

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 116–132, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Applying SOFL to a Generic Insulin Pump Software
Design

Chung-Ling Lin, Wuwei Shen, and Dionysios Kountanis

Department of Computer Science,
Western Michigan University

Abstract. Software embedded into medical devices demands a higher standard
on its safety, as compared to most commercial software. One of the most impor-
tant reasons is that the safety issue should be thoroughly investigated. In the
United States, Food and Drug Administration (FDA) is entitled to scrutinize
medical devices to ensure they are safe to the public before they enter the mar-
ket. However, the review of medical device software has been quite challenging
because not only the design of medical device software is complicated and er-
ror-prone but also the validation of the software system against regulatory re-
quirements is notoriously difficult. Thus, some methodologies based on formal
methods have been proposed to alleviate the pain faced by both software devel-
opers and regulators such as FDA staff. In this paper, we study how to use the
Structured-Object-Based-Formal Language, which is called SOFL to develop a
software system controlling an insulin pump, called the Generic Insulin Infu-
sion Pump (GIIP). This case study facilitates the understanding of how SOFL
can be applied to software systems related to medical devices in terms of the
design and review aspects.

1 Introduction

One of the most challenging issues facing the software engineering community is how
to develop a software system that, software engineers can guarantee, satisfies the
specified requirements. To support any type of guarantee, there is an implicit need to
establish sufficient evidence that the system will perform dependably, as intended.
The quality of this evidence can be a key factor in regulator and third party assess-
ments of dependability claims. This need is particularly important for safety and
security critical products such as medical devices.

To complicate matters further, as systems evolve to meet new demands, it is essen-
tial to be able to establish evidence that any changes made to the system do not affect
the integrity of existing dependability properties and introduce new errors in the
process.

Traditional software development methodologies emphasize process oriented prac-
tices as a means of assuring design artifacts are complete and consistent. This practice
often leads to ambiguities within and between requirements and subsequent specifica-
tions. The software development landscape is littered with failures rooted in this
practice.

 Applying SOFL to a Generic Insulin Pump Software Design 117

Clearly, it is essential to establish complete and consistent requirement and specifi-
cations if a product is to have any chance at meeting it intended use needs. While a
quality process is essential to developing a quality product, practices within this
process can have a direct bearing on the outcome. Over past decades many technolo-
gies have been developed, ranging from structured design and object oriented design,
to formal methods based design. Interest in mathematically based design has been a
constant and much progress has been made in facilitating development in a practica-
ble manner.

However, in reality, formal methods cannot marry well-established industrial
process due to lack of the affordability and efficiency to handle a large scale of speci-
fication and proof. The divorce between practical software processes and formal me-
thods has been extensively investigated in the past decades.

Formal engineering method (FEM) [1] has been proposed to bridge the gap be-
tween software engineering and formal methods. FME addresses the issue of adapting
formal methods for industrial software process so that software engineers can easily
grasp formal methods and, at the same time, they do not lose the power of the mathe-
matical support. In this paper, we apply the Structured-Object-based-Formal Lan-
guage (SOFL) [2] to a case study of the Generic Insulin Infusion Pump (GIIP) [3].
SOFL targets on the unification of mathematical notations and industrial software
processes via the application of structured method for requirements analysis and spe-
cification and an object-oriented approach for design and implementation.

The software design of a generic insulin infusion pump has been illustrated as a
case study to demonstrate how a medical device-based software system can be de-
signed, implemented, and finally reviewed [4]. In the medical device industry, each
manufacturer not only has its own requirements on a product such as an insulin infu-
sion pump but also meets regulatory requirements such as safety requirements im-
posed by FDA. Otherwise, the product cannot be approved for the market. In this case
study, we will concentrate on the basal management, part of the GIIP system, to dem-
onstrate how SOFL can be applied to design a software system for a medical device.
With the application of SOFL methodology, we help illustrate how a medical device-
based software system can be leveraged in terms of design, development, validation
and finally regulatory review.

The paper is organized as follows. Section 2 introduces SOFL and GIIP applica-
tion. A software design based on SOFL for GIIP application is given in Section 3. We
draw a conclusion in Section 4.

