
Design and Implementation of a Tool

for Specifying Specification in SOFL�

Mo Li1 and Shaoying Liu2

1 Graduate School of Computer and Information Sciences,
Hosei University, Tokyo, Japan
mo.li.3e@stu.hosei.ac.jp

2 Department of Computer and Information Sciences,
Hosei University, Tokyo, Japan

sliu@hosei.ac.jp

Abstract. Structure Object-oriented Formal Language (SOFL) is not
just a formal language for writing formal specification. It is also an ap-
proach and a methodology. SOFL provides a three-step approach for
modelling a software system using formal specification. Writing specifi-
cation can be realized as the most important and fundamental task in this
modelling approach. In practice, the activity of writing specification is
error-prone, especially the activity of specifying formal specification. We
think there are two reasons that cause the difficulty of specifying speci-
fication. One reason is that some specifiers may not be familiar with the
formal notations used in SOFL, especially the mathematical notations.
And the other reason is that there is no tool to guide the specifiers to
write specification and make the specifying process easy. In this paper,
we show a prototype of a tool that can provide the specifiers with a strong
support in the process of specifying specification. This tool provides an
integration environment for specifying all kinds of specifications used in
SOFL approach, including informal specification, semiformal specifica-
tion, formal specification, CDFD, and class. And the tool also provides
the function to organize the specifications of a same software system.

Keywords: formal method, specification, modelling approach, tool.

1 Introduction

Formal methods have been recognized as an effective approach for software de-
velopment. One of the products of formal method is formal specification. Formal
specification can describe a software system precisely. The requirement of the
software system is specified by formal notations, usually mathematical notations,
in the formal specification. The content and structure of formal specifications
is different over different formal specification languages. Several formal specifi-
cation languages exist, like VDM-SL [4], Z [5], Object-Z [6], and so on. SOFL

� This research is supported in part by NII Collaborative Program, SCAT Research
Foundation, and Hosei University. It is also partly supported by China 973 program
under Grant No. 2010CB328102 and NSFC under Grant Nos. 61133001, 60910004..

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 44–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Design and Implementation of a Tool for Specifying Specification in SOFL 45

(Structure Object-oriented Formal Language) [1] is one of the these formal lan-
guages.

SOFL is not only a formal language for writing formal specification, but also
an approach and a methodology. SOFL provides a three-step approach for mod-
elling a software system using formal specification. And a lot of techniques have
been created for verifying and validating the formal specification and correspond-
ing implementation program based on formal specification. The combination of
SOFL three-step modelling approach and relative verification and validation
techniques provide a framework of the entire software system development pro-
cess. The soul of this framework is the formal specification. It is the final product
of modelling process and the basis of following verification, validation and imple-
mentation. Writing formal specification can be realized as the most important
and fundamental task in SOFL approach.

In practice, specifying formal specification is an error-prone activity. We think
there are two reasons that cause the difficulty of specifying formal specification.
One reason is that some specifiers may not be familiar with the formal notations
used in SOFL, especially the mathematical notations. And the other reason is
that there is no tool to guide the specifiers to write specification and make the
specifying process easy. The tool support is actually very important. Since there
is a lot of special concepts in SOFL, tool support can facilitate the specifiers to
deal with these concept. Typically, CDFD (Conditional Data Flow Diagram) is
an unique concept in SOFL. Drawing CDFD is required when specifying formal
specification. A specific tool that can be used to draw CDFD directly will be
very helpful.

In this paper, we show a prototype of a tool that can provide the specifiers
with a strong support in the process of specifying specification. This tool pro-
vides an integration environment for specifying all kinds of specifications used in
SOFL approach, including informal specification, semiformal specification, for-
mal specification, and class. And the tool also provides the function to organize
the specifications of a same software system. The prototype is implemented in
C# programming language under the environment of Microsoft Visual Studio
2008.

The rest of this paper is organized as follows. We introduce some special con-
cepts of SOFL in Section 2. Specifically, we also explain the three-step modelling
approach in this section. In Section 3, we describe the major functions of the tool
and explain how these functions support the modelling approach. We demon-
strate the architecture of the tool in Section 4 and introduce the implementation
in Section 5. Section 6 is related work. And finally, we conclude in Section 7.

2 SOFL Three-Step Modelling Approach

In the first step of three-step modelling approach, the informal specification
should be specified. The informal specification is written in natural language
and is the simplest specification in SOFL. It is used to communicate with the
end users or domain experts. The basic unit of informal specification is “module”.



46 M. Li and S. Liu

Amodule is a group of descriptions of functions. It is like a component in software
system.

