1 ≤ i ≤ k. By a (special case of) a well known theorem of Ramsey
(c.f., e.g., [49]), this number is finite for every sequence of graphs Hi.

The determination or estimation of these numbers is usually a very
difficult problem. When each graph Hi is a complete graph with more than
two vertices, the only values that are known precisely are those of r(K3,Km)
for m ≤ 9, r(K4,K4), r(K4,K5) and r(K3,K3,K3). Even the determination
of the asymptotic behavior of Ramsey numbers up to a constant factor is a
hard problem, and despite a lot of efforts by various researchers (see, e.g.,
[49], [22] and their references), there are only a few infinite families of graphs
for which this behavior is known.
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In one of the first applications of the probabilistic method in Com-

binatorics, Erdős [26] proved that if
(
n
k

)
21−(

k
2) < 1 then R(Kk,Kk) > n,

that is, there exists a 2-coloring of the edges of the complete graph on
n vertices containing no monochromatic clique of size k. This implies that
R(Kk,Kk) > 2k/2 for all k ≥ 3. The proof is extremely short: the prob-
ability that a random two-edge coloring of Kn contains a monochromatic

copy of Kk is at most
(
n
k

)
21−(

k
2) < 1, and hence there is a coloring with the

required property.

It is worth noting that although this argument seems almost trivial
today, it was far from being obvious when published in 1947. In fact, several
prominent researchers believed, before the publication of this short paper,
that R(Kk,Kk) may well be bounded by a polynomial in k. In particular,
Paul Turán writes in [67] that he had conjectured for a while that R(Kk,Kk)
is roughly k2, and that Erdős’s result showed that this quantity behaves very
differently than expected.

A particularly interesting example of an infinite family for which the
asymptotic behavior of the Ramsey number is known, is the following result
of Kim and of Ajtai, Komlós and Szemerédi.

Theorem 2.1 ([56], [3]). There are two absolute positive constants c1, c2
such that

c1m
2/ logm ≤ r(K3,Km) ≤ c2m

2/ logm

for all m > 1.

The upper bound, proved in [3], is probabilistic, and applies a certain
random greedy algorithm. There are several subsequent proofs, all are based
on probabilistic arguments. The lower bound is proved by a “semi-random”
construction and proceeds in stages. The detailed analysis is subtle, and
is based on certain large deviation inequalities. An alternative analysis of
this probabilistic construction, inspired by the differential equation method
of Wormald [71], is given by Bohman in [17]. It is worth noting that the
question of obtaining a super-linear lower bound for r(K3,Km) is mentioned
already in [26], and Erdős has established in [28], by an appropriate proba-
bilistic construction, an Ω(m2/ log2m) lower bound. More on this appears
in another chapter of this volume.

Even less is known about the asymptotic behavior of multicolor Ramsey
numbers, that is, Ramsey numbers with at least 3 colors. The asymptotic
behavior of r(K3,K3,Km), for example, has been very poorly understood
for quite some time, and Erdős and Sós conjectured in 1979 (c.f., e.g., [22])
that

lim
m �→∞

r(K3,K3,Km)

r(K3,Km)
= ∞.
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This has been proved in [12], where it is shown that in fact r(K3,K3,Km) is
equal, up to logarithmic factors, to m3. A more complicated, related result
proved in [12], that supplies the asymptotic behavior of infinitely many
families of Ramsey numbers up to a constant factor is the following.

Theorem 2.2. For every t > 1 and s ≥ (t− 1)! + 1 there are two positive
constants c1, c2 such that for every m > 1

c1
mt

logtm
≤ r(Kt,s,Kt,s,Kt,s,Km) ≤ c2

mt

logtm
,

where Kt,s is the complete bipartite graph with t vertices in one color class
and s vertices in the other.

The proof of the lower bound forms yet another example of a probabilis-
tic construction, where each of the first three color classes is a randomly
shifted copy of an appropriate Kt,s-free graph that contains a relatively
small number of large independent sets, as shown by combining some spec-
tral techniques with character sum estimates.

2.2. Combinatorial Geometry

There are several striking examples where a probabilistic construction sup-
plies rather easily counter-examples to well studied conjectures in Combi-
natorial Geometry. The following result of Erdős and Füredi illustrates this
point.

Theorem 2.3 ([34]). For every d ≥ 1 there is a set of at least �1
2(

2√
3
)
d�

points in the d-dimensional Euclidean space Rd, such that all angles deter-
mined by three points from the set are strictly less than π/2.

The proof is obtained by considering a random set of binary vectors in
Rd. We omit the details but mention that this disproves an old conjecture
of Danzer and Grünbaum [23] which suggests that the maximum cardinality
of such a set is at most 2d− 1. The authors of [23] did prove, motivated
by a question of Erdős and Klee, that the maximum cardinality of a set of
points in Rd in which all angles are at most π/2 is 2d.

A range space S is a pair (X,R), where X is a (finite or infinite) set and
R is a (finite or infinite) family of subsets of X. The members of X are
called points and those of R are called ranges. If A is a subset of X
then PR(A) = {r ∩A : r ∈ R} is the projection of R on A. In case this
projection contains all subsets of A we say that A is shattered. The Vapnik-
Chervonenkis dimension (or VC-dimension) of S, denoted by V C(S), is the
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maximum cardinality of a shattered subset of X. If there are arbitrarily
large shattered subsets then V C(S) = ∞.

A subset N ⊂ A is an ε-net for A if any range r ∈ R satisfying |r ∩A| ≥
ε|A| contains at least one point of N .

A well known result of Haussler and Welzl [52], following earlier work of
Vapnik and Chervonenkis [68], asserts that for any n and ε > 0, any set of
size n in a range space of VC-dimension d contains an ε-net of size at most
O(dε log(1/ε)).

The authors of [61] asked in 1990 whether or not in all natural geometric
scenarios of bounded V C-dimension, there always exists an ε-net of size
O(1/ε). This problem received a considerable amount of attention over the
years, until it has finally been answered negatively in [5] and in [62], by
constructions that have essential probabilistic ingredients. The following,
however, is still open.

Problem 2.4. Are there sets Xn of points in the plane and a sequence
εn > 0 tending to zero so that the minimum size of an εn-net for Xn with
respect to line ranges is Ω( 1

εn
log( 1

εn
))?

2.3. Additive Number Theory

Erdős and Turán [41] asked if for any asymptotic basis of order 2 of the
positive integers (that is, a set A of positive integers so that each sufficiently
large integer has a representation as a sum of two elements of A), there must
be, for any constant t, integers that have more than t such representations.

Erdős has used in [27] a probabilistic construction to prove the existence
of a set A of integers such that every n is represented as n = x+ y with
x, y ∈ A at least once but at most O(lnn) times. This settles a problem
posed by Sidon and shows that in the Erdős-Turán question mentioned
above one cannot expect to necessarily have too many representations of an
integer n, although the question, as posed, is still wide open.

A somewhat similar question is considered by Canfield and Wilf in [21]
and by Ljujić and Nathanson in [59]. For two sets A and M of positive
integers and for a positive integer n, let p(n,A,M) denote the number of
partitions of n with parts in A and multiplicities inM , that is, the number of
representations of n in the form n =

∑
a∈Amaa where ma ∈ M ∪ {0} for all

a, and all numbers ma but finitely many are 0. There are simple examples of
M and A in which M is finite so that p(n,A,M) = 1 for all n, but it seems
more difficult to find infinite sets A and M for which p(n,A,M) has a
polynomial growth in n. For the specific cases of A = {k!}∞k=1, A = {kk}∞k=1
(and many other cases), the existence of such an infinite M is proved in
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[6] using a probabilistic construction and answering questions raised in [21]
and [59]. These constructions are tailored to fit the growth of the given
sequence A, and are general enough to ensure that the same sequence M
can work simultaneously for several sequences A. The analysis is based on
some large deviation inequalities.

Erdős and Newman studied in [39] another problem dealing with bases for
sets of integers. They studied bases for m-element subsets A of {1, . . . , n},
where a set B is a basis for A if A ⊂ B +B = {b1 + b2 : b1, b2 ∈ B}. Since
{0} ∪A is a basis for A, and there is a set X with at most c

√
n elements

such that X +X ⊃ {1, . . . , n} it follows that for any m-element subset of
{1, . . . , n} there is always a basis of size min(c

√
n,m+ 1). Erdős and New-

man showed by a simple probabilistic construction that if m is somewhat
smaller than

√
n, say m = O(n1/2−ε), then almost no m-element set has a

basis of size o(m). Similarly, ifm is at least n1/2+ε then almost allm-element
sets require a basis of size at least c

√
n. For the borderline case when m is

of the order
√
n their counting argument only yields existence of sets that

need a basis of size c
√
n log logn/ logn, and they asked if every m-set of size

m =
√
n has a basis with o(m) elements. This is established in [7], where it

is shown that in fact any such set has a basis of size O(
√
n log logn/ logn).

The argument is probabilistic.

Estimating the size of the smallest possible basis for explicitly given sets
is often far harder. Erdős and Newman showed that any basis for the set
of squares {t2 : t = 1, . . . , n} (which is a subset of {1, 2, . . . , n2}) is of size

at least n2/3−o(1) for large values of n, which is an improvement over the
trivial lower bound of n1/2. They constructed a small basis for the squares,
of size only O

(
n

logM n

)
for any M . Wooley asked about powers other than

the squares. Whereas it is likely that any basis for the set of d-th powers
{td : t = 1, . . . , n} is of size Ω(n1−ε) for every ε > 0 and d ≥ 2, only a modest

improvement of the n2/3−o(1) lower bound of Erdős and Newman for large
values of d is proved in [7], where it is shown that the set {td : t = 1, . . . , n}
does not have a basis of size O(n3/4− 1

2
√
d
− 1

2(d−1)
−ε) for any ε > 0.
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3. Deterministic Theorems

3.1. Sum-free subsets

A subset A of an abelian group is called sum-free if there is no solution
to the equation x+ y = z with x, y, z ∈ A. Erdős [31] showed that any set
of n positive integers contains a sum-free subset of size at least n/3. The
proof is a simple yet intriguing application of the probabilistic method, and
proceeds as follows. Let A be a set of n positive integers, choose a real x
uniformly between 0 and 1 and let B = Bx be the set of all a ∈ A so that
axmod 1 ∈ (1/3, 2/3). It is not difficult to check that B is always sum-free,
and that the expected value of the size |Bx| of B is n/3. Therefore, there is
a fixed x so that the size of Bx is at least n/3, providing the required result.

In [8] the authors showed that a similar proof gives a lower bound of
(n+1)/3. Bourgain [20] has further improved this estimate to (n+2)/3. It
seems possible that the constant 1/3 cannot be replaced by a larger constant,
but this is an open problem. The best known upper bound is 11/28, proved
by Lewko [58], improving earlier estimates of 3/7 in [31] and 12/29 in [8].
In subsection 3.2 we present a further (modest) improvement. It is worth
noting that for general abelian groups there is a similar result proved in
[8]: any set of n nonzero elements in any abelian group contains a sum-free
subset with more than 2n/7 elements. The constant 2/7 is best possible.

3.2. The sum-free subset constant

For a set B of nonzero integers, let s(B) denote the maximum cardinality

of a sum-free subset of B. The infimum value of the ratio s(B)
|B| as B ranges

over all nonempty sets of nonzero integers is called the sum-free subset
constant, and is denoted by δ. As mentioned in the previous subsection
Erdős proved that δ ≥ 1/3 and observed that δ ≤ 3/7. The upper bound
has been improved in [8] and further improved in [58]. All these upper
bounds are established by exhibiting a set B and by computing s(B). The
next statement shows that for any given example B it is possible to construct
another one which gives a (slightly) better upper bound for δ.

Proposition 3.1. Let B be a finite set of b nonzero integers and define
s = s(B). Put

p = [b(b− 1) + 1](b− s+ 1), q = p!(e− e−1 + 3)/2� − p+ 2

and

m =

⌈
q

b(b− 1) + 1

⌉
b.
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Then there is a set C of at most m elements so that

s(C)

|C| ≤ s(B)

|B| − 1

|C| .

The result of [58] is proved by exhibiting an explicit set B of 28 nonzero
integers for which s(B) = 11. Therefore δ ≤ 11/28. By the proposition
above this can be improved to 11/28− ε for some ε which is roughly
10−50,000. It is possible to get a slightly bigger value of ε, but as this is
certainly far from giving a tight bound, we make no serious attempt to op-
timize this value here. Note that the proposition above implies that δ is
an infimum, and not a minimum, that is, there is no finite set B so that

δ = s(B)
|B| .

Proof. Put |B| = b, s = s(B). Let n be a large integer, to be chosen later,
and let G be the graph whose set of vertices is {1,2, . . . , n}, where i and j are
adjacent iff the two sets iB and jB intersect (and i �= j). It is clear that the
maximum degree of this graph is at most b(b− 1) and hence, by the Hajnal-
Szemerédi Theorem [51], it has a proper coloring f with k = b(b− 1) + 1
colors and nearly equal color classes. This coloring provides a partition of
[n] = {1, 2, . . . , n} into k sets Ij , so that each of the set Bj = ∪i∈Ij iB is a
set of exactly |Ij |b nonzero integers.

Claim: If n is sufficiently large then at least one of these sets Bj does not
contain a sum-free subset containing s elements from each of the sets iB for
all i ∈ Ij .

Indeed, assuming this is not the case, fix a sum-free subset Aj in each Bj

so that |Aj ∩ iB| = s for all i ∈ Ij . Using the sets Aj , define a coloring g of
Ij by b− s+1 colors as follows. Let x1 < x2 < . . . < xb be the members of B
and suppose i ∈ Ij . By assumption Aj contains at least one of the elements
ixq for some q ∈ {1, 2, . . . , b− s+ 1}. Let q be the smallest index for which
this holds and define g(i) = q. The ordered pair (f(i), g(i)) defines a coloring
of the integers in [n] by k(b− s+ 1) = [b(b− 1) + 1](b− s+ 1) colors.

Note that there is no monochromatic Schur triple in this coloring, that
is, there are no i, j, t ∈ [n] so that i+ j = t and (f(i), g(i)) = (f(j), g(j)) =
(f(t), g(t)). This is because if there is such a triple then for (f ′, g′) =
(f(i), g(i)) we have iB∪ jB∪ tB ⊂ Bf ′ , and for xg′ ∈ B ixg′ , jxg′ , txg′ all lie
in Af ′ . This contradicts the fact that Af ′ is sum-free, as ixg′ + jxg′ = txg′ .
Thus there are indeed no monochromatic Schur triples.

An old Theorem of Schur (c.f., e.g., [49]) asserts that if n is sufficiently
large as a function of the number of colors used then there must be a
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monochromatic Schur triple, contradiction. This contradiction proves the
assertion of the claim.

Returning to the proof of the proposition, note that the number of colors
in the construction above is p = [b(b− 1) + 1](b− s+ 1). By [70] if n is at
least q = p!(e− e−1 + 3)/2� − p+ 2 then there is a monochromatic Schur
triple. This implies that if indeed n is at least that large, then at least one
of the sets Bj cannot contain a sum-free subset that consists of s elements
from each iB for i ∈ Ij . Hence s(Bj) ≤ |Ij |s−1 and as the size of each set Ij
is at most  q

b(b−1)+1� the set C = Bj completes the proof of the proposition.

3.3. List coloring and Euclidean Ramsey Theory

The list chromatic number (or choice number) χ�(G) of a graph G = (V,E)
is the minimum integer s such that for every assignment of a list Lv of
s colors to each vertex v of G, there is a proper vertex coloring of G in
which the color of each vertex is in its list. This notion was introduced
independently by Vizing in [69] and by Erdős, Rubin and Taylor in [40]. In
both papers the authors realized that this is a variant of usual coloring that
exhibits several new interesting properties, and that in general χ�(G), which
is always at least as large as the chromatic number of G, may be arbitrarily
large even for graphs G of chromatic number 2.

It is natural to extend the notion of list coloring to hypergraphs. The
list chromatic number χ�(H) of a hypergraph H is the minimum integer s
such that for every assignment of a list of s colors to each vertex of H, there
is a vertex coloring of H assigning to each vertex a color from its list, with
no monochromatic edges.

An intriguing property of list coloring of graphs, which is not shared by
ordinary vertex coloring, is the fact that the list chromatic number of any
(simple) graph with a large average degree is large. Indeed, it is shown in
[4] that the list chromatic number of any graph with average degree d is
at least (12 − o(1)) log2 d, where the o(1)-term tends to zero as d tends to
infinity. For r ≥ 3, simple examples show that there is no nontrivial lower
bound on the list chromatic number of an r-graph in terms of its average
degree. However, such a result does hold for simple hypergraphs. Recall
that a hypergraph is simple if every two of its distinct edges share at most
one vertex. The following result is proved in [10].

Theorem 3.2. For every fixed r ≥ 2 and s ≥ 2, there is a d = d(r, s), such
that the list chromatic number of any simple r-graph with n vertices and
nd edges is greater than s.
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A similar result for the special case of d-regular 3-uniform simple hyper-
graphs has been obtained independently in [53]. A subsequent proof with
a better upper estimate for d(r, s) appears in a recent paper of Saxton and
Thomason [66].

The proof of the theorem is probabilistic and proceeds by induction
on r. For simplicity we only outline the idea for the case of graphs with
a large minimum degree. Let G = (V,E) be a graph with n vertices and

minimum degree d. Choose a random set B of about n/
√
d vertices and

assign a random list of size s out of a set S of 2s− 1 colors to each vertex
of B. A simple computation shows that if, say, d > 10s, then with positive
(and in fact high) probability many of the vertices v not in B have every
subset of size s of S assigned to at least one of their B-neighbors. Fix such
a choice of the set B and lists of colors to its vertices. Note now that for
each fixed choice of a coloring f of the vertices of B from their lists, at
least s distinct colors appear on the B-neighbors of any vertex v of the type
mentioned above. If we now assign a random list to such a vertex v, then

with probability at least
(2s−1

s

)−1
> 4−s it will be a forbidden list, that is,

it will consist only of colors assigned by f to its neighbors, showing that
the coloring f of the B vertices cannot be extended to a proper list coloring
of the whole graph. There are only s|B| possible colorings of the vertices
of B from their lists, and the probability that no vertex v gets a forbidden
list is small enough to ensure that this will not happen for any of these
colorings. This argument suffices to show that the list chromatic number
of G exceeds s. The hypergraph case is more complicated, and we do not
include it here.

The argument above suggests an interesting algorithmic question: given
a graph G = (V,E) with minimum degree d > 10s, can we find, determinis-
tically and efficiently, lists of size s for each v ∈ V so that there is no proper
coloring of G assigning to each vertex a color from its list? This problem is
open, as is the simpler NP version of it, that is, that of finding sets Sv and
providing a certificate that there is no proper coloring using the lists. Here
the sets do not have to be found efficiently, and we only require that one
will be able to check the certificate efficiently.

The last theorem has an interesting application in Euclidean Ramsey
Theory – yet another subject initiated by Erdős and his collaborators. A
well known problem of Hadwiger and Nelson is that of determining the
minimum number of colors required to color the points of the Euclidean
plane so that no two points at distance 1 have the same color. Hadwiger
showed already in 1945 that 7 colors suffice, and Moser and Moser noted in
1961 that 3 colors do not suffice. These bounds have not been improved,
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despite a considerable amount of effort by various researchers, see [55, pp.
150–152] and the references therein for more on the history of the problem.

A more general problem is considered in [35], [36], [37], where the main
question is the investigation of finite point sets K in the Euclidean space for
which any coloring of an Euclidean space of dimension d by r colors must
contain a monochromatic copy of K. There are lots of intriguing conjectures
that appear in these papers. One of them asserts that for any set K of 3
points which do not form an equilateral triangle the minimum number of
colors required for coloring the plane with no monochromatic isometric copy
of K is 3. The situation is very different for list coloring. A simple Corollary
of the theorem above is the following.

Theorem 3.3 ([10]). For any finite set X in the Euclidean plane and for
any positive integer s, there is an assignment of a list of size s to every point
of the plane, such that whenever we color the points of the plane from their
lists, there is a monochromatic isometric copy of X.

3.4. Turán numbers and Dependent random choice

For a graphH and an integer n, the Turán number ex(n,H) is the maximum
possible number of edges in a simple graph on n vertices that contains no
copy of H. The asymptotic behavior of these numbers for graphs H of
chromatic number at least 3 is well known, and is determined by the Erdős-
Stone-Simonovits Theorem. For bipartite graphs H, however, the situation
is considerably more complicated, and there are relatively few nontrivial
such graphs H for which the order of magnitude of ex(n,H) is known.
A rather general result with a relatively simple proof, described in [11],
asserts that for every fixed bipartite graph H in which the degrees of all
vertices in one color class are at most r, there is a constant c = c(H) so that

ex(n,H) ≤ cn2−1/r. This is tight for all values of r, as it is known that for
every r and t > (r− 1)!, there is a simple graph with n vertices and at least

cr,tn
2−1/r edges, containing no copy of the complete bipartite graph Kr,t.

The basic tool in the proof is a simple and yet surprisingly power-
ful method, whose probabilistic proof may be called “dependent random
choice”, as it involves a random selection of a set of vertices, where the
choices are dependent in a way that increases the probability that r-tuples
of the selected vertices will have many common neighbors. An early ver-
sion of this lemma has first been proven in [50] and [57], and many variants
and extension have been obtained afterwards. See [44] for a survey contain-
ing lots of applications in Extremal Graph Theory and in Additive Number
Theory.
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One of the basic versions of the lemma is the following.

Lemma 3.4 ([11]). Let a, b, n, r be positive integers. Let G = (V,E) be
a graph on |V | = n vertices with average degree d = 2|E|/n. If

(1)
dr

nr−1 −
(
n

r

)(
b− 1

n

)r

> a− 1 ,

then G contains a subset A0 of at least a vertices so that every r vertices of
A0 have at least b common neighbors.

The proof proceeds by considering a (multi)-set T of r random vertices
of G, chosen uniformly with repetitions. Let A be the set of all vertices of
G which are neighbors of all members of T . The crucial fact is that the
expected value of |A| is large, by linearity of expectation and convexity,
whereas the expected number of r-tuples of vertices of A with a small
number of common neighbors is small, as it is not likely that all vertices of
T fall into such a small set of common neighbors. The set A0 can thus be
obtained from A by deleting a vertex from each such undesirable r-tuple.

The lemma above easily implies the following result, that can also be
derived from an earlier result of Füredi [47] proved by a different method,
in response to a question of Erdős.

Theorem 3.5. Let H be a bipartite graph with maximum degree r on one
side. Then there exists a constant c = c(H) > 0 such that

ex(n,H) < cn2− 1
r .

The method yields several related results, but does not suffice to settle
the following problem, suggested by Erdős.

Problem 3.6 ([33]). A graph is r-degenerate if every subgraph of it contains
a vertex of degree at most r. Is it true that for every fixed r-degenerate
bipartite graph H, ex(n,H) ≤ O(n2−1/r)?

As shown in [11], the method of dependent random choice with some

twists does imply that for each such H on h vertices, ex(n,H) ≤ h1/2rn2− 1
4r .
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3.5. Hypergraph coloring

Erdős realized already in the 60s that probabilistic methods are powerful
in the study of hypergraph coloring problems. Several examples appear in
[29], [30], [38]. A k-uniform hypergraph is two-colorable if it has a vertex
coloring by two colors so that no edge is monochromatic. In [29], [30] Erdős
applies probabilistic arguments to prove that the minimum possible number
of edges in a k-hypergraph that is not two-colorable is at least 2k−1 and at
most O(k22k). The lower bound has been improved several times, and all
the improved proofs apply the probabilistic method. The current record is

Ω(
√

k
log k2

k), due to Radhakrishnan and Srinivasan [64]. See also [63] for a

weaker Ω(k1/42k) bound, with a beautiful short (probabilistic) proof.

One of the main motivations for proving the Lovász Local Lemma in
[38] has also been the study of the minimum possible number of edges of a
simple k-uniform hypergraph which is not two-colorable.

A recent result of Blais, Weinsein and Yoshida [16] deals with a new intrigu-
ing variant of hypergraph coloring. In the rest of this section we describe
this notion and present some new results about it.

A hypergraph F is t-intersecting if the intersection of any two of its edges
is of size at least t. A vertex coloring of F is c-strong if any edge F contains
vertices of at least min{|F |, c} colors. Let χ(t, c) denote the minimum f so
that any t-intersecting hypergraph admits a c-strong coloring with at most
f colors, (∞ if there is no such f).

This notion is defined in [16] where the authors observe that χ(t, c) is
infinite for all t ≤ c− 2, χ(c− 1, c) ≥ 2c− 1 and that χ(t, c) ≥ 2c− 2 for all
t ≥ c ≥ 2, and prove that χ(c, c) <

√
cec and that for all t ≥ 2c, χ(t, c) ≤ 2c2.

They raise several questions regarding the determination of this function,
and in particular note that their method does not provide any sub-quadratic
(in c) bound for χ(t, c) for any t, and ask whether or not for each fixed c
the limit of χ(t, c) as t tends to infinity is 2c− 2.

The following theorem nearly settles this question.

Theorem 3.7. For every fixed c ≥ 2 there exists a t0 = t0(c)
(
≤ O(c2)

)
so

that for all t > t0, χ(t, c) ≤ 2c− 1.

The proof follows the basic approach of [16], showing that a random
coloring with 2c− 1 colors provides a c-strong coloring with positive proba-
bility bounded away from zero. We note that the example of all subsets of
cardinality at least (n+ t)/2 of an n-element set, where n � t2, shows that
for a random coloring 2c− 2 colors do not suffice, as with high probability
the largest c− 1 color classes will contain more than (n+ t)/2 elements. A
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more careful analysis sketched at the end of this section shows that for ran-
dom colorings with 2c− 1 colors, the O(c2) estimate for the intersection t
is optimal as well.

We need a result about the biased measure of t-intersecting hypergraphs.
A sharp version of this result was first proved in [2], and can be deduced
from the main result of [1]. See also [14], [24], [46] for subsequent related
statements. Here we give a much simpler, self-contained proof of a somewhat
weaker estimate that suffices for our purpose.

For a hypergraph F and a real p, 0 ≤ p ≤ 1/2, let μp(F) denote the
p-measure of F , that is, the probability that a random set of vertices of
F obtained by selecting each vertex, randomly and independently, with
probability p, forms an edge in F . Thus μp(F) =

∑
F∈F μp(F ), where

μp(F ) = p|F |(1− p)n−|F |, and n is the number of vertices of F . It is con-
venient to formulate the results in terms of escape probabilities of random
walks. A p-biased random walk of length n is a sequence of independent,
identically distributed random variables X1, X2, . . . , Xn where each Xi is
+1 with probability p and −1 with probability 1− p. Put Si =

∑i
j=1Xj ,

let W (p, t, i) be the probability that Si ≥ t and let W (p, t) denote the prob-
ability that there exists some i so that Si ≥ t.

Associate each subset F of [n] = {1, 2, . . . , n} with an assignment of
values to the variables X1,X2, . . . ,Xn by defining Xi = 1 if i ∈ F and Xi =
−1 otherwise. With this assignment, μp(F ) is exactly the probability of the
corresponding walk.

Let Wi denote the set of all walks for which Si ≥ t, and let Fi denote
the corresponding family of subsets. It is easy to see that this family is
t-intersecting. Indeed, if two sets in the family correspond to the walks
(X1,X2, . . . Xn) and (Y1, Y2, . . . , Yn), then

∑i
j=1(Xj + Yj) ≥ 2t and as each

term Xj + Yj lies in {−2, 0, 2}, at least t of the terms are 2, providing the
required intersection. Therefore, for every i ≤ n there is a t-intersecting
family of subsets of [n] of p-measure at least W (p, t, i). It turns out that the
maximum possible p-measure of such a family is exactly maxi≤nW (p, t, i).

Lemma 3.8 ([2]). For any t-intersecting hypergraph F on n vertices and
any p < 1/2, μp(F) ≤ maxi≤nW (p, t, i).

Here we give a simple proof of the following weaker estimate

Lemma 3.9. For any (finite) t-intersecting hypergraph F and any p < 1/2,
μp(F) ≤ W (p, t).

Proof: We apply shifting, which is a common technique in the area,
see, e.g., [45]. Let [n] be the set of vertices of F . For each 1 ≤ i <



Paul Erdős and Probabilistic Reasoning 25

j ≤ n define an operator Sij on the edges of F , where for each F ∈ F ,
Sij(F ) = F −{j}∪{i} if j ∈ F , i /∈ F and F −{j}∪{i} /∈ F , and Sij(F ) = F
otherwise. Put Sij(F) = {Sij(F ) : F ∈ F}. Is is easy and well known that
if F is t-intersecting so is Sij(F). It is also clear that Sij(F) has exactly
the same p-measure as F . Moreover, if Sij(F) differs from F , then the sum
of elements in all edges of Sij(F) is smaller than that of the elements in
all edges of F . We can thus keep applying the shift operators Sij to our
hypergraph until the process stabilizes, providing a left-shifted family of
subsets, which, with a slight abuse of notation, we also denote by F . By
the comments above this is still t-intersecting and has the same measure as
the original family. The important property of the shifted family is that if
it contains an edge F , it also contains every set obtained from F by shifting
elements to the left, that is, by replacing some elements of F by smaller
elements not in F .

We claim that in the shifted family we cannot have a set corresponding
to a walk whose partial sums are all at most t− 1. This is because if we
have such a set, we can show that it intersects some shifted copy of itself
by less than t elements, contradiction. Indeed, let F be such a set. Using
F , define another set G as follows. Consider the elements of F one by one,
in order, starting with the smallest. The first (smallest) t− 1 elements of
F stay in G. Each subsequent element of F in its turn is replaced by the
smallest element which is not in F and is also not one of the elements placed
already in G. We claim that in this process, every element of F besides the
first t− 1 is replaced by a smaller element (which is not in F ). Indeed,
otherwise the first time in which the process fails to replace a member of F
by a smaller member is some element ft−1+i in F , where the elements of F
are listed in increasing order, so that there are only i− 1 non-elements of
F smaller than it. But this means that the random walk corresponding to
F has t− 1 + i times +1 and only i− 1 times −1 up to this point, meaning
its value at this point is t, contradicting the assumption. Therefore G is
obtained from F by left shifts, and as F is shifted, G belongs to F as well.
But by construction G intersects F in only t− 1 elements, contradicting the
assumption that F is t-intersecting.

The claim about the measure follows, completing the proof.

We need the following standard estimate for Binomial distributions. See,
e.g., [13], Theorem A.1.4.

Lemma 3.10. Let Yi, 1 ≤ i ≤ n be independent identically distributed ran-
dom variables where each Yi is +1 with probability p and −1 with proba-
bility 1− p, and put Y =

∑n
i=1 Yi. Then the probability that Y −E(Y ) ≥ b

is at most e−b2/2n.
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Corollary 3.11. Suppose c ≥ 2, and put p = c−1
2c−1 . Then:

(i) For all t and i, W (p, t, i) ≤ e−t/c. In particular, if t ≥ 2c2 thenW (p, t, i) <
e−2c.

(ii) For all t ≥ 8c2, W (p, t) < e−2c.

Proof. Part (i) follows by substituting n = i, E(Y ) = − i
2c−1 and b = t+

i
2c−1 in Lemma 3.10. This gives

W (p, t, i) ≤ e−b
2/(2i) ≤ e−4it/[2i(2c−1)] = e−2t/(2c−1) ≤ e−t/c,

as needed. To prove part (ii) note that if for a random walk X1,X2,X3, . . .
no partial sum Sit =

∑
j≤itXj satisfies

(2) Sit ≥ t/2

then all partial sums Si stay below t. We can thus bound W (p, t) by the
sum of probabilities of the events in (2), which we denote by Ei. By Lemma
3.10 the probability of Ei is at most

e−(
it

2c−1
+ t

2
)2/(2it) ≤ e−

(i+c)2t

8c2i .

The right hand side is at most e−t/(2c) for all i, since (i+ c)2 ≥ 4ic, and it

is also at most e−it/(8c2) for all i. Therefore, for t ≥ 8c2, the sum over all
i ≥ 1 is smaller than

(3)

8c2∑
i=1

e−t/(2c) +
∑
i>8c2

e−it/(8c
2) < 8c2e−t/(2c) + e−t

where the last term is an upper estimate for the infinite geometric series∑
i>8c2 e

−it/(8c2). For t ≥ 8c2 (and c ≥ 2) the quantity in (3) is smaller than

e−2c, completing the proof.

Proof of Theorem 3.7. Let F be a t-intersecting hypergraph, and let [n]
be its set of vertices. Add to the hypergraph any subset of [n] that contains
a member of F and note that the modified hypergraph is still t-intersecting
and its p-measure μp(F) is precisely the probability that a random subset
of [n] obtained by picking each element independently with probability p
contains an edge of the hypergraph. Put p = c−1

2c−1 , and let ε be smaller

than
(
2c−1
c−1

)−1
. Choose t0 so that W (p, t) < ε for all t > t0. Note that by

Corollary 3.11, part (ii) t0 ≤ O(c2). Now color randomly by 2c− 1 colors.
The probability there is a set that gets only c− 1 colors is bounded by(
2c−1
c−1

)
μp(F), implying the desired result.
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Remarks:

• The proof above together with Lemma 3.8 and Corollary 3.11, part
(i) shows that the statement of Theorem 3.7 holds with t0 = 2c2 (with
room to spare). Lemma 3.9 and Corollary 3.11, part (ii) provide a
simple, self-contained proof that works with a somewhat larger value
of t0 (which is still O(c2)).

• The above argument, with an appropriate choice of parameters, sup-
plies a tradeoff between the number of colors used and the required
size of the intersection. In particular it implies, for example, that
χ(2c, c) ≤ O(c).

• As mentioned above, if we apply random colorings, both the term
2c− 1 and the O(c2) upper estimate for t0 in Theorem 3.7 are tight.
The fact that 2c−1 is tight for any fixed t is very simple, as mentioned
above. Here is a sketch of the argument that for 2c−1 colors the O(c2)
estimate for t is tight. Without making any attempt to optimize the
constants, consider the family of all subsets of cardinality at least
n/2 + c2/10000 in an n element set [n], where n = (2c− 1)3/10000
and c is a large integer. Consider a random coloring of [n] by 2c− 1
colors. For a fixed color i, the expected number of elements colored
i is n/(2c− 1) = (2c− 1)2/10000 and the variance is n 1

2c−1(1− 1
2c−1)

which is roughly (2c− 1)2/10000. Thus, the standard deviation is
roughly (2c− 1)/100. Expose the color classes in order, two at a
time, c− 1 times, leaving the final color class to the end. It is not
difficult to show that for any given history, assuming that at least
some n/2c elements are not yet in the color classes exposed (as is
the case with high probability) when we expose the next pair of color
classes the probability that the difference between their sizes is at
least, say, c/200, exceeds 1/2. Thus with high probability we will have
at least c/4 pairs with difference at least c/200. If this is the case,
then by picking the larger color class of every pair we will cover at
least c/4× c/200 = c2/800 more elements than by picking the smaller
class in each pair, and as with high probability the last color class is
not bigger than 2 · (2c− 1)2/10000 < 8c2/10000 these c− 1 large color
classes will contain, with high probability, a full edge. This shows that
t0 has to be at least Ω(c2).

• The study of the random variant of the problem of determining χ(t, c)
seems interesting. This is the problem of determining or estimating
the smallest possible f = f(t, c) so that a random vertex coloring of
any t-intersecting hypergraph by f colors is c-strong with probability
at least, say, 0.1.
Note that the two functions f and χ differ. Indeed, the function
χ(t, 2) is known for all values of t, as described in [16]. Specifically,
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χ(0, 2) = ∞, χ(1, 2) = 3 and χ(t, 2) = 2 for all t ≥ 2. In contrast, it is
easy to see that f(0, 2) = f(1, 2) = ∞. This is because for every fixed
number of colors r, a random r-coloring of the vertices of a star with
m > r edges will contain a monochromatic edge with probability that
tends to 1 as m tends to infinity. (The same argument implies that
f(c− 1, c) = ∞ for all c > 2.) The arguments in [16] and here also
show that f(t, 2) = 3 for all t ≥ 2.
The results here and the earlier ones in [16] show that the function f
is somewhat better understood than χ. In particular, we have shown
here that for every c and all t > 2c2, f(t, c) = 2c− 1.

4. Applications in Theoretical Computer Science

The results and questions of Erdős have not been motivated by applications
in Theoretical Computer Science (TCS), and yet the impact of his work on
the development of TCS has been substantial. This short section includes
some brief comments on this aspect of his work, focusing on applications of
probabilistic techniques.

The Probabilistic Method plays a crucial role in the development of ran-
domized algorithms. The quest for explicit constructions advocated time
and again by Erdős is one of the early drives for derandomization – the pro-
cess of converting randomized algorithms into deterministic ones. A specific
problem he kept repeating over the years is that of finding explicit construc-
tions of Ramsey graphs - graphs on n vertices in which the largest clique
and largest independent set are of size O(logn), as well as explicit examples
providing lower bounds for off-diagonal Ramsey number, like r(3, n) – see
[32].

The most successful attempts to find good explicit constructions of
Ramsey graphs led to improved constructions of dispersers which are useful
for derandomization, see [15]. Moreover, these constructions rely heavily
on sum-product theorems initiated in the work of Erdős and Szemerédi [43]
(although these are finite field analogs of the Erdős–Szemerédi results).

The method of conditional expectations, which is one of the very basic
techniques in derandomization, was initiated in the paper of Erdős and
Selfridge that introduced the study of combinatorial games [42].

Another useful technique which we only mention in passing is the Erdős-
Rado delta-system (sunflower) method, that appears in work on circuit com-
plexity and on matrix multiplication. A large body of work in Computa-
tional Geometry is also motivated by the results and questions of Erdős.
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Finally, the area of Graph Property Testing (c.f., e.g., [13], Chapter
17), which is closely related to questions in computational learning and
approximation algorithms, has its roots in old questions and results of
Erdős. We do not include here a discussion of the general area, and only
mention that one of the basic questions studied in it deals with the local
and global nature of graph coloring. The specific question here is the ability
to distinguish between graphs on n vertices that are k-colorable and graphs
from which one has to delete at least εn2 edges to get a k-colorable graph,
by sampling a random induced subgraph on a small number of vertices. The
first papers dealing with this question are [19] by Erdős and his collaborators
and [65]. Better quantitative results appear in [48], where the systematic
study of Graph Property Testing has been initiated, and in [9]. As is the
case with so many other topics, the initial questions and results here can be
traced back to the work of Paul Erdős.

Note added in proof: Very recently, Eberhard, Green and Manners have
proved in [25] that the sum-free subset constant discussed in subsection 3.2
is in fact 1/3. The problem of deciding whether or not every set of n nonzero
integers contains a sum-free subset of cardinality at least n/3+w(n), where
w(n) tends to infinity with n, remains open.
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[39] P. Erdős and D.J. Newman, Bases for sets of integers, J. Number Theory 9 (1977),
420–425.
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[42] P. Erdős and J. L. Selfridge, On a combinatorial game, J. Combinatorial Theory
Ser. A 14 (1973), 298–301.
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Euclidean vs. Graph Metric

ITAI BENJAMINI

1. Introduction

The theory of sparse graph limits concerns itself with versions of local con-
vergence and global convergence, see e.g. [44]. Informally, in local conver-
gence we look at a large neighborhood around a random uniformly chosen
vertex in a graph and in global convergence we observe the whole graph
from afar. In this note rather than surveying the general theory we will
consider some concrete examples and problems of global and local conver-
gence, with a geometric viewpoint. We will discuss how well large graphs
approximate continuous spaces such as the Euclidean space. Or how prop-
erties of Euclidean space such as scale invariance and rotational invariance
can appear in large graphs.

The first sections consider approximating the Euclidean and Finsler met-
rics by graphs. We study the emergence of rotational, scale and conformal
invariance in large graph metrics. We then move on to comment on random
graph metrics. Starting with graphs obtained by perturbing the Euclidean
metric, and then moving on to random graphs that are restricted to have a
planar topology. In particular, we will study graphs generated by random
subdivisions. Local and global graph limits will be woven into the whole
discussion.

2. Notions of Distance Between Metric Spaces

Given a graph G = (V,E), the graph distance between any two vertices is
the length of the shortest path between them. A graph G is called vertex
transitive if for any u, v ∈ V there exists a graph automorphism mapping u
to v.
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In the note we will consider three notions of distances between metric
spaces.

The first is that of quasi-isometry and slack-isometry between spaces,
the second the Gromov-Hausdorff distance which is suitable for comparison
between bounded spaces and is therefore useful for studying scaling limits,
and the third is regarding a local statistical similarity between spaces.

See Burago and Ivanov [18] for background on metric spaces, including
the first two notions and Lovász [44] for local limits.

Definition 2.1. Two metric spaces G and H are said to be quasi-isometric
if there exists a map f : G → H and two constants 1 ≤ C < ∞ and 0 ≤ c <
∞, such that

• C−1dH(f(x), f(y))− c ≤ dG(x, y) ≤ CdH(f(x), f(y)) + c for every
x, y ∈ G,

• For every y ∈ H there is an x ∈ G so that dH(f(x), y) < c.

Two metric spaces are said to be slack-isometric iff they are quasi-
isometric with multiplicative constant equal to 1. That is, if we can take
C = 1 in the definition.

For global convergence we use: the Gromov-Hausdorff distance between
two metric spaces is obtained by taking the infimum over all the Hausdorff
distances between isometric embeddings of the two spaces in a common
metric space.

One way to look at a large finite graph is to look at a large neighbor-
hood around a random uniformly chosen vertex. Often such neighborhood
statistics capture quantities of interest and their asymptotics. Thus, one is
led to take limits of such statistics and thereby define a probability mea-
sure on infinite rooted graphs, where the neighborhood of the root has the
statistics that arise as the limit statistics of the finite graphs. Such a limit
of a sequence of finite graphs is local limit. All such limit measures have a
property known as unimodularity; it is not known whether all unimodular
measures are limits of finite graphs. This fundamental question was asked
in [2]. Those that are such limits are called sofic. Intuitively, a probability
measure on rooted graphs is unimodular if its root is chosen “uniformly”
from among all its vertices. This, of course, only makes sense for finite
graphs. It is formalized for networks on infinite graphs by requiring a cer-
tain conservation property known as the Mass-Transport Principle, see [13]
[2] [8].

For local limit we follow [13]: a limit of finite graphs Gn is a random
rooted infinite graph (G, ρ) with the property that neighborhoods of Gn

around a random vertex converge in distribution to neighborhoods of G
around ρ.
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Formally, let (G, o) and (G1, o1), (G2, o2), . . . be random connected
rooted locally finite graphs. We say that (G, o) is the limit of (Gj , oj)
as j → ∞ if for every r > 0 and for every finite rooted graph (H, o′), the
probability that (H, o′) is isomorphic to a ball of radius r in Gj centered
at oj converges to the probability that (H, o′) is isomorphic to a ball of
radius r in G centered at o.

Given a (possibly random) graph we will consider the distribution on
rooted graphs obtained by rooting at a random uniform vertex.

Exercise: what is the limit of n-level full binary trees?

Hint: it is not the infinite full binary tree.

In [13] it was shown that local limits of bounded degree graphs are a.s.
recurrent for the simple random walk. A graph admits the f(n) separation
property if for any vertex set S in the graph of size n, by removing not more
than f(n) vertices from S, the connected components of S has size at most
|S|/2.

Limits of graphs having f(n)-separation function, for some f(n), sug-
gests studying quantitative versions of Elek’s hyperfiniteness [44]. See [14]
for more on separation.

Continuity of graph parameters with respect to local convergence is of
current interest, here is one example.

Define SAW (n) as the uniform measure on all the self-avoiding paths

of length n from a fixed root. By sub-multiplicativity μ = lim |SAW (n)|1/n
exists and is called the connective constant of the graph.

Conjecture 2.2. μ is continuous with respect to local convergence of infi-
nite vertex transitive graphs.

We will also need the following notion,

Definition 2.3. Let G = (V,E) be a finite graph. Define the Cheeger
constant of G to be

h(G) = inf
0<|S|< |V |

2

|∂S|
|S| .

If G is an infinite graph we set

h(G) = inf
0<|S|<∞

|∂S|
|S| .

An infinite graph G with h(G) > 0 is called non-amenable. Otherwise it is
called amenable.
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3. Rotational Invariance

How well can the graph metric on bounded degree graphs approximate
the metric of homogeneous manifolds equipped with some invariant length
metric.

3.1. Slack Euclidean?

Recall that the scaling limit of the Z2 grid is the l1 metric on the plane.

The following question was raised by Gady Kozma in a discussion with
Oded Schramm and myself.

Question 3.1. Is there a bounded degree graph which is slack-isometric to
the Euclidean plane?

The Pinwheel tiling, which is a non-periodic tiling defined by Charles
Radin [50], is a graph quasi-isometric to the Euclidean plane where the
multiplicative constant goes to 1 uniformly in the distance.

By sampling a Poisson process in the Euclidean plane and drawing
the corresponding Voronoi tiles we get the Poisson-Voronoi tessellation
(see Wikipedia). The graph metric on the tiles is almost surely has an
asymptotically Euclidean metric see e.g. Howard-Newman [29].

Question 3.2. What is the asymptotic shape of a ball in a Poisson-Voronoi
tessellation where the underling space is the plane with an lp metric?

See the closely related [19].

3.2. Near critical percolation

Can the l2 or other given Finsler metric “naturally” emerge as a limit of
bounded degree graph metrics in the Gromov-Hausdorff distance?

Consider the natural embedding of the square grid in the plane.

Dilute the planar square grid by removing edges independently with
probability q < 1/2. Since 1/2 is the critical percolation probability (Kesten
[38]) almost surely there is a unique connected dense infinite subgrid left.

Condition on the origin to be in the infinite connected component and
look at large balls rescaled to have diameter 1.

For any fixed q the subadditive ergodic theorem was used in the context
of first passage percolation to show that the rescaled large balls around the
origin will a.s. converge in the Gromov-Hausdorff distance to a centrally
symmetric convex body in the Euclidean plane.
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Conjecture 3.3. As q → 1/2 the limiting shape Gromov-Hausdorff con-
verges to an Euclidean ball.

Seems hard, since metric properties do not follow from conformal geom-
etry. Yet simple simulations seem convincing.

4. Scale Invariance

4.1. Rotational and scale invariant Euclidean structures

Is there a distribution on tilings of the Euclidean plane which is rotation
and translation invariant, mixing (that is, what is observed in far apart
fixed Euclidean balls decorrelates with the distance between the balls),
and stationary scale invariant (that is, there is a stationary matching or
clustering of neighboring tiles resulting in a rescaled sample)? The Pinwheel
tiling [50] is such. What if we further require spatial Markovity. That is
given a tile you can not tell the tiling of the complement e.g. at which points
of its boundary 3 tiles meet? Consider space filling Schramm’s SLE(8) curve
and remove from it an independent Poisson process in the plane, the curve
is then cut into pieces of finite area. As suggested by Wendelin Werner,
variants on this observation might provide the exotic tilings we are after.

Aldous [1] initiated a study of random road networks whose distributions
are exactly invariant under Euclidean scaling. He introduced a natural
axiomatization of a class of structures he called scale-invariant random
spatial networks, whose primitives are routes between each pair of points
in the plane and constructed a model, based on minimum-time routes in a
binary hierarchy of roads with different speed limits, satisfying the axioms.

We mention briefly an open problem of remotely similar spirit. Can you
foliate Rd with Brownian paths?

5. One Large Scale Control, Symmetric Graphs

Let (Gn) be an unbounded sequence of finite, connected, vertex transitive
graphs such that |Gn| = o(diam(Gn)

d) for some d > 0. In [10] the following
theorem is shown.

Theorem 5.1. After taking a subsequence and rescaling by the diameter,
the sequence (Gn) converges in the Gromov-Hausdorff distance to a torus
of dimension < d, equipped with some invariant Finsler metric.
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In particular, if the sequence admits a doubling property at a large yet
sub diameter scale, then the limit will be a torus equipped with some in-
variant length metric. Otherwise it will not converge to a finite dimensional
manifold. When the degrees are uniformly bounded the limiting metric is a
polygonal Finsler metric.

The proof relies on a recent quantitative version of Gromov’s theorem on
groups with polynomial growth obtained by Breuillard, Green and Tao [17]
and a scaling limit theorem for nilpotent groups by Pansu [48]. See also
Gelander [32]. Establishing quantitative versions will have applications to
random walks and percolation on vertex transitive graphs. For example in
the spirit of Varopoulos’ theorem that the only recurrent finitely generated
groups have at most quadratic growth [52]:

Let G be a finite, d-regular connected vertex transitive graph. View G
as an electrical network in which each edge is a one Ohm conductor.

Conjecture 5.2 (with Gady Kozma). For any two vertices

electric resistance (v, u) < Cd +
diam2(G) log |G|

|G| .

In addition for a sequence of vertex transitive graphs, if the diameter is
o(|Gn|) then the electric resistance between any two vertices is o(diam(Gn)).

Since finite vertex transitive graphs, when they converge to a manifold,
converge to a torus, it follows that the infimum, over all such, of the Gromov-
Hausdorff distance to Sn is attained. Which one is the closest?

Question 5.3. Is the skeleton of the truncated icosahedron (soccer ball)
the closest to S2?

“Proof”: Otherwise we would have a different design for soccer balls.
See also Géode (géométrie) in French Wikipedia.

5.1. Expander at all scales?

A sequence of graphs {Gn} is of an expander if there is h > 0, for all n,
h(Gn) > h.

Question 5.4. Is there a family {Gn} of finite d-regular graphs, |Gn| → ∞,
so that all the induced balls in all the Gn’s are expanders?

That is, there is h > 0, for all r > 0 and any v in any of the graphs Gn’s
the ball B(v, r) is h- expander, expander with a uniform edge expansion
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constant h. Note e.g. that if Gn is a sequence of expanders with girth
growing to infinity, then if r is smaller than the girth then the balls of
radius r are trees and thus they are not uniform expanders as r grows.

We conjecture that there is no such family. For vertex transitive graphs
a positive answer to the following conjecture regarding percolation on ex-
panders will show that no such family exists. The proof will proceed by
constructing a limiting nonamenable vertex transitive graph with a unique
infinite cluster whenever percolation occurs, we omit the outline.

Question 5.5. Let G be a bounded degree expander, further assume that
there is a fixed vertex v ∈ G, so that after performing p = 1/2 percolation
on G,

P1/2(the connected component of v has diameter > diameter(G)/2) > 1/2,

Is there a giant component w.h.p? G is not assumed to be transitive.

The following two questions are regarding the rigidity of the global
structure given local information.

Question 5.6. Given a fixed rooted ball B(o, r), assume there is a finite
graph such that all its r-balls are isomorphic to B(o, r), e.g. B(o, r) is a ball
in a finite vertex transitive graph, what is the minimal diameter of a graph
with all of its r-balls isomorphic to B(o, r)? Any bounds on this minimal
diameter, assuming the degree of o is d? Any example where it grows faster
than linear in r, when d is fixed?

Note that some r-ball in the grandparent graph, or any infinite non-
unimodular vertex transitive graphs, does not appear as a ball in a finite
vertex transitive graph. As by [13] local limit of finite graphs is unimodular.
When the rooted ball is a tree, this is the girth problem. One can consider
a weaker version e.g. when we require only that most balls are isomorphic
to B(o, r). Not assuming a bound on the degree, consider the 3-ball in the
hypercube, is there a graph with a smaller diameter than the hypercube so
that all its 3-balls are that of the hypercube?

Question 5.7 (with Romain Tessera). Let X is the Euclidean or hyper-
bolic plane, together with a triangulation, whose triangles are at most of
diameter r. Suppose for each pair of Euclidean (or hyperbolic) balls of ra-
dius r, B1,B2 centered on vertices of this triangulation, there is a Euclidean
(or hyperbolic) isometry mapping B1 to B2 respecting the triangulation (in
the obvious way).

Does it imply that the triangulation is periodic?
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5.1.1. Roughly transitive graphs. A metric space X is (C, c)-roughly
transitive if for every pair of points x, y ∈ X there is a (C, c)-quasi-isometry
sending x to y.

If Gn is only roughly transitive and |Gn| = o
(
diam(Gn)

1+δ
)
for δ > 0

sufficiently small, we are able to prove, this time by elementary means, that
(Gn) converges to a circle.

Question 5.8. Is there an infinite (C, c)-roughly transitive graph, with C,
c finite, which is not quasi-isometric to a homogeneous space?

Here a homogeneous space is a metric space with a transitive isometry
group. The same question can be asked in the wider category of Coarse
embeddings.

See [6] and references there for the study of quasi-isometry between
random spaces.

6. Packing

Packing one graph in another space can be viewed as large scale-rough
conformal geometry. Large scale conformal geometry is developed in a work
by Pierre Pansu [49]. We present a sample.

Question 6.1. Which graphs can be realized as the nerve graph of a sphere
packing in Euclidean d-dimensional space?

Here vertices correspond to spheres with disjoint interiors and edges to
pairs of touching spheres.

The rich two dimensional theory started with Koebe, who proved that
every planar graph admits a circle packing.

In higher dimensions, Thurston observed that packability implies an
upper bound of order |G|(d−1)/d on the size of minimal separators, see
e.g. [46]. There is an emerging theory with many still open directions. Local
graph limits were useful in the proof of the last two theorems below. Denote
by T3 the 3-regular tree.

Theorem 6.2 (with Oded Schramm). The grid Z4, T3 × Z and lattices in
hyperbolic 4-space do not admit sphere packing in Euclidean R3.

Let (Gn) be a sequence of finite, (k > 2)-regular graphs with girth grow-
ing to infinity.
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Theorem 6.3. For every d there exists an N(d) such that Gn does not
admit a regular sphere packing in Euclidean d-dimensional space, for any
n > N(d).

The following is an extension to higher dimension of a theorem of
Bowditch [16] following a suggestion by Gromov.

Theorem 6.4. Let G be an infinite locally finite connected graph which
admits a regular packing in Rd. Then we have the following alternative:
either G has a positive Cheeger constant, or there are arbitrarily large

subsets S of G such that |∂S| < |S| d−1
d

+o(1).

By regularly we mean uniform upper bound on the ratio of the radii of
neighboring spheres. The proof of the last two theorems in [7] uses sparse
graphs limits: by [13] local limits of bounded degree finite planar graphs
are a.s. recurrent for the simple random walk, in [7] the proof was adapted
to show that local limit of finite graphs that are regularly packed in Rd, are
d-parabolic. Which is the key to the results above.

Question 6.5 (with Oded Schramm). Show that any packing of Z3 in R3

has at most one accumulation point in R3 ∪ {∞}.

7. Perturbing the Euclidean Metric

Some families of metric spaces are naturally parameterized by the reals.
The critical spaces are usually more exotic. We will present a few exam-
ples. These spaces sometimes admit combinations of properties which are
impossible in the vertex transitive world. We start with the classical model
of first passage percolation for perspective.

7.1. First passage percolation

One natural way to randomly perturb the Euclidean planar metric is that of
first passage percolation (FPP), see [39] and [33] for background. That is,
consider the square grid lattice, denoted Z2, and to each edge assign an i.i.d.
random positive length. There are other ways to randomly perturb the Eu-
clidean metric and many features are not expected to be model dependent.
Large balls converge after rescaling to a convex centrally symmetric shape.
Richardson (1973) proved the first shape theorem, when the length has ex-
ponential distribution and the graph is the Zd lattice. Simulations indicate
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that the limiting shape is not the Euclidean ball. Kesten (unpublished)
showed that the shape is not the Euclidean ball in high enough dimension.

The boundary fluctuations are conjectured to have a Tracy-Widom dis-
tribution. The variance of the distance from the origin to (n, 0) is conjec-

tured to be of order n2/3. So far only an upper bound of n
logn was established,

see [11]. Optimal bounds on the length of efficient algorithms for finding
the shortest path or to estimate its length are still unknown.

The structure of geodesic rays and two-sided infinite geodesics in first
passage percolation is still far from being understood. Furstenberg asked in
the 80’s (attending a talk by Kesten) to show that almost surely there are
no two sided infinite geodesics for natural FPP’s, e.g. exponential length on
edges.

Häggström and Pemantle introduced [26] competitions based on FPP,
see [23] for a survey. Here is a related problem. Start two independent
simple random walks on Z2 walking with the same clock, with the one
additional condition, that the walkers are not allowed to step on vertices
already visited by the other walk, and otherwise choose uniformly among
allowed vertices. Show that almost surely, one walker will be trapped in a
finite domain. Prove that this is not the case in higher dimensions.

7.2. Perturbations, beyond first passage percolation

We now describe several random metrics, the first two of which can be
viewed as perturbations of the grid like FPP, but with slightly stronger
perturbation “causing the underlying grid metric to almost disappear”.

7.2.1. LRP. Start with the one dimensional finite grid Z/nZ with the
nearest neighbor edges, add additional edges to it as follows. Between, i and
j add an edge with probability β|i− j|−s, independently for any pair. The
main problem in long range percolation is, how does the distance between
0 and n/2 typically grows in this random graph?

The off critical cases: when s > 2 the distance is of order n, for 1 < s < 2
the distance is polylog n (see [15] for the exact result, background and
history). For s = 1 Coppersmith, Gamarnik and Sviridenko showed that

the distance is logn
log logn and if s < 1 the distance is uniformly bounded.

The critical case: when s = 2 the distance is of the form θ(nf(β)), where
f is strictly between 0 and 1 (Sly and Ding [24]). Continuity, monotonicity,
or even a guess of f are still open. We believe that there is a scaling limit
for the s = 2 long range percolation random graphs.
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These natural random graphs admit a combination of properties which
is impossible for vertex transitive graphs. E.g. when 1 < s < 2 the mixing
time of the simple random walk is a.s. ns−1. That is, small diameter does
not exclude small bottlenecks as in vertex transitive graphs [5].

7.2.2. CCCP. Examine bond percolation on Zd. Each edge is open with
probability p independently. Clusters are connected components of open
edges. For any d > 1, there is 0 < pc < 1, such that if p < pc all the clusters
are finite a.s. and the diameter of the clusters has exponential tail. If p > pc
there is a unique infinite cluster. While for the critical probability pc it is
conjectured that there is no infinite cluster and that the diameter of clusters
has polynomial tail. This is true in dimensions 2 and d large.

The unique infinite cluster, for p > pc is a random perturbation of the
grid. E.g. asymptotics of the heat kernel are the same, how can we get
“interesting” critical geometry?

Conditioning on the critical percolation to have an infinite cluster results
in a “thin” graph with infinitely many cut points.

Here is a suggestion: contract each cluster into a single vertex. The
result is a random graph G of high degree (each vertex v ∈ G is a cluster C
in Zd and its degree is the number of closed edges coming out of C). When
the percolation is subcritical one expects to see a perturbation of the lattice,
analogous to first passage percolation. When the percolation is critical the
random geometric structure obtained is rather different.

We refer to the above random graph G as CCCP (Contracting Clusters
of Critical Percolation). For example (with Ori Gurel-Gurevich and Gady
Kozma) we have: when d = 2, the CCCP has exponential volume growth
a.s. When d > 6 a.s. the CCCP has double-exponential volume growth.

8. Random Planar Metric

Above we reviewed random perturbations of the Euclidean plane. How to
define and model a genuine random planar metric?

8.1. Local convergence

Plane topology. Angel and Schramm [3, 4] constructed the uniform infinite
planar triangulation (UIPT), a rooted infinite random triangulation which
is the limit (in the sense of [13]) of finite random triangulations (the uniform
measure on all nonisomorphic triangulations of the sphere of size n), a model
that was studied extensively by many (see e.g. [41]). The UIPQ is a similar
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construction with quadrangulation. The UIPT/Q looks very different from
random perturbations of the plane as in the Poisson-Voronoi triangulation
and has a rather surprising geometry at first encounter, e.g. volume growth
of balls in the UIPT is asymptotically r4. The UIPQ is recurrent [34] and
subdiffusive [9] for the simple random walk and in particular hyperfinite.
A collection of graphs is hypefinite if for every ε > 0 there is some finite
k such that each graph G in the collection can be broken into connected
components of size at most k such that each has a boundary of size at most
ε of its size. What about a hyperbolic nonhyperfinite counterpart?

Hyperbolic analog? Guth, Parlier and Young [35] studied pants decompo-
sition of random closed surfaces obtained by randomly gluing N Euclidean
triangles (with unit side length) together. They gave bounds on the size of
pants decomposition of random compact surfaces with no genus restriction
as a function of N . Their work indicates that the injectivity radius around
a typical point is growing to infinity. Gamburd and Makover [30] showed
that as N grows the genus will converge to N/4 and by Euler’s character-
istic the average degree will grow to infinity. What about a local limit of
random finite triangulation/quadrangulation with genus growing linearly in
the number of quadrangulation.

In the quadrangulation bijective techniques help a lot see [51]. In partic-
ular, Chassaing and Durhuus constructed the UIPQ from a random infinite
labeled tree, followed by another construction in [21] from a labeled crit-
ical geometric Galton-Watson tree conditioned to survive. With Nicolas
Curien we propose a model of infinite random quadrangulation constructed
similarly from a labeled supercritical Galton-Watson tree. We conjecture
that such a stochastic hyperbolic infinite quadrangulation (shiq) describes
the limit of random finite quadrangulations with genus growing linearly in
the number of quadrangulation. The Shiq is not hyperfinite and the simple
random walk on the Shiq has positive speed almost surely.

Kaibel and Ziegler [37] survey a model of random lattice triangulations.
They proved the existence of local limit and studying its properties, such
as volume growth, seems interesting.

8.2. Global convergence

Scaling limits of random triangulations were also studied, see Le Gall [43]
and Miermont [45] advancing over [20], who proved that the random trian-
gulations scaled Gromov-Hausdorff converge to a random compact metric
space of dimension 4. This limiting surface called the Brownian map can be
seen as the two-dimensional sphere equipped with a random metric which
induces the usual topology but makes it a fractal space of Hausdorff di-
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mension 4. It is of interest to obtain quantitative estimates on the rate of
convergence as in the Hungarian coupling of random walks and Brownian
motion [40]. Also this theory is believed to be connected to 2D quantum
gravity and conformal invariance via the following construction:

Conformal invariance. Let Tn be is a uniform triangulation of the sphere
with n faces. It is possible to get a “canonical” drawing of Tn on the sphere
by conformal tools. E.g. if Tn has no loops or multiple edges, we can use
the well-known circle packing theorem (see Wikipedia, [27]):

Theorem 8.1. If T is a finite triangulation without loops or multiple
edges then there exists a circle packing P = (Pc)c∈C in the sphere S2 such
that the contact graph of P is T . This packing is unique up to Möbius
transformations.

The circle packing enables us to take a “nice” representation of a trian-
gulation, nevertheless the non-uniqueness is somehow disturbing because to
fix a representation we can, for example, fix the images of three uniformly
chosen vertices of Tn. Once this is done, we form the atomic measure μTn

formed by the Dirac’s at centers of the circles of the packing of Tn renor-
malized to have mass one. This constitutes a canonical discrete conformal
random probability on the sphere. By standard arguments there exist weak
limits μ∞ of μTn . Here are some tougher questions:

Questions

1. (Schramm [Talk about QG]) Determine coarse properties (invariant
under SO3(R)) of μ∞, e.g. what is the dimension of the support?
Start with showing singularity.

2. Uniqueness (in law) of μ∞? In particular can we describe μ∞ in terms
of Gaussian Free Field (GFF)?

Is it exp((8/3)1/2GFF ), does KPZ hold? See [25].
3. The random measure μ∞ can come together with d∞ a random dis-

tance on S2 (in the spirit of [42]). Can you describe links between μ∞
and d∞? Does one characterize the other? Is it a path metric space?
See [31].

8.4. Recursive subdivision

Important properties of the UIPT holds for a larger family of planar graphs.
Start with a finite directed graph and two marked vertices, one with one edge
going out and one with one edge coming in and no other edges. Recursively
replace each edge with a copy of the graph with the marked vertices mapped
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to the two vertices defining the edge. Extension of this scheme by recursively
replacing fixed subgraphs results in infinite graphs admitting the doubling
property : There is C < ∞, such that for any r, the size of any ball of radius
2r in G is bounded by C times the size of a ball of radius r. For example
the graph of the Sierpinski gasket satisfies this property.

By recursive subdivision one can construct planar graphs that have
polynomial growth with arbitrarily large exponent. Still all these graphs
are small in the following two senses. First, local limits of sequences of
bounded degree planar graphs obtained by taking consecutive subdivisions
are recurrent [13]. Second, in [12] the following is proved.

Theorem 8.2. Let G be a planar graph such that the volume function of G
satisfies the doubling property. Then for every vertex v of G and radius r,
there is a connected subset Ω such that B(v, r) ⊂ Ω, Ω ⊂ B(v, 6r) and the
size of the boundary of Ω is at most of order r.

Try to imagine the geometry of a planar recursive subdivision graph,
when the volume growth is faster than quadratic. The facts above suggest
heuristically that volume is generated by large fractal mushrooms like folds,
and that the complements of balls have many connected components.

In particular we conjecture that the simple random walk spends a long
time in such traps and hence is subdiffusive (that is, dist(o,Xn) � nα where
Xn denotes the simple random walk starting at o and α < 1/2). Is the
critical probability of site percolation on any planar triangulation of uniform
growth faster than quadratic 1/2?

Here is a sketch of the proof of theorem 8.2. Let v be any vertex of Γ.
Consider the balls B(v, n), B(v, 3n). Let N be an n-net of the boundary
∂B(v, 3n). For each vertex w of N consider B(w, n/2). Note that all such
balls are disjoint since N is an n-net. Also all these balls are contained
in B(v, 4n). So, by the doubling property, we can have only boundedly
many such balls, that is |N | ≤ β, where β does not depend on n. Consider
now the balls B(w, 2n) for all w ∈ N . ∂B(v, 3n) is contained in the union
of these balls. Construct a closed curve that ‘blocks’ v from infinity as
follows: if w1, w2 ∈ N are such that d(w1, w2) ≤ 2n then we join them by a
geodesic. So replace ∂B(v, 3n) by the ‘polygonal line’ that we define using
vertices in N . This ‘polygonal line’ blocks v from infinity and has length
at most 2nβ. There are some technical issues to take care of, for example
∂B(v, 3n) might not be connected (and could even have ‘large gaps’) and
the geodesic segments have to be chosen carefully.
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9. Random Subdivision

There is growing interest in establishing a rigorous theory of two dimensional
continuum quantum gravity. Heuristically, quantum gravity is a metric
chosen on the sphere uniformly among all possible metrics. Although there
are successful discrete mathematical quantum gravity models, we do not yet
have a satisfactory continuum definition of a planar random length metric
space (rather than random measure). One possible toy model is to start with
a unit square, divide it into four squares and then recursively at each stage
pick a square uniformly at random from the current squares (ignoring their
sizes) and divide it to four squares and so on. Look at the minimal number
of squares needed in order to connect the bottom left and top right corner
with a connected set of squares. We conjecture that there is a deterministic
scaling function, such that after dividing the random minimal number of
squares needed after n subdivisions by it, the result is a non degenerate
random variable. Establishing the conjecture will provide a random planar
length metric space. Does the shortest geodesic stabilizes as we further
divide?

Since the conjecture seems hard, we start by studying the simplest
recursive constructions after trees. As you will see below even here we
mostly have questions and conjectures. The section is based on an ongoing
project with Nicolas Curien.

9.1. (Fixed) Hierarchical graphs

Let us introduce the graphs we will work with. We start with a pattern, that
is a finite connected graph G1 with two distinguished point “source” and
“sink” and such that the edges are oriented from source to sink. Inductively,
the graph Gn is constructed from Gn−1 by replacing each of its (oriented)
edge by a copy of G1 (source and sink respectively on the origin and target
of the edge), see Fig. below.

9.2. Distance

Fix a pattern G1 and consider the sequence of hierarchical graphs G1,G2, . . .
constructed as above. We endow these graphs with a random distance (or
first passage percolation) model on them: assign a positive weight (e.g.
uniform over [0, 1]) independently for each edge of Gn. Recall that Gn has
two distinguished points “source” and “sink” and put

Dn := Weight of a minimal path linking source and sink in Gn.



50 I. Benjamini

Fig. 1. A few examples of hierarchical graphs

Obviously the Dn’s satisfy a recursive distributional equation that is closely
related to the initial pattern, e.g. for the three examples presented above
we have for all n ≥ 2

Dn
(d)
= min(Dn−1, D′n−1)(1)

Dn
(d)
= Dn−1 +D′n−1

Dn
(d)
= Dn−1 +min(D′n−1, D

′′
n−1),

where Dn−1, D′n−1, D′′n−1 are independent copies of Dn−1. The first two
equations are straightforward to analyze but the last one is thorny because
the recursive distributional equation combines + (adding an edge in series)
and min (presence of cycles). We focus on the last case. Let us consider a
(well-known) simplified model for the sake of comparison:

Comparison with branching random walk. Consider Tn the full
binary tree starting with an edge up to level n where each edge has been
given an independent weight as above. In this case, the weight of the shortest
path Mn up to level n satisfies

Mn = ξ +min(Mn−1,M ′
n−1)

where ξ denotes the law of the weights on the edges. In this model (first
passage percolation on a tree) we know that Mn ≈ γbrwn with γbrw explicit
in terms of ξ as well as the lower order terms. This is due to the fact that
the geometry of the tree does not constrain the model too much and in
that case Mn is nearly obtained by considering all paths as independent.
Also, a fairly simple argument due to Dekking and Host [23] shows that Mn

is strongly concentrated (order O(1)) around its mean. Let us sketch it.
Provided that ξ is bounded we can write

Mn ≤ C +min(Mn−1,M ′
n−1).
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Assume now that Mn−1 is not concentrated around its mean, the key is to
notice that in this case we have

E[min(Mn−1,M ′
n−1)] sensibly less than E[Mn−1].

Taking expectation we deduce that E[Mn] is noticeably less than E[Mn−1]+
C however this cannot be the case since E[Mn] ≥ E[Mn−1].

Coming back to (1). We will compare Dn with M2n (the 2n comes from
the fact that the height of the graph Gn is 2n compared to the height n
of Tn). Clearly we have Dn ≤ 2n and one can also show by induction that
Dn ≥ M2n , indeed notice that

M2n ≤ M2n−1 +min(M ′
2n−1 ,M

′′
2n−1),

and then use (1). Hence we have γbrw2
n ≤ E[Dn] ≤ 2n and a simple

monotonicity argument shows that if ξ is non-degenerate then γrec :=
lim 2−nE[Dn] exists and is in [γbrw, 1). In view of these remarks we have
the following.

Question 9.1. Compute γrec in terms of ξ in particular show (if true)
γrec > γbrw.

We think that the convergence in mean of Dn implies (thanks to (1))
its convergence in probability. However subtle questions about Dn remain
open.

Question 9.2. What is the concentration of Dn around its mean? Lower
order terms? More generally, ask the same questions as for the minimal
position in a branching random walk.

For background on branching random walks see e.g. [53].

9.3. External DLA

In the hierarchical graph Gn we launch particles one by one from the sink.
The particle performs SRW and settles as soon as it hits a vertex adjacent
to the source or previously settled particle. This is the standard model of
External Diffusion Limited Aggregation on Gn. This process ends when a
particle settles at the sink.

What is the proportion of Gn that is covered?

We denote by Pn the number of particles launched before the end of the
process. Using the recursive structure of the graph Gn we can also write
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a recursive distributional equation for Pn e.g. in the third case of Fig. 1
neglecting a few terms we have

Pn = Pn−1 + 2min(P ′n−1, P
′′
n−1).(2)

Compare with (1) (the presence of the factor 2 stems from the fact that the
particles starting from the sink in Gn are (roughly speaking) split into two
equal groups of particles in the two branches of the initial G1). Note that the
number of edges in Gn is 3n so knowing whether Gn is almost full of particles
is the same as knowing whether E[Pn] is sensibly less than 3E[Pn−1] or not.
Notice that if Pn−1 is not concentrated then 2min(P ′n−1, P ′′n−1) is say less
than (2− ε)E[Pn−1] thus E[Pn] < (3− ε)Dn. But if Pn−1 is concentrated
we cannot say anything.

Question 9.3. What is limn−1 log(E[Pn])?

9.3.1. The win-win situation Knowing whether the graph is full or not
can be answered for a special type of recursive graph where “a shadowing
effect” c© takes place. Indeed, consider the sequence of graphs Gn with

initial pattern , its fourth iteration is the figure below. In this case

Fig. 2. Naomi’s fractal

we can still write recursive distributional equations for the Pn but the
heuristic argument goes as follows. Notice first that the volume of the
graph grows like 7n so we have to compare E[Pn] with 7E[Pn−1]. If Pn−1 is
not concentrated then E[Pn] < (7− ε)E[Pn−1] as above and we are done. So
assume that Pn−1 is concentrated. In the filling process of Gn the (offspring
of the) first branch in G1 linked to the source will be filled first which takes
a time Pn−1 and then the two branches adjacent to this one start to be
filled. The key point is to notice that since Pn−1 is concentrated, these two
branches will be totally full at roughly the same time. In which case the
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branch of the “middle” will receive no particles due to a shadowing effect
of the last two branches. Finally in this case we expect E[Pn] ≈ 6E[Pn−1].
We thus see that in all situations E[Pn] < (7− ε)E[Pn−1] and the following
result essentially follows.

Proposition 9.4 (with Nicolas Curien). We have lim supn−1 log(E[Pn]) <
7 and hence the graph Gn is not totally filled during the EDLA process,
more precisely the aggregate covers a fractal portion of it.

It will be nice to show the same for other fractals, starting with Sierpinski
gasket.

9.4. Random hierarchical graphs

In this section, the graph we build are themselves random but still based on
a hierarchical procedure. Let us describe one possible model. We start with
a pattern G1. To get Gn from Gn−1 we first pick one edge of Gn−1 uniformly
at random and replace it by a copy of the initial pattern G1. See Fig. ref
below for an example. Using connection with branching processes, Thomas

Fig. 3. Construction with the third pattern of Fig. 1

Duquesne (private communication) has been able to compute exactly the
expectations of the number of oriented paths going from left to right in Gn.
We denote by Dn the distance between the two extremal points in Gn.
Trivially Dn ≤ n+ 1. A fairly simple sub-additivity argument shows that
in fact

log(E[Dn])

log(n)
−−−→
n→∞ γ ∈ [0, 1].

Ad-hoc calculations show that γ ∈ (ε, 1/2− ε). But the true value of γ
remains mysterious. This model is intimately connected to a urn model: The
volume of the graphs offspring of the three original edges form a standard
Polya urn1. So the limiting proportions of edges in these graphs (α1, α2, α3)
is distributed as a Dirichlet distribution of parameters (1/2,1/2,1/2). Thus,
loosely speaking, the recursive distributional equations satisfied by the Dn’s
are the following

Dn
(d)
= Dα1n +min(D′α2n,D

′′
α3n),

1three balls of three colors initially, when a ball is picked it is replaced in the urn
together with 2 balls of the same color
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where (Dn), (D′n) and (D′′n) are copies of the original process and inde-
pendent of the (α1, α2, α3). In this model, the non-concentration of Dn is
granted so the interesting questions are the following.

Question 9.5. What is the value of γ? Can we rescale Dn to have conver-
gence in distribution? (this is equivalent to the Gromov-Hausdorff conver-
gence of the rescaled graphs).

Finally, we mention a last model in the same spirit. This is the series-
parallel random graph introduced by Hambly and Jordan [36]. Fix a pa-
rameter p ∈ [0, 1]. The construction goes as follows. We start with a single
edge. Then inductively at each stage, all the edges of the graph are replaced
by two edges in series with probability p or two edges in parallel with prob-
ability 1− p. If Δn is the distance between the two extremal points in this
graph then the recursive distributional equations are now

Δn
(d)
=

{
with proba p, Δn−1 +Δ′n−1
with proba 1− p, min(Δn−1,Δ′n−1).

It is easy to see that when p < 1/2 then Δn remains bounded. However,
when p > 1/2 this distance grows exponentially with n and by a subaddi-
tivity argument we get

E[Δn] ≈ enδ(p)+o(n).

Question 9.6. What is the shape of p ∈ [1/2, 1] �→ δ(p). In particular, do
we have δ(1/2) = 0?

Acknowledgements: Thanks to Nicolas Curien for substantial help with
the writing and Naomi Benjamini for the drawing.
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The Phase Transition in the Erdős–Rényi

Random Graph Process

BÉLA BOLLOBÁS∗ and OLIVER RIORDAN

We shall review the foundation of the theory of random graphs by Paul Erdős
and Alfréd Rényi, and sketch some of the later developments concerning the giant
component, including some very recent results.

1. Introduction

The theory of random graphs was founded in the late 1950s and early
1960s by the serendipitous partnership of Paul Erdős and Alfréd Rényi.
Although they both worked in combinatorics and in probability, Erdős was
the quintessential combinatorialist and Rényi the quintessential probabilist:
working together, their formidable partnership was ideal for laying the
foundations of a cohesive theory of random graphs. In this paper we
shall review some of their ground-breaking results together with recent
developments concerning the phase transition in graphs and in hypergraphs.

Our paper is organized as follows. In the next three sections we shall
present some of the highlights of the work of Erdős and Rényi on the
foundation of the theory of random graphs, emphasizing their ground-
breaking results on the phase transition, the sudden emergence of the ‘giant
component’ as our random graph acquires more and more edges. Section 5 is
about the re-awakening of the interest in this phase transition, and the first
results on its finer nature, correcting some misconceptions, together with a
number of related results. In Section 6 we present some of the recent results
proved on the phase transition in the standard random graph process. We
do not and cannot aim for a comprehensive account since in the last twenty

∗Research supported in part by NSF grant DMS-0906634 and EU MULTIPLEX grant
317532.
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years there has been tremendous activity in the area. We intend to present
some of the most important results, but our selection is bound to be greatly
influenced by personal preferences. For more detailed accounts of the work
of Erdős on probability theory and random graphs, see, e.g., [30] and [33].

In Section 7 we shall turn to models carrying more structure than the
Erdős–Rényi graphs. These models include the configuration model for the
space of graphs with a given degree sequence, some preferential attachment
models like the LCD model (the mathematically precise form of the BA
model), the BJR model, encompassing a huge array of earlier models, and
the analogue of this model with clustering.

Our presentation is self-contained: all we shall assume is that the reader
is familiar with the basic concepts of graph theory and probability. The no-
tation we shall use is standard (see, e.g., [31]) although, when quoting from
the papers of Erdős and Rényi, we use their somewhat unusual notation.
The results of Erdős and Rényi described in the first part of this paper have
of course been presented in many places, for example the books [32, 96] and
the survey [108].

2. Erdős and Rényi: The Beginning

“Let us consider a “random graph” Γn,N having n possible
(labelled) vertices and N edges; in other words, let us choose at

random (with equal probabilities) one of the
((n2)
N

)
possible graphs

which can be formed from the n (labelled) vertices P1, P2, . . . , Pn

by selecting N edges from the
(
n
2

)
possible edges PiPj (1 � i <

j � n).”

With this sentence, the very first sentence of [74], Erdős and Rényi launched
the theory of random graphs. They start in medias res, as much as that is
possible in mathematics, mentioning some earlier related results only later.
As a homage to them we shall reproduce the most important results of this
paper.

In [74], Erdős and Rényi were interested in the probability that Γn,N

is connected and in the structure of a ‘typical’ graph Γn,N , when N is in
the vicinity of N0 = N0(n) such that Γn,N0 is connected with probability
bounded away from both 0 and 1. Before we state their results, we spell
out the definition of Γn,N . Let Gn,N be the set of all graphs with vertex set
[n] = {1, . . . , n} and N edges, so that the cardinality of this set is

|Gn,N | =
((

n
2

)
N

)
.
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The random graph Γn,N is obtained by picking an element of Gn,N uniformly
at random. Thus if P is a property of graphs then the probability that Γn,N

has P is

Pn,N (P) =
∣∣{G : G ∈ P ∩ Gn,N}

∣∣/((
n
2

)
N

)
.

The main results of [74] are all based on the following fundamental
lemma. Let us say that a graph has property A if it has at most one
component with more than one vertex, and let us write Pn,N (A) for the
probability that Γn,N has property A. Furthermore, for a constant c, set

Nc = Nc(n) = n(log n)/2 + cn = (n/2)(log n+ 2c).

Strictly speaking, Nc should be defined as �n(log n)/2 + cn� or, more gen-
erally, as an integer n(log n)/2 + cnn, where cn → c; our desire to reduce
clutter by ignoring the rounding is unlikely to lead to any difficulties.

Lemma 1. With Nc as above, for every c ∈ R we have

(1) lim
n→∞Pn,Nc(A) = 1.

Proof. Let us start by noting that the largest component of Γn,Nc is not too
small – not with large probability, but always. Write L1 = L1(Γn,Nc) for the
maximal order of a component of Γn,Nc ; thus, if Γn,Nc has r components,
with 1, . . . , r vertices, then L1 = max i. Since

r∑
i=1

i = n and
r∑

i=1

(
i
2

)
� Nc,

the convexity of
(
x
2

)
tells us that

(n/L1)

(
L1

2

)
� Nc,

so, with λ = log n+ 2c, we have

L1(Γn,Nc) >
2Nc

n
= λ ∼ log n

for every graph Γn,Nc ∈ Gn,Nc .

Given a real number μ, we say that Γn,N has property Bμ if L1(Γn,N ) �
n− μ; also, we write Bμ for the negation of this property. The heart of the
proof is the following claim.
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Claim 1. Let μ = log log n. Then

lim
n→∞Pn,Nc(Bμ) = 1.

Proof of Claim 1. Write G(Bμ;n,Nc) for the set of graphs in Gn,Nc that
do not have property Bμ, so that our task is to prove that

Pn,Nc(Bμ) =
∣∣G(Bμ;n,Nc)

∣∣/((
n
2

)
Nc

)
= o(1).

With G(L1 = s;n,Nc) = {G ∈ Gn,Nc : L1(G) = s}, we have

G(Bμ;n,Nc) =
⋃

λ�s�n−μ
G(L1 = s;n,Nc).

If S is the vertex set of a component of a graph G then no edge of G joins
a vertex in S to a vertex not in S. Hence,

∣∣G(L1 = s;n,Nc)
∣∣ � (

n

s

)((
n
2

)
− s(n− s)

Nc

)
,

and so, setting

ps =

(
n

s

)((
n
2

)
− s(n− s)

Nc

)/((
n
2

)
Nc

)
and noting that pn−s = ps, we have

(2) Pn,Nc(Bμ) �
∑

λ�s�n−μ
ps � 2

∑
μ�s�n/2

ps.

At this stage, Erdős and Rényi [74] say that ‘by using elementary estima-
tions’

ps �
e(3−2c)s

s!

for s � n/2. This bound is not so obvious (indeed, it is false for s close to
n/2), so we shall proceed slowly, cutting the range of s into two parts. In
fact, we shall prove a weaker inequality, which is still more than enough to
imply Claim 1. Note that

qs =

((
n
2

)
− s(n− s)

Nc

)/((
n
2

)
Nc

)
�

(
1− 2s(n− s)

n2

)Nc
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� exp

(
−Nc

[
2s(n− s)

n2
+

4s2(n− s)2

2n4

])
.

First, for s � (log n)−1/2n, assuming n is large enough whenever needed,
with t = s/n we have

qs � exp
(
−Nc

[
2t− 2t2 + 2t2 − 4t3 + 2t4

])
(3)

� exp (−Nc [2t− 4t/(log n)])

� exp(−s log n− 2cs+ 3s) = n−se(3−2c)s,

so

(4) ps �
e(3−2c)s

s!
.

Second, for (logn)−1/2n � s � n/2, we have s(n−s) � (n2/2)(logn)−1/2,
so

qs � exp

(
−Nc

2s(n− s)

n2

)
� exp

(
− Nc

(log n)1/2

)
� exp(−n(log n)1/3),

implying

(5) ps � e−n(logn)
1/4

.

Using the bounds (4) and (5) in (2), we find that

Pn,Nc(Bμ) = o(1),

which is precisely Claim 1.

Returning to the proof of Lemma 1, note that if Γn,Nc has Bμ but not A
then it has a component of order s with 2 � s � μ = log logn. Hence all we
have to show is that the probability of this is o(1). Now, since a component
of Γn,Nc with s � 2 vertices has r edges with 1 � r �

(
s
2

)
, and the other

Nc − r edges of Γn,Nc join vertices not in the component, the probability
that Γn,Nc has a component of order s with 2 � s � μ is at most

rs =

(
n

s

) (s2)∑
r=1

((
s
2

)
r

)( (
n−s
2

)
Nc − r

)/((
n
2

)
Nc

)



64 B. Bollobás and O. Riordan

� 2

(
n

s

)((
s
2

)
1

)((
n
2

)
− s(n− s)

Nc − 1

)/((
n
2

)
Nc

)

� 3s2Nc

n2

(
n

s

)((
n
2

)
− s(n− s)

Nc

)/((
n
2

)
Nc

)

� 2s2 log n

n
· e

(3−2c)s

s!
,

provided n is large enough, where in the last step we made use of (4). Hence

μ∑
r=2

rs �
2 log n

n

μ∑
s=2

s2e(3−2c)s

s!
= O((log n)/n) = o(1),

completing the proof of the lemma.

It is interesting to note that in their proof of Lemma 1, Erdős and Rényi
start with a lower bound on the order of the largest component – a lower
bound that holds always, rather than whp (with high probability, i.e., with
probability tending to 1). It fact, this part of the proof is not needed,
since later it is shown that whp Γn,Nc has no nontrivial component of order
at most μ = log log n. In particular, whp Γn,Nc has a component of order
greater than μ, which is all that is needed in the rest (the main part) of the
proof.

Also, as we have followed the presentation of Erdős and Rényi, we did
not state Lemma 1 in the following slightly more general form, whose proof
goes through without any changes.

Lemma 1′. Let N(n) � n
2 log n− (log log log log n)n. Then

lim
n→∞Pn,N(n)(A) = 1.

With Lemma 1, Erdős and Rényi reduced the study of connectedness to
the study of the number of isolated vertices, enabling them to deduce several
fundamental results about the structure of Γn,N for N = n

2 log n+O(n).
First we state these theorems, and then comment on their proofs. We shall
continue using the notation Nc =

n
2 log n+ cn, with c constant.

Theorem 2. The probability that Γn,Nc is connected tends to e−e−2c
.
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Theorem 3. Let k be a fixed non-negative integer. The probability that
the largest component of Γn,Nc has order n− k tends to

exp
(
−2kc− e−2c

)
/k!.

This is also the limit of the probability that Γn,Nc has k + 1 components.

Theorem 4. Let the edges of a random graph on [n] be obtained as follows.
Select the edges successively from among all the edges not yet selected, with
all selections equiprobable. Continue this process until the graph formed by
the edges selected becomes connected. Let νn denote the (random) number
of edges of the resulting connected random graph. Then we have

P
(
νn =

⌊
1

2
n log n

⌋
+ 

)
∼ 2

n
exp

(
−2

n
− e−

2�
n

)
for  = O(n) and, for x constant,

lim
n→∞P

(
νn − 1

2n log n

n
< x

)
= e−e

−2x
.

By Lemma 1, most of these results follow if we show that the number
of isolated vertices of Γn,Nc satisfies the assertions, totally ignoring the rest
of the graph. In fact, what these results claim is that the distribution of
the number Xn,Nc of isolated vertices of Γn,Nc is asymptotically Poisson,
with mean λc = e−2c. The ‘natural’ way of proving this is to show that,
for every fixed r, the rth factorial moment Er(Xn,Nc) = E

(
Xn,Nc(Xn,Nc −

1) · · · (Xn,Nc − r+1)
)
of Xn,Nc tends to λr

c = e−2rc. Somewhat surprisingly,
this is not the route taken by Erdős and Rényi: they make use of Lemma 1
to pin down the distribution of Xn,Nc . (In their next paper [75], Erdős and
Rényi do use factorial moments, see also [32].) This is how they proceed.
By the inclusion–exclusion principle, the number of graphs in Gn,Nc without
isolated vertices is

n∑
k=0

(−1)k
(
n

k

)((
n−k
2

)
Nc

)
,

with partial sums giving alternately upper and lower bounds, so

P(Γn,Nc has no isolated vertices) =

n∑
k=0

(−1)k
(
n

k

)((
n−k
2

)
Nc

)/((
n
2

)
Nc

)
.
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Since, for every fixed k,

lim
n→∞

(
n

k

)((
n−k
2

)
Nc

)/((
n
2

)
Nc

)
= λk

c/k!,

and
∑∞

k=0(−1)kλk
c/k! = e−λc = e−e−2c

, we find that

lim
n→∞P(Γn,Nc has no isolated vertices) = e−λc .

Recalling Lemma 1, this implies Theorem 2.

To prove Theorem 3, Erdős and Rényi note that, by Lemma 1 and
Theorem 2,

P(Γn,Nc has precisely k isolated vertices)

∼ P(Γn,Nc has k + 1 components)

∼ P(Γn,Nc has k + 1 components, k of which are isolated vertices)

= P(Γn−k,Nc is connected)

(
n

k

)((
n−k
2

)
Nc

)/((
n
2

)
Nc

)
∼ e−λcλk

c/k!,

so Theorem 3 holds.

Finally, set t =
⌊
1
2n log n

⌋
+ . How does νn = t come about? One way

is for the first t− 1 edges we have selected to define a graph with a single
isolated vertex, with the tth edge incident with this vertex. In the light
of Lemma 1, it is not surprising that this is the most likely way. (This is
effectively asserted by Erdős and Rényi without proof; it is not obvious, but
does turn out to be true.) Since t− 1 = Nc with c ∼ /n, and t = o(n2), we
find that P(νn = t) is asymptotically equal to

P(Γn,Nc has exactly one isolated vertex)
n− 1(

n
2

)
− t+ 1

∼ 2

n
λce

−λc ,

which is the first claim of Theorem 4. The second claim is simply a restate-
ment of Theorem 2.

In Theorem 4, Erdős and Rényi came close to proving a hitting time
result: let us see how to make this precise. In what follows, we shall use the
notation commonly accepted today; in particular, we shall write G instead of
Γ for our graph. Nevertheless, when talking about the original Erdős–Rényi

results, we keep their quaint notation Γn,N . A graph process G̃n = (Gn,t)
(n2)
t=0
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is a nested sequence of graphs on [n], with Gn,t having t edges. Equivalently,
it is an enumeration e1, e2, . . . , e(n2)

of the edges of the complete graph on

[n], with {e1, . . . , et} taken as the edge set of Gn,t. Let G̃n be the set of all(
n
2

)
! graph processes on [n], and define a random graph process as an element

G̃n of G̃n chosen uniformly at random. Given a property Q of graphs on [n],

the hitting time of Q is τQ = τQ(G̃n) = min{t : Gn,t has Q}, so that τQ (if
always defined, as it will be here) is a random variable whose values belong
to {0, 1, . . . ,

(
n
2

)
}. Here is a special case of a result from [53] (see also [32],

p. 166) corresponding to Theorem 4.

Theorem 5. Let τconn(G̃n) be the hitting time of connectedness, and

τδ�1(G̃n) the hitting time of minimal degree at least 1, so that τδ�1(G̃n) �
τconn(G̃n) for every graph process G̃n. Then equality holds whp.

Proof. Let us define three properties of a graph process, two of which
depend on a constant c � −1, say. In our notation we shall suppress the

dependence on n. First, G̃n = (Gn,t) has property C if Gn,N�
is connected,

where  = log log logn, say. Second, G̃n has property Ac if for some k,
1 � k � λ2

c = e−4c, the graph Gn,Nc consists of k+1 components, k of which

are isolated vertices. Third, writeW = W (G̃n) for the set of isolated vertices
of Gn,Nc , and define Bc to be the property that no edge of Gn,N�

joins two

vertices of W . Clearly, if G̃n ∈ Ac ∩ Bc ∩ C then τconn(G̃n) = τδ�1(G̃n), so
to prove our theorem it suffices to show that limc→−∞ limn→∞ Pn(Ac ∩Bc ∩
C) = 1.

Now, by Theorem 3, limn→∞ Pn(C) = 1 and limc→−∞ limn→∞ Pn(Ac) =
1. Also, Pn(Bc | Ac) is at least the probability that none of N� −Nc � 2n
edges chosen uniformly at random from a set of at least

(
n
2

)/
2 edges joins

some two vertices of a fixed set of at most λ2
c vertices. Hence,

Pn(Bc | Ac) �
(
1− 2

(
λ2
c

2

)/(n
2

))2�n

= 1 + o(1),

and so Pn(Ac ∩ Bc) = Pn(Ac) + o(1), implying

lim
c→−∞ lim

n→∞Pn(Ac ∩ Bc ∩ C) = 1,

as required.
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As remarked in [74], Erdős and Rényi were not the first to study ques-
tions related to the probability P (n,N) that Gn,N is connected: among
others, Riddell and Uhlenbeck [140] and Gilbert [89] (and, simultaneously
with [74], Austin, Fagen, Penney and Riordan [11]) had worked earlier on
such questions using generating functions. However, the results obtained
did not help much to deduce asymptotic results similar to those obtained
by Erdős and Rényi. The genius of Erdős and Rényi was precisely that
they used the methods of probability theory rather than exact enumeration
to prove asymptotic results. Actually, before the publication of [74], Erdős
himself had considered P (n,N): with Hassler Whitney he proved (but did
not publish) that if c < 1/2 then P (n,N) = o(1) for N � cn log n, and if
c > 1/2 then P (n,N) = 1 + o(1) for N � cn log n.

3. The Evolution of Random Graphs

The first Erdős–Rényi paper on random graphs, [74], ended with the promise
of better things to come.

“The following more general questions can be asked: Con-
sider the random graph Γn,N(n) with n possible vertices and N(n)
edges. What is the distribution of the number of vertices of the
greatest connected component of Γn,N(n) and the distribution of
the number of its components? What is the typical structure
of Γn,N(n) (in the sense in which, according to Lemma 1, the
typical structure of Γn,Nc is that it belongs to type A)? We
have solved these problems in the present paper only in the case
N(n) = 1

2n log n+ cn. We shall return to the general case in
another paper [75].”

This ‘another paper’ is the most important paper in the theory of ran-
dom graphs. Entitled “On the evolution of random graphs,” this paper
was submitted on December 28, 1959, and was dedicated to Paul Erdős’s
great friend, Paul Turán, on his 50th birthday. (A little later, an extended
abstract of it [77] was published in Japan.) Given the importance of this
paper, it is surprising that it was published (in English) in a Hungarian pub-
lication, the journal of the Mathematical Institute headed by Rényi himself.
(A regrettable by-product of this was that the paper was not refereed care-
fully.) It could well be that at the time neither Erdős nor Rényi expected
[75] to be a ground-breaking paper, so it is not surprising that, review-
ing it in Mathematical Reviews, John Riordan also failed to recognize its
importance.
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In [75], Erdős and Rényi made two very important discoveries. First,

that the random graph process G̃n = (Gn,t) undergoes a dramatic change
as t passes through n/2: there is a phase transition at t = n/2. Second,
that many ‘natural’ monotone increasing properties of graphs (like being
connected, containing a matching, having a small diameter, etc) arise sud-
denly: there is a threshold function, which is often sharp. We shall say a few
words about both discoveries, although in this paper we shall concentrate
on the first.

Rather than talking about a ‘phase transition’ (as Stepanov [159] did
already in 1970, and most authors do in the last thirty years) Erdős and
Rényi talked about the emergence of the ‘giant component’. In [77], this is
how they summarized their results.

“If n is a fixed large positive integer and N is increasing
from 1 to

(n
2

)
, the evolution of Γn,N passes through five clearly

distinguishable phases. These phases correspond to ranges of
growth of the number N of edges, these ranges being defined in
terms of the number of n of vertices.

Phase 1 corresponds to the range N(n) = o(n). For this
phase it is characteristic that Γn,N(n) consists almost surely (i.e.
with probability tending to 1 for n → +∞) exclusively of com-
ponents which are trees. Trees of order k appear only when
N(n) reaches the order of magnitude n(k−2)/(k−1) (k = 3, 4, · · · ).
If N(n) ∼ ρn(k−2)/(k−1) with ρ > 0, then the probability dis-
tribution of the number of components of Γn,N(n) which are
trees of order k tends for n → +∞ to the Poisson distribu-

tion with mean value λ = (2ρ)k−1kk−2

k! . If N(n)n−(k−2)/(k−1) →
+∞ then the distribution of the number of components which
are trees of order k is approximately normal with mean Mn =

nkk−2

k!

(
2N(n)

n

)k−1
e−

2kN(n)
n and with variance also equal to Mn.

This result holds also in the next two ranges, in fact it holds
under the single condition that Mn → +∞ for n → +∞.

Phase 2 corresponds to the range N(n) ∼ cn with 0 < c <
1/2. In this case Γn,N(n) already contains cycles of any fixed or-
der with probability tending to a positive limit: the distribution
of the number of cycles of order k in Γn,N(n) is approximately a

Poisson-distribution with mean value (2c)k

2k . In this range almost
surely all components of Γn,N(n) are either trees or components
consisting of an equal number of edges and vertices, i.e. com-
ponents containing exactly one cycle. . . . In this phase though
not all, but still almost all (i.e. n− o(n)) vertices belong to com-
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ponents which are trees. The mean number of components is
n−N(n) +O(1), i.e. in this range by adding a new edge the
number of components decreases by 1, except for a finite number
of steps.

Phase 3 corresponds to the range N(n) ∼ cn with c � 1/2.
When N(n) passes the threshold n/2, the structure of Γn,N(n)

changes abruptly. As a matter of fact this sudden change of
the structure of Γn,N(n) is the most surprising fact discovered
by the investigation of the evolution of random graphs. While
for N(n) ∼ cn with c < 1/2 the greatest component of Γn,N(n)

is a tree and has (with probability tending to 1 for n → +∞) ap-

proximately
1

α

(
log n− 5

2
log log n

)
vertices, where α = 2c−1−

log 2c, for N(n) ∼ n/2 the greatest component has (with proba-

bility tending to 1 for n → +∞) approximately n2/3 vertices and
has a rather complex structure. Moreover for N(n) ∼ cn with
c > 1/2 the greatest component of Γn,N(n) has (with probability
tending to 1 for n → +∞) approximately G(c)n vertices, where

(6) G(c) = 1− 1

2c

+∞∑
k=1

kk−1

k!

(
2ce−2c

)k
(clearly G(1/2) = 0 and lim

c→+∞G(c) = 1).

Except this “giant” component, the other components are all
relatively small, most of them being trees, the total number of
vertices belonging to components, which are trees being almost
surely n(1−G(c)) + o(n) for c � 1/2 . . . .

The evolution of Γn,N(n) in Phase 3 may be characterized by
that the small components (most of which are trees) melt, each
after another, into the giant component, the smaller components
having the larger chance of “survival”; the survival time of a tree
of order k which is present in Γn,N(n) with N(n) ∼ cn, c > 1/2 is
approximately exponentially distributed with mean value n/2k.

Phase 4 corresponds to the range N(n) ∼ cn log n with c �
1/2. In this phase the graph almost surely becomes connected. If

N(n) =
n

2k
log n+

k − 1

2k
n log logn+ yn+ o(n)

then there are with probability tending to 1 for n → +∞ only
trees of order � k outside the giant component, the distribution
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of the number of trees of order k having in the limit again a

Poisson distribution with mean value e−2ky

k·k! . . . .
Phase 5 consists of the range N(n) ∼ (n log n)ω(n) where

ω(n) → +∞. In this range the whole graph is not only almost
surely connected, but the orders [degrees] of all points [vertices]
are almost surely asymptotically equal. Thus the graph becomes
in this phase “asymptotically regular”.”

Let us clear up one of the mysteries bound to puzzle a reader unfamiliar
with these results: the form of the function G(c) in (6). The explanation
is that 1−G(c) is about the proportion of vertices on tree components.
Indeed, for N(n) ∼ cn, the expected number of vertices of Γn,N(n) on tree
components is

n∑
k=1

(
n

k

)
kk−2

( (
n−k
2

)
N − k + 1

)/((
n
2

)
N

)
∼ 1

2c

∞∑
k=1

kk−1

k!

(
2ce−2c

)k
.

In the original ‘evolution’ paper [75], Erdős and Rényi gave an even more
succinct description of their main results.

“Thus the situation can be summarized as follows: the largest

component of Γn,N(n) is of order log n for N(n)
n ∼ c < 1/2, of

order n2/3 for N(n)
n ∼ 1

2 and of order n for N(n)
n ∼ c > 1/2. This

double “jump” of the size of the largest component when N(n)
n

passes through the value 1/2 is one of the most striking facts
concerning random graphs.”

We shall postpone our comments about later developments concerning
the phase transition to later sections.

Turning to threshold functions, the quintessential example of a sharp
threshold function is precisely n

2 log n, the threshold function for connect-
edness. The other main example is the threshold for the appearance of a
suitable ‘small’ subgraph. The average degree of a graph H with k ver-
tices and  edges is a(H) = 2/k. Erdős and Rényi called H balanced if
a(H ′) � a(H) for every subgraph H ′ of H. Clearly, trees, cycles, unicyclic
graphs, complete graphs and complete r-partite graphs are all balanced. As
shown by Erdős and Rényi, balanced graphs appear rather suddenly in the
random graph process.

Theorem 6. Let H be a balanced graph of average degree a = a(H) >

0. Then n2−2/a is a threshold function for the property of containing
(a subgraph isomorphic to) H in the sense that if ω(n) → ∞ then for



72 B. Bollobás and O. Riordan

N(n) � n2−2/a/ω(n) the probability that Γn,N(n) contains H tends to 0

as n → ∞, and for N(n) � ω(n)n2−2/a it tends to 1.

Over twenty years later, much sharper results were proved by Bol-
lobás [27], Karoński and Ruciński [106, 107], Bollobás and Thomason [52],
Ruciński and Vince [151, 152, 153, 154], and others. Also, Barbour [16] was
the first to apply the Stein–Chen method for Poisson approximation to the
number of complete subgraphs of a random graph; further results in that
vein were proved by Barbour, Karoński and Ruciński [18], Arratia and Lan-
der [10], Janson, �Luczak and Ruciński [95], Barbour, Janson, Karoński and
Ruciński [17], and others.

Amonotone increasing property of graphs is a collectionQ of graphs such
that if a graph H is in Q, every graph obtained from H by the addition of
edges is also in Q. Bollobás and Thomason [53] observed that the Kruskal–
Katona theorem [113, 110] implies that every monotone increasing property
has a threshold function. Much more importantly, Friedgut and Kalai [86]
and Friedgut and Bourgain [85] proved several deep theorems about the
sharp thresholds of symmetric monotone increasing properties, in particular,
graph properties invariant under graph isomorphism. The starting point
of these results is the fundamental KKL Theorem of Kahn, Kalai and
Linial [101], and its extension by Bourgain, Kahn, Kalai, Katznelson and
Linial [56].

To conclude this section, let us quote a prophetic passage from the main
‘evolution’ paper [75] of Erdős and Rényi, expressing the hope that the
results will be extended to more complicated structures.

“We succeeded in revealing the emergence of certain struc-
tural properties of Γn,N . However a great deal remains to be
done in this field. We shall call the attention of the reader to
certain unsolved problems. It seems to us further that it would be
worth while to consider besides graphs also more complex struc-
tures from the same point of view, i.e. to investigate the laws
governing their evolution in a similar spirit. This may be in-
teresting not only from a purely mathematical point of view.
In fact, the evolution of graphs may be considered as a rather
simplified model of the evolution of certain communication nets
(railway, road or electric network systems, etc.) of a country or
some other unit. (Of course, if one aims at describing such a
real situation, one should replace the hypothesis of equiprobability
of all connections by some more realistic hypothesis.) It seems
plausible that by considering the random growth of more com-
plicated structures (e.g. structures consisting of different sorts
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of “points” and connections of different types) one could obtain
fairly reasonable models of more complex real growth processes
(e.g. the growth of a complex communication net consisting of
different types of connections, and even of organic structures of
living matter, etc.).”

As if in reply to the thoughts of Erdős and Rényi, for well over ten
years now, numerous large-scale real-world networks have been modelled by
a variety of spaces of random graphs (see, e.g., Watts and Strogatz [166],
Barabási and Albert [14], Bollobás and Riordan [43, 44], Bollobás, Janson
and Riordan [38, 39, 41]); these models are often very difficult to analyse.
We return to this topic in Section 7.

The ideas of Erdős and Rényi about phase transitions continue to influ-
ence mathematical research: many of the papers published today (see, e.g.,
[3, 72, 73, 66]) in a variety of fields owe much to their pioneering work.

4. Further Results

Erdős and Rényi returned to connectivity questions in [76], proving, among
other results, the following extension of Theorem 2.

Theorem 7. Let k be a natural number, α a real, and

Nk,α(n) =
n

2

(
log n+ (k − 1) log log n+ α+ o(1)

)
.

Then whp the connectivity of Γn,Nk,α
is either k− 1 or k. Furthermore, the

probability that the connectivity is k tends to exp(−e−α/(k − 1)!). This is
also the limit of the probability that the minimal degree is k.

Once again, Erdős and Rényi were very close to proving the follow-
ing sharp hitting time result telling us that the primary obstruction of k-
connectedness is the existence of a vertex of degree at most k − 1.

Theorem 8. Let τk-conn(G̃n) be the hitting time of being k-connected and

τδ�k(G̃n) that of having minimal degree at least k, so that τδ�k(G̃n) �
τk-conn(G̃n) for every graph process G̃n. Then equality holds whp.

Call a graph symmetric if it has a non-trivial automorphism. Further-
more, for a graph G, set

A(G) = min{|E(G)�E(G′)| : G′ is symmetric},
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and

A(n) = max{A(G) : |G| = n}.
It is easily checked that A(2) = · · · = A(5) = 0 and A(6) = 1; also, it is not
hard to show that A(G) � (n− 1)/2 for |G| = n. The main result of [78] is
that for N =

(n
2

)/
2

A(Γn,N ) =
n

2
+ o(n)

holds whp, so limn→∞A(n)/n = 1/2.

The later papers [79, 80, 81] of the Erdős–Rényi series on random graphs
concern k-factors of graphs and bipartite graphs. In particular, in [80] they
prove that if n is even and N(n) = n

2 logn+ ω(n)n then whp Γn,N(n) has a

1-factor. The hitting time sharpening of this result also holds: τ1-fact(G̃n) =

τδ�1(G̃n) holds whp, where τ1-fact(G̃n) is the hitting time of containing a
1-factor.

Not surprisingly, the results above have inspired much further research:
here we shall hardly scrape the surface of the body of these results. Start-
ing with the last result above: we know that the main obstruction to a
complete matching (in a graph with an even number of vertices) is an iso-
lated vertex. What happens if we condition on having no isolated ver-
tices? Will fewer edges make the existence of a 1-factor likely? This
question was answered by Bollobás and Frieze [37]: they proved that if
N(n) = 1

4n logn+ 1
2n log logn+ cnn, then the probability that Γn,N(n), con-

ditioned on having minimal degree at least 1, has a complete matching tends
to exp

(
− 1

8 exp(−4c)
)
if cn → c as n → ∞. Also, in a random n-by-n bi-

partite graph the primary obstruction to a complete matching is an isolated
vertex, and the secondary is a pair of vertices of degree 1 joined to the same
vertex.

Also, more recently, Frieze and Pittel [88], and Frieze [87] investigated
what happens if we condition on having minimal degree at least 2, rather
than 1. In this case the number of edges needed is drastically reduced: for
c � 2, the probability that a random n-by-n bipartite graph with cn edges
conditioned on having minimal degree at least 2 has a complete matching
tends to 1 as n → ∞.

Turning to asymmetric graphs, Babai, Erdős and Selkow [12] gave a

naive algorithm to test all but o
(
2(

n
2)
)
graphs on [n] for isomorphism against

any other graph. The idea is very simple: in all but o
(
2(

n
2)
)
graphs the

highest n0.15 degrees are distinct (in fact, they are at least n0.03 apart), and
can be used to ‘anchor’ all other vertices.
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Graphs with two isolated vertices are symmetric, and so are graphs
with a vertex having two neighbours of degree 1. If we rule these out, our
graphs are much less likely to be symmetric. Thus, answering a question
of Wormald, it was proved by Kim, Sudakov and Vu [111] that for any
3 � d = d(n) � n− 4 a random d-regular graph on [n] is asymmetric whp.

5. Phase Transitions – The Restart

The influence of the ‘evolution’ paper [75] on mathematics has a rather
strange history. For the next two decades after its appearance, essentially
no papers made any use of its main result, although the mantra of the
‘double jump’ was repeated many times. This lack of continuation was
due partly to the fact that the evolution paper was ahead of its time,
but also to the unfortunate misstatement of the main result: if N(n) ∼ cn
then for c < 1/2 the maximal component has order O(logn), for c > 1/2 its

order is linear in n, and for c = 1/2 its order is Θ(n2/3), with all assertions
holding whp. There is nothing wrong with the first two statements, but the
assertion concerning N(n) ∼ n/2 is far from correct. If all statements had
been correct, then this would have been the end of the story: essentially
nothing else could have been said about the maximum of the orders of the
components.

In the first subsection below, we describe the true nature of the phase
transition; then we turn to planarity and another result from the evolution
paper that had to be put right. The third and last subsection is about the
core, which does appear suddenly, with a big jump.

5.1. No Double Jump, But a Smooth Transition

In 1984, Bollobás [29] noticed that there is no double jump; in fact, if

N(n)− n/2 grows a little faster than n2/3 then whp Gn,N(n) contains a
‘giant’ component, with all other components at most half as large. Let
us state this result in a somewhat simpler form. As usual, we shall write
L1(G) � L2(G) � . . . for the orders of the components of a graph G.

Theorem 9. Whp G̃n = (Gn,t) is such that if t = n/2+ s with (logn)n2/3 �
s = o(n) then

L1(Gn,t) ∼ 4s and L2(Gn,t) � (log n)n2/s2.

One can show that if s above is O(n2/3) then for no function f(n, s)

does L1(Gn,t) ∼ f(n, s) hold whp. Also, if s = o(n2/3) then for t0 = n/2
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and t1 = n/2 + s the distributions of the random variables L1(Gn,t0) and
L1(Gn,t1) are very close.

Needless to say, Theorem 9 rules out the existence of a double jump
since knowing that N(n) ∼ n/2 does not come close to telling us how large

L1(Gn,N ) is likely to be. For example, if N = n/2 + n3/4 ∼ n/2 then whp

we have L1(Gn,N ) ∼ 4n3/4 and L2(Gn,N ) � (log n)n1/2, but if N = n/2 +
n/ log n then whp L1(Gn,N ) ∼ 4n/ log n and L2(Gn,N ) � (log n)3.

Although the proof of Theorem 9 made use of the graph process G̃n

by looking at the graphs Gn,t at various times (values of t), the individual
graphs Gn,t were considered to be static random objects, as in [75]. In par-
ticular, the logn factor in the lower bound on s was for ease of calculations.
In 1990, �Luczak [118] used better estimates and more delicate arguments
to replace this log n factor by any function tending (crawling?) to infinity.
Again we state a simplified form of the result.

Theorem 10. Let ω(n) → ∞ and let s = s(n) satisfy ω(n)n2/3 � s = o(n).
Then for N = n/2− s, whp

Li(Gn,N ) ∼ n2

2s2
log(s3/n2)

for any fixed i, while for N = n/2 + s, whp L1(Gn,N ) ∼ 4s and L2(Gn,N ) �
(log n)n2/s2.

The results of Bollobás and �Luczak show that the evolution of the ran-
dom graph process near N = n/2 can be thought of in three phases: the sub-

critical phase where N � n/2− ω(n)n2/3 in which there are many ‘largest’
components of almost equal size, which are whp trees, the critical phase
N = n/2 +O(n2/3) in which the largest few component sizes have, after
rescaling, a non-trivial distribution (see Section 6.1), and the supercritical

phase N � n/2+ ω(n)n2/3 in which the ‘giant’ component has ‘emerged’ as
the largest component, has an asymptotically determined size, and will not
be overtaken again. More details of this picture were established in 1994 in
a monumental paper by Janson, Knuth, �Luczak and Pittel [93].

In later sections we shall present much sharper results that have been
proved by a variety of different methods.
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5.2. Planarity

Let us note two other interesting corrections to [75], this time due to �Luczak
and Wierman [124] and �Luczak, Pittel and Wierman [123].

Write Xn,N (d) for the number of cycles in Gn,N with precisely d di-
agonals. A theorem in [75] states that for N = n/2 + (c+ o(1))

√
n, with

c constant, the random variable Xn,N (d) has asymptotically Poisson dis-
tribution with a certain mean λc(d), 0 < λc(d) < ∞. Also, λc(d) → 0 as
c → −∞ and λc(d) → ∞ as c → ∞. From this it is essentially immediate
that lim infn→∞ P(Gn,n/2 is non-planar) > 0. Also, if N(n) = n/2+ω(n)

√
n

with ω(n) → ∞ then whp Gn,N(n) is non-planar.

Although the arguments showing these assertions looked convincing, the
truth is rather different. In particular, �Luczak and Wierman [124] proved
the following.

Theorem 11. Whp Gn,n/2 contains no cycle with a diagonal, and so has
chromatic number 3.

The range of the transition from planarity to non-planarity was pinned
down by �Luczak, Pittel and Wierman [123].

Theorem 12. Set N(n) = n/2+ω(n)n2/3. Then Gn,N(n) is non-planar whp
iff ω(n) → ∞.

These results needed considerably more complicated arguments than
Erdős and Rényi envisaged.

It is worth emphasizing that the various blemishes of the ‘evolution’
paper in no way diminish its importance. The fact that these imperfections
went unnoticed for decades proves that the paper was way ahead of its time.

5.3. The Core – A Genuine Jump

Let us make some remarks on another kind of phase transition, the sudden
emergence of the core. The concept of the core (really, k-core) of a graph
was introduced by Bollobás [28] in 1984. For k � 1 the k-core of a graph is
the unique maximal subgraph of minimal degree at least k, i.e., the union of
all subgraphs of minimal degree k, provided there is such a subgraph. The
conditions for the existence of the 1-core and 2-core are trivial: the 1-core
exists if there are any edges, and the 2-core exists if there are any cycles.
The fun starts at k = 3, so for the rest of this section we shall assume that
k � 3.
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The number of vertices in the k-core is a trivial upper bound on the
number of vertices in a k-connected subgraph; also, if there is no k-core
then the graph is certainly k-colourable.

Looking at it crudely, the emergence of the k-core is rather similar to
the emergence of the giant component: for every k � 3 there is a constant
ck > 0 such that if N(n) ∼ cn/2 for a constant c then

lim
n→∞P(Gn,N(n) has a k-core) =

{
0 if c < ck,

1 if c > ck.

Concerning these constants, Bollobás and Thomason (see [62]) proved
the simple inequality

ck − log(ck + 1) � ck−1.
Chvátal [62] used elaborate arguments to prove that c3 > 2.88 and so whp
Gn,1.44n is 3-chromatic; combining this with the inequality above, he ob-
tained c4 > 4.61, c5 > 6.64, etc. In 1991, �Luczak [119] determined the
asymptotic value of ck as k → ∞, when he proved that for any constant
γ > 1/2 we have ck = k +O(kγ).

The existence of the constants ck is far from surprising; what is fasci-
nating about the k-core is that, as shown by �Luczak [119], it takes off with
a bang.

Theorem 13. Let k � 3 be fixed. For any N(n) = Θ(n), whp the k-core of
Gn,N(n) either contains no vertices, or at least 0.0002n vertices.

Write τk-core(G̃n) for the hitting time of the existence of a non-empty

k-core in the random graph process G̃n, and sk-core(G̃n) for the number
of vertices in the k-core at this hitting time. Since the size of the k-core
can only increase as edges are added, �Luczak’s result tells us that whp

G̃n = (Gn,t)
(n2)
0 is such that for t = τk-core(G̃n) the graph Gn,t−1 does not

have a k-core, but Gn,t not only has a k-core, but its k-core is huge, of

linear size. In fact, for t = τk-core(G̃n) the jump due to the tth edge is
whp from 0 to (1 + o(1))skn, for some constant sk > 0. In 1996, Pittel,
Spencer and Wormald [137] not only proved the existence of these constants
ck and sk, but in a stunning theorem even determined them explicitly. As
usual, we write Po(λ) for a Poisson random variable with mean λ, so that
P(Po

(
λ) = k

)
= e−λλk/k!.

Theorem 14. Let k � 3. For λ > 0, set πk(λ) = P(Po(λ) � k− 1) and ck =
minλ>0 λ/πk(λ), and let sk be the unique value of λ at which this minimum
ck is attained. Then ck and sk are as described above. Furthermore,
ck = k +

√
k log k +O(log k).
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Numerical calculations show that c3 ≈ 3.35, s3 ≈ 0.27, c4 ≈ 5.14, s4 ≈
0.43, c5 ≈ 6.81 and s5 ≈ 0.55.

The proof of Theorem 14 given by Pittel, Spencer and Wormald is a
tour de force. There is an obvious algorithm for finding the k-core (if
there is one): simply delete vertices of degree less than k one-by-one. In
[137] this algorithm is analysed by an ingenious and difficult argument to
prove Theorem 14. This approach left something of a mystery, however;
as noted in [137] there is a natural branching process heuristic leading to
the values they found for ck and sk, so can one reprove the result using
branching processes (i.e., analysing the k-core ‘from the inside’ rather than
by deletion)? Such a proof of a weaker (but more general) version of
Theorem 14 was found much later by Riordan [142].

Although one of the initial uses of the core was to bound the chromatic
number, it was never expected to give the exact threshold for k-colourability.
In 1991, �Luczak [120] proved the beautiful theorem that, for every constant
c > 0, whp the chromatic number of Gn,�cn� is one of two consecutive num-
bers. (In fact, �Luczak proved considerably more; later his results were
extended by Alon and Krivelevich [9] to the statement that if ε > 0 is fixed

and N(n) < n3/2−ε then whp the chromatic number of Gn,N(n) is one of
two consecutive numbers.) As to what these two consecutive numbers are,
this remained a mystery until Achlioptas and Naor [2] proved the following
admirable result.

Theorem 15. Given c > 0, let k be defined by (k − 1) log(k − 1) � c <
k log k. Then whp the chromatic number of Gn,�cn� is k or k + 1. Also, if
(k − 1/2) log k � c < k log k then whp the chromatic number of Gn,�cn� is
k + 1.

To conclude this section, let us note some results concerning subgraphs
similar to cores: k-regular subgraphs. Alon, Friedland and Kalai [8] proved
that every graph of maximum degree 2k−1 and average degree greater than
2k − 2 has a k-regular subgraph. In 2006, this result was used by Bollobás,
Kim and Verstraëte [42] to prove that if c > 2k then whp Gn,�cn� contains a
k-regular subgraph. Pra�lat, Verstraëte and Wormald [139] proved that for
k large, the threshold for the appearance of a k-regular subgraph of Gn,N(n)

is at most the threshold for the appearance of the (k + 2)-core, which is
given in Theorem 14. Even more recently, Chan and Molloy [60] proved an
essentially best possible result of this type, replacing k + 2 by k + 1.

Taking the two questions above together (the appearance of the k-core
and the appearance of a k-regular subgraph) one is lead to the following
question: when the k-core appears, does it contain an -regular spanning
subgraph for  close to k? Even more, when the k-core appears, does
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it contain ‘many’ edge-disjoint Hamilton cycles? In a paper to appear,
Krivelevich, Lubetzky and Sudakov [112] proved the following beautiful
result.

Theorem 16. Let k � 15. Then whp G̃n is such that for tk = τk-core(G̃n)
the k-core of the graph Gn,t is Hamiltonian for every t � tk. Furthermore,
for large k, the k-core of Gn,t contains �(k − 3)/2� edge-disjoint Hamilton
cycles for every t � tk.

This is a great theorem indeed: to prove it, Krivelevich, Lubetzky and

Sudakov condition the random graph process G̃n on its future – a most
unusual procedure. The result is almost best possible; at best it may be
true that �(k− 3)/2� and k large can be replaced by �(k− 1)/2� and k � 4.

6. Recent Results About The Phase Transition

After a slow start, the study of the phase transition initiated by Erdős
and Rényi has blossomed into a major field, with many hundreds of papers
written on this and related topics. Rather than attempt to survey this vast
body of work, we shall focus on a small number of threads within it. Even
within these there will be space to mention only a few of the results. The
selection of topics and results naturally follows our own particular interests
(nowadays no-one can be familiar with all of this work), and is not intended
to be definitive in any way.

Broadly speaking, work continuing that in [75] falls into two main types:
further, more detailed study of the phase transition in Gn,N itself, and
generalizations to other models. We describe some results of the first type
in the rest of this section, turning to other models in the next.

First, let us comment on a minor technical point. Nowadays, in many
contexts, instead of the Erdős–Rényi model Gn,N (also called the ‘size
model’) it is more common to study the ‘binomial’ model Gn,p, a random
graph on [n] = {1, . . . , n} in which each possible edge is present indepen-
dently with probability p. This model was introduced by Gilbert [90] at
around the same time that Erdős and Rényi introduced their model but
(paradoxically, given the definitions of the models) he studied it in a much
less probabilistic way. For many purposes the models are essentially equiv-
alent if the parameters are chosen suitably, e.g., with p = N/

(
n
2

)
, but Gn,p

is often easier to work with. In the following sections we describe all results
for Gn,p rather than Gn,N . (Formally there is a clash in the notation here,
but since 0 < p < 1 while N � 1 there is no danger of confusion.)



The Phase Transition in the Erdős–Rényi Random Graph Process 81

6.1. Ever more precise results about Gn,p

Concerning the order L1 of the largest component in Gn,p, the results of
Bollobás [29] and �Luczak [118] are in one sense the last word. If, following
Erdős and Rényi, we consider the most important features of Gn,p to be
its ‘typical’ properties, i.e., the properties that hold with probability tend-
ing to 1, then for any p = p(n) = Θ(1/n) these results give the complete
answer as far as bounds on L1 are concerned – they give necessary and suf-
ficient conditions on a deterministic function f(n) for L1(Gn,p) � f(n) or
L1(Gn,p) � f(n) to hold whp. However, it is natural to go further: can we
find the limiting value of P(L1(Gn,p) � f(n)) when this is bounded away
from 0 and 1? Equivalently, can we describe the limiting (appropriately
rescaled) distribution of the deviation of the size of the giant component
from its typical value? Results of this type are known as ‘limit theorems’.
Going even further, can we find the asymptotic value of the probability that
L1(Gn,p) is exactly equal to f(n), for f(n) within the ‘typical’ range? Such
results are known as ‘local limit theorems’.

Throughout this section we discuss Gn,p with p = O(1/n). We usually
write p = λ/n where λ = λ(n) = O(1). In the light of the results described
in Section 5.1, we refer to the cases (λ− 1)3n → −∞, (λ− 1)3n = O(1) and
(λ− 1)3n → ∞ as the subcritical, critical and supercritical regimes. Some-
times, we write ε = ε(n) for λ− 1. We use standard notation for proba-
bilistic asymptotics, as in [96], for example; in particular, op(f(n)) denotes
a random quantity that, after division by the deterministic function f(n),
converges to 0 in probability. Thus Xn = g(n) + op(f(n)) means exactly
that for any fixed ε > 0, whp |Xn − g(n)| � εf(n). We write Op(f(n)) for
a quantity that, when divided by f(n), is bounded in probability. Thus
Xn = Op(f(n)) means that for any ε > 0 there is a C such that for all
(large enough) n we have P(|Xn| � Cf(n)) � 1− ε.

In the subcritical case (where the giant component is almost always
a tree), �Luczak [118] proved a limit theorem showing that, appropriately
rescaled, L1 has the extreme value distribution associated to a Poisson
process with exponential density.

Theorem 17. Let λ = 1− ε, where ε = ε(n) satisfies ε3n → ∞ and ε =
o(1/ log n). Then

P
[
L1(Gn,λ/n) < 2ε−2

(
log(ε3n)− 5

2
log log(ε3n) + x

)]

→ exp

(
− 1

4
√
π
e−x

)
as n → ∞.
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(In fact, in [118] this is stated with ε = o(1) in the place of ε = o(1/ logn),
but under this more general assumption the formula is not quite correct;
see [45].)

The critical case is much more complicated and more interesting. Define
a stochastic process Wα(s) (a random function on [0,∞)) by

Wα(s) = W (s) + αs− s2/2,

where W (s) is a standard Brownian motion. An excursion of this process
is a maximal interval on which Wα exceeds its previous minimum value; let
(|γi|)i�1 denote the lengths of the excursions sorted into decreasing order.
Using random walk arguments based in part on ideas of Martin-Löf [125]
and Karp [109], Aldous [7] proved the following result.

Theorem 18. Let p = λ/n where λ = λ(n) satisfies

(λ− 1)3n → α3

for some α ∈ R. Then, for any fixed r, writing Lr for the number of vertices
in the rth largest component of Gn,p, the sequence (n−2/3Li)

r
i=1 converges

in distribution to (|γi|)ri=1.

In fact, Aldous proved more: convergence of the entire sequence of
rescaled component sizes in l2, and convergence of the distribution of the
nullities (number of ‘extra’ edges compared to a tree of the same order) of
the components to an appropriate random process.

Turning to the supercritical case, for λ > 1 constant Stepanov [159]
proved a limit theorem already in 1970; this was reproved by Pittel [135] by
careful arguments based on tree counting.

Theorem 19. Let λ > 1 be constant, let ρλ be the positive solution to
ρλ = 1− e−λρλ , let λ∗ < 1 satisfy λ∗e−λ∗ = λe−λ, and set

σ2
λ =

ρλ(1− ρλ)

(1− λ∗)2
.

If L1 is the maximal order of a component of Gn,λ/n, then

L1 − ρλn

σλ
√
n

d→ No(0, 1),

where
d→ denotes convergence in distribution, and No(0, 1) is the standard

normal distribution.
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The quantity ρλ defined in this result is (as it must be) none other than
G(λ) as defined in (6). Pittel and Wormald [138] extended Theorem 19 to
the much more delicate case where the average degree tends down to 1.

Theorem 20. Let ε = ε(n) satisfy ε → 0 but ε3n → ∞. Then the order L1

of the largest component of Gn,(1+ε)/n satisfies

L1 − ρ1+εn

ε−1/2
√
2n

d→ No(0, 1).

In fact, they studied not only the order of the giant component, but also
the number of edges, and the size of its 2-core (see Section 5.3). They came
very close to, but did not quite, prove a local limit theorem. The local limit
theorem for the order of the giant component was established by Luczak and
�Luczak in [117], as part of a result about the more general ‘random-cluster
model’.

Recently, Nachmias and Peres [129] combined the random walk ideas of
Martin-Löf [125], Karp [109] and Aldous [7] with martingale techniques to
give a very simple proof of a weak form of Theorem 20; this was extended
to the full statement above (but not the stronger results in [138]) in [47].

The quantity ρλ = G(λ) appearing in the results above for the supercrit-
ical case has several interpretations, one of which is described in Section 3.
Perhaps the most informative is in terms of the Galton–Watson branching
process with Poisson offspring distribution Po(λ). This is the random rooted
tree in which (loosely speaking) each vertex has a Po(λ) number of children,
independently of the other vertices. Indeed, ρλ is the survival probability of
this process, i.e., the probability that this random tree is infinite. It is rather
easy to see that for λ constant, Gn,λ/n, explored outwards from a given or
random vertex, is locally very similar to this process, which suggests that
a fraction ρλ of the vertices will be in large components. Of course, con-
siderable work is needed to show that not only is this true, but almost all
such vertices are in a single ‘giant’ component. Still, this viewpoint makes it
very easy to guess what the size of the giant component should be in a large
number of random graph (or hypergraph) models; then one must actually
prove this. In this interpretation λ∗ is the parameter of the dual branching
process, obtained by conditioning on extinction. It is easy to check that this
is also a Poisson Galton–Watson process.

Although we shall consider generalizations of Gn,p in the next section,
there is one that is so close in behaviour to the original model that the
results belong very much together, namely the random k-uniform hypergraph
Hk(n, p). This is the hypergraph with vertex set [n] in which each of the
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n
k

)
possible edges (k-element subsets of [n]) is present with probability p,

independently of the others. There are several possible generalizations of
the notion of component to hypergraphs, but the most natural is given by
the transitive closure of the relation ‘lie in a common edge’ on the vertex
set. In this context the natural scaling corresponding to p = λ/n for k = 2
(the graph case) is to write

(7) p = λ(k − 2)!/nk−1,

where λ = λ(n) = O(1). As shown by Schmidt-Pruzan and Shamir [155],
the phase transition is then at λ = 1. Surprisingly, even the asymptotic
size of the giant component was found only much later, by Coja-Oghlan,
Moore and Sanwalani [63] in 2007 (though perhaps a form of this result was
‘folklore’ before then). Let

ρk,λ = 1− (1− ρλ)
1/(k−1)

where, as before, ρλ is G(λ) as defined in (6). Note that ρk,λ can be seen
as the survival probability of a certain (compound Poisson) Galton–Watson
branching process naturally associated to Hk(n, p).

Theorem 21. If k � 3 and λ > 0 are constant and p = p(n) is defined
by (7), then

L1(Hk(n, p)) = ρk,λn+ op(n).

Turning to more precise results, Karoński and �Luczak [105] proved a lo-
cal limit theorem in the barely supercritical phase, when (λ− 1)3n tends to
infinity but more slowly than logn/ log logn. For the strongly supercritical
case, where λ > 1 is fixed, the local limit theorem was proved by Behrisch,
Coja-Oghlan and Kang [19]. A limit theorem covering the entire super-
critical range was proved only very recently in [48]. For k � 2 and λ > 1
let

σ2
k,λ =

λ(1− ρk,λ)
2 − λ∗(1− ρk,λ) + ρk,λ(1− ρk,λ)

(1− λ∗)2
,

where, as before, λ∗ < 1 satisfies λ∗e−λ∗ = λe−λ.

Theorem 22. Let k � 3 be fixed, and define p = p(n) by (7) where λ = λ(n)
is bounded and (λ− 1)3n → ∞. Then

L1(Hk(n, p))− ρk,λn

σk,λ
√
n

d→ No(0, 1),

where
d→ denotes convergence in distribution and No(0, 1) is a standard

normal random variable.
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In fact, it turns out that it is possible to start from this result and use
a smoothing argument (and some detailed tree counting results) to deduce
a local limit theorem; see [50].

Aldous’ result for the critical case, Theorem 18, is also generalized to
k-uniform hypergraphs in [48].

6.2. Structural results

So far we have mainly discussed the order of the giant component, although
many of the papers mentioned above discuss at least a little more, for
example the number of edges. What can we say about other properties,
for example the typical or maximum graph distance between vertices?

Recall that the 2-core of a connected graph G is the maximal subgraph
G(2) with minimum degree at least 2, which may be empty (if G is a tree).
Any connected graph that is not a tree consists of its 2-core and its mantle, a
set of trees each sharing one vertex with the 2-core. Looking further inside,
the kernel of G is the multigraph obtained from the 2-core by contracting
vertices of degree 2, so the 2-core is formed from the kernel by replacing the
edges by internally vertex-disjoint paths. This way of viewing a graph was
introduced in [28], and has been used many times since then, for example
in [138]. For example, �Luczak [121] studied the degree distribution of the
kernel of the young giant component (where p = (1+ε)/n with ε3n → ∞ but
ε = o(1)), using the fact that almost all vertices have degree 3 to show that
(conditional on the whp Hamiltonicity of a random 3-regular graph, proved
just after by Robinson and Wormald [150]) whp the largest component of
Gn,(1+ε)/n contains a cycle of length at least (43 + o(1))ε2n.

Jumping to more recent results, Ding, Kim, Lubetzky and Peres [68]
have given a detailed, and very usable, description of the distribution of
the young giant component of Gn,p. To state this, let No(μ, σ2) denote
the normal distribution with mean μ and variance σ2, and Geom(ε) the

geometric distribution with mean 1/ε. The model giant component L̃1

introduced in [68] is defined in three steps: First, let Z ∼ No(23ε
3n, ε3n), and

letK be a random 3-regular multigraph onN = 2�Z� vertices. Next, replace
each edge of K by a path, where the path lengths are independent and
have the distribution Geom(ε). Finally, attach a Poisson Po(1− ε) Galton–
Watson branching process to each vertex. In the special case where ε =
o(n−1/4), the main result of [68] can be stated as follows. When describing
the structure, not just the order, of the largest component of a graph G, we
write L1 for this component (chosen according to any rule in the case of a
tie).
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Theorem 23. Let L1 = L1(Gn,p) be the largest component of the random

graph Gn,p for p = (1 + ε)/n, where ε3n → ∞ and ε = o(n−1/4). Then L1

is contiguous to the model L̃1, in the sense that, for any graph property Q,

limn→∞ P(L̃1 has Q) = 0 implies that limn→∞ P(L1 has Q) = 0.

The general result of Ding, Kim, Lubetzky and Peres [68] covers the
entire range where ε3n → ∞ and ε → 0; the statement is more involved,
since the kernel typically contains many vertices of degree greater than 3.

Theorem 23 and its more general companion are key ingredients in one
the main approaches to more detailed analysis of the young giant compo-
nent. For example, using earlier results on first-passage percolation due to
Bhamidi, Hooghiemstra and van der Hofstad [22], Ding, Kim, Lubetzky and
Peres [68] obtained the following result.

Corollary 24. Let ε3n → ∞ and ε → 0, and let L(2)
1 be the 2-core of the

largest component of the random graph Gn,p where p = (1 + ε)/n. If v

and w are two vertices of degree at least 3 in L(2)
1 chosen uniformly at

random among all such vertices, then the distance between v and w is whp
(1/ε+O(1)) log(ε3n).

Turning to the much more difficult question of the maximum distance
between vertices, this approach now requires results concerning extreme-
value estimates for first passage percolation. Using such ideas, Ding, Kim,
Lubetzky and Peres [67] obtained the following result.

Theorem 25. Consider the random graph Gn,p for p = (1 + ε)/n, where
ε3n → ∞ and ε → 0. Let L1 be the largest component of Gn,p, with 2-core

L(2)
1 and kernel K. Then, whp,

diam(L1) = (3 + o(1)) (1/ε) log(ε3n),(8)

diam(L(2)
1 ) = (2 + o(1)) (1/ε) log(ε3n),

max
v,w∈K

dL(2)
1

(v, w) =

(
5

3
+ o(1)

)
(1/ε) log(ε3n).

In the last statement, the distance is measured in the 2-core L(2)
1 , not in

the kernel.

Stepping back a little, historically the diameter of Gn,p was originally
only studied when this graph is likely to be connected. After all, what is the
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diameter of a disconnected graph? Burtin [57, 58] proved the first results,
and Bollobás [28] gave a very precise formula for the diameter at exactly
the point where the graph first becomes connected. Turning to the case
of bounded average degree, in the subcritical regime �Luczak [122] proved
very precise results for the maximum of the diameters of the components.
For the supercritical case, with λ > 1 constant, the question was surpris-
ingly neglected. Chung and Lu [61] proved a partial result, but the correct
asymptotic formula was obtained only much later, independently by Fern-
holz and Ramachandran [83] and by Bollobás, Janson and Riordan [39], in
both papers as a special case of a result for a much more general model.

Finally, Riordan and Wormald [149] obtained essentially best-possible
estimates for the diameter of Gn,p throughout the supercritical regime. For
the young giant component, they proved the following.

Theorem 26. Let ε = ε(n) satisfy 0 < ε < 1
10 and ε3n → ∞. Set λ = λ(n) =

1 + ε, and let λ∗ < 1 be the dual of λ. Then

(9) diam(Gn,λ/n) =
log(ε3n)

log λ
+ 2

log(ε3n)

log(1/λ∗)
+Op(1/ε).

Of course, this result is consistent with, and thus refines, (8). As with
the results of Bollobás [29] and �Luczak [118] on the order of the giant
component, Theorem 26 is sharp in that the variation of the diameter is
of order 1/ε. However, one can of course ask for more: what is the limiting
distribution of the error term? This is also answered in [149], but the
statement is a little involved.

In the critical case, the behaviour of the diameter of Gn,p is even more
complicated. Addario-Berry, Broutin and Goldschmidt [3] found the lim-

iting distribution of the diameter divided by n1/3, by proving convergence
of L1(Gn,p) to a certain (complicated) random continuum limit object in a
certain sense.

7. New Random Graph Models

One of the key developments in the study of phase transitions is the gen-
eralization of the results, and sometimes methods, of Erdős and Rényi to
a vast array of different models of random graphs. Our main focus will be
the (mostly) new ‘inhomogeneous’ models, but first we consider a classical
homogeneous model.
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7.1. The configuration model

Let r � 3 be fixed, and let Gr be a random r-regular graph on [n], i.e., an
r-regular graph on [n] chosen uniformly at random from all such graphs.
(We assume rn is even, of course.) This graph is connected whp, but what
about a random subgraph of this graph? Let Gr[p] be the random subgraph
of Gr obtained by retaining each edge with probability p, independently of
the others and of Gr itself. Is there a phase transition in the size of the
largest component as p is varied? The answer is yes: the critical point,
p = 1/(r − 1), was found by Goerdt [91].

There is a natural family of inhomogeneous models extending Gr. Given
a degree sequence d = (d1, . . . , dn) satisfying appropriate conditions, we may
consider a graph Gd chosen uniformly at random from all graphs on [n] with
the property that each vertex i has degree di. The analysis of this graph, and
indeed of Gr, is almost always based on a construction due to Bollobás [26],
who defined the configuration multigraph with degree sequence d using a
random pairing of

∑
i di objects. Sometimes one studies Gd using this

model, and sometimes the multigraph directly. One can of course study
random subgraphs of Gd but (at least for the multigraph) there is not too
much reason to do so, since they can themselves be seen as new instances
of the model with appropriate (random) degree sequences. (This is spelled
out in detail by Fountoulakis [84].)

Molloy and Reed [127, 128] studied this configuration model Gd under
fairly general conditions, finding the size of the largest component up to
a o(n) error under some mild assumptions. This result has been extended
and generalized in various directions. On the one hand, one can ask for
the weakest conditions under which the asymptotic size of the giant com-
ponent can be established. Results of this type were proved by Janson and
Luczak [94], for example. For asymptotic results we of course consider a se-
quence (dn) of degree sequences with (for notational simplicity) dn having
length n. Let ni(d) denote the number of times degree i appears in d, and
m(d) half the sum of the entries of d, i.e., the number of edges of Gd. In
order to be able to say something about the limiting behaviour, it is natural
to assume that

(10) lim
n→∞

ni(dn)

n
= pi

for each i, for some number pi which we view as the probability P(D = i)
that the limiting degree distribution takes the value i. It also turns out to
be necessary to assume that

(11)
m(dn)

n
→ E(D)

2
=

1

2

∞∑
i=0

i pi.
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Perhaps the minimal conditions are those of the following result from [49],
whose proof uses several ideas from the original paper of Erdős and Rényi
[75]; this result applies both to the random simple graph Gdn and to the
configuration multigraph.

Theorem 27. Let D be a probability distribution on the non-negative
integers with 0 < E(D) < ∞ and P(D � 3) > 0, and let (dn) be a sequence
of degree sequences converging to D in the sense that (10) and (11) hold,
with dn having length n. Then

L1(Gdn) = ρ(D)n+ op(n)

and L2(Gdn) = op(n).

Of course, one can ask for more precise results. For example, what
is the width of the ‘scaling window’ of this phase transition? Results of
this type, either for the special case of r-regular graphs or for the con-
figuration model (with some assumptions) were given by Kang and Seier-
stad [104], Pittel [136] and Janson and Luczak [94], all with logarithmic
gaps in the bounds. The precise width of the scaling window was first es-
tablished for random r-regular graphs by Nachmias and Peres [130], using a
variant of their ideas in [129]. This result was extended to the configuration
model with bounded degrees by Riordan [143], who established not only
the asymptotic size of the giant component in the subcritical, critical and
weakly supercritical ranges, but also the scale and limiting distribution of
its fluctuations. To state the supercritical case of this result, given a degree
sequence d let μr = μr(d) = n−1

∑n
i=1(di)r be its rth factorial moment, and

let λ = λ(d) = μ2/μ1. Furthermore, let ρ and ρ∗ be two quantities whose
precise definition is given in [143] in terms of a certain branching process;
these satisfy

ρ ∼ 2μ2
1

μ3
ε and ρ∗ ∼ 2μ3

1

3μ2
3

ε3

as ε → 0, where ε = λ− 1.

Theorem 28. Let Δ � 2 and c0 > 0 be fixed. For each n let d = dn be
a degree sequence of length n with maximum degree at most Δ with at
least c0n vertices having degree not in {0, 2}. Define μi, λ, ρ and ρ∗ as
above, noting that these quantities depend on n. Setting ε = λ− 1, suppose
that ε → 0 and ε3n → ∞. Let L1 and N1 denote the order and nullity of
the largest component of Gdn . Then L′1 = L1 − ρn and N ′

1 = N1 − ρ∗n are
asymptotically jointly normally distributed with mean 0,

Var(L′1) ∼ 2μ1ε
−1n, Var(N ′

1) ∼ 5ρ∗n ∼ 10μ3
1

3μ2
3

ε3n,
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and

Cov(L′1, N
′
1) ∼

2μ2
1

μ3
εn.

Furthermore,

L2(Gdn) = Op

(
ε−2 log(ε3n)

)
.

Independently, for the critical case Joseph [100] proved precise results for
the component sizes under weaker assumptions. In a similar vein, Hatami
and Molloy [92] established the width of the phase transition for a more

general set of degree sequences, including cases where it is no longer n−1/3
as in the cases above.

7.2. The Watts–Strogatz model

One of the most prophetic statements of Erdős and Rényi in [75] was the
suggestion that variants of their model in which edges are not equiprobable
might be good models for real-world networks such as communication or
electrical networks. The subject of using random graphs as models for real-
world networks is of course much too large to cover here, but let us mention
a few of the very many examples from the last 15 years, during which this
has become a very active field.

In the 1960s, Milgram [126] and others noticed that many social net-
works, i.e., real-world graphs where the vertices are people and the edges
represent, for example, who is acquainted with whom, exhibit something
called the ‘small world phenomenon’, or ‘six degrees of separation’: the
apparently surprising phenomenon that in graphs of this type where the
number n of vertices is very large, even if the average degree is not that
large, the typical distance between vertices is relatively small – of order
logn. If we view the graph as a random graph of something like the Erdős–
Rényi type, then mathematically this is exactly what one would expect;
see Section 6.2. However, as pointed out by Watts and Strogatz [166], so-
cial networks are in many respects very different from Gn,p: they exhibit
high clustering, the phenomenon that two neighbours of a given vertex v
are much more likely to be joined to each other than a random pair of ver-
tices. This is a typical property of geometric networks where vertices are
connected to other vertices within some given distance, say; such networks
tend to have large diameter.

In a very influential paper [166], Watts and Strogatz proposed a new
model with both features, clustering and small distances. The idea is
very simple: start from the r-th power of a cycle, i.e., the graph with
vertex set {1, . . . , n} in which two vertices are joined if and only if their
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distance around the cycle 12 · · ·n1 is at most r. Then ‘rewire’ a fraction
of the edges randomly: for each edge, with some probability β replace one
or both endpoints by vertices chosen uniformly at random. Watts and
Strogatz simulated such networks and showed that they do indeed have
logarithmic diameter (with the implicit constant depending on β) as well
as high clustering: they called networks with this property ‘small world’
networks.

Mathematically, once one thinks of this type of model, it is easy to
see that it has the desired properties: high clustering is inherited from the
initial graph before rewiring, and the small diameter essentially follows from
that of Gn,p. Indeed, a very similar graph, namely a cycle plus a random
matching, had been studied much earlier by Bollobás and Chung [36] who
found its asymptotic diameter, which is indeed logarithmic.

7.3. Scale-free and other growing models

In 1999, Faloutsos, Faloutsos and Faloutsos [82] and others noticed that
many real-world graphs are ‘scale-free’ in the sense that certain key features,
and in particular the degree distribution, follow a power law. This contrasts
sharply with the Poisson distribution seen in sparse instances of Gn,p. Al-
though power-law distributions had been observed much earlier, for example
by Lotka [115] in the distribution of citations in academic literature, around
this time there was an explosion of activity based on modelling, or tying to
explain, such power laws. In one direction, Aiello, Chung and Lu [4] pro-
posed a model for ‘massive graphs’ of this type, namely the configuration
model with a fixed, power-law degree sequence. In a very different direc-
tion, Barabási and Albert [14] proposed a model to explain how such power
laws might arise, based on growth with preferential attachment:

“. . . starting with a small number (m0) of vertices, at every
time step we add a new vertex with m(� m0) edges that link
the new vertex to m different vertices already present in the
system. To incorporate preferential attachment, we assume that
the probability Π that a new vertex will be connected to a vertex
i depends on the connectivity ki of that vertex, so that Π(ki) =
ki/

∑
j kj. After t steps the model leads to a random network

with t+m0 vertices and mt edges.”

The idea is to provide a highly simplified model of the evolution of, for
example, the world-wide web. New webpages (or sites) are added one-at-a-
time, and link to earlier pages chosen with probabilities depending on how
many existing pages link to them. This mechanism represents the fact that
the creator of a new page is more likely to know about an existing page
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that has many links, or more generally the phenomenon that ‘popularity is
attractive’.

Mathematically, the model as described by Barabási and Albert does
not quite make sense. The fundamental problem is that one cannot describe
the distribution of a random set simply by specifying the probability that it
contains each given element. A precisely formulated version of the Barabási–
Albert model, the LCD model, was introduced in [44]. This may be defined

inductively as follows: start with G
(0)
1 the empty ‘graph’ with no vertices,

or with G
(1)
1 the graph with one vertex and one loop. Given G

(t−1)
1 , form

G
(t)
1 by adding the vertex vt together with a single edge between vt and vi,

where i is chosen randomly with

(12) P(i = s) =

{
d
G

(t−1)
1

(vs)/(2t− 1) 1 � s � t− 1,

1/(2t− 1) s = t.

In other words, send an edge e from vt to a random vertex vi, where the
probability that a vertex is chosen as vi is proportional to its degree at the
time, counting e as already contributing one to the degree of vt. (The reason
that this is convenient is that it allows an alternative ‘static’ description of
the model in terms of linearized chord diagrams; see [44].) Form > 1, addm
edges from vt one-at-a-time, counting the previous edges as well as the ‘out-
ward half’ of the edge being added as already contributing to the degrees.

Equivalently, define the process (G
(t)
m )t�0 by running the process (G

(t)
1 ) on

a sequence v′1, v′2, . . ., and forming the graph G
(t)
m from G

(mt)
1 by identify-

ing the vertices v′1, v′2, . . . , v′m to form v1, identifying v′m+1, v
′
m+2, . . . , v

′
2m to

form v2, and so on.

Bollobás, Riordan, Spencer and Tusnády [51] showed that the LCD
model does indeed have a power-law degree distribution, confirming exper-
imental and heuristic predictions of Barabási and Albert [14]. Computer
experiments of Barabási, Albert and Jeong [6, 15] and heuristic arguments
given by Newman, Strogatz and Watts [132] suggested that models of the
Barabási–Albert type should have diameter Θ(log n). In fact, as shown in
[44] the diameter is slightly smaller.

Theorem 29. Fix an integer m � 2 and a positive real number ε. Then

whp G
(n)
m is connected and has diameter diam(G

(n)
m ) satisfying

(1− ε) log n/ log logn � diam(G(n)
m ) � (1 + ε) log n/ log log n.

Even more than the Watts–Strogatz model, the Barabási–Albert model
has been extremely influential, stimulating the writing of hundreds of papers
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on related models incorporating preferential attachment and similar mecha-
nisms. Some early examples of models inspired by it are the ‘copying’ model
of Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins and Upfal [114],
the very general models defined by Cooper and Frieze [64], and a model for
directed graphs with preferential attachment introduced by Bollobás, Borgs,
Chayes and Riordan [34]. Within a very few years of the paper of Barabási
and Albert, there was enough activity in this area to justify several survey
papers (for example [5, 69]) and even several books [13, 70, 164, 165].

Although, as in the example above, it is possible to establish some prop-
erties of some of these new models rigorously, often the dependence inherent
in the construction, with the distribution of each edge added depending on
the arrangement of those already present, means that they are rather hard
to analyse. For this reason, often the ‘mean-field’ versions are analysed
instead: such models have (roughly) the same edge probabilities as the
evolving model, but with different edges present independently. We shall
return to this in the next subsection.

The work on scale-free random graphs led to renewed interest in evolving
random graphs in general. For example, Callaway, Hopcroft, Kleinberg,
Newman and Strogatz [59] proposed a random graph model based on growth
without preferential attachment. Roughly speaking, vertices and edges are
added at a uniform rate, with edges joining uniformly random vertices.
Depending on the value of a density parameter, it turns out that there
may or may not be a giant component. The authors of [59] gave heuristic
arguments for the critical value of this parameter. In fact, as noted by
Durrett [71] and Bollobás, Janson and Riordan [38], this ‘CHKNS’ model
is very closely related to one proposed by Dubins in 1984 (see [102, 156]).
To define this, let c < 2 be a density parameter. Given the number n of
vertices, let Gn(c) be the random graph with vertex set [n] in which edges
are present independently, and the probability of an edge ij, i < j, is c/j.
Similarly, let G∞(c) be the corresponding graph on {1, 2, . . .}. Dubins asked
for which c the graph G∞(c) is almost surely connected: this was answered
by Kalikow and Weiss [102] and Shepp [156], who showed that c = 1/4 is the
critical value. As pointed out in [71, 38], these much earlier results easily
determine the critical value in the CHKNS model.

One particularly interesting feature of Dubins’ model is the nature of
the phase transition. In the Erdős–Rényi model Gn,p, if the edge density is
a factor 1 + ε times the critical one, then the ‘giant’ component has order
Θ(εn) (more precisely, ∼ 2εn for ε → 0 more slowly than n−1/3). In Dubins’
model, just above the phase transition the giant component is much smaller:
as shown in [38] it contains exp(−Θ(1/

√
ε))n vertices. More precisely, the

following result is proved in [141].
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Theorem 30. There is a function f(c) such that for c > 0 fixed, L1(Gn(c)) =
f(c)n+ op(n). Furthermore, f(c) = 0 for c � 1/4, and

(13) f(1/4 + ε) = exp

(
−π

2

1√
ε
+O(log(1/ε))

)
as ε → 0 from above.

This result carries over to the CHKNS model, taking c = 2δ, where δ is
the edge-density parameter in [59].

7.4. The BJR model

Stepping backwards in time for a moment, let us recall that Erdős and
Rényi themselves suggested that it might make sense to consider variants
of their model in which vertices have different ‘types’, and edges are not
equiprobable, presumably with the probability depending on the types of
the vertices. Some such models are too obvious to be anything but ‘folklore’,
for example, the random bipartite graph Gn,n,p with two vertex classes of
size n in which each possible edge between the classes has probability p.