2 Preliminary

In this section, we briefly introduce SOFL, and then describe the GIIP model.

2.1 Introduction to SOFL

The SOFL is a formal framework that unites formal methods with industrial software
development processes. In general, SOFL establishes a structured way to specify the
requirements of a software system using an object-oriented approach for subsequent

118 C.-L. Lin, W. Shen, and D. Kountanis

design and implementation based on these requirements. Formal methods can be ap-
plied across the entire SOFL-driven development process, to assure high quality spe-
cifications and verification at different levels of the intended software system. For
example, SOFL allows software engineers to reason about the completeness of
software specifications.

A SOFL specification includes a hierarchical condition data flow diagram (CDFD)
that links a hierarchy of specification modules together. A CDFD is a directed graph
consisting of data flows, data stores and condition processes. A CDFD describes the
static interfaces between components and the dynamical interaction between these
components and corresponding data flow. Figure 1 illustrates the basic components of
CDFD. The condition process is specified with a pre- and post-condition. A data flow
descriptor identifies how data is exchanged between condition processes. A data store
defines a variable of a specific type. The specification module (s-module) describes
the precise functionality of the condition processes in terms of their inputs and out-
puts. The s-module also provides a static definition of all components and details of
the system in a textual form.

Fig. 1. CDFD Components

2.2 Introduction to GIIP

The Generic Insulin Infusion Pump (GIIP) (safety) model [5] was developed by FDA
to be an open system research platform that establishes safety properties generic to
insulin infusion pumps. It was envisioned that academics and manufacturers would
experiment with the model and share improvements on its design details and experi-
ment with it to help establish new or improved innovative development technologies.
All the requirements of the system can be attributed to two categories: functional
requirements given in the GIIP Functional Specification Document [6] and safety
requirements given in the Safety Document [7].

The software design of GIIP allows a user to program a time period and an insulin
infusion rate so a patient receives the administration of insulin via an insulin infusion
pump. Based on the specification [6], the software model of GIIP consists of three
primary functional modules: delivery control logic, time management, and interface
to User Interface (UI) devices. The design of the system concentrates on the delivery
control logic module, which includes several major components as illustrated in Fig-
ure 2. The Delivery Control Logic is composed of Basal Management, Bolus Man-
agement, Pump Delivery Mechanism Interface (PDMI), and Alarm Handler. Also, all
relevant events are recorded via Data/Event Logging (DEL).

 Applying SOFL to a Generic Insulin Pump Software Design 119

Fig. 2. GIIP Architecture

In this paper, we focus our design on the Basal Management component of the
GIIP system. The basal management component is to allow a user/patient to program
different insulin infusion rates within 24 hours in a day. Each insulin infuse rate
should be given by an effective period the start time, end time and the corresponding
basal rate, called a segment. All insulin infuse rates of a day are programmed to a file,
called a Basal Profile.

However, sometimes a patient may require special administration of insulin due to
some reasons. In this case, the component provides a user with a mechanism to
program a high-priority temporary profile, called a Temporary Basal, which consists
of the duration time and the basal rate. In summary, the basal management component
should accomplish two major functionalities: 1) manage basal profiles, and 2)
produce the correct information such as the insulin infuse rate based on
(normal/temporary) basal profiles to the corresponding component [6].

2.3 GIIP Safety Requirements

The objective of developing the GIIP system is to assure its compliance to a set of
core safety requirements, which are articulated to mitigate previous insulin pump
failures and other significant safety issues [7]. Throughout this paper, we consider
several safety requirements from [7] that govern safe basal administration in GIIP.
For the convenience of readers, we reiterate these requirements as follows:

Safety Requirement 1: The pump shall allow the user to program a basal profile
with a set of basal rates, ranging from 0.05 to x Units/hour.

Safety Requirement 2: For each basal rate in the profile, the user shall define the
duration of the particular rate.

120 C.-L. Lin, W. Shen, and D. Kountanis

Safety Requirement 3: The pump shall allow the user to set at least two basal
profiles at the same time, and require the user to activate no more than
one profile at any single point in time.