The second step of the modelling approach is to build semiformal specification.
The semiformal specification consists of two aspects. One is process specification,
and the other is CDFD. The process specification is plain text specification.The
basic unit in process specifications is “process”. A process is an independent
operation that processes data, and different processes contact with each other
via data flows. A group of processes and their relationship are integrated to
compose a “module”. A module can be considered as a higher level process.
Each process can also be decomposed into a lower level module. We use “module”
and “specification” changeably in the following paper. Usually these two terms
indicate the same thing, namely the process specification of a module.

The counterpart of process specification is CDFD, a graphic specification. For
each module, there is a corresponding CDFD. The CDFD uses visual notation
to express the relation between different processes that are included in formal
specification. A process in a CDFD is treated as a transition and a data flow as a
token. When all the input data flows of the process become available, the process
will be enabled and executed. The CDFD is both a formal and intuitive notation
that is suitable for describing the process specification. Note that, even the
semiformal specification is composed by process specification and corresponding
CDFD. Drawing a CDFD for a semiformal module is not required by SOFL.

The third, or the final step of the three-step approach is to specify formal
specification. The formal specification has the same structure of semiformal spec-
ification. It is also composed by CDFD and corresponding process specification.
The difference is that the notations used in formal process specification are for-
mal notations, and drawing CDFD for a formal module is not an optional. SOFL
requires the specifiers to draw CDFD for each formal module.

Except for the informal, semiformal and formal specification, there is another
kind of specification include in the SOFL specifications. It is the “class” speci-
fication. Since SOFL is an object-oriented formal language, the most important
concept of object-oriented design, class, is included in the SOFL specification.

The finished specifications should be verified and validated. The incorrect
parts of the specifications will be corrected or modified. And then the modified
specifications will be verified and validated again. This process will repeat. It is
similar to the cycle of software development.

3 Design of the Tool

Based on the previous introduction, the entire process of modelling software
system by using SOFL can be divided into two stages. The first stage is to
specifying specifications used in SOFL, and the second stage is to verify and
validate the formal specifications finished in the first stage. As shown in Figure
1, our tool is also separated into two parts and each part corresponds to one
stage mentioned above. In this paper, we focus on describing the first part of the
tool, namely the part that supports specifying specifications. The tool provides



Design and Implementation of a Tool for Specifying Specification in SOFL 47

Fig. 1. The components of the tool

not only a plain text editor, but also a group of functions that facilitate the users
in the specifying process expediently.

According to the three-step modelling approach, for each target system, spec-
ifiers should construct the informal specification first, then the semi-formal spec-
ification, and finally the formal specification. In order to support this specifying
process, our tool provides following 10 major functions:

1. creating a software project
2. adding an informal module
3. specifying informal specification
4. adding a semiformal module
5. specifying semiformal process specification
6. adding a formal module
7. specifying formal process specification
8. drawing CDFD
9. specifying class
10. export specifications, including CDFDs

Most of functions listed above correspond to specifying specifications in SOFL:
informal specification, semiformal specification, formal specification, and class.
Specially, semiformal and formal specification include process specification and
CDFD. The difference is that the CDFD in semiformal specification is optional,
but the CDFD in formal specification is required. Since the CDFD is a different
presentation of corresponding formal process specification, keeping consistency
between CDFD and process specification is one of our major concern.



48 M. Li and S. Liu

4 Architecture of the Tool

The specifications are the final products of using our tool. To help users organiz-
ing the working space, all of the specifications that describe the same software
system is grouped. The combination of the specifications is called a “project”.
Figure 2 shows the hierarchy of the specifications. The CDFD with shadow box
indicates that the CDFD in semiformal specification is optional.

Fig. 2. The hierarchy of SOFL specifications

All of the specifications including CDFD are saved as XML files in our tool.
We use the module as the basic unit to create a XML file. For example, if users
add a new formal module to the SOFL project, two new independent XML files
will be created to save the CDFD and process specification, respectively. All the
specifications saved in XML files can be exported as other files format for later
reference. The XML files will also be used as bases for verification and validation.

Table 1. The files used to save specifications

No. Suffix Description

1 .soflproject save the hierarchy of the SOFL project

2 .ifModule save the specification of a informal module

3 .sfModule save the process specification of a semiformal module

4 .sfCDFD save the CDFD of a semiformal module, the content can be empty

5 .fModule save the process specification of formal module

6 .cdfd save the CDFD of a formal module

7 .classSpec save the class definition



Design and Implementation of a Tool for Specifying Specification in SOFL 49

Fig. 3. The Viewer for specifying formal specification

Fig. 4. The architecture of the tool

Expect for the XML files, which are used to save the specifications, one specific
XML file is used to store the hierarchy of all the specifications, namely, the
hierarchy of SOFL project. The internal structure of this XML file is consistent
with the structure shown in Figure 2. Table 1 lists all the XML files that will
be created by the tool. “Suffix” column shows the suffix of the XML file, and
“Description” column explains the content of the XML file.