Going further in this direction, Söderberg [157] proposed and studied
the following model. Let k � 1, let A be a symmetric k-by-k matrix with
non-negative entries, and let μ = (μ1, . . . , μk) be a vector of probabilities
summing to 1. Define a random graph G(n,A,μ) as follows: for each vertex
i = 1, 2, . . . , n, first choose its type xi from {1, 2, . . . , k} according to the
distribution μ, with these choices independent for different vertices. Then,
conditional on these choices, let G(n,A, μ) be the random graph in which
edges are present independently, with the probability of an edge joining i
and j being Axi,xj/n. (Here we assume n is larger than the maximum entry
in A; otherwise take the minimum of Axi,xj/n and 1, say.)

In 2007, Bollobás, Janson and Riordan [39] greatly generalized this
model, to one whose special cases include many of the other inhomogeneous
models considered to that point, as well as the ‘mean-field’ versions of many
others. We shall not describe the model in full generality, as this takes some
time; a not-too-restrictive special case may be described as follows. Let κ
be an integrable symmetric non-negative function on [0, 1]2, called a kernel
in [39]. Also, let μ be a probability measure on [0, 1] (Lebesgue measure
being the most natural special case). Suppressing the dependence on μ in the
notation, let G(n, κ) be the random graph on [n] = {1, 2, . . . , n} constructed
as follows: first choose the vertex types x1, . . . , xn ∈ [0, 1] independently at
random according to the distribution μ. Then let G(n, κ) be the random
graph in which edges are present conditionally (on the types) independently,
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with the conditional probability of an edge ij being κ(xi, xj)/n if this is less
than 1, and 1 otherwise. (This version of the model is not actually covered
by the definitions in [39], but the results extend to it; see [41]).

Clearly, the BJR model generalizes that proposed by Söderberg: divide
[0, 1] into k intervals Ii with lengths μi and take κ to be piecewise constant,
taking the value Ai,j on Ii × Ij . In the form introduced in [39], it also
includes the finite version Gn(c) of Dubins’ model described above. Indeed,
the conditions in [39] allow the vertex types to be fixed, rather than random,
as long as their distribution converges to μ in a suitable sense as n → ∞. In
this version some technical assumptions are needed, but these apply with,
for example, κ(x, y) = c/max{x, y} and vertex i of G(n, κ) having type
i/n; it is easy to see that then G(n, κ) is exactly Gn(c). Similarly, taking
κ(x, y) = c/

√
xy gives a mean-field version of the Barabási–Albert model.

There are also choices for μ and κ giving, essentially, the dynamical random
graph model introduced by Turova [160, 161], and so on.

Many properties of G(n,κ) are established in [39]; the most important is
the critical point of the phase transition, and the asymptotic size of the giant
component when there is one. To state this result we need a few definitions.
Firstly, a kernel κ is reducible if there is a set A ⊂ [0, 1] with 0 < μ(A) < 1
such that κ = 0 a.e. on A× ([0, 1] \A), and irreducible otherwise. Note that
if κ is reducible then G(n, κ) splits automatically into two or more pieces:
vertices with types in A cannot be connected to those whose type is not
in A.

Given a kernel κ, let Tκ be the integral operator on ([0, 1], μ) with kernel
κ, defined by

(Tκf)(x) =

∫
[0,1]

κ(x, y)f(y) dμ(y),

for any (measurable) function f such that this integral is defined (finite or
+∞) for a.e. x. Let

‖Tκ‖ = sup
{
‖Tκf‖2 : f � 0, ‖f‖2 � 1

}
.

When finite, ‖Tκ‖ is the norm of Tκ as an operator on L2([0, 1], μ); it is
infinite if Tκ does not define a bounded operator on this space. Finally,
define a non-linear operator Φκ by

Φκf = 1− e−Tκf

for f � 0, let ρ = ρκ : [0, 1] → [0, 1] be the pointwise largest solution to the
functional equation Φκ(ρ) = ρ, and let

ρ(κ) =

∫
[0,1]

ρκ(x) dμ(x).

A version of the main result of [39] may now be stated as follows.
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Theorem 31. Let κ be a kernel, i.e., an integrable symmetric non-negative
function on [0, 1]2, let μ be a probability measure on [0, 1], and define the
random graph G(n, κ) as above. If κ is irreducible then

L1(G(n, κ)) = ρ(κ)n+ op(n)

and L2(G(n, κ)) = op(n). Moreover, ρ(κ) > 0 if and only if ‖Tκ‖ > 1.

Since the BJR model includes as special cases many previously studied
models, Theorem 31 generalizes, at least in part, many results about their
phase transitions. Indeed, this result shows that to find the critical point of
the phase transition we ‘merely’ need to find the norm of a corresponding
operator, and to find the size of the giant component we need to solve
a certain non-linear integral equation. Depending on the kernel κ, this
may not be so easy. For example, Theorem 31 certainly implies the first
statement (existence of f(c)) of Theorem 30, but for the main part one still
needs to analyse solutions to the equation Φκ(ρ) = ρ, and that is where the
work in [141] is. For further examples see [39, Section 16].

One of the most interesting questions about the phase transition in any
random graph model is the following: how big is the giant component just
above the critical point? In the context of the BJR model, if we fix a kernel
κ and vary a scaling parameter c, the question is how the function c �→ ρ(cκ)
behaves as c tends down to the critical value c0 = 1/‖Tκ‖ from above. In [39,
Section 16] examples are given of cases in which ρ((c0 + ε)κ) = Θ(εd) for
any d ∈ [1,∞) – in other words, we may have a phase transition of any
finite order d � 1. Theorem 30 gives an example where the order is infinite:
ρ((c0 + ε)κ) = o(εd) as ε → 0 for any finite d.

What about the other direction? Are there phase transitions that are
steeper than that in Gn,p? For the BJR model, the answer is no, at least
under a certain additional assumption.

Theorem 32. Let κ be an irreducible kernel on ([0, 1], μ) such that

(14) sup
x

∫
[0,1]

κ(x, y)2 dμ(y) < ∞,

and let c0 = ‖Tκ‖−1 > 0. Then c0ρ
′
+(c0) � 2, with equality in the classical

Erdős–Rényi case; more precisely, equality holds if and only if

c0

∫
[0,1]

κ(x, y) dμ(y) = 1 for a.e. x.

In [39], the above result is proved as a special case of the following result,
establishing the initial rate of growth of the giant component for any kernel
satisfying (14). Note that one can think of ε as constant or as tending to 0
slowly as n → ∞.



The Phase Transition in the Erdős–Rényi Random Graph Process 97

Theorem 33. Let κ be a kernel on ([0, 1], μ). Suppose that κ is irreducible,
and that (14) holds.

1. The function c �→ ρ(c) = ρ(cκ) is analytic except at c0 = ‖Tκ‖−1.
2. The linear operator Tκ has an eigenfunction ψ of eigenvalue ‖Tκ‖ < ∞,

and every such eigenfunction is bounded and satisfies

(15) ρ(c0 + ε) = 2c−10

∫
[0,1] ψ

∫
[0,1] ψ

2∫
[0,1] ψ

3
ε+O(ε2), ε > 0,

so ρ′+(c0) = 2c−10

∫
[0,1] ψ

∫
[0,1] ψ

2/
∫
[0,1] ψ

3 > 0 and ρ has a phase tran-

sition at c0 with exponent 1.

Of course, there are many further questions that one can ask about
the BJR model. For example, how large is the giant component in the
subcritical case ‖Tκ‖ < 1? It seems that the model is too general for a
single comprehensive answer to this, but certain special cases are relatively
well understood. For example, in the rank 1 case we assume that κ(x, y) =
ψ(x)ψ(y) for some ψ : [0, 1] → [0,∞). In this case G(n, κ) is a version of the
Norros–Reittu model [133]. Under some additional assumptions (including
that there are only countably many vertex types) Turova [163] showed that
in the subcritical rank 1 case L1(G(n, κ)) is whp asymptotic to cκ log n,
for some constant cκ that she determined. Again in the rank 1 case,
under a third moment condition on ψ Bhamidi, van der Hofstad and van
Leeuwaarden [23] and independently Turova [162] proved an analogue of
Aldous’ result (Theorem 18) for the critical case. In a different direction,
Janson and Riordan [98] studied the ‘susceptibility’ (the average component
size, appropriately defined) in the sub- and super-critical cases, and in [97]
proved a duality result showing that deleting the giant component from a
supercritical instance of the model leaves a subcritical one, as one might
expect.

Let us briefly mention one very interesting connection between the BJR
model and the theory of graph limits developed by Lovász and Szegedy [116]
and Borgs, Chayes, Lovász, Sós and Vesztergombi [54, 55]. Roughly speak-
ing, these authors showed that any sequence of dense graphs (with Θ(n2)
edges, where n is the number of vertices) has a subsequence that con-
verges in any one of several natural senses that they show to be equivalent;
these results have immeasurably improved our understanding of the space
of dense graphs. (In fact, the definitions make sense for arbitrary sequences
of graphs, but the notion of convergence is informative only in the dense
case: any sequence of graphs with o(n2) edges converges to the same (zero)
limit object.) One way of describing the limit objects in this theory is as
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graphons, i.e., symmetric measurable functions κ : [0, 1]2 → [0, 1]. Except
that the values must be bounded by 1, a graphon is exactly a kernel. More-
over, the results of [116, 54, 55] can be seen as saying that any sequence
of graphs has a subsequence that can be thought of as ‘inhomogeneous
quasi-random’ (see the discussion in [46]). Unsurprisingly, the correspond-
ing inhomogeneous random graphs play an important role in the theory.
These were introduced in [116] and can be seen as a dense equivalent of the
BJR model: given a graphon κ, the random graph G1(n, κ) is constructed
by choosing x1, . . . , xn independently and uniformly from [0, 1] and then in-
serting each possible edge ij with probability κ(xi, xj). Of course, just as
when studying Gn,p, the types of properties of these graphs studied in the
dense and sparse cases are very different. Also, in the sparse case it is very
important that the kernels need not be bounded.

Of course, there is a natural way of associating a sparse random graph
(formally, a sequence of such graphs) to a dense graph (sequence of dense
graphs): simply take a random subgraph, retaining edges independently
with probability c/n, where n is the number of vertices. Bollobás, Borgs,
Chayes and Riordan [35] showed that if we start with a sequence that
converges (in the sense of [54, 55]) to a graphon κ, then the subgraphs have
a giant component if and only if c‖Tκ‖ > 1, and, assuming irreducibility,
its order is then ρ(cκ)n+ op(n). Random graphs of this type, as well as
the BJR model, can be seen in the following general framework: construct
somehow a random sequence of matrices An, and then, given An, construct
a random graph Gn(An) on [n] by taking the entries of An divided by n
to give the edge probabilities. In both cases, the matrices An converge in
some sense to a kernel κ. Bollobás, Janson and Riordan [40] established a
common generalization of the main results of [35] and [39] by giving what
is perhaps the weakest convergence condition under which it is sensible to
expect to be able to describe the phase transition in terms of the kernel;
this turns out to be exactly convergence in the cut metric of Borgs, Chayes,
Lovász, Sós and Vesztergombi [54]! For the details, see [40].

Although the BJR model has many attractive features, like the Erdős–
Rényi model it lacks an important feature of many real-world networks,
namely significant clustering. Oversimplifying significantly, in a graph such
as G(n, κ) where the edge probabilities are of order 1/n and edges are
(conditionally) independent, the expected number of triangles is O(1). (This
is not quite true since κ need not be bounded.) In contrast, many real-world
networks with Θ(n) edges contain Θ(n) triangles. Models which do show
significant clustering necessarily have some form of dependence between
edges; it is not so easy to introduce this while keeping the model tractable.
In the context of the configuration model, Newman [131] suggested one
natural approach: each vertex starts with some edge stubs and some triangle
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stubs, then the edge stubs are randomly paired and the triangle stubs
randomly grouped into threes.

Generalizing the BJR model even further, Bollobás, Janson and Rior-
dan [41] introduced the ‘sparse inhomogeneous model with clustering’. A
special case of this can be described roughly as follows. Start with a kernel
family, i.e., a family (κF ) of functions, one for each finite graph F , with

κF a non-negative measurable function on [0, 1]V (F ) that is invariant under
the natural action of the automorphism group of F . Define a random graph
G(n, (κF )) on [n] by choosing vertex types x1, . . . , xn independently and uni-
formly from [0, 1], and then for each r-tuple v1, . . . , vr of distinct vertices,
and each graph F on r vertices, inserting a copy of F with these vertices
with probability κF (xv1 , . . . , xvr)/n

r−1. The special case where κF = 0 for
all F other than the single edge K2 is simply G(n, κ) as above. Perhaps
surprisingly, even though the operator playing the role that Tκ does for
the BJR model is now non-linear, much of the analysis of G(n, κ) extends
to this generalization; see [41]. Already using non-trivial functions κF for
F = K2 and F = K3 is enough to generate a variety of random graph models
with various types of degree distribution and various clustering coefficients.
There is also a cut-metric generalization of this model; see [40].

7.5. Achlioptas processes

We close this section, and thus the paper, by briefly describing yet another
new and very active area of research that can ultimately be traced back to
the work of Erdős and Rényi. At a Fields Institute workshop in 2000, Dim-
itris Achlioptas suggested a class of variants of the random graph process

G̃n, which may be described as follows. Start with the empty graph with n
vertices and no edges. At each time step, two potential edges e1 and e2 are
chosen independently and uniformly at random from all

(
n
2

)
possible edges

(or from those edges not already present). One of these edges is selected
according to some ‘rule’ R and added to the graph. The result is a ran-

dom graph process G̃Rn whose distribution of course depends on the rule R;
these processes are known as ‘Achlioptas processes’. Of course, always se-
lecting e1, say, gives (exactly, or approximately, depending on the precise

definitions) the classical random graph process G̃n.

The original question posed by Achlioptas was whether one can shift
the critical point of the random graph process by choosing an appropriate
rule. It is easy to see that it can be brought forward (there are rules that
lead to inhomogeneous instances of the BJR model, for example); it is more
interesting that it can be delayed. Bollobás suggested that the rule most
likely to achieve this is the ‘product rule’ – select the edge (of e1 and e2)
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minimizing the product of the orders of the components it joins. Bohman
and Frieze [24] soon showed that a much simpler rule (essentially to select
e1 if it joins two isolated vertices and e2 otherwise) does indeed delay the
appearance of a giant component. This Bohman–Frieze rule is an example
of a ‘bounded size’ rule, i.e., one in which the only information used to
decide which edge to choose is the sizes of the components that would
be joined by e1 and e2, with all sizes above some constant treated the
same. (The constant is 1 for the Bohman–Frieze rule.) By now this class of
rules is relatively well understood; for example, Bohman and Kravitz [25]
and Spencer and Wormald [158] showed that using Wormald’s ‘differential
equation method’ [167] one can find the asymptotic number of vertices in
components of any given (constant) size at a given point in such a process.

The phase transition in these processes, especially for ‘unbounded’ rules
such as the product rule, remained relatively resistant to analysis. It also
seemed to be extremely interesting. In particular, making explicit an earlier
belief of Achlioptas and others, Achlioptas, D’Souza and Spencer [1] conjec-
tured in 2009 that for the product rule there exists a δ > 0 (in fact, δ � 1/2)
such that with high probability the order of the largest component ‘jumps’
from o(n) to at least δn in o(n) steps of the process, a phenomenon known
as ‘explosive percolation’. If true, this would have been a very interesting
example of a random graph model in which the size of the giant component
really does jump (though not quite as suddenly as the k-core does in Gn,p).
However, as indicated heuristically for a variant of the product rule by da
Costa, Dorogovtsev, Goltsev and Mendes [65] and proved (by a very differ-
ent argument) rigorously by Riordan and Warnke [144, 146], no Achlioptas
process can ‘jump’ in this way – they all have continuous phase transitions.
These papers also settled various conjectures of Spencer and others, show-
ing that for any bounded size rule there is a limiting function ρR(t) so that
after tn steps of the process the largest component has size ρR(t)n+ op(n);
in addition, Riordan and Warnke [147] gave strong evidence that this need
not be the case for general Achlioptas processes.

In the last few years, many papers have been written about Achlioptas
processes. For example, results concerning the barely subcritical regime in
the Bohman–Frieze process have been published by Janson and Spencer [99]
and Kang, Perkins and Spencer [103]. Bhamidi, Budhiraja and Wang
have obtained detailed results for bounded size rules in the subcritical [20]
and, remarkably, critical regimes [21], using a generalization of Aldous’
multiplicative coalescent process to study the latter.

Despite this work, of which we have listed only a small fraction, many
questions remain open. One is the following: what natural random graph
processes do exhibit explosive percolation? There are trivial examples, such
as the rule ‘always join the two smallest components in the whole graph’.
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Recently, non-trivial examples were given by Panagiotou, Spöhel, Steger and
Thomas [134] but these processes (for example involving choosing a vertex
randomly from among the 50% (say) of vertices in the smallest components),
are not as natural as one might hope for. Concerning Achlioptas processes
themselves, although the phase transitions are always continuous, it seems
that they can be very steep. In particular, the heuristics given by da Costa,
Dorogovtsev, Goltsev and Mendes [65] suggest that for a rule closely related
to the product rule, after (tc+ε)n steps of the process (where tc is the critical
value), the largest component has size around εβn where the exponent β
appears to have the value 0.055 · · · , in contrast to β = 1 for the Erdős–Rényi
model. (They suggest that perhaps β = 1/18.) Thus the giant component
grows from size o(n) to around n/2 in around n/250000 steps – a number
that is linear in n but with an extremely small constant. It would be very
interesting to establish even the most basic properties of this extremely steep
phase transition rigorously. At the moment, for the product rule (which
appears to have a similarly steep phase transition) it is not even known
that the limiting rescaled size ρR(t) exists, although partial results have
been given by Riordan and Warnke [145, 148]. This fascinating question is
just one part of one of the very many active strands of research ultimately
arising from the work of Erdős and Rényi on random graphs.
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Around the Sum-product Phenomenon

JEAN BOURGAIN∗

(Dedicated to P. Erdős)

1. Introduction

The purpose of this exposé is to give a sample of P. Erdős many contribu-
tions to combinatorics that turned out to be unexpectedly seminal. He was
indeed a master in recognizing seemingly elementary questions which require
new insights, often with far reaching consequences. The results discussed be-
low originate from his papers “Problems and results in combinatorial num-
ber theory, III” ([32]), “On sums and products of integers”, ([33]), jointly
with Szemerédi, and “Additive Gruppen mit vorgegebener Hausdorffscher
Dimension” ([34]), jointly with Volkmann. These papers led to numerous
developments over the past decade and influenced other parts of mathemat-
ics, including number theory, theoretical computer science, ergodic theory
and group theory. Giving a fair account of them would be a considerable
task and we limit ourselves to citing just a few. The choice only reflects the
author’s interests and research; many related contributions and contributors
will not be cited and the bibliography strictly serves this presentation.

2. Some Comments on the Original Problems and Their

Status

If A is a finite subset of Z, Erdős conjectured in [32] that for all ε > 0

(2.1) |A+A|+ |A.A| > cε|A|2−ε.
∗The research was partially supported by NSF grants DMS-0808042 and DMS-0835373.
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It is proved in [33] (among other things) that

(2.2) |A+A|+ |A.A| > c|A|1+c

for some c > 0; the best result to date is due to Solymosi [59], with

(2.3) |A+A|+ |A.A| > 1

2
|A|4/3(log |A|)− 1

3 .

More generally, related to h-fold sumsets hA and product sets A(h), [32]
puts forward the problem of showing that for A as above

(2.4) |hA|+ |A(h)| > ch,ε|A|h−ε.

These problems may be considered for finite subsets A of R as well (cf. [33])
and (2.3) is equally valid in this setting. Note that the statement (2.1) is
carefully formulated, since (cf. [33])

(2.5) min
|A|=k

(|A+A|+ |A.A|) � k
2− c

log log k .

Problem 2.1 remains widely open and, if correct, is likely a deep statement.
Some hints of this are provided by the treatment of certain special cases,
that rely on methods from algebraic number theory; see [27], [28]. We cite
two such results.

Let A ⊂ R or A ⊂ C be a finite set. Assume |A+A| < K|A| where,
for simplicity, we view K as a fixed large constant. Using Freiman’s
theorem and divisor theory in number fields, it is shown in [27] that

|A(h)| > ch,ε|A|h−ε for h = 2, 3, . . .. Conversely, if |A.A| < K|A|, the work
of [35] on additive relations in multiplicative subgroups of C∗ (based on ex-
tensions of the ‘subspace theorem’) permits to deduce that |hA| > ch|A|h
for h = 2, 3, . . ., see [28].

It was also proven in [10] that

(2.6) |hA|+ |A(h)| > |A|c(h)

with c(h) → ∞ for h → ∞, provided we assume A ⊂ Z.
Statement (2.6) was generalized to sets A consisting of algebraic numbers

of bounded degree, [11] but so far remains unsettled for A ⊂ R.
In [33], a further rather fascinating generalization of (2.1) is suggested,

where one considers sumsets and product sets restricted to a graph G ⊂
A×A. Thus

A+
G
A = {x+ y; (x, y) ∈ G}
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and A×
G
A is defined similarly. The reader is referred to [1] for an extensive

discussion and recent developments around this question.

Let us turn next to the ‘continuous’ counterpart of the sum-product
problem. One version is embodied in the following conjecture going back
to [34]:

“A measurable subring R of R (in the algebraic sense) is either of zero
Hausdorff dimension or R = R”.

It was proven in [36] that R = R if dimH R > 1
2 . The question remained

somewhat dormant until in [47] its relevance (more precisely, the discretized
version formulated in terms of box-dimension) to various other issues, such
as Falconer’s distance problem (a dimensional version of Erdős’ distance
problem) and questions raised by Furstenberg, was noted; these were in fact
largely motivated by attempts to progress on the 3-dimensional Kakeya set
problem, still unsolved to date. On the other hand, the Erdős–Volkmann
ring problem got settled in an elegant paper by Edgar and Miller [31]. While
it did not capture the problems discussed in [47], that have to do with box-
dimension, it is the starting point of the ‘sum-product theory’ in finite fields
which had its own rather remarkable impact. Returning to the [47] paper,
the so-called ‘discretized ring theorem’ was established in [3] and underlies
a different set of developments.

3. Sum-product in Finite Fields

The basic philosophy of the sum-product theorem is that either the sum set
A+A = {x+ y|x ∈ A, y ∈ A} or the product set A ·A = {x · y : x, y ∈ A}
will be substantially “larger” than A, putting aside obvious obstructions of
algebraic (or metrical) nature.

The following result was proven in [21] and in a more precise form in [20].
See also [61].

Theorem 3.1 ([21] and [20]). For all ε > 0, there is δ > 0 such that if
A ⊂ Fp and |A| < p1−ε, then

|A+A|+ |A ·A| > c|A|1+δ

where c > 0 is an absolute constant.

To be pointed out that formulations with explicit exponents have been
obtained, but we will not discuss them here.
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If we try to generalize Theorem 3.1 to arbitrary finite fields, there is the
obvious obstruction of nontrivial subfields. As is clear from the next result,
this is the only one.

Theorem 3.2 ([21]). Assume S ⊂ Fq and |S| > qδ where δ > 0 is arbitrary
and

|S + S|+ |S · S| < K|S|.
Then there is a subfield G of Fq and ξ ∈ F∗q such that

|G| < KC |S| and |S\ξG| < KC ,

where C = C(δ).

Further generalizations (with an appropriate formulation) to Cartesian
products Fp × Fp, residue rings Z/qZ and, more generally, O/I with I an
ideal in the integers O of a number field, followed. See in particular [9].

While their formulation is unavoidably more technical, they rigorously
conform with the ‘philosophy’ stated above. These results have equally
significant consequences, some of which are discussed below (see also the
survey paper of M. Garaev [42]).

4. Exponential Sums: Beyond Weil and Stepanov

A first significant application of the results of Section 3 is to the theory of
exponential sums over finite fields, leading to nontrivial results in situations
where classical methods do not seem to apply. The first progress obtained
along these lines appear in [22] and [20].

Theorem 4.1. For all ε > 0, there is δ > 0 such that if H is a multiplicative
subgroup of F∗p (H < F∗p for short) and |H| > pε, then

(4.2) max
(a,p)=1

∣∣∣∣ ∑
x∈H

ep(ax)

∣∣∣∣ < cp−δ|H|.

Earlier results cover the range up to ε > 1
4 ; see [44], [49]. The technique

used in those papers are variants of Stepanov’s method.

Nontrivial bounds of the form

(4.3) max
(a,p)=1

∣∣∣∣ ∑
x∈H

ep(ax)

∣∣∣∣ = o(|H|)
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may be obtained provided log |H| > C log p
log log p , for some constant C. This

seems to be the limitation of our method. It is a challenging problem to
obtain estimates below this threshold.

Following [53], one can state

Problem 1. Is (4.3) valid under the assumption that |H|
log p → ∞?

H. Furstenberg’s famous ×2,×3 problem for invariant measures on the
circle T = R/Z naturally leads to the following question.

Problem 2. Does (4.3) hold if we let H < F∗p be the multiplicative group
generated by 2 and 3?

Theorem 4.1 is of course equivalent to the following formulation for
Gauss sums.

Corollary 4.4. For all δ > 0, there is δ′ > 0 such that if (k, p− 1) < p1−δ,
then

(4.5) max
(a,p)=1

∣∣∣∣ p∑
x=1

ep(ax
k)

∣∣∣∣ < cp1−δ
′
.

Note that Gauss classical bound by (k, p− 1)
√
p is trivial if (k, p− 1) ≥√

p.

More generally, one has Weil’s inequality for f(x) ∈ Fp[X] of degree d,
namely

(4.6)

∣∣∣∣ ∑
1≤x≤p

ep
(
f(x)

)∣∣∣∣ ≤ d
√
p.

This inequality is again trivial for d ≥ √
p. Obtaining nontrivial exponential

sum bounds for general polynomials when d ≥ √
p is a major open problem.

For certain applications, as described for instance in the book [50], it is
useful to have the following version of Theorem 4.1 for ‘almost groups’.

Theorem 4.7. For all δ > 0, there is δ′ > 0 such that if θ ∈ Z+ satisfies

(4.8) (θ, p) = 1 and Op(θ) ≥ t > pδ

where we denote Op(θ) the multiplicative order of θmod p, then

(4.9) max
(a,p)=1

∣∣∣∣ t∑
s=1

ep(aθ
s)

∣∣∣∣ < tp−δ
′
.
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This type of statement is obviously relevant to the distributional proper-
ties of the linear congruential pseudo-random number generator for instance.

A similar result, with the appropriate necessary assumptions, may be
obtained for arbitrary finite fields Fq.

Let q = pm and denote for x ∈ Fq the trace

Tr(x) = x+ xp + · · ·+ xp
m−1

.

Let ψ(x) = ep(Tr(x)) be the additive character.

Theorem 4.10 [12]. Let θ ∈ F∗q be of order t and let t ≥ t1 > qε. Assume

max
1≤ν<m
ν|m

(pν − 1, t) < q−εt

where ε > 0 is arbitrary and fixed. Then

max
a∈F∗q

∣∣∣∣ ∑
j≤t1

ψ(agj)

∣∣∣∣ < Cq−δt1,

where δ = δ(ε) > 0.

Already for ε = 1
2 , the result seems new (there does not seem a version

of Stepanov’s method available beyond prime fields).

Theorem 4.1 has an extension to subgroups of the unit group (Z/qZ)∗
of the ring Z/qZ of residues modulo q, see [6].

Theorem 4.11. Let q be an arbitrary modulus. For all ε > 0, there is
δ = δ(ε) such that if H < Z∗q satisfies

(4.12) |H| > qε,

then

(4.13) max
ξ∈Z∗q

∣∣∣∣ ∑
x∈H

eq(ξx)

∣∣∣∣ < q−δ|H|.

Note that the statement in Theorem 4.11 is uniform in the modulus q,
which may be highly composite. In this setting, only the case ε > 1

2 was
previously known, as a consequence of Gauss’ estimate.

Let us cite one more generalization.

Let R be a finite commutative ring with unit and assume |R| = q where
q has no small prime divisors (hence Theorem 4.14 below does not cover
Theorem 4.11). Denote R∗ the group of invertible elements of R. The
following trichotomy holds, see [5].
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Theorem 4.14. Let H < R∗ and |H| > qδ, where δ is arbitrarily and fixed.
For all ε > 0, there is ε′ = ε′(ε) → 0, as ε → 0, such that one of the following
alternatives holds:

(i) We have

(4.15) max
χ =χ0

∣∣∣∣ ∑
x∈H

χ(x)

∣∣∣∣ < |H|1−ε,

where χ refers to the additive characters of R.
(ii) There is a nontrivial ideal I in R with

(4.16) |H ∩ (1 + I)| > |H|1−ε′ .
(iii) There is a nontrivial subring R1 of R such that

(4.17) |H ∩R1| > |H|1−ε′ .
A word of explanation about the relation between the results in Sec-

tion 3, which are purely set-theoretical, and those in Section 4 that depend
on bounds on additive and multiplicative energy

E+(A,B) = |{(a, a′, b, b′) ∈ A2 ×B2; a+ b = a′ + b′}|(4.18)

E×(A,B) = |{(a, a′, b, b′) ∈ A2 ×B2; ab = a′b′}|.(4.19)

The link is provided by the Balog-Szemerédi-Gowers theorem (cf. [61]),
which is basically a general result from graph theory. It was originally
proven by Balog and Szemerédi, using Szemerédi’s uniformity lemma and
the estimates were quantitatively poor. A simpler argument with better
bounds was obtained more recently by Gowers and is an essential ingredient
in his work on arithmetic progressions.

Combining Theorem 3.1 with the [17] result, one establishes multi-linear
exponential sum bounds of the following type

Theorem 4.20. Given ε > 0, there is δ = δ(ε) such that for arbitrary sets
A1, . . . , Ak ⊂ Fp satisfying |Aj | > pε for 1 ≤ j ≤ k and |A1| · · · |Ak| > p1+ε,

(4.21) max
a∈F∗p

∣∣∣∣ ∑
x1∈A1

· · ·
∑

xk∈Ak

ep(ax1 . . . xk)

∣∣∣∣ < p−δ|A1| . . . |Ak|.

Observe that when k = 2 the statement is elementary and well-known.
Indeed one has

(4.22) max
a∈F∗p

∣∣∣∣∑
x∈A

∑
y∈B

ep(axy)

∣∣∣∣ ≤ (p|A| |B|)1/2.
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Also, the condition |A1| . . . |Ak| > p1+ε is essentially optimal.

Apart from bounding exponential sums over multiplicative subgroups,
Theorem 4.20 has other number theoretic applications that are worth to be
mentioned. We cite a few consequences to incomplete Kloosterman sums
obtained in [19]. The following statement relates to results from [52] but
the assumptions are much less restrictive.

Theorem 4.23. There are an absolute constant C > 0 such that for any

positive integer n, arbitrary intervals I1, . . . , In ⊂ Fp of size N > pC/n2
and

arbitrary subsets A1 ⊂ I1, . . . , An ⊂ In, one has the estimate

(4.24) max
(a,p)=1

∣∣∣∣ ∑
x1∈A1

· · ·
∑

xn∈An

ep(ax
∗
1 · · ·x∗n)

∣∣∣∣ < p−δNn

with x∗ the multiplicative inverse of x(mod p). Here δ = δ(n) > 0.

Remark. In fact, one may take C = 4 in the above statement.

Bounds on multi-linear Kloosterman sums play a role in obtaining good
remainder estimates in sieving theory; cf. [37]. Denote

(4.25) π(x; q, a) = {p < x; p ≡ a(mod q)}.

The following result from [19] improves the Brunn–Titchmarsh theorem
derived in [38] (see Ch. 13).

Theorem 4.26. Let q = xθ, where θ < 1 is close to 1. Then, for sufficiently
large x

(4.27) π(x; q, a) <
cx

φ(q) log x
q

with c = 2− c1(1− θ)2, for some absolute constant c1 > 0

Other applications of sum-product theory appear in relation to incom-
plete character sums. This is perhaps not surprising, taking into consider-
ation the amplification step, based on Vinogradov’s shifted product argu-
ment, in the proof of Burgess’ theorem. Depending on the problem, geom-
etry of numbers or sum-product techniques may be more effective here.
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5. Growth and Expansion in Semi-simple Groups

It turned out that sum-product theorems in finite fields lead to product
theorems in semi-simple Lie groups. A first breakthrough result in this
direction was obtained by Helfgott.

Theorem 5.1 ([45]). Let A ⊂ SL2(Fp), |A| < p3−δ and assume A is not
contained in any proper subgroup of SL2(Fp). Then

|A ·A ·A| > c|A|1+ε,

with c, ε > 0 only depending on δ.

Theorem 5.1 is a key ingredient in the proof of the following result on
expansion in SL2(Fp) Cayley graphs.

Theorem 5.2 ([14]). Let S be a symmetric generating subset of SL2(Fp)
satisfying the girth condition

girth
(
G(SL2(p), S)

)
> ρ log p,

where ρ > 0 is an arbitrary fixed constant. Then the Busemann-Cheeger
expansion coefficient c(G) satisfies

c(G) > c(ρ) > 0.

Recall that the ‘girth’ is the size of the smallest Hamiltonian cycle. The

expansion coefficient is min |∂A||A| for A a subset of the vertex set V , |A| ≤ 1
2 |V |

and ∂A refers to the edges joining A and V \A.

Theorem 5.2 relates to Theorem 5.1 the way Theorem 4.1 relates to
Theorem 3.1 and again the Balog–Szemerédi–Gowers result is involved in
deriving one from the other. Taking S ⊂ SL2(Z) generating a free group,
the Cayley graphs

{G(SL2(p), πp(S)
)
: p ≥ p0(S)}

from an expander family, according to Theorem 5.2 and the strong approx-
imation property.

Problem 3 (A. Lubotzky). Is there for given k ≥ 2 an absolute constant
ρ > 0 such that the expansion coefficient c

(
G(SL2(p)), S

)
> ρ, whenever

S ⊂ SL2(p), |S| = k and S generates SL2(p)?
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The work of Breuillard and Gamburd [24] comes tentatively close to a
positive answer.

Theorem 5.1 and 5.2 have been vastly generalized, leading to a powerful
and fairly complete theory. In particular, Theorem 5.1 was extended by
Helfgott and subsequently, in the works of Pyber–Szabó [54] and Breuillard–
Green–Tao [25]. Similar results in SLd(Z/qZ) were obtained by Gamburd,
Sarnak and the author and, more recently, by P. Varju. In terms of group
expansion, we cite the following extensions of Theorem 5.2.

Theorem 5.3 [57]. Let Γ ≤ SLn(Q) be a finitely generated group with a
symmetric generating set S. Then the congruence graphs

(
πq(Γ), S

)
for q

squarefree and coprime to a finite set of primes (depending on Γ), are an
expander family, provided G0 the identity component of the Zariski closure
G of Γ, is perfect, i.e. [Go, Go] = Go.

Theorem 5.4 ([23]). Let S ⊂ SLd(Z) be finite and symmetric. Assume
that S generates a subgroup of Γ < SLd(Z), which is Zariski dense in SLd.
Then the Cayley graphs G

(
πq(Γ), πq(S)

)
with q running over the integers,

forms an expander family. Moreover, there is an integer q0 such that
πq(Γ) = SLd(Z/qZ) if q is coprime to q0.

Note that the last part of the statement in Theorem 5.4 is just the strong
approximation property. In particular, setting d = 2, Theorem 5.4 provides
the full generalization of Selberg’s theorem to non-elementary subgroups of
SL2(Z).

Part of the the motivation for this research comes from number theory
and diophantine problems related to group actions. A first line of applica-
tions has to do with prime number sieving in the orbits of ‘thin’ groups, a
popularized example being the curvatures in integral Apollonian circle pack-
ings (cf. [17] and the Bourbaki exposé by E. Kowalski [51]). Further appli-
cations (as discussed in [4] and in A. Kontorovich’ expository paper [48])
emerged with the elaboration of a version of the Hardy–Littlewood circle
method in the study of global properties of group (or semi-group) orbits.
The major arcs analysis in the application of the circle method requires in-
deed precise counting asymptotics in the Archimedian balls of congruence
subgroups. Those are provided by Lax–Phillips theory or thermo-dynamical
methods applied to thin groups and the spectral input is provided by the ex-
pansion theory discussed above. (See [18]). Note that an implementation in
the circle method requires expansion with unrestricted modulus (as stated
in Theorem 5.4) while for most sieving applications, it suffices to consider
square-free moduli.

Returning to the combinatorial aspect of Theorem 5.1, an important
notion (introduced by Tao in [60]) is that of an ‘approximate group’. (See
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also [61]). Roughly speaking, a subset A of a group G is called a K-
approximate group, provided A = A−1 and there is a subsetX ⊂ G, |X| < K
such that X = X−1 and A.A ⊂ A.X. A natural line of research is then
to explore the arithmetic structure of K-approximate groups, in various
ranges of K (the quantitative aspects are essential in applications). For
instance, Freiman’s classical theorem states that if A ⊂ Z is a finite K-
approximate group, say with K a fixed constant, then A is commensurable
with a generalized arithmetic progression – the ultimate quantitative version
in terms of dependence on K, known as the polynomial Freiman-Ruzsa
conjecture being still unsettled at the time of this writing (see [56] for
the strongest results in this direction). On the other hand, Theorem 5.1
implies that if A ⊂ SL2(p) is a generatingK-approximate group, then either
|A| < KC or |A| > K−C |SL2(p)| for some absolute constant C.

Note that while Helfgott’s approach was based on the scalar sum-product
theory, the subsequent developments in [54], [25] rely solely on the ambient
group structure. The key combinatorial insights in these works indeed are
purely group theoretical. They provide a quantitative version of earlier work
due to E. Hrushovski [46].

The reader may wish to consult B. Green’s survey paper [43] on approx-
imate groups for an introduction; but it does not discuss the work in [54]
and [25] that came slightly later.

Finally, a complete structural description of K-approximate groups in
the general setting (for fixed K) is to be found in [26].

6. The Discretized Ring Theorem

While in [34] Hausdorff dimension is considered, it turns out that for many
applications (starting from the ones discussed in [47]), it is rather a sum-
product principle for box-dimension that is useful. Let us point out that
the results presented in this section also have p-adic versions. Another com-
ment is that while it is standard to derive statements involving Hausdorff
dimension from their counterpart for box-dimension, the other way around
is by no means automatic and may require different methods.

Theorem 6.1 ([3]). For all 0 < σ < 1 and κ > 0, there is ε = ε(σ, κ) >
0 such that if A ⊂ [0, 1] is a union of δ-intervals, where δ > 0 is small,
satisfying

|A| = δ1−σ,
and for all δ < ρ < δε,

(6.2) max
t

|A ∩B(t, ρ)| < ρk|A|,
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then

|A+A|+ |A ·A| > δ1−σ−ε.

Remark. A “non-concentration” assumption such as (6.2) is easily seen to
be necessary for such a statement to hold.

From the above result, one may deduce new Marstrand-type projection
theorems;

Their original motivation lies in the work [13] discussed in the next
section. Our first statement uses box-dimension; the next one is in terms of
Hausdorff dimension (see [8]).

Theorem 6.3. Given 0 < α < 2, β > 0 and κ > 0, there exist τ0 > 0 and
η > α/2 such that the following hods.

Let μ1 be a probability measure on S1 such that

(6.4) max
θ

μ1([θ − ρ, θ + ρ]) < Cρk.

Let δ > 0 be chosen sufficiently small and let A ⊂ [1, 2]× [1, 2] be a union
of size-δ squares satisfying

(6.5) |A| = δ2−α

and

(6.6) max
x

|A ∩ B(x, ρ)| < ρβ |A| for δ < ρ < δτ0 .

Then there exists θ ∈ supp μ1 such that

(6.7) |πθ(A)| > δ1−η,

where πθ denotes the orthogonal projection on the line y = (tgθ)x.

Stated in terms of Hausdorff-dimension, one has the following.

Theorem 6.8. Given 0 < α < 2 and κ > 0, there exists η > α/2 such that,
if A ⊂ R× R is a set of Hausdorff dimension

(6.9) H-dimA > α.

then

(6.10) H-dimπθ(A) ≥ η
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for all θ ∈ S1 except in an exceptional set E satisfying

(6.11) H-dimE ≤ κ.

Similar results hold for 1-dimensional projections in an ambient space
of arbitrary dimension d ≥ 2. It is also possible to generalize to higher
dimensional projections, with the proper assumptions, though this is still
work in progress. There is a version of Theorem 6.1 for subsets of the
complex numbers, but more technical to formulate. We rather state a
consequence, used in [16] for instance. Let d ≥ 1 and Cd be equipped with
its product ring structure.

Theorem 6.12. Given σ > 0, there is a constant C(d, σ) such that the fol-
lowing hods. Let δ > 0 be sufficiently small and A ⊂ Cd ∩B(0, 1) containing
at least δ−σ points that are δ-separated. Then there is a unit vector ξ ∈ Cd

and 0 ≤ γ < C(d, σ) such that for some positive integers s < C(d, σ)

(6.13) [0, δγ ]ξ ⊂ sA(s) − sA(s) +B(0, δγ+1)

where sA(s) denotes the s-fold sumset of the s-fold product set A(s).

7. Spectral Gaps in Lie-groups and Random Matrix

Products

The following result conjectured in [41] may be seen as the SU(2) counter-
part of Theorem 5.2. Its proof uses Theorem 6.1 which replaces Theorem 3.1
in the continuous setting

First we need to recall the non-Abelian diophantine condition from [41]
that will play the role of the “large girth” assumption.

Definition 7.1. For k ≥ 2, we say that the set of elements g1, . . . , gk ∈
SU(2) are diophantine if there is D > 0 such that for any m ≥ 1 and any
word Rm in g1, . . . , gk of length m, and such that Rm �= ±e, we have

‖Rm ± e‖ ≥ D−m.

Example. Take g1, . . . , gk ∈ SU(2) ∩M2(Q) generating a free group.

Theorem 7.2. Let {g1, . . . , gk} be a set of elements in SU(2) generating a
free group and satisfying a diophantine property. Then

zg1,...,gk = g1 + g−11 + · · ·+ gk + g−1k

has a spectral gap, with lower bound depending on k and D only.
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Corollary 7.3. If g1, . . . , gk ∈ SU(2) ∩M2(Q̄) generate a free group, then
zg1,...,gk has a spectral gap.

This result is proven in [15], combining Theorem 6.1 with the scheme
elaborated by Helfgott to prove his product theorem in SL2(p). A different
approach exploiting the Lie-algebra appears in [16], where Theorem 7.2 is
generated as follows.

Theorem 7.4. Corollary 7.3 generalizes to systems g1, . . . , gk ∈ SU(d) ∩
Md(Q) generating a subgroup of SU(d) which is topologically dense.

Note that the assumption in Theorem 7.4 is equivalent to 〈g1, . . . , gk〉
being Zariski dense in SLd(C).

Also the method used to prove Theorem 7.4 is likely to generalize to
other Lie groups.

The above results have several applications, including to the stochastic
tilings, studied in [29], [30], [55] for instance, and to quantum computa-
tion (ε-approximation by words of length ∼ log 1

ε in ‘fault tolerant’ gates,
improving on the Solovay-Kitaev algorithm.)

Compared with classical methods, one is now able to establish spectral
gaps when the group 〈g1, . . . , gk〉 is not arithmetic, as may occur in the
applications above. See also [58] for a discussion around ‘thin groups’.

Theorem 6.3 is an essential ingredient in the work [13] on equidistribu-
tion for toral actions of linear groups. Let S = {g1, . . . , gk} be elements in
SLd(Z) generating a semi-group Γ+ which action on Rd is strongly irre-
ducible (no finite union of proper linear subspaces is invariant under Γ+)
and proximal (Γ+ contains an element with a single largest eigenvalue.)
(These assumptions are satisfied if 〈S〉 is Zariski dense in SLd for instance).
Denote

(7.5) ν =
1

|S|
∑
g∈S

δg

which is a finitely supported measure on SLd(Z).
The following statement answering an equidistribution problem due to

Guivarch in a quantitative way, is the main result from [13].

Theorem 7.6. Given ν as above, there are constants c > 0 and C < ∞ such
that if θ ∈ Td\{0}, T = R/Z, and b ∈ Zd\{0}, ‖b‖ < ecn, then

(7.7) (∗) =
∣∣∣∣∑

g

ν(n)(g)e2πi〈b,gθ〉
∣∣∣∣ < e−cn
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unless ‖θ − a
q ‖ < e−cn with q < e

c
4
n, in which case

(7.8) (∗) < |b|C
qc

.

A probability measure μ on Td is called ν- stationary if

(7.9) μ ∗ ν ≡
∑
g

ν(g)g∗[μ].

Corollary 7.10. With ν as in Theorem 7.6, any ν-stationary measure μ on
Td is a combination of Haar measure and an atomic measure supported by
rational points and μ is 〈ν〉-invariant.

The last part of the above statement answers Furstenberg’s ‘stiffness
conjecture’ [40]. Subsequent work [2] due to Y. Benoist and J. Quint has
vastly generalized Corollary 7.10, but their equidistribution results are not
quantitative. We observe for instance that Theorem 7.6 in its full strength
is essential in the proof of Theorem 5.4 above.

Returning to SU(2), we conclude this section with the following problem
that in some sense is the analogue of Problem 3 above.

Problem 4. Do Corollary 7.3 and Theorem 7.4 hold without assuming that
g1, . . . , gk ∈ Md(Q)?
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Small Doubling in Groups

EMMANUEL BREUILLARD, BEN GREEN and TERENCE TAO

Let A be a subset of a group G = (G, ·). We will survey the theory of sets A
with the property that |A ·A| � K|A|, where A ·A = {a1a2 : a1, a2 ∈ A}. The
case G = (Z,+) is the famous Freiman–Ruzsa theorem.

1. Small Doubling in Abelian Groups

Let G = (G,+) be an abelian group, the group operation being written
with the + symbol. If A ⊆ G is a finite set, we may consider the sumset
A+A := {a1 + a2 : a1, a2 ∈ A}. We have the trivial bounds

(1.1) |A| � |A+A| � min

(
1

2
|A|(|A|+ 1), |G|

)
on the cardinality |A+A| of this sumset. One expects the trivial upper
bound to be attained with equality (or near-equality) unless A has some
special additive structure. For example, it is certainly attained when A =
{1, 2, 22, . . . , 2n−1} consists of powers of two.

Clarifying what exactly is meant by special additive structure turns out
to be very interesting, and is the main topic of this survey. Specifically,
we will be interested in describing as carefully as we can the structure of
non-empty finite sets A for which σ[A] := |A+A|/|A| is at most K, where
K ∈ R+ is some constant. We say that such a set A has doubling at most
K. If σ[A] is “small”, we informally say that A has small doubling.

Let us begin with some examples of sets with small doubling. The
simplest example is that of a finite subgroup, or a subset of one.

Example 1. Suppose that A is a finite subgroup of G. Then |A+A| = |A|,
and so σ[A] = 1. Similarly if A is a coset of a subgroup of G. If A is
not a whole subgroup but occupies a non-zero proportion δ of some finite
subgroup H � G then A+A ⊆ H, and so σ[A] � 1/δ.
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It is a nice exercise to prove that the only finite non-empty sets with
doubling 1 are cosets of subgroups. On the other hand it is very easy to
come up with an example of a set A with small doubling which is not related
to a subgroup.

Example 2. Suppose that G = Z, and let u1 and N1 > 0 be integers. We
define the arithmetic progression1

P (u1;N1) := {n1u1 : 0 � n1 < N1}

If A = P (u1;N1) then A+A is given by

A+A = P (u1; 2N1 − 1) = {n1u1 : 0 � n1 < 2N1 − 1},

and hence σ[A] < 2. If A occupies a proportion δ of some arithmetic
progression then σ[A] � 2/δ.

There are multidimensional constructions of a similar nature.

Example 3. Suppose that G = Z, let u1, . . . , ud and N1, . . . , Nd > 0 be
integers. We introduce the d-dimensional progression

P (u1, . . . , ud;N1, . . . Nd) := {n1u1 + · · ·+ ndud : 0 � ni < Ni}

If A = P (u1, . . . , ud;N1, . . . Nd) then the sumset A+A is given by

A+A = P (u1, . . . , ud, 2N1 − 1, . . . , 2Nd − 1)

= {n′1u1 + · · ·+ n′dud : 0 � n′i < 2Ni − 1}.

Thus A+A can be covered by 2d translates of A, so that σ[A] � 2d. If A
occupies a proportion δ of some d-dimensional progression then σ[A] � 2d/δ.

Finally, one can combine any of these examples using a direct product
construction.

Example 4. Suppose that A1 ⊆ G1, A2 ⊆ G2 and that σ[Ai] � Ki for
i = 1,2. Consider A1×A2 as a subset of G1×G2. Then σ[A1×A2] � K1K2.

It turns out that, qualitatively at least, the above four examples provide
a complete description of sets with small doubling in abelian groups. In the
case G = Z this was established by Freiman [23] and Ruzsa [61].

1The notation here may seem slightly odd. The point is that an arithmetic progression
is a very special case of a much more general object called a coset nilprogression, which
we will discuss in detail in what follows using an elaboration of the same notation.
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Theorem 1.1 (Freiman’s theorem). Let A be a finite non-empty set of
integers Z such that σ[A] � K. Then A is contained within a generalised
arithmetic progression

P (u1, . . . , ur;N1, . . . , Nr)

:= {n1u1 + . . .+ nrur : n1, . . . , nr ∈ Z, 0 � ni < Ni}.
Here u1, . . . , ur ∈ Z are integers, the rank r is OK(1) and the volume V :=
N1 . . . Nr satisfies2 V �K |A|.

Note that Z does not have any interesting subgroups, so only Examples
2 and 3 are relevant here. At the other (high-torsion) extreme, Ruzsa [63]
gave a very short and elegant proof of the following statement. Here, Fω

2 is
the direct product of countably many copies of the finite field F2.

Theorem 1.2 (Ruzsa). Let A be a finite non-empty subset of Fω
2 , and

suppose that σ[A] � K. Then there exists a subgroup H containing A such
that |H| �K |A|.

Ruzsa’s theorem works in Fω
p for an arbitrary prime p, although the

dependence of the �K constant is not uniform3 in p. Ruzsa and the second
author [33] combined these two results to get a result valid for all abelian
groups.

Theorem 1.3 (Green–Ruzsa). Let A be a finite non-empty subset of an
additive group G such that σ[A] � K. Then there exists a coset progression
H+P , whereH is a finite subgroup of G and P = P (u1, . . . , ur; N1, . . . ,Nr)
is a generalised arithmetic progression of rank OK(1), such that A ⊆ H +P
and |H|N1 . . . Nr �K |A|.

These theorems completely resolve the qualitative question of describing
the structure of sets A whose doubling constant σ[A] is at mostK. There are
many very interesting quantitative issues in connection with this question,
and we will address these in §5.

Let us give a brief selection of other results connected with small dou-
bling in abelian groups.

The first does not concern finite sets (although there are variants of
it that do, such as Propositions 5.3 and 5.4). If A ⊆ Rd is compact and
of positive measure then we define its doubling constant to be σ[A] :=
μ(A+A)/μ(A), where μ is Lebesgue measure.

2OK(1) means a quantity bounded by CK for some constant CK depending only on K.
The notation X �K Y means that X � CKY for some CK depending only on K. We
might equivalently write X = OK(Y ).

3The optimal value of this constant was worked out recently in [51].
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Proposition 1.4. Suppose that A is a compact subset of Rd of positive
measure and that σ[A] � K. Then d � log2K.

Proof. This is essentially trivial: A+A contains the dilate 2 ·A, which
has 2d times the volume of A. The claim also follows from the more general
Brunn-Minkowski inequality μ(A+B)1/d � μ(A)1/d+μ(B)1/d (see e.g. [26]).

There are still further results connected with very small doubling, when
K < 2, or with moderately small doubling (when 2 � K � 3 say). Let us
finish this section by giving a very small and incomplete selection of them.
Perhaps the most famous is the Cauchy-Davenport-Chowla theorem [11, 16].
When combined with Vosper’s theorem [86], this gives the following result.

Theorem 1.5. Suppose that p is a prime and that A ⊆ Z/pZ. Suppose
that σ[A] < 2. Then either |A| > p/2 and A+A is all of Z/pZ, or else A is
an arithmetic progression.

See e.g. [82, Theorem 5.4, Theorem 5.9] for a proof. Kneser’s theo-
rem [47] is a generalisation of the Cauchy-Davenport theorem to arbitrary
abelian groups. A consequence of it is the following.

Theorem 1.6. Suppose that G is an arbitrary abelian group and that
A ⊆ G. Suppose that σ[A] � K where K < 2. Then A+A is a union of
cosets of a subgroup H � G of size at least (2−K)|A|.

Finally let us mention a result [23] known as Freiman’s 3k − 3 theorem,
concerning sets of integers with doubling at most (roughly) 3. See [50] for
a simpler proof and a generalisation to pairs of sets. It gives a very precise
version of Theorem 1.1 in this regime.

Theorem 1.7. Suppose that A ⊆ Z is a finite set with |A| � 3 and with dou-
bling constant K = σ[A]. Suppose that K < 3− 3

|A| . Then A is contained

in an arithmetic progression P of length at most (K − 1)|A|+ 1.

Results by Stanchescu [75, 76] make various assertions, more precise
than Theorem 1.1, for values of K in the range 3 � K < 4.

Finally we remark that in many of the above theorems the hypothesis
σ[A] � K may be varied to other, related, conditions such as |A−A| � K|A|
or |A+B| � K|A|1/2|B|1/2 using standard additive combinatorial lemmas;
see [82, Chapter 2]. There are also variants when one replaces the full

sumset A+A by a partial sumset A
G
+ A := {a+ b : (a, b) ∈ G} for some

(dense) subset G of A×A, using what is now known as the Balog-Szemerédi-
Gowers lemma. Again, see [82, Chapter 2] for details and further references,
and §4 for further comments.
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2. Small Doubling in Arbitrary Groups – Examples

We now turn to the main focus of this survey, which is to study inverse sum-
set theorems in the noncommutative setting, in which one works with finite
nonempty subsets A of an arbitrary group G. To emphasise the fact that
G is not necessarily abelian, we write the group operation multiplicatively.

We are now interested in the structure of finite sets A ⊆ G with the
property that σ[A] := |A ·A|/|A| is at mostK, where A ·A := {a1a2 : a1, a2 ∈
A}. The trivial bounds are now |A| � |A ·A| � min(|A|2, |G|). Equality can
occur in the upper bound, for example if A = {xyi : i = 0,1 . . . , n−1} where
x, y are generators of a non-abelian free group. As in the first section, we
begin with some examples. The first few of these are parallel to the abelian
examples we discussed before.

Example 5. Suppose that A is a subgroup of G. Then |A ·A| = |A|, and
σ[A] = 1. Similarly if A = Hx is a coset of some subgroup H � G where x
lies in the normaliser of H (that is to say xH = Hx). If A is not a whole
subgroup but occupies a proportion δ of some finite subgroup H � G then
A ·A ⊆ H, so σ[A] � 1/δ.

It is a nice exercise to prove the converse to this, namely that the
only sets with doubling 1 are cosets Hx, where H is a subgroup and x
normalises H.

Example 6. The nonabelian analogue of an arithmetic progression is a
geometric progression P (u1;N1) := {un1

1 : 0 � n1 < N1}. Assuming all N1

elements are distinct, we have A ·A = {un
′
1

1 : 0 � n′1 < 2N1 − 1}, and so
σ[A] < 2. If A occupies a proportion δ of some geometric progression then
σ[A] � 2/δ.

As in the abelian case, there are multidimensional constructions of a
similar nature, but one must be a little careful in the absence of commuta-
tivity.

Example 7. Let A be a set of the form

P (u1, . . . , ud;N1, . . . , Nd) := {un1
1 un2

2 . . . und
d : 0 � ni < Ni},

where the ui commute and N1, . . . , Nd > 0 are integers. We call this a d-
dimensional progression. Then A ·A is equal to

P (u1, . . . , ud; 2N1 − 1, . . . , 2Nd − 1) = {un
′
1

1 u
n′2
2 . . . u

n′d
d : 0 � n′i < 2Ni − 1}.

Thus, A ·A can be covered by 2d dilates of A, so that σ[A] � 2d. If A
occupies a proportion δ of some (proper) d-dimensional progression then
σ[A] � 2d/δ.
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Just as in the abelian case, we may consider direct products of sets with
small doubling and thereby obtain new examples. In the non-abelian case,
however, there are two genuinely new examples of sets with small doubling
such as the following.

Example 8. Let N1, N2, N1,2 be positive integers, and let A be the set of
3× 3 matrices defined as follows. Let

u1 :=

⎛⎝1 1 0
0 1 0
0 0 1

⎞⎠ , u2 :=

⎛⎝1 0 0
0 1 1
0 0 1

⎞⎠ ,

and set

A = P (u1, u2, [u1, u2];N1, N2, N1,2)

:= {un1
1 un2

2 [u1, u2]
n1,2 : 0 � n1 < N1, 0 � n2 < N2, 0 � n1,2 < N1,2}.

Here,

[u1, u2] := u1u2u
−1
1 u−12 =

⎛⎝1 0 1
0 1 0
0 0 1

⎞⎠
is the commutator of u1 and u2. Noting that

un1
1 un2

2 [u1, u2]
n1,2 =

⎛⎝1 n1 n1n2 + n1,2

0 1 n2

0 0 1

⎞⎠ ,

it follows that |A| = N1N2N1,2. Furthermore one may easily check that

A ·A ⊆

⎧⎨⎩
⎛⎝1 n′1 n′1,2
0 1 n′2
0 0 1

⎞⎠ :
0 � n′1 < 2N1

0 � n′2 < 2N2

0 � n′1,2 < 3N1N2 + 2N1,2

⎫⎬⎭ .

Thus if N1,2 � N1N2 then σ[A] � 20.

We call the preceding example a nilprogression. The name comes from
the fact that the group of 3× 3 upper-triangular matrices (the Heisenberg
group) is nilpotent of class 2, which means that the group is nonabelian
and that higher-order commutators such as [u1, [u2, u3]] are all equal to the
identity. We will define nilprogressions in general later on. The second new
type of example combines subgroups with progressions in a manner which
is not a direct product. The next example was shown to us by Helfgott.
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Example 9. Let p be a large prime, let r, s, t ∈ Fp be fixed generators of
F∗p, let N1, N2, N3 be positive integers, and define A to be a set of 3× 3
matrices over Fp as follows. Set

A = H · P (u1, u2;u3;N1, N2, N3)

where

H :=

⎧⎨⎩
⎛⎝1 x z
0 1 y
0 0 1

⎞⎠ : x, y, z ∈ Fp

⎫⎬⎭ ,

u1 :=

⎛⎝r 0 0
0 1 0
0 0 1

⎞⎠ , u2 :=

⎛⎝1 0 0
0 s 0
0 0 1

⎞⎠ , u3 :=

⎛⎝1 0 0
0 1 0
0 0 t

⎞⎠
and

P (u1, u2, u3;N1, N2, N3) := {un1
1 un2

2 un3
3 : 0 � ni < Ni},

as in Example 7 above. Thus

A =

⎧⎨⎩
⎛⎝rn1 x z

0 sn2 y
0 0 tn3

⎞⎠ : x, y, z ∈ Fp, 0 � ni < Ni

⎫⎬⎭ .

One may easily check that

A ·A ⊆

⎧⎨⎩
⎛⎝rn

′
1 x z

0 sn
′
2 y

0 0 tn
′
3

⎞⎠ : x, y, z ∈ Fp, 0 � n′i < 2Ni

⎫⎬⎭ ,

and so σ[A] � 8.

Examples 8 and 9 (and in fact all of the other examples we have men-
tioned) are coset nilprogressions, which turn out to be the appropriate gen-
eralisation of a coset progression (cf. Theorem 1.3) to the nonabelian setting.

To conclude this section we discuss the general notion of a coset nil-
progression, that is to say the natural generalisation of all the preceding
examples. There are several roughly equivalent definitions, which turn out
to be “essentially the same”, meaning that a coset nilprogression of one type
is efficiently covered by coset nilprogressions of another type. We begin by
giving one definition of a nilprogression, following [10, Definition 2.5].
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Definition 2.1 (Nilprogression). Let u1, . . . , ur be elements in a nilpotent
group of step s, that is to say a group in which commutators of order s+ 1
or greater are all trivial. Let N1, . . . , Nr be positive integers. Define the
nilprogression P ∗(u1, . . . , ur;N1, . . . ,Nr) to consist of all products of the ui
and their inverses u−1i for which the letter ui and its inverse u−1i appear at
most Ni times between them, and the terms in the product may be arranged
in an arbitrary order (e.g. P ∗(u1, u2; 1, 1) contains u1u2, u2u1, u−11 u2, etc.).

We have written P ∗ instead of P to emphasise the fact that this is not
quite the same as the objects P (u1, . . . , ur,N1, . . . ,Nr) we considered earlier.
It can be shown that if A is a nilprogression then σ[A] �r,s 1. With this in
hand it is quite straightforward to define a coset nilprogression.

Definition 2.2 (Coset nilprogression). Let G be a group and suppose that
u1, . . . ur ∈ G. Suppose that H is a finite subgroup of G which is normal in
G0 := 〈u1, . . . , ur〉. Suppose that G0/H is nilpotent of step s. Then the set
H · P ∗(u1, . . . , ur;N1, . . . , Nr) is called a coset nilprogression of rank r and
step s.

Once again one may show that if A is a coset nilprogression then
σ[A] �r,s 1, that is to say coset nilprogressions are examples of sets with
small doubling constant. An alternative way to define nilprogressions is as
the image of a “ball” in a free nilpotent group. This gives objects which
generalise our examples more directly, but requires quite a lot of nomencla-
ture concerning basic commutators. For more details see [5, Definition 1.4]
and also Tointon’s paper [83], which clarifies aspects of the relation between
the two types of nilprogression4.

3. Small Doubling in Arbitrary Groups – Theorems

A basic aim in the subject, first suggested by Helfgott and Lindenstrauss,
is to show that all sets of small doubling are related to one of the examples
discussed in the preceding section, namely coset nilprogressions. Theorems
1.1, 1.2 and 1.3 in §1 were results of this type in the abelian case. While
such results have now been established by the authors in full generality,
for applications such as the ones in §6 one often needs a result with good
bounds, and in the general case none are known. Much work, then, has
been done on specific groups (for example matrix groups) where additional
structure is extremely helpful and quite precise results have been obtained.

4Note that Tointon calls the objects of [5, Definition 1.4] nilpotent progressions but
otherwise his nomenclature is essentially the same as ours.
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Furthermore one does not always need (in fact one essentially never needs)
to see the full structure of a coset nilprogression to draw useful applications.

With the aim of clarity of exposition, we will in this section only examine
results of the following type, which we call “The structure theorem”.

Prototype Theorem 3.1. Suppose that A is a set in some group G,
belonging to a specific class (matrix group, nilpotent group, solvable group,
free group . . . ) and that σ[A] � K. Then there is a set A′ ⊆ A, |A′| �
|A|/K ′, with A′ contained in some set P lying in a “structured” class of
sets C.

These results are, therefore, a little weaker than the theorems of §1,
which cover the whole of A by a structured object. However theorems
of that type can be obtained from results having the form of Prototype
Theorem 3.1, and to an extent this amounts only to additive-combinatorial
“book-keeping”, although some more precise variants of this type are both
deep and interesting.

Doubling less than 2. The case of very small doubling, in which σ[A] is
close to 1, received attention at the hands of Freiman [24] almost 50 years
ago (see also [25]). He showed (among other things) that if σ[A] < 3/2,
then H := A ·A−1 is a finite group of order |A ·A| = σ[A]|A|, and that A ⊆
xH = Hx for some x. In a similar vein, an argument of Hamidoune [41, 81]
shows that if σ[A] < 2− ε for some ε > 0, then there exists a finite group
H of order |H| � 2

ε |A|, such that A can be covered by at most 2
ε − 1 right-

cosets Hx of H. See also [67] for a different proof of a related result. Very
recently, a more complete classification of the sets A with σ[A] < 2 was
achieved in [17].

Small doubling in nilpotent and solvable groups. Results along the lines
of Theorem 3.1 with G nilpotent or solvable of fixed step have been devel-
oped in various papers [5, 6, 22, 27, 68, 79, 80, 83], there being a tradeoff
in each case between generality and the quality of the bounds obtained.
A quite satisfactory recent result of Tointon [83] is the following, which
applies to arbitrary nilpotent groups of fixed step.

Theorem 3.2 (Tointon). Suppose that G is nilpotent of step s. Then the

structure theorem holds with K ′ ∼ exp(KOs(1)) and with C consisting of

coset nilprogressions of rank KOs(1) and size no more than exp(KOs(1))|A|.

Let us also mention a short note of the authors [8], which adapts an
argument of Gleason from the theory of locally compact groups to show
that the s-dependence is unnecessary when G is torsion-free.



138 E. Breuillard, B. Green and T. Tao

Small doubling in matrix groups. When G is a group of matrices over
a field, one has available a wide variety of machinery. One may attempt
to exploit the fact that matrix multiplication involves both addition and
multiplication of the entries, and hence bring into play results from sum-
product theory such as [3]. One may also try to involve algebraic geometry
and particularly the theory of algebraic groups. All of these techniques have
enjoyed success.

A pioneering result about small doubling in matrix groups was that of
Elekes and Király [20].

Theorem 3.3 (Elekes–Király). Suppose that G = SL2(R). Then the struc-
ture theorem holds for some K ′ = OK(1) and with C consisting of cosets of
abelian subgroups of SL2(R).

One interesting consequence of this is that it implies the same result with
G equal to the free group. This is because SL2(R) contains two elements
(and hence k elements, for any k) generating a free group. Further important
work on additive combinatorics in the free group was done by Razborov [60]
and Safin [65].

Elekes and Király did not obtain useful bounds for K ′. Subsequent
advances have addressed this issue, and have also led to the replacement
of SL2(R) by an arbitrary matrix group. Significant progress in this regard
was made by Helfgott [42], who applied the sum-product theorem of Bour-
gain, Katz and Tao [3] to show5 that Theorem 3.3 holds with G replaced
by SL2(C) and with K ′ having polynomial dependence on K. He subse-
quently generalised this to SL3(C), with C consisting of cosets of nilpotent
subgroups of SL3. Chang [13] also proved various results in this direction,
for example obtaining a structure theorem in the case G = SL3(Z) prior to
the work of Helfgott.

A breakthrough came in 2009 with a paper of Hrushovski [45], who
applied model-theoretic arguments to generalise Elekes–Király’s result to
SLn.

Theorem 3.4 (Hrushovski). Suppose thatG = SLn(C). Then the structure
theorem holds for some K ′ = OK(1) and with C consisting of cosets of
solvable subgroups of SLn(C).

Combining this with the main result of [6], “solvable” can be replaced
by “nilpotent”. More down-to-earth proofs are now known due to work of
Pyber-Szabó [58] and the authors [7, 9], and furthermore these arguments

5In fact Helfgott does not quite state this result or the one for SL3(C), his concern
having been with SL2(Fp) and SL3(Fp), but it follows very easily from his methods.
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show that K ′ can be taken to be KOn(1). These arguments use some of
Helfgott’s ideas as well as some more purely algebraic group theoretic facts.
The argument of [7] was, in addition, heavily influenced by groundbreaking
work of Larsen and Pink [49] in their work on finite subgroups (as opposed
to finite subsets of small doubling) of linear groups.

We have discussed the case G = SLn(C). However the analogous ques-
tion over finite fields is more interesting, enjoys wider application, and was
the historial motivation for much of the work we have just mentioned. In
this setting Helfgott’s result states the following.

Theorem 3.5 (Helfgott). Suppose that G = SL2(Fp). Then either |A| �
K−C |G|, or else the structure theorem holds with K ′ polynomial in K and
with C consisting of cosets of solvable (or upper-triangular) subgroups of
SL2(Fp).

This was generalised to Fq, q arbitrary, by Dinai [18]. Subsequently,
Helfgott [43] generalised his previous argument to the setting of SL3(Fp)
and finally Pyber-Szabó [58] obtained the same result in SLn(Fq), as well as
in more general finite simple groups of Lie type and bounded rank, while the
authors [7] obtained simultaneously closely related results. See the related
surveys [4, 59].

General groups. A qualitatively complete classification of sets of small
doubling in arbitrary nonabelian groups was obtained by the authors [10].

Theorem 3.6. Suppose that G is an arbitrary group. Then the structure
theorem holds for some K ′ = OK(1) and with C consisting of coset nilpro-
gressions P with rank and step OK(1), and with |P | � |A|.

In fact, the theorem applies to sets with small doubling in local groups,
which we will not define here (and in fact this generalisation is an important
part of the proof). However the dependence of K ′ on K is not known
explicitly at all. On the other hand, the rank and step of P can be chosen
to be at most 6 log2K; see [10, Theorem 10.1].

We do not have the space to say much about the proof of this theorem
here. A crucial theme is a certain “correspondence principle”, due to
Hrushovski [45], linking sets with small doubling (or rather approximate
groups, as discussed in the next section) and locally compact topological
groups. One may then bring into play the extensive theory, largely developed
in the 1950s and before, of locally compact groups in connection with
Hilbert’s fifth problem. See [10, 78] for considerably more on this.
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4. Approximate Groups

This survey is about sets with small doubling constant. However for techni-
cal reasons many papers consider a closely-related object called an approx-
imate group, first introduced in [79].

Definition 4.1. Let A be a finite set in a group G. We say that A is a K-
approximate group if A is symmetric (that is to say if a ∈ A then a−1 ∈ A),
contains the identity and if A ·A is contained in X ·A for some set X of
size at most K.

This notion has some technical advantages over the notion of a set with
small doubling; for example, it is immediately clear that the image of a K-
approximate group under a homomorphism is also a K-approximate group,
but there are examples (even in the abelian case) which show that the
doubling constant σ[π(A)] of a finite set A under a homomorphism π is
strictly greater than that for A; see [82, Exercise 2.2.10]. By construction, it
is clear that any finiteK-approximate groupA has σ[A] � K. It is also easily
seen that one has control over the higher product sets An := A ·A · · ·A,
specifically |An| � Kn−1|A|, whereas no such bound is generally available
for sets of small doubling6.

Although sets with small doubling need not be approximate groups, we
do have the following converse result, obtained in [79, Theorem 4.6]. It
asserts in some sense that sets of small doubling are essentially “controlled”
by approximate groups:

Theorem 4.2. Let A be a finite non-empty subset of a multiplicative group
G = (G, ·) such that σ[A] � K, where K � 2. Then one can find a KO(1)-

approximate group H in G of cardinality � KO(1)|A| such that A can be

covered by KO(1) left (or right) translates of H.

The arguments used to prove this are fairly elementary, and are non-
commutative variants of some arguments of Ruzsa [62]. By contrast the
majority of the structural results discussed in §3 rely on considerable ma-
chinery. Thus, in a certain sense, one should think of the theory of sets with
small doubling and the theory of approximate groups as equivalent.

6Although one does have |An| � Kn|A| in the abelian case, a result of Plünnecke and
Ruzsa [57, 64] for which a very elegant proof was recently provided by Petridis [56].
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5. Quantitative Aspects

Thus far we have talked mainly about qualitative results concerning sets
with small doubling, with the notable exception of Helfgott’s work and
its successors, where one obtains polynomial dependencies. A particularly
acute example of this is Theorem 3.6, where no explicit bounds are known
at all.

Even in (in fact especially in) the abelian case, quantitative issues are
very interesting. We mention some of these now, deferring to the excellent
recent survey [70] for considerably more detail.

For the most part we discuss the quantitative issues related to Ruzsa’s
Theorem 1.2, concerning sets with small doubling in Fω

2 . This most abelian
of all settings has acted as a significant test case for ideas. Theorem 1.2
stated that if A ⊂ Fω

2 is a finite set with σ[A] � K then there exists a
subgroup H � Fω

2 containing A with |H| � F (K)|A|. Ruzsa himself ob-

tained the bound F (K) � K22K
4
. This was subsequently refined by Green-

Ruzsa [33] and then by Sanders, and after that by Green-Tao [35], who

showed that one can take F (K) � 22K+o(K), a bound which is sharp up
to the o(K) term. This was further refined by Konyagin [48], and finally
Chaim Even-Zohar [21] obtained the precise value of F (K). The techniques
here are those of extremal combinatorics, specifically the technique of com-
pressions.

It was already realised by Ruzsa, however, that trying to cover A by
a subgroup is an inefficient endeavour. He attributes to Katalin Marton
the following question, which has since become known as the Polynomial
Freiman-Ruzsa Conjecture (PFR).

Conjecture 5.1. Suppose that A ⊆ Fω
2 is a set with σ[A] � K. Then A is

covered by KC translates of some subspace H � Fω
2 with |H| � |A|.

At present this conjecture is unresolved, although there has been spec-
tacular recent progress by Sanders [69], building on work of Schoen [73].
Sanders shows that this conjecture does hold with KC replaced by
exp(log4+o(1)K). Ruzsa formulated a number of equivalent statements to
this conjecture, which were written up in [32]. Perhaps the most attractive
is the following statement concerning almost homomorphisms.

Conjecture 5.2. Suppose that f : Fn
2 → Fn′

2 is a map with the property
that f(x+ y)− f(x)− f(y) ∈ S for all x, y, where S is some set of size K.

Is it true that f = f̃ + g, where f̃ : Fn
2 → Fn′

2 is linear, and |im(g)| � KC?
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This statement is trivial with KC replaced by 2K (define f̃ to equal f
on a basis of Fn

2 ). Sanders’s result establishes that it holds with

exp(log4+o(1)K).

Let us turn now to the structure of sets with small doubling in Euclidean
spaces, and in particular7 in Z. In this setting extra tools coming from
geometry can be brought into play. In particular we have the following
result [23, Lemma 1.13], known as Freiman’s lemma.

Proposition 5.3 (Freiman’s lemma). Suppose that A is a finite subset
of some Euclidean space Rd, and that σ[A] � K. Suppose that A is not
contained in any proper affine subspace of Rd. Then

d � K − 1 +
d(d+ 1)

2|A| .

In particular, if |A| �ε,d 1 then d � K − 1 + ε.

The proof of this result is very short, but makes crucial use of convexity.
A writeup may be found in, for example, [31]. A follow-up to this is the
next result, also originally due to Freiman [23], with a simplified proof given
subsequently by Bilu [1].

Proposition 5.4 (Freiman–Bilu lemma). Suppose that A is a finite subset
of some Euclidean space Rd, and that σ[A] � K. Then there is a subset
A′ ⊆ A, |A′| �ε,K |A|, which is contained in an affine subspace of Rd of
dimension at most log2K + ε.

Moderately good dependencies in this theorem are now known [34].
There is a version of the Polynomial Freiman-Ruzsa conjecture for subsets
of Rd, a question closely related to that of finding the correct dependencies
on K in Proposition 5.4. We are not certain that this has been stated in
the literature before.

Conjecture 5.5. Suppose that A is a finite subset of some Euclidean
space Rd, and that σ[A] � K. Then A can be covered by KC translates of
some generalised progression P = P (u1, . . . , ur;N1, . . . , Nr) with |P | � |A|
and r = O(logK).

7In fact the theories of small doubling of finite sets in Rd and in Z are essentially
equivalent, since any finite subset of Rd is Freiman isomorphic to a set of integers.
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For a slightly more cautious conjecture one might take, instead of the
“box-like” generalised progression P , a set obtained from the set of lattice
points in a convex body in Rr. Whether this is really a more general
statement seems slightly unclear and perhaps deserves to be clarified (it
is an issue in the geometry of numbers).

Much work has been done on quantitative results in Z, starting with
Ruzsa’s work and the important paper of Chang [12]. A comprehensive
history and summary of results may be found in Sanders [70].

Green and Tao [36] and independently Lovett [51], building on work of
Gowers [29], demonstrated a fairly tight equivalence between Conjectures
5.2 and 5.5 and quantitative versions of the inverse conjectures for the
Gowers U3-norm. This has yet to reveal itself a viable way to attack these
Conjectures 5.2 and 5.5, since the only known strategies for proving the
inverse conjectures for the U3-norm either use results about approximate
subgroups of Z, or else are essentially qualitative in nature.

Almost no work has been done on quantitative questions in general
groups. It may be, for all we know, that Theorem 3.6 holds with rather
good quantitative dependencies.

6. Applications and Open Questions

We conclude this survey by briefly mentioning some applications of the
theory of sets with small doubling (or, usually more accurately, the theory
of approximate groups), in various contexts. We encourage the reader to
look for more.

Expanders. Helfgott’s paper [42] was soon followed by an application due
to Bourgain and Gamburd [2] concerning the construction of expanders. We
offer a very brief discussion: for more details, see [52, 77]. In particular Bour-
gain and Gamburd’s results have now been very substantially generalised,
culminating in an almost final result of Varjú [85] and Salehi-Golsefidy and
Varjú [28].

For the purposes of this brief discussion an expander graph is a 2k-
regular graph Γ on n vertices for which there is a constant c > 0 such
that for any set X of at most n/2 vertices of Γ, the number of vertices
outside X which are adjacent to X is at least c|X|. Expander graphs share
many of the properties of random regular graphs, and this is an important
reason why they are of great interest in theoretical computer science (and
would have been of interest to Paul Erdős, one imagines). There are many
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excellent articles on expander graphs ranging from the very concise [71] to
the seriously comprehensive [44, 52].

A key issue is that of constructing explicit expander graphs, and in
particular that of constructing families of expanders in which k and c are
fixed but the number n of vertices tends to infinity. Many constructions have
been given, and several of them arise from Cayley graphs. Let G be a finite
group and suppose that S = {g±11 , . . . , g±1k } is a symmetric set of generators
for G. The Cayley graph C(G,S) is the 2k-regular graph on vertex set G
in which vertices x and y are joined if and only if xy−1 ∈ S. Such graphs
provided some of the earliest examples of expanders [54, 55]. A natural way

to obtain a family of such graphs is to take some large “mother” group G̃
admitting many homomorphisms π from G̃ to finite groups, a set S̃ ⊆ G̃, and
then to consider the family of Cayley graphs C(π(G̃), π(S̃)) as π ranges over
a family of homomorphisms. The work under discussion concerns the case
G̃ = SL2(Z), which of course admits homomorphisms πp : SL2(Z) → SL2(Fp)

for each prime p. For certain sets S̃ ⊆ G̃, for example

S̃ =

{(
1 1
0 1

)±1
,

(
1 0
1 1

)±1}
or

S̃ =

{(
1 2
0 1

)±1
,

(
1 0
2 1

)±1}
,

spectral methods from the theory of automorphic forms may be used to
show that (C(πp(G̃), πp(S̃)))p prime is a family of expanders. See [52] and
the references therein. These methods depend on the fact that the group
〈S̃〉 has finite index in G̃ = SL2(Z) and they fail when this is not the case,
for example when

(6.1) S̃ =

{(
1 3
0 1

)±1
,

(
1 0
3 1

)±1}
.

In [53] Lubotzky asked whether the corresponding Cayley graphs in this and
other cases might nonetheless form a family of expanders, the particular case
of (6.1) being known as his “1-2-3 question”. The paper of Bourgain and
Gamburd under discussion answers this quite comprehensively.

Theorem 6.1 (Bourgain–Gamburd). Let G̃ = SL2(Z) as above and sup-

pose that S̃ is a finite symmetric set generating a free subgroup of SL2(Z).
Then (C(πp(G̃), πp(S̃)))p prime is a family of expanders.
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We shall only say a very few words about the proof. It is well-known
(see [44]) that proving expansion is equivalent to showing mixing in time
∼ C log |G| of the random walk on S, or in other words showing that the
convolution power μn

S is highly uniform for n ∼ C log |G|. Here, μS :=
1
2k

∑k
i=1(δgi + δg−1

i
). This is analysed in three stages: the early stage, where

n � c log |G|, the middle stage where c log |G| � n � 1
10C log |G|, and the

late stage where 1
10C log |G| � n � C log |G|. During the early stage the

walk behaves in a very tree-like manner, and in particular at the end of
that stage it has already visited a reasonable fraction of G. The input from
the theory of sets with small doubling/approximate groups comes during
the middle stage: here, one must show that the walk does not get “stuck”,
and that by time 1

10C log |G| it has filled out a large portion of G. The
crucial point is to show, in a certain sense, that it is impossible to have
μ(n) ≈ μ(2n). If this did happen then the support of μ(n) would behave very
much like a set with doubling ≈ 1, a scenario that can be ruled out using
Helfgott’s classification of such sets. Finally, a little representation theory
is used in the analysis of the late stage, specifically the fact that SL2(Fp)
is quasirandom in the sense of Gowers [30], that is to say has no nontrivial
irreducible representations of small dimension. This observation was first
employed in a related context by Sarnak and Xue [72].

There are many open problems connected with expanders, and we refer
the reader to the literature cited above. Let us just mention one (well-
known) question which we hope Paul Erdős (who wrote several foundational
papers in probabilistic group theory) would have liked.

Problem 6.2. Suppose that k elements g1, g2, . . . , gk are selected at random
from the alternating group An, and set S := {g±11 , . . . , g±1k }. Is it true
that, almost surely as n → ∞, S gives an expander with expansion constant
ε = ε(k) > 0?

It could be the case that this is so even for k = 2. By a result of
Dixon [19], g1 and g2 do almost surely generate An as n → ∞, certainly a
prerequisite for expansion. By a tour de force result of Kassabov [46], there
does exist k = O(1) and generators g1, . . . , gk of An for which S gives an
expander with ε = ε(k) > 0, but these are not random generators. Finally,
we note that in the case of the alternating group none of the three parts
of the Bourgain-Gamburd argument goes through in their current form. In
particular, classification of sets with small doubling in An (which would be
needed with good quantitative bounds) is just as hard as the classification
of sets with small doubling in general.

Gromov’s theorem and Varopoulos’s result. There is a close link between
sets with small doubling and Gromov’s theorem on groups of polynomial
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growth. Suppose that a group G is generated by a finite symmetric set S
(thus S = S−1). We say that G has polynomial growth if there are C and
d such that |Sn| � Cnd for all n. Gromov [40] proved that a group has
polynomial growth if and only if it is virtually nilpotent, that is to say if
and only if some finite index subgroup of it is nilpotent. The link between
Gromov’s result and sets with small doubling is that infinitely many of the
“balls” Sn will have σ[Sn] < 2d + 1. This is very easy to see: if not, then

by induction we have |S2k | � c(2d + 1)k, which is a contradiction for large
k. By elaborating slightly on this idea, one may fairly easily show that the
general theorem for sets with small doubling, Theorem 3.6, implies Gromov’s
theorem. Conversely, large parts of the proof of Theorem 3.6 are motivated
by Gromov’s argument, in particular the use of ultrafilters to construct a
locally compact group (which closely parallels the Wilkie and van der Dries
[84] construction of the asymptotic cone of a finitely-generated group).

Theorem 3.6 allows for some strengthenings of Gromov’s theorem. For
example ([10, Theorem 1.13]) one need only assume that |Sn| � Cnd for
one value of n > n0(C, d). Several other such results are given in Section 11
of [10], where some applications to differential geometry are also discussed.
A possibility, not yet realised, is that a proper understanding of sets with
small doubling could be used to study groups of polynomial growth from a
quantitative viewpoint. In particular the following conjecture of Grigorchuk
[37, 39] remains wide open.

Problem 6.3. Is there some constant c (perhaps even c = 1
2) such that the

following is true: if G is generated by a symmetric set S, and if |Sn| � en
c

for all large n, then G has polynomial growth?

Famous examples of Grigorchuk [38] show that this is not true for all
c < 1. So far, the best result known is due to Shalom and Tao [74], who

show that if |Sn| � n(log logn)c for large n then G has polynomial growth.
(This result does not, however, make use of the connection with approximate
groups.) See [37] for the state of the art on the above problem regarding
special classes of groups.

One lovely application of Gromov’s theorem is the following result of
Varopoulos [14] (see also [87]).

Theorem 6.4. Let G be a group generated by a finite set S. Suppose that
the (simple) random walk with generating set S is recurrent. Then G is
finite or has a finite-index subgroup isomorphic to Z or Z2.

Although Varopoulos’s theorem uses Gromov’s theorem, it actually only
uses that theorem for some value of d > 2. It seems, however, that no simpler
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proof of the theorem is known in that special case. From the point of view of
sets with small doubling, one is interested in statements about sets A with
σ[A] < 4 + ε. However, no analysis of this case is known which is simpler
than the general analysis of [10].

An open problem. We conclude with a very simply-stated open question.
We said very little about the proof of the classification of approximate
groups in general [10]. An important ingredient in it (used to establish the
correspondence between approximate groups and locally compact groups)
was the following result of Croot-Sisask [15] and Sanders [66].

Theorem 6.5. Suppose that A is a K-approximate group. Then there is a
set S, |S| �K |A|, such that S8 ⊆ A4.

Problem 6.6. In the preceding theorem, can we take |S| � K−O(1)|A|?

This is open even in the abelian case.
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[85] P. P. Varjú. Expansion in SLd(OK/I), I square-free. J. Eur. Math. Soc. (JEMS),
14(1):273–305, 2012.

[86] A. G. Vosper. The critical pairs of subsets of a group of prime order. J. London
Math. Soc., 31:200–205, 1956.

[87] W. Woess. Random walks on infinite graphs and groups, volume 138 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2000.

Emmanuel Breuillard

Laboratoire de Mathématiques,
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Erdős and Multiplicative Number Theory
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In memory of E. P.

1. Introduction

Paul Erdős was a prolific writer of letters as well as articles. Along with
many other mathematicians in areas such as number theory, combinatorics,
and set theory, I was on his “mailing list.” Paul’s letters arrived several
times a year from mathematics centers near and far. They typically began,
I hope you are well and things are OK in Samland. I am visiting A right
now, and leave next week to preach in B. Let f(n) be a function . . . . This
article reviews some of the topics we discussed: estimates of prime number
counts, distribution questions for the Euler ϕ function, and elementary
methods in prime number theory.

Also, I shall examine in detail Erdős’ lower bound for primes in a short
interval, a result which played a key role in the first elementary proof of
the prime number theorem (PNT). As C. L. Siegel noted in his Zentralblatt
review of Erdős’ paper [10], the result is valid, but the gaps and inaccuracies
make it hard to understand. This is a good place to put on record a more
accessible version of the short-interval result.

2. Chebyshev Prime Counting Estimates

To begin, here are two articles of Erdős relating to P. L. Chebyshev’s famous
approximation to the PNT. With π(x) denoting the number of primes not
exceeding x, Chebyshev found

x/ log x � π(x) � x/ log x,

inequalities that are today named for him.
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One of Erdős’ earliest papers, Beweis eines Satzes von Tchebyschef [8],
gives simpler proofs of such bounds and of the so-called Bertrand Postulate.
The “Postulate” asserts that there exists at least one prime in each interval
(n, 2n] for n ∈ N. We recount the main ideas of his clever and interesting
argument.

The prime upper bound is based on two observations about the binomial
coefficient

(1)

(
2a

a

)
=

(2a)!

a! a!
.

On the one hand, it is divisible by each prime p ∈ (a, 2a], since these primes
divide the numerator but not the denominator. On the other hand, the
binomial coefficient is smaller than 4a−1 for a = 5, and by induction this
inequality holds for each integer a > 5. These two facts together imply that
ϑ(x) :=

∑
p≤x log p satisfies

(2) ϑ(2a)− ϑ(a) = log

{ ∏
a<p≤2a

p

}
< (a− 1) log 4

for each number a ≥ 5; by inspection this relation holds also for all a ≥ 2.
Adding together differences ϑ(2n+1)−ϑ(2n) and making simple inequalities,
we get, for all positive x, Erdős’ upper bound

ϑ(x) < x log 4.

The upper bound for π(x) follows by summation by parts.

The proof of Bertrand’s Postulate and the lower bound estimate for
ϑ(x) start with A. M. Legendre’s formula for α(p), the exact power of p

that divides
(
2a
a

)
. We have

α(p) =
∑
k≥1

([
2a

pk

]
− 2

[
a

pk

])
≤

[
log 2a

log p

]
,

since each summand is either 0 or 1 and all are 0 for k > (log 2a)/(log p).

Thus pα(p) ≤ 2a, and if p >
√
2a, then α(p) ≤ 1. For a ≥ 2 and all primes

p ∈ (2a/3, a] we have [2a/p]− 2[a/p] = 0 and so, by another application of

Legendre’s formula, such primes do not divide
(
2a
a

)
.

It follows that (
2a

a

)
≤

∏
p≤√2a

2a
∏

√
2a<p≤2a/3

p
∏

a<p≤2a
p.
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The first product on the right contains at most
√
2a factors. Using the ϑ(x)

upper bound, the second product is at most∏
p≤2a/3

p < 42a/3.

Also

2a

(
2a

a

)
=

2

1
· 3
1
· 4
2
· 5
2
· · · 2a− 2

a− 1
· 2a− 1

a− 1
· 2a
a

· 2a
a

> 22a.

Thus
22a < (2a)1+

√
2a 24a/3

∏
a<p≤2a

p

or

(3) 22a/3 < (2a)1+
√
2a

∏
a<p≤2a

p.

If there are no primes in an interval (a, 2a], then the last product is empty

and (3) becomes 22a/3 < (2a)1+
√
2a, a relation that cannot hold for suffi-

ciently large a, e.g. for a ≥ 500. Thus Bertrand’s Postulate holds for all
sufficiently large numbers a, and by inspection, it is found to hold for the
entire range.

We can deduce a lower bound for ϑ(x) by another application of (3).
Taking logarithms, we have

ϑ(2a)− ϑ(a) > (a/3) log 4− (1 +
√
2a) log(2a) � a.

Again adding up theta differences, we find that ϑ(x) � x and hence π(x) �
x/ log x for x ≥ 2.

For comparison and our use below, here are the classical bounds of
Chebyshev: With b := log{21/2 31/3 51/5/301/30}, he found

lim inf
x→∞ ϑ(x)/x ≥ b = 0.921292 . . . ,(4)

lim sup
x→∞

ϑ(x)/x ≤ 6b/5 = 1.105550 . . . .

The second article with a Chebyshev theme is a joint work of ours, On
Sharp Elementary Prime Number Estimates [5], in which it is shown that, in
principle, Chebyshev could have given explicit estimates of π(x)/{x/ log x}
that are arbitrarily close to 1. Are we saying that the PNT could be proved
this way? The answer is No; using the variant argument we describe,
one could make estimates of the ratio close to 1. However, any finite
calculation would have some “wobble,” and to show that the ratio can be
made arbitrarily close to 1 depends on a form of the PNT. The precise
statement of the result is as follows.
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Theorem 1. Let ε > 0 be given. There exists a positive integer T = T (ε)
and a construction using the values of the Moebius μ function on just the
interval [1, T ) that yields the estimate

lim sup
x→∞

|π(x)/{x/ log x} − 1| < ε.

According to Erdős, the theorem has a long and curious history. It
was discovered in 1937 by him and László Kalmár and about the same
time by J. B. Rosser. Erdős and Kalmár decided not to publish their ar-
ticle when they learned that Rosser had already submitted for publication
a manuscript that treated also primes in arithmetic progression. Unfortu-
nately, the referee of Rosser’s article was an expert in another of his research
areas who may not have appreciated the point of this piece and rejected it.
The theorem lived only by word of mouth until we published this version.

Chebyshev’s method used an approximation to the Moebius μ function
that can be described as follows. For k and n positive integers, define an
arithmetic function

ek(n) =

{
1, if n = k,

0, if n �= k,

and set

μC := e1 − e2 − e3 − e5 + e30.

This function has the properties that
∑

n μC(n)/n = 0,

0 ≤ FC(x) :=
∑
n≤x

(1 ∗ μC)(n) ≤ 1, x ≥ 1,

(∗ denotes multiplicative convolution) and FC(x) = 1 for 1 ≤ x < 6.

The function underlying the present method is an elaboration of μC .
For T and n positive integers, take as our finite approximation of μ

μT (n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ(n), if 1 ≤ n < T,

−T
∑
i<T

μ(i)/i, if n = T,

0, if n > T.

By its construction
∑

n μT (n)/n = 0 and, by the main property of μ,
FT (x) :=

∑
n≤x(1 ∗ μT )(n) = 1 for 1 ≤ x < T .
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Chebyshev’s weighted prime counting function ψ(x) :=
∑

pi≤x log p is

expressed in terms of L(n) := log n and μ(n) as

ψ(x) =
∑
n≤x

(L ∗ μ)(n).

The PNT is equivalent to ψ(x) ∼ x, as is the case for ϑ(x).

Our method is to replace ψ(x) by a function ψT (x), created by using μT

in place of μ above, and to show that for suitable large T , ψT (x) is close
to both ψ(x) and x. The proof that ψT (x) ∼ x as T → ∞ (along a special
sequence of T values) is unconditional; the PNT is invoked to show that
ψT (x) ∼ ψ(x).

3. Elementary Proof of the Prime Number Theorem

The main goal in studying π(x) from Chebyshev’s time onward was to prove
the celebrated PNT, i.e. that π(x) ∼ x/ logx as x → ∞. Repeated attempts
were made to establish the PNT by extending Chebyshev’s real variable
methods, which we today call “elementary.” (This term does not suggest
they are simple!) However, decades of work yielded only small numerical
improvements, but not the PNT itself. A survey of such elementary methods
is given in [3].

In another direction, Bernhard Riemann laid out a program for studying
π(x) by using properties of an analytic function, today called the Riemann
zeta function ζ(s). These ideas, in the hands of Jacques Hadamard and
others, led to a proof of the PNT some 40 years later. There were two
reasons for believing that analytic methods provided the only path to the
PNT. First, on a practical level, elementary methods had not made signif-
icant progress, despite considerable effort. Second, it was long known that
the truth of the PNT implies that the Riemann zeta function ζ(s) does not
vanish anywhere on the line �s = 1 and, in the other direction, the work
of Wiener showed that the PNT was a consequence of this single – very
analytic – relation.

About 50 years after the PNT was first proved, Atle Selberg established,
in the course of his research in sieve theory, the formula

(5) ϑ(x) log x+
∑
p≤x

ϑ(x/p) log p = 2x log x+O(x),

where, again, ϑ(x) denotes the logarithmically weighted prime-counting
function. Today, this relation is called Selberg’s Formula and is regarded as
fundamental in elementary prime number theory.
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It was quickly noted that (5) contains significant information about the
primes. As one example, dropping the sum term in (5) yields the inequality
ϑ(x) log x ≤ 2x log x+O(x), which shows the true order of magnitude of
ϑ(x) and hence (by summation by parts) that of π(x).

Next, let us set

lim sup
x→∞

ϑ(x)/x = A and lim inf
x→∞ ϑ(x)/x = a.

Now (5) and the familiar prime number estimate

(6)
∑
p≤x

log p

p
∼ log x

give the interesting and useful relation

(7) A+ a = 2.

Here is a sketch of how (7) is proved. In place of (5) write

(5′)
ϑ(x)

x
+

1

x log x

∑
p≤x

ϑ(x/p) log p = 2 + o(1),

and insert the upper bound ϑ(x/p) ≤ {A+ o(1)}x/p into (5′). Approximat-
ing the resulting sum by (6), we find that

ϑ(x)

x
+A ≥ 2 + o(1)

holds for all large values of x. Now let x → ∞ along a sequence on which
ϑ(x)/x → a, and we see that a+A ≥ 2. Next, use the bound ϑ(x/p) ≥ (a+
o(1))x/p in (5′) and proceed analogously to show that A+ a ≤ 2. Together,
the inequalities give (7).

As a third example of the utility of (5), write it with argument x+ cx in
place of x and then subtract (5) from it. Using log(x+ cx) = log x+O(1)
and the Chebyshev bound ϑ(x) = O(x), we find that{

ϑ(x+ cx)− ϑ(x)
}
log x(8)

+
∑

p≤x+cx

{
ϑ

(
x+ cx

p

)
− ϑ

(
x

p

)}
log p = 2cx log x+O(x).
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If we drop the sum, we obtain the short interval estimate

(9) ϑ(x+ cx)− ϑ(x) ≤ 2cx+O(x/ log x).

(We can assume here that c ∈ (0, 1), but by Chebyshev’s bounds (4), the
last inequality holds for larger c as well.)

Upon seeing Selberg’s formula, Erdős asserted that it could yield an
extension of the Bertrand Postulate to intervals [x, x+ cx] for arbitrarily
small c > 0 for all sufficiently large x. More colorfully, his claim is that
the ratio of consecutive primes approaches 1 at infinity. In fact, Erdős had
proved (see [10]) rather more than a short interval Bertrand result, namely,
an inequality in the opposite direction from (9):

Theorem 2. For c > 0 (no matter how small),

(10) ϑ(x+ cx)− ϑ(x) �c x.

Equivalently, there exist positive numbers δ = δ(c) and X = X(c) such that
for all x > X,

π(x+ cx)− π(x) > δx/ log x.

This was the first elementary lower estimate of the number of primes in
such short intervals. (Differencing Chebyshev’s bounds yields only

(11) lim inf
x→∞ x−1{ϑ((1.2 + η)x)− ϑ(x)} > ηb > 0.92η

for any η > 0.) Theorem 2 was used by Selberg in his first elementary
proof of the PNT and was the heart of the proof Erdős published in [10].
(Selberg subsequently found another argument, which he used in [14].) For
an insightful analysis of these proofs see the Mathematical Reviews article
of Ingham [13].

Erdős’ path to the PNT uses a subtle contradiction argument, made the
more challenging by typos and some errors and omissions. We present here
his proof of this key relation, both for its interest and to make available
a more readable account. A mark “(†)” appears at points where material
changes have been made. We shall assume the Selberg Formula (5) and its
two consequences, (7) and (9).

The argument is an elaboration of ingredients in the proof of (7): if
ϑ(x)/x is too small somewhere, then it has to be too large elsewhere.
We henceforth assume that (10) does not hold, specifically, that there is
a number C > 0 and a sequence of values x → ∞ along which

(12) ϑ(x+ Cx)− ϑ(x) = o(x).
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We know from (11) that C ≤ 0.2. We further assume that C is so near
the supremum of numbers for which the preceding o-relation holds that it
satisfies the following technical condition: for a number t > 0 that is small
in comparison to C we have

(13) ϑ((x+ Cx)(1 + t))− ϑ(x) > 2ηx

for some fixed number η > 0 and all sufficiently large x.

If we combine (12) with the Selberg Formula (8), it follows that

(14)
∑

p≤x+Cx

{
ϑ

(
x+ Cx

p

)
− ϑ

(
x

p

)}
log p ∼ 2Cx log x

holds along the same x sequence. The first step in the argument is to show
that the individual summands in (14) are large for “most” primes p. This
result will be used later to show that ϑ(x)/x would then be larger than
Chebyshev’s upper bound (4) allows.

Lemma 1. Assume (12). Then for all primes p ≤ x, except possibly for a
subset I = I(x) ⊂ [1, x] for which

(15)
∑
p∈I

log p

p
= o(log x),

we have

(16) ϑ((x+ Cx)/p)− ϑ(x/p) = 2Cx/p+ o(x/p).

Proof. First, note that (9) insures that (16) holds for all p ≤ x with “≤”
in place of “=”. Suppose, by way of a contradiction, that strict inequality
holds in (16) for a “substantial” set of primes. That is, there exist positive
constants b1 and b2 with the following property: for any large x for which
(12) holds, there exists a set of primes J = J (x) ⊂ [1, x] for which

∑
p∈J

log p

p
≥ b1 log x

(i.e., J is substantial) and for each prime p ∈ J

ϑ((x+ Cx)/p)− ϑ(x/p) < (2C − b2)x/p.
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Let S denote the left side of (14), and write S as a sum over J plus one
over J ′ := {p ∈ [1, x]} \ J . Using the hypothesis, the upper estimate (9),
and the sum over primes (6), we find

S ≤
∑
p∈J

(2C − b2)(x/p) log p+
∑
p∈J ′

2C(x/p) log p+ o(x log x)

≤ (2C − b1b2)x log x+ o(x log x).

This contradicts (14), and thus (16) must hold for all primes p outside a
small set.

(†) We should say a word about asymptotic or o-relations involving x/p.
Suppose a function f(y) in our analysis is within a preassigned number ε > 0
of its limit (in an appropriate sense) whenever y ≥ K for some suitably large
number K. How do we proceed when x/p < K, which puts f(x/p) outside
its “good” range? In this case we have∑

x/K<p≤x

log p

p
= o(log x),

and such primes can simply be adjoined to the set I of the last lemma.

The primes in [1, x] satisfying (16) we shall call good primes and the
remaining ones bad primes (with the understanding that goodness or bad-
ness depends on x (†) and the tolerance level implicit in o(x/p)). We shall
prove that a sequence of good primes p1 < p2 < · · · < pk exists satisfying
the conditions

(†) p1 = o(x),(17)

10p1 < pk < 100p1,(18)

and

(19) (1 + C)(1 + t)2pi > pi+1 > (1 + t)pi, i = 1, 2, . . . , k − 1,

where t is the fixed positive number that was selected for (13). For primes pi
satisfying (18) and (19) we must have (1 + t)k−1p1 < pk < 100p1; it follows
that k < k0, where k0 = k0(t).

Assuming for the moment that a sequence of primes satisfying (18) and
(19) exists, we now prove Theorem 2. At this point, Erdős makes a lower
estimate of

k−1∑
i=1

{
ϑ

(
x

pi
(1 + C)

)
− ϑ

(
x

pi+1

)}
.
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These terms can represent overlapping intervals, so it is not clear how to
use his estimate. (†) Instead, we show that ϑ(x/pi)− ϑ(x/pi+1) is large for
each i; an estimate with these summands is clearly valid and will lead to a
value for ϑ(x/p1) that is too large.

Consider two intervals

(20)

[
x

pi+1
,

x

pi+1
(1 + C)

]
,

[
x

pi
,
x

pi
(1 + C)

]
.

Suppose first that the intervals overlap. Then, using also (19),

x

pi+1
(1 + t) <

x

pi
≤ x

pi+1
(1 + C).

We claim that

(21) ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
= 2

(
x

pi
− x

pi+1

)
+ o

(
x

pi

)
.

By (9), the last relation holds with “≤.” If the inequality were strict, there
would be a number c1 > 0 such that

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
< (2− c1)

(
x

pi
− x

pi+1

)
.

But since pi+1 is a good prime, (16) holds with p = pi+1; therefore, in the
remaining portion of the interval [x/pi+1, (1 + C)x/pi+1] we have

ϑ

(
x

pi+1
(1 + C)

)
− ϑ

(
x

pi

)
> 2C

x

pi+1
+ o

(
x

pi+1

)
− (2− c1)

(
x

pi
− x

pi+1

)

= 2

{
x

pi+1
(1 + C)− x

pi

}
+ c1

(
x

pi
− x

pi+1

)
+ o

(
x

pi+1

)
.

By the last inequality in (19) and a small manipulation,

c1

(
x

pi
− x

pi+1

)
>

c1t

C − t

{
x

pi+1
(1 + C)− x

pi

}
.

It follows that

ϑ

(
x

pi+1
(1 + C)

)
− ϑ

(
x

pi

)
> (2 + c2)

{
x

pi+1
(1 + C)− x

pi

}
,
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with c2 = c1t/(C− t) > 0, in violation of (9). Thus (21) holds if the intervals
overlap.

On the other hand, if the intervals (20) do not overlap, we have

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
≥ ϑ

(
x

pi+1
(1 + C)

)
− ϑ

(
x

pi+1

)
=

(2C + o(1))x

pi+1
,

with the equality arising from the goodness of pi+1. We claim that 2Cx/pi+1

is not far from 2(x/pi−x/pi+1). Indeed, by the inequality pi+1 < (1+C)(1+
t)2pi, from (19), we have

1.9

(
x

pi
− x

pi+1

)
< 1.9

{
(1 + C)(1 + t)2 − 1

}
x

pi+1
<

1.95Cx

pi+1

for any C > 0 and sufficiently small t.

In either case we have

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
> 1.9

(
x

pi
− x

pi+1

)
for 1 ≤ i ≤ k − 1. Now add together these inequalities and recall that
pk > 10p1. On a sequence x → ∞ we obtain

ϑ

(
x

p1

)
≥ ϑ

(
x

p1

)
− ϑ

(
x

pk

)
> 1.9

(
x

p1
− x

pk

)
> 1.7x/p1.

(†) By (17), x/p1 is unbounded as x → ∞, so the preceding ϑ inequality
violates the Chebyshev bound lim supϑ(x)/x < 1.11. This concludes the
proof of the theorem under the assumption that there is a sequence of good
primes satisfying (17), (18), and (19).

Now we show that such good primes exist. Consider the intervals

Ir := (B2r, B2r+1), r = 0, 1, . . . ,

[
log x

2 logB

]
− 1,

where B is a fixed, sufficiently large number. Clearly, all the intervals Ir lie
in (0, x).

(†) First we show that for “nearly all” (i.e. with the exception of at most
o(log x)) indices r, the interval Ir contains at least one good prime lying in

I ′r := (B2r, B2r+1/3). From Chebyshev’s bounds (4) we have, for each r,∑
p∈I′r

log p

p
>

ϑ(B2r+1/3)− ϑ(B2r)

B2r+1/3
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>
0.92B2r+1/3 − 1.11B2r

B2r+1/3
> 0.92− 1.11

1001/3
=: c1,

provided that B > 100, say. If for some positive c2, there were c2 log x
intervals I ′r ⊂ [1, x] without good primes, then we would have∑

p bad

log p

p
> c1c2 log x,

which contradicts (15).

Next, we show that (18) and (19) hold for nearly all intervals Ir. Let

p1
(r) be the smallest good prime in I ′r (assuming such exists), and suppose

that a sequence p1
(r), p2

(r), . . . , pi
(r) ∈ Ir satisfying (19) exists with pi

(r)(1+
t)2(1+C) < B2r+1. Further, suppose that the sequence terminates too soon

in the sense that no pi+1
(r) can be found in Ir, because all the primes in

Ji
(r) := [pi

(r)(1 + t), pi
(r)(1 + t)2(1 + C)]

are bad. In this case we say that the interval Ir has an obstruction.

We have

(22) (1 + C)(1 + t)2 < 2,

since, as we noted above, C ≤ 0.20 and we can take t small. Now

pi
(r)(1 + t)2(1 + C) < 2B2r+1 < B2r+2,

so the intervals Ji1
(r1), Ji2

(r2), . . . do not overlap. Also, we have from (13)
that ∑

p∈Ji(r)
log p > 2ηpi

(r)(1 + t) > ηpi
(r)(1 + t)2(1 + C),

and thus

(23)
∑

p∈Ji(r)

log p

p
> η.

(†) Suppose that there were at least c3 log x intervals Ir having an
obstruction, for some c3 > 0. In this case, it follows from (23) that∑

p bad

log p

p
> c3η log x,
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contradicting (15). Thus, nearly every interval Ir contains a sequence of
good primes without an obstruction.

(†) We can achieve the second inequality in (18) for every interval Ir
that contains good primes simply by trimming from the sequence any good
primes p ≥ 100p1. (The only role the inequality serves is to insure that, for
a fixed choice of the parameter t, the number of primes in our sequence, is
bounded.)

(†) For the first inequality of (18), suppose that Ir has at least one good

prime satisfying p1 < B2r+1/3 but that pk, the largest prime of the sequence,
satisfies

pk ≤ 10p1 < 10B2r+1/3 < (1/2)B2r+1

(for the last inequality, recall B > 100). Further, by (22), we have

(1 + C)(1 + t)2 pk < B2r+1.

Since there is no good prime in [(1 + t) pk, (1 + C)(1 + t)2 pk] despite there
being room for one, Ir has an obstruction. The collection of intervals
having obstructions is sparse, as we have seen, so (18) holds for nearly
all intervals Ir.

Finally, we establish (17), which guarantees a large argument x/p1 in our
Chebyshev-type bound, justifying the punchline in the proof of Theorem 2.
There are [log x/(2 logB)] intervals Ir, of which at most o(log x) either lie
near x or lack a sequence of primes satisfying (18) and (19). Thus there
exists an index r∗ < log x/(5 logB) for which Ir∗ contains a good sequence,
and, for large x, the first prime in the sequence is smaller than

√
x. This

completes the proof of Theorem 2.

We conclude this section with some general remarks. When elementary
proofs of the PNT first were discovered, they generated much interest and
excitement for at least two reasons: they upset long-held notions about
“equivalence” and “depth” of propositions, and they provided hope for new
insights about the distribution of primes.

Before there were such proofs, two propositions about primes were called
equivalent if each could be deduced from the other by reasonably direct
real variable arguments. For example, it was said that “convergence of
Σn≤xμ(n)/n is equivalent to the PNT.” On the other hand, the PNT would
have been regarded as “deeper” than the Selberg formula

ϑ(x) log x+
∑
p≤x

ϑ(x/p) log p = (2 + o(1))x log x
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because the formula follows easily from ϑ(x) ∼ x, while no real variable proof
of the opposite implication was then known. Admittedly, depth and equiva-
lence were not precise notions, though they did appear plausible. However,
after the discovery of elementary proofs of the PNT, such statements are
reserved for informal use only.

Today, there are at least three distinct elementary paths to the PNT:
that of Selberg-Erdős, the partial sieving method of H. Daboussi, and the
large sieve method of A. J. Hildebrand, none of which is particularly easy.
PNT error terms deduced from Selberg-type formulas, besides being difficult
to establish, are not as good as those found by analytic methods. As Carl
Pomerance suggested in his Postscript to the Graham-Spencer article [12],
perhaps the greatest legacy of the elementary proof of the PNT is the
motivation it provided for developing methods in combinatorial number
theory.

4. Distribution Problems for Euler’s Function

Among the results in Erdős’ article [9] was the asymptotic formula

#{m : ϕ(m) ≤ y} ∼ cy, y → ∞,

for some positive constant c, found by him and Paul Turán. (The version
of this formula given in Mathematical Reviews contains an obvious error.)
Their proof involved analysis of the distribution function

Dϕ(α) := lim
x→∞x−1#{n ≤ x : ϕ(n)/n ≤ α},

which had been studied first by I. J. Schoenberg and was subsequently shown
to be purely singular by Erdős. The Erdős-Turán argument did not yield a
value for the constant c.

What it did produce was a cottage industry studying problems of this
type. First, Robert Dressler showed in [7] that c = ζ(2)ζ(3)/ζ(6) by evalu-
ating the residue of the generating function. Next, Paul Bateman [1] gave
three proofs of the Erdős-Turán result, one of which had an error term sim-
ilar to that of the PNT. In [2], I then treated a version of this problem for
rectangles,

#{n ≤ x : ϕ(n) ≤ y} = x g(y/x) + E(y), 1 ≤ y < x,

with E(y) again a PNT-type error term and g(α) a function on [0, 1].
The distribution function g is connected with Schoenberg’s function by the
differential equation

Dϕ(α) = g(α)− αg′(α).
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Differentiability questions for g caught Erdős’ fancy, as he had long
been interested in related questions for Dϕ. This gave rise to more letters
and several papers. One tidbit arising from our discussions is an identity
that appeared as Problem 6363 in the American Mathematical Monthly 88
(1981): Prove that

Dϕ(1/2)−Dϕ(1/4) +Dϕ(1/8)−Dϕ(1/16)± · · · = 1/2.

Another of our joint papers, [4], gave an abstraction of the preceding ϕ prob-
lems to ones for arithmetic functions having values uniformly distributed
in (0,∞).

In [11], Erdős studied the modulus of continuity of the distribution
function of σ(n)/n, where σ(n) denotes the sum of positive divisors of
n. Using his masterful technique of excluding sparse, inconvenient sets of
integers and then making an elementary count of survivors having suitable
divisibility properties, he showed, for every a ≥ 1, that

1

x
#

{
n ≤ x : a ≤ σ(n)

n
< a+

1

t

}
<

c

log t
,

an estimate that is best-possible apart from the value of c. The same ar-
gument establishes the corresponding result for ϕ(n)/n as well. Correspon-
dence with Erdős inspired Dennis Rhoads and me [6] to treat this problem
via an analytic method, which gives essentially the same conclusion. The
elementary method has the advantage of applying also for finite x, whereas
that of [6] holds only as x → ∞.

Erdős continued to have interest in the differential behavior of Dϕ. One
of his favorite distribution questions, at least in letters to me, was whether
the derivative of Dϕ is necessarily 0 at each point of differentiability. Sadly,
this was a problem that outlasted him.
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This paper is a survey on Extremal Graph Theory, primarily focusing on the
case when one of the excluded graphs is bipartite. On one hand we give an
introduction to this field and also describe many important results, methods,
problems, and constructions.
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1. Introduction

This survey describes the theory of Degenerate Extremal Graph Problems,
the main results of the field, and its connection to the surrounding areas.
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Extremal graph problems we consider here are often called Turán type
extremal problems, because Turán’s theorem and his questions were the
most important roots of this huge area [242], [243].

Generally, we have a Universe of graphs, U, where this universe may
be the family of ordinary graphs, or digraphs, or hypergraphs, or ordered
graphs, or bipartite graphs, etc and a property P, saying, e.g., that G ∈ U
does not contain some subgraphs L ∈ L, or that it is Hamiltonian, or it
is at most 3-chromatic, and we have some parameters on U, say v(G) and
e(G), the number of vertices and edges. Our aim is to maximize the second
parameter under the condition that G has property P and its first parameter
is given.

We call such a problem Turán type extremal problem if we are
given a family L of graphs from our universe, Gn is a graph of
n vertices, e(Gn) denotes the number of edges of Gn and we
try to maximize e(Gn) under the condition that Gn contains no
L ∈ L, where “contains” means “not necessarily induced sub-
graph”. (Here graph may equally mean digraph, or multigraph,
or hypergraph).
The maximum will be denoted by ex(n,L) and the graphs at-
taining this maximum without containing subgraphs from L are
called extremal graphs. The family of extremal graphs is de-
noted by EX(n,L) and ex(n,L) is called the Turán number of
the family L.
Speaking of ex(n,L) we shall always assume that n ≥ |V (L)|,
otherwise the problem is trivial.

Definition 1.1. If the Universe U is the family of r-uniform hypergraphs1,
then we shall call the problem degenerate if the maximum,

ex(n,L) = o(nr).

Otherwise we shall call it non-degenerate

Below we shall mention several open problems. Yet to get more prob-
lems, we refer the reader to the

Erdős homepage: www.renyi.hu/˜p erdos

where the papers of Erdős can be found [59]. Also, many open problems
can be found in Chung-Graham [47].

1r = 2 included, moreover, mostly we think of r = 2.
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1.1. Some central theorems of the field

We start with some typical theorems of the field and two conjectures. The
aim of this “fast introduction” is to give a feeling for what are the crucial
types of results here.

Theorem 1.2 (Kővári–T. Sós–Turán, [164]). Let Ka,b denote the complete
bipartite graph with a and b vertices in its color-classes. Then

ex(n,Ka,b) ≤
1

2
a
√
b− 1 · n2−(1/a) +O(n).

We use this theorem with a ≤ b, since that way we get a better estimate.

Theorem 1.3 (Kollár–Alon–Rónyai–Szabó [159], [11]). If b > (a−1)!, then

ex(n,Ka,b) > can
2−(1/a).

Theorem 1.4 (Erdős, Bondy and Simonovits [32]).

ex(n,C2k) ≤ 100kn1+(1/k).

Theorem 1.5 (Erdős–Simonovits, Cube Theorem [90]). Let Q8 denote the
cube graph defined by the vertices and edges of a 3-dimensional cube. Then

ex(n,Q8) = O(n8/5).

Conjecture 1.6 (Erdős and Simonovits, Rational exponents). For any
finite family L of graphs, if there is a bipartite L ∈ L, then there exists a
rational α ∈ [0, 1) and a c > 0 such that

ex(n,L)
n1+α

→ c.

Theorem 1.7 (Füredi [111], [104]). If q �= 1,7, 9,11,13, and n = q2+ q+1,
then

ex(n,C4) ≤
1

2
q(q + 1)2.

Moreover, if q is a power of a prime, then

ex(n,C4) =
1

2
q(q + 1)2.

Conjecture 1.8 (Erdős). 2

ex(n, {C3, C4}) =
1

2
√
2
n3/2 + o(n3/2).

We close this part with a famous result of Ruzsa and Szemerédi:

2This conjecture is mentioned in [70] but it is definitely older, see e.g. Brown, [37].
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Theorem 1.9 (Solution of the (6,3) problem, [210]). If H(3)
n is a 3-uniform

hypergraph not containing 6 vertices determining (at least) 3 hyperedges,
then this hypergraph has o(n2) hyperedges.

The above theorems will be discussed in more details below.

1.2. The structure of this paper

The area is fairly involved. Figure 1 shows a complicated – but not com-

Fig. 1. Area Map

plete – map of the interactions of some subfields of the field discussed here.
We start with describing the Extremal problems in general, then move to
the Degenerate problems, also describing why they are important. Among
the most important degenerate extremal problems we mention are the ex-
tremal problem of Ka,b, and also C2k, where – to classify the extremal prob-
lems – we shall need the Random Graph Method to get a lower bound in
the problem of C2k. These results are enough to give a good classification
of degenerate extremal graph problems.

1. The two lowest boxes of Figure 1 show that this whole area has a
strong connection to Geometry and Number Theory. This will be
explained in Sections 13, 1.5, and 14.2.

2. The origins of this field are

(a) an early, singular result of Mantel,

(b) the multiplicative Sidon Problem (see Section 1.5)

(c) Turán’s theorem and his systematic approach to the field.
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So the origins come – in some sense – from Number Theory, are
strongly connected to Finite Geometry, and in this way also to or-
dinary geometry (Turán’s theorem comes from the Erdős–Szekeres
version of Ramsey Theorem, which they invented to solve the Esther
Klein problem from Geometry.)

3. To understand the field we start with a very short description of the
general theory, and then – skipping most of the hypergraph theory –
we move to the main area of this paper: to the questions where
we consider ordinary extremal graphs, and exclude some bipartite L:
therefore, by Theorem 1.2, we have ex(n,L) = O(n2−c).

4. One important phenomenon is that many extremal graph problems
can be “reduced” to some degenerate extremal graph problems that
we also call sometimes bipartite extremal problems.

5. The upper bounds in the simpler cases are obtained by some double
counting, Jensen type inequalities, or applying some supersaturated
graph theorems.3

6. There are also much more complicated cases, where the above simple
approach is not enough, we need some finer arguments. Perhaps the
first such case was treated by Füredi: Section 7.3 and [107]. Also
such an approach is the application of the general Dependent Random
Choice Method, (see the survey of Fox and Sudakov [101]).

7. The lower bounds are sometimes provided by random graphs (see
Section 2.5) but these are often too weak. So we often use some finite
geometric constructions, (see Section 3.2) or their generalizations –
coming from commutative algebras (see Sections 3.6, 4.9, 8), etc., and
they occasionally provide matching upper and lower bounds. Again,
there is an important general method with many important results,
which we shall call the Lazebnik–Ustimenko method but will treat
only very superficially in Section 3.6.

1.3. Extremal problems

We shall almost entirely restrict ourselves to Turán type extremal problems
for ordinary simple graphs, i.e. loops, multiple edges are excluded.

To show the relation of the areas described here, we start with a list of
some related areas.

3Lovász and Szegedy had a beautiful conjecture, which we formulate here only in a
restricted form: Any (valid) extremal theorem can be proven by applying the Cauchy–
Schwarz inequality finitely many times. This conjecture was killed in this strong form –
by Hatami and Norine [142] – but proven in a weaker, “approximation-form”.
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1. Ramsey Theory

• Problems not connected to density problems; in some sense these
are the real Ramsey Problems

• Problems connected to density problems, i.e. cases, where we do
not really use the Ramsey Condition, only that some color class
is large.

2. Ordinary extremal graph theory

• Excluding bipartite graphs (degenerate problems)

• Excluding topological subgraphs (very degenerate extremal prob-
lems)

• Matrix problems, ordered and not ordered;

• Non-degenerate case, and its relation to degenerate problems

3. Theory of extremal digraph problems

4. Ramsey–Turán Problems

5. Connection to Random Graphs

6. Hypergraph extremal problems

7. Connection of Number Theoretical problems to Extremal Graph The-
ory

8. Continuous problems

9. Applications

There are several surveys on these fields, see e.g., T. Sós [232], Füredi
[108], [110], Simonovits [224], [228], [227], [222], Simonovits and Sós [230],
[155]. Perhaps the first survey on this topic was Vera Sós’ paper [232],
discussing connections between extremal graph problems, finite geometries,
block designs, etc. and, perhaps, the nearest to this survey is [225], Bol-
lobás [28], Sidorenko [217], [101], and also some books, e.g., Bollobás [26].
Of course, a lot of information is hidden in the papers of Erdős, among
others, in [70], [73], [76].

So, here we shall concentrate on Case 2, but to position this area we shall
start with some related fields, among others, with the general asymptotic
in Case 2.

Problem 1.10 (General Host-graphs). In a more general setting we have
a sequence (Hn) of “host” graphs and the question is, how many edges can
a subgraph Gn ⊂ Hn have under the condition that it does not contain any
forbidden subgraph L ∈ L. The maximum will be denoted by ex(Hn,L).

For Hn = Kn we get back the ordinary extremal graph problems. There
are several further important subcases of this question:
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(a) when Hn = Ka,b for a ≈ n/2;

(b) when the host-graph is the d-dimensional cube, n = 2d; see Sec-
tion 14.3.

(c) when Hn is a random graph on n vertices, see e.g. [209].

Notation. Given some graphs Gn, Tn,p, Tk, Hν , . . . the (first) subscript
will almost always denote the number of vertices.4 So Kp is the complete
graph on p vertices, Pk the path on k vertices, Ck is the cycle of k vertices,
while C≥k will denote the family of cycles of length at least k. δ(x) denotes
the degree of the vertex x.

The complete bipartite graph Ka,b with a vertices in its first class and
b in its 2nd class will be crucial in this paper. Often, we shall denote it by
K(a, b), and its p-partite generalization by Kp(a1, . . . , ap). If

∑
ai = n and

|ni − nj | ≤ 1, then Kp(a1, . . . , ap) is the Turán graph Tn,p on n vertices and
p classes.

Given two graphs U and W , their product graph is the one obtained
from vertex-disjoint copies of these two graphs by joining each vertex of U
to each vertex of W . This will be denoted by U ⊗W .5

Given a graph H, v(H) is its number of vertices, e(H) its number of
edges and χ(H) its chromatic number, dmin(G) and dmax(G) denote the
minimum and maximum degrees of G, respectively.

We shall write f(x) ≈ g(x) if f(x)/g(x) → 1. Occasionally [n] denote
the set of first n integers, [n] := {1, 2, . . . , n}.

The Overlap. Some twenty years ago Simonovits wrote a survey [227]
on the influence of Paul Erdős in the areas described above, Many-many
features of these areas changed drastically since that. Jarik Nešetřil and Ron
Graham were the editors of that survey-volume, and now they decided to
republish it. Fortunately, the authors had the option to slightly rewrite their
original papers. Simonovits has rewritten his original paper [228], basically
keeping everything he could but indicating many new developments, and
adding remarks and many new references to it.

To make this paper readable and self-contained, we shall touch on some
basic areas also treated there, or in other survey papers of ours, Here, how-
ever, we shall explain many-many results and phenomena just mentioned in
other survey papers.

4One important exception is the complete bipartite graph K(a, b) = Ka,b, see below.
Another exception is, when we list some excluded subgraphs, like L1, . . . , Lν .

5This product is often called also the joint of the two graphs.
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Remark 1.11. There is also a third new survey to be mentioned here:
Simonovits gave a lecture at the conference on Turán’s 100th anniversary,
in 2011. His lecture tried to cover the whole influence of Paul Turán in
Discrete Mathematics. In the volume of this conference Simonovits wrote a
survey [229] covering his lecture, except that

• the area called Statistical Group Theory is discussed in a survey of
Pálfy and Szalay [200] and

• some parts of the applications of Extremal Graph Theory, primarily
in Probability Theory are covered by Katona [153], in the same volume.

1.4. Other types of extremal graph problems

Above we still tried to maximize the number of edges, hyperedges, etc. More
generally, instead of maximizing e(Gn), we may maximize something else:

1. Min-degree problems (or Dirac type problems): How large min-degree
can Gn have without containing subgraphs from L.

2. Median problems which will be called here Loebl–Komlós–Sós type
problems: Given a graph Gn, which m and d ensure that if Gn has at
least m vertices of degree ≥ d, then Gn contains some L ∈ L.

3. Eigenvalue-extremal problems6: maximize the maximum eigenvalue
λ(Gn) under the condition that Gn does not contain any L ∈ L.
(These are sharper forms of some extremal results, since the maxi-
mum eigenvalue

λ(Gn) ≥
2e(Gn)

n
,

see Section 8.)

4. Subgraph count inequalities, which assert that if Gn contains many
copies of some subgraphs L1, . . . , Lλ, then we have at least one (or
maybe “many”) subgraphs L.

5. Diameter-extremal problems. Here we mention just a subcase: if

diam(Gn) ≤ d and dmax(Gn) < M,

at least how many edges must Gn have. The Erdős–Rényi paper
[85] is of importance here and also some related papers, like Füredi
[105], [109].

6. Combined extremal problems: There are many–many further types
of extremal problems. Here we mention, as an example, the results

6As usual, given a graph Gn, an n× n matrix is associated to it, having n eigenvalues.
The largest and the second largest is what we are mostly interested in.
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of Balister, Bollobás, Riordan and Schelp [17], where an odd cycle is
excluded, and at the same time an upper bound is fixed on the degrees
and the number of edges are to be maximized.

The approach 4 is very popular in the theory of Graph Limits [177]. We
mention a breakthrough in this area in connection with Erdős’ combinatorial
problems, of type 4. A famous conjecture of Erdős was

Conjecture 1.12 (Erdős [74]). A K3-free Gn contains at most (n5 )
5
copies

of C5’s.

The motivation of this is that the blownup7 C5, i.e. C5[n/5] has no

triangles and has (n5 )
5
copies of C5. Erdős conjectured that no triangle-free

Gn can have more C5’s than this. The first “approximation” was due to
Ervin Győri:

Theorem 1.13 (Győri [133]). A K3-free Gn contains at most 1.03(n5 )
5

C5’s.

Next Füredi improved the constant to 1.001 (unpublished) [114], and
finally independently Grzesik [124], and Hatami, Hladký, Král, Norine, and
Razborov [141] proved the conjecture.

1.5. Historical remarks

Erdős in 1938 [60] considered the following “multiplicative Sidon Problem”8.

Problem 1.14. How many integers, a1, . . . , am ∈ [1, n] can we find so that
aiaj = aka� does not hold for any i, j, k, , unless {i, j} = {k, }.

To get an upper bound in Problem 1.14, Erdős proved

Theorem 1.15. Let G[n, n] be a bipartite graph with n vertices in both
classes. If it does not contain C4, then e(G[n, n]) < 3n

√
n,

Much later this problem was asked in a more general setting: find an
upper bound on e(G[n, n]) if Ka,b �⊂ G[n, n]. Zarankiewicz [254] posed the
following question:

7Given a graph H, its blownup version H[t] is defined as follows: we replace each
vertex x of H by t independent new vertices and we join two new vertices coming from
distinct vertices x, y iff xy was an edge of H.

8For a longer description of the number theoretical parts see [228]. Erdős also refers
to his “blindness” overlooking the general problem in [70].
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Problem 1.16 (Zarankiewicz problem). Determine the largest integer
Z(m,n, a, b) for which there is an m× n 0-1 matrix containing Z(m,n, a, b)
1’s without an a× b submatrix consisting entirely of 1’s.

Hartman, Mycielski and Ryll-Nardzevski [139] gave upper and lower
bounds for the case a = b = 2, weaker than the Erdős–Klein9 result, and
Kővári, T. Sós and Turán (see Theorem 1.2) provided a more general upper
bound. We shall discuss these problems and results in details in Sections
2.4 and 3.2.

While exact values of Z(m,n, a, b) are known for infinitely many param-
eter values, mostly only asymptotic bounds are known in the general case.
Even Z(m,n, 2, 2) is not sufficiently well known.

2. The General Theory, Classification

In many ordinary extremal problems the minimum chromatic number plays
a decisive role. The subchromatic number p(L) of L is defined by

(2.1) p(L) = min{χ(L) : L ∈ L} − 1.

Recall that the Turán graph Tn,p is the largest graph on n vertices and p
classes.

Claim 2.1.

(2.2) ex(n,L) ≥ e(Tn,p) =

(
1− 1

p

)(
n

2

)
+ o(n2).

Indeed, Tn,p does not contain any L ∈ L. An easy consequence of the
Erdős–Stone theorem [95] provides the asymptotic value of ex(n,L), at least
if p(L) > 1.

Theorem 2.2 (Erdős–Simonovits [89]). If L is a family of graphs with
subchromatic number p > 0, then

ex(n,L) =
(
1− 1

p

)(
n

2

)
+ o(n2).

9In [70] Erdős (again) attributes the finite geometric construction to Eszter (Esther)
Klein.
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This means that ex(n,L) depends only very
loosely on L; up to an error term of order o(n2);
it is already determined by p(L).10 The question
is whether the structure of the extremal graphs is
also almost determined by p(L), and (therefore) it
must be very similar to that of Tn,p

11. The answer
is YES. This is expressed by the following results of Erdős and Simonovits
[66], [67], [218]:

Theorem 2.3 (The Asymptotic Structure Theorem). Let L be a family of
forbidden graphs with subchromatic number p. If Sn ∈ EX(n,L), (i.e., Sn

is extremal for L), then it can be obtained from Tn,p by deleting and adding
o(n2) edges. Furthermore, if L is finite, then the minimum degree

dmin(Sn) =

(
1− 1

p

)
n+ o(n).

Further, the almost-extremal graphs are similar to Tn,p.

Theorem 2.4 (The First Stability Theorem). Let L be a family of for-
bidden graphs with subchromatic number p. For every ε > 0, there exist a
δ > 0 and an nε such that, if Gn contains no L ∈ L, and if, for n > nε,

(2.3) e(Gn) > ex(n,L)− δn2,

then Gn can be obtained from Tn,p by changing12 at most εn2 edges.

Remark 2.5. For ordinary graphs (r = 2) we often call the degenerate
extremal graph problems bipartite extremal problems. This is the case when
L contains some bipartite graphs. There is a slight problem here: we shall
also consider the case when not only some L ∈ L is bipartite but χ(Gn) = 2
is as well.

2.1. The importance of the Degenerate Case

There are several results showing that if we know sufficiently well the
extremal graphs for the degenerate cases, then we can also reduce the non-
degenerate cases to these problems.

11Actually, this was the original question; Theorem 2.2 was a partial answer to it.
12deleting and adding
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Exact Turán numbers, product conjecture. We start with an illustra-
tion. Let O6 = K(2, 2, 2) be the octahedron graph. Erdős and Simonovits
proved that

Theorem 2.6 (Octahedron Theorem [91]). If Sn is an extremal graph for
the octahedron O6 for n sufficiently large, then there exist extremal graphs
G1 and G2 for the circuit C4 and the path P3 such that Sn = G1 ⊗G2 and
|V (Gi)| = 1

2n+ o(n), i = 1, 2.

If G1 does not contain C4 and G2 does not contain P3, then G1 ⊗G2

does not contain O6. Thus, if we replace G1 by any H1 in EX(v(G1), C4)
and G2 by any H2 in EX(v(G2), P3), then H1 ⊗H2 is also extremal for O6.

More generally,

Theorem 2.7 (Erdős–Simonovits [91]). Let L be a complete (p+1)-partite
graph, L := K(a, b, r3, r4, . . . , rp+1), where rp+1 ≥ rp ≥ · · · ≥ r3 ≥ b ≥ a and
a = 2, 3. There exists an n0 = n0(a, b, . . . , rp+1) such that if n > n0 and
Sn ∈ EX(n, L), then Sn = U1 ⊗ U2 ⊗ · · · ⊗ Up, where

1. v(Ui) = n/p+ o(n), for i = 1, . . . , p.

2. U1 is extremal for Ka,b

3. U2, U3, . . . , Up ∈ EX(n,K(1, r3)).

It follows that this theorem is indeed a reduction theorem.

Conjecture 2.8 (The Product Conjecture, Simonovits). Assume that
p(L) = minL∈L χ(L)− 1 > 1. If for some constants c > 0 and ε ∈ (0, 1)

(2.4) ex(n,L) > e(Tn,p) + cn1+ε,

then there exist p forbidden families Mi, with

p(Mi) = 1 and max
M∈Mi

v(M) ≤ max
L∈L

v(L),

such that for any Sn ∈ EX(n,L), Sn = G1⊗· · ·⊗Gp, where Gi are extremal
for Mi.

This means that the extremal graphs Sn are products of extremal graphs
for some degenerate extremal problems (for Mi), and therefore we may
reduce the general case to degenerate extremal problems.

Remarks 2.9. (a) If we allow infinite families L, then one can easily find
counterexamples to this conjecture.
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(b) If we allow linear error-terms, i.e. do not assume (2.4), then one
can also find counterexamples, using a general theorem of Simonovits [221];
however, this is not trivial at all, see [223].

(c) A weakening of the above conjecture would be the following: for
arbitrary large n, in Conjecture 2.8 there are several extremal graphs, and
for each n > nL, some of them are of product form, (but maybe not all of
them) and the families Mi also may depend on n a little.

Further sources to read: Griggs, Simonovits, and Thomas [127], Si-
monovits, [226].

2.2. The asymmetric case of Excluded Bipartite graphs

The degenerate extremal graph problems have three different forms:

Problem 2.10 (Three versions). (a) Ordinary extremal graph problems,
where some bipartite or non-bipartite sample graphs are excluded, and we
try to maximize e(Gn) under this conditions.

(b) The bipartite case, where the host graph isK(m,n) and we maximize
e(Gn+m) under the conditions that Gn+m ⊆ K(m,n) and Gn+m contains no
L ∈ L. (Here we may assume that all L ∈ L are bipartite.) In this case we
often use the notation ex(m,n,L). If m ≤ n but m > cn for some constant
c > 0, then the answer to this problems and to the problem of ex(n,L) are
the same, up to a constant. If, however, we assume that n is much larger
than m, then some surprising new phenomena occur, see Section 14.2.

(c) The asymmetric case. Color the vertices of the sample graphs L in
RED-BLUE and exclude only those Gn ⊆ K(m,n) where the RED vertices
of some L ∈ L are in the FIRST class of K(m,n): maximize e(Gn+m) over
the remaining graphs Gn+m ⊆ K(m,n).

Denote the maximum number of edges in this third case by ex∗(m,n,L).

Remark 2.11. We have seen Zarankiewicz’ problem (i.e. Problem 1.16).
That corresponds to an asymmetric graph problem, (c). If we exclude in
an m× n matrix both a a× b and an b× a submatrices of 1’s, that will
correspond to a bipartite graph problem, (b).

Conjecture 2.12 (Erdős, Simonovits [225]).

ex∗(n, n,L) = O(ex(n,L)).

The simplest case when we cannot prove this is L = K(4, 5).
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Remark 2.13 (Matrix problems). Case (c) has also a popular matrix form
where we consider 0-1 matrices and consider an m×n matrix not containing
a submatrix A. The question is: how many 1-s can be in such a matrix.
This problem has (at least) two forms: the unordered and ordered one. We
return to the Ordered Case in Subsection 12.4.

2.3. Reductions: Host graphs

The following simple but important observation shows that there is not
much difference between considering any graph as a “host” graph or only
bipartite graphs.

Lemma 2.14 (Erdős’ bipartite subgraph lemma). Every graph Gn contains
a bipartite subgraph Hn with e(Hn) ≥ 1

2e(Gn).

This lemma shows that there is not much difference between considering
K2n or Kn,n as a host graph.

Corollary 2.15. If exB(n,L) denotes the maximum number of edges in
an L-free bipartite graph, then

exB(n,L) ≤ ex(n,L) ≤ 2 exB(n,L).

Assume now that we wish to have an upper bound on ex(m,n,L), where
n � m. One way to get such an upper bound is to partition the n vertices
into subsets of size ≈ m. If, e.g., we know that ex(m,m,L) ≤ cm1+γ , then
we obtain that

(2.5) ex(m,n,L) ≤ n

m
· ex(m,m,L) ≤ cnmγ .

This often helps, however, occasionally it is too weak. Erdős formulated

Conjecture 2.16. If n > m2 then ex(m,n,C6) = O(n).

Later this conjecture was made more precise, by Erdős, A. Sárközy and
T. Sós, and proved by Győri, see Section 14.2 and [134].

We start with a trivial lemma.

Lemma 2.17. Let d be the average degree in Gn, i.e. d := 2e(Gn)/n. Then
Gn contains a Gm with dmin(Gm) ≥ d/2.

To solve the cube-problem, Erdős and Simonovits used two reductions.
The first one was a reduction to bipartite graphs, see Section 2.14. The
other one eliminates the degrees are much higher than the average.
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Definition 2.18 (Δ-almost-regularity). G is Δ-almost-regular if dmax(G) <
Δ · dmin(G).

Theorem 2.19 (Δ-almost-regularization [90]). Let e(Gn) > n1+α, and

Δ = 20 · 2(1/α)2 . Then there is a Δ-almost-regular Gm ⊂ Gn for which

e(Gm) >
2

5
m1+α, where m > nα 1−α

1+α ,

unless n is too small.

This means that whenever we wish to prove that ex(n,L) = O(n1+α),
we may restrict ourselves to bipartite Δ-almost-regular graphs.

It would be interesting to understand the limitations of this lemma
better. The next remark and problem are in this direction.

Remark 2.20. By the method of random graphs one can show [90] that

for every Δ and n and ε > 0, there is Gn with e(Gn) = �n3/2� which does
not have a Δ-almost-regular subgraph Gm with e(Gm) > ε

√
nm.

Problem 2.21 (Erdős–Simnovits [90]). Is it true that for every Δ there
exists an ε > 0 such that every Gn, with e(Gn) = �n log n�, contains a Δ-
almost-regular subgraph Gm, with e(Gm) > εm logm where m → ∞ when
n → ∞?

2.4. Excluding complete bipartite graphs

Certain questions from topology (actually, Kuratowski theorem on planar
graphs) led to Zarankiewicz problem [254]. After some weaker results
Kővári, T. Sós and Turán proved the following theorem, already mentioned
in Section 1.1.

Theorem 2.22 (Kővári–T. Sós–Turán, [164]). Let Ka,b denote the com-
plete bipartite graph with a and b vertices in its color-classes. Then

(2.6) ex(n,Ka,b) ≤
1

2
a
√
b− 1 · n2−(1/a) +

a− 1

2
n.

Remarks 2.23. (a) If a �= b then (2.6) is better if we apply it with a < b.

(b) We know from Theorem 2.2 that ex(n,L) = o(n2) if and only if L
contains a bipartite L. Actually Claim 2.1 and Theorem 2.22 show that if
ex(n,L) = o(n2) then ex(n,L) = O(n2−c), for some constant c > 0.
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Conjecture 2.24 ([164], see also e.g. [70]). The upper bound in Theorem
1.2 is sharp:

ex(n,Ka,b) > ca,bn
2−(1/a).

Sketch of proof of Theorem 2.22. The number of a-stars Ka,1 in a graph

Gn is
∑(

di
a

)
where d1, . . . , dn are the degrees in Gn. If Gn contains no Ka,b

then at most b− 1 of these a-stars can share the same set of endpoints. We
obtain

(2.7)
∑(

di
a

)
= the number of a−stars ≤ (b− 1)

(
n

a

)
.

Extending
(
n
a

)
to all x > 0 by

(
x

a

)
:=

⎧⎪⎨⎪⎩
x(x− 1) . . . (x− a+ 1)

a!
for x ≥ a− 1,

0 otherwise

we have a convex function. Then Jensen’s Inequality implies that, the left

hand side in (2.7) is at least n
(
2e(G)/n

a

)
, and the result follows by an easy

calculation.

Remark 2.25. Slightly changing the above proof we get analogous upper
bounds on e(Gn) in all three cases of Problem 2.10.

We shall return to these questions in Sections 3.1, 3.4 where we shall
discuss some improvements of the upper bound and also some lower bounds.

Further sources to read: Guy [128], Znám: [257], [256], Guy–Znám [129].

2.5. Probabilistic lower bound

The theory of random graphs is an interesting, important, and rapidly
developing subject. The reader wishing to learn more about it should either
read the original papers of Erdős, e.g., [61], [62], Erdős and Rényi, e.g., [84],
or some books, e.g., Bollobás, [27], Janson, �Luczak and Ruciński, [149],
Molloy and Reed [192].

Theorem 2.26 (Erdős–Rényi First Moment method). Let L = {L1, . . . ,Lt}
be a family of graphs, and let

(2.8) c = max
j

min
H⊆Lj

v(H)

e(H)
, γ = max

j
min
H⊆Lj

v(H)− 2

e(H)− 1
,



The History of Degenerate (Bipartite) Extremal Graph Problems 185

where the minimum is taken only for subgraphs H where the denominator
is positive.

(a) Let Gn be a graph of order n chosen uniformly, at random, from
graphs with En edges. For every ε > 0 there exists a δ > 0 such that if
En < δn2−c, then the probability that Gn contains at least one L ∈ L is at
most ε.

(b) If we know only En < εn2−γ , then the probability that Gn contains
at least 1

2En copies of L ∈ L is at most ε.

This implies that

(2.9) ex(n,L) > cLn2−γ ≥ cLn2−c

with c ≥ γ > 0 defined above.

Remarks 2.27. (a) A graph L is called balanced if the minimum in (2.8), for
c, is achieved forH = L. Erdős and Rényi formulated their result containing
Theorem 2.26(a) only for balanced graphs L. The part we use is trivial from
their proof.

(b) Later Bollobás extended the Erdős–Rényi theorem to arbitrary L.
(c) Győri, Rothschild and Ruciński achieved the generality by embedding

any graph into a balanced graph [136].

Corollary 2.28. If a finite L contains no trees,13 then for some cL > 0,
ex(n,L) ≥ cLn1+c.

Mostly the weaker Theorem 2.26(a) implies Corollary 2.28: it does,
whenever L is finite and each L ∈ L contains at least two cycles in the same
component. However, for cycles we need the stronger Theorem 2.26(b).

For example, for L = Ka,b we have c = a−1 + b−1. Then, for c0 suffi-
ciently small, the probability that a graph Gn with c0n

2−c edges does not
contain Ka,b is positive. Hence

ex(n,Ka,b) ≥ c0n
2−(1/a)−(1/b).

Comparing this with the Kővári–T. Sós–Turán theorem (Theorem 2.22),
we see that the exponent is sharp there, in some sense, if a is fixed while
b → ∞.

13neither forests
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Proof of Theorem 2.26. Consider the random graph Gn with n labeled
vertices, in which each edge occurs independently, with the same probabil-
ity p. For each Lj , choose a subgraph Hj which attains the inner minimum
for γ, in (2.8). Let hj := v(Hj), ej := e(Hj), and let αj denote the number
of copies of Hj in Khj

, and βj denote the expected number of copies of Hj

in Gn.

Clearly, Kn contains αj

(
n
hj

)
copies ofHj . For each copyH ofHj , define a

random “indicator” variable kH = kH(Gn) = 1 if H ⊆ Gn, and 0 otherwise.
Since the number of copies of Hj in Gn is just

∑
H⊆Kn

kH , therefore, if E
denote the expected value, then

βj =
∑

H⊆Kn

E(kH) = αj

(
n

hj

)
pej .

Summing over j and taking p = c1n
−c, (for some c1 ∈ (0, 1)) we get

∑
j

βj ≤ tmaxαj

(
n

hj

)
pej ≤ tmax c1n

hj−cej = tc1n
2−c.

Now let η(Gn) = e(Gn)−
∑

j βj . Then, for c1 sufficiently small, the expected
value is

E(η(Gn)) >
1

2

(
n

2

)
p >

1

5
c1n

2−c.

Hence there exists a Gn with η(Gn) >
1
5c1n

2−c. Delete an edge from each
Hj in this Gn. The resulting graph contains no Lj , and has at least
1
5

(
n
2

)
p ≥ 1

11c1n
2−c edges, completing the proof.

Remarks 2.29 (How did the probabilistic methods start?). Mostly we
write that applications of the Random Graphs (probabilistic method)
started when Erdős (disproving a conjecture of Turán on the Ramsey Num-
bers) proved the existence of graphs Gn without complete subgraphs of
order 2 log n and without independent sets of size 2 log n.

1. Erdős himself remarks (e.g., in [64]) that perhaps Szele was the first
who applied this method in Graph Theory. (Erdős – in his birthday
volume [76] – also mentions an even earlier application of J. Erőd but
we did not succeed in locating that source.)

2. Perhaps the earliest case of applying probabilistic methods was that of
Paul Turán’s proof of the Hardy-Ramanujan Theorem [241], where –
reading the paper – it is obvious that Turán gave a probabilistic proof
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of a beautiful and important theorem, using the Chebishev inequality.
However, either Turán did not realize that this is an application of
the probabilistic method or he did not wish to burden the reader with
that.

3. An important application of the probabilistic methods was that of
Claude Shannon, when he constructed random codes.

Applying Theorem 2.26 to some families of cycles we obtain

Corollary 2.30. For some constant cm > 0,

ex(n, {C3, . . . , Cm}) ≥ cmn1+ 1
m−1 .

Erdős’ even cycles theorem asserts that ex(n,C2t) = O(n1+(1/t)), and
this upper bound is probably sharp.14 The random method (that is, The-

orem 2.26) yields a lower bound of cn1+ 1
2t−1 , a weaker result. Simonovits

thinks that it is unlikely that Theorem 2.26 ever yields a sharp bound for a
finite family.15

Corollary 2.30 is used in the next section to prove that ex(n,L) = O(n)
if and only if contains a tree or forest.

2.6. Classification of extremal problems

The extremal graph problems can be classified in several ways. Here we
shall speak of (a) non-degenerate, (b) degenerate and (c) linear extremal
problems.

For Case (a) Theorem 2.3 provides an appropriately good description
of the situation. In Case (b) p(L) = 1. Here the “main term” disappears,

(1− 1
p) = 0; therefore “the error terms dominate”. Case (c) will be discussed

here shortly and in Sections 6 and 9 in more details.

The classification immediately follows from the following theorems:

Theorem 2.31. ex(n,L) = o(n2) if and only if L contains a bipartite graph.
Actually, if L contains a bipartite graph then ex(n,L) = O(n2−c) for, e.g.,
c = 2/v(L) for any bipartite L ∈ L. If L does not contain bipartite graphs,

then ex(n,L) ≥
[
n2

4

]
.

14The reference is missing here, since Erdős did formulate this theorem but never have
published a proof of it, as far as we know.

15Some related results of G. Margulis, and A. Lubotzky, R. Phillips and P. Sarnak will
be discussed in Section 4.9.
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Theorem 2.32. For finite L, ex(n,L) = O(n) if and only if L contains a
tree, or a forest. If L ∈ L is a tree or a forest, then, for v(L) ≥ 3,

(2.10) ex(n,L) < (v(L)− 2)n.

Theorem 2.33 (Erdős [61, 62]). If L is finite and no L ∈ L is a tree, then
ex(n,L) > n1+cL for some cL > 0.

Theorem 2.34 (Erdős [62], Bondy and Simonovits [32]). Given an integer
k, for some constants ck, c̃k > 0,

(2.11) ckn
1+ 1

2k−1 < ex(n, {C3, . . . , C2k}) ≤ ex(n,C2k) ≤ c̃kn
1+ 1

k .

Proof of Theorems 2.31, 2.32, and 2.33. If there is a bipartite L ∈ L,
then Theorem 2.22 implies the sharper upper bound of Theorem 2.31.
Indeed, for v = v(L), by L ⊆ K([v/2], v), we have,

ex(n,L) ≤ ex(n,L) ≤ ex(n,K([v/2], v)) <
1

2
v
√
2v · n2−(2/v(L)) = O(n2−c).

If the minimum chromatic number p = p(L) ≥ 3, then Tn,p contains no
forbidden L ∈ L. Therefore

ex(n,L) > e(Tn,2) ≥ e(Tn,p) =

(
1− 1

p

)(
n

2

)
+O(n).

Actually, e(Tn,2) =
[
n2

4

]
. This completes the proof of Theorem 2.31.

It is easy to show that if Gn has minimum degree at least r − 1, then
it contains every tree Tr (by induction on r). An induction on n yields
(2.10), implying half of Theorem 2.32, when L contains a tree (or a forest).
If L is finite and contains no trees, i.e., all the forbidden graphs contain
some cycles, then we use Theorem 2.34, or simply Corollary 2.28, proved by
probabilistic methods.16

Remark 2.35 (Infinite families). For infinite families the situation is
different: if e.g. C is the family of all cycles, then ex(n, C) = n−1: all graphs
but the forests are excluded. There are many further families without trees
where the extremal number is linear, see Section 9.

16There are also deterministic proofs of Corollary 2.28, e.g., via the Margulis–Lubotzky–
Phillips–Sarnak construction of Ramanujan graphs, see Construction 4.43.
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Proof of Theorem 2.34. The lower bound comes from a random graph
argument of Erdős. Concentrate on the upper bound. If we are not inter-
ested in the value of the constant, then we can basically use the following
argument: Take a graph Gn with cn1+α edges. Delete its minimum degree
vertex, then the minimum degree vertex in the remaining graph, etc. At the
end we get a Gm with minimum degree at least c1m

α. In the obtained graph
Gm fix a vertex x and denote by Sj the set of vertices at distance j from x.
If girth(Gn) > 2k, – as we assumed – then basically |Sj | > dmin(Gm) · |Sj−1|.
Hence m > |Sk| > ck1m

αk. So α ≤ 1/k.

Assume for a second that Gn itself is asymptotically regular:

dmin(Gn)

dmax(Gn)
→ 1.

Then the previous argument asserts that d := dmin(Gn) < n1/k. Therefore

e(Gn) ≤
(
1

2
+ o(1)

)
nd ≈ 1

2
n1+ 1

k .

We shall return to the case of excluded trees, namely, to the Erdős–Sós
conjecture on the extremal number of trees, and to the related Komlós–
Sós conjecture in Section 6. One final question could be if ex(n,L) can be
sublinear. This is answered by the following trivial result.

Theorem 2.36. If L is finite and ex(n,L) < [n/2], then ex(n,L) = O(1).

Proof. Consider n/2 independent edges: this must contain an L1 ∈ L.
Hence, there is an L1 ∈ L contained in the union of t independent edges, for
some t. Also, there exists an L2 ⊆ K(1, n− 1). Hence an extremal graph
Sn has bounded degrees and bounded number of independent edges. This
proves 2.36.

Theorem 2.36 easily extends to hypergraphs.

2.7. General conjectures on bipartite graphs

We have already formulated Conjecture 1.6 on the rational exponents. We
have to remark that for hypergraphs this does not hold: the Behrend con-
struction [21] is used to get lower bounds in the Ruzsa–Szemerédi Theorem,
(Thm 1.9), showing that there is no rational exponent in that case. Yet,
Erdős and Simonovits conjectured that for ordinary graphs there is. One
could also conjecture the inverse extremal problem:
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Conjecture 2.37. For every rational α ∈ (0, 1) there is a finite L for which
c1n

1+α < ex(n,L) < c2n
1+α, for some constants c1, c2 > 0.