Safety Requirement 4: The programmed infusion rate of a temporary basal shall not
exceed x Units/hour and the duration of a temporary basal shall not
exceed y hours.

Safety Requirement 5: The pump shall allow a user to stop a temporary basal while
it is in administration.

3 Design of Basal Management Component

In this section, we first outline the structure of the Basal Management component, and
then explain in detail how its design is refined to lower levels in a top-down style.

3.1 Top Level Design

In general, the Basal Management component takes the responsibility of managing
basal administration according to requests received from the user. The user is al-
lowed to send the component two types of requests regarding basal administration: 1)
the BP-req requests, which allow the user to program and manage a basal profile, and
2) the TB-req requests, which allow the user to program and manipulate a temporary
basal. Based on such requests, the component decides the current basal rate and out-
puts it to the insulin delivery mechanism (abstracted as the PDMI component) of the
system for delivering insulin. The component also needs to log any changes made to
basal administration and report them to the event logging mechanism in the system
(abstracted as the DEL component). Figure 3 summarizes, in the format of a CDFD,
the interaction that the Basal Management component has with other components in
order to fulfill its functionalities.

Fig. 3. Top Level CDFD for Basal Management

In Figure 3, a process, Basal Controller, is introduced to represent the Basal Man-
agement component. Textual SOFL specifications, as illustrated in Figure 4, are
embedded in this process to explicitly define the functionalities of the Basal Man-
agement component. As shown in Figure 4, the textual specifications of a process
include declaration of variables and data types to be used by the process and its
functionalities specified in an object-oriented style.

 Applying SOFL to a Generic Insulin Pump Software Design 121

The user manages basal administration mainly by instructing the Basal Manage-
ment component to manipulate basal profiles. In particular, the user can request the
component to add, delete, update, activate, or deactivate a selected basal profile. To
manipulate requests from the user, the component declares an enumeration data type,
BasalProfile-request, to define the types of operation on basal profiles (see line 2 in
Figure 4); and a variable of this type, BP-req, to store such request(s) from the user
(see line 12 in Figure 4).

Fig. 4. Module of Top Level CDFD

With regard to managing temporary basal, the user can instruct the component to
either start or stop a temporary basal. Thus, the Basal Controller process declares an
enumerate data type TemporaryBasal-request , which consists of two possible values
SET TB and STOP TB, to represent the operations on temporary basal administration.
A variable TB-req, with the type TemporaryBasal-request, is declared to record the
request(s) from the user regarding temporary basal manipulation.

As aforementioned, any changes to the basal administration, normal or temporary,
need to be logged. In Figure 4, lines 7-11, a data type Report is declared for such logs.
The Report type consists of three fields: field Index corresponds to the unique index
number of the basal profile being affected by the change; field type indicates what
type of change, BasalProfile-request or TemporaryBasal-request, happens on the
selected basal profile; and field Time records the exact time when the change occurs.
Notably, field Time has the type of STime, a quadruple recording the date, hour,
minute, and second elements of the time.

122 C.-L. Lin, W. Shen, and D. Kountanis

3.2 Basal Profile Requests (BP-Req)

It is worth noting that, the textual specifications of a process also needs to define the
expected way of how the process’s functionalities are decomposed, if the complexity
of these functionalities justifies further refinement. Take the Basal Controller process
for instance. The functionalities of this process can be generally decomposed into
those for normal basal management and for temporal basal manipulation. As shown in
the second part of Figure 41, lines 20-21 explicitly define such decomposition. We
first explain in this section how a lower-level CDFD is designed for managing normal
basal profiles, and then explain that for temporary basal in section 3.3.

Figure 5 enumerates variables and data types used in managing normal basal ad-
ministration. Firstly, a data type, Profile, is declared for basal profiles. The Profile
type is composed of a set of segments, each of which has the type Segment, A basal
profile with the type Profile distinguishes itself from others with a unique index num-
ber, stored in its key field.