50 M. Li and S. Liu

In our tool, we use different combinations of small windows to provide users
with the interfaces for different tasks. The small windows in the tool are called
“Explorers”. Each explorer focuses on presenting one aspect of a specific task.
An combination of explorers is called an “Viewer” in the tool. For example,
Figure 3 shows the default viewer for specifying formal specification. Except
for the default viewers, users can rearrange the layout of the explorers to build
customized viewers for different tasks. The users who used to use Eclipse or
Visual Studio will be familiar with such kind of interface.

Figure 4 demonstrates the architecture of the tool. Users use the functions
provided by the tool through different viewers. All the specifications and CDFDs
specified by the users are stored in a group of XML files.

5 Formal Specification Editor

There is not doubt that the formal specification is the most important part in
SOFL. Almost all of the verification and validation techniques are designed based
on formal specification. But specifying formal specification is the most challenge
task when using SOFL. Even the skilful developer would make mistake when
specifying formal specification. And the formal notations in formal specification
will sometime confuse the readers, too. In order to help the users to specify and
understand the formal specification, SOFL uses a graphic specification called
CDFD to simplify the process specification. The CDFD can be realized as a
overview of the corresponding process specification. When specifying a formal
specification, the user can draw CDFD first, and use the CDFD as a guideline
to write process specification.

In our tool, two XML files will be created when the user adds a new formal
module to a software project. Figure 3 shows the default viewer for specifying
formal specification. This viewer includes four explorers. The two explorers at
the left hand side are “Hierarchy Explorer” and “Property Explorer”. The cen-
ter explorer is “CDFD Drawboard”, and the explorer at the right hand side is
“Formal Editor”.

The “Hierarchy Explorer” displays the hierarchy of the project. The root node
of the tree structure in the “Hierarchy Explorer” presents the project’s name.
Under the project’s name there are four second level nodes, and each node corre-
sponds to a specific specification type. Different kinds of specifications, namely
modules are listed under corresponding node. The viewer for specifying for-
mal specification will open when node presenting a formal module being double
clicked.

5.1 Drawing CDFD

Drawing CDFD is the first step to specify a formal module. Of course draw-
ing CDFD first is not required, but we strongly recommend it. In the tool, the
“Property Explorer” and “CDFD Drawboard” work together to help users draw
CDFD. On the top of the explorer “CDFD Drawboard”, there is a tool bar.



Design and Implementation of a Tool for Specifying Specification in SOFL 51

Each button in this tool bar corresponds to a component in CDFD. Users can
add a figure of a component onto the board by clicking the corresponding but-
ton. The figure of a component is called an “object” on the board. User can
move the objects, resize the objects like using other popular drawing tool. Two
objects can be connected via data flow. The point at which object and data
flow are connected are called “connector”. In different figures, the numbers of
connectors are different. For example, considering the two processes “ProcessA”
and “ProcessB” shown in Figure 3, there are two connectors at the left side
of “ProcessA” but only one connector at the left side of “ProcessB”. This is
because “ProcessA” has two input ports, while “ProcessB” has only one input
port.

Some components of CDFD have their own name or specific properties. In or-
der to edit the name or properties of an object in the board, users can just simply
select the object by clicking it, and the corresponding properties will be list in
the “Property Explorer” automatically. Users can change the name or values of
properties, and the modification will change the figure of the object directly.
For the sake of space, we just demonstrate one example here. For instance, the
selected object in Figure 3 is “ProcessA”. It has a name and properties such as
input port number and so on. All of the properties are listed in the “Property
Explorer” at the left-bottom corner. We can see that the input port number is 2,
output port number is 1, and name is “ProcessA”. In addition, we add an addi-
tional property for this component, “ShapeColor”. Users can select a predefined
color to highlight the object.