The third conjecture to be mentioned here is on “compactness” [93]:

Conjecture 2.38. For every finite L there is an L ∈ L for which ex(n,L) >
c · ex(n,L), for some constants cL > 0.

3. Excluding Complete Bipartite Graphs

3.1. Bipartite C4-free graphs and the Zarankiewicz problem

Turán type extremal results (and Ramsey results as well) can often be
applied in Mathematics, even outside of Combinatorics. Turán himself
explained this applicability by the fact that – in his opinion – the extremal
graph results were generalizations of the Pigeon Hole Principle.

Recall that Z(m,n, a, b) denotes the maximum number of 1’s in an
m× n matrix not containing an a× b minor consisting exclusively of 1’s. In
1951 Zarankiewicz [254] posed the problem of determining Z(n, n, 3, 3) for
n ≤ 6, and the general problem has also become known as the problem of
Zarankiewicz.17 Obviously, Z(m,n,1, b) = m(b−1) (for n ≥ b−1). Observe
that Z(m,n, a, b) = ex∗(m,n,Ka,b) (where ex

∗(m,n,L) was defined follow-
ing Remark 2.10.) Considering the adjacency matrix of a Ka,b-free graph on
n vertices we get 2ex(n,Ka,b) ≤ Z(n, n, a, b). We will use this upper bound
many times.

We will see that the easy upper bound in Theorem 2.22 is pretty close
to the truth for a ≤ 2. Actually, Kővári, T. Sós and Turán [164] proved an
upper bound for the Zarankiewicz function

(3.1) Z(m,n, a, b) ≤ a
√
b− 1 ·mn1−(1/a) + (a− 1)n

which was slightly improved by Znám [257], [256], (he halved the last term
to (a− 1)n/2 in the case of m = n) and Guy [128].

A bipartite graph G[M,N ] where |M | = m, |N | = n is C4-free if its
“bipartite” m× n adjacency matrix contains no 2× 2 full 1 submatrix.18

17In Graph Theory two problems are connected to Zarankiewicz’ name: the extremal
problem for matrices that we shall discuss here and the Crossing Number conjecture which
is not our topic. Actually, the crossing number problem comes from Paul Turán, see [244].

18Here the “bipartite adjacency matrix” A = (aij)m×n is defined for a bipartite graph
G[U, V ] and aij = 1 if uj ∈ U is joined to vj ∈ V , otherwise aij = 0.
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In other terminology, the hypergraph defined by the rows of this matrix is
linear, and their hyperedges pairwise meet in at most one element. There
is an important class of such hypergraphs, the Steiner k-systems S(n, k, 2).
A family S of k-subsets of an n-set N is a Steiner k-system if every pair of
elements is covered exactly once. For such an S, clearly, |S| = m =

(n
2

)
/
(
k
2

)
.

Such families are known to exists for (m,n, k) = (q2+ q+1, q2+ q+1, q+1)
(called finite projective planes of order q), and (m,n, k) = (q2 + q, q2, q)
(affine planes) whenever q is a power of a prime. Also for any given k there
exists an n0(k) such that S(n, k, 2) exists for all admissible n > n0(k), i.e.,
when (n− 1)/(k− 1) and n(n− 1)/k(k− 1) are integers (Wilson’s existence
theorem [248]).

Kővári, T. Sós and Turán [164] proved that

Theorem 3.1. Z(n, n, 2, 2) = (1 + o(1))n3/2, and

(3.2) Z(n, n, 2, 2) < [n3/2] + 2n.

Further, if p is a prime, then

Z(p2 + p, p2, 2, 2) = p3 + p2.

Reiman [206] returned to this topic, (see also [207]), slightly improv-
ing (3.2)

Theorem 3.2 (Reiman [206]).

(3.3) Z(m,n, 2, 2) ≤ 1

2

(
m+

√
m2 + 4mn(n− 1)

)
.

For large m,n → ∞, and m = o(n2), this yields

Z(m,n, 2, 2) ≤
(
1

2
+ o(1)

)
n
√
m.

Further, for m = n, we get

(3.4) Z(n, n, 2, 2) ≤ 1

2
n
(
1 +

√
4n− 3

)
≈ n

√
n.

Reiman also provides infinitely many graphs, using Finite Geometries,
showing the sharpness of (3.3) and (3.4). We have equality when m =
n(n− 1)/k(k − 1) and a Steiner system S(n, k, 2) exists. Thus he deter-
mined the case

(3.5) Z(n, n, 2, 2) =
1

2
n
(
1 +

√
4n− 3

)
= (q2 + q + 1)(q + 1)
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for m = n = q2 + q + 1 when a projective plane of order q exists. Actually,
in [207], Reiman also speaks about Zarankiewicz-extremal graphs connected
to incidence-graphs of higher dimensional finite geometries.

Since Reiman’s theorem the theory of finite geometries developed
tremendously. We cite here a recent result whose proof used the most mod-
ern tools and stability results.

Theorem 1 (Damásdi, Héger, and Szőnyi [57]). Let q ≥ 15, and c ≤ q/2.
Then

Z(q2 + q + 1− c, q2 + q + 1, 2, 2) ≤ (q2 + q + 1− c)(q + 1).

Equality holds if and only if a projective plane of order q exists. Moreover,
graphs giving equality are subgraphs of the bipartite incidence graph of
a projective plane of order q obtained by omitting c rows of its incidence
matrix.

They proved many more exact results when a projective plane of order q
exists. The extremal configurations are submatrices of the incidence matrix
of a projective plane.

Z(q2 + c, q2 + q, 2, 2) = q2(q + 1) + cq (0 ≤ c ≤ q + 1),

Z(q2 − q + c, q2 + q − 1, 2, 2) = (q2 − q)(q + 1) + cq (0 ≤ c ≤ 2q),

Z(q2 − 2q + 1 + c, q2 + q − 2, 2, 2) = (q2 − 2q + 1)(q + 1) + cq

(0 ≤ c ≤ 3(q − 1)).

These refer to bipartite host graphs. As we will see later, such exact
results are rare for the general (non-bipartite) case. To estimate ex(n,C4)
seems to be harder, because the corresponding 0-1 matrices, the incidence
matrix of a graph, should be symmetric.

3.2. Finite Geometries and the C4-free graphs

The method of finite geometric constructions is very important and powerful
in combinatorics. In particular, it is often the best way to obtain lower
bounds. It is for this reason that we include this section.

We give several constructions: the first two show that the Kővári–
T. Sós–Turán theorem (Theorem 2.22) is sharp for both K2,2 and K3,3.
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Remark 3.3. When we write that an upper bound is sharp, mostly we
mean that it is sharp up to a multiplicative constant: it yields the correct
exponent. There are a few exceptions, where sharpness means that the ratio
of the upper and lower bounds tends to 1. This is the case for C4 = K2,2

and we have this also for K3,3. Here, however, the matching upper bound
for Construction 3.20 below is given not by Theorem 2.22 but by the Füredi
improvement [112].

Perhaps the application of finite geometries in Extremal Graph Theory
started in the Erdős paper, with the construction of Eszter Klein [60], to
prove the sharpness of Theorem 1.15. The expression “Finite Geometry”
was not mentioned there. We skip the description of this whole story, since
it was described in several places, e.g., [227], [228].

Much later, Erdős and Rényi [85] used finite geometry for a diameter-
extremal problem. This is a very large area, connected to our problems, yet
we have to skip it. The interested reader is referred to [85], (translated into
English in [208]).

Sharp extremal graph results were obtained by Reiman [206] and a
Polarity Graph was used in [86] and [36] to give asymptotically sharp lower
bound on ex(n,C4). This lower bound can also be found in [85], implicitly:
Erdős and Rényi considered the diameter-extremal problem, and do mention
the properties of this graph.

The real breakthrough came by the Erdős–Rényi–T. Sós paper [86],
(sharp lower bound for C4) and by the Brown paper [36], providing asymp-
totically sharp lower bounds for ex(n,C4) and for ex(n,K3,3). (See Re-
mark 3.3.)

We know from Theorem 2.22 that ex(n,C4) ≤ 1
2n

3/2+o(n3/2), but is this
result sharp? In analyzing the proof, we realize that if it is sharp (that is, if
there are infinitely many graphs Gn not containing C4 and having ≈ 1

2n
√
n

edges), then almost all degrees are ≈ √
n and almost every pair of vertices

must have a common neighbor (and no pair has two). This suggests that
the neighborhoods N(x) behave much like the lines in a projective plane,
in that the following statement “almost” holds: any two vertices lie in a
common set, and any two sets intersect in one vertex.

Theorem 3.4 (Erdős–Rényi–T. Sós [86], and Brown [36], see also [164]).

ex(n,C4) =
1

2
n3/2 +O(n3/2−c).

For the lower bound for ex(n,C4) we use the following
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Construction 3.5. Let p be a prime, n = p2 − 1. Construct a graph
as follows: the vertices are the p2 − 1 non-zero pairs (x, y) of residues
(modulo p), and (x, y) is joined to (a, b) by an edge if ax+ by = 1. (This
graph may contain loops, but we simply delete them.)

With n = p2 − 1, the resulting graph Hn has the necessary properties to
show the sharpness of Theorem 2.22 for C4:

(a) for a given pair (a, b), mostly there are p solutions to ax+ by = 1,
so that, even after the loops are deleted, there are at least 1

2(p
2 − 1)(p− 1)

edges in Hn and hence e(Hn) >
1
2n

3/2 − n;

(b) if Hn had a 4-cycle with vertices (a, b), (u, v), (a′, b′) and (u′, v′), then
the two equations ax+ by = 1 and a′x+ b′y = 1 would have two solutions,
which is impossible. Since the primes are “dense” among the integers, this
completes the proof of the the sharpness of Theorem 2.22 for a = b = 2.

Remark 3.6. An alternative possibility is to use the much more symmetric
polarity graph of the projective plane (we explain this in the next section):
here we used the Affine Geometric Variant because here we did not wish to
use anything from Projective Geometry.

3.3. Excluding C4: Exact results

The polarity graph19, used in [85], was also used in [86] and [36] to prove
that

(3.6) ex(n,C4) ≥
1

2
q(q + 1)2, for n = q2 + q + 1.

if q is a prime power.

Construction 3.7 (The Polarity Graph from the finite field). Assume
that q is a prime power. Consider the Finite Field GF (q). The vertices
of our graph are the equivalence classes of the non-zero triples (a, b, c) ∈
GF (q)3 where two of them, (a, b, c) and (a′, b′, c′) are considered the same if
(a′, b′, c′) = λ(a, b, c) for some λ �= 0. There are (q3 − 1)/(q− 1) = q2 + q+1
such classes. Further, the equivalence class of (a, b, c) is connected by an
edge to the class of (x, y, z) if ax+ by + cz = 0. Finally, we delete the q + 1
loops, i.e. those edges, where a2 + b2 + c2 = 0. This graph is C4-free and it
has 1

2(n(q + 1)− (q + 1)) edges.

19These C4-free graphs were studied earlier in finite geometry. The bipartite point-
line incidence graph appeared in Levi’s book (1942) and polarity graphs (modulo loops)
obtained from Levi graph had been described already by Artzy (1956). For more details
and references see Bondy [30].
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In general, a polarity corresponds to a symmetric incidence matrix
of a finite plane of size (q2 + q + 1)× (q2 + q + 1). According to a the-
orem of Baer [13] such a matrix has at least q + 1 non-zero elements in
its diagonal. Therefore using the polarity graph we cannot avoid los-
ing on loops. This way Erdős, Rényi and Sós [86] showed that indeed
ex(q2 + q + 1, C4) <

1
2n(q+1). Yet one could hope to get a better construc-

tion. Erdős conjectured [66], [71] that there are no better constructions, that
is, (3.6) is sharp if n = q2 + q + 1, (q is a prime power).

Füredi settled this conjecture in the following sense: First he proved
[103] that if q = 2k, then Erdős’ conjecture holds. Next he settled the case
q ≥ q0. Later he found a much shorter proof of the weaker assertion that
the Polarity graphs are extremal; however, this shorter version did not give
the extremal structure. So Füredi published the shorter version, while the
longer version can be found on his homepage.

Theorem 3.8 (Füredi [111], [104]). If q �= 1, 7, 9, 11, 13 and n = q2 + q+1,
then ex(n,C4) ≤ 1

2q(q+1)2 and for q > 13 the extremal graphs are obtained
from a polarity of a finite projective plane. Hence if q > 13 is a prime power,
then ex(n,C4) =

1
2q(q + 1)2.

The second part of this result probably holds for q ∈ {7, 9, 11, 13}, too.
Recently a new sharp construction has been found for n = q2 + q.

Theorem 3.9 (Firke, Kosek, Nash and Williford [102]). Suppose that q is
even, q > q0. Then

ex(q2 + q, C4) ≤
1

2
q(q + 1)2 − q.

Consequently, if q > q0, q = 2k and n = q2+q then ex(n,C4) = q(q+1)2−q.

They also announced that in a forthcoming paper they show that for
all but finitely many even q, any Sn ∈ EX(q2 + q, C4) is derived from an
orthogonal polarity graph by removing a vertex of minimum degree (the 1-
vertex-truncated Polarity graph, see Construction 3.7). This result shows
a kind of stability of the Polarity graph. More generally, McCuaig (private
communication, 1985) conjectured that each extremal graph is a subgraph
of some polarity graph. So this is true for infinitely many cases, but one of
the present authors strongly disagrees and he believes just the opposite that
for e.g., n = q2 + q + 2 maybe the extremal graphs are obtained by adding
an extra vertex and some edges to a polarity graph.

Remark 3.10. W. McCuaig calculated ex(n,C4) for n ≤ 21 (unpublished
letter, 1985). Clapham, Flockart and Sheehan determined the corresponding
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extremal graphs [48], and Yuansheng and Rowlinson [252], – using comput-
ers, – extended these results to n ≤ 31. (They also determined the graphs
in EX(n,C6) for n ≤ 26, [253].) Garnick, Kwong, Lazebnik, and Nieuwe-
jaar [122], [123] determined the values of ex(n, {C3, C4}) for all n ≤ 30.

3.4. Excluding K(2, t+ 1), t > 1

A slightly sharper form of the upper bound (3.1) was presented by Hyltén-
Cavallius [146]

(3.7) Z(m,n, 2, k) ≤ 1

2
n+

{
(k − 1)nm(m− 1) +

1

4
n2

}1/2

.

Obviously, for fixed k and large values of n, m, if n = o(m2), then the
right hand side of (3.7) is ≈

√
k − 1m

√
n. Using again the observation

2ex(n,K2,t+1) ≤ Z(n, n, 2, t+ 1) one obtains the upper bound

(3.8) ex(n,K2,t+1) ≤
1

2
n
√

tn− t+ 1/4 + (n/4).

The following theorem shows that the above (easy) upper bound is the best
possible asymptotically.

Theorem 3.11 (Füredi [113]). For any fixed t ≥ 1

(3.9) ex(n,K2,t+1) =
1

2

√
tn3/2 +O(n4/3).

To prove this Theorem one needs an appropriate lower bound, a con-
struction. Let q be a prime power such that (q− 1)/t is an integer. We will
construct a K2,t+1-free graph G on n = (q2 − 1)/t vertices such that every
vertex has degree q or q− 1. We will explain this below (Construction 3.15).

Then G has more than (1/2)
√
tn3/2 − (n/2) edges. The gap between the

lower and upper bounds is only O(
√
n) for n = (q2 − 1)/t. The lower bound

for the Turán number for all n then follows from the fact that such prime
powers form a dense subsequence among the integers. This means that for
every sufficiently large n there exists a prime q satisfying q ≡ 1 (mod t) and√
nt− n1/3 < q <

√
nt (see [145]).

Construction 3.15 below is inspired by constructions of Hyltén-Cavallius
and Mörs given for Zarankiewicz’s problem Z(n, n, 2, t+ 1).
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Theorem 3.12 (Hyltén-Cavallius [146]). Z(n, n, 2, 3) =
√
2n3/2 + o(n3/2).

Also √
�k/2� ≤ lim inf

n→∞
Z(n, n, 2, k)

n3/2
.

Theorem 3.13 (Mörs [194]). For all t ≥ 1,

Z(n, n, 2, t+ 1)

n3/2
→

√
t, as n → ∞.

The topic was so short of constructions that, as a first step, P. Erdős [66,

69] even proposed the problem whether limt(lim infn ex(n,K2,t+1)n
−3/2)

goes to ∞ as t → ∞.

Remark 3.14. Here we see three distinct quantities, exactly as it is de-
scribed in Problem 2.10. Z(m,n, 2, t+ 1) = ex∗(m,n,K2,t+1), estimated
from below by Mörs, by a construction, and ex(m,n,K2,t+1) estimated by
Füredi by the same construction. Füredi showed that the matrix of Mörs
contains neither a (t+ 1)× 2 submatrix, nor a 2× (t+ 1) submatrix of 1’s;
finally, Füredi, slightly changing the definitions in Mörs’s construction ex-
tended this “asymmetric matrix” result to the symmetric case and provided
a non-bipartite graph, proving (3.9).

Construction 3.15. Let GF (q) be the q-element finite field, and let
h ∈ GF (q) be an element of order t.This means, that ht = 1 and the set
H = {1, h, h2, . . . , ht−1} form a t-element subgroup of GF (q)\{0}. For q ≡ 1
(mod t) such an element h ∈ GF (q) always exists.

We say that (a, b) ∈ GF (q)×GF (q), (a, b) �= (0,0) is equivalent to (a′, b′),
in notation (a, b) ∼ (a′, b′), if there exists some hα ∈ H such that a′ = hαa
and b′ = hαb. The elements of the vertex set V of G are the t-element equiv-
alence classes of GF (q)×GF (q) \ (0, 0). The class represented by (a, b) is
denoted by 〈a, b〉. Two (distinct) classes 〈a, b〉 and 〈x, y〉 are joined by an
edge in G if ax+ by ∈ H. This relation is symmetric, and ax+ by ∈ H,
(a, b) ∼ (a′, b′), and (x, y) ∼ (x′, y′) imply a′x′ + b′y′ ∈ H. So this definition
is compatible with the equivalence classes.

For any given (a, b) ∈ GF (q)×GF (q) \ (0, 0) (say, b �= 0) and for any
given x and hα, the equation ax+ by = hα has a unique solution in y. This
implies that there are exactly tq solutions (x, y) with ax+ by ∈ H. The
solutions come in equivalence classes, so there are exactly q classes 〈x, y〉.
One of these classes might coincide with 〈a, b〉 so the degree of the vertex
〈a, b〉 in G is either q or q − 1.
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We claim that G is K2,t+1-free. First we show, that for (a, b), (a′, b′) ∈
GF (q)×GF (q) \ (0, 0), (a, b) �∼ (a′, b′) the equation system

(3.10) ax+ by = hα and a′x+ b′y = hβ

has at most one solution (x, y) ∈ GF (q)×GF (q)\(0,0). Indeed, the solution
is unique if the determinant det

(
a b
a′ b′

)
is not 0. Otherwise, there exists a

c such that a = a′c and b = b′c. If there exists a solution of (2) at all, then
multiplying the second equation by c and subtracting it from the first one
we get on the right hand side hα − chβ = 0. Thus c ∈ H, contradicting the
fact that (a, b) and (a′, b′) are not equivalent.

Finally, there are t2 possibilities for 0 ≤ α, β < t in (3.10). The set of
solutions again form t-element equivalence classes, so there are at most t
equivalence classes 〈x, y〉 joint simultaneously to 〈a, b〉 and 〈a′, b′〉.

Since then, there have been two additional almost optimal constructions,
strongly related to the Construction 3.15 above.

Construction 3.16 (Lazebnik, Mubayi [167]). Let GF (q)∗ be the finite
field of order q without the zero element. Suppose q ≡ 1 (mod t) and let H
be the t-element multiplicative subgroup of GF (q)∗. Define the graph G×
as follows. Let V (G×) = (GF (q)∗/H)×GF (q). For 〈a〉 , 〈b〉 ∈ (GF (q)∗/H)
and x, y ∈ GF (q), make (〈a〉 , x) adjacent to (〈b〉 , y) if x+ y ∈ 〈ab〉.

This graph (after deleting the eventual loops) is K2,t+1-free and every
vertex has degree q − 1 or q − 2. Actually, Construction 3.16 differs from
Construction 3.15 only in that its vertex set is smaller and instead of using
the rule that 〈a, b〉 is adjacent to 〈x, y〉 if ax+ by ∈ H they use the rule
ay + bx ∈ H. This change allows them to generalize it to multipartite
hypergraphs.

The following example works only if t is a power of a prime, and t|q.

Construction 3.17 (Lenz, Mubayi [173]). Suppose that t divides q and
let H be an additive subgroup of GF (q) of order t. Define the graph G+

as follows. Let V (G+) = (GF (q)/H)×GF (q)∗. We will write elements
of GF (q)/H as 〈a〉. It is the additive coset of H generated by a, 〈a〉 =
{h+a : h ∈ H}. For 〈a〉 , 〈b〉 ∈ (GF (q)/H) and x, y ∈ GF (q)∗, make (〈a〉 , x)
adjacent to (〈b〉 , y) if xy ∈ 〈a+ b〉. (This, in fact, means that there exists
an h ∈ H such that xy = a+ b+ h).
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3.5. Excluding K(3, 3), and improving the upper bound

The main result of this section is the description of the asymptotically sharp
value of ex(n,K3,3).

Theorem 3.18 (Brown [36] and Füredi [112]).

ex(n,K3,3) =
1

2
n5/3 +O(n(5/3)−c) for some c > 0.

The lower bound can be obtained from Brown’s example (discussed
below as Construction 3.20) who gave a (p2 − p)-regular K3,3-free graph
on p3 vertices for each prime p of the form 4k − 1.

Improving the upper bound in Theorem 2.22 Füredi showed that Brown’s
example is asymptotically optimal.

Theorem 3.19 (Füredi [112]). For all m ≥ a, n ≥ b, b ≥ a ≥ 2 we have

(3.11) Z(m,n, a, b) ≤ (b− a+1)1/amn1−(1/a)+(a− 1)n2−(2/a)+(a− 2)m.

For fixed a, b ≥ 2 and n,m → ∞ the first term is the largest one for
n = O(ma/(a−1)). This upper bound is asymptotically optimal for a = 2
and for a = b = 3 (m = n). We obtain

(3.12) ex(n,K3,3) ≤
1

2
Z(n, n, 3, 3) ≤ 1

2
n5/3 + n4/3 +

1

2
n.

Alon, Rónyai and Szabó [11] gave an example (discussed as Construc-
tion 3.25) showing that

(3.13) ex(n,K3,3) ≥
1

2
n5/3 +

1

3
n4/3 − C.

for some absolute constant C > 0 for every n of the form n = p3 − p2, p is
a prime. Their example shows that the upper bound (3.12) (and (3.11)) is
so tight that that we cannot leave out the second order term. It would be
interesting to see whether (3.11) is tight for other values of a and b, too.

The first step of the proof of Theorem 3.19 is that given a Ka,b-free
graph G, we apply the original bound (3.1) to the bipartite subgraphs
G[N(x), V \N(x)] generated by the neighborhood of a vertex x and its
complement.

When Brown gave his construction, the matching upper bound of
Theorem 3.19 was not known yet. He wrote that even the existence of
limn→∞ ex(n,K3,3)/n

5/3 was unknown.
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Construction 3.20. Let p be an odd prime n = p3 and d ∈ GF (p), d �= 0 a
quadratic residue if p is of the form 4k− 1 and d be a non-residue otherwise.
Construct a graph Bn whose vertices are the triples (x, y, z) of residue classes
(modulo p) and whose edges join vertices (x, y, z) and (x′, y′, z′) if

(3.14) (x− x′)2 + (y − y′)2 + (z − z′)2 = d.

It is easy to see that the graph Bn has 1
2n

5/3 +O(n4/3) edges. Given a

vertex (x′, y′, z′), the equation (3.14) has p2 − p solutions by a theorem of
Lebesgue. Thus (x′, y′, z′) has this many neighbors.

We claim that Bn does not contain K3,3. The geometric idea behind
Construction 3.5 (concerning C4-free graphs) was to join a point of the
finite plane to the points of its “polar” (with respect to the unit circle),
and then to use the fact that two lines intersect in at most one point.
In contrast, the Brown construction uses the fact that, if points of the
Euclidean space E3 at distance 1 are joined, then the resulting infinite
graph G does not contain K3,3. This is easily seen as follows: suppose
G does contain K3,3. Then the three points of one color class cannot be
collinear since no point is equidistant from three collinear points. On the
other hand, only two points are equidistant from three points on a circle,
and so K3,3 cannot occur. There is one problem with this “proof”: in
finite fields

∑
i x

2
i = 0 can occur even if not all xi’s are 0’s. Therefore in

finite geometries, in some cases, a sphere can contain a whole line. So here
the geometric language must be translated into the language of analytic
geometry, and the right hand side of (3.14) (that is d) must be chosen
appropriately.

Theorem 3.21 (Nikiforov, [198]). For b ≥ a ≥ 2 let k ∈ [0, a− 2] be an
integer. Then

Z(m,n, a, b) ≤ (b− k − 1)1/amn1−(1/a) + (a− 1)n1+(k/a) + km.

For k = 0 we get back Theorem 2.22, and substituting k = a− 2 we
obtain (3.11). Nikiforov remarks that letting k run from 0 to a− 2, we may
get the best results for various values of k as the relation of m and n varies,
but we still have no constructions to substantiate this. Nikiforov also proves
results on the spectral radius.
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3.6. Further applications of Algebraic Methods

Most of the constructions providing sufficiently good lower bounds for Bi-
partite Extremal Graph Problems are coming either from Geometry or from
Algebra20. In all these cases the vertices of the graph-construction are “co-
ordinatized” and two vertices are joined if some (usually polynomial) equa-
tions are satisfied.21

Actually, this motivated Conjecture 1.6 or its weakening: If we use a
typical finite geometric construction, then there is a d-dimensional space,
where each vertex is joined to a t-dimensional subspace. Hence n = pd, the
degrees are around nt/d, so the construction has around n1+(t/d) edges. The
conjecture suggests that there are always such almost extremal construc-
tions.22

The most important question in this part is if one can find construc-
tions23 to provide lower bounds where the exponents match the exponents
in the upper bounds. Here we shall discuss when do we know the sharpness
of the Kővári–T. Sós–Turán upper bound, ex(n,Ka,b) = O(n2−(1/a)).

As we have mentioned in Section 1.1, Kollár, Rónyai and T. Szabó [159]
gave a construction which was improved by Alon, Rónyai and Szabó [11]
(Constructions 3.23 and 3.25 below). The basic idea of their proofs was
– at least in our interpretation – the same as that of William G. Brown;
however, much more advanced. In the three dimensional Euclidean space E3

the Unit Distance Graph contains no K3,3. If we change the underlying field
to a finite field GF (q) (as Brown did in Construction 3.20) then we obtain
a finite graph having n = q3 vertices. The neighborhood of each vertex will
have ≈ q2 neighbors, and therefore ≈ 1

2n
5/3 edges. Now comes the crucial

part: despite the fact, that this is highly nontrivial, we could say, that –
because of the geometric reason, – this graph contains no K3,3 proving the
sharpness of (2.6).24

If we wish to extend the above construction to get lower bounds for
ex(n,Ka,a) and we mechanically try to use unit balls in the a-dimensional

20The Random Graph Methods are very nice but mostly they are too weak to provide
sufficiently sharp lower bounds.

21Some of the constructions may seem number theoretic.
22Here we have to make some remarks about our “Conjectures”: Many of them have the

feature that it is not that interesting if they are true or false: in proving any alternative,
we get new, important knowledge about our topics. The first such “Conjecture” was
that of Turán on “Diagonal” Ramsey Numbers, that lead to the Erdős Random Graph
Approach, see Remark 2.29.

23Or “random constructions”.
24Actually, as we have already discussed this in Subsection 3.20, the Will Brown’s lower

bound also proves this sharpness, only, the lower bound of [11] is a little better.
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space GF (q)a then several problems occur. We would need that any a of
them intersect in at most a− 1 points. Then we would be home.

In E4 we can choose two orthogonal circles of radii 1√
2
, e.g.,{

(x1, x2, 0, 0) : x21 + x22 = 1/2
}

and
{
(0, 0, x3, x4) : x23 + x24 = 1/2

}
,

then each point on the first one has distance 1 from each point in the
second one. Hence the “Unit Distance Graph” contains K(∞,∞). (Simi-
larly, the “Unit Distance Graph” of GF (q)4 contains a Kq,q.) So everything
seems (!) to break down? Not quite, by the Kollár–Rónyai–Szabó construc-
tion. Instead of the ‘Euclidean metric’ they use a so-called norm in the
space GF (qa). Two vectors x and y are connected if the norm of their
sum is 1; N(x+ y) = 1. (In this context there is not much difference be-
tween connecting them this way or take a bipartite graph and connecting
the vertices in it if N(x− y) = 1).

Theorem 3.22 (Kollár, Rónyai, and T. Szabó [159] for b > a!, Alon, Rónyai,
and Szabó [11] for b > (a− 1)!). There exists a ca > 0 such that for b >
(a− 1)! we have

ex(n,Ka,b) > can
2−(1/a).

Below we provide the Kollár-Rónyai-Szabó construction and a short
verification. The norm of an element x ∈ GF (qa) is defined as

N(x) := x · xq · · · · xqa−1
.

Construction 3.23 (Kollár–Rónyai–T. Szabó [159], the Norm Graph).
The vertices of G(q, a) are the elements x ∈ GF (qa). The elements x and
y are joined if N(x+ y) = 1.

We claim that G(q, a) is Ka,b-free where b = a! + 1. If we have a Kb,a ⊆
G(q, a), then fixing – as parameters – the a vertices y1, . . . ,ya, we get a
equations of the form N(x+yi) = 1 with b solutions x ∈ {x1, . . . ,xb}. Then
we can use the following result from Algebraic Geometry with t = a.

Lemma 3.24. Let K be a field and αi,j , βi ∈ K for 1 ≤ i, j ≤ t such that
αi1,j �= αi2,j if i1 �= i2. Then the system of equation

(x1 − α1,1)(x2 − α1,2) . . . (xt − α1,t) = β1

(x2 − α2,1)(x2 − α2,2) . . . (xt − α2,t) = β2

...
...

(xt − αt,1)(x2 − αt,2) . . . (xt − αt,t) = βt

has at most t! solutions (x1, x2, . . . , xt) ∈ Kt.
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Construction 3.25 (Alon–Rónyai–T. Szabó [11]). The vertices of the
graph H(q, a) are the elements (x,X) ∈ GF (q)∗×GF (qa−1) and (x,X) and
(y, Y ) are joined if N(X + Y ) = xy.

Here the normN(X) is defined inGF (qa−1) and so it isX ·Xq · · · ·Xqa−2
.

The graph H(q, a) has (q − 1)qa−1 vertices, it is qa−1 − 1 regular, and
contains no Ka,b with b = (a− 1)! + 1. To show this we use Lemma 3.24
with t = a− 1 only.

Theorem 3.26 (Ball and Pepe [19]). The Alon–Rónyai–T. Szabó graph

H(q, 4) does not contain K5,5. Hence ex(n,K5,5) ≥ (12 + o(1))n7/4.

This is better than the earlier lower bounds of ex(n,Ka,b) for a = 5,
5 ≤ b ≤ 12, and a = 6, 6 ≤ b ≤ 8.

Recently, Blagojević, Bukh, and Karasev [24] gave a new algebraic
construction to provide lower bounds on Z(m,n, a, b) matching the (3.1)
upper bound. Their example is weaker than the Kollár–Rónyai–Szabó in
the sense that it only works for b > (a2(a+ 1))a. On the other hand, they
give new insight about the limits of the Algebraic Geometric method on
which constructions may and which may not work.

We close this section mentioning that Noga Alon has a survey paper
in the Handbook of Combinatorics [7] providing ample information on the
topics treated here (i.e., applications of algebra in combinatorics).

3.7. The coefficient in the Kővári–T. Sós–Turán bound

Alon, Rónyai and Szabó [11] observed that their Construction 3.25 can be
factored with a t-element subgroup H ⊂ GF (q)∗ (when t divides q − 1) in
the same way as it was done in Construction 3.15. Namely, the vertex set
of the new graph Ht(q, a) are the elements (x,X) ∈ GF (q)∗/H ×GF (qa−1)
and (x,X) and (y, Y ) are joined if N(X + Y )x−1y−1 ∈ H. Then the graph
Ht(q, a) has n = (q − 1)qa−1/t vertices, its degrees are about qa−1, and it
contains no Ka,b for b = (a− 1)!ta−1 + 1. Let q → ∞. Then also n → ∞,
and we get that for these fixed values of a and b one gets

ex(n,Ka,b) ≥ (1− o(1))
a
√
b− 1

2 a
√

(a− 1)!
n2−(1/a).

This shows that the order of magnitude of the coefficient in the KST bound
(3.1) should be indeed a

√
b− 1.

Montágh [193] found a clever factorization of the Brown graph (using the
spherical symmetry of the balls) thus proving the same result with even a
slightly better bound than the bound of Alon, Rónyai and Szabó, for a = 3.
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3.8. Excluding large complete subgraphs

The following theorem was discovered many times because its connections
with Computer Science problems: given a graph G with n vertices, there
exists a decomposition of its edges into complete balanced bipartite graphs
Kai,ai having altogether O(n2/ logn) vertices,

∑
i ai = O(n2/ logn). Lately,

Mubayi and Gy. Turán [195] gave a a polynomial algorithms finding such
a subgraph partition efficiently. Strictly speaking, this is not a Turán
type problem but their result implies, e.g., that there exists a polynomial
algorithm to find a Ka,a in a graph of n2/4 edges of size a = Θ(logn). The
bound O(log n) is the best possible (shown by the random graph).

It is also not very difficult to show that usually the random graph gives
the correct order of the Turán number ex(n,Ka,a) for n, a → ∞ simultane-
ously.

The case when a, b are very large i.e. a+ b = Ω(n) was considered by
Griggs, Quyang, and Ho [126], [125]. In this case Z(m,n, a, b) is almost
mn so they considered the dual question. Let us mention only one result
of this type by Balbuena, Garćıa-Vázquez, Marcote, and Valenzuela, who
have more papers on this topic.

Theorem 3.27 (see [14], [16] and the references there). Z(m,n; a, b) =
mn− (m+ n− a− b+ 1) if max{m,n} ≤ a+ b− 1.

There is another direction of research, when the ratio of m and n is
extreme. Here we only mention a classical result, that it is easy to solve the
case when n is very large compared to m.

Theorem 3.28 (Čuĺık [55]).

Z(m,n, a, b) = (a− 1)n+ (b− 1)

(
m

a

)
for n ≥ (b− 1)

(
m

a

)
.

4. Excluding Cycles: C2k

To start with, Bondy wrote a long chapter in the Handbook of Combina-
torics [30] and also a very nice survey on Erdős and the cycles of graphs [31].

Let C be a (finite or infinite) set of cycles. The study of ex(n, C) is espe-
cially interesting if C has a member of even length. However, constructions
of dense graphs without some given even cycles is usually very difficult; the
examples use polarities of finite geometries (generalized polygons [171]), or
Ramanujan graphs [190], [181] or some other families of polynomials [170].
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An odd cycle, C2k+1 is chromatically critical. Hence a theorem of
Simonovits [221] implies that ex(n,C2k+1) = [14n

2] for n > nk and the only
extremal graph is K�n/2�,�n/2�.

In this Section we concentrate on even cycles C2k.

4.1. Girth and Turán numbers, upper bounds

What is ex(n, {C3, C4, . . . , Cg−1}), the maximum number of edges in a
graph with n vertices and girth g? This problem can be considered in
a dual form, what is the least number of vertices n = n(d, g) in a graph
of girth g and an average degree at least d? If we replace ‘average’ with
‘minimum’ δ then a simple argument gives the so-called Moore bound for
odd girth:

(4.1) |V (G)| = n ≥ n0(δ, 2k + 1) := 1 + δ
∑

0≤i≤k−1
(δ − 1)i.

Alon, Hoory and Linial [8] showed that (4.1) holds for the average degree,

too. Rearranging we have dave < n1/k + 1, in other words

Theorem 4.1 (Upper bound when the girth is odd).

(4.2) ex(n, {C3, C4, . . . , C2k}) <
1

2
n1+(1/k) +

1

2
n.

To prove an upper bound n1+(1/k) is trivial by induction on n. Then
(4.2) was improved but with a larger linear additive term.

Theorem 4.2 (Lam and Versträete [166], Excluding only even cycles).

(4.3) ex(n, {C4, C6, . . . , C2k}) <
1

2
n1+(1/k) + 2k

2
n.

They also note that for k = 2, 3, 5 the n-vertex polarity graphs of gener-
alized (k + 1)-gons (defined by Lazebnik, Ustimenko and Woldar [171] de-

scribed below as Construction 4.27) have 1
2n

1+(1/k) +O(n) edges and have
no even cycles of length at most 2k.

Corollary 4.3 ([166] and [171] Even girth is 6, 8 or 12). In case of
2k ∈ {4, 6, 10} we have

(4.4) ex(n, {C4, C6, . . . , C2k}) = (1 + o(1))
1

2
n1+(1/k).
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On the other hand, Füredi, Naor and Verstaëte [117] showed that

if we exclude only C2k, then ex(n,C6) > 0.53n4/3 (see below as Con-
struction 4.29) and Lazebnik, Ustimenko, and Woldar [169], showed that

ex(n,C10) > 0.579n6/5 (see below as Construction 4.28).

Concerning the Moore bound for even girth we have

(4.5) |V (G)| = n ≥ n0(δ, 2k + 2) := 2
∑

0≤i≤k
(δ − 1)i.

Alon, Hoory and Linial [8] showed that (4.5) holds for the average degree,

too. Rearranging, we have dave < (n/2)1/k + 1, in other words

Theorem 4.4 (Upper bound when the girth is even).

(4.6) ex(n, {C3, C4, . . . , C2k+1}) <
1

21+(1/k)
n1+(1/k) +

1

2
n.

This upper bound with a weaker error term was also proved earlier by
Erdős and Simonovits [93].

Note that because of Theorems 3.2, 4.21, and 4.23 one can easily show
that asymptotic bound holds in (4.6) for 2k = 4, 6, 10. The other cases are
unsolved.

Theorem 4.5. For 2k = 4, 6 and 10 as n → ∞ we have

(4.7) ex(n, {C3, C4, . . . , C2k+1}) = (1 + o(1))
1

21+(1/k)
n1+(1/k).

Moreover, infinitely many exact values are obtained for 2k = 4, 6, 10: for
n = 2(qk + qk−1 + · · ·+ q + 1),

(4.8) ex(n, {C3, C4, . . . , C2k+1}) = (q + 1)(qk + qk−1 + · · ·+ q + 1)

whenever q is a power of a prime.

4.2. Excluding a single C2k, upper bounds

Concerning our central problem, Erdős showed that excluding just one even
cycle has essentially the same effect as excluding all smaller cycles as well.
This is far from trivial! Erdős never published a proof of his result.
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Theorem 4.6 (Erdős, The Even Cycle Theorem).

(4.9) ex(n,C2k) = O(n1+(1/k)).

The first proof was published by Bondy and Simonovits in the following
stronger form.

Theorem 4.7 (Bondy and Simonovits [32]). Let Gn be a graph with e

edges, and let t satisfy 2 ≤ t ≤ e/(100n) and tn1/t ≤ e/(10n). Then Gn

contains a C2t.

In some sense, this is a “pancyclic theorem”: there is a meta-principle,
that if some reasonable conditions ensure the existence of a Hamiltonian
cycle, then they ensure the existence of all shorter cycles. Here we go the
other direction: if we ensure the existence of a C2k, then we ensure the
existence of all longer cycles, up to a natural limit, with the natural parity.

Corollary 4.8. If Gn has at least 100kn1+(1/k) edges, then it contains a
C2t, for every t ∈ [k, kn1/k].

The Erdős–Bondy–Simonovits upper bound together with earlier known
constructions imply that the exponent 1 + (1/k) is sharp for C4 (see, e.g.,
Theorem 3.4), C6, and C10 (Theorems 4.22 and 4.24 below).

Corollary 4.9 (The only known exact exponents for single cycles).

ex(n,C4) = Θ(n3/2), ex(n,C6) = Θ(n4/3), ex(n,C10) = Θ(n6/5).

The upper end of the interval in Corollary 4.8 is also sharp, apart
from the constant 100 take the disjoint union of complete graphs of order
200kn1/k. We made the following conjecture:

Conjecture 4.10 (Erdős–Simonovits). ex(n,C2k) ≥ ckn
1+(1/k). Moreover,

ex(n,C2k)

n1+(1/k)

converges to a positive limit.

It is only known for C4. A weakening of this conjecture would be the
following: Let Θk,� denote the graph of order 2 + (k − 1) in which two
vertices are joined by  paths of length k.

Conjecture 4.11 (Simonovits). For each k there is an  = (k) for which

ex(n,Θk,�) ≥ ckn
1+(1/k).
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Perhaps the first very annoying unsolved problem on this area is

Conjecture 4.12. ex(n,C8) ≥ c4n
5/4.

Returning to the Turán number of C2k, the multiplicative constant of the
upper bound in the Bondy–Simonovits theorem was improved by Verstraëte
[246] from 100 to 8. The best known upper bound today is that of Oleg
Pikhurko:

Theorem 4.13 (Pikhurko, [203]).

ex(n,C2k) ≤ (k − 1)n1+(1/k) + 16(k − 1)n.

Historical Remark 1.
(a) Pikhurko, in his very nice paper [203] gives a short description of the

whole story.

(b) Pikhurko mentions that the Bondy–Simonovits proof gives a constant
20: originally it was stated as 100. It would be extremely interesting if the
upper bound k− 1+ o(1) for ex(n,C2k)/n

1+(1/k) could be improved to o(k).

4.3. Eliminating short cycles, a promising attempt

It was relatively easy to prove the upper bound (4.2) for the number of edges

for a graph Gn with girth exceeding 2k, e(Gn) = O(n1+(1/k)). Suppose that
G has no C2k. Erdős bipartite subgraph lemma 2.14 states that there is
a bipartite subgraph H with e(H) ≥ 1

2e(G). This way we have eliminated
all the odd cycles C3, C5, . . . , C2k−1 from G. It is a natural to ask whether
one can eliminate other short cycles, thus obtaining an easy proof for the
Erdős–Bondy–Simonovits upper bound, (4.9).

Problem 4.14. Is it true that there exists a constant α2k > 0 such that each
C2k-free Gn contains an Hn with girth(Hn) > 2k and e(Hn) > α2ke(Gn)?

The answer is still unknown. The first step was done by E. Győri. The
following lemma implies that α6 exists and it is at least 1/4.

Lemma 4.15 (Győri [134]). If Gn is bipartite and it does not contain
any C6, then it contains an Hn with

e(Hn) ≥
1

2
e(Gn) + 1,

not containing C4’s either (for e(G) ≥ 2). This is sharp only for Gn =
K2,n−2.
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We mention two generalizations.

Theorem 4.16 (Füredi, Naor and Verstraete [117]). Let G be a hexagon-
free graph. Then there exists a subgraph of G of girth at least five,
containing at least half the edges of G.

Furthermore, equality holds if and only if G is a union of edge-disjoint
complete graphs of order four or five. We got α6 = 1/2.

Theorem 4.17 (Getting rid of C4’s, Kühn and Osthus [165]). Every
bipartite C2k-free graph G contains a C4-free subgraph H with e(H) ≥
e(G)/(k − 1).

The factor 1/(k− 1) is best possible, as the example Kk−1,n−k+1 shows.

These theorems settle some special cases (namely L = {C4, C2k}) of the
following compactness conjecture of Erdős and Simonovits.

Conjecture 4.18 (Compactness. Erdős–Simonovits [93]). For every finite
family of graphs L (containing bipartite members as well) there exists an
L0 ∈ L for which ex(n,L) = O(ex(n,L0)).

The following result of Kühn and Osthus makes a little step toward
solving Problem 4.14 and Conjecture 4.18.

Theorem 4.19 ([165]). Let g ≥ 4 be an even integer and let (g) =:
Π1≤i≤g/2 i. Suppose that k − 1 is divisible by (g) and Gn is a C2k-free
graph. Then Gn contains an Hn with girth(Hn) > g such that e(Hn) ≥
e(Gn)/2(4k)

(g−2)/2.

In other words, for some very special values of k’s a C2k-free graph
contains a subgraph having a positive fraction of the edges and of girth at
least Ω(log k/ log log k).

4.4. A lower bound for C6: The Benson Construction

In the preceding section, we asserted that the Erdős theorem on even circuits
is sharp for C4, C6 and C10 (and is conjectured to be sharp in all cases).
For C4, the sharpness follows from Construction 3.5. For C6, it can be
deduced from the Benson construction [22] which we explain below. Note
that (about the same time) Singleton [231] described the same graph but
his definition was much more complicated.

The points of the d-dimensional finite projective geometry PG(d, q) are
the equivalence classes of the nonzero vectors of GF (q)d+1 where x and y
are equivalent if there is a γ ∈ GF (q)∗ such that x = γy. There are (qd+1 −
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1)/(q − 1) such classes. Then the i-dimensional subplanes are generated by
the (i+ 1)-dimensional subspaces of the vector space GF (q)d+1.

Let

A =

⎛⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎠ .

Clearly, A is non-singular. Define the surface S by the equation xAxT = 0,

S := {x ∈ PG(4, q) : xAxT = 0}

Construction 4.20 (Benson’s C6-free bipartite graph). Let L be the set
of lines of PG(4, q) contained entirely in S. The vertex set of the bipartite
graph Bq is S ∪ L, and x ∈ S is joined to L ∈ L if x ∈ L.

Theorem 4.21 (Benson [22], Singleton [231]). Bq is a (q + 1)-regular,
bipartite, girth 8 graph with 2(q3 + q2 + q + 1) vertices.

Corollary 4.22. ex(n,C6) ≥ (1 + o(1))(n/2)4/3.

First, we can see that S does not contain a full 2-dimensional projective
plane. We can use the fact that for x and y on S, the line xy consists of
the points z = ax+ (1− a)y, and lies entirely in S if both yAyT = 0 and
xAyT = 0.

Second, the number of lines from L containing a given point x ∈ S is
q+1. Since the number of points on a line is q+1 we immediately get that
|S| = |L|.

Furthermore, Bq contains no cycles of length 3, 4, 5 or 7. (For the odd
cases this is because it is bipartite, and the existence of a 4-cycle would
imply that two points of S are on two distinct lines.) Now suppose that Bq

contains a 6-cycle v1w1v2w2v3w3v1. Then S must contain the three lines
v1v2, v2v3, and v3v1, and so it must contain the plane < v1v2v3 >. But this
is impossible. If we apply a coordinate transformation T with v1, v2 and v3
as the first three base vectors, we get the matrix⎛⎜⎜⎜⎝

0 0 0 ? ?
0 0 0 ? ?
0 0 0 ? ?
? ? ? ? ?
? ? ? ? ?

⎞⎟⎟⎟⎠
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since viAv
T
j = 0. But then A′ cannot be regular, contradicting the regularity

of A. Hence Bq cannot contain C6 either.

All these imply that |S| = q3 + q2 + q+1 and that every x ∈ S, L ∈ L if
x /∈ L then there exists a unique line L′ ∈ L such that x ∈ L′ and L∩L′ �= ∅.

In concluding this section, we note that finite geometry constructions
can also be used in hypergraph extremal problems (see [39], [40] and [220]).

4.5. Girth 12 graphs by Benson and by Wenger

Theorem 4.23 (Benson [22]). Let q be an odd prime power. There is a
(q+1)-regular, bipartite, girth 12 graph B∗q with 2(q5+ q4+ q3+ q2+ q+1)
vertices.

Corollary 4.24. ex(n,C10) ≥ (1 + o(1))(n/2)6/5.

One half of the vertex set of B∗q are the points of the quadric Q6 in

PG(6, q) defined by x20 + x1x−1 + x2x−2 + x3x−3 = 0. Its size is exactly
(q6 − 1)/(q − 1). Then we select a set of lines L contained entirely in Q6

and covering each point of Q6 exactly q+1 times. The family L is selected as
follows: If x ∈ Q6 and x,y ∈ L ∈ L then x and y must satisfy the following
six bilinear equations:

x0yi − xiy0 + x−jy−k − x−ky−j = 0

where (i, j, k) is a cyclic permutation of (1, 2, 3) or (−1,−2,−3).

Construction 4.25. The bipartite graph B∗q is defined, as before, by the
incidences x ∈ L.

Now consider the much simpler example of Wenger.

Construction 4.26 (Wenger [247]). Let p be a prime, k = 2, 3 or 5. Hk(p)
is defined as a bipartite graph with two vertex classes A and B, where |A| =
|B| = pk and the vertices of A are k-tuples a = (a0, a1, . . . , ak−1) ∈ GF (p)k

and same for b = (b0, b1, . . . , bk−1) ∈ B. The vertices a and b are joined if

bj ≡ aj + aj+1 · bk−1 (mod p) for j = 0, 1, . . . , k − 2.

One can see that for every a ∈ A each bk−1 determines exactly one b ∈ B
joined to it. This easily implies that G[A,B] is p-regular, with n = 2pk

vertices and pk+1 = (n/2)1+(1/k) edges.

Wenger gives an elegant proof of that H2(p) has no C4, H3(p) has no C4,
nor C6. Finally, H5(p) contains no C4, C6 or C10, however, it has many C8’s.
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4.6. Short cycles, C6 and C10

The densest constructions of 2k-cycle-free graphs for certain small values of
k arise from the existence of rank two geometries called generalized d-gons.
These may be defined as rank two geometries whose bipartite incidence
graphs are regular graphs of diameter d and girth 2d. These are known
to exist when d is three, four or six. This is the background of the above
Constructions 4.20 and 4.25.

Construction 4.27 (Lazebnik, Ustimenko and Woldar [171]). One can use
the existence of polarities of the generalized (k + 1)-gons to obtain dense
2k-cycle-free graphs when k ∈ {2, 3, 5}. In particular, for these k’s

(4.10) ex(n,C2k) ≥
1

2
n1+(1/k) +O(n)

for infinitely many n.

In [93], Erdős and Simonovits formulated the following conjecture. For

fixed k and n → ∞, ex(n,C2k) =
1
2n

1+(1/k) + o(n1+(1/k)). This holds for C4

(Theorem 3.4), but was disproved first for C10, then for C6 by the following
two examples.

Construction 4.28 (Lazebnik, Ustimenko and Woldar [171]). Consider
a bipartite graph G[A,B] of girth exceeding 2k. Replace each vertex of A
by k − 1 new vertices with the same neighborhood. Then the new graph
G[(k − 1)A,B] is still C2k-free. In particular, starting with the girth 12
bipartite graph of Theorem 4.23 (here k = 5) one gets a graph of about 5q5

vertices and about 4q6 edges, implying

(4.11) ex(n,C10) ≥ 4(n/5)6/5 > 0.5798n6/5

for infinitely many n.

Since the C6-free graph of Construction 4.27 does not have C3 and C4

either, doubling a random subset appropriately, one obtains a denser C6-free
graph:

Theorem 4.29 (Füredi, Naor and Versträete [117]). For infinitely many n,

ex(n,C6) >
3(
√
5− 2)

(
√
5− 1)4/3

n4/3 +O(n) > 0.5338n4/3.

They also showed that
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Theorem 4.30 (Füredi, Naor and Versträete [117]). ex(n,C6) ≤ λn4/3 +
O(n), where λ ≈ 0.6271 is the real root of 16λ3 − 4λ2 + λ− 3 = 0.

These theorems give the best known lower and upper bounds for
ex(n,C6). The proof of Theorem 4.30 requires a statement about hexagon-
free bipartite graphs, which is interesting in its own right (see de Caen and
Székely [44]). Let ex(m,n,C6) be the maximum number of edges amongst
all m by n bipartite hexagon-free graphs. Then

Theorem 4.31 (Füredi, Naor and Verstraëte [117]). Let m, n be positive
integers with n ≥ m. Then

ex(m,n,C6) < 21/3(mn)2/3 + 10n.

Furthermore, if n = 2m then as n tends to infinity,

ex(m,n,C6) =

{
21/3(mn)2/3 +O(n) for infinitely many m

21/3(mn)2/3 − o(n4/3) for all m.

The lower bound is given by the graph defined in Construction 4.28
starting with the Benson graph (Theorem 4.21, k = 3).

4.7. Bipartite hosts with extreme sides

We have already seen two such results concerning the Zarankiewicz number,
by Reiman (Theorem 3.2) and Čuĺık (Theorem 3.28). András Sárközy and
Vera Sós formulated the following conjecture25

Conjecture 4.32.

ex(m,n,C6) < 2n+ c(nm)2/3.

A weaker version of this was proved by Gábor N. Sárközy, [212] and
later Győri [134] proved a stronger

Theorem 4.33. There exists a constant ck > 0 for which if G[A,B] is a
bipartite graph with color classes A,B, and |A| = m, |B| = n ≥ m2, and

e(G[A,B]) ≥ (k − 1)n+ ckm
2,

then G[A,B] ⊃ C2k.

25A weaker version of this conjecture was formulated by Erdős several years earlier.
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This means that for n > m2 the extremal number becomes linear. For
more recent results see, e.g., Balbuena, Garćıa-Vázquez, Marcote, and
Valenzuela [15]. Later Győri [135] showed that c3 = 1/8, proving

ex(m,n,C6) ≤ 2n+
1

8
m2,

for n,m > 100, n ≥ m2/16 and here equality holds if m is a multiple of 4.

4.8. The effect of odd cycles

Let L be a set of graphs and let exbip(n,L) denote the bipartite Turán
number of L, the size of the largest L-free bipartite graph on n vertices.

Theorem 4.34 (Erdős and Simonovits [93]).

ex(n, {C4, C5}) = (1 + o(1))exbip(n,C4) = (1 + o(1))(n/2)3/2.

They also conjecture that the same holds for {C3, C4} (i.e., for the
girth problem) but this is still unsolved. Then, they make the following
bold conjecture.

Conjecture 4.35 (Erdős and Simonovits [93] on the effect of odd cycles).
Let Codd

2�+1 denote the set of odd cycles {C3, C5, . . . , C2�+1}. For any family
L consisting of bipartite graphs there exists an odd integer 2+1 such that
ex(n,L ∪ Codd

2�+1) ≈ exbip(n,L).

This conjecture was verified in a few cases by extending and sharpening
Theorem 4.34 as follows.

Theorem 4.36 (Keevash, Sudakov and Verstraëte [157]). Let Ceven
2k denote

the set of even cycles {C4, C6, . . . , C2k}. Suppose that 2k ∈ {4, 6, 10} and
suppose that 2+ 1 > 2k. Then

ex(n, Ceven
2k , C2�+1) = (1 + o(1))exbip(n, Ceven

2k ) ∼ (n/2)1+(1/k).

They even proved a stability result (when n → ∞) and, using it, an
exact version: If 2k ∈ {4, 6, 10} and 2+ 1 ≥ 5, 15, or 23, respectively, and
n = 2(qk + qk−1 + · · ·+ q + 1) then for n > n2�+1 we have

ex(n, Ceven
2k ∪ C2�+1) ≤ (q + 1)n

and here equality holds only if there is a generalized (k + 1)-gon of order q.
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In a more recent work Allen, Keevash, Sudakov and Verstraëte [5] ver-
ified the stronger form of the Erdős–Simonovits conjecture proving that
for any fixed 2+ 1 ≥ 5 one has ex(n, {K2,t, C2�+1}) ∼ exbip(n,K2,t) and
ex(n, {K3,3, C2�+1}) ∼ exbip(n,K3,3). They also show

ex(n, {K2,t, Bt, C2�+1}) ∼ exbip(n, {K2,t, Bt}) ∼ (n/2)3/2

for any fixed t ≥ 2 and 2+ 1 ≥ 9, where Bt is a “book” of t C4’s sharing
and edge: it has 2t+ 2 vertices and 3t+ 1 edges. Their main tool is the
smoothness of the corresponding Turán number’s and the sparse regularity
lemma of A. Scott [213].

On the other hand, for any t ≥ 1 and prime q > 2t
4
, they construct

(t+ 2)-partite graphs Gq,t with no triangle or K2,2t+1 having n = (t+ 2)q2

vertices and
(
t+2
2

)
q2(q − 1) edges. This implies

(4.12) ex(n, {K2,2t+1, C3}) ≥ (1 + o(1))
t+ 1√
t+ 2

n3/2.

So, using exbip(n,K2t+1) ∼
√
tn3/2, which follows easily from (3.7) and

(3.9), they obtain

(4.13) lim inf
n→∞

ex(n, {K2,2t+1, C3})
exbip(n,K2,2t+1)

≥ t+ 1√
t(t+ 2)

> 1.

In particular the ratio is 2/
√
3+o(1) for K2,3. We explain their construction

yielding (4.12) only for t = 1.

Construction 4.37 (Allen, Keevash, Sudakov and Verstraëte [5]). Let
q ≡ 2 (mod 3) be a prime. Let Gq be a three-partite graph with parts
A1, A2 and A3 which are copies of GF (q)×GF (q). Join (x1, x2) ∈ Ai to
(y1, y2) ∈ Ai+1 if

(y1, y2) = (x1, x2) + (a, a2)

for some a ∈ GF (q), a �= 0.

The obtained graph is K2,3 and C3-free, and has n = 3q2 vertices and

n3/2/
√
3 edges. This yields the ratio 2/

√
3 + o(1) for K2,3 in (4.13). They

believe that Erdős’ Conjecture 1.8 is false:

Conjecture 4.38 ([5]).

lim inf
n→∞

ex(n, {C3, C4})
exbip(n,C4)

> 1.
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4.9. Large girth: Ramanujan graphs

Until this point we were fixing the excluded subgraphs. However, there
is a subcategory of extremal graph problems, which we could also call
“Parametrized Extremal Graph Problems”. Instead of defining them we
give an almost trivial but important example: Horst Sachs and Erdős [87]
reformulated the Moore bounds (4.1) (4.5), in a slightly different form.

Theorem 4.39. If the minimum degree of Gn, d := dmin(Gn) > 2 then Gn

contains a C� with

(4.14)  <
2 log n

log(d− 1)
.

Here we arrived at an area where some constructions (for lower bounds)
were needed, and the lower bounds were easily obtained by probabilistic
arguments; however they were very difficult to obtain them in a constructive
way. Instead of going into details, we mention a result of Margulis [188] that
(4.14) is sharp up to a constant: there are – not too complicated – Cayley
graphs of constant (even) degrees d and girth at least c logd−1 n. Here –
surprisingly, Margulis’ construction is better than the random graph and a
construction of Imrich yields an even better constant c:

Theorem 4.40 (Imrich [147]). For every integer d > 2 one can (effectively)
construct infinitely many d-regular Cayley graphs Xn with

girth(Xn) > 0.4801
log n

log(d− 1)
− 2.

The next step in this area was a much deeper and more important results
of Margulis [190, 189], Lubotzky, Phillips and Sarnak, [181] on the Expander
graphs, that are eigenvalue-extremal. In this sense the Margulis–Lubotzky–
Phillips–Sarnak graph is very nice. There is only one problem with it. While
defining these graphs is non-trivial, but not extremely complicated, to verify
their extremal properties requires deep mathematical tools. Below we give
a very compressed description of it.

Definition 4.41. Given a connected k-regular graph X, we denote by λ(X)
the largest of the absolute values of eigenvalues of the adjacency matrix ofX,
different from k. An n-vertex k-regular graph Xn,k is a Ramanujan graph

if λ(Xn,k) ≤ 2
√
k − 1.
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Remark 4.42. In case of k-regular graphs, the largest absolute values of
the eigenvalues is k. The bipartite graphs have the property that if λi is
eigenvalue, then −λi is also an eigenvalue. By the Alon–Boppana inequality,
(see Proposition 4.2 of [181])

lim inf
n→∞ λ(Xn,k) = 2

√
k − 1.

Ramanujan graphs are important because they are expander graphs,
which are extremely important in Theoretical Computer Science.

There are quite a few cases, where – instead of using “random graph
constructions” one tries to use Cayley Graphs. Cayley graphs are graphs
whose vertices are the elements of some group G and the edges are the pairs
(g, αig), where g ∈ G and α1, . . . , αk are elements of G. If we look for a
digraph, then this is a correct definition. However, if we are looking for
ordinary graphs, then we have to assume that S := {α1, . . . , αk} is closed
under taking the inverse: if α ∈ S then α−1 ∈ S as well. If we choose G
and S appropriately, then the obtained graph will provide us with nice
constructions; mainly, because it behaves as if it were a random graph, or,
occasionally, even better.

Construction 4.43 ([181]). Let p and q be unequal primes congruent
to 1 mod 4. The Ramanujan graphs Xp,q of [181] are p+ 1-regular Cayley
graphs26 of the group PSL(2,Z/qZ): p+1 generators of the group are fixed,
which are obtained from the solutions of

(4.15) p = a2 + b2 + c2 + d2, where a > 0 is odd and b, c, d are even.

The number of solutions of (4.15) is connected to the famous Ramanujan
conjecture, which is still open. However, good approximations are known,
by Eichler and Igusa, enough for the purposes of [181]. Originally most
of the authors were interested in the eigenvalue properties (spectral gap)
of these graphs, that are also strongly connected to them being expander
graphs (see Alon, [6], Alon–Milman [10]).

From here on, Xn,k = Xp,q is a special sequence of Ramanujan graphs,

which is non-bipartite if the Jacobi symbol ( qp) = 1; then it has n =

(q3 − q)/2 vertices.

Theorem 4.44. For k = p+1, Xp,q is k-regular, its eigenvalues are λ = ±k
or |λ| ≤ 2

√
k − 1.

26There are two of them, a bipartite and a non-bipartite, we forget the bipartite one.
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This property is optimal and leads to the best known explicit expander
graphs. Alon turned the attention of the authors to that these graphs satisfy
a number of extremal combinatorial properties.

Theorem 4.45 (Observation of Alon). The girth of Xn,k is asymptotically

≥ 4
3

logn
log(k−1) .

This gives larger girth than what was previously known by explicit or
non-explicit constructions. Also, it is one of the “cleanest” way to define
graphs with large girth and high chromatic number:

Theorem 4.46 ([181]). If Xn,k is a non-bipartite Ramanujan graph, then
its independence number and chromatic number satisfy

α(Xn,k) ≤
2
√
k − 1

k
n and χ(Xn,k) ≥

k

2
√
k − 1

.

For a more informative description of these and many other related areas
see the survey of Alon in the Handbook [7].

4.10. The girth problem: the Lazebnik–Ustimenko approach

After 20 years Theorem 4.47 still yields the best known lower bound for the
girth problem: Lazebnik, Ustimenko and Woldar’s work [170] gives a slight
improvement (an O(1) in the denominator of the exponent) to what we can
get from the Ramanujan’ graphs.

Theorem 4.47 ([170]). ex(n, {C3, C4, . . . , C2k+1}) = Ω(n · n2/(3k−3+ε))
where k ≥ 2 is fixed, ε = 0 if k is odd, ε = 1 if k is even and n → ∞.

We have seen basically two approaches on how to construct graphs with
high girth. One was the use of Finite Geometries, and the other the use
of Cayley Graphs of some matrix groups (Ramanujan graphs). There is
(at least) one further important approach to this question which we find in
the works of Lazebnik and Ustimenko and later Lazebnik, Ustimenko and
Woldar.

Remark 4.48 (History). In this survey many important areas had to be
skipped. One of them is the family of Lazebnik–Ustimenko type algebraic
constructions. This family of constructions is much more flexible than many
earlier ones, and provides a lot of new constructions in extremal graph
theory, in Ramsey type problems, for graphs and hypergraphs as well. The
first results were achieved by Lazebnik and Ustimenko [168]. Lazebnik and
his coworkers created a school in this area. The reader is referred here
to [167].
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The main feature of this approach can be described (perhaps slightly
cheating) as follows. We take a set R (a finite or infinite ring or field),
its dth power, and a sequence of polynomials f2, . . . , fd. Define a bipartite
graph, where the colour classes A and B consist of vectors (a1, . . . , ad) and
(b1, . . . , bd) that are joined if

a2 + b2 = f2(a1, b1)

a3 + b3 = f3(a1, b1, a2, b2)

. . .

ad + bd = fd(a1, b1, . . . , ad, bd).

We may also identify A and B to get non-bipartite graphs as well. In
general, either we get digraphs, or some symmetry conditions are assumed
on the functions fi, ensuring that if (a1, . . . , ad) is joined to (b1, . . . , bd), then
(b1, . . . , bd) and (a1, . . . , ad) are joined as well. Yet, it is not an easy area
to describe it on a few pages: this is why we basically skip it. Perhaps the
more interested reader should look at [172].

4.11. Cycle length distribution

As a measure of the density of the cycle lengths in a graph G, Erdős
introduced the number L(G), the sum of the reciprocals of the distinct cycle
lengths of G. The following beautiful theorem, due to Gyárfás, Komlós and
Szemerédi, proves a conjecture of Erdős and Hajnal, asserting that in some
sense the complete graph or the complete bipartite graph are the densest
concerning cycle lengths:

Theorem 4.49 ([131]). There exists a positive constant c > 0 such that if
dmin(G) ≥ k, then for the sum of the reciprocals of the cycle lengths i of G
we have

L(G) =
∑ 1

i
> c log k.

The union of complete graphs Kk+1 or bipartite graphs Kk,m (where
m ≥ k) show that this lower bound is sharp.

Generalizing a theorem of Bondy and Vince [33], Gengua Fan proved
several nice results on the distribution of cycle lengths. We mention only
one of them.

Theorem 4.50 (G. Fan [96]). Let xy be an edge in a 2-connected graph G,
k be a positive integer and suppose that all the vertices of G but x and y
have degrees at least 3k. Then xy is contained in k+1 cycles C0,C1, . . . ,Ck,
such that k+1 < |E(C0)| < |E(C1)| < · · · < |E(Ck)|, |E(Ci)|− |E(Ci−1)| =
2 for i = 1, . . . , k − 1 and 1 ≤ |E(Ck)| − |E(Ck−1)| ≤ 2.
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A related result concerning k odd cycle lengths can be found in Gyárfás
[130].

Next we recall a conjecture of Burr and Erdős.

Conjecture 4.51 (Burr and Erdős). For every odd integer k > 0, and
every integer , there exists a ck such that if e(Gn) > ckn, then some m ≡ 
(mod k), we have Cm ⊆ Gn.

This was proved by Bollobás [25] with ck ≤ ((k+ 1)k − 1)/k. Häggkvist
and Scott ([137], [138]) decreased ck and extended the Bollobás result,
proving that every graph Gn with minimum degree at least 300k2 contains k
cycles of consecutive even lengths. Soon after, the right order of magnitude
of ck was established.

Theorem 4.52 (Verstraëte [246]). Let Gn be a graph with e(Gn) ≥ 4kn.
Then there are cycles of k consecutive even lengths in Gn.

We close this part with the following theorem:

Theorem 4.53 (Sudakov, Verstraëte [234]). Let girth(Gn) = g be fixed
and d = 2e(Gn)/n. Let C(G) denote the set of cycle-lengths in G. Then

C(Gn) contains at least Ω(d
�(g−1)/2�)) consecutive even integers, as d → ∞.

5. Paths and Long Cycles

In this section we shall describe results connected with ex(n, Pk),
ex(n, C≥k), (where the cycles of at least k vertices are excluded). This
problem was proposed by Turán and the (asymptotic) answer were given by
Erdős–Gallai.

5.1. Excluding long cycles

Theorem 5.1 (Erdős and Gallai [80]). Let Gn be a graph with more than
1
2(k− 1)(n− 1) edges, k ≥ 3. Then Gn contains a cycle of length at least k.
This bound is the best possible if n− 1 is divisible by k − 2.

A matching lower bound 1
2(k − 1)n−O(k2) can be obtained gluing to-

gether complete graphs of sizes at most k − 1. If k is odd, then there are
nearly extremal graphs having a completely different structure. Namely,
one can take a complete bipartite graph with partite sets A and B of sizes
|A| = k−1

2 and |B| = n− k−1
2 and add all edges in A, too.

The exact value was determined by Woodall [249] and independently
and at the same time by Kopylov [162].
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Theorem 5.2 ([162], [249]). Let n = m(k − 2) + r, where 1 ≤ r ≤ k − 2,
k ≥ 3, m ≥ 1 integers. If

e(Gn) > m

(
k − 1

2

)
+

(
r

2

)
,

then Gn contains a cycle of length at least k, and this bound is the best
possible:

(5.1) ex(n, C≥k) =
1

2
(k − 1)n− 1

2
r(k − r).

Caccetta and Vijayan [43] gave an alternative proof of the result. We
need a definition.

Construction 5.3. LetHn,k,s be an n-vertex graph consisting of a complete
graph Kk−s on the set A∪B, |A| = k− 2s, |B| = s and a complete bipartite
graph Ks,n−(k−s) with parts B and C where A, B and C form a partition
of V (H) (hence |C| = n− (k − s) and n ≥ k, (k − 1)/2 ≥ s ≥ 1).

The graph H contains no cycle of size k or larger and for s ≥ 2 it is
2-connected. Denote its size by h(n, k, s).

They all ([162], [249], [43]) characterized the structure of the extremal
graphs in Theorem 5.2. Namely either

— the blocks of Gn are m complete graphs Kk−1 and a Kr, or
— k is odd, r = (k + 1)/2 or (k − 1)/2 and q of the blocks of Gn are

Kk−1’s and a copy of a Hn−q(k−2),k,(k−1)/2.
The strongest result on the field is due to Kopylov who also investigated

2-connected graphs.

Theorem 5.4 (Kopylov [162]). Suppose that n ≥ k ≥ 5 and the 2-con-
nected graph Gn contains no cycles of length of k or larger. Then

e(Gn) ≤ max{h(n, k, 2), h(n, k, �1
2
(k − 1)�)}

and this bound is the best possible.

Moreover, only the graphs Hn,k,s could be extremal, s ∈ {2, �(k−1)/2�}.

This theorem was also conjectured by Woodall [249] and he also proved
it for n ≥ (3k − 5)/2. It was also reproved much later in [97].
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5.2. Excluding Pk

One of the oldest problems is the question of determining ex(n, Pk).

Theorem 5.5 (Erdős and Gallai [80]). If Gn is a graph containing no Pk,
(k ≥ 2), then

e(Gn) ≤
k − 2

2
n

with equality if and only if k − 1 divides n and all connected components
of G are complete graphs on k − 1 vertices.

Consider the n-vertex graph Gn which is the union of �n/(k−1)� vertex-
disjoint Kk−1 and a Kr (0 ≤ r ≤ k − 2). If Tk is any connected k-vertex
graph, then Tk �⊆ Gn. Hence

(5.2) ex(n, Tk) ≥
k − 2

2
n− 1

8
k2.

In particular,

(5.3) ex(n, Pk) ≥
k − 2

2
n− 1

8
k2.

Fig. 2. Potential extremal graphs

If k is even, then there are nearly extremal graphs having a completely
different structure. Namely, one can take a complete bipartite graph with
partite sets A and B of sizes |A| = k−2

2 and |B| = n− k−2
2 and add all edges

in A, too (Fig. 2). Faudree and Schelp [98] proved that the extremal graph
for Pk can indeed be obtained in this way for all n and k. They needed this
to prove some Ramsey theorems on paths. The variety of extremal graphs
makes the solution difficult.

Theorem 5.6 (Faudree and Schelp [98] and independently Kopylov [162]).
Let n ≡ r (mod k − 1), 0 ≤ r < k − 1, k ≥ 2. Then

(5.4) ex(n, Pk) =
1

2
(k − 2)n− 1

2
r(k − 1− r).
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Faudree and Schelp also described the extremal graphs which are either
— vertex disjoint unions of m complete graphs Kk−1 and a Kr, or
— k is even and r = k/2 or k/2− 1 and another extremal graphs can be

obtained by taking a vertex disjoint union of t copies of Kk−1 (0 ≤ t < m)
and a copy of H(n− t(k − 1), k/2, k/2− 1).

Theorem 5.7 (Kopylov [162]). Let Gn be a connected graph containing
no Pk, (k ≥ 4) and n ≥ k. Then

e(G) ≤ max{h(n, k − 1, 1), h(n, k − 1, �1
2
(k − 2)�)}

and this bound is the best possible.

Moreover, only the graphs Hn,k−1,s could be extremal, s ∈ {1, �(k −
2)/2�}.

Balister, Győri, Lehel and Schelp [18] also provided the extremal struc-
tures.

5.3. Proof ideas

Let excon(n, Pk) be the maximum number of edges in connected, n-vertex,
Pk-free graphs, and let ex2-con(n, C≥k) denote the maximum number of edges
in 2-connected, n-vertex, C≥k-free graphs. Determining these functions give
upper bounds for ex(n, Pk) and ex(n, C≥k).

Indeed, every Pk-free graph is a vertex disjoint union of Pk-free compo-
nents, we have

ex(n, Pk) = max∑
ni=n, ni≥1

∑
excon(ni, Pk).

Similarly, a maximal C≥k-free graph is connected and every connected graph
is a cactus-like union of 2-connected blocks (and edges) so we have

(5.5) ex(n, C≥k) = max∑
(ni−1)=n−1, ni≥2

∑
ex2-con(ni, C≥k),

where we define ex2-con(2, C≥k) = 1.

Let G be a connected, n-vertex, Pk-free graph. Add a new vertex to it
and join to all other vertices. We obtain Gn+1 with e(Gn+1) = e(G) + n.
This new graph has no cycle of length exceeding k and its connectivity is
one larger than that of Gn. We obtain

(5.6) ex(n, Pk) + n ≤ ex(n+ 1, C≥k+1)
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and

(5.7) excon(n, Pk) + n ≤ ex2-con(n+ 1, C≥k+1).

So Theorem 5.1 and (5.6) imply Theorem 5.5. Similarly, Theorem 5.2
and (5.6) imply Theorem 5.6.

The upper bounds for ex2-con(n,C≥k+1) yield upper bounds for
excon(n, Pk). (Actually, (5.7) and Theorem 5.4 lead to the solution of
excon(n, Pk), Theorem 5.7).

Again Theorem 5.4 and (5.5) lead to Theorem 5.2 which is obviously
stronger than Theorem 5.1.

Finally, the proof of Theorem 5.4 uses induction on n and k, by deleting
small degree vertices, contracting edges, and finally applying Pósa’s theorem
on Hamiltonian graphs.

5.4. Generalizations

In a recent work Lidický, Hong Liu and Cory Palmer [174] determined the
exact Turán number (and the unique extremal graph) when the forbidden
graph L is a linear forest, each component is a path. They also considered
star-forests.

Gyárfás, Rousseau, and Schelp [132] determined ex(K(m,n), Pk) for all
m, n, k. Their formula and proof are rather involved, they distinguish 10
subcases.

6. Excluding Trees

Here we shall discuss two extremal problems on trees: the Erdős–Sós con-
jecture and the Loebl–Komlós–Sós conjecture.

6.1. Erdős–Sós conjecture

We have already discussed the Erdős–Gallai theorems. Since the extremal
numbers for Pk and for the star K1,k−1 are roughly the same, this led Erdős
and T. Sós to the following famous conjecture.

Conjecture 6.1 (Erdős–Sós [63]). Let Tk be an arbitrarily fixed k-vertex
tree. If a graph Gn contains no Tk, then

(6.1) e(Gn) ≤
1

2
(k − 2)n.
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As we have seen – by (5.2) – the disjoint union of complete graphs Kk−1
shows that ex(n, Tk) ≥ 1

2(k − 2)n− 1
8k

2. Though several partial cases were
settled, the upper bound was unknown until Ajtai, Komlós, Simonovits, and
Szemerédi proved:

Theorem 6.2 (Main Theorem, Sharp [1, 2, 3]). There exists an integer
k0 such that if k > k0 and Tk is an arbitrarily fixed k-vertex tree, and the
graph Gn contains no Tk, then

(6.2) e(Gn) ≤
1

2
(k − 2)n.

Below we list a few subcases where this conjecture is verified, but we do
not try to give a complete list.

Theorem 6.3 (Sidorenko [215]). If Tk has a vertex x connected to at least
k/2 vertices of degree 1 (i.e., leaves) then the Erdős–Sós conjecture holds
for this Tk.

Theorem 6.4 (McLennan [182]). If the diameter of Tk is at most 4, then
the Erdős–Sós conjecture holds for this Tk.

Dobson (and coauthors) have several results in this area, under some
strong condition of sparsity. We mention only the Brandt–Dobson theorem
[34], or Sacle and Wozniak, [251], [211].

6.2. Sketch of the proof of Theorem 6.2

We are given a Tk, and a Gn violating (6.2). We wish to embed Tk into Gn

(Tk↪→Gn). The proof is very involved and will be given in three rather long
papers. The following weakening plays a central role.

Theorem 6.5 (η-weakening [1]). For any (small) constant η > 0 there
exists a k0(η) such that for n ≥ k > k0(η), if

(6.3) e(Gn) >
1

2
(k − 2)n+ ηkn,

then each k-vertex tree Tk is contained in Gn.

(a) First, in [1] we prove this theorem. If, in addition, we assume that
Gn is dense: for some c > 0, k > cn, then we can apply the Szemerédi
Regularity Lemma [235]. The proof of this theorem follows basically the line
which was later used to prove the Loebl Conjecture, by Ajtai, Komlós and
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Szemerédi [4] and later by Yi Zhao [255]. Also it was used in the Komlós–
Sós conjecture by Diana Piguet and Maya Stein [201], Cooley [54], Hladký
and Piguet [144], in stronger and stronger form, and now the publication
of that proof is almost finished by Hladký, Komlós, Simonovits, Stein, and
Szemerédi [143].

(b) In the second part, [2] we prove several theorems asserting that under
some very special conditions Tk ⊆ Gn. Some of these steps are “stability
arguments”.

Analyzing the proof of Theorem 6.5, shows that either we can gain at
some points, in some of the estimates ηkn edges, and therefore Theorem
6.5 (more precisely, its slightly modified proof) implies the sharp version,
Theorem 6.2, or else Gn must have a very special structure: it contains a
smaller copy of the conjectured extremal graphs: for some m ≈ k,

(b1) either it contains a Gm which is almost a Km;

(b2) or a Gm which is almost a K(m/2− εm,m+ δm).

(c) In both cases, if many edges connect Gn −Gm to Gm, then we can
embed Tk into Gn, embedding a smaller part of Tk outside of Gm, a larger
part in the dense Gm, concluding that Tk↪→Gn.

(d) If, on the other hand, we have found such a “mini-almost-extremal”
Gm ⊆ Gn, but e(Gm, Gn −Gn) is “small”, then we prove that

e(Gn −Gm) >
1

2
(n−m)(k − 2).

Hence we may forget the larger Gn: replace it by the smaller Gn −Gm. (In
other words, we can apply induction on n.)

(e) The real difficulty comes when we have sparse graphs: e(Gn) = o(n2).
Then we partition V (Gn) into three parts: C contains the vertices of high
degrees, B contains a part of V (Gn) not containing dense subgraphs, and
therefore behaving in a pseudo-random way, and A behaves very similarly
to the graphs we have in the dense cases.

How do we handle the dense case?. (i) Applying the Regularity Lemma
to Gn, we get a so called Cluster Graph Hν . If this cluster graph has an
(almost)-1-factor, then we can relatively easily embed Tk into Gn, using the
extra ηkn edges of (6.3).

(ii) Next we extend this case to a more general situation, when Gn

contains a so called Generalized 1-factor. We can prove the η-weakening in
this case as well.

(iii) If the Cluster Graph Hν does not contain an almost-1-factor, then
we apply the Gallai-Edmonds structure-theorem (on graphs without 1-
factors) to Hν . In this case we can either embed Tk into Gn directly, or
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reduce this case to Case (ii) above. Case (iii) is a very important subcase,
with 3-4 subsubcases (depending on, how do we count them). Some of them
go back to Case (ii) and in some others we directly (pseudo-greedily) embed
Tk into Gn.

6.3. Komlós–Sós conjecture on median degree

The Komlós–Sós conjecture was already formulated in Section 1.4. This is
a generalization of the Loebl conjecture:

Conjecture 6.6 (Loebl–Komlós–Sós Conjecture [79]). If Gn has at least
n/2 vertices of degree at least k − 1, then Gn contains all the k-vertex
trees Tk.

The authors of [143] plan to write up the sharp version as well, which
asserts the following.

Theorem 6.7. If k is sufficiently large, then the Loebl–Komlós–Sós con-
jecture is true.

Remarks 6.8. (a) The Loebl conjecture originates from a paper of Erdős,
Füredi, Loebl, and T. Sós, on the discrepancy of trees [79].

(b) Pósa’s theorem on the existence of Hamiltonian cycles also is – in
some sense – a theorem asserting that if G has many vertices of suffi-
ciently high degree, then it is Hamiltonian. There were earlier cases, when
Woodall [250], proved an Erdős–Gallai type theorem on cycles, using the
condition that there are many vertices of high degree. Also, Erdős, Faudree,
Schelp, and Simonovits – trying to prove some Ramsey type theorems, –
found a similar statement [78], but not for all the trees, only for the paths,
and they proved there an almost sharp theorem. Their sharp conjecture
was later proved by Hao Li.

(c) There were many important steps to reach the theorem above. We
should mention here Ajtai–Komlós–Szemerédi, [4], then Yi Zhao [255], next
Piguet and Stein [201], [202], Cooley [54], Hladký and Piguet [144], and
many others.

7. More Complex Excluded Subgraphs

In this section we present three theorems, each leading to a reduction
method to prove new results from old estimates. Still there is no general
theory to determine the bipartite Turán numbers.
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The three results we pick are the Erdős–Simonovits cube theorem (Theo-

rem 7.1), ex(n,Q8) = O(n8/5) which led to the Erdős–Simonovits reduction,
the Faudree–Simonovits theorem (Theorem 7.8) concerning Theta graphs,
a generalization of the Erdős–Bondy–Simonovits theorem, ex(n,C2k) =

O(n1+(1/k)), and Füredi’s theorem (Theorem 7.15) on two levels of the

Boolean lattice which implies a general upper bound ex(n, L) = O(n2−(1/r))
for any graph L with vertices of degrees at most r on one side of L.

7.1. The Erdős–Simonovits Reduction and the Cube theorem

We have already mentioned Theorem 1.5, on the extremal number of the
cube. Here we formulate a sharpening of it.

Theorem 7.1 ([90]). Let Q8 denote the graph determined by the 8 vertices
and 12 edges of a cube, and Q+

8 denote the graph obtained by joining two
opposite vertices of this cube. Then

ex(n,Q8) ≤ ex(n,Q+
8 ) = O(n8/5).

One reason why Erdős and Simonovits considered
the extremal problem of the Cube graph was that this
was one of Turán’s originally posed problems. The rea-
son that Q+

8 was also considered was that Erdős and Si-
monovits got it for free: their proof of Theorem 1.5 gave
the same upper bound for Q+

8 .

Let L be a bipartite graph with partite sets X and Y , and let Kt,t ∗ L
denote the graph obtained by completely joining one partite set of Kt,t to
X and the other to Y .

Theorem 7.2 (Erdős and Simonovits Reduction Theorem [90]). If L
is a bipartite graph with ex(n,L) = O(n2−a), a ≤ 1, and b is defined by
1
b = 1

a + t, then ex(n,Kt,t ∗ L) = O(n2−b).

The proof can go by induction on t and by counting the number of C4’s.

Let H be the graph obtained by deleting just three independent edges
from K4,4. Since H = K1,1 ∗ C6, Theorem 7.2 and ex(n,C6) = O(n4/3)
(Corollary 4.9) imply Theorem 7.1.

Since ex(n,L) = O(n) if L is a tree, so we have the following result:

Corollary 7.3. For any tree L, ex(n,Kt,t ∗ L) = O(n2−(1/(t+1))).
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This can be considered as a generalization
of the Kővári–T. Sós–Turán theorem, since for
L = K2 we have Kt+1,t+1 = Kt,t ∗K1,1. Since
Q8 − e is a subgraph of K1,1 ∗ P6, Corollary 7.3
implies

Corollary 7.4 (Erdős and Simonovits).

ex(n,Q8 − e) = O(n3/2).

Further,

Theorem 7.5 (Erdős). Delete an edge from Ka,a. For the resulting

L = Ka,a − e we have ex(n,L) = O(n2− 1
a−1 ).

Indeed, for a ≥ 3 the graph Ka,a − e is a subgraph of Ka−2,a−2 ∗ P4.

Since Kb,b −Ka,a (for b− 2 ≥ a ≥ 1) can be written as Kb−a−1,b−a−1 ∗ T
where T is a double star, Corollary 7.3 also implies that ex(n,Kb,b −Ka,a) =

O(n2−(1/(b−a))). For this important case Füredi and West gave a sharper
upper bound.

Theorem 7.6 ([121]). For every n ≥ b > a we have

ex(n,Kb,b −Ka,a) ≤
1

2
(b+ a− 1)1/(b−a)n2−(1/(b−a)) +

1

2
(b− a− 1)n.

In particular, it gives ex(n,K3,3 − e) ≤ 1
2

√
3n3/2 +O(n). This was fur-

ther improved by J. Shen [214] to

ex(n,K3,3 − e) ≤
√
15

5
n3/2 +O(n).

He also showed that ex(n, n,K3,3 − e) ≤ (4/
√
7)n3/2 + (n/2).

Pinchasi and Sharir extended the cube theorem, using a somewhat dif-
ferent proof:

Theorem 7.7 (Pinchasi and Sharir [204]). A bipartite graph G[A,B] with
|A| = m and |B| = n, not containing the cube Q has

O(n4/5m4/5 +mn1/2 + nm1/2)

edges.
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Another, more explicit proof for Theorem 7.7 was presented in [115].

Historical remarks: (a) Erdős and Simonovits first proved the Cube
theorem, using the Δ-almost-regularization.

(b) It seems that Theorem 7.2 covered all the cases known until that
point.

(c) This (i.e. the Cube Recursion Theorem) was the first case, where one
got an exponent, different from 2− (1/a) and 1 + (1/a). Actually, Erdős
thought earlier, that all the exponents must be of this form, (see [70]).
This was disproved in their paper [90]: not by the cube, since there is no

good lower bound for the cube: even ex(n,Q8)/n
3/2 → ∞ is not known.

However, a more complicated example, for which the lower bound – using
random graphs – was good enough, disproved Erdős’ conjecture. Actually,
one thinks that each rational α ∈ (0, 1) is extremal exponent for some finite
Lα, see Conjecture 2.37.

To disprove the Erdős conjecture concerning the exponents are of the
form 1 + (1/a) or 2− (1/a) it is enough to notice that we have graphs H
with

cHn(8/5)−ε(H) < ex(n,H) = O(n8/5),

(
cH > 0, ε(H) <

1

10

)
.

More generally, consider the graph H(t, ) ob-
tained by connecting a Θ(3, ) to K(t, t), as described
in Theorem 7.2. By the Theorem 2.26 (lower bound)
and Theorem 7.2 and Theorem 7.8 (upper bound) we
obtain

c�,tn
2− 2�+2t

3�+t2+2t(�+1)−1 < ex(n,Ht,�) ≤ c̃�,tn
2− 2

2t+3 .

So all the numbers 2− 2
2t+3 are points of accumulations of exponents, in

this sense. Actually, applying this argument with t = 1,  = 3, we get a
simple counterexample, with the upper bound O(n8/5) and a lower bound

cn2−(8/17) (c > 0).

(d) In [92], Erdős and Simonovits proved the Supersaturated graph
theorem (see Section 11) corresponding to the cube, thus providing a second
proof of the Cube Theorem, that needed “less regularization”.
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7.2. Theta graphs and the Faudree–Simonovits reduction

There is an alternative proof for the Bondy–Simonovits Theorem in [99].
This proof enabled a generalization to Θ-graphs. Recall that Θk,� denotes
the graph consisting of  paths of length k with the same endpoints but no
inner intersections. We have v(Θk,�) = 2 + (k − 1) and e(Θk,�) = k.

Theorem 7.8 (Theta-graph, Faudree–Simonovits [99]). For fixed k and

 ≥ 2 one has ex(n,Θk,�) = O(n1+(1/k)).

This exponent is conjectured to be the best pos-
sible, see Conjecture 4.11.

Applying the Erdős–Rényi Random Lower bound
(Theorem 2.26) in its simpler form to Θk,� we get

ex(n,Θk,�) > ck,�n
1+ 1

k
− 2

k� ,

asymptotically matching the upper bound’s exponent.

The proof of Theorem 7.8 came from a “Recursion” theorem, asserting
that if one knows good upper bounds for an L, and L∗ is built from L in a

simple way, then one has a good upper bound on
ex(n,L∗) as well.

Definition 7.9. Let L be a bipartite graph, with
a fixed 2-colouring ψ in RED-BLUE with h RED
vertices. Let x /∈ V (L) be a vertex from which h
independent paths of k− 1 edges go the RED vertices
of L, (these paths intersect only in x). Denote the
obtained graph by Lk(L,ψ).

Theorem 7.10 (Faudree–Simonovits Reduction, Trees [99]). If L is a tree,
then

ex(n,Lk(L,ψ)) = O(n1+(1/k)).

The Theta graph Θk,� is obtained from a star of  edges. One has to be
cautious with the next theorem, see Remark 7.12.

Theorem 7.11 (Faudree–Simonovits Reduction, General Case [99, 100]).
Let L be an arbitrary bipartite graph with a fixed coloring ψ and assume
that

(7.1) ex∗(n,L) = O(n2−α).
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Then for

β =
α+ α2 + · · ·+ αk−2

1 + α+ α2 + · · ·+ αk−2

we have

(7.2) ex(n,Lk(L,ψ)) ≤ ex∗(n, Lk(L,ψ)) = O(n2−β).

Remark 7.12. Most probably, this recursion is never sharp but for trees.
In its proof one has to apply standard arguments to subgraphs of K(m,n)
where n � m. We very seldom have matching lower and upper bounds in
such cases.

7.3. A universal graph and dependent random choice

Erdős asked the following question:
what are the extremal numbers for the
two graphs on the left: The left one will
be called M10, the right one M11 and
they are described as special cases of the
following

Definition 7.13. Let k, r and t be given positive integers. U(k, r, t) is
obtained from the k vertices x1, . . . , xk by joining to each of the r-element
subsets of {x1, . . . , xk} t distinct vertices yii1,...,ir . U+(k, r, t) is obtained

from U(k, r, t) by joining a new vertex w to all xh, h = 1, . . . , k.

Problem 7.14 (Erdős). Determine (or estimate) ex(n,L) for L := M10 =
U(4, 2, 1) and L := M11 = U+(4, 2, 1).

One could ask for the motivation: why these graphs? Perhaps hav-
ing obtained the cube theorem, we had good upper and lower bounds only
in very special cases, when L contained some sample graphs – say a C4

for which we have already provided sharp lower bounds. U(4, 2, 1) clearly
needed a new approach, and e.g. U+(k, 2, 1) contains many C4’s but the ear-
lier methods did not yield appropriate upper bounds. Füredi [107] answered

this question proving that ex(n,U+(k, 2, 1))) < k3/2n3/2. More generally,

Theorem 7.15 (Füredi [107]). Let U+(k, r, t) be the universal bipartite

graph from Definition 7.13. Then there exists a c = ck,tr > 0 such that

(7.3) ex(n,U+(k, r, t)) < cn2−(1/r).
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Concerning the Erdős question we have ex(n,U+(k, 2, 1)) < k3/2n3/2 and
more generally

(7.4) ex(n,U+(k, 2, t)) < n3/2 ·
√

tk(k − 1)2 + 2(k − 2)(k − 1)

8
+ n

k − 1

4
.

Multiplying each vertex (k − 1) times in a C4-free graph we get a

U+(k, 2, 1)-free graph which yields ex(n,U+(k, 2, 1)) ≥ Ω(k1/2n3/2).

Erdős had the more general conjecture

Conjecture 7.16 (Erdős, [66], see also [92], [225]). If every subgraph of
the bipartite graph L has a vertex of degree at most r, then

ex(n,L) = O(n2−(1/r)).

The upper bound (7.3) for the universal graph immediately gives

Corollary 7.17. If L is bipartite and has a 2-coloring where in the first
color class all but one vertex is of degree at most r, then

ex(n,L) = O(n2−(1/r)).

Indeed, all such graphs can trivially be embedded into an appropriate
U+(k, r, t).

Alon, Krivelevich, and Sudakov [9] gave a new probabilistic proof (for
graphs where on one side all vertices are of degree at most r) with a better

constant ck,tr . Their proof method became known as “dependent random
choice”; for a survey see [101].

Lemma 7.18 (Dependent random choice, see, e.g., [101]). Let k, t, r be
positive integers. Let Gn be a graph with n vertices and average degree d,
d be an integer. If there is a positive integer a such that

da

na−1 −
(
n

r

)(
t

n

)a

≥ k,

then Gn contains a subset U of at least k vertices such that every r vertices
in U have at least t common neighbors.

Note that in this lemma they do not claim that U(k, r, t) is a subgraph.

Nevertheless, using this lemma they improve the constant c = ck,tr in (7.3)

from O((t+ 1)1/rk2−(2/r)) to c ≤ 2−1+(2/t)(t+ 1)1/rk.
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As they mention at the end of [9], both proofs of Theorem 7.15 give a
bit more (and thus Corollary 7.17 can be sharpened accordingly):

(7.5) ex(n,U+r(k, r, t)) < cn2−(1/r),

where the graph U+r is obtained from U+(k, r, t) by replacing the vertex
w in Definition 7.13 by an independent set of r vertices with the same
neighbors, x1 . . . , xk.

However, the method of Dependent random choice gives more. Call a
graph Lh on h vertices r-degenerate if it satisfies the condition of Conjecture
7.16. In other words, there is an ordering of its vertices x1, . . . , xh such that
for every 1 ≤ i ≤ h the vertex xi has at most r neighbors xj with j < i.

Theorem 7.19 (Alon, Krivelevich, and Sudakov [9]). If L is bipartite
r-degenerate graph on h vertices, then for every n ≥ h

ex(n,L) ≤ h1/(2r)n2−(1/4r).

Applying the above results with r = 2, t = 1 and k = c
√
n to find a

U(k, 2, 1) one immediately obtains the following. Any graph on n vertices
with c1n

2 edges contains a 1-subdivision of Kk with k = c2
√
n for some

positive c2 depending on c1. This answers a question of Erdős [72]. The
theorems of Bollobás and Thomason [29] and Komlós and Szemerédi [161]
also imply the existence of such a large topological clique but their subgraph
is not necessarily a 1-subdivision.

Given any graph L, let d denote the maxX⊆V (L){2eL(X)/|X|}, the

maximum local average degree. Then L is �d�-degenerate. Hence the upper
bound of Theorem 7.19 and the random method lower bound in (2.9) yield
that

Corollary 7.20. For every bipartite graph L,

(7.6) Ω(n2−c) ≤ ex(n,L) ≤ O(n2−(c/8)),

where c = 2/d, is the same as in (2.9).
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8. Eigenvalues and Extremal Problems

Let A = A(Gn) be the adjacency matrix of Gn, and j be the vector each
entry of which is 1. Since

(8.1) e(Gn) =
1

2
jAjT

and, more generally,

(8.2) wk(Gn) =
1

2
jAkjT

counts the number of k-edge walks in Gn, therefore it is not so surprising
that eigenvalues can be used in extremal graph problems. An easy to read
source on spectra of graphs is Cvetkovič–Doob–Sachs [56].

Theorem 8.1 (Babai–Guiduli [12]). Let Λ(G) = max |λi|, where λ1, . . . , λn

are the eigenvalues of A(Gn). If Ka,b �⊆ Gn, (and 2 ≤ a ≤ b) then

(8.3) Λ ≤ a
√
b− 1 · n1−(1/a) + o(n1−(1/a)).

Since trivially

(8.4) 2e(Gn) ≤ Λn

the inequality (8.3) implies Theorem 2.22 apart from the o() term.

Remark 8.2. For regular or almost regular graphs Λ(Gn) ≈ 2e(Gn)
n , and

then the two estimates are basically equivalent. The constant in the above
theorem is not sharp since – as we know from Theorem 3.19,– the constant
can be improved.

We have already mentioned Nikiforov’s result (Theorem 3.21) on the
Zarankiewicz problem. In fact, he proved [198] that for all n ≥ b ≥ a ≥ 2
and a Ka,b-free graph Gn we have

(8.5) Λ(Gn) ≤ (b− a+ 1)1/an1−(1/a) + (a− 1)n1−(2/a) + (a− 2).

This improves the coefficient in Theorem 8.1. It also implies Füredi’s bound
(3.11) for the ex(n,Ka,b) according to (8.4). For C4-free graphs he has
Λ2 − Λ + 1 ≤ n.

Recall that Tn,k denotes the Turán graph, the k-partite complete graph
of maximum size. Given a Kk+1-free graph Gn Nikiforov [197] showed that
Λ(Gn) < λ(Tn,k) unless G = Tn,k. For a recent reference of a generalization
see Z. L. Nagy [196].
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9. Excluding Topological Subdivisions

9.1. Large topological subgraphs

We have already mentioned that our classification does not hold for infinite
families of excluded subgraphs. One important phenomenon is that ex(n,L)
can be linear for infinite L even if L contains only cycles.27 Here we consider
a very central graph theoretical problem strongly connected to the 4-colour
conjecture.

Definition 9.1. Given a graph H, its subdivision (or a topological H) is
obtained from it by replacing each edge e of H by some paths Pe so that
these paths do not have their inner (new) vertices in common.

Wagner asked if for any integer  there exists a k = k� such that any G
with chromatic number χ(G) > k� must contain a topological subdivision
of K�. This was proved by Gabor Dirac and H. Jung (independently).
Answering a question of Dirac, Mader proved the following important result.

Theorem 9.2 (Mader, [183]). If Gn is an n-vertex graph, and

e(Gn) ≥ n(− 1)2(
�−1
2 )−1,

then Gn contains a subdivision of the complete -graph.

This statement is stronger than the original Wagner conjecture, since a
graph with large chromatic number contains a subgraph with large minimum
degree. Mader, and independently, Erdős and Hajnal conjectured that

Conjecture 9.3 (Mader, Erdős–Hajnal). There exists a constant c > 0
such that if e(Gn) > c2n, then Gn contains a topological K�.

A slightly weaker form of this conjecture was proved by Komlós and
Szemerédi, [160], then – by a different method – Bollobás and Thomason
[29] proved this conjecture and, almost immediately after that, Komlós and
Szemerédi [161] proved Conjecture 9.3 as well.

Theorem 9.4 (Bollobás–Thomason). Every graph Gn of size at least
2562n edges contains a topological complete subgraph of order .

27Here the simplest case is Theorems 5.1.
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As to the small values of , Dirac conjectured that for n ≥ 3 every Gn,
with e(Gn) ≥ 3n− 5 contains a topological K5. This improvement of the
famous Kuratowski theorem was proved by Mader in [184] and the corre-
sponding extremal graphs were characterized in [186]. The reader is recom-
mended the excellent “featured review” of Carsten Thomassen on the paper
of Mader [184], on the MathSciNet.

An excellent survey of Mader on this topic is [185].

9.2. Turán numbers of subdivided graphs

Let ε be a positive real, 0 < ε < 1. Kostochka and Pyber [163] proved that

every n-vertex graph Gn with at least 4t
2
n1+ε edges contains a subdivision

of Kt on at most (7t2 ln t)/ε vertices, where 0 < ε < 1. This (for t = 5)
answers a question of Erdős about finding a non-planar subgraph of size
c(ε) in a graph with n1+ε edges.

Recently, T. Jiang [150] improved the Kostochka-Pyber upper bound to
O(t2/ε). On the other hand, for each 0 < ε < 1 and n > n0(ε) there are n-
vertex graphs of girth at least 1/ε (see Corollary 2.30). In such a graph any
subdivision of Kt must contain Ω(t2/ε) vertices, so Jiang’s result is sharp.

Theorem 9.5 (Jiang and Seiver [151]). Let L be a subdivision of another
graph H. For each edge xy ∈ E(H) let (x, y) denote the length of the path
in L replacing the edge xy. Suppose that (x, y) is even for each edge of H,

and let min{(x, y) : xy ∈ E(H)} = 2m. Then ex(n,L) = O(n1+(8/m)).

The main tools in the proof are the Dependent Random Choice, Lemma
7.18, and the Erdős–Simonovits Δ-almost-regularization, Theorem 2.19.

10. Hypergraph Extremal Problems

10.1. Positive Density problems

This is a short detour into Hypergraph Extremal Problems. Now our
“Universe” is the class of r-uniform hypergraphs. Katona, Nemetz and
Simonovits [154] showed (using a simple averaging) that

Theorem 10.1 (Katona, Nemetz and Simonovits [154]). exr(n,L)/
(
n
r

)
is

monotone decreasing, and therefore convergent.
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The hypergraph extremal problems are extremely
hard. Even the simplest extension of Turán’s theorem

is unsolved: Let K
(3)
4 be the three-uniform hypergraph

with 4 vertices and 4 triples.

Construction 10.2 (Turán, the simplest case). We par-
tition n vertices into three classes C1, C2, C3 and we take
all the triples of the form (x, y, z), where

(a) x ∈ Ci, y ∈ Ci, z ∈ Ci+1 (where the indices are taken mod 3);
(b) the three vertices are in three different groups.

One can easily see that his construction contains no K
(3)
4 .

Conjecture 10.3 (Turán). Construction 10.2 is asymptotically extremal

for K
(3)
4 . (Perhaps it is extremal, not only asymptotically extremal, at least

for n > n0.)

Here we cut it short and recommend the reader (among others) the
survey of Füredi on hypergraph extremal problems [108], and also the
papers of Füredi and Simonovits [120], Keevash and Sudakov [156], Füredi–
Pikhurko–Simonovits [119], and the survey of Keevash [155].

10.2. Degenerate hypergraph problems

For r-uniform hypergraphs the r-partite graphs generalize the bipartite
graphs. An important illustration of this is the one below, extending The-
orem 2.31.

Theorem 10.4 (Degenerated hypergraph problems). For an r-uniform

extremal hypergraph problem of L(r), ex(n,L(r)) = o(nr), if and only if

there is an L ∈ L(r) which can be r-vertex-colored so that each hyperedge
of L gets r distinct colors.

Theorem 10.4 is an easy corollary of the following theorem of Erdős,
(which generalizes Theorem 2.22).

Theorem 10.5 (Erdős [65]). Let K(r)(a1, . . . , ar) be the r-uniform hyper-
graph with r vertex-classes C1, . . . , Cr, where |Ci| = ai, and a1 = t. Then

ex(r)(n,K(r)(a1, . . . , ar)) = O(nr−(1/tr−1)).

Extending some problems and results for ordinary graphs, Brown, Erdős
and Sós started investigating the following
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Problem 10.6 (Brown, Erdős, and Sós [39], [40]). Consider r-uniform
hypergraphs for some fixed r, and denote by Hr

k,� the family of r-uniform k-

vertex hypergraphs with  hyperedges. Determine or estimate fr(n, k, ) :=
ex(n,Hr

k,�).

Brown, Erdős, and Sós proved many upper and lower bounds for special
cases of Problem 10.6. We have already mentioned one of them: the
f3(n, 6, 3)-problem.28 It is easy to see that f3(n, 6, 3) <

1
6n

2. The real

question was if f3(n, 6, 3) = o(n2) or not. Ruzsa and Szemerédi [210] proved
that the answer is YES. We formulated this in Theorem 1.9. This theorem
became a very important one. We originate, among others, the “Removal
Lemma” from here.

We shall return to this problem in the section on applications.

11. Supersaturated Graphs

The theory of Supersaturated extremal problems is a very popular area
today. Here we shall restrict ourselves to the supersaturated extremal graph
problems related to bipartite excluded graphs, just mention a few further
references, like Lovász and Simonovits [178], Razborov [179], Lovász [177],
Reiher [205].

Given a graph G, denote by N(G,F ) the number of subgraphs of G
isomorphic to F . Here we have to be slightly cautious: if F has non-trivial
automorphisms, then we can count isomorphisms or isomorphic subgraphs,
and the ratio of these two numbers equal to the automorphism number.

A theorem which asserts that a graph Gn contains very many graphs
L from a family L is called a theorem on supersaturated graphs.
Such theorems are not only interesting in themselves, but also are often
useful in establishing other extremal results. At this point it is worthwhile
mentioning such a result for complete bipartite graphs, obtained by Erdős
and Simonovits [94]:

Theorem 11.1 (Number of complete bipartite graphs). For any integers
a and b there exists a constant ca,b > 0 such that if Gn is a graph with

e edges, then Gn contains at least [ca,be
ab/n2ab−a−b] copies of Ka,b.

Corollary 11.2. Let c > 0. If e(Gn) = e > (1 + c)ex(n,C4), then Gn con-
tains at least γe4/n4 copies of C4, for some γ(c) > 0. The random graph
with e edges shows that this is sharp.

28If r = 3, then we delete the subscript in f3.
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Proof of the Cube Theorem (Sketch). Apply Theorem 2.19 obtaining

a Δ-almost-regular (bipartite) G̃n ⊆ Gn. Apply the corollary to this G̃n. It

contains γ e4

n4 C4’s. On the average, an edge of Gn is contained in γe3/n4

copies of C4. Take a typical edge xy: the bipartite graph G[U, V ] spanned

by the neighbors U := N(x) and V := N(y) – by ex(m,C6) = O(m4/3), –
will contain a C6. Now, xy and this C6 will provide a Q+

8 : a cube with a
diagonal.

Basically the same argument proves Theorem 7.2.

11.1. Erdős–Simonovits–Sidorenko conjecture

In this part χ(L) = 2. Erdős and Simonovits [225] formulated three con-
jectures and also that the main idea behind these conjectures is that the
number of copies of subgraphs L ∈ Gn is minimized by the random graph
if E = e(Gn) is fixed and is not too small.

To formulate these conjectures, first we calculate the “expected number
of copies” of L ⊆ Rn if Rn is a random graph with edge probability p =
E/

(n
2

)
. Let v = v(L), and e = e(L). Clearly, if the edges are selected

independently, with probability p, then Kn contains
(
n
v

)
possible v-tuples,

each containing the same number aL of copies of L, and therefore
(11.1)

E(#(L ⊆ Rn)) = (aL + o(1))
nv

v!
pe = (aL + o(1))

nv

v!

(
2E

n2

)e

= a∗L
Ee

n2e−v

Conjecture 11.3 (Erdős–Simonovits, [225]). There are two constants,
Ω = ΩL > 0 and c = cL > 0 such that if E > Ω · ex(n,L), then any graph
Gn with E edges contains at least

cL
Ee

n2e−v

copies of L.

This was the weakest form. The strongest form of this conjecture was

Conjecture 11.4 (Erdős and Simonovits). For every ε > 0, if E > (1 + ε) ·
ex(n,L), then any graph Gn with E edges contains at least (1 + ε)ER
(n,L,E) copies of L, if n > n0(ε), where ER(n,L,E) denotes the expected
number of edges of a random Erdős–Rényi graph with n vertices and E
edges.
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Obviously, one has to assume that e(Gn) > ex(n,L).

Remark 11.5 (Relation to Sidorenko’s Conjecture). At first sight Sido-
renko’s conjecture [216] seems to be sharper than the above one. This is
not the case. In fact, Sidorenko’s Conjecture applies only to dense host
graphs. There, as Sidorenko points out in his papers, the two versions are
equivalent.

Also, it is obvious that there is not much difference if we consider above
the hypergeometric model of random graphs, where the number of vertices
and edges are given, or if we fix only n but the edges are taken independently,
and therefore e(Gn) follows a binomial distribution.

Sidorenko, working on applications of extremal graph theorem to prob-
ability distribution translated the above conjecture to integrals and arrived
at a conjecture [216], where the error terms disappeared. The meaning of
his version was that if one considers dense graphs and defines L ⊆ R for
the case when G is a function, generalizing the notion of graphs, then the
Random Continuous graph will have the least number of copies of L, more
precisely, that will minimize the corresponding integral.

We skip the formulation of this problem, just refer to some papers of
Lovász, and Hatami [140], and to the book of Lovász [177].

Jagger, Št́ov́ıček, and Thomason [148] investigated the following problem
originating from a conjecture of Erdős, disproved by Thomason.

Problem 11.6. Given a sample graph L, denote by ρL(Gn) the sum of
copies of L in Gn and in its complementary graph. What is the minimum
Γn(L) of this, taken over all n-vertex graphs?

Erdős conjectured that the random graph yields the minimum, for K4.
This was disproved by Thomason [237]. Investigating the case of general L,
Jagger, Št́ov́ıček, and Thomason proved some interesting results in connec-
tion with Sidorenko’s conjecture.

Here we should emphasize that there is a slight difference between look-
ing for copies of an L in Gn or for copies of homomorphic images: In the
second case we allow vertices to map into Gn with some coincidences.

As to the Sidorenko Conjecture, the first unknown case (as Sidorenko
mentions) is when we delete the edges of a Hamiltonian cycle from K5,5.

Theorem 11.7 (Conlon, Fox, Sudakov [52] [53]). The Sidorenko Conjecture
holds if L = L[A,B] is a bipartite graph with a vertex x ∈ A completely
joined to B.
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Remark 11.8. Unfortunately, we do not have sufficiently good lower
bounds for the extremal problem of the cube. The Erdős–Simonovits Con-
jecture was proved for Q8 in [92].

Hatami proved the Sidorenko conjecture for any cube (i.e. of any dimen-
sion), yet, that was not really enough to provide a reasonable upper bound
for the 4-dimensional cube. This reflects some difference between extremal
problems and the corresponding Supersaturated Graph Problems (at least,
for dense host graphs).

12. Ordered Structures

12.1. Directed graphs, ordered graphs

There is an extensive literature on Digraph extremal problems, see e.g., the
survey of Brown and Simonovits [42], or [41]. We skip here the general
theory.

Denote
−−→
ext(n,

−→
L ) the maximum number of edges in a directed graph not

containing the oriented subgraph
−→
L . For every

−→
L containing a directed path

of length 2 one has
−−→
ext(

−→
L ) ≥ �n2/4�. Indeed, orient the edges of Kn/2,n/2

simultaneously into one direction. For bipartite
−→
L it is more interesting to

consider the minimum outdegree.

Consider the following directed graph
−→
L 1,a,b on 1 + a+ b vertices w,

x1, . . . xa, y1, . . . , yb. The oriented edges are w to xi and xi to yj (1 ≤ i ≤ a,
1 ≤ j ≤ b).

Theorem 12.1 (Erdős, Harcos and Pach [82]). Given integers a and b, there
exists a c = ca,b > 0 such that the following holds. Any oriented graph with

minimum out-degree δ+ ≥ cn1−(1/a) contains a copy of
−→
L 1,a,b.

This result opened up a new interesting field with many open problems.

Another ordered Turán function was defined by Timmons [239]. He
showed that if a graph with vertex set {1, 2, . . . , n} has at least

(1 + o(1))(2/3)n3/2

edges, then it contains a C4 with vertices a1b1a2b2 such that a1, a2 < b1, b2.
He extended other ordinary Turán problems to these zig-zag type questions.
Many problems remain unsolved.
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12.2. Erdős–Moser conjecture on unit distances

Erdős and Leo Moser [83] conjectured that

Conjecture 12.2. If n points of the plane are in convex position, then the
number of unit distances among them is O(n).

Füredi proved a slightly weaker result:

Theorem 12.3 (Füredi [106]). If n points are in convex position in the
plane, then there are at most O(n log n) unit distances among them.

To prove this, Füredi directly formulated the excluded Ordered Matrix
Property and solved a matrix-containment problem. The crucial point of
his proof was Theorem 12.6 below.

The best known lower bound in the Erdős–Moser problem, 2n− 7, is
due to Edelsbrunner and P. Hajnal [58].

12.3. Ordered submatrices

The ordered matrix problems partly came from geometric problems (see
Bienstock and Győri, [23], Füredi [106]), but they are interesting on their
own, too. A geometric application, called Erdős–Moser conjecture, is dis-
cussed above in Subsection 12.2.

We have already indicated that most extremal graph problems have
matrix forms, too: To determine ex∗(m,n, L) we considered all m× n 0-1
matrices not containing any permutation of the bipartite adjacency matrix
of L.

In the ordered case here we exclude only those submatrices where the
indexing of the rows and columns of M is fixed. This way we exclude fewer
subconfigurations.

Definition 12.4 (Matrix containment). Let M and P be two 0-1 matrices.
We say that M contains P if we can delete some rows and columns of M
and then perhaps switch some 1’s into 0 so that the resulting matrix be P.
Otherwise we say that M avoids P.

So, we can delete rows and columns of M but can not permute them.
Now we can define the Matrix Extremal Problems:

Problem 12.5 (Ordered Matrix Problem). Given an a× b 0-1 (sample)
matrix P, and a (huge) m× n 0-1 matrix M, how many 1’s can occur in
M under the condition that M does not contain P in the “ordered” way.
Denote by extmat(m,n,P) the maximum.
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One of the first nontrivial results was

Theorem 12.6 (Füredi [106]). Let

P =

(
1 1 0
1 0 1

)
.

If the n×n 0-1 matrix M does not contain P, then it has at most O(n logn)
1’s. In fact, extmat(n, n,P) = Θ(n log n).

Tardos [236] proved that extmat(n,P) = n log2 n+O(n).

Completing earlier works of Füredi and Péter Hajnal [116] Tardos [236]
classified the ordered matrix Turán numbers for all small submatrices. The
extremely slow growing inverse Ackermann function is denoted by α(n).

Theorem 12.7 ([116], [236]). If P is a 0-1 matrix with at most four 1’s,
then

extmat(n, n,P) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 or

Θ(n), or

Θ(nα(n)), or

Θ(n log n), or

Θ(n3/2).

12.4. Ordered matrices and the Stanley–Wilf conjecture on sub-
permutations

Trying to prove the Erdős–Moser Conjecture, Füredi and Péter Hajnal [116]
arrived at the following conjecture, proved by Marcus and Tardos.

Theorem 12.8 (Füredi–Hajnal conj. [116]/Marcus–Tardos theorem [187]).
For all permutation matrices P we have extmat(n, n,P) = O(n).

This time there was a famous Stanley–Wilf conjecture around, on the
number of permutations “avoiding” a fixed permutation. To formulate it,
we need to define the Permutation containment:

Definition 12.9 (Permutation containment). We say that a permutation
σ : [1, n] → [1, n] contains a permutation π : [1, k] → [1, k], if there exist
1 ≤ x1 < x2 < · · · < xk ≤ n for which

σ(xi) < σ(xj) if and only if π(i) < π(j).

The famous Stanley–Wilf conjecture29 states that

29Marcus and Tardos [187] write that it is difficult to locate the corresponding reference.
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Conjecture 12.10 (Stanley–Wilf). For any permutation pattern q, if
Sn(q) is the number of permutations of length n avoiding the pattern q,
then there is a constant cq so that Sn(q) ≤ cnq .

Theorem 12.11 (Klazar [158]). The Füredi–Hajnal conjecture implies the
Stanley–Wilf conjecture.

So Marcus and G. Tardos settled this conjecture as well.

Remark 12.12. The permutation containment is just a subcase of the more
general question. In some other cases there are definite differences between
ordinary Turán type extremal problems and the ordered matrix problems.
For a special matrix, where the corresponding graph is a tree, hence it has
linear Turán function, our threshold function turns out to be Θ(n log n).

13. Applications in Geometry

13.1. Applicability of the Kővári–T. Sós–Turán bound

We have mentioned that Theorem 2.22 is applicable in several cases. Here
we mention only two.

(A) The Unit Distance Graph of the Plane contains no K(2, 3). Erdős

used this to estimate the number of unit distances by O(n3/2).

(B) G. Megyesi and Endre Szabó30 answered a question of F. E. P.
Hirzebruch using this theorem.

Assume that we are given k smooth curves in the the Complex Pro-
jective Plane and assume that their union has only nodes and tacnodes31

as singularities. Let t(k) denote the maximum number of tacnodes in
such cases. Hirzebruch proved that t(k) ≤ 4

9k
2 + 4

4k. Hirzebruch asked if
lim sup t(k)/k > 0.

Theorem 13.1 (G. Megyesi, and E. Szabó [191]). There exist three positive
constants, A, B and C for which

Ak1+(B/ log log k) ≤ t(k) ≤ Ck2−(1/7633).

30We use the longer versions of the names whenever we see chances to mix up authors
of similar names.

31Tacnode means roughly that the curve is touching itself.
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13.2. Unit Distances

Erdős was interested in the following problem:

Problem 13.2 (Unit distances). Given an n-element set in the d-dimen-
sional Euclidean space Ed, how many of the distances can be the same, say
equal to 1?

Conjecture 13.3 (Unit distances). For any ε > 0, there is an n0 such that
if n > n0 and given an n-element set in the plane E2, then the number of
unit distances is at most n1+ε.

The motivation of this conjecture is – as Erdős observed – that if we
arrange the n = k × k points into a k × k grid, and rescale this grid so
that the “most popular” distance be 1, then this distance will occur at
most n1+ε times, (actually, approximately n1+(c/(log logn)) times). So Erdős
conjectured that the number of unit distances is in the plane has an upper
bound of roughly this form.

The first upper bound was a trivial application of Theorem 2.22:

Theorem 13.4 (Unit distances, Erdős 1946). Given n points in the plane,
the number of unit distances among them is at most

ex(n,K2,3) <

(
1√
2
+ o(1)

)
n3/2.

In E3 the number of unit distances is at most

(13.1) ex(n,K3,3) < c3,3n
5/3.

Proof. Since two circles intersect in at most 2 points, the Unit Distance
Graph of E2 contains no K2,3. This implies the first inequality. Since 3 unit
balls intersect in at most 2 points, the Unit Distance Graph of E3 does not
contain any K3,3. This implies (13.1).

Remarks 13.5. (a) Everything is different for the higher dimensions: E4

contains two orthogonal circles of radii 1√
2
, and these form a K(∞,∞) in

the corresponding unit graphs of Ed, for d ≥ 4. (This is the so called Lenz
Construction.) (See also Section 3.6.)

(b) How sharp is this application? As the reader can see, it is very far

from the conjectured upper bound. However, just to improve it to o(n3/2)

is non-trivial (Józsa-Szemerédi [152]). Actually, for the plane an O(n4/3)



The History of Degenerate (Bipartite) Extremal Graph Problems 247

upper bound was proved by Beck and Spencer [20] and Spencer, Szemerédi
and Trotter [233], which is sharp if we do not insist on Euclidean metric,
only on “normed spaces”. For this see the results of Peter Brass [35] and
Pavel Valtr [245].

13.3. Cells in line arrangements

Let I(m,n) denote the maximum number of edges in m distinct cells deter-
mined by an arrangement of n lines in the plane. Canham [45] showed that
for an absolute constant c > 0

(13.2) I(m,n) < c(m
√
n+ n).

Indeed, if we construct a bipartite graph where one side of the vertex set
consists of the m cells (or any other family of m convex sets with disjoint
interiors), the other side of the vertex set consists of the n (tangent) lines and
two vertices are joined if the corresponding geometric objects are incident,
then it is easy to see that this graph does not contain a K5,2.

This was a first nontrivial step toward the determination of the exact
order of the magnitude of I(m,n) by Clarkson, Edelsbrunner, Guibas,

Sharir, and Welzl [49]; it is Θ(n2/3m2/3 + n). More about this and other
geometric applications see the monograph of Pach and Agarwal [199].

14. Further Connections and Problems

14.1. Connections of hypergraphs and critical graphs

We discussed Degenerate Hypergraph Extremal Problems in Section 10.
Here we continue that line.

Excluding the 3-uniform hypergraph cones.Many of the other results,
problems of [39] were also degenerate ones. One of them was where T is the
family of triangulations of the 3-dimensional sphere. This problem gave the
name to this paper [39]. The crucial point was excluding the double cones:

Definition 14.1 (r-cones). The vertices of the 3-uniform hypergraph Qr,t

are x1, x2, . . . , xr, and y1, y2, . . . , yt for some t, and the hyperedges are
xiyjyj+1, for all the possible i, j, where yt+1 = y1. Further, Qr := {Qr,t :
t = 3, 4, 5, . . . }.
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Theorem 14.2 (Brown, Erdős, Sós, r = 2, [39], Simonovits [219] r ≥ 2).

ex(n,Qr) := O(n3−(1/r)).

For r = 2, 3 there are matching lower bounds here. Actually, for r = 2
Brown, Erdős and Sós gave a construction, where not only the double-cone
was excluded, but all the triangulations of the sphere. In Simonovits’ lower
bound only the double cone was considered.

In [220] Simonovits returned to this question and – using the main idea
of Brown’s construction [36] – he proved

Theorem 14.3 (Simonovits [220]). There are (finite geometric) 3-uniform
hypergraphs without triple-cones (i.e. without hypergraphs from Q3) and

still having at least cn3−(1/3) triples.

We saw that for the family of triangulations of the sphere, and for the
family of Double Cones the extremal number is O(n3−(1/2)) [39], (see [219]).

Brown, Erdős and T. Sós arrived at their question (most probably)
since they wanted to generalize certain results from ordinary graphs to
hypergraphs. Simonovits came from a completely different direction: he
used this to disproved a conjecture of Gallai on independent vertices in
4-colour-critical graphs.

G is colour-edge-critical, if deleting any edge of G, we get a (χ(G)− 1)-
chromatic graph. The 3-colour-critical graphs are the odd cycles, so the
problem of critical graphs becomes interesting for the 4-chromatic case.
Here we shall restrict ourselves to this case and suggest the reader to read
Bjarne Toft’s results on this topic in general.

Erdős asked if a 4-colour-critical graph can have cn2 edges and Bjarne

Toft constructed such a 4-chromatic graph [240] of ≈ n2

16 edges. This and
some related questions can also be found in Lovász’ book: Combinatorial
Exercises [176].

Gallai had many beautiful conjectures on 4-colour-critical graphs. One
of them, however, was “completely demolished”. He conjectured that if
Gn is 4-colour-critical, then α(Gn) ≤ n/2. G4m+2 = C2m+1 ⊗ C2m+1 is 6-
critical, with dmin(G4m+2) = 2m+3. Simonovits – “blowing up” the vertices
in one of the two odd cycles, – proved that there are 6-critical graphs Gn

with α(Gn) = n− o(n).

It turned out that slightly earlier Brown and Moon [38] already disproved
Gallai’s conjecture for the 4-chromatic case, with a “clever but simple”
construction.



The History of Degenerate (Bipartite) Extremal Graph Problems 249

Theorem 14.4 (Brown and Moon [38]). There exist 4-chromatic edge-
critical graphs Gn with α(Gn) > n− c

√
n, for some constant c > 0.

Next, Bjarne Toft came up with his construction, mentioned above.
Using this and a hypergraph extremal theorem, Simonovits proved

Theorem 14.5. There exists a constant c2 > 0 such that if Gn is 4-colour-
critical, then α(Gn) ≤ n− c2n

2/5.

This was obtained as follows: Simonovits reduced the original problem
to estimating the number of independent vertices of degree 3 in a 4-colour-
critical graph. The neighborhoods of these vertices generated a 3-uniform

hypergraph H(3)
m on the remaining vertices. Simonovits – using the Sperner

Lemma from Topology proved that if I is a set of independent vertices
of degree 3, in V (Gn), then for m := n− |I|, |I| < ex3(m,Q2) = O(m5/2),

see [219]. He observed that H(3)
m cannot contain double cones. This proved

that |I| < n− cn2/5.

(b) Lovász observed that instead of excluding the graphs from Q2 one

can exclude a larger family, Q̃: those 3-uniform hypergraphs which obey
the conclusion of Sperner’s lemma [175]: each pair (x, y) is contained in
an even number of hyperedges. This enabled him to completely settle this
Gallai problem on colour-critical graphs. He proved that ex(n, Q̃2) ≤

(
n
2

)
.

So he obtained |I| < n− c
√
n, in Gallai’s problem. Besides proving and

using a more applicable extremal graph theorem he also generalized the
Brown–Moon construction.

(c) It was an interesting feature of Lovász’ solution that to get an upper

bound on ex(n, Q̃) he used linear algebra.

We finish this part by sketching the proof of Lovász on the upper bound.

Theorem 14.6 (Lovász [175]). Let E(3) denote the family of 3-uniform
hypergraphs H in which each pair of vertices is contained in an even number
of triplets (i.e. hyperedges). Then ex(n,E(3)) ≤

(
n
2

)
.

Proof (Sketch). Assume that H
(3)
n contains no subgraphs from E(3). Con-

sider that vectorspace over GF (2) of dimension
(
n
2

)
where the coordinates

are indexed by pairs from 1, . . . , n. Represent each triple of H
(3)
n by such a

vector, where we have 1 in those coordinates which are pairs form our triple.

The condition that H
(3)
n contains no subgraphs from E(3) translates into the

fact, that these vectors are linearly independent. Hence their number is at
most the dimension of the vector-space.
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Now, repeating the original argument of Simonovits, Lovász obtained

Theorem 14.7. There exists a constant c3 > 0 such that if Gn is 4-colour-
critical, then α(Gn) ≤ n− c3n

1/2,

This with the Brown-Moon construction completely settles Gallai’s orig-
inal problem, providing a matching lower bound. Lovász proved a more
general theorem, and extended the Brown-Moon construction as well. We
close this part with a beautiful conjecture of Erdős:

Problem 14.8. Is it true that if (Gn) is a sequence of 4-colour-critical
graphs, then dmin(Gn) = o(n)?

(Simonovits [219] and Toft [240] succeeded in constructing 4-color-
critical graphs with minimum degrees around c 3

√
n.)

Further sources to read: Several related results can be found in Lovász
[176].

14.2. A multiplicative Sidon problem and C2k-free graphs

As it was explained in Subsection 1.5, the Erdős problem about ex(n,C4)
in [60] was obtained from a multiplicative Sidon type question. He investi-
gated subsets of integers of A ⊂ {1, 2, . . . , n} with the property that for any
four members of A the pairwise products are distinct, aiaj �= aka�.

A. Sárközy, P. Erdős, and V. T. Sós [88] started investigating the more
general problem.

Problem 14.9. Fix an integer k. How many integers can we take from
[1, n] if the product of no k of them is a square.

Interestingly, this Problem also lead to Turán type questions, namely to
ex(m,n,C2k) with m � n. Their conjecture (Conjecture 4.32 above) was
proved by Győri [134], see Theorem 4.33. We shall not go into the number
theoretic details; just refer the reader again to [134].

14.3. Cycle-free subgraphs of the d-dimensional hypercube

The d-dimensional hypercube, Qd, is the graph whose vertex set is {0, 1}d
and whose edge set is the set of pairs that differ in exactly one coordinate,
e(Qd) = d2d−1. Let γ(C�) = limd→∞ ex(Qd, C4)/e(Q

d). Note that γ(C�)
exists, because ex(Qd, C4)/e(Q

d) is a non-increasing and bounded function
of d. Considering the edges between the levels 2i to 2i+ 1 one can see that
ex(Qd, C4) ≥ (1/2)e(Qd). The following conjecture is still open.
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Conjecture 14.10 (Erdős [74]). ex(Qd, C4) =
(
1
2 + o(1)

)
e(Qd).

The best upper bound γ(C4) ≤ 0.6226 was obtained by Thomason and
Wagner [238], slightly improving the result of Chung [46].

Erdős [74] also asked whether ex(Qd, C2k) is o(d)2
d for k > 2. This was

answered negatively for C6 by Chung [46], showing that γ(C6) ≥ 1/4. The
best known results for C6 are 1/3 ≤ γ(C6) < 0.3941 due to Conder [50] and
Lu [180], respectively.

On the other hand, for every t ≥ 2 the inequalities

(14.1) ex(Qd, C4t) ≤ O(d
1
2
− 1

2t 2d) and ex(Qd, C4t+6) = O(d
15
16
− 1

16t 2d)

were proved by Chung [46] and Füredi and Özkahya [118], respectively.
Hence γ(C2k) = 0, except γ(C4) ≥ 1/2, γ(C6) ≥ 1/3 and the problem of
deciding whether γ(C10) = 0 is still open.

Conlon [51] generalized (14.1) by showing ex(Qd, H) = o(e(Qd)) for all
H that admit a k-partite representation, also satisfied by each H = C2k

except for k ∈ {2, 3, 5}.

14.4. Two problems of Erdős

Of course, we should close with two open problem of Erdős. The first one
is the general version of that problem which was solved in [124] and [141],
see Section 1.1.

Conjecture 14.11 (Erdős [75]). Suppose that G is a graph on (2k + 1)n
vertices and of odd girth 2k + 1. Then G contains at most n2k+1 induced
cycles of length 2k + 1.

The next conjecture is also very famous and is motivated by the blown
up pentagon (if we restrict it to k = 2.)

Conjecture 14.12 (Erdős [75]). Suppose that G is a graph on (2k + 1)n
vertices and of odd girth at least 2k + 1. Then G can be made bipartite by
omitting at most n2 edges.

For the best known results here, for k = 1, see Erdős, Faudree, Pach,
and Spencer [77] and Erdős, Győri, and Simonovits [81].

Acknowledgements. The authors are greatly indebted for fruitful discus-
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[14] C. Balbuena, P. Garćıa-Vázquez, X. Marcote, and J. C. Valenzuela: New results
on the Zarankiewicz problem, Discrete Math. 307 (2007), no. 17–18, 2322–2327.
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[34] S. Brandt and E. Dobson: The Erdős–Sós conjecture for graphs of girth 5, Selected
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[64] P. Erdős: Some applications of probability to graph theory and combinatorial
problems, Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963),
pp. 133–136, Publ. House Czech. Acad. Sci., Prague, 1964.
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256 Z. Füredi and M. Simonovits
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[87] P. Erdős and H. Sachs: Reguläre Graphen gegebener Taillenweite mit minimaler
Knotenzahl (in German), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-
Natur. Reihe 12 (1963), 251–257.
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[234] B. Sudakov and J. Verstraëte: Cycle lengths in sparse graphs, Combinatorica 28
(2008), no. 3, 357–372.
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[257] Š. Znám: Two improvements of a result concerning a problem of K. Zarankiewicz,
Colloq. Math. 13 (1964/1965), 255–258.

Zoltán Füredi
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Erdős and Arithmetic Progressions

W. TIMOTHY GOWERS

Two of Erdős’s most famous conjectures concern arithmetic progressions. In this
paper we discuss some of the progress that has been made on them.

1. Introduction

Possibly the best known of all of Erdős’s many conjectures is the following
striking statement.

Conjecture 1.1. Let A be a set of positive integers such that∑
n∈A n−1 = ∞. Then A contains arbitrarily long arithmetic progressions.

This conjecture is still wide open. Indeed, it is not even known whether
A must contain an arithmetic progression of length 3.

There is another conjecture of Erdős about arithmetic progressions. It is
not as famous as the first, but it is still well known and extremely interesting.
It is sometimes referred to as Erdős’s discrepancy problem.

Conjecture 1.2. Let ε1, ε2, ε3, . . . be a sequence taking values in the set
{−1, 1}. Then for every constant C there exist positive integers n and d
such that |∑n

m=1 εmd| ≥ C.

The purpose of this paper is to say a little bit about the two conjectures
and to discuss some known results and related problems.
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2. Arithmetic Progressions in Sparse Sets

What does it tell us about a set A if
∑

n∈A n−1 diverges? Clearly it tells
us that in some sense A is not too small, since the larger it is, the more
likely the sum of its reciprocals is to diverge. A rough interpretation of
the condition turns out to be that the density δ(n) = n−1|A ∩ {1, 2, . . . , n}|
decreases not too much faster than (log n)−1. One way of seeing this is as
follows. Writing 1A for the characteristic function of A, we have the trivial
identity

1A(n) = nδ(n)− (n− 1)δ(n− 1),

from which (if we adopt the convention that δ(0) = 0) it follows that∑
n∈A

n−1 =
∑
n

n−11A(n) =
∑
n

(
δ(n)− δ(n− 1) + δ(n− 1)/n

)
=

∑
n

δ(n− 1)/n.

Thus, if the density decreases like (log n)−1 then we get a sum like∑
n

1/n log n,

which diverges, while if it decreases like, say, (logn)−1(log logn)−2, then we
get a convergent sum.

Of course, the density does not have to decrease smoothly in this way,
but this nevertheless gives a good general picture of what the conjecture
is saying. In particular, the simple calculation just given tells us that if∑

n∈A n−1 = ∞, then there must be infinitely many n for which δ(n) ≥
(logn)−1(log logn)−2, so to prove Erdős’s conjecture it is sufficient to prove
the following statement.

Conjecture 2.1. For every k there exists n such that if A is any subset
of {1, . . . , n} of cardinality at least n/ log n(log log n)2, then A contains an
arithmetic progression of length k.

It is also not hard to show that to disprove Erdős’s conjecture, it would
be sufficient to show that for every k and every sufficiently large n there
exists a subset A ⊂ {1, . . . , n} of cardinality at least n/ log n that does
not contain an arithmetic progression of length k. To do this, for each
sufficiently large r let Ar be a subset of {2r + 1, . . . , 2r+1} of size at least
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cr−12r that contains no arithmetic progression of length k and let A be the
infinite set As ∪As+2 ∪As+4 ∪ . . . for a sufficiently large s. Then for every
sufficiently large n we have δ(n) ≥ c′(logn)−1 and A contains no arithmetic
progression of length k.

Thus, Erdős’s conjecture is basically addressing the following problem,
and suggesting an approximate answer.

Problem 2.2. Let k and n be positive integers. How large does a subset
A ⊂ {1, 2, . . . , n} have to be to guarantee that it contains an arithmetic
progression of length k?

The suggested answer is that a cardinality of somewhere around n/ logn
should be enough.

A natural starting point would be to prove any bound of the form o(n).
This gives us another famous conjecture of Erdős, made with Paul Turán
in 1936 [10].

Conjecture 2.3. For every positive integer k and every δ > 0 there exists
n such that every subset A ⊂ {1, 2, . . . , n} of cardinality at least δn contains
an arithmetic progression of length k.

Even this much weaker conjecture turned out to be very hard, and very
interesting indeed: it can be seen as having given rise to several different
branches of mathematics.

The first progress on the Erdős-Turán conjecture was due to Roth, who
proved in 1953 that it is true when k = 3 [31]. Roth’s proof, which used
Fourier analysis, showed that δ could be taken to be C/ log log n for an
absolute constant C. The problem for longer progressions turned out to
be much harder, and it was not until 1969 that there was further progress,
when Szemerédi proved the result for k = 4 [36], this time with a bound for
δ that was too weak to be worth stating explicitly. And a few years later
(the paper was published in 1975), Szemerédi managed to prove the general
case [37].

2.1. Other proofs of Szemerédi’s theorem

This result was hailed at the time and is still regarded as one of the great
mathematical results of the second half of the twentieth century, but it was
by no means the end of the story: over the last four decades its significance
has steadily grown. In this respect, the Erdős-Turán conjecture is like many
conjectures of Erdős. Initially it seems like an amusing puzzle, but the more
you think about it, the more you come to understand that the “amusing
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puzzle” is a brilliant distillation of a much more fundamental mathematical
difficulty. There are few direct applications of Szemerédi’s theorem (though
they do exist), but an enormous number of applications of the methods that
Szemerédi developed to prove the theorem, and in particular of his famous
regularity lemma.

Since then, there have been several other proofs of the theorem, which
have also introduced ideas with applications that go well beyond Szemerédi’s
theorem itself. In 1977, Furstenberg pioneered an ergodic-theoretic ap-
proach [11], giving a new proof of the theorem and developing a method
that went on to yield the first proofs of many generalizations, of which we
mention three notable ones.

The first is a natural multidimensional version of Szemerédi’s theorem,
due to Furstenberg and Katznelson [12].

Theorem 2.4. For every δ > 0, every positive integer d and every subset
K ⊂ Zd there exists n such that every subset A ⊂ {1, . . . , n}d of size at least
δnd contains a homothetic copy of K: that is, a set of the form aK + b for
some positive integer a and some b ∈ Zd.

Next, we have the “density Hales–Jewett theorem”, also due to Fursten-
berg and Katznelson [13]. For this we need a definition. If x is a point in
{1, . . . , k}n and E is a subset of {1, 2 . . . , n}, then for each 1 ≤ j ≤ k let
x⊕ jE be the point y ∈ {1, . . . , k}n such that yi = j for every i ∈ A and
yi = xi otherwise. A combinatorial line in {1, . . . , k}n is a set of points of
the form {x⊕ jE : j = 1, . . . , k}.

Theorem 2.5. For every δ > 0 and every k there exists n such that every
subset A ⊂ {1, . . . , k}n of cardinality at least δkn contains a combinatorial
line.

Finally, the Bergelson-Leibman theorem [2] is the following remarkable
“polynomial version” of Szemerédi’s theorem.

Theorem 2.6. For every δ > 0 and every sequence P1, . . . , Pk of polynomials
with integer coefficients and no constant term there exists n such that every
subset A ⊂ {1, 2, . . . , n} of cardinality at least δn contains a subset of the
form {a+ P1(d), a+ P2(d), . . . , a+ Pk(d)} with d �= 0.

If we take Pi(d) to be (i− 1)d, then we recover Szemerédi’s theorem, but
this result is considerably more general. For example, amongst many other
things it implies that in Szemerédi’s theorem we can ask for the common
difference of the arithmetic progression we obtain to be a perfect cube.

Another approach to Szemerédi’s theorem was discovered approximately
twenty years later by the author [16, 17]. One of the reasons that Roth’s
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proof for progressions of length 3 was not quickly followed by a proof of the
general case was that while the number of arithmetic progressions of length 3
in a set can be expressed very nicely in terms of Fourier coefficients, there
is no useful Fourier expression for the number of arithmetic progressions
of length 4 (or more). The proofs in [16, 17] replaced the trigonometric
functions that Roth used by polynomial phase functions (that is, functions
of the form exp(2πip(x)) for some polynomial p) restricted to arithmetic
progressions. This strongly suggested that there should be a kind of “higher-
order Fourier analysis”, and, in a major recent achievement, such a theory
was worked out by Green, Tao and Ziegler [22] (see also [20, 4]). Their
inverse theorem for the uniformity norms had a very important application
that we shall describe briefly later.

A fourth approach to the theorem had its roots in a fascinating argument
of Ruzsa and Szemerédi [32], who used Szemerédi’s regularity lemma to
prove the following result, which is now known as the triangle removal
lemma.

Theorem 2.7. For every ε > 0 there exists δ > 0 such that if G is any graph
with n vertices and at most δn3 triangles, then there is a triangle-free graph
that differs from G by at most εn2 edges.

By applying the triangle removal lemma to a suitably chosen graph, one
can deduce Roth’s theorem (with a much worse bound).

It is natural to wonder whether this idea can be generalized to give a
proof of the general case of Szemerédi’s theorem. This thought led Rödl
to formulate an approach to the theorem in which the regularity lemma
was generalized from graphs to hypergraphs. The generalization is not
straightforward to state, and proving both it and an associated “counting
lemma” turned out to be hard. Frankl and Rödl proved a hypergraph
regularity lemma in 1992 [14] and in 2002 managed to use it to prove
Szemerédi’s theorem for progressions of length 4 [15]. The general case was
proved by this method in independent work of Nagle, Rödl and Schacht [27]
and the author [18]. (In the latter proof the formulation of the hypergraph
regularity lemma was different, which made it harder to prove but made
the counting lemma easier to prove.) Hypergraph regularity has gone on to
have several other applications.

An important development in our understanding of the regularity lemma
came with work of Lovász and others on graph limits. Loosely speaking,
with the help of the regularity lemma one can show that very large graphs
look like measurable functions from [0, 1]2 to [0, 1]. In a way this is not
too surprising, because the regularity lemma allows one to approximate any
graph with just a bounded amount of information about densities between
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subsets. What is more surprising, however, is that the graph-limits point
of view leads to a simpler proof of the regularity lemma itself [24]: for the
limiting arguments one can use a weaker regularity lemma, and once one has
passed to a measurable function on [0, 1]2, one has a limit of step functions,
which implies that if one partitions into a very fine grid, then the function
will be approximately constant on most squares.

Once one is given the statement of Szemerédi’s regularity lemma and the
basic idea of the standard proof, working out the details is not especially
hard to begin with. However, the limits approach generalizes to hyper-
graphs [9], where proving corresponding results is much harder, and gives
rise to similar simplifications. The resulting hypergraph-limits approach to
Szemerédi’s theorem has a strong claim to be the simplest known proof of
the theorem. More generally, graph and hypergraph limits have become a
very active area of research with several other applications.

We briefly mention one other candidate for the simplest known proof of
Szemerédi’s theorem, which is a combinatorial proof of the density Hales–
Jewett theorem, discovered by a “massive online collaboration” [28]. It
is easy to see that the density Hales–Jewett theorem implies Szemerédi’s
theorem: one just needs to interpret the points in {1, . . . , k}n as base-k rep-
resentations of integers, and then every combinatorial line is an arithmetic
progression of length k (but not vice versa). Recently, this proof has been
simplified yet further [8].

2.2. Quantitative considerations

As we saw earlier, Conjecture 1.1 is roughly saying that a density of (logn)−1
is enough to guarantee an arithmetic progression. But what is special about
this bound? Indeed, is it special?

There are two sensible answers to this question: yes and no. The reason
the bound is special, and the reason that Erdős asked the question, is that
the primes have density around (log n)−1 in the first n integers. One of
Erdős’s formative mathematical experiences was proving for himself that the
sum of the reciprocals of the primes diverges, and it is clear that his main
motivation for the sum-of-reciprocals conjecture was that it would imply
that the prime numbers contain arbitrarily long arithmetic progressions.
This would be an example of a result of a kind that Erdős particularly
liked: a result that appears to be number-theoretic but turns out to be true
for purely combinatorial reasons.

It would have been fascinating to know how Erdős would have reacted
to the proof by Green and Tao [19] that the primes do indeed contain
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arbitrarily long arithmetic progressions. In fact, Green and Tao proved the
following stronger result.

Theorem 2.8. For every δ > 0 and every k there exists n such that if A
is any set of at least δn/ log n primes between 1 and n, then A contains an
arithmetic progression of length k.

That is, not only do the primes contain arbitrarily long arithmetic
progressions, but so does any subset of the primes of positive relative density.
(Of course, this too is implied by the sum-of-reciprocals conjecture.)

The proof of this celebrated result did not go according to Erdős’s plan,
in that it made significant use of distribution properties of the primes.
However, despite this, it would almost certainly have appealed to Erdős’s
love of combinatorial arguments, since the main new ingredient in the proof
was in a sense “purely combinatorial”: they proved a “relative version” of
Szemerédi’s theorem, showing that a set A that is a relatively dense subset
of a set B must contain an arithmetic progression of length k, provided
that B is sufficiently large and sufficiently “pseudorandom” in a technical
sense that they defined. (The result they stated and used was actually more
general than this: B was replaced by a “pseudorandom measure”.) In order
to prove this result, they used Szemerédi’s theorem as well as techniques
from several of the proofs of the theorem. Thus, the work on the Erdős-
Turán conjecture did in the end result in a solution to the problem that so
fascinated Erdős.

Green and Tao followed this theorem with a project to obtain asymptotic
bounds for the number of arithmetic progressions of length k (and many
other configurations) in the primes up to n. Over several years, they
published a sequence of major papers, culminating in a proof, with Tamar
Ziegler, of the inverse theorem for the uniformity norms [22], mentioned
earlier, at which point the project was completed.

2.2.1. How natural is Erdős’s conjecture? The fact that Erdős’s con-
jecture implies an extremely striking result about the primes is not really
evidence that the correct bound in Szemerédi’s theorem is anywhere near
δ = (logn)−1. Obtaining such a bound would be wonderful, but there is no
strong reason to suppose that it would be the last word on the subject.

In particular, the best known lower bound for Szemerédi’s theorem is far
smaller than (logn)−1. It comes from a construction of Behrend in 1946 [1].
Behrend started from the observation that the surface of a sphere contains
no three points in a line, and in particular no three points such that one is the
midpoint of the other two. The argument proceeds as follows. For suitable
integers m and d, to be optimized at the end of the argument, one shows by
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the pigeonhole principle that there exists r such that the sphere of radius r
contains many points in the grid {1, . . . ,m}d. Next, one embeds that grid
“isomorphically” into the set {1, 2, . . . , (2m)d} by thinking of the points in
{1, . . . ,m}d as base-2m representations of integers. The main property of
this “isomorphism” is that it does not create any arithmetic progressions of
length 3 that were not present before. Finally, one maximizes the number
of points in the spherical surface subject to the constraint that (2m)d = n.
The resulting bound is δ = exp(−c

√
log n).

This bound helps to explain why it is so hard to determine optimal
bounds for Szemerédi’s theorem, even when the progressions have length 3.
On a first acquaintance with the problem, it is natural to conjecture that
the extremal example would be given by a simple probabilistic construc-
tion. If that were the case, then there would be hope of proving that
that construction was best possible by showing that “quasirandom sets are
best”. An approach like this works, for example, if one wishes to minimize,
for a given cardinality of a subset A ⊂ Z/nZ, the number of quadruples
(a1, a2, a3, a4) ∈ A4 such that a1 + a2 = a3 + a4, at least when that cardi-
nality is significantly greater than

√
n. However, random sets do not work

for progressions of length 3: the standard method of choosing points ran-
domly with probability p, where p is chosen such that the expected number
of progressions of length 3 is at most half the expected number of points,
and then deleting a point from each progression, gives a lower bound of
δ = cn−2/3, far smaller than the Behrend bound.

The Behrend bound can be slightly improved when the progressions are
longer, but for now let us focus on progressions of length 3. What is the
correct bound for the first non-trivial case of Szemerédi’s theorem? This is
a fascinating question that is still wide open, despite the attention of many
mathematicians. However, there has been some very interesting progress.

As mentioned earlier, the original argument of Roth gave an upper
bound of C(log log n)−1. This bound was improved to one of the form
(log n)−c by Heath-Brown [23] and Szemerédi [38]. An important new
technique, the use of regular Bohr sets, was introduced by Bourgain in
1999 [6], to improve the constant c. More precisely, he obtained a bound

of C(log logn/ logn)1/2. A difficulty with the problem is that cyclic groups
are not rich in subgroups, so dropping down to a subgroup is not an option.
Regular Bohr sets are a kind of substitute for subgroups, allowing Bourgain
to get round this difficulty. They have subsequently been used in many
other proofs.

For a while, Bourgain’s result was seen as the limit of what could be
achieved without a radical change of approach. It therefore came as a
surprise in 2008 when Bourgain introduced an idea that allowed him to
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carry out the general scheme of his proof more efficiently and obtain a
power of 2/3 instead of 1/2. Sanders [33] pushed this approach further and
obtained a power of 3/4.

Sanders followed up this improvement with a major advance on the
problem [34]. He found an argument that was substantially different from
Bourgain’s and used it to obtain a bound of C(log log n)5/ log n. Thus, he
was tantalizingly close to the logarithmic barrier. In fact, even a bound of
c log log n/ log n would be enough to prove purely combinatorially that the
primes contain infinitely many arithmetic progressions of length 3, since
if m is a number with many small prime factors, then most arithmetic
progressions with common difference m contain almost no primes, which
means that some have a high density of primes. Working out the details,
one can find arithmetic progressions of length n in which the primes have
density c log log n/ log n.

2.2.2. What is the right bound for Roth’s theorem? That is where
things stand today. Is the Behrend bound correct, or is Sanders’s upper
bound close to optimal? Nobody knows, but there there are two recent
results that give weakish evidence that the Behrend bound is more like the
truth of the matter.

The first of these concerns a closely related problem about subsets of Fn
3

(where F3 is the field with three elements). How large must a subset of Fn
3

be to guarantee that it contains an affine line, or equivalently three points
x, y, z such that x+ y + z = 0? (Such a triple can also be thought of as an
arithmetic progression, since if x+ y + z = 0, then 2y = x+ z.)

It was observed by Meshulam that Roth’s original argument works very
cleanly in this context (the main reason being that, in contrast with the
cyclic group Z/nZ, the group Fn

3 is very rich in subgroups), and yields the
following theorem [26].

Theorem 2.9. There exists a constant C such that every subset A ⊂ Fn
3 of

density at least C/n contains an affine line.

Thus, in this context, we have a logarithmic bound (since n is logarithmic
in the size, 3n, of the set Fn

3 ).

The gap between this and the best known lower bound is even more
embarrassingly large than it is for Roth’s theorem, since the lower bound
is of the form αn for some constant α < 3. (To obtain such a lower bound,
one finds a low-dimensional example and takes powers of that example.)

It was felt by many people that this was a better problem to attack than
attempting to improve the bounds in Roth’s theorem, since working in the
group Fn

3 presented technical simplifications without avoiding the deeper
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mathematical difficulties. And yet, despite the simplicity of the arguments
for both the upper and lower bounds, for many years nobody could come up
with any improvement. There was therefore considerable excitement in 2011
when Bateman and Katz [3] broke the logarithmic barrier for this problem,
improving the upper bound to C/n1+ε for a small but fixed positive ε.
Initially there was a hope that it might be possible to combine their ideas
with those of Sanders to break the logarithmic barrier in Roth’s theorem as
well, thereby proving the first non-trivial case of Erdős’s sum-of-reciprocals
conjecture, but unfortunately good reasons emerged to suppose that this
cannot be done without significant new ideas. However, the fact remains
that the logarithmic barrier is not the right bound for the Fn

3 version of the
problem, which makes it hard to think of a good reason for its being the
right bound for Roth’s theorem itself.

The second recent result, also from 2011, makes it look as though a
Behrend-type bound might be correct. Roth’s theorem can be thought of
as a search for solutions to the equation x+ z = 2y. Schoen and Shkre-
dov, building on the methods that Sanders introduced to prove his near-
logarithmic bound for Roth’s theorem, showed that if we generalize this
equation, then we can obtain a much better bound [35].

Theorem 2.10. Let A be a subset of {1, 2, . . . , n} of density

exp
(
− c(log n)1/6−ε

)
.

Then A contains distinct elements x1, x2, x3, x4, x5 and y such that
x1 + x2 + x3 + x4 + x5 = 5y.

Note that the Behrend lower bound is easily adapted to this equation
(since if x1, . . . , x5, y are distinct and satisfy that equation then they cannot
all lie on the surface of a sphere), so this result is within spitting distance
of best possible.

Of course, one could state an Erdős-like corollary to this theorem: if A
is a set of integers such that

∑
n∈A n−1 diverges, then A contains a non-

degenerate solution to the equation x1 + x2 + x3 + x4 + x5 = 5y. However,
the original result is more natural.

The result of Schoen and Shkredov is by no means conclusive evidence
that the correct bound for Roth’s theorem is of the form exp(−(log n)c),
since convolutions of three or more functions are significantly smoother
than convolutions of two functions, a phenomenon that also explains why
the twin-prime conjecture and Goldbach’s conjecture are much harder than
Vinogradov’s three-primes theorem. However, one can at least say, in the
light of this result and the result of Bateman and Katz, that there is
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a significant chance that the logarithmic barrier for Roth’s theorem will
eventually be surpassed and the first non-trivial case of Erdős’s conjecture
proved.