Each segment in a basal profile is a combination of its effective period (field Effec-
tivePeriod) and the associated basal rate (field basalrate), where the effective period
is defined as the start and end time of the period. Type EffectivePeriod is thus de-
clared as a production of two Systime-typed elements. Note that type Systime is dif-
ferent from STime in that the former has only three fields for hour, minute and second
elements, while the latter has an extra field for date.

In the system, each basal profile stored is assigned with a unique index number,
through which this profile can be fetched, edited, and removed. So, we define type
Profiles as a set of profile at line 11 and type Index as nature number (denoted as nat)
to represent the index of a profile at line 12. The basal profiles in the system are
stored in variable profiles, which is declared at line 39 with type Profiles. To map an
index number to the corresponding basal profile, a data type, ProfilesRecord, is de-
clared at line 13 A a variable profiles-record typed as ProfilesRecord, is declared at
line 34 to store the basal profile fetched based on a user-indicated index number.

With regard to basal delivery, the system takes one of two possible modes at any
point of time: Delivery and No Delivery. Thus, line 13 of Figure 5 declares an enume-
ration type DeliveryMode with two values: Delivery and NoDelivery, and line 35
declares a variable mode to store the system’s current delivery mode, with the type of
DeliveryMode.

To eliminate the possible confusion in basal administration, safety requirement 3
enforces that no more than one basal profile be activated at any single point of time.
To implement this requirement, we define the variable activeprofileindex (line 36 in
Figure 5) to maintain the index of the basal profile currently being activated. Appar-
ently, activeprofileindex can take only one value at any point of time.

A temporary basal is defined by its duration and its associated temporary basal
rate. The data type TemporaryBasal, a record type, defined at lines 24-27 of Figure 5,
is introduced to represent this fact. The TemporaryBasal has a nat-typed field

1 The second part of Figure 4 also includes declaration for the DEL and PDMI components.

Since these two components are not the focus of this paper, we skip their details here.

 Applying SOFL to a Generic Insulin Pump Software Design 123

Fig. 5. Type and Variable Declarations for BP Request

duration to define the duration of a temporary basal in hours, and the real-typed field
rate documents its temporary basal rate (in Unit/Hour). Any temporary basal input by
the user is stored in the variable tempbasal (line 37 in Figure 5), the type of which is
TemporaryBasal. The current system time is represented by variable currentTime,
whose type is SysTime given at line 40.

The BP-Req type of requests can be further refined to the following five types [6],
based on what action the user intends to perform on the basal profiles:

• Request to add a basal profile (denoted as AddBasal)
• Request to delete an existing basal profile (denoted as DeleteBasal)
• Request to update an existing basal profile (denoted as UpdateBasal)
• Request to activate an existing basal profile (denoted as ActivateBasal)
• Request to deactivate the currently activated basal profile (denoted as Deactivate-

Basal)

124 C.-L. Lin, W. Shen, and D. Kountanis

Fig. 6. Decomposition of Basal Controller (BP-Request, Partial)

These five types of requests are declared from line 16 to line 23 in Figure 5. Note that
AddBasal requests can be distinguished by the new basal profile(s) they address.
Thus, we declare the data type AddRequest as equivalent to type Profile. The actual
AddBasal requests received from the user are stored by variable add-req.

DeleteBasal requests, on the other hand, refer to the basal profiles to be deleted by
their index numbers. Thus, we declare type DeleteRequest as nat, while all Delete-
Basal requests are stored in variable del-req, which is declared at line 30 of Figure 5.

UpdateBasal requests require a user to provide the index of the profile to be up-
dated, as well as the new profile to replace it. Therefore, a record type UpdateRequest
is declared at line 15 of Figure 5 representing such a request, which consists of two
fields: a nat-typed field index for the index, and a Profile-typed field profile for the
new profile. In addition, all UpdateBasal requests from the user are stored in variable
upd-req.

ActivateBasal requests are similar to DeleteBasal requests. Thus, a type Activate-
Request is declared for these requests, which is also nat to indicate the index of the
basal profile under concern. ActivateBasal requests are stored in variable act-req.

DeactivateBasal requests do not require any additional parameters. Thus, the type
DeactivateRequest for these requests is declared as a void type. A variable deact-req
with type DeactivateRequest is declared to store DeactivateBasal requests from the
user.