5.2 Specifying Formal Process Specification

The “Formal Editor” explorer in Figure 3 is used to specify the formal process
specification, the counterpart of CDFD. The entire explorer is divided into two
sections. One is for editing and the other is for displaying. The editing section is
separated into three parts. For top to bottom, the three parts are “Component
List”, “Head Displayer”, and “Content Editor”. The “Component List” is a
drop-down list and all the components of a process specification are listed in
it. The component includes Constant Declaration, Type Declaration, etc. Users
can select one specific component to edit each time. Note that the processes
defined in the process specification are also listed in this drop-down list. Users
can also select a process to edit. Once users select a specific component in the
“Component List”, the “Head Displayer” will display the head declaration of
this component. And the users can edit the content of the selected component.
Everything that users type in the “Content Editor” will be displayed in the
displaying section automatically. For example, the component selected to edit in
Figure 3 is process “ProcessA”. We can see the head declaration of “ProcessA”
is displayed in the “Head Displayer”, and the content in “Content Editor” is
also presented in displaying section.



52 M. Li and S. Liu

Table 2. The events that may effect the consistency

No. of Event Event Effected Process

1 change process’s name 1

2 change process’s input port number 1

3 change process’s output port number 1

4 change data flow’s name 2

5 change data flow’s type 2

6 add a new process to CDFD 1

7 delete a process from CDFD 1

8 add a new data flow to CDFD usually 0

9 delete a data flow from CDFD 2

10 connect a process and a data flow 1

11 disconnect a process and a data flow 1

5.3 Keeping Consistency Mechanism

One of the mistakes made in specifying formal specification is inconsistency
between CDFD and corresponding process specification. In our tool, we provide
a well designed mechanism to keep the consistency between CDFD and process
specification. We defined total 11 events that can effect the consistency. These 11
events are listed in Table 2. The column “Event” is the description of the event,
and the column “Effected Process” is the number of processes whose definition
will be changed by the event. For instance, the forth raw of the table indicates
that the event of changing the name of a data flow will effect two processes
in the process specification. The two processes are connected by the data flow.
When this event happen, the corresponding definition of these two processes in
the process specification should be changed.

In order to make this mechanism work well, we require all of these events must
happen in the process of drawing CDFD. It means all the change and modifi-
cation described in Table 2 must be done through “CDFD Drawingboard” and
“Property Explorer”. And the content of process specification will be modified
automatically. Users cannot do these change or modification in the “Formal Ed-
itor”. Of course we can provide users with a check list based on Table 2 for
inspecting the consistency, but we think build this mechanism into the tool will
give the users a very good guide to specify the specification and it can avoid
mistakes in inspecting the consistency.

5.4 Specifying Semiformal Specification

Specifying semiformal specification is similar to specifying formal specification.
Two specifications have almost same structure. In our tool, the default viewer for



Design and Implementation of a Tool for Specifying Specification in SOFL 53

specifying semiformal specification is similar to the default viewer for specifying
formal specification. Figure 5 is the snapshot of default viewer for specifying
semiformal specification. Compare to Figure 3, the “CDFD Drawboard” and
“Property Explorer” disappear. This is because drawing CDFD is optional in
the process of specifying semiformal specification. And the “Formal Editor” is
replaced by “Semiformal Editor”. The “Semiformal Editor” looks like “Formal
Editor”. The only difference is the tool bar in “Semiformal Editor”. We can
see from Figure 5 that there are two buttons in the tool bar. The two buttons
correspond to adding a process and a function to the “Component List” respec-
tively. When specifying formal specification, adding a process to specification is
an event that will effect the consistency between CDFD and process specifica-
tion. Therefore, a process can be added to the process specification by adding a
process object to the CDFD. But in the process of specifying semiformal spec-
ification, we do not force the users to draw CDFD, drawing CDFD is just an
option. If the users do not want to draw CDFD, they can use the two buttons
in the “Semiformal Editor” to add process or function definition to the semifor-
mal process specification. In this case, there is no need to check the consistency
between semiformal process specification and its corresponding CDFD, and we
do not provide the relative functions in the tool.

If users want to draw CDFD for a semiformal process specification, he or she
can just simply double click the node with the suffix “.sfCDFD”, and the same
“CDFD Drawboard” and “Property Explorer” shown in Figure 3 will be opened.
Note that the occurrences of the events listed in Table 2 will not be presented
in “Semiformal Editor”.

6 Related Work

The tool described in this paper provides several functions that can make the
process of specifying SOFL specification easier. There is another tool that can
support specifying SOFL formal specification is introduced in [7]. Compare to
our tool, this tool does not provide the function to check and keep the consistency
between the CDFD and formal process specification. Furthermore, the flexibility
of this tool is limited, while our tool is designed not only for providing support
for specifying specification, but also for utilizing the latest published verification
and validation techniques. The prototype introduced in [8] is designed to exact
functional scenarios from SOFL formal specification. It reads formal specification
from XML files and generate all possible functional scenarios. The functional
scenario is the basic in several verification and validation techniques.