2.2.3. Arithmetic progressions of length 4 or more. What happens
for longer progressions? As mentioned earlier, the bounds coming from
Szemerédi’s proof are very weak. Furstenberg’s proof was infinitary and
gave no bound at all (though a discrete version of his argument was later
found by Tao [39], which in principle gave a weak quantitative bound). The
first argument to give a “reasonable” bound was the one in [16, 17], where
the following theorem was proved.

Theorem 2.11. Let A be a subset of {1, 2, . . . , n} of density at least

C(log logn)−1/22
k+9

. Then A contains an arithmetic progression of length k.

Green and Tao subsequently improved the bound for k = 4 to
exp

(
− c

√
log log n

)
[20]. And that is the current state of the art, though for

a finite-field analogue of the problem (again with k = 4) they have a bound
of the form exp

(
− (log n)c

)
[21].

Will Erdős’s sum-of-reciprocals conjecture be proved any time soon?
There seems at least a fair chance that the case k = 3 will be established
within, say, the next ten years. There are significant extra difficulties
involved when the progressions are longer, but a significant amount of
technology for dealing with longer progressions has now been developed.
Whether a bound for k = 3 will lead to a bound for longer progressions
probably depends a lot on what the proof for k = 3 looks like, and by how
much it beats the logarithmic bound. It may also depend on whether the
inverse theorem for uniformity norms can be proved with good quantitative
bounds.

3. Erdős’s Discrepancy Problem

Let us now turn to Conjecture 1.2. Discrepancy problems are problems that
ask how “balanced” a colouring of a set can be with respect to some class of
subsets. If we have a red/blue colouring κ of a set X and A ⊂ X, then define
the discrepancy disc(κ,A) of κ on A to be the difference between the number
of red elements of A and the number of blue elements of A. The discrepancy
disc(κ,A) of κ with respect toA is then maxA∈A disc(κ,A). The discrepancy
problem for A is the problem of determining the minimum of disc(κ,A)
over all 2-colourings κ. We can of course think of κ as a function from
X to {−1, 1} and then disc(κ,A) is |∑x∈A κ(x)|. The Erdős discrepancy
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problem is the discrepancy problem for the set A of homogeneous arithmetic
progressions: that is arithmetic progressions of the form (d, 2d, 3d, . . . ,md).

3.1. Known bounds

As with Szemerédi’s theorem, it is tempting to conjecture, again wrongly,
that random examples are best for this problem. If we choose a random
sequence (εi) of 1s and -1s, then the expected size of

∑n
m=1 εmd is around√

n, and occasionally the size will be slightly bigger by a logarithmic factor.

A simple example that gives rise to much slower growth of these sums
is the following, observed by Borwein, Choi and Coons [5]. Every pos-
itive integer m can be written in a unique way as (3a± 1)3b for inte-
gers a and b. We let εm = 1 if m is of the form (3a+ 1)3b and −1 if
m is of the form (3a− 1)3b. Note that this function is completely multi-
plicative: εmεn = εmn for any two positive integers m and n. Therefore,
|∑n

m=1 εmd| = |εd
∑n

m=1 εm| = |∑n
m=1 εm| for any n and d, so analysing

the example reduces to calculating the rate of growth of the partial sums of
the sequence.

To do this, we partition the integers from 1 to n according to the highest
power of 3 that divides them. Let Ab,n be the set of multiples of 3b that

are at most n and are not multiples of 3b+1. Then
∑

m∈Ab,n
εm = 1 if in

the ternary representation of n the digit corresponding to multiples of 3b

is 1, and 0 otherwise. It follows that
∑n

m=1 εm is equal to the number of
ternary digits of n that are equal to 1. In particular, it has magnitude at
most log3 n, which is far smaller than

√
n.

In the light of that example, it is natural to investigate the following
weakening of Erdős’s discrepancy conjecture, which Erdős also asked.

Conjecture 3.1. Let ε1, ε2, ε3, . . . be a completely multiplicative sequence
taking values in the set {−1, 1}. Then the partial sums

∑n
m=1 εm are

unbounded.

Remarkably, this conjecture is also very much open. Later we shall
discuss evidence that it may be more or less as hard as the discrepancy
problem itself.

What about the other direction? The sequence (1,−1,−1,1,−1,1,1,−1,
−1, 1, 1) has length 11 and has discrepancy 1 (where by “discrepancy” we
mean discrepancy with respect to the set of all homogeneous arithmetic
progressions). This turns out to be the longest such sequence [25]. Surpris-
ingly, the longest sequence with discrepancy 2 is much longer: there are a
very large number of sequences of length 1124 with discrepancy 2, and it
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appears that this is the longest that such a sequence can be, though this
has not yet been definitively proved. These experimental results, and al-
most all of the observations that follow, were discovered by the participants
in Polymath5, an online collaboration that attacked the Erdős discrepancy
problem in 2010 [29]. The fact that these sequences are so long may be one
reason that the problem is so hard: it is difficult to imagine what a proof
would be like that shows that the discrepancy of a ±1 sequence tends to in-
finity with the length of the sequence, while failing to prove the false result
that the discrepancy of a sequence of length 1000 is at least 3.

That is not the only reason for the problem’s being hard. Another
reason is that it is not easy to turn the problem into an analytic one – a
technique that is extremely helpful for many other problems. It would be
very nice if the result were true not because the sequence consists of 1s and
−1s but merely because it is large in some appropriate sense: for example,
perhaps any sequence with values in [−1,1] such that the average magnitude
of the terms is non-zero could be expanded in terms of some cleverly chosen
orthonormal basis, and perhaps this would prove that its discrepancy was
unbounded. But a very simple example appears to kill off this hope straight
away: the discrepancy of the periodic sequence 1,−1, 0,1,−1, 0, . . . is 1, and
yet the average magnitude of its terms is 2/3. Later we shall see that this
example is not quite as problematic as it at first appears. Note that this
example is a Dirichlet character: it is intriguing that the “difficult” examples
we know of all seem to be built out of characters in simple ways.

3.2. Variants of the conjecture

Sometimes, a good way of solving a problem is to replace the statement
you are trying to prove by something stronger. There are several promising
strengthenings of the Erdős discrepancy conjecture. An obvious one is to
replace ±1-valued sequences by sequences that take values in some more
general set. The example presented shows that we have to be a little careful
about this, but the following conjecture is a reasonable one, and is also
open.

Conjecture 3.2. Let x1, x2, . . . be a sequence of unit vectors in a (real
or complex) Hilbert space. Then for every C there exist n, d such that
‖∑n

m=1 xmd‖ ≥ C.

Since R is a Hilbert space, this conjecture is a generalization of Erdős’s
conjecture. A conjecture intermediate between the two is one where the xi
are complex numbers of modulus 1.
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A less obvious strengthening was formulated by Gil Kalai (one of the
Polymath5 participants), and called the “modular version” of the Erdős
discrepancy problem.

Conjecture 3.3. For every prime p there existsN such that if x1, x2, . . . , xN
is any sequence of non-zero elements of Z/pZ, then for every r ∈ Z/pZ there
exist n and d with nd ≤ N and

∑n
m=1 xmd ≡ r mod p.

If we insist that each xi is ±1 mod p, then the conjecture becomes obvi-
ously equivalent to the original Erdős problem. However, since the problem
does not involve products of the xi, there is nothing special about the num-
bers ±1, so in this context it becomes natural to replace the set {−1, 1} by
the set of all non-zero elements. The motivation for this conjecture was the
hope that the polynomial method might be applicable to it. So far this has
not succeeded, but the modular version gives us a valuable new angle on
the problem.

A possible generalization of the modular version to composite moduli m
would be to ask that the xi are coprime to m (which is obviously a necessary
condition if we want to be able to produce all numbers r). For amusement
only, we state another conjecture here. It is similar in spirit to the more
general modular version, but not quite the same.

Conjecture 3.4. Let K be a finite set of irrational numbers and let
x1, x2, . . . be a sequence of elements of K. Then the sums sn,d =

∑n
m=1 xmd

are dense mod 1.

Note that the special case where K is of the form {α,−α} for an
irrational number α is equivalent to the original discrepancy conjecture. It is
not clear whether there are any logical relationships between Conjectures 3.3
and 3.4.

3.3. Some approaches to the conjecture

Although the Erdős discrepancy problem looks very hard, there are some
approaches that at least enable one to start thinking seriously about it.
Here we discuss three of these approaches.

3.3.1. Completely multiplicative sequences. A close look at the very
long sequences of discrepancy 2 that were produced experimentally reveals
interesting multiplicative structure. The sequences are not completely mul-
tiplicative, but they appear to “want” to have multiplicative features. For
example, if you look at the values of a completely multiplicative ±1 sequence
along a geometric progression, then they will either be constant or alternat-
ing. In the long sequences of discrepancy 2 we do not see that behaviour,
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but we do see quasiperiodic behaviour, at least for a while: towards the end,
the patterns break down. There is a natural, but speculative, interpretation
of this. The sequences appear to be some kind of “projection” to the set of
±1 sequences of highly structured sequences taking values in C. Towards
the end, if the structure is followed too closely, the discrepancy rises to 3,
but for a while that can be countered by simply switching the signs of a few
terms in the sequence. If those terms correspond to integers with not many
factors, then not many homogeneous progressions are affected, so one can
extend the length of the sequence by sacrificing the structure. But since it
was the structure that allowed the sequence to get long in the first place,
this process is eventually doomed: one has to make more and more ad hoc
tweaks, and eventually it becomes impossible to continue.

This picture suggests the following line of attack. Perhaps one could
attempt to show that the worst examples – that is, the ones with lowest
discrepancy – have to have some kind of multiplicative structure. Then one
could attempt to prove the easier (one hopes) statement that a sequence
with multiplicative structure must have unbounded discrepancy.

An approach like this might seem a bit fanciful. Remarkably, however,
there is a precise reduction from the Erdős discrepancy problem to a related
problem about multiplicative sequences, discovered by Terence Tao (another
Polymath5 participant). With the help of a few lines of Fourier analysis, he
proved the following result [30].

Proposition 3.5. Suppose that there exists an infinite ±1 sequence of
discrepancy at most C. Then there exists a completely multiplicative se-
quence z1, z2, . . . of complex numbers of modulus 1 such that the averages
N−1 ∑N

n=1 |
∑n

i=1 zi|2 are bounded above by a constant depending on C.

Thus, to prove the Erdős discrepancy problem, it is enough to prove
the following conjecture about completely multiplicative complex-valued
sequences.

Conjecture 3.6. There exists a function ω : N → R tending to infinity
with the following property. Let z1, z2, . . . be any completely multiplicative
sequence z1, z2, . . . of complex numbers of modulus 1. For each n let sn be
the nth partial sum of this sequence. Then (|s1|2 + · · ·+ |sN |2)/N ≥ ω(N)
for every N .

This is not quite the same as saying that every completely multiplicative
sequence has unbounded discrepancy, even if we generalize to the complex
case. What it says is not just that the worst partial sums of such a sequence
should be large, but that the average partial sums should be large (uniformly
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over all such sequences). However, if the weaker statement is true, then it
looks likely that the stronger statement will be true as well.

A pessimistic view of this reduction would be to say that it shows
that the multiplicative problem is probably just as hard as the original.
However, completely multiplicative sequences have so much more structure
than arbitrary sequences that it is not clear that such pessimism is justified.

3.3.2. Semidefinite programming. The following very nice observation
was made by Moses Charikar (yet another Polymath5 participant), which
offers a way round the obstacle that the sequence 1,−1, 0, 1,−1, 0, . . . has
bounded discrepancy.

Proposition 3.7. Suppose that we can find non-negative coefficients cm,d

for each pair of natural numbers m and d, and a sequence (bn) such that∑
m,d cm,d = 1,

∑
n bn = ∞, and the real quadratic form∑

m,d

cm,d(xd + x2d + · · ·+ xmd)
2 −

∑
n

bnx
2
n

is positive semidefinite. Then every ±1 sequence has unbounded discrep-
ancy.

Proof. If (εn) is a ±1 sequence, then the positive semidefiniteness of the
quadratic form tells us that∑

m,d

cm,d(εd + ε2d + · · ·+ εmd)
2 ≥

∑
n

bnε
2
n =

∑
n

bn

Since
∑

m,d cm,d = 1 and
∑

n bn = ∞, it follows that the sums εd+ · · ·+ εmd

are unbounded.

The same argument shows that if
∑

n bn = C then there exist m,d such

that |εd + ε2d + · · ·+ εmd| ≥ C1/2. It also proves the Hilbert-space version
of the Erdős discrepancy conjecture, since if the xi are vectors in a Hilbert
space, then the non-negative definiteness of the quadratic form implies that∑

m,d

cm,d‖xd + x2d + · · ·+ xmd‖2 −
∑
n

bn‖xn‖2

is non-negative (as can be seen by expanding out the norms and looking at
each coordinate).

Less obviously, the existence of a quadratic form satisfying the conditions
of Proposition 3.7 is actually equivalent to a positive solution to the Hilbert-
space version of the conjecture.
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Proposition 3.8. Suppose that every infinite sequence of unit vectors in a
real Hilbert space has unbounded discrepancy. Then for every C there exists
N , a set of non-negative coefficients cm,d for each pair of natural numbers m
and d with md ≤ N , and a sequence (b1, . . . , bN ) such that

∑
m,d cm,d = 1,∑N

n=1 bn ≥ C, and the real quadratic form∑
m,d

cm,d(xd + x2d + · · ·+ xmd)
2 −

∑
n

bnx
2
n

is positive semidefinite.

Proof. For eachm, d withmd ≤ N define Am,d to be theN ×N matrix with
ijth entry equal to 1 if both i and j belong to the arithmetic progression
{d, 2d, . . . ,md} and 0 otherwise. Then the conclusion tells us that there
exists an N ×N diagonal matrix with entries adding up to at least C
that can be written as a convex combination of the matrices Am,d minus
a positive semidefinite matrix. If this cannot be done, then by the Hahn-
Banach separation theorem there must be a functional that separates the
convex set of diagonal matrices with entries adding up to at least C from
the convex set consisting of convex combinations of the Am,d minus positive
semidefinite matrices. Let us regard this functional as an N ×N matrix B
in the inner product space that consists of all N ×N matrices with square-
summable entries and the obvious inner product.

What properties must this matrix B have? We may suppose that
〈D,B〉 ≥ 1 for every diagonal matrix with entries adding up to at least
C and 〈A,B〉 ≤ 1 whenever A is a convex combination of the matrices Am,d

minus a positive semidefinite matrix. The first condition implies that B is
constant on the diagonal and that the constant is at least C−1.

The second condition implies that B has non-negative inner product
with every positive semidefinite matrix, since if A were a counterexample,
then we could make 〈−λA,B〉 arbitrarily large and positive by taking λ
sufficiently large and positive. In particular, if x ∈ RN and we take A to be
the positive semidefinite matrix x⊗x (that is, the matrix with ijth element
xixj), then 〈x,Bx〉 = 〈x⊗ x,B〉 ≥ 0, so B is itself positive semidefinite.
This is well known to be equivalent to the assertion that there are vectors
v1, . . . , vN in an inner product space such that Bij = 〈vi, vj〉 for every i, j.
Since Bii = c ≥ C−1 for every i, we find that each vector vi has norm

√
c.

Finally, since the zero matrix is positive semidefinite, the second con-
dition also implies that B must have inner product at most 1 with each
Am,d. In terms of the vectors vi, this is precisely the statement that
‖vd + v2d + · · ·+ vmd‖2 ≤ 1, as can be seen by expanding the left-hand side.
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If we now rescale so that the vi become unit vectors, this last inequality
changes to ‖vd + v2d + · · ·+ vmd‖2 ≤ K, for some constant K ≤ C.

Therefore, if the conclusion fails for some constant C, we can find, for
each N a sequence of N unit vectors of discrepancy at most

√
C. After

applying a suitable rotation, we may assume that for each n the nth vector
in this sequence is spanned by the first n standard basis vectors of RN .
Therefore, an easy compactness argument gives us an infinite sequence of
unit vectors with discrepancy at most

√
C, a contradiction.

Recall that the problem with the sequence 1,−1, 0, 1,−1, 0, . . . is that
it is “large” in a natural sense (namely having average magnitude bounded
away from zero), but has bounded discrepancy. What Proposition 3.7 tells
us is that there is a chance of proving that every sequence that is large with
respect to a suitable weighted norm – the weighted 2-norm with weights bn –
has unbounded discrepancy. Thus, there is after all a way of making the
problem analytic rather than purely combinatorial.

What can we say about a set of weights that would work? The lesson of
the troublesome 1,−1, 0, 1,−1, 0, . . . example is that the weights should be
concentrated on numbers with many factors. For example, if the sum of the
bn over all non-multiples of 3 is infinite, then the weights cannot work, since
then if (xn) is the troublesome sequence, we have

∑
n bnx

2
n = ∞ and yet

the discrepancy is finite. (This does not contradict Proposition 3.7: it just
means that for this choice of (bn) we cannot find appropriate coefficients
cm,d.)

It is not easy to write down a set of weights that has any chance of
working – in fact, that is worth stating as an open problem – albeit not a
wholly precise one.

Problem 3.9. Find a system of weights (bn) with
∑

n bn = ∞ for which it is
reasonable to conjecture that every sequence (xn) such that

∑
n bnx

2
n = ∞

has unbounded discrepancy.

One of the things that makes Proposition 3.7 interesting is that it
suggests a experimental line of attack on the Erdős discrepancy problem.
First, one uses semidefinite programming to determine, for some large N ,
the sequence (b1, b2, . . . , bN ) with largest sum such that the diagonal matrix
with those weights can be written as a convex combination of the matrices
Am,d minus a positive semidefinite matrix. Next, one stares hard at the
sequence and tries to spot enough patterns in it to make a guess at an
infinite sequence that would work. Finally, one attempts to decompose
the corresponding infinite diagonal matrix (perhaps using the experimental
values of the coefficients cm,d as a guide).
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Some efforts were made by Polymath5 participants in this direction, but
so far they have not succeeded. One problem is that cutting off sharply at N
appears to introduce misleading “edge-effects”. But even if one finds ways of
smoothing the cutoff, the experimental data is hard to interpret, though it
certainly confirms the principle that the weights bn should be concentrated
on positive integers n with many factors. Another serious difficulty is that
because we already know that there are very long sequences with small
discrepancy, the matrices we find experimentally will have to be extremely
large if they are to give us non-trivial lower bounds for discrepancy – large
enough that the semidefinite programming algorithms take a long time to
run. Despite these difficulties, this still seems like a promising approach
that should be explored further.

3.3.3. Representing diagonal matrices. We end by mentioning an ap-
proach based on an observation that is somewhat similar to Proposition 3.7
but that does not involve the slightly tricky concept of positive semidefinite-
ness. This approach was again one of the fruits of the Polymath5 discussion.

Let us define a HAP matrix to be a matrix A of the following form.
Take two homogeneous arithmetic progressions P and Q and define Aij to
be 1 if i ∈ P and j ∈ Q and 0 otherwise. In other words, a HAP matrix
is the characteristic function of a product of two homogeneous arithmetic
progressions.

Proposition 3.10. Suppose that there exists an N ×N diagonal matrix
of trace at least C that belongs to the symmetric convex hull of all HAP
matrices. Then every ±1 sequence of length N has discrepancy at least

√
C.

Proof. Let the diagonal matrix D have diagonal entries b1, . . . , bN and
suppose that it can be written as

∑
i λiAi with

∑
i |λi| ≤ 1 and with each

Ai a HAP matrix. Let ε = (ε1, . . . , εN ) be a ±1 sequence. Then

C ≤
∑
n

bnε
2
n = 〈ε,Dε〉 =

∑
i

λi〈ε,Aiε〉.

It follows that there exists i such that |〈ε,Aiε〉| ≥ C. If P and Q are the
HAPs from which Ai is built, then

〈ε,Aiε〉 = (
∑
i∈P

εi)(
∑
j∈Q

εj),

which implies that at least one of
∑

i∈P εi and
∑

j∈Q εj has modulus at

least
√
C.
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Once again, the argument generalizes easily to unit vectors in a Hilbert
space. And again there is an implication in the other direction.

Proposition 3.11. Let C be a constant, let N be a positive integer,
and suppose that for every N ×N real matrix A = (aij) with 1s on the
diagonal there exist homogeneous arithmetic progressions P and Q such
that |∑i∈P

∑
j∈Q aij | ≥ C. Then there is a diagonal matrix of trace at

least C that belongs to the symmetric convex hull of all HAP matrices.

Proof. Again we use the Hahn-Banach theorem. If no such diagonal matrix
exists, then there is a linear functional, which we can represent as taking
the inner product with a matrix A, that separates diagonal matrices of
trace at least C from convex combinations of HAP matrices and minus HAP
matrices. If 〈D,A〉 ≥ 1 for every diagonal matrix D of trace at least C, then
A must be constant on the diagonal and the constant must be at least C−1.
And if |〈B,A〉| < 1 for every HAP matrix B, then for any two homogeneous
arithmetic progressions P and Q we have |∑i∈P

∑
j∈Q aij | < 1. And now

if we choose λ such that λA has 1s along the diagonal, then the matrix λA
contradicts our hypothesis.

In the light of this proposition (which is easily seen to be an equiva-
lence) it is natural to make the following conjecture, which is yet another
strengthening of the Erdős discrepancy problem.

Conjecture 3.12. For every C there exists N such that if A = (aij) is any
real N ×N matrix with 1s on the diagonal, then there exist homogeneous
arithmetic progressions P and Q such that |∑i∈P

∑
j∈Q aij | ≥ C.

If we apply that conjecture in the case where aij = εiεj for some ±1
sequence (ε1, . . . , εN ), then the conclusion is that |∑i∈P εi

∑
j∈Q εj | ≥ C,

from which it follows that the sequence has discrepancy at least
√
C. Thus,

the conjecture really is a strengthening of the Erdős discrepancy conjecture.
Indeed, given how much weaker the condition of having 1s on the diagonal
is than the condition of being a tensor product of two ±1 sequences, it is
a very considerable strengthening. And yet it still appears to have a good
chance of being true.

4. Conclusion

The aim of this paper has been to give some idea of what is currently known
about two notable conjectures of Erdős concerning arithmetic progressions.
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It has therefore been more about questions than answers, but Erdős would
have been the last person to mind that. I imagine him sitting with “the
book” open at the relevant page, smiling at us as we struggle to find the
proofs that he is now able to enjoy.
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[14] P. Frankl, V. Rödl, The uniformity lemma for hypergraphs, Graphs and Combina-
torics 8 (1992), 309–312.
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Paul Erdős and Egyptian Fractions

RONALD L. GRAHAM

One of Paul Erdős’ earliest mathematical interests was the study of so-called
Egyptian fractions, that is, finite sums of distinct fractions having numerator 1. In
this note we survey various results in this subject, many of which were motivated
by Erdős’ problems and conjectures on such sums. This note complements the
excellent treatment of this topic given by A. Schinzel in 2002.1

1. Introduction

The Rhind Papyrus of Ahmes [47] (see also [34, 63]) is one of the oldest
known mathematical manuscripts, dating from around 1650 B.C. It contains
among other things, a list of expansions of fractions of the form 2

n into sums
of distinct unit fractions, that is, fractions with numerator 1. Examples
of such expansions are 2

35 = 1
30 + 1

42 and 2
63 = 1

56 + 1
72 . More generally, one

can consider expansions of more general rational numbers into sums of unit
fractions with distinct denominators such as:

10

73
=

1

11
+

1

22
+

1

1606
,

67

2012
=

1

31
+

1

960
+

1

2138469
+

1

10670447077440
,

and

1 =
1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

14
+

1

15
+

1

18
+

1

20
+

1

24
+

1

28
+

1

30
.

There are various explanations as to why the Egyptians chose to use such
representations (for example, see [63]) but perhaps the most compelling is
that given to the author some years ago by the legendary mathematician
André Weil [62]. When I asked him why he thought the Egyptians used this

1See [52].
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method for representing fractions, he thought for a moment and then said,
“It is easy to explain. They took a wrong turn!”.

As is well known, Erdős’ first major result (and first paper) was his
beautiful 1932 proof [25] of Bertrand’s postulate, namely that for any posi-
tive integer n > 1, there is always a prime between n and 2n.2 In particular,
Erdős’ proof was based in part on an analysis of the prime divisors of the
binomial coefficients

(
2n
n

)
. What is perhaps less well known is that Erdős’

second paper [26], also published in 1932, dealt with Egyptian fractions. In
it, he generalizes an elementary result of Kürschák [41] by showing that for
any choice of positive integers a, d and n, the sum

∑n
k=1

1
a+kd is never an

integer.3

The next paper of Erdős dealing with Egyptian fractions was his 1945
paper with I. Niven [29]. In that paper, they showed among other things
that no two partial sums of the harmonic series can be equal, i.e.,

∑s
i=r i

−1 =∑u
i=t i

−1 implies r = t and s = u. In that paper they also showed that for
only finitely many n can one or more of the elementary symmetric functions
of 1, 12 , . . . ,

1
n be an integer. Very recently, this was strengthened in a paper

of Chen and Tang [17]. In that paper, they showed that the only pairs (k, n)
for which the kth elementary function S(k, n) of 1, 12 , . . . ,

1
n is an integer is

S(1, 1) = 1 and S(2, 3) = (1)(12)+ (1)(13)+ (12)(
1
3) = 1. Thus, for n ≥ 4,

none of the elementary functions are integers.

Perhaps the paper of Erdős dealing with Egyptian fractions which has
had the greatest impact was his 1950 paper [27]. In this seminal paper,
he considers the quantity N(a, b), defined for integers 1 ≤ a < b to be least
value n such that the equation a

b =
∑n

k=1
1
xk

has a solution with 0 < x1 <

x2 < . . . < xn. In particular, he shows that N(b) = max1≤a≤bN(a, b) satis-

fies log log b � N(b) � log b
log log b , sharpening an earlier result of deBruijn and

others. It is conjectured in [27] that N(b) � log log b. The best result in
this direction at present is due to Vose [59] who showed that N(b) � √

log b.

It is also in this paper that the celebrated Erdős-Straus “ 4
n conjecture”

occurs, namely that N(4, b) ≤ 3 for every b > 2. This will be the subject of
the next section.

2This was memoralized by Leo Moser’s limerick: “Chebyshev said it and I’ll say it
again. There is always a prime between n and 2n.”

3Interestingly, Erdős states in the German abstract of that paper:“Der Grundgedanke
des Beweises besteht darin, dass ein Glied a+ kd angegeben wird, welches durch eine
höhere Potenz einer Primzahl teilbar ist, als die übrigen Glieder. Dies ergibt sich aus der
Analyse der Primteiler der Ausdrücke of (a+d)(a+2d)...(a+nd)

n!
and

(
2n
n

)
” (The basic idea

of the proof is that some term a+ kd is divisible by a higher power of some prime than
any other terms. This follows from the analysis of the prime divisors of the expressions
(a+d)(a+2d)...(a+nd)

n!
and

(
2n
n

)
).
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2. The Erdős-Straus Conjecture

The first proof that any positive rational a
b has an Egyptian fraction repre-

sentation:

a

b
=

1

x1
+

1

x2
+ . . .+

1

xn
, 1 ≤ x1 < x2 < . . . < xn,(1)

was given by Fibonacci (= Leonardo Pisano) in 1202 [32]. His method was
to apply the greedy algorithm, namely always subtract the largest possible
unit fraction from the current remainder so that the result is nonnegative.
While this ordinarily does not produce the shortest possible representation,
or the one with smallest maximum denominator, it does terminate in finitely
many steps since eventually the numerator of the reduced remainder must
strictly decrease at each step. In particular, for fractions of the form 2

n for

n > 1, the greedy algorithm only needs 2 steps, and for 3
n , it only needs

3 steps. While this algorithm would guarantee that for the fractions 4
n , a

representation with 4 unit fractions is guaranteed, Erdős and Straus [27]
conjectured that in fact such a fraction always had an Egyptian fraction
expansion with at most 3 terms. It is easy to see that in order to prove
this, it is enough to show that it holds for prime values of n. There have
been many papers published studying various aspects of this problem (for
example, see [1, 40, 48, 61, 60] and especially the references in [39]). For
example, it is known that if the conjectures fails for some value n then n
must be congruent to one of 12, 112, 132, 172, 192 or 232 (mod 840). From
a computational perspective, the conjecture has been verified for n ≤ 1014

[57]. One of the most recent treatments is in a long paper of Elsholtz and
Tao [24] (extending earlier work of Elsholtz [23]). Among their many results
are the following. Let f(n) denote the number of different solutions to the
equation

4

n
=

1

x1
+

1

x2
+

1

x3
(2)

where here the xi are not assumed to be distinct or ordered by size. It is
easy to see that the Erdős-Straus conjecture is that f(n) > 0 for n > 1. In
[24], it is shown that :

(i) N log2N �
∑
q≤N

f(q) � N log2N log logN where q ranges over primes;

(ii) For any prime q,

f(q) � q
3
5
+O

(
1

log log q

)
.
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(iii) For infinitely many n, one has

f(n) ≥ exp

(
(log 3 + o(1))

log n

log logn

)
.

In particular, it follows from this that there are relatively few solutions
to (2) for most n. However, Vaughan [58] has shown that the number of

n ≤ x for which the Erdős-Straus conjectures fails is O(x exp(−c(log x)
2
3 )),

c > 0. As of this writing, the original conjecture of Erdős and Straus is still
unresolved.4

Motivated by the Erdős-Straus conjecture, Sierpiński [55] made the
analogous conjecture5 for the fractions 5

n , namely, that for all n ≥ 5, there
is a decomposition:

5

n
=

1

x1
+

1

x2
+

1

x3
, 1 ≤ x1 < x2 < x3.

This has been verified for 5 ≤ n ≤ 1057438801 (see [39]). More generally,
Schinzel (also in [55]) conjectured that for any fraction a

n , one can express
it as:

a

n
=

1

x1
+

1

x2
+

1

x3
, 1 ≤ x1 < x2 < x3,

provided n > n0(a). Needless to say, these conjectures are currently still
unsettled.

4As a historical note, this conjecture also occurred around the same time in a paper
of Obláth [46] (submitted for publication in 1948) in which the constraint that the xi be
distinct is relaxed.

5It is curious why Erdős and Straus didn’t make this conjecture in [27] as well.
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3. Dense Egyptian Fractions

In [27], Erdős also considers various questions relating to Egyptian fraction
decompositions of 1 =

∑n
k=1

1
xk
. In particular, he conjectures that we must

always have xn
x1

≥ 3, with the extreme example coming from the decompo-

sition 1 = 1
2 + 1

3 + 1
6 . In fact, he suggests that it may even be true that

limn→∞ xn
x1

= ∞. However, it is now known that this is not the case. It fol-

lows from the work of Martin [43, 44] and Croot [18, 19] that the following
holds.

Theorem 1 [18]. Suppose that r > 0 is a given rational number. Then for
all N > 1, there exist integers x1, x2, . . . , xk, with

N < x1 < x2 < . . . < xk ≤
(
er +Or

(
log logN

logN

))
N

such that

r =
1

x1
+

1

x2
+ . . .+

1

xk
.

Moreover, the error term Or( log logNlogN ) is best possible.

This result settled one of the many questions raised in Chapter 4 (Unit
Fractions) of the booklet [28] of Erdős and the author.

Another question raised in [28] and answered by Martin [44] deals with
the quantity Lj(s) defined for a positive rational s by

Lj(s) =

{
x ∈ Z, x > s−1 : there do not exist

x1, . . . , xt ∈ Z, x1 > . . . > xt ≥ 1 with

t∑
i=1

1

xi
= s and xj = x

}
.

The largest denominator in an Egyptian fraction representation of s can be
a prime only if it is a prime divisor of s. Hence the set L1(s) contains most
primes and it is clearly infinite. However, L1(s) must have zero density as
dictated by the following result [44]:

Let L1(s;x) denote the counting function of L1(s), i.e.,

L1(s, x) = |{1 ≤ n ≤ x : n ∈ L1(x)}|.
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Then for any rational s > 0 and any real x ≥ 3, we have;

x log log x

log x
�s L1(s, x) �s

x log log x

log x
.

However, for j ≥ 2, the situation is quite different. In fact, for any
j ≥ 2, Lj(s) is finite. In particular, there are only finitely many numbers
which cannot be the second-largest denominator in an Egyptian fraction
representation of 1. Martin suggests that perhaps the set {2, 4} is the com-
plete list (of those greater than 1).

4. More Problems From Old and New Problems and Results [28]

(Many of the problems and results in this section are taken more or less
directly from the above mentioned book. The reader can consult [28] for
more details).

It is known that any positive rational a
2b+1 can be represented as a

finite sum of the form
∑

k
1

2qk+1 (e.g., see [3, 9, 56]. An old question of

Stein [53] asks if such a decomposition can always be accomplished by the
greedy algorithm. In other words, if we start with an arbitrary positive
rational a

2b+1 and repeatedly subtract the largest unit fraction 1
2q+1 so

that the remainder is nonnegative, must this process always terminate?
No examples are known which provably do not terminate, although there
are terminating rationals for which the denominators become very large.
For example, starting with 5

1444613 , the greedy algorithm takes 37 terms
to terminate, with the largest denominator having 384,122,451,172 decimal
digits (see [45]). It is known [36] that a positive rational a

b can be expressed

as a finite sum of fractions of the form 1
pk+q if and only if

(
b

(b,(p,q)) ,
p

(p,q)

)
= 1.

One could ask here whether the greedy algorithm always terminates for this
representation as well. Restricting the denominators even more, the author
has shown [37] that a necessary and sufficient condition that a rational a

b
can be expressed as

a

b
=

1

x21
+

1

x22
+ . . .+

1

x2k
for positive integers 0 < x1 < x2 < . . . < xk,

is that

a

b
∈

[
0,

π2

6
− 1

)
∪
[
1,

π2

6

)
.
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For example,

1

2
=

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+

1

152
+

1

162
+

1

362
+

1

602
+

1

1802
.

I believe that it would be a very rare event for the greedy algorithm to
succeed in this situation!6

In this vein, a number of questions were raised by Wilf [64] concerning
what he called “reciprocal bases for the integers”. By this he meant sets S
of integers so that every positive integer can be represented as a finite sum
of reciprocals of integers taken from S. For example, he asked: “Is every
infinite arithmetic progression a reciprocal basis?” (Yes, by [3, 36]); “Must
a reciprocal basis have positive density? ”(No, by [3, 36]).

More generally, one could define a reciprocal basis for the rationals to
be a set S of positive integers so that every positive rational p

q is a finite

sum of reciprocals of elements in S. At present, we don’t know necessary
and sufficient conditions for a set to be a reciprocal basis for the integers or
the rationals7. However, a general theorem in this direction is the following.

For a set T = {t1, t2, . . . } of positive integers, define P (T ) to be the set
of all finite sums of elements taken from T . Also, define T−1 = { 1

ti
: ti ∈ T}.

We will say that T is complete if every sufficiently large integer belongs to
P (T ). Further, define M(T ) to be the set of all products ti1ti2 . . . tir where
1 ≤ i1 < i2 < . . . < ir with r = 1,2, . . .. Finally, let us say that a real number
α is T-accessible if for all ε > 0, there is a u ∈ T such that 0 ≤ u− α < ε.
In [36], the following result is proved.

Theorem 2. Suppose S = (s1, s2, . . .) is a sequence of positive integers so
that M(S) is complete and sn+1

sn
is bounded as n → ∞.

Then p
q ∈ P (M(S)−1 (with (p, q) = 1) if and only if p

q is M(S)−1-
accessible and q divides some element of M(S).

It follows from this, for example, the set consisting of the primes together
with the squares forms a reciprocal basis for the rationals. It is not known
whether the condition that sn+1

sn
be bounded is needed for the conclusion of

the theorem to hold.

A classical result of Curtiss [22] asserts that the closest strict under
approximation Rn of 1 by a sum of n unit fractions is always given by
taking Rn =

∑n
k=1

1
uk+1 , where un is defined recursively by: u1 = 1, and

un+1 = un(un + 1) for n ≥ 1. The analogous fact is also known to hold [27]

6For similar results using nth powers rather than squares, see [37].
7In fact, I don’t know of any good conjectures here.
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for rationals of the form 1
m . However, it does not hold for some rationals,

e.g., R1(1124) =
1
3 while R2(1124) =

1
4 + 1

5 . Perhaps it is true that for any
rational it does hold eventually. In other words, is it true that for any
rational a

b , the closest strict under approximation Rn(ab ) of a
b is given by

Rn

(a
b

)
= Rn−1

(a
b

)
+

1

m

wherem is the least denominator not yet used for which Rn(ab) <
a
b provided

that n is sufficiently large? In fact, as we state in [28], this behavior might
even hold for all algebraic numbers.

For each n, let Xn denote the set{
{x1, x2, . . . , xn} :

n∑
k=1

1

xk
= 1, 0 < x1 < x2 < . . . < xn

}

and let X = ∪n≥1Xn. There are many attractive unresolved questions
concerning these sets which were raised in [28], some of which I will now
mention.

To begin, it would be interesting to have asymptotic formulas or even
good estimates for |Xn|. To the best of my knowledge, the best estimates
currently known [50] are:

e
c n3

logn < |Xn| < c
(1+ε)2n−1

0

where c0 = limn→∞ u
1
2n
n = 1.264085 . . ., with un defined as above (see [2]).

Perhaps the lower bound can be replaced by c2
n(1−ε)

0 .

In view of the large number of sets in X, one would suspect that the
condition that the reciprocals of a set of integers sum to 1 is not really a very
stringent condition (modulo some obvious modular and size restrictions,
e.g., the largest element cannot be prime). For example, it has been shown

in [35] that for allm ≥ 78, there is a set {x1, x2, . . . , xt} ∈ X with
∑t

k=1 xk =
m. Furthermore, this is not true for 77 [42]. I would conjecture that
this behavior is true much more generally. Namely, it should be true
that for any polynomial p : Z → Z, there is a set {x1, x2, . . . , xt} ∈ X with∑t

k=1 p(xk) = m, for all sufficiently large m, provided p satisfies the obvious
necessary conditions:

(i) The leading coefficient of p is positive;
(ii) gcd (p(1), p(2), . . . , ) = 1.
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It is known [15] that these conditions are sufficient for expressing every
sufficiently large integer as a sum

∑
aidistinct

p(ai).

How many integers xk < n can occur as an element of {x1, x2, . . . , xn} ∈
Xn? Are there o(n), cn or n− o(n)?

What is the least integer v(n) > 1 which does not occur as an xk, k
variable, for {x1, x2, . . . , xn} ∈ Xn? It is easy to see that v(n) > cn! by

results in [6, 7, 8]. It may be that v(n) actually grows more like 22
√

n
or

even 22
n(1−ε)

.

Denote by kr(n) the least integer which does not occur as xr in any
{x1, x2, . . . , xt} ∈ Xn with x1 < x2 < . . . < xt ≤ n. It is not hard to show

k1(n) <
cn

log n
.

We have no idea of the true value of kr(n) or even k1(n).

As a related problem, suppose we define K(n) to be the least integer
which does not occur as xi for any i in any {x1, x2, . . . , xt} ∈ Xn with
x1 < x2 < . . . < xt ≤ n. Again,

K(n) <
cn

log n

is easy but at present we do not even know if k1(n) < K(n).

How many disjoint sets Si ∈ X, 1 ≤ i ≤ k, can we find so that Si ⊆
{1, 2, . . . , n}? As C. Sándor notes [51], applying the results of Theorem 1
iteratively, we should be able to achieve k = (1+ o(1)) logn. More generally,
how many disjoint sets Ti ⊆ {1, 2, . . . , n} are there so that all the sums∑

t∈Ti

1
t are equal. By using strong Δ-systems [30], it can be shown that

there are at least n
ec
√

logn
such Ti. Is this the right order of magnitude? One

could also ask how many disjoint sets {x1, x2, . . . , xn} ∈ Xn are possible. It
is probably true that there are only o(log n) such sets.

Another set of attractive questions concerns what might be called Ram-
sey properties of the Xn. It was asked in [28] whether for any partition of
{2, 3, 4, . . .} into finitely many blocks, some block must contain an element
of X. Put another way, is it true that if the integers greater than 1 are
arbitrarily r-colored, then at least one of the color classes contains a finite
set of integers whose reciprocals sum to 1? Erdős and I liked this problem
so much that we posted a reward $500 for its solution. As it turned out,
the problem was settled in the affirmative by a beautiful argument of Ernie
Croot [20].8

8As it happened, Erdős did not live to see the solution. When I asked Ernie whether he
would like a check for the $500 signed by Erdős, he said he would pleased to be paid this
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A stronger conjecture is that any sequence x1 < x2 < . . . of positive
upper density contains a subset whose reciprocals sum to 1. Perhaps this
can be proved if we assume that the differences xk+1 − xk are bounded. It
is not enough to just assume that

∑
k

1
xk

is unbounded as the set of primes

shows. (The letter in Figure 1 from Erdős’ mathematical notebook from
1963 shows our interest in these questions going back some 50 years. In
the appendix, we show some additional notes of Erdős on these problems).
However, perhaps the sum

∑n
k=1

1
xk

cannot grow much faster than this (i.e.,

log logn) for the xk to fail to form some x ∈ X.

Let A(n) denote the largest value of |S| such that S ⊆ {1, 2, . . . , n}
contains no set in X. Probably A(n) = n− o(n) but this is not known.
A related question is this. What is the smallest set S′ ⊆ {1, 2, . . . , n} which
contains no set in X and which is maximal in this respect. Very little
is known here. More generally, one could ask for the largest subset S∗n ⊆
{1, 2, . . . , n} so that for any distinct elements s, s1, s2, . . . , sm ∈ S∗n, we have
1
s �= ∑m

k=1
1
sk

where m > 1? We can certainly have |S∗n| > cn as the set

{i : n
2 < i < n} shows. Can |S∗n| > cn for c > 1

2? Is it true that if S ⊆
{1, 2, . . . , n} with |S| > cn then S contains x, y, z with 1

x + 1
y = 1

z? It

has been shown by Brown and Rödl [10] that the partition version of this
question holds, i.e., for any partition of Z into finitely many classes and
for any fixed value of n, one of the classes must contain a solution to
1
x1

+ 1
x2

+ · · ·+ 1
xn

= 1
z .

There are many interesting unresolved questions which involve restrict-
ing the denominators of the elements in the Sn. For example, Burshtein [11]
gives an example of {x1, x2, . . . , xn} ∈ Xn with no xi dividing any other xj .
Even more striking, Barbeau [5] finds an example in which each xi is the
product of exactly 2 distinct primes. A smaller such example was given
by Burshtein [12, 13], The smallest such example known is that of Allan
Johnson (see [39]) with the denominators shown in the table below.

way. (I kept a number of checks pre-signed by Erdős for just such contingencies.) After
sending Ernie the Erdős check, I subsequently sent Ernie a real check for $500, which he
certainly earned. However, unknown to me, Ernie cashed the Erdős check. That is, it
was sent to my bank and it was honored. This was unexpected since Erdős never had an
account at my bank! I am guessing that the bank tellers were so used to seeing Erdős’
checks countersigned by me that they just assumed this was one of those and they cashed
it. When I discovered this, I wrote to Ernie that he owed me $500. He agreed to send
back the $500 overpayment but on the condition that I send him back the canceled Erdős
check (which I did).
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Fig. 1. A page from Erdős’ 1963 notebook

6 21 34 46 58 77 87 114 155 215 287 391
10 22 35 51 62 82 91 119 187 221 299 689
14 26 38 55 65 85 93 123 203 247 319 731
15 33 39 57 69 86 95 133 209 265 323 901

Table 1. Denominators for Johnson’s decomposition of 1

However, as Barbeau notes in [4], it is not known if 1 can be represented
as the product of two sums of the form 1

q1
+ 1

q2
+ . . .+ 1

qr
where the qi are

distinct primes. Perhaps this can be done if we just assume that the qi
are pairwise relatively prime. (Related results can be found in [33].) In
a (still) unfinished manuscript of Erdős and the author9, it is shown that
any integer can be represented as a sum of reciprocals of distinct numbers
which each have exactly three prime factors (see [39]). Whether this can be
accomplished with just two prime factors is not clear.

In [54], Shparlinski answers a question of Erdős and the author by
proving the following result.

9I’m still working on it!
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Theorem 3. For any ε > 0 there is a k(ε) such that for any prime p and any
integer c there exist k ≤ k(ε) pairwise distinct integers xi with 1 ≤ xi ≤ pε,
and such that

k∑
i=1

1

xi
≡ c (mod p).

(Here, the reciprocals are taken modulo p). This has been generalized
by Croot [21] to the case when the denominators are all of the form xki for
a general positive integer k.

5. The Story of an Incorrect Conjecture

Naturally, not every conjecture of Erdős and the author in [28] was correct.
Here is an example of one such conjecture and some of the subsequent
developments. In [28], the following question was raised.

Suppose that ak are positive integers satisfying

1 < a1 < a2 < . . . < at.(3)

Is it true that if
∑t

k=1
1
ak

< 2, then there exist εk = 0 or 1 so that

t∑
k=1

εk
ak

< 1 and

t∑
k=1

1− εk
ak

< 1?

As noted in [28], this is not true if we just assume that

1 < a1 ≤ a2 ≤ . . . ≤ at(4)

as the sequence 2, 3, 3, 5, 5, 5, 5 shows. However, it was pointed out
by Sándor [49] that our conjecture was too optimistic since the sequence
consisting of the divisors of 120 with the exception of 1 and 120 provides
a counterexample. In fact, Sándor proved the more general result that for
every n ≥ 2, there exist integers ak satisfying (3) such that

∑t
k=1

1
ak

< n

and that this sum cannot be split into n parts so that all the partial sums
are ≤ 1. However, he also shows that for such a sequence the sum cannot
be too much less than n. Specifically, Sándor proves:

Theorem 4. Suppose n ≥ 2. If 1 < a1 < a2 < . . . < at are integers and

t∑
k=1

1

ak
< n− n

en−1

then this sum can be decomposed into n parts so that all partial sums are
≤ 1.



Paul Erdős and Egyptian Fractions 301

It was however conjectured by Erdős, Spencer and the author that if the
ak satisfy (4), as well as the stronger condition

t∑
k=1

1

ak
< n− 1

30
,(5)

then the ak can be split into n sequences a
(i)
k , 1 ≤ i ≤ n, so that

∑
k

1

a
(i)
k

≤ 1

for all i. The reason that the bound n− 1
30 was chosen was because of the

example a1 = 2, a2 = a3 = 3, a4 = a5 = . . . = a5n−3 = 5. Put another way,
define α(n) to be the least real number so that if the ak satisfy (4) and

t∑
k=1

1

ak
< n− α(n)(6)

then the ak can be split into n sequences a
(i)
k , 1 ≤ i ≤ n, so that

∑
k

1

a
(i)
k

≤ 1

for all i. Thus, the conjecture in [28] was that α(n) = 1
30 . In [49] it was

shown by Sándor that α(n) ≤ 1
2 . This was improved by Chen [16] who shows

that α(n) ≤ 1
3 . This in turn was followed by the paper of Fang and Chen [31]

who prove that α(n) ≤ 2
7 . However, the original conjecture that α(n) = 1

30

was finally disproved by Guo [38] who showed that α(n) ≥ 5
132 > 1

30 . He
shows that for the sequence a1 = 2, a2 = 3, a4 = 4, a5 = . . . = a11n−12 = 11,

11n−12∑
k=1

1

ak
= n− 5

132
,

but for any partition of {1, 2, . . . , 11n− 12} = ∪n
j=1Aj , there exists a j such

that
∑

k∈Aj

1
ak

> 1. At present, we have no guess as to what the truth is

for this problem.
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6. Concluding Remarks

We have tried to give a sample of the very many interesting questions and
results that were inspired by Paul Erdős’ interest in Egyptian fractions. Of
course, this list is far from complete, and in fact the subject is still quite
dynamic. For further references, the reader can consult [39], [28], [52] or
[14], for example, and the references therein.
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7. Appendix: Some (Undated) Notes of Erdős on

Egyptian Fractions

Fig. 2. Some notes of Erdős on Egyptian fractions
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Fig. 3. More notes of Erdős on Egyptian fractions
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Fig. 4. Notes of Erdős on Egyptian fractions (while visiting Bell Labs)
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Fig. 5. Notes of Erdős on Egyptian fractions (while visiting Bell Labs)
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1. Introduction

There is a very rich literature on perfect powers or almost perfect powers in
products of the form m(m+ d) . . . (m+ (k − 1)d), where m, d are coprime
positive integers and k ≥ 3. By a conjecture, such a product is never a
perfect n-th power if k > 3, n ≥ 2 or k = 3, n > 2. In the classical case
d = 1 the conjecture has been proved by Erdős and Selfridge [11]. The
general case d ≥ 1 seems to be very hard, then there are only partial results;
for survey papers on results obtained before 2006 we refer to Tijdeman [46]–
[48], Shorey and Tijdeman [43, 44], Shorey [38]–[42] and Győry [15, 16].

Since 2006, considerable progress has been made in the general situation.
In this paper which may be considered as a continuation of Győry [16] we
give an overview of the most important recent results. We restrict ourselves
to those results which provide, for a fixed k, all perfect or almost perfect
powers in products of the above type.

In Section 2, a brief survey is given on the classical case and a related
problem concerning binomial coefficients. In Section 3, we present some re-
sults of Hirata-Kohno, Laishram, Shorey and Tijdeman [23] and Tengely [45]
for n = 2, Hajdu, Tengely and Tijdeman [21] for n = 3, Győry, Hajdu and
Pintér [17] for n ≥ 5 and Hajdu and Kovács [20] for n = 5. These results
confirmed the above-mentioned conjecture for k < 35. In Section 4, we deal
with an application from [17] to rational solutions of a related superelliptic
equation. Finally, in Section 5, the basic ideas and the main tools of the
proofs are discussed. As will be seen, different techniques are needed for
n = 2, 3, 5 and n ≥ 7. The case n ≥ 7 requires the complete solution of a

∗Research was supported by the OTKA grants T67580, K75566, NK104208 and
K100339.
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number of ternary equations by means of the theory of Galois representa-
tions and modular forms.

2. Product of Consecutive Integers

After a lot of special results, Erdős and Selfridge [11] proved in 1975 the
following remarkable theorem.

Theorem A. The equation

(2.1) m(m+ 1) . . . (m+ k − 1) = yn

has no solutions in positive integers m, k, y, n with k ≥ 2, n ≥ 2.

In other words, the product of consecutive positive integers is never a
perfect power. The proof is elementary but complicated and ingenious.

Saradha and Shorey [34, 36] determined all the solutions of (2.1) in the
case when one or two of the factors (m+ i) on the left hand side are omitted.

A related equation is

(2.2)

(
m+ k − 1

k

)
= yn,

where m, k, y, n are integers with k, y, n ≥ 2 and m ≥ k + 1. When k =
n = 2, this yields a Pell equation, having infinitely many solutions. For
(k, n) = (3, 2), Meyl [27] and Watson [49] proved that (m, y) = (48, 140) is
the only solution of (2.2).

Using his elementary method applied to the equation (2.1), Erdős [10]
proved in 1951 that for k ≥ 4, equation (2.2) has no solution. For k < 4,
his approach does not work. The case k = 2 of the next theorem is a
consequence of a result of Darmon and Merel [7], while the case k = 3,
n > 2 is due to the present author [13].

Theorem B. Apart from the case k = n = 2, (m,k, y, n) = (48, 3, 140, 2) is
the only solution of (2.2).

In the case k = 2, 3, n > 2, the proofs depend on some deep results on
generalized Fermat’s equations.

For some further interesting related results, we refer to [51], [53] and [26].

Denote by P (b) the greatest prime factor of an integer b > 1, and write
P (1) = 1. As a common generalization of equations (2.1) and (2.2) consider
the equation

(2.3) m(m+ 1) . . . (m+ k − 1) = byn,
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where m, k, b, y, n are unknown positive integers with k ≥ 2, n ≥ 2,
P (b) ≤ k.

In (2.3), (m, y) yields a solution with P (y) ≤ k if and only if m ∈
{1, 2, . . . , p(k) − k

}
, where p(k) denotes the least prime with p(k) > k; cf.

Győry [14]. Such solutions are called trivial. For given k, the trivial solutions
can easily be found. Hence it suffices to deal with non-trivial solutions.
Further, to make b and y uniquely determined in (2.3), we may assume that
b is nth power free.

For P (b) < k, the following theorem is due to Erdős and Selfridge [11],
for k ≥ 4 to Saradha [32], while for k < 4 to Győry [14].

Theorem C. Apart from the case (k, b, n) = (2, 2, 2), the only non-trivial
solution of equation (2.3) is (m, k, b, y, n) = (48, 3, 6, 140, 2).

The proof of the case k ≥ 4 is based on a refinement of Erdős’ elementary
method, while the cases k = 2, 3 involve some profound results on general-
ized Fermat’s equations.

For b = 1, (2.3) is just equation (2.1), while for b = k! it reduces to
equation (2.2). Hence Theorem C gives Theorem A and Theorem B as
special cases.

Clearly, Theorem C remains valid also with P (b) < p(k). Later, The-
orem C has been refined by Saradha [32] for k ≥ 9, Hanrot, Saradha and
Shorey [22] for 6 ≤ k ≤ 8 and Bennett [1] for 3 ≤ k ≤ 5. They proved that

for n ≥ 3 and P (b) ≤ p(k), equation (2.3) has no non-trivial solutions. More-
over, Pintér and the author [19] showed that in the case 3 ≤ k ≤ 5, n > 2,
equation (2.3) has no non-trivial solution even for P (b) ≤ pk, where pk de-

notes the kth prime. Obviously, pk > p(k) if k ≥ 4.

In [19], the following conjecture is proposed.

Conjecture 1. For k ≥ 3 and n > 2, (2.3) has no non-trivial solutions with
P (b) ≤ pk.
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3. Products of Consecutive Terms in Arithmetic

Progression

This section is devoted to the more general equations

(3.1) m(m+ d) . . . (m+ (k − 1)d) = yn

and

(3.2) m(m+ d) . . . (m+ (k − 1)d) = byn,

where m, k, d, b, y, n are unknown positive integers such that k ≥ 3, n ≥ 2,
gcd(m,d) = 1 and P (b) ≤ k. As was seen above, these equations have been
solved in the special case d = 1. Hence we shall concentrate on the case
d > 1. Further, we restrict ourselves to the case when k is fixed.

It is easy to show that equation (3.1) has infinitely many solutions
both for k = 2 and for (k, n) = (3, 2). It was proved by Euler that for
(k, n) = (4, 2), equation (3.1) is impossible. This result was extended by
Obláth [28, 29] to the cases (k, n) = (3, 3), (3, 4), (3, 5) and (5, 2).

For arbitrary n > 2, the first result in this direction was obtained by the
author [15] who proved that, for k = 3, n > 2 and P (b) ≤ 2, equation (3.2)
has no solution. This implies at once that for k = 3, n > 2, equation (3.1)
is also impossible. The assumption P (b) ≤ 2 cannot be relaxed to P (b) ≤ 3
because (3.2) has infinitely many solutions with P (b) = 3; see Tijdeman
[46]. The proof of Győry’s result [15] is based on theorems of Wiles [50],
Ribet [30] and Darmon and Merel [7] on Fermat’s type equations.

In 2004, Győry, Hajdu and Saradha [18] showed that equation (3.2) has
no solution for k = 4,5 and P (b) ≤ 2. This was extended by Bennett, Bruin,
Győry and Hajdu [3] to the cases

k = 6, P (b) ≤ 2

7 ≤ k ≤ 10, P (b) ≤ 3

k = 11, P (b) ≤ 5.

Later, for k = 5, 6 and n ≥ 7, Bennett [2] improved the earlier bound on
P (b) to P (b) ≤ 3. Clearly, the above results imply that, for 4 ≤ k ≤ 11,
equation (3.1) is impossible.

As will be pointed out in Section 5, the proofs required different methods
for n = 2, 3, 5 and n ≥ 7.

Since 2006, considerable progress has been made. For n = 2, Hirata-
Kohno, Laishram, Shorey and Tijdeman [23] have achieved a significant
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extension of Euler’s theorem. They established their result for the more
general equation (3.2), but were not able to handle the situation for some
exceptional values of b > 1; for these values, (3.2) was solved by Tengely
[45]. The results of [23] and [45] together give the following.

Theorem 1a. Equation (3.2) with n = 2 and 5 ≤ k ≤ 100, d > 1 has no
solution.

In the case b = 1, the authors of [23] proved even more.

Theorem 1b. Equation (3.1) with n = 2 and 4 ≤ k ≤ 109 is not possible.

The following two theorems concern the case n = 3. They are due to
Hajdu, Tengely and Tijdeman [21].

Theorem 2a. Equation (3.2) with n = 3, d > 1, 3 ≤ k < 32 and with
P (b) < k if k = 3 or k ≥ 13, is not possible.

In the special case b = 1, the range of k’s has been further augmented.

Theorem 2b. Equation (3.1) with n = 3 and 3 ≤ k < 39 has no solution.

For the case n > 3, Győry, Hajdu and Pintér [17] considerably extended
the results of [15], [18] and [3] by proving the following. We may assume
that n is a prime.

Theorem 3a. Equation (3.2) has no solution

(i) if n ≥ 7 prime and

12 ≤ k ≤ 22, P (b) ≤ 7,

22 < k < 35, P (b) ≤ k − 1

2
,

(ii) or if n = 5, d > 1 and

8 ≤ k ≤ 22, P (b) ≤ 7,

22 < k < 35, P (b) ≤ k − 1

2
.

It is clear that Theorem 3a remains valid if in (3.2) n is not necessarily
prime but has a prime factor ≥ 5.

For n = 5, 8 ≤ k ≤ 11, Theorem 3a gives an improvement of the corre-
sponding result of [3].

The above results on equation (3.1) can be summarized as follows.
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Theorem 3b. If 3 ≤ k < 35, then equation (3.1) has no solution with
(k, n) �= (3, 2).

When n ≤ 3 or k ≤ 11, Theorem 3b follows from Theorems 1b, 2b and
the above-mentioned results of [15], [18] and [3]. The case n > 3, 11 < k < 35
is an immediate consequence of Theorem 3a.

Theorem 3b suggests the following conjecture which is a more precise
version of an earlier conjecture of Erdős.

Conjecture 2. For k ≥ 3 and (k, n) �= (3, 2), equation (3.1) has no solution.

Similarly, the results concerning (3.2) suggest the following.

Conjecture 3. If k ≥ 3, (k, n) �= (3, 2) and P (b) ≤ 2, equation (3.2) has no
solution.

As is shown by the examples 2 · 9 · 16 = 25 · 32 and 1 · 2 · 3 · 4 = 23 · 3, for
k = 3 and 4 the assumption P (b) ≤ 2 cannot be replaced by P (b) ≤ 3. It is
likely, however, that for k ≥ 5 this assumption can be weakened.

In the case n = 5, Hajdu and Kovács [20] have recently obtained a further
extension.

Theorem 4a. For n = 5 and 3 ≤ k ≤ 36, equation (3.2) has the only
solution (m, k, d) = (2, 3, 7).

For the equation (3.1), even more has been proved in [20].

Theorem 4b. If n = 5 and 3 ≤ k ≤ 54, equation (3.1) has no solution.

We note that the authors of [15], [18], [3] and Theorems 1a to 4a extended
their results mentioned above to the case when in (3.2) m and b are non-zero
integers but not necessarily positive. Further, we mention the interesting
papers of Saradha and Shorey [35], Laishram, Shorey and Tengely [24],
Yang, Togbé and He [52], Saradha [33], and Laishram and Shorey [25].

4. An Application of Theorem 3b

We present a consequence of Theorem 3b for the superelliptic equation

(4.1) x(x+ 1) . . . (x+ k − 1) = wn,

where x, k, w, n are unknowns with integers k, n ≥ 2 and positive rationals
x, w.
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Sander [31] proved that if 2 ≤ k ≤ 4 and (k, n) �= (2, 2), then equation
(4.1) has no solutions. Further, he conjectured that (4.1) has no solution if
(k, n) �= (2, 2).

By putting x = m/d and w = y/u with positive integers m, d, y, u such
that gcd(m,d) = 1 and gcd(y, u) = 1 we see that (4.1) reduces to the equa-
tion

m(m+ d) . . . (m+ (k − 1)d) = yn, dk = un.

The following corollary is a straightforward consequence of Theorem 3b.

Corollary to Theorem 3b. Suppose that 1 < k < 35, n ≥ 2 and (k, n) �=
(2, 2). Then equation (4.1) has no solution in positive rational numbers
x, w.

For k ≤ 11, this was proved in [3].

5. Basic Ideas and Main Tools in the Proofs

We outline the basic ideas and main tools in the proofs of Theorems 1a
to 4a. Fix k ≥ 3, and assume that the equation

(3.2) m(m+ d) . . . (m+ (k − 1)d) = byn

has a solution in positive integers m, d, b, y, n with n ≥ 2, gcd(m, d) = 1
and P (b) ≤ k. We may assume that n is a prime. From (3.2) one can then
deduce that

(5.1) m+ id = aix
n
i , P (ai) ≤ k,

with some positive integers ai, xi, i = 0, . . . , k − 1. Clearly, (5.1) implies
(3.2), i.e. (3.2) and (5.1) are equivalent. The ai, xi can be chosen so that ai
is nth power free. There are only finitely many and effectively determinable
such k-tuples (a0, a1, . . . , ak−1).

If there are i, j with 0 ≤ i, j < k− 1 such that P (aiai+1 . . . ai+j) ≤ j+1,
then we can reduce (3.2) to the case when k is replaced by j + 1 < k.
However, this is not the case in general.

The equation (3.2) can be reduced to ternary equations. There are two
possibilities:

1) For distinct integers 0 ≤ p, q, r ≤ k−1, it is easy to find non-zero integers
λp, λq, λr with absolute values ≤ k such that

λp(m+ pd) + λq(m+ qd) = λr(m+ rd).
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Consequently, using (5.1) we obtain an equation of the form

(5.2) AXn +BY n = CZn in coprime non-zero integers X, Y, Z,

where A, B, C are relatively prime non-zero integers with P (ABC) ≤ k.

2) For integers 0 ≤ p < q ≤ r < s ≤ k − 1 with p+ s = q + r, we have the
identity

(m+ qd)(m+ rd)− (m+ pd)(m+ sd) = (qr − ps)d2.

Thus, in view of (5.1) we get an equation of the shape

(5.3) AXn +BY n = CZ2 in coprime non-zero integers X, Y, Z,

where A, B, C are relatively prime non-zero integers with P (AB) ≤ k and
|C| ≤ (k − 1)2.

In (5.2) and (5.3) it suffices to study the coprime non-zero solutions X,
Y , Z with XY Z �= ±1. Such solutions will be called non-trivial.

We arrived at complicated systems of equations which consist of equa-
tions of the shapes (5.2) and (5.3). When 2 ≤ n ≤ 7, for certain choices of
the ai one can use local methods, showing that at least one of the equations
(5.2) or (5.3) involved is not solvable (mod p) for an appropriate prime p.
In particular, quadratic, cubic and more generally nth power residues are
successfully applied.

In general, several other methods are also needed to solve the equations
under consideration. Different techniques must be used depending on the
exponents n = 2, 3, 5 and ≥ 7.

The case n = 2. Here the main ingredients are quadratic residues and
elliptic curves. In many cases, for n = 2 or 3, equation (3.2) may be
reduced to finding the rational (torsion) points on certain rank 0 elliptic
curves over Q, and then one can use the program package MAGMA [5] to
find all rational points. In a number of situations, however, this approach
proves to be inadequate to deduce the desired result. Then, instead, one
can use explicit Chabauty techniques due to Bruin and Flynn [6]. Hirata-
Kohno, Laishram, Shorey and Tijdeman [23] provide a method for solving
equation (3.2) for n = 2 and for any given value of k, unless (a0, a1, . . . , ak−1)
belongs to a finite and effectively determinable set of tuples. For k ≤ 100,
the exceptional cases (a0, a1, . . . , ak−1) occurring in [23] have been settled
by Tengely [45] using the elliptic Chabauty method.
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The case n = 3. In a number of cases classical results of Selmer [37] and
others on cubic equations AX3 +BY 3 + CZ3 = 0 can be used to prove
that at least one of the equations (5.2) arising from (3.2) has no non-
trivial solution. A further important tool is reducing equation (3.2) to
elliptic curves and applying the Chabauty method to solve the corresponding
equations. In Hajdu, Tengely and Tijdeman [21], the above-mentioned
methods are combined with the approach of [23] developed for the case
n = 2.

The case n = 5. The methods applied in the cases n = 2 and 3 do not
work for n = 5. On the other hand, for n = 5 hardly new information is
available through the theory of “general” modular forms which, as will be
seen below, is the main tool in the case n ≥ 7. For n = 5, one can make
use of some classical and new results of Dirichlet, Lebesque, Maillet (see
e.g. [9]), Dénes [8], Győry [12] and Bennett, Bruin, Győry and Hajdu [3]
on equations of the form AX5 +BY 5 = CZ5, the proofs of which involve
cyclotomic and local considerations. In the case n = 5, Hajdu and Kovács
[20] considerably improved and extended the previous results on (3.1) and
(3.2) by using genus 2 curves and Chabauty method (both the classical and
the elliptic version). They solved a large number of genus 2 equations by
Chabauty method, and then built a kind of sieve system based upon them.

The case n ≥ 7. For n ≥ 7, the main tool is the application of the modular
method to ternary equations of the form (5.2) and (5.3) or, more precisely,
the use of the approach based on the theory of Frey curves, Galois repre-
sentations and modular forms.

The following ternary equations were used in our proofs in Győry
[15], Győry, Hajdu and Saradha [18], Bennett, Bruin, Győry and Hajdu [3]
and Győry, Hajdu and Pintér [17].

Case 3 ≤ k ≤ 34. In [15], [18], [3] and [17] it was used that the equation

Xn + Y n = 2αZn, α ≥ 0,

has no non-trivial solution. For α = 0, this is Wiles’ [50] famous theorem
on the Fermat equation. For α = 1, the result is due to Darmon and Merel
[7], while for 1 < α < n, to Ribet [30].

Case 4 ≤ k ≤ 34. In [18], [3] and [17], some results of Bennett and Skin-
ner [4] were utilized which say that for coprime A, B and non-negative α,
β, the equations

Xn + 2αY n = 3βZ2, α �= 1,
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Xn + Y n = CZ2, C ∈ {2, 6}

Xn + 5αY n = 2Z2 with n ≥ 11 if α > 0,

AXn +BY n = Z2, AB = 2αpβ , α �= 1, p ∈ {11, 19}
have no non-trivial solutions.

Case 6 ≤ k ≤ 11. In [3], the authors obtained as auxiliary results that for
coprime A, B and non-negative α, β the equations

Xn + 2αY n = Z2 with p | XY for p ∈ {3, 5, 7} ,

Xn + 2αY n = 3Z2 with p | XY for p ∈ {5, 7} ,

Xn + 3αY n = 2Z2 with p | XY for p ∈ {5, 7} , n ≥ 11,

AXn +BY n = Z2, AB = 2αpβ , α ≥ 6, p ∈ {3, 5, 13} ,

AXn +BY n = Z2, P (AB) ≤ 3, p | XY for p ∈ {5, 7} ,

AXn +BY n = Z2, P (AB) ≤ 5, 7 | XY, n ≥ 11

have no non-trivial solutions. In these statements p always denotes a prime
with p < n.

To extend the results concerning (3.1) and (3.2) from k ≤ 11 to 12 ≤
k ≤ 34, several new ternary equations had to be solved in [17]. Denote by

rad(m) =
∏
p|m

p, rad(1) = 1

the radical of a positive integer m, where the product is taken over all
distinct prime factors p of m. Consider the set

I :=
{
(2, 1), (2, 3), (2, 5), (2, 7), (6, 1), (6, 5), (10, 1), (10, 3), (14, 1), (14, 3),

(22, 1), (26, 1), (30, 1), (34, 1), (38, 1), (42, 1), (46, 1), (66, 1), (70, 1),

(78, 1), (102, 1), (114, 1), (130, 1), (138, 1), (3, 1), (3, 5), (5, 1), (5, 3),

(7, 1), (13, 1), (15, 1), (17, 1), (21, 1), (23, 1), (33, 1), (35, 1), (39, 1),

(51, 1), (57, 1), (69, 1), (165, 1), (3, 2), (5, 6), (7, 2), (11, 2), (13, 2),

(15, 2), (17, 2), (19, 2), (21, 2), (23, 2), (33, 2), (35, 2), (39, 2)
}
.

In [17], Győry, Hajdu and Pintér proved the following.
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Theorem 5. Let n > 31 be a prime, A, B, C coprime positive integers
with (rad(AB), C) ∈ I and p a prime such that 11 ≤ p ≤ 31 and p � AB.
Then the equation

AXn +BY n = CZ2

has no non-trivial solutions X, Y , Z with p | XY , unless, possibly, for 60
tuples (n, rad(AB), C, p) (which are listed explicitly in [17]).

We note that in the exceptional tuples, 37 ≤ n ≤ 239.

To solve these equations, we combined the Frey curve and Galois repre-
sentation approach with local and cyclotomic considerations. For the most
part, our results concerning ternary equations, which may be of independent
interest, do not follow from straightforward application of the modularity
of Galois representations attached to Frey curves; it is also necessary to
understand the reduction types of these curves at certain small primes.

In the proof of Theorems 3a and 3b, one of the main difficulties is that
the number of systems of equations, that is, the number of arising tuples
(a0, a1, . . . , ak−1) grows so rapidly with k that in [17], for k ≥ 12, it was
practically impossible to handle the different cases as before for k ≤ 5 in [18]
and k ≤ 11 in [3]. The main novelty in [17] lies in the development of an
algorithm for our proofs, which enabled us to use a computer. We applied an
efficient, iterated combination of our procedure for solving the arising new
ternary equations with several “sieves” based on ternary equations already
solved. This made it possible to exclude in each step the solvability of
enormous number of systems of equations under consideration. Our general
algorithm seems to work for larger values of k as well, although there are,
of course, limits in computation of modular forms of higher and higher level
and in the computational time itself.

Acknowledgements. The author is indebted to Professors L. Hajdu and
Á. Pintér and Dr. Sz. Tengely for their useful remarks.
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Erdős’s Work on Infinite Graphs
∗

PÉTER KOMJÁTH

The theory of infinite graphs was one of Erdős’s favorite topics, and it
is no exaggeration to state that the major results and notions were created
by him and his collaborators. As one of the few persons equally versed in
finite as well as in infinite sets, upon hearing a result on finite graphs, he
always eagerly checked if it has a reasonable counterpart for infinite graphs.

Here we give an overview of his work on this topic, describing the later
developments.

András Hajnal wrote his recollections on Erdős’s work in set theory
in [34].

1. Erdős’s earliest work in the topic of infinite graphs was the infinite
generalization of Menger’s theorem. He learned Menger’s theorem as a
freshman at the university, in the class of Dénes Kőnig, in 1931. This
states that if A and B are two vertices in a finite graph, which are not
joined, then the minimal number of vertices separating A and B equals the
maximal number of A−B paths, pairwise vertex disjoint, except at their
extremities. Kőnig asked if this equality held for infinite graphs, as well,
and Erdős proved this overnight. The proof was then included in Kőnig’s
1936 monograph on graphs ([54]).

Several years after Erdős, who was not satisfied with the above result,
found the ‘right’ form of the generalization of Menger’s theorem. The
conjecture, one of Erdős’s finest, states the following. If X is a (finite or
infinite) graph, A and B are two vertices which are not joined, then there
are a system P of disjoint A−B paths, and a set S which separates A
and B, further, each vertex in S is on a path in P, and each path in P
meets S in exactly one element. In other words, incidence gives a bijection
between P and S. It is easy to see that for X finite this is equivalent to
Menger’s original theorem. The first occurrence of the conjecture seems to
be [14].

∗Research supported by the Hungarian National Research Grant OTKA K 81121.
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The proof of the conjecture was the work of Ron Aharoni, who devoted
several decades to it. First he proved the general form of Kőnig’s following
theorem: in each bipartite graph there are a set I of independent edges and
a covering set C of vertices such that each edge in I meets C in exactly
one vertex ([1]). This is easily seen to be a special case of Erdős’s general
conjecture. The fairly involved proof uses the result of Aharoni et al. on
the matching of infinite bipartite graphs. Then, in 1987, he showed the
general Menger theorem for countable graphs ([2]). The full proof of the
conjecture required another 20 years’ work until 2009, when Aharoni with
his young collaborator, Eli Berger, proved it with a sophisticated, and hard,
argument ([3]).

2. Another early result of Erdős and co. gives an infinite generalization
of Euler’s famous result giving a sufficient and necessary condition for the
existence of an Euler line, i.e., a cycle passing through all edges exactly
once.

In his recollections, Endre Vázsonyi described, how quickly Erdős found
the right argument.

Theorem (Erdős–Gallai–Vázsonyi, 1936, [16], [17]). An infinite graph X
possesses an Euler-line exactly if

(a) X is connected;
(b) X is countable;
(c) no vertex has odd degree;
(d) if A is a finite set of vertices, then X −A has at most two infinite

components;
(e) if A is a finite set of vertices, such that in X|A all vertices have even

degree, then the graph obtained from X by removing the edges in A
has exactly one infinite component.

3. Also an early, nice result is the Erdős-Kakutani theorem: the complete
graph on ℵ1 vertices (Kℵ1 , that is) is the union of countably many forests,
i.e., circuitless graphs ([26]). When first heard, this statement looks trivially
false. The proof is not especially hard, the result is one more variant to
the theme of ‘large sets are the union of a few small sets’ (Sierpiński’s
decomposition of the plane, the reals can be the union of countably many
sets, independent over the rationals, the latter was also proved in the Erdős-
Kakutani paper).

4. A further result, still from the early period of Erdős’s carrier is the
theorem obtained with de Bruijn, stating that the fact that a graph can be
good colored with k colors depends on the finite subgraphs (k is finite).
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Theorem (de Bruijn–Erdős [7]). If k is a natural number, then an infinite
graph can be good colored with k colors if and only if each of its finite
subgraphs can.

This reduces the theory of infinite graphs with finite chromatic number
to the theory of finite graphs, as the chromatic number of some graph X
is k, in short, Chr(X) = k, if and only if k is the maximum of the chro-
matic number of finite subgraphs of X. The result has several proofs; well
ordering the vertex set and coloring the vertices by transfinite recursion,
with the Teichmüller-Tukey lemma, with the Zorn lemma (Gabriel Dirac
and Lajos Pósa, cf. [56], Problem 9.14.). De Bruijn and Erdős used Ty-
chonoff’s compactness theorem on the product of topological spaces. These
are not that surprising as the theorem is a special case of Gödel’s compact-
ness theorem. As Rado and others pointed out, several other statements
can be proved with similar so called compactness arguments: if k is finite,
an infinite graph can be directed so that each out-degree is at most k iff this
holds for all finite subgraphs, if the edges of every finite subgraph can be 2-
colored with no monochromatic triangle, then the whole graph can similarly
colored, etc.

5. An extremal graph theory problem on countably infinite graphs was
raised by Czipszer, Erdős, and Hajnal in [6]. Let X be a graph on the set
ω of natural numbers which does not contain an increasing path of length
k (i.e., one with k edges and k + 1 vertices, k ≥ 2). Let eX(n) denote the
number of edges of X on the first n natural numbers, and set

p(X) = lim inf
n→∞

eX(n)

n2
.

Finally, let p(k) = sup p(X), where the supremum is taken for all graphs
without increasing paths of length k. The definition of p(∞) is analogous
but with forbidding infinite increasing paths. They investigated the values
of p(k) for various values of k. It is easily seen that p(2) ≤ p(3) ≤ · · · ≤ p(∞)
and Turán’s theorem implies

p(k) ≤ 1

2

(
1− 1

k

)
for k ≥ 2. They proved that p(2) = 1

8 , p(3) =
1
6 , and conjectured the general

equality

p(k) =
1

4

(
1− 1

k

)
.
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They also proved the bounds

1

4
+

1

36
≤ p(∞) ≤ 1

4
+

3

16
.

The baton was taken up some 50 years later, when Dudek and Rödl
proved several surprising results concerning this question in [11]. They
disproved the Czipszer-Erdős-Hajnal conjecture by establishing

p(16) >
1

4

(
1− 1

16

)
.

and

p(k) >
1

4
+

1

20
(k ≥ 162).

They also proved the upper bound p(k) ≤ 1
3 for every k ≥ 2 and noticed

that p(k) < p(∞) holds for any finite k.

6. Several important discoveries of Erdős stemmed out from the following
observation of Tutte, Zykov, and Ungar: there are arbitrarily large chro-
matic finite triangle-free graphs. Erdős extended this with his signature
method, random graphs, to showing that for every s and k there is a finite
graph, whose chromatic number is k and omits C3, C4, . . . , Cs, that is, all
short circuits ([13]). In fact, this was one of the first spectacular applica-
tions of the random methods. This is much harder than the corresponding
result for triangle-free graphs: it took several years until the first explicit
construction was given by Lovász.

As I have already mentioned, Erdős tried to extend all finite graph theory
results to the infinite and this result was no exception. With Richard Rado
they constructed for any infinite cardinal κ a triangle-free graph whose
chromatic number was larger than κ (and of cardinality 2κ, [27]). For
a while, Erdős tried, in vain, to find the common generalization of these
results, until, with András Hajnal, they discovered the surprising fact that
uncountably chromatic graphs contain C4, the four-circuit, even all finite
bipartite graphs.

The proof led Erdős and Hajnal to the invention of the notion of coloring
number. The coloring number, Col(X) of a graph X is the least cardinal
μ such that there is a well ordering of the vertex set in which each vertex
admits < μ edges going down. Notice that the chromatic number, Chr(X)
is likewise a minimum: the least number of colors needed to good color the
vertices of X.
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If Col(X) = μ, then a good coloring can be defined along the well order-
ing witnessing this, by transfinite recursion. This shows Chr(X) ≤ Col(X).

Erdős and Hajnal proved that if Col(X) > ω then X contains all finite
bipartite graphs. As there are bipartite graphs with arbitrarily large coloring
number, this method cannot be used to give more on the finite subgraphs
of large chromatic graphs.

The coloring number of a graph is close to the number of forests needed
to cover the edges. In particular, if Col(X) ≤ κ+ then X is the union of κ
forests where κ can be finite or infinite. For infinite κ this can be reversed,
for finite values we have the following: if a graph is the union of n forests
(n finite), then its coloring number is at most 2n and this is sharp ([19]).

7. After this discovery, Erdős and Hajnal could easily find and prove the cor-
rect uncountable version of the theorem on the existence of large chromatic
finite graphs omitting short circuits: for each finite n there are arbitrarily
large (infinite) chromatic graphs omitting C3, C5, . . . , C2n+1.

They found a simple, but powerful construction: the edge-graph. For
this, let κ be an infinite cardinal and consider an ordered set (A,<) of
cardinality (2κ)+. The vertices of the edge-graph X(A,<) are the pairs
{x, y} of the elements of A, and join {x, y} with {y, z} exactly if x < y < z.
It is readily seen that X(A,<) is triangle-free. A coloring of the vertices
of X(A,<) with κ is a coloring of the pairs of A, and by the Erdős-Rado
theorem there is a monochromatic triangle, that is, there are x < y < z
such that {x, y}, {x, z}, and {y, z} get the same color, and so {x, y}, {y, z}
are two vertices of X(A,<) which are joined and get the same color. We
obtained that the chromatic number of X(A,<) is greater than κ. (This
very example, using the finite Ramsey theorem, can be used to give very
simple examples of finite, large chromatic, triangle-free graphs: the edge-
graph of a sufficiently large finite ordered set.)

Erdős and Hajnal generalized this construction to obtain large chromatic
graphs omitting C3, C5, . . . , C2n+1, that is, all small odd circuits. Their
construction can be described as follows. Let X = (V (X), E(X)) be a
graph on the ordered set V (X). We construct the following graph X ′ =
(V (X ′), E(X ′)). The vertex set V (X ′) of X ′ is E(X) and we join the
successive edges, that is, {x, y} and {y, z} are joined if x < y < z. It is easy
to see that if X does not contain C3, C5, . . . , C2n−1, then X ′ does not have
C3, C5, . . . , C2n+1, further, as was observed by Galvin ([31]), the chromatic
number of X is greater than (2κ) iff the chromatic number of X ′ is greater
than κ.

This way, if X is the complete graph of cardinality λ =
(
22

...κ)+
, then

X ′′···′ is a graph omitting C3, C5, . . . , C2n+1, with chromatic number larger
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than κ (n powers and primes, respectively) ([20]). It is easy to show, that
the graph so obtained is the so called n-shift graph: the vertices of Shn(λ)
are the (n+ 1)-tuples of a well ordered set of cardinality λ, the edges are
the consecutive (n+ 1)-sets: those pairs of the form

{{x0, . . . , xn}, {x1, . . . , xn+1}}

where x0 < x1 < · · · < xn+1.

Similar to the shift graphs, but smaller are the so called Specker graphs.
They are defined as follows. Let κ be an uncountable cardinal. The vertex
set will be [κ]n, that is, the set of all n-element subsets of κ.

We join two (increasingly enumerated) sets, {x1, . . . , xn} and {y1, . . . , yn}
exactly if they are disjoint and they are in a prescribed interlacing pattern.
For example, a possibility for n = 3:

x1 < x2 < y1 < x3 < y2 < y3

(Specker’s original example).

It can be proved that the chromatic number is κ and with an appropriate
choice of the interlacing pattern we can exclude various finite graphs, for
example, all odd circuits up to a certain bound. Notice that here the
cardinality of the graph equals the chromatic number: both are κ ([18]).

8. Rado asked if the de Bruijn-Erdős phenomenon holds for the coloring
number. Surprisingly, this is not true: as Erdős and Hajnal showed, there is
a countable graph with coloring number 4, all whose finite subgraphs have
coloring number at most 3. In general, if the finite subgraphs have coloring
number at most k, then the graph has coloring number at most 2k− 2, and
this is sharp (Erdős-Hajnal, [18]).

Eric Milner noticed that the above statement makes the following con-
jecture nontrivial: if k is finite, and X is a graph with Col(X) = k+1, then
there is a subgraph Y with Col(Y ) = k. This was then proved in [44].

In a different sense, however, the coloring number does satisfy com-
pactness: if λ > μ are cardinals, λ is a singular cardinal, X is a graph of
cardinality λ, all whose smaller subgraphs have coloring number at most μ,
then so does X. This was first observed in some cases by Erdős and Hajnal,
then fully proved by Shelah. ([62]). This makes possible to give a partic-
ularly simple characterization of graphs with large coloring number with
applications as the full description of graphs obligatory for graphs with un-
countable coloring number or the proof of the consistency that every graph
with uncountable coloring number contains a subgraph with size and color-
ing number ℵ1 (Komjáth, [39]).
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Shelah’s result is more general: he axiomatized those structure classes
for which a similar singular cardinal compactness holds (he was mainly
interested in what uncountable cardinals λ are there Abelian groups of
cardinality λ which are not free but every smaller subgroups are).

I succeeded in proving that this fails for the chromatic number: it is
consistent that there is a graph X of cardinality ℵω1 which is uncount-
ably chromatic yet all smaller subgraphs are countably chromatic (neces-
sarily Chr(X) = ℵ1, [40]). With an elegant forcing argument Shelah proved
that this may be possible under GCH, and also that there are examples
in L ([64]).

9. Erdős and Hajnal therefore determined those finite graphs which nec-
essarily appear in all uncountably chromatic graphs—these are the finite
bipartite graphs. On the other hand, some odd circuits must appear (as
otherwise the chromatic number would be ≤ 2). Erdős and Hajnal then
started to investigate what can be said on the classes of finite graphs which
must be contained in uncountably chromatic graphs. For example, they con-
jectured that all sufficiently long odd circuits must appear. This was later
proved by Erdős-Hajnal-Shelah ([24]) and Thomassen [67], independently.

If X is an uncountably chromatic graph, let F(X) denote the family of
finite subgraphs of X. A reasonable conjecture was that if X is uncountably
chromatic, then there are arbitrarily large chromatic graphs Y with F(Y ) =
F(X) (Taylor’s conjecture, cf. [24]). A very bold claim even stated that
F(X) is contained in F(Sh2(ω)) for some n. The latter statement was
never seriously believed and we disproved it without much ado in [35].

Later I disproved Taylor’s conjecture, too. In [53] I gave a forcing model
with a graph X with Chr(X) = ℵ1 (and of cardinality ℵ1) such that if
F(Y ) = F(X), then Chr(Y ) ≤ ℵ2. In a different model, the following holds.
If Chr(X) > ℵ2 then for every cardinal λ there is a graph Y with Chr(Y ) > λ
such that F(Y ) = F(X).

10. Erdős invented two more nice conjectures on the finite subgraphs of
uncountably chromatic graphs.

If X is a graph, construct the following function mapping natural num-
bers to natural numbers: fX(n) is the maximum of the chromatic number
of n-vertex induced subgraphs. Clearly, fX(n) ≤ n and fX is weakly in-
creasing. Further, the de Bruijn-Erdős theorem implies that fX(n) → ∞.
What Erdős asked if this divergence can be arbitrarily slow for uncount-
able chromatic X. Erdős, Hajnal, and Szemerédi proved in [25] that for the
shift graph Shk(λ) fX(n) is essentially the (k − 1)-fold iterated logarithm.
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The consistency of Erdős’s conjecture was finally proved by Shelah using an
extraordinarily clever argument ([53]).

Erdős, Hajnal, and Szemerédi investigated several variants of fX in their
paper [25]. For example, they showed, that in a shift graph Shk(λ) every
n-element vertex set contains a bipartite graph containing (1− 2

k )n vertices.

Consequently, if we define f1
X(n) as the largest size of an independent set

that can be found in any n-vertex subset of the graphX, then for every ε > 0
there are arbitrarily large chromatic graphs, for which f1

X(n) > (12 − ε)n
holds. In the other direction, it is easy to see that for every uncountably
chromatic graph X there is some ε > 0, such that for all sufficiently large n,
f1
X(n) < (12 − ε)n holds, as there is some m, that there are infinitely many
vertex-disjoint Cm’s and if take k of them, then the largest independent set
has at most km vertices. There remains the question if there exists a graph
X of size and chromatic number ℵ1, for which f1

X(n) > cn holds for some

appropriate c > 0. (The shift graph has cardinality
(
2ℵ0

)+
.) The Specker

graphs are no good, either, for them

f1
X(n) = O

(
n log log n

log n

)
holds.

In [25] they also investigated the following function gX(n). If X is an
uncountably chromatic graph, n is finite, let gX(n) be the least number of
edges, whose removal makes any n-vertex set bipartite. They proved that
if X is the edge graph, then gX(n) ≤ 2n3/2 and with the help of the general
shift graphs, for every ε > 0 there is an uncountably chromatic graph X
such that gX(n) = O

(
n1+ε

)
.

11. The other conjecture is the following. Any two uncountably chromatic
graphs have a common 4-chromatic subgraph. The analogous claim for
3-chromatic common subgraphs follows easily from the above mentioned
Erdős-Hajnal-Shelah-Thomassen result—both graphs contain all sufficiently
long odd circuits. What is particularly interesting about this conjecture is
that it states a hard claim without telling what 4-chromatic subgraphs must
be contained in uncountably chromatic graphs, a question we do not even
have a reasonable guess about.

A related topic is the the chromatic number of Cartesian products of
graphs. Here, if X0 = (V0, E0) and X1 = (V1, E1) are two graphs we define
their Cartesian product X0 ×X1 as the graph with vertex set V0 × V1 and
edge set

{{(x0, x1), (y0, y1)} : {x0, y0} ∈ E0, {x1, y1} ∈ E1} .
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It is immediately seen that

Chr(X0 ×X1) ≤ min (Chr(X0),Chr(X1)) .

Hajnal ([32]) proved that we have equality here, if Chr(X0) is finite and
Chr(X1) is infinite. He also showed the surprising result that there are
graphs X0, X1 with Chr(X0) = Chr(X1) = ℵ1, but Chr(X0 ×X1) = ℵ0.
Later Soukup proved that it is consistent with GCH that there exist graphs
X0, X1 with Chr(X0) = Chr(X1) = ℵ2 and Chr(X0 ×X1) = ℵ0 ([65]).

12. An even harder question is which countable graphs must be contained
in uncountably chromatic graphs, in other words, which are the countable
obligatory graphs. Erdős and Hajnal proved in [18], that each graph with
uncountable chromatic number, or even coloring number contains Kn,ℵ1 for
each finite n.

Hajnal later showed that the ‘halfgraph’ must be contained, where the
halfgraph is the graph with vertex set {xi, yi : i < ω} where xi is joined to
yj if i < j iff i < j. Earlier Hajnal proved that there is an uncountably
chromatic graph omitting Kω,ω, the complete countable bipartite graph.

These results were somewhat extended in [35]:

Theorem (Hajnal–Komjáth, [35]). Each uncountably chromatic graph
contains X0 but not necessarily X1, where the vertex set of X0 is {xi, yi, z :
i < ω}, with yi joined to xj (j < i) and z is joined to each xj . X1 is similar,
but with two vertices joined to every xj .

This eventually led to the complete description of all graphs appearing in
every graph with uncountable coloring number ([39]), but the corresponding
problem for the chromatic number stays open.

Unsolved remains the following nice conjecture of Erdős. If X is an
uncountably chromatic graph then X contains an ω-connected subgraph.
This was motivated by the result of Erdős and Hajnal that uncountably
chromatic graphs contain the complete bipartite graph Kn,n, which, as it
is easily seen, is n-connected (n < ω). I showed that even an n-connected
uncountably chromatic subgraph can be found ([38]), but the statement that
ℵ1-chromatic graphs of cardinality ℵ1 contain ω-connected ℵ1-chromatic
subgraphs is consistent as well as independent ([40], [48]).

13. The following Erdős conjecture also concerns finite subgraphs. Hav-
ing learned that there existed an uncountably chromatic graph omitting
Kω,ω, Erdős promptly asked if it can simultaneously omit triangles. This
was later proved by Hajnal. Erdős then noticed that it would also fol-
low from the following statement. Every uncountably chromatic graph has
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an uncountably chromatic, triangle free subgraph. Considering the above
statements, Erdős had stronger conjectures: if the chromatic number of the
graph X is κ > ℵ0, then for every finite n it has an uncountable chromatic
subgraphs omitting C3, C5, . . . , C2n+1, if, however the graph has chromatic
number ℵ0, then there is a subgraph with infinite chromatic number, that
omits C3, C4, C5, . . . , Cn. The simplest case of the latter conjecture, omit-
ting only triangles, was established by Rödl ([61]), the general case stays
unresolved. The claim for the uncountably chromatic graphs was disproved
by Shelah: consistently there is a graph with size and chromatic number
ℵ1, all whose triangle free subgraphs are countably chromatic. I discovered
some extensions of this: for example, the large graph can omit K4 ([51]).

14. A problem, which was not discovered by Erdős, but he liked it very
much, asks if the chromatic number satisfies the Darboux property. He
repeatedly asked it in his problem papers. Fred Galvin observed that
if κ < λ are finite then every λ-chromatic graph contains a κ-chromatic
subgraph, an easy corollary of the de Bruijn-Erdős theorem. This, however,
is far from being obvious if κ and λ are infinite. More exactly, the case
κ = ℵ0 < λ can also be deduced from the de Bruijn-Erdős theorem, so
the first open case is κ = ℵ1, λ = ℵ2. In his paper [31], Galvin proved
that the answer is consistently false, at least, if we restrict to induced
subgraphs. If 2ℵ0 = 2ℵ1 < 2ℵ2 holds (this can be arranged by Cohen’s
method of forcing), then the edge-graph on an ordered set of cardinality 2ℵ2
satisfies the following: its chromatic number is ℵ2, all its induced subgraphs
are of the formX ′ for some edge-graphX, and Chr(X ′) ≤ κ iff Chr(X) ≤ 2κ.
If, therefore, Chr(X ′) ≤ ℵ1, then Chr(X) ≤ 2ℵ1 = 2ℵ0 , then Chr(X ′) ≤ ℵ0,
and so no induced subgraph exists whose exact chromatic number is ℵ1.

Later I succeeded in showing that it is consistent that there is a graph of
size and chromatic number ℵ2, which does not contain a subgraph of exact
chromatic number ℵ1 (induced or not, [40]).

The has been further extended in [46]. If X is a graph with uncountable
chromatic number, then let S(X) denote the set of chromatic numbers of the
subgraphs of X. Similarly, let I(X) denote the set of chromatic numbers
of all induced subgraphs of X. We remove the natural numbers and ℵ0

from both sets as they are of no interest for us. Clearly, both I(X) and
S(X) are sets of uncountable cardinals, both with Chr(X) as the maximal
element. Are there other conditions? In [46] we prove that I(X) is closed
under taking limits, and if λ ∈ I(X) is a singular cardinal, then it is a limit
point of I(X). Conversely, if A is a nonempty set of uncountable cardinals
satisfying these properties then there is a cardinal preserving forcing that
adds a graph X with I(X) = A. For S(X), we have that if λ ∈ S(X) is a
singular cardinal, then λ is a limit point of S(X), and S(X) contains its
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limit points which are singular. However, a complicated forcing argument
adds a graph X such that S(X) is not closed at a regular cardinal.

15. Erdős and Hajnal observed the following. If the continuum hypothesis
holds, then there is an ℵ1-chromatic graph X of cardinality ℵ2, such that
every subgraph of X of cardinality ℵ1 is countably chromatic. X is the
edge-graph of an ordered set of cardinality ℵ2. They immediately asked
(and repeated their question in their famous problem paper, [21]) if the
chromatic number of X can be ℵ2? This question remained unanswered
for quite a while, then the consistency of both directions was shown∗.
Baumgartner proved ([4]) that consistently there is such a graph, while
Foreman and Laver proved in [30] that if the existence of a so called huge
cardinal is consistent, then so is that no graph as above exists. Both proofs
are involved. Later Shelah deduced the existence of such a graph from the
axiom of constructibility ([64]).

Erdős and Hajnal made the following interesting observation concerning
the first construction ([20]). Let G(ω2, ω) be the following graph: its vertex
set consists of all ω2 → ω functions with f and g joined if they eventually
differ, that is, if f(α) �= g(α) holds for all sufficiently large α < ω2. They
proved the following properties:

(a) every subgraph of G(ω2, ω) of cardinality at most ℵ1 is countably
chromatic;

(b) if X is a graph of cardinality ℵ2, all whose subgraphs of cardinality
ℵ1 are countably chromatic, then X embeds into G(ω2, ω).

If the continuum hypothesis holds, then, by the above remark, we do
have a graph of cardinality ℵ2 and chromatic number ℵ1, all whose smaller
graphs are countably chromatic. By (b), it embeds into G(ω2, ω), conse-
quently the chromatic number of G(ω2, ω) is uncountable (its cardinality

is ℵ0
ℵ2 = 2ℵ2). What, exactly, is the value of Chr(G(ω2, ω))? I reached

some partial answers in [42]: in different models of the generalized con-
tinuum hypothesis it can be both ℵ2 and ℵ3. Foreman deduced from the
consistency of the existence of a huge cardinal, that it is consistent that
Chr(G(ω2, ω)) = ℵ1 ([29]). Finally, Todorcevic proved that G(ω2, ω) is al-
ways uncountably chromatic ([69], [70]).

16. Ramsey’s theorem and the investigation of Ramsey type phenomena
was always in the focus of Erdős’ work. The simplest case of Ramsey’s
theorem states that if all pairs of a six-element set are colored with two
colors then there is a monochromatic triangle. With the usual notation this
is denoted as 6 → (3)22. Here, on the right hand side of the formula, the top

∗Independence raised its ugly head, as Erdős frequently remarked.
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2 stands for the size of the sets colored, the down 2 is the number of colors.
That the statement fails for 5 is denoted by 5 � (3)22.

The infinite Ramsey theorem is the following. If r, n are positive in-
tegers, then ℵ0 → (ℵ0)

r
n holds, that is, if the r-tuples of an infinite set are

colored with n colors, then there is an infinite monochromatic (homoge-
neous) set.

The infinite versions of this statement were considered by Erdős, Hajnal,
and Richard Rado in the fifties and sixties, giving rise to the so called
partition calculus. The case r = 2 can be considered a purely set theoretical
result: if the edges of a countably infinite graph are colored with 2 color, then
there is an infinite homogeneous subgraph. With his collaborators, Erdős
passionately investigated the graph theoretic generalizations of Ramsey’s
theorem. Already in 1942 he settled the simplest question: if we are given a
sequence 〈Xα : α < κ〉 of graphs, each of cardinality at most κ+, then there
is a graph Y with the property that if the edges are colored with κ colors,
then for some color α there is a copy of Xα all whose edges are colored
by the α’th color. This follows from the following partition result of Erdős
(usually called the Erdős-Rado theorem, although it appeared in [12]):

(2κ)+ →
(
κ+

)2
κ
.

This proves the result for complete graphs, the general case follows.

17. In order to bypass trivial arguments, some restrictive versions were
sought, for which it is not true that if X is a subgraph of Y , then a positive
answer for Y gives also a positive answer forX (as then it suffices to consider
complete graphs). One such version originates from Walter Deuber, who
required induced target graphs. We denote the relevant statement by Y �
(Xα : α < κ)2 and if all Xα’s are equal to X, then we write Y � (X)2κ. Here
even the simplest statement is very hard to prove: if X is a finite graph, then
there is a finite graph Y such that Y � (X)22 holds, that is, if the edges of Y
are colored with two colors, then there is an induced monochromatic copy
of X. This was independently proved by W. Deuber [8], [9], V. Rödl [60],
and Erdős-Hajnal-Pósa [22]. Deuber and Rödl used sophisticated induction.
Erdős and his coauthors, however, proved much more.

Theorem (Erdős–Hajnal–Pósa, [22]).

(a) If X0, X1 are countable graphs and X0 is locally finite, then there is
a countable Y , for which Y � (X0, X1)

2 holds.
(b) If Y is a countable graph, then Y �� (Kω,ω)

2.
(c) If X0, X1, . . . , Xk are finitely many countable graphs, then there is a

graph Y of cardinality continuum for which Y � (X0, . . . ,Xk)
2 holds.
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As concerning infinite graphs, it was naturally conjectured that the full
Ramsey property holds, i.e., whenever X is a graph, κ a cardinal, then
there is a graph Y satisfying the relation Y � (X)2κ. With Hajnal we gave
a surprising negative answer in [36]: it is consistent that there is a graph
X of cardinality ℵ1 such that for no graph Y does Y � (X)22 hold. Shelah
was quick to add the consistency of the positive direction; consistently for
every graph X and every cardinal κ there is some graph Y with Y � (X)2κ
(in fact, the general Ramsey theorem holds for arbitrary structures, [63]). I
later showed that it is no accident that Shelah uses class forcing—in every
model obtained by a nontrivial set forcing there are a graph and a cardinal κ
such that Y �� (X)2κ holds for every graph Y ([43]). Finally Hajnal proved
the following deep and very satisfactory theorem. If X is a finite graph
and κ is an infinite cardinal, then there is a graph Y , for which Y � (X)2κ
holds ([33]).

A notorious problem of this subtopic if Hajnal’s theorem can be extended
to countable graphs. The conjecture is that if X is a countable graph and
κ is a cardinal, then there is a graph Y such that Y � (X)2κ holds. As
by a theorem of Rado’s there is a universal countable graph, i.e., one that
includes all other as induced graphs, it suffices to prove the conjecture for
that graph only. Further, as the Rado graph cannot be changed by forcing,
it is hopeless to use the methods of [36] to force a counterexample as the
target graph.

18. A different possibility to make harder the edge coloring problem is
the following. Start with the simplest statement, that is, that if we color
the edges of the complete graph K6 with two colors, then there must be
a monochromatic triangle, that is, K6 → (K3)

2
2. Obviously, this property

holds for every graph containing K6 as a subgraph: if K6 ≤ X, then X →
(K3)

2
2. Erdős and Hajnal asked in 1967, if there is a graph omitting K6

for which X → (K3)
2
2 holds. This was quickly answered in the positive by

G. L. Cherlin, R. Graham, van Lint, and Lajos Pósa. Pósa’s example did
not contain a K5, either, but Erdős’s next question, namely, if we can omit
K4, turned out to be very hard, and it was finally answered in the positive
with a deep and complicated construction by Jon Folkman [28].

Folkman’s example was gigantic, with more than

1010
1010

1010
10

vertices, and Erdős was always curious if this can be lowered to some more
“human” bound, say to 1010. Frankl and Rödl constructed a graph with
some 1011 vertices, this was fine tuned by Spencer to an example with a
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few hundred million vertices ([66]). In the years after 2000 this was lowered
to around 10,000 by L. Lu, then Dudek and Rödl ([10]) gave the surprising
upper bound 941, this has recently been improved to 786 ([55]).

Nešetřil and Rödl proved the corresponding general partition theorem;
if X is a finite graph, containing no clique Kp, k ≥ 2 is a natural number,
then there is a graph Y , with no clique Kp, satisfying Y � (X)2k ([57], [58]).

Erdős and Hajnal methodically investigated the infinite cases. They
proved the following results.

Theorem (Erdős–Hajnal [19]).

(a) If κ is infinite, n is finite, then there is a graph of cardinality κ,
omitting Kn+1 which has the property that if its vertices are colored
with κ colors, then there is a monochromatic Kn.

(b) If κ, λ are infinite cardinals, then there is a graph of cardinality κλ

that omits Kλ+ and whenever its vertices are colored with κ colors,
then there is a monocolored Kλ.

(c) If κ is an infinite cardinal, then there is a graph of cardinality(
2(2

κ)+
)+

omitting Kℵ0 , such that every edge-coloring with κ colors contains a
monochromatic Kn, for every finite n.

(d) if κ is an infinite cardinal, then there is a graph of cardinality (2κ)+,
omitting K(2κ)+ , such that each edge-coloring of the edges with κ
colors gives rise to a monocolored Kκ+ .

The proof of (d) is based on the partition relations (2κ)+ �
(
(2κ)+,

(2κ)+
)2

and (2κ)+ →
(
(2κ)+, (κ+)κ

)2
.

We can slightly improve the claim with the price of increasing the
size. For concreteness’ sake assume that κ = ℵ0. There is a cardinal λ
satisfying λ = λℵ0 < λℵ1 . Partition theory gives λ+ → (λ+, (ω1)ω)

2 and
λℵ1 � (λ+, ω2)

2, and therefore λ+ � (λ+, ω2)
2. One class of the latter col-

oring is a graph without Kℵ2 , with no independent λ+, and, by another
theorem, all colorings of it by countably many colors contain a monochro-
matic Kℵ1 .

A simpler proof of (c) with the weaker bound

λ =
(
22

2κ
)+

can be obtained as follows. Choose the set of pairs of λ as the vertex set
of the graphs, join {x, y} and {x′, y′} exactly if x < x′ < y′ < y. There is
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no Kℵ0 as it would lead to an infinite decreasing sequence of ordinals, the
coloring statement follows from the partition relation λ → (2n)4κ (Erdős-
Rado theorem).

The most important open questions are the following. Does there exist a
graph omitting K4, which, when edge-colored with countably many colors,
always contains a monochromatic triangle, that is, K4 �≤ X → (K3)

2
ℵ0?

This was one of Erdős’ favorite problems, he regularly mentioned it in his
lectures, problem papers. He promised $ 250 for the solution. Shelah in [63]
established the consistency of this statement, i.e., that forcing can give a
graph as required. His result has an interesting corollary. If K4 �≤ X and
X → (K3)

2
ℵ0 , then X satisfies the weaker relation K4 �≤ X and X → (K3)

2
2,

as well. Using the compactness principle mentioned at the de Bruijn-Erdős
theorem, it follows, that X contains a finite subgraph Y satisfying K4 �≤ Y
and Y → (K3)

2
2. As forcing does not add new finite graphs, we obtain that

each countable model of set theory contains a graph like that, which gives,
using Gödel’s completeness theorem, that outright there is a Folkman-type
graph. Now what is it? There does not seem to be any way of transforming
this proof into a construction of such a graph.

Curiously, there is another, different set theoretical proof of the existence
of a finite graph X with K4 �≤ X and X → (3)22. In their paper [5] Baum-
gartner and Hajnal proved the ordinary partition theorems ω2

1 � (ω1ω, 4)
2

and ω1 → (ω1ω, 3, 3)
2, the first under the continuum hypothesis. The for-

mer can be interpreted as showing the existence of a graph X on a ground
set of ordinal ω2

1 such that X contains neither a K4, nor an independent
set of ordinal ω1ω. The latter can be interpreted as the statement that
if the edges of a graph on ω2

1 with no independent set of ordinal ω1ω are
two colored, then there is a monochromatic triangle. Putting together, we
obtain a K4-free graph, with a monocolored triangle in every 2-coloring of
the edges—if the continuum hypothesis holds. But CH can be obtained by
forcing, so we can conclude as in the previous argument.

Another, still unsolved, question of the paper of Erdős and Hajnal [19],
if there exists a graph X containing no Kℵ1 satisfying X → (Kℵ0)2ℵ0 .

Extending the above mentioned method of Shelah, we proved in [52]
that the full Ramsey theorem for classes omitting cliques is consistent: if
X is a graph, μ is a cardinality, and X does not contain a Kα, then there
is a graph Y , still omitting Kα such that Y → (X)2μ holds. This, as we
have shown with Hajnal, is not outright true: it is consistent that there is
a triangle-free graph X, such that if Y → (X)2ℵ0 holds for some graph Y ,
then Y contains a Kℵ0 ([36]).

The vertex coloring version is, however, much easier: given any graph
X omitting Kα, and a cardinal μ, then there exists, without any extra set
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theoretic assumption, a graph Y , omitting Kα, such that Y � (X)1μ holds,
that is, when the vertices of Y are colored with μ colors, then there is a
monochromatic induced copy of X ([36]).

19. The swinging sixties was the golden period of hypergraph theory, in
finite combinatorics, that is. Not surprisingly, Erdős and his collaborators
started generalizing the theory of infinite graphs to infinite hypergraphs,
when we consider a system H of n-element subsets of some ground set
S for some finite n ≥ 3. In this case, the chromatic number of H is the
least number of colors required to a coloring of S without a monocolored
member of H. As even this particular case is extremely hard, most results
and questions have been formulated for n = 3, i.e., for systems of triples.

In order to formulate some results, let me introduce the ad hoc notion
of romboid. The system {A,B} of two triples is a romboid, if |A ∩B| = 2.
Already in [18] Erdős and Hajnal proved that if H is a triple system of car-
dinality ℵ1 which omits the romboid, then H is countably chromatic. This,
however, does not mean that all romboid-free triple systems are countably
chromatic, as it was pointed out by Erdős, Hajnal, and Bruce Rothschild
in [23]. The system they gave is particularly simple: its underlying set con-

sists of all pairs of a set S of cardinality
(
2ℵ0

)+
and the triplets are those

of the form {{x, y}, {y, z}, {x, z}}. It is immediately seen that the system
does not contain a romboid, and if the vertices, i.e., the pairs are colored
with countably many colors, then there is a monochromatic triangle by the
Erdős-Rado theorem (

2ℵ0
)+ → (3)2ℵ0 .

This result initiated an intensive research period. In [15] Erdős, Galvin,
and Hajnal report the result of longer than one year’s work. They investi-
gated, for example, how large must a romboid-free, uncountably chromatic
triple system be. At least of cardinality ℵ2, by the above mentioned Erdős-
Hajnal result. It must have more than κ vertices, if Martin’s axiom MAκ

holds. In the other direction we find the above
(
2ℵ0

)+
example of Erdős,

Hajnal, and Rothschild.

They also proved that if the square bracket partition relation† ω1 �
[ω1]

2
ℵ1 holds, then there is an example of cardinality 2ℵ1 . That ω1 �

[ω1]
2
ℵ1 holds, was originally proved by Erdős, Hajnal, and Rado under the

continuum hypothesis. For a while it was an open question if it can be

†The relation λ � [κ]2μ means that there is a coloring of the pairs of a set S of
cardinality λ with μ colors such that each subset of S of cardinality κ contains every
color. The statements λ � [κ]22 and λ � (κ)22 are therefore equivalent.
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proved without any extra assumption, it was long after the writing of [15]
that Todorcevic proved this using a breakthrough argument ([68]).

As for the general case, Erdős, Galvin, and Hajnal proved that if H is
a set of n-element sets, in which any two members have at most i elements
in common and mi+2 ≤ n, then, if |H| ≤ κ+m, then the chromatic number
of H is at most κ. Assuming the Generalized Continuum Hypothesis, this
is sharp in the sense, that in any other case there is a counterexample.

The 90-page long paper [15] is densely packed with theorems, estimates,
constructions, still several fundamental questions are raised in it. What
are the finite triple systems that occur in every uncountable chromatic
triple system? We do not even have a conjecture for the answer. Another
basic problem if we obtain the same finite systems if here “uncountably
chromatic” is changed to “with chromatic number > λ” for any cardinal
λ > ℵ0? Yet another problem raised in the Erdős-Galvin-Hajnal paper is
the following. What is the least cardinal κ for which the following holds:
if F is a finite triple system such that there is a triple system omitting F ,
then there is such a system of cardinality < κ. It is easy to see that such
a cardinal κ exists and the above results concerning the omission of the
romboid show that the value of κ is not the least possible, i.e., ℵ2.

There has been progress, albeit slow, on the topic. In [45] I proved
that all finite obligatory triple systems are tripartite, i.e., if F is a finite
obligatory triple system, then there are disjoint finite sets A, B, and C,
such that each triple in F contains exactly one point of A, B, and C.
With Hajnal, we proved that consistently there are are finite triple systems
S0 and S1 such that each uncountable chromatic triple system contains
either S0 or S1, but either system can be omitted ([37]). This was one of
the problems of [15]. We also proved that every uncountable chromatic,
romboid-free triple system contains the odd circuits C7, C9, C11, . . . ([37])
and this is sharp in the sense that consistently there is an uncountable
chromatic, romboid-free triple system omitting C3 and C5 ([47]). In [49] I
describe a forcing extension in which it can be determined, for what finite
triple systems F does the partition relation ω1 → (F , ω1)

3 hold, this solves
another problem of [15].

Not surprisingly, one can also define the notion of coloring number for
(not necessarily uniform) systems of finite sets. Many of the arguments
used for the coloring number of graphs can be adapted and even a very
weak and cumbersome result can be proved on obligatory subsystems. This,
however, is sufficient to solve another problem of Erdős: if 2 ≤ n < ω, V is a
vector space over the rationals with |V | ≥ ℵn, then there is a subset W ⊆ V ,
|W | = ℵn which is not the union of countably many linearly independent
sets, but every subset W ′ ⊆ W with |W ′| < |W | is ([50]).
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I now hope that the reader has been fully convinced not only that the
theory of infinite graphs is interesting, but that Erdős’s deep results and
challenging conjectures were most influential in its formation.
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[22] P. Erdős, A. Hajnal, L. Pósa: Strong embeddings of graphs into colored graphs, in:
Infinite and finite sets, (Colloq. Keszthely 1973; dedicated to P. Erdős on his 60th
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[44] P. Komjáth: Two remarks on the coloring number, Journal of Combinatorial The-
ory, (B), 70 (1997), 301–305.
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The Impact of Paul Erdős on Set Theory

KENNETH KUNEN

1. Introduction

This is a brief survey of some areas in set theory where the impact of Paul
Erdős is strongly felt today. We omit topics in partition theory and graph
theory, which are covered in the article by Péter Komjáth in this volume.

Two themes will emerge in this survey. First, besides proving many
first-rate results himself, Erdős always seemed to know the right questions
to ask, and he frequently inspired important work by other people. We shall
point out some questions that he asked in writing; we cannot mention the
many questions that he asked informally in person and in his lectures as he
traveled around the world.

Second, modern work in set theory makes frequent use of concepts from
logic; this is clear in forcing; but also, large cardinals are studied using
elementary embeddings, and elementary submodels are used to prove set-
theoretic results. Erdős himself did not employ methods from logic, but his
work naturally suggested the use of logic once these methods were developed.

Many readers of this survey will have learned set theory not by reading
the papers of Erdős, but by reading a modern text, such as [26, 29, 30, 38].
The notation has changed quite a bit over the years, and readers may be
surprised to learn how much of what they know goes back to Erdős.

2. Large Cardinals

The work of Erdős here centers around “medium-size” large cardinals, such
as weakly compact, Ramsey, and measurable cardinals. Inaccessible and
Mahlo cardinals were already known before Erdős started working in math-
ematics.
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Some of the basic facts about large cardinals are contained in the seminal
papers [24] (Erdős and Tarski, 1961) and [8, 11] (Erdős and Hajnal, 1958 and
1962). In particular, [24] considers the properties P1, P2, P3, P4, Q,R that
a cardinal λ may have. We list these below, always assuming that λ > ω.
We have translated the definitions from [24] into modern terminology, but
we have followed [24] in defining the negation of the property to be the
large cardinal property; for example, ¬P3 is now the standard definition of
“measurable cardinal”, and ¬P2 is now one of the standard equivalents of
“weakly compact cardinal”.

P1: There is a total order � on the set λ such that � has no increasing
or decreasing λ-sequences.

P2: λ � (λ)22.

P3: There is no λ-complete non-principal ultrafilter on λ.

P4: There is a λ-complete and λ-distributive boolean algebra B that is
not isomorphic to any λ-complete set algebra.

Q: There exists a λ-Aronszajn tree.

R: There is a λ-complete and λ-distributive boolean algebra B that is
not isomorphic to any λ-complete set algebra and B is λ-generated by a set
of size λ.

Paper [24] shows that each Pm implies Pm+1 (m = 1, 2, 3). For m = 1,
their argument is really a variant of Sierpiński’s example showing that
c � (ω1)

2
2. They also show that ¬P1 (and hence each ¬Pm) implies that

λ is strongly inaccessible. It was already clear from Ulam [53] (1930) that
the stronger property ¬P3 (measurability) implies strong inaccessibility.
The paper [8] (1958), which was earlier than [24], mentions as plausible
hypotheses:

(∗) The Generalized Continuum Hypothesis.
(∗∗) Every strongly inaccessible cardinal is measurable.

Of course, (∗) had already been shown to be consistent by Gödel. Ulam
[53] did not refute (∗∗), although it was refuted soon after [8] appeared by
Tarski [52] in 1960 (assuming that strong inaccessibles exist), with some
further proofs in [11] (Erdős and Hajnal, 1962); in modern language, we
would say that the first strong inaccessible is not even weakly compact.

With the benefit of hindsight, it is now well-known that for strongly
inaccessible λ, each of ¬P1, ¬P2, ¬Q, ¬R is equivalent to weak compactness,
whereas ¬P3 is equivalent to measurability and ¬P4 is equivalent to strong
compactness. Some of the implications are done in [24], and some are left as
open questions that were later solved by others. Their paper proves P1 → P2

but not P2 → P1.
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Also, they state that they do not know whether ¬Q or ¬R imply strong
inaccessibility. For ¬Q, this is now known to be false. In fact, by a well-
known result of Mitchell in 1970 (see [42]), even ℵ2 can satisfy ¬Q.

The papers [24, 8, 11] mentioned above were all within a period of about
ten years which included a flurry of activity on large cardinals by quite a
number of people. Erdős was at the center of this activity, both in his
writing and in person.

This activity led naturally to some characterizations of weak compact-
ness by other people using logic, in terms of elementary end extensions of
R(λ), and in terms of Π1

1 indescribability. In particular, there is the well-
known 1964 paper of Keisler and Tarki [33], which mentions [8] (Erdős and
Hajnal) and [24] (Erdős and Tarski). Also, the 1962 paper of Erdős and
Hajnal [11] mentions the 1960 paper of Keisler [31] on the applications of
model theory to set theory.

Also, Scott [45] in 1961 used ultraproducts by countably complete ultra-
filters to show that a measurable cardinal implies V �= L. Scott mentions
that it was already known that “most” strong inaccessibles are not measur-
able, referring to, among others, [11] (Erdős and Hajnal, 1962).

Regarding ¬P3 → ¬P2 (measurable cardinals satisfy λ � (λ)22): Al-
though this is done in [24], where the properties are defined, the earlier
[8] (Theorem 9a) contains what is essentially the stronger result that mea-
surable cardinals λ are Ramsey (satisfy λ → (λ)<ω

2 ). Curiously, the proof
in [8] shows that assuming (∗∗), every strong inaccessible is Ramsey, but,
as they point out in [11], by which time they knew that (∗∗) was false, the
proof only required that the particular cardinal in question be measurable.

This work led to other types of “Erdős cardinal”, such as κ → (ω1)
<ω
2 ,

and then these partition relations led naturally to the theory of 0# due to
Silver and Solovay, applying the Ehrenfeucht-Mostowski method of indis-
cernibles from logic. Silver’s thesis appeared 1966 and Solovay’s paper [49]
was published in 1967.

An important contribution to set theory occurs in the paper [12] (Erdős
and Hajnal, 1966). The paper is mainly about Jónsson cardinals. These
are infinite cardinals λ such that every first-order structure of size λ for
a countable language has a proper elementary substructure of the same
size; for example, every Ramsey cardinal is a Jónsson cardinal, and the
existence of such a cardinal implies that 0# exists. But [12] points out that
if one allows the structure to contain ω-ary operations, then the property
becomes inconsistent. That is, there is always a map f : λω → λ such that
for all A ∈ [λ]λ, f(Aω) is all of λ.

As Kunen [35] (1971) pointed out, it follows very easily from this that
there cannot be a nontrivial embedding from V into V ; so this puts a
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limit on how “huge” a cardinal can be. More precisely, say j : V → M is
an elementary embedding first moving cardinal κ, where M is a transitive
class. Let λ = sup{jn(κ) : n ∈ ω}. Then, using the Erdős-Hajnal result, M
cannot contain all subsets of λ (e.g., j“λ /∈ M). There has been much work
on related weaker assumptions (e.g., P(j7(κ)) ⊂ M); these are not known
to be inconsistent.

This is another example illustrating the fact that although Erdős did
not work in logic, the addition of a little logic to his results by other people
led to some important consequences.

Paper [13] (Erdős and Hajnal, 1974) gives an interesting equivalent of
weak compactness with a variant of the free set lemma (see Section 8). By
1974, the term “weakly compact” had become standard terminology, and the
various equivalents to weak compactness described above were well-known.
For infinite cardinals λ ≤ κ, say that P (κ, λ) holds iff whenever F ⊆ [κ]<κ

and |F| = κ and x � y for all distinct x, y ∈ F , there is an F ′ ⊆ F with
|F ′| = κ such that |κ\⋃F ′| ≥ λ. They show that P (κ, κ) holds iff κ = ω or
κ is weakly compact. They also discussed P (κ, λ) for λ < κ, but this is not
related to large cardinals.

For the → direction of the “iff”: They use what was by then a standard
argument to get an A ⊆ κ that is a “limit point” of F in the sense that there
are Aξ ∈ F for ξ < κ such that A ∩ ξ = Aη for all η ≥ ξ. Then |κ\A| = κ
(otherwise there is an easy contradiction), and then it is easy to get the
desired F ′ as a subset of {Aξ : ξ < κ}.

The proof of the ← direction of the “iff” splits into three clever argu-
ments: one if κ is singular, another if ∃θ < κ [2θ ≥ κ], and a third if κ is
strongly inaccessible and there is a κ-Aronszajn tree. In the case of the
Aronszajn tree T , they got F ⊆ [T ]<κ. The elements of F were sets of the
form Tγ\Cγ , where Tγ = {x ∈ T : ht(x) < γ} and Cγ is some maximal chain
in T of order type γ (so Cγ is a path through Tγ).

3. Chain Conditions in Forcing

Erdős didn’t do forcing, but a number of his results on chain conditions are
often quoted in the forcing literature. If P is a forcing poset, then the Suslin
number, S(P), is the least κ such that there is no antichain in P of size
κ; so, P is ccc iff S(P) ≤ ℵ1. An important fact, due to Erdős and Tarski
[23] (Theorem 1) in 1943, is that S(P) must be regular, and cannot be ℵ0.
They also showed that given any regular uncountable κ, one can find P
with S(P) = κ. This is trivial if κ is a successor. If κ is a regular limit (i.e.,
weakly inaccessible), the example they gave is essentially the same as what
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is now called the Lévy collapse of κ (see [29, 38]). We remark that although
they used the letter “d(P)” where we now use “S(P)”, their definition of the
notion in terms of partially ordered sets is very much like the one given in
modern forcing textbooks (e.g., [38]).

Results on chain conditions are also related to topology. If X is a
topological space, then one frequently studies S(X), which is defined to
be S(P), where P is the family of non-empty open subsets of X, ordered
by ⊆.

The Erdős – Tarski theorem was proved long before forcing was con-
ceived of, although the ccc was already a well-known property in topology,
following Suslin [50] in 1920. But, Erdős continued to do important work
on chain conditions in the era of forcing. In particular, in the 1970s he gave
a very clever argument that under CH, ω1 is not a pre-caliber for random
real forcing; by then, it was well-known that MA(ℵ1) implies that ω1 is a
pre-caliber for all ccc posets; his proof is described in the 1979 paper [39]
of Kunen and Tall.

4. Set-Theoretic Topology

The above results on chain conditions are related to topology, but in this
section we mention two results on products of spaces,

∏
i∈I Xi. The first

one uses the box topology ; this has as a base all
∏

i∈I Ui, where Ui is open
in Xi. The second uses the standard Tychonov topology, where the basic
sets are only those

∏
i∈I Ui for which Ui = Xi for all but finitely many i.

There are still many open questions about when a countable box product∏
n∈ω Xn is normal. This is not always clear even when all the Xn are

ordinals; we write this product as
∏

n αn. If all the αn are successor ordinals
or limits of countable cofinality, then under CH, the product is normal (and
in fact paracompact) by M. E. Rudin [43], but this is still open in ZFC,
even when all αn = ω + 1.

A well-known paper of Erdős and Rudin [22] (in the volume honoring the
60th birthday of Erdős in 1973) is a contribution to that problem by showing
that

∏
n αn is not normal if αn = ω + 1 for n > 0 and α0 = κ, where κ is

regular and is the order type of a scale in ωω, provided that κ > ω1. The
proviso “κ > ω1” seems a little strange and the case κ = ω1 (which happens
under CH) was handled by Kunen [36] (published in the same volume), who
refined their method slightly. So, this is a good example of Erdős causing
the right question to be asked, even if someone else settled it.

Returning to products
∏

i∈I Xi, using the Tychonov topology: The
Tychonov Theorem (1935) says that any product

∏
iXi of compact spaces
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is compact. Is there a similar theorem when the Xi are only Lindelöf? An
important paper of Erdős and Hajnal [9] (1961), when combined with a 1959
paper of �Loś [40], shows that this is a deep question, and that the “obvious”
conjectures are false.

Call a space X κ-compact iff every open cover has a subcover of size less
than κ; so ℵ0-compact is compact and ℵ1-compact is Lindelöf. By [40], if
κ is below the first measurable cardinal, then there is a product of Lindelöf
spaces that fails to be κ-compact; in fact the spaces are all just discrete and
countable. But, by [9], if κ is measurable then the space ωκ is κ-compact;
actually, they say that the (inconsistent) hypothesis (∗∗) (see Section 2)
implies that ωκ is κ-compact for all strongly inaccessible κ, but their proof
is fine when κ really is measurable. In modern language, the proof is
similar to the ultrafilter proof of the compactness of 2κ in ZFC, but now the
ultrafilter is countably complete. Although they don’t state this explicitly,
their methods show that if θ is strongly compact, then every product of θ-
compact spaces is θ-compact; in fact, this (plus θ > ω) is sometimes taken
as a definition of “strongly compact”; see Tall’s survey [51].

5. Questions to be Answered by Forcing

Although some of the later work of Erdős made explicit mention of MA and
other forcing results, some of his earlier work, which predates MA, suggested
natural questions to be attacked by forcing once the method was developed.

The paper of Erdős and Hajnal [9] (1961), cited above for κ-compactness,
also has some important results regarding the Bernstein set construction in
various models of set theory.

Following E. W. Miller [41] (1937), we say that a family F of sets has
property B iff there is a set B such that F ∩B �= ∅ and F � B for all F ∈ F .
So, if F is the family of perfect subsets of R, then F has property B, and
the set B is the famous set constructed by Bernstein in 1908.

As is typical in writings of Erdős, properties of cardinals are expressed
with arrows (as in the familiar ω → (ω)22). Here, we use a modification of
the arrow notation of [9], following [27] (Hajnal, Juhász, and Shelah, 2000).
Call a family F of sets μ – almost disjoint or μ-a.d. iff |X ∩Y | < μ whenever
X,Y are two distinct members of F . Then if F ⊆ [λ]κ, F is trivially κ+-a.d.,
and F is κ-a.d. iff F is an almost disjoint family in the usual sense.

For infinite cardinals κ, λ, μ with κ ≤ λ: M(λ, κ, μ) → B denotes the
assertion that whenever F ⊆ [λ]κ with |F| ≤ λ and F is μ-a.d., then F has
property B.



The Impact of Paul Erdős on Set Theory 353

Theorem 2 of [9] is M(κ, κ, κ+) → B; here, F is a family of κ sets, each
of size κ with no almost disjointness assumption. They rightly attribute this
to Bernstein, since the Bernstein set argument, with κ = c, clearly works
for all κ.

Note that M(2κ, κ, κ+) � B is trivial, taking F to be all of [2κ]κ. Their
Theorem 3 is M(2κ, κ, κ) � B (so the counter-example F is an almost
disjoint family); for κ = ℵ0, this is due to Miller [41] (or see [26], pages
163 (Exercise 13) and 275), and they say that the proof is essentially the
same for any κ. Note that, when discussing almost disjoint sets of size κ,
we are not assuming that |⋃F| = κ, as is common in discussions of almost
disjoint sets, MAD families, etc. In fact, by a result of Baumgartner, when
κ = ω1, one can’t in ZFC produce any almost disjoint family F of size 2κ

with |⋃F| = κ (see [38], Exercise IV.7.51). Of course, for the easier example
showing M(2κ, κ, κ+) � B, we could get |⋃F| = κ, letting F = [κ]κ.

Under CH, Theorem 3 (or Miller’s result) yields M(ℵ1,ℵ0,ℵ0) � B.
They ask (Problem 1) what happens if ¬CH. Note that their paper, in
1961, was just before the advent of forcing made it easy to answer this.
Even the strongerM(ℵ1,ℵ0,ℵ1) → B follows from MA(ℵ1) (or even p > ℵ1).
Decoding this: |F| = ℵ1 and the sets in F are countably infinite and not
necessarily almost disjoint. Then property B asks for a set B such that
F ∩B �= ∅ and F � B for all F ∈ F . WLOG,

⋃F ⊆ ω1, and then the poset
Fn(ω1, 2) supplies the required B.

After this problem, they ask (essentially) whether perhaps ¬CH alone
is sufficient here. The answer is “no” by another well-known (now) forc-
ing result. In fact, it is consistent with ¬CH that even the weaker
M(ℵ1,ℵ0,ℵ0) → B fails and here we even get |⋃F| = ℵ0. To see this,
assume that there is a non-principal ultrafilter U on ω that is generated
by ℵ1 sets E = {Eα : α < ω1} ⊆ U ; that is X ∈ U ↔ ∃α [Eα ⊆ X]; this is
consistent with c being arbitrarily large (see [38], Lemma V.4.27). Now, if
Eα ∩B �= ∅ for all α then ω\B /∈ U so B ∈ U so Eα ⊆ B for some B. This
refutes M(ℵ1,ℵ0,ℵ1) → B. Of course, the Eα are not almost disjoint. To
refute M(ℵ1,ℵ0,ℵ0) → B, use F = {Fα : α < ω1}, where each Fα is an in-
finite subset of Eα chosen recursively so that Fα /∈ U and Fα ∩ Fξ is finite
for all ξ < α.

These independence results are fairly standard applications of the forc-
ing method (now that the method has been developed), but Erdős and
co-workers get some credit for pointing out the interesting questions to
ask. A much deeper result arose from another question in [9], which
demonstrates that there are non-trivial questions in this area even un-
der GCH. The paper [27] (Hajnal, Juhász, Shelah, 2000) mentioned above
shows that assuming the consistency of a supercompact cardinal, GCH plus
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M(ℵω+1,ℵ1,ℵ0) � B is consistent. So, here we are talking about fam-
ilies of sets of size ℵ1 with pairwise finite intersection. Note that they
cannot be pairwise disjoint; otherwise a simple transversal would establish
property B. [9] showed that CH implies that M(λ,ℵ1,ℵ0) → B holds for
λ ≤ ℵω. Here, one can prove M(ℵn+1,ℵ1,ℵ0) → B by induction on n (using
(ℵn)

ℵ0 = ℵn), and then it is an easy step to M(ℵω,ℵ1,ℵ0) → B. Also, work
by others before 2000 (see [27] for references) showed that M(λ,ℵ1,ℵ0) → B
holds for all λ assuming GCH plus suitable � principles (such as hold
in L); this shows that some large cardinal is required for the consistency of
GCH+M(ℵω+1,ℵ1,ℵ0) � B.

The older paper [3] (1943) of Erdős also has some material that begs
a use of MA. One result in it improves on a result of Sierpiński. In R,
let null denote the null ideal and meager the meager ideal. Assuming
CH, Sierpiński had shown that there is a bijection f of R onto R such
that X ∈ null ↔ f(X) ∈ meager for all X ⊆ R. In answer to a question of
Sierpiński, Erdős shows that one can get f with the additional property that
X ∈ meager ↔ f(X) ∈ null. He also gets f = f−1. It is easy to see that the
same proof works under MA, or just under add(null) = add(meager) = c.

It is still not clear exactly what is needed to get this result. It cannot be
proved in ZFC because even the result of Sierpiński implies that add(null) =
add(meager) and cov(null) = cov(meager) and non(null) = non(meager).

The short three page paper [20] of Erdős and Makkai (1966) is notable
also for raising some interesting questions:

Some notation: If G ⊆ P(A) and f ∈ Aω, then G strongly cuts f iff for
all n ∈ ω there is an Xn in G such that for all i ∈ ω, f(i) ∈ Xn iff i < n.
So, X0 contains none of the f(i), X1 contains only f(0), X2 contains only
f(0), f(1), etc. If S ⊆ A, let S � G = {S\X : X ∈ G}.

They prove that if κ ≥ ℵ0 and G ⊆ P(κ) with |G| > κ, then there is an
f ∈ κω that either G or κ � G strongly cuts f .

A simple example occurs when κ = ω and G is an uncountable almost
disjoint family. Then ω �G cannot strongly cut any f . To get an f strongly
cut by G: Let G0 = G and chooseX0 ∈ G0 arbitrarily. Then choose f(0) /∈ X0

such that G1 := {X ∈ G0 : f(0) ∈ X} is uncountable. Then choose X1 ∈ G1

arbitrarily. Then choose f(1) /∈ X0 ∪X1 such that G2 := {X ∈ G1 : f(1) ∈
X} is uncountable. Etc.

Their theorem raises a number of natural questions; we mention two of
them here:

Their Problem 1 asks whether one can sometimes dispense with the
second alternative and simply prove that there is an f ∈ κω that G strongly
cuts f? Following Shelah [48] (1972), let P3(θ, λ) denote the assertion that
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there exist A of size λ and G ⊆ P(A) of size θ such that no ω-sequence from
A is strongly cut by G. Problem 1 asks whether P3(λ+, λ) holds for every
infinite λ, and Shelah proved that this is indeed true. Of course, for λ = ℵ0,
the result is in [20], using G = ω � H, where H is an almost disjoint family.
Since this is a ZFC theorem, forcing is not involved. Shelah actually shows
that μ < λ < Ded(μ) implies that P3(λ, μ) is false; here, Ded(μ) is the least
cardinal δ > μ such that no ordered set of size δ has a dense subset of size
μ. He uses a tree argument – one can view λ as the set of branches through
a tree of size μ.

Their Problem 3 asks: Suppose that G ⊆ P(ω) is uncountable. Does
there exist an f ∈ ωω such that either: f is strongly cut by ω � G, or
both f is strongly cut by G and ran(f) is a subset of some member of
G? So, in the example with the almost disjoint family, one would need
ran(f) to be a subset of some member of the family. But, they mention
that Máté had already shown that an almost disjoint family cannot be a
counter-example. We remark that if there is any counter-example G, then
by a standard absoluteness argument, it remains a counter-example in every
forcing extension of the universe that preserves ω1.

Besides [48], the papers Shelah [47] (1971) and Keisler [32] (1976) make
use of the above mentioned result from [20]. All three papers are primarily
in model theory, and study the possible values of the stability function. In
particular, [47] uses this result to show that unstability implies the order
property. Keisler [32] (1976) carries the analysis further and shows that
there are exactly six possibilities for the stability function.

6. Order Types

Paper [10] (Erdős and Hajnal, 1962) gives a complete analysis of the count-
able (total) order types. It is roughly analogous to the Cantor-Bendixson
analysis in topology.

As usual, η denotes the order type of the rationals. Of course, they
knew, by Cantor, that the only countable dense order types are η, 1 + η,
η + 1, and 1 + η + 1. An order type is called discrete or scattered iff no
subset of it is densely ordered.

First, they describe all the countable discrete order types. These are
obtained by the following process: Let O0 = {0, 1}; that is, the empty order
and the one-element order. Let Oα be the class of all ω-sums and ω∗-
sums of order types taken from

⋃{Oδ : δ < α}. This defines Oα for all
ordinals α, but it is easily seen that the process closes off at stage ω1, so
that Oω1 =

⋃{Oδ : δ < ω1}. Let O = Oω1 . It is easily seen by induction
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that all types in each Oα, and hence all types in O, are discrete. But in
fact, they show that O contains all countable discrete order types. They
seemed to be unaware of the fact that this part of their paper was known
earlier; it was published by Hausdorff [28] in 1908.

But furthermore, they show that every non-discrete countable order type
is a sum of the form

∑
d∈D Θd, where D is a densely ordered set and each

Θd is a non-empty discrete order type.

They apply their analysis of order types to partition relations. This is
more the subject of the paper by Komjáth in this volume, but briefly: The
relation Θ → (Θ,ℵ0)

2 asserts that for each partition of the pairs from a
set of order type Θ into {red, blue}, there is either a subset of order type
Θ all of whose pairs are colored red, or a subset of cardinality ℵ0 all of
whose pairs are colored blue. An earlier paper [21] (Erdős and Rado, 1956)
showed that η → (η,ℵ0)

2. It follows immediately that Θ → (Θ,ℵ0)
2 holds

for every non-discrete countable type (since Θ both contains a copy of η
and embeds into η). Also, ω → (ω,ℵ0)

2 and ω∗ → (ω∗,ℵ0)
2 are immediate

from Ramsey’s Theorem. They show in this paper that these are the only
examples; that is if Θ is a countably infinite discrete type other than ω
and ω∗, then Θ � (Θ,ℵ0)

2. This is non-trivial and makes essential use of
the inductive construction of the discrete types.

7. Geometry

Erdős contributed extensively to geometry. We discuss here only some set-
theoretic questions about Euclidean space. But, we include a few facts that
mix the geometry with measure theory and/or linear algebra.

An example of a result on linear structure is his paper with Kakutani [17]
(1943), which shows that CH is equivalent to the statement that R is a
countable union of rationally independent sets. This continues in the spirit
of Sierpiński’s book [46] (1934) on CH, to which they refer. Like many of
the results [46], this theorem of [17] can be re-phrased as a ZFC theorem: If
V is a vector space over a countable field (such as Q), then V is a countable
union of linearly independent sets iff |V | ≤ ℵ1. In any case, the ← direction
is an easy exercise but the → direction is non-trivial.

Some more purely geometric results occur in his paper [4] (1950). This
shows in ZFC that if S is an infinite subset of Rk, then there is an S′ ⊆
S with |S′| = |S| with distinct distances; that is d(x, y) �= d(z, t) unless
{x, y} = {z, t}. He points out that this is a theorem about finite dimensional
geometry, not metric spaces, since it is false for infinite dimensional Hilbert
spaces.
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He then raises the natural question of whether one could partition Rk

as
⋃

n Sn, where each Sn has distinct distances. By [17], this is false for all
k under ¬CH, and true for k = 1 under CH. For k = 2, this was eventually
shown to be true under CH by R. O. Davies [2] in 1971, and then later
Kunen [37] did it for k > 2 in 1987.

This paper [4] also has the following interesting ZFC result on the
borderline between geometry and measure theory: If H ⊆ R is a Hamel
basis, let Hk denote the set of all linear combinations from H using k or
fewer elements of H, so R =

⋃
k Hk. It was already well-known (by an

easy difference set argument) that each Hk is either Lebesgue null or non-
measurable, so that some Hk must be non-measurable. But Erdős showed,
by a sophisticated transfinite recursion, that for each k there is a Hamel
basis H such that Hk is null but Hk+1 is not measurable.

A result that combines geometry, measure theory, and linear structure
is in the 1981 paper [19] of Erdős, Kunen, and Mauldin: Assuming CH,
there is an X ∈ [R]ℵ1 such that X is concentrated on Q and N +X is a
null set for all null N . Here, “concentrated” means that X\U is countable
for all open U ⊃ Q; so MA(ℵ1) (or just b > ℵ1) implies that there are no
uncountable concentrated sets.

His paper [7](1978) is an interesting survey and opens up some new
questions. He restates his results from [17] and [4]. He notes that his
refutation under ¬CH of the above partition obtained distinct x, y, z, t, and
he posed the natural question of whether, in ZFC, one could get Rk =

⋃
n Sn,

where each Sn does not contain an isosceles triangle. This was eventually
solved affirmatively by Schmerl [44] in 1996.

This is a good example of Erdős inspiring work by others, since he
knew exactly the right questions to ask, even when he couldn’t answer them
himself.

The paper [18] (Erdős and Komjáth, 1990) contains some more results
in the spirit of the early papers [37, 44] of Kunen and Schmerl mentioned
above. [18] shows that assuming CH, one can get R2 =

⋃
n Sn, where each

Sn does not contain a right triangle. They point out that under ¬CH, this
was already known to be false, as remarked earlier in Erdős [7] (1978), but
without proof.

We next consider the three papers [6, 15, 16] (1955, 1994, 1997). Actu-
ally, Erdős died in 1996, so he never lived to see [16] published.

[15] (Erdős, Jackson, and Mauldin, 1994): Sierpiński, in his papers and
his book [46], described many equivalents of CH, many of which have a
geometric flavor. For example (see [46], p. 214): In Rn, let Li be the set
of lines parallel to the ith axis for i = 1, . . . , n. Then CH is equivalent to
the statement that R3 can be partitioned into 3 sets, S1, S2, S3, such that
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for each i and L ∈ Li, L ∩ Si is finite. Partitioning R4, replacing 3 by 4
throughout, one gets an equivalent of 2ℵ0 ≤ ℵ2.

Erdős in [6] (1955) asked whether one could get similar results by varying
the definition of the Li. In [15] there are some answers. Let Ln(= RPn−1)
be the set of all lines in Rn. Then CH is equivalent to the statement:
Whenever L3 is partitioned into three subsets, L1,L2,L3, one can write R3

as a disjoint union of sets S1, S2, S3 such that L ∩ Si is finite for i = 1, 2, 3
and L ∈ Li.

Actually, [15] has a much more general result, a special case of which is
the following. Fix s with 1 ≤ s < ω. Then the following are equivalent:

1. 2ℵ0 ≤ ℵs.

2. For all n, p ≥ 2 and all disjoint L1, . . . ,Lp ⊆ Ln, one can write Rn as
a disjoint union of sets S1, . . . , Sp such that

(∗) ∀i ∀L ∈ Li

[
|Si ∩ L| < ℵmax(0,s+2−p)

]
.

3. For some n ≥ 2 and p with 2 ≤ p ≤ s+2, and some non-parallel lines
1, . . . , p, (∗) holds if we let Li be the set of all lines parallel to i.

Note that (2) → (3) is trivial, and in (2), we would get an equivalent
statement if we required the Li to form a partition of Ln. Also, (3), in the
special case that the i are the coordinate axes and p = n, is close in spirit
to the work of Sierpiński.

[16] (Erdős, Jackson, Mauldin, 1997) considers countably infinite parti-
tions. Here, the size of c is not as important as whether MA holds. For ex-
ample, assume MA and, for n ≥ 2, assume that we have partitioned Ln into⋃

i∈ω Li. Then we can partition Rn into Si for i ∈ ω such that |L ∩ Si| ≤ 3
for each i ∈ ω and each L ∈ Li. The following are two more general results
about Rn (for n ≥ 2), assuming MA.

Theorem. Let Ln =
⋃

i∈ω Li. Then we can partition Rn as Rn =
⋃

i∈ω Si

such that |L ∩ Si| ≤ 3 for each i ∈ ω and each L ∈ Li.

The next theorem is related somewhat to two-point sets (i.e., sets that
intersect each line in exactly two points). They were first proved to exist
by Mazurkiewicz (1914).

Theorem. Fix S ⊆ Rn such that |L ∩ S| < ℵ0 for all L ∈ Ln. Then we can
partition S as S =

⋃
i∈ω Si such that |L ∩ Si| ≤ 3 for all L ∈ Ln and i < ω.

The paper also generalizes these theorems to results that replace lines
with higher dimensional hyperplanes.
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8. Free Sets

The Free Set Lemma in its current form was proved by Hajnal [25] in 1960:
If κ < λ are infinite cardinals and g : λ → [λ]<κ, then there is a free set
F ⊆ λ of size λ. Here, “free” means that α /∈ g(β) whenever α, β ∈ F and
α �= β. But Hajnal’s proof was done after partial results were proved by a
number of other people, including Erdős.

Lázár proved it in 1936 for regular λ. This proof is by now an easy
exercise in using the Pressing Down Lemma. Erdős [4] proved it in 1950 for
singular λ, assuming GCH. Finally, Hajnal [25] got a proof in ZFC. Paper
[4] was already mentioned above in the section on geometry, and there is
really no relation between the geometry results and the one on free sets; so,
the title of [4], “Some remarks on set theory”, is appropriate.

We discuss next his [5] (1954), “Some remarks on set theory III”. In fact,
eleven of his papers were similarly titled, including six [3, 4, 5, 6, 13, 20]
mentioned in this survey.

Paper [5] addresses the following question. Suppose that g : R → P(R)
and each g(x) is “small” in some sense. What can one say about the
existence of “large” free sets? Here, there is actually some relation between
the free sets and the geometry.

There are a number of examples where there need not even be a free
set of size two: One is when “small” means “|g(x)| < c”; this is easily done
by well-ordering R in type c. Another is when “small” means “g(x) is not
dense in R”; for example, let g(x) = (−∞, x). Somewhat more complicated
is the fact that if “small” means “|g(x)| < c and g(x) is not dense in R”,
then there must be a free set of size two, but there is an example where
there is no free set of size three.

He also shows (Theorem 6) that if “small” means “g(x) is nowhere
dense”, then there must be a free set of size ℵ0. Erdős says that it is not
clear if one can improve this result, even under CH. Actually, Bagemihl [1]
(1973) did improve this by showing that one can always get an everywhere
dense free set.

Theorem 6 leaves open the question of the existence of a free set of size
ℵ1 or bigger. But, this is independent.

It is false under CH by the following example: List [R]ℵ0 as {Eξ : ξ < ω1}
and list R as {xα : α < ω1}. Let g(xα) be an ω-sequence converging to xα.
Make sure that for all ξ < α, if xα ∈ Eξ\Eξ, then Eξ ∩ g(xα) �= ∅. Now,

suppose that F ∈ [R]ℵ1 is free. Fix ξ such that Eξ ⊆ F ⊆ Eξ. If α > ξ
and xα ∈ F\Eξ, then g(xα) contains a point from F\{xα}, contradicting
freeness of F .
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On the other hand, it is true if ¬CH and there is a Luzin set L of size
ℵ2 (e.g., as in the Cohen model). Then each g(x) ∩ L is countable, so one
can apply the standard Free Set Lemma to get a free subset of L of size ℵ2.

The paper [14] (Erdős, Hajnal, and Máté, 1973) relates free sets to large
cardinals and Suslin trees.

Say we have g : λ → P(λ). If κ < λ and all |g(α)| < κ, then Hajnal’s
Free Set Lemma implies that there is a free set of size λ. We cannot simply
assume that all |g(α)| < λ; the trivial counter-example being g(α) = α,
where there is no free set of size 2. But they show that if we now add
some structural restrictions on ran(g) then one can produce large free sets.
So, this is similar in spirit to the results in [5] discussed above, except that
here the restrictions do not come from geometry. Typical restrictions on a
set S ⊆ [λ]<λ are:

Condition A: For all F ⊆ λ, the set {s ∩ F : s ∈ S} has no increasing
λ-chains under inclusion �.

Condition B : Whenever τ < λ and λ =
⋃

α<τ Eα, with the Eα pairwise

disjoint and of size λ, there is an α < τ and an F ∈ [Eα]
λ such that the set

{s ∩ F : s ∈ S} has no increasing λ-chains under inclusion �.

It is easy to see that Condition A implies Condition B for regular λ.
Note that since the trivial example above is a chain, it is natural to avoid
such chains for positive results.

A typical theorem in the paper is their Theorem 3.8: Assume that λ is
regular and Condition B holds with S = ran(g). Then

1. There is a free set of size ℵ0.

2. If μ < λ and ν<μ < λ for all ν < λ, then there is a free set of size μ.

3. If λ is weakly compact, then there is a free set of size λ.

We note that (3) is similar in spirit to the equivalent of weak compactness
discussed under large cardinals (Section 2); this was from [13] (Erdős and
Hajnal, 1974). Paper [13] mentions that [14] is forthcoming and will give
some further information.

In (3), one cannot simply replace “weakly compact” by “strongly inac-
cessible”, since they point out that there is a counter-example if there is a
λ-Suslin tree. Identifying the tree with the set λ, g(x) is simply the set of
nodes below x; here, ran(g) even has the stronger Condition A. It is not
clear whether one can build a counter-example from a λ-Aronszajn tree.
But it is also unknown whether there must be a λ-Suslin tree whenever λ
is strongly inaccessible and not weakly compact; of course, this is true in L
by a well-known result of Jensen.
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9. Conclusion

This centennial volume documents the contributions of Paul Erdős to many
diverse branches of mathematics. We hope that this brief survey has shown
the broad range of his contributions within the particular area of set theory.
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Some Problems and Ideas of Erdős in Analysis

and Geometry
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I review a meager few of the many problems and ideas Erdős proposed over the
years involving a mixture of measure theory, geometry, and set theory.

1. Introduction

I have selected a few topics from Erdős’ many problems and ideas in this
area. Some were selected just for the sake of promoting them and others
because they have led to several developments and connections. Three
sources for some additional problems of Erdős in these areas may be found
in [16, 17, 19].

2. Similar Copies of Sequences

Even in his article of 1978 in [16], Erdős says he had made the following
conjecture for a long time:

Conjecture 2.1. Let {xn} be a sequence of positive numbers decreasing
to 0. Is there a Lebesgue measurable set E with positive measure which
does not contain any affine copy of the sequence?

In his lecture at the Scottish Book conference in 1979, Erdős said that the
problem has been open for so long that he should offer $100 for its solution.
He also said at that time that he didn’t think the problem was difficult.
However, this well known and much studied problem remains open. This
problem is discussed in some detail in [6] and more recently in the survey
article [35].
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3. Additive Number Theory and Effective Dimension

Erdős conjectured that to each infinite set of positive integers A, there
corresponds a complementary set B, an infinite set of positive integers B
with density 0 such that the sum set A+B contains every sufficiently large
integer. Lorentz proved the conjecture in [27]. In fact, letting A(n) be the
number of elements of A not exceeding n, Lorentz proved the following

Theorem 3.1. There is a constant c such that every infinite set A ⊂ N,
there corresponds an infinite set B ⊂ N such that A+B contains every
sufficiently large integer and for each n:

(1) B(n) ≤ c

n∑
k=1

logA(k)

A(k)
.

Inequality (1) clearly shows B has density 0. Erdős in [13] shows that
inequality (1) is the best possible if one only takes into account the rate of
increase of A(n) but not its structural properties:

Theorem 3.2. There is a sequence A of positive integers with positive lower
density such that for every complementary set B satisfies B(n) > C1(logn)

2.
This is in agreement with estimate (1).

Erdős also made an improvement if A is the set of primes. For this
set, Lorentz’s estimate yields the existence of a complementary set B with
B(n) < C2(log n)

3. Erdős shows there is some B with B(n) < C3(log n)
2.

By the way, in [13] Erdős posed the following problem.

Problem 3.3. Is there a set B of positive integers with B(n) < C4
n

logn such

that the sets B + 2k cover all but finitely many positive integers?

In [33] Ruzsa gave an affirmative answer and later in [34], he even
determined the best constant. Lorentz proceeds to prove Theorem 3.1 by
first proving a finite version of it:

Theorem 3.4. There is a constant C such that if m and n are integers,
k is a positive integer, and A is a set of integers with A ⊂ [m,m+ k) with
card(A) ≥ l ≥ 2, then there are integers b1 < b2 < . . . < bK in the interval
(n−k,n+k) such that the translates A+ bi cover the integers in the interval
(m+ n,m+ n+ k) and

(2) K ≤ Ck
log l

l
.
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The idea is to select the b′s greedily and estimate the number of steps re-
quired until the interval is covered. An immediate consequence of Lorentz’s
estimate is:

Theorem 3.5. Let n be a positive integer. If a1, . . . , al is a set of incon-
gruent residues modulo n, there is another set of residues b1, . . . , bk with

(3) k ≤ Cn
log l

l

such that each residue modulo n is of the form ai + bj .

If one would like to somehow measure the structural properties of A,
a finite set of, say, positive integers with cardinality at least 2, one could
consider what Randall Dougherty calls dencover(A), the ‘covering density
of A.’ This is defined as follows. For each n, let C(A, n) be the minimal
number of translated copies of A needed to cover [1, n] ∩ N. Then

(4) dencover(A) = lim
n→∞

card(A)C(A,n)

n
.

Clearly, dencover({1, 2, 3}) = 1. But, dencover({1, 2, 4}) = 6/5.

In another direction, Erdős, Kunen and I in [18] used Lorentz’s theorem
to prove the following:

Theorem 3.6. Let P be a nonempty perfect subset of R. Then there is a
perfect set M with Lebesgue measure zero such that P +M = R.

One could consider extensions of these theorems and ideas to groups
other than R.

P. Elias in [10] has obtained a stronger form of Theorem 3.6. Using
Kronecker’s approximation theorem, he has shown that the set M of the
theorem may be taken to be Dirichlet set. A set M is said to be a Dirichlet
set if there exists an increasing sequence of positive integers {nk} such that
the sequence of functions {sinnkx} converges uniformly to 0 on M .