In our GIIP design, the Basal Controller component manipulates BP-Req requests
from the user based on the types of such requests. That is to say, the behavior of the
component is decomposed several subsets, each of which corresponding to a particu-
lar type of BP-Req requests. The CDFD in Figure 6 illustrates such decomposition.
Moreover, a process is defined for manipulating each type of requests. The rest of this
section discusses the details of all these processes.

 Applying SOFL to a Generic Insulin Pump Software Design 125

Figure 7 depicts the process for handling AddBasal requests. The user can create
multiple basal profiles that, if valid, are stored in the basal profiles record in the sys-
tem. A basal profile is valid if it complies with safety requirements 1-3. Thus, the
process in Figure 7 first validates whether an input profile against these safety re-
quirements using the precondition at line 5. The precondition calls the method vali-
date, which is defined by lines 16-22. The validate method first compares the start
time (parameter 1 of effectiveperiod) and end time (parameter 2 of effectiveperiod) of
the effective period of each segment in the basal profile under concern. If the former
is before the later, then the method checks if the basal rate associated with this sege-
ment is greater than 0 Unit/Hour and less than a thereshold specified by the user (de-
noted as X in Figure 7). Any basal profile failed in these checks is considered as
invalid and will be discarded.

If an input profile is valid, the process adds it into the profiles record through the fol-
lowing steps: 1) Add the new basal profile to the set profiles at line 8. 2) Point the current
index to the new profile and override the previous profiles record using the keyword
override; 3) Update the index of the next profile by increasing index by 1, as shown at
line 10, and 4) generate a report on this action and send it to the DEL component.

Fig. 7. Module for Add Profile

Figure 8 shows the process responding to DeleteBasal requests. This process first
checks the presence of the profile to be deleted in the profiles record, as enforced by
the pre-condition at line 6. If the profile does not exist in the profiles record, the
process simply discards the request. Otherwise, it locates the index of the profile and
removes it from the record (line 8). The process, like others, also generates a report if
a profile is deleted, and sends the report to the DEL component.

Furthermore, if a request of deleting one basal profile is valid, and the profile
to be deleted is currently the active profile (i.e., index of the request equals to

126 C.-L. Lin, W. Shen, and D. Kountanis

acitveprofileindex), then the component needs to conduct the following tasks (as
shown from line 9 to line 12 in Figure 8):

1. Deactivate the profile to be deleted without activating another one (i.e., setting the
acitveprofileindex to -1);

2. If there is no temporary basal currently in process, set the delivery mode to No Deli-
very, indicating that there is no basal, in any form, currently under administration.

Fig. 8. Module for Delete Profile

The Update process shown in Figure 9 is defined to manipulate UpdateBasal Re-
quests. Similar to handling DeleteBasal requests, this process first checks if a basal
profile with the index indicated by the user exists in the profiles record. If not, the
process simply ignores the request. Otherwise, the process validates the new basal

Fig. 9. Module for Update Profile

 Applying SOFL to a Generic Insulin Pump Software Design 127

profile by calling the validate method. If the new basal profile is valid, the process
replaces the previous profile in the profiles record that has the user-specified index
number with the new basal profile. If this happens, a report is generated and sent to
the DEL component for logging.

Since the profiles record may contain multiple profiles, a user can activate one of
them and use it to decide the output basal rate. The Activate process, as illustrated in
Figure 10, is crafted to assist the user in dosing so. This process first checks whether
or not the selected basal profile, i.e., parameter act_req, exists in the profiles record
(line 5). If yes, the process updates the active profile variable activeprofileindex to the
index of the selected profile, act-req,(line 6). After this, the system switches to the
Delivery mode (line 7), and generates a log and feeds it to the DEL (line 8).

Fig. 10. Module for Activate Profile

The system allows a user to deactivate an active profile, a feature implemented by
the Deactivate process in Figure 11. This process first voids the activeprofileindex
variable by settings it to -1 (line 6) , and then, if there is no temporary basal defined,
switches to the No delivery mode (line 8). The entire process is recorded in a log sent
to the DEL (line 9).