Several tools have been to support different formal languages or formal meth-
ods. Overture [9] is a community-based project of open-source tools to support
modelling and analysis in the design of software systems using VDM. It provides
several functions such as editing, checking, debugging, etc. B4Free [10] is a set
of tools for the development of B formal models. B4Free offers a graphic rep-
resentation and numerous functionalities to present and manage projects in B
language. And it also provides automatic management of dependencies between



54 M. Li and S. Liu

Fig. 5. The default Viewer for specifying semiformal specification

B components. The Rodin Platform [11] is an Eclipse-based IDE for Event-B
that provides effective support for refinement and mathematical proof. PiZA [12]
is an animator for Z. It translates the Z specifications into Prolog to generate
output variables.

7 Conclusions and Future Work

In this paper, we present the prototype of a tool that supports the entire spec-
ification specifying process when using SOFL three-step modelling approach.
The tool offers customized editor for each kind of specification and numerous
functions facilitating specifiers. These functions include manage SOFL project,
checking consistency between CDFD and formal process specification, etc. All
of the specifications specified by users and the hierarchy of project are saved in
XML files. The XML files of formal specifications will be used as basis for later
verification and validation. If the users want to distribute the specifications, the
specifications can be exported as different formats. The process specification can
be experted as MS Word file or PDF file, and the CDFD can be exported as
JPEG file or BMP file.

As show in Figure 1, the goal of our tool is not to provide an editing environ-
ment only. We want to provide an entire environment for the SOFL three-step
modelling approach and the following verifying and validating process. Obvi-
ously, building a powerful specifying tool is a good start. On the one hand,
verification and validation cannot be performed without formal specification.
On the other hand, a well defined and uniform formal specification file can sim-
plify the process of tool support verification and validation. In the future, our



Design and Implementation of a Tool for Specifying Specification in SOFL 55

work can be separated into two parts. The first part is to refine the exiting tool.
Enhance the usability of the tool. The second part of our work is to build a
parser for formal specification. Almost all of the verification and validation tech-
niques are based on analysing the formal specification. Therefore, build a parser
is necessary.

References

1. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer (2004) ISBN 3-540-20602-7

2. Liu, S., Sun, Y.: Structured Methodology + Object-Oriented Methodology + For-
mal Methods: Methodology of SOFL. In: 1st IEEE International Conference on
Engineering of Complex Computer Systems, pp. 137–144. IEEE Press, Ft. Lan-
derdale (1995)

3. Liu, S., Shibata, M., Sato, R.: Applying SOFL to Develop a University Information
System. In: 6th Asia-Pacific Software Engineering Conference, pp. 404–411. IEEE
Press, Takamatsu (1999)

4. Dawes, J.: The VDM-SL Reference Guide. Pitman (1991)
5. Diller, A.: Z: An Introduction to Formal Methods. John Wiley & Sons (1994)
6. Meira, S.R.L., Cavalcanti, A.L.C.: Modular Object-Oriented Z Specifications. In:

5th Annual Z User Meeting on Z User Workshop, pp. 173–192. Springer, London
(1991)

7. Liu, S.: Integrating top-down and scenario-based methods for constructing software
specifications. In: 8th International Conference on Quality Software, pp. 105–113.
IEEE Press, Oxford (2008)

8. Li, M., Liu, S.: Automatically Generating Functional Scenarios from SOFL CDFD
for Specification Inspection. In: 10th IASTED International Conference on Soft-
ware Engineering, Innsbruck, Austria, pp. 18–25 (2011)

9. Overture: Formal modelling in VDM, http://www.overturetool.org/
10. B4Free, http://www.b4free.com/index-en.php
11. Event-B.org, http://www.event-b.org/
12. Hewitt, M.A., O’Halloran, C.M., Sennett, C.T.: Experiences with PiZA, an ani-

mator for Z. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.) ZUM 1997. LNCS,
vol. 1212, pp. 37–51. Springer, Heidelberg (1997)

http://www.overturetool.org/
http://www.b4free.com/index-en.php
http://www.event-b.org/

	Design and Implementation of a Tool
for Specifying Specification in SOFL

	1 Introduction
	2 SOFL Three-Step Modelling Approach
	3 DesignoftheTool
	4 Architecture of the Tool
	5 Formal Specification Editor
	5.1 Drawing CDFD
	5.2 Specifying Formal Process Specification
	5.3 Keeping Consistency Mechanism
	5.4 Specifying Semiformal Specification

	6 Related Work
	7 Conclusions and Future Work
	References