Also, Lorentz’s theorem has a direct application in effective geometric
measure theory. The Kolmogorov complexity of a string σ, denoted K(σ),
is the length (in this paper we will measure length in ternary units) of the
shortest program (under a fixed universal machine) which outputs σ [26].
For a real number x, x 	 n denotes the first n digits in a ternary expansion of
x. Martin–Löf random reals have high initial segment complexity [8]; indeed
every Martin–Löf random real r satisfies limnK(r 	 n)/n = 1. This fact
conforms with our intuition that the M-L random objects do not compress
much.
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Recall some classical dimension notions. Let E ⊆ Rn. The diameter
of E, denoted |E|, is the supremum of the distances between any two points
in E. A cover G for a set E is a collection of sets whose union contains E,
and G is a δ-mesh cover if the diameter of each member G is at most δ.
For a number β ≥ 0, the β-dimensional Hausdorff measure of E, written

Hβ(E), is given by limδ→0Hβ
δ (E) where

(5) Hβ
δ (E) = inf

{∑
G∈G

|G|β : G is a countable δ-mesh cover of E

}
.

The Hausdorff dimension of a set E, denoted dimH(E), is the unique number
α where the α-dimensional Hausdorff measure of E transitions from being
negligible to being infinitely large; if β < α, then Hβ(E) = ∞ and if β > α,
then Hβ(E) = 0 [22].

The effective (or constructive) β-dimensional Hausdorff measure of a
set E, cHβ(E), is defined exactly in the same way as Hausdorff measure with
the restriction that the covers be uniformly c.e. (= computably enumerable)
open sets [8, Definition 13.3.3]. This yields the corresponding notion of the
effective (or constructive) Hausdorff dimension of a set E, cdimHE.

Lutz [28] showed that constructive dimension of a set is determined by
the constructive dimension of its points:

(6) cdimHE = sup{cdimH{x} : x ∈ E},

and from work of Mayordomo [32](≥) and Levin [25](≤) (also see [8]) we
have for any real number x,

(7) cdimH{x} = lim inf
n→∞

K(x 	 n)
n

.

We define the constructive dimension of a point x to be the effective Haus-
dorff dimension of the singleton {x}. In [7], Lorentz’s theorem plays a
central role in the proof of the following.

Theorem 3.7. Let C be the standard middle-third Cantor set. For any α
satisfying 1− dimH(C) ≤ α ≤ 1, and for any Martin–Löf random r ∈ [0, 1],
we have

dimH((C + r) ∩ E=α) = dimH((C + r) ∩ E≤α) = α− 1 + dimH(C),

where E=α consists of all real numbers with constructible dimension α and
E≤α is the set of reals of dimension at most α.
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The constructive dimension of (C + r) ∩ E=α) is α whereas the Haus-
dorff dimension of this set is α− 1 + dimH(C). This means that for a given
M-L random real r there are many points x in the Cantor set which can-
cels the randomness of r, i.e., x+ r has lower constructive dimension; the
initial strings of r + x have a factor less Kolmogorov complexity than the
corresponding initial strings of r.

It seems that we have just begun to delve into the possibilities in this
direction. For example, one could investigate analogues of Theorem 3.7 for
other totally disconnected self similar or self conformal sets in R or Rn.

4. Dimension of Subgroups and Rings

Erdős and Volkmann in [15] proved the following theorem.

Theorem 4.1. For each α with 0 < α < 1, there is an additive Borel sub-
group of the reals with Hausdorff dimension α.

Several proofs of this fact have now been given. They all involve some
set of numbers which are well approximated by rationals. For example,
(see [22]), fix 0 < α < 1 and let nk be a sequence of positive integers which
increases sufficiently rapidly. Let

(8) x ∈ G ⇐⇒ ∃M ∀ k ∃ integer p :

∣∣∣∣x− p

nk

∣∣∣∣ < M

nα
k

.

Clearly, G is an additive subgroup of R and it can be shown that
dimH(G) = α. However, if one asks about subrings of R, Edgar and Miller
[9] showed the answer is quite different.

Theorem 4.2. If the Borel set F is a subring of R, then either dimH(F ) = 0
or dimHF = 1.

In fact, Edgar and Miller show that

Theorem 4.3. If the Borel set F is a subring of C, then either dimH(F ) = 0
or F = R or F = C.

Independently, Bourgain [1] also proved Theorem 4.2 by more delicate
quantitative methods. This leads to the following problem.

Problem 4.4. For which α other than 0, 1 or 2 are there subrings of R or
C with Hausdorff dimension α?
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This is really a question about transfinite constructions. Things are not
so clear for other rings. Consider the example of D. Goldstein.

Example 4.5. Let the Borel set G be an additive subgroup of R with
dimH(G) = α. Let F consist of all 2× 2 matrices M of the form

M =

[
m x
0 n

]
,

where x ∈ G and m,n ∈ Z.
Then for any matrix norm, we have for the Borel subring F , dimH(F )

= α.

Thus, for every α with 0 ≤ α ≤ 1, there are Borel subrings of the space
of 2× 2 matrices with dimension α. But we don’t know the answer for
larger α.

Problem 4.6. For which α > 1 does the space of 2× 2 real valued matrices
have a (Borel) subring with Hausdorff dimension α? Of course, one can
consider this problem in a more general context.

Buhler, Butler, de Launey and Graham in [5] investigated ‘Origami
rings’ in C generated as follows. Let Lα(p) be the line in the complex plane
through p with angle α. Given a collection U of angles, let R(U) be the
points that can be obtained by starting with 0 and 1, and then recursively
adding intersection points of the form Lα(p) ∩ Lβ(q), where p, q have been
already been generated, and α, β are in U and the lines are distinct. For
each n, let Un be the group of the n equally spaced angles kπ/n, 0 ≤ k < n.
They characterize the subrings of C generated by the finite subgroups U
where 3 ≤ card(U) as follows.

Theorem 4.7. Let n ≥ 3. If n is prime, the R(Un) = Z[ζn], the cyclotomic
integer ring. If n is not a prime, then R(Un) = Z[1/n, ζn], the cyclotomic
integer ring localized at the primes dividing n. Moreover, if n > 3, then
R(Un) is dense in the plane.

This led Goldstein and I to construct uncountable subgroups G of the
circle group which are the union of countably many compact sets each with
box counting dimension 0. (Actually, such subgroups had been constructed
much earlier by Laczkovich and Ruzsa in [29].) It follows from this that the
subring of C generated by G still has Hausdorff dimension 0. This leads to
the following problem.

Problem 4.8. Is there a subgroup G of the circle group with dimH(G) = 0
such that G is not the union of countably many sets with lower box counting
dimension 0 and yet the ring generated by G still has dimension 0?
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5. Sets Containing the Vertices of a Triangle of Area 1

Many years ago Erdős noted that if E is a Lebesgue measurable subset of
the plane with infinite measure, then for every c > 0, E contains the vertices
of a triangle of area c. As several people have noted, this remains true if E
has positive measure and is unbounded.

In [16] and again in [17, 19], Erdős poses what he said was an interesting
and perhaps difficult problem, even though, as far as I know, he never did
offer any money for its solution.

Problem 5.1. Is there a finite constant C such that if a Lebesgue measur-
able set E has measure greater than C, then E contains the vertices of a tri-
angle of area 1? Moreover, is it true that the best constant is c0 = 4π/3

√
3,

the area of the disk such that the area of the inscribed equilateral triangle
is 1?

Chris Freiling and I have studied this problem. Using some standard
approximations in measure theory, Erdős’ problem is equivalent to the
following problem.

Problem 5.2. Is there a finite constant c such that for every n ∈ N if E is
the union of the interiors of no more than n compact convex sets and E has
measure greater than c, then E contains the vertices of a triangle of area 1.
Moreover, is c0 the best possible constant?

We showed in [30] that the constant c0 is the best possible if n is 1.
I reiterate the argument here. Suppose one has then a compact convex
set K of positive area which is “small” meaning K does not contain the
vertices of a triangle of area greater than 1. If one takes a line l, then the
Steiner symmetrical of K about l has the same area as K and also does
not contain the vertices of a triangle of area greater than 1. There is a
sequence Km, each of which is obtained by iterating the process of taking
Steiner symmetrizations of K about a finite number of lines through the
origin which converges to the closed disk centered at the origin with the
same area as K, (see [36]). From this, it follows that the area of K is no
more than c0. So, Erdős’ conjecture is true if n = 1.

Let E be the union of the interiors of the compact convex setsK1, . . . ,Kn

and suppose E does not contain the vertices of a triangle of area 1. Then
the area of any triangle whose vertices belong to two of the sets Ki must be
no more than 1. If i, j, k are different, then either the area of every triangle
with one vertex from each of Ki, Kj , Kk is at most 1, or the areas of all
such triangles is at least 1.
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For n = 2, c0 is still the best constant. If we have two compact convex
bodies K1 and K2 such that their union does not contain the vertices of
a triangle of area greater than 1, then their compact convex hull doesn’t
either, (see [30]).

Even for n = 3, Freiling and I argue c0 is the best constant. Suppose
E = E1 ∪ E2 ∪ E3, where each set Ei is the interior of a compact convex
set Ki. If E1, E2, and E3 form a “small” triple, i.e., the area of every
triangle with its vertices in different sets Ei has area less than 1, then since
their closed convex hull would have no triangle with area greater than 1
(see [30]), we are reduced to the case n = 1. On the other hand, if E1, E2,
and E3 form a “large” triple, we use the following redistribution of mass
argument. Let us suppose K1 has the smallest area of the three bodies.
There must be a line L which supports both K2 and K3 such that K2 and
K3 lie in one half plane determined by L and K1 lies in the interior of
the other half plane. Let A ∈ L ∩K2 and B ∈ L ∩K3. Let C ∈ K1. The
triangle with vertices A,B and C must have area at least 1. Let us take
lines l parallel to L and cutting the interior of both K2 and K3. The line l
intersect K2 in points A1 and A2 and meets K3 in points B1 and B2, where
A2 and B1 are closer together than A1 and B2. Since the area of triangle
A1A2C is no more than one and the area of triangle A2B1C is at least 1,
‖A1 −A2‖ ≤ ‖A2 −B1‖. Similarly, ‖B1 −B2‖ ≤ ‖A2 −B1‖. This is so for
lines l until we reach a line that is a support line to either K2 or to K3.
In either case, this implies the area we have swept out between K2 and K3

is at least the area of the smaller of the areas of K2 and K3 and therefore
the area is at least as large as the area of K1. So, if we replace the three
bodies K1, K2, and K3 with the single body formed by K2, K3 and the area
between them, we are back to the case n = 1.

The case n = 4 is still open.

6. Partitions of Lines and Planes

In generalizing a result of Sierpinski, Erdős in [14] proved the following.

Theorem 6.1. The following two statements are equivalent:

(1) CH, the continuum hypothesis holds: 2ω = ω1.
(2) If the lines in R2 (R3) are colored with 2 colors, then there exists a

coloring of R2 (R3) with the same colors such that each line contains
only countably many points with its color.

Erdős, Jackson and I in [20] answered one of Erdős’ question in [14] by
proving the following.
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Theorem 6.2. The following two statements are equivalent:

(1) CH, the continuum hypothesis holds: 2ω = ω1.
(2) If the lines in R2 (R3) are colored with three colors, then there exists

a coloring of R2 (R3) with the same colors such that each line contains
only finitely many points with its color.

These results and several others involving flats in Rn, n ≥ 2 are discussed
in [30]. Recently, Humke and Laczkovich used Erdős’s original result to
show that assuming CH holds there are subsets of the plane with some
very unusual linear density properties [23]. One can imagine that there are
several other types of strange examples using other partition results.

7. Exact Dimension of Continued Fractions Using Only

the Primes

In [31], Urbanski and I studied SI , the set of continued fractions of the form

1

b1 +
1

b2 +
1

b3 +
1

. . .

where I is a fixed subset of N and each bn ∈ I. We developed a pressure
function which allowed us to determine the Hausdorff dimension α = αI

of SI . We showed that for those sets I for which the pressure function has
a zero, there is a natural conformal probability measure supported on SI

and a corresponding Gauss measure, a measure supported on SI equivalent
to the conformal measure and which is invariant under the shift map on SI .
Using further properties such as the generalized density of I we found some
conditions to determine whether Hα(SI) is 0, positive and finite, or ∞. We
also found some conditions such as some properties of the gaps in I which
help to determine whether the α-dimensional packing measure Pα(SI) is 0,
positive and finite, or ∞. For example, if p ≥ 2 and I = {np : n ∈ N}, then
0 < Hα(SI) < ∞ and Pα(SI) = ∞. On the other hand, if I has bounded
gaps, then Pα(SI) < ∞. If I is the set of primes, using Erdős’ theorem that
there are arbitrarily large two sided gaps in the sequence of primes [11],
we showed that there is a conformal measure and a corresponding Gauss
measure for this system, and yet 0 = Hα(SI) and Pα(SI) = ∞. A natural
question which we posed in [31] is:
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Problem 7.1. Let S be the set of all standard continued fractions of the
form

1

b1 +
1

b2 +
1

b3 +
1

. . .

where each bi is a prime. Is there a Hausdorff gauge function g of the form
g(t) = tαL(t), where L(t) is slowly varying such that 0 < Hg(S) < ∞?

If I is a finite subset of N or if I = N, then both Hα(SI) and Pα(SI) are
positive and finite. We also don’t know the answer to the following problem:

Problem 7.2. Is there a proper infinite subset I of N such that bothHα(SI)
and Pα(SI) are positive and finite?

I wish to thank Miklos Laczkovich for his help in preparing this paper.
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Majorant Principles

HUGH L. MONTGOMERY

Dedicated to Erdős Pál on his centenary

In this short historical note, we discuss an important majorant principle intro-
duced by Erdős & Fuchs [1].

1. Introduction

Let R(x) be defined by the relation

(1.1)
∑
a,b∈Z

a2+b2≤x

1 = πx+R(x).

It is classical (see Hardy [4]) that

(1.2) R(x) = Ω
(
(x log x)1/4

)
.

This is shown by using what amounts to a Fourier expansion of R(x).
Erdős & Turán [2] considered the more general problem of counting sums
of two members of a given sequence of non-negative integers. Suppose that
a1 ≤ a2 ≤ · · · is a sequence of non-negative integers, and letRA(x) be defined
by the relation

(1.3)
∑
j,k

aj+ak≤x

1 = cx+RA(x)

where c is a suitable positive constant. Erdős & Turán conjectured that
there is no sequence {aj} for which RA(x) = O(1). This was emphatically
confirmed by Erdős & Fuchs [1], who showed that

(1.4) RA(x) = Ω
(
x1/4/(log x)1/2

)
.
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This is amazingly close to (1.2), considering that {aj} is an arbitrary se-
quence. Subsequently, Jurkat (unpublished), Hayashi (unpublished, but
see [5]) and Montgomery & Vaughan [7] by three different methods have
shown that

(1.5) RA(x) = Ω
(
x1/4

)
.

Our focus on this occasion is not the Erdős–Fuchs theorem itself, but
rather an important lemma that they introduced in their work. Suppose
that f ∈ L1(T) with Fourier coefficients

f̂(n) =

∫ 1

0
f(x)e(−nx) dx

where e(θ) = e2πiθ is the complex exponential with period 1. Suppose also

that f̂(n) ≥ 0 for all n, and that
∑∞
−∞ f̂(n) < ∞. The Erdős–Fuchs lemma

asserts that

(1.6)

∫ θ

−θ
|f(x)|2 dx � θ

∫ 1

0
|f(x)|2 dx

for any θ ∈ (0, 1/2]. This lemma, and others like it, proved using the same
ideas, are very useful. At the same time, and independently, Wiener &
Wintner [9],[8, pages 758–764] showed that if F (s) is the Laplace transform
of a nonnegative function, convergent for �s > 1, then for any σ > 1, a > 0,
ε > 0 we have

(1.7)

∫ a

−a
|F (σ + it)|2 dt ≤ (8[a/ε] + 1)

∫ ε

−ε
|F (σ + it)|2 dt.

This paper is rather poorly written, which makes the editorial notes of
Bateman and Diamond [8, pages 788–790] especially valuable. In the same
vein, Halász [3] showed that if |bn| ≤ an for all n, and if

∑∞
n=1 an/n

σ < ∞,
then

(1.8)

∫ T0+1

T0−1

∣∣∣∣ ∞∑
n=1

bn
nσ+it

∣∣∣∣2 dt � ∫ 1

−1

∣∣∣∣ ∞∑
n=1

an
nσ+it

∣∣∣∣2 dt
uniformly in T0. The following polished form (due to Wirsing) of this
principle implies all these results.
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Theorem. Suppose that |bn| ≤ an for all n, that
∑∞

n=1 an < ∞, and that
λ1, λ2, . . . are real numbers. Then

(1.9)

∫ T

−T

∣∣∣∣ ∞∑
n=1

bne(λnt)

∣∣∣∣2 dt ≤ 3

∫ T

−T

∣∣∣∣ ∞∑
n=1

ane(λnt)

∣∣∣∣2 dt.
Logan [6] has shown that the constant 3 is best-possible.

By applying the above with bn replaced by bne(λnT0), we see that the
above implies that

(1.10)

∫ T0+T

T0−T

∣∣∣∣ ∞∑
n=1

bne(λnt)

∣∣∣∣2 dt ≤ 3

∫ T

−T

∣∣∣∣ ∞∑
n=1

ane(λnt)

∣∣∣∣2 dt
for all real T0. The special case of this with bn = an is noteworthy:

(1.11)

∫ T0+T

T0−T

∣∣∣∣ ∞∑
n=1

ane(λnt)

∣∣∣∣2 dt ≤ 3

∫ T

−T

∣∣∣∣ ∞∑
n=1

ane(λnt)

∣∣∣∣2 dt.
This clearly implies the Erdős–Fuchs lemma (1.6). While our Theorem is a
little more flexible, its proof involves only ideas already found in the Erdős–
Fuchs proof.

2. Proof of the Theorem

Let K(t) = max(0, 1− |t|/T ). Then K ∈ L1(R), and

K̂(u) = T

(
sinπTu

πTu

)2

≥ 0.

Thus ∫ T

−T
K(t)

∣∣∣∣ ∞∑
n=1

bne(λnt)

∣∣∣∣2 dt = ∞∑
m=1

∞∑
n=1

bmbnK̂(λn − λm)(2.1)

≤
∞∑

m=1

∞∑
n=1

amanK̂(λn − λm)

=

∫ T

−T
K(t)

∣∣∣∣ ∞∑
n=1

ane(λnt)

∣∣∣∣2 dt.
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By replacing bn by bne(λnT0), it follows that

(2.2)

∫ T0+T

T0−T
K(t− T0)

∣∣∣∣ ∞∑
n=1

bne(λnt)

∣∣∣∣2 dt ≤ ∫ T

−T
K(t)

∣∣∣∣ ∞∑
n=1

ane(λnt)

∣∣∣∣2 dt
for any real T0. But

K(t+ T ) +K(t) +K(t− T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 (t ≤ −2T ),

t+ 2T (−2T ≤ t ≤ −T ),

1 (−T ≤ t ≤ T ),

2T − t (T ≤ t ≤ 2T ),

0 (t ≥ 2T ).

Since this majorizes the characteristic function of the interval [−T, T ], it
follows that the left hand side of (1.9) is

≤
∫ 2T

−2T

(
K(t+ T ) +K(t) +K(t− T )

)∣∣∣∣ ∞∑
n=1

bne(λnt)

∣∣∣∣2 dt.
By three applications of (2.1) it follows that the above is

≤ 3

∫ T

−T
K(t)

∣∣∣∣ ∞∑
n=1

ane(λnt)

∣∣∣∣2 dt ≤ 3

∫ T

−T

∣∣∣∣ ∞∑
n=1

ane(λnt)

∣∣∣∣2 dt.
This completes the proof.
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[3] G. Halász, Über die Mittelwerte multiplicativer zahlentheoretischer Funktionen,
Acta Math. Acad. Sci. Hungar. 19 (1968), 365–403.

[4] G. H. Hardy, On the expression of a number as a sum of two squares, Quart.
J. Math. 46 (1915), 263–283.



L2 Majorant Principles 381

[5] E. K. Hayashi, Omega theorems for the iterated additive convolution of a non-
negative arithmetic function, Ph.D. Thesis, University of Illinois at Urbana–
Champaign, 1973.

[6] B. F. Logan, An interference problem for exponentials,Michigan Math. J. 35 (1988),
369–393.

[7] H. L. Montgomery & R. C. Vaughan, On the Erdős–Fuchs theorems, A Tribute to
Paul Erdős. Cambridge University Press, 1990.

[8] Norbert Wiener, Collected Works with Commentaries, Vol. II, MIT Press, 1979.

[9] N. Wiener & A. Winter, On a local L2-variant of Ikehara’s theorem, Rev. Math.
Cuyana 2 (1956), 53–59.

Hugh L. Montgomery

Department of Mathematics,
University of Michigan,
Ann Arbor,
MI 48109–1043,
USA

e-mail: hlm@umich.edu



BOLYAI SOCIETY Erdős Centennial
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A Combinatorial Classic – Sparse Graphs with

High Chromatic Number

JAROSLAV NEŠETŘIL∗

Remembering dědeček Paul Erdős

1. Introduction

It seems that combinatorics, and graph theory in particular, reached math-
ematical maturity relatively recently. Perhaps as a result of this there are
not too many essential stories which have determined the course of the sub-
ject over a long period, enduring stories which appear again and again as a
source of inspiration and motivate and challenge research.

In this article we attempt to demonstrate one example of such a story
which we believe motivated some of the key parts of modern combinatorics.
(Of course there are other stories, see for example [59].) Moreover the
main result is related to the central theme of this book – the work and
mathematical legacy of Paul Erdős.

Let G = (V,E) be an (undirected) graph. We need to recall only a few
facts and definitions. The chromatic number χ(G) of G is the minimal
number of classes (“colors”) of a partition of V into independent sets. A set
A ⊆ V is called independent if it doesn’t contain any edge. The maximal
size of an independent set is denoted by α(G). It is obvious that

(1) α(G) · χ(G) ≥ |V |
holds for every graph G.

This leads to the lower bound

(2) χ(G) ≥ |V |
α(G)

,

∗Partially supported by the Project LL1201 ERCCZ CORES and by CE-ITI
P202/12/G061 of GACR.
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which is one of the very few lower bounds available for the chromatic
number.

It is a classical (and folklore) result that a graph has chromatic number
≤ 2 iff it doesn’t contain a cycle of odd length. An even easier statement is
that a forest (i.e. a graph without any cycle) has chromatic number ≤ 2.

The minimal length of a cycle in G is called the girth of G and denoted
here by girth(G). The central result of this paper has the following innocent
form:

Theorem 1 (Erdős [23]). For every choice of positive integers k and l there
exists a graph Gk,l = G with the following properties:

1) χ(G) ≥ k;
2) girth(G) > l.

Thus the absence of a short cycle (of length ≤ l) cannot guarantee
bounded chromatic number. By interpreting the chromatic number as a
dimension or as a measure of complexity we see that Theorem 1 claims that
there exists high dimensional (or highly complex) graphs which are locally
as trivial as forests (i.e. graphs without any cycles) can be. An old saying
existing in several languages is very fitting here: We do not see the wood
for the trees! Yes, these are paradoxical objects.

Theorem 1 is both a culmination of long development and the start of
important consequent research and methods. The literature is large and we
find Theorem 1 in most books dealing with graphs. With various proofs
one can find it in many combinatorial graph theory books and particularly
in books relating to probabilistic methods in combinatorics, see e.g. [11],
[5], [39], [13], [21], [63], [10], [57]. In this survey we concentrate on various
structural extensions and theoretical implications of Theorem 1 (and we
indicate various proof methods).

2. Early Constructions

Theorem 1 was proved in 1958 by Erdős in his seminal paper [23]. But al-
ready at that time this result was firmly based in advanced combinatorics
and it also had an interesting history. Let us review it briefly for complete-
ness from a contemporary perspective.

The first nontrivial instance of Theorem 1 is the case l = 3. In this form
claims the existence of a triangle free graph Gk,3 with χ(Gk,3) > k. This
was proved independently by W. Tutte (alias Blanche Descartes) [20] and
A. Zykov [92]. The proofs are constructive and can be visualised as follows:
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Here is a more formal sketch: We proceede by induction on k. Given
G = Gk,3 with n vertices we consider a set X with k(n− 1) + 1 vertices
and for every subset Y ⊆ X, |Y | = n we take an isomorphic copy GY of G
every vertex of which is joined by a matching EY to Y . Denote by Gk+1,3

the graph consisting of all edges in all graphs GY , Y ⊆ X, |Y | = n, and all
matchings EY . It is easy to see that Gk+1,3 has no triangles and, assuming
χ(Gk,2) ≥ k, we get χ(Gk+1,3) ≥ k + 1.

Tutte’s construction is a prototype of many subsequent proofs and vari-
ants, as we shall see in Sections 4 and 5. Let us give some further con-
structions of triangle-free graphs (i.e. l = 3), most of which are regarded as
classical.

Note that already in [43] it was observed that the above inductive con-
struction does not even create cycles of length ≤ 5. However this remained
the best result (with respect to girth l) until [23].

Another early construction for l = 3 was provided by [66]. The con-
struction proceeds again by induction on k: In each step we create a sibling
x′ for every vertex x and join x′ to a vertex y if and only if x and y are
joined. Then we add a (universal) vertex joined to all the siblings vertices
produced. Call the resulting graph M(G) (Mycielskian of G). M(G) has no
triangle and χ(M(G)) = χ(G) + 1. (Thus from K2 we obtain C5 and from
C5 the Grötzsch graph.)

An interesting variation of this construction of graphs Gk,3 is to iterate
siblings. By this we mean that every vertex has siblings x1, . . . , xt and
sibling xi+1 is joined to those siblings y for which {x, y} ∈ E. A universal
vertex is then joined to all siblings xt. These graph (and their variants)
were studied in [32], [87], [8].

One of the simplest constructions is provided by the shift graphs Sn:
the vertices of Sn are all pairs (a, b) of integers 1 ≤ a < b ≤ n with edges
formed by pairs (a, b)(b, c). Clearly Sn has no triangle (but contains large
complete bipartite graphs) and χ(Sn) = log n�. These remarkable graphs
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are important in the infinite case as well and they can be traced to Erdős-
Specker graphs [28].

Other early constructions of triangle-free graphs with high chromatic
number are geometrical (distance graphs, see already [27]). A particularly
elegant combinatorial geometric construction [19] was discovered in the
context of computational complexity:

We consider the set of all flags (i.e. all incidence pairs (p, L)) in a
projective plane of order k with an arbitrary linear ordering <. These are
the vertices of our graph G. Vertices (p, L) and (p′, L′) will form an edge of
G if (p, L) < (p′, L′), all p, L, p′, L′ are distinct, and if p ∈ L′. This graph
has no K3, and it can be shown that α(G) ≤ k+1. Thus χ(G) ≥ k2 + k+1
as G has (k2 + k + 1)(k + 1) vertices.

Another by now classical example is provided by Kneser graphs. The
Kneser graph K

(n
p

)
has as vertices all p-element subsets of [n] = {1,2, . . . , n}.

Edges of K
(
n
p

)
are formed by pairs of disjoint sets. In (another) landmark

paper [56] Lovász proved that χ
(
K
(
n
p

))
= n− 2p+ 2. This (lower bound)

was achieved by relating the coloring problem to algebraic topology. This
powerful tool found many applications (see Matoušek’s book [61] devoted
to this subject). This is clearly an “advanced” construction (with which we
deal in the next section) but it is related to girth 4 only. It follows that

the Kneser graphs K
(
2m+k−2

m

)
(for any m) provide another nice example in

playing the role of Gk,3.

All these constructions have been thoroughly studied. Any new con-
struction (such as [19] or [49]) is welcome with high hopes and then in-
vestigated thoroughly (see e.g. [8], [46] [32], [87]). But all these old-new
constructions, which we have not listed exhaustively, are related to small
girth. Indeed very small: l ≤ 6 and mostly even l = 3. One should stress
that the odd girth condition (i.e. the absence of short odd cycles) is in the
context of chromatic number a much easier condition than the girth. Rect-
angles present a problem and there are structural reasons for it (see more
on that in the last section).
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3. Erdős Theme

Theorem 1 for l = 3 (i.e. the existence of triangle-free graphs with large
chromatic number) provided only one part of the motivation for Erdős’ proof
for general l. The other motivation (and certainly at that time for Erdős
more important motivation) was the setting which relies on the inequality
(2) and relates to Ramsey theory [30]. It is interesting to follow [23]:

Denote by r(k, 3) the minimal number of vertices n such that every
triangle-free graph Gn with n vertices contains an independent set of size k.
Formally,

r(k, 3) = min{n; either K3 ⊆ Gn or α(Gn) ≥ k}.

Erdős proved in [23] that r(k, 3) > k1+1/6, which using (2) implies that
there are graphs Gk,3. The asymptotic behavior of Ramsey numbers r(k, 3)
was determined in a sequence of important papers [44], [1],

c1
k2

log k
≤ r(k, 3) ≤ c2

k2

log k
,

and gave rise to Rödl’s nibble, or semi-random methods [85], [5], [41]. The
numbers r(k,3) were the first asymptotically known Ramsey numbers (since
then there have been others, see [3], [4]).

Returning to the history of Theorem 1, Erdős made a stronger statement:

Theorem 2 [23]. Let l be fixed, let 0 < η < 1
2l . For every sufficiently large n

there exists a graph G = (V,E) with n vertices and the following properties:

1) girth(G) > l;
2) α(G) < n1−η.

(Note that this not only implies Theorem 1 but proves further that
χ(G) > nε.)

The proof of Theorem 2 is probabilistic and in fact it may be viewed as
the cradle of the probabilistic method [88]. Nowadays it is found in every
good graph theory book. Here is a very brief sketch:

We consider a random graph G with n vertices and n1+ε edges, ε = 2η,
and prove that almost all such graphs satisfy 2) and that they contain o(n)
edges in cycles of length ≤ l. They can then be deleted while 2) still holds.
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Putting it more poetically: A thin soup of n1+ε edges on n points
contains (on average) few cycles but still shares some properties of the
complete graph, namely small independence number.

How to depict this proof? Like a soup.

The proof of Theorem 2 has many variants and many more problems
were solved by this method. Continuing in our line, for example, Erdős and
Hajnal [25] generalized the result to hypergraphs as follows:

A p–uniform hypergraph is a pair (X,M), where M ⊆
(
X
p

)
= {M ;M ⊆

X, |M | = p}. Elements of M are still called edges. A cycle in (X,M) and
its length and girth are defined analogously as for graphs; a cycle of length 2
is formed by any pair of edges which intersect in (at least) 2 points.

Hypergraphs without 2-cycles are called simple (or linear).

The chromatic number χ(X,M) is defined analogously as for graphs: it
is the minimal number of colors needed in a coloring of vertices so that no
edge is monochromatic (this seems to be the most common definition of the
chromatic number for hypergraphs; of course there are other possibilities).

Theorem 3 [25]. Let p ≥ 2, k, l be positive integers. Then there exists a
p-uniform hypergraph Gp,k,l = (X,M) such that

1) χ(X,M) ≥ k;
2) girth(X,M) > l.

The probabilistic proofs of Theorems 2 and 3 are similar. Yet the
connection between these two statements provide some challenging open
problems (as we shall stress at several places in this article).
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4. Advanced Constructions

Already in Erdős’ paper [23] the question about a constructive proof of
Theorem 1 is raised. The progress has been very slow here. The l = 6
barrier was broken only a decade later [67] and there were speculations
about the untractability (in some sense) of the problem. Even from today’s
point of view there is no easy (and elementarily justified) construction of a
graph, say, G4,27.

The first constructive proof of Theorem 1 was obtained by Lovász [55].
His striking proof is based on proving (the more general) Theorem 3, i.e. the
existence of the hypergraph Gp,k,l. The proof proceeds by double induction
on p and l (for a fixed k) and is too complicated to be explained here.

Another construction was provided in [77]. This is an outgrowth of
structural Ramsey theory. It is called partite construction or amalgamation
construction [80],[74], [75], [73] and in the structural Ramsey theory it
seems to be one of the basic methods for obtaining structural results. The
partite construction when applied to coloring of vertices is indicated by the
following:

Here is a very rough sketch: Put a = (p− 1)(k − 1) + 1. We start with

a system (V,M) of p-tuples which are organised on the set V =
a⋃

i=1
Vi, (the

Vi are disjoint sets called parts), in such a way that for any p-tuple of parts

Vi1 , . . . , Vip there exists an edge M ∈ M with M ⊆
p⋃

j=1
Vij . We call this the

partite system P0.

In the inductive step we assume that we are given a partite system
Pi−1 = (V,M) with V = V1 ∪ · · · ∪ Va. Put |Vi| = P and apply induction to
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get system (Y,N ) with properties (P, k, l − 1). Now extend (like in Tutte’s
construction) every N ∈ M to a copy of Pi−1 while keeping the distribution
to parts. One then proves (see [38] for more details) that Pa has properties
of Gp,k,l.

In a way the partite construction is a multipartite generalization of
Tutte’s construction. (The situation is not so straightforward for Ramsey
theory and the amalgamation is more complicated.)

However for both Lovász’s construction and as well as for the partite
construction the size of the constructed (hyper)graph is not bounded by a
tower function of bounded height. Even the (somewhat less precise) question
whether one can prove Theorem 1 without referring to Theorem 3 was asked
(and answered positively in [49]). Further variants of constructions of graphs
Gk,l are given in [50] and more recent [89].

One should stress that the size of the graphs Gk,l is not merely a
combinatorial question. The graphs Gk,l are closely linked to special graphs
used in the theory of algorithms and complexity theory. In particular,
expander graphs (see for example extensive) [38] form a cornerstone of the
modern theory of computing (see for example Ajtai-Komlos-Szemeredi [2]).
One can see easily that large d-regular expander graphs with girth l may be
used to construct graphs Gk,l.

A polynomial size construction of expanders, and thereby of graphs
Gk,l, came as a real surprise from a different corner of mathematics as
a combination of mainly harmonic analysis, number theory and algebraic
graph theory. The resulting graphs, often called Ramanujan graphs defined
by Margulis [60] and Lubotzky, Phillips and Sarnak [58], are fascinating in
their own right.

There is a large literature (an interested reader may consult a survey
article [38] and references given there) and several books. For completeness
we state the main consequence for the context of this paper:

Let p, q be primes with Legendre symbol (pq ) = 1, q sufficiently larger

than p. Then there exists a graph Xp,q = (V,E) (we preserve the standard
notation of these graphs) with the following properties:

1) |V | = n = q(q2 − 1)/2. (The vertex set of Xp,q is the set of points of
the projective linear group PSL2(q));

2) Xp,q is (p+ 1)-regular;
3) girth(Xp,q) ≥ 2 logp q;

4) α(Xp,q) ≤ 2
√
p

p+1n;

5) χ(Xp,q) ≥ p+1
2
√
p .
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Hence Xp,q can be chosen as an example of graph Gk,l with at most k3l

vertices.

This whole area is a source of many applications (and beautiful mathe-
matics) which exceeds the scope of this paper. But in passing let us stress
that no full analogy of graphs Xp,q is known for hypergraphs (see for exam-
ple recent [54]). In particular, no small explicit construction of hypergraphs
is known. The best result here is the work of G. Kun [51], where he con-
structs hypergraphs Gp,k,l with number of vertices bounded by a primitive
recursive function of p, k, l. This construction uses a “twisted” product to
reduce the number of short cycles in a constructed hypergraph. One proves
that this is a polynomial process, yet randomized at each step.

A fully deterministic small (or even bounded by a tower function of
bounded height) construction of hypergraphs Gp,k,l is still an open prob-
lem. Admittedly, however the derandomization techniques and advances of
theoretical computer science make the “constructive questions” less clear
(and probably less important too) than they were in the 1960s.

5. Random Placement Construction

Here we present perhaps the simplest probabilistic proof of both Theorem
1 and 3 (however not Theorem 2). Surprisingly, this proof seems to be a
little known. We need the following lemma [72].

Lemma 4. Fix p ≥ 3, l ≥ 3 positive integers. For any ε > 0 there exist
n0(p, l, ε) such that for every n ≥ n0(p, l, ε) there exists a p-uniform hyper-
graph H(n, p, l, ε) = (X,M) with the following properties:

1) |X| = n;
2) |M| ≥ n1+ε;
3) girth(X,M) ≥ l.

This (for graphs) is the easier part of Erdős proof of Theorem 2: one con-
siders (for large n) random k-uniform hypergraph (X,M), X = {1,2, . . . , n}
with m = 2n1+ 1

ε � edges. It is easy to prove that for these values of m, the
average number of edges in a cycle of length < l is o(n). Taking a witness
(X,M) of this inequality and by deleting the corresponding edges in short
cycles we get the desired hypergraph H(n, p, l, ε).

However simple this lemma has many consequences.

Proof of Theorem 3 ([72]). Let p, k, l be fixed. Put P = (p−1)(k−1)+1
and consider H(n, P, l, ε) = (X,M) as in Lemma 4. Let H be the class of
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all p-uniform hypergraphs (X,N ) where every M ∈ M contains exactly one

edge N ∈ N (i.e. we assume |N ∩
(
M
p

)
| = 1 for everyM ∈ M). Every (X,N )

obviously has girth ≥ l. H is a large set: |H| = an
1+ε

where a =
(
P
p

)
.

However, given a partition π of X by (k − 1) colors we have only at

most (a− 1)n
1+ε

hypergraphs in H for which π is a coloring of (X,N ) (with

no monochromatic edge). Thus there are at most (k − 1)n(a− 1)n
1+ε

<

an
1+ε

= |H| hypergraphs in H with chromatic number < k. Thus there
exists a witness for Theorem 3.

In this way the desired high chromatic large girth hypergraph is con-
structed by randomly replacing edges of M (i.e. P -tuples) with copies of
a fixed hypergraph H0. In this proof H0 is a hypergraph with P vertices
containing a single edge (p-tuple).

The above random placement construction is very flexible. Satisfaction
of the difficult condition on the girth is inherited from H(n, p, l, ε) and the
chromatic number follows by the above easy counting argument. We have
tried to illustrate it by following figure:

Yet another application is given in [72]. This is related to recent work
on ergodic properties of topological subgroups of Sω. The combinatorial
part of this development is motivated by the following definition which
originated in structural Ramsey theory. We formulate it for graphs (for
hypergraphs and, more generally, relational structures the definition and
subsequent statements hold with little change).

An ordered graph
−→
G is a graph G = (V,E) together with a linear order-

ing ≤ of V . We say that a graph G′ = (V ′, E′) has the ordering property for
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−→
G if for any ordering 
 of V ′ (i.e. for any ordered graph

−→
G ′) there exists

an embedding ϕ : G → G′ which is monotone with respect to ≤ and 
.

For example, it is a classical result of graph theory that χ(G) ≥ k if and
only if G has the ordering property for the monotone path with k vertices
(known as the Gallai-Hasse-Vitaver-Roy theorem).

We have the following:

Theorem 5. For every graph G = (V,E) there exists a graph G′ with the
following properties:

1) G′ has the ordering property for any ordered graph
−→
G ;

2) if girth(G) ≥ l then girth(G′) ≥ l.

Proof. Given
−→
G with p vertices, consider H(n, p, l, ε) = (X,M) and con-

sider all random placements H of G on edges of M. Put p!
|Aut(G)| = a (this is

the number of distinct placements of G on a p-element set). The number of

all graphs H is thus a|M| = an
1+ε

. However only at most (a− 1)n
1+ε · n! do

not have the ordering property for a
−→
G . Thus there is a witness G′ which

has the ordering property for all
−→
G .

In particular, for the cycle Cl, l > 3, we obtain an undirected graph of
girth l which fails to be a cover graph of any partial order.

The existence of high girth non cover graph of posets (proved in [72]) led
to the proof that the following recognition problem is NP-complete [78], [14]:

Input: A graph G.

Question: Is G a cover graph of a finite poset?

The question was refined in [86] to lattices and this paper also contains a
polynomial algorithm (using Ramanujan graphs) which constructs for given
k and l a graph Gk,l with girth(Gk,l) = l and χ(Gk,l) = k (see also [22]).

It is clear that every ordering of G′ constructed in this way contains

many copies of
−→
G . Recently Angel, Kechris and Lyons [6] isolated in the

interesting context of topological dynamics (characterizing structures with
unique ergodic measure) the following property of a random placement
graph G′: For graphs G, G′ we denote by emb(G,G′) the number of all

embeddings of G into G′. Similarly emb(
−→
G,

−→
G ′) denotes the number of

monotone embeddings (with respect to orderings of
−→
G,

−→
G ′) of G into G′
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Proposition 6. Let ε > 0 be given. For every 2-connected graph G there

exists a graph G′ such that for every pair of ordered graphs
−→
G and

−→
G ′

∣∣∣∣∣emb(
−→
G,

−→
G ′)

emb(G,G′)
− 1

n!

∣∣∣∣∣ < ε.

The proof follows again by letting G′ be the random placement of copies
of G and applying Chernoff’s inequality.

A generalization of Proposition 6 has been proven recently in [79], which
further exploits the random placement construction to ordering property.
Let us review it briefly.

In this setting it is convenient to view orderings as permutations. Let
σ : [n] → [n] be a permutation of [n] = {1, 2, . . . , n}. For X ⊆ [n] let σX be
the subpermutation of σ induced by the set X (i.e. if X = {i1 < i2 < · · · <
ik} then σX(a) < σX(b) iff σ(ia) < σ(ib)).

Let k ≤ n (and typically k is much smaller than n) and let π1, . . . , πk!
be a fixed enumeration of all permutations of [k]. The k-statistics of σ is a

sequence sσ1 , . . . , s
σ
k! where sσi =

∣∣{X ∈
([n]
k

)
;σX = πi

}∣∣/(nk).
An ordered graph

−→
G on [n] may be coded as (G,σ) for a permutation σ

of [n]. We still call (G, σ) an ordered graph (by permutation σ).

Let (G′, σ′) be an ordered graph on [N ]. An embedding (G, σ) into
(G′, σ′) is a monotone injection f : [n] → [N ] which is embedding of G into
G′ and which satisfies

σ(i) < σ(j) if and only if σ′(f(i)) < σ′(f(j)).

Theorem 7 [79]. Let G be a 2-connected graph with k vertices. Let−→a = (a1, . . . ak!) be a stochastic vector. Then for any ε > 0 there exists a
graph H with n vertices with the following properties

1) girth(G) = girth(H);
2) if σ is a permutation of [n] with k-statistics (s1, s2, . . . , sk!) then∣∣∣∣emb((G, πl), (H,σ))

emb(G,H)
− bl

∣∣∣∣ < ε

where

bl =
∑

{aisσj ;πi ◦ πj = πl}.
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It is easy to see that for the uniform probability −→a = (1/k!, 1/k!, ·, 1/k!)
we get Proposition 6.

We also obtain the following “sparsification lemma”, which is perhaps
of independent interest

Lemma 8. For every l, k ≥ 2, ε > 0, there exists n and M ⊆
([n]
k

)
such that

1) ([n],M) has no cycles of length ≤ l;
2) for every permutation σ of [n] it holds that |sσi − sσi (M)| < ε, where

sσi (M) = |{M ∈ M;σM = πi}|/|M|.

Thus the k-statistics of every permutation σ on [n] are approximated by
k-statistics on edges of M (and yet M has no short cycles).

The random placement construction has further applications to most
coloring problems studied. For example it readily implies one of the main
results of [91]. Other applications of random placement construction to
coloring of graphs and hypergraphs are contained in [48], [45].

6. Other Voices, Other Rooms

Coloring problems are among the most frequently studied combinatorial
problems. One general approach is based on the notion of a homomor-
phism: Given graphs G = (V,E) and G′ = (V ′, E′), a homomorphism is
any mapping f : V → V ′ which satisfies {x, y} ∈ E ⇒ {f(x), f(y)} ∈ E′.

It is easy to see that G has a homomorphism to a complete graph Kk

if and only if χ(G) ≤ k. Motivated by this, a homomorphism G → H is
also called an H-coloring. Of course, if G �→ Kk then also G �→ H for every
H with χ(H) ≤ k. But as homomorphisms compose (i.e. form a category)
we can prove stronger and (arguably more elegant) statements. These also
indicate that sparsity is not a strong restriction in many coloring problems.

The main results proved in [83] may be formulated as follows. Because of
its connection to rigid graphs and homomorphism order it is called sparse
incomparability lemma (see e.g. [36]) and it holds for relational systems
generally.

Theorem 9. For every graph H and for all positive integers k and l there
exists a graph G with the following properties:

1) girth(G) > l;
2) for every graph F with at most k vertices, there exists a homo-

morphism g : G → F if and only if there exists a homomorphism
f : H → F .
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For the statement of the second result of [83] we need the following
notion:

A graph F is said to be pointed for a graph H (or shortly H-pointed)
if any two distinct homomorphisms H −→ F differ in at most 2 vertices.
In other words this means that if two homomorphisms g, g′ : H → F satisfy
g(x) = g′(x) for all x �= x′ (for some fixed vertex x0 ∈ V (H)) then it also
holds that g(x0) = g′(x0). A graph H is called a core if any homomorphism
H → H is an automorphism. Note that any core graph H is H-pointed and
it follows that most graphs H on a large set are H-pointed.

Theorem 10. For every graph H and for every choice of positive integers
k and l there exists a graph G together with a surjective homomorphism
c : G → H with the following properties:

1) girth(G) > l;
2) for every graph F with at most k vertices, there exists a homo-

morphism g : G → F if and only if there exists a homomorphism
f : H → F ;

3) for every H-pointed graph F with at most k vertices and for every
homomorphism g : G → F there exists a unique homomorphism f :
H → F such that g = f ◦ c.

Conditions 2) and 3) may be expressed by the following diagram:

H
f �� F

G

c

��

g

������������

Theorem 10 may look like a technical extension of Theorem 9. How-
ever, it has several interesting corollaries from which we obtain structural
extension of Erdős’ Theorem 1.

A graph G is uniquely H-colorable if there is a surjective homomorphism
c from G onto H, and any other homomorphism from G to H is the
composition σ ◦ c of c with an automorphism σ of H. (Note that this implies
that H is a core graph.)

The problem of the existence of uniquely k-colorable graphs with large
girth has an interesting history: the triangle-free case (i.e. l = 3) was settled
in [68] and this was improved in [31] to graphs not containing short odd
cycles. The general case was solved by Vladimı́r Müller [64, 65]. Müller’s
proof is constructive and uses a constructive proof of Theorem 1. A non-
constructive proof has been published in [12] and the particular caseH = H ′
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of our Theorem 10 (i.e. the existence of uniquely H-colorable graph G with
girth > l) is proved in [91]. The above Theorem 10 then implies that there
is a graph G which is strongly uniquely H-colorable in the sense that any
homomorphism G → F to any small H-pointed graph F is induced by a
homomorphism H → F .

A probabilistic proof of Theorem 10 ([83]) is yet another variant of Erdős
method and follows by a now standard pattern [51], [62]. Suppose H has
vertices {1, 2, . . . , a} and let H have q edges. Let V1, . . . , Va be disjoint sets
each of (large) size n. Let G0 be the graph with vertex set V = V1 ∪ . . . Va

and let {x, y} ∈ E(G0) if and only if x ∈ Vi, y ∈ Vj and {i, j} ∈ E(H). Let
G be a random subgraph of G0 with qn1+ε edges where 0 < ε < 1/4l. This
may be viewed as we are replacing each vertex of H by a large cloud
(with n vertices) and then taking a sparse random subgraph between clouds
corresponding to edges of H. Theorem 9 then follows: If we have a coloring
c : V → {1, . . . k′}, k′ ≤ k, then for each i = 1, . . . , a let V ′i ⊆ V be the largest
monochromatic subset and call the corresponding color c(i). One then
observes that if {i, h} ∈ E(H) then c(i) �= c(j) because between V ′i and
V ′j there have to be some edges. Thus if c is a homomorphism G → H ′,
V (H) = {1, . . . , a′} then with high probability c induces a homomorphism
H → H ′. The proof of part 3) of Theorem 10 needs more care as we have
to treat small subsets, see [83].

In the style of this paper we add a schematic figure:

Note that this proof can be derandomized and an explicit (polynomial
size) construction can be given (using Ramanujan graphs) [62]. Kun [51]
gives a polynomial algorithm to construct set system (and more generally
relational systems) satisfying 1), 2) of Theorem 10. This allowed to close
the hierarchy of descriptive complexity of classes defined and asked in [29].
In technical terms this amounts to MMSNP = CSP [51].
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There is here more than meets the eye. One can prove also a strong
extension of Müller’s Extension Theorem [64, 65]. To do so we need another
(this time categorical) notion:

A t-projective graph is a graph G with the property that for every homo-
morphism (in this setting usually called polymorphism) f : G× · · ·×︸ ︷︷ ︸

t

G → G

which satisfies f(x, . . . , x) = x, there exists i0 such that f(x1, x2, . . . , xt) =
xi0 (i.e. every idempotent homomorphism is a projection). It was proved in
[53] that a graph is 2-projective if and only if it is t-projective for every t
(this is not true in general for relational structures).

The following result takes us from colorings to arbitrary H-colorings
(and holds for general finite relational structures as well):

Corollary 11. Let H be projective graph with k vertices, and l a positive
integer. Let A be a finite set and let f1, f2, · · · , ft be distinct mappings
A → V (H). Then there exists a graph G = (V,E) such that the followings
hold:

1) A is a subset of V ;
2) for every i = 1,2, · · · , t there exists unique homomorphism gi : G → H

such that gi restricted to the set A coincides with the mapping fi;
3) for every homomorphism f : G → H there exists i, 1 ≤ i ≤ t and an

automorphism h of H such that h ◦ fi = f ;
4) G has girth > l.

Müller’s Extension Theorem corresponds to k-colorings (i.e. H = Kk)
which uniquely extend a given set partition and is depicted in the following
figure:
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This is not just a generalization, this is as far as we can go:

Corollary 12. For a core graph H, the following statements are equivalent:

I. Corollary 11 holds.
II. The graph H is projective.

These results and corresponding notions are not only interesting as an
ultimate strengthening of Erdős’ Theorem 1 in a more structural setting.
In fact the above results hold for relational structures (or finite relational
models). This is important for the complexity of algorithms, particularly in
the context of Constraint Satisfaction Problems – CSP:

For a given a relational structure H, CSP (H) denotes the following
decision problem:

Input: A structure A

Question: Does there exists a homomorphism A → H.

It is conjectured [29] that this problem falls into just two classes:

NP-Complete problems and polynomially solvable problems. This Di-
chotomy Conjecture [29] was investigated in the context of (universal) alge-
bra [40], [15], [7], combinatorics and graph theory [36], threshold phenomena
and random walks [52], for survey of this development see e.g. [36]. The di-
chotomy conjecture has then a refined form which conjectures an actual
form of the dichotomy, see [37] Theorem 3.4. One of these formulations
(using term “block projectivity”) was isolated in [82]. Let us remark that
recently the analogous question of dichotomy for counting homomorphisms
(and CSP) was solved in the full generality in a major paper [16].

Theorem 11 plays an important role in this reduction (via so called
fibre construction). It further follows from this result that the conjectured
Dichotomy is very robust: it does not change if we restrict to objects with
girth ≥ l and to structures with degree of its vertices bounded by D(H).
For this we need an effective version of Corollary 11 which is provided by
[62, 51]. As a particular case the following problem is NP-complete for any
non-bipartite graph H (and any fixed l):

Input: Graph G with girth ≥ l.

Question: Does there exists an H-coloring of G?

So after all the work the large girth restriction is not much of an obstacle.
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7. Limitations, Perspectives and Problems

We can interpret negatively many of the above results: Despite the apparent
difficulty high girth graphs with large chromatic number exist and their
complexity and special properties seem not to be influenced by this (severe)
restriction.

Here we add a few structural results which indicate opposite. We start
with two infinite limitations.

7.1. No universal C4-free graph

Theorem 13 [33]. There is no countable graph of girth > 4 which contains
every countable graph of girth > 4 as a subgraph.

In other words, there is no countable universal graph for the class of
all graphs of girth > 4. The same holds for the class of graphs with girth
> l ≥ 4. On the other hand, such a universal graph exists for the class of
all triangle-free graphs. (The same is true, more generally, for the class of
all graphs not containing short odd cycles [18].) In fact one can “forbid”
homomorphisms from any finite set of graphs, see [17]. But this does not
surprise an interested reader: odd cycles are easier in the whole paper.

7.2. No (transfinite) unbounded χ

Theorem 14 [25]. Every graph G with chromatic number > ω (i.e. of
uncountable chromatic number) contains a complete bipartite subgraph
Kω,n for arbitrary finite n and thus in particular the quadrangle K2,2.

Thus the graphs Gk,l are strictly finite objects which do not have, in full
generality, an analogy in the infinite.

7.3. Erdős-Hajnal

Conjecture 7.1 [24]. For every k, l there exists f(k, l) such that any graph
G with χ(G) ≥ f(k, l) contains a subgraph G′ of girth > l and χ(G′) ≥ k.

This beautiful and (at least at first glance) plausible conjecture is in
fact a very hard problem. The only known non-trivial case is that f(k, 4)
exists (Rödl [84]). (Note that Theorem 1 is equivalent to saying that
Conjecture 7.1 holds for complete graphs.)

This conjecture appeared recently in the context of (homomorphism)
restricted dualities, cf. [71, Chapter 11].
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7.4. Victor Neumann-Lara Conjecture

Conjecture 7.2. There exists a function g : N −→ N with the following
property: Let G = (V,E) be an undirected graph with χ(G) ≥ g(k). Then

there exists an orientation
−→
G = (V,

−→
E ) of G such that in every k-coloring

of V
−→
G contains a monochromatic directed cycle.

There are many (perhaps too many) variants of chromatic number.

The minimal number of colors which suffice for coloring of vertices of
digraphs so that no directed cycle is monochromatic is called (directed)
acyclic chromatic number (thus the defining property is that the color
classes induce acyclic subgraphs). Directed acyclic chromatic number was
investigated and the analogy of Theorem 1 for directed acyclic coloring
immediately follows from the random placement method (for a different
proof see [9]). The existence of uniquely acyclic colorable was proved
recently in [34].

7.5. The Pentagon problem

Conjecture 7.3. There exists an integer l with the following property: If
G is a subcubic graph (i.e. every vertex has degree ≤ 3) with girth ≥ l then
G → C5.

Brook’s theorem implies that every subcubic graph not containing K4

satisfies G → C3. On the other hand this problem has a negative solution
for C11 [47], C9 [90], and finally C7 [35].

It is not even known whether high girth subcubic graphs have circular
chromatic number < 3.

7.6. No Ramsey classes with girth > 3

A class C of graphs (or, more generally, structures) is said to be Ramsey if
the following holds ([80], [81], [70]): For every A,B ∈ C and positive integer
k there exists C ∈ C such that C → (B)Ak where (Erdős-Rado) partition
arrow has the following meaning:

For every partition
(
C
A

)
= A1 ∪ . . .Ak there exists B′ ∈

(
C
B

)
such that(

B′
A

)
⊆ Ai for some i ∈ {1, . . . , k}. Here

(
C
A

)
denotes the set of all substruc-

tures of C which are isomorphic to A.

Ramsey’s theorem claims that the class of complete graphs is a Ramsey
class.
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Theorem 15 [69]. The class Cl of all ordered graphs with girth ≥ l > 4
fails to be a Ramsey class.

This follows from [69] where the connection between Ramsey classes and
ultrahomogeneous structures is isolated and as a result of this all Ramsey
classes of graphs are determined (or better: it is shown that we know them
all). This line of research was studied later intensively, see e.g. the important
paper [42], and connections to extreme amenability of subgroups of Sω were
established.

7.7. Edge Ramsey for large girth

Problem 16. Does the class Cl have the edge-Ramsey property?

Explicitly: Is it true that for every G ∈ Cl there exists H = (V,E) ∈ Cl
such that for every partition E1 ∪E2 of E there exists a subgraph G′ of H,
G′ isomorphic to G such that E(G′) is a subset of either E1 or E2 (i.e.

H → (G)K2
2 in the above notation). This is known to be true for l ≤ 6 [65].

This problem (together with Pisier type problems [26]) is one of the few
that remained open in structural Ramsey theory.

7.8. Persistence of Old Motivations

The problems addressed in this paper are active problems attacked (and
sometimes) solved by many. As an example of recent striking result let us
mention the work of T. Bohman and P. Keevash and, independently of G. F.
Pontiveros, S. Griffiths and R. Morris on asymptotics of Ramsey numbers
r(k, 3). But other problems remain. Particularly, the basic challenge in this
area of complex large girth graphs is to find new constructions. The old
questions remain. The recent advances of theoretical computer science put
these problems in a new context and make these questions very actual.

Acknowledgment: I thank to Martin Bálek and Andrew Goodall for the
help when preparing this article.
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[25] P. Erdős, A. Hajnal, On chromatic number of graphs and set-systems, Acta Math.
Acad. Sci. Hungar. 17 (1966), 61–99.



404 J. Nešetřil
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[72] J. Nešetřil, V. Rödl, On a probabilistic graph-theoretic Method, Proc. Amer. Math.
Soc. 72 (1978), 417–421.
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Small Ball Probability, Inverse Theorems, and

Applications

HOI H. NGUYEN∗ and VAN H. VU†

Let ξ be a real random variable with mean zero and variance one and A =
{a1, . . . , an} be a multi-set in Rd. The random sum

SA := a1ξ1 + · · ·+ anξn

where ξi are iid copies of ξ is of fundamental importance in probability and its
applications.

We discuss the small ball problem, the aim of which is to estimate the
maximum probability that SA belongs to a ball with given small radius, following
the discovery made by Littlewood–Offord and Erdős almost 70 years ago. We
will mainly focus on recent developments that characterize the structure of those
sets A where the small ball probability is relatively large. Applications of these
results include full solutions or significant progresses of many open problems in
different areas.

1. Littlewood–Offord and Erdős estimates

Let ξ be a real random variable with mean zero and variance one and
A = {a1, . . . , an} be a multi-set in R (here n → ∞). The random sum

SA := a1ξ1 + · · ·+ anξn

where ξi are iid copies of ξ plays an essential role in probability. The Central
Limit Theorem, arguably the most important theorem in the field, asserts
that if the ai’s are the same, then

SA√∑n
i=1 |ai|2

−→ N(0, 1).
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Furthermore, Berry-Esséen theorem shows that if ξ has bounded third
moment, then the rate of convergence is O(n−1/2). This, in particular,
implies that for any small open interval I

P(SA ∈ I) = O(|I|/n1/2).

The assumption that the ai’s are the same are, of course, not essential.
Typically, it suffices to assume that none of the ai’s is dominating; see [13]
for more discussion.

The probability P(SA ∈ I) (and its high dimensional generalization)
will be referred to as small ball probability throughout the paper. In
1943, Littlewood and Offord, in connection with their studies of random
polynomials [33], raised the problem of estimating the small ball probability
for arbitrary coefficients ai. Notice that when we do not assume anything
about the ai’s, even the Central Limit Theorem may fail, so Berry-Esséen
type bounds no longer apply. Quite remarkably, Littlewood and Offord
managed to show

Theorem 1.1. If ξ is Bernoulli (taking values ±1 with probability 1/2) and
ai have absolute value at least 1, then for any open interval I of length 2,

P(SA ∈ I) = O

(
log n

n1/2

)
.

Shortly after Littlewood–Offord result, Erdős [10] gave a beautiful com-
binatorial proof of the following refinement, which turned out to be sharp.

Theorem 1.2. Under the assumption of Theorem 1.1

(1) P(SA ∈ I) ≤
(

n
�n/2�

)
2n

= O

(
1

n1/2

)
.

Proof (of Theorem 1.2). Erdős’ proof made an ingenious use of Sperner’s
lemma, which asserts that if F is an anti-chain on a set of n elements, then
F has at most

(
n

�n/2�
)
elements (an anti-chain is a family of subsets none of

which contains the other). Let x be a fixed number. By reversing the sign
of ai if necessary, one can assume that ai ≥ 1 for all i. Now let F be the set
of all subsets X of [n] := {1, 2 . . . , n} such that∑

i∈X
ai −

∑
j∈X̄

aj ∈ (x− 1, x+ 1).
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One can easily verify that F is an anti-chain. Hence, by Sperner’s
lemma,

|F| ≤
(

n
n/2

)
2n

,

completing the proof.

The problem was also studied in probability by Kolmogorov, Rogozin,
and others; we refer the reader to [30, 31] and [43]. Erdős’ result is popular
in the combinatorics community and has became the starting point for a
whole theory that we now start to discuss.

Notation. We use the asymptotic notation such as O, o,Θ under the
assumption that n → ∞; Oα(1) means the constant in big O depends on α.
All logarithms have natural base, if not specified otherwise.

2. High Dimensional Extensions

Let ξ be a real random variable and A = {a1, . . . , an} a multi-set in Rd,
where d is fixed. For a given radius R > 0, we define

ρd,R,ξ(A) := sup
x∈Rd

P
(
a1ξ1 + · · ·+ anξn ∈ B(x,R)

)
,

where ξi are iid copies of ξ, and B(x,R) denotes the open disk of radius R
centered at x in Rd. Furthermore, let

p(d,R, ξ, n) := sup
A

ρd,R,ξ(A)

where A runs over all multi-sets of size n in Rd consisting of vectors with
norm at least 1. Erdős’ theorem can be reformulated as

p(1, 1,Ber , n) =

(
n

�n/2�
)

2n
= O(n−1/2).

In the case d = 1, Erdős obtained the optimal bound for any fixed R. In
what follows we define s := �R�+ 1.

Theorem 2.1. Let S(n,m) denote the sum of the largest m binomial
coefficients

(n
i

)
, 0 ≤ i ≤ n. Then

(2) p(1, R,Ber , n) = 2−nS(n, s).
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The case d ≥ 2 is much more complicated and has been studied by
many researchers. In particular, Katona [24] and Kleitman [25] showed
that p(2, 1,Ber , n) = 2−n

(
n

�n/2�
)
. This result was extended by Kleitman [26]

to arbitrary dimension d,

(3) p(d, 1,Ber , n) =

(
n

�n/2�
)

2n
.

The estimate for general radius R is much harder. In [27], Kleitman
showed that 2np(2, R,Ber , n) is bounded from above by the sum of the
2�R/

√
2� largest binomial coefficients in n. For general d, Griggs [19] proved

that

p(d,R,Ber , n) ≤ 22
d−1−2R

√
d�

(
n

�n/2�
)

2n
.

This result was then improved by Sali [48, 49] to

p(d,R,Ber , n) ≤ 2dR
√
d�

(
n

�n/2�
)

2n
.

A major improvement is due to Frankl and Füredi [14], who proved

Theorem 2.2. For any fixed d and R

(4) p(d,R,Ber , n) = (1 + o(1))2−nS(n, s).

This result is asymptotically sharp. In view of (2) and (3), it is natural
to ask if the exact estimate

(5) p(d,R,Ber , n) = 2−nS(n, s),

holds for all fixed dimension d. However, this has turned out to be false.
The authors of [26, 14] observed that (5) fails if s ≥ 2 and

(6) R >
√

(s− 1)2 + 1.

Example 2.3. Take v1 = · · · = vn−1 = e1 and vn = e2, where e1,e2 are two
orthogonal unit vectors. For this system, let B be the ball of radius R
centered at v = (v1 + · · ·+ vn)/2. Assume that n has the same parity with
s, then by definition we have

P(SV ∈ B(v,R)) = 2
∑

(n−s)/2≤i≤(n+s)/2

(
n− 1

i

)
/2n > 2−nS(n, s).

Frankl and Füredi raised the following problem.
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Conjecture 2.4 [14, Conjecture 5.2]. Let R, d be fixed. If s− 1 ≤ R <√
(s− 1)2 + 1 and n is sufficiently large, then

p(d,R,Ber , n) = 2−nS(n, s).

The conjecture has been confirmed for s = 1 by Kleitman (see (3)) and
for s = 2, 3 by Frankl and Füredi [14] (see [14, Theorem 1.2]). Furthermore,
Frankl and Füredi showed that (5) holds under a stronger assumption that
s− 1 ≤ R ≤ (s− 1) + 1

10s2
. A few years ago, Tao and the second author

proved Conjecture 2.4 for s ≥ 3. This, combined with the above mentioned
earlier results, established the conjecture in full generality [66].

Theorem 2.5. Let R, d be fixed. Then there exists a positive number
n0 = n0(R, d) such that the following holds for all n ≥ n0 and s− 1 ≤ R <√

(s− 1)2 + 1

p(d,R,Ber , n) = 2−nS(n, s).

We will present a short proof of Theorems 2.2 and 2.5 in Section 17.

3. Refinements by Restrictions on A

A totally different direction of research started with the observation that the
upper bound in (1) improves significantly if we make some extra assumption
on the additive structure of A. In this section, it is more natural to present
the results in discrete form. In the discrete setting, one considers the
probability that SA takes a single value (for instance, P(SA = 0)).

Erdős’s result in the first section implies

Theorem 3.1. Let ai be non-zero real numbers, then

sup
x∈R

P(SA = x) ≤
(

n
�n/2�

)
2n

= O(n−1/2).

Erdős and Moser [11] showed that under the condition that the ai are
different, the bound improved significantly.

Theorem 3.2. Let ai be distinct real numbers, then

sup
x∈R

P(SA = x) = O(n−3/2 log n).

They conjectured that the log n term is not necessary. Sárkőzy and
Szemerédi’s [50] confirmed this conjecture
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Theorem 3.3. Let ai be distinct real numbers, then

ρA := sup
x∈R

P(SA = x) = O(n−3/2).

In [54], Stanley found a different (algebraic) proof for a more precise
result, using the hard-Lefschetz theorem from algebraic geometry.

Theorem 3.4 (Stanley’s theorem). Let n be odd and A0 :=
{
− n−1

2 , . . . ,
n−1
2

}
. Let A be any set of n distinct real numbers, then

ρ(A) := sup
x∈R

P(SA = x) ≤ sup
x∈R

P(SA0 = x).

A similar result holds for the case n is even, see [54]. Later, Proctor [41]
found a simpler proof for Stanley’s theorem. His proof is also algebraic,
using tools from Lie algebra. It is interesting to see whether algebraic
approaches can be used to obtain continuous results. (For the continuous
version of Theorem 3.3, see Section 6.)

A hierarchy of bounds. We have seen that the Erdős’ bound of O(n−1/2)
is sharp, if we allow the ai to be the same. If we forbid this, then the
next bound is O(n−3/2), which can be attained if the ai form an arithmetic
progression. Naturally, one would ask what happen if we forbid the ai to
form an arithmetic progression and so forth. Halász’ result, discussed in
Section 6, gives a satisfying answer to this question.

Remark 3.5. To conclude this section, let us mention that while discrete
theorems such as Theorem 3.4 are formalized for real numbers, it holds
for any infinite abelian groups, thanks to a general trick called Freiman
isomorphism (see [67] and also Appendix A). In particular, this trick allows
us to assume that the ai’s are integers in the proofs. Freiman isomorphism,
however, is not always applicable in continuous settings.

4. Littlewood–Offord Type Bounds for Higher Degree

Polynomials

For simplicity, we present all results in this section in discrete form. The
extension to continuous setting is rather straightforward, and thus omitted.

One can view the sum S = a1ξ1 + · · ·+ anξn as a linear function of the
random variables ξ1, . . . , ξn. It is natural to study general polynomials of
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higher degree k. Let us first consider the case k = 2. Following [8], we refer
to it as the Quadratic Littlewood–Offord problem.

Let ξi be iid Bernoulli random variables, let A = (aij) be an n× n
symmetric matrix of real entries. We define the quadratic concentration
probability of A by

ρq(A) := sup
a∈R

P

(∑
i,j

aijξiξj = a

)
.

Similar to the problem considered by Erdős and Littlewood–Offord, we
may ask what upper bound one can prove for ρq(A) provided that the entries
aij are non-zero? This question was first addressed by Costello, Tao and the
second author in [8], motivated by their study of Weiss’ problem concerning
the singularity of a random symmetric matrix (see Section 5).

Theorem 4.1. Suppose that aij �= 0 for all 1 ≤ i, j ≤ n. Then

ρq(A) = O(n−1/8).

The key to the proof of Theorem 4.1 is a decoupling lemma, which can
be proved using Cauchy-Schwarz inequality. The reader may consider this
lemma an exercise, or consult [8] for details.

Lemma 4.2 (Decoupling lemma). Let Y and Z be independent random
variables and E = E(Y, Z) be an event depending on Y and Z. Then

P(E(Y, Z)) ≤ P(E(Y, Z) ∧ E(Y ′, Z) ∧ E(Y, Z ′) ∧ E(Y ′, Z ′))1/4

where Y ′ and Z ′ are independent copies of Y and Z, respectively. Here we
use A ∧B to denote the event that A and B both hold.

Consider the quadratic form Q(x) :=
∑

ij aijξiξj , and fix a non-trivial

partition {1, . . . , n} = U1∪U2 and a non-empty subset S of U1. For instance
one can take U1 to be the first half of the indices and U2 to be the second half.
Define Y := (ξi)i∈U1 and Z := (ξi)i∈U2 . We can write Q(x) = Q(Y, Z). Let
ξ′i be an independent copy of ξi and set Y ′ := (ξ′i)i∈U1 and Z ′ := (ξ′i)i∈U2).
By Lemma 4.2, for any number x

P(Q(Y, Z) = x) ≤ P(Q(Y, Z) = Q(Y, Z ′) = Q(Y ′, Z) = Q(Y ′, Z ′) = x)1/4.

On the other hand, if Q(Y, Z) = Q(Y, Z ′) = Q(Y ′, Z) = Q(Y ′, Z ′) = x
then regardless the value of x

R := Q(Y, Z)−Q(Y ′, Z)−Q(Y, Z ′) +Q(Y ′, Z ′) = 0.
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Furthermore, we can write R as

R =
∑
i∈U1

∑
j∈U2

aij(ξi − ξ′i)(ξj − ξ′j) =
∑
i∈U1

Riwi,

where wi is the random variable wi := ξi− ξ′i, and Ri is the random variable∑
j∈U2

aijwj .

We now can conclude the proof by applying Theorem 3.1 twice. First,
combining this theorem with a combinatorial argument, one can show that
(with high probability), many Ri are non-zero. Next, one can condition on
the non-zero Ri and apply Theorem 3.1 for the linear form

∑
i∈U1

Riwi to
obtain a bound on P(R = 0).

The upper bound n−1/8 in Theorem 4.1 can be easily improved to n−1/4.
The optimal bound was obtained by Costello [7] using, among others, the
inverse theorems from Section 7.

Theorem 4.3 (Quadratic Littlewood–Offord inequality). Suppose that
aij �= 0, 1 ≤ i, j ≤ n. Then

ρq(A) ≤ n−1/2+o(1).

The exponent 1/2+ o(1) is best possible (up to the o(1) term) as demon-

strated by the quadratic form
∑

i,j ξiξj = (
∑n

i=1 ξi)
2
. Both Theorems 4.1

and 4.3 hold in a general setting where the ξi are not necessary Bernoulli
and only a fraction of the aij ’s are non-zero.

One can extend the argument above to give bounds of the form n−ck for
a general polynomial of degree k. However, due to the repeated use of the
decoupling lemma, ck decreases very fast with k.

Theorem 4.4. Let f be a multilinear polynomial of real coefficients in n
variables ξ1, . . . , ξn with m× nk−1 monomials of maximum degree k. If ξi
are iid Bernoulli random variables, then for any value x

P(f = x) = O(m
− 1

2(k
2+k)/2 ).

By a more refined analysis, Razborov and Viola [42] recently obtained
a better exponent of order roughly 1

2k
(see Section 16). On the other hand,

it might be the case that the bound n−1/2+o(1) holds for all degrees k ≥ 2,
under some reasonable assumption on the coefficients of the polynomial.

Quadratic (and higher degree) Littlewood–Offord bounds play impor-
tant roles in the study of random symmetric matrices and Boolean circuits.
We will discuss these applications in Sections 5 and 16, respectively.
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5. Application: Singularity of Random Bernoulli

Matrices

Let Mn be a random matrix of size n whose entries are iid Bernoulli random
variables. A notorious open problem in probabilistic combinatorics is to
estimate pn, the probability that Mn is singular (see [23, 57] for more
details).

Conjecture 5.1. pn = (1/2 + o(1))n.

To give the reader a feeling about how the Littlewood–Offord problem
can be useful in estimating pn, let us consider the following process. We
expose the rows of Mn one by one from the top. Assume that the first n− 1
rows are linearly independent and form a hyperplane with normal vector
v = (a1, . . . , an). Conditioned on these rows, the probability that Mn is
singular is

P(X · v = 0) = P(a1ξ1 + · · ·+ anξn = 0),

where X = (ξ1, . . . , ξn) is the last row.

As an illustration, let us give a short proof for the classical bound
pn = o(1) (first showed by Komlós in [28] using a different argument).

Theorem 5.2. pn = o(1).

We with a simple observation [23].

Fact 5.3. Let H be a subspace of dimension 1 ≤ d ≤ n. Then H contains
at most 2d Bernoulli vectors.

To see this, notice that in a subspace of dimension d, there is a set of d
coordinates which determine the others. This fact implies

pn ≤
n−1∑
i=1

P(xi+1 ∈ Hi) ≤
n−1∑
i=1

2i−n ≤ 1− 2

2n
,

where Hi is the subspace generated by the the first i rows x1, . . . ,xi of Mn.

This bound is quite the opposite of what we want to prove. However,
we notice that the loss comes at the end. Thus, to obtain the desired upper
bound o(1), it suffices to show that the sum of the last (say) log logn terms
is at most (say) 1

log1/3 n
. To do this, we will exploit the fact that the Hi are

spanned by random vectors. The following lemma (which is a more effective
version of the above fact) implies the theorem via the union bound.
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Lemma 5.4. Let H be the subspace spanned by d random vectors, where
d ≥ n− log logn. Then with probability at least 1− 1

n , H contains at most
2n

log1/3 n
Bernoulli vectors.

We say that a set S of d vectors is k-universal if for any set of k different
indices 1 ≤ i1, . . . , ik ≤ n and any set of signs ε1, . . . , εn (εi = ±1), there is
a vector V in S such that the sign of the ij-th coordinate of V matches εj ,
for all 1 ≤ j ≤ k.

Fact 5.5. If d ≥ n/2, then with probability at least 1− 1
n , a set of d random

vectors is k-universal, for k = log n/10.

To prove this, notice that the failure probability is, by the union bound,
at most (

n

k

)(
1− 1

2k

)d

≤ nk

(
1− 1

2k

)n/2

≤ n−1.

If S is k-universal, then any non-zero vector v in the orthogonal com-
plement of the subspace spanned by S should have more than k non-zero
components (otherwise, there would be a vector in S having positive inner
product with v). If we fix such v, and let x be a random Bernoulli vector,
then by Theorem 3.1

P(x ∈ span(S)) ≤ P(x · v = 0) = O

(
1

k1/2

)
= o

(
1

log1/3 n

)
,

proving Lemma 5.4 and Theorem 5.2.

The symmetric version of Theorem 5.2 is much harder and has been
open for quite sometime (the problem was raised by Weiss the 1980s).
Let psymn be the singular probability of a random symmetric matrix whose
upper diagonal entries are iid Bernoulli variables. Weiss conjectured that
psymn = o(1). This was proved by Costello, Tao, and the second author [8].
Somewhat interestingly, this proof made use of the argument of Komlós
in [28] which he applied for non-symmetric matrices. Instead of exposing
the matrix row by row, one needs to expose the principal minors one by
one, starting with the top left entry. At step i, one has a symmetric matrix
Mi of size i and the next matrix Mi+1 is obtained by adding a row and its
transpose. Following Komlós, one defines Xi as the co-rank of the matrix
at step i and shows that the sequence Xi behaves as a bias random walk
with a positive drift. Carrying out the calculation carefully, one obtains
that Xn = 0 with high probability.
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The key technical step of this argument is to show that if Mi has full
rank than so does Mi+1, with very high probability. Here the quadratic
Littlewood–Offord bound is essential. Notice that if we condition on Mi,
then det(Mi+1) is a quadratic form of the entries in the additional ((i+ 1)-
th) row, with coefficients being the co-factors of Mi. By looking at these
co-factors closely and using Theorem 4.1 (to be more precise, a variant of
it where only a fraction of coefficients are required to be non-zero), one can
establish Weiss’ conjecture.

Theorem 5.6.

psymn = o(1).

Getting strong quantitative bounds for pn and psymn is more challenging,
and we will continue this topic in Section 13 and 14, after the introduction
of inverse theorems.

6. Halász’ Results

In [21] (see also in [67]), Halász proved the following very general theorem.

Theorem 6.1. Suppose that there exists a constant δ > 0 such that the
following holds

• (General position) for any unit vector e in Rd one can select at least
δn vectors ak with |〈ak, e〉| ≥ 1;

• (Separation) among the 2d vectors b of the form ±ak1 ± · · · ± akd one

can select at least δ2d with pairwise distance at least 1.

Then

ρd,1,Ber (A) = Oδ,d(n
−3d/2).

Halász’ method is Fourier analytic, which uses the following powerful
Esséen-type concentration inequality as the starting point (see [21], [12]).

Lemma 6.2. There exists an absolute positive constant C = C(d) such that
for any random variable X and any unit ball B ⊂ Rd

(7) P(X ∈ B) ≤ C

∫
‖t‖2≤1

|E(exp(i〈t,X〉))| dt.

Proof (of Lemma 6.2). With the function k(t) to be defined later, let
K(x) be its Fourier’s transform

K(x) =

∫
Rd

exp(i〈x, t〉)k(t)dt.
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Let H(x) be the distribution function and h(x) be the characteristic
function of X respectively. By Parseval’s identity we have

(8)

∫
Rd

K(x)dH(x) =

∫
Rd

k(t)h(t)dt.

If we choose k(t) so that{
k(t) = 0 for ‖t‖2 ≥ 1,

|k(t)| ≤ c1 for ‖t‖2 ≤ 1,

then the RHS of (8) is bounded by that of (7) modulo a constant factor.

Also, if {
K(x) ≥ 1, ‖x‖2 ≤ c2, for some constant c2,

K(x) ≥ 0 for ‖x‖2 ≥ c2,

then the LHS of (8) is at least
∫
‖x‖2≤c2 dH(x).

Similarly, by translating K(x) (i.e. by multiplying k(x) with a phase of
exp(i〈t0, x〉), we obtain the same upper bound for

∫
‖x−t0‖2≤c2 dH(x). Thus,

by covering the unit ball B with balls of radius c2, we arrive at (7) for some
constant C depending on d.

To construct k(t) with the properties above, one may take it to have the
convolution form

k(x) :=

∫
x∈Rd

k1(x)k1(t− x) dx,

where k1(x) = 1 if ‖x‖2 ≤ 1/2 and k1(x) = 0 otherwise.

To illustrate Halász’ method, let us give a quick proof of Erdős bound
O(n−1/2) for the small ball probability ρ1,1,Ber (A) with A being a multi-set
of n real numbers of absolute value at least 1. In view of Lemma 6.2, it
suffices to show that

∫
|t|≤1

∣∣∣∣∣∣E
⎛⎝exp

⎛⎝it
n∑

j=1

ajξj

⎞⎠⎞⎠∣∣∣∣∣∣ dt = O(1/
√
n).
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By the independence of the ξj , we have

∣∣∣∣∣∣E
⎛⎝exp

⎛⎝it
n∑

j=1

ajξj

⎞⎠⎞⎠∣∣∣∣∣∣ =
n∏

j=1

|E(exp(itajξj)| =

∣∣∣∣∣∣
n∏

j=1

cos(taj)

∣∣∣∣∣∣ .
By Hölder’s inequality

∫
|t|≤1

∣∣∣∣∣∣E
⎛⎝exp

⎛⎝it
n∑

j=1

ajξj

⎞⎠⎞⎠∣∣∣∣∣∣ dt ≤
n∏

j=1

(∫
|t|≤1

| cos(taj)|n dt
)1/n

.

But since each aj has magnitude at least 1, it is easy to check that∫
|t|≤1 | cos(taj)|n dt = O(1/

√
n), and the claim follows.

Using Halász technique, it is possible to deduce

Corollary 6.3 [67, Corollary 7.16]. Let A be a multi-set in R. Let
l be a fixed integer and Rl be the number of solutions of the equation
ai1 + · · ·+ ail = aj1 + · · ·+ ajl . Then

ρA := sup
x

P(SA = x) = O(n−2l−
1
2Rl).

This result provides the hierarchy of bounds mentioned in the previous
section, given that we forbid more and more additive structures on A. Let
us consider the first few steps of the hierarchy.

• If the ai’s are distinct, then we can set l = 1 and R1 = n (the only
solutions are the trivial ones ai = ai). Thus, we obtain Sárközy-

Szemerédi’s bound O(n−3/2).
• If we forbid the ai’s to satisfy equations ai + aj = al + ak, for any

{i, j} �= {k, l} (in particular this prohibits A to be an arithmetic
progression), then one can fix l = 2 and R2 = n2 and obtain ρA =

O(n−5/2).
• If we continue to forbid equations of the form ah + ai + aj = ak + al +

am, {h, i, j} �= {k, l,m}, then one obtains ρA = O(n−7/2) and so on.

Halász’ method is very powerful and has a strong influence on the recent
developments discussed in the coming sections.
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7. Inverse Theorems: Discrete Case

A few years ago, Tao and the second author [60] brought a new view to
the small ball problem. Instead of working out a hierarchy of bounds by
imposing new assumptions as done in Corollary 6.3, they tried to find
the underlying reason as to why the small ball probability is large (say,
polynomial in n).

It is easier and more natural to work with the discrete problem first.
Let A be a multi-set of integers and ξ be the Bernoulli random variable.

Question 7.1 (Inverse problem, [60]). Let n → ∞. Assume that for some
constant C

ρA = sup
x

P(SA = x) ≥ n−C .

What can we say about the elements a1, . . . , an of A?

Denote by M the sum of all elements of A and rewrite
∑

i aiξi as
M − 2

∑
i;ξi=−1 ai. As A has 2n subsets, the bound ρA ≥ n−C implies

that at least 2n/nC among the subset sums are exactly (M − x)/2. This
overwhelming collision suggests that A must have some strong additive
structure. Tao and the second author proposed

Inverse Principle:
(9)
A set with large small ball probability must have strong additive structure.

The issue is, of course, to quantify the statement. Before attacking this
question, let us recall the famous Freiman’s inverse theorem from Additive
Combinatorics. As the readers will see, this theorem strongly motivates our
study.

In the 1970s, Freiman considered the collection of pairwise sums A+
A := {a+ a′|a, a′ ∈ A} [15]. Normally, one expects this collection to have
Θ(|A|2) elements. Freiman proved a deep and powerful theorem showing
that if A+A has only O(|A|) elements (i.e, a huge number of collision
occurs) then A must look like an arithmetic progression. (Notice that if A
is an arithmetic progression then |A+A| ≈ 2|A|.)

To make Freiman’s statement more precise, we need the definition of
generalized arithmetic progressions (GAPs).

Definition 7.2. A set Q of an abelian group Z is a GAP of rank r if it can
be expressed in the form

Q = {g0 +m1g1 + · · ·+mrgr|Mi ≤ mi ≤ M ′
i ,mi ∈ Z for all 1 ≤ i ≤ r}

for some g0, . . . , gr ∈ Z and some real numbers M1, . . . ,Mr,M
′
1, . . . ,M

′
r.
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It is convenient to think of Q as the image of an integer box B :=
{(m1, . . . ,mr) ∈ Zr|Mi ≤ mi ≤ M ′

i} under the linear map

Φ : (m1, . . . ,mr) �→ g0 +m1g1 + · · ·+mrgr.

The numbers gi are the generators of Q, the numbers M ′
i ,Mi are the

dimensions of Q, and Vol(Q) := |B| is the volume of B. We say that Q is
proper if this map is one to one, or equivalently if |Q| = Vol(Q). For non-
proper GAPs, we of course have |Q| < Vol(Q). If −Mi = M ′

i for all i ≥ 1
and g0 = 0, we say that Q is symmetric.

If Q is symmetric and t > 0, the dilate tQ is the set

{m1g1 + · · ·+mrgr| − tM ′
i ≤ mi ≤ tM ′

i for all 1 ≤ i ≤ r}.

It is easy to see that if Q is a proper map of rank r, then |Q+Q| ≤ 2r|Q|.
This implies that if A is a subset of density δ in a proper GAP Q of rank r,
then as far as δ = Θ(1),

|A+A| ≤ |Q+Q| ≤ 2r|Q| ≤ 2r

δ
|A| = O(|A|).

Thus, dense subsets of a proper GAP of constant rank satisfies the
assumption |A+A| = O(|A|). Freiman’s remarkable inverse theorem showed
that this example is the only one.

Theorem 7.3 (Freiman’s inverse theorem in Z). Let γ be a given positive
number. Let X be a set in Z such that |X +X| ≤ γ|X|. Then there exists
a proper GAP of rank Oγ(1) and cardinality Oγ(|X|) that contains X.

For further discussions, including a beautiful proof by Ruzsa, see [67,
Chapter 5]; see also [5] for recent and deep developments concerning non-
commutative settings (when A is a subset of a non-abelian group).

In our case, we want to find examples for A such that

ρ(A) := sup
x

P(SA = x)

is large. Again, dense subsets of a proper GAP come in as natural candi-
dates.

Example 7.4. Let Q be a proper symmetric GAP of rank r and vol-
ume N . Let a1, . . . , an be (not necessarily distinct) elements of Q. By
the Central Limit Theorem, with probability at least 2/3, the random sum
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SA =
∑n

i=1 aixi takes value in the dilate 10n1/2Q. Since |tQ| ≤ trN , by the
pigeon hole principle, we can conclude that there is a point x where

P(SA = x) = Ω

(
1

nr/2N

)
.

Thus if |Q| = N = O(nC−r/2) for some constant C ≥ r/2, then

ρ(A) ≥ P(SA = x) = Ω

(
1

nC

)
.

This example shows that if the elements of A are elements of a symmetric
proper GAP with a small rank and small cardinality, then ρ(A) is large.
Inspired by Freiman’s theorem, Tao and the second author [62, 60] showed
that the converse is also true.

Theorem 7.5. For any constant C, ε there are constants r,B such that
the following holds. Let A be a multi-set of n real numbers such that
ρ(A) ≥ n−C , then there is a GAP Q of rank r and volume nB such that all
but nε elements of A belong to Q.

The dependence of B on C, ε is not explicit in [60]. In [62], Tao and the
second author obtained an almost sharp dependence. The best dependence,
which mirrors Example 7.4 was proved in a more recent paper [39] of the
current authors. This proof is different from those in earlier proofs and
made a direct use of Freiman’s theorem (see Appendix A).

Theorem 7.6 (Optimal inverse Littlewood–Offord theorem, discrete case)
[39]. Let ε < 1 and C be positive constants. Assume that

ρ(A) ≥ n−C .

Then for any nε ≤ n′ ≤ n, there exists a proper symmetric GAP Q of
rank r = OC,ε(1) which contains all but at most n′ elements of A (counting
multiplicities), where

|Q| = OC,ε(ρ(A)−1n′−
r
2 ).

In particular, there exists a proper symmetric GAP of rank OC,ε(1) and

cardinality OC,ε(ρ(A)−1n−
r
2 ) which contains all but at most εn elements of

A (counting multiplicities).
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The existence of the exceptional set cannot be avoided completely. For
more discussions, see [60, 39]. There is also a trade-off between the size of
the exceptional set and the bound on |Q|. In fact, the main result of [62]
has a better bound on the exceptional set with a loss of a small polynomial
factor in the volume bound.

Let us also point out that the above inverse theorems hold in a very
general setting where the random variables ξi are not necessarily Bernoulli
and independent (see [60, 62, 39, 38] for more details).

8. Application: From Inverse to Forward

One can use the “inverse” Theorem 7.6 to quickly prove several “forward”
theorems presented in earlier sections. As an example, let us derive Theo-
rems 3.1 and 3.3.

Proof (of Theorem 3.1). Assume, for contradiction, that there is a set

A of n non-zero numbers such that ρ(A) ≥ c1n
−1/2 for some large con-

stant c1 to be chosen. Set ε = .1, C = 1/2. By Theorem 7.6, there is a

GAP Q of rank r and size O
(

1
c1
nC− r

2

)
that contains at least .9n elements

from A. However, by setting c1 to be sufficiently large (compared to the
constant in big O) and using the fact that C = 1/2 and r ≥ 1, we can force

O
(

1
c1
nC− r

2

)
< 1. Thus, Q has to be empty, a contradiction.

Proof (of Theorem 3.3). Similarly, assume that there is a set A of n

distinct numbers such that ρ(A) ≥ c1n
−3/2 for some large constant c1 to be

chosen. Set ε = .1, C = 3/2. By Theorem 7.6, there is a GAP Q of rank r

and size O
(

1
c1
nC− r

2

)
that contains at least .9n elements from A. This

implies |Q| ≥ .9n. By setting c1 to be sufficiently large and using the fact
that C = 3/2 and r ≥ 1, we can guarantee that |Q| ≤ .8n, a contradiction.

The readers are invited to work out the proof of Corollary 6.3.

Let us now consider another application of Theorem 7.6, which enables
us to make very precise counting arguments. Assume that we would like
to count the number of multi-sets A of integers with max |ai| ≤ M = nO(1)

such that ρ(A) ≥ n−C .
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Fix d ≥ 1, fix1 a GAP Q with rank r and volume |Q| ≤ cρ(A)−1n−
r
2

for some constant c depending on C and ε. The dominating term in the
calculation will be the number of multi-sets which intersect withQ in subsets
of size at least (1− ε)n. This number is bounded by

∑
k≤εn

|Q|n−k(2M)k ≤
∑
k≤εn

(
cρ(A)−1n−

r
2

)n−k
(2M)k(10)

≤ (OC,ε(1))
nnOε(1)nρ(A)−nn−

n
2 .

We thus obtain the following useful result.

Theorem 8.1 (Counting theorem: Discrete case). The number N of multi-
sets A of integers with max |ai| ≤ nC1 and ρ(A) ≥ n−C2 is bounded by

N =
(
OC1,C2,ε(1)

)n
nOε(1)n

(
ρ(A)−1n−1/2

)n
,

where ε is an arbitrary constant between 0 and 1.

Due to their asymptotic nature, our inverse theorems do not directly im-
ply Stanley’s precise result (Theorem 3.4). However, by refining the proofs,
one can actually get very close and with some bonus, namely, additional
strong rigidity information. For instance, in [37] the first author showed
that if the elements of A are distinct, then

P(SA = x) ≤
(√

24

π
+ o(1)

)
n−3/2,

where the constant on the RHS is obtained when A is the symmetric arith-
metic progression A0 from Theorem 3.4. It was showed that if ρ(A) is close
to this value, then A needs to be very close to a symmetric arithmetic pro-
gression.

Theorem 8.2 [37]. There exists a positive constant ε0 such that for any
0 < ε ≤ ε0, there exists a positive number ε′ = ε′(ε) such that ε′ → 0 as
ε → 0 and the following holds: if A is a set of n distinct integers and

ρ(A) ≥
(√

24

π
− ε

)
n−

3
2 ,

1A more detailed version of Theorem 7.6 tells us that there are not too many ways to
choose the generators of Q. In particular, if |ai| ≤ M = nO(1), the number of ways to fix
these is negligible compared to the main term.
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then there exists an integer l which divides all a ∈ A and∑
a∈A

(a
l

)2
≤ (1 + ε′)

∑
a∈A0

a2 = (1 + ε′ + o(1))
n3

12
.

We remark that a slightly weaker stability can be shown even when we
have a much weaker assumption ρ(A) ≥ εn−3/2.

As the reader will see, in many applications in the following sections,
we do not use the inverse theorems directly, but rather their counting
corollaries, such as Theorem 8.1. Such counting results can be used to
bound the probability of a bad event through the union bound (they count
the number of terms in the union). This method was first used in studies of
random matrices [57, 60, 45], but it is simpler to illustrate the idea by the
following more recent result of Conlon, Fox, and Sudakov [6].

A Hilbert cube is a set of the form x0 +Σ({x1, . . . , xd}) where Σ(X) ={∑
x∈Y x|Y ⊂ X

}
, and 0 ≤ x0, 0 < x1 < · · · < xd are integers. Following

the literature, we refer to the index d as the dimension. One of the earliest
results in Ramsey theory is a theorem of Hilbert [22] stating that for any
fixed r and d and n sufficiently large, any coloring of the set [n] := {1, . . . , n}
with r colors must contain a monochromatic Hilbert cube of dimension d.
Let h(d, r) be the smallest such n. The best known upper bound for this
function is [22, 20]

h(d, r) ≤ (2r)2
d−1

.

The density version of [55] states that for any natural number d and
δ > 0 there exists an n0 such that if n ≥ n0 then any subset of n of density
δ contains a Hilbert cube of dimension d. One can show that

d ≥ c log log n

where c is a positive constant depending only on δ.

On the other hand, Hegyvári shows an upper bound of the form
O(

√
log n log log n) by considering a random subset of density δ. Using

the discrete inverse theorems (Section 7), Conlon, Fox, and Sudakov [6] re-
moved the log log n term, obtaining O(

√
log n), which is sharp up to the

constant in big O, thanks to another result of Hegyvári.

Conlon et al. started with the following corollary of Theorem 7.5.

Lemma 8.3. For every C > 0, 1 > ε > 0 there exist positive constants r
and C ′ such that if X is a multiset with d elements and |Σ(X)| ≤ dC , then

there is a GAP Q of dimension r and volume at most dC
′
such that all but

at most d1−ε elements of X are contained in Q.
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From this, one can easily prove the following counting lemma.

Lemma 8.4. For s ≤ log d, the number of d-sets X ⊂ [n] with Σ(X) ≤ 2sd2

is at most nO(s)dO(d).

Let A be a random set of [n] obtained by choosing each number with
probability δ independently. Let E be the event that A contains a Hilbert
cube of dimension c

√
log n. We aim to show that

(11) P(E) = o(1),

given c sufficiently large.

Trivially P(E) ≤ n
∑

X⊂[n] δ
|Σ(X)|, where the factor n corresponds to

the number of ways to choose x0. Let mt be the number of X such that
|Σ(X)| = t. The RHS can be bounded from above by n

∑
tmtδ

t.

If t is large, say t ≥ d3, we just crudely bound
∑

t≥d3 mt by nd (which

is the total number of ways to choose x1, . . . , xd). The contribution in

probability in this case is at most n× nd × δd
3
= o(1), if c is sufficiently

large. In the case t < d3, we make use of the counting lemma above to
bound mt and a routine calculation finishes the job.

9. Inverse Theorems: Continuous Case I.

In this section and the next, we consider sets with large small ball proba-
bility.

We say that a vector v ∈ Rd is δ-close to a set Q ⊂ Rd if there exists a
vector q ∈ Q such that ‖v − q‖2 ≤ δ. A set X is δ-close to a set Q if every
element of X is δ-close to Q. The continuous analogue of Example 7.4 is
the following.

Example 9.1. Let Q be a proper symmetric GAP of rank r and vol-
ume N in Rd. Let a1, . . . , an be (not necessarily distinct) vectors which

are 1
100βn

−1/2-close to Q. Again by the Central Limit Theorem, with prob-

ability at least 2/3, SA is β-close to 10n1/2Q. Thus, by the pigeon hole

principle, there is a point x in 100n1/2Q such that

P(SA ∈ B(x, β)) ≥ |10n1/2Q|−1 ≥ Ω(n−r/2|Q|−1).

It follows that if Q has cardinality nC− r
2 for some constant C ≥ r/2,

then

(12) ρd,β,Ber (A) = Ω

(
1

nC

)
.
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Thus, in view of the Inverse Principle (9) and Theorem 7.6, we would
expect that if ρd,β,Ber (A) is large, then most of the ai is close to a GAP with
small volume. This statement turned out to hold for very general random
variable ξ (not only for Bernoulli). In practice, we can consider any real
random variable ξ, which satisfies the following condition: there are positive
constants C1, C2, C3 such that

(13) P(C1 ≤ |ξ1 − ξ2| ≤ C2) ≥ C3,

where ξ1, ξ2 are iid copies of ξ.

Theorem 9.2 [39]. Let ξ be a real random variable satisfying (13). Let
0 < ε < 1; 0 < C be constants and β > 0 be a parameter that may depend
on n. Suppose that A = {a1, . . . , an} is a (multi-)subset of Rd such that∑n

i=1 ‖ai‖22 = 1 and that A has large small ball probability

ρ := ρd,β,ξ(A) ≥ n−C .

Then there exists a symmetric proper GAP Q of rank r ≥ d and of size

|Q| = O(ρ−1n(−r+d)/2) such that all but εn elements of A are are O
(
β logn
n1/2

)
-

close to Q.

In applications, one often chooses β to be at least exp(−nε) for some
small constant ε. Our next result gives more information about Q, but with
a weaker approximation.

Theorem 9.3. Under the assumption of the above theorem, the following
holds. For any number n′ between nε and n, there exists a proper symmetric
GAP Q = {∑r

i=1 xigi : |xi| ≤ Li} such that

• At least n− n′ elements of A are β-close to Q.
• Q has small rank, r = O(1), and small cardinality

|Q| ≤ max

(
O

(
ρ−1√
n′

)
, 1

)
.

• There is a non-zero integer p = O(
√
n′) such that all steps gi of Q

have the form gi = (gi1, . . . , gid), where gij = β
pij
p with pij ∈ Z and

pij = O(β−1
√
n′).

Theorem 9.3 immediately implies the following result which can be seen
as a continuous analogue of Theorem 8.1. This result was first proved by
Tao and the second author for the purpose of verifying the Circular Law in
random matrix theory [58, 60] using a more complicated argument.

Let n be a positive integer and β, ρ be positive numbers that may depend
on n. Let Sn,β,ρ be the collection of all multisets A = {a1, . . . , an}, ai ∈ R2

such that
∑n

i=1 ‖ai‖22 = 1 and ρ2,β,Ber (A) ≥ ρ.
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Theorem 9.4 (Counting theorem, continuous case) [58, 60]. Let 0 <
ε ≤ 1/3 and C > 0 be constants. Then, for all sufficiently large n and
β ≥ exp(−nε) and ρ ≥ n−C there is a set S ⊂ (R2)n of size at most

ρ−nn−n(
1
2
−ε) + exp(o(n))

such that for any A = {a1, . . . , an} ∈ Sn,β,ρ there is some A′ = (a′1, . . . , a′n) ∈
S such that ‖ai − a′i‖2 ≤ β for all i.

Proof (of Theorem 9.4). Set n′ := n1− 3ε
2 (which is � nε as ε ≤ 1/3).

Let S ′ be the collection of all subsets of size at least n− n′ of GAPs whose
parameters satisfy the conclusion of Theorem 9.3.

Since each GAP is determined by its generators and dimensions, the
number of such GAPs is bounded by

((β−1
√
n′)

√
n′)O(1)

(
ρ−1√
n′

)O(1)

= exp(o(n)).

(The term
(

ρ−1√
n′

)O(1)
bounds the number of choices of the dimensions Mi.)

Thus

|S ′| =
(
O

((
ρ−1√
n′

)n)
+ 1

)
exp(o(n)).

We approximate each of the exceptional elements by a lattice point in
β · (Z/d)d. Thus if we let S ′′ to be the set of these approximated tuples
then |S ′′| ≤ ∑

i≤n′(O(β−1))i = exp(o(n)) (here we used the assumption β ≥
exp(−nε)).

Set S := S ′×S ′′. It is easy to see that |S| ≤ O(n−1/2+ερ−1)n+exp(o(n)).

Furthermore, if ρ(A) ≥ n−O(1) then A is β-close to an element of S, con-
cluding the proof.

10. Inverse Theorems: Continuous Case II.

Another realization of the Inverse Principle (9) was given by Rudelson and
Vershynin in [45, 47] (see also Friedland and Sodin [16]). Let a1, . . . , an be
real numbers. Rudelson and Vershynin defined the essential least common
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denominator (LCD) of a = (a1, . . . , an) as follows. Fix parameters α and γ,
where γ ∈ (0, 1), and define

LCDα,γ(a) := inf
{
θ > 0 : dist(θa,Zn) < min(γ‖θa‖2, α)

}
,

where the distance from a vector v to a set S is defined by dist(v, S) :=
infs∈S ‖v − s‖2.

The requirement that the distance is smaller than γ‖θa‖2 forces us to
consider only non-trivial integer points as approximations of θa. One typi-
cally assume γ to be a small constant, and α = c

√
n with a small constant

c > 0. The inequality dist(θa,Zn) < α then yields that most coordinates of
θa are within a small distance from non-zero integers.

Theorem 10.1 (Diophantine approximation [45, 46]). Consider a sequence
A = {a1, . . . , an} of real numbers which satisfies

∑n
i=1 a

2
i ≥ 1. Let ξ be a

random variable such that supaP(ξ ∈ B(a, 1)) ≤ 1− b for some b > 0, and
x1, . . . , xn be iid copies of ξ. Then, for every α > 0 and γ ∈ (0, 1), and for

β ≥ 1

LCDα,γ(a)
,

we have

ρ1,β,ξ(A) ≤
Cβ

γ
√
b
+ Ce−2bα

2
.

One can use Theorem 10.1 to prove a special case of the forward result
of Erdős and Littlewood–Offord when most of the ai have the same order
of magnitude (see [45, p. 6]).2 Indeed, assume that K1 ≤ |ai| ≤ K2 for all i,

where K2 = cK1 with c = O(1). Set a′i := ai/
√∑

j a
2
j and a′ := (a′1, . . . , a′n).

Choose γ = c1, α = c2
√
n with sufficiently small positive constants c1, c2

(depending on c), the condition dist(θa′,Zn) < min(γ‖θa′‖2, α) implies that
|θa′i − ni| ≤ 1/3 with ni ∈ Z, ni �= 0 for at least c3n indices i, where c3 is a
positive constant depending on c1, c2. It then follows that for these indices,
θ2a′i

2 ≥ 4n2
i /9. Summing over i, we obtain θ2 = Ω(n) and so LCDα,γ(a

′) =
Ω(

√
n). Applying Theorem 10.1 to the vector a′ with β = 1/LCDα,γ(a

′), we
obtain the desired upper bound O(1/

√
n) for the concentration probability.

Theorems 10.1 is not exactly inverse in the Freiman sense. On the other
hand, it is convenient to use and in most applications provides a sufficient

2One can also handle this case by conditioning on the abnormal ai and use Berry-
Esseen for the remaining sum.
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amount of structural information that allows one derive a counting theorem.
An extra advantage here is that this theorem enables one to consider sets
A with small ball probability as small as (1− ε)n, rather than just n−C as
in Theorem 9.2.

The definition of the essential least common denominator above can be
extended naturally to higher dimensions. To this end, we define the product
of such multi-vector a and a vector θ ∈ Rd as

θ · a = (〈θ, a1〉, · · · , 〈θ, an〉) ∈ Rn.

Then we define, for α > 0 and γ ∈ (0, 1),

LCDα,γ(a) := inf
{
‖θ‖2 : θ ∈ Rd, dist(θ · a,Zn) < min(γ‖θ · a‖2, α)

}
.

The following generalization of Theorem 10.1 gives a bound on the small
ball probability for the random sum

∑n
i=1 aixi in terms of the additive

structure of the coefficient sequence a.

Theorem 10.2 (Diophantine approximation, multi-dimensional case) [46,
16]. Consider a sequence A = {a1, . . . , an} of vectors ai ∈ Rd, which satisfies

(14)
n∑

i=1

〈ai, x〉2 ≥ ‖x‖22 for every x ∈ Rd.

Let ξ be a random variable such that supaP(ξ ∈ B(a, 1)) ≤ 1− b for some
b > 0 and x1, . . . , xn be iid copies of ξ.

Then, for every α > 0 and γ ∈ (0, 1), and for

β ≥
√
d

LCDα,γ(a)
,

we have

ρd,β
√
d,ξ(A) ≤

(
Cβ

γ
√
b

)d

+ Cde−2bα
2
.

We will sketch the proof of Theorem 10.1 in Appendix B.
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11. Inverse Quadratic Littlewood–Offord

In this section, we revisit the quadratic Littlewood–Offord bound in Sec-
tion 4 and consider its inverse. We first consider a few examples of A where
(the quadratic small ball probability) ρq(A) is large.

Example 11.1 (Additive structure implies large small ball probability).

Let Q be a proper symmetric GAP of rank r = O(1) and of size nO(1).
Assume that aij ∈ Q, then for any ξi ∈ {±1}∑

i,j

aijξiξj ∈ n2Q.

Thus, by the pigeon-hole principle,

ρq(A) ≥ n−2r|Q|−1 = n−O(1).

But unlike the linear case, additive structure is not the only source for
large small ball probability. Our next example shows that algebra also plays
a role.

Example 11.2 (Algebraic structure implies large small ball probability).
Assume that

aij = kibj + kjbi

where ki ∈ Z, |ki| = nO(1) and such that P (
∑

i kiξi = 0) = n−O(1).

Then we have

P

(∑
i,j

aijξiξj = 0

)
= P

(∑
i

kiξi
∑
j

bjξj = 0

)
= n−O(1).

Combining the above two examples, we have the following general one.

Example 11.3 (Structure implies large small ball probability). Assume
that aij = a′ij + a′′ij , where a′ij ∈ Q, a proper symmetric GAP of rank O(1)

and size nO(1), and

a′′ij = ki1b1j + kj1b1i + · · ·+ kirbrj + kjrbri,

where b1i, . . . , bri are arbitrary and ki1, . . . , kir are integers bounded by nO(1),
and r = O(1) such that

P

(∑
i

ki1ξi = 0, . . . ,
∑
i

kirξi = 0

)
= n−O(1).
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Then we have

∑
i,j

aijξiξj =
∑
i,j

a′ijξiξj + 2

(∑
i

ki1ξi

)(∑
j

b1jξj

)

+ · · ·+ 2

(∑
i

kirξi

)(∑
j

brjξj

)
.

Thus,

P

(∑
i,j

aijξiξj ∈ n2Q

)
= n−O(1).

It then follows, by the pigeon-hole principle, that ρq(A) = n−O(1).

We have demonstrated the fact that as long as most of the aij can be
decomposed as aij = a′ij + a′′ij , where a

′
ij belongs to a GAP of rank O(1) and

size nO(1) and the symmetric matrix (a′′ij) has rank O(1), then A = (aij) has

large quadratic small ball probability. The first author in [36] showed that
sort of the converse is also true.

Theorem 11.4 (Inverse Littlewood–Offord theorem for quadratic forms).
Let ε < 1, C be positive constants. Assume that

ρq(A) ≥ n−C .

Then there exist index sets I0, I of size OC,ε(1) and (1− ε)n respectively,
with I ∩ I0 = ∅, and there exist integers kii0 (for any pair i0 ∈ I0, i ∈ I) of

size bounded by nOC,ε(1), and a structured set Q of the form

Q =

{
OC(1)∑
h=1

ph
qh

gh|ph ∈ Z, |ph|, |qh| = nOC,ε(1)

}
,

such that for all i ∈ I the followings holds:

• (low rank decomposition) for any j ∈ I,

aij = a′ij −
( ∑

i0∈I0
kii0ai0j +

∑
i0∈I0

kji0ai0i

)
;

• (common additive structure of small size) all but εn entries a′ij belong
to Q.
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We remark that the common structure Q is not yet a GAP, as the
coefficients are rational, instead of being integers. It is desirable to have
an analogue of Theorem 7.6 with common structure as a genuine GAP
with optimal parameters (see for instance [7, Conjecture 1] for a precise
conjecture for bilinear forms.) For counting purposes, this inverse theorem
is sufficiently strong.

12. Application: The Least Singular Value of a Random

Matrix

For a matrix A, let σn(A) denote its smallest singular value. It is well known
that σn(A) ≥ 0 and the bound is strict if and only if A is non-singular.
An important problem with many practical applications is to bound the
least singular value of a non-singular matrix (see [17, 52, 53, 63, 47, 9]
for discussions). The problem of estimating the least singular value of a
random matrix was first raised by Goldstine and von Neumann [17] in the
1940s, with connection to their investigation of the complexity of inverting
a matrix.

To answer Goldstine and von Neumman’s question, Edelman [9] com-
puted the distribution of the LSV of the random matrix MGau

n of size n
with iid standard gaussian entries, and showed that for all fixed t > 0

P(σn(M
Gau
n ≤ tn−1/2) =

∫ t

0

1 +
√
x

2
√
x

e−(x/2+
√
x) dx+ o(1)

= t− 1

3
t3 +O(t4) + o(1).

He conjectured that this distribution is universal (i.e., it must hold for
other models of random matrices, such as Bernoulli).

More recently, in their study of smoothed analysis of the simplex
method, Spielman and Teng [52, 53] showed that for any t > 0 (t can go
to 0 with n)

(15) P(σn(M
Gau
n ) ≤ tn−1/2) ≤ t.

They conjectured that a slightly adjusted bound holds in the Bernoulli
case [52]

(16) P(σn(M
Ber
n ) ≤ t) ≤ tn1/2 + cn,
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where 0 < c < 1 is a constant. The term cn is needed as MBer
n can be

singular with exponentially small ball probability.

Edelman’s conjecture has been proved by Tao and the second author
in [64]. This work also confirms Spielman and Teng’s conjecture for the

case t is fairly large; t ≥ n−δ for some small constant δ > 0. For t ≥ n−3/2,
Rudelson in [44], making use of Halász’ machinery from [21], obtained
a strong bound with an extra (multiplicative) constant factor. In many
applications, it is important to be able to treat even smaller t. As a matter
of fact, in applications what one usually needs is the probability bound to
be very small, but this requires one to set t very small automatically.

In the last few years, thanks to the development of inverse theorems,
one can now prove very strong bound for almost all range of t.

Consider a matrix M with row vectors Xi and singular values σ1 ≥ · · · ≥
σn. Let di be the distance from Xi to the hyperplane formed by the other
n− 1 rows. There are several ways to exhibit a direct relation between the
di and σi. For instance, Tao and the second showed [58]

(17) d−21 + · · ·+ d−2n = σ−21 + · · ·+ σ−2n .

A technical relation, but in certain applications more effective, is [45,
Lemma 3.5].

From this, it is clear that if one can bound the di from below with high
probability, then one can do the same for σn. Let v = (a1, . . . , an) be the
normal vector of the hyperplane formed by X2, . . . ,Xn and ξ1, . . . , ξn be the
coordinates of X1, then

d1 = |a1ξ1 + . . . anξn|.

Thus, the probability that d1 is small is exactly the small ball probability
for the multi-set A = {a1, . . . , an}. If this probability is large, then the
inverse theorems tell us that the set A must have strong additive structure.
However, A comes as the normal vector of a random hyperplane, so the
probability that it has any special structure is very small (to quantify this
we can use the counting theorems such as Theorem 9.4). Thus, we obtain,
with high probability, a lower bound on all di. In principle, one can use this
to deduce a lower bound for σn.

Carrying out the above plan requires certain extra ideas and some careful
analysis. In [60], Tao and the second author managed to prove

Theorem 12.1. For any constant A > 0, there is a constant B > 0 such
that

P(σn(M
Ber
n ) ≤ n−B) ≤ n−A.
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The first inverse theorem, Theorem 7.5, was first proved in this paper,
as a step in the proof of Theorem 12.1. In a consequent paper, Rudelson
and Vershynin developed Theorem 10.1, and used it, in combination with
[45, Lemma 3.5] and many other ideas to show

Theorem 12.2. There is a constant C > 0 and 0 < c < 1 such that for any
t > 0,

P(σn(M
Ber
n ) ≤ tn−1/2) ≤ tn1/2 + cn.

This bound is sharp, up to the constant C. It also gives a new proof of
Kahn-Komlós-Szemerédi bound on the singularity probability of a random
Bernoulli matrix (see Section 13). Both theorems hold in more general
setting.

In practice, one often works with random matrices of the type A+Mn

where A is deterministic and Mn has iid entries. (For instance, in their
works on smoothed analysis, Spielman and Teng used this to model a large
data matrix perturbed by random noise.) They proved in [52]

Theorem 12.3. Let A be an arbitrary n by n matrix. Then for any t > 0,

P(σn(A+MGau
n ) ≤ tn−1/2) = O(t).

One may ask whether there is an analogue of Theorem 12.2 for this
model. The answer is, somewhat surprisingly, negative. An analogue of the
weaker Theorem 12.1 is, however, available, assuming that ‖A‖ is bounded
polynomially in n. For more discussion on this model, we refer to [63]. For
applications in Random Matrix Theory (such as the establishment of the
Circular Law) and many related results, we refer to [59, 65, 58, 18, 40, 2, 47]
and the references therein.

13. Application: Strong Bounds on the Singularity

Problem – The Non-symmetric Case

We continue to discuss the singularity problem from Section 5. The first
exponential bound on pn was proved by Kahn, Komlós and Szemerédi [23],
who showed that pn ≤ .999n. In [56], Tao and the second author simpli-
fied the proof and got a slightly improved bound .952n. A more notable
improvement which pushed the bound to (3/4 + o(1))n was obtained in a
subsequent paper [57], which combined Kahn et al. approach with an in-
verse theorem. The best current bound is (1/

√
2 + o(1))n by Bourgain, Vu

and Wood [3]. The proof of this bound still relied heavily on the approach
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from [57] (in particular it used the same inverse theorem), but added a new
twist which made the first part of the argument more effective.

In the following, we tried to present the approach from [23] and [57].
Similar to the proof in Appendix A, we first embed the problem in a finite
field F = Fp, where p is a very large prime. Let {−1, 1}n ⊂ Fn be the
discrete unit cube in Fn. We let X be the random variable taking values in
{−1, 1}n which is distributed uniformly on this cube (thus each element of
{−1, 1}n is attained with probability 2−n). Let X1, . . . , Xn ∈ {−1, 1} be n
independent samples of X. Then

pn := P(X1, . . . , Xn linearly dependent).

For each linear subspace V of Fn, let AV denote the event that X1, . . . ,
Xn span V . Let us call a space V non-trivial if it is spanned by the set
V ∩ {−1, 1}n. Note that P(AV ) �= 0 if and only if V is non-trivial. Since
every collection of n linearly dependent vectors in Fn will span exactly one
proper subspace V of Fn, we have

(18) pn =
∑

V a proper non-trivial subspace of Fn

P(AV ).

It is not hard to show that the dominant contribution to this sum came
from the hyperplanes:

pn = 2o(n)
∑

V a non-trivial hyperplane in Fn

P(AV ).

Thus, if one wants to show pn ≤ (3/4 + o(1))n, it suffices to show∑
V a non-trivial hyperplane in Fn

P(AV ) ≤ (3/4 + o(1))n.

The next step is to partition the non-trivial hyperplanes V into a number
of classes, depending on the number of (−1, 1) vectors in V .

Definition 13.1 (Combinatorial dimension). Let D := {d± ∈ Z/n : 1 ≤
d± ≤ n}. For any d± ∈ D, we define the combinatorial Grassmannian
Gr(d±) to be the set of all non-trivial hyperplanes V in Fn with

(19) 2d±−1/n < |V ∩ {−1, 1}n| ≤ 2d± .

We will refer to d± as the combinatorial dimension of V .
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It thus suffices to show that

(20)
∑
d±∈D

∑
V ∈Gr(d±)

P(AV ) ≤
(
3

4
+ o(1)

)n

.

It is therefore of interest to understand the size of the combinatorial Grass-
mannians Gr(d±) and of the probability of the events AV for hyperplanes
V in those Grassmannians.

There are two easy cases, one when d± is fairly small and one where d±
is fairly large.

Lemma 13.2 (Small combinatorial dimension estimate). Let 0 < α < 1 be
arbitrary. Then ∑

d±∈D:2d±−n≤αn

∑
V ∈Gr(d±)

P(AV ) ≤ nαn.

Proof (of Lemma 13.2). Observe that if X1, . . . , Xn span V , then there
are n− 1 vectors among the Xi which already span V . By symmetry, we
thus have
(21)
P(AV ) = P(X1, . . . , Xn span V ) ≤ nP(X1, . . . , Xn−1 span V )P(X ∈ V ).

On the other hand, if V ∈ Gr(d±) and 2d±−n ≤ αn, then P(X ∈ V ) ≤ αn

thanks to (19). Thus we have

P(AV ) ≤ nαnP(X1, . . . , Xn−1 span V ).

Since X1, . . . , Xn−1 can span at most one space V , the claim follows.

Lemma 13.3 (Large combinatorial dimension estimate). We have∑
d±∈D:2d±−n≥100/√n

∑
V ∈Gr(d±)

P(AV ) ≤ (1 + o(1))n22−n.

This proof uses Theorem 3.1 and is left as an exercise; consult [23, 57] for
details. The heart of the matter is the following, somewhat more difficult,
result.
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Proposition 13.4 (Medium combinatorial dimension estimate). Let 0 <
ε0 � 1, and let d± ∈ D be such that

(
3
4 + 2ε0

)n
< 2d±−n < 100√

n
. Then we

have ∑
V ∈Gr(d±)

P(AV ) ≤ o(1)n,

where the rate of decay in the o(1) quantity depends on ε0 (but not on d±).

Note that D has cardinality |D| = O(n2). Thus if we combine this
proposition with Lemma 13.2 (with α := 3

4 + 2ε0) and Lemma 13.3, we see
that we can bound the left-hand side of (20) by

n

(
3

4
+ 2ε0

)n

+ n2o(1)n + (1 + o(1))n22−n =

(
3

4
+ 2ε0 + o(1)

)n

.

Since ε0 is arbitrary, the upper bound (3/4 + o(1))n follows.

We now informally discuss the proof of Proposition 13.4. We start with
the trivial bound

(22)
∑

V ∈Gr(d±)

P(AV ) ≤ 1

that arises simply because any vectors X1, . . . , Xn can span at most one
space V . To improve upon this trivial bound, the key innovation in [23]
is to replace X by another random variable Y which tends to be more
concentrated on subspaces V than X is. Roughly speaking, one seeks the
property

(23) P(X ∈ V ) ≤ cP(Y ∈ V )

for some absolute constant 0 < c < 1 and for all (or almost all) subspaces
V ∈ Gr(d±). From this property, one expects (heuristically, at least)

(24) P(AV ) = P(X1, . . . , Xn span V ) ≤ cnP(Y1, . . . , Yn span V ),

where Y1, . . . , Yn are iid samples of Y , and then by applying the trivial
bound (22) with Y instead of X, we would then obtain a bound of the form∑

V ∈Gr(d±)P(AV ) ≤ cn, at least in principle. Clearly, it will be desirable to

make c as small as possible; if we can make c arbitrarily small, we will have
established Proposition 13.4.

The random variable Y can be described as follows. Let 0 ≤ μ ≤ 1 be a
small absolute constant (in [23] the value μ = 1

108e
−1/108 was chosen), and
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let η(μ) be a random variable taking values in {−1, 0, 1} ⊂ F which equals 0
with probability 1−μ and equals +1 or −1 with probability μ/2 each. Then

let Y := (η
(μ)
1 , . . . , η

(μ)
n ) ∈ Fn, where η

(μ)
1 , . . . , η

(μ)
n are iid samples of η(μ). By

using a Fourier-analytic argument of Halász [21], a bound of the form

P(X ∈ V ) ≤ C
√
μP(Y ∈ V )

was shown in [23], where C was an absolute constant (independent of μ),
and V was a hyperplane which was non-degenerate in the sense that its
combinatorial dimension was not too close to n. For μ sufficiently small, one
then obtains (23) for some 0 < c < 1, although one cannot make c arbitrarily
small without shrinking μ also.

There are however some technical difficulties with this approach, arising
when one tries to pass from (23) to (24). The first problem is that the
random variable Y , when conditioned on the event Y ∈ V , may concentrate
on a lower dimensional subspace on V , making it unlikely that Y1, . . . , Yn
will span V . In particular, Y has a probability of (1− μ)n of being the zero
vector, which basically means that one cannot hope to exploit (23) in any
non-trivial way once P(X ∈ V ) ≤ (1−μ)n. However, in this case V has very
low combinatorial dimension and Lemma 13.2 already gives an exponential
gain.

Even when (1− μ)n < P(X ∈ V ) ≤ 1, it turns out that it is still not
particularly easy to obtain (24), but one can obtain an acceptable substitute
for this estimate by only replacing some of the Xj by Yj . Specifically, one
can try to obtain an estimate roughly of the form

(25) P(X1, . . . , Xn span V ) ≤ cmP(Y1, . . . , Ym, X1, . . . , Xn−m span V )

where m is equal to a suitably small multiple of n (we will eventually take
m ≈ n/100). Strictly speaking, we will also have to absorb an additional
“entropy” loss of

(
n
m

)
for technical reasons, though as we will be taking c

arbitrarily small, this loss will ultimately be irrelevant.

The above approach (with some minor modifications) was carried out
rigorously in [23] to give the bound pn = O(.999n) which has been improved
slightly to O(.952n) in [56], thanks to some simplifications. There are two
main reasons why the final gain in the base was relatively small. Firstly,
the chosen value of μ was small (so the n(1− μ)n error was sizeable), and
secondly the value of c obtained was relatively large (so the gain of cn or

c(1−γ)n was relatively weak). Unfortunately, increasing μ also causes c to
increase, and so even after optimizing μ and c one falls well short of the
conjectured bound.



442 H. H. Nguyen and V. H. Vu

The more significant improvement to (3/4 + o(1))n relies on an inverse
theorem. To reduce all the other losses to

(
3
4 + 2ε0

)n
for some small ε0, we

increase μ up to 1/4− ε0/100, at which point the arguments of Halász and
[23, 56] give (23) with c = 1. The value 1/4 for μ is optimal as it is the
largest number satisfying the pointwise inequality

| cos(x)| ≤ (1− μ) + μ cos(2x) for all x ∈ R,

which is the Fourier-analytic analogue of (23) (with c = 1). At first glance,
the fact that c = 1 seems to remove any utility to (23), as the above argu-

ment relied on obtaining gains of the form cn or c(1−γ)n. However, we can
proceed further by subdividing the collection of hyperplanes Gr(d±) into
two classes, namely the unexceptional spaces V for which

P(X ∈ V ) < ε1P(Y ∈ V )

for some small constant 0 < ε1 � 1 to be chosen later (it will be much
smaller than ε0), and the exceptional spaces for which

(26) ε1P(Y ∈ V ) ≤ P(X ∈ V ) ≤ P(Y ∈ V ).

The contribution of the unexceptional spaces can be dealt with by the
preceding arguments to obtain a very small contribution (at most δn for
any fixed δ > 0 given that we set ε1 = ε1(γ, δ) suitably small), so it remains
to consider the exceptional spaces V .

The key technical step is to show that there are very few exceptional
hyperplanes (and thus their contribution is negligible). This can be done
using the following inverse theorem (the way the counting Theorem 8.1 was
proved using the inverse Theorem 7.6).

Let V ∈ Gr(d±) be an exceptional space, with a representation of the
form

(27) V = {(x1, . . . , xn) ∈ Fn : x1a1 + . . .+ xnan = 0}
for some elements a1, . . . , an ∈ F . We shall refer to a1, . . . , an as the defining
co-ordinates for V .

Theorem 13.5. There is a constant C = C(ε0, ε1) such that the following
holds. Let V be a hyperplane in Gr(d±) and a1, . . . , an be its defining
co-ordinates. Then there exist integers

(28) 1 ≤ r ≤ C

and M1, . . . ,Mr ≥ 1 with the volume bound

(29) M1 . . .Mr ≤ C2n−d±

and non-zero elements v1, . . . , vr ∈ F such that the following holds.
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• (Defining coordinates lie in a progression) The symmetric generalized
arithmetic progression

P := {m1v1 + . . .+mrvr : −Mj/2 < mj < Mj/2 for all 1 ≤ j ≤ r}

is proper and contains all the ai.
• (Bounded norm) The ai have small P -norm:

(30)

n∑
j=1

‖aj‖2P ≤ C

• (Rational commensurability) The set {v1, . . . , vr}∪{a1, . . . , an} is con-
tained in the set

(31)

{
p

q
v1 : p, q ∈ Z; q �= 0; |p|, |q| ≤ no(n)

}
.

14. Application: Strong Bounds on the Singularity

Problem – The Symmetric Case

Similar to Conjecture 5.1, we raise

Conjecture 14.1.

psymn = (1/2 + o(1))n.

We are very far from this conjecture. Currently, no exponential upper
bound is known. The first superpolynomial bound was obtained by the first
author [36] very recently.

Theorem 14.2 [36]. For any C > 0 and n sufficiently large

psymn ≤ n−C .

Shortly after, Vershinyn [69] proved the following better bound

Theorem 14.3. There exists a positive constant c such that

psymn = O(exp(−nc)).

Both proofs made essential use of inverse theorems. The first author
used the inverse quadratic Theorem 11.4 and Vershynin’s proof used The-
orem 10.1 several times.
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In the following, we sketched the main ideas behind Theorem 14.2. Let
r = (ξ1, . . . , ξn) be the first row of Mn, and aij , 2 ≤ i, j ≤ n, be the cofactors
of Mn−1 obtained by removing r and rT from Mn. We have

(32) det(Mn) = ξ21 det(Mn−1) +
∑

2≤i,j≤n
aijξiξj .

Recalling the proof of Theorem 5.6 (see Section 5). One first need to
show that with high probability (with respect to Mn−1) a good fraction of
the co-factors aij are nonzero. Theorem 4.1 then yields that

Pr(det(Mn) = 0) ≤ n−1/8+o(1) = o(1).

To prove Theorem 14.2, we adapt the reversed approach, which, similar
to the previous proofs, consists of an inverse statement and a counting step.

(1) (Inverse step). If Pr(det(Mn) = 0|Mn−1) ≥ n−O(1), then there is a
strong additive structure among the cofactors aij .

(2) (Counting step). With respect to Mn−1, a strong additive structure
among the aij occurs with negligible probability.

By (32), one notices that the first step concentrates on the study of
inverse Littlewood–Offord problem for quadratic forms

∑
ij aijξiξj . Roughly

speaking, Theorem 11.4 implies that most of the aij belong to a common
structure. Thus, by extracting the structure on one row of the array A =
(aij), we obtain a vector which is orthogonal to the remaining n− 2 rows
of the matrix Mn−1. Executing the argument more carefully, we obtain the
following lemma.

Lemma 14.4 (Inverse Step). Let ε < 1 and C be positive constants.
Assume that Mn−1 has rank at least n− 2 and that

Pr

(∑
i,j

aijξiξj = 0|Mn−1

)
≥ n−C .

Then there exists a nonzero vector u = (u1, . . . , un−1) with the following
properties.

• All but nε elements of ui belong to a proper symmetric generalized
arithmetic progression of rank OC,ε(1) and size nOC,ε(1).

• ui ∈ {p/q : p, q ∈ Z, |p|, |q| = nOC,ε(n
ε)} for all i.

• u is orthogonal to n−OC,ε(n
ε) rows of Mn−1.
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Let P denote the collection of all u satisfying the properties above. For
each u ∈ P , let Pu be the probability, with respect to Mn−1, that u is
orthogonal to n−OC,ε(n

ε) rows of Mn−1. The following lemma takes care
of our second step.

Lemma 14.5 (Counting Step). We have∑
u∈P

Pu = OC,ε((1/2)
(1−o(1))n).

The main contribution in the sum in Lemma 14.5 comes from those
u which have just a few non-zero components (i.e. compressible vectors).
For incompressible vectors, we classify it into dyadic classes Cρ1,...,ρn−1 ,
where ρi is at most twice and at least half the probability P(ξ1u1 + · · ·+
ξuui = 0). Assume that u ∈ Cρ1,...,ρn−1 . Then by definition, as Mn−1 is
symmetric, the probability Pu is bounded by

∏
O(ρi). On the other hand,

by taking into account the structure of generalized arithmetic progressions,
a variant of Theorem 8.1 shows that the size of each Cρ1,...,ρn−1 is bounded

by
∏

iO(ρi)n
−1/2+o(1). Summing Pu over all classes C, notice that the

number of these classes are negligible, one obtains an upper bound of order
n−(1−o(1))n/2 for the compressible vectors.

We remark that it is in the Inverse Step that we obtain the final bound
n−C on the singular probability. In [69], Vershynin worked with a more
general setting where one can assume a better bound. In this regime, he
has been able to apply a variant of Theorem 10.1 to prove a very mild
inverse-type result which is easy to be adapted for the Counting Step. As
the details are complex, we invite the reader to consult [69].

15. Application: Common Roots of Random Polynomials

Let d be fixed. With �jd = (j1, . . . , jd), ji ∈ Z+ and |�jd| =
∑

ji, let ξ�jd be

iid copies of a random variable ξ. Set x
�jd =

∏
xjii . Consider the random

polynomial

P (x1, . . . , xd) =
∑

�jd,|�jd|≤n
ξ�jdx

�jd

of degree n in d variables. (Here d is fixed and n → ∞.) Random polyno-
mials is a classical subject in analysis and probability and we refer to [4] for
a survey.
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In this section, we consider the following natural question. Let P1, . . . ,
Pd+1 be d+ 1 independent random polynomials, each have d variables and
degree n.

Question 15.1. What is the probability that P1, . . . , Pd+1 have a common
root?

For short, let us denote the probability under consideration by p(n, d)

p(n, d) := P(∃x ∈ Cd : Pi(x) = 0, i = 1, . . . , d+ 1).

When ξ has continuous distribution, it is obvious that p(n, d) = 0. How-
ever, the situation is less clear when ξ has discrete distribution, even in
the case d = 1. Indeed, when n is even and P1(x), P2(x) are two indepen-
dent random Bernoulli polynomials of one variable, then one has P(P1(1) =
P2(1) = 0) = Θ(1/n) and P(P1(−1) = P2(−1) = 0) = Θ(1/n). Thus in this
case p(n, 1) = Ω(1/n).

In a recent paper, Kozma and Zeitouni [32] proved p(n, d) = O(1/n),
answering Question 15.1 in the asymptotic sense.

Theorem 15.2. For any fixed d there exists a constant c(d) such that the
following holds. Let P1 . . . , Pd+1 be d+ 1 independent random Bernoulli
polynomials in d variables and degree n.

p(n, d) ≤ c(d)/n.

In the sequel, we will focus on the case d = 1. This first case already
captures some of the main ideas, especially the use of inverse theorems. The
reader is invited to consult [32] for further details.

Theorem 15.3. Let P1, P2 be two independent Bernoulli random polyno-
mials in one variable of degree n. Then

p(n, 1) =

{
O(n−1) n even

O(n−3/2) n odd.

Notice that the bounds in both cases are sharp. To start the proof, first
observe that, because the coefficients of P1 are ±1, all roots x of P1 have
magnitude 1/2 < |x| < 2. Furthermore, x must be an algebraic integer. We
will try to classify the common roots by their unique irreducible polynomial,
relying on the following easy algebraic fact [32]:
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Fact 15.4. For every k there are only finitely many numbers whose ir-
reducible polynomial has degree k that can be roots of a polynomial of
arbitrary degree with coefficients ±1.

Now we look at the event of having common roots. Assume that P1 is
fixed (i.e. condition on P1) and let x1, . . . , xn be its n complex roots. For
each xi, we consider the probability that xi is a root of P2(x). If P(P2(xi) =

0) ≤ n−5/2 for all i, then P(∃x ∈ C : P1(x) = P2(x)) = O(n−3/2), and there

is nothing to prove. We now consider the case P(P2(xi) = 0) ≥ n−5/2 for
some root xi of P1(x). Notice that

P(P2(xi) = 0) = Pξ0,...,ξn

(
n∑

j=0

ξjx
j
i = 0

)
= ρ(X),

where X is the geometric progression X = {1, xi, . . . , xni }.
Now Theorem 7.6 comes into play. As ρ(X) ≥ n−5/2, most of the terms

of X are additively correlated. On the other hand, as X is a geometric pro-
gression, this is the case only if xi is a root of a bounded degree polynomial
with well-controlled rational coefficients.

Lemma 15.5. For any C > 0, there exists n0 such that if n > n0, and if

ρ(X) ≥ n−C ,

where X = {1, x, . . . , xn}. Then x is an algebraic number of degree at
most 2C.

Proof (of Lemma 15.5). Set ε = 1/(2C + 2). Theorem 7.6, applied
to the set X, implies that there exists a GAP Q of rank r and size
|Q| = OC(n

C−r/2) which contains at least (2C + 1)/(2C + 2)-portion of the
elements of X. By pigeon-hole principle, there exists 2C + 1 consecutive
terms of X, say xi0 , . . . , xi0+2C , all of which belong to Q.

As |Q| ≥ 1, the rank r ofQmust be at most 2C. Thus there exist integral

coefficients m1, . . . ,m2C+1, all of which are bounded by nOC(1), such that

the linear combination
∑2C

i=0mix
i0+i vanishes. In particular, it follows that

x is an algebraic number of degree at most 2C.

We now prove Theorem 15.3. Write

p(n, 1) = P(∃x ∈ C : P1(x) = P2(x) = 0)

≤ P(P1(1) = P2(1) = 0) +P(P1(−1) = P2(−1) = 0)
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+P(∃x of algebraic degree 2, 3, 4, 5 : P1(x) = P2(x) = 0)

+P(∃x of algebraic degree ≥ 6 : P1(x) = P2(x) = 0)

= S1 + S2 + S3.

For the first term, it is clear that S1 = Θ(n−1) if n is even, and S1 = 0
otherwise. For the second term S2, by Lemma 15.4, the number of possible
common roots x of algebraic degree at most 5 is O(1), so it suffices to show

that P(P1(x) = P2(x)) = n−3/2 for each such x. On the other hand, by

Lemma 15.5 we must have P(Pi(x) = 0) ≤ n−3/4 because x cannot be a
rational number (i.e. algebraic number of degree one). Thus we have

P(P1(x) = P2(x) = 0) = P(P1(x) = 0)P(P2(x) = 0) ≤ n−3/2.

Lastly, in order to bound S3 we first fix P1(x). It has at most n roots x
of algebraic degree at least 6. For each of these roots, by Lemma 15.5,
P(P2(x) = 0) = O(n−5/2). Thus the probability that P2 has at least a
common root with P1 which is an algebraic number of degree at least 6
is bounded by n×O(n−5/2) = O(n−3/2). As a result, S3 = O(n−3/2).

16. Application: Littlewood–Offord Type Bound for

Multilinear Forms and Boolean Circuits

Let k be a fixed positive integer, and p(ξ1, . . . , ξn) =
∑

S∈[n]≤k cSξS be a ran-

dom multi-linear polynomial of degree at most k, where ξi are iid Bernoulli
variables (taking values {0, 1} with equal probability) and ξS =

∏
i∈S ξi. As

mentioned in Section 4, by generalizing the proof of Theorem 4.1, Costelo,
Tao and the second author proved the following

Theorem 16.1. Let K denote the number of non-zero coefficients cS , and
set m := K/nk−1. Then for any real number x we have

P(p = x) = O
(
m
− 1

2(k
2+k)/2

)
.

Using a finer analysis, Razborov and Viola [42] improved the exponent
1

2(k
2+k)/2

to 1
2k2k

.
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Theorem 16.2. Let p(ξ1, . . . , ξn) =
∑

S∈[n]≤k cSξS be a multi-linear polyno-

mial of degree k, and assume that there exist r terms ξS1 , . . . , ξSr of degree
k each where the Si are mutually disjoint and cSi �= 0. Then for any real
number x we have

P(p = x) = O(r−bk),

where bk = (2k2k)−1.

One observes that r = Ω(m/k), where m was defined in Theorem 16.1.
Indeed, assume that the collection {S1, . . . , Sr} is maximal (with respect to
disjointness). Then every set S with cS �= 0, either ξS has degree less than
k or S intersects one of the Si. Thus K = O(rknk−1), and so r = Ω(m/k).

It is a very interesting question (in its own right and for applications)
to improve the exponent further. In the rest of this section, we are going to
discuss Razborov and Viola’s main application of Theorem 16.2.

For two functions f, g : {0, 1}n → R, one defines their correlation as

Corn(f, g) := P(f(ξ1, . . . , ξn) = g(ξ1, . . . , ξn))− 1/2,

where ξi are iid Bernoulli variables taking values {0, 1} with equal proba-
bility.

Most of the research in Complexity Theory has so far concentrated on
the case in which both f and g are Boolean functions (that is f(x), g(x) ∈
{0, 1}). To incorporate into this framework arbitrary multivariate polyno-
mials, one converts them to Boolean functions. There are two popular ways
of doing this. For a polynomial p with integer coefficients, define a Boolean
function b(x) = 1 if m|p(x), where m is a given integer, and 0 otherwise.
These functions b are called modular polynomials. For arbitrary p, one can
set b(x) = 1 if p(x) > t for some given threshold t, and 0 otherwise. We re-
fer to these functions b as threshold polynomials. For further discussion on
these polynomials, we refer the reader to [34, 35].

It is an open problem to exhibit an explicit Boolean function f : {0, 1}n
→ {0, 1} such that Corn(b, f) = o(1/

√
n) for any modular polynomial b

whose underlying polynomial p has degree log2 n (see [70]). The same
problem is also open for threshold polynomials.

In [42], Razborov and Viola initiated a similar study for the correlation
of multi-variable polynomials where any output outside of {0, 1} is counted
as an error. They highlighted the following problem.

Problem 16.3. Exhibit an explicit Boolean function f such thatCorn(p, f)
= o(1/

√
n) for any real polynomial p : {0, 1}n → R of degree log2 n.
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It is well-known that analogies between polynomial approximations and
matrix approximations are important and influential in theory and other
areas like Machine Learning (see for instance [51]). Viewed under this an-
gle, Razborov and Viola’s model is a straightforward analogy of matrix
rigidity [68] that still remains one of the main unresolved problems in the
modern Complexity Theory. For further discussion and motivation, we re-
fer to [42] and the references therein. It is noted that solving Problem 16.3
is a pre-requisite for solving the corresponding open problem for threshold
polynomials. Similarly, the special case of Problem 16.3 when the polynomi-
als have integer coefficients is a pre-requisite for solving the corresponding
open problem for modular polynomials. As a quick application of Theo-
rem 16.2, we demonstrate here a result addressing the question for lower
degree polynomials.

Theorem 16.4 [42, Theorem 1.2]. We have Corn(p, parity) ≤ 0 for every
sufficiently large n and every real polynomial p : {0, 1}n → R of degree at
most log2 log2 n/2.

Proof (of Theorem 16.4). First we suppose that the hypothesis of Theo-
rem 16.2 is satisfied with r =

√
n. Then the probability that the polynomial

outputs a Boolean value is bounded by

2×O
(
(1/

√
n)

1

2k2k

)
≤ 1/2,

where k ≤ 1
2 log2 log2 n.

Otherwise, we can cover all the terms of degree k by k
√
n variables.

Freeze these variables and iterate. After at most k iterations, either the
hypothesis of Theorem 16.2 is satisfied with r =

√
n (and with smaller

degree), in which case we would be done, or else we end up with a degree-one
polynomial with n−O(k2)

√
n ≥ 1 variables, in which case the statement is

true by comparison with the parity function.

17. Application: Solving Frankl and Füredi’s Conjecture

In this section, we return to the discussion in Section 2 and give a proof of
Conjecture 2.4 and a new proof for Theorem 2.2. Both proofs are based on
the following inverse theorem.

Theorem 17.1. For any fixed d there is a constant C such that the fol-
lowing holds. Let A = {a1, . . . , an} be a multi-set of vectors in Rd such
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that pd,1,Ber (A) ≥ Ck−d/2. Then A is ”almost” flat. Namely, there is a
hyperplane H such that dist(ai,H) ≥ 1 for at most k values of i = 1, . . . , n.

The proof of this theorem combines Esseén’s bound (Lemma 6.2) to-
gether with some geometric arguments. For details, see [66]; dist(a,Hi), of
course, means the distance from a to Hi.

We first prove Theorem 2.2 by induction on the dimension d. The case
d = 1 follows from Theorem 2.1, so we assume that d ≥ 2 and that the claim
has already been proven for smaller values of d. It suffices to prove the upper
bound

p(d,R,Ber, n) ≤ (1 + o(1))2−nS(n, s).

Fix R, and let ε > 0 be a small parameter to be chosen later. Suppose
the claim failed, then there exists R > 0 such that for arbitrarily large n,
there exist a multi-set A = {a1, . . . , an} of vectors in Rd of length at least
1 and a ball B of radius R such that

(33) P(SA ∈ B) ≥ (1 + ε)2−nS(n, s).

In particular, from Stirling’s approximation one has

P(SA ∈ B) � n−1/2.

Applying the pigeonhole principle, we can find a ball B0 of radius 1
logn

such that

P(SA ∈ B0) � n−1/2 log−d n.

Set k := n2/3. Since d ≥ 2 and n is large, we have

P(SA ∈ B0) ≥ Ck−d/2

for some fixed constant C. Applying Theorem 17.1 (rescaling by log n), we
conclude that there exists a hyperplane H such that dist(vi, H) ≤ 1/ log n
for at least n− k values of i = 1, . . . , n.

Let V ′ denote the orthogonal projection to H of the vectors vi with
dist(vi, H) ≤ 1/ log n. By conditioning on the signs of all the ξi with
dist(vi, H) > 1/ log n, and then projecting the sum XV onto H, we con-
clude from (33) the existence of a d− 1-dimensional ball B′ in H of radius
R such that

P(XV ′ ∈ B′) ≥ (1 + ε)2−nS(n, s).

On the other hand, the vectors in V ′ have magnitude at least 1− 1/ log n.
If n is sufficiently large depending on d, ε this contradicts the induction
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hypothesis (after rescaling the V ′ by 1/(1− 1/ logn) and identifying H with
Rn−1 in some fashion; notice that the scaling changes R slightly but does
not change s, and also that the function 2−nS(n, s) is decreasing with n).
This concludes the proof of (4).

Now we turn to the proof of Conjecture 2.4. We can assume s ≥ 3, as the
remaining cases have already been treated (see Section 2). If the conjecture
failed, then there exist arbitrarily large n for which there exist a multi-set
A = {a1, . . . , an} of vectors in Rd of length at least 1 and a ball B of radius
R such that

(34) P(SA ∈ B) > 2−nS(n, s).

By iterating the argument used to prove (4), we may find a one-
dimensional subspace L of Rd such that dist(vi, L) � 1/ log n for at least

n−O(n2/3) values of i = 1, . . . , n. By reordering, we may assume that

dist(vi, L) � 1/ log n for all 1 ≤ i ≤ n− k, where k = O(n2/3).

Let π : Rd → L be the orthogonal projection onto L. We divide into two
cases. The first case is when |π(vi)| > R

s for all 1 ≤ i ≤ n. We then use the
trivial bound

P(SA ∈ B) ≤ P(Sπ(V ) ∈ π(B)).

If we rescale Theorem 2.1 by a factor slightly less than s/R, we see that

P(Sπ(V ) ∈ π(B)) ≤ 2−nS(n, s)

which contradicts (34).

In the second case, we assume |π(vn)| ≤ R/s. We let A′ be the multi-set
{a1, . . . , an−k}, then by conditioning on the ξn−k+1, . . . , ξn−1 we conclude
the existence of a unit ball B′ such that

P(SA′ + ξnan ∈ B′) ≥ P(SA ∈ B).

Let xB′ be the center of B′. Observe that if SV ′ + ξnan ∈ B′ (for
any value of ξn) then |Sπ(V ′) − π(xB′)| ≤ R+ R

s . Furthermore, if |Sπ(V ′) −
π(xB′)| >

√
R2 − 1, then the parallelogram law shows that SV ′ + an and

SV ′−n cannot both lie in B′, and so conditioned on |Sπ(V ′) − π(xB′)| >√
R2 − 1, the probability that SV ′ + ξnan ∈ B′ is at most 1/2.

We conclude that

P(SA′ + ξnan ∈ B′) ≤ P(|Aπ(A′) − π(xB′)| ≤
√

R2 − 1)

+
1

2
P

(√
R2 − 1 < |Sπ(V ′) − π(xB′)| ≤ R+

R

s

)
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=
1

2

(
P(|Aπ(A′) − π(xB′)| ≤

√
R2 − 1)

+P

(
|Sπ(A′) − π(xB′)| ≤ R+

R

s

))
.

However, note that all the elements of π(A′) have magnitude at least
1− 1/ log n. Assume, for a moment, that R satisfies

(35)
√

R2 − 1 < s− 1 ≤ R < R+
R

s
< s.

From Theorem 2.1 (rescaled by (1− 1/ log n)−1), we conclude that

P(|Sπ(A′) − π(xB′)| ≤
√
R2 − 1) ≤ 2−(n−k)S(n− k, s− 1)

and

P

(
|π(SA′)− π(xB′)| ≤ R+

R

s

)
≤ 2−(n−k)S(n− k, s).

On the other hand, by Stirling’s formula (if n is sufficiently large) we
have

1

2
(2−(n−k)S(n− k, s− 1)) +

1

2
2−(n−k)S(n− k, s) =

√
2

π

s− 1/2 + o(1)

n1/2

while

2−nS(n, s) =
√

2

π

s+ o(1)

n1/2

and so we contradict (34).

An inspection of the above argument shows that all we need on R
are the conditions (35). To satisfy the first inequality in (35), we need

R <
√

(s− 1)2 + 1. Moreover, once s− 1 ≤ R <
√

(s− 1)2 + 1, one can

easily check that R+ R
s < s holds automatically for any s ≥ 3, concluding

the proof.
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Appendix A. Proof of Theorem 7.6

In this section, we sketch the proof of Theorem 7.6.

Embedding. The first step is to embed the problem into a finite field Fp

for some prime p. In the case when the ai are integers, we simply take p to
be a large prime (for instance p ≥ 2n(

∑n
i=1 |ai|+ 1) suffices).

If A is a subset of a general torsion-free group G, we rely on the concept
of Freiman isomorphism. Two sets A,A′ of additive groups G, G′ (not
necessarily torsion-free) are Freiman-isomorphism of order k (in generalized
form) if there is an bijective map f from A to A′ such that f(a1) + · · ·+
f(ak) = f(a′1) + · · ·+ f(a′k) in G′ if and only if a1 + · · ·+ ak = a′1 + · · ·+ a′k
in G, for any subsets {a1, . . . , ak} ⊂ A; {a′1, . . . , a′k} ⊂ A′.

The following theorem allows us to pass from an arbitrary torsion-free
group to Z or cyclic groups of prime order (see [67, Lemma 5.25]).

Theorem A.1. Let A be a finite subset of a torsion-free additive group G.
Then for any integer k the following holds.

• there is a Freiman isomorphism φ : A → φ(A) of order k to some finite
subset φ(A) of the integers Z;

• more generally, there is a map φ : A → φ(A) to some finite subset
φ(A) of the integers Z such that

a1 + · · ·+ ai = a′1 + · · ·+ a′j ⇔ φ(a1) + · · ·+ φ(ai) = φ(a′1) + . . . φ(a′j)

for all i, j ≤ k.

The same is true if we replace Z by Fp, if p is sufficiently large depending
on A.

Thus instead of working with a subset A of a torsion-free group, it is
sufficient to work with subset of Fp, where p is large enough. From now on,
we can assume that ai are elements of Fp for some large prime p. We view
elements of Fp as integers between 0 and p− 1. We use the short hand ρ to
denote ρ(A). The next few steps are motivated by Halász’ analysis in [21].

Fourier Analysis. The main advantage of working in Fp is that one can
make use of discrete Fourier analysis. Assume that

ρ = ρ(A) = P(S = a),

for some a ∈ Fp. Using the standard notation ep(x) for exp(2π
√
−1x/p),

we have

(36) ρ = P(S = a) = E
1

p

∑
t∈Fp

ep(t(S − a)) = E
1

p

∑
t∈Fp

ep(tS)ep(−ta).
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By independence

(37) Eep(tS) =
n∏

i=1

ep(tξiai) =
n∏

i=1

cos
2πtai
p

.

It follows that

(38) ρ ≤ 1

p

∑
t∈Fp

∏
i

∣∣∣∣cos 2πaitp

∣∣∣∣ = 1

p

∑
t∈Fp

∏
i

∣∣∣∣cosπaitp

∣∣∣∣ ,
where we made the change of variable t → t/2 (in Fp) to obtain the last
identity.

By convexity, we have that | sinπz| ≥ 2‖z‖ for any z ∈ R, where ‖z‖ :=
‖z‖R/Z is the distance of z to the nearest integer. Thus,

(39)

∣∣∣∣cos πxp
∣∣∣∣ ≤ 1− 1

2
sin2

πx

p
≤ 1− 2

∥∥∥∥xp
∥∥∥∥2 ≤ exp

(
−2

∥∥∥∥xp
∥∥∥∥2

)
,

where in the last inequality we used that fact that 1− y ≤ exp(−y) for any
0 ≤ y ≤ 1.

Consequently, we obtain a key inequality

(40) ρ ≤ 1

p

∑
t∈Fp

∏
i

∣∣∣∣cos πaitp

∣∣∣∣ ≤ 1

p

∑
t∈Fp

exp

(
−2

n∑
i=1

∥∥∥∥aitp
∥∥∥∥2

)
.

Large level sets. Now we consider the level sets

Sm :=

{
t
∣∣∣ n∑

i=1

‖ait/p‖2 ≤ m

}
.

We have

n−C ≤ ρ ≤ 1

p

∑
t∈Fp

exp

(
−2

n∑
i=1

∥∥∥∥aitp
∥∥∥∥2

)
≤ 1

p
+

1

p

∑
m≥1

exp(−2(m− 1))|Sm|.

Since
∑

m≥1 exp(−m) < 1, there must be is a large level set Sm such
that

(41) |Sm| exp(−m+ 2) ≥ ρp.
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In fact, since ρ ≥ n−C , we can assume that m = O(log n).

Double counting and the triangle inequality. By double counting we have

n∑
i=1

∑
t∈Sm

∥∥∥∥aitp
∥∥∥∥2 = ∑

t∈Sm

n∑
i=1

∥∥∥∥aitp
∥∥∥∥2 ≤ m|Sm|.

So, for most ai

(42)
∑
t∈Sm

∥∥∥∥aitp
∥∥∥∥2 ≤ m

n′
|Sm|.

By averaging, the set of ai satisfying (42) has size at least n− n′. We
call this set A′. The set A\A′ has size at most n′ and this is the exceptional
set that appears in Theorem 7.6. In the rest of the proof, we are going to
show that A′ is a dense subset of a proper GAP.

Since ‖ · ‖ is a norm, by the triangle inequality, we have for any a ∈ kA′

(43)
∑
t∈Sm

∥∥∥∥atp
∥∥∥∥2 ≤ k2

m

n′
|Sm|.

More generally, for any l ≤ k and a ∈ lA′

(44)
∑
t∈Sm

∥∥∥∥atp
∥∥∥∥2 ≤ k2

m

n′
|Sm|.

Dual sets. Define S∗m :=

{
a | ∑t∈Sm

∥∥∥at
p

∥∥∥2 ≤ 1
200 |Sm|

}
(the constant

200 is ad hoc and any sufficiently large constant would do). S∗m can be
viewed as some sort of a dual set of Sm. In fact, one can show as far as
cardinality is concerned, it does behave like a dual

(45) |S∗m| ≤ 8p

|Sm| .