Fig. 11. Module for Deactivate Basal Rate

128 C.-L. Lin, W. Shen, and D. Kountanis

In order to decide the actual basal rate, we define the UpdateBasalRate process that
calculates the actual basal rate continuously during the system execution. The process
is shown in Figure 12 based on the following rules:

1. If the delivery mode is NoDelivery, the basal rate is 0;
2. Otherwise, if there is a temporary basal in progress, then the basal rate is set as the

temporary basal rate;
3. Otherwise, the process should find the active profile (if any) from the profiles

record, decide the right segment in the active profile that covers the current time,
and use the basal rate associated with this segment as the actual basal rate.

Fig. 12. Module for Update Basal Rate

3.3 Temporary Basal Requests (TB-Req)

A user can instruct the system to start or stop a temporal basal. In particular, the user
can send to the system a SET TB request for programming and start a temporary basal.
Or he/she can request to stop the currently ongoing temporary basal with STOP TB
requests. In particular, a SET TB request carries a temporal basal (duration and tempo-
rary rate) as the parameter, while a STOP TB request has no parameter.

Figure 13 illustrates how the GIIP system should respond to these types of request,
where a Set TB process is introduce to manipulate SET TB requests and a Stop TB
process to manipulate STOP TB requests.

 Applying SOFL to a Generic Insulin Pump Software Design 129

Fig. 13. Basal Controller Design for Temporary Basal Requests

Figure 14 provides type and variable declarations for the GIIP design with regard
to managing temporary basal requests, where the types SetTBRequest and StopTBRe-
ques are defined for the two types of requests related to temporary basal, respectively.
Note that type StopTBRequest is actually a void type, as it does not require any para-
meter to stop the current temporary basal. Variables set-req and stop-req are declared
to stop the temporary basal requests from the user.

Fig. 14. Type and Variable Declarations for TB Request

A process SetTB, as shown in Figure 15, is defined to specify the process for the
GIIP to respond to a SET TB request from the user. As imposed by safety require-
ment 4, any new temporary basal that the user intends to initial, should have a tempo-
rary basal rate not greater than x Units/hour and a duration not greater than y hours
(both x and y are thresholds pre-specified by the user). The SetTB process first checks
to assure that no other temporary basal is currently stored in the system (see line 3 of
Figure 15), and then checks whether the input temporary basal is valid by calling the
validateTB method. The validateTB method, defined from line 8 to line 12 in Figure
15, checks whether or not the configuration of the input temporary basal is within the
ranges prescribed in safety requirement 4. . If the input temporary basal is valid, the
component stores it in variable tempbasal, generates a report indicating that the input
temporary basal is initiated, and feeds the report to the DEL componet . Once variable
tempbasal is set, the UpdateBasalRate process will update the output basal rate ac-
cording to the temporary basal.

130 C.-L. Lin, W. Shen, and D. Kountanis

Fig. 15. Module for SetTB

In terms of stopping the current temporary basal, the StopTB process, shown in
Figure 16, simply clears variable tempbasal by setting it to nil.

Fig. 16. Module for Stop TB Request

4 Related Work

To assure the correctness of safety-critical software systems, many formal methods
based approaches have been proposed in last few decades, including Alloy [8], ASM
[9], B [10], and Z [11]. All of these approaches are built on solid mathematical foun-
dation. Although such solid mathematical foundation enable formal verification to be
conducted on software systems thus developed, it also restricts the applicability of
these approaches in industrial development practices. That is to say, developers who
intend to take advantage of these approaches, they have to first become familiar with
the mathematical foundation underlying them. Consequently, the extra learning curve
and sophisticate mathematical background hinder engineers from applying these ap-
proaches in real industrial practices.

5 Conclusion

The application of formal methods in industrial practices has been hurdled by both the
steep learning curve to master these methods and computational expressiveness un-
derlying these methods. The SOFL methodology intends to overcome these hurdles

 Applying SOFL to a Generic Insulin Pump Software Design 131

by integrating together a formal representation framework and an object-oriented
development process. It has been proven as effective when applied to various applica-
tions [12].