To see this, define Ta :=
∑

t∈Sm
cos 2πat

p . Using the fact that cos 2πz ≥
1− 100‖z‖2 for any z ∈ R, we have, for any a ∈ S∗m

Ta ≥
∑
t∈Sm

(
1− 100

∥∥∥∥atp
∥∥∥∥2

)
≥ 1

2
|Sm|.
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One the other hand, using the basic identity
∑

a∈Fp
cos 2πax

p = pIx=0,

we have ∑
a∈Fp

T 2
a ≤ 2p|Sm|.

(45) follows from the last two estimates and averaging.

Set k := c1

√
n′
m , for a properly chosen constant c1. By (44) we have

∪k
l=1lA

′ ⊂ S∗m. Set A
′′
= A′ ∪ {0}; we have kA′′ ⊂ S∗m ∪ {0}. This results in

the critical bound

(46) |kA′′ | = O

(
p

|Sm|

)
= O(ρ−1 exp(−m+ 2)).

The role of Fp is now no longer important, so we can view the ai as
integers. Notice that (46) leads us to a situation similar to that of Freiman’s
inverse result (Theorem 7.3). In that theorem, we have a bound on |2A| and
conclude that A has a strong additive structure. In the current situation, 2
is replaced by k, which can depend on |A|. We can, however, finish the job
by applying the following variant of Freiman’s inverse theorem.

Theorem A.2 (Long range inverse theorem, [39]). Let γ > 0 be constant.
Assume that X is a subset of a torsion-free group such that 0 ∈ X and
|kX| ≤ kγ |X| for some integer k ≥ 2 that may depend on |X|. Then there
is proper symmetric GAP Q of rank r = O(γ) and cardinality Oγ(k

−r|kX|)
such that X ⊂ Q.

One can prove Theorem A.2 by combining Freiman theorem with some
extra combinatorial ideas and several facts about GAPs. For full details we
refer to [39].

The proof of the continuous version, Theorem 9.2, is similar. Given a
real number w and a variable ξ, we define the ξ-norm of w by ‖w‖ξ :=
(E‖w(ξ1 − ξ2)‖2)1/2, where ξ1, ξ2 are two iid copies of ξ. We have the
following variant of Lemma 6.2.

(47) ρr,ξ(A) ≤ exp(πr2)

∫
Rd

exp

(
−

n∑
i=1

‖〈ai, z〉‖2ξ/2− π‖z‖22

)
dz.

This will play the role of (38) in the previous proof. The next steps are
similar and we refer the reader to [39] for more details.
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Appendix B. Proof of Theorem 10.2

We provide here a proof from [46] (see also [16]). This proof is also influenced
by Halász’ analysis from [21]. The starting point is again Esseén’s bound.
Applying Lemma 6.2, we obtain

(48) ρd,β
√
d,ξ(A) ≤ Cd

∫
B(0,

√
d)

n∏
k=1

|φ(〈θ, ak〉/β)| dθ,

where φ is the characteristic function.

Let ξ′ be an independent copy of ξ and denote by ξ̄ the symmetric ran-
dom variable ξ−ξ′. Then we easily have |φ(t)| ≤ exp

(
−1

2(1−E cos(2πtξ̄))
)
.

Conditioning on ξ′, the assumption supaP(ξ ∈ B(a, 1)) ≤ 1− b implies
that P(|ξ̄| ≥ 1) ≥ b. Thus,

1−E cos(2πtξ̄) ≥ P(|ξ̄| ≥ 1) ·E
(
1− cos(2πtξ̄) | |ξ̄| ≥ 1

)
≥ b · 4

π2
E
(
min
q∈Z

|2πtξ̄ − 2πq|2 | |ξ̄| ≥ 1
)

= 16b ·E
(
min
q∈Z

|tξ̄ − q|2 | |ξ̄| ≥ 1
)
.

Substituting of this into (48) and using Jensen’s inequality, we get

ρd,β
√
d,ξ(A)

≤ Cd

∫
B(0,

√
d)
exp

(
−8bE

(
n∑

k=1

min
q∈Z

|ξ̄〈θ,ak〉/β − q|2
∣∣∣ |ξ̄| ≥ 1

))
dθ

≤ CdE

(∫
B(0,

√
d)
exp

(
−8b min

p∈Zn

∥∥∥∥ ξ̄β θ · a− p

∥∥∥∥
2

)
dθ

∣∣∣ |ξ̄| ≥ 1

)

≤ Cd sup
z≥1

∫
B(0,

√
d)
exp(−8bf2(θ)) dθ,

where f(θ) = minp∈Zn

∥∥∥ z
β θ · a− p

∥∥∥
2
.

The crucial step is to bound the size of the recurrence set

I(t) :=
{
θ ∈ B(0,

√
d) : f(θ) ≤ t

}
.
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Lemma B.1. We have

μ(I(t)) ≤
(
Ctβ

γ
√
d

)d

, t < α/2.

Proof (of Lemma B.1). Fix t < α/2. Consider two points θ′, θ′′ ∈ I(t).
There exist p′, p′′ ∈ Zn such that∥∥∥∥ zβ θ′ · a− p′

∥∥∥∥
2

≤ t,

∥∥∥∥ zβ θ′′ · a− p′′
∥∥∥∥
2

≤ t.

Let

τ :=
z

β
(θ′ − θ′′), p := p′ − p′′.

Then, by the triangle inequality,

(49) ‖τ · a− p‖2 ≤ 2t.

Recall that by the assumption of the theorem, LCDα,γ(a) ≥
√
d
β . Thus,

by the definition of the least common denominator, either ‖τ‖2 ≥
√
d
β or

(50) ‖τ · a− p‖2 ≥ min(γ‖τ · a‖2, α).

In the latter case, since 2t < α, (49) and (50) imply

2t ≥ γ‖τ · a‖2 ≥ γ‖τ‖2,

where the last inequality follows from (14).

Thus we have proved that every pair of points θ′, θ′′ ∈ I(t) satisfies:

either ‖θ′ − θ′′‖2 ≥
√
d

z
=: R or ‖θ′ − θ′′‖2 ≤

2tβ

γz
=: r.

It follows that I(t) can be covered by Euclidean balls of radii r, whose

centers are R-separated in the Euclidean distance. Since I(t) ⊂ B(0,
√
d),

the number of such balls is at most

μ(B(0,
√
d+R/2))

μ(B(0, R/2))
=

(
2
√
m

R
+ 1

)d

≤
(
3
√
d

R

)d

.

Summing these volumes, we obtain μ(I(t)) ≤
(
3Cr
R

)m
.
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Proof (of Theorem 10.2). First, by the definition of I(t) and as

μ(B(0,
√
d) ≤ Cd, we have∫
B(0,

√
m)\I(α/2)

exp(−8bf2(θ)) dθ ≤
∫
B(0,

√
d)
exp(−2bα2) dθ(51)

≤ Cd exp(−2bα2).

Second, by using Lemma B.1, we have∫
I(α/2)

exp(−8bf2(θ)) dθ =

∫ α/2

0
16bt exp(−8bt2)μ(I(t)) dt(52)

≤ 16b

(
Cβ

γ
√
d

)d ∫ ∞

0
td+1 exp(−8bt2) dt

≤
(
C ′β
γ
√
b

)d√
d ≤

(
C ′′β
γ
√
b

)d

.

Combining (51) and (52) completes the proof of Theorem 10.2.
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The Beginnings of Geometric Graph Theory

JÁNOS PACH∗

“. . . to ask the right question and
to ask it of the right person.”

(Richard Guy)

Geometric graphs (topological graphs) are graphs drawn in the plane with possi-
bly crossing straight-line edges (resp., curvilinear edges). Starting with a problem
of Heinz Hopf and Erika Pannwitz from 1934 and a seminal paper of Paul Erdős
from 1946, we give a biased survey of Turán-type questions in the theory of ge-
ometric and topological graphs. What is the maximum number of edges that a
geometric or topological graph of n vertices can have if it contains no forbidden
subconfiguration of a certain type? We put special emphasis on open problems
raised by Erdős or directly motivated by his work.

1. Introduction

The term “geometric graph theory” is often used to refer to a large, amor-
phous body of research related to graphs defined by geometric means. Here
we take a narrower view: by a geometric graph we mean a graph G drawn
in the plane with possibly intersecting straight-line edges. If the edges are
allowed to be arbitrary continuous curves connecting the vertices (points),
then G is called a topological graph. Disregarding the particular way the
graph is drawn, we obtain the “abstract” underlying graph of G, which is
usually also denoted by G. We use the term geometric graph theory as a
short form for “the theory of geometric and topological graphs.”

∗Supported by NSF Grant CCF-08-30272, by OTKA under EUROGIGA projects
GraDR and ComPoSe 10-EuroGIGA-OP-003, and by Swiss National Science Foundation
Grants 200020-144531 and 200021-137574.
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In the past few decades, a number of exciting discoveries have been made
in this field. Some of them have found interesting applications in graph
drawing, in combinatorial and computational geometry, in additive number
theory, and elsewhere. See, e.g., [5], [68], [95], [101], [27]. Many related
contributions can be found in the proceedings of the annual symposia on
graph drawing, published in Springer’s Lecture Notes series in Computer
Science (for instance, in [64]) and in two collections of papers [78], [79]. For
surveys, see Chapter 14 in [80], Chapter 10 in [51], and Chapters 1 and 3
in [42].

Paul Erdős had a profound influence on the subject. On the occasion
of his 100th birthday, we review the beginnings of geometric graph theory
in the 1930s and 40s, which were also formative years in Erdős’s personal
and mathematical life. We use this as a starting point to give a short and
biased survey of some research directions that can be traced back more
or less directly to these early developments. We put special emphasis on
open problems raised by Erdős and others, which had a large impact on the
evolution of geometric graph theory.

2. A Problem in Jahresbericht – German Mathematics

In 1934, Heinz Hopf and Erika Pannwitz, Hopf’s student at Friedrich
Wilhelms University (today Humboldt University) in Berlin, posed the
following problem in the problem section of Jahresbericht der Deutschen
Mathematiker-Vereinigung.

Problem 1 [57]. Let p0, p1, . . . , pn−1, pn = p0 be n distinct points in the
plane such that the distance conditions

d(pi, pj) ≤ 1 (0 ≤ i < j < n),

d(pi, pi+1) = 1 (i = 0, . . . , n− 1)

are satisfied. Prove that this is possible if and only if n is odd or n = 2.

Three solutions were subsequently published in 1935: by W. Fenchel
(Copenhagen), by J. W. Sutherland (Cambridge) [43], and in the next issue
of the journal, by H. Baron (Berlin) [9]. Other correct solutions were sub-
mitted by A. E. Mayer (Wien), H. Baer (Frankfurt a. M.), L. Ehrlich
(Berlin), J. Fox (Brooklyn), R. Frucht (Triest), L. Goeritz (Rostock),
F. Gruber (Vienna), J. Juilfs (Berlin), R. Lauffer (Graz), E. Linés Escardó
(Madrid), B. Neumann (Cambridge), L. Rédei (Mezőtúr), L. A. Santaló
(Madrid), P. Scherk (Göttingen), and W. Schulz (Berlin).
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The “Annual Reports” of the German Mathematical Society were pub-
lished, of course, in German. However, many solutions and articles were
sent by mathematicians from other, non German speaking countries, mostly
from Europe and from the United States. In the 1930s, German universities
played a leading role in mathematics. From all over the world, many young
talents (like Fox, Rédei, and Santaló) came to study in Berlin, München,
Hamburg, Göttingen, and elsewhere. At the 1936 International Congress of
Mathematicians held in Oslo, half of the plenary lectures were delivered in
German [77]. When after a 14-year recess due to the war the next congress
was held at Harvard University, only one of the 21 main lectures had a Ger-
man title: it was the talk of Hopf, one of the original proposers of Problem 1.
However, this time he did not arrive from Berlin, he was Professor at ETH
Zürich. Fenchel, Frucht, Neumann, and Santaló had also fled Germany and
built distinguished academic careers in Copenhagen, Valparaiso, Canberra,
and Buenos Aires. They became leading experts in convexity, graph theory,
group theory, and integral geometry. The lives of many of those who stayed
in Germany were sidetracked: Pannwitz worked for the German Cryptog-
raphy Service during the war and Juilfs became an SS Obersturmsführer.
Between 1944 and 1951 the publication of Jahresbericht was halted.

Fenchel’s elegant solution to Problem 1 was based on the following
observation [43]. Connect two points, pi and pj , by a segment if their
distance is equal to the diameter of the point set P = {p0, . . . , pn−1} (which
is, in our case, equal to 1). The resulting geometric graph is called the
diameter graph (or the graph of diameters) associated with P . It follows
from the triangle inequality that any two edges of the diameter graph either
share an endpoint or cross each other. Suppose now that n > 2 and that P
satisfies the properties in Problem 1. Since the diameter graph has no two
disjoint edges, the segments p0p1 and p2p3 must lie in the same half-plane
bounded by the line p1p2. Thus, p0 and p3 lie in the same half-plane. For
the same reason, all edges p3p4, p4p5, . . . , pn−1p0 must cross the line p1p2,
hence the elements of the sequence p3, p4, . . . , pn = p0 lie on alternating sides
of the line p1p2. This is possible only if n is odd.

3. A Paper in the Monthly – Paul Erdős Enters the

Scene

Erdős was one of the most successful problem solvers of Középiskolai Math-
ematikai Lapok, an excellent Hungarian journal for high school students,
founded in 1893. He had a lifelong passion for mathematical puzzles and
spoke fluent German. In 1934, the same year, when the Hopf-Pannwitz
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problem appeared, Erdős received his doctorate at Péter Pázmány Univer-
sity (today Loránd Eötvös University), Budapest. Because of the increas-
ingly anti-semitic atmosphere in Hungary, he accepted a fellowship arranged
by Louis J. Mordell, and moved first to Manchaster and four years later to
Princeton. He had access to the Jahresbericht, and it is almost certain that
he came across Problem 1 shortly after it was published. We will see in the
sequel that it inspired him to create a whole new area of research in discrete
geometry.

The argument of Fenchel described in the previous section can be easily
modified to yield the following statement. It first appeared in a classic paper
of Erdős [29] published in the American Mathematical Monthly in 1946. He
generously attributed the result to Hopf and Pannwitz, although in this
form it does not appear in [57]: it was first formulated by him.

Theorem 2 [29]. The number of edges of the graph of diameters induced
by a set of n points in the plane is at most n. This bound can be attained
for every n > 2.

In the same paper, Erdős quoted Andrew Vázsonyi’s conjecture from
the mid-1930s (see also [31]), according to which the number of times the
diameter (the maximum distance) can occur among n points in 3-space is at
most 2n− 2. This statement was proved independently by Grünbaum [52],
Heppes [54], and Straszevicz [97]. All of these proofs used the notion of
ball polytopes, that is, convex bodies obtained by taking the intersection
of balls of equal radii. However, as was pointed out by Kupitz, Martini,
and Perles [66], ball polytopes have some unpleasant features different from
the properties of convex polytopes. In particular, their edge-skeletons need
not be 3-connected. Therefore, making the above proofs precise requires a
lengthy analysis. Half a century later, simpler proofs were found by Perlstein
and Pinchasi [92] and by Swanepoel [99].

Theorem 3 ([52], [54], [97]). The number of edges of the graph of diameters
induced by a set of n points in 3-dimensional space is at most 2n− 2. This
bound can be attained for every n > 3.

Erdős [29] also remarked that this statement has an interesting geometric
corollary.

Corollary 4. Every (finite) set of points in 3-dimensional space can be
decomposed into 4 sets of smaller diameter.

Indeed, it follows from Theorem 3 that the diameter graph associated
with any finite set of points has a vertex of degree at most 3. Removing
such a vertex, one can show by induction that the chromatic number of the
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diameter graph is at most 4. This is equivalent to Corollary 4. See also [26]
and [55].

Corollary 4 is the d = 3 special case of Borsuk’s conjecture [12] which
states that any d-dimensional set of points can be decomposed into d+1 sets
of smaller diameter. In 1993, Kahn and Kalai [59] (see also [76]) disproved
Borsuk’s conjecture for large values of d. Today the conjecture is known to
fail in all dimensions d ≥ 65. See [56] and [93] for a survey and [11] for a
recent improvement.

As was reported by Erdős [32], a simple construction due to Lenz (1955)
shows that, for a fixed d ≥ 4, the number of times the diameter can occur
among n points in d-dimensional space can grow quadratically in n. Indeed,
let k = �d/2�, and take k concentric unit circles in Rd, in pairwise orthogonal
planes. On each of these circles, pick �n/k� or n/k� points very close to
each other, so that their total number is n. The diameter of the resulting
point set is

√
2, and the distance

√
2 occurs 1

2(1− 1
k + o(1))n2 times. Using

the Erdős-Stone theorem [41], a cornerstone of extremal graph theory, Erdős
proved that this construction is asymptotically best possible.

Theorem 5 [32]. For a fixed d ≥ 4, the maximum number of edges of the
diameter graph of a set of n points in d-dimensional space is

1

2

(
1− 1

�d/2� + o(1)

)
n2.

Erdős suggested that instead of estimating the number of occurrences
of the largest distance, one can also investigate the frequency of the 2nd
largest, 3rd largest, etc. distances determined by a set of n points. In
particular, it was shown by Vesztergombi [111] (see also [38]) that the i-
th largest distance among n points in the plane cannot occur more than
2in times. Morić and Pach [73] showed that for a fixed i, the number of
times the i-th largest distance can occur among n points in 3-dimensional
space is O(n). The constant provided by the proof, hidden in the big-O
notation, grows exponentially in i, which can probably be much improved.
The nature of the problem again changes in dimension d larger than 3: the
i-th largest distance can occur Ω(n2) times.

Perhaps the most important contribution of Erdős’s paper [29] in the
Monthly was that he modified the Hopf-Pannwitz problem, as follows. Let
fd(n) denote the the maximum number of times that any distance can occur
among n points in d-dimensional space. Erdős [32] proved that for any d ≥ 4,
fd(n) is asymptotically equal to the maximum number of occurrences of the
diameter, given in Theorem 5. The exact value of f4(n) for every n was
determined by Brass [14]. Swanepoel [100] extended this result to every
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even d ≥ 4, provided that n is sufficiently large depending on d. He also
found the maximum number of times the diameter can occur among n points
in d-dimensional space, for every d ≥ 4 and for all sufficiently large n. For
some other extensions of these results, see [39] and [7].

The asymptotic behavior of the functions f2(n) and f3(n) is still a

mystery. Erdős [29] proved that f2(n) > n1+c/ log logn for a suitable constant
c > 0, and conjectured that this bound is not far from being tight. However,
the best known upper bound is still f2(n) = O(n4/3), which was established
by Spencer, Szemerédi, and Trotter [96] thirty years ago. For alternative
proofs, see [22], [101], and [88]. In 3-dimensional space, we have

cn4/3 log log n < f3(n) < n3/2,

where c > 0 is a constant and α(n) is an extremely slowly growing function,
closely related to the inverse of Ackermann’s function. The lower and upper
bounds were proved in [32] and [22], respectively. (With no danger of
confusion, in different formulas we use the same letter c to denote different
unrelated constants.)

Obviously, the number of distinct distances determined by n points in
the plane is at least

(
n
2

)
/f2(n) > cn2/3. “Though I have thought to improve

this result for many years – wrote Erdős in [29] – I have not been able to
do so.” After many small improvements ([75], [20], [21], [95], [102], [60],
[61]), 65 years later Guth and Katz [53] got very close to verifying Erdős’s
conjecture:

Conjecture 6 (Erdős [29]). The number of distinct distances determined
by n points in the plane is at least cn/

√
log n, for a suitable constant c > 0.

If true, the order of magnitude of this bound cannot be improved, as
shown by a

√
n×√

n piece of the integer grid. In their breakthrough paper,
using a framework set up by Elekes [28], Guth and Katz have established
a cn/ log n lower bound. In fact, Erdős [31], [33], [34], [35] also made a
stronger conjecture, stating that any set of n points in the plane has an
element from which there are at least cn/

√
log n distinct distances to the

other points. It does not seem to be an easy task to adapt the Guth-Katz
proof to estimate this quantity. So far the best lower bound is cn0.864.., due
to Katz and Tardos [61].

We close this section by another possible generalization of Theorem 2 to
higher dimensions, different from Theorems 3 and 5.

Conjecture 7 (Z. Schur [94]). For any positive integers d and n (n > d),
the graph of diameters induced by a set of n points in d-dimensional space
contains at most n complete subgraphs with d vertices.
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For d = 3, Schur’s conjecture has been proved by Schur, Perles, Martini,
and Kupitz [94]. In [74], it was shown Conjecture 7 would follow from the
following statement.

Conjecture 8 [74]. For any positive integers d and n (n > d > 2), any two
complete subgraphs of size d of the graph of diameters induced by a set of n
points in d-dimensional space share at least d− 2 vertices.

For d = 3, Conjecture 8 is true. In fact, Dolnikov [25] proved the stronger
statement that the graph of diameters of a 3-dimensional point set contains
no two disjoint odd cycles. For larger values of d, we have been unable to
verify even the weaker conjecture that the graph of diameters contains no
two vertex-disjoint cliques of size d.

For more results and open problems related to the subject of this section,
see [15] and [40].

4. Dropping the Metric Restrictions – Geometric Graphs

Fenchel’s solution [43] for the Hopf-Pannwitz problem (Problem 1) can be
easily modified to establish a statement, a bit stronger than Theorem 2.
Recall that a geometric graph G is a graph drawn in the plane by possibly
crossing straight line edges. For simplicity, we assume throughout that no
3 vertices (points) of G are collinear. An edge of G is a closed segment
connecting a pair of vertices. Therefore, the condition that no 2 edges
are disjoint is equivalent to saying that any pair of edges share either an
endpoint or an interior point. Of course, they cannot share more than one
point, because of the assumption that no 3 vertices are collinear.

Theorem 9 (Erdős, Avital-Hanani [8], Kupitz [65], Perles). Every geomet-
ric graph of n vertices that does not contain 2 disjoint edges has at most n
edges. This bound can be attained for every n > 2.

This statement first appeared in print as Problem 3 at the end of a
paper written by Shmuel Avital and Haim Hanani [8], which was published
in Gilyonot Le’matematika, an Israeli journal for high school students and
amateurs, edited by Joseph Gillis at Weizmann Institute, Rehovot. It is
very likely that the authors heard the question from Paul Erdős. After
being banned from entering the United States for 9 years, as an “undesirable
alien,” in 1955 Erdős was appointed a “Permanent Visiting Professor” at
Technion, Haifa. Every year he spent at least one month in Israel, and
Hanani was one one of his close friends and collaborators.
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When Micha Perles (Hebrew University) was told about Theorem 9
roughly ten years after the publication of the Avital-Hanani paper, he found
the following “proof from the Book:” Suppose that there is a spider sitting
at each vertex v of the graph (web). It looks around and if it finds an edge
e incident to v with the property that within the next 180-degree range in
the clockwise direction there is no other edge, it walks to the middle of e
and lays an egg. Otherwise, the spider stays at v and does not lay an egg.
Notice that if G has no 2 disjoint edges, there will be no edge left without an
egg. Therefore, the number of edges cannot exceed the number of spiders.
Inspired by Perles, Yaakov Kupitz fully characterized all geometric graphs
and point configurations for which equality holds in Theorems 9 and 2. (See
also [67].) He has also found some interesting generalizations of Theorem 9,
and these results constituted his master thesis [65].

It is a natural question to ask whether Theorem 9 can be generalized
to topological graphs, that is, to graphs G drawn in the plane by possibly
crossing curvilinear edges. It is clear that we need some additional assump-
tions on G, because it is easy to draw a complete topological graph in which
every pair of edges intersect. We call a topological graph simple if every
pair of edges have at most one point in common, which is either a common
endpoint or a proper crossing. Two edges are not allowed to touch each
other.

In the late 1960s, independently of the above developments, John Con-
way defined a thrackle as a simple topological graph, in which every pair
of edges share precisely one point: an endpoint or a proper crossing. This
term may have been first used in a commercial: fishermen referred to their
entangled nets as being thrackled.

Conjecture 10 (Conway’s thrackle conjecture [114]). Every thrackle of n
vertices has at most n edges. This bound can be attained for every n > 2.

Fig. 1. C5 and C6 drawn as thrackles
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The first linear upper bound on the number of edges of a thrackle of
n vertices was established in [69]. It was improved by Cairns an Niko-
layevsky [16]. The best known upper bound, 1.428n, was proved in [48].
Apart from the case of straight-line thrackles (Theorem 9), Conway’s con-
jecture is known to be true for x-monotone thrackles (for which any verti-
cal line intersects every edge in at most one point) [87] and for outerplanar
thrackles (whose vertices lie on a circle and all edges in its interior) [17].
Perhaps the next step would be to verify the conjecture for thrackles in
which every edge is the union of at most 2 (or at most a bounded number
of) x-monotone pieces.

Avital and Hanani [8] asked the question that at most how many edges
can a geometric graph of n vertices have if it contains no k pairwise disjoint
edges. For convex geometric graphs, that is, for geometric graphs whose
vertices lie on a closed convex curve, Kupitz [65] proved that this maximum
is equal to (k − 1)n, for all n > 2(k − 1). For arbitrary geometric graphs,
in the special case k = 3, the first linear upper bound (of roughly 6n)
was established by Alon and Erdős [6]. It was subsequently improved
by O’Donnell and Perles (unpublished) and by Goddard, Katchalski, and
Kleitman [50]. The following asymptotically tight bound was found by
Černý [19].

Theorem 11 (Černý [19]). Every geometric graph of n vertices which does
not contain 3 disjoint edges has at most 2.5n edges. This bound is tight up
to an additive constant.

For larger values of k, the first linear upper bound, O(k4n), for the
number of edges of a geometric graph G with no k disjoint edges was given
by Pach and Törőcsik [90]. After an initial improvement by G. Tóth and
Valtr [107], Tóth [106] established the upper bound |E(G)| ≤ O(k2n); see
also [112]. The following conjecture is perhaps too optimistic.

Conjecture 12. The maximum number of edges of a geometric graph of n
vertices that contains no k disjoint edges is O(kn).

It is perfectly possible that this conjecture remains true for simple topo-
logical graphs. However, in this case, even for k = 3, we do not have a
linear upper bound in n on the number of edges. All we know is that, ac-
cording to [89], the maximum number of edges of a simple topological graph

with n vertices that contains no k disjoint edges is n(log n)O(k). In partic-
ular, it follows that a complete simple topological graph with n vertices
has Ω( logn

log logn) pairwise disjoint edges. Fox and Sudakov [47] improved this

bound to Ω(log1+ε n), for a suitable ε > 0. Presently, the best known result
in this direction is due to Suk [98].



474 J. Pach

Theorem 13 (Suk [98]). Every complete simple topological graph of n

vertices has Ω(n1/3) disjoint edges.

An alternative proof of this bound was found by Fulek and Ruiz-Vargas
[49]. If the strengthening of Conjecture 12 to all simple topological graphs
is true, it immediately implies

Conjecture 14. Every complete simple topological graph of n vertices has
Ω(n) disjoint edges.

For geometric graphs G (in fact, for topological graphs drawn with x-
monotone edges), Conjecture 14 is obviously true. Ordering the vertices
with respect to their x-coordinates and taking all edges between consecutive
vertices, we obtain a non-selfintersecting Hamilton path in G. Taking every
other edge of this path, we get a set of �n/2� pairwise disjoint edges. As far
as I know, for complete simple topological graphs we do not have any lower
bound for the size of the longest non-selfintersecting path, comparable to
the one given by Suk’s theorem (Theorem 13). The best bound I am aware

of is Ω(log1/6 n); see [86].

Conjecture 15. There exists ε > 0 such that every complete simple topo-
logical graph on n vertices has a non-selfintersecting path of length at
least nε.

No example is known in which the size of the longest non-selfintersecting
path is o(n).

5. Relaxations of Planarity

For more than two decades starting from the 1940s, one of Erdős’ contem-
poraries, György Hajós, made persistent efforts to settle the 4-color con-
jecture for planar graphs. He conjectured that every graph of chromatic
number k contains a subdivision (“topological subgraph”) of a complete
graph with k vertices. For k = 5, this would of course imply the 4-color
theorem. Unfortunately, we still do not know if Hajós’ conjecture is true in
this case. However, for k ≥ 7, the conjecture was disproved by Catlin [18],
and shortly after Erdős and Fajtlowicz [36] discovered that the conjecture
combined with Turán’s theorem [108] would imply that every graph G with
at least constant times k3 vertices has k vertices that induce either a com-
plete subgraph or an empty subgraph in G. (See also [105].) However, in
his classic note [30] written 30 years earlier, Erdős used the “probabilistic
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method” to prove the existence of graphs with 2k/2 vertices that do not have
this property.

Nevertheless, a result much weaker than Hajós’ conjecture, first pro-
posed in the doctoral dissertation of Rudolf Halin, turned out to be true.
Dirac [24] and Jung [58] observed that an idea of Wagner [113] can be used
to establish the existence of a function f(k) with the property that every
graph with chromatic number at least f(k) contains a subdivision of a com-
plete graph Kk with k vertices. Surprisingly, Mader [70] found a much
stronger result with a much simpler proof: There also exists a function g(k)
such that every graph of n vertices and more than g(k)n edges contains a
subdivision of Kk. (Every graph of chromatic number f(k) contains a sub-
graph in which every vertex has degree at least f(k)− 1.) The correct order
of magnitude of the function g(k) was determined 30 years later by Komlós
and Szemerédi [63] and by Bollobás and Thomason [10]: g(k) = Θ(k2). This
settled a conjecture of Erdős and Hajnal [37] and Mader [70]. Another fa-
mous result of this kind was conjectured by Dirac [23].

Theorem 16 (Mader [71]). For every n ≥ 3, the maximum number of edges
that a graph with n vertices can have without containing a subdivision of
K5 is 3n− 6.

The above statements are usually discussed in the framework of “topo-
logical graph theory” (see [72]). They do not depend on the particular
drawing of G. They describe “global” properties of graphs G with more
edges than how many planar graphs can have, and one does not have much
control of the size of the forced subdivisions. In what follows, we would
like to discuss some problems related to “local” properties of geometric or
topological graphs.

By Euler’s theorem, if a geometric or topological graph G has more than
3n− 6 edges, two of its edges must cross each other. (A crossing occurs
when two edges share a common interior point.) In fact, if G has much
more than 3n− 6 edges, the number of crossings increases dramatically.
Erdős and Guy conjectured, and Ajtai, Chvátal, Newborn, Szemerédi [5]
and, independently, Leighton [68] proved that, if the number of edges, e,
satisfies e > 3n− 6, there are at ce3/n2 crossings, where c is a suitable
positive constant. The best known value of the constant c > 1024

31827 > 0.032
was found in [84].

What happens if, instead of a crossing pair of edges, we want to guaran-
tee the existence of some larger configurations involving several crossings?
What kind of unavoidable substructures must occur in every geometric or
topological graph G having n vertices and more than Cn edges, for an ap-
propriately large constant C > 0?
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A geometric or topological graph is called k-quasiplanar if it contains
no k pairwise crossing edges.

Conjecture 17. For any positive integer k, there is a constant Ck such that
the number of edges of any k-quasiplanar topological graph with n vertices
is at most Ckn.

Fig. 2. Four pairwise crossing edges in a topological graph

For k = 3, for simple topological graphs (i.e., where every pair of edges
cross at most once), Conjecture 17 was proved in [4]. Without the simplicity
condition, the statement was first proved in [83]. The best known upper
bound of roughly 8n was established by Ackerman and Tardos [3], who
also proved that the maximum number of edges that a simple 3-quasiplanar
topological graph can have is is 6.5n−O(1). For k = 4, the conjecture has
been verified by Ackerman [1].

For larger values of k, Conjecture 17 is still open. The upper bound
n(log n)O(k) for the number of edges of a simple k-quasiplanar topological
graph was first proved in [85], and then for all k-quasiplanar topological

graphs in [83]. This was further improved to n(log n)O(log k) by Fox and
Pach [44]. For simple topological graphs, presently the best known upper
bound is (n log n)αk(n), where αk(n) denotes an extremely slowly growing
function related to the inverse of the Ackermann function. It was estab-
lished in [45]. For k-quasiplanar geometric graphs and, more generally, for
simple topological graphs whose edges are represented by x-monotone arcs,
Valtr [109], [110] showed that the number of edges cannot exceed ckn logn.
Extending Valtr’s ideas, Fox, Pach, and Suk proved the following.

Theorem 18 [45]. The number of edges of a k-quasiplanar topological
graph with n vertices, the edges of which are represented by x-monotone

arcs, is at most 2ck
6
n log n, for a suitable absolute constant c.

Erdős raised the question whether every system of continuous arcs in
the plane with no k pairwise intersecting members can be split into a
constant number, ck, of subsystems such that no two arcs belonging to the
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same subsystem intersect. He emphasized the first interesting special case,
where k = 3 and the arcs are straight-line segments. A positive answer
to Erdős’ question would imply that Conjecture 17 is true. To see this,
observe that no k members of the system of edges (open arcs) of a k-
quasiplanar topological graph G intersect. If this system can be decomposed
into ck subsystems consisting of disjoint arcs, then one of these subsystems
has at least |E(G)|/ck members. The corresponding edges form a planar
subgraph of G, therefore we would obtain |E(G)|/ck ≤ 3n− 6, where n ≥ 3
denotes the number of vertices of G. This would imply |E(G)| = Ok(n), as
required. However, Pawlik, Kozik, Krawczyk, Lasoń, Miczek, Trotter, and
Walczak [91] constructed systems of n segments, no 3 of which are pairwise
intersecting, such that they cannot be decomposed into fewer than log logn
subsystems of disjoint segments. Therefore, the answer to Erdős’ question
is no. It is interesting to observe that Conjecture 17 would also follow from
the following weaker statement, which was not refuted by the construction
of Pawlik et al.

Conjecture 19. For any positive integer k, there is a constant εk > 0 with
the property that every system on n continuous arcs (or segments) in the
plane, no k of which are pairwise intersecting, has at least εkn disjoint
members.

As the number of edges of a topological graph G with n vertices substan-
tially exceeds the critical threshold 3n−6, more complicated crossing config-
urations appear. A k× l grid in G is a pair of disjoint subsets E1,E2 ⊂ E(G)
with |E1| = k and |E2| = l such that every edge in E1 crosses all edges in
E2. It was proved in [81] that for any integer k > 0, there is a constant Ck

such that every topological graph with n vertices and more than Ckn edges
has a k × k grid. See [46], for a different proof. The strongest result in this
direction was proved by Tardos and Tóth [104]: There is a constant Ck such
that in every topological graph with n vertices and more than Ckn edges
one can find 3 disjoint k-element sets of edges such that two of the subsets
consist of edges incident to a vertex and every pair of edges from different
subsets cross.

At first glance, one might believe that it is much easier to guarantee the
existence of a k × k grid in “general position” in the sense that no pair of
its edges share an endpoint. However, in this case the proof breaks down
and we can only prove that every topological graph with n vertices and at
least Ckn log∗ n edges contains such a grid, where log∗ denotes the iterated
logarithm function [2].

Conjecture 20 (Ackerman, Fox, Pach, Suk [2]). For any integers k, l ≥ 1,
there is a constant Ck,l such that every topological graph with n vertices
which contains no k × l grid with distinct vertices has at most Ck,ln edges.
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This conjecture is known to be true for l = 1.

In lack of nontrivial examples (or counterexamples), one can formulate
an even bolder conjecture. We call a k × l grid natural if it consists of a
set of k disjoint (noncrossing) edges and a set of l disjoint edges with all
2(k + l) endpoints distinct, such that every edge in the first subset crosses
every edge in the second. There are complete topological graphs in which
every pair of edges cross, so they contain no natural 2× 1 grid. Hence, to
strengthen Conjecture 20, we have to make an additional distinction. For
instance, we may restrict our attention to simple topological graphs or to
geometric graphs.

Conjecture 21 [2]. For any integers k, l ≥ 1, there is a constant Ck,l such
that the number of edges of any simple topological graph with n vertices
which contains no k × l natural grid is at most Ck,ln.

Even for geometric graphs with no natural k × k grid, the best known
upper bound for the number of edges is O(k2n log2 n). For convex geometric
graphs, the validity of the conjecture follows from [62]. In general, the only
case in which Conjecture 21 has been verified is k = 2, l = 1 (see [2]).

We close this section with another relaxation of planarity, where we do
have nontrivial constructions and we know that the number of edges forcing
some crossing subconfigurations is superlinear. For any k ≥ 3, a topological
graph G is called k-locally planar if G has no selfintersecting path of length
at most k. Roughly speaking, this means that the embedding of the graph
is planar in a neighborhood of radius k/2 around any vertex. It was shown
by Pach, Pinchasi, Tardos, and Tóth [82] that there exist 3-locally planar
geometric graphs with n vertices and with at least constant times n log n
edges. For larger values of k, Tardos [103] constructed a sequence of k-
locally planar geometric graphs with n vertices and a superlinear number
of edges (approximately n times the �k/2� times iterated logarithm of n).
From the other direction, we only have a much weaker bound.

Theorem 22 [82]. The number of edges of a 3-locally planar topological

graph with n vertices is O(n3/2).

This result is probably far from being optimal. For 3-locally planar geo-
metric graphs (and, more generally, for topological graphs with x-monotone
edges) the Ω(n log n) bound is known to be tight [82]. Boutin [13] showed
that the number of edges of 3-locally planar convex geometric graph with
n vertices is O(n).
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[6] N. Alon and P. Erdős: Disjoint edges in geometric graphs, Discrete Comput. Geom.
4 (1989), 287–290.
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[36] P. Erdős and S. Fajtlowicz: On the conjecture of Hajós, Combinatorica 1 (1981),
141–143.
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[39] P. Erdős and J. Pach: Variations on the theme of repeated distances, Combinatorica
10 (1990), 261–269.
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Budapest, Reáltanoda u. 13–15,
H-1053, Hungary



BOLYAI SOCIETY Erdős Centennial
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Paul Erdős and the Difference of Primes

JÁNOS PINTZ∗

In the present work we discuss several problems concerning the difference of
primes, primarily regarding the difference of consecutive primes. Most of them
were either initiated by Paul Erdős (sometimes with coauthors), or were raised
ahead of Erdős; nevertheless he was among those who reached very important
results in them (like the problem of the large and small gaps between consecutive
primes).

1. Introduction

Number theory, especially primes, belonged to one of the most favourite
subjects of Paul Erdős. He writes in the obituary of his long-time friend
and collaborator Paul Turán [27, 1980]: “We first met at the University
of Budapest in September 1930 and immediately discovered our common
interest in number theory and prime numbers in particular.” His first result
which made him famous was a new simple proof of Chebyshev’s theorem,
according to which there is always a prime between n and 2n for any natural
number n. The elementary proof of the Prime Number Theorem (PNT) by
Erdős [20, 1949] and Selberg [86, 1949], asserting

(1.1) π(x) =
∑
p≤x

1 ∼ x

log x
∼

x∫
2

dt

log t
,

was a great sensation in mathematics. Among his 1595 mathematical works
listed in MathSciNet 77 have the word prime in the title and in total 259
contain the word prime in the abstract (although some of them belong to
other subjects, for example, to combinatorics).

∗Supported by OTKA grants K72731, K100291, NK 104183 and ERC-AdG. 228005.
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Apart from the well-known global problems, like the PNT (see (1.1))
he raised and investigated many problems about local questions, like gaps
between consecutive primes, which he characterized as unconventional prob-
lems in the same obituary [27, 1980].

In view of the enormously rich mathematical activity of Paul Erdős,
it would be hopeless to give a full survey of his works concerning primes
(especially in a paper of about 20 pages). Another handicap is that although
he formulated numerous interesting questions about local distribution of
primes, no progress was made in many of them despite the often 5–7 decades
which passed since their first appearance in a work of his.

Hence, I choose 9 groups of problems concerning the difference of primes
(and, exceptionally, in Section 9 the difference of almost primes, that is,
numbers with a bounded number of prime divisors). Most of them (seven
out of nine, the exceptions being Sections 6 and 10, which deal with some
other important and natural problems concerning differences of primes) were
either initiated by Paul Erdős (sometimes with coauthors like in the case of
the famous Erdős–Turán problem on arithmetic progressions in the sequence
of primes or that of the Erdős–Mirsky conjecture on consecutive equal values
of the divisor function), or were raised ahead of Erdős; nevertheless he was
among those who reached very important results in them (like the problem
of the large and small prime gaps in Sections 2 and 3, respectively).

Finally, I have chosen those problems where I (very often with the
coauthors S. W. Graham, D. Goldston and C. Yıldırım) succeeded to reach
some progress in the last few years. Some of the works (containing Theorems
11–19 and Theorem 25) are still in preparation.

During our work p, p′, pi will always denote primes (usually with pn
being the nth prime), P the set of all primes and

(1.2) dn = pn+1 − pn

the nth difference between consecutive primes. It is a trivial consequence of
the PNT (see (1.1)) that the average of dn is log n. The most basic (and
hopelessly difficult) question would be the problem of small and large values
of dn where the following classical conjectures are well known:

Twin Prime Conjecture. lim inf dn = 2.

Cramér’s Conjecture ([12, 1934], [13, 1936]). lim sup
n→∞

dn
log2 n

= 1.

Cramér’s conjecture implies the 100-year-old

Landau’s Conjecture ([61, 1912]). There is always a prime between two
neighbouring squares.
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Finally, we mention that while the Twin Prime Conjecture and Landau’s
conjecture are generally believed to be true, there are serious doubts on the
validity of Cramér’s conjecture (see the works of Granville [44, 1994], [45,
1995] and Hildebrand–Maier [53, 1989]). Nevertheless, it is still believed

that the correct order of magnitude of the largest values of dn is (logn)2+o(1).
Granville conjectures (on the basis of theoretic arguments in connection
with Maier’s matrix method) that Cramér’s conjecture would be true if
the constant 1 were substituted by 2e−γ = 1.1229 . . . . (See [44, 1994],
[45, 1995], [69, 2007].) It is interesting to mention that Cramér based
his conjecture on the behaviour of a random model, where each number
n > 2 is independently “chosen to be prime” with a probability 1/ log n,
corresponding to the density of primes near n.

Finally, we mention Erdős’s feeling about the enormous difficulty of
Cramér’s above mentioned conjecture. He commented on it in [25, 1976]:
“This is clearly hopeless with the techniques which are at our disposal at
present (and perhaps for the next few hundred or thousand years).”

2. Large Differences Between Consecutive Primes:

The Erdős–Rankin Problem

Due to the Prime Number Theorem (1.1) we clearly have

(2.1) λ := lim sup
n→∞

dn
log pn

≥ 1.

This was improved in subsequent works of Backlund [1, 1929] and Brauer–
Zeitz [7, 1930] to λ ≥ 2 and λ ≥ 4, respectively. Already one year later
Westzynthius [98, 1931] showed

(2.2) lim sup
n→∞

dn log4 pn
log pn log3 pn

≥ 2eγ ,

where γ is Euler’s constant and logν n denotes the ν-times iterated logarith-
mic function.

G. Ricci [78, 1934] eliminated the factor log4 pn in (2.2).

Erdős [17, 1935] was very much interested in the problem and he suc-
ceeded in showing

(2.3) lim sup
n→∞

dn(log3 pn)
2

log pn log2 pn
> 0.
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Rankin [74, 1938] reached a further improvement of this by a log log log
log pn factor three years later:

(2.4) lim sup
n→∞

dn(log3 pn)
2

log pn log2 pn log4 pn
≥ C1 =

1

3
.

Erdős commented on possible improvement of the function in (2.4):
“It seems very hard to improve it.” [22, 1955].

In the following 40 years only the constant C1 was improved to eγ/2 by
Schönhage [85, 1963] and in two independent works by Ricci [79, 1952] and
Rankin [77, 1962] to eγ , respectively. The lack of progress inspired Erdős
in 1979 to offer USD 10,000 (see [28, 1981], for example), the greatest prize
ever offered by him, for a proof that (2.4) holds for every constant C1.

Notwithstanding Erdős’s offer, even the further improvements referred
only to the value of C1. H. Maier and C. Pomerance [65, 1990] used deep
methods from analytic number theory beyond the original classical sieve
methods to prove a Bombieri–Vinogradov type theorem for generalized twin
primes. Afterwards they arrived at a combinatorial problem which they
solved by the greedy algorithm and obtained (2.4) with the value

(2.5) C1 = 1.3126 . . . .eγ .

A few years later I succeeded in improving the combinatorial part by
using probabilistic methods. A deep method of combinatorics, the semi-
random method of Szemerédi, led to a full solution of the combinatorial
problem and yielded a constant 2 in the combinatorial problem and thereby
the result [68, 1997].

Theorem 1 ([68, 1997]). (2.4) holds with C1 = 2eγ .

It is interesting to note that the deterministic approach (the greedy al-
gorithm) of Maier and Pomerance yielded the constant 1.3126 in the combi-
natorial problem, while a pure (and relatively simple) probabilistic method
would have yielded a weaker estimate, only 1.04 . . . ., but nevertheless an
improvement over the earlier best results of Ricci and Rankin. Finally,
the semirandom method turned to be the optimal one leading to the con-
stant 2. The fact that the given combinatorial result cannot be further
improved shows that essential new ideas are necessary to improve (2.4) to
any C1 > 2eγ .

Erdős was the first to consider the problem whether neighboring prime
gaps can be simultaneously large. He succeeded in showing [21, 1949]

(2.6) lim sup
n→∞

min(dn, dn+1)

log pn
= ∞.
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This was significantly superseded by H. Maier, who proved the analogue of
(2.4) for k consecutive differences 32 years later [63, 1981]; namely,

(2.7) lim sup
n→∞

min(dn+1, . . . , dn+k)

log n log2 n log4 n/ log
2
3 n

> 0

for any natural number k (we remark that by logν n ∼ logν pn we can clearly
substitute pn by n in all formulae).

Concerning upper bounds for dn, we will be brief, since Erdős himself did
not work on such problems. Exactly 100 years ago Landau [61, 1912] formu-
lated the conjecture that there is always a prime between two neighbouring
squares. (Some other similar conjectures were known already earlier.) The
starting point was 18 years later, when G. Hoheisel [54, 1930] showed the
existence of primes in intervals of type

(2.8) [x, x+ xC ] C = 1− 1

33 000
.

This was improved nearly 20 times during the next seven decades (for a
history see [67, 2000]) until in a joint work with R. Baker and G. Harman
we reached the present record.

Theorem 2 ([2, 2001]). (2.8) holds with C = 1
2 + 1

40 = 0.525.

3. Small Differences Between Consecutive Primes

As it has been already mentioned in the Introduction, according to the twin
prime conjecture the smallest possible prime gap occurring infinitely often
between consecutive primes should be two. The weaker relation

(3.1) Δ1 := lim inf
n→∞

dn
log pn

≤ 1

follows immediately from the Prime Number Theorem (1.1).

The first, although conditional improvement over the “trivial” estimate
(3.1) was achieved by Hardy and Littlewood in 1926 (unpublished, see [75,
1940])

(3.2) Δ1 ≤ 2/3

under the assumption of the Generalized Riemann Hypothesis (GRH). This
happened three years before the first non-trivial result λ ≥ 2 of Backlund
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(cf. (2.1)) was reached concerning large differences. In the case of large
differences, the result λ = ∞ of Weszynthius (cf. (2.2)) was achieved two
years later, in 1931; while the presently known largest order of magnitude
of differences, the estimate (2.4) of Rankin, was proved in 1938. The
progress in the last 75 years affected only the value of the constant C1

in the estimate (2.4).

In contrast to this, the first non-trivial unconditional estimate for small
differences, the relation

(3.3) Δ1 < 1,

was shown by Paul Erdős in 1940 [18, 1940], two years after Rankin’s above
mentioned result. Erdős used Brun’s sieve to prove (3.3).

The progress was afterwards much slower than in the case of large
differences. During a period of 25 years, the estimate of Erdős was reduced
finally to Δ1 < 29/32 in three subsequent works by Rankin [76, 1947], Ricci
[80, 1954] and later by Wang Yuan, Xie Sheng-gang and Yu Kun-rui [97,
1965].

In 1966 Bombieri and Davenport [4, 1966] refined and made the method
of Hardy and Littlewood unconditional by substituting the Bombieri–
Vinogradov theorem for the GRH, and thus obtained Δ1 ≤ 1/2. They also
combined their method with that of Erdős, which led to

(3.4) Δ1 ≤
2 +

√
3

8
= 0.4665 . . . .

In the following two decades this bound was diminished in five works by
Piltjai, Huxley and at last by Fouvry and Grupp in 1986 to Δ1 ≤ 0.4342.

In 1988 H. Maier [64, 1988] succeeded in significantly improving the
result 0.4425 . . . of Huxley [56, 1977] to

(3.5) Δ1 ≤ e−γ · 0.4425 . . . . = 0.2484 . . . . < 1/4.

He combined the methods of Erdős and of Bombieri–Davenport (including
the refinements of Huxley) with his newly invented matrix method which
he had used a few years earlier to show his result (2.7) on successive large
differences.

Finally, in 2005, in a joint work with D. A. Goldston and C. Yıldırım
[38, 2009] we showed by a combination of Selberg’s sieve and the large sieve:

Theorem 3 ([38, 2009]). Δ1 = 0, that is, lim inf
n→∞

dn
logn = 0.
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It turned out during our investigations that the existence of short gaps
between consecutive primes strongly depends on the uniform distribution
of primes in arithmetic progressions. A good measure to this phenomenon
is the level of distribution of primes. We say that the primes have level ϑ
of distribution, if the relation

(3.6)
∑

q≤Xϑ−ε

max
a

(a,q)=1

∣∣∣∣∣ ∑
p≡a(mod q)

p≤X

log p− X

ϕ(q)

∣∣∣∣∣ �A,ε
X

(logX)A

holds for any A, ε > 0.

The best known value ϑ = 1/2 was shown independently by E. Bombieri
[3, 1965] and A. I. Vinogradov [94, 1965]: this is the celebrated Bombieri–
Vinogradov’s theorem.

Soon after this result, P. D. T. A. Elliott and H. Halberstam [16, 1970]
expressed their conjecture that (3.6) holds with ϑ = 1, namely, the largest
possible value. This is generally referred to as the Elliott–Halberstam
conjecture (EH).

The original qualitative result of Theorem 3 could be significantly sharp-
ened, especially under the assumption that the primes have a level of distri-
bution ϑ > 1/2, even if ϑ is arbitrarily close to 1/2. In case of ϑ = 1, that
is, when we suppose the Elliott–Halberstam conjecture, we could even show
that dn ≤ 16 for infinitely many n.

Theorem 4 ([38, 2009]). If the primes have a level of distribution ϑ > 1/2,
then with a suitable explicit constant C(ϑ), depending on ϑ we have

(3.7) lim inf
n→∞ dn ≤ C(ϑ).

Here we have C(0.971) = 16, in particular EH implies

(3.8) lim inf dn ≤ 16.

Theorem 5 ([39, 2010]). We have unconditionally

(3.9) lim inf
n→∞

dn√
log pn (log log pn)

2 < ∞.

Finally, I succeeded in improving this to
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Theorem 6. With a suitable c > 0 we have unconditionally

(3.10) lim inf
n→∞

dn

(log pn)3/7(log log pn)c
< ∞.

It seems that the above bound is the limit of the method, so the im-
provement of the exponent 3/7 needs new methods.

Similarly to the existence of simultaneous consecutive large differences,
we can ask for good bounds for the quantity (ν is fixed)

(3.11) Δν = lim inf
n→∞

dn+ν − dn
log pn

beyond the trivial consequence Δν ≤ ν of the Prime Number Theorem (1.1).
Erdős introduced the problem to show that Δ2 < 1 (see [24, 1973], for
example). In their earlier mentioned work Bombieri and Davenport [4,
1966] showed Δν ≤ ν − 1/2, which was later improved by Huxley [55, 1969],
[56, 1977] to Δν ≤ ν−5/8+ o(1/ν) and even later by Goldston and Yıldırım

[36, 2007] to Δν ≤
(√

ν − 1/2
)2

. The estimate of Goldston and Yıldırım
gives relatively strong results for small values of ν. For large values of ν the
previously mentioned matrix method of Maier was the most successful [64,
1988]. He proved that

(3.12) Δν < e−γ
(
ν − 5

8
+ o

(1
ν

))
.

Furthermore, answering positively Erdős’s problem he showed in the same
work

(3.13) Δ2 < 0.79.

In our joint works [37, 2006], [38, 2009] yielding Δ1 = 0 we proved the
following

Theorem 7 ([37, 2006], [38, 2009]). Suppose that the primes have level of
distribution ϑ. Then, for ν ≥ 2 we have

(3.14) Δν ≤
(√

ν −
√
2ϑ

)2
.

Moreover, we have unconditionally

(3.15) Δν ≤ e−γ
(√

ν − 1
)2

.

Remark 1. The unconditional result (3.15) yields beyond the estimate
Δ2 < 0.79 of Maier

(3.16) Δ2 ≤
(√

2− 1
)2

e−γ = 0.56146 . . . , Δj < 1 for 3 ≤ j ≤ 5.

Remark 2. (3.14) shows that EH implies that Δ2 = 0.
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It is interesting to note that in order to show the existence of infinitely
many bounded differences between consecutive primes, it is sufficient to
assume that primes have a level of distribution ϑ > 1/2. Even ϑ > 0.971
already implies lim inf

n→∞ dn ≤ 16. On the other hand, assuming the same with

any fixed ϑ < 1 we are still unable to show the seemingly more harmless con-
sequence Δ2 = 0, that is, the existence of at least three primes in intervals
of length o(log x).

The crucial result behind Theorem 4 was that the assumption ϑ > 1/2
implies a weak form of the conjecture of Dickson [15, 1904] about k-tuples
of primes.

Dickson conjectured that if Li(x) = aix+ bi are linear forms with integer

coefficients (i = 1, 2, . . . , k) and
k∏

i=1
Li(x) has no fixed prime divisor (that

is, we have no prime p0 with the property that p0
∣∣ k∏
i=1

Li(x) should hold

for every integer x), then there are infinitely many different integers n such
that Li(n) are simultaneously primes for all i = 1, 2, . . . , k.

Hardy and Littlewood [48, 1923], probably unaware of Dickson’s conjec-
ture, expressed a quantitative form of it, according to which – in the special
case of ai = 1 (i = 1, 2, . . . , k) – one has

(3.17) πH(x) =
∑
n≤x

n+hi∈P (1≤i≤k)

1 =
(
S(H) + o(1)

) x

logk+1 x
,

for any H = {hi}ki=1 (hi < hi+1), where S(H) > 0 if and only if the system
{n+ hi}ki=1 has no fixed prime divisor.

In [38, 2009] we showed a weaker conditional form of this conjecture as

Theorem 8 ([38, 2009]). If the primes have a level ϑ > 1/2 of distribution,
then for any admissible k-tuple H (that is, if {n+hi}ki=1 has no fixed prime
divisor) there are at least two primes among {n+ hi}ki=1 for infinitely many
values of n, if k > C0(ϑ), an explicit constant depending on ϑ.

4. Arithmetic Progressions in Primes and Primes in

Arithmetic Progressions

Perhaps the most famous conjecture of Erdős is the Erdős–Turán conjecture
on the existence of arbitrarily long (finite) arithmetic progressions (AP) in
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sequences having positive (upper) density within the set of natural numbers
[31, 1936]. The problem was solved for k = 3 (three terms AP’s) by K. F.
Roth [81, 1952], [82, 1953], later for k = 4 by E. Szemerédi [89, 1970],
[90, 1969]. Soon afterwards it was proved for arbitrary values of k, again
by E. Szemerédi [91, 1975]. This problem had the highest prize Paul
Erdős offered for any problem (USD 1000) among the ones which were
solved until now. Progress and developments later in the conjecture (to
be explained below) played a decisive role in awarding of the Wolf prize
once (H. Furstenberg, 2006/2007), twice in the Fields Medals (T. Gowers,
1998 and T. Tao, 2006), and once in the Abel prize (E. Szemerédi, 2012).
Additionally, as described in K. F. Roth’s Fields Medal laudation, his partial
solution (the mentioned case k = 3) was characterized as his second most
important work.

After Szemerédi’s result, it turned out that his combinatorial solution
led to the discovery of his celebrated Regularity Lemma [92, 1978]. This
expresses that the vertex set of every graph G with a positive density of
edges can be partitioned into a bounded number of k vertex sets Ui with an
equal number of vertices (up to an error of one vertex) in such a way that
for most pairs Ui, Uj and any pairs Vi ⊂ Ui, Vj ⊂ Uj the density of edges
between Vi and Vj is approximately the same as the density of edges between
Ui and Uj . The Regularity Lemma became one of the most powerful tools
in graph theory. Furstenberg [35, 1977] found another proof of the Erdős–
Turán conjecture based on ergodic theory. Gowers’ approach [42, 1998]
was somewhat similar to that of Roth’s and he was the first to reach a
quantitative result for k = 4, similar to that of Roth for k = 3. He showed
in the case of k = 4 that instead of positive upper density, it is sufficient
to suppose that the sequence contains at least N(log logN)−C elements
until N . He extended [43, 2001] his method for a full proof of Szemerédi’s
theorem later (with a much stronger estimate than Szemerédi’s original one,
similar to the above mentioned one with a C = C(k) depending only on k).

This was a novel feature, since Szemerédi’s original proof gave very weak
bounds, while Furstenberg’s ergodic approach was completely ineffective.

As mentioned in the work of Green and Tao [47, 2008], the problem of
finding long AP’s in the sequence of primes was already considered more
than 200 years ago by Waring and Lagrange. It is unclear who was the first
to mention the following conjecture in a written form. However, it certainly
appears in the above mentioned work of Erdős and Turán.

Conjecture 1 [31, 1936]. The primes contain infinitely many k-term AP’s
for every k.

This would follow from the following more general conjecture which is
definitely due to Erdős.
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Conjecture 2 [24, 1973]. If the sum of reciprocals of the members of a
set A of positive integers diverges, then A contains arbitrarily long (finite)
arithmetic progressions.

In the above work Erdős emphasizes that Conjecture 2 implies Conjec-
ture 1 and in a later work [26, 1977] he offered USD 3000 for a solution of
Conjecture 2.

The case of k = 3 of Conjecture 1 was solved already in 1939 by Van der
Corput [11, 1939]. However, it is a simple consequence of the deep theorem
that the size E(X) of the exceptional set in Goldbach’s problem satisfies
the estimate

(4.1) E(X) = #
{
n ≤ X; 2 | n, n �= p+ p′, p, p′ ∈ P

}
�A

X

(logX)A

for any A > 0. This was proved simultaneously and independently by Van
der Corput [10, 1937], Estermann [33, 1938] and Cudakov [14, 1938]. They
all used Vinogradov’s method [95, 1937], [96, 1976] which essentially solved
the ternary Goldbach problem by proving that every sufficiently large odd
integer can be written as the sum of three primes. The case of k = 4 was
left open for nearly 70 years, although Heath-Brown [50, 1981] succeeded
to show that there are infinitely many 4-term AP’s containing three primes
and a fourth term which has at most two prime factors (in other words the
4th term is a P2 number).

Finally, in 2004 Ben Green and T. Tao proved Conjecture 1 for any k
[47, 2008].

Conjecture 2 is still open for any k ≥ 3. However, important progress
was done for k = 3. After the initial work of Roth [82, 1953], Szemerédi [93,
1990], Heath-Brown [52, 1987], Bourgain [5, 1999], [6, 2008] and Sanders
[83, 2010] proved with different values of c < 1 that if A ⊂ [1, N ] does not
contain any three-term AP, then

(4.2) |A| � N

(logN)c
.

Finally, recently T. Sanders [84, 2011] has shown that in this case we have

(4.3) |A| � N(log logN)5

logN
.

This is very close to Conjecture 2 for the case k = 3, since an improve-
ment of (4.3) by a factor (log logN)c

′
with any c′ > 6 would already imply

Conjecture 2 for k = 3.
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I recently investigated whether a common generalization of Theorem 1
and the Green–Tao theorem is possible. It turned out that an improvement
of Theorem 8 played a crucial role in this. The following Theorem 9 is
also crucial in several other results announced in the present work. In the
following let us denote the smallest prime factor of n by P (n).

Theorem 9 ([70, 2010]). Suppose that primes have a level of distribu-
tion ϑ = 1

2 + δ, δ > 0. Let H = {hi}ki=1 be an admissible k-tuple with k ≥
C0(ϑ) =

(
21/2δ�+ 1

)2
. Then the number of n ≤ N for which {n+ hi}ki=1

contains at least two consecutive primes and almost primes satisfying
P−(n+ hν) > nc1(k) in each component is at least

(4.4) c2(H)
N

logk N
.

Using a modified form of Green–Tao’s method the above result helped
to show

Theorem 10 ([70, 2010]). Let us suppose that the level ϑ of distribution
of primes exceeds 1/2. Then there is a positive d ≤ C3(ϑ) so that there are
arbitrarily long AP’s of primes p with the property that p′ = p+ d is the
prime following p for each element of the progression. If ϑ > 0.971, then
the above holds for some d with 0 < d ≤ 16.

A more elaborated condition which implies the existence of arbitrarily
long arithmetic progressions in the sequence of twin primes is proved in [72,
2012].

5. The Normalized Value Distribution of dn

As mentioned in the Introduction, the Prime Number Theorem (1.1) implies
that

(5.1) lim
n→∞

1

N

N∑
n=1

dn
log n

= 1.

Hence it is natural to investigate the value distribution of dn/ logn. Denot-
ing by J the set of limit points of dn/ logn, Erdős formulated the conjecture

(5.2) J =

{
dn

log n

}′
= [0,∞].
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For example, he writes in [22, 1955]: “It seems certain that dn/ logn is every-
where dense in (0,∞)” (after mentioning the conjecture lim inf

n→∞ dn/ log n =

0). The fact that∞ ∈ J was proved already 80 years ago byWeszynthius (cf.
(2.2)). However, no finite limit point was known before our result Δ1 = 0
(cf. Theorem 3), which is equivalent to

(5.3) 0 ∈ J.

The lack of knowledge about finite limit points of J is even more surpris-
ing in light of the fact that already nearly 60 years ago Erdős [22, 1955], and
independently Ricci [80, 1954] proved that the set J has a positive Lebesgue
measure.

I could not show anything unconditionally about the set J . However,
it turned out that (similarly to Theorem 3 vs Theorem 4) the situation
changes drastically if we assume ϑ > 1/2.

In this case I could prove the following:

Theorem 11. Suppose that primes have a level ϑ > 1/2 of distribution.
Then there is a constant c = c(ϑ) such that

(5.4) [0, c] ⊂ J.

It is interesting to remark that the proof does not supply any explicit
value for c even if we know a concrete level ϑ > 1/2 of the distribution
of primes. While ineffective results in the distribution of primes are often
connected with Siegel zeros, this is not the case here.

After lecturing earlier on (5.4) Kálmán Győry asked me the following
question. Can we also say something about the value distribution of dn/f(n)
if f(n) is another function with f(n) < log n. The investigation of

(5.5) Jf =

{
dn
f(n)

}′
would namely tell us more about the occurring small values of dn.

A trivial reformulation of Theorem 5 naturally says

(5.6) 0 ∈ Jf if f(n) � (log n)3/7(log log n)c
′

if c′ > c, where c is the constant appearing in (3.11).

It turned out that (also assuming a level of distribution ϑ > 1/2 for the
primes), one can affirmatively answer Kálmán Győry’s question under the
very mild further assumption f(n) < log n, f(n) → ∞.
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Theorem 12. Let us suppose that primes have a level ϑ > 1/2 of distribu-
tion. Let f(n) be any function with f(n) → ∞, f(n) < logn. Then we have
an ineffective cf = cf (ϑ) depending on the function f(n) and ϑ such that

(5.7) [0, cf ] ⊂ Jf =

{
dn
f(n)

}′
.

6. Value Distribution of dn. Definition of Polignac

Numbers. Conditional Results about Polignac

Numbers

The present section can be considered a natural continuation of the previ-
ous one, although the problems of this section were not raised by Erdős,
though he mentioned for example in [28, 1981] a weaker form of Polignac’s
conjecture (see below): “An old (and at present hopeless) conjecture states
that dn assumes all even values.”

It is unclear when any written form of the twin prime conjecture ap-
peared. At any rate, the following generalization of it was formulated by de
Polignac in 1849 [73, 1849].

Polignac’s Conjecture. For every positive even number n there are
infinitely many prime gaps of size n.

Definition. Let us call an even number n a Polignac number, if n can be
written in infinitely many ways as the difference of two consecutive primes.

It is trivial that the existence of at least one Polignac number is equiv-
alent with the

Bounded Gap Conjecture. lim inf
n→∞ dn < ∞.

In fact, the value C0 = lim infn→∞ dn is definitely the smallest Polignac
number P0 if the lim inf is finite.

In view of this, a reformulation of Theorem 4 is the following

Theorem 4′ ([38, 2009]). If the primes have a level ϑ > 1/2 of distribution,
then with a suitable constant C(ϑ) we have at least one Polignac number

(6.1) P0 ≤ C(ϑ).



Paul Erdős and the Difference of Primes 499

Furthermore, assuming the Elliott–Halberstam conjecture (or even ϑ >
0.971) we have

(6.2) P0 ≤ 16.

However, the original work [38, 2009] does not imply the existence of
more than one Polignac number. In contrast to this, I recently showed

Theorem 13 ([70, 2010]). If the primes have a level of distribution ϑ > 1/2,
then we have at least

(6.3) c′(ϑ)N

Polignac numbers below N .

This can be further improved, and in fact, I can show that under the
same assumption ϑ > 1/2 not only primes have bounded differences in-
finitely often, but the difference between consecutive Polignac numbers is
uniformly bounded.

Theorem 14. If the primes have a level ϑ > 1/2 of distribution, then there
exists a C ′(ϑ) such that every interval of type

(6.4)
[
M, M + C ′(ϑ)

]
contains at least one Polignac number. In other words, if {Pi}∞i=1 denotes
the sequence of Polignac numbers, then we have for all n

(6.5) Pn+1 − Pn ≤ C ′(ϑ).

7. Comparison of two Consecutive Values of dn

Erdős formulated (and proved) many interesting assertions about two or
more consecutive values of dn. In a joint work with Turán they showed (see
[32, 1948]) that

(7.1) dn+1 − dn

changes sign infinitely often. After this Erdős [19, 1948] proved that

(7.2) lim inf
n→∞

dn+1

dn
< 1 < lim sup

n→∞
dn+1

dn
.
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He mentioned in [22, 1955]: “One would of course conjecture that

(7.3) lim inf
dn+1

dn
= 0 and lim sup

dn+1

dn
= ∞

but these conjectures seem very difficult to prove.”

Since there were no further developments in the past almost 60 years,
the following conditional result might be of some interest.

Theorem 15. If primes have a level ϑ > 1/2 of distribution, then

(7.4) lim inf
n→∞

dn+1/dn
(log n)−1

≤ C5(ϑ),

and

(7.5) lim sup
n→∞

dn+1/dn
log n

≥ c6(ϑ).

As one can see, the above results are much stronger than the original
conjecture (7.2); however, we need the deep unproved condition ϑ > 1/2 for
the level of distribution of primes.

We remark that beyond (7.2), Erdős [22, 1955] also formulated the
conjecture that dn+1/dn is everywhere dense in (0,∞). (Cf. Section 5 about
these problems.) He mentioned that he and Ricci proved that the set of
limit points of dn+1/dn has a positive measure. This result can be proved
by the same method which yielded the result that the set of limit points of
dn/ log n has a positive measure.

We can extend this method (also conditionally) to show the following

Theorem 16. Let us suppose that primes have a level ϑ > 1/2 of distri-
bution and let ε > 0 be arbitrary. Let I denote the set of limit points of{

dn
dn+1

}∞
n=1

while I∗ that of
{

dn+1

dn

}∞
n=1

. Then the Lebesgue measures of

both sets

(7.6) [0, ε] ∩ I and [0, ε] ∩ I∗

are positive.
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8. Comparison of � Consecutive Values of dn for � > 2

Extending the problem of sign changes of dn+1 − dn (cf. (7.1)) Erdős and
Turán [32, 1948] asked for a necessary and sufficient condition that

(8.1)

k∑
i=1

aipn+i

should have infinitely many sign changes as n runs through the sequence

of natural numbers. They observed that
k∑

i=1
ai = 0 is clearly a necessary

condition (by the Prime Number Theorem). Furthermore, Erdős mentions
[23, 1972] that Pólya observed that if (8.1) changes sign infinitely often,
then the numbers

(8.2) αj =

j∑
i=1

ai

cannot all have the same sign. Thus in the following, we will always suppose

(8.3) αk :=
k∑

i=1

ai = 0, k = + 1,  ≥ 2

and investigate

(8.4)

�∑
i=1

αidn+i

(
= −

k∑
i=1

aipn+i

)
.

Erdős writes: “It would be reasonable to conjecture that Pólya’s con-
dition is necessary and sufficient for (8.4) to change sign infinitely often.
Unfortunately the proof of this is not likely to succeed at the present stage
of science.” After this he shows the much weaker result that (8.4) changes
sign infinitely often if

(8.5)

�∑
i=1

αi = 0, α� �= 0.

It is certainly hopeless to prove the above very deep conjecture of Erdős,
which for the case  = 2 is equivalent with his conjecture (7.3). As an
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approximation to it I was able to show a common generalization of Erdős’s
results (7.3) and (8.5) and to reach a conditional result in the case where
primes have a level of distribution greater than 1/2. Finally, I observed
that the full conjecture can be shown supposing the incredibly deep Hardy–
Littlewood’s prime k-tuple conjecture (cf. (3.17)), which clearly supports
the truth of Erdős’s conjecture.

Theorem 17. Let  ≥ 2, c0() be a sufficiently small explicitly calcu-
lable constant depending on , and suppose that the real numbers αi

(i = 1, 2, . . . , ) are not all zero and satisfy

(8.6)

∣∣∣∣ �∑
i=1

αi

∣∣∣∣ ≤ c0()

�∑
i=1

|αi|.

Then the expression

(8.7)

�∑
i=1

αidn+i

changes sign infinitely often as n runs through all natural numbers.

Theorem 18. Let α1, . . . , α� be real numbers with the property that there
is one j ∈ [1, ] such that

(8.8)

�∑
i=1, i =j

|αi| < |αj |, sgnαi �= sgnαj , i ∈ [1, ] \ {j}.

If primes have a level ϑ > 1/2 of distribution, then (8.7) changes sign in-
finitely often as n = 1, 2, 3, . . . .

Theorem 19. If the Hardy–Littlewood’s prime k-tuple conjecture is true
for k = , then Erdős’s conjecture is true for k =  too, that is, (8.7) changes
sign infinitely often as n = 1, 2, 3, . . . .

We remark here that the original prime k-tuple conjecture (3.17) does
not refer to consecutive differences.

In Paul Turán’s obituary, Erdős [27, 1980] expresses a more general
conjecture: “We never could prove that dn+2 > dn+1 > dn has infinitely
many solutions, and in fact we could not even prove that at least one of
the set of inequalities dn > dn+1 > dn+2 or dn < dn+1 < dn+2 has infinitely
many solutions. In fact, there is no doubt that all the k! orderings between
dn, . . . , dn+k−1 will occur, but this is again probably beyond our powers.”

In connection with this, I remark that the Hardy–Littlewood prime k-
tuple conjecture gives a positive answer for the above general problem and
actually for all problems mentioned in the present work, due to the following
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Theorem 20. If the Hardy–Littlewood prime k-tuple conjecture is true for
a given k, then it is also true for the same k, if we only count the numbers
n ≤ x for which n+ h1, n+ h2, . . . , n+ hk are consecutive primes.

9. The Conjectures of Erdős and Erdős–Mirsky on

Consecutive Values of Number Theoretic Functions.

The Parity Phenomenon

The problems mentioned here have seemingly nothing to do with the dif-
ference of primes. However, both the motivation behind the formulation of
the conjectures and their proofs involved problems about the existence of
certain configurations of almost primes. These problems can be solved by
methods similar to that leading to short gaps between consecutive primes
(cf. (3.6) and [38, 2009]). In the following let d(n) denote the number of
divisors of n, Ω(n) the number of prime divisors of n counted with mul-
tiplicity and ω(n) the number of prime divisors of n without multiplicity.
60 years ago Erdős and Mirsky [30, 1952] formulated

Conjecture A1. d(n) = d(n+ 1) infinitely often.

Erdős also formulated the analogous conjectures for Ω(n) and ω(n).

Conjecture A2. Ω(n) = Ω(n+ 1) infinitely often.

Conjecture A3. ω(n) = ω(n+ 1) infinitely often.

These conjectures follow from some analogues of the twin prime conjec-
ture. A well-known conjecture states that there are infinitely many primes
p such that 2p+ 1 is also a prime. These primes are called Sophie Germain
primes. Jing-Run Chen’s celebrated result [8, 1966], [9, 1973] states that
there are infinitely many primes p with

(9.1) p+ 2 ∈ P or p+ 2 = p1p2, p1, p2 ∈ P .

Similarly to this, his method shows the infinitude of primes p satisfying

2p+ 1 ∈ P or(9.2)

2p+ 1 = p1p2, p1, p2 ∈ P.(9.3)

It is generally believed that both (9.2) and (9.3) hold for infinitely many
primes p. This conjecture is analogous to the twin prime conjecture and
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it is generally believed to be true and to have the same level of difficulty.
Now, (9.3) immediately implies the truth of A1–A3, since

(9.4) d(2p) = d(2p+1) = 4, ω(2p) = Ω(2p) = ω(2p+1) = Ω(2p+1) = 2.

Due to these connections, Conjectures A1–A3 were also considered ex-
tremely difficult, if not hopeless.

It was therefore a great surprise for Erdős [29, 1986] when C. Spiro [88,
1981] showed

(9.5) d(n) = d(n+ 5040) infinitely often.

Three years later Heath-Brown [51, 1984] succeeded in proving A1, the
original Erdős–Mirsky conjecture, by using both Spiro’s approach as well as
other new ideas of his own. His method also worked for A2, but not for A3.
Conjecture A3 was solved only 20 years later by Schlage-Puchta [87, 2003],
using somewhat similar ideas combined with computer calculations.

All these proofs used sieve methods and all the solutions (both n and
n+ 1) of Conjectures A1–A3, produced by the mentioned proofs, were
almost primes, that is, numbers with a bounded number of prime factors.
A common feature of all proofs was that they could not prove any of the
Conjectures A1–A3 with an a priori given value (not even an a priori given
parity) of the corresponding functions d(n), Ω(n) or ω(n), respectively. The
phenomenon which prevents us in showing the twin prime conjecture or
(9.3), for example, is called the parity phenomenon and was described first
by Selberg (cf. Chapter 4 of [46, 2001]). The parity phenomenon can be
formulated with some simplification that sieve methods cannot differentiate
between integers with an even and an odd number of prime factors. Despite
the ‘parity barrier’, the mentioned approaches were successful, since, as
Heath-Brown [51, 1984] commented on Spiro’s proof of (9.5), “Thus one
does not know the value of Ω(n) for the particular n which satisfies d(n) =
d(n+ 5040). In this way, one sidesteps the ‘parity problem’.”

In a series of joint works with D. Goldston, S. W. Graham and C.
Yıldırım, we succeeded in generalizing the original ideas of our method [38,
2009] leading to short prime gaps for gaps between semi-primes, that is,
numbers with exactly two different prime divisors. In particular, we showed
[40, 2009] that if qn denotes the nth semiprime, then

(9.6) lim inf
n→∞ (qn+1 − qn) ≤ 6,

thereby breaking the parity barrier in this special case.

More generally, we showed the following weaker form of Dickson’s con-
jecture [15, 1904, cf. Section 3] for semiprimes.
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Theorem 21 ([40, 2009]). If Li(n) = ain+ bi (1 ≤ i ≤ 3) is a triple of
linear forms such that their product has no fixed prime divisor, then there
are infinitely many integers n such that at least two of the values Li(n)
(1 ≤ i ≤ 3) are semiprimes.

Remark. Taking the triple {n, n+ 2, n+ 6} we obtain (9.6).

With the aid of the above theorem we could find a universal method to
show Conjectures A1–A3 in a stronger form where we could almost freely
choose the common value of the number-theoretic functions d(n), Ω(n) and
ω(n) respectively, apart from the case when the prescribed value is too small.
For example, we are not able to solve (9.4). Our method is also able to
guarantee in many cases the validity of Conjectures A1–A3 simultaneously
for the same pair (n, n+ 1).

Theorem 22 ([41, 2011]). Given any integer B ≥ 0 we have infinitely many
integers n such that

ω(n) = ω(n+ 1) = 4 +B, Ω(n) = Ω(n+ 1) = 5 +B,(9.7)

d(n) = d(n+ 1) = 24 · 2B.

We also showed

Theorem 23 ([41, 2011]). ω(n) = ω(n+ 1) = 3 for infinitely many inte-
gers n.

Theorem 24 ([41, 2011]). Ω(n) = Ω(n+ 1) = 4 for infinitely many inte-
gers n.

10. The Distribution of the Difference of Primes

The problem discussed in the present section probably does not appear in
the 1600 papers of Erdős. However, it is closely related to the distribution
of dn (often investigated by Erdős, as one can see from the preceding
sections). The difference is that now we are generally interested in the
distribution of even numbers which can be written as the difference of two
primes

(10.1) m = p′ − p′′, p′, p′′ ∈ P.

This question is related to at least six conjectures (one of them,
Polignac’s conjecture was discussed already in Section 6).
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Conjecture C1 (de Polignac [73, 1849]). Every even number can be
written in infinitely many ways as the difference of two consecutive primes
(cf. Section 6).

I did not find a reference for the following conjecture, but Erdős [28,
1981] mentions it as follows.

Conjecture C2. An old (and at present hopeless) conjecture states that
dn assumes all even values.

Conjecture C3 (Kronecker [60, 1901]). Every even number can be written
in infinitely many ways as the difference of two primes.

Conjecture C4 (Maillet [66, 1905]). Every even number is the difference
of two primes.

Conjecture C5 (Bounded Gap Conjecture). We have infinitely many
bounded gaps between consecutive primes, that is,

(10.2) lim inf
n→∞ dn < ∞.

Finally, we mention Goldbach’s conjecture from 1742.

Conjecture C6 (Goldbach (cf. [34, 1965])). Every even number larger
than two can be written as the sum of two primes.

This is almost completely analogous to Maillet’s conjecture C4.

The existence of at least one Polignac number or the existence of at least
one Kronecker number is clearly equivalent to the Bounded Gap Conjecture,
which we proved [38, 2009] under the assumption that primes have a level
of distribution ϑ > 1/2 (cf. Section 3).

Furthermore, in Section 6 under the same assumption we showed that
we have bounded gaps between consecutive Polignac numbers.

The present section will therefore be devoted to Conjecture C4, that is,
to Maillet numbers which we define as those even integers which can be
written as the difference of two primes (cf. (10.1)) analogously to Goldbach
numbers. Due to the similarity with Goldbach numbers, one gets the
impression that the results which we can show for Goldbach and Maillet
numbers are completely analogous. In fact, until very recently, essentially
all results for both Goldbach and Maillet numbers could be proved for each
other.
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In fact, this was the case with the size of exceptional sets for both prob-
lems or the case with unconditional results about gaps between consecutive
Goldbach or Maillet numbers, respectively.

For example, the result that there are Goldbach numbers in intervals of
type

(10.3)
[
x, x+ x21/800

]
for x > x0,

can be transferred without any problem to Maillet numbers as well. ((10.3)
follows from the works of Baker–Harman–Pintz [2, 2001] on the existence
of primes in short intervals and from another one of Ch. Jia [57, 1996]
on the existence of primes in almost all short intervals.) Together with
J. Kaczorowski and A. Perelli, [58, 1995] we showed under the assumption
of the Generalized Riemann Hypothesis that almost all even integers are
Maillet (or Goldbach) numbers in intervals of type

(10.4)
[
x, x+ (log x)C0

]
for C0 > 6, x > x0.

On the other hand under the weaker assumption of the classical Riemann
Hypothesis it was shown much earlier by Linnik [62, 1952] that Maillet (or
Goldbach) numbers appear in every interval of type

(10.5)
[
x, x+ (log x)C1

]
for x > x0,

if C1 > 3. This was shown by Kátai [59, 1967] to be true with C1 = 2 (again
on RH). Both works refer to the sum of two primes, but the proofs also work
for the difference of two primes.

Very recently I succeeded in showing [71, 2012] unconditionally a bound
of type (10.5) with a larger value of C1, thereby improving significantly the
former best result (10.3).

Theorem 25. There exists an explicitly calculable C1 (C1 is about 40) such
that every interval of type (10.5) contains at least one Maillet number, that
is, a number expressible as the difference of two primes.

The paper [71, 2012] does not contain the proof of (10.5), but the
following weaker form of it is shown there.

Theorem 26. Let ε > 0 be arbitrary. If x > x0(ε), then the interval

(10.6)
[
x, x+ xε

]
contains a difference of two primes.

This bound significantly supersedes the former best result (10.3), valid
unconditionally both for Goldbach and Maillet numbers. It is interesting to
note that the method is not able to show unconditionally the existence of
Goldbach numbers in intervals of type (10.5) or even in those of type (10.6).
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Added in proof (19.05.2013)

Yitang Zhang (Bounded Gaps Between Primes, manuscript) proved very
recently a fantastic new result which shows the existence of infinitely many
gaps of size at most 7 · 107 between consecutive primes. He does not prove
that primes have a distribution level greater than 1/2, but nevertheless (cf.
our present Theorem 8) he shows that any admissible k-tuple of size at least
3.5 · 106 contains infinitely often at least two primes (which implies the gap
size 7 · 107). Using either the above mentioned second statement of Zhang’s
work about primes in k-tuples or in some cases the method of his proof,
the earlier proved Theorems 9–10 of the author [see [70], 2010] and the an-
nounced Theorems 11–16 of the present work will be unconditionally valid
with absolute constants (instead of constants depending on the hypothet-
ical distribution level of primes). These absolute constants are explicitly
calculable in case of Theorems 9–10, 13 and 15–16 and they are ineffective
in case of Theorems 11, 12 and 14.
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[7] A. Brauer, H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre. Sber.
Berliner Math. Ges. 29 (1930), 116–125.

[8] Chen Jing Run, On the representation of a large even integer as the sum of a
prime and the product of at most two primes. Kexue Tongbao 17 (1966), 385–386
(Chinese).

[9] Chen Jing Run, On the representation of a large even integer as the sum of a prime
and the product of at most two primes. Sci. Sinica 16 (1973), 157–176.
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Paul Erdős and the Difference of Primes 509

[12] H. Cramér, Prime numbers and probability. 8. Skand. Math. Kongr., Stockholm,
1935, 107–115.

[13] H. Cramér, On the order of magnitude of the difference between consecutive prime
numbers. Acta Arith. 2 (1936), 23–46.
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[25] P. Erdős, Problems and results on number theoretic properties of consecutive inte-
gers and related questions. Proceedings of the Fifth Manitoba Conference on Nu-
merical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975), Congress Numer.
XVI, pp. 25–44, Utilitas Math., Winnipeg, Man., 1976.
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1. Introduction

It might be argued that elementary number theory began with Pythagoras
who noted two-and-a-half millennia ago that 220 and 284 form an amicable
pair. That is, if s(n) denotes the sum of the proper divisors of n (“proper
divisor” means d | n and 1 ≤ d < n), then

s(220) = 284 and s(284) = 220.

When faced with remarkable examples such as this it is natural to wonder
how special they are. Through the centuries mathematicians tried to find
other examples of amicable pairs, and they did indeed succeed. But is
there a formula? Are there infinitely many? In the first millennium of the
common era, Thâbit ibn Qurra came close with a formula for a subfamily
of amicable pairs, but it is far from clear that his formula gives infinitely
many examples and probably it does not.

A special case of an amicable pairm,n is whenm = n. That is, s(n) = n.
These numbers are called perfect, and Euclid came up with a formula for
some of them (and perhaps all of them) that probably inspired that of
Thâbit for amicable pairs. Euler showed that Euclid’s formula covers all
even perfect numbers, but we still don’t know if Euclid’s formula gives in-
finitely many examples and our knowledge about odd perfects, even whether
any exist, remains rudimentary.

These are colorful and attractive problems from antiquity, but what is a
modern mathematician to make of them? Are they just curiosities? After

∗The authors would like to thank Enrique Treviño and the anonymous referee for
their helpful suggestions. The second author was supported in part by NSF grant DMS-
1001180.
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all, not all problems are good. Ancient people wondered why and how
the planets wandered through the stellar constellations, and such musings
became the foundation of astronomy, trigonometry, and modern physics.
They also wondered why the sun and moon are the same apparent size,
with such musings leading nowhere!

Euclid also studied another special subset of the natural numbers: the
primes. Already he had a proof of their infinitude. Euler was able to
quantify the reciprocal sum for primes in [1, x] as x → ∞, and so we had
the birth of a statistical viewpoint in number theory. This led to the prime-
counting conjectures of Gauss and Lagrange, the estimates of Chebyshev,
the provocative outline of Riemann, and the proofs of Hadamard, de la
Vallée Poussin, Erdős, and Selberg. There is a great story here which we
feel sure will be told in another essay.

So we have a prime number theorem, but is there a perfect number
theorem, an amicable number theorem, and others of this sort? By asking
such questions about the statistical distribution of special sets of numbers
one opens the door to a host of interesting problems in which modern
mathematicians can participate in this millennia-old quest. And leading
the way was Paul Erdős.

2. Distribution

The function s defined in the Introduction partitions the positive integers
into 3 sets: those n with s(n) < n, those with s(n) = n, and those with
s(n) > n. Perhaps, it is not so natural to consider such a partition, but it is
historically correct, going back thousands of years. Numbers with s(n) < n
are called deficient and those with s(n) > n are called abundant, with the
case of equality already met as the perfect numbers. Putting these concepts
into modern garb, we have the immediate question of asymptotic density. It
is clear at least that the lower density of the abundant numbers is positive,
since any multiple of 6 that is larger than 6 is abundant. But it is not so
clear that the abundant numbers possess an asymptotic density.1

In 1933, Davenport [5] resolved the problem by proving that the sets of
abundant numbers and deficient numbers each possesses a positive asymp-
totic density, while the set of perfect numbers has asymptotic density 0.
In fact, Davenport proved a much more general theorem. Let σ denote

the sum-of-divisors function, so that σ(n) = s(n) + n. And let h(n) := σ(n)
n .

1It is also clear that the deficient numbers have positive lower density since it is easy
to see that s(n)/n has mean value π2/6− 1, which is smaller than 1.
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So, for example, n is perfect when h(n) = 2 and abundant when h(n) > 2.
Davenport’s result is the following:

Theorem 1. For each real number u, let D(u) = {n ∈ N : h(n) ≤ u}. The
set D(u) always possesses an asymptotic density. Denoting this density
by D(u), the function D(u) is continuous and strictly increasing for u ≥ 1.
Moreover, D(1) = 0 and limu→∞D(u) = 1.2

Since D(u) is continuous, it follows immediately that the perfect num-
bers have density zero. We subsequently deduce that the deficient numbers
have density D(2), where 0 < D(2) < 1, and that the abundant numbers
comprise a set of density 1−D(2). The numerical values of these densities
were investigated by Behrend [2, 3], who succeeded in showing that the den-
sity of the abundant numbers lies between 0.241 and 0.314. Later authors
(Salié [58], Wall [62], and Deléglise [6]) have tightened these bounds; the
current state of the art, due to Kobayashi [42], is that the density of the
abundants has decimal expansion starting with 0.2476.

Davenport’s proof of this result was decidedly analytic, requiring a study
of the complex moments of the function h(n). In this respect, he was
following a model laid down by Schoenberg [59], who had earlier proved
the analogue of Theorem 1 for the closely-related function n/ϕ(n), where
ϕ is Euler’s function. The non-elementary nature of Davenport’s argument
would surely have irked Erdős, and in the mid-1930s, Erdős took it upon
himself to give a purely arithmetic proof of Theorem 1. This resulted in
a series of three papers [9, 11, 12], culminating in what we now know
as the sufficiency half of the Erdős–Wintner Theorem (see [30]), one of
the foundational results in the field known as probabilistic number theory.
Studying distribution functions eventually led to the landmark collaboration
of Erdős and Kac and their celebrated theorem on the normal distribution
of the number of prime factors of an integer. As these subjects are discussed
elsewhere in this volume, we do not dwell on them here, but rather return
to the theme of elementary number theory.

3. Amicables

Recall from the Introduction that a pair n, m of positive integers is said to be
amicable if s(n) = m and s(m) = n, with the perfect numbers corresponding
to the degenerate case of n = m. We have seen that the perfect numbers
have asymptotic density 0, but do the amicables?

2Davenport did not prove that D(u) is strictly increasing; this was established a few
years later by Schoenberg [60].
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A first approach to counting amicable numbers is suggested by the
following simple observation: Suppose that n and m form an amicable pair,
with n < m. Then s(n) = m > n, so that n is abundant. Thus, the upper
density of the amicable numbers is at most twice the density of the abundant
numbers, and so from [6] or [42], the upper density of the amicables is smaller
than 1

2 .

When one considers that essentially none of the theory of amicable pairs
was used in this argument, this result seems quite respectable!

In fact, all we used above was that the smaller member of a non-perfect
amicable pair is abundant. An equally simpleminded observation, dual to
the first, is that the larger member is deficient. Putting these together, we
see that if n is the smaller member of a non-perfect amicable pair, then n is
an abundant number for which s(n) is deficient. Erdős had the great insight
that this two-fold condition on n should be quite restrictive. His argument
in [15] that the amicable numbers have asymptotic density zero is actually
a proof of the following theorem:

Theorem 2. The set of abundant natural numbers n for which s(n) is
deficient has asymptotic density zero.

Erdős’s proof of Theorem 2 is naturally split into three identifiable com-
ponents. The first of these is an immediate consequence of the continuity
of the function D(u) appearing in Davenport’s Theorem 1.

Lemma 3. Let ε > 0 be arbitrary. For a certain δ > 0, depending on ε, the
set of solutions n to

2 < h(n) < 2 + δ

has asymptotic density less than ε.

For every positive integer n, the bijection between divisors d of n and
their co-divisors n/d permits us to write h(n) = 1

n

∑
d|n d =

∑
d|n

1
d . This

expression for h(n) suggests that the small divisors of n play the largest role
in determining the size of h(n). To make this precise, we let y > 0, and we
define the truncated function

hy(n) :=
∑
d|n
d≤y

1

d
.

The second leg on which Erdős’s argument rests is the following lemma.

Lemma 4. Let x > 0 and let y be a positive integer. For each δ > 0 the
number of n ≤ x for which h(n)− hy(n) ≥ δ does not exceed δ−1x/y.
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Proof. A simple interchange of the order of summation shows that∑
n≤x

(h(n)− hy(n)) =
∑
d>y

1

d

∑
n≤x
d|n

1.

The inner sum here is at most x
d , from which it is easy to see that the entire

sum is at most x
y . The claim follows immediately.

It seems likely that Erdős would have considered the key innovation in
the proof of Theorem 2 to be its third component, which we formulate as
follows.

Lemma 5. Fix y > 0. For all natural numbers n outside of a set of
asymptotic density zero, n and s(n) share the same set of divisors in [1, y].

Proof. Let M be the least common multiple of the natural numbers not
exceeding y. It suffices to show that σ(n) is a multiple of M unless n
belongs to a set of density zero. Indeed, if M | σ(n), then the relation
s(n) = σ(n)− n implies that

s(n) ≡ −n (mod d)

for all d ≤ y. Thus, d | s(n) if and only if d | n. Now if p is a prime that
exactly divides n, then p+ 1 divides σ(n). Thus, M divides σ(n) whenever
there is a prime p ≡ −1 (mod M) for which p ‖ n. For any particular prime
p ≡ −1 (mod M), we see that p ‖ n precisely when n falls into one of the
(p− 1) residue classes p, 2p, 3p, . . . , (p− 1)p (mod p2). So if the relation
p ‖ n fails for all p ≤ z from the residue class −1 (mod M), then n avoids
p− 1 residue classes modulo p2 for every such p. By the Chinese remainder
theorem, this restricts n to a set of asymptotic density∏

p≡−1 (mod M)
p≤z

(
1− 1

p
+

1

p2

)
.

This product can be made arbitrarily small by taking z sufficiently large,
since by Dirichlet, the sum of the reciprocals of the primes p ≡ −1 (mod M)
diverges. The lemma follows.

Remark. The proof of Lemma 5 shows that for a fixed M , the number
σ(n) is almost always divisible by M . When M is a power of 2, this was
previously observed by Kanold [40], who used this to prove that the amicable
numbers have upper density less than 0.204.
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It is now a simple matter to assemble Lemmas 3–5 to prove Theorem 2.

Proof of Theorem 2. Let n denote a generic abundant natural number for
which s(n) is deficient. We will show that for each fixed ε > 0, the set of all
such n has upper density smaller than 2ε. By Lemma 3, we may fix δ > 0
small enough so that the set of solutions to 2 < h(n) < 2+ δ has density less
than ε. Thus, discarding a set of density less than ε, we can assume that

h(n) ≥ 2 + δ.

We now apply Lemma 4 with

y :=

⌈
1

δε

⌉
and find that discarding a set of upper density bounded by ε, we can assume
that

hy(n) > h(n)− δ ≥ 2.

Discarding a further set of density zero, we can assume (by Lemma 5) that
n and m = s(n) have the same set of divisors up to y. But then

h(m) ≥ hy(m) = hy(n) > 2,

contradicting that m is deficient. So n must have belonged to one of
the exceptional sets described above, which have combined upper density
smaller than 2ε.

In the introduction to [15], Erdős asserted that his method, suitably
refined, would show that the count A(x) of amicable numbers in [1, x]
satisfies

(1) A(x) � x

log log log x
.

Details appeared twenty years later in joint work with Rieger [28] (cf.
Rieger’s weaker solo result [57]). The Erdős–Rieger upper bound was soon
improved by Pomerance [53], who established that

(2) A(x) ≤ x/ exp(c(log3 x log4 x)
1/2)

for a certain constant c > 0 and all large x (note the subscripts indicate
iterated logs). In both cases, what is actually estimated is the count of
abundant n ≤ x for which s(n) is deficient. (The key innovation in [53] is
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the use of Erdős’s theory of primitive abundant numbers; see [8].) A few
years later, and by different methods, Pomerance [54] established the bound

A(x) ≤ x/ exp(c(log x log2 x)
1/3),

for some positive constant c and all large x. This bound has not yet been
improved, nor do we know that there are infinitely many amicable numbers.
Erdős has a heuristic argument suggesting that A(x) > x1−o(1) as x → ∞.

Fix ε > 0. Arguing as in the proof of Theorem 2, one finds that for
almost all natural numbers n, we have h(s(n)) > h(n)− ε. In the con-
cluding remarks to [15], Erdős claimed that the complementary inequality
h(s(n)) < h(n) + ε also holds for almost all n. A proof of this last result
eventually appeared in joint work with Granville, Pomerance, and Spiro
(see [22, Theorem 5.1]). Hence, h(s(n)) = h(n) + o(1), as n → ∞ in a set
of asymptotic density 1. For another application of their method of proof,
see [51].

4. Sociables

One can revisit the definition of an amicable pair from the viewpoint
of function iteration. Let sk(n) denote the kth iterate of s(n). Then
n is amicable precisely when s2(n) = n. Generalizing, we say that n is
k-sociable if sk(n) = n but sj(n) �= n for 1 ≤ j < k, and we call the set
{n, s(n), . . . , sk−1(n)} an aliquot k-cycle. Note that the 1-sociable numbers
are exactly the perfect numbers, whose distribution is discussed in detail in
the next section.

Questions about the iterates of s(n) began to be asked at the end of
the 19th century. For a natural number n, the aliquot sequence at n is the
sequence n, s(n), s2(n), . . . , where we stop if we reach 0. For instance, the
aliquot sequence at 24 is 24, 36, 55, 17, 1, 0, while the aliquot sequence at 25
is 25, 6, 6, 6, . . . . In 1888, Catalan [4] proposed the empirical theorem that
these two examples exhaust the possible behaviors of an aliquot sequence;
more precisely, every aliquot sequence either terminates or hits a perfect
number.

‘Empirical theorems’, like champion athletes, are always in danger of
losing their title. Soon after Catalan’s conjecture appeared, Perrott [47]
pointed out that the aliquot sequence at 220 was a counterexample. This led
Dickson [7] to propose a somewhat tamer, modified conjecture – commonly
known today as the Catalan–Dickson conjecture – that all aliquot sequences
terminate or are eventually periodic. This has been verified numerically for
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n < 276. However, when n = 276, more than 1700 terms of the sequence
have been computed [64], with no end in sight.

When Dickson put forward his modified conjecture in 1913, no aliquot
cycles of length > 2 were known. The first examples, of lengths 5 and 28,
were given by Poulet in 1918. Currently there are 217 such cycles known [45],
all but 11 of which have length 4.

What can we prove about the distribution of these cycles? The first
asymptotic result on this problem is due to Erdős [21]. Note that the case
k = 2 is contained in Erdős’s earlier work on amicable pairs.

Theorem 6. Fix ε > 0 and fix an integer k ≥ 2. Then for all n outside of
a set of asymptotic density zero, we have

(3) h(sj(n)) > h(n)− ε for all 0 < j < k.

One consequence of Theorem 6 is that for each fixed k, almost all
abundant numbers are k-times abundant : n < s(n) < s2(n) < · · · < sk(n).
Suppose now that n is the smallest member of a sociable k-cycle, where
k > 1. Then n is abundant, but not k-times abundant (since sk(n) = n),
and so n belongs to a set of density zero. As a corollary, the set of k-sociable
numbers has asymptotic density zero for each fixed k. For quantitative
results of this kind, see [43] and [49].

The proof of Theorem 6 employs the same reasoning seen in the previous
section, but with Lemma 5 replaced by the following generalization.

Lemma 7. Fix y > 0, and fix k ≥ 2. For all natural numbers n outside of
a set of asymptotic density zero, all of n, s(n), . . . , sk−1(n) share the same
set of divisors in [1, y].

One can ask whether Theorem 6 remains true with (3) replaced by the
complementary inequality h(sj(n)) < h(n) + ε. As mentioned above, this is
known to be so when k = 2, by later work of Erdős et al. [22]. For larger
values of k, this constitutes an attractive open problem. Note that the claim
of a general proof, made in [21], is retracted in [22].

For more recent developments on sociable numbers, see [43]. For exam-
ple, it is shown there that if one lumps together all sociable numbers (i.e.,
one takes the union of the k-sociables over all k), then after discarding a
certain set of asymptotic density zero, the remaining elements are all both
odd and abundant.
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5. Perfects

From Euclid and Euler, we know that an even number is perfect precisely
when it can be written as 2p−1(2p − 1), where 2p − 1 is prime. Thus, the
distribution of the even perfect numbers is inextricably linked with the dis-
tribution of primes of the form 2p−1, known as Mersenne primes. While al-
most nothing is known rigorously about the distribution of Mersenne primes,
Lenstra, Pomerance, and Wagstaff have (independently) given heuristic ar-
guments suggesting that probably

#{p ≤ x : 2p − 1 prime} ∼ eγ

log 2
log x, as x → ∞.

Here γ is the familiar Euler–Mascheroni constant. (See, for example, [61].)
The validity of this conjecture would imply that the count of even perfect
numbers up to x is asymptotic to eγ

log 2 log log x.

What about odd perfect numbers? We have already noted that from
Davenport’s Theorem 1, these numbers have asymptotic density zero. But
this is a rather weak result. There is a short and pretty argument of Hornfeck
[38] showing that in fact, the count P (x) of odd perfects in [1, x] is smaller

than x1/2, for every x > 1. We cannot resist reproducing it here. By a
classical result of Euler, we can write an odd perfect n as n = pem2 where
p is a prime not dividing m and p ≡ e ≡ 1 (mod 4). (This uses only that n
is odd and σ(n) ≡ 2 (mod 4).) Since n is perfect,

2pem2 = σ(pe)σ(m2), so that
2m2

σ(m2)
=

σ(pe)

pe
.

But the fraction σ(pe)/pe is already in lowest terms, since the numerator
σ(pe) = 1 + p+ · · ·+ pe is not divisible by p. Hence, the prime power pe is
uniquely determined from m. If we assume that n ≤ x, then 1 < m ≤ √

x,
and so Hornfeck’s bound follows.

The problem of obtaining improved bounds for P (x) attracted some at-
tention in the late 1950s, with several number theorists throwing their hats
into the ring. It was Erdős [16] who gave the first significant improvement

over Hornfeck’s bound, getting P (x) ≤ x1/2−c for a certain c > 0 and all
large x. His idea is both ingenious and, at least in hindsight, quite natu-
ral. We sketch an improvement that obtains the estimate P (x) ≤ x1/4+o(1).
(A result of this same quality was obtained by Kanold [41] shortly after
Erdős’s paper appeared.)
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Erdős’s starting point is the following ‘greedy’ algorithm for extracting
from an integer M a divisor D of M with D coprime to both M/D and
σ(D):

Algorithm:

Factor M = pe11 pe22 · · · pekk , where p1 > p2 > · · · > pk.
D ← 1 // Initialize
for i = 1 to k do // Loop over prime power divisors of M
if gcd(σ(peii D), peii D) = 1 then

D ← peii D
end
return D

In certain special cases, Erdős proved that the outputD of this algorithm
is bounded below by a fixed power of the input M . However, for our present
purposes, the argument is clearer (and stronger) if it is instead made to rest
upon the following near-injectivity property, whose proof – given in [52] –
involves the same circle of ideas as in [16].

Proposition 8. Let ε > 0. For all sufficiently large values of x, depending
on the choice of ε, at most xε inputs M ≤ x of the Algorithm correspond to
the same output D.

We now show that P (x) ≤ x1/4+o(1) as x → ∞. Write an odd perfect
number n ≤ x as pem2 as above and apply the Algorithm to M = m2. It
produces a divisor D of m2 coprime to m2/D and to σ(D). Thus D = d2 for
some d | m. Letting v2 be the co-divisor of d2 in m2, we have n = pev2d2.
Since n is perfect, we have

2pev2d2 = σ(n) = σ(pev2)σ(d2).

Since d2 is coprime to σ(d2), we have d2 | σ(pev2). If pev2 ≤ x1/2, then

d2 ≤ 2x1/2 so that d < 2x1/4. But if pev2 > x1/2, then d2 = n/(pev2) < x1/2,

so in either case, d < 2x1/4. So, by Proposition 8 there are at most x1/4+ε

inputs m2 to the Algorithm (for each fixed ε > 0 and x sufficiently large
depending on ε). But by the Hornfeck–Euler argument, m2 determines n,

which proves the theorem that P (x) ≤ x1/4+o(1) as x → ∞.

A year after Erdős’s article appeared, Hornfeck and Wirsing [39] pub-

lished a proof that P (x) ≤ xo(1) as x → ∞. Two years later, Wirsing [63]

showed that for an absolute constant W , one has P (x) < xW/ log log x for
all x > e. In fact, the same is true for the distribution of those n with
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σ(n)/n = r for any fixed rational number r. Wirsing’s upper bound has
not been improved in fifty years, but it is still a rather long way from the
widespread belief that P (x) is identically zero.

While Erdős’s results on P (x) are now primarily of historical interest,
his approach to the problem has borne other fruit. For instance, as Erdős
noted at the time in [16], one can use these methods to show that n and
σ(n) rarely have a large common factor. For a detailed discussion of these
problems, see [50], which was written in part to correct and substantiate
some of the unproved assertions of [16]. See also [52].

6. Iteration

It was not always the case, but we now view functions as interesting math-
ematical objects in and of themselves. For example, for a function whose
values are contained in its domain, we can view the function as creating a
dynamical system. We discussed this above in the context of the function s,
the sum-of-proper-divisors function, where we have sociable cycles and the
Catalan–Dickson conjecture.

Euler’s function ϕ provides another attractive dynamical system. Given
a positive integer n and the sequence n, ϕ(n), ϕ(ϕ(n)), . . . , we note that
it is strictly decreasing until it reaches 1. Thus, we may define k(n) as
the minimal number k ≥ 1 of iterates necessary for n to reach 1. For
example, k(13) = 4, since the sequence is 13, 12, 4, 2, 1, 1, . . . . Seemingly a
very exotic function, there is some unexpected structure here! Let k∗(n) =
k(n) for n even and k∗(n) = k(n)− 1 for n odd. It is not hard to see that
k∗(n) is completely additive (k∗(mn) = k∗(m) + k∗(n) for all m,n) and it
is inductively defined on the primes by k∗(2) = 1 and k∗(p) = k∗(p− 1) for
p > 2. Erdős and his collaborators show in [22] that under the assumption
of the Elliott–Halberstam conjecture (a widely believed conjecture on the
distribution of primes in residue classes) there is a positive constant α such
that k(n) ∼ α log n as n → ∞ on a set of asymptotic density 1.

Euler chains n, ϕ(n), ϕ(ϕ(n)), . . . arise in other contexts, for example,
primality testing and algebraic number theory. See the very recent paper of
Ford [32] and the references therein.

7. Values

The set of values of an arithmetic function can also give rise to interesting
questions. Take the function s. If p, q are different primes, then s(pq) =
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p+ q + 1. So a slightly stronger form of Goldbach’s conjecture, namely all
even numbers at least 8 are a sum of two distinct primes, implies that all
odd numbers at least 9 are in the image of s. Since s(2) = 1, s(4) = 3,
and s(8) = 7, presumably the only odd number missing from the image of s
is 5. From what we know about the possible exceptional set in Goldbach’s
conjecture, it follows that the set of odds not in the form s(n) has asymptotic
density 0. But what of even numbers? Here, Erdős in [20] showed by a clever
argument that a positive proportion of even numbers are missing from the
image of s. We still don’t know if the image of s has a density or if the range
of s contains a positive proportion of even numbers. The issue of numbers
of the form n− ϕ(n) was also raised in [20], but here even less is known.
See [56] for a recent paper in this area with references to other work.

Here is a proof of the result in [20] that a positive proportion of even
numbers are missing from the image of s. If s(n) is even and n is odd, then
σ(n) must be odd too, and so n is a square, say m2. If s(m2) ≤ x and q
is the least prime factor of m, then x ≥ s(m2) > m2/q. If m is composite,

then q ≤ m1/2, so that m3/2 < x and there are at most x2/3 possibilities.
If m = q is prime, then q < x and there are at most π(x) = O(x/ log x)
possibilities. Hence the number of even numbers s(n) in [1, x] with n odd
is o(x) as x → ∞. So we may assume that n is even, which in turn implies
that x ≥ s(n) ≥ n/2. Hence n ≤ 2x. Consider values of s in [1, x] that are
divisible by 12. By Lemma 5, but for o(x) choices for n ≤ 2x, we may assume
that 12 | n. Thus, x ≥ s(n) ≥ 4

3n, so that n ≤ 3
4x. We conclude that the

number of values of s(n) ≤ x divisible by 12 is at most 1
12 · 34x+ o(x) ∼ 1

16x,
leaving asymptotically at least 25% of the multiples of 12 not in the range
of s.

In 1929 S. S. Pillai [48] proved that the image of Euler’s function ϕ has
density 0. Here is the idea of the proof. For each fixed positive integer k
consider numbers n with at most k distinct prime factors. It is easy to see
that the set of these numbers has density 0 as does their image under ϕ.
But if n is not in this set, then 2k | ϕ(n), so we see that the image of ϕ has
upper density at most 2−k. Since k is arbitrary, this proves that the image
of ϕ has density 0. Pillai was able to quantify this result by taking k as a

function of x and obtaining an estimate of O(x/(logx)
1
e
log 2) for the number

of values of ϕ in [1, x]. Since ϕ is 1-1 on the primes, we immediately have a
lower bound of magnitude x/ log x.

So what is the correct exponent here?

Erdős’s answer: “1.” This was in [10], a wonderful and seminal paper
submitted to the Quarterly Journal of Mathematics when he was 21. That
is, the number of values of ϕ in [1, x] is x/(log x)1+o(1) as x → ∞. The
idea is to look not only at the number of factors 2 in ϕ(n), but at the total
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number of prime factors. If Ω(n) is the number of prime factors of n counted
with multiplicity, Erdős knew after Hardy and Ramanujan that normally
Ω(n) ∼ log log n. Moreover, exceptional numbers with Ω(n) < ε log log x or
Ω(n) > 1

ε log logx are so sparse that they are negligible. Erdős then showed
(in an early and inventive use of Brun’s sieve method) an analog of the
Hardy–Ramanujan theorem for “shifted primes”, that is, he showed that
Ω(p− 1) is normally near log log p, with exceptional primes p, with Ω(p− 1)
far from this normal order, being quite rare. So, but for very few numbers
n, they are divisible by a fair number of non-exceptional primes p. Since
Ω(ϕ(n)) ≥ ∑

p|nΩ(φ(p)), we find that Ω(ϕ(n)) is much larger than log logn,

meaning that φ(n) is quite exceptional! This is all worked out in exquisite
detail, not only solving Pillai’s problem, but introducing extraordinarily
useful tools in the statistical study of elementary number theory.

The problem of the distribution of ϕ values was taken up later by Erdős
and Hall [23, 24], Maier and Pomerance [46], and by Ford [31]. However,
we still don’t have an asymptotic formula nor do we know if a natural one
exists.

The same theorems carry over to the range of σ. Erdős also raised
the attractive question (for instance, in [18]) of whether the images of ϕ
and σ have an infinite intersection. If p and p+ 2 are both primes, then
σ(p) = p+ 1 = ϕ(p+ 2), so the answer is affirmative if there are infinitely
many twin primes. Also if 2p − 1 is prime, then σ(2p − 1) = 2p = ϕ(2p+1),
so the answer is again ‘yes’ if there are infinitely many Mersenne primes
(and so ‘yes’ if there are infinitely many even perfect numbers). In a recent
paper, Ford, Luca, and Pomerance [33] showed unconditionally that there
are infinitely many pairs of integers m,n with σ(m) = ϕ(n), and Ford and
Pollack [34, 35] have some finer results in this direction.

8. Order

Euler’s function ϕ(n) gives the order of the multiplicative group (Z/nZ)∗.
A closely related function, λ(n) gives the maximal order of an element in
this group. When (Z/nZ)∗ is cyclic, we have λ(n) = ϕ(n). We always have
λ(n) | ϕ(n), and since (Z/nZ)∗ is abelian, for all integers a coprime to n,

aλ(n) ≡ 1 (mod n). For this reason, λ(n) is referred to as the universal
exponent function.

Carmichael used the notation λ, but the function appears in Gauss a
century earlier. It is easy to give a formula for λ(n) based on the prime
factorization of n: for a prime power pα, we have λ(pα) = ϕ(pα) except
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if p = 2 and α ≥ 3 in which case, λ(2α) = 1
2ϕ(2

α). (Note that ϕ(pα) =

pα−1(p− 1).) Further, for all n, λ(n) is the lcm of λ(pα) for prime powers
pα | n.

Being so closely related to ϕ, one might expect that statistically λ is quite
similar. Here is ϕ’s story: We know (from Schoenberg, or more generally
the Erdős–Wintner theorem) that for each real number u ∈ (0, 1], the set
{n : ϕ(n) ≤ un} has a positive asymptotic density that varies continuously
and strictly monotonically with u. Further, from Mertens’ theorem in
analytic number theory, it follows that ϕ(n) ≥ (e−γ + o(1))n/ log log n as
n → ∞. And on average, ϕ(n) behaves like cn, with c = 6/π2.

Erdős took up the normal and average orders of λ(n) in [17], stating
some results without proof. Full proofs of more precise results, including the
minimal order of λ(n), were worked out in Erdős–Pomerance–Schmutz [27]
in 1991. The function is amazingly different from ϕ. On average it is not
like cn, but rather like n/(log n)1+o(1), where the “o(1)” is asymptotically
c/ log log log n, with c explicitly worked out. The normal order is not of

the shape � n, but rather much smaller at n/(log n)log log log n+c+o(1) for a
different explicit c. And the minimal order, instead of the large function
n/ log logn, is instead the tiny function (log n)c log log log n (here the precise
value of c is still not known), a result that has found application in the
analysis of some primality tests. These results have not been improved over
the past 2 decades, and there is indeed room for improvement. For example,
does λ(n) have a “nice” distribution function? That is, for ϕ(n) we compare
it with n; what should λ(n) be compared with?

The image of λ is also different than the image of ϕ. In [27] it is
shown that there is some c > 0 such that the number of λ-values in [1, x]
is O(x/(log x)c), a result which strongly uses an earlier result of Erdős
and Wagstaff in [29]. It has been announced by Luca and Pomerance

that there is some c′ > 0 such that the count is at least x/(log x)1−c′ for
all large x. Probably the truth is x/(log x)α+o(1) as x → ∞, where α =
1− (1 + log log 2)/ log 2 = 0.086 . . . , the Erdős–Tenenbaum–Ford constant,
and maybe this is provable.

The iteration of λ also has its surprises, see Harland [37] for some recent
work.

From its definition, we see that λ is related to the order-of-an-element
function. For n a positive integer and gcd(a,n) = 1, we follow Erdős in using
the notation a(n) for the order of a in (Z/nZ)∗. Thus, a(n) | λ(n), and for
some number a we have a(n) = λ(n). In a surprisingly difficult paper, Erdős
in [19] (he spoke on this at the International Conference of Mathematicians
in Nice in 1970), began the statistical study of a(n). Further developments
can be tracked in [25] and in [44].
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A pseudoprime to the base a is a composite integer n for which an−1 ≡
1 (mod n). Note that the congruence holds if and only if a(n) | n− 1.
Pseudoprimes are a useful concept since all primes n not dividing a satisfy
the congruence and the congruence itself is easily checkable numerically.
Thus, pseudoprimes stand as an obstruction against using the congruence
as a primality test. Known from experience that pseudoprimes are rare
compared with primes, it took some time for this to be proved. Erdős was
the first to do so in [14] (announced earlier in [13]). Currently the best upper
bound known for their distribution is in Pomerance [55], and a number of
other statistical results are discussed in Erdős–Pomerance [26].

Some composites n have the property that an−1 ≡ 1 (mod n) for all
integers a coprime to n. From what we have said above, this congruence
is equivalent to λ(n) | n− 1. It is easy to see that this then forces n to
be squarefree. In 1899, Korselt essentially gave this criterion for a number
n to satisfy an−1 ≡ 1 (mod n) for all a coprime to n, but did not give
any composite examples. In 1910 and apparently unaware of Korselt’s
criterion, Carmichael did give some examples, such as 561, 1105, and 1729.
Now known as Carmichael numbers, Erdős was the first to prove a result
about their distribution, in [17]. He showed that the number of Carmichael

numbers in [1, x] is at most x1−c log log log x/ log log x for some fixed c > 0. And
he gave a heuristic argument that the count exceeds x1−ε for each fixed
ε > 0 and all sufficiently large x depending on ε.

This was all the more remarkable in that at that time we did not have a
proof that there are infinitely many Carmichael numbers and the numerical
evidence seemed to indicate a much slower growth rate for the counting
function. Shanks was notably vocal in challenging Erdős on this point. It is
now known that there are infinitely many Carmichael numbers, Alford–
Granville–Pomerance [1]. The proof largely follows the Erdős heuristic
in [17], which in turn is based on a proof in [10] that there are numbers
v ≤ x such that ϕ(n) = v has more than xc solutions n. In Granville–
Pomerance [36] the two incompatible viewpoints of Erdős and Shanks were
shown to both have elements of truth, though there is still much to be
learned here.

9. Conclusion

We have touched on a few of our favorite problems and results of Erdős
in elementary number theory, particularly those involving the elementary
number theoretic functions. We have not attempted to be encyclopedic, and
for a more thorough and complete treatment, we recommend the article of
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Schinzel in this volume, as well as the original papers of Erdős, most of
which are freely available online.

The point we have tried to make is that viewing classical problems in
elementary number theory through a statistical lens allows the tools of
modern mathematics to prove interesting and sometimes beautiful theorems.
It is through this lens that the mathematics of the ancients lives on. Paul
Erdős was an early and consistent exponent of this point of view, changing
for the better the entire landscape of elementary number theory.

References

[1] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many
Carmichael numbers, Ann. of Math. (2) 139 (1994), 703–722.
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[23] P. Erdős and R. R. Hall, On the values of Euler’s ϕ-function, Acta Arith. 22 (1973),
201–206.

[24] , Distinct values of Euler’s ϕ-function, Mathematika 23 (1976), 1–3.
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According to Paul Erdős [Some notes on Turán’s mathematical work, J. Approx.
Theory 29 (1980), page 4] it was Paul Turán who “created the area of extremal
problems in graph theory”. However, without a doubt, Paul Erdős popularized
extremal combinatorics, by his many contributions to the field, his numerous
questions and conjectures, and his influence on discrete mathematicians in Hun-
gary and all over the world. In fact, most of the early contributions in this field
can be traced back to Paul Erdős, Paul Turán, as well as their collaborators and
students. Paul Erdős also established the probabilistic method in discrete mathe-
matics, and in collaboration with Alfréd Rényi, he started the systematic study of
random graphs. We shall survey recent developments at the interface of extremal
combinatorics and random graph theory.

1. Extremal Graph Theory

1.1. Introduction

We first discuss a few classical results in extremal graph theory. Since by
no means we can give a full account here, we restrict ourselves to some well
known results in the area and highlight some of the pivotal questions. For
a thorough introduction to the area we refer to the standard textbook of
Bollobás [12].

A large part of extremal graph theory concerns the study of graphs G
which do not contain a given subgraph F . The first classical problem is
to maximize the number of edges of such a graph G with n vertices. An
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instance of this question was addressed already in 1938 by Erdős. In [28]
he proved bounds for an extremal problem in combinatorial number theory,
and in his proof he asserts a lemma that every n-vertex graph without a
cycle of length four can have at most cn3/2 edges (see Figure 1 below).

Fig. 1. Quote from [28, page 78]

Turán initiated the systematic study of such questions, and in Section 1.3
we give a short account of Turán’s theorem [114] in graph theory and some
important results related to it. In fact, we will restrict ourselves only to
extremal questions in graph theory here. However, even within extremal
graph theory we can only discuss a few selected results and are bound to
neglect not only many important topics, but also many beautiful general-
izations and improvements of those classical results. Our certainly biased
selection of results presented here is guided by the recent generalizations,
which were obtained for subgraphs of random graphs. First we introduce
the necessary notation.

1.2. Notation

Below we recall some notation from graph theory, which will be used here.
For notation not defined here we refer to the standard text books [13, 16, 27].

All graphs considered here are finite, simple and have no loops. For
a graph G = (V,E) we denote by V (G) = V and E(G) = E its vertex set
and its edge set, respectively. We denote by e(G) = |E(G)| the number

of edges of G and by d(G) = e(G)/
(|V (G)|

2

)
its edge density. Moreover,

for a subset U ⊆ V let eG(U) be the number of edges of G contained
in U . By ω(G), α(G), and χ(G) we denote the standard graph parameters
known as clique number, independence number, and chromatic number of G,
respectively. We say that a graph G contains a copy of a graph F if
there is an injective map ϕ : V (F ) → V (G) such that {ϕ(u), ϕ(v)} ∈ E(G),
whenever {u, v} ∈ E(F ). If G contains no such copy, then we say G is F -
free. Also, G and F are isomorphic if there exists a bijection ϕ : G → F
such that {ϕ(u), ϕ(v)} ∈ E(G) if, and only if {u, v} ∈ E(F ). In this case we
often write G = F . A graph H is a subgraph of G = (V,E), if V (H) ⊆ V
and E(H) ⊆ E, which we denote by H ⊆ G.
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The complete graph on t vertices with
(
t
2

)
edges is denoted by Kt, and a

clique is some complete graph. A graph G is t-partite or t-colorable, if there
is a partition of its vertex set into t classes (some of them might be empty)
such that every edge of G has its vertices in two different partition classes.
We denote by Coln(t) the set of all t-colorable graphs on n vertices, i.e.,

Coln(t) = {H ⊆ Kn : χ(H) ≤ t}.

A t-partite graph G = (V,E) with vertex classes V1 ·∪ . . . ·∪Vt = V is complete
if for every 1 ≤ i < j ≤ t and every u ∈ Vi and v ∈ Vj we have {u, v} ∈ E. We
denote by Tn,t the complete t-partite graph on n vertices with the maximum
number of edges. It is easy to show that Tn,t is unique up to isomorphism
and that it is the complete t-partite graph with every vertex class having
cardinality either �n/t� or n/t�.

For a graph F with at least one edge and an integer n, we denote by
Forbn(F ) the set of F -free subgraphs of Kn, i.e.,

Forbn(F ) = {H ⊆ Kn : H is F -free},

and we recall the extremal function exn(F ) defined by

exn(F ) = max{e(H) : H ∈ Forbn(F )}.

Note that the set Forbn(F ) is closed under taking subgraphs, i.e., if H ∈
Forbn(F ) and H ′ ⊆ H, then H ′ ∈ Forbn(F ). In general such sets of graphs
are called monotone. In fact, any monotone property Pn of subgraphs
of Kn can be expressed by a family of forbidden subgraphs, and many
results discussed below allow generalizations in this direction (and even more
generally towards hereditary properties). However, we will concentrate on
generalizations for subgraphs of random graphs and restrict the discussion
to a forbidden set of graphs consisting of only one graph.

1.3. Turán’s Theorem and Related Results

Generalizing a result of Mantel [81] for F = K3, Turán [114] determined
exn(F ) when F is a complete graph.

Theorem 1.1 (Turán 1941). For all integers t ≥ 2 and n ≥ 1 we have

exn(Kt+1) = e(Tn,t).

Moreover, Tn,t is, up to isomorphism, the unique Kt+1-free graph on n
vertices with exn(Kt+1) edges.
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Theorem 1.1 determines the maximum number of edges of a Kt+1-
free graph on n vertices. Moreover, it characterizes the extremal graphs,
i.e., those Kt+1-free graphs on n vertices having the maximum number of
edges. In fact, these are instances of two very typical questions in extremal
combinatorics. The questions below are stated more generally and could
be applied in other contexts like hypergraphs, multigraphs, subsets of the
integers, etc. However, we shall mostly restrict ourselves to questions in
graph theory here.

(Q1 ) Given a monotone property of discrete structures, like the monotone
set Forbn(Kt+1) of subgraphs of Kn, what maximum density can its
members attain?

(Q2 ) What are the extremal discrete structures, e.g., like Tn,t is the ex-
tremal subgraph of Kn for Forbn(Kt+1)?

Theorem 1.1 answers (Q1 ) and (Q2 ) in a precise way. In fact, it not only
determines the maximum density, as required for (Q1 ), but actually gives a
full description of the function exn(Kt+1). Often only the density question
can be addressed.

To this end for a given graph F we recall the definition of the Turán
density π(F ), which is given by

π(F ) = lim
n→∞

exn(F )(
n
2

) .

Note that the limit indeed exists since one can show that exn(F )/
(
n
2

)
is non-

increasing in n. Erdős and Stone [40] determined π(F ) for every graph F .

Theorem 1.2 (Erdős & Stone, 1946). For every graph F with at least one
edge we have

π(F ) = 1− 1

χ(F )− 1
.

In particular, π(F ) = 0 for every bipartite graph F (see also [74] for
stronger estimates for this problem). On the other hand, for a graph F
of chromatic number at least three the lower bound in Theorem 1.2 is
established by the Turán graph Tn,χ(F )−1.

Refining Theorem 1.2 by determining exn(F ) for arbitrary F is a very
hard problem (see, e.g., [39, 105, 106] for some partial results in this direc-
tion). Consequently, a precise solution for question (Q2 ) is still unknown
for most graphs F . Owing to the stability theorem, which was independently
obtained by Erdős [34] and Simonovits [104], we however have an approx-
imate answer for question (Q2 ). In fact, the stability theorem determines
an approximate structure of the extremal, as well as the almost extremal,
graphs up to o(n2) edges.
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Theorem 1.3 (Erdős 1967, Simonovits 1968). For every ε > 0 and every
graph F with χ(F ) = t+ 1 ≥ 3 there exist δ > 0 and n0 such that the
following holds. If H is an F -free graph on n ≥ n0 vertices satisfying

e(H) ≥ exn(F )− δn2,

then there exists a copy T of Tn,t on V (H) such that

|E(H)� E(T )| ≤ εn2,

where � denote the symmetric difference of sets.

In other words, H can be obtained from the graph Tn,t by adding and
deleting up to at most εn2 edges.

In particular, H can be made t-partite by removing at most εn2 edges
from it.

Note that Theorem 1.3 holds trivially for bipartite graphs F as well,
since in this case exn(F ) = o(n2), and Tn,1 corresponds to an independent
set.

Next we state two more commonly asked questions in extremal combi-
natorics, which we shall discuss in the context of being F -free.

(Q3 ) How many discrete structures of given size have the monotone prop-
erty? E.g., how large is the set Forbn(F )?

(Q4 ) Do the typical (drawn uniform at random) discrete structures with
this property have some common features? E.g., are there any
common features of almost all graphs in Forbn(F )?

For Kt+1-free graphs both of these questions were addressed in the
work of Erdős, Kleitman, and Rothschild [37] and Kolaitis, Prömel, and
Rothschild [70, 71]. In particular, it was shown that almost all Kt+1-free
graph on n vertices are t-colorable subgraphs of Kn.

Theorem 1.4 (Kolaitis, Prömel & Rothschild, 1985). For every integer
t ≥ 2 the limit limn→∞ |Forbn(Kt+1)|/|Coln(t)| exists and

lim
n→∞

|Forbn(Kt+1)|
|Coln(t)|

= 1.

Similarly to the extension of Turán’s theorem in [105], Theorem 1.4 was
extended by Prömel and Steger [87] from cliques Kt+1 to graphs containing
a color-critical edge, i.e., (t+ 1)-chromatic graphs F with the property
that χ(F − f) = t for some edge f ∈ E(F ) (see also [6, 7] for more recent
extensions of Theorem 1.4).

Regarding question (Q3 ), for arbitrary graphs F , the size of Forbn(F )
was studied by Erdős, Frankl, and Rödl [36], and those authors arrived at
the following estimate (see also [5] for a more recent improvement).
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Theorem 1.5 (Erdős, Frankl & Rödl, 1986). For every ε > 0 and every
graph F there exists n0 such that for every n ≥ n0 we have

|Forbn(F )| ≤ 2exn(F )+εn2
.

Note that |Forbn(F )| ≥ 2exn(F ) holds trivially, since every subgraph of
an extremal graph on n vertices is F -free. Therefore, Theorem 1.5 implies
for every graph F that

lim
n→∞

log2 |Forbn(F )|(
n
2

) = π(F ).

The extremal results stated above were motivated by Turán’s theorem,
and the problems addressed by those results allow natural generalizations
for subgraphs of random graphs. In the next section we consider such
extensions, where the complete graph Kn (in the definition of exn(F ) and
Forbn(F )) is replaced by a random graph with vanishing edge density. We
will discuss some further extremal results, including the removal lemma and
the clique density theorem in Section 4.

2. Extremal Problems for Random Graphs

Motivated by questions in Ramsey theory (also known as Folkman-type prob-
lems), in 1983, at the first Random Structures and Algorithms conference
in Poznań, Erdős and Nešetřil (see [35]) posed the following extremal prob-
lem: Is it true that for every ε > 0 there exists a K4-free graph G such that
any subgraph H ⊆ G containing at least (1/2+ ε)e(G) edges must contain a
triangle? In other words, Erdős and Nešetřil asked whether for F = K3 one
may replace Kn in the Erdős–Stone theorem by a graph which contains no
larger cliques than the triangle itself. This question was answered positively
by Frankl and Rödl [43] by a random construction. Those authors consid-
ered the binomial random graph G(n, p) with vertex set [n] = {1, . . . , n},
in which the edges are chosen independently, each with, probability p (see,
e.g., [14, 58] for standard textbooks on the topic). More precisely, it was

shown that for p = n−1/2+o(1) a.a.s. one may remove o(pn2) edges from
G ∈ G(n, p) (one from every copy of K4 in G) such that the remaining
graph has the desired property. In particular, a.a.s. the largest triangle-free
subgraph of G(n, p) contains at most (π(K3) + o(1))p

(
n
2

)
edges (see Theo-

rem 2.1 below).
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It will be convenient to extend the definitions Coln(t), Forbn(F ) and
exn(F ) from Section 1.2 to a more general setting. For a graph G and an
integer t let

ColG(t) = {H ⊆ G : χ(H) ≤ t}
be the set of t-colorable subgraphs of G. Similarly, for a graph F with at
least one edge we denote by ForbG(F ) the set of all subgraphs of G not
containing a copy of F , i.e.,

ForbG(F ) = {H ⊆ G : H is F -free},

and we define the generalized extremal function exG(F ) as the maximum
number of edges of the elements of ForbG(F ), i.e.,

exG(F ) = max{e(H) : H ∈ ForbG(F )}.

The following was proved by Frankl and Rödl in [43].

Theorem 2.1. Let ε > 0 and p ≥ n−1/2+ξ for some ξ > 0. Then a.a.s. for
G ∈ G(n, p) we have exG(K3) ≤ (π(K3) + ε)e(G).

In view of Theorem 2.1 several questions arise (see below). The system-
atic study of these questions was initiated by the work of Kohayakawa and
his collaborators in [56, 57, 63, 65, 78]. In particular, Kohayakawa, �Luczak,
and Rödl formulated conjectures in [65], which led to the subsequent work
discussed here.

(R1 ) What is the smallest p such that Theorem 2.1 holds?
(R2 ) For which p can Theorem 2.1 be extended to other graphs F instead

of the triangle?
(R3 ) Are there stability versions for those results?
(R4 ) Is there a strengthening of Theorem 2.1 which, similarly as Mantel’s

theorem (Theorem 1.1 for t = 2), establishes the equality between
the maximum size of a bipartite subgraph and that of a triangle-free
subgraph? More precisely, for which p a.a.s. G ∈ G(n, p) has the
following property: every H ∈ ForbG(K3) with e(H) = exG(K3) is
bipartite?

(R5 ) What can be said about extensions of Theorems 1.4 and 1.5, where
instead of Kt+1-free subgraphs of Kn, one studies Kt+1-free sub-
graphs of G(n, p) for appropriate p? Are almost all of those t-partite
or “close” to being t-partite?

We will address questions (R1 )–(R3 ) in the next section, Section 2.1.
In Section 2.2 we address a generalization of the question of Erdős–Nešetřil
that led to Theorem 2.1. Results addressing question (R4 ) will be discussed
in Section 2.3 and then we turn to question (R5 ) in Section 2.4.



542 V. Rödl and M. Schacht

2.1. Threshold for the Erdős–Stone Theorem

A common theme in the theory of random graphs is the threshold phe-
nomenon. For example, it was already observed by Erdős and Whitney
(unpublished) and Erdős and Rényi [38] that within a “small range” of p
(around lnn/n) the random graph G(n, p) quickly changes its behavior
from being a.a.s. disconnected to being a.a.s. connected. In other words,
p̂ = lnn/n is the threshold for G(n, p) being connected. In more generality,
for a graph property P, i.e, a set of graphs closed under isomorphism, we
say 0 ≤ p̂ = p̂(n) ≤ 1 is a threshold function for P, if

(1) lim
n→∞P(G(n, p) ∈ P) =

{
0, if p � p̂,

1, if p � p̂.

We refer to the two statements involved in this definition as the 0-statement
and the 1-statement of the threshold. It is well known (see, e.g., [15]) that
every monotone property P has a threshold.

In Theorem 2.1 the following property is studied for F = K3. For given
ε > 0, a graph F with at least one edge, and an integer n, consider

Gn(F, ε) = {G = (V,E) : V = [n] and exG(F ) ≤ (π(F ) + ε)e(G)}.

We note that Gn(F, ε) is not monotone. Consider, for example, the case
when F = K3, and letG ⊆ G′ be graphs with vertex set [n], where G consists

of a clique on n1/3 vertices all other vertices isolated and G′ consists of the
union of G and a perfect matching.

Since Gn(F, ε) is not monotone, the threshold is not guaranteed to exist
by the aforementioned result from [15]. On the other hand, Gn(F, ε) is
“probabilistically monotone” (see, e.g., [58, Proposition 8.6]), and from this
it follows that indeed it has a threshold for all non-trivial F and ε > 0. In
view of this, questions (R1 ) and (R2 ) ask to determine the threshold for
Gn(K3, ε) and, more generally, for Gn(F, ε) for general F .

Concerning the threshold for Gn(K3, ε), it follows from Theorem 2.1

that for every ε > 0 this threshold is at most p̂ < n−1/2+ε. However, a more
careful analysis of the proof presented in [43] yields O(n−1/2) as an upper
bound (see, e.g., [58, Section 8.2]). For the lower bound on the threshold,

we note that the expected number of triangles in G(n, p) for p = o(n−1/2)
is o(pn2). Hence by removing from G(n, p) one edge from every triangle,
we expect to be left with a triangle-free subgraph of G(n, p) containing
1− o(1) proportion of the edges of G(n, p). In fact, this argument can

be made precise, and it follows that p̂ = n−1/2 is a threshold for G(n, p) ∈
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Gn(K3, ε) for every ε > 0, which answers question (R1 ). (We remark that,
in particular, the threshold function p̂ is independent of ε).

Regarding question (R2 ), we note that the lower bound for the thresh-
old discussed above can be extended to arbitrary graphs and leads to the
definition of the 2-density m2(F ) of a graph F with at least one edge given
by

(2) m2(F ) = max{d2(F ′) : F ′ ⊆ F with e(F ′) ≥ 1},

where

d2(F
′) =

⎧⎪⎨⎪⎩
e(F ′)− 1

|V (F ′)| − 2
, if |V (F ′)| > 2,

1/2, if F ′ = K2.

We say a graph F is 2-balanced if d2(F ) = m2(F ) and it is strictly 2-balanced
if d2(F

′) < d2(F ) = m2(F ) for all subgraphs F ′ � F with at least one edge.

It follows from the definition of the 2-density that p = Ω(n−1/m2(F )) if,
and only if the expected numbers of copies of F or any of its subgraphs
in G(n, p) is at least of order Ω(pn2) – the order of the expected number
of edges in G(n, p). Similarly as above, one can deduce that for every

ε > 0 and every graph F with at least one edge, n−1/m2(F ) is a lower
bound for the threshold for Gn(F, ε). Moreover, Kohayakawa, �Luczak,
and Rödl [65, Conjecture 1(i )] conjectured that this heuristic gives the
right bound, and that a matching upper bound for the threshold can be
proved. Until recently this conjecture was only proved for cliques of size
at most six [65, 52, 48] and for cycles [56, 57]. In 2009 the conjecture was
confirmed independently by Conlon and Gowers [22] for strictly 2-balanced
graphs F and by Schacht [102] for all graphs F . This work yields the
following probabilistic version of the Erdős–Stone theorem for the random
graph G(n, p).

Theorem 2.2. For every graph F with δ(F ) ≥ 2 and every ε > 0 the

function p̂ = n−1/m2(F ) is a threshold for Gn(F, ε).

Next we discuss research addressing question (R3 ). Recall that every
graph G contains a t-partite subgraph with at least (1− 1/t)e(G) edges,
which is clearly F -free for every F with chromatic number t+ 1. On the
other hand, the 1-statement (see (1)) of Theorem 2.2 implies that a.a.s. the
F -free subgraph of G ∈ G(n, p) with the maximum number of edges has
at most (1− 1/t+ o(1))e(G) edges. The question that arises is whether
those two subgraphs of G(n, p), the maximum t-partite subgraph and the
maximum F -free subgraph, have similar structure. It was conjectured by
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Kohayakawa, �Luczak, and Rödl [65, Conjecture 1(ii )] that such a statement
is true as long as p is of the order of magnitude given in the 1-statement
of the threshold in Theorem 2.2. Conlon and Gowers [22] verified this
conjecture for strictly 2-balanced graphs F , and Samotij [100] adapted
and simplified the approach of Schacht [102] to obtain such a result for
all graphs F . This led to the following probabilistic version of the Erdős–
Simonovits stability theorem.

Theorem 2.3. For every ε > 0 and every graph F with χ(F ) = t+ 1 ≥ 3

there exist constants C and δ > 0 such that for p > Cn−1/m2(F ) the following
holds a.a.s. for G ∈ G(n, p). If H is an F -free subgraph of G satisfying

e(H) ≥ exG(F )− δpn2,

then H can be made t-partite by removing at most εpn2 edges from it.

We recall that Theorems 2.2 and 2.3 were conjectured (together with
Conjecture 3.6 stated in Section 3.2) in [65]. These conjectures played a
central rôle in the area. In particular, partial results towards these conjec-
tures were made by the authors of the conjecture and their collaborators [49,
66, 67, 68], by Gerke and Steger and their collaborators [48, 50, 51, 52, 54]
(see also the survey [53]), and by Szabó and Vu [109].

2.2. General Erdős–Nešetřil Problem

Before we continue with the discussion of extremal results for sparse ran-
dom graphs, we generalize the problem of Erdős and Nešetřil. Based on
Theorem 2.2, one now can prove the following generalization of the Erdős–
Nešetřil problem, which extends the results of [43] from forbidding triangles
to forbidding cliques of arbitrary fixed size.

Corollary 2.4. For every integer k ≥ 3 and ε ∈ (0, 1−π(Kk)) the following
holds:

(i ) there exists a Kk+1-free graph G such that

exG(Kk) ≤
(
π(Kk) + ε

)
e(G);

(ii ) for every fixed d > 0 there exists an n0 such that there is no graph
G on n ≥ n0 vertices with e(G) = d

(
n
2

)
having the properties from

part (i ).

While the first statement of Corollary 2.4 asserts the existence of aKk+1-
free graph with the property that every (π(Kk) + ε) proportion of its edges
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contains a Kk, the second statement asserts that such a graph must have
vanishing density.

In the proof of part (i ) we consider G(n, p) for p = Cn−1/m2(Kk). Ow-
ing to Theorem 2.2 we know that a.a.s. G ∈ G(n, p) satisfies exG(Kk) ≤
(π(Kk) + o(1))e(G). On the other hand, since n−1/m2(Kk) � n−1/m2(Kk+1)

for this choice of p, the number of copies of Kk+1 in G will be of order
o(pn2). Consequently, we may remove o(pn2) edges from G and the result-
ing graph isKk+1-free and satisfies the properties of part (i ) of Corollary 2.4.
In fact, one may check that the same proof works for all values of p with
Cn−1/m2(Kk) ≤ p ≤ cn−1/m2(Kk+1) for appropriate constants C and c > 0.
We give the details of this proof after the following remark.

Remark 2.5. One can show that statement (ii ) is best possible. Indeed,
given d = d(n) = o(1), let (Gm)m∈N be a sequence of m vertex graphs with
the properties of part (i ) and with density � = �(m) � d(m). Since d =
o(1), we can find infinitely many values for which d(n) ∼ �(m). For such an
m we “blow-up” Gm by replacing each vertex by an independent set of size
n/m and every edge by a complete bipartite graph with vertex classes of
size n/m. The resulting graph G has n vertices, density approximately d(n),
and it “inherits” the properties of Gm with respect to statement (i ).

Finally, we remark that in Section 4.5 we will generalize part (ii ) and

show that no relatively dense subgraph of G(n, p) for p � n−1/m2(Kk+1)

satisfies the properties of part (ii ) (see Theorem 4.10).

Proof of Corollary 2.4 part (i ). Part (i ) follows directly from Theo-
rem 2.2 combined with an alteration argument (similar to the one carried
out by Erdős in [31], see also [3, Section 3]).

Let ε > 0 and k ≥ 3 be given. Applying Theorem 2.2 for ε/2 and
F = Kk implies that there exists a constant C > 0 such that for p = p(n) =

Cn−1/m2(Kk) a.a.s. for G ∈ G(n, p) we have

(3) exG(Kk) ≤
(
π(Kk) +

ε

2

)
e(G).

Since k ≥ 3, we have

m2(Kk) =

(
k
2

)
− 1

k − 2
=

k + 1

2
≥ 2,

and thus also

p = Cn−
2

k+1 ≥ C√
n
.
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It follows that pn2 ≥ Cn3/2. Chebyshev’s inequality easily yields that a.a.s.

(4) e(G) ≥ 1

2
p

(
n

2

)
.

Finally, we note that the expected number of copies of Kk+1 in G is at most

p(
k+1
2 )nk+1 = C(k+1

2 )n ≤ ε

4
p

(
n

2

)
,

for sufficiently large n. Hence it follows from Markov’s inequality that, with
probability at least 1/2, the graph G contains at most (ε/2)p

(n
2

)
copies

of Kk+1. Consequently, for sufficiently large n there exists a graph G
containing at most (ε/2)p

(
n
2

)
copies of Kk+1 and for which (3) and (4)

also hold. Let G′ be the graph obtained from G by removing one edge from
every copy of Kk+1 in G. Obviously, the graph G′ is Kk+1-free,

e(G′) ≥ e(G)− ε

4
p

(
n

2

)
,

and owing to

(π(Kk) + ε)e(G′) > (π(Kk) + ε)e(G)− ε

4
p

(
n

2

)

=
(
π(Kk) +

ε

2

)
e(G) +

ε

2
e(G)− ε

4
p

(
n

2

)
(4)

≥
(
π(Kk) +

ε

2

)
e(G),

it follows from (3) that exG′(Kk) ≤ (π(Kk) + ε)e(G′), which concludes the
proof of assertion (i ) in Corollary 2.4.

Next we prove assertion (ii ). The proof follows the main ideas of [43,
Theorem 4].

Definition 2.6. For a graph G = (V,E) we call a partition V1 ·∪ . . . ·∪Vt = V
a t-cut. We denote by EG(V1, . . . , Vt) the edges of the t-cut, i.e., those edges
of G with its vertices in two different sets of the partition and we denote by
eG(V1, . . . , Vt) = |EG(V1, . . . , Vt)| the size of the t-cut. Moreover, we say a
t-cut is balanced, if |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1.
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A simple averaging argument shows that there always exists a balanced
t-cut of G of size at least (1− 1/t)e(G). The following lemma, which implies
assertion (ii ) of Corollary 2.4, shows that if on the other hand all balanced
t-cuts have size at most (1− 1/t+ o(1))e(G), then G contains cliques of
arbitrary size.

Lemma 2.7. For all integers s, t ≥ 2 and every d > 0 there exist ε > 0 and
n0 such that the following holds. Let G = (V,E) be a graph on |V | = n ≥ n0

vertices, with |E| = d
(
n
2

)
edges, and with the property that every balanced

t-cut has size at most (1− 1/t+ ε)d
(
n
2

)
. Then G contains a copy of Ks.

Before we prove Lemma 2.7, we deduce assertion (ii ) of Corollary 2.4
from it.

Proof of Corollary 2.4 part (ii ). Suppose that part (ii ) of Corollary 2.4
fails to be true. We assume that there is a Kk+1-free graph G on n vertices
with exn(Kk) ≤ (π(Kk) + ε)e(G) and with d

(
n
2

)
edges for some constant

d > 0. We apply Lemma 2.7 with s = k + 1 and t = k − 1. Since the edges
of every (k − 1)-cut span no copy of Kk the assumption of Corollary 2.4
part (ii ) guarantees that the size of every (k− 1)-cut in G is bounded from
above by

(π(Kk) + ε)e(G) =

(
1− 1

k − 1
+ ε

)
d

(
n

2

)
,

and it follows from Lemma 2.7 that G contains a Kk+1, which contradicts
the assumption on G.

The proof of Lemma 2.7 draws on some ideas from the theory of quasi-
random graphs [20]. In particular, it is based on the following well known
fact (see, e.g., [94, Theorem 2]).

Lemma 2.8. For all integers s, t ≥ 2 and every d > 0 there exist δ >
0 and n0 such that the following holds. Let G = (V,E) be a graph on

|V | = n ≥ n0 vertices such that eG(U) = (d± δ)
(�n/t�

2

)
for every U ⊆ V with

|U | = �n/t�. Then G contains a copy of Ks.

Proof of Lemma 2.7. Let integers s and t ≥ 2 be fixed. Suppose for a
contradiction that the lemma fails to be true with this choice of s and t.
This means that there is a density d > 0 for which the statement fails, so
we fix “the largest such d”. More precisely, let d > 0 be chosen in such a
way that the statement fails for s, t, and d, but it holds for s, t and any
d′ > d provided ε′ > 0 is sufficiently small and n is sufficiently large. We
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remark that such a choice is possible, since for fixed s and t the validity of
the statement for d implies it for every d′ ≥ d.

Our choice of δ′ will be given by Lemma 2.8. First let δ > 0 be the
constant guaranteed by Lemma 2.8 for the already fixed s, t, and d and set

(5) δ′ =
δ

2(t− 1)
and ε = min

{
δ

4t2
,
ε′(d+ δ′)

4t2

}
,

where ε′ > 0 is given by Lemma 2.7 applied with d′ ≥ d+ δ′ (which holds
by our assumption). Finally, let n0 be sufficiently large (for example, so
that we can appeal to Lemma 2.8 with s, t, d, and δ and to the validity of
Lemma 2.7 for d′ ≥ d+ δ′ and ε′ > 0). Let G = (V,E) with |V | = n ≥ n0 be
a counterexample for those choices. Without loss of generality we assume
that t2 divides n.

Since G contains no copy ofKs, Lemma 2.8 implies that there exists a set

V1 of size n/t such that either eG(V1) < (d− δ)
(n/t

2

)
or eG(V1) > (d+ δ)

(n/t
2

)
.

Fix some balanced t-cut V1 ·∪ . . . ·∪Vt = V which contains V1. We will infer
that G induces a denser graph on one of the sets of the partition. This is

obvious if eG(V1) > (d+ δ)
(
n/t
2

)
. However, if eG(V1) < (d− δ)

(
n/t
2

)
, then we

will show that there also is a partition class that induces a denser graph.
In fact, using the assumption on G for the sizes of the balanced t-cuts, an
averaging argument shows that there exists some i = 2, . . . , t such that

eG(Vi) ≥
e(G)− eG(V1, . . . , Vt)− eG(V1)

t− 1

=
d
(
n
2

)
−

(
1− 1

t + ε
)
d
(
n
2

)
− (d− δ)

(
n/t
2

)
t− 1

≥ (1/t− ε)d
(
n
2

)
− d

(
n/t
2

)
+ δ

(
n/t
2

)
t− 1

≥ (t− 1− 2εt2)d
(
n/t
2

)
+ δ

(
n/t
2

)
t− 1

(5)

≥ (d+ δ′)
(
n/t

2

)
.

Summarizing, we can fix some i ∈ [t] such that for W = Vi we have eG(W ) =

d′
(
n/t
2

)
for some d′ ≥ d+ δ′.
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Since G (and hence also the induced subgraph G[W ]) contains no copy of
Ks, by our assumptions G[W ] fails to satisfy the assumptions of Lemma 2.7.
Consequently, there exists a balanced t-cut W1 ·∪ . . . ·∪Wt = W with

(6) eG[W ](W1, . . . ,Wt) >

(
1− 1

t
+ ε′

)
d′
(
n/t

2

)
=

(
1− 1

t
+ ε′

)
eG(W ).

We will extend this balanced t-cut of G[W ] to a balanced t-cut of G with
size bigger than

(7)

(
1− 1

t
+ ε

)
d

(
n

2

)
,

which will then contradict the assumptions on G.

We consider a random balanced t-cut U1 ·∪ . . . ·∪Ut of U = V \W . A stan-
dard application of Chernoff’s inequality for the hypergeometric distribution
(see, e.g., [58, Theorem 2.10]) shows that with probability close to one, we
have

(8) eG(Wi, Uj) =

(
1

t
± o(1)

)
eG(Wi, U) for all i, j ∈ [t]

and

(9) eG(U1, . . . , Ut) =

(
1− 1

t
± o(1)

)
eG(U).

Let such a t-cut be fixed. Since both t-cuts were balanced, the t-cut
V ′1 ·∪ . . . ·∪V ′t of V given by V ′i = Wi ·∪Ui is also balanced. We estimate the
size of this cut as follows:
(10)

eG(V
′
1 , . . . , V

′
t ) = eG(W1, . . . ,Wt) +

t∑
i=1

∑
j =i

eG(Wi, Uj) + eG(U1, . . . , Ut).

By (8), we have

t∑
i=1

∑
j =i

eG(Wi, Uj) =
t∑

i=1

∑
j =i

(
1

t
± o(1)

)
eG(Wi, U)

=

(
t− 1

t
± o(1)

) t∑
i=1

eG(Wi, U)

=

(
1− 1

t
± o(1)

)
eG(W,U)
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and combined with (6) and (9), from (10) we get

eG(V
′
1 , . . . , V

′
t ) ≥

(
1− 1

t
− o(1)

)
e(G) + ε′eG(W ).

Hence, we obtain (7) from

ε′eG(W ) = ε′d′
(
n/t

2

)
≥ ε′d′

2t2

(
n

2

)
(5)

≥ 2ε

(
n

2

)
.

2.3. Turán’s Theorem for Random Graphs

Turán’s theorem not only determines the extremal function exn(Kt+1) pre-
cisely, but also asserts that the complete balanced t-partite graph on n
vertices is the unique extremal graph. The extremal results for G(n, p) dis-
cussed in Section 2.1 do not fully address this question (see also (R4 )). For
example, Theorem 2.2 applied for F = Kt+1 gives no information about the
structure of extremal Kt+1-free subgraphs of G(n, p). In this section, we
discuss results motivated by this question.

For an integer t ≥ 2 and a graph G let colG(t) be the maximum number
of edges of a t-colorable subgraph of G, i.e., the size of the maximum t-
cut in G. For simplicity we write coln(t) for colKn(t). Turán’s theorem
establishes

exn(Kt+1) = coln(t).

Babai, Simonovits, and Spencer [4] were the first to investigate the extent
to which such an identity can be extended to random graphs. In particular,
those authors showed that it holds for G(n, 1/2) in the case of triangles
(t = 2), by showing that a.a.s. G ∈ G(n, 1/2) satisfies

(11) exG(K3) = colG(2).

Answering a question from [4], it was shown by Brightwell, Panagiotou, and
Steger [17] that p = 1/2 can be replaced by p = n−η for some η > 0. More-
over, their proof extends to cliques of arbitrary fixed size and establishes
that the identity exG(Kt+1) = colG(t) holds a.a.s. for G ∈ G(n, p) as long
as p > n−ηt for some sufficiently small ηt > 0. Those authors conjectured
that this result can be extended to smaller values of p. Note that (11)
holds trivially for very small p, when a.a.s. the random graph itself is bi-
partite. However, here and below we shall exclude this range of p. It was
noted in [17] that (with the exception of small p) in order for (11) to hold,
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p > c(log n/n)1/2 is a necessary condition for some sufficiently small c > 0.

The reason for this is that for p < c(logn/n)1/2, cycles of length five appear
in G(n, p) which have the additional property that none of its edges is con-
tained in a triangle. Recently, DeMarco and Kahn [26] obtained a matching
upper bound by proving the following probabilistic version of Mantel’s the-
orem (Theorem 1.1 for t = 2).

Theorem 2.9. There exists a constant C > 0 such that for p >
C(logn/n)1/2 a.a.s. G ∈ G(n, p) satisfies exG(K3) = colG(2). Moreover, ev-
ery triangle-free subgraph of G with the maximum number of edges is bi-
partite.

It would be interesting to generalize this results to larger cliques. It
seems plausible that a necessary condition on p for such a generalization
should come from the requirement that all edges of G(n, p) are contained
in a cliques of size t+ 1. In particular, the edges not contained in a copy
of Kt+1 should not form a high chromatic subgraph. For this we require
on average Ω(log n) such cliques per edge, instead of a constant number of
cliques per edge, which gave rise to the 2-density. For Kt+1 we get

p(
t+1
2 )nt+1 = Θ(pn2 log n).

Solving this for p leads to the following conjecture, which was stated by
DeMarco and Kahn [26].

Conjecture 2.10. For every integer t ≥ 2 there exists a C > 0 such that

for p ≥ C((logn)
1

t−1 /n)
2

t+2 a.a.s. G ∈ G(n, p) satisfies exG(Kt+1) = colG(t).

It would be also of interest to prove similar results for graphs F contain-
ing a color-critical edge. Partial results in this direction can be found in [4]
(see also [17]).

2.4. Triangle-free Graphs with Given Number of Vertices and
Edges

In this section we discuss extensions of Theorems 1.4 and 1.5. Most of
the work studied Forbn,M (K3), the set of triangle-free graphs with n ver-
tices and M edges. The first result in this direction is due to Prömel and
Steger [88], who proved a strengthening of the Erdős–Kleitman–Rothschild

theorem (Theorem 1.4 for t = 2). It was shown that for M > Cn7/4 log n,
almost every graph H ∈ Forbn,M (K3) is bipartite. Similarly to the case
of Turán’s theorem for random graphs discussed in the last section, such
an assertion holds also for very small values of M , but not in the medium
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range (see Theorem 2.11 below). It was also noted in [88] that the state-

ment fails to be true if M = cn3/2 for some c > 0. The gap between cn3/2

and Cn7/4 logn was closed by Osthus, Prömel, and Taraz [86] (see also Ste-
ger [108] for a bit weaker result). In particular, the following result was
shown in [86]. For positive integers n, M , and t, we denote by Coln,M (t)
the set of t-colorable graphs with n vertices and M edges.

Theorem 2.11. For every ε > 0 the following holds

lim
n→∞

|Forbn,M (K3)|
|Coln,M (2)| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if M = M(n) = o(n),

0, if n/2 ≤ M = M(n) ≤ (1− ε)

√
3

4
n3/2

√
lnn,

1, if M = M(n) ≥ (1 + ε)

√
3

4
n3/2

√
lnn.

Note that similarly to Theorem 2.9 the “critical window” in Theo-
rem 2.11 concerns graphs with Θ(n3/2

√
log n) edges. That might not be a

coincidence, since having the property that every pair is covered by a path
of length two seems to be a necessary condition for both problems. Gen-
eralizing this to the property that adding an edge for any pair of vertices
would close a copy of Kt+1 suggests a joint generalization of the Kolaitis–
Prömel–Rothschild theorem, Theorem 1.4, and of Theorem 2.11, which was
recently obtained by Balogh, Morris, Samotij, and Warnke [9].

A closely related result was proved by �Luczak. In [78] he studied slightly

sparser triangle-free graphs and showed that for M = M(n) � n3/2, almost
every graph H ∈ Forbn,M (K3) is “close” to a bipartite graphs, i.e., it can
be made bipartite by removing at most o(M) edges. In fact, he also proved
that this result generalizes for larger cliques, provided Conjecture 3.6 (stated
below), which we discuss in the next section, holds. Recently Balogh,
Morris, and Samotij [8] and Saxton and Thomason [101] developed an
approach which, among other results, allowed them to prove Conjecture 3.6
and it could be used to verify �Luczak’s statement directly.

Theorem 2.12. For every δ > 0 and t ≥ 2 there exists a C > 0 and n0

such that for M = M(n) ≥ Cn2−1/m2(Kt+1) almost every graph H drawn
uniformly at random from Forbn,M (Kt+1) can be made t-colorable by re-
moving at most δM edges.

It is known that, up to the constant C, this result is best possible, and
we also remark that the smallest M = M(n) in Theorem 2.12 coincides in
order of magnitude with the expected number of edges in G(n, p) around
the thresholds from Theorem 2.2.
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3. Regularity Method

One of the most important tools in extremal graph theory is Szemerédi’s
regularity lemma [111], and for a thorough discussion of its history and
many of its applications we refer to [72, 73]. In fact, there were some
applications of this lemma addressing extremal and Ramsey-type questions
of random graphs (see, e.g., [4, 97]). However, for the systematic study of
extremal problems of G(n, p) for p = o(1), a variant of the lemma discovered
independently by Kohayakawa [61] and Rödl (unpublished) seemed to be
an appropriate tool. We begin the discussion with Szemerédi’s regularity
lemma.

3.1. Szemerédi’s Regularity Lemma

We first introduce the necessary definitions. Let H = (V,E) be a graph, and
let X, Y ⊆ V be a pair of non-empty and disjoint subsets of the vertices. We
denote by eH(X,Y ) the number of edges in the bipartite subgraph induced
by X and Y , i.e.,

eH(X,Y ) =
∣∣{{x, y} ∈ E : x ∈ X and y ∈ Y

}∣∣ .
We also define the density of the pair (X,Y ) by setting

dH(X,Y ) =
eH(X,Y )

|X| |Y | .

Moreover, we say a the pair (X,Y ) is ε-regular for some ε > 0, if

|dH(X,Y )− dH(X ′, Y ′)| < ε

for all subsets X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |. With
this notation we can formulate Szemerédi’s regularity lemma from [111].

Theorem 3.1 (Regularity lemma). For every ε > 0 and t0 ∈ N there exist
integers T0 and n0 such that every graph H = (V,E) with |V | = n ≥ n0

vertices admits a partition V = V1 ·∪ . . . ·∪Vt satisfying

(i ) t0 ≤ t ≤ T0,
(ii ) |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1, and
(iii ) all but at most εt2 pairs (Vi, Vj) with i �= j are ε-regular.

Note that most applications of Theorem 3.1 involve dense graphs (i.e.,
n-vertex graphs with Ω(n2) edges). For each graph the lemma allows us to
decompose the graph into bipartite “blocks,” the majority of which have a
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uniform edge distribution. If such a graph has only o(n2) edges, it may not
provide such control, since all edges may be contained in exceptional pairs
(see property (iii ) in Theorem 3.1). Moreover, even for ε-regular pairs, we
do not gain any information if the density of that pair is o(1).

The following well known fact is used in many applications of the reg-
ularity lemma (see, e.g., [73, 98]). For future reference, we state both the
embedding lemma and the counting lemma, even though the latter clearly
implies the former.

Fact 3.2 (Embedding and counting lemma for dense graphs). For every
graph F with V (F ) = [] and every d > 0, there exist ε > 0 and m0 such
that the following holds.

Let H = (V1 ·∪ . . . ·∪V�, EH) be an -partite graph with |V1| = · · · = |V�| =
m ≥ m0 and with the property that for every edge {i, j} ∈ E(F ) the pair
(Vi, Vj) is ε-regular in H with density dH(Vi, Vj) ≥ d.

Embedding Lemma: Then H contains a partite copy of F , i.e., there
exists a graph homomorphism ϕ : F → H with ϕ(i) ∈ Vi.

Counting Lemma: The number of partite copies satisfies

(12)
∣∣{ϕ : F → H : ϕ is a graph homomorphism with ϕ(i) ∈ Vi

}∣∣
= (1± f(ε))

∏
{i,j}∈E(F )

d(Vi, Vj)

�∏
i=1

|Vi|,

where f(ε) → 0 as ε → 0.

As mentioned, the counting lemma implies the embedding lemma from
Fact 3.2. However, for quite a few applications the existence of one copy is
sufficient.

3.2. Sparse Regularity Lemma for Subgraphs of Random Graphs

In this section we state a modified version of Szemerédi’s regularity lemma,
which allows applications to sparse graphs. Though more general lemmas
are known, we restrict ourselves to a version which applies a.a.s. to all
subgraphs of a random graph G ∈ G(n, p). For that we first strengthen the
notion of an ε-regular pair.

Definition 3.3 ((ε, p)-regular pair). Let ε > 0, let p ∈ (0, 1], let H = (V,E)
be a graph, and let X, Y ⊆ V be non-empty and disjoint. We say the pair
(X,Y ) is (ε, p)-regular if

|dH(X,Y )− dH(X ′, Y ′)| < εp

for all subsets X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |.
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Note that ε-regularity coincides with the case p = 1 in the definition
above. However, for p = p(n) = o(1) and graphs of density Ω(p) the notion
of (ε, p)-regularity gives additional control and addresses the second concern
discussed after Theorem 3.1. The sparse regularity lemma for subgraphs of
G(n, p) stated below asserts that, for those graphs ε-regularity in Theo-
rem 3.1 can be replaced by (ε, p)-regularity. In fact, besides the restriction
to subgraphs of G(n, p), this is the only difference between the following
version of the sparse regularity lemma from [61] and Theorem 3.1.

Theorem 3.4 (Sparse regularity lemma for subgraphs of G(n, p)). For
every ε > 0, t0 ∈ N, and every function p = p(n) � 1/n there exist inte-
gers T0 such that a.a.s. G ∈ G(n, p) has the following property. Every
subgraph graph H = (V,E) of G with |V | = n vertices admits a partition
V = V1 ·∪ . . . ·∪Vt satisfying

(i ) t0 ≤ t ≤ T0,
(ii ) |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1, and
(iii ) all but at most εt2 pairs (Vi, Vj) with i �= j are (ε, p)-regular.

In order to make Theorem 3.4 applicable in a similar way to Szemerédi’s
regularity lemma, one needs extensions of Fact 3.2. Theorem 3.4 can be
proved like the original regularity lemma with fairly straightforward ad-
justments. To prove a corresponding form of Fact 3.2 turns out to be a
challenging problem, which was resolved only recently in [8, 23, 101]. In
particular, in the work of Balogh, Morris, and Samotij [8] and of Saxton
and Thomason [101], a conjecture of Kohayakawa, �Luczak, and Rödl [65]
was addressed. This conjecture implies a version of the embedding lemma
of Fact 3.2 appropriate for applications of Theorem 3.4. In [23] only such
a version was derived (see Theorem 3.8 below). For the formulation of the
conjecture from [65], we require some more notation.

Definition 3.5. Let ε > 0, p ∈ (0, 1], d > 0 and let , m, M be integers. Let
F be a graph with vertex set V (F ) = []. We denote by G(F,m,M, ε, p, d)
the set of all -partite graphs H = (V1 ·∪ . . . ·∪V�, EH) with

(i ) |V1| = · · · = |V�| = m,
(ii ) eH(Vi, Vj) = M ≥ dpm2 for all {i, j} ∈ E(F ), and
(iii ) (Vi, Vj) is (ε, p)-regular for all {i, j} ∈ E(F ).

We denote by B(F,m,M, ε, p, d) the set of all those graphs from G(F,m,M,
ε, p, d), which contain no (partite) copy of F , i.e.,

B(F,m,M, ε, p, d) = {H ∈ G(F,m,M, ε, p, d) : there is no

graph homomorphism ϕ : F → H with ϕ(i) ∈ Vi}.
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The first part of Fact 3.2 asserts that for p = 1, sufficiently small ε =
ε(F, d) > 0 and sufficiently large m = m(F, d), the set B(F,m,M, ε, p, d)
is empty. However, if p = o(1) then B(F,m,M, ε, p, d) is not empty for
graphs F containing a cycle. In other words, if p = o(1), then the regularity
condition does not ensure the occurrences of copies of F . This prohibits
a straightforward extension of Fact 3.2 for the sparse regularity lemma.
For example, as noted earlier for p � n−1/m2(F ) a.a.s. the random graph
G(n, p) contains only o(pn2) copies of some subgraph F ′ ⊆ F . Therefore,
a.a.s. G(n, p) contains an F -free subgraph with (p− o(1))

(
n
2

)
edges. This

can be used to construct many F -free graphs H ∈ G(F,m,M, ε, p, d) for
any p = o(1) and appropriate choices of m, M , and d. (For details see the

discussion below Conjecture 3.6.) On the other hand, for p ≥ Cm−1/m2(F )

for sufficiently large C > 0, it was conjectured by Kohayakawa, �Luczak, and
Rödl in [65] that B(F,m,M, ε, d) contains only “very few” graphs.

Conjecture 3.6 (Kohayakawa, �Luczak & Rödl 1997). For every α > 0,
d > 0, and every graph F with vertex set V (F ) = [], there are ε > 0, C > 0

and m0 such that for every m ≥ m0, p ≥ Cm−1/m2(F ) and M ≥ dpm2 we
have

(13) |B(F,m,M, ε, p, d)| ≤ αM |G(F,m,M, ε, p, d)|.

Next we show that the lower bound on p in Conjecture 3.6 is necessary.
For this, let p = δm−1/m2(F ) for some δ tending to 0 with m. We consider

the family of graphs G̃(F,m, p, d) satisfying only properties (i ) and (ii ) of
Definition 3.5, with M = dpm2. It is not hard to show that for every ε > 0

almost every H ∈ G̃(F,m,M, p, d) is also contained in G(F,m,M, ε, p, d),
i.e.,

(14) |G(F,m,M, ε, p, d)| ≥ (1− o(1))|G̃(F,m, p, d)|.

Moreover, let F ′ ⊆ F be the subgraph with d2(F
′) = m2(F

′) (see (2)), and
let e and v denote its number of edges and vertices, respectively. The
expected number of partite copies of F ′ in a graph H chosen uniformly at

random from G̃(F,m, p, d) is

O((dp)emv) = O((δd)epm2) = o(pm2).

Hence, all but o(|G̃(F,m, p, d)|) graphs H ∈ G̃(F,m, p, d) have the property
that, only o(pm2) edges ofH are contained in a copy of F ′, and consequently
also in a copy of F . Delete from each such H ∈ G(F,m,M, ε, p, d) the edges
contained in copies of F and possibly a few more from each pair (Vi, Vj), so
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that the resulting graph has precisely M ′ = d′pm2 = (1− o(1)M edges for
each such pair. This way we obtain a graph H ′ ∈ G(F,m,M ′, ε′, p, d′) with
ε′ = ε+ o(1), which is F -free, i.e., H ′ is contained in B(F,m,M ′, ε′, p, d′).
Consequently, we have

|B(F,m,M ′, ε′, p, d′)| ≥ (1− o(1))
|G̃(F,m, p, d)|(

M
o(M)

)e(F )

= (1− o(1))

( (
m2

M

)(
M

o(M)

))e(F )

≥ (1− o(1))M
′
(
m2

M ′

)e(F )

= (1− o(1))M
′ |G̃(F,m, p, d′)|

≥ (1− o(1))M
′ |G(F,m,M ′, ε′, p, d′)|,

which shows that (13) fails for p = δn−1/m2(F ) for sufficiently small δ > 0.

3.3. Sparse Embedding and Counting Lemma

Conjecture 3.6 is obvious, if F is a matching. For all other graphs F , we have
m2(F ) ≥ 1, and the conjecture holds trivially for forests. More interestingly,
the conjecture was shown for cliques on at most six vertices [51, 52, 64] and
(with an additional technical assumption) for cycles [62] (see also [46] for
an earlier related results for F = C4).

Recently Conjecture 3.6 was verified by Balogh, Morris, and Samotij [8]
for 2-balanced graphs F and by Saxton and Thomason [101] for all graphs F .

Theorem 3.7. Conjecture 3.6 holds for all graphs F .

One of the main motivations for the conjectured bound on the cardinality
of B(F,m,M,ε, p, d) in (13) was that it easily implies that such “bad” graphs
do not appear as subgraph of the random graph G(n, p). In particular, we
obtain an appropriate generalization of the embedding lemma from Fact 3.2,
for subgraphs of G(n, p) (see Theorem 3.8). This result was also shown
by Conlon, Gowers, Samotij, and Schacht [23] directly (without proving
Conjecture 3.6).
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Theorem 3.8 (Embedding lemma for subgraphs of random graphs). For
every graph F with vertex set V (F ) = [] and every d > 0 there exists ε > 0

such that for every η > 0 there exists C > 0 such that for p > Cn−1/m2(F )

a.a.s. G ∈ G(n, p) satisfies the following.

If H = (V1 ·∪ . . . ·∪V�, EH) is an -partite (not necessarily induced) sub-
graph of G with |V1| = · · · = |V�| ≥ ηn and with the property that for ev-
ery edge {i, j} ∈ E(F ) the pair (Vi, Vj) in H is (ε, p)-regular and satisfies
dH(Vi, Vj) ≥ dp, then H contains a partite copy of F , i.e., there exists a
graph homomorphism ϕ : F → H with ϕ(i) ∈ Vi.

Proof. We deduce Theorem 3.8 from Theorem 3.7. In fact, it will follow by
a standard first moment argument. Since the result is trivial for matchings
F we may assume that m2(F ) ≥ 1.

For given F and d we set

α =

(
d

2e

)e(F )

,

where e = 2.7182 . . . is the base of the natural logarithm. Let ε′ > 0 be
given by the statement of Conjecture 3.6 applied with F , d, and α and
set ε = ε′/2. Following the quantification of Theorem 3.8, we are given η.
Finally, let C ′ > 0 be given by Conjecture 3.6 and set

b = dη2 and C = max

{
C ′

η1/m2(F )
,


b

}
.

Consider a graph H ′ ⊆ G ∈ G(n, p) satisfying the assumptions of Theo-
rem 3.8. Let m ≥ ηn be the size of the vertex classes, V1, . . . , V�, and set
M = dpm2. A straightforward application of Chernoff’s inequality asserts
that H ′ contains a spanning subgraph H such that, for every {i, j} ∈ E(F ),
the pair (Vi, Vj) is (2ε, p)-regular, and eH(Vi, Vj) = M . In other words,
H ∈ G(F,m,M, 2ε, p, d) and it suffices to show that a.a.s. G ∈ G(n, p) con-
tains no graph H from B(F,m,M, 2ε, p, d).

For that we consider the expected number of subgraphs in G, which
belong to B(F,m,M,2ε, p, d) for some m ≥ ηn. For m ≥ ηn fixed, our choice
of constants allows us to appeal to the conclusion of Theorem 3.7, and we
obtain the following upper bound for the expected number of such graphs:

pMe(F ) · |B(F,m,M, 2ε, p, d)| ·
(
n

m

)�
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≤ pMe(F ) · αM |G(F,m,M, 2ε, p, d)| ·
(
n

m

)�

≤ pMe(F )

(
d

2e

)Me(F ) (m2

M

)e(F )

2�n

≤
(
p · d

2e
· e

pd

)Me(F )

2�n

= 2�n−Me(F )

≤ 2−bpn
2
,

where we used for the last estimate M ≥ dp(ηn)2, e(F ) ≥ 2, and b = dη2

combined with n ≤ bpn2 (which follows from m2(F ) ≥ 1 and C ≥ /b).

Summing the obtained bound over all possible values of m shows that

the expected number of bad graphs in G is at most n2−bpn2
, and hence,

Markov’s inequality implies that a.a.s. G ∈ G(n, p) contains no such graph.

Also the counting lemma of Fact 3.2 was partly extended to subgraphs
in G(n, p) in [23]. We state these results below.

Theorem 3.9 (Counting lemma for subgraphs of random graphs). For
every graph F with vertex set V (F ) = [] and every d > 0 there exist ε > 0
and ξ > 0 such that for every η > 0 there exists C > 0 such that for p >
Cn−1/m2(F ) a.a.s. G ∈ G(n, p) satisfies the following holds.

Let H = (V1 ·∪ . . . ·∪V�,EH) be an -partite (not necessarily induced) sub-
graph of G with |V1| = · · · = |V�| ≥ ηn and with the property that for ev-
ery edge {i, j} ∈ E(F ) the pair (Vi, Vj) in H is (ε, p)-regular with density
dH(Vi, Vj) ≥ dp.

(i ) Then the number of partite copies of F in H is at least

(15) ξpe(F )
�∏

i=1

|Vi|.

(ii ) If in addition F is strictly 2-balanced, then the number of partite
copies of F in H satisfies

(16) (1± f(ε))pe(F )
∏

{i,j}∈E(F )

d(Vi, Vj)

�∏
i=1

|Vi|,

where f(ε) → 0 as ε → 0.
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Let us briefly compare Theorems 3.7–3.9. Theorem 3.7, which was
proved in [101], gives an affirmative answer to Conjecture 3.6 for all
graphs F , and as we showed above, it implies Theorem 3.8. Also part (i )
of Theorem 3.9 is a stronger version of Theorem 3.8. While Theorem 3.8
ensures only one copy of the given graph F in an appropriate (ε, p)-regular
environment, part (i ) of Theorem 3.9 guarantees a constant fraction of
the “expected number” of copies of F . For strictly 2-balanced graphs F ,
part (ii ) of Theorem 3.9 guarantees the expected number of copies of F ,
which can be viewed as the generalization of the counting lemma of Fact 3.2
for such graphs F .

Although Theorem 3.8 is the weakest result in this direction, it turns
out to be sufficient for many natural applications of the regularity lemma or
subgraphs of sparse random graphs (Theorem 3.4). For example, it allows
new and conceptually simple proofs of Theorems 2.2 and 2.3 (see, e.g.,
Section 4.2 for such a proof of Theorem 2.3).

However, there are a few applications, where the full strength of The-
orem 3.7 was needed. For example, following the proof from [62] (see
also [82]), one can use the positive resolution of Conjecture 3.6 to prove
the 1-statement of the threshold for the asymmetric Ramsey properties of
random graphs (see Section 4.1), but Theorems 3.8 and 3.9 seem to be
insufficient for this application. In Section 4 we will also mention some
applications, which require the quantitative estimates of Theorem 3.9 (see
Section 4.3 and 4.4).

Finally, we remark that G(n, p) has the properties of Theorem 3.8 and

of part (i ) of Theorem 3.9 with probability 1− 2−Ω(pn2), while part (ii )
of Theorem 3.9 holds with probability at least 1− n−k for any constant
k and sufficiently large n (see [23]). Also we note that, due to the upper
bound on the number of copies of F given in part (ii ) of Theorem 3.9, an

error probability of the form 2−Ω(pn2) can not hold. This is because, for
o(1) = p � 1/n, the upper tail for the number of copies of a graph F (with
at least as many edges as vertices) in G(n, p) fails to have such a sharp
concentration. In fact, the probability that G(n, p) contains a clique of size

2pn is at least p(
2pn
2 ) = 2−O(p2 log(1/p)n2) � 2−Ω(pn2), and such a clique gives

rise to (2pn)|V (F )| > 2pe(F )n|V (F )| copies of F .
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4. Applications of the Regularity Method for Random

Graphs

In this section we show some examples how the regularity lemma and its
counting and embedding lemmas for subgraphs of random graphs can be
applied.

In Section 4.1 we briefly review thresholds for asymmetric Ramsey prop-
erties of random graphs. In particular, Theorem 3.7 can be used to estab-
lish the 1-statement for such properties. We remark that, even though this
is a statement about G(n, p), in the proof suggested by Kohayakawa and
Kreuter [62] one applies the sparse regularity lemma to an auxiliary sub-
graph of G(n, p) with density o(p). As a result Theorems 3.8 and 3.9 cannot
be applied anymore and an application of Theorem 3.7 is pivotal here.

In Section 4.2, we transfer the Erdős–Simonovits theorem (Theorem 1.3)
to subgraphs of random graphs, i.e., we deduce Theorem 2.3. The proof
given here is based on the sparse regularity lemma, and Theorem 3.8 suffices
for this application. It also utilizes the Erdős–Simonovits stability theorem,
which will be applied to the so-called reduced graph.

In Section 4.3 we discuss another application and extend the removal
lemma (see Theorem 4.3 for the special case of triangles). The standard
proof of the removal lemma is based on Szemerédi’s regularity lemma and
the counting lemma of Fact 3.2. In fact, the embedding lemma seems not be
sufficient for such a proof. The probabilistic version of the removal lemma
for subgraphs of random graphs, Theorem 4.4, can be obtained by following
the lines of the standard proof, where Szemerédi’s regularity lemma and
the counting lemma of Fact 3.2 are replaced by the sparse regularity lemma
(Theorem 3.4) and part (i ) of Theorem 3.9.

In Section 4.4 we state the recent clique density theorem of Reiher [93]
(see Theorem 4.5 below) and its probabilistic version for random graphs. In
the proof of the probabilistic version the “right” counting lemma (part (ii )
of Theorem 3.9), giving the expected number of copies of cliques in an
appropriate regular environment is an essential tool. Moreover, the clique
density theorem itself will be applied to the weighted reduced graph.

Finally in Section 4.5 we briefly discuss some connection between the
theory of quasi-random graphs and the regularity lemma. In particular, we
will mention a generalization of a result of Simonovits and Sós [107] for sub-
graphs of random graphs and a strengthening of part (ii ) of Corollary 2.4.
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4.1. Ramsey Properties of Random Graphs

Ramsey theory is another important field in discrete mathematics, which
was influenced and shaped by Paul Erdős. His seminal work with Szek-
eres [41] laid the ground for a lot of the research in Ramsey theory. For
example, Graham, Spencer, and Rothschild [55, page 26] stated that, “It is
difficult to overestimate the effect of this paper.”

For an integer r ≥ 2 and graphs F1, . . . , Fr, we denote by Rn(F1, . . . , Fr)
the set of all n-vertex graphs G with the Ramsey property, i.e., the n-
vertex graphs G with the property that for every r-coloring of the edges of
G with colors 1, . . . , r there exists a color s such that G contains a copy
of Fs with all edges colored with color s. Ramsey’s theorem [89] implies
that Rn(F1, . . . , Fr) is not empty for any r and all graphs F1, . . . , Fr for
sufficiently large n.

While probabilistic techniques in Ramsey theory were introduced by
Erdős [29] in 1947, the investigation of Ramsey properties of the ran-
dom graph G(n, p) was initiated only in early 90’s by �Luczak, Ruciński,
and Voigt [80]. In particular, one was interested in the threshold of
Rn(F1, . . . , Fr) for the symmetric case, i.e., F1 = · · · = Fr = F , for which
we use the short hand notation Rn(F ; r). This question was addressed by

Rödl and Ruciński [95, 96, 97]. There it was shown that n−1/m2(F ) is the
threshold for Rn(F ; r) for all graphs F containing a cycle and all integers
r ≥ 2. Note that the threshold is independent of the number of colors r.
The proof of the 1-statement was based on an application of Szemerédi’s
regularity lemma (Theorem 3.1) for dense graphs, even though the result
appeals to sparse random graphs. Based on the recent embedding lemma
for subgraphs of random graphs (Theorem 3.8) and a standard application
of the sparse regularity lemma (Theorem 3.4) a conceptually simpler proof
is now possible.

Below we discuss the asymmetric Ramsey properties, i.e., the case when
not all Fi are the same graph. Here we restrict ourselves the the two-color
case. Thresholds for asymmetric Ramsey properties involving cycles were
obtained by Kohayakawa and Kreuter [62]. Furthermore, these authors put
forward a conjecture for the threshold of Rn(F1, F2) for graphs F1 and F2

containing a cycle.

Conjecture 4.1. Let F1 and F2 be graphs containing a cycle and m2(F1) ≤
m2(F2). Then p̂ = n−1/m2(F1,F2) is a threshold for Rn(F1, F2), where

m2(F1, F2) = max

{
e(F ′)

|V (F ′)| − 2 + 1/m2(F1)
: F ′ ⊆ F2 and e(F ′) ≥ 1

}
.
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There is an intuition behind the definition of m2(F1, F2), which has some
analogy to the definition of m2(F ) in (2). One can first observe that

m2(F, F ) = m2(F ) and m2(F1) ≤ m2(F1, F2) ≤ m2(F2).

Moreover, for p ≥ n−1/m2(F1,F2) the expected number of copies of F2 (and all
its subgraphs) in G(n, p) is of the same order of magnitude as the expected

number of edges G(n, n−1/m2(F1)). Assuming that there is a two-coloring
of G(n, p) with no copy of F2 with edges in color two, one may hope that
picking an edge of color one in every copy of F2 may result in a graph with
“similar properties” as G(n, n−1/m2(F1)). In particular, those edges should
form a copy of F1 in color one.

In [62] the 1-statement of Conjecture 4.1 for Rn(C,F ) for any cycle C
and any 2-balanced graph F with m2(C) ≥ m2(F ) was verified. Moreover,
the 0-statement was shown for the case when F1 and F2 are cliques [82],
and the 1-statement was shown for graphs F1 and F2 with m2(F1, F2) >
m2(F1, F

′) for every F ′ � F2 with e(F ′) ≥ 1 appeared in [69]. In particular,
those results yield the threshold for R(Kk,K�).

It was also known that the resolution of Conjecture 3.6 for the (sparser)
graph F1 allows us to generalize the proof from [62] to verify the 1-statement
of Conjecture 4.1 when F2 is strictly 2-balanced (see, e.g., [82]). Therefore,
Theorem 3.7 has the following consequence.

Theorem 4.2. Let F1 and F2 be graphs with 1 ≤ m2(F1) ≤ m2(F2) and
let F2 be strictly 2-balanced. There exists a constant C > 0 such that for
p ≥ Cn−1/m2(F1,F2) a.a.s. G ∈ G(n, p) satisfies G ∈ Rn(F1, F2).

4.2. Stability Theorem for Subgraphs of Random Graphs

Below we deduce a probabilistic version of the Erdős–Simonovits theorem
from the classical stability theorem, based on the regularity method for
subgraphs of random graphs.

Proof of Theorem 2.3. Let a graph F with chromatic number χ(F ) ≥ 3
and ε > 0 be given. In order to deliver the promised constants C and δ,
we have to fix some auxiliary constants. First we appeal to the Erdős–
Simonovits stability theorem, Theorem 1.3, with F and ε/8 and obtain
constants δ′ > 0 and n′0. Set

δ = δ′/3.

Moreover, set d = min{δ/4, ε/4} and set εRL = min{δ/8, ε/8, εEMB}, where
εEMB is given by Theorem 3.8 applied with F and d. Then apply the sparse
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regularity lemma, Theorem 3.4, with εRL and t0 = max{n′0, 4/δ, 8/ε} and
obtain the constant T0. This gives us a lower bound of n/T0 on the size
of the partition classes after an application of Theorem 3.4. To a suitable
collection of those classes, we will want to apply Theorem 3.8. Therefore,
we set η = 1/T0. Due to our choice of εRL ≤ εEMB Theorem 3.8 guarantees

a constant C = C(F, d, εRL, η) and we let p ≥ Cn−1/m2(F ).

For later reference we observe that, due this choice of constants above,
for every t ≥ t0 we have

(17)
t

2
+ d

(
t

2

)
+ εRLt

2 < δ

(
t

2

)
and

(18)
1

t
+

d

2
+ εRL +

ε

8
≤ ε

2
.

We split the argument below into a probabilistic and a deterministic
part. First, in the probabilistic part, we single out a few properties (see (a )–
(c ) below), which the random graph G ∈ G(n, p) has a.a.s. In the second,
deterministic part, we deduce the stability result for all graphs G satisfying
those properties.

In the probabilistic part we note that a.a.s. G ∈ G(n, p) satisfies the
following:

(a ) for all sets X, Y ⊆ V (G) we have eG(X,Y ) ≤ (1 + o(1))p|X| |Y |,
where the edges contained in X ∩ Y are counted twice,

(b ) G satisfies the conclusion of Theorem 3.4 for εRL, t0, and T0,
(c ) G satisfies the conclusion of Theorem 3.8 for F , d, εRL, η and C.

Property (a ) follows a.a.s. by a standard application of Chernoff’s inequal-
ity, and properties (b ) and (c ) hold a.a.s. due to Theorems 3.4 and 3.8.

In the deterministic part we deduce the conclusion of Theorem 2.3 for
all graphs satisfying properties (a )–(c ). To this end, let G = (V,E) be a
graph with these properties. Consider an F -free subgraph H ⊆ G with

e(H) ≥ exG(F )− δpn2.

We will show that we can remove at most εpn2 edges from H, so that the
remaining graph is (χ(F )− 1)-colorable.

Since every graph G contains a (χ(F )− 1)-cut (see Definition 2.6) of size
at least (

1− 1

χ(F )− 1

)
e(G) = π(F )e(G),
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it follows from property (a ) that

(19) e(H) ≥ π(F )p

(
n

2

)
− 2δpn2.

We appeal to property (b ), which ensures the existence of a partition
V1 ·∪ . . . ·∪Vt = V having properties (i )–(iii ) of Theorem 3.4 for εRL, t0,
and T0. Without loss of generality, we may assume that t divides n since
removing at most t vertices from H affects only O(tn) = o(pn2) edges.

For the given partition, we consider the so-called reduced graph R =
R(H, εRL, d) with vertex set [t]. The pair {i, j} is an edge in R if, and only
if the pair (Vi, Vj) is (εRL, p)-regular and dH(V i, Vj) ≥ dp. Note that R does
not represent the following edges of H:

(I) edges which are contained in some Vi,
(II) edges which are contained in a pair (Vi, Vj) which is not (ε, p)-regular,

and
(III) edges which are contained in a pair (Vi, Vj) with dH(Vi, Vi) < dp.

Owing to property (a ) we infer, that there are at most

(20) t · (1 + o(1))p

(
n/t

2

)
edges described in (I) and at most

(21) εRLt
2 · (1 + o(1))p

(n
t

)2

edges described in (II). By definition at most

(22)

(
t

2

)
· dp

(n
t

)2

edges of H are contained in pairs described in (III).

Moreover, since (again because of property (a ))

eH(Vi, Vj) ≤ eG(Vi, Vj) ≤ (1 + o(1))p
(n
t

)
it follows from the definition of R, that the number of edges in R satisfies

e(R) ≥ e(H)− t(1 + o(1))p
(
n/t
2

)
− εRLt

2(1 + o(1))p
(
n
t

)2 − (
t
2

)
dp

(
n
t

)2
(1 + o(1))p(n/t)2

(17),(19)

≥ (π(F )− 3δ)

(
t

2

)
= (π(F )− δ′)

(
t

2

)
.
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Moreover, property (c ) implies that R is F -free, since otherwise a copy
of F in R would lead to a copy of F in H. In particular, R satisfies
the assumptions of the classical Erdős–Simonovits stability theorem, The-
orem 1.3. Recall, that δ′ > 0 was given by an application of Theorem 1.3
applied with F and ε/8. We will only need the weaker assertion of The-
orem 1.3, which concerns the deletion of edges rather than the symmet-
ric difference. Consequently, we may remove up to at most (ε/8)t2 edges
from R, so that the resulting graph R′ is (χ(F )− 1)-colorable. Let f :
[t] → [χ(F )− 1] be such a coloring of R′ and consider the corresponding
partition W1 ·∪ . . . ·∪Wχ(F )−1 = V of H given by

Wi =
⋃{

Vj : j ∈ f−1(i)
}
.

It is left to show that
χ(F )−1∑
i=1

eH(Wi) ≤ εpn2.

Note that there besides the three types of edges described in (I)–(III)
the following type of edges of H could be contained in EH(Wi) for some
i ∈ [χ(F )− 1]

(IV) edges which are contained in a pair (Vi, Vj) for some {i, j} ∈ E(R) \
E(R′).

Again property (a ) combined with |E(R) \ E(R′)| ≤ (ε/8)t2 implies that
there are at most

(23)
ε

8
t2 · (1 + o(1))p

(n
t

)2

edges described in (IV). Finally, the desired bound follows from (20)–(23)

χ(F )−1∑
i=1

eH(Wi) ≤ t · (1 + o(1))p

(
n/t

2

)

+ εRLt
2 · (1 + o(1))p

(n
t

)2

+

(
t

2

)
· dp

(n
t

)2

+
ε

8
t2 · (1 + o(1))p

(n
t

)2



Extremal Results in Random Graphs 567

≤ (1 + o(1))(1/t+ d/2 + εRL + ε/8)pn2

(18)

≤ εpn2.

This concludes the proof of Theorem 2.3.

We remark that there are several other classical results involving forbid-
den subgraphs F , which can be transferred to subgraphs of random graphs,
using a very similar approach, i.e., by applying the classical result to a suit-
ably chosen reduced graph R. For example, the 1-statement of Theorem 2.2
or the 1-statement of the Ramsey threshold from [97] can be reproved by
such an approach. In the next section, we discuss an example, where one
can obtain the probabilistic result by “repeating” the original proof with
the sparse regularity lemma and a matching, embedding or counting lemma
replacing Szemerédi’s regularity lemma and Fact 3.2.

4.3. Removal Lemma for Subgraphs of Random Graphs

In one of the first applications of an earlier variant of the regularity lemma,
Ruzsa and Szemerédi [99] answered a question of Brown, Sós, and Erdős [18]
and essentially established the following removal lemma for triangles.

Theorem 4.3 (Ruzsa & Szemerédi, 1978). For every ε > 0 there exist δ > 0
and n0 such that every graph G = (V,E) with |V | = n ≥ n0 containing at
most δn3 copies of K3 can be made K3-free by omission of at most εn2

edges.

In fact, the same statement holds, when K3 is replaced by any graph F
and δn3 is replaced by δn|V (F )|, as was shown by Füredi [47] (see also [2]
for the case when F is a clique and [36] for related results). This result is
now known as the removal lemma for graphs (we refer to the recent survey
of Conlon and Fox [21] for a thorough discussion of its importance and its
generalizations).

The following probabilistic version for subgraphs of random graphs was
suggested by �Luczak [79] and first proved for strictly 2-balanced graphs F
by Conlon and Gowers [22]. The general statement for all F follows from
the work in [23].

Theorem 4.4. For every graph F with  vertices and ε > 0 there exist δ > 0
and C > 0 such that for p ≥ Cn−1/m2(F ) a.a.s. for G ∈ G(n, p) the following

holds. If H ⊆ G contains at most δpe(F )n� copies of F , then H can be
made F -free by omission of at most εpn2 edges.
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Proof. Let a graph F with V (F ) = [] vertices and ε > 0 be given. Since
the result is trivial for matchings F , we may assume that m2(F ) ≥ 1. We
will apply the counting lemma for subgraphs of G(n, p) given by part (i ) of
Theorem 3.9. We prepare for such an application with F by setting d = ε/6
and choosing εRL = min{ε/6, εCL/}, where εCL is given by Theorem 3.9.
Moreover, we set t0 = 3/ε and let T0 be given by the sparse regularity lemma,
Theorem 3.4, applied with εRL and t0. We then follow the quantification
of Theorem 3.9. For that we set η = (T0)

−1 and let C > 0 be given by
Theorem 3.9. Finally, we set

(24) δ =
1

2
ξpe(F )η�.

For later reference we observe that due this choice of constants above,
for every t ≥ t0 and sufficiently large n we have

(25) t

(
n/t

2

)
+ 2d

(
t

2

)(n
t

)2
+ εRLn

2 ≤ ε

2
n2.

Similarly, as in the proof given in Section 4.2, we split the argument in
a probabilistic and a deterministic part. For the probabilistic part we note
that a.a.s. G ∈ G(n, p) satisfies the following:

(A ) for all sets X, Y ⊆ V (G) we have eG(X,Y ) ≤ (1 + o(1))p|X| |Y |,
where the edges contained in X ∩ Y are counted twice,

(B ) G satisfies the conclusion of Theorem 3.4 for εRL, t0, and T0,
(C ) G satisfies the conclusion of part (i ) of Theorem 3.9 for F , d− εRL,

εRL, ξ, η, and C.

Again property (A ) follows a.a.s. by a standard application of Chernoff’s
inequality and properties (B ) and (C ) hold a.a.s. due to Theorems 3.4
and 3.9.

It is left to deduce the conclusion of Theorem 4.4 for any graph G =
(V,E) satisfying properties (A )–(C ) and with sufficiently large n = |V |.
Let H ⊆ G containing at most δpe(F )n� copies of F .

Next we appeal to property (B ), which ensures the existence of a parti-
tion V1 ·∪ . . . ·∪Vt = V having properties (i )–(iii ) of Theorem 3.4 for εRL, t0,
and T0. Without loss of generality we may assume that t divides n since
removing at most t vertices from H affects only O(tn) = o(pn2) edges.

We remove the following edges from H:

• edges which are contained in some Vi,
• edges which are contained in a pair (Vi, Vj) with dH(Vi, Vi) < 2dp, and
• edges which are contained in a pair (Vi, Vj) which is not (ε, p)-regular.
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Let H ′ be the resulting subgraph. Owing to property (A ) we obtain

e(H) \ e(H ′)

≤ t · (1 + o(1))p

(
n/t

2

)
+

(
t

2

)
· 2dp

(n
t

)2
+ εRLt

2 · (1 + o(1))p
(n
t

)2

(25)

≤ (1 + o(1))
ε

2
pn2 ≤ εpn2.

It is left to show that H ′ is F -free. Suppose for a contradiction that H ′
contains a copy of F . Let Vi1 , . . . , Vik be the vertex classes, that contain a
vertex from this copy.

Note that if k = , i.e., each class contains exactly one vertex from F ,
then the -partite induced subgraph H ′[Vi1 , . . . , Vi� ] meets the assumptions
of part (i ) of Theorem 3.9 for the constants 2d > d, εRL < εCL, ξ, η, and C
fixed above. Consequently, it follows from property (C ) that H ′, and hence
also H, contains at least

ξpe(F )
(n
t

)�
≥ ξpe(F )(η)� · n�

(24)
> δpe(F )n�

copies of F , which contradicts the assumptions on H.

If k < , then subdivide every Vij for 1 ≤ j ≤ k into  disjoint sets of
size |Vij |/ in such a way that every subclass created this way contains
at most one vertex of the given copy of F in H. Let W1, . . . ,W� be the
classes containing one vertex of the copy of F and we may assume that Wi

contains the copy of vertex i of F . Note that for every i ∈ V (F ) the set Wi

has size at least n/(t) ≥ ηn. Moreover, if {i, j} ∈ E(F ), then H ′[Wi,Wj ]
contains at least one edge. In particular, this edge is contained in H ′
and, hence, it signifies that (Wi,Wj) is contained in some pair (Vi′ , Vj′),
which has density at least dp and which is (εRL, p)-regular. Moreover, it
follows from the definition of (εRL, p)-regularity (see Definition 3.3), that
(Wi,Wj) is still (εRL, p)-regular and has density at least (d−εRL)p. In other
words, H ′[W1, . . . ,W�] is ready for an application of of Theorem 3.9 for the
constants 2d− εRL ≥ d, εRL ≤ εCL, ξ, η, and C fixed above. Consequently,
it follows from property (C ) that H ′, and hence also H, contains at least

ξpe(F )
( n

t

)�
≥ ξpe(F )η� · n�

(24)
> δpe(F )n�

copies of F , which also in this case contradicts the assumptions on H and
concludes the proof of Theorem 4.4.
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4.4. Clique Density Theorem for Subgraphs of Random Graphs

Turán’s theorem establishes the minimum number exn(Kk) + 1 of edges
in an n-vertex graph that implies the existence of a copy of Kk. For
the triangle case, it was proved by Hans Rademacher (unpublished) that
every n-vertex graph with exn(K3) + 1 edges contains not only one, but at
least n/2 triangles. More generally, Erdős suggested to study the minimum
number of triangles in n-vertex graphs with exn(K3) + s edges [30, 32]. He
conjectured that for s < n/4 there are at least s�n/2� triangles, which is
best possible due to the graph obtained by balanced, complete bipartite
graph with s independent edges in the vertex with n/2� vertices. This
conjecture was proved by Lovász and Simonovits [76] (see also [60]). For
larger values of s and k this problem was studied by Erdős [33], Moon and
Moser [83], Nordhaus and Stewart [85], Bollobás [10, 11], and Khadzhiivanov
and Nikiforov [59].

In particular, in [77] Lovász and Simonovits formulated a conjecture
which relates the minimum density of Kk with a given edges density. More
precisely, for an integer k ≥ 3 and a graph H, let Kk(H) be the number of
(unlabeled) copies of Kk in H. We denote by Kk(n,M) the minimum over
all graphs with n vertices and M edges, i.e.,

Kk(n,M) = min{Kk(H) : |V (H)| = n and |E(H)| = M}.

In [76] Lovász and Simonovits conjectured that the extremal graph for
Kk(n,M) is obtained from complete t-partite graph (for some appropriate
t) by adding a matching to one of the vertex classes. In [77] those authors
proposed an approximate version of this conjecture by considering densities
of cliques and edges instead relating the number of cliques with the number
of edges. For that we define for α ∈ [0, 1)

κk(α) = lim inf
n→∞

Kk(n,
⌈
α
(
n
2

)⌉
)(

n
k

) ,

i.e., n-vertex graphs with α
(
n
2

)
edges contain at least (κk(α)− o(1))

(
n
k

)
copies ofKk and κk(α) is the largest clique density which can be guaranteed.
Clearly, κk(·) is non-decreasing and for α ∈ [0, π(Kk)) we have κk(α) = 0.
Lovász and Simonovits suggested that the graphs described below attain the
infimum of κk(α): For a given α > 0, let t be the integer with the property

(26) α ∈
(
1− 1

t
, 1− 1

t+ 1

]
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and set � ∈ R to the smaller root of the quadratic equation

2�(1− �) +

(
1− 1

t

)
(1− �)2 = α.

One can check that (26) implies 0 < � ≤ 1
t+1 . We then define the graphs Tn,α

to be the complete (t+1)-partite graph with vertex classes V1 ·∪ . . . ·∪Vt+1 =
V (Tn,α) satisfying

|Vt+1| = �n� and |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1.

Maybe, a more intuitive description of these graphs is the following. For
edge densities α of the form 1− 1/t the graph Tn,α is the Turán graph

Tn,t with t classes. For α ∈ (1− 1
t , 1− 1

t+1) a “small” (t+ 1)st class of

size �n appears and all other classes have size (1− �)n/t. With α tending
to 1− 1

t+1 the difference in size between the (t+ 1)st class and the other

classes becomes smaller. Finally, for α = 1− 1
t+1 we get � = 1/(t+ 1) and

Tn,α becomes the Turán graph with t+ 1 classes.

Lovász and Simonovits conjectured that for every k and α

(27) κk(α) = lim
n→∞

Kk(Tn,α)(
n
k

) .

We remark that the conjectured extremal graph Tn,α is independent of the
size of clique Kk. This conjecture was known to be true in the “symmetric
case,” i.e., for densities α ∈ {1− 1/t : t ∈ N}, due to the work of Moon and
Moser [83] (see [85] for the triangle case). Fisher addressed (27) for k = 3
and 1/2 ≤ α ≤ 2/3.

A few years ago Razborov introduced the so-called flag algebra method in
extremal combinatorics [91] (see [90] for a survey on the topic) and based on
this calculus he solved the triangle case for every α ∈ (0,1) in [92]. This work
was followed by Nikiforov [84], which led to the solution of the case k = 4
and finally Reiher [93] verified the conjecture for every k.

Theorem 4.5 (Clique density theorem). For every integer k ≥ 3 and for
every α ∈ (0, 1) we have

κk(α) = lim
n→∞

Kk(Tn,α)(
n
k

) .

Based on the counting lemma for subgraphs of random graphs, part (ii )
of Theorem 3.9, one can use the sparse regularity lemma to transfer this
result to subgraphs of random graphs. The following appears in [23].
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Theorem 4.6. For every graph k ≥ 3 and δ > 0 there exists C > 0 such that
for p ≥ Cn−1/m2(Kk) the following holds a.a.s. for G ∈ G(n, p). If H ⊆ G
contains at least (α+ δ)e(G) edges, then

Kk(H) ≥ κk(α)Kk(G).

As mentioned above, the proof of Theorem 4.6 is based on the regularity
method for subgraphs of random graphs and relies on the counting lemma
giving the “expected number” of copies ofKk in an appropriate (ε, p)-regular
environment. Moreover, in the proof a weighted version of the clique density
theorem, Theorem 4.5 is applied to the weighted reduced graph (see [23] for
details).

4.5. Quasi-random Subgraphs of Random Graphs

In this section we discuss scaled versions of the Chung-Graham-Wilson the-
orem [20] on quasi-random graphs for subgraphs a random graphs. The sys-
tematic study of quasi-random graphs was initiated by Thomason [112, 113]
and Chung, Graham, and Wilson [20] (see also [1, 44, 94] for partial earlier
results and [75] for a recent survey on the topic). In [20] several prop-
erties of dense random graphs, i.e., properties a.a.s. satisfied by G(n, p)
for p > 0 independent of n, were shown to be equivalent in a deterministic
sense. This phenomenon fails to be true for p = o(1) (see, e.g., [19, 66]). For
relatively dense subgraphs of sparse random graphs however several deter-
ministic equivalences among (appropriately scaled) quasi-random properties
remain valid. Below we will discuss one such equivalence (see Theorem 4.9
below), whose analog for dense graphs was obtained by Simonovits and
Sós [107].

Before we mention the result of Simonovits and Sós we begin with the
following quasi-random properties of graphs, concerning the edge distribu-
tion (see DISC below) and the number of copies (or embeddings) of given
graph F (see EMB below).

Definition 4.7. Let F be a graph on  vertices and let d > 0.

DISC: We say a graph H = (V,E) with |V | = n satisfies DISC(d), if for
every subset U ⊆ V we have

eH(U) = d

(|U |
2

)
± o(n2).

EMB: We say a graph H = (V,E) with |V | = n satisfies EMB(F, d), if the
number NF (H) of labeled copies of F in H satisfies

NF (H) = de(F )n� ± o(n�).
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It is well known that the property DISC(d) implies the property
EMB(F, d) for every graph F . By this we mean that for every ε > 0 there
exist δ > 0 and n0 such that every n-vertex (n ≥ n0) graph H satisfying
DISC(d) with o(n2) replaced by δn2 also satisfies property EMB(F, d) with
o(n�) replaced by εn�.

The opposite implication is known to be false. For example, for F = C�

being a cycle of length  we may consider n-vertex graphs H consisting of a
clique of size dn and isolated vertices. Such a graph H satisfies EMB(C�, d),
but fails to have DISC(d). However, note that such a graph H fails to have
density d. If we add this as an additional condition, then for even  one
of the main implications of the Chung-Graham-Wilson theorem asserts the
implication EMB(C�, d) implies DISC(d).

For odd cycles imposing global density d does not suffice, as the follow-
ing interesting example from [20] shows: Partition the vertex set V (H) =
V1 ·∪V2 ·∪V3 ·∪V4 as equal as possible into four sets and add the edges of the
complete graph on V1 and on V2, add edges of the complete bipartite graph
between V3 and V4, and add edges of a random bipartite graph with edge
probability 1/2 between V1 ·∪V2 and V3 ·∪V4. One may check that a.a.s. such
a graph H has density d(H) ≥ 1/2− o(1) and it satisfies EMB(K3, 1/2), but
clearly it fails to have DISC(1/2).

Summarizing the discussion above, while DISC(d) implies EMB(F, d) is
known to be true for every graph F , EMB(C2�+1, d) does not imply DISC(d).
In fact, EMB(C2�+1, d) � DISC(d) even when restricting to graphs H with
density d.

Note that the property DISC(d) is hereditary in the sense that for
subsets U ⊆ V the induced subgraph H[U ] must also satisfy DISC(d), if H
has DISC(d). As a result the implication DISC(d) ⇒ EMB(F, d) extends to
the following hereditary strengthening of EMB(F, d).

HEMB: We say a graph H = (V,E) with |V | = n satisfies HEMB(F, d), if
for every U ⊆ V the number NF (H[U ]) of labeled copies of F in the
induced subgraph H[U ] satisfies

(28) NF (H[U ]) = de(F )|U |� ± o(n�).

It was shown by Simonovits and Sós [107] (see also [115] for a recent
strengthening) that HEMB indeed is a quasi-random property, i.e., those
authors showed that for every graph F with at least one edge and for
every d > 0 the properties DISC(d) and HEMB(F, d) are equivalent, i.e.,
DISC(d) ⇒ HEMB(d) and HEMB(d) ⇒ DISC(d).

Based on the sparse regularity lemma (Theorem 3.4) and its appro-
priate counting lemma (part (ii ) of Theorem 3.9) a generalization of the



574 V. Rödl and M. Schacht

Simonovits–Sós theorem for subgraphs of random graphs G ∈ G(n, p) can
be derived. First we introduce the appropriate sparse versions of DISC
and HEMB for this context.

Definition 4.8. Let G = (V,E) be a graph with |V | = n, let F be a graph
on  vertices, and let d > 0 and ε > 0.

DISCG: We say a subgraph H ⊆ G satisfies DISCG(d), if for every subset
U ⊆ V we have

eH(U) = d|E(G[U ])| ± o(|E|),

i.e., the relative density of H[U ] with respect to G[U ] is close to d for
all sets U of linear size. Furthermore, we say H satisfies DISCG(d, ε)
if eH(U) = d|E(G[U ])| ± ε|E|.

HEMBG: We say a subgraph H ⊆ G satisfies HEMBG(F, d), if for every
U ⊆ V the number NF (H[U ]) of labeled copies of F in the induced
subgraph H[U ] satisfies

NF (H[U ]) = de(F )NF (G[U ])± o(|NF (G)|),

i.e., approximately a de(F ) proportion of the copies of F in G[U ] is
contained in H[U ] for sets U spanning a constant proportion of copies
of F in G.
Furthermore, we say a subgraph H ⊆ G satisfies HEMBG(F, d, ε), if

for every U ⊆ V we have NF (H[U ]) = de(F )NF (G[U ])± ε|NF (G)|.

For those properties one can prove an equivalence in the sense described
above, when G is a random graph.

Theorem 4.9. Let F be a strictly 2-balanced graph with at least one edge
and let d > 0. For every ε > 0 there exist δ > 0 and C > 0 such that for
p ≥ Cn−1/m2(F ), a.a.s. for G ∈ G(n, p) the following holds.

(i ) If H ⊆ G satisfies DISCG(d, δ), then H satisfies HEMBG(F, d, ε).
(ii ) If H ⊆ G satisfies HEMBG(F, d, δ), then H satisfies DISCG(d, ε).

Consequently, for p � n−1/m2(F ) a.a.s. G ∈ G(n, p) has the property that
DISCG(d) and HEMBG(F, d) are equivalent.

We will briefly sketch some ideas from the proofs of both implications
of the Simonovits–Sós theorem and indicate its adjustments for the proof of
Theorem 4.9.

The implication DISC(d) ⇒ HEMB(F, d) (for dense graphs) easily fol-
lows from the counting lemma in Fact 3.2. Indeed, given U ⊆ V (H) for a
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graph H satisfying DISC(d), we consider a partition of U into  = |V (F )|
classes U1 ·∪ . . . ·∪U� with sizes as equal as possible. Based on the identity

eH(Ui, Uj) = eH(Ui ·∪Uj)− eH(Ui)− eH(Uj)

we infer from DISC(d) that (Ui, Uj) is g(ε)-regular and dH(Ui, Uj) = d±
o(1), where g(ε) tends to 0 with the error parameter ε from the property
DISC(d). In particular, for sufficiently small ε > 0 the assumptions of the
counting lemma of Fact 3.2 are met for F and d. Using the upper and
lower bound on the number of partite copies of F in U1 ·∪ . . . ·∪U� provided
by the counting lemma and a simple averaging argument over all possible
partitions U1 ·∪ . . . ·∪U� yields (28). This simple argument with part (ii ) of
Theorem 3.9 replacing Fact 3.2 can be transferred to G(n, p) without any
further adjustments.

The proof of the opposite implication, HEMB(F, d) ⇒ DISC(d), is more
involved. All known proofs for dense graphs are based on Szemerédi’s
regularity lemma (Theorem 3.1) and the counting lemma in Fact 3.2. The
proof of Simonovits and Sós requires not only an applications of Fact 3.2
for F , but also for a graph obtained from F by taking two copies of F and
identifying one of their edges. Note that this “double-F” is not strictly
2-balanced, since it contains F as a proper subgraph, which has the same 2-
density as double-F . Consequently, we run into some difficulties, if we want
to extend this proof to subgraphs of random graphs based on part (ii ) of
Theorem 3.9. In some recent generalizations of the Simonovits–Sós theorem
applications of Fact 3.2 for double-F could be avoided (see, e.g., [103, 24,
25]). In particular, the proof presented in [25, pages 174-175] extends to
subgraphs of random graphs, by replacing Szemerédi’s regularity lemma
and the counting lemma of Fact 3.2 by its counterparts for sparse random
graphs.

4.5.1. Problem of Erdős and Nešetřil revisited. We close this section
by returning to the question of Erdős and Nešetřil from Section 2.2, which
perhaps led to one of the first extremal results for random graphs.

Here we want to focus on generalizations of part (ii ) of Corollary 2.4.
That statement asserts that any Kk+1-free graph H with the additional
property

(29) exH(Kk) ≤ (π(Kk) + o(1))e(H)

must have vanishing density d(H) = o(1).

Based on Theorem 3.8 the following generalization can be proved. Con-
sider the random graph G ∈ G(n, p) for p � n−1/m2(Kk+1). We will show
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that a.a.s. G has the property that any Kk+1-free graph H ⊆ G satisfy-
ing (29) must have vanishing relative density (w.r.t. the density of G), i.e.,
d(H) = o(p).

Theorem 4.10 (Generalization of Corollary 2.4(ii ) for subgraphs of
G(n, p)). For every integer k ≥ 3, every d > 0, and every ε ∈ (0, 1− π(Kk))

there exists some C > 0 such that for p > Cn−1/m2(Kk+1) the following holds
a.a.s. for G ∈ G(n, p). If H ⊆ G satisfies e(H) = d|E(G)| and exH(Kk) ≤
(π(Kk) + ε)e(H), then H contains a Kk+1.

The proof of Theorem 4.10 follows the lines of the proof of Corol-
lary 2.4(ii ) given in Section 2.2 and we briefly sketch the main adjustments
needed. Recall that the proof given in Section 2.2 relied on Lemma 2.8
from [94], which is based on the embedding lemma of Fact 3.2. Replac-
ing the embedding lemma for dense graphs by the appropriate version for
subgraphs of random graphs, i.e., by Theorem 3.8, yields the following.

Lemma 4.11. For all integers s, t ≥ 2 and every d > 0 there exist δ > 0
and C > 0 such that for p > Cn−1/m2(Ks) the following holds a.a.s. for
G ∈ G(n, p).

If H ⊆ G satisfying eH(U) = (d± δ)eG(U) for every U ⊆ V with |U | =
�n/t�. Then H contains a copy of Ks.

Equipped with Lemma 4.11 one can repeat the proof of Lemma 2.7 and
the following appropriate version for subgraphs of G(n, p) can be verified.

Lemma 4.12. For all integers s, t ≥ 2 and every d > 0 there exist ε > 0
and C > 0 such that for p > Cn−1/m2(Ks) the following holds a.a.s. for
G ∈ G(n, p).

If H ⊆ G with e(H) = d|E(G)| and with the property that every bal-
anced t-cut has size at most (1− 1/t+ ε)de(G), then H contains a copy
of Ks.

Finally, a standard application of Lemma 4.12 with s = k + 1 and t =
k − 1 yields Theorem 4.10. We omit the details here.

5. Concluding Remarks

We close with a few comments of related results and open problems.

Related Results. We restricted the discussion to extremal question in
random graphs. However, the results of Conlon and Gowers [22] and
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Schacht [102] and also the subsequent work of Samotij [100], Balogh, Mor-
ris, Samotij [8], and Saxton and Thomason [101] applied in a more general
context and led to extremal results for random hypergraphs and random
subsets of the integers. Here we state a probabilistic version of Szemerédi’s
theorem on arithmetic progressions [110] (see Theorem 5.1 below).

For integers k ≥ 3 and n ∈ N, and a set A ⊆ Z/nZ, let rk(A) denote
the cardinality of a maximum subset of A, which contains no arithmetic
progression of length k, i.e.,

rk(A) = {|B| : B ⊆ A and B contains

no arithmetic progression of length k}.

Answering a well known conjecture of Erdős and Turán [42], Szemerédi’s
theorem asserts that

rk(Z/nZ) = o(n)

for every integer k ≥ 3. The following probabilistic version of Szemerédi’s
theorem was obtained for k = 3 by Kohayakawa, �Luczak, and Rödl [64] and
for all k in [22, 102].

Theorem 5.1. For every integer k ≥ 3 and every ε > 0 the function p̂ =
n−1/(k−1) is a threshold for Sn(k, ε) = {A ⊆ Z/nZ : rk(A) ≤ ε|A|}.

Note that similarly as for the threshold for the Erdős–Stone theorem for
random graphs, the threshold for Szemerédi’s theorem coincides with that
p for which a random subset of Z/nZ has in expectation the same number
of elements and number of arithmetic progressions of length k.

Let us remark that the methods from [22, 102] also can be used to de-
rive thresholds for Ramsey properties for random hypergraphs and random
subsets of the integers (see [22, 45] for details).

Open Problems. Besides these recent advances, several important ques-
tions are still unresolved. For example, it would be very interesting if the re-
sult of DeMarco and Kahn [26] (Theorem 2.9) could be extended to cliques of
arbitrary size (see Conjecture 2.10). Finally, we would like to point out that
for some applications (see, e.g., Theorem 4.9) a generalization of part (ii )
of Theorem 3.9 for all graphs F would be useful.
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[24] D. Conlon, H. Hàn, Y. Person, and M. Schacht,Weak quasi-randomness for uniform
hypergraphs, Random Structures Algorithms, 40 (2012), no. 1, 1–38.
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[40] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math.
Soc., 52 (1946), 1087–1091.
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properties, Combinatorics, Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud.,
János Bolyai Math. Soc., Budapest, 1993, pp. 317–346.

[96] , Random graphs with monochromatic triangles in every edge coloring, Ran-
dom Structures Algorithms, 5 (1994), no. 2, 253–270.

[97] , Threshold functions for Ramsey properties, J. Amer. Math. Soc., 8 (1995),
no. 4, 917–942.
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The following notation will be used throughout

O"(n) = Ld,
dln

cp(n) = L 1,
m<n

(m,n}=l

d(n) = LI,
dln

lI(n) = L 1 = w(n),
pln

pprime

log, x is the r times iterated logarithm of x,

O"l(n) = O"(n), O"k(n) = O"(O"k-l(n)) ,

cpl(n) = cp(n), cpk(n) = cp(CPk-l(n)),

Sl(n) = s(n) = O"(n) - n, Si(n) = Sl(Si-l(n)) ;

( )
- l / P

'Y is Euler's constant , ao = log ITp prime 1 - ~ . Density is always the

asymptotic density.

I. Papers concerning both 0" and ip .

[1] On a problem of Chowla and some related problems, Proc. Cambridge
Philos. Soc. 32 (1936), 530-540.

[2] (with L. Alaoglu), A conjecture in elementary number theory, BuH.
Amer. Math. Soc. 50 (1944), 881-882.

[3] (with L. Alaoglu) , On highly composite and similar numbers, Trans.
Amer . Math. Soc. 56 (1944),448-469.

[4] On perfeet and multiply perfeet numbers, Ann . Mat. Pura Appl. (4)
42 (1956), 253-258 .

[5] Remarks on two problems in Mat. Lapok (Hungarian) , Mat. Lapok 7
(1956), 10-17.

[6] Solution of two problems of Jankowska, BuH. Acad. Polon . Sei. ser. sei.
math. phys . astronom. 6 (1958), 545-547 .

[7] Some remarks on Euler's cp-function, Acta Arith. 4 (1958), 10-19 .
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[8] Remarks on number theory II: Some problems on the a function, ibid .
5 (1959), 171-177.

[9] Remarks on number theory II: Some remarks on Euler's cp-function,
(Hungarian) , Mat . Lapok 12 (1961), 161-169.

[10] Some remarks on the functions cp and a , Bull. Acad. Polon . Sei. ser.
sei. math. phys. astronom. 10 (1962), 617-619.

[11] Some remarks on the iterates of the cp and a function, Colloq. Math.
17 (1967), 195-202.

[12] Asymptotische Untersuchengen über die Anzahl der Teiler von n ,
Math. Ann . 169 (1967), 230-238 .

[13] (with M. V. Subbarao), On the iterates of some arithmetic functions.
The theory of arithmetic functions, Lecture Notes in Math. 251, 119
125, Springer Verlag, Berlin 1972.

[14] Über die Zahlen der Form u(n) - n and n - cp(n), EIern. Math. 28
(1973), 83-86 .

[15] Remarks on some problems in number theory, Math. Balkanica 4
(1974), 197-202.

[16] On the dist ribution of numbers of the form u(n)/ n and on some related
questions, Paeific J . Math. 52 (1974),59-65.

[17] (with H. G. Diamond) , A measure of nonmonotonieity of the Euler's
cp-function, ibid . 77 (1978), 83-101.

[18] (with K. Györy, Z. Papp), On some new properties of functions u(n),
cp(n) , d(n) and lI(n) (Hungarian) , Mat. Lapok 28 (1980), 125-131.

[19] Some applications of the probability theory to number theory, 4th
Panonian Symp. of Math. Statistics , Austria 1982 vol. B, 1-18, Reidel,
London 1985.

[20] (with C. Pomerance, A. Särközy) , On locally repeated values of certain
arithmetic functions, Acta Math. Hungar. 49 (1987), 251-259 .

[21] (with A. Granville , C. Pomerance and C. Spiro) , On the normal be
havior of the iterates of some arithmetic functions , Analytic Number
Theory, Progr. Math. 85 (1990), 165-204.

In [1] Erdös proves for f(n) = u(n) or cp(n) that
1. density of n such that f(n) < f(n + 1) and density of n such that f(n) >

f(n + 1) are both 1/2.
In [2] authors study the conjecture of Poulet [25] that for every n the

sequence fo(n) = n, h k+l(n) = u(J2k(n)), hk+2(n) = cp(J2k+l(n)) is even
tually periodic and claim that it holds for all n :S 104 . They prove that
2. for every e > 0, cp(u(n)) < eti except for a set of density 0

and claim that

1*. for every c> 0, u(cp(n)) > cn except for a set of density O.

Moreover
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2*. except for a set density zero,
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e'cp(CT(n)) log3n rv CT(n) and e-'CT(cp(n)) log3n rv cp(n).

Luca and Pomerance [16] proved claim 1* and the second part of 2*.

Much later Pomerance [24] (see also Ford [9]) proved that for a certain
c > 0 there are no exceptions.

[2] ends with the following conjectures.
Cl. Form the sequence CT(n) , CT(CT(n)) , cp(CT(CT(n))) , in which the functions

are successively applied in the order CT, CT, cp, CT, CT, ip, CT, CT , ... This
sequence seems to tend to infinity if n is large enough.

C2. The sequence cp(n), cp(cp(n)), CT(cp(cp(n))), ... , in which the order is ip,

ip , CT , cp, ip, CT , cp, ip , CT , .. . seems to tend to I.
In [3] the following notions are used . A number n is called highly

composite, if d(m) < d(n) for all m < n, highly abundant if CT(m) < CT(n)
for all m < n, superabundant if CT(m)/m < CT(n)/n for all m < n, colossally
abundant if, for a certain E > 0, CT(m)/ml+e attains its maximum at m = n .
Twenty theorems are proved, some of them highly technical; less technical
results are as follows.
3. If n is superabundant and n = 2k23k3 •• . pkp , then k2 2: k3 2: .. . 2: kp •

4. Ifpis the largest prime factor of a superabundant number n, then kp = 1,
except when n = 4,36.

5. The quotient of two consecutive superabundant numbers tends to I.
6. The number of superabundant numbers less than x exceeds

clog x log2X/ (log3x)2, where c is a positive constant.
7. The quotient of two consecutive colossally abundant numbers is either a

prime or a product of two primes.
8. Only a finite number of highly abundant numbers are highly composite.
9. For large x the number of highly abundant numbers ::; x exceeds

(1 - E)(logx)2 for every E > O.

This result , as well as 6, has been later improved in [32]' [33] . It is
claimed that
3*. the number of highly abundant numbers ::; x is less than (log x )clog2 x,

where cis a constant,
4*. the quotient of two consecutive numbers n such that cp(n) < cp(m) for

all m > n tends to 1
and conjectured that
C3. the number of highly abundant numbers ::; x is less than

(log x)clog3 X where cis a constant,
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C4. there are infinitely many highly abundant numbers, which are not su
perabundant,

C5. if n > 1 is a superabundant number, there are two primes p and q such
that np and n/q are superabundant.

Tables of highly abundant numbers less that 104 and of superabundant
numbers less that 1018 are included.

In [4J Erdös proves the following theorems.
10. The number P(x) of positive integers n :s; x such that nIO"(n) satisfies

P(x) = O(xi+e) for every a > O.

11. The number P2(X) of positive integers n :s; x such that O"(n) = 2n satis
fies

P2(X) < x(1-c1)/2 for x > Xo and a certain constant Cl > 0

He claims the following.
5*. Let f(x) be an increasing function satisfying f(x) > (logx)C4 for some

C4 > O. Then the number of positive integers n < x satisfying

(er(n) ,n) > f(x)

is less than C6x/ f(x)C3 for some C3 > 0 and C6 > O. The same result
holds if 0"(n) is replaced by <p(n).

6*. 5* is best possible in the following sense: let f(x) = o((logx)e) for every
E > O. Then the number of integers n < x satisfying (O"(n) ,n) > f(x) is
greater then x] f(xYs for every C5 > 0, if xis sufficiently large.

7*. The density of integers n satisfying

(O"(n) ,n) < (log2n)Q

equals 9(0:), where 9(0:),0 :s; 0: < 00 is an increasing function satisfying
9(0) = 0, 9(00) = 1. The same result holds if O"(n) is replaced by <p(n) .

The estimates given in 10 and 11 have been improved by Wirsing [27] to the
form

P(x) = o(exp(clog x/ log2 x)), ca positive constant.

The claim 5*. has been substantiated and improved by Pollack [22] in the
part concerning O"(n) . He has replaced the assumption

f(x) > (logxr4 by f(x) > expr(log., x)ß) for ß > 0 and x > xo(ß) .

By the same token by disproved 6*.

In [5J the following notation is used: La = log3a] log, a. Erdös proves
that
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12. for every E: > 0 and n > nO(E:) there exists a< n for which

rp(a) + rp(a + 1)+ ...+ rp(a + LLaJ) < ca,

13. for every rJ > 0

liminf rp(a) + rp(a + 1) + ... + rp(a + f(l + rJ)La1) = 00.

a-+oo a
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He claims the following results.
8*.

rp(a) + rp(a + 1)+ ...+ rp (a + llOg ~!~g a + (1~~g3a) J)
lim inf 2 3 3 = ec-ao

a-+oo a

for every c.

9*. Let »; = l:~~: ~J and let i1, i2, ... ,ikn be any permutation of the inte

gers 1,2, .. . , kn. Then for n > no there exists a < n such that

rp(a + il) > rp(a + i2) > .. . > rp(a + ikn ) .

10*. For every E: > 0 and n > nO(E:)

rp(n) > rp(n + 1) > ... > rp(n + L(1 + E:)knJ)

cannot hold.
11*. The above results hold for u(n) instead of rp(n).

[6] contains a proof that

14. there exist infinitely many pairs of integers a and b satisfying (a, b) = 1,

rp(a) = rp(b), u(a) = u(b), d(a) = d(b),

15. for every k there exists a sequence of distinct square-free integers
al, .. . ,ak satisfying

rp(ai) = rp(aj), u(ai) = u(aj) and d(ai) = d(aj) for all 1 ~ i ~ j ~ k.

The paper ends with the following conjectures.

C6. For every k there exists a sequence Xi, 1 ~ i ~ k, of distinct integers
satisfying

(1) (Xi,Xj) = 1, 1 ~ i ~j ~ k,
(2) rp(Xl) = = rp(Xk),
(3) U(Xl) = = U(Xk),
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(4) d(Xl) = .. . = d(Xk)'

C7. The number of solutions of the system of conditions

(a, b) = 1, a < b < n, cp(a) = cp(b)

A. Schinzel

is > n2
- € for every e > 0 if n > no(c) .

The conjecture C6 is studied in [10] under the additional condition that Xi

are square-free. Erd ös proves that

16. C6 holds if the k integers ai are required to satisfy only (1), (2) and (4)
or only (1), (3) and (4).

In [7] Erdos proves the following theorems.

17. Let f(n) tend to infinity so that

f(n) ~ logs n/log6 n + (ao-, + 0(1))logs n/(log6 n)2.

Then

liminf ( max cp(n + i)/ min cp(n + j)) = 1
n-+oo l::; i::;/(n) l::;j::;/(n)

18. Let A(n) denote the number of solutions of cp(l) = n. If there exists an
integer n with A(n) = k, then there exist infinitely many such integers.

He claims the following theorems

12*. Put f(n) = logs n] log6n + (c + ao - ,) logs n/(log6 n)2 (c> 0).
Then

liminf ( max cp(n + i)/ min cp(n + j)) = e".
n-+oo 19::;/(n) l::;j::;/(n)

13*. Let limn -+oo g(n) / logs n = O. Then there exists an infinite sequence nk
such that for all 1 ~ i ~ g(nk)

cp(nk + i)
1 - Ck ~ ( . ) < 1 + ck, where Ck -+ 0, as k -+ 00.

ip nk +1,-1

14*. A(n) < nexp(-c1ognlogsn/log2n), c> O.

He makes the following conjectures:

C8. for every e > 0 there exists an increasing sequence nk such that

A(nk) > nl-€,
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e9. for every e > 0 and n > no(c)

n

LA(k)2 > n2
- E:.

k=l
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and claims that
15*. all the results stated hold for O"(n)
and the same unsolved problems remain.

K. Ford [9] has improved the result 18 above showing that for every k > 1
there exist infinitely many n such that A(n) = k.

In [8] Erdos proves that
19. the number of distinct rationals of the form O"(a)/a, 1 ::; a ::; x equals

CIX + o(x), where ~ ::; Cl < I.
He claims
16*. for every a with 1 ::; a < 00 the number of integers n ::; x such that

1
O"(n)/n = ais less than C4X2-C5, where positive constants C4 and Cs are
independent of a
and deduces from it

17*. the number of solutions of 0"(a)/ a = O"(b) [b satisfying a < b ::; x equals
C2X + o(x) for some constant C2 > O.

He also claims that
18*. the similar results hold for ip.

[8] contains the following problems.
PI. Is it true that O"(n) = cp(n) has infinitely many solutions?
P2. Let 1 ::; c::; 00. Does there exist an infinite sequence ofintegers nk, m«,

where nk =!= mk for which O"(nk) = O"(mk) and mk/nk --+ oo?
P3. Does the number g(x) of solutions of O"(a) = O"(b), (a,b) = 1, a < b::; x

satisfy lim g(x) = oo?
n-+oo x

Problem PI has been solved by Ford , Luca and Pomerance [11] (see also
[12]), a partial solution of P3 is given in [15].

In [9] Erdos proves that
20. for k = 2 and every e > 0 and all n except a sequence of density 0

(5) cpk(n) == 0 (mOd II p) ,
p::;(log2 x)k-e

p prime
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21. for k = 2 except for a sequence of density 0

A. Schinzel

(6) 1
. Ipk-l(n) 'V

1m =e'
n--+oo Ipk(n) log3n

and claims

19*. (5) and (6) hold for all k > 2,
20* . for all k > 2

x 3L Ipk(n) = (1 + o(1))2e-'Y(k-l)x2/(log3 x)k-l,
. 1r

n=t

21*. analogous results hold for the o-function.

The claim 20* has been proved by Pollack [21] .

The following problems are proposed.

P4 . Is it true that the density of numbers n for where there is a number m
such that Ip(n) = Ip(m) and (n, m) = 1 is O?

P5. Is it true that the density of numbers of the form n - Ip(n) is O?
Erdös with coauthors returned to the subject in [21] and corrected the

claim 19* by proving that (6) holds with the right-hand side multiplied by
k - 1. The numerical evidence quoted in [2] seems to indicate that the answer
to P5 is negative.

In [11] the following notation is used. N<p(k, o, x) and Nq(k, o, x) denote
the number of n ~ x such that Ipk(X) 2:: ax and O'k(X) ~ oz, respectively.

Erdös proves the following theorem.

22. For every a < !, arbitrarily small e > 0 and arbitrarily large t we have
for x > xo(a, t, c) the inequality

-1X (log2x)t < N<p(2,a,x) < -1x (log z}".
ogx ogx

Further, for every a > 0 and e > 0 we have

N<p(3, o, x) < {L ~ .. \? (log x)e.

He claims the following.

22* . We have for every t, if x> xo(t)

Nq(2,2,x) > -1x (log2X)t
ogx
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and for every a > 0 and e > 0 if x> xo(a, c)

Nu(2,a,x) < -1X (log zi)",
ogx

N u(3, o, x) < IL~_\? (log2x)e.
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Furthermore, the inequality for Nu(2, 2, x) is best possible in the sense
that o = 2 cannot be replaced by any smaller number.

23* . N<p(4,a,x) < (lo~xx)2.

The claim that for all k 2: 2 and all n except a sequence of density 0

O"k(n) = (1 + 0(1)) rpk-l(~) = (1 + o(I))e'Yk 10g3 n
O"k-l(n) rpk(n

contradicts the theorem and claim made earlier in [9]. As proved in [21] k
on the right-hand side should be replaced by k - 1.

The following problem is proposed.

P6. To give an asymptotic formula for N<p(2, o , x) or Nu(2, o, x) .
H. Maier [18] proved that Nu(3, o, x) > x(logx)-2 (a> ao > 0, x>
xo(a)) and outlined the proof of Nu(3,a,x) > x(10gx)-2(10g2x)t and
similarly for N<p(3, o, x).
In [12] Erd6s proves the following.

23*. Let e > 0 be arbitrary,

g(n) = rp(n) or O"(n)
n n '

a = lim .!.~ g(k), lim h(n) = 00.
n--+oo n L...J n--+oo

k=l

Then the density of numbers x such that for all t > h(x)

1 t
(l-c)a< - Lg(x+i) < (l+c)a

t i=l

is 1.

In [13] the following notation is used . Let R(n) be the least integer k
such that rpk(n) = 1, T(n) = rpl(n) + rp2(n) + ...+ rpR(n) (n), F(x, c) be the
number of integers n :s; x for which T( n) > cn.

The authors claim

24*. T(n) = (1 + o(I))rp(n) on a sequence of density 1,
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25*. for every cE (1, ~), we have for every t ~ 0 and every c> 0 if x>
xo(c, t, s)

-1X (log2 X)t < F(x,c) < -(1x'l '
ogx ogx' -e

26*. F(x, 1) = (c +0(1))-1x ,
og4 x

27*. T(n) > ~n for infinitely many n,
28*. for c > ~ and every e > 0

F(x,c) = 0 ((lOg:)2 e) '
They conjecture:

CI0. for 1 < Cl < C2 < ~

lim F(x, CI)/F(x, C2) = 00,
x-+ oo

C11. F (x,~) = 0 Co: x).
They propose the following problems.

P7. Does R
l

(n) has a distribution function?
ogn

P8. Does R
l

(n) approaches a limit for almost all n? If the limit exists, is it
ogn

1 1 I?
equa to log 2 or log 3 .

They repeat the claim made earlier in [11] that for all k ~ 2 and all n except
a sequence of density 0

CTk(n) = (1 + o(I))e'Yk log3n,
CTk-l(n)

where by analogy with the <p-function treated in [21] the factor k on the
right-hand side should probably be replaced by k -1. [21] also addresses P8.

The claim 26* has been proved by Loomis and Luca [14], who showed
that c = «»,

In [14] Erdös proves the following theorem.

24. The lower density of numbers m, for which CT(n) - n = m is insolvable ,
is positive.
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This is deduced from the following stronger, but more complicated theorem.

25. Let Pk denote the product of the first k primes. The number A(k, x) of
numbers n such that u(n) - n ~ x and u(n) - n == 0 (mod Pk) is less
than ex]Pk for every e > 0 and x > xo(e) .

The question open here , whether there are infinitely many numbers not of
the form n - rp(n) has been solved only much later in [2]' see also [7] .

In [15] Erdös outlines the proof of the following theorem.

26. Let h(x) be the number of solutions of the conditions u(a) = u(b),
(a, b) = 1, a < b~ x . Then

limsup h(x) = 00.

x-+oo X

He claims

29*.

and

30*. for almost all n

lim h(x) = 00

x-+oo X

v(u(n)) = (~+ 0(1)) (log2n)2.

The last claim corresponds to the result on rp given later in [46].
Erdös mentions several problems.

P9 . Estimate the number of integers n < x for which rp(m) = n is solvable
in integers m > x.

PI0. Is density of numbers of the form n + rp(n) or n + u(n) positive?
PlI. Is there aß> 1 for which

lu(n) - ßnl -t 00 as n -t oo?

In [16] Erdos proves the following theorem.

27. Let F(x, a, b) be the number of integers n ~ x satisfying a< (1~) < b.
There is a constant Cl such that for t > 0, x > t

( 1) x< CI-- ·F x, a, a + t log t

Apart from the value of Cl the inequality is best possible.
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Erdös's proof of 27 is reproduced with commentaries in [6].
He claims the following.

31*. For t > 0, x > t

F (x, a, a(1 + ~) ) < C210~ t .

A. Schinzel

32*. The same result is true for ip.

Prof. 1. Z. Ruzsa remarked that the claim 31* easily follows from the
result 27. Indeed, if t 2: a2, then logt and log(t/a) are of the same or
der of magnitude. If t < a2 , we can estimate the quantity in question by
F(x,a, oo) = O(x/a), by a first-moment estimate.

In [17] the authors introduce the following notation: for each real valued
arithmetic function f satisfying limn-too f(n) = 00, let

Ff(n) = #{j < n : f(j) 2: f(n)} + #{j > n : f(j) :::; f(n)} .

They prove the following.

28. Fcp(n)/n = h (cp~n)) + O(exp(-y'log n)), where his a certain strictly

convex function with the minimum ho = h(uo) .
29. Fcp(n)/n has a continuous distribution function.

30. _ (((2)((3) _'"( )
r::gFcp(n)-x- ((6) e +0(1) x/log2 x.

31. Ifnl = 1 and nk+l is the least number > nk such that Fcp(x) < Fcp(nk+l)
for all x < nk+l, then nk+l - nk > nl-e: for every e > 0 and k --+ 00.

32. no > 0.472 and ho < 0.324.
33. no < 0.475 and ho > 0.321.
34. minF(x) ,...., hox.

n>x

A result concerning general functions f immediately implies

35. #{j < n : u(j) 2: u(n)} = u(n) {oo (1 - Du(t))C
2dt + o(n),

J~
n

~

#{j > n : u(j) :::; u(n)} = u(n)1n Du(t)C
2dt + o(u(n)) ,
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where

Dq(t) = lim ~ {n :s; X : O"(n) :s; t} .
x-+oo X n

In [18] the authors prove the following theorems.
36. The system of inequalities

cp(n + 1) ~ cp(n + 2) ~ cp(n + 3) ~ cp(n + 4) ~ cp(n + 5),

O"(n + 1) ~ O"(n + 2) ~ O"(n + 3) ~ O"(n + 4) ~ O"(n + 5),

597

has no solutions in positive integers n.
37. Let 6, .. ., /;'k, 'r/l, . . . , 'r/k be positive real numbers. A sequence nl (I =

1,2, .. .) such that

lim cp(nl + i)
1-+00 cp(nl + i + 1) = /;'i,

lim 0"(nl + i)
1-+00 O"(nl + i + 1) = TJi, (i = 1, .. . , k)

exists if and only if there exists a sequence nl (I = 1,2, ...) such that

lim h*(nl+ i)
1-+00 h*(nl+ i + 1) = /;'i'r/i,

where h*(n) = 0"(n)cp(n)ln2 •

38. Let il, i2, i3, i4 and ii, j2, iz, j4 be any permutation of 1, 2, 3, 4. Then
there exist infinitely many positive integers n such that

cp(n + il) > cp(n + i2) > cp(n + i3) > cp(n + i4),

O"(n + il) > O"(n + i2) > O"(n + i3) > O"(n + i4)'

The result 37 implies a theorem of the writer [26].

In [19] Erdos claims that

33*. the density ofintegers n such that d(n) < d(n+ 1) and cp(n) < cp(n+ 1)
. 1
IS 4'

34*. the density of integers n such that cp(n) < cp(n +1) and 0"(n) < 0"(n +1)
is strictly between ~ and ! .

In [20] the authors prove that

39. for large n, the number of solutions of cp(n) = cp(n + 1) not exceeding X

is at most x] exp((logx)1/3)

and claim

35*. this is also true for 0"(n).
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They conjecture:

C12. for every e > 0 and x > Xo(e) the equations rp(n) = rp(n + 1), O"(n) =
O"(n + 1) each have at least x l - e solutions n ~ x.
The equation rp(n) = rp(n + k) has been later considered in [13] .

In [21] the authors denote by k(n) the least k such that rpk(n) = 1. They
put cP(n) = n rh~l rpk(n) and prove the following,
40. Aversion of the Elliott-Halberstam conjecture on primes in arithmetic

progressions implies that k(n) has a normal order o log n for a certain
constant a > O.

41. Let e(X) > 0 tend to 0 arbitrarily slowly as x --+ 00. If k ~ (log2n)e(x) ,

then the normal order of rpk(n) / rpk+l (n) for n ~ x is ke' logs x.
42. For each e > 0 the set of n with

Sk(n) s(n)
--<-+e
s(n) n

has density 1.
43. Let Sk(X) denote the number of odd numbers m ~ x in the range of the

function Sk . There is a positive number 60 such that

Sk(X) « x l - öo

uniformly for all natural numbers k and x > O.

They conjecture the following.

C13. For each prime p, let N(x,p) denote the number of n < x with
plrp(n). Then for every e > 0, N(x,p) = o(x) uniformly in the region
p> (logx)l+e and N(x,p) '" x uniformly in the region p < (logx)l+e.

C14. For each e > 0, the upper density of the set of n with the property
that the largest prime factor of rpk(n) exceeds ne tends to 0 as k --+ 00.

C15. For each e > 0 and k, the set of n with

Sj+l(n) < s(n) + e for j = 1, .. . , k
sj(n) n

has density 1.
C16. If Ais a set of natural numbers of positive upper density, then s(A) =

{s(n) : n E A} also has positive upper density.

Finally amistake committed in [50] is corrected.

11. Papers concerning the o-function, but not the rp-function. Here belong
papers:
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[22] On the density of the abundant numbers, J . London Math. Soc. 9
(1934), 278-280.

[23] On primitive abundant numbers, J . London Math. Soc. 10 (1935),49
58.

[24] Note on consecutive abundant numbers, J . London Math. Soc. 10
(1935), 128-131.

[25] On amicable numbers, Publ. Math. Debrecen 4 (1955), 108-111 .
[26] Remarks on number theory, 1. On primitive o-abundant numbers, Acta

Arith. 5 (1958), 25-33 .
[27] Asymptotic formulas for some arithmetical functions, Canad. Math.

Bull. 1 (1958), 149-153.
[28] On the sum I:dI2n-l d-l, Israel J . Math. 9 (1971),43-48.
[29] On abundant-like numbers, Canad. Math. Bull. 17 (1974), 599-602 .
[30] (with S. J . Benkoski) On weird and pseudoperfect numbers, Math.

Comp. 28 (1974), 617-623 .
[31] (with G. J . Rieger) Ein Nachtrag über befreundete Zahlen , J . Reine

Angew. Math. 273 (1975), 220.
[32] (with J .-L. Nicolas) Repartition des nombres superabondants, Sem.

Delange-Pisot-Poitou 1973/74, Theorie des nombres, Fase. 1, Exp .
No. 5, 18 pp ., Secretariat Math., Paris, 1975.

[33] (with J .-L. Nicolas) Repartition des nombres superabondants, Bull.
Soc. Math. France 103 (1975), 65-90.

[34] On asymptotic properties of aliquot sequences, Math. Comput. 30
(1976), 641-645 .

[35] Sur la fonction "nombre de facteurs premiers de n", Sem. Delange-Pisot
Poitou, 1978/1979 . Theorie des nombres, Fase. 2, Exp . No. 32, 19 pp.,
Secretariat Math., Paris, 1980.

[36] Sur la fonction : nombre de facteurs premiers de N, Enseign. Math (2)
27 (1981), 3-27.

[37] (with P. T . Bateman, C. Pomerance, E. G. Straus) The arithmetic
mean of the divisors of an integer, Analytic Number Theory (Proe.
Conf., Temple Univ., Phila., 1980), Lecture Notes in Math. 899, pp .
197-220, Springer, Berlin-New York, 1981.

[38] (with A. Särközy) On isolated, respectively consecutive large values of
arithmetic functions, Acta Arith. 66 (1994), 269-295 .

[39] Some of my favorite problems and results, The Mathematics of Paul
Erdös (R. Graham and J . Nesetfil, eds.), 47-67, Springer 1997.

An o-abundant number is according to Erdös a positive integer n such
that u{n) 2: an, an abundant number is 2-abundant (usually, a positive
integer is called abundant if u{n) > 2n). A primitive o-abundant number
is an o-abundant number no proper divisor of which is o-abundant . Let
Na{x) be the number of primitive o-abundant numbers ~ x,
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[22] contains an elementary proof of Davenport's theorem [3] that abundant
numbers have a density d. d has been estimated by Deleglise [4]' who has
proved : d = 0.247 .. .

[23] contains a proof that
44. for x large enough

x x----------,.- < N2(X) < .
exp(8(log x log2x)1/2) exp( 215 (log x log2x)1/2)

The constants 8 and 215 have been improved by Iviö [15]. In [39] Erdös
proposes the following problem.

P12 . Does there exist a number Csuch that
X

N2(X) = ?
exp( (c + 0(1)) (log X log2X )1/2)

[24] contains a proof of the following theorem.
45. There exist two positive constants Cl, C2 such that for all sufficiently large

n, there exist c11og3 n consecutive integers all abundant and less than
n, but not c21og3 n consecutive integers all abundant and less than n.
It is also claimed that

36*. for every c > 0 a constant c(s) exists such that n > no(e), then among
c(c) log3n consecutive integers there is at least one, say m, such that
u(m)/m< 1 + cj

37*. if lim If(n) = 00, then the abundant numbers have the same density
n-too og3n

in the interval (n, n + f(n)) as in the interval (1, n).
The result 45. has been improved by Pollack [20] , who proved an asymp

totic formula for the maximallength of a sequence of consecutive abundant
numbers less than n.

[25] contains an estimate for the number B(x) of pairs (a,b) called amicable,
where positive integers a, b satisfy a< min{b, x} and u(a) = u(b) = a + b,
namely
46. B(x) = o(x).

This estimate is improved in [31] to the form
47. B(x) = O(x/ log3x) .

This result has been improved by Pomerance [23] to the form

B(x) = O(xexp(-(logx)1/3)) .

Pomerance says that he has been inspired by [23].
[25] contains besides the following claim.
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38*. If b = 0"(a) - a, then except for a sequence of density 0

O"(b) = O"(a) + 0(1) .
b a

[26] contains the following result

48. NQ(X)=OCo:x).

In [27] Erdös claims the following.

39*. For 0 < a < !
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(7)
x

LO"((n, LnQJ)) = (1 + 0(1))xlogx.
n=l

40*. Necessary and suflicient condition that for areal a > 0 we should have

~ O"((n, LanJ)) = (~+ 0(1)) x log X

is that for every e > 0 the number of solutions in positive integers a

l
ai 1 a € ..

and b of o - b < ba+e and of o < b < a + .~ . . IS fimte .

41*. The condition 40* is equivalent to the following condition on the con
tinued fraction development of

11
a=ao+ -

I
+ ...

al

. 1
hm -logan = 0,

n-too n
1

lim -a2n+l = o.
n-too n

He conjectures that
C17. (7) holds for all a in the interval (!, 1) .

The value a = 1/2 is missing from the range given in 39* and C17. This is
likely intentional, since, as Prof. 1. Z. Ruzsa remarked, for a = ! one gets
elementarily the asymptotic (1/2)x log x.

[28] contains the following theorem.
49. There exists a constant Cl such that for every n

0"(2n-1)

2n _ 1 < cllog2 n.

The proof works with 2 replaced by any integer a > 1. It is also claimed
that



602

42*.
1L d -t0,

dl2 n - l
d>n

A. Schinzel

43*. O'~:n~11) has a distribution function.

Finally the following problem is proposed.

P13 . Is it true that for a certain constant c and every n

1L d < clog2n?

d12n-3

In [29] the following notation is used . Let nc(p) be the least number n
divisible by p, but by no smaller prime that has O'(n) 2: cn. Erdös proves
and claims the following.

50. For c 2: 2 the number nc(p) is cube-free, but not square-free apart from
finitely many exceptions.

51. Let A, B be the set of c for which, with a certain p, nc(p) is or,
respectively, is not square-free. A is everywhere dense in (1,2) .

44*. Band AnB are everywhere dense in (1,2) .

He conjectures that

C18. for 1 < c< 2 the result corresponding to 49 is false .

In [30] the following notions are used. A positive integer n is called
pseudoperfect if it is the sum of some of its proper divisors. If n is abundant
but not pseudoperfect, then it is called weird . The authors prove

52. the lower density of weird numbers is positive

and propose the following problems.

P14 . Are there odd weird numbers?
P15 . Can O'(n)/n be arbitrarily large for weird n?

In [32] and [33] the same notion of superabundant numbers is used as
in [3] (p.587). Let Q(x) be the number of superabundant numbers :s; x. It
is shown that

53. liminf(logQ(x)/log2x) 2: 5.48.
x-+oo

In [34] the following theorem is proved.
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54. For every k and 8 > 0 and for all n except a sequence of density 0

(1 - 8)n (S~)) i < si(n), 1 ~ i ~ k.

It is also claimed that
45*. for every k and 8> 0 and for all n except a sequence of density 0

si(n) < (1 + 8)n (S~)Y, 1 ~ i ~ k.

The claim is withdrawn in [21] .
In [35] and [36] the authors prove that

55. max(O"(n -1) + O"(n)) ~ (1 + o(l))e'x log2x .
n:S;x

In [37] the following notation is used . If n = II pe(p) , then
p prime

(na) = II pLae(p)J.

p prime

The authors prove the following theorems.

56. Let N(x) denote the number of n ~ x for which O"(n)/d(n) is not an
integer. Then

N(x) = xexp(-(l + o(1))2Jlog2 Jlog2x) .

57. For every E: in (0,1) the set of n for which (d(n)2-e)10"(n) has density
1, the set of n for which (d(n)2+e)IO"(n) has density 0, the set of n for
which d(n)2 IO"(n) has density 1/2.

58. As x -+ 00

'""' O"(n) _ g(l) ~
Li d(n) - 271"1/2 (logx)I/2'
n:S;x

where

(
1 ) 1/2 ( 1 ( 1)g(s) = n 1 - S 1 + 2 1 + - p-8

p pnme p p

1 ( 1 1) -28 )+3 l+ p+p2 p + ...

and the principal value of (1 - ;.)1/2 is taken.
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59. As n --+ 00 we have

where

A{n: ~~:~ ~x} ~Axlogx,

A. Schinzel

A = II (1 - ~) 2 (1 + _2 + 2 3 + ...) .
. p p+1 p+p+1

p pnme

In [38] the authors denote for a given arithmetic function f by G(J, x)
the greatest integer G for which there is a positive integer n with

f (n) > L f (n + i)
O<lil<G

and put

M(J,x) = maxf(n) , T(J,x) = max(J(n -1) + f(n)) .
n~x n~x

They prove

60. G(O", x) = (1 + o(1))3e'Y log2x,

61. T(O",x) ~ x (M (O"~) , x) + 1 + 0((10g2 X)- 1))

61 is an improvement on 55.

IH. Papers concerning the <p-function, but not the o-function.
Here belong the following papers

[40] On the normal number of prime factors of p - 1 and some related
problems concerning Euler's cp-function, Quart. J . Math., Oxford Sero6
(1935), 205-213 .

[41] On the integers which are the totient of a product of three primes, ibid.
7 (1936), 16-19.

[42] On the integers which are the totient of a product of two primes , ibid. ,
227-229 .

[43] Some remarks on Euler's </>-function and some related problems, Bull.
Amer . Math. Soc. 51 (1945), 540-544 .

[44] Some asymptotic formulas in number theory, J . Indian Math. Soc.
(N.S.) 12 (1948), 75-78.
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[45] (with H. N. Shapiro) The existence of a distribution function for an
error term related to the Euler function, Canad. J. Math. 7 (1955),
63-76.

[46] (with R. R. Hall) On the values of Euler's ep-function, Acta Arith. 22
(1973), 201-206.

[47] (with R. R. Hall) Distinct values of Euler's ep-function, Mathematika
23 (1976), 1-3.

[48] (with R. R. Hall) Euler's ep-function and its iterates, ibid. 24 (1977),
173-177.

[49] Some problems and results in number theory, Number Theory and
Combinatorics, Japan 1984, 65-87, Reidel1985.

[50] (with C. Pomerance) On the normal number of prime factors of cp(n),
Rocky Mountain J. Math. 15 (1985),343-352.

[51] (with F. Luca and C. Pomerance) On the proportion of numbers co
prime to a given integer. De Koninck, Jean-Marie (ed.) et al., Anatomy
of integers, Montreal, Canada, 2006. Providence, Rl: American Math
ematical Society (AMS), CRM Proc. and Lecture Notes 46 (2008),
47-64.

In [40] Erdös considers the number V(x) of positive integers m ~ x for
which the equation cp(n) = m is solvable and the number A(m) defined above
as the number of solutions of cp(n) = m. He proves that
62. for every e > 0 and x > xo(e)

x
V(x) <-(logx)l-e'

63. there exists a constant c > 0 such that for infinitely many n

A(n) ~ ne•

Both results improve upon an earlier work of Pillai [19]. Wooldridge [28]
gave later an admissible value of the constant c, as any number < 3 - 2\12.

Let fa(m), h(m) be the number of representation of m as cp(pqr), or
cp(pq), respectively, where p, q, r are distinct primes.

In [4] Erd6s proves elementarily that

64. limsup fa(m) = 00.
m-+oo

In [42] Erdös proves by a non-elementary method that
65. for infinitely many m, h(m) > exp(cy1ogm), where c > 0 is a constant.

Almost the same argument applies to the equations u(pqr) = m and
u(pq) = m, but the fact is not mentioned in the papers.



606 A. Schinzel

In [43] Erdos proves that

66. V(x) > 1cx log3 X, ca positive constant, a result claimed in [40]. The
ogx

claim that

V(x) > -1X (log3x)k for every k and x > xo(k)
ogx

is substantiated in [47].

In [43] Erdös also proves a theorem due to hirn and P. Turän that

67. the number of integers n for which <p(n) ~ x is cx+o(x). The constant c

has been determined by Dressler [5] as ((~~~j3) (see also Bateman [1]).

In [44] Erdös proves the following theorem.

68. Denote by A(n) the number of integers m ~ n for which (m, <p(m)) = 1.
Then

ne-7

A(n) = (1 + 0(1)) log3n '

He claims

46*. for every c > 0 for which the inequality

(1 - c) log, m < v((m, <p(m))) < (1 + s) log, m

is not satisfied is o(n). This claim is substantiated in [51].

In [45] H(x) = L <p(n) - 62 X • The authors prove that
< n 1f

n_x

69 . H(x) has a continuous distribution function.

In [46] the authors prove that

70. for every B > 20

V(x) = 0 (rr(x)exp(BVlog2x)) .

In [47] the authors prove that

71. there exist positive constants A, C such that

V(x) 2: C1f(x) exp(A(log3 x)2)

and ask the following question:
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P16. is it true that for any c> 1

lim V(cx)/V(x) = c?
x-+oo
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The results 62, 66, 70 and 71 have been superseded by the following theorem
of Ford [8]:

V(x) = -1x exp(C(10g3x-log4x)2+Dlog3x
ogx

- (D + 1/2 - C) log4X + 0(1))

where C, D are constants.
This is, however, not strong enough to answer P16.
In [48)

"Vr-(x) = #{m:::; x : m = <Pr(n) for some n}.

The authors prove that
72. V2(X)« (x/(10gx)2) exp(Dlog2xlog4x/log3 x) , D a constant
and conjecture that
C19. the relation

x/{log xr+e « "Vr-(x) « x/(log xr-e

holds for every fixed r and every E > O.
The right-hand side of this inequality for every r and its left-hand side

for r = 2 have been proved by Luca and Pomerance [17] .
In [49) Erdös makes the following conjectures.

C20. For every k : <p(n) = <p(n+ 1) = . . . = <p(n+k) has infinitely many so
lutions.

C21. For every e > 0 and x> xo(e) there are at least (log e)" consecutive
integers not exceeding x for which all the values <p(n + i), 1:::; i <
(log z]" are distinct .

C22. If kn is the maximal number k such that <p(n + i), 1 :::; i :::; kn are all
distinct, then kn = O(ne ) for every E > O.

He claims
47*. kn « nexp(-(logn)1/3).

The claim concerning <p(n) = <p(n + 1) is substantiated in [20) (see 39).
In [50) the authors consider the function D(J(n)), where D(n) is the

total number of prime factors of n and f(n) = <p(n) or A(n), the universal
exponent mod n . They prove that the following theorems.

73. lim ~# {n :::; x : D(J(n)) - -2
1

(log2x)2:::; ~(log2 x)3/2} = G(u)
x-+oo x y3
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where G(u) = (21l"~1/2 J~oo e-
t 2

/
2 dt.

A. Schinzel

74. !im!# {n ::; x : w(J(n)) - -2
1

(log2x)2::; ~(log2 x)3/2} = G(u)._00 x v3

They conjecture

C23.

lim !# {n ::; x : D(la(n)) - -2
1

(log2x)2::; ~(log2 x)3/2} = G(u) ep(a) ,_00 x v3 a

C24.

lim !# {n ::; x : w(la(n)) - -2
1

(log2x)2::; ~(log2 x)3/2} = G(u) ep(a) ._00 x v3 a

where la(n) is the exponent to which a belongs mod n (a =1= 0, ±1,
(a,n) = 1).

An error committed in the proof of one of the lemmas is corrected in
[21].

In [51] the authors consider the functions

f(a) = #{b: (a, b) = 1 and a/b = ep(n)/n for some n},

g(b) = #{a : (a, b) = 1 and o.[b = ep(n)/n for some n}

and prove.
75. The inequality f(a) ::; (1 +o(1))a log2a] log3a holds as a --+ 00. On the

other hand, there exists a positive constant CO such that f(a) > aco for
infinitely many a.

76. We have f(a) = 0 for almost all positive integers a.
77. We have g(b) ::; b(1+o(l» log3 b/log2b as b --+ 00.

78. The inequality

(n, ep(n)) ::; 2n exp(-y'log 2 log n)

holds for all square-free n 2: 1. On the other hand, there is an infinite
set S of square-free numbers n such that

(n,ep(n)) > n1-(l+o(1» log3 n/log2n as n --+ 00, nE S .

79. For almost all n, (n, ep(n)) is the largest divisor of n supported on the
prime divisors of n in the interval [1, log2n].

80. Let A(x) = ~ L:n~x(n, ep(n)). Then for any k > 0 we have

(log z)" ::; A(x) ::; x(1+o(l)) log3 x/log2 X as x --+ 00.

Thanks are due to Prof. P. Pollack for supplying several references and
Prof. 1. Z. Ruzsa for his penetrating report.
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Note added in proof.

Ivic's results [15] have been improved by M. R. Avidon, Acta Arith. 77
(1996), 195-205.
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Some Results and Problems in the Theory

of Word Maps

ANER SHALEV

In recent years there has been much interest in word maps on groups, with various
motivations and applications. Substantial progress has been made and many
fundamental questions were solved, using a wide spectrum of tools, including
representation theory, probability and geometry. This paper is an extended
survey of the various developments in this field. We also suggest remaining open
problems, conjectures and possible directions for further research.

Contents:
1. Introduction
2. Waring type problems
3. Surjective words and Ore Conjecture
4. Probabilistic aspects
5. Image size and fiber size
6. Conjugacy classes and Thompson Conjecture
7. Character methods
8. Infinite groups

1. Introduction

In recent years there has been a wealth of new results and methods in the
study of word maps on groups, their properties and applications. By a word
we mean an element w = w(x1, . . . , xd) of the free group Fd on the free
generators x1, . . . , xd. Given a word w and a group G we consider the word
map w = wG : Gd → G sending (g1, . . . , gd) to w(g1, . . . , gd). The image of
this map, namely the set of all group elements of the form w(g1, . . . , gd)
(where gi ∈ G) is denoted by w(G).

The author acknowledges the support of an Advanced ERC Grant 247034, a BSF
grant 2008194, and the Miriam and Julius Vinik Chair in Mathematics which he holds.
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Two important questions studied extensively are how large w(G) is, and
what is the w-width of G, which is the minimal k such that w(G)k = 〈w(G)〉,
namely every element of the subgroup generated by w(G) is a product of
length k of elements of w(G) (there is also a slightly different definition of
width which allows also inverses of elements of w(G), see Section 2 below).
Another interesting question is to study the fibers of the word map w, and
in particular its kernel, namely the inverse image of 1. See Segal’s recent
book [87] for more background and further aspects.

There are several motivations for the research directions described above.
One is related to the classical Waring problem in Number Theory. Hilbert’s
solution to this problem shows that every natural number is a sum of g(k)
kth powers, where g is a suitable function. Are there analogues of this result
in highly non-commutative contexts? In particular for (nonabelian) finite
simple groups?

Various such analogues have been provided. For example, in [68] and [83]
it was shown that every element of a large finite simple group is a product of
f(k) kth powers, and this led to various generalizations, where powers are
replaced by arbitrary words, and the unspecified function became explicit,
and in fact very small. See [52], [89], [37], [38] and [41].

Another motivation is Serre’s question form the 1960s, whether every
finite index subgroup of a (topologically) finitely generated profinite group
is open. Progress was made by many authors, and a general affirmative
answer was provided by Nikolov and Segal in [73, 74]. A major tool in
their proof are properties of word maps and results on word width in finite
groups. See also [75, 76].

Other motivations for the study of word maps come from the study
of residual properties of free groups [12], as well as certain questions in
subgroup growth and representation varieties [39].

A useful result proved by Borel [6] in the 1980s states that word maps
on simple algebraic groups are dominant maps. This can be applied in the
study of word maps on finite simple groups of Lie type [35].

While the width of non-trivial words in large finite simple groups was
eventually shown to be two by Larsen, Shalev and Tiep [41], even stronger
results hold for some particular words. If w is the commutator word [x1, x2]
then it turns out that w(G) = G, namely every element of a finite sim-
ple group is a commutator. Indeed this was recently proved by Liebeck,
O’Brien, Shalev and Tiep [47], establishing a longstanding conjecture of
Ore from 1951 [78].

Extensions for quasisimple groups were given in [48], [42] and [24]. In
particular it turns out that Ore Conjecture also holds for quasisimple groups,
with finitely many given exceptions.
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Various interdisciplinary methods were developed to study these prob-
lems, combining character theory, algebraic geometry, combinatorics, and
sometimes analytic number theory and computational group theory as well.

Several important problems on w(G) for finite (often simple) groups G
are still open and will be formulated in the next sections. A new challenging
direction is to study problems of similar flavor for infinite groups, and most
notably arithmetic groups.

A first step is to find a way to “measure” the size of subsets of infinite
groups. Of course if G is a topological group with a Haar measure then we
have a natural way, but for infinite discrete groups there is no obvious way
to measure subsets. This may be handled as follows. Let Γ be an infinite
group generated by a finite set S. If Z is a subset of Γ, the asymptotics
of the probability that a random walk of length k on the Cayley graph of
(Γ, S) lands in Z provides a way to measure the “size” of Z. Furthermore,
effective methods for estimating this asymptotics were recently developed
in [33] and [62] under the title “Sieve methods in group theory”, imitating
classical sieve methods in number theory, and adapting them to the non-
commutative world.

The theory of expanders and especially the recent breakthrough on prop-
erty τ and approximate subgroups (see [25], [26], [7], [82], [8], [86]) enabled
these methods to work in some situations. For example, Lubotzky and
Meiri [62] showed in this way that the set of all proper powers in a finitely
generated linear group (over C) which is not virtually solvable is “exponen-
tially small”. This is a far reaching extension of some results of Hrushovski,
Kropholler, Lubotzky and Shalev on powers in linear groups [27].

In spite of this progress for power maps, the study of word maps for
various infinite groups is still in its very beginning, and many natural
questions, e.g. on word width in arithmetic groups, are very much open.
For example, does Ore Conjecture hold in SLn(Z) for n > 2?

It is natural to study such questions first for local groups, for example
p-adic groups. Progress was recently made in the study of word maps and
commutator maps in p-adic groups such as PSLn(Zp) [2]. In particular Ore
Conjecture is proved there if n is a proper divisor of p− 1.

Currently there is also interest in word maps on other algebraic struc-
tures, such as rings and Lie algebras, but this goes beyond the scope of this
survey.

Some words on the structure of this paper. In Section 2 we present
results on word width and Waring type problems. Section 3 is devoted to
word maps which are surjective on all (or almost all) finite simple groups. In
particular this is where Ore Conjecture is discussed. Probabilistic aspects
of word maps are discussed in Section 4. In Section 5 we study the size of
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the image and the fibers of word maps, and some applications are given.
Section 6 is devoted to products of conjugacy classes, Thompson Conjecture
and related topics. In Section 7 we discuss character methods, a related
zeta function, and their applications to the study of word maps. Finally,
Section 8 is devoted to word maps on infinite groups, most notably p-adic
and arithmetic groups.

Various open problems and conjecture are suggested throughout this
article. We hope that they will inspire future research.

2. Waring Type Problems

A classical result in Number Theory, which goes back to Lagrange, states
that every positive integer is a sum of four squares. Results for some
larger powers were obtained, culminating in Hilbert’s celebrated solution
to Waring Problem, showing that every positive integer is a sum of g(k) kth
powers, where g is a suitable function (see, for instance, [69]).

Are there analogues of this phenomenon for interesting nonabelian
groups, such as (nonabelian) finite simple groups? We are interested in
situations where every group element can be expressed as a short product
of elements in the image of a given word map.

For a group G and subsets A,B ⊆ G let AB = {ab|a ∈ A, b ∈ B} and
Ak = {a1 · · · ak|ai ∈ G}.

We start with a fundamental result of Borel [6] (see also [35]) on word
maps in algebraic groups.

Theorem 2.1. Let G be a simple algebraic group over any field K. Let
w ∈ Fd be a non-identity word. Then the word map wG : Gd → G is a
dominant morphism.

This means that the image w(G) is not contained in any proper subva-
riety of G, and implies that w(G) contains a non-trivial Zarsiki-open subset
of G. As a consequence we easily obtain the following.

Corollary 2.2. Let G be a simple algebraic group over an algebraically
closed field K. Let w1, w2 ∈ Fd be two non-identity words. Then we have
w1(G)w2(G) = G.

In particular it follows that w(G)2 = G if w �= 1. To deduce Corollary
2.2 from Theorem 2.1, let Oi ⊆ wi(G) be non-trivial open subsets (i = 1, 2),
and let g ∈ G. Then O−11 g and O2 are non-trivial Zariski-open subsets, and

over an algebraically closed field this implies that O−11 g ∩O2 is non-empty.
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If g2 is in the intersection then g2 = g−11 g for some g1 ∈ O1, so g1g2 = g and
gi ∈ wi(G) for i = 1, 2, proving the corollary.

It will take much more work to establish a finitary version of this result
(see Theorem 2.9 below).

We start with earlier relevant results on finite simple groups. By a
theorem of Jones [31] and the classification of finite simple groups, there is
no identity which holds in an infinite set of finite simple groups. In other
words we have the following.

Theorem 2.3. For every word w �= 1 there exists a number N = N(w) such
that if G is a finite simple group of size at least N then w(G) �= {1}.

By the simplicity of G it follows that 〈w(G)〉 = G if G is large enough.
Can we then find a constant c (which may depend on w but not on G) such
that w(G)c = G? This is equivalent to the verbal subgroup of the Cartesian
product of all finite simple groups generated by values of w being a closed
subgroup.

Various instances of this problem were considered in the past two
decades. For w = [x1, x2] = x−11 x−12 x1x2, the commutator word, it was
shown by Wilson [95] in 1994, using methods of mathematical logic, that
indeed w(G)c = G for some absolute constant c. In 1996-7 Martinez and
Zelmanov [68], and independently Saxl and Wilson [83], solved the problem
for the power word w = xk1.

Theorem 2.4. Given a positive integer k there is a number f(k) such that
if G is a finite simple group of exponent not dividing k then every element
of G is a product of f(k) kth powers.

The results on commutators and powers were extended to arbitrary
words by Liebeck and myself in [52] as follows.

Theorem 2.5. For every word w �= 1 there is a positive integer c = c(w)
such that if G is a finite simple group such that w(G) �= {1} then w(G)c = G.

For several years it was not known whether the number c(w) in the
theorem above can be replaced by an absolute constant. This problem was
very recently solved by Kassabov and Nikolov [32] who provided a negative
answer.

Proposition 2.6. For every positive integer c there is a word w �= 1 and a
finite simple group G such that w(G) �= {1} and w(G)c �= G.

In this result G can be taken to be an alternating group An with n
arbitrarily large. Indeed it is shown in [32] that for any n ≥ 7 there is a
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word w such that the image w(An) of the word map on An is all 3-cycles
and the identity element. This easily implies Proposition 2.6, since |w(An)|c
is smaller than |An| for sufficiently large n.

The construction in [32] was greatly generalized by Lubotzky [61], char-
acterizing images of word maps in finite simple groups. Clearly these images
are characteristic subsets (closed under the group automorphisms) contain-
ing 1. It turns out that this is the only restriction.

Theorem 2.7. For every finite simple group G and a characteristic subset
S of G with 1 ∈ S there is a word w such that w(G) = S.

Lubotzky’s result confirms a conjecture I made during the conference
Words and Growth (Jerusalem 2012), and was proved during that confer-
ence.

While c(w) in Theorem 2.5 genuinely depends on w, it was shown in [89]
that for finite simple groups of sufficiently large order there is no such
dependence, and c(w) can be taken to be a surprisingly small number.

Theorem 2.8. Let w �= 1 be a word. Then there exists a positive integer
N = N(w) such that for every finite simple group G with |G| ≥ N(w) we
have w(G)3 = G.

This result is obtained in [89]. We actually prove a somewhat stronger
result, that there exists a conjugacy class C of G contained in w(G) such
that C3 = G. The proof uses probabilistic arguments and character theory,
in order to study the distribution of the random variable y1y2y3 where
yi are randomly chosen elements of the (suitably chosen) conjugacy class
C ⊂ w(G).

It is intriguing that the proof of Theorem 2.8 for alternating groups
depends, among other tools, on the Erdős-Turán theory of random permu-
tations (see [13, 14]).

A new proof of Theorem 2.8 was given by Nikolov and Pyber in [77],
using the so-called Gowers’ trick [21]. Roughly speaking, Gowers’ trick

shows that if S is a large subset of a finite group G (namely |S| > |G|/k1/3
where k is the minimal degree of a non-identity character of G) then S3 = G.
Results from [37] and additional work show that w(G) is large enough if G
is a (large) finite simple group of Lie type, and this provides a simplified
proof for the Lie type case of Theorem 2.8.

Is Theorem 2.8 best-possible, or can its conclusion be strengthened
to w(G)2 = G? This was a major open problem for a several years. An
affirmative answer was recently given by Larsen, Shalev and Tiep [41]. In
fact we obtain a more general result, dealing with two words w1, w2.
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Theorem 2.9. For every two non-identity words w1, w2 ∈ Fd there exists a
number N = N(w1, w2) such that if G is a finite simple group of order at
least N then w1(G)w2(G) = G.

In particular we have w(G)2 = G provided |G| ≥ N(w).

Theorem 2.9 may be regarded as a finitary analogue of Corollary 2.2
for simple algebraic groups. It is a best possible solution to this Waring
type problem for finite simple groups. Indeed, some words, such as x2, are
never surjective on finite simple groups, so the word width is sometimes 2.
We also note that there is no chance to prove Theorem 2.9 using Gowers’
trick and its variations, which are not strong enough to prove results of type
S2 = G.

Theorem 2.9 gives rise to the following far reaching improvement of
Theorem 2.4.

Theorem 2.10. For every positive integer k there exists a number N =
N(k) such that if G is a finite simple group of order at least N then every
element of G is a product of two kth powers.

This can be regarded as a direct non-commutative analogue of Waring
problem in Number Theory. In the original context we need a sum of g(k)
kth powers to cover everything, while in the universe of finite simple groups
a product of two kth powers suffices. Thus non-commutativity is sometimes
an advantage.

The proof of Theorem 2.9 is rather long and complex. The case of
alternating groups and groups of Lie type of bounded rank appears in
[37, 38]. The proof for classical groups of unbounded rank (and hence for
all finite simple groups) appears in [41]. All these proofs employ character
methods, and often some additional methods from algebraic geometry and
analytic number theory.

Some of the results above can be extended to finite quasisimple groups,
sometimes with small modifications. Recall that a group is called quasisim-
ple if it is perfect, and simple modulo its center. For example SLn(q) are
quasisimple (unless n = 2 and q = 2, 3). In [42] we establish the following.

Theorem 2.11. For every three non-identity words w1, w2, w3 ∈ Fd there
exists a number N = N(w1, w2, w3) such that if G is a finite quasisimple
group of order at least N then w1(G)w2(G)w3(G) = G.

In particular we have w(G)3 = G if |G| ≥ N(w) for quasisimple groups
G. Our proof relies on Gowers’ trick mentioned above.

Can one obtain a stronger result for quasisimple groups G, namely
w(G)2 = G if |G| � 0? The answer turns out to be negative: there are words
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w �= 1 and infinitely many finite quasisimple groups G for which w(G)2 �= G.
For example, it is shown in [42] and independently in [4], that x41x

4
2 is not

surjective on SL2(q) for q ≡ 3, 5 mod 8. In this sense Theorem 2.11 is best
possible.

However, for some families of quasisimple groups, such as the universal
covers of alternating groups, we do obtain width 2 results. See [42] for more
details.

In [24] Guralnick and Tiep have just proved that for every words
w1, w2 �= 1 there exists N = N(w1, w2) such that if G is a finite quasisimple
group of order at least N then G \ Z(G) ⊆ w1(G)w2(G).

Let us now consider finite groups in general. Here we cannot expect
results of the form w(G)k = G for small k, or indeed for any k, since w(G)
need not generateG even if w(G) �= {1}. But we can study the w-width ofG,
defined as the minimal k satisfying (w(G)∪w(G)−1)k = 〈w(G)〉, the verbal
subgroup generated by w(G). A fundamental question is the following.

Problem 2.12. Which words w have bounded width in all finite groups
G with a given number of generators, namely width ≤ f(w, d(G)) for some
function f?

This is a difficult problem. Some words, such as the metabelian word
[[x1, x2], [x3, x4]], do not have this property. Deep results by Nikolov and
Segal establish the following.

Theorem 2.13. Suppose one of the following holds:

(i) w = [x1, . . . , xd], a left-normed commutator of length d.
(ii) w is a locally finite word, namely the variety of groups it defines is

locally finite.
(iii) w = xk1 for some k.
(iv) w /∈ F ′d.

Then w has the property stated in Problem 2.12 above.

See [73, 74] for parts (i) and (ii), and [75] for parts (iii) and (iv) (which
generalizes (iii) and follows from it).

Note that this result for w = xk1 yields an immediate solution to Serre’s
problem whether finite index subgroups of finitely generated profinite groups
are open, simplifying the original proof in [73, 74].

Indeed let G be a (topologically) finitely generated profinite group, and
let H ≤ G be a finite index subgroup. To show that H is open it suffices to
show that its core in G is open, so we may assume that H is normal in G.
Let k = |G : H|. Then it follows that gk ∈ H for all g ∈ G, so H ≥ 〈w(G)〉
where w = xk1. Set N = 〈w(G)〉. By Theorem 2.13 every element of N is a
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bounded product of kth powers, which implies that N is closed. Thus G/N
is a finitely generated profinite group satisfying the identity xk1 = 1. By
Zelmanov’s solution to the Restricted Burnside Problem [98, 99] it follows
that G/N is finite. Hence N is open, and so is H.

See also [76] for various generalizations to finite groups and compact
groups.

While this section is devoted mostly to upper bounds on word width,
interesting lower bounds are also given in various contexts. For example,
Nikolov constructs in [71] finite perfect groups of arbitrarily large commu-
tator width. For certain power words w = xk the w-width of every non-
solvable group is at least 2, namely w-width 1 implies solvability. For ex-
ample, in [56] we obtain the following somewhat surprising result.

Theorem 2.14. Let G be a finite group and suppose the set of 12th powers
in G is a subgroup of G. Then G is solvable.

The proof requires the classification of finite simple groups and other
tools. It can be shown that 12 is the minimal number with this property,
but there are various other numbers k with the property that if the xk-width
of a finite group G is 1 then G is solvable. These numbers are characterized
in [57].

In spite of these results, we are still far from a full understanding of
finite groups of xk-width 1, or of w-width 1 for other words w.

3. Surjective Words and Ore Conjecture

In spite of considerable progress in the study of word maps on finite – often
simple – groups, some important natural problems are still very much open.
Recall that for a word w �= 1 and a large enough finite simple group G
we have w(G)2 = G by Theorem 2.9 above. However, for some words w we
may expect more, namely w(G) = G. This leads to the following challenging
problem.

Problem 3.1. Which words are surjective on all finite simple groups?

A word w ∈ Fd is called primitive if it is part of a free basis for Fd,
namely it is an image of the word x1 by some automorphism of Fd.

Clearly, primitive words are surjective on any group, but other words
also have this property. Indeed the words which are surjective on any group
were characterized by Segal (see [87], Lemma 3.1.1) as follows.
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Proposition 3.2. A word w ∈ Fd is surjective on every group if and only if

w ∈ xk11 · · ·xkdd F ′d for some integers k1, . . . , kd which satisfy gcd(k1, . . . , kd) =
1.

For example, x21x
3
2 is not primitive but always surjective.

Various words are not surjective on all groups, and yet they are surjective
on all finite simple groups. A longstanding conjecture of Ore [78], posed in
1951, states that the commutator word has this property.

Conjecture 3.3 (Ore Conjecture). Every element of every finite simple
group is a commutator.

This conjecture attracted much attention, and various related results
were obtained over the years. The case of alternating groups was handled
by Ore [78]. Special linear groups were treated by Thompson [91, 92, 93] in
the 1960s. A breakthrough was obtained in 1998 by Ellers and Gordeev [15]
who proved the conjecture for simple groups of Lie type over fields of size
exceeding 8. Finally, in 2010 the conjecture was fully proved by Liebeck,
O’Brien, Tiep and myself [47], so we have

Theorem 3.4. Ore Conjecture holds.

The proof in [47] combines 3 ingredients: representation theory and
character methods, induction on the dimension, and computational group
theory.

Roughly speaking we show, by combining Frobenius character formula
(see Proposition 7.1 below) with various (some new) results on characters of
finite groups of Lie type, that elements with small centralizers are commuta-
tors. Then we show that the remaining elements are breakable, in the sense
that they lie in a product of subgroups of Lie type of smaller dimension, and
deduce by induction that they too are commutators. This argument works
for groups in large enough dimension, and for various groups of smaller di-
mension Ore Conjecture should be verified directly (the induction base).
This is done using computational group theory, and in fact required 3 years
of CPU time.

Note that it follows from Theorem 3.4 that longer commutators in
distinct variables are also surjective on all finite simple groups. However
when variables repeat this not clear. A challenging case is that of Engel
words en = [x, y, y, . . . , y], where y occurs n times.

A classical theorem of Zorn states that a finite group is nilpotent if and
only if it satisfies the identity en = 1 for some n. Simple groups may be
considered as the opposite of nilpotent groups, and for them we expect the
Engel words to have the maximal possible image, namely the whole group.
We therefore propose the following.
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Conjecture 3.5. All Engel words are surjective on all finite simple groups.

This was verified by computer for various finite simple groups by O’Brien
and others. Some theoretical work was done by Puder and Schul on Engel
words in alternating groups, but Conjecture 3.5 is still open even in this
case.

Bandman, Garion and Grunewald [3] studied Conjecture 3.5 for SL2(q)
and PSL2(q) using the trace method, obtaining the following.

Proposition 3.6. For every n ≥ 2 there is a number q0(n) such that if
q ≥ q0(n) is a prime power then the Engel word en is surjective on PSL2(q).

Let us now turn to other words. In [41] it is conjectured that the
word x2y2 is always surjective on finite simple groups. This was verified
independently in [49] and in [22], using completely different methods, so we
have:

Theorem 3.7. Every element of every finite simple group is a product of
two squares.

This result may be regarded as a non-commutative analogue of Lagrange
four squares theorem in Number Theory. It is intriguing that it holds for
all finite quasisimple groups too, as shown in [42].

Theorem 3.7 can be generalized as follows.

Theorem 3.8. Let n = pk be any prime power. Then every element of
every finite simple group is a product of two nth powers.

This was proved in [22] in general, and in [49] for p > 7.

Recall that, by a classical result of Burnside, groups of order paqb (where
p, q are primes) are always solvable. Thus if n is divisible by at most two
primes then xn is not an identity in any finite simple group. We suggest the
following conjecture which is a common generalization of Burnside’s paqb

Theorem and Theorem 3.8 above.

Conjecture 3.9. Let n = paqb where p, q are primes. Then every element
of every finite simple group is a product of two nth powers.

Work in progress by Guralnick, Liebeck, O’Brien, Tiep and myself settles
this in many cases, and we hope a proof of Conjecture 3.9 will be completed
soon.

A related problem is the following.

Problem 3.10. Which words are surjective on almost all (namely all but
finitely many) finite simple groups?
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Note that words of the form w1w2 where w1, w2 are any two non-trivial
words in disjoint sets of variables have this property, by Theorem 2.9 above.

On the other hand power words w = vk for k > 1 and some word v do
not have this property, since there are infinitely many finite simple groups
whose image is not coprime to k, hence the kth power map on them is not
surjective.

For some time it was speculated that perhaps every word which is not a
proper power is surjective on almost all finite simple groups. A breakthrough
was recently made by Jambor, Liebeck and O’Brien in [29].

Theorem 3.11. There are words w which are not proper powers and which
are not surjective on infinitely many finite simple groups.

The idea of the proof is to focus on simple groups of type PSL2(q) for
some infinite collection of q and to use trace methods for G = SL2(q), as
developed in [3]. Words w are then constructed with the properly that the
trace of elements of w(G) is never zero, which implies that w is not surjective
on PSL2(q). An example of such a word is x21[x

−2
1 , x−12 ]2.

We conjecture that such examples do not exist in large rank.

Conjecture 3.12. Let w be a word which is not a proper power. Then
there exists a positive integer N = N(w) such that w is surjective on all
alternating groups of degree at least N , and on all finite simple classical
groups of rank at least N .

4. Probabilistic Aspects

A word map w : Gd → G gives rise to a probability distribution Pw,G on the
finite group G by defining

Pw,G(X) = |w−1(X)|/|G|d

for subsets X ⊆ G. If Pw,G is uniform on G we say that w is uniform on G
(namely |Pw,G(X)| = |X|/|G| for any subset X ⊆ G).

Deep results on the distribution of Pw,G for symmetric groups G = Sn

were obtain by Nica [70] in 1994. Suppose w = vk where k ≥ 1 is maximal
(k is then called the exponent of w). Roughly speaking Nica shows that
the behavior of Pw,Sn for large n is similar to the behavior of Pxk

1 ,Sn
if we

focus on the distribution of the number of m-cycles (where m is bounded)
in w(g1, . . . , gd) where gi ∈ Sn are randomly chosen.
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Certain words w are uniform on all finite groups G for an obvious reason.
These are the primitive words.

A natural conjecture, posed by several people at the Hebrew University,
is that the converse also holds. The case of F2 was proved by Puder [80].
Parzanchevski and Puder [81] then proved the full conjecture, so we have
the following.

Theorem 4.1. A word w ∈ Fd is uniform on all finite groups if and only if
w is primitive.

In fact it is shown in [81] that if w is uniform on infinitely many symmet-
ric groups Sn then w is primitive. This is obtained by studying the random
variable Yn which counts the number of fixed points of w(g1, . . . , gd) where
gi ∈ Sn are random permutations. It is shown (by combining Nica’s meth-
ods with additional tools) that if w is not primitive then the expectance of
Yn for large n is not 1. This implies that w is not uniform on Sn.

One may ask a more general question: for which words u, v ∈ Fd we
have Pu,G = Pv,G for all finite groups G? If v = φ(u) for some φ ∈ Aut(Fd)
then u and v clearly induce the same distribution on every finite group. We
conjecture that the converse also holds.

Conjecture 4.2. Words u, v ∈ Fd induce the same distribution on every
finite group if and only if they are equivalent under the Aut(Fd)-action.

If true, this would be a far reaching extension of Theorem 4.1 (which
confirms the conjecture in the case u = x1).

Next we discuss almost uniformity of words. If Pw,G converges in the
L1-norm to a uniform distribution on G as G ranges over a family of finite
groups we say that w is almost uniform on this family.

We can show that various non-primitive words are almost uniform on
finite simple groups. The first result of this type was obtained by Garion
and myself [18]:

Theorem 4.3. The commutator word [x1, x2] is almost uniform on finite
simple groups.

The proof is character-theoretic (see Section 7 below). Combining The-
orem 4.3 with the proven Dixon Conjecture that two random elements of a
finite simple group generate the group with probability tending to 1 with the
group order (see [51] and the references therein) we obtained the following
consequence.

Corollary 4.4. Almost every element of a finite simple group G can be
written as a commutator [g, h] where (g, h) is a generating pair for G.
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This is used in [18] to prove a conjecture of Guralnick and Pak [23]
showing that the number of connected components of the Product Replace-
ment Graph of a finite simple group G on two generators tends to infinity as
|G| → ∞. This demonstrates yet another application of the theory of word
maps.

We also show in [18] that the word x21x
2
2 is almost uniform on finite

simple groups. See also [3, 4] for results on almost uniformity of words of
type xn1x

m
2 and of Engel words en on PSL2(q).

Other words might have similar properties. We suggest the following.

Conjecture 4.5. If w1, w2 are non-trivial words in disjoint variables, then
w1w2 is almost uniform on finite simple groups.

Positive evidence is given below.

Theorem 4.6.

(i) Conjecture 4.5 holds for alternating groups An.
(ii) Conjecture 4.5 holds for finite simple groups of Lie type of bounded

rank.
(iii) For any positive integers n, m, the word xn1x

m
2 is almost uniform on

finite simple groups.
(iv) Any admissible word is almost uniform on finite simple groups.

Here a reduced word w(x1, . . . , xd) �= 1 is called admissible if each xi
occurs twice in w, once with exponent 1 and once with exponent −1.
Thus commutators are admissible, as well more general words such as
x1x2 · · ·xdx−11 x−12 · · ·x−1d , and so on.

Part (i) of Theorem 4.6 is obtained in [38, Theorem 1.18], and parts (ii),
(iii) and (iv) are the main results of [40]. Again character methods play a
crucial role in all these proofs.

In spite of the results mentioned above, the following general question
is very much open.

Problem 4.7. Which words are almost uniform on finite simple groups?

Note that power words w = vk (k > 1) are not almost uniform, since
|w(G)|/|G| is bounded away from 1 on infinitely many finite simple groupsG.
Are non-power words always almost uniform? This seems too strong to be
true, but at present we have no counter example.

Character methods are also useful in studying random walks on finite
simple groups G with respect to w(G) as the generating set. Such a walk
starts with 1 and at each time it multiplies the group element reached
so far by a random element chosen (uniformly) from w(G). Denote the
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distribution of such a walk at time t by Pt. If the L1-distance between Pt

and the uniform distribution U on G is smaller than some prescribed ε (say
1/e) we say that the mixing time T (w(G), G) of this random walk is at
most t.

We can now state the following.

Theorem 4.8. Let w be a non-identity word, and let G be a finite simple
group. Then the mixing time T (w(G),G) is equal to 2 if G is large enough.
In fact, if g1, g2 are two randomly chosen elements of w(G), then the
distribution of the random variable g1g2 tends (in the L1-norm) to the
uniform distribution on G as |G| → ∞.

This result for alternating groups was obtained in [38, Theorem 1.17],
and the result for groups of Lie type was proved by Schul and myself [85,
Theorem 1.1]. Theorem 4.8 immediately implies that |w(G)2| ≥ (1− ε)|G|
for any given ε > 0 and a large enough finite simple group G (but proving
that w(G)2 = G is harder).

5. Image Size and Fiber Size

In previous sections we discussed word width and surjectivity questions.
This section is devoted to the study of the size of the image of a word map,
as well as the size of the kernel (and arbitrary fibers) of this map. Some of
the results presented here are useful in the proof of results stated in previous
sections.

It turns out that, for large finite simple groups G, |w(G)| is in some
sense quite close to |G|.

We start with the interesting particular case of the power words in
symmetric groups (the asymptotics in alternating groups is similar). In [34]
Larsen proved the following.

Proposition 5.1. Let k ≥ 1 be an integer and let w = xk1. Then

|w(Sn)| ∼ n−bn!,

where b = 1− φ(k)/k and φ is the Euler function.

This implies, for example, that the probability that a random element
of Sn (or An) is a square is roughly n−1/2. Note that, choosing k suitably
(e.g. as the product of the first m primes) we may arrange that b ≥ 1− ε
for any fixed ε > 0.

We now turn from powers to arbitrary words in alternating groups.
A result of Larsen and myself [37] shows the following.
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Theorem 5.2. For each non-trivial word w and ε > 0, there exists N =
N(w, ε) such that if n ≥ N then

|w(An)| ≥ n−
29
9
−ε|An|.

It follows from Proposition 5.1 that this bound is tight up to the value
of the exponent, which must be at most −1. It is intriguing that the proof
of Theorem 5.2 depends also on Analytic Number Theory and Vinogradov’s
three primes theorem.

We now turn to simple groups of Lie type. In those which are of
bounded rank the word values have positive proportion. Indeed by a result
of Larsen [35] we have:

Theorem 5.3. Let G be a finite simple group of Lie type of rank r and let
w �= 1 be a word. Then there exists a constant c = c(r, w) > 0 depending
only on r and w such that

|w(G)| ≥ c|G|.

The proof relies on algebraic geometry (see also [39]). Another result
from [35] deals with finite simple groups in general.

Theorem 5.4. Let w �= 1 be a word. Then

lim inf log |w(G)|/ log |G| = 1,

as G ranges over all finite simple groups.

Thus the Hausdorff dimension of w(G) tends to 1. This means that
for every ε > 0 and every sufficiently large finite simple group G we have
|w(G)| ≥ |G|1−ε.

Eventually better lower bounds on the size of w(G) were obtained in [37].
For groups of Lie type we have:

Theorem 5.5. For every word w �= 1 there is a number N = N(w) such
that if G is a finite simple group of Lie type of rank r which is not of type
Ar or 2Ar, and |G| ≥ N , then

|w(G)| ≥ cr−1|G|,

for some absolute constant c > 0.

Weaker lower bounds on |w(G)| for groups G of Lie type Ar or 2Ar are
obtained by Nikolov and Pyber [77].

We conjecture that Theorem 5.5 holds for all Lie types, and also for
alternating groups, in the following sense.
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Conjecture 5.6. For every word w �= 1 there exists a number N = N(w)
such that if G is an alternating group of degree n or a finite simple group
of Lie type of rank n, and |G| ≥ N , then

|w(G)| ≥ cn−1|G|,

where c > 0 is an absolute constant.

For words which are not proper powers stronger conclusions might fol-
low.

Problem 5.7. Suppose w is not a power word, and let G be a finite simple
group.

(i) Is it true that there exist N,c > 0 depending on w such that if |G| ≥ N
then |w(G)| ≥ c|G|?

(ii) Is it true that for every ε > 0 there exists N = N(w, ε) such that if
|G| ≥ N then |w(G)| ≥ (1− ε)|G|?

Note that Conjecture 3.12 on the surjectivity of word maps in large rank
implies an affirmative answer to part (i) above (using Theorem 5.3).

We now turn to the kernel of word maps and related topics. We some-
times denote the word map w on Gd by wG.

For a finite group G define PG(w) = |Ker(wG)|/|Gd|, the probability
that w(g1, . . . , gd) = 1 where gi ∈ G are randomly chosen. Thus PG(w) = 1
if and only if G is an identity in G. In [12] it was shown that, for w �= 1 and
finite simple groups G,

PG(w) → 0 as |G| → ∞,

and this result yielded a simplified solution of a problem posed by Magnus,
showing that the free group Fd is residually S for any infinite set S of finite
simple groups.

How fast does PG(w) tend to zero? If w is a primitive word then it
is uniform on all finite groups (see Section 4) and so PG(w) = |G|−1. If
w = [x1, x2], the commutator word, then it is well known that PG(w) =
k(G)/|G|, where k(G) is the number of conjugacy classes of G. For power
words w = xk1, and G an alternating group of large degree or a classical

group of large rank one can show that PG(w) is close to |G|−1/k (see [96]
and Theorem 1.4 in [54]). Can we find estimates for general words?

The following result from [39] provides a strong bound on PG(w) for
general words w and finite simple groups G. In fact it holds for general
fibers of the word map, not just the fiber above 1.
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Theorem 5.8. For every word 1 �= w ∈ Fd there exist ε = ε(w) > 0 and
N = N(w) > 0 such that for every finite simple group G of order at least
N and every element g ∈ G we have

|w−1G (g)| ≤ |G|d−ε.

In particular we have (under the above assumptions)

PG(w) ≤ |G|−ε.

This bound is best possible: the power word example mentioned above
shows that ε indeed depends on w, and may be arbitrarily close to zero.

We present two applications of Theorem 5.8.

Recall that, for a group H and a positive integer n, an(H) denotes the
number of index n subgroups of H. For background on subgroup growth,
see the book [63] by Lubotzky and Segal. It is well known (see [63, 1.2])
that an(Fd) ∼ n · (n!)d−1. It turns out that non-free groups on d generators
have significantly smaller subgroup growth.

Corollary 5.9. Let H be a non-free group with d generators. Then there
exists ε > 0 such that

an(H) ≤ (n!)d−1−ε

for all sufficiently large n.

Since the deduction of this corollary is rather short we outline it below.
It is well known (see [63, 1.1]) that

an(H) ≤ |Hom(H,Sn)|/(n− 1)!.

Suppose H is generated by h1, . . . , hd. Since H is not free there is a
non-trivial word w ∈ Fd such that w(h1, . . . , hd) = 1. Therefore every φ ∈
Hom(H,Sn) satisfies w(φ(h1), . . . , φ(hd)) = 1, which implies that

|Hom(H,Sn)| ≤ |Ker(wSn)|.

By Theorem 5.8 (more precisely, by its version to Sn which holds too)
there exists δ > 0 such that for all large n we have

|Ker(wSn)| ≤ (n!)d−δ.

This implies

an(H) ≤ |Hom(H,Sn)|/(n− 1)! ≤ n(n!)d−1−δ ≤ (n!)d−1−ε
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for any fixed 0 < ε < δ and sufficiently large n. This concludes the proof of
Corollary 5.9.

Our next application concerns representation varieties. Let K be an
algebraically closed field, and let H be a finitely generated group. Then
for each positive integer n one may form the representation variety
Hom(H,GLn(K)). These varieties and their dimensions have been widely
studied for various groups, see for instance [54] for the case of Fuchsian
groups. Clearly dimHom(Fd,GLn(K)) = dn2. Applying Theorem 5.8 we
show that these dimensions for non-free d-generated groups are substan-
tially smaller. We also obtain a similar result for more general algebraic
groups.

Corollary 5.10. Let H be a non-free group with d generators. Then there
exists ε > 0 such that

(i) dimHom(H,GLn) ≤ (d− ε)n2 for all n > 1;
(ii) dimHom(H,G) ≤ (d− ε) dimG for any semisimple algebraic group G.

The above result shows that the subvariety of Gd defined by the equation
w(g1, . . . , gd) = 1 (where 1 �= w ∈ Fd) is not only proper (hence of codimen-
sion at least 1), but has large codimension (at least ε dimG).

We emphasize that these results hold over algebraically closed fields K
of arbitrary characteristic.

There is some interest in the fibers of some special word maps such as the
commutator map. This can be translated to the study of certain character
sums. See Section 7 below for details.

6. Conjugacy Classes and Thompson Conjecture

Let C be a conjugacy class in a finite simple group G. If C �= {1} then there
exists a natural number k such that Ck = G. Hence there exists k so that
Ck = G for all non-trivial classes C, and the minimal such k is defined to
be the covering number of G.

While the covering number of alternating groups was found long ago
(see [1]) the case of groups of Lie type was solved (asymptotically) much
later, see [16] and [43].

Theorem 6.1.

(i) The covering number of An is [n/2].
(ii) The covering number of a finite simple group of Lie type of rank r is

at most cr, where c is an absolute constant.
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The upper bound in (ii) is sharp up to the value of the constant c.

The covering number represents the worst case situation: for most con-
jugacy classes we have Ck = G for much smaller values of k.

Note that Ck = G implies k ≥ log |G|/ log |C| by a trivial counting argu-
ment. The following theorem from [52] provides a similar upper bound on
the minimal k satisfying Ck = G. In fact it deals not just with conjugacy
classes but also with their unions, namely normal subsets in general.

Theorem 6.2. There exists an absolute constant c such that for any finite
simple group G and a normal subset S of G of size > 1 we have Sk = G for
some k ≤ c log |G|/ log |S|.

Theorem 6.2 was a main tool in proving Theorem 2.5 above, since it
can be applied to the normal subset S = w(G). Moreover, combining it

with Theorem 5.4 which implies e.g. that |w(G)| ≥ |G|1/2 if |G| ≥ N(w), we
obtain (under the same assumption) w(G)2c = G where c is the absolute
constant in Theorem 6.2.

While Theorem 6.1 represents the worst case, and Theorem 6.2 the
general case, the following conjecture deals with the best case, namely with
the minimal k for which Ck = G for some class C.

Conjecture 6.3 (Thompson Conjecture). Every finite simple group G
has a conjugacy class C such that C2 = G.

Note that Thompson Conjecture implies Ore Conjecture discussed in
Section 3. Indeed, suppose C2 = G for a class C in G. Then 1 ∈ C2,
hence C−1 = C. We obtain C−1C = G, so each g ∈ G can be written as
g = x−1xy = [x, y] for some x ∈ C and y ∈ G.

Much work has been done on Thompson Conjecture, see [15] and the
references therein. The conjecture is still open for simple groups of Lie
type over small fields. In recent years some approximations to Thompson
Conjecture have been obtained.

In [89] we show, using probabilistic and character methods, that every
sufficiently large finite simple group G has a conjugacy class C such that
C3 = G.

This has just been improved in the preprint [24] by Guralnick and Tiep
as follows.

Theorem 6.4. Every finite simple group G has a conjugacy class C of
elements of prime order such that C3 = G.

In [90] we obtain the following probabilistic approximation to Thompson
Conjecture.
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Theorem 6.5. Let x ∈ G be a randomly chosen element of a finite simple
group G, and let C = xG be its conjugacy class. Then for any ε > 0 the
probability that |C2| ≥ (1− ε)|G| tends to 1 as |G| → ∞.

Therefore there is a conjugacy class C whose square almost covers G
(for large G).

More progress was recently made by Larsen, Shalev and Tiep [41] and
by Guralnick and Malle [22], leading to the following.

Theorem 6.6. Every finite simple group G has conjugacy classes C1 and
C2 such that C1C2 ⊇ G \ {1}.

In [41] this is proved for all finite simple groups whose order exceeds
some (explicit) constant. Subsequently this was shown in [22] to hold with
no exceptions.

In the proof in [22] for groups of Lie type one may choose C1, C2 to be
semisimple classes. This yields the following interesting consequence.

Corollary 6.7. Let G be a finite simple group of Lie type. Then every
element of G can be written as a product of two semisimple elements.

It was shown earlier by Ellers and Gordeev that every element of a finite
simple group of Lie type is a product of two unipotent elements (see [15]
and the references therein).

In addition to covering results of the type Ck = G, there is considerable
interest in random walks on finite (almost) simple groups G with respect to
a conjugacy class C as a generating set. See Diaconis and Shahshahani [11]
for transpositions in symmetric groups, Lulov [64] and Vishne [94] for ho-
mogeneous classes in symmetric groups, Lulov and Pak [65] for cycles in
symmetric groups, and [52], [55] for groups of Lie type. A main problem in-
vestigated is determining the mixing time T (C,G) of the random walk (see
Section 4 above).

The following result from [38] gives rather sharp bounds on mixing times
in An.

Theorem 6.8. Let σ ∈ An, and C = σSn , and let T = T (C,An) denote the
mixing time of the associated random walk on An.

(i) The mixing time T is bounded if and only if σ has at most nα fixed
points, where α < 1 is bounded away from 1.

(ii) If σ has nα fixed points where α < 1 then

(1− α)−1 ≤ T ≤ 2(1− α)−1 + 1.

(iii) If σ is fixed-point-free or has no(1) fixed points then T ≤ 3.

(iv) If σ has at most no(1) cycles of length 1 and 2 then T = 2.
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Parts (iii) and (iv) are best possible, and extend Lulov’s result [64] for
permutations σ which consist of n/m m-cycles (where the mixing time is 3
if m = 2 and 2 if m ≥ 3). Part (iii) confirms a conjecture of Lulov and Pak
in [65] that the mixing time of a fixed-point-free class of permutations is 2
or 3.

In [90] we obtain a somewhat surprising result for general simple groups
G, showing that the mixing time T (C,G) is usually the smallest possible,
namely 2.

Theorem 6.9. Let G be a finite simple group, let x ∈ G be randomly
chosen, and let C = xG be its conjugacy class. Then the probability that
T (C,G) = 2 tends to 1 as |G| → ∞.

We show a bit more, namely that the product of two random elements
of a “typical” class C is almost uniformly distributed on G. Note that
Theorem 6.9 implies Theorem 6.5 above, and this is how the latter result is
proved.

Next we consider class expansion in finite simple groupsG. The following
was obtained in [89].

Theorem 6.10. Let G be a finite simple group, and let C be a conjugacy
class of G. Then we have

(i) |C3| ≥ min(|C|1+ε, |G|) where ε > 0 is some absolute constant.
(ii) If G is of Lie type of bounded rank then |C2| ≥ |C|1+ε for some

absolute constant ε > 0.

Note that, by the celebrated Product Theorem obtained later in [82]
and [7], the conclusion in part (i) above holds for any generating set C of G,
provided G is of Lie type of bounded rank.

A recent result from [19] extends part (ii) of Theorem 6.10 for all finite
simple groups, provided the class C is small. In fact it deals with normal
subsets in general.

Theorem 6.11. There exist absolute constants ε, δ > 0 with the property
that if G is any finite simple group and C is a normal subset of G such
that |C| ≤ |G|δ then |C2| ≥ |C|1+ε.

This confirms a conjecture I made a few years ago.

We conjecture below that for small conjugacy classes C much more can
be said, namely, the size of C2 is almost maximal, namely almost |C|2.

Conjecture 6.12. For every ε > 0 there exists δ > 0 such that if G is
any finite simple group and C ⊂ G is any conjugacy class of G satisfying
|C| ≤ |G|δ then |C2| ≥ |C|2−ε.
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It suffices to prove the conjecture for alternating groups and for classical
groups of large rank. Indeed, in the bounded rank case we may choose
δ small enough which would imply C = {1}, which trivially satisfies the
required conclusion.

Work in progress by Gili Schul [84] confirms the conjecture in some cases,
including that of alternating groups.

We conclude this section by discussing a recent very general conjecture
posed by Liebeck, Nikolov and myself in [46].

Conjecture 6.13. There exists an absolute constant c such that if G is a
finite simple group and A is any subset of G of size at least two, then G is
a product of N conjugates of A for some N ≤ c log |G|/ log |A|.

Note that we must have N ≥ log |G|/ log |A| by order considerations, and
so the bound above is tight up to a multiplicative constant.

Conjecture 6.13 may be regarded as a far reaching generalization of
Theorem 6.2 dealing with the case where A is a normal subset (so all its
conjugates coincide with itself). It is also a stronger version of a recent
conjecture we posed in [45], where A was assumed to be a subgroup of G.
Positive evidence for the latter conjecture is provided by [50] (when A is a
Sylow subgroup) and [72, 44, 60] (when A is of type SLn), with applications
to bounded generation and expanders. Further results were proved in [45]
in various cases where A is a maximal subgroup of G, but the general case
is still open.

The following results provide positive evidence for the stronger conjec-
ture stated above, regarding subsets. The first result, from [46], can be
stated as follows.

Theorem 6.14. Conjecture 6.13 holds if G any finite simple group and the
subset A has bounded size.

We actually show that there is an absolute constant c such that every
subset A of G with |A| ≥ 2 has N ≤ c log |G| conjugates whose product is G.

The second result was proved subsequently by Gill, Pyber, Short and
Szabó [19].

Theorem 6.15. Conjecture 6.13 holds for all subsets A provided G is a
finite simple group of Lie type of bounded rank.

Tools from the recent theory of approximate subgroups (see [82] and [7])
are very useful in this context.
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7. Character Methods

The proofs of the results described above require various tools, and we will
not attempt to describe all of them in this survey paper. Rather, we shall
highlight a major tool, namely character methods, which plays an essential
role in many of these proofs. See Isaacs [28] for background on general
character theory and Lusztig [66] for characters of groups of Lie type.

Let IrrG denote the set of complex irreducible characters of the finite
group G. To explain the connections to character theory, we start by
discussing the so called non-commutative Fourier transform. Recall that
with a word w ∈ Fd and a finite group G we associated a probability measure
Pw,G on G. For g ∈ G we have Pw,G(g) = |w−1(g)|/|G|d, the probability to
obtain g as w(g1, . . . , gd) where gi ∈ G are randomly chosen.

Clearly, Pw,G is a class function on G, and as such it can be expressed
uniquely as a linear combination of irreducible characters. For convenience
we write

Pw,G = |G|−1
∑

χ∈IrrG
aw,χχ,

where aw,χ ∈ C are the so called Fourier coefficients. Using an inverse
Fourier transform we may reconstruct the Fourier coefficients aw,χ as follows.

aw,χ =
1

|G|d
∑

g1,...,gd∈G
χ(w(g1, . . . , gd)

−1),

which is the average value of the character χ on w(g)−1. In particular we
have aw,1 = 1 for all words w. Unfortunately, the formula above is not easy
to use, and the Fourier coefficients are not known for arbitrary words, but
they have been determined in some important cases.

Consider first the commutator word w = [x1, x2]. By a classical result
of Frobenius from 1896 we have aw,χ = 1/χ(1). In other words we have

Proposition 7.1. Let G be a finite group, and let g ∈ G. Then the number
N(g) of pairs (x, y) ∈ G×G such that [x, y] = g satisfies

N(g) = |G|
∑

χ∈IrrG

χ(g)

χ(1)
.