In this paper, we applied the SOFL methodology to develop the Generic Insulin In-
fusion Pump design. While concentrating on the Basal Management component in the
GIIP system, our work can easily be extended to the rest of the GIIP system. More
importantly, this case study helps us understand how SOFL leverages the develop-
ment of a complex software system, such as medical device software, from the
following aspects:

1. A software development process driven by the SOFL helps to capture the tra-
ceability [13] among different software artifacts, such as SOFL specifications
and SOFL implementation modules. Good quality traceability information can
greatly improve the correctness and maintainability of complex software sys-
tems. For example, the missing trace information from a requirement to a de-
sign element indicates that the requirement is more likely missed in the system
[14]. Moreover, good traceability information can help third-party reviewers
understand such systems with less effort and more accuracy.

2. The formal and practical aspects of the SOFL methodology introduce more
rigorousness to the development of complex software systems. Formal verifica-
tion can be applied to inspect the correctness and consistency of SOFL specifi-
cations for these systems, which in turn helps developers as well as third-party
reviewers establish higher confidence in these systems.

As the future work, we plan to apply the SOFL methodology to the rest of the GIIP
system, and to investigate effective verification techniques for inspecting SOFL speci-
fications.

Acknowledgements. The authors would like to thank Drs. Yi Zhang and Paul Jones
at FDA who provided valuable and helpful suggestions about the GIIP project, and
the great comments and feedback about this paper. Last, the first author appreciates
their guidance of the GIIP project during his internship in summer 2011.

References

[1] Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL Me-
thod. Springer (2004) ISBN 3-540-20602-7

[2] Liu, S., Offutt, J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: A Formal Engineering Me-
thodology for Industrial Applications. IEEE Transactions on Software Engineering 24(1),
24–45 (1998)

[3] Zhang, Y., Jones, P., Jetley, R.: A Hazard Analysis for a Generic Insulin Infusion Pump.
Diabetes Science and Technology 4(2) (2010)

[4] Vogel, D.: Medical Device Software Verification, Validation, and Compliance. Artech
House (2011)

[5] Generic Infusion Pump Project, http://rtg.cis.upenn.edu/gip.php3
[6] FDA, GIIP Functional Specifications (2011)

132 C.-L. Lin, W. Shen, and D. Kountanis

[7] Zhang, Y., Jetly, R., Jones, P., Ray, A.: Generic Safety Requirements for Developing
Safe Insulin Pump Software. Diabetes Science and Technology 5(6), 1403–1419 (2011)

[8] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press (2006)
ISBN 978-0-262-10114-1

[9] Gurevich, Y.: Evolving Algebras. In: Specification and Validation Methods, pp. 9–36.
Oxford University Press (1995) ISBN 0-521-49619-5

[10] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996) ISBN 0-521-49619-5

[11] Schuman, S.A., Meyer, B., Abrial, J.-R.: A Specification Language. In: McKeag, R.M.,
Macnaghten, A.M. (eds.) On the Construction of Programs. Cambridge University Press
(1980)

[12] Liu, S., Stavridou, V., Dutertre, B.: The Practice of Formal Methods in Safety Critical
Systems. Journal of Systems and Software 28(1), 77–87 (1995)

[13] Spanoudakis, G., Zisman, A.: Software Traceability: A Roadmap. In: Handbook of Soft-
ware Engineering and Knowledge Engineering. World Scientific Publishing (2004)

[14] Yadla, S., Huffman Hayes, J., Dekhtyar, A.: Tracing Requirements to Defect Reports: An
Application of Information Retrieval Techniques. Innovations in Systems and Software
Engineering: A NASA Journal 1, 116–124 (2005)

	Applying SOFL to a Generic Insulin Pump Software
Design

	1 Introduction
	2 Preliminary
	2.1 Introduction to SOFL
	2.2 Introduction to GIIP
	2.3 GIIP Safety Requirements

	3 Design of Basal Management Component
	3.1 Top Level Design
	3.2 Basal Profile Requests (BP-Req)
	3.3 Temporary Basal Requests (TB-Req)

	4 Related Work
	5 Conclusion
	References