Consequently, an element g ∈ G is a commutator if and only if
∑

χ
χ(g)
χ(1) �= 0.
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Now, if G is a finite simple group, and g ∈ G is an element with a
small centralizer, then one can use recent advances in representation theory
(based on Deligne-Lusztig theory [66] and other tools) to show that the
main contribution to the character sum in Proposition 7.1 comes from the
trivial character χ = 1, and all the other characters altogether contribute

marginally. This means that, for such elements g we have
∑

χ
χ(g)
χ(1) = 1+o(1)

and so N(g) = |G|(1 + o(1)) and in particular g is a commutator when G is
large enough.

This argument shows that elements with a small centralizer are commu-
tators. To prove Ore Conjecture (Theorem 3.4 above) one needs to show
that the remaining elements are also commutators, and this is done using a
(somewhat complex) inductive argument.

Frobenius formula is also a key tool in the proof of Theorem 4.3 on the
almost uniformity of the commutator map on finite simple groups. In fact
the method in [18] yields a similar result for arbitrary finite groups whose
representation growth is very small.

A central concept in many of our character-theoretic arguments is the
so called Witten zeta function ζG encoding the character degrees of a finite
group G. For a real number s define

ζG(s) =
∑

χ∈IrrG
χ(1)−s.

This function was defined by Witten [97] for real Lie groups and was studied
and applied extensively in [53, 54, 55] for finite simple groups. See also [36]
for the case of algebraic, arithmetic and linear groups.

It turns out that the value of ζG(s) for certain numbers s encodes key
information on various properties of G. To illustrate this in the context
of the commutator map, let U be the uniform distribution on G, and
let P = Pw,G be the commutator distribution (so that P (g) = N(g)/|G|2).
Using non-commutative Fourier techniques one can show that

‖P − U‖ ≤ (
∑
χ =1

χ(1)−2)1/2 = (ζG(2)− 1)1/2,

where the above norm is the L1-norm. Hence if G is a finite group such
that ζG(2) is very close to 1, then the commutator map from G×G to G is
almost uniform.

Now, in [54] we show the following.

Theorem 7.2. Fix a real number s > 1, and let G be a finite simple group.
Then ζG(s) → 1 as |G| → ∞.



636 A. Shalev

Using this for s = 2 we obtain a proof of Theorem 4.3.

While the commutator distribution P is almost uniform on finite simple
groups G, we still do not know enough about the values of P (g) for ele-
ments g ∈ G and how close they are to |G|−1. Note that P (1) = k(G)/|G|
where k(G) is the number of conjugacy classes of G, which tends to in-
finity as |G| → ∞. However, if g �= 1, can we show that P (g) is close
to |G|−1? By Proposition 7.1 we have P (g) = |G|−1S(g), where S(g) =∑

χ∈IrrG χ(g)/χ(1).

Problem 7.3. Study the character sum S(g) as G ranges over natural
families of finite simple groups. For which elements g ∈ G we have S(g) ≥
1− ε, or S(g) ≥ ε for a fixed ε > 0?

For some time it was conjectured that S(g) ≥ 1− ε for all large finite
simple groups G and g ∈ G, so that (asymptotically) no elements are under-
represented as commutators. This was refuted by Liebeck and myself. We
showed that transvections g in PSU3(q) and PSU5(q) are under-represented
as commutators in the sense that S(g) = o(1), and these are the only ex-
ceptions in these groups. It would be interesting to find out whether this is
a special case of some general phenomenon.

Estimation of the character sums S(g) requires understanding cancella-
tion phenomena, since in many cases

∑ |χ(g)|/χ(1) is very large while S(g)
is still very close to 1.

Having discussed commutators let us examine Fourier expansion for
other words. For w = x2 the Fourier coefficients are known, and aw,χ

coincides with the Schur indicator of the character χ, which is 1, 0 or −1.

Now, if u, v are words in disjoint sets of variables, then we have

Puv,G = Pu,G ∗ Pv,G,

the convolution of the two distributions. This yields the basic relation

auv,χ =
au,χav,χ
χ(1)

,

from which it is easy to compute aw,χ if w is a product of commutators and
squares in disjoint variables. This is useful in the study of Fuchsian groups,
see [53, 54].

Fourier coefficients of admissible words (see Section 4 above) were stud-
ied by Das and Nath [9] and by Parzanchevski and Schul [79]. This is
useful in showing that admissible words are almost uniform (see Theorem
4.6 above). In [79] there is a formula to obtain the Fourier coefficients which
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avoids summation over dismissible variables (those appearing once with ex-
ponent 1 and once with exponent −1) and over square variables (those
appearing twice with exponent 1).

Character methods are also relevant in the context of studying powers of
conjugacy classes and the Thompson Conjecture in particular. Here a main
tool is the following classical result (see e.g. [88], §7.2, or [1], 10.1, p. 43).

Proposition 7.4. Let G be a finite group, and let C1, . . . , Ck ⊂ G be
conjugacy classes of G. For each element g ∈ G let M(g) be the number
of k tuples (x1, . . . , xk) where xi ∈ Ci (i = 1, . . . , k) such that x1 · · ·xk = g.
Then

M(g) =
|C1| · · · |Ck|

|G|
∑

χ∈IrrG

χ(C1) · · ·χ(Ck)χ(g
−1)

χ(1)k−1
.

Here we write χ(Ci) for the (common) value of χ(x) for x ∈ Ci.

Consequently we see that g ∈ C2 if and only if

∑
χ∈IrrG

χ(C)2χ(g−1)
χ(1)

�= 0.

In particular Thompson Conjecture amounts to saying that any finite simple
group G has a class C such that the character sum above is non-zero for all
g ∈ G.

In general estimating this sum for all g ∈ G is quite a formidable task.
However, to show that G \ {1} ⊆ C1C2 for classes C1, C2, as in Theorem
6.6, it suffices to show that

∑
χ∈IrrG

χ(C1)χ(C2)χ(g
−1)

χ(1)
�= 0

for all g �= 1, and the freedom in choosing the classes C1, C2 is very helpful.
In the main case, where G is a classical group, we choose for C1, C2 classes
of suitable regular semisimple elements s1, s2 ∈ G lying in maximal tori
T1, T2 ⊂ G. The tori Ti are chosen to be weakly orthogonal (see Section 2
of [41] for the precise definition), and this ensures that if χ is an irreducible
character of G such that χ(s1)χ(s2) �= 0 then χ is unipotent; moreover,
there will be a small (in particular, bounded) number of such unipotent
characters.

The choice of s1, s2 ensures that the number of non-zero summands
in the character sum above is small. However, in order to control these
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summands we need information on the character ratios |χ(g)|/χ(1). Gluck’s
bounds (see for instance [20]) are useful but they do not suffice, and we
have to establish sharper character bounds for elements of large support
(see Section 4 of [41] for precise definition). We prove the following.

Theorem 7.5. If G is a finite quasisimple classical group over Fq and g ∈ G
is an element of support at least N , then

|χ(g)|/χ(1) < q−
√
N/481

for all 1 �= χ ∈ IrrG.

This character theoretic result seems to be of independent interest, and
may have further applications. This approach leads eventually to the proof
of Theorem 6.6 above. It also plays a crucial role in the proof of Theorem 2.9,
which is based on finding conjugacy classes Ci ⊂ wi(G) (i = 1, 2) such that
C1C2 covers all of G except the identity element (or sometimes elements of
small support).

The proof of Theorem 6.9 above, that the mixing time with respect
to a random class is 2, uses again character methods and the Witten zeta
function ζG. It is intriguing that in this context the value of ζG(s) at s = 2/3
plays a key role. We show that if G ranges over any family of finite groups
such that ζG(2/3) → 1, then for a random x ∈ G the mixing time T (xG, G)
is 2 with probability tending to 1.

Now, for most families of finite simple groups ζG(2/3) → 1 (see [55]),
and the few remaining families (which are L2(q), L3(q) and U3(q)) are dealt
with by ad-hoc methods.

Our results on classes and word maps in symmetric and alternating
groups are based on new sharp bounds on character values in symmetric
groups obtained in the joint work [38] with Larsen. These bounds have the

form |χ(σ)| ≤ χ(1)E(σ)+o(1) for all χ ∈ IrrSn, where 0 ≤ E(σ) ≤ 1 depends
on the cycle structure of the permutation σ.

The detailed bound is quite technical, but we present here some of its
main consequences.

Theorem 7.6. Let σ ∈ Sn.

(i) If σ has at most nα fixed points, then

|χ(σ)| ≤ χ(1)1/2+α/2+o(1) for all χ ∈ IrrSn.

(ii) If σ has at most no(1) cycles of length < m then

|χ(σ)| ≤ χ(1)1/m+o(1) for all χ ∈ IrrSn.
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(iii) If σ has at most nα cycles then

|χ(σ)| ≤ χ(1)α+o(1) for all χ ∈ IrrSn.

These bounds are essentially best possible. Part (ii) above is a far
reaching generalization of a result of Fomin and Lulov [17]. Theorem 7.6 is
very useful in bounding mixing times T (C,G) of random walks. Indeed, if
Pt is the distribution of this walk at time t, then by the upper bound lemma
of Diaconis and Shahshahani [11] we have

‖Pt − U‖2 ≤
∑

1 =χ∈IrrG

χ(C)2t

χ(1)2t−2
.

Using Theorem 7.6 we can bound |χ(C)| by χ(1)α for appropriate α, which
reduces the right hand side above to the value of the Witten zeta function
ζG at a certain point s (depending on t). We can then find the minimal
integer t > 1 such that ζG(s) tends to 0, and conclude that T (C,G) ≤ t.
This is how Theorem 6.8 is proved.

Theorem 7.6 also plays a major role in proving Theorem 2.9 for alter-
nating groups.

Are there analogues of Theorem 7.6 for finite groups of Lie type? Such
analogues could be extremely useful in solving various outstanding problems
in such groups. Some results in this direction for semisimple elements were
obtained some years ago in the preprint [5] with Bezrukavnikov and Liebeck.
The general theorem is too technical to state here, but we illustrate it with
the following special case.

Theorem 7.7. Let G = GLn(q) and let g ∈ G be a diagonal matrix with
eigenvalues λ1, . . . , λm each occurring n/m times. Then we have

|χ(g)| ≤ cχ(1)1/m for all χ ∈ IrrG,

where c is a constant depending only on n (and not on q).

This result could be regarded as a linear analogue of 7.6(ii) above and
of the Fomin-Lulov bound [17] for Sn.
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8. Infinite Groups

In previous sections we discussed words and Waring type problems in finite
groups. In this section we propose new challenges and discuss similar
problems for infinite groups, such as p-adic groups, arithmetic groups and
linear groups.

For background on word width in infinite groups, see [87].

Results on commutators in special linear groups over fields, and in Lie
groups, were obtained long ago. For example, R.C. Thompson proved the
following in [91, 92, 93].

Theorem 8.1. Let n ≥ 2 and let K be any (possibly infinite) field. If n = 2
suppose |K| > 3. Then every element of SLn(K) is a commutator.

Here the main difficulty was the case of small fields.

A similar result holds for semisimple Lie groups.

However, similar problems over various commutative rings (instead of
fields) are still very much open, and we shall address them below.

Let us now move from commutators to powers w = xk. What can be said
about its image, namely the set of kth powers in various infinite groups?
A classical result of Mal’cev [67] shows that w(G) is very large, in the
sense that it contains a finite index subgroup of G, provided G is virtually
nilpotent and finitely generated. In [27] we study powers in linear groups,
obtaining a converse to this result of Mal’cev.

Theorem 8.2. Let G be a finitely generated linear group over any field K,
and let w = xk.

(i) If w(G) contains a finite index subgroup of G then G is virtually
nilpotent.

(ii) If G is covered by finitely many translates giw(G) of w(G) then G is
virtually solvable.

The proof involves strong approximation, Number Theory (the S-unit
equation) as well as invariant measures on amenable groups.

It follows from part (i) that if the xk-width of G is 1 then G is virtually
nilpotent. See Theorem 2.14 and the comments following it for results
of somewhat similar flavor in finite groups (which only hold for specific
values of k). Part (ii) shows that finitely generated non-virtually solvable
linear groups have few kth powers (namely w(G) has “infinite index” in G).
A stronger result is given in Theorem 8.15 below.

The behavior of the pth power map in pro-p groups is particularly
interesting. Let w = xp. If G is a finite powerful p-group then it is known
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that w(G) is a subgroup, namely G has xp-width 1 (see [58]). Since p-adic
analytic pro-p groups G are virtually powerful (see [59]) it follows that w(G)
contains a finite index (open) subgroup in this case. We conjecture that the
converse also holds.

Conjecture 8.3. Let G be a finitely generated pro-p group and let w = xp.
Then w(G) contains an open subgroup of G if and only if G is p-adic
analytic.

The conjecture implies that if the set of pth powers of a finitely generated
pro-p group G is a subgroup then G is p-adic analytic. Even this weaker
version of the conjecture is very much open.

Word width in pro-p groups and p-adic analytic groups was studied
by Jaikin-Zapirain [30], where the following two fundamental results are
obtained.

Theorem 8.4. A word w ∈ Fd has finite width in all finitely generated
pro-p groups if and only if w /∈ (F ′d)

pF ′′d .

Here (F ′d)
p is the subgroup of the commutator subgroup F ′d generated

by all its pth powers.

Theorem 8.5. Every word has finite width in every compact p-adic analytic
group.

In this result the width depends on the group and on the word. Can we,
in some cases, bound the width by an absolute constant? With some luck,
can this constant be 3, or even 2, as in Theorems 2.8 and 2.9 for large finite
simple groups?

Word maps in p-adic (and adelic) groups were recently studied by Avni,
Gelander, Kassabov and Shalev [2]. Suppose that G is a semisimple, simply
connected, algebraic group over Q, and consider the p-adic group G(Zp).
A typical example is SLn(Zp). Such infinite profinite groups are extensions
of an infinite pro-p group by a finite simple (or quasisimple) group, and
they may share some properties with finite simple groups. We propose the
following.

Problem 8.6. For a word w, study the image w(G(Zp)) and the w-width
of G(Zp).

It turns out that these questions may be studied using variations on
Hensel Lemma, lifting solutions using the derivative dw of w. The following
results from [2] shed some light on these questions.
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Proposition 8.7. For every non-trivial word w ∈ Fd, w(G(Zp)) contains
a non-empty open subset of G(Zp). In particular, w(G(Zp)) has positive
Haar measure.

Indeed, by Theorem 2.1 above, the map w : Gd → G is dominant. Over
an algebraically closed field of characteristic 0, like Qp, this is equivalent
to the existence of a point for which the derivative dw of w is surjective
(as a map of Qp vector spaces). Since the set of points in Gd for which
dw is surjective is Zariski open and G(Zp) is Zariski dense, there is a tuple
−→g = (g1, . . . , gd) ∈ G(Zp)

d such that dw|−→g is surjective. The Proposition
now follows from the p-adic version of the open mapping theorem.

It is interesting that this result does not hold for local rings of positive
characteristic: for example, the image of SLn(Fp[[t]]) under the map x �→ xp

is contained in the set of all matrices all of whose eigenvalues are pth powers,
which is a nowhere dense set.

The next result shows that the w-width of any given word in p-adic
groups is at most 3, provided p is large enough.

Theorem 8.8. For any non-trivial words w1, w2, w3 there exists a number
N depending only on these words, such that such if p ≥ N is a prime then

w1(G(Zp))w2(G(Zp))w3(G(Zp)) = G(Zp).

In particular w(G(Zp))
3 = G(Zp) if w �= 1 and p ≥ N(w).

This may be regarded as a p-adic analogue of Theorem 2.8 above. The
condition on p is necessary, since for small p the word w may be an identity
in some finite quotients of G(Zp).

Can we strengthen Theorem 8.8 and obtain w(G(Zp))
2 = G(Zp) in line

of Theorem 2.9 for finite simple groups? It turns out that the answer is no,
since such a conclusion fails for quasisimple groups (which may be quotients
of the given p-adic group). However, our next result shows that w(G(Zp))

2

is very large.

Theorem 8.9. For any non-trivial words w1, w2 there exists a number
N = N(w1, w2) such that if p ≥ N is a prime then

w1(G(Zp))w2(G(Zp)) ⊇ G(Zp) \ Z(G(Zp))G
1(Zp).

Here G1(Zp) denotes the first congruence subgroup of G(Zp). Theorem
8.9 shows that elements which are non-central modulo G1(Zp) must lie in
w(G(Zp))

2 if w �= 1 and p ≥ N(w).

We now turn from general words to the commutator word.

We propose to study the following p-adic version of Ore Conjecture.
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Conjecture 8.10. Suppose n > 2 or p > 3. Then all elements of SLn(Zp)
are commutators.

A partial solution is given by the following result from [2].

Theorem 8.11.

(i) Every element of SLn(Zp) whose image in SLn(p) is not central is a
commutator, provided n ≥ p+ 2.

(ii) If n is a proper divisor of p− 1 then every element of PSLn(Zp) is a
commutator.

A more general conjecture may be stated, dealing with other p-adic
groups.

We also state another problem, in the spirit of Thompson Conjecture.

Problem 8.12. Study powers of conjugacy classes in p-adic groups G(Zp).
Can we find a conjugacy class C such that C2 = G(Zp)?

We now switch to arithmetic groups, where much less is known. Such
groups have the form G(OS), where G is a simply connected semisimple
algebraic group over a number field K, S is a finite set of primes of K
containing all the archimedean ones, and OS is the ring of S-integers in K.

A main case to be considered is SLn(Z). We propose the following
intriguing question.

Problem 8.13. Is it true that all elements of SLn(Z) (n > 2) are commu-
tators?

We emphasize that, unlike Conjecture 8.10 above, we do not conjecture
here that all elements are commutators. It may well be that the set of com-
mutators is SLn(Z) is not only a proper subset but even an “exponentially
small” subset (see below and [62] for the precise definition). Problem 8.13
is a major test case reflecting the difficulty of deducing from local to global.

More generally, it would be interesting to find the commutator width of
SLn(Z); for large n it is at most 6, by [10].

The same problems may be considered for general arithmetic groups.
Problem 8.13 is a special case of the following.

Problem 8.14. For a word w and an arithmetic group Γ study w(Γ) and
the w-width of Γ.

It is also interesting to study powers of conjugacy classes in arithmetic
groups, and analogues of Thompson Conjecture.
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A new main tool in the study of these problems is the group theoretic
sieve method.

The basic idea, which appears in Kowalski [33], and in full generality in
Lubotzky and Meiri [62], is as follows: We want to estimate “the size” of a
subset Z of a finitely generated group Γ generated by a set S. We do this
by looking at a sequence of finite index normal subgroups Ni of Γ. If these
quotients are “sufficiently independent” and the family of Cayley graphs
Cay(Γ/Ni;S) form a family of expanders, and if the image of Z in all (or in
sufficiently many) of them is of size less than (1− δ)|Γ/Ni| for some fixed
δ > 0, then the size of Z is exponentially small. This means that a random
walk on Cay(Γ;S) meets Z at step n with probability ≤ αn for some fixed
α < 1.

The wealth of recent new results on approximate subgroups, expanders
and property τ enables one to apply the sieve method in some situations,
for arithmetic and linear groups.

In [62] Lubotzky and Meiri develop and apply sieve methods to prove
the following.

Theorem 8.15. Let Γ be a finitely generated linear group over C. Suppose
Γ is not virtually solvable. Then the set of all proper powers in Γ is
exponentially small.

This strengthens part (ii) of Theorem 8.2 above in two ways: we deal
with all proper powers simultaneously, and we show that not only they
have infinite index, they are exponentially small. However, while Theorem
8.2 holds for arbitrary fields, in Theorem 8.15 the case of linear groups in
positive characteristic is not yet known.

Problem 8.16.

(i) Does Theorem 8.15 hold for finitely generated linear groups over any
field?

(ii) Are there analogues of it for other words w instead of power words?

More specifically, for arbitrary words w, it would be interesting to mea-
sure the size of w(Γ) for arithmetic and linear groups, and to find out when
it is exponentially small.

As for word width, in lattices in simple groups of rank 1 one may expect
infinite width of various words, while in lattices in higher rank the word
width might be finite.

We conclude this paper with a provocative question on the surjectivity
of arbitrary word maps on certain algebraic groups. Note that, by Corollary
2.2, if w is any non-identity word, then w(SLn(C))2 = SLn(C). However,
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w need not be surjective in this case. There are non-identity words which
are non-surjective on SL2(C), indeed w = x2 is such a word (see [6] and the
references therein).

Problem 8.17. Is every word w �= 1 surjective on PSLn(C)?
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Some of Erdős’ Unconventional Problems in

Number Theory, Thirty-four Years Later

GÉRALD TENENBAUM

There are many ways to recall Paul Erdős’ memory and his special
way of doing mathematics. Ernst Straus described him as “the prince of
problem solvers and the absolute monarch of problem posers”. Indeed, those
mathematicians who are old enough to have attended some of his lectures
will remember that, after his talks, chairmen used to slightly depart from
standard conduct, not asking if there were any questions but if there were
any answers.

In the address that he forwarded to Miklós Simonovits for Erdős’ funeral,
Claude Berge mentions a conversation he had with Paul in the gardens of the
Luminy Campus, near Marseilles, in September 1995. After Paul’s opening
lecture for this symposium on Combinatorics, Berge asked him to specify
his beauty criteria for a conjecture in discrete mathematics. Erdős mainly
retained the following five:

(i) The simplicity of the statement;
(ii) The expected difficulty of the solution (which Paul liked to measure

in dollars);
(iii) The posterity of the subsequent theorem, i.e. the set of results arising

either directly from the solution of from the methods designed to
obtain it;

(iv) The future of the path opened by the problem, which I would rather
call the set of descendants of the problem, in other words the family
of new questions opened up by the statement or the solution of the
conjecture;

(v) The intuitive representability of the specific mathematical property
that is being dealt with.

Apart, perhaps, the last, for which an adequate transposition should
be described with further precision, these criteria are equally relevant to a
classification for a conjecture in analytic and/or elementary number theory.

My purpose here mainly consists in illustrating these criteria by revisit-
ing some of the problems stated by Erdős in his profound article [24].
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Aside from updating the status of a number of interesting questions, my
hope is to convince the reader that Erdős’ conjectures, although stated in
a condensed and seemingly particular form, were problematics rather than
problems. Day after day, year after year, each of his questions appears, in
the light of discussions and partial progress, as a node in a gigantic net,
designed not for a single prey but for a whole species.

In the sequel of this paper, quotes from the article [24] are set in italics.
I took liberties to correct obvious typographic errors and to slightly modify
some notations in order to fit with subsequent works. Erdős’ paper starts
with the following.

First of all I state a very old conjecture of mine: the density of integers
n which have two divisors d1 and d2 satisfying d1 < d2 < 2d1 is 1. I proved
long ago [20] that the density of these numbers exists but I have never been
able to prove that it is 1. I claimed [21] that I proved that almost all integers
n have two divisors

(1) d1 < d2 < d1
{
1 + (e/3)(1−η) log logn

}
and that (1) is best possible, namely it fails if 1− η is replaced by 1 + η.
R. R. Hall and I confirmed this later statement but unfortunately we cannot
prove (1). We are fairly sure that (1) is true and perhaps it is not hopeless
to prove it by methods of probabilistic number theory that are at our disposal.

This is an edifying example of a conjecture meeting the above five
requirements. However, before elaborating on this, it may be worthwhile try
understanding the process that led Erdős to this simple and deep statement.

An integer n is called perfect if it is equal to the sum of its proper
divisors. Thus 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are perfect. In
modern notation, a perfect integer n satisfies σ(n) = 2n where σ(n) stands
for the sum of all divisors. This is an interesting formulation since σ(n) is
a multiplicative function of n. In the third century before our era, Euclid
proved (IX.36) that 2p−1(2p − 1) is perfect whenever 2p − 1 is prime, which
of course implies that p itself is prime.

An integer n is called abundant if σ(n) > 2n. In the early thirties,
in a book on number theory, Erich Bessel-Hagen asks whether abundant
integers have a natural density. Davenport [12], Chowla [11], Erdős [16] and
Behrend [3] all gave, independently, a positive answer. All proofs, except
that of Erdős, rest on the method of (real or complex) moments. Erdős
attacks the problem from another viewpoint: primitive abundant numbers,
i.e. abundant numbers having no abundant proper divisor. Writing f(n) for
σ(n)/n, any primitive abundant integer n satisfies

2 � f(n) � f(n/p)f(p) < 2(1 + 1/p)
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whenever p|n. Since the largest prime factor of n is usually large, this
restricts the cardinality of primitive abundant numbers not exceeding x,
which can be shown to be o

(
x/(log x)2

)
. The proof is then completed by

noticing that, if we write

M(A) := {ma : a ∈ A, m � 1}

for the so-called set of multiples of the set A and d, d, d for natural, upper
and lower density respectively, then

dM(AT ) � dM(A) � dM(A) � dM(AT ) +
∑
a>T
a∈A

1

a

holds for any integer sequence A such that
∑

a∈A 1/a < ∞, with AT :=
A ∩ [1, T ].

This was the starting point of the fruitful concept of set of multiples.

It was once suspected that any set of multiples should have a natural
density. However, Besicovitch [5] soon disproved this conjecture by showing
that

(2) lim inf
T→∞

dM(]T, 2T ]) = 0.

Indeed, it is easy to deduce from this that, given any ε > 0 and a se-
quence {Tj}∞j=0 increasing sufficiently fast, then A := ∪j ]Tj , 2Tj ] satisfies

dM(A) < ε, dM(A) � 1
2 .

The reader might ask at this stage: interesting indeed, but how does
this link to (1)? We still need a few more steps inside Erdős’ peculiar way
of thinking.

It is one of the marks of the great: not to accept an obstruction before
understanding it completely. This holds outside of mathematics as well as
inside. Erdős did not accept Besicovitch’s counter-example for itself and
continued the quest.

First [18], he improved (2) to the optimal

(3) lim
T→∞

dM
(]
T, T 1+εT

])
= 0

provided εT → 0 as T → ∞.

With this new, crucial piece of information, he progressed in two con-
nected directions: first, to show, with Davenport [13]—see also [14] for
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another, very interesting proof—that any set of multiples has a logarith-
mic density, equal to its lower asymptotic density,1 and, second, to show
[20]2 that Besicovitch-type constructions are essentially the only obstacles
to the existence of dM(A): writing d1(n,A) := inf{d|n : d ∈ A} with the
convention that d1(n,A) = ∞ whenever n /∈ M(A), a necessary and suffi-
cient condition that M(A) has a natural density is

(4) lim
ε→0

d{n � 1 : n1−ε < d1(n,A) � n} = 0.

Now, consider the set

(5) E := {m ∈ N∗ : m = dd′, d < d′ < 2d}.

Then the double inequality n1−ε < d1(n,E) � n plainly implies that n has

a divisor in
]
n1/2−ε, n1/2

]
so it is easy to deduce (4) from (3).

So we now know that the set of integers with two close divisors has
a natural density. (By ‘close’ we mean here that the ratio of the two
divisors should lie in ]1, 2[.) Moreover, as seen above, the existence property
follows in a natural way from the theory of sets of multiples: the sequence E
defined above is one of simplest examples one can think of that meets the
criterion (4).

But what should the density be? Erdős stated, as early as 1948 (and
probably much before) [20], that this density should be equal to 1. Here
again, a seemingly anecdotal conjecture is actually based on a profound
assumption—any answer to it, positive or negative, is bound to enlighten
our understanding of the multiplicative structure of integers.

Let us make the convention to use the suffix pp to indicate that a relation
holds on a set of asymptotic density 1. As we shall see later in this paper,
Erdős had known for long that sufficiently far prime factors behave almost
independently pp. Specifically, if we denote by

(6) {pj(n)}ω(n)j=1

the increasing sequence of distinct prime factors of an integer n and if we
write

(7) Uj(n) := {log2 pj(n)− j}/
√

j,

then, to a first approximation, Uj(n) and Uh(n) resemble independent Gaus-
sian random variables pp provided that j/h → ∞. (Here and in the se-
quel, we let logk denote the k-fold iterated logarithm.) Having this in

1We shall make use of this extra information later on.
2See [29] for a short proof.
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mind, it is reasonable to believe that, in first approximation, the quanti-
ties log(d′/d) are evenly distributed pp in the interval [− logn, logn]. Since

these quantities are 3ω(n) in number, we deduce from the Hardy–Ramanujan
estimate ω(n) ∼ log2 n pp that the smallest of these numbers should be of

size (log n)1−log 3+o(1) pp.

This is, perhaps no more, certainly no less, what is hidden behind
conjecture (1).

This conjecture, which is now a theorem, due to Erdős–Hall [27] for the
lower bound and to Maier–Tenenbaum [55] for the upper bound, has had a
wide posterity and many descendants.

In his doctoral dissertation supervised by the author [65], Stef proves
that the number Rx of exceptional integers not exceeding x and which do
not belong to M(E) satisfies

(8) x/(log x)β+o(1) � Rx � xe−c
√

log2 x

for a suitable constant c > 0, with β = 1− (1 + log2 3)/ log 3 ≈ 0, 00415.
These are the best known estimates to date.

To the chapter of posterity certainly belong all results involving the
still mysterious Erdős–Hooley Delta-function and the so-called propinquity
functions

Er(n) := min
1�j�τ(n)−r

log{dj+r(n)/dj(n)} (r � 1),

where {dj(n)}τ(n)j=1 stands for the increasing sequence of the divisors of an
integer n.

One of the most recent achievements in this direction is a very precise
confirmation of the heuristic principle leading to (1), as described above:
Raouj, Stef and myself prove in [62] that

E1(n) =
log n

3ω(n)
(log2 n)

ϑn pp,

where −5 � ϑn � 10. Many more precise and connected results are actually
proved in [62].

The situation is much less satisfactory regarding the functions Er when
r � 2, for which the precise pp behaviour is still unknown. Using techniques
similar to that of the proof of theorem 3 of [36], it can be shown that

E2(n) > (log n)−γ2+o(1) pp
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for some γ2 < log 3− 1. Moreover, the methods and results of [56] yield

Er(n) � (log n)−βr+o(1) pp,

with

βr :=
(log 3− 1)m

(3 log 3− 1)m−1
, 2m−1 < r + 1 � 2m.

Thus, we have

β1 = log 3−1 ≈ 0.09861, β2 = β3 ≈ 0.00423, βr ≈ 0.00018 (4 � r � 7).

Also, it is proved in [56] (th. 1.1) that Er(n) > τ(n)−1/r+o(1) holds pp
uniformly in r � 1, and thus

Er(n) = 1/(log n)o(1) pp (r = r(n) → ∞),

a result which might look surprising at first sight.

We conjecture the existence of a strictly decreasing sequence {αr}∞r=1
such that

Er(n) = (log n)−αr+o(1) pp.

It is particularly irritating, for instance, to be unable to find a better pp
upper bound for E2(n) than for E3(n).

We also mention as a posterity result the proof by Raouj [61] of Erdős’
conjecture asserting that

dM
(
∪d|n ]d, 2d]

)
= 1 + o(1) pp.

This is established in the following fairly strong (and optimal) form. Put
λ∗ := log 4− 1 and δn := dM

(
∪d|n

]
d, (1 + 1/(log n)λ)d

] )
. Then

1

(log n)F (λ)+o(1)
< 1− δn < e−cλ

√
logn (0 � λ < λ∗)

δn = (log n)−F (λ)+o(1) (λ > λ∗)
pp,

where F (λ) := β logβ−β+1 with β := −1+ (1+λ)/ log 2 if λ � 3 log 2− 1,
and F (λ) := λ− log 2 if λ > 3 log 2− 1.

The Erdős–Hooley function is defined as

Δ(n) := sup
u∈R

∑
d|n

eu<d�eu+1

1 (n � 1).

It first appears (implicitly) in [23] and (explicitly) in [30], [31] in the early
seventies. It was next studied by Hooley [50] with the aim of developing a
variety of applications to several branches of number theory.
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The ratio Δ(n)/τ(n) has an immediate probabilistic interpretation: with
Lévy’s 1937 definition, it is the value at 1 of the concentration function of the
random variable Dn taking the values log d (d|n) with uniform probability
1/τ(n). It is noteworthy to state here that Dn =

∑
pν‖nDpν where the Dpν

are independent.

If we replace the factor 2 by e, which is irrelevant to all intents and
purposes, Erdős’ initial conjecture

(9) dM(E) = 1

is equivalent to the statement that

(10) Δ(n) > 1 pp,

so that (8) provides quantitative estimates for the number of exceptions.

The best pp-bounds to date for the Δ-function appear in a joint article
with Maier [56]. We prove that

(log2 n)
γ+o(1) < Δ(n) < (log2 n)

log 2+o(1) pp,

where the exponent γ := (log 2)/ log
( 1−1/ log 27

1−1/ log 3
)
≈ 0.33827 is conjectured to

be optimal.

To show the existence and determine the value of the exact exponent
is a challenging problem in probabilistic number theory. There is no doubt
that such a result would imply deeper ideas on the structure of the set of
divisors of a normal integer.

However, as shown by Hooley in [50], it is mainly information on the
average order

s(x) :=
1

x

∑
n�x

Δ(n)

that has applications to other arithmetical topics such as Waring-type prob-
lems [75], Diophantine approximation [50], [69], and Chebyshev’s problem
on the greatest prime factor of polynomial sequences [71]. It is thus proved
in [71], as a consequence of an average estimate for a variant of s(x), that,
for any α < 2− log 4 ≈ 0.61370, the bound

P+
( ∏

n�x

F (n)
)
> x e(log x)

α
(x > x0(F ))

holds for any irreducible polynomial F (X) ∈ Z[X] with degree > 1. This is
currently the best available result valid for polynomials of arbitrary degree.
Here and in the sequel P+(m) denotes the largest prime factor of the
integer m with the convention that P+(1) = 1.
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Established in [44] and [68], the best bounds for s(x) at the time of
writing are

(11) log2 x � s(x) � ec
√

log2 x log3 x (x → ∞)

where c is a suitable constant. See [46], [69] and, for instance, [63] for further
references and descriptions on this question.

Still in the area of descendants of the conjecture (1), we mention the
recent paper [8] in collaboration with La Bretèche and where sharp, weighted
average bounds are given for functions of the type

(12) Δ(n, f) := sup
u∈R, 0�v�1

∣∣∣∣∣∣
∑

d|n, eu<d�eu+v

f(d)

∣∣∣∣∣∣
where f is an oscillating function, typical cases being those of a non principal
Dirichlet character or of the Möbius function. All suitably weighted finite
integral, even moments are also studied. This is the key step to the proof,
given in [10], of Manin’s conjecture, in the strong form conjectured by Peyre
and with effective remainder term, for all Châtelet surfaces.

Maier established in [53] normal upper and lower bounds for (12) in the
case f = μ, the Möbius function, and his method is equally applicable in
the case f = χ, a real, non principal Dirichlet character.

Short averages have also been investigated, by Nair–Tenenbaum [57],
Henriot [48], and La Bretèche–Tenenbaum [9]. These may have numerous,
sometimes surprising applications. For instance, writing 〈t〉 for the frac-
tional part of a real number t, we have [57], for any given ε > 0,

sup
D�1

∣∣∣∣ ∑
D�d�2D

〈
x+ y

d

〉
−

〈x
d

〉 ∣∣∣∣ � y(log x)o(1) (xε � y � x),

a bound which known exponential sums methods, by far, will fail to meet.

This ends our comments and update on conjecture (1).

The next problem in [24] is described as follows.

Denote by τ+(n) the number of integers k for which n has a divisor d
satisfying 2k < d � 2k+1. I conjecture that for almost all n

(13) τ+(n)/τ(n) → 0
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which of course implies that almost all integers have two divisors satisfying
d1 < d2 < 2d1. It would be of some interest to get an asymptotic formula
for

(14) T(x) :=
∑
n�x

τ+(n).

It is easy to prove that T(x)/(x log x) → 1.

This is an example of Erdős’ way of attacking conjectures from many
different angles. Indeed, it is often the case that a stronger statement is
more accessible than a weaker one, because it reveals a deeper feature. Here,
τ+(n) < τ(n) would suffice to prove the desired conjecture, but Erdős asks
for much more. As it turns out, hypothesis (13) is wrong (and the constant 1
in the last statement should be replaced by 0, most certainly a lapsus digiti),
but the idea of considering the measure of the set ∪d|n

(
log d+

[
−1

2 ,
1
2

])
was

precisely that which eventually led to the solution in [55].

Improving on an estimate of [33] that was already sufficient to inval-
idate (13), it was shown in [46] (Chapter 4) that the arithmetic function
τ+(n)/τ(n) has a limiting distribution ν(z) satisfying

(15)
z√

log(2/z)
� ν(z) � z log(2/z) (0 < z < 1).

Thus, ν is certainly continuous at the origin. Two interesting open problems
are (i) to improve upon (15) and (ii) to determine, if any, the discontinuity
points of the distribution function ν.

Regarding the second question, I can prove the following.

Theorem 1. The distribution function ν is continuous at z = 1.

Proof. We know from theorem 51 of [46] (but this already follows from the

analysis given in [55]) that, for every ε > 0, there exists Tε > e1/ε such that
all integers n except at most those from a sequence of upper density � ε/3
have two divisors d, d′, such that d < d′ < 2εd < Tε. We may of course
assume that Tε increases with 1/ε.

Write nε :=
∏

pj‖n, p�Tε
pj . For a non-exceptional integer n and each

m|(n/nε), the two divisorsmd andmd′ belong to the same interval
]
2k, 2k+1

[
(k ∈ N) unless |(logmd)/ log 2− k − 1| < ε. However, as shown in lemma
48.1 of [46], the discrepancy of the sequence {(logm)/ log 2 : m|(n/nε)} does
not exceed ε on a subsequence of lower density 1− ε/3. Thus, if we discard
a sequence of integers n of upper density at most 2ε/3, we have

τ+(n) � τ(n)− (1− ε)τ(n/nε).
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Since, for instance, τ(nε) � log Tε holds on a sequence of lower density
1− ε/3, we get that, writing η := 1/{2 log Tε},

τ+(n) � τ(n){1− η}

except at most on a sequence of upper density ε. We have therefore proved
that ν(1− η) � 1− ε = ν(1)− ε. Observing that ε tends to 0 as a function
of η, we obtain the required result.

According to a copy of the galley-proof that Nicolas forwarded to me at
the time, the statement concerning T(x) is probably due to some last-minute
confusion. It is nevertheless linked to another very interesting problem in
probabilistic number theory.

Let H(x, y, z) denote the number of integers not exceeding x having a
divisor in ]y, z], so that, with the notation (14),

T(x) =
∑
2k�x

H
(
x, 2k, 2k+1

)
.

There is a large literature on H(x, y, z), starting with (2) and (3), which
can already be seen as evaluations of

lim sup
T→∞

lim
x→∞H(x, T, 2T )/x, and lim

T→∞
lim
x→∞H(x, T, T 1+εT )/x,

respectively. We refer the reader to the recent paper [38] for the history of
estimates of H(x, y, z) in the various ranges of the parameters. Here, we
only quote the evaluation

(16) H(x, y, 2y) � x

(log y)δ(log2 y)
3/2

(2 � y �
√
x)

with δ := 1− (1 + log2 2)/ log 2 ≈ 0.08607. These bounds improve on those
of [67], where it is shown by a much simpler analysis that

e−c1
√

log2 y � H(x, y, 2y)(log y)δ/x � c2/
√

log2 y

for suitable constants c1, c2. Using the symmetry of the divisors of n
around

√
n, we easily deduce from (14) and (16) the following estimate

proved in [38]:

(17) T(x) � x(log x)1−δ

(log2 x)
3/2

·
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Thus, we still fall short of an asymptotic formula for T(x), although we
are now fairly close to one—another challenging problem from an old paper.

Let us continue.

Another interesting and unconventional problem states as follows: let
1 = d1 < d2 < · · · < dτ(n) = n be the set of divisors of n. Put

G (n) :=
∑

1�i<τ(n)

di
di+1

·

I conjecture that G (n) → ∞ if we disregard a sequence of integers n of
density 0. This again would imply the conjecture on d1 < d2 < 2d1, but
needless to say I cannot prove it.

It would be of interest to determine the normal order of τ+(n) and of
G (n) (or at least of log τ+(n) and logG (n)). Also an asymptotic formula for∑

n�x

G (n)

would be of interest. It is easy to prove that (1/x)
∑

n�x G (n) → ∞.

It turns out to be almost trivial that G (n) → ∞ pp. Indeed, if p is
the smallest prime factor of n, then pdi|n for at least 1

2τ(n) values of
i and hence G (n) > τ(n)/2p. In particular, we have G (n) > τ(n)/ξ(n)
pp whenever ξ(n) → ∞. It is, however, not true that this lower bound
implies (9). Erdős probably had in mind the correct statement that (9)
follows from G (n) > 1

2τ(n) pp, in other words that the distribution function

of G (n)/τ(n), if it exists, is supported on
[
1
2 , 1

]
.

Erdős and I proved in [34] that G (n)/τ(n) does have a distribution
function. We actually established a fairly general statement: given any
bounded real function ϑ defined on ]0, 1[, the arithmetical function

F (n;ϑ) :=
1

τ(n)

∑
1�i<τ(n)

ϑ
( di
di+1

)
has a limiting distribution.3

However it is not true that the distribution function of G (n)/τ(n) is
supported on

[
1
2 , 1

]
. Indeed, we can show that

d{n � 1 : G (n)/τ(n) � ε} > 0 (0 < ε � 1).

3Note that, in the case ϑ := 1[1/2,1], the continuity at 0 of this distribution follows
from 1 above and in turn implies (9). This, however, does not yield a new proof of (9)
since we actually used a refinement of (9) to establish 1.
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This follows from the fact that most integers n free of small prime factors
are such that di <

1
2εdi+1 for most indices i. We omit the details, which can

easily be reconstructed from lemma 4 of [33] and lemma 3 of [34].

As far as average orders are concerned, it is proved in [34] that

∑
n�x

F (n;ϑ) = ϑ(1)x log x+O
(x(log x)1−δ log3 x√

log2 x

)
,

provided ϑ is twice continuously differentiable on [0, 1]. Here δ is as in
(16) and the exponent of log x is optimal. Moreover, by theorem 3 of [34]
and (16), we obtain the improvement

c1x(log x)
1−δ

(log2 x)
3/2

� x log x−
∑
n�x

G (n) � c2x(log x)
1−δ

(log2 x)
3/2

,

valid for suitable positive constants c1, c2.

After a discussion on the normal size of the k-th prime factor pk(n) of
an integer n and a simple proof, via the Turán–Kubilius inequality, of the
asymptotic formula

(18) log2 pk(n) ∼ k (k → ∞) pp, 4

Erdős describes a problem on fractional parts of Bernoulli numbers, which
does not fit with the focus of this survey. Then, he states two problems
related to densities of integer sequences.

Denote by λk(p) the density of the integers n whose k-th prime factor
is p. λk(p) can easily be calculated by the exclusion-inclusion principle
(essentially the sieve of Eratosthenes). By (18), for almost all integers,
pk(n) is about exp expk. On the other hand, it is easy to see that the largest
value of λk(p) is assumed for much smaller values of p, in fact for

ek(1−ε) < p < ek(1+ε).

By more careful computation it would easily be possible to obtain better
estimates. The simple explanation for this apparent paradox is that there

are very many more values of p at ee
k
than at ek. It is not impossible that

λk(p) is unimodal, i.e. it first increases with p, then assumes its maximum

4We do not reproduce this and refer the reader to [46] (chapter 1) and to [74] (theorem
III.3.10).
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and then decreases. I in fact doubt that λk(p) behaves so regularly but have
not disproved it.

The same problems arise if Λk(d) denotes the density of the integers m
whose k-th divisor is d. Here I obtain that if d1(n) < d2(n) < · · · are the
consecutive divisors of n then for all but εx integers n � x for k > k0(ε, n)

exp
{
k(1/ log 2)−ε

}
< dk(n) < exp

{
k(1/ log 2)+ε

}
.

On the other hand, for fixed k, Λk(d) is maximal for

(19) e(1−ε) log k log2 k < d < e(1+ε) log k log2 k.

It can be shown that Λk(d) is not unimodal.

The existence of the densities λk(p) and Λk(d) immediately follows from
the fact that the sequences under consideration are finite unions of congru-
ence classes. The idea of considering the local laws of the distributions of
pk(n) and dk(n) stems naturally from the law of iterated logarithm under-
lying (18) (and based upon the fact that the variables Uj(n) defined in (7)
are almost Gaussian): indeed, Erdős announced in 1969 [22] that

(20)
∑

log2 p�k+z
√
k

λk(p) = Φ(z) + o(1) (k → ∞),

where Φ(z) :=
1√
2π

∫ z

−∞
e−t

2/2 dt.

Thus, the study of the λk(p) is another way of looking at the asymptotic
independence of the small prime factors, while, as it turns out, the study of
the Λk(d) is a (positive) test of the dependence of the divisors.

By the sieve of Eratosthenes, we have

(21) λk(p) =
1

p

∏
q<p

(
1− 1

q

)
sk−1(p) (k � 1),

where q denotes a prime number and we have put

sj(p) :=
∑

P+(m)<p
ω(m)=j

1

m
(j � 0).

Thus, we have identically

F (z, p) :=
∏
q<p

(
1 +

z

q − 1

)
=

∑
j�0

sj(p)z
j .
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As noted by Balazard,5 this settles, in the affirmative, the question of the
unimodality of the sequence {sj(p)}j�1 and hence of {λk(p)}k for all p.
Indeed, it is well known (see, e.g., [59], Part V, problem 47) that, if a
polynomial has only real roots, then the number of sign changes in the
sequence of its coefficients is equal to the number of positive roots. Since,
for all positive numbers a1, . . . , an, the polynomial

(1− x)
∏

1�j�n

(x+ aj) =
∑

0�r�n+1

(σn−r − σn+1−r)xr

where σh :=
∑

1�j1<j2<···<jh�n aj1 · · · ajh (0 � j � n+ 1), has exactly one

positive root, it follows that the sequence {σh}nh=0 of elementary symmetric
functions of the aj is unimodal. Applying this with

{aj}nj=1 := {1/(q − 1) : q < p}

yields the stated property.

Of course the above argument tells us nothing about the mode. An
analysis of λk(p) by the saddle-point method has been achieved by Erdős
and myself in [35]. I only quote a few results from this work. Write

L := log
( log p

log(k + 1)

)
, M := log

( log p

1 + log+(k/L)

)
,

R := L
{
1 + log+(k/L)

}
.

Then, given any ε > 0, we have

λk(p) =
1

p

∏
q<p

(
1− 1

q

) Mk−1

(k − 1)!
eO((k−1)/R)

λk+1(p)

λk(p)
=

M

k

{
1 +O

(M
R

)} (1 � k � p1−ε).

Moreover, we have, for all primes p,

max
k�1

λk(p) =
1 +O(1/ log2 p)

p
√

2π log2 p

and any value of k realizing this maximum satisfies k = log2 p+O(1).

5Private communication, February 28, 1989.
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For fixed k, the result we found was slightly different from that foreseen
by Erdős, probably through a hasty computation. We actually have

max
p

λk(p) = e−kQ(log k)

where Q(z) := z− log z− 1+
2 log z + 1

z
+

2(log z)2 − log z +O(1)

z2
; further-

more any value of p realizing this maximum satisfies

log p =
k

log k

{
1 +

2 log2 k

log k
+

2(log2 k)
2 − 3 log2 k +O(1)

(log k)2

}
.

It remains that the phenomenon described by Erdős does hold: modal values
of the sequence {λk(p)}p occur at relatively small values. In other words,
in the series ∑

p

λk(p) = 1

the decrease of the general term as a function of p is so slow that the
contribution of the very numerous terms around exp exp k dominate, while
the ‘large’ values around ek/ log k are too few, and indeed not sufficiently
large, to contribute significantly to the sum.

To my knowledge, the problem of the (probably non) unimodality of the
sequence {λk(p)}p is still open.

In [15], De Koninck and I improve on (20). Uniformly for k � 1, z ∈ R,
we have ∑

log2 p�k+z
√
k

λk(p) = Φ(z) +
Φ0(z)√
2πk

+O
(1
k

)
with

Φ0(z) := e−z
2/2

{
1

3
+A− 1

3
z2
}
,

A := γ −
∑
p

{
log

( 1

1− 1/p

)
− 1

p

}
≈ 0.26150.

Here γ denotes Euler’s constant.

This yields estimates for the median value of the distribution of the k-th
prime factor, defined as the largest prime p∗ = p∗k such that∑

p�p∗k

λk(p) <
1

2
.
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We find that

(22) log2 p
∗
k = k − b+O(1/k) (k � 1)

with b = 1
3 +A ≈ 0.59483 and numerical computations provide p∗2 = 37,

p∗3 = 42719.

A clear descendant of this problem is the following formula, also proved
in [15], which turns out to be an application of the estimate for partial
sums of the exponential series—an ancient problem of Ramanujan—needed
to prove (22). We have

∑
n�x

Ω(n)�log2 x

1 =
1

2
x− x

C + 〈log2 x〉√
2π log2 x

+O
( 1

log2 x

)
(x � 3),

where C := A− 2
3 −

∑
p 1/{p(p−1)} ≈ 0.36798 and 〈t〉 denotes the fractional

part of the real number t.

As is to be expected, the results on Λk(d) are much less precise. Erdős’
pp-estimate for {dk(n)}1�k�τ(n) immediately follows from the law of iterated
logarithm for the prime factors. We obtain in particular, for all ε > 0,∑

| log2 d−(log k)/ log 2|>Rk

Λk(d) = o(1) (k → ∞),

with Rk :=
√
{(2 + ε)/ log 2} log k log3 k. Thus, we can consider that the

problem of normal order of dk(n) is essentially solved. In (19), Erdős raises
the problem of modal values of Λk(d) i.e. of determining as precisely as
possible those d such that

Λk(d) = Λ∗k := max
m

Λk(m).

He announces a result which we shall see to be slightly incorrect but never-
theless unveils a rather deep phenomenon.

Let τ(n, z) denote the number of divisors of n not exceeding z. The
following formula, proved in [35], is the analogue of (21):

Λk(d) =
1

d

∏
p�d

(
1− 1

p

) ∑
P+(m)�d
τ(md,d)=k

1

m
·
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Here, the m-sum obviously depends on the arithmetic structure of m and
seemingly harmless questions may reveal to be quite delicate, such as the
proof given in [35] of the equivalence

(23) Λk(d) > 0 ⇐⇒ τ(d) � k � d.

Let us put

Kj := k(logj+2 k)/ log 2 (j � 0).

It is well known that minτ(d)�k = K
1+o(1)
0 . Now let Ny :=

∏
p�y p, where y

is the smallest integer such that τ(Ny) = 2π(y) � k. By selecting d = dk(Ny)
and reducing the m-sum above to the single value m = Ny/d, we obtain the
left-hand side of the double inequality

kO(1)

K0K1
� Λ∗k � kO(1)K1

K0

proved in [35], while the upper bound already needs a rather involved
analysis of the sum. This led Erdős and I in [35] to express the belief

that the correct version of (19) should be d = K
1+o(1)
0 .

Indeed, there are essentially two sound models for the structure of those
d realizing the mode. Either τ(d) ≈ k and hence d ≈ K0 and therefore the
m-sum has size � 1, or m and d contribute evenly to the divisors counted by
τ(md, d) and τ(d) ≈ τ(m,d) ≈

√
k, so that d and the values of m appearing

in the sum are all at least of size
√
K0. This latter possibility is of course

much more complex than the former, since it implies the existence of many
integers m having divisors combining with those of d in such a way that
τ(md, d) = d. The above belief corresponded to the conviction that the
simplest situation did prevail. However, in [7], La Bretèche and I show that
this is not the case: for large k, we have

kO(1)

K0

√
K1K2

� Λ∗k �
√
K2k

O(1)

K0

√
K1

, Λk(d) = Λ∗k ⇒ d = K
1/2+o(1)
0 .

(See [7] for a more precise statement and some further information.)

Here again, Erdős’ question led to a deeper understanding of the struc-
ture of the set of divisors of certain classes of integers and revealed an
unexpected phenomenon.

The conjecture (19), although inaccurate, clearly satisfies all criteria
quoted at the beginning of this paper. As far as criterion (iv) is concerned,
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we quote from [7] the following estimate, where Ψ1(x, y) denotes the number
of y-friable squarefree integers not exceeding x, viz.

Ψ1(x, y) :=
∑

n�x, P+(n)�y

μ(n)2.

Given any κ � 1, we have, for x � 2, y � 2, 1 � z � min(x, yκ),

Ψ1

(
x+

x

z
, y

)
−Ψ1(x, y) �

Ψ1(x, y)

z
·

The statement concerning the non-unimodality of {Λk(d)}d follows easily
from (23), since, for any ε > 0, we can construct four integers such that

K1+ε
0 < p1 < d1 < p2 < d2 < 2K1+ε

0 ,

where the pj are primes and the dj satisfy τ(dj) > k and hence Λk(dj) = 0
(j = 1, 2).

In the next paragraphs of [24], Erdős quotes a number of results related
to the normal distribution of prime factors, some of which are stated in
[22]. For instance, he explains that, with the notation (7), the statement
that Uj(n) and Uh(n) are asymptotically independent provided j/h → ∞
follows from the methods of [28], his epoch-making paper with Kac on the
Gaussian distribution of prime factors. He also comments on the fact that
(18) shouldn’t be taken too literally by stating the following theorem, which
I reproduce with a few changes in the notation.

Let {αk}∞k=0 tend monotonically to 0 as k → ∞. Denote by hα(n) the

number of k such that | log2 pk(n)− k| � αk. Then, if
∑

k αk/
√
k < ∞,

for every integer m the set {n � 1 : hα(n) = m} has a natural density βm
and

∑
m βm = 1, in other words hα(n) has a limiting distribution, while, if∑

k αk/
√
k = ∞, hα(n) → ∞ pp.

As far as I know, none of these results has ever been proved in full detail
and no effective versions of the statements have been investigated. It would
be quite interesting to pursue these tasks with the powerful analytical tools
that have been devised since Erdős’ paper was written.

The next section of [24] introduces a fundamental concept.

Let p1 < p2 < . . . be an infinite sequence of primes. It is quite easy to
prove that ∑ 1

pi
= ∞
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is the necessary and sufficient condition that almost all integers n should
have a prime factor pi. It seems very difficult to obtain a necessary and suf-
ficient condition that if a1 < a2 < . . . is a sequence of integers then almost
all integers n should be a multiple of one of the a’s.

I just want to illustrate the difficulty by a simple example. Let

ni+1 > (1 + c)ni.

Consider the integers m which have a divisor d satisfying

nk < d � nk(1 + ηk).

If
∑

k�1 ηk < ∞, then it is easy to see that the density of these integers
exists and is less than 1. If

∑
k�1 ηk = ∞, it seems difficult to get a general

result, e.g. if ηk = 1/k the density in question exists and is less than 1. It
seems certain that there is an α, 0 < α < 1, so that if β < α and ηk = 1/kβ

the density of the m having a divisor d, nk < d � nk(1 + ηk) is 1 and if
β > α it is less than 1.

The problem raised here may be reformulated as follows: characterise
those integer sequences A such that dM(A) = 1. Following Hall [41], we call
such a sequence A a Behrend sequence. This concept has been a constant
concern for Erdős during more than fifty years: while, as he remarks in
the above excerpt, the corresponding problem is easy when one considers
a sequence of primes, or, more generally, a sequence of pairwise coprime
integers, delicate and interesting questions arise immediately in the general
case, corresponding to the study of strongly dependent random variables.

By the Davenport–Erdős theorem [13] quoted earlier, a necessary and
sufficient condition that A should be a Behrend sequence is that δM(A) = 1
where δ stands for the logarithmic density. Thus, we have obviously that
δA = 1 is a sufficient condition for A to be a Behrend sequence. For a long
time, I thought that this should have a simple, direct proof, but I could not
find one that wasn’t essentially equivalent to the Davenport–Erdős general
and deep result that dM(A) = δM(A) for any sequence A. I eventually
came up with the following.

Theorem 2. Let A be an integer sequence such that δA = 1. Then
dM(A) = 1.

Proof. Recall that we defined P+(n) as the largest prime factor of an integer
n with the convention that P+(1) = 1. Symmetrically we let P−(n) denote
the smallest prime factor of n and set P−(1) = ∞. For y � 1, let us write

Ay :=
{
n ∈ A : P+(n) � y

}
, ny :=

∏
pν‖n
p�y

pν .
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As ny ∈ M(A) implies n ∈ M(A), we plainly have, for any fixed y � 1 and
x → ∞,

1

x

∑
n�x

n∈M(A)

1 � 1

x

∑
r∈M(Ay)
P+(r)�y

∑
s�x/r

P−(s)>y

1 =
1

x

∑
r∈M(Ay)
P+(r)�y

{x

r

∏
p�y

(
1− 1

p

)
+O(1)

}

→ m(y) :=
∏
p�y

(
1− 1

p

) ∑
r∈M(Ay)
P+(r)�y

1

r
·

Thus, we only have to show that m(y) → 1 as y → ∞. We have trivially

m(y) �
∏
p�y

(
1− 1

p

) ∑
r∈Ay

1

r
·

Writing a for an element of A, we deduce from our hypothesis δA = 1 that
there is a non-increasing function ε(x) tending to 0 as x → ∞ such that, for
1 � y � x,

(24) {1− ε(x)} log x �
∑
a�x

1

a
�

∑
r∈Ay

1

r
+

∑
n�x

P+(n)>y

1

n
·

Setting u := (log x)/ log y, we may rewrite the last sum in (24) as∑
n�x

1

n
−

∑
P+(n)�y

1

n
+

∑
n>x

P+(n)�y

1

n

� log x+O(1)−
∏
p�y

(
1− 1

p

)−1
+ x−1/ log y

∏
p�y

(
1− 1

p1−1/ log y
)−1

�
{
1 +O(e−u)

}
log x+O(1)−

∏
p�y

(
1− 1

p

)−1
.

Inserting back into (24), we get∑
r∈Ay

1

r
�

∏
p�y

(
1− 1

p

)−1
+O

(
1 + {e−u + ε(x)}u log y

)
.

It remains to select u = 1/
√
ε(y) and let y → ∞ to obtain limy m(y) = 1.
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The paper [14] (see also [74], Exercises 247-249) contains another fun-
damental formula, viz.

(25) dM(A) = lim
T→∞

dM(A ∩ [1, T ]).

We call the right-hand side the sequential density of the set of multiples
M(A). From Behrend’s fundamental inequality, valid for finite sequences,
we hence deduce from (25) that

(26) 1− dM(A ∪B) � {1− dM(A)}{1− dM(B)}

holds for all integer sequences A, B.6 It follows in particular that

(27)
∑
a∈A

1

a
= ∞

is a necessary condition for A to be a Behrend sequence, and that any tail
A� [1, T ] of a Behrend sequence is still a Behrend sequence.

The structure of Behrend sequences long intrigued Erdős. The problem
is indeed quite intricate and even seemingly innocent questions, such as
that of a criterion for A to be a Behrend sequence in the special case when
the members of A only have a bounded number of, or even at most two,
prime factors, do not have a simple answer: such a criterion is given in
Ruzsa–Tenenbaum [64] in the case of two prime factors; in Erdős–Hall–
Tenenbaum [29], it is shown that dM(A) always exists when the number of
prime factors is bounded but that this condition is optimal.

Another interesting feature of Behrend sequences, proved in [47], is that,
if A is a Behrend sequence, then

∑
d|n, d∈A 1 → ∞ pp.

Since it seems hopeless to find an effective criterion for the general situa-
tion, we are led to consider sequences with a special structure. The sequence
E in (5) is one example. Another instance is that of block sequences, appear-
ing implicitly in Erdős’ formulation above. As in [47], we formally define a
block sequence by the property that it can be written in the form

A =
⋃
j�1

Aj , Aj := ]Tj , HjTj ] ∩ N∗ (j � 1),

where the (disjoint) blocks Aj satisfy some growth condition that guarantees
some local regularity, namely that, for some fixed parameter η > 0,

(28) 1 + 1/T 1−η
j � Hj � min(Tj , Tj+1/Tj) (j � 1).

6This has been nicely improved by Ahlswede and Khachatrian [1].
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When the Tj grow sufficiently fast, we might then expect a Borel–Cantelli
type criterion enabling us to decide whether A is a Behrend sequence ac-
cording to whether a certain series involving the quantities dM(Aj) diverges
or not.

These questions have had a fairly wide posterity and many descendants.
We refer the reader, in particular, to the papers [41], [47], [64], [73] and to
the book [42], for a number of results and conjectures on Behrend sequences
and uniform distribution on divisors. Here, we only quote two significant
results which confirm, at least in the case of block sequences, that a criterion
of Borel–Cantelli type is relevant.

In order to avoid technical hypotheses, we restrict to special cases which
still reflect the general picture. We start with a result concerning the
situation when the blocks are somewhat short.7 The necessity part is due
to Hall–Tenenbaum [47], and the sufficiency to Tenenbaum [72].

Theorem 3 ([47], [72]). Let A = ∪jAj be a block sequence such that, for
suitable real constants α, γ, σ, τ , with σ > −1, we have

log(Tj+1/Tj) � jσ(log j)τ , logHj � (log j)γ/jα (j → ∞).

Put σ0 := (log 2)/(1− log 2) and define

α0(σ) :=

{
(1− log 2)(σ0 − σ) if − 1 < σ � σ0,

σ0 − σ if σ > σ0.

Then A is a Behrend sequence if α < α0(σ) and A is not a Behrend sequence
if α > α0(σ).

Note that (28) implies σ + α > 0 or σ + α = 0 and γ � τ .

If we set σ = τ = γ = 0, we obtain that, provided we have

1 + c1 � Tj+1/Tj � 1 + c2

for suitable constants c1 > 0, c2 > 0, and Hj := 1 + 1/jα (j � 1), the block
sequence A is a Behrend sequence if α < log 2 and is not if α > log 2. This
settles Erdős’ conjecture quoted above. His original claim was that the
critical exponent α0 should exist under the sole condition Tj+1/Tj > 1+ c1,
but this cannot hold as it stands since it follows from theorem 1 of [47] that A
is not a Behrend sequence for any α if we set, for instance, Tj := exp exp j
(j � 1). However, he explained later on, in private conversation, that he
really had in mind a two-sided condition.

7See [72] for an explanation of the fact that any criterion for block Behrend sequences
can be split into one in which the block are assumed to be short, in some precise way,
and one in which the blocks are assumed to be long.
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From Behrend’s inequality (26), the condition∑
j

dM(Aj) = ∞

is necessary for a block sequence to be a Behrend sequence. However, this
is in general much weaker than the sufficient condition obtained in [47]. For
instance, if we assume, in the setting of Theorem 3, that −σ < α � 0 or
that α = −σ � 0 and γ < τ , then we have from Ford’s estimates in [38] that

dM(Aj) �
(log 2j)(γ−τ)δ−3/2

j(σ+α+1)δ
(j � 1),

where δ is as in (16), while Theorem 3 tells us that A is a Behrend sequence if∑
j

1

j(σ+α+1)β
= ∞

for some β > 1− log 2 and, moreover, that A is not a Behrend sequence if
the above series converges for some β < 1− log 2. Hence, we have a pseudo
Borel–Cantelli criterion of the shape∑

j

{dM(Aj)}c+o(1) = ∞,

with c := (1− log 2)/δ ≈ 3.566509. It would be very interesting to have a
probabilistic interpretation for conditions of this type.

For the special sequence

Aλ :=
⋃
j�1

]
exp jλ, 2 exp jλ

]
∩ N∗,

a refined approach of the same technique yields in [47] a complete proof
of Erdős’ so called Bλ-conjecture

8 dating at least from the seventies and
referred to in [46] pp. 49 and 63: Aλ is a Behrend sequence if, and only
if, λ � 1/(1− log 2). This is heuristically justified by the assumption that,

for almost all n, the numbers (log d)1/λ are uniformly distributed mod-
ulo 1 when d runs through the divisors of n.9 However, the limiting case
λ = 1/(1− log 2) is not covered by this argument and indeed needs a more
delicate proof.

8The name of the conjecture comes from the former notation B(λ) = M(Aλ).
9This is actually proved in [66]. See also [45] and [73].
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In the same spirit, and as a clear descendant of this class of problems,
I quote the theorem of Kerner and myself [51], according to which

(29) min
d|n

‖dϑ‖ = 1/τ(n)1+o(1) pp,

provided the sequence of convergents {pj/qj}∞j=0 of the real number ϑ sat-
isfies

(30) log qj+1 < (log qj)
1+o(1).

Here we used the standard notation ‖t‖ = minn∈Z |t− n|. Note that, as
explained in [51], it is easy to construct real numbers ϑ contravening (29).
A challenging open question is to determine precisely the set of real numbers
ϑ such that (29) holds. We know from [51] that (30) cannot be replaced by

log qj+1 < q
(1−ε)/ log 2
j with some ε > 0.

When the blocks are long, in a suitable sense, we obtain a similar pseudo-
criterion, but with c = 1—hence closer to a classical probabilistic approach.

Theorem 4 ([47]). Let A be a block sequence. Assume that, for some
ε > 0, we have

logHj+1 > 2(log Tj+1)
ε(log Tj)

1−ε (j � 1).

Then
∑
j

( logHj

log Tj

)δ1
= ∞ for some δ1 > δ implies that A is a Behrend

sequence, while
∑
j

( logHj

log Tj

)δ2
< ∞ for some δ2 < δ implies that A is not

a Behrend sequence.

We refer the reader to chapter 1 of [42] for further results and comments
on Behrend sequences. Once more, we see how fertile Erdős’ problems and
conjectures revealed themselves along the years.

Erdős follows with refined questions concerning the set of multiples of an
interval. I slightly alter the notation in order to match subsequent works.

Denote by ε(y, z) the density of integers having a divisor d satisfying
y < d � z and by ε1(y, z) the density of integers having precisely one divi-
sor d, y < d � z. Besicovitch proved lim inf ε(y, 2y) = 0 and I proved that
if (log z)/ log y → 1, then lim ε(y, z) = 0 [40] (chapter V). It is easy to see
that this result is best possible, i.e. lim ε(y, z) = 0 implies (log z)/ log y → 1.
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Further I can prove that ε1(y, z) < c/(log y)α for a certain 0 < α < 1.
Perhaps ε1(y, z) is unimodal for z > y + 1, but I know nothing about this.
I do not know where ε1(y, z) assumes its maximum.

I am sure that ε1(y, z)/ε(y, z) → 0 for z = 2y. If z − y is small then
clearly ε1(y, z)/ε(y, z) → 1 and I do not know where the transition occurs.

Some time ago the following question occurred to me: let k be given and
n > n0(k). Is there an absolute constant α so that for every n < m � nk

there is a t, 0 < t � (log n)α, so that m+ t has a divisor in ]n, 2n]? More
generally: if n+ 1 = a1 < a2 < . . . is the sequence of integers which have a
divisor d, n < d � 2n, determine or estimate maxai<nk(ai+1 − ai).

Nearly all these questions are now essentially settled. In [70], I proved

that if z− y → ∞ and z � y
{
1+ (log y)1−log 4e−ξ

√
log2 y

}
with ξ → ∞, then

�1(y, z) := ε1(y, z)/ε(y, z) → 1, while �1(y, z) � e−c
√

log y log2 y when

z0(y) := y
{
1 + (log y)1−log 4

}
< z � 2y.

On seeing this, Erdős changed his mind concerning the asymptotic be-
haviour of �1(y, z) and conjectured that this quantity should tend to a
positive limit for z = 2y. Ford [38] then proved that �1(y, z) � 1 when
y + 1 � z � y. Thus, the transition imagined by Erdős should ideally be
seen as a frontier between the cases when �1(y, z) tends to 1 or to a constant
less than 1. We still do not know whether �1(y, z) tends to a limit when
z0(y) < z � y but it follows from Ford’s estimates in [38] that �1(y, z) → 0
if z/y → ∞. I conjecture that �1(y, z) � 1 when y, z tend to infinity in
such a way that z > y

{
1 + (log y)1−log 4+ε

}
.

To my knowledge, the question of the unimodality of ε1(y, z) as a func-
tion of z is still open.

The last problem seems difficult and represents a deep open question.
Let Mn(x) denote the counting function of M(]n, 2n]) and set

Mn(x) = εnx+Rn(x) (x � 1).

Then ai+1 − ai = {1−Rn(ai+1) +Rn(ai)}/εn. Since

1/εn � (log n)δ(log2 n)
3/2,

the first question amounts to asking whether

max
ai�nk

|Rn(ai+1)−Rn(ai)| �k (log n)β

for some β independent of k.
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Note that Hall [42] studied the quadratic mean of Rn(x). His lower
bound implies that supx |Rn(x)| � nc with

c :=
1

2
− log(π2/6)/ log 4 ≈ 0.14098.

However, he recently observed [43] that the results obtained in [42] imply
much more, namely

sup
x

|Rn(x)| > 2{1+o(1)}n/(2 logn).

This follows on noticing that ]n, 2n] = A ∪B where A comprises all primes
in the interval and B includes all remaining, composite integers. Then
(a, b) = 1 whenever a ∈ A, b ∈ B. It only remains to apply equations (3.26),
(3.10) and (3.20) from [42].10 Although this does not contradict Erdős’
conjecture, it shows that it must be delicate.

I conclude this survey of posterity and descendants of Erdős’ paper [24]
by quoting a problem that was for him a constant concern even though
he thought it might be intractable by any technique at our disposal. Here
again, I slightly alter some notations and correct a confusion.

Finally I state an old problem of mine which is probably very difficult
and which seems to be unattackable by the methods of probabilistic number
theory: denote by P+(n) the greatest prime factor of n. Is it true that the
density of integers n satisfying P+(n+ 1) > P+(n) is 1

2? Is it true that the
density of integers for which

(31) P+(n+ 1) > P+(n)nα

exists for every α? Pomerance and I proved [32] that the upper density of
the integers satisfying n−ε < P+(n+ 1)/P+(n) < nε tends to 0 with ε.

Let E := {n � 1 : P+(n) > P+(n+ 1)}. The conjecture that E has
asymptotic density 1

2 stems for the general hypothesis that n and n+ 1
should be multiplicatively independent. It lies in the same class of prob-
lems than the famous abc-conjecture.

A general theorem of Hildebrand [49] implies that E has positive lower
asymptotic density, but I did not check the numerical value that can be
derived from this result. In [32] it is shown that if N is large, then for
at least 0.0099N values of n � N we have P+(n) > P+(n+ 1), and for at

10The author takes pleasure in thanking Richard R. Hall for letting him include this
proof here.
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least 0.0099N values of n � N we have P+(n) < P+(n+1). It follows from
theorem 1.2 of [6] that each inequality occurs on a set of integers n of lower
asymptotic density

log

(
1

1− c

)
− 2

∫ c

0
log

( 1− v

1− v − 2c

) dv

1− v

provided 0 < c < 1/5. The maximum of this expression is greater than
0.05544, which improves the result from [32].

In [32] it is shown that P+(n) < P+(n+1) < P+(n+2) holds infinitely
often, and it is conjectured that too P+(n) > P+(n+1) > P+(n+2) holds
infinitely often. This conjecture was proved by Balog [2].

Among several, two further very interesting problems are described in
Erdős’ seminal article. I chose not to discuss them in detail since they
lie somewhat aside of the main stream of the paper, concentrated on the
distribution of divisors and typical multiplicative structure of integers.

Thus, I only mention (too) briefly the questions of the number Φ(x)
of distinct values of Euler’s totient ϕ(n) in [1, x] and that of an infinite
sequence {pj}∞j=1 of primes such that pj+1 ≡ 1 (mod pj) (j � 1).

On the first problem, a crucial and impressive progress was made by
Ford [37]. Improving on results by Pillai [58], Erdős [17], [19], Erdős–Hall
[25], [26], Pomerance [60] and Maier-Pomerance [54], he could show that,
for large x, we have

Φ(x) � x

log x
eC(log3 x−log4 x)2(log2 x)

D(log3 x)
E ,

where C and D are positive, explicit constants and E = D − 2C + 1
2 .

On the second problem, Erdős asks whether lim p
1/j
j = ∞ necessarily

holds and expresses the belief that pj < exp{j(log j)1+o(1)} is possible. To
my knowledge, both questions are still open. However, Ford, Konyagin and
Luca made significant progress in [39].

In conclusion and in the spirit described in the introduction of this
article, I hope that this paper will meet two goals. The first is, as for
any survey paper, to set records straight, isolate problems and stimulate
further research.

Intimately linked to the personality of this so special and so moving (in
every sense) man Paul Erdős was, the second goal consists in modestly help-
ing to maintain a fair picture of his offering to mathematics. His problems



678 G. Tenenbaum

have too often been considered as tricky, disconnected questions. All those
who worked with him for some time will agree that, even unformulated, he
had in mind the bases of many theories and of even more links between
these theories. Now that he can read in the Great Book all answers to his
innumerable questions, and indeed select the most elegant ones, no doubt
he grins once in a while, realizing how close he has been and pondering how
many clues he left for us, even if we still cannot understand them all.

Acknowledgements. The author takes pleasure in expressing here warm
thanks to R. Balasubramanian, N. Bingham, R. de la Bretèche, C. Dartyge,
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[13] H. Davenport & P. Erdős, On sequences of positive integers, Acta Arith. 2 (1937),
147–151.
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[31] P. Erdős & J.-L. Nicolas, Méthodes probabilistes et combinatoires en théorie des
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[36] P. Erdős & G. Tenenbaum, Sur les fonctions arithmétiques liées aux diviseurs
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Erdős on Polynomials

VILMOS TOTIK∗

Some results of Erdős on polynomials and some later developments are reviewed.
The topics that this survey covers are: discrepancy estimates for zero distribution,
orthogonal polynomials, distribution and spacing of their zeros and critical points
of polynomials.

1. Introduction

Polynomials were Paul Erdős’ favorite objects in analysis. He devoted
many works to them, and in his problem lectures and papers he repeatedly
returned to their theory. His major interest concerning them can be roughly
divided into the following areas:

1) interpolation,
2) discrepancy theorems for zeros,
3) inequalities,
4) size and growth of polynomials,
5) geometric problems for lemniscates,
6) orthogonal polynomials,
7) spacing of zeros,
8) geometry of zeros of derivatives,
9) polynomials with integer coefficients.

He wrote most papers on interpolation. Several surveys have been devoted
to Erdős’ work on interpolation, see e.g. D. S. Lubinsky’s and P. Vértesi’s
surveys [22] and [34] in the Erdős memorial volume and Vértesi’s survey [35]
in this volume. For inequalities, particularly for inequalities on the size of
the derivatives of polynomials see T. Erdélyi’s papers [5], [6]. We shall not
touch topic 4) (questions like how small the norm of a polynomial with ±1

∗Supported by European Research Council Advanced Grant No. 267055
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coefficients on the unit circle can be, or if polynomials of degree at most
(1 + ε)n interpolate in n points, then does their minimal norm necessarily
tend to infinity—for some interpolation data—when ε → 0?) or topic 5)
(questions like the minimal length of lemniscates or largest possible area
for lemniscate domains) because there has not been a real breakthrough in
those questions; see the papers [5] and [16]. Also, 9) (including questions
on cyclotomic polynomials) has been adequately reviewed in [3].

Therefore, this survey will be devoted to some recent developments
concerning

2) discrepancy theorems for zeros,
6) orthogonal polynomials,
7) spacing of zeros,
8) geometry of zeros of derivatives.

In the areas 2), 6) and 7) most of Erdős’ earlier papers were with Paul
Turán, his lifelong friend. In their works in these directions interpolation
has always been in the background. By now more powerful tools have been
developed, but the impact of the Erdős–Turán papers has been enormous,
and lasts until today.

2. Discrepancy Theorems

We start with a problem of P. L. Chebyshev. In connection with a question
in mechanics he was lead to replacing x4 on [−1, 1] by a combination of
smaller powers. He answered the general question: how well xn can be
approximated by linear combination of smaller powers, i.e. he determined
the quantity

tn = inf
Pn(x)=xn+···

‖Pn‖[−1,1],

where ‖ · ‖K denotes the supremum norm on a set K:

‖Pn‖K = sup
z∈K

|Pn(z)|.

He found that

(1) tn =
2

2n
,

the extremal polynomials being the so called Chebyshev polynomials

Tn(z) =
1

2n−1
cos(n arccosx).
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The Chebyshev polynomials have uniformly distributed zeros in the sense
that if we project the zeros (all lying in (−1,1)) vertically onto the unit circle
to get 2n points, then the points so obtained are uniformly distributed there
in the sense that they divide the circle into 2n equal arcs, see Figure 1.

Fig. 1. Uniform distribution of the Chebyshev zeros

What Erdős and Turán observed in [13] is that if the norm of a monic
polynomial Pn(z) = zn + · · · with all its zeros on [−1, 1] is not much larger
than the minimal norm tn, then the zeros of Pn are almost like the zeros
of the optimal polynomial Tn, i.e. in a sense the zeros (more precisely their
projection on the unit circle) are uniformly distributed.

Theorem 2.1 (Erdős–Turán, 1940). If Pn(z) = zn + · · · has all its zeros
{xj} in [−1, 1] and

(2) ‖Pn‖[−1,1] ≤
An

2n
,

then for any −1 ≤ a < b ≤ 1∣∣∣∣#{xj ∈ (a, b)}
n

− arcsin b− arcsin a

π

∣∣∣∣ ≤ 8

log 3

√
logAn

n
.

In particular, if

lim sup
n→∞

‖Pn‖1/n[−1,1] =
1

2
,
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then the distribution of the zeros is the arcsine distribution (note that, by
Chebyshev’s theorem, necessarily

lim inf
n→∞ ‖Pn‖1/n[−1,1] ≥

1

2
).

In other words, the zeros of asymptotically minimal polynomials have
arcsine distribution.

Let us sketch the original argument of Erdős and Turán from [13];
a different approach will be given in the next section. First of all it is
enough to prove the upper estimate

(3) #{xj ∈ (a, b)} − n(arcsin b− arcsin a)

π
≤ 4

log 3

√
nlogAn,

since the matching lower bound (with 4/ log 3 replaced by 8/ log 3) follows
if we apply (3) to the two complementary intervals [−1, a] and [b, 1]. Let
a = cosβ, b = cosα, α,β ∈ [0, π], let k = [n(β−α)/π], and assume that there
are at least k+2l zeros of Pn in [a, b]. Consider the following modification of
Chebyshev’s problem: minimize the supremum norm of monic polynomials
Qn(z) = zn + · · · on [−1, 1] under the constraint that the polynomial has
k + 2l zeros in [a, b]. There is an extremal polynomial Qn, and by a simple
variational argument |Qn| takes it maximal value (with respect to [−1, 1])
in between any two of its consecutive zeros lying in (a, b). According
to a lemma of M. Riesz if a trigonometric polynomial of degree n takes
its maximum absolute value at a ζ, then it has no zero in the interval
(ζ−π/2n, ζ+π/2n). Hence, the trigonometric polynomial Qn(cos θ) cannot
have more than [n(β − α)/π] = k zeros in the interior of (α, β). Thus, to
have k+2l zeros in [α, β] it must have 2l zeros at α and β, so in at least one
of the endpoints of [α, β] it has at least l zeros. Therefore, by assumption,

An

2n
≥ min

ψn

‖ψn‖[−1,1],

where ψn is a polynomial which has a zero of multiplicity l somewhere in
[−1, 1]. As a consequence,

An

2n
≥ min

ψn

(
1

π

∫ 1

−1
|ψn(ξ)|2√
1− ξ2

dξ

)1/2

.

If In(x0) is the minimum value of the norm on the right for all ψn which
has a zero at x0 of multiplicity l, then clearly

An

2n
≥ min

x0∈[−1,1]
In(x0).
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On applying the Zhoukowskii transformation ζ = 1
2(z +

1
z ), it follows after

multiplication by zn that In(x0)
2 is the minimum

1

π22n+1

∫ π

−π
|Ψ2n|2,

where the minimum is taken for all algebraic polynomials Ψ2n = z2n + · · ·
which have a zero of multiplicity l at both e±iθ0 , where cos θ0 = x0. Reduce
the assumption to have a single zero of multiplicity l, which then can be
moved to any point on the unit circle by rotation, hence (by moving it
to −1)

(4) In(x0)
2 ≥ 1

π22n+1
min
Φ2n−l

∫
|z|=1

|Φ2n−l(z)|2|1 + z|2l,

the minimum being taken for all polynomials Φ2n−l(z) = z2n−l + · · · of
degree 2n− l.

Regard here |1 + z|2l as a weight function w on the unit circle. It is
well known (easily follows from orthogonality) that the minimum in (4) is
attained for the (2n− l)-th monic orthogonal polynomial with respect to w.
Erdős and Turán figured out the explicit form

l

(
2n+ l

l

)
(1 + z)−2l

∫ z

−1
(z − t)l−1(1 + t)lt2n−ldt

for this orthogonal polynomial (once this form is given, one can rather easily
check that it is a polynomial of degree (2n− l) with leading coefficient 1 and
that it is orthogonal to every smaller power). In other words, the minimum
in (4) is attained for this function, and the minimum value for the right-hand
side in (4) can then be explicitly calculated and it is

1

22n

(
2n+ l

l

)(
2n

l

)−1
.

Now Stirling’s formula easily yields the lower bound

1

2n
exp

[(
log 3

4

)2 l2

n

]
for In(x0). Thus,

An ≥ exp

[(
log 3

4

)2 l2

n

]
,

from which (3) immediately follows.
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Indeed, this is a marvellous argument that gives a sharp estimate. How-
ever, it is also clear that it would be difficult to carry it over to Jordan
curves or to disconnected sets. We shall see an alternative approach in the
next section suitable in such situations.

3. Some Logarithmic Potential Theory

Theorem 2.1 has been used in a number of situations, and has been extended
to various directions. Erdős himself proved in [7] that if, besides (2) with
An = O(1), the maximum of |Pn| in between any two consecutive zeros is
≥ c/2n, then ∣∣∣∣#{xj ∈ (a, b)}

n
− arcsin b− arcsin a

π

∣∣∣∣ ≤ C
log n

n
.

To have a basis for generalization and to understand what is behind
Theorem 2.1 (in particular, why the number 1/2 and the arcsine distribution
play such a prominent role) we need to consider what happens if the norm
is taken on two intervals or on an even more general set. To do that we
shall need to introduce some concepts from potential theory.

First of all, if K is any compact set on the complex plane then we can
form Chebyshev’s problem onK: what is the minimal norm ‖Pn‖K of monic
polynomials Pn(z) = zn + · · · for a given n? Call this minimal norm tn(K).
We assume that K has infinitely many points (otherwise tn(K) = 0 for all
large n). It is immediate from the definition that tn+m(K) ≤ tn(k)tm(K),
i.e. log tn+m(K) ≤ log tn(K) + log tm(K), and then it is an easy exercise
about sequences that the limit (log tn(K))/n exists (it is actually, equal to
the infimum of all the numbers {(log tn(K))/n}∞n=1). In other words, the
limit

(5) t(K) = lim
n→∞ tn(K)1/n

exists. This t(K) is called the Chebyshev constant of K.

A related quantity is the so called logarithmic capacity that can be
obtained via the equilibrium measure of K. If μ is a unit Borel-measure
on E, then its logarithmic energy is

I(μ) =

∫ ∫
log

1

|z − t|dμ(z)dμ(t).

If this is finite for some μ, then there is a unique minimizing measure μE ,
called the equilibrium measure of E. Examples:
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• the equilibrium measure of [−1, 1] is

dμ[−1,1](t) =
1

π
√
1− t2

dt,

which is called the Chebyshev (or arcsine) distribution,
• if C1 is the unit circle, then

dμC1(e
it) =

1

2π
dt

is the normalized arc measure on C1.

Now with the minimal energy I(K) = infμ I(μ) the logarithmic capacity
cap(K) of K is defined as

(6) cap(K) = e−I(K).

Naturally, if all energies I(μ) are infinite (in which case there is no equilib-
rium measure), then cap(K) = 0.

Examples:

• if K is a disk/circle of radius r then cap(K) = r,
• cap([−1, 1]) = 1/2.

It is a simple fact (a consequence of the maximum principle for subhar-
monic functions) that if Pn(z) = zn + · · · , then

(7) ‖Pn‖K ≥ cap(K)n.

Now in the original Chebyshev problem and in Theorem 2.1 the constant 1/2
appears because it is the logarithmic capacity of [−1, 1]: cap([−1, 1]) = 1/2.
We can also see that Chebyshev’s theorem tn ≥ 2 · (1/2)n (see (1)) is just a
sharper form of (7).

There is yet another related quantity introduced by M. Fekete, the
transfinite diameter of K. For a given natural number n we consider n
points on K that maximize the product of their distances, i.e. for which the
supremum

δn(K) := sup
z1,...,zn∈K

∏
i=j

|zi − zj |

is achieved. They may not be unique, the points in any maximizing system
are called (n-th) Fekete points on K. It is not difficult to show that the
limit

(8) δ(K) = lim
n→∞ δ

1
n(n−1)
n (K)
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exists, and this limit is called the transfinite diameter of K.

It is a theorem due (different parts) to Fekete, A. Zygmund and G. Szegő
(see e.g. [28, Theorem 5.5.2, Corollary 5.5.5]) that the three quantities: the
Chebyshev constant (see (5)), the logarithmic capacity (see (6)) and the
transfinite diameter (see (8)) are the same:

(9) cap(K) = δ(K) = t(K).

In modern mathematics mostly the logarithmic capacity is used. Of
course, Erdős knew (9), but he never used logarithmic capacity – he was
always talking about the transfinite diameter of a set (after all he must have
heard it from Fekete himself).

After these preparations let us return to the Erdős–Turán discrepancy
Theorem 2.1. It can be formulated as: for any −1 ≤ a < b ≤ 1

(10)

∣∣∣∣#{xj ∈ (a, b)}
n

−
∫ b

a

1

π
√
1− x2

dx

∣∣∣∣ ≤ 8

log 3

√
logAn

n
.

Let δx be the “Dirac delta” at x, i.e. the point mass 1 placed to x. If we
introduce the normalized zero distribution

νn =
1

n

∑
j

δxj

associated with the zeros of Pn, then an equivalent form is: with the
Chebyshev distribution

dμ[−1,1](x) =
1

π
√
1− x2

dx

for any interval I ⊂ [−1, 1]

∣∣νn(I)− μ[−1,1](I)
∣∣ ≤ 8

log 3

√
logAn

n
.

Note that here μ[−1,1] is the equilibrium measure of [−1, 1], and this is the
appropriate form for generalizations.

Let K be a finite union of smooth Jordan arcs (homeomorphic images
of [0, 1]), and let Pn(z) = zn + · · · be a monic polynomial. Recall from
(7) that we necessarily have ‖Pn‖K ≥ cap(K)n, so asymptotically minimal
polynomials on K satisfy

(11) lim
n→∞ ‖Pn‖1/nK = cap(K).
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Erdős and Turán repeatedly mentioned (see e.g. [12, p. 165]) a theorem of
Fekete that was communicated to them verbally which claimed that if all
zeros of Pn are on single Jordan curve K then (11) is true if and only if the
zeros are distributed uniformly with respect to the conformal map Φ ofC\K
onto the exterior of the unit disk (i.e. the Φ-image of the zeros is uniformly
distributed on the unit circle). This seems to be the first extension of the
Erdős–Turán discrepancy theorem from an interval to a general curve. Note
that the equilibrium measure μK is the Φ-pull-back of the normalized arc-
measure on the unit circle: μK(E) = |Φ(E)|/2π, so Fekete’s theorem can be
rephrased saying that (11) is true if and only if the asymptotic distribution
of the zeros is the equilibrium distribution.

The most general form of the Erdős-Turán discrepancy theorem is due
to V. V. Andrievskii and H-P. Blatt [1, Theorem 2.4.2]. It involves the
quantity An for which

(12) ‖Pn‖K ≤ An cap(K)n,

and neighborhoods J∗ of subarcs J ⊂ K depicted in Figure 2.

Fig. 2. A neighborhood J∗ of a J of K

Theorem 3.1 (Andrievskii–Blatt, 1995-2000). Let K be a finite union of
disjoint smooth Jordan arcs; let νn be the normalized zero distribution of a
monic polynomial Pn of degree n and let An be defined by (12). Then for
any subarc J ⊂ K we have

(13) |νn(J∗)− μK(J∗)| ≤ C

√
logAn

n
,

where C depends only on K.

In particular, if ‖Pn‖1/nK → cap(K), then νn → μK , as was claimed by
Fekete for one arc.

When K consists of piecewise smooth arcs, then the square root on the
right of (13) must be replaced by a different power that depends on the
angles in between the different smooth arcs of K.
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To give a flavor of a potential-theoretic argument, in closing this section
we give a “modern” approach to the discrepancy Theorem 2.1 of Erdős and
Turán (modulo the exact constant).

Let μ = μ[−1,1] be the equilibrium measure of [−1, 1] (the arcsine mea-
sure). It is again enough to prove an appropriate upper bound for (νn −
μ)([−1, a]), a ∈ (−1, 1). For simplicity assume that a ∈ [−2/3, 2/3]. For a
δ > 0 consider the pair of intervals I+ := [−1, a], I− := [a+ δ, 1] (a so called
condenser). All the constants ci below depend on δ, but the important c2,
c3, c5, c6 and c7 lie in between two fixed constants independent of δ. The
following are rather simple facts from potential theory. There is a signed
measure σ = σ+ − σ− (the so called condenser equilibrium measure) such
that σ± are positive probability measures, σ± is supported on I±, the log-
arithmic potential

Uσ(z) =

∫
log

1

|z − t|dσ(t)

of σ equals a constant c1 on I− and another constant c1+ c2/ log(1/δ) on I+,
and everywhere else it lies in between these two constants. It is also true
that if I = I+∪ I−, then the equilibrium measure μI of I majorizes σ++σ−:
σ++σ− ≤ (c3/δ log(1/δ))μI , furthermore (by Frostman’s theorem [28, The-
orem 3.3.4]) the equilibrium potential UμI is constant c4 (= log 1/ cap(I))
on I, it is everywhere else less than c4, but on the interval [a, a+ δ] it is
bigger than c4 − c5δ.

Using these, we obtain from Fubini’s theorem

−
∫

Uσd(μ− νn) = −
∫

Uμ−νndσ.

Here, since by Frostman’s theorem [28, Theorem 3.3.4] the equilibrium
potential Uμ is identically equal to log 1/ cap([−1, 1]) = log 2 on [−1, 1], we
have

Uμ−νn(z) = log 2 + log |Pn(z)|1/n ≤ logAn

n
, z ∈ [−1, 1],

by the definition of the constant An in (2). Hence, since σ(C) = 0, we can
continue the preceding line as

−
∫

Uμ−νndσ =

∫ (
logAn

n
− Uμ−νn

)
dσ

≤
∫ (

logAn

n
− Uμ−νn

)
d(σ+ + σ−).
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Replace on the right σ+ + σ− by the larger (c3/δ log(1/δ))μI , and apply
again Fubini’s theorem to conclude the following bound for the right-hand
side

c3
δ log(1/δ)

logAn

n
− c3

δ log(1/δ)

∫
UμId(μ− νn).

In the last integral UμI can be replaced by UμI − c4 (the total mass of μ−νn
is 0), and since UμI − c4 = 0 on I, the integral becomes∫ a+δ

a
(UμI − c4) d(μ− νn).

Since UμI − c4 ≤ 0, if we omit here the measure −νn then we decrease
the integral. Finally, from μ([a, a+ δ]) ≤ c6δ and from UμI − c4 ≥ −c5δ
on [a, a+ δ] we can conclude

−
∫

Uσd(μ− νn) ≤
c3

δ log(1/δ)

logAn

n
+

c3
δ log(1/δ)

c5c6δ
2.

On the left we can replace Uσ by Uσ − c1, and then the left-hand side
becomes

− c2
log(1/δ)

(μ− νn)([−1, a])−
∫ a+δ

a
(Uσ − c1)d(μ− νn).

Since the last signed integral is at least

−
∫ a+δ

a
(Uσ − c1)dμ ≥ − c2

log(1/δ)
μ([a, a+ δ]) ≥ − c2c6δ

log(1/δ)
,

we finally obtain

− c2
log(1/δ)

(μ−νn)([−1, a])− c2c6δ

log(1/δ)
≤ c3

δ log(1/δ)

logAn

n
+ c3c5c6

δ

log(1/δ)
,

i.e.

(νn − μ)([−1, a]) ≤ c7

(
logAn

nδ
+ δ

)
.

Now the δ =
√

logAn

n choice gives the desired

(νn − μ)([−1, a]) ≤ 2c7

√
logAn

n
.

It is clear from this proof that with appropriate modifications it can be
given on smooth Jordan curves, or even on unions of such curves.
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4. A Second Discrepancy Theorem

Erdős and Turán had a second discrepancy theorem for the zeros of poly-
nomials which had equally important consequences.

Note first of all, that the results from the preceding sections have no
direct analogues for Jordan curves (homeomorphic images of the unit circle).
Consider e.g. the polynomials zn on the unit circle C1. These have norm 1,
which is the (n-th power of the) capacity of C1, and still all their zeros lie far
from C1, which carries the equilibrium distribution. In this section we shall
discuss how to get discrepancy theorems for the zeros on Jordan curves.

Let us start with a theorem of R. Jentzsch from 1918: if the radius of
convergence of a power series

∑∞
j=0 ajz

j is 1, then the zeros of (all) the

partial sums
∑n

0 ajz
j , n = 1, 2, . . . are dense at ever point of the unit circle.

Szegő made a refinement in 1922: there is a sequence n1 < n2 < · · · such
that if zj,n = rj,ne

iθj,n , 1 ≤ j ≤ n are the zeros of
∑n

0 ajz
j , then {θj,nk

}nk
1 is

asymptotically uniformly distributed (and rj,nk
≈ 1 for most j, i.e. for every

ε > 0 there are only o(nk) zeros outside the ring 1− ε < |z| < 1 + ε).

In connection with these Erdős and Turán proved in [15] the following.
Let Pn(z) = anz

n + · · ·+ a0 be a polynomial with zeros zj = rje
iθj , 1 ≤ j ≤

n, and let C1 = {|z| = 1} be the unit circle.

Theorem 4.1 (Erdős–Turán, 1950). For any interval J ⊂ [−π, π]

(14)

∣∣∣∣#{θj ∈ J}
n

− |J |
2π

∣∣∣∣ ≤ 16

√
log(‖Pn‖C1/

√
|a0an|)

n
.

Note that

‖Pn‖C1 ≤
∑
j

|aj |,

so we can replace ‖Pn‖C1 on the right of (14) by
∑

j |aj |:

(15)

∣∣∣∣#{θj ∈ J}
n

− |J |
2π

∣∣∣∣ ≤ 16

√
log(

∑
j |aj |/

√
|a0an|)

n
.

An immediate consequence is that Pn has at most

32

√√√√n log

(∑
j

|aj |/
√
|a0an|

)
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real zeros (just apply the inequality (15) to the degenerate intervals J = {0}
and J = {π}). This is better than previous estimates of B. Bloch, G. Pólya
and E. Schmidt on the number of real zeros of polynomials, and recaptures
a theorem (modulo a constant) of I. Schur.

Next, consider Szegő’s theorem mentioned before. In considering∑∞
j=0 ajz

j we may assume a0 �= 0. Now the radius of convergence of this
power series is 1 precisely if

lim sup
n

|an|1/n = 1,

and this easily implies the existence of a subsequence {nk} with

Cnk
:=

(∑nk
j=0 |aj |√
|a0an|

)1/nk

→ 1.

If zj,n = rj,ne
iθj ,n are the zeros of

∑n
j=0 ajz

j , then, by (15), we have∣∣∣∣#{θj,nk
∈ J}

nk
− |J |

2π

∣∣∣∣ ≤ 16
√

logCnk
→ 0,

which shows the uniform distribution of the arguments of the zeros. A rel-
atively simple argument gives that the number of zeros outside any ring
1− ε < |z| < 1+ ε tends to zero. Thus, one can easily get both the Jentzsch
and the Szegő theorem mentioned before from the Erdős-Turán inequal-
ity (14).

This second discrepancy theorem of Erdős and Turán has also been
extended in various directions, see e.g. [2], [17]. We only mention the
following generalization due to Andrievskii and Blatt [1, Theorem 2.4.5].

Note first of all that if an = 1, then
√

|a0an| in (14)–(15) is just
√
|Pn(0)|,

so the following statement is a direct generalization.

Theorem 4.2 (Andrievskii–Blatt, 1995-2000). If Γ is a smooth Jordan
curve, z0 a fixed point inside Γ, Pn(z) = zn + · · · and

Bn :=
‖Pn‖Γ√

cap(Γ)n|Pn(z0)|
,

then for all arc J ⊂ Γ∣∣∣∣#{zj ∈ J∗}
n

− μΓ(|J |)
∣∣∣∣ ≤ C0

√
logBn

n
.
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Fig. 3. The position of z0 and the neighborhood J∗ of an arc J

See Figure 3 for the position of z0 and J∗. Recall that μΓ is the
equilibrium measure of Γ.

In some form the theorem is actually true for a family of Jordan curves.

The Erdős–Turán discrepancy theorems have motivated many later
works; eventually a deep theory of discrepancy of signed measures have
evolved, see e.g. the book [1].

5. Orthogonal Polynomials on a Finite Interval

Let ρ be a positive Borel-measure with compact support on the complex
plane. The orthonormal polynomials pn(z) = γnz

n + · · · , n = 0, 1, . . ., with
respect to ρ are the unique polynomials with γn > 0 and

∫
pnpmdρ =

{
0 if n �= m

1 if n = m.

If S is the support of ρ, then for the leading coefficients γn it is always true
(see [30, Corollary 1.1.7]) that

(16)
1

cap(S)
≤ lim inf

n→∞ γ1/nn .

Earlier results on orthogonal polynomials had mostly been about the clas-
sical Hermite, Jacobi and Laguerre polynomials. Erdős and Turán were
among the first (along with T. J. Stieltjes, S. N. Bernstein and Szegő) who
got general results for rather general measures. However, they were always
considering the case when the support is [−1, 1].
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Theorem 5.1 (Erdős–Turán, 1940). If the support of ρ is [−1, 1], dρ(x) =
w(x)dx and w > 0 almost everywhere, then

(a) the asymptotic zero distribution of pn is the Chebyshev distribution,
(b)

|pn(z)|1/n → |z +
√
z2 − 1|, z /∈ [−1, 1].

In the latter limit the convergence is uniform on compact subsets of
C \ [−1, 1]. In particular, it also follows from this theorem that

lim
n→∞ γ1/nn = 2

(c.f. (16) and note that cap([−1, 1]) = 1/2).

Since the classical Jacobi polynomials have also this behavior, one could
say that the condition “w > 0 almost everywhere on [−1,1]” implies classical
behavior. This innocently looking condition turns out to be quite crucial,
e.g. we shall see that the behavior of pn and their zeros is totally different
if ρ vanishes on a subinterval of [−1, 1].

It took about 40 years for sharper results, when, in 1977-82, E. A.
Rakhmanov [26]–[27] proved that not just (b) is true, but also the stronger

(17)
pn+1(z)

pn(z)
→ z +

√
z2 − 1, z /∈ [−1, 1].

H. Widom showed in 1967 that no ratio asymptotics as in (17) is possible
if the support is not connected. Thus, in that case one should settle with
an analogue of (b) in Theorem 5.1. To state this analogue we need the
concept of Green’s function. Let Ω be the unbounded connected component
of C \ S (where S is the support of ρ), and we assume that S has positive
logarithmic capacity, so it has equilibrium measure μS (see Section 3). With
this equilibrium measure the Green’s function gC\S(z) of C \ S with pole

at infinity is the function

gC\S(z) =
∫

log |z − t|dμS(t)− log cap(K), z ∈ Ω

(it is customary to set gC\S to be zero outside Ω). An alternative definition

is that gC\S is the unique nonnegative harmonic function in Ω which behaves

at infinity as log |z|+ const and at “almost all points” of ∂Ω (“almost all”
with respect to logarithmic capacity) has zero limit.
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Examples:

• if CR is the circle about the origin of radius R, then

gC\CR
(z) = log(|z|/R),

•
gC\[−1,1](z) = log |z +

√
z2 − 1|.

Thus, the function |z+
√
z2 − 1| appearing in (b) in Theorem 5.1 can be

recognized as the exponential of the Green’s function of C\ [−1,1], while the
Chebyshev distribution in part (a) is the equilibrium distribution. These
guide us to a general formulation.

In discussing the general form of Theorem 5.1 for simplicity assume that
S = supp(μ) has connected complement and empty interior (e.g. S ⊂ R),
and S is regular in the sense that gC\S(z) → 0 as z → ζ ∈ ∂Ω, z ∈ Ω, for all

ζ ∈ ∂Ω. This latter condition is a mild one, most sets that naturally appear
satisfy it. We also assume that there is no zero capacity set that carries the
measure ρ.

The next result has evolved through the works of J. Ullman, Erdős,
Turán, Widom, H. Stahl and W. Van Assche; in the presented form it is
taken from the monograph [30].

Theorem 5.2. The following are pairwise equivalent.

(i) The asymptotic zero distribution of the orthogonal polynomials pn is
the equilibrium distribution μS of the support S of ρ,

(ii)

γ1/nn → 1

cap(S)
as n → ∞,

(iii)

|pn(z)|1/n → e
gC\S(z), z /∈ Con(S),

(iv) for all (or one) 0 < q < ∞

sup
Pn

‖Pn‖1/nS

‖Pn‖1/nLq(ρ)

→ 1.

If either of these properties holds then we say that ρ belongs to the
Reg class. ρ ∈ Reg is a very weak regularity assumption on the measure.
ρ ∈ Reg, i.e. regular behavior means roughly that the measure is not too
thin on any part of its support, and in terms of the orthogonal polynomials
it means that the orthogonal polynomials behave non-pathologically.
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Condition (ii) claims that the leading coefficients are asymptotically
minimal (see (16)), while property (iv) says that in n-th root sense the
integral norms of polynomials with respect to ρ are about the same (of
the same order) as their supremum norm on the support S of ρ (note that

‖Pn‖Lq(μ) ≤ μ(C)1/q‖Pn‖S).
If S has nonzero interior or C \S is not connected, then the equivalence

of (ii)–(iv) is still true; but the asymptotic zero distribution may not be μS .
Consider e.g. the arc-measure on the unit circle or the area-measure on the
unit disk as ρ. In these cases the n-th orthonormal polynomial is a constant
multiple of zn, which has all its zeros at the origin, while the equilibrium
measure is the normalized arc-measure on the unit circle.

With theReg class we can see that Theorem 5.1 claims nothing else than
S = [−1, 1] and dρ(x) = w(x)dx with w > 0 almost everywhere on [−1, 1]
imply ρ ∈ Reg. The condition “w > 0 almost everywhere” is called the
(original) Erdős–Turán criterion. In the monograph [30] we called

(18)
dρ(z)

dμS
> 0 μS − almost everywhere

the general Erdős–Turán criterion. On the left the derivative is the Radon-
Nikodym derivative of ρ with respect to the equilibrium measure μS of
S = supp(ρ). (When S = [−1, 1] then we have dμS(x) = (π

√
1− x2)−1dx

and then clearly (18) is true if and only if

dρ(x)

dx
> 0 almost everywhere on [−1, 1],

so (18) is, indeed, a generalization of the original Erdős–Turán criterion.)
In the general case we have (see [30, Theorem 4.1.1])

Theorem 5.3 (Stahl–Totik, 1990). The Erdős–Turán criterion (18) implies
ρ ∈ Reg.

By now there are many weaker (more powerful) criteria for regularity,
see [30, Ch. 4], but no necessary and sufficient condition is known. The only
necessary condition (in terms of the size of the measure ρ) is the following:
if the support of ρ is [−1, 1] and ρ ∈ Reg, then for all η > 0 the capacity of
the set

Eη,n :=

{
x ∈ [−1, 1] | ρ

([
x− 1

n
, x+

1

n

])
> e−ηn

}
tends to 1/2 (the capacity of [−1, 1]) as n → ∞.

A closest sufficient condition is
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Criterion λ∗: the support of ρ is [−1, 1] and for every η > 0 the measure
of the set Eη,n tends to 2 (as n → ∞).

Thus, criterion λ∗ implies ρ ∈ Reg. An analogous criterion for general
sets using capacity is

Criterion Λ∗: there is an L such that the capacity of the set

(19) {z ∈ S | ρ(Δ1/n(z)) > n−L}
tends, as n → ∞, to the capacity cap(S) of the support S of ρ (here Δ1/n(z)
denotes the disk of radius 1/n with center at z).

In [12] Erdős claimed to had proven a necessary and sufficient condition
for ρ ∈ Reg, but he did not state the condition and he had never published
it. He periodically returned to the following statement conjectured by
him which, according to [8], he had never been able to fully prove: if
S = [−1,1] and dρ(x) = w(x)dx with a bounded w, then ρ ∈ Reg if and only
if cap(Eε) → 1/2 as ε → 0, where Eε is any set obtained from {x | w(x) > 0}
by removing a subset of measure < ε.

This seems to be still open, though the sufficiency easily follows from
Criterion Λ∗ in (19).

Regularity plays an important role in the general theory of orthogonal
polynomials. It gives a weak global condition under which many properties
of orthogonal polynomials can be localized. We shall see examples in the
next section.

6. Spacing of Zeros of Orthogonal Polynomials

Let again dρ(x) = w(x)dx be a measure on [−1, 1], pn the orthonormal
polynomials with respect to ρ and let xj = xj,n = cos θj,n = cos θj , θj ∈ [0, π],
be the zeros of pn in increasing order. In this case all zeros lie in (−1,1), and
in the 1930’s and 1940’s Erdős and Turán had many results on the spacing
of these zeros. For the following discussion we speak of rough spacing when

(20) θj−1 − θj ∼
1

n
, i.e.

c1
n

≤ θj−1 − θj ≤
c2
n
.

Fine zero spacing means

(21) θj−1 − θj ≈
π

n
, i.e. n(θj−1 − θj) →

π

n
.

For example, classical (Jacobi) polynomials obey fine spacing inside (−1, 1).

As a first result on rough spacing we mention [12, Theorem VIII] which
was the first general result on local rough spacing.
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Theorem 6.1 (Erdős–Turán, 1940). If the support of ρ is [−1, 1], dρ(x) =
w(x)dx with a w that lies in between two positive constants on some interval
[a, b], then inside any interval [a+ ε, b− ε] the zeros of the orthogonal
polynomials obey rough spacing.

By now it has become clear that rough spacing of zeros is basically
equivalent to ρ being a doubling measure:

ρ(2I) ≤ Cρ(I) for all intervals I ⊂ [−1, 1].

Here 2I is the interval I enlarged twice from its center. More precisely, the
following was proved in [24, Theorem 1].

Theorem 6.2 (Mastroianni–Totik, 2010). If ρ is doubling on [−1, 1], then
pn obey rough zero spacing (on the whole interval [−1, 1]).

This includes all previous result on rough spacing of zeros. Furthermore,
if ρ is doubling then for the so called Cotes numbers

1

λn,j
=

n∑
k=0

pk(zn,j)
2

(these appear in Gaussian quadrature) we have

(22) 0 < c ≤ λn,j+1

λn,j
≤ C

uniformly in n and j. Now this uniform boundedness and rough zero spacing
is actually equivalent to the doubling condition, see [24, Theorem 3]. It is
an open problem if rough spacing alone is equivalent to ρ being doubling
(in other words, if rough spacing (20) implies (22)).

These results also have a local version, see [32] and [33].

Fine zero spacing requires more smoothness on the weight. It follows
from some deep results of Szegő and Bernstein that if w ≥ c > 0 (with
dρ(x) = w(x)dx) on [−1, 1] and w is twice differentiable on an interval, then
inside this interval there is a strong asymptotic formula for the orthogonal
polynomials which easily implies fine zero spacing. Erdős and Turán found
this approach too restrictive (too “big gun” is used), and they gave the
following beautiful theorem.

Theorem 6.3 (Erdős–Turán, 1940). If dρ(x) = w(x)dx where w > 0 is
continuous on [−1, 1], then pn obeys fine zero spacing for the zeros lying in
any subinterval (−1 + ε, 1− ε), i.e.

(23) θj−1 − θj ≈
π

n

there.
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This is no longer true if w is allowed to vanish somewhere on [−1, 1],
and it is a delicate question what properties of w imply fine zero spacing. It
has turned out that this question is related to some universality problems
in random matrix theory, namely to a well defined and “universal” (i.e.
independent of ρ) behavior of the kernel function

n∑
k=0

pk(z + a/n)pk(z + b/n) a, b ∈ C.

D. S. Lubinsky [21] proved in 2009 this universality under the ρ ∈ Reg global
condition and under local continuity and positivity of w. The following is a
consequence from [19]:

Theorem 6.4 (Levin–Lubinsky, 2008). If ρ ∈ Reg and w is continuous
and positive at z0 ∈ (−1, 1), then (23) is true for the zeros xj that lie close
to x0: xj − z0 = O(1/n).

Now what happens if ρ vanishes on some subinterval of [−1, 1], or more
generally, if dρ(x) = w(x)dx is supported on some general compact set S
of the real line? Then the equilibrium measure μS of S enters into zero
spacing. More precisely, we need the density of that equilibrium measure:
if I ⊂ S is an interval, then μS is absolutely continuous on I with respect to
Lebesgue-measure: dμS(t) = ωS(t)dt, and its density ωS is a C∞ function
there.

Examples:

• for the unit circle/disk the equilibrium density is the identically 1/2π
function on the unit circle,

•
ω[−1,1](t) =

1

π
√
1− t2

, t ∈ (−1, 1).

The following general fine zero spacing theorem was proved by B. Simon
[29] and by the author [31] (recall that ωS is the equilibrium density of the
support S of ρ).

Theorem 6.5 (Simon, Totik, 2008-2009). If ρ ∈ Reg and w(t) := dρ(t)/dt
is continuous and positive at a z0 ∈ Int(S), then

(24) lim
n→∞nωS(z0)(xj+1,n − xj,n) = 1, xj,n − z0 = O(1/n).

Furthermore, if w > 0 is continuous on an interval (a, b), then

(25) lim
n→∞nωS(xj)(xj+1,n − xj,n) = 1

uniformly for xj ∈ [a+ ε, b− ε].
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It is quite remarkable that local spacing xj+1−xj of zeros not only reflect
(via ωS(x)) the (global) support of the measure, but also the position of the
zero xj inside that support.

It is also true that if logw ∈ L1(I) on some interval I, then (24) is true
at almost all z0 ∈ I, see [31]. It is an open problem if (24) is true (say on
[−1, 1]) almost everywhere if, instead of logw ∈ L1(I), we assume only the
Erdős–Turán condition w > 0 a.e.

7. Erdős Weights

Besides orthogonal polynomials with respect to measures with compact sup-
port, orthogonal polynomials associated with weights on the whole real line
have important applications. The prototypes are the Hermite polynomials
associated with the weight function w(x) = exp(−x2). If dρ(x) = w(x)dx is
supported on the whole real line, then the zeros zj,n of the n-th orthogonal
polynomials spread out: the largest zero xn,n tends to ∞ and the smallest
zero x1,n tends to −∞ as n → ∞. So in this case one cannot speak of clas-
sical zero distribution. One rather considers so called contracted zeros that
are obtained by transforming the interval [x1,n, xn,n] linearly onto [−1, 1],
and considering the zeros under this linear transformation. Note that this
contraction brings all the zeros to [−1, 1], and if these contracted zeros have
an asymptotic distribution σ, then σ is called the contracted distribution of
the zeros.

In the paper [8] Erdős proved the following.

Theorem 7.1 (Erdős, 1969). Let 0 < w(x) < C on the real line, and assume
that to every ε > 0 there is an xε such that for every |x| > xε if y is of the
same sign as x and |y| ≥ (1 + ε)|x|, then

(26) w(y) < w(x)2

holds. Then the contracted zero distribution of the corresponding orthogo-
nal polynomials is the Chebyshev (arcsine) distribution.

It is easy to see that the condition (26) implies

(27) w(x) = o(e−|x|
α
), |x| → ∞

for all α. In that same paper Erdős conjectured that (27) alone is sufficient
for arcsine contracted zero distribution, but without further regularity this
may not be true (a note by Lubinsky). However, under some regularity of
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the weight (like monotonicity around infinity) the results of [18, Theorem
14.2] and [20, Theorem 12.2] imply the conjecture (a note by Lubinsky),
but those conditions are not as simple as (26).

Why do the conditions (26) and (27) appear in this respect? Already
Erdős noticed that if w(x) = exp(−|x|α) with some α > 0, then the con-
tracted zero distribution is not the Chebyshev distribution (since then it
has been calculated that it is

α

π

∫ 1

|t|

uα−1√
u2 − t2

du, t ∈ [−1, 1]),

so one needs faster decrease to get arcsine distribution. Today weights
satisfying (27) are called Erdős weights. The theory (orthogonal polyno-
mials, approximation theory, polynomial inequalities) of Erdős weights has
been developed by Lubinsky and Levin (and coauthors) in a series of pa-
pers and in the monographs [20] and [18]. There is an analogue on a finite
interval: there those weights are called Erdős weights that vanish at the
endpoints faster than any power of x; typical examples exp(−1/(1− x2)α),
exp(− exp(1/(1− x2)α)).

8. Critical Points of Polynomials

Let Pn be a polynomial of degree n, let z1, . . . , zn be its zeros and ξ1, . . . , ξn−1
the zeros of P ′n.

The classical Gauss–Lucas theorem from the mid 1800’s claims that
every ξj is in the convex hull of {z1, . . . , zn}.

Erdős and I. Niven simultaneously with N. G. de Bruijn and T. A.
Springer proved in 1947-48 that

1

n− 1

n−1∑
j=1

|-ξj | ≤
1

n

n∑
k=1

|-zk|,

which implies (the reader is asked to do it!)

1

n− 1

n−1∑
j=1

|ξj | ≤
1

n

n∑
k=1

|zk|.
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This latter theorem lead to a fascinating area about the location of
critical points ξj . First of all, it was extended by de Bruijn and Springer [4]:
for all positive integer m

1

n− 1

n−1∑
j=1

|ξj |m ≤ 1

n

n∑
k=1

|zk|m.

They also conjectured that if ϕ : C → R+ is convex (in the classical sense
that ϕ(αz + (1− α)w) ≤ αϕ(z) + (1− α)ϕ(w) for all z , w and 0 < α < 1),
then

1

n− 1

n−1∑
j=1

ϕ(ξj) ≤
1

n

n∑
k=1

ϕ(zk).

Now this has known to be a very strong property through the works in
the theory of majorization by Weyl, Birkhoff and Hardy-Littlewood-Pólya.
This conjecture of de Bruijn and Springer remained open for more than half
a century, and there were several related conjectures (see e.g. [23] and [25])
about the relationship between the zeros ξj and zk.

Many of these conjectures have been resolved by S. M. Malamud [23]
and R. Pereira [25] in two simultaneous and independent papers in 2003.
To state their theorem let us recall that an (n− 1)×n size A = (aij) matrix
is doubly stochastic if

• aij ≥ 0,
• each row-sum equals 1, and
• each column-sum equals (n− 1)/n.

Let

Z =

⎛⎜⎝z1
...
zn

⎞⎟⎠ Ξ =

⎛⎜⎝ ξ1
...

ξn−1

⎞⎟⎠
With these the key property is

Theorem 8.1 (Malamud, Pereira, 2003). There is a doubly stochastic
matrix A such that Ξ = AZ.

The Gauss–Lucas theorem, the de Brjuin-Springer conjecture etc. are
all immediate consequences. Indeed, we have

ξj =

n∑
k=1

ajkzk,
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so if ϕ is convex then

1

n− 1

n−1∑
j=1

ϕ(ξj) ≤
1

n− 1

n−1∑
j=1

n∑
k=1

ajkϕ(zk)

=
1

n− 1

n∑
k=1

ϕ(zk)

n−1∑
j=1

ajk =
1

n

n∑
k=1

ϕ(zk).

Other examples:

1)
1

n− 1

n−1∑
j=1

|�ξj |m ≤ 1

n

n∑
k=1

|�zk|m, m ≥ 1.

2) If all zeros lie in the upper-half plane, then

(
n∏

k=1

-zk
)1/n

≤

⎛⎝n−1∏
j=1

-ξj

⎞⎠1/(n−1)

.

Erdős would have loved these results particularly that their proof is quite
simple. Malamud and Pereira developed related theories of matrix opera-
tions (inverse spectral theorems for normal matrices resp. differentiators),
and they obtained Theorem 8.1 as a consequence. But if one only wants
to prove Theorem 8.1, then the Malamud-Pereira argument is rather sim-
ple (we present Pereira’s proof without differentiators). Indeed, we may
assume Pn to have leading coefficient 1. Let E1, . . . ,En be the standard
orthonormal basis in Cn, A the diagonal matrix/operator with diagonal
entries z1, . . . , zn, and let v = (1, 1, . . . , 1)T /

√
n. With this

vT (xIn −A)−1v =
1

n

n∑
j=1

(x− zj)
−1 =

1

n

P ′n(x)
Pn(x)

.

Let en = v, e⊥n its orthogonal complement and P the orthogonal projection
onto e⊥n . Choose an orthonormal basis e1, . . . , en−1 in e⊥n in which PA|e⊥n
has a triangular matrix B̃. Then e1, . . . , en is an orthonormal basis in Cn

and B̃ is the (n−1)× (n−1) principal minor of the matrix Ã of the operator
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A in that basis. Now if ṽ = (0, . . . , 0, 1)T is the representation of v = en in
the basis e1, . . . , en, then

ṽT (xIn − Ã)−1ṽ = ((xIn −A)−1en, en) = vT (xIn −A)−1v =
1

n

P ′n(x)
Pn(x)

and

ṽT (xIn − Ã)−1ṽ = det(xIn−1 − B̃)/det(xIn − Ã)

because both sides give the (n, n) element of the matrix (xIn − Ã)−1.
Since the denominator on the right is the characteristic polynomial of
Ã, which is the same as the characteristic polynomial of A i.e. Pn(x),

we get that P ′n(x)/n = det(xIn−1 − B̃). Therefore, the diagonal elements

in B̃ (the eigenvalues of B̃) are ξ1, . . . , ξn−1, the zeros of P ′n. With
ej =

∑n
k=1(ej ,Ek)Ek, j = 1, . . . , n− 1, we have then for 1 ≤ j ≤ n− 1,

ẽj = (0, . . . , 0, 1, 0, . . . , 0)T (with the 1 in the j-th position)

ξj = ẽTj B̃ẽj = ẽTj Ãẽj = (Aej , ej) =

n∑
k=1

zk|(ej ,Ek)|2.

Now this is the required representation, since
∑n

k=1 |(ej ,Ek)|2 = ‖ej‖2 = 1

and
∑n−1

j=1 |(ej ,Ek)|2 = (n− 1)/n because |(en,Ek)|2 +
∑n−1

j=1 |(ej ,Ek)|2 =
‖Ek‖2 = 1 and |(en,Ek)|2 = |(v,Ek)|2 = 1/n.

The author thanks L. Kérchy, D. S. Lubinsky and the referee for their
valuable suggestions concerning the presentation.
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[34] P. Vértesi, On the Lebesgue function and Lebesgue constant: A tribute to Paul
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Paul Erdős and Interpolation:

Problems, Results, New Developments

PÉTER VÉRTESI

1. Introduction

Pál (Paul) Erdős was born 100 years ago (March 26, 1913 in Budapest).
He died on September 20, 1996 in Warsaw, when he attended a confer-
ence. He wrote about 1500 papers mainly with coauthors including those
more than 80 works which are closely connected with approximation theory
(interpolation, mean convergence, orthogonal polynomials, a.s.o.).

The present paper tries to give a short summary of some significant
results proved by Erdős (and his coauthors) and their new developments in
approximation theory, primarily in interpolation; in a way it is an updated
version of my previous work [47] from 1990.

We use several survey papers written by Erdős himself and on his works
(cf. [1], [2] and [3] and their references); sometimes we quote them without
mentioning the actual work explicitly. Moreover, we use and quote the
corresponding part of the book “A Panorama of Hungarian Mathematics in
the Twentieth Century” [1].

2. Interpolation, Lagrange Interpolation, Lebesgue

Function, Lebesgue Constant, Optimal Lebesgue

Constant

What is interpolation? “Perhaps it would be interesting to dig to the roots
of the theory and to indicate its historical origin. Newton, who wanted to
draw conclusions from the observed location of comets at equidistant times
as to their location at arbitrary times arrived at the problem of determining
a ‘geometric’ curve passing through arbitrarily many given points. He solved
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this problem by the interpolation polynomial bearing his name ”(Pál Turán
[1, p. 23].)

Interpolation theory has been one of the favorite subjects of the twenti-
eth century’s Hungarian approximators. The backbone (mainly of classical
interpolation) is the theory developed by Lipót Fejér, Ervin Feldheim, Géza
Grünwald, Pál Turán and, of course, by Pál Erdős.

2.1.

Let us begin with some definitions and notation. Let C = C(I) denote the
space of continuous functions on the interval I := [−1, 1], and let Pn denote
the set of algebraic polynomials of degree at most n. ‖ · ‖ stands for the
usual maximum norm on C. Let X be an interpolatory matrix (array), i.e.,

X =
{
xkn = cosϑkn; k = 1, . . . , n; n = 0, 1, 2, . . .

}
,

with

(2.1) −1 ≤ xnn < xn−1,n < · · · < x2n < x1n ≤ 1,

0 ≤ ϑkn ≤ π, and consider the corresponding Lagrange interpolation poly-
nomial

(2.2) Ln(f,X, x) :=

n∑
k=1

f(xkn)kn(X,x), n ∈ N.

Here, for n ∈ N,

kn(X,x) :=
ωn(X,x)

ω′n(X,xkn)(x− xkn)
, 1 ≤ k ≤ n,

with

ωn(X,x) :=

n∏
k=1

(x− xkn),

are polynomials of exact degree n−1. They are called the fundamental poly-
nomials associated with the nodes {xkn, k = 1, . . . , n} obeying the relations
kn(X,xjn) = δkj , 1 ≤ k, j ≤ n.

The main question is: For what choices of the interpolation array X we
can expect that (uniformly, pointwise, etc.) Ln(f,X) → f (n → ∞)?
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By the classical Lebesgue estimate,

∣∣Ln(f,X, x)− f(x)
∣∣ ≤ ∣∣Ln(f,X, x)− Pn−1(f, x)

∣∣ + ∣∣Pn−1(f, x)− f(x)
∣∣

(2.3)

≤
( n∑

k=1

∣∣k,n(X,x)
∣∣ + 1

)
En−1(f),

therefore, with the notations

λn(X,x) :=

n∑
k=1

∣∣kn(X,x)
∣∣ , n ∈ N,(2.4)

Λn(X) :=
∥∥λn(X,x)

∥∥ , n ∈ N,(2.5)

(Lebesgue function and Lebesgue constant (of Lagrange interpolation), re-
spectively,) we have for n ∈ N

(2.6)
∣∣Ln(f,X, x)− f(x)

∣∣ ≤ {
λn(X,x) + 1

}
En−1(f)

and

(2.7)
∥∥Ln(f,X)− f

∥∥ ≤
{
Λn(X) + 1

}
En−1(f).

Above, as usual

En−1(f) := min
P∈Pn−1

‖f − P‖.

In 1914 Georg Faber proved the then rather surprising lower bound

(2.8) Λn(X) ≥ 1

12
log n, n ≥ 1,

for any interpolation array X. Based on this result he obtained

Theorem 2.1. For any fixed interpolation array X there exists a function
f ∈ C for which

(2.9) lim
n→∞

∥∥Ln(f,X)
∥∥ = ∞.
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2.2.

The preceding estimates underline the importance of the Lebesgue function,
λn(X,x), and the Lebesgue constant, Λn(X).

To go further, first we state the counterpart of (2.8). Namely, using an
estimate of L. Fejér

Λn(T ) =
2

π
log n+O(1),

one can see that the order log n in (2.8) is best possible (here T is the
Chebyshev matrix, i.e. xkn = cos 2k−1

2n π).

A very natural problem, raised and answered in 1958 by Erdős, says that
λn(X,x) is “big” on a “large” set.

Theorem 2.2 (Erdős [4]). For any fixed interpolation matrix X ⊂ [−1, 1],
real ε > 0, and A > 0, there exists n0 = n0(A, ε) so that the set{

x ∈ R, λn(X,x) ≤ A for all n ≥ n0(A, ε)
}

has measure less than ε.

The proof of Theorem 2.2 is based on the following simple looking
statement (cf. [4, Lemma 3]).

Let y1, y2, . . . , yt be any t (t > t0) distinct numbers in [−1, 1] not neces-
sarily in increasing order. Then, for at least one j (1 ≤ j ≤ t),

j−1∑
k=1

1

|yk − yj |
>

t log t

8
.

(The half–page proof is based on the inequality between the arithmetic and
harmonic means.)

Let us mention a nice, relatively new, generalization of this statement.
In his paper [31] Ying Guang Shi proved as follows:

Let, for a fixed p, 0 < p < ∞,

fj(p,y) :=

j−1∑
k=1

1

|yk − yj |p
, j = 1, 2, . . . , t; t ≥ 2.

Then

1

t

t−1∑
j=1

fj(p,y) ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t− 1

21+p
, 0 < p < 1,

(t− 1) log t

4
, p = 1,

(t− 1)1+p

2p t
, p > 1.
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Moreover, the order is the best possible and it is attained by the equidistant
nodes.

The next statement, the more or less complete pointwise estimation, is
due to P. Erdős and P. Vértesi [5] from 1981.

Theorem 2.3. Let ε > 0 be given. Then, for any fixed interpolation matrix
X ⊂ [−1, 1] there exist sets Hn = Hn(ε,X) of measure ≤ ε and a number
η = η(ε) > 0 such that

(2.10) λn(X,x) > η log n

if x ∈ [−1, 1] \Hn and n ≥ 1.

Closer investigation shows that (instead of the original η = cε3) η = cε
can be attained. The behaviour of the Chebyshev matrix, T , shows that
(2.10) is the best possible regarding the order log n.

2.3.

Let us say some words about the optimal Lebesgue constant. In 1961,
P. Erdős, improving a previous result of P. Turán and himself (see [6]),
proved that

(2.11)

∣∣∣∣Λ∗n − 2

π
log n

∣∣∣∣ ≤ c,

where
Λ∗n := min

X⊂I
Λn(X), n ≥ 1,

is the optimal Lebesgue constant. As a consequence of this result, the closer
investigation of Λ∗n attracted the attention of many mathematicians.

In 1978, Ted Kilgore, Carl de Boor and Alan Pinkus proved the so-called
Bernstein-Erdős conjectures concerning the optimal interpolation array X
(cf. [7] and [8]).

To formulate the conjecture and the result, let X be canonical if x1n =
−xnn = 1. An elementary argument shows that to obtain the value Λ∗n it is
enough to consider the canonical matrices only. Moreover, if

μkn(X) = max
xkn≤x≤xk−1,n

λn(X,x), 2 ≤ k ≤ n, n ≥ 3,

denote the n− 1 unique local maximum values of λn(X,x),1 then we state

1It is easy to see that for arbitrary interpolatory X, λn(X,x) is a piecewise polynomial
with λn(X,x) ≥ 1 and λn(X,x) = 1 iff x = xkn, 1 ≤ k ≤ n. Between the consecutive nodes
λn(X,x) has a single maximum, and in (−1, xnn) and (x1n, 1) it is convex and monotone
(see [46, p. 95]).
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Theorem 2.4. Let n ≥ 3. We have

(i) there exists a unique optimal canonical X∗ with
(ii) μkn(X

∗) = μ�n(X
∗) 2 ≤ k,  ≤ n.

Moreover, for arbitrary interpolatory X

(iii) min
2≤k≤n

μkn(X) ≤ Λ∗n ≤ max
2≤k≤n

μkn(X).

Using this result, (2.11) can be considerably improved. Namely,

(2.12) Λ∗n =
2

π
log n+ χ+ o(1), n → ∞,

where χ = 2
π

(
γ + log 4

π

)
= 0.521251 . . . and γ = 0.577215 . . . is the Euler

constant (cf. P. Vértesi [9]).

2.4.

One of the most talented approximators, the HungarianGéza Grünwald, was
a holocaust victim; he was killed in 1942 at the age 32. He was about 25
when, in two fundamental papers, he proved that the Lagrange interpolation

can be very bad even for the good matrix T =
{
cos 2k−1

2n π
}
.

Theorem 2.5 (Grünwald–Marcinkiewicz2). There exists a function f ∈ C
for which

lim
n→∞

∣∣Ln(f, T, x)
∣∣ = ∞

for every x ∈ [−1, 1].

In their third joint paper, [10] Erdős and Grünwald claimed to prove
the existence of an f ∈ C for which

(2.13) lim
n→∞

1

n

∣∣∣∣ n∑
k=1

Lk(f, T, x)

∣∣∣∣ = ∞,

2At the same time the same statement was proved by the Polish mathematician, Józef
Marcinkiewicz. We must note some other similarities between them. Both were born in
1910; both included the above theorem into their PhD dissertations; they were submitted
in 1935; moreover Marcinkiewicz was also a victim of the WWII: as his teacher Antoni
Zygmund writes: “On September 2 [1939], the second day of the war I came across him
accidentally in the street in Wilno [Vilnius], already in military uniform. . . A few months
later came the news that he was a prisoner of war and was asking for mathematical
books”. It seems that this was the last news about Marcinkiewicz.
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for all x ∈ [−1, 1]. However, as it was discovered later by Erdős himself,
there had been an oversight in the proof and the method only gives the
result with the modulus sign inside the summation.

Only in [11], where Erdős and Gábor Halász (who was born four years
after the Erdős–Grünwald paper) were able to complete the proof and
obtained the following.

Theorem 2.6. Given a positive sequence {εn} converging to zero however
slowly, one can construct a function f ∈ C such that for almost all x ∈ [−1,1]

(2.14)
1

n

∣∣∣∣ n∑
k=1

Lk(f, T, x)

∣∣∣∣ ≥ εn log log n

for infinitely many n.

The right-hand side is optimal, for in the paper [12] Erdős proved

Theorem 2.7.

1

n

∣∣∣∣ n∑
k=1

Lk(f, T, x)

∣∣∣∣ = o(log log n)

for almost all x, whenever f ∈ C.

The proof of Theorem 2.7 is an ingenious combination of ideas from
number theory, probability and interpolation; it is not by chance that the
authors are Erdős and Halász!

2.5.

After the result of Grünwald and Marcinkiewicz a natural problem was to
obtain an analogous result for an arbitrary array X. In [4, p. 384], Erdős
wrote: “In a subsequent paper I hope to prove the following result:

Let X ⊂ [−1, 1] be any point group [interpolatory array]. Then there
exists a continuous function f(x) so that for almost all x

lim
n→∞

∣∣Ln(f,X, x)
∣∣ = ∞.”

After 4 years of work, Erdős and P. Vértesi proved the above result
([14]–[15]). Erdős writes in [13]: “[Here we prove the above] statement in
full detail. The detailed proof turns out to be quite complicated and several
unexpected difficulties had to be overcome.”3

3In a personal letter Erdős wrote about the main idea of the proof : [First] “we should
prove that for every fixed A and η > 0 there exists an M (M = M(A, η)) such that if we
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2.6.

Another significant contribution of the Hungarian approximators to inter-
polation is the so called “fine and rough theory” (the name was coined by
Erdős and Turán in their basic joint paper [16] dedicated to L. Fejér on his
75th birthday in 1955).

In the class Lipα (0 < α < 1; we use the natural setting) a natural error
estimate for Lagrange interpolation is∥∥Ln(f,X)− f

∥∥ ≤ cn−αΛn(X)

(cf. (2.7)). Erdős and Turán raised the obvious question: How sharp is this
estimate in terms of the order of the Lebesgue constant as n → ∞? They
themselves considered interpolatory arrays X where

Λn(X) ∼ nβ (β > 0).

In the above paper [16] they prove essentially

Theorem 2.8. Let X be as above. If α > β, then we have uniform
convergence in Lipα. If α ≤ β/(β + 2), then for some f ∈ Lipα, Lagrange
interpolation is divergent.

These two cases comprise what is called the “rough theory”, since solely
on the basis of the order of Λn(X) one can decide the convergence-divergence
behavior. However,

Theorem 2.9. If β/(β + 2) < α ≤ β then anything can happen. That
is, there is an interpolatory array Y1 with Λn(Y1) ∼ nβ and a function
f1 ∈ Lipα such that limn→∞

∥∥Ln(f1, Y1)
∥∥ = ∞, and another interpolation

array Y2 with Λn(Y2) ∼ nβ , such that limn→∞
∥∥Ln(f, Y2)− f

∥∥ = 0 for every
f ∈ Lipα.

That is, to decide the convergence-divergence behavior we need more
information than just the order of the Lebesgue constant. The corresponding
situation is called “fine theory”.

This paper of Erdős and Turán has been very influential. It left open a
number of problems and attracted the attention not only of the Hungarian
school of interpolation (Géza Freud, Ottó Kis, Melánia Sallay, József Szaba-
dos, P. Vértesi), but also of others (including R. J. Nessel, W. Dickmeis,
E. van Wickeren).

divide the interval [−1, 1] into M equal parts I1, . . . , IM then
∑′

k
|�k,n(X,x)| > A, x ∈ Ir,

apart from a set of measure ≤ η. Here
∑′ means that k takes those values for which

x /∈ Ir”.
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2.7.

The Faber-theorem (2.9) is a special case of a general statement proved by
S. M. Losinskii and F. I. Harsiladze on (linear) projection operators (p.o.).
(That means Ln : C → Pn−1 is a linear bounded operator and Ln(f) ≡ f iff
f ∈ Pn−1). Namely, they proved that if

|||Ln||| := sup
‖f‖≤1

∥∥Ln(f, x)
∥∥ , f ∈ C,

then

(2.15) |||Ln||| ≥
log n

8
√
π

(Ln is a p.o.). If Ln = Ln(X) (Lagrange interpolation), then, obviously
Λn(X) = |||Ln|||.

In his paper [17], G. Halász formulated some results on

Ln(x) := sup
‖f‖≤1

∣∣Ln(f, x)
∣∣ , f ∈ C

(it generalizes the Lebesgue function λn(X,x)). Among others he states

Theorem 2.10. For any sequence of projections Ln

(i) lim
n→∞Ln(x) = ∞ on a set of positive measure in [−1, 1];

(ii) lim
n→∞

1∫
−1

h
(
logLn(x)

)
logLn(x) dx = ∞ whenever

I :=

∞∫
2

h(x)

x log x
dx = ∞.

(iii) If I < ∞ then there exists a sequence Ln such that

sup
n

1∫
−1

h
(
logLn(x)

)
logLn(x) dx < ∞.
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2.8.

Here we mention some recent developments of the previous results. First,
let us see the multidimensional analogon of the estimation (2.15).

Let Rd (direct product) be the Euclidean d-dimensional space (d ≥ 1,
fixed) and let Td = Rd (mod 2πZd) denote the d-dimensional torus, where
Z = {0,±1,±2, . . .}.

Further, let C(Td) denote the space of (complex valued) continuous
functions on Td. By definition they are 2π-periodic in each variable.

For g ∈ C(Td) we define its Fourier series by

g(ϑ) ∼
∑
k

ĝ(k)eik·ϑ, ĝ(k) =
1

(2π)d

∫
Td

g(t)e−ik·t dt,

where ϑ = (ϑ1, ϑ2, . . . , ϑd) ∈ Td, k = (k1, k1, . . . , kd) ∈ Zd and k · ϑ =∑d
l=1 klϑl (scalar product).

The rectangular n-th partial sum of the Fourier series is defined by

S
[r]
nd(g,ϑ) :=

∑
|k|∞≤n

ĝ(k)eik·ϑ (n ∈ N0 = {0, 1, 2, . . .});

the triangular one is

Snd(g,ϑ) :=
∑
|k|1≤n

ĝ(k)eik·ϑ (n ∈ N0).

Above, |k|∞ = max
1≤l≤d

|kl| and |k|1 =
d∑

k=1

|kl| (they are the lp norms of

the multiindex k for p = ∞ and p = 1). The names “rectangular” and
“triangular” refer to the shape of the corresponding indices of terms when
d = 2 and 0 ≤ k1, k2, |k|∞ ≤ n, |k|1 ≤ n respectively.

In a way the investigation of the S
[r]
nd is apparent: in many cases in

essence it is a one variable problem (see [42] and [41]).

However there are only relatively few works dealing with the triangular
(or l1) summability (cf. [43] and [44]).

Introducing the notations

Dnd(ϑ) =
∑
|k|1≤n

eik·ϑ (n ≥ 1),
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where k ∈ Zd, one can see that

Snd(g,ϑ) =
(
g ∗Dnd

)
(ϑ) : =

1

(2π)d

∫
Td

g(ϑ− t)Dnd(t) dt =

=
1

(2π)d

∫
Td

g(ϑ+ t)Dnd(t) dt,

where as before, g ∈ C(Td), ϑ, t ∈ Td.

Let ‖g‖ := max
ϑ∈Td

|g(ϑ)|,

‖Snd‖ := max
g∈C(Td)
‖g‖≤1

∥∥Snd(g,ϑ)
∥∥ (n ≥ 1)

and

‖g‖p :=

⎛⎝∫
Td

|g(ϑ)|p dϑ

⎞⎠1/p

if g ∈ Lp := {the set of all measurable 2π periodic (in each variable) func-
tions on Td}, 1 ≤ p < ∞.

We state

Theorem 2.11. We have, for any fixed d ≥ 1,

(2.16) ‖Dnd‖1 = ‖Snd‖ ∼ (log n)d (n ≥ 2).4

One of the most characteristic properties of the Fourier series in one
dimension is the so called Faber–Marcinkiewicz–Berman theorem, namely
that the operator Sn has the smallest norm among all projection operators
(cf. [45, p. 281] for other details). This part extends the above statement
for Snd, d ≥ 1.

Let Tnd be the space of trigonometric polynomials of form∑
|k|1≤n

(
ak cos(k · ϑ) + bk sin(k · ϑ)

)
,

where k = (k1, k2, . . . , kd) and k1, . . . , kd ≥ 0, arbitrary real numbers. More-
over, let Tnd be a linear trigonometric projection operator on C(Td), i.e.
Tnd(g,ϑ) = g(ϑ) for g ∈ Tnd and Tnd(g,ϑ) ∈ Tnd for other g ∈ C(Td).

4Here and later an ∼ bn means that 0 < c1 ≤ anb
−1
n ≤ c2 where c, c1, c2, . . . are positive

constants, not depending on n; they may denote different values in different formulae.
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Theorem 2.12. For any linear trigonometric projection operator Tnd, one
has

1

(2π)d

∫
Td

Tnd(gt,ϑ− t) dt = Snd(g,ϑ) (g ∈ C(Td)),

‖Tnd‖ ≥ ‖Snd‖,
where gt(ϑ) = g(ϑ+ t) is the t-translation operator.

Now we formulate a generalization of (2.15).

Theorem 2.13. If Lnd is a projection of C(Id) onto Pnd then

‖Lnd‖ ≥ 1

2
‖Snd‖.

Above, Lnd is a projection of C(Id) (:= the set of continuous functions
of d-variables on Id = [−1, 1]d) onto Pnd iff it is linear, Lnd(p) = p if p ∈ Pnd

and Lnd(f) ∈ Pnd for any f ∈ C(Id).

Proofs, further statements, references and some historical remarks about
Part 2.8 are in the paper László Szili and P. Vértesi [19].

3. Mean Convergence of Interpolation

3.1.

As it has turned out the estimation of the Lebesgue function

λn(X,x) =
n∑

k=1

|kn(X,x)|

is fundamental in getting “negative” (divergence)-type results for the La-
grange interpolation using the uniform (or maximum) norm.

These facts resulted that the attention turned to the mean convergence
of interpolation. The first such result is due to P. Erdős and P. Turán [20]
from 1937.

Theorem 3.1. For an arbitrary weight w and f ∈ C,

lim
n→∞

1∫
−1

{Ln(f, w, x)− f(x)}2w(x)dx = 0.
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Here and later w is a weight if w ≥ 0 and 0 <
∫ 1
−1w < ∞; Ln(f, w) is

the Lagrange interpolation with nodes at on the roots of the corresponding
orthonormal polynomials (ONP) pn(w).

During the years 1936–1939, P. Erdős and P. Turán wrote 3 fundamen-
tal papers “On interpolation I, II, III” ([20], [32], [33]; they appeared in
1937, 1938 and 1940). This survey will quote many problems and theorems
of them. We strongly suggest to read these papers to the interested readers.

Using the Chebyshev roots, P. Erdős and Ervin Feldheim proved much
more [21]:

Theorem 3.2. Let f ∈ C and p > 1. Then

lim
n=→∞

1∫
−1

|f(x)− Ln(f, T, x)|p
1√

1− x2
dx = 0.

3.2.

Theorem 3.1 is a reasonable motivation of the problem (cf. P. Erdős, Géza
Freud, P. Turán [23, Problem VIII], [24], [25]).

Does there exists a weight w and f ∈ C such that

lim
n→∞ ‖f − Ln(f, w)‖p,w = ∞

for every p > 2?

(Above ‖g‖p,w stands for ‖gw1/p‖p.)
After a lot of results proved by Richard Askey, Paul Nevai and others

Y. G. Shi came to a new general idea where the nodes xkn are not necessarily
the roots of an orthogonal system pn(w). Namely he realized the surprising
fact that for the mean convergence the expressions

(3.1) γ1(X,x) :=

n∑
k=1

|x− xkn(X,x)| |kn(X,x)| , n ≥ 1,

are fundamentals (instead of λn(X,x) =
∑n

k=1 |kn(X,x)|). Using many
basic ideas of the proof of Theorem 2.3, he proves (among others)

Theorem 3.3. Let ε > 0 be given. Then for any fixed interpolatory matrix
X ⊂ [−1, 1], there exists sets Hn = Hn(ε,X) of measure ≤ ε such that

(3.2) γ1(X,x) ≥ ε

24
, n ≥ 1,

whenever x ∈ [−1, 1] \Hn. (cf. Theorem 2.3).
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The above statement is a special case of [26, Theorem 1], the latter one
uses the proof of the generalization of Theorem 2.3 (cf. P. Vértesi [27]).

Now, by [26, Theorem 1], Y. G. Shi ([26, Corollary 14]) obtains.

Theorem 3.4. Let u and w be weights. If with a fixed p0 ≥ 2∥∥∥∥∥ 1√
w
√
1− x2

∥∥∥∥∥
p,u

= ∞ for every p > p0,

then there exists an f ∈ C satisfying

lim
n→∞ ‖Ln(f, w)‖p,u = ∞ whenever p > p0.

This theorem obviously answers the (generalization of the) question
raised at the beginning of Part 3.2. For other similar problems the reader
may consult with [26].

4. Convergence by Raising the Degree

4.1.

Motivated by Lipót Fejér’s classical results (i.e, if the degree of the interpo-
lation polynomial is about two times bigger than the number of interpolation
points, then we can get convergence (cf. [28, Theorem XI])), Erdős raised
the following question. Given ε > 0, suppose we interpolate at n nodes, but
allow polynomials of degree at most n(1 + ε). Under what conditions will
they converge for all continuous function?

The first answer was given by himself in [29]. Namely, he proved:

Theorem 4.1. If the absolute values of the fundamental polynomials
kn(X,x) are uniformly bounded in x ∈ [−1, 1], k (1 ≤ k ≤ n) and n ∈ N,
then for every ε > 0 and f ∈ C there exists a sequence of polynomials
ϕn = ϕn(x) = ϕn(f, ε, x) with

(i) degϕn ≤ n(1 + ε),
(ii) ϕn(xkn) = f(xkn), 1 ≤ k ≤ n, n ∈ N,
(iii) lim

n→∞ ‖ϕn − f‖ = 0.

The complete answer for a more general system is in the paper of Erdős,
András Kroó and Szabados [30].
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Theorem 4.2. For every f ∈ C and ε > 0, there exists a sequence of poly-
nomials pn(f) of degree at most n(1 + ε) such that

pn(f, xk,n) = f(xk,n), 1 ≤ k ≤ n,

and that

‖f − pn(f)‖ ≤ cE[n(1+ε)](f)

holds for some c > 0, if and only if

(4.1) lim sup
n→∞

Nn(In)

n|In|
≤ 1

π

whenever In is a sequence of subintervals of I such that lim
n→∞n|In| = ∞ and

(4.2) lim inf
n→∞

(
n min

1≤k≤n−1
(ϑk+1,n − ϑn,k)

)
> 0.

Here Nn(In) is the number of the ϑk,n in In ⊂ I. Condition (4.1) ensures
that the nodes are not too dense, and condition (4.2) says that adjacent
nodes should not be too close.

5. Weighted Lagrange Interpolation, Weighted Lebesgue

Function, Weighted Lebesgue Constant

5.1.

Let f be a continuous function. If, instead of the interval [−1, 1], we
try to approximate it on R, we have to deal with the obvious fact that
polynomials (of degree ≥ 1) tend to infinity if |x| → ∞. So to get a suitable
approximation tool, we may try to moderate their growth applying proper
weights.

If the weight w(x) = e−Q(x), x ∈ R, satisfies

lim
|x|→∞

Q(x)

log |x| = ∞,

as well as some other mild restrictions and the Akhiezer–Babenko–Carleson–
Dzrbasjan relation

∞∫
−∞

Q(x)

1 + x2
dx = ∞,
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then for f ∈ C(w,R), where

C(w,R) := {f ; f is continuous on R and lim
|x|→∞

f(x)w(x) = 0},

we have, if ‖ · ‖ denotes now the supnorm on R,

En(f, w) := inf
p∈Pn

‖(f − p)w‖ ≡ inf
p∈Pn

‖fw − pw‖ → 0 as n → ∞.

So, instead of approximating f ∈ C by Ln(f,X) on [−1, 1], we may estimate
{f(x)w(x)−Ln(f,w,X,x)} on the real line R for f ∈ C(w,R). HereX ⊂ R,

tk(x) := tkn(w,X, x) :=
w(x)ωn(X,x)

w(xk)ω′n(X,xk)(x− xk)
, 1 ≤ k ≤ n,

and

Ln(f, w,X, x) :=

n∑
k=1

{
f(xk)w(xk)

}
tk(x), n ∈ N.

The Lebesgue estimate now has the form

(5.1)
∣∣Ln(f, w,X, x)− f(x)w(x)

∣∣ ≤ {
λn(w,X, x) + 1

}
En−1(f, w)

where the (weighted) Lebesgue function is defined by

(5.2) λn(w,X, x) :=

n∑
k=1

∣∣ tk(w,X, x)
∣∣ , x ∈ R, n ∈ N;

the existence of rn−1(f, w) for which En−1(f, w) = ‖(f − rn−1)w‖ is well-
known.

Formula (5.2) implies the natural definition of the (weighted) Lebesgue
constant

(5.3) Λn(w,X) := ‖λn(w,X, x)‖, n ∈ N.

Estimation (5.1) and its immediate consequence

‖Ln(f, w,X)− fw‖ ≤
{
Λn(w,X) + 1

}
En−1(f, w), n ∈ N,

show that, analogously to the classical case, the investigation of λn(w,X, x)
and Λn(w,X) is of fundamental importance to get convergence-divergence
results for the weighted Lagrange interpolation (cf. Part 2.1).

To expect reasonable estimations, as it turns out, we need a consider-
able knowledge about the weight w(x) and on the behaviour of the ONP
pn(w

2, x) corresponding to the weight w2.
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5.2.

As P. Nevai writes in his instructive monograph [34, Part 4.15], about 40
years ago there was a great amount of information on orthogonal polynomi-
als on infinite intervals, however as Géza Freud realized in the sixties, there
had been a complete lack of systematic treatment of the general theory; the
results were of mostly ad hoc nature. And G. Freud, in the last 10 years of
his life, laid down the basic tools of the systematic investigation.

During the years a great number from the approximators and/or or-
thogonalists joined G. Freud and his work, including many Hungarians. As
a result, today our knowledge is more comprehensive and more solid than
before.

Now we introduce the so called Mhaskar–Rakmanov–Saff number, de-
noted by an(w). an(w) is a generalization of the number qn(w) defined by
G. Freud. Instead of the definition we show a useful property of an(w) and
give an example (cf. [35]).

(5.4)

⎧⎨⎩
‖rnw‖ = max

|x|≤an(w)
|rn(x)w(x)|,

‖rnw‖ > |rn(x)w(x)| for |x| > an(w)

if rn ∈ Pn (rn �≡ 0; ‖ · ‖ is the supnorm on R) and that asymptotically
(as n → ∞) an(w) is the smallest such number. Relation (5.4) may be
formulated such that rnw “lives” on [−an, an].

As an example, let Q(x) = |x|α. Then

qn(w) ∼ n1/α and an(w) = c(α) n1/α, α > 1.

In 1972, P. Erdős defined (as today called) the Erdős weights. The
prototype of w ∈ E (E is the collection of the Erdős weights) is the case
when Q(x) = Qk,α = expk(|x|α) (k ≥ 1, α > 1, expk := exp(exp(. . .)), the
kth iterated exponential); for other details on E see [36], [37] and [35]. As
an interesting and maybe surprising fact that generalizing the method and
ideas of our common paper with Erdős, one can prove a statement on the
weighted Lebesgue function λn(w,X, x) (see P. Vértesi [38]).

Theorem 5.1. Let w ∈ E . If ε > 0 is an arbitrary fixed number, then
for any interpolatory matrix X ⊂ R there exist sets Hn = Hn(w, ε,X) with
|Hn| ≤ 2an(w)ε such that

λn(w,X, x) ≥ ε

3840
log n

if x ∈ [−an(w), an(w)] \Hn, n ≥ n1(ε).
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This statement is a complete analogue of Theorem 2.4. Roughly speak-
ing, it says that the weighted Lebesgue function is at least c logn on a “big
part” of [−an, an] for arbitrary fixed X ⊂ (−∞,∞) and w ∈ E .

Without going into the details we remark that the previous consideration
and statement can be developed for other weights (cf. [38]).

To finish this survey we quote another theorem on weighted approxima-
tion which corresponds to the result of Erdős from 1943 (see Theorem 4.1).
Namely we have

Theorem 5.2. Let w ∈ E . If |tkn(w,X,x)| ≤ A uniformly in x ∈ R, k and n,
then for every ε > 0 and to every f ∈ C(w1+ε,R), there exists a sequence
of polynomials ϕΔ(x) = ϕΔ(f, ε, x) ∈ PΔ such that

(i) Δ ≤ n(1 + ε+ c εn−2/3),
(ii) ϕΔ(xkn) = f(xkn), 1 ≤ k ≤ n, n ∈ N,
(iii) ‖w1+ε(f − ϕΔ)‖ ≤ cEΔ(f, w

1+ε).

The proof and similar results using other exponents Q(x) are in L. Szili
and P. Vértesi [39] and [40].
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[36] P. Erdős, On the distribution of roots of orthogonal polynomials, in: Proceedings of
the Conference on the Constructive Theory of Functions, (eds. G. Alexits et al.).
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Cambridge Univ. Press, 1990, 451–457.
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