
Extension on Transactional Remote Services

in SOFL

Yisheng Wang and Haopeng Chen

School of Software, Shanghai Jiao Tong University
Shanghai, 200240, China

easonyq@hotmail.com, chen-hp@sjtu.edu.cn

Abstract. Software quality always attracts considerable attentions of
people. Software running without any mistakes is always a dream of all
developers. Besides traditional testing method using in practice such as
path coverage, selection coverage, etc, people try to use some more formal
and reliably method to ensure the quality. SOFL, stands for Structured
Object-oriented Formal Language, is a kind of formal language which can
be used to describe, validate and verify core business flow of software.
As software developing model keeps changing for years, we need to make
some extensions to SOFL. In this paper, we have performed extension
on transactional remote services designed for SOFL. Our extension can
mainly be divided into two parts: remote services and transactions. By
introducing these, SOFL is able to keep pace with the changing software
developing model, thus ensuring software quality in a more mathematical
and different way comparing with traditional testing.

1 Introduction

A mature and practical commercial software product always needs a relatively
long period of time and cooperation of many people including managers, de-
signers, developers and testers. Nevertheless, software quality still cannot be
perfectly guaranteed. Bugs and maintaining costs are bottlenecks of software in-
dustry to some extent[1].Theoretically, each software product contains potential
problems and whether it would crash in the next second remains unknown[2].
People have already found a lot of ways to improve software quality such as
standard developing processes and software testing methods. Using these clas-
sic methods such as RUP developing process[3], UML[4], black-box testing and
white-box testing can improve software quality, but still 100% correct is unable
to be reached or proved.

Actually, there are some other researches focusing on formal methods in soft-
ware developing. SOFL[5] is a kind of formal language which can be used to
describe, validate and verify a business workflow in a software product. Usually
we use SOFL Specification and CDFD (stands for Control and Data Flow Dia-
gram) to model a workflow. These can still be divided into some basic elements
such as Module, Process, Dataflow, Datastore, etc. In general CDFD describes

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 133–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 Y. Wang and H. Chen

relationships of these elements such as dataflow connecting two neighboring pro-
cesses. It should be noted that there also exists hierarchical relationship between
two CDFD Diagrams. SOFL Specification carries out the detailed implementa-
tion of a module, including its pre and post condition, data store, input and
output variables. It plays a complementary role together with CDFD.

After modeling a workflow using SOFL, we are able to find whether there
are some potential mistakes in the model by validating and verifying which will
be described afterward. The correctness of a workflow validated and verified by
SOFL can be ensured by formal methods[6][7].

The programming model of software product always keeps changing. Invoking
remote services helps developers to reuse codes as well as avoid duplicating
time-consuming developing job, which is not supported or introduced in SOFL.
Moreover, transaction is an important part in software product, especially for
web-based applications with relatively complicated business logic. If SOFL can
keep pace with this changing trend, its influential range will spread, thus promote
fames of software formalization. This is also what our extensions aim to.

The rest of the paper is organized as follows: Section 2 lists some motivations
of our work. Section 3 introduces the detailed extensions we have performed,
dealing with remote services and transactions individually. Section 4 summa-
rizes a practical case modeling with SOFL along with our extensions. Section 5
introduces related work by others on SOFL recently. Section 6 summarizes the
main contribution of this paper and comments on further research.

2 Motivation

As the day passed, software developing model has changed a lot comparing with
several tens of years ago. What software developers focus on now is to reuse as
much existing remote services as possible rather than writing and testing same
and duplicate codes. This is also the sharing notion of both component-based
software engineering[8] and SOA[9]. The difference between component and ser-
vice mainly lies in the location of the reusing piece of codes. Components can
be withdrawn and run locally while services can not. In general case, we invoke
remote services by providing input parameters and waiting for output results
through network connections. Its running process is totally different comparing
with local processes. Moreover, as Cloud Computing gaining more and more at-
tentions of people, this notion has been inherited and carried forward by invoking
remote services in Cloud[10].

In SOFL, there are several concepts dealing with ‘external’ elements. ‘External
Process’ means a virtual process situated before the first process or after the
last process. Generally, external processes are used to describe the end user or
third-party system in a workflow. Users providing input data or operations and
third-party system which receives output data from the workflow can be called
external processes towards it. Another concept reads ‘external stores’ which is
a kind of data store. It is used to describe ‘external devices or files, such as
displays, files on disks, printers, keyboards’[5]. All these seems to be not very

Extension on Transactional Remote Services in SOFL 135

related with the scenario of reusing. Unfortunately, support on these aspects of
SOFL is quite weak. As SOA and Cloud Computing boosts in a fantastic speed,
SOFL should also keep its pace with these popular notions.

Another key point towards web-based application, especially dealing with on-
line payment or finance elements is transaction. A well-informed instance is
saving, withdrawing or transferring money from a bank, which we can simply
find in our database textbook. More importantly, as the introducing of invoking
remote services, the possibility of invoking exceptions increased because of the
unreliability of network connections. According to Probability Theory , if more
than one remote services or data stores are involved in a workflow, the proba-
bility of mistakes will boosts in an exponential speed. It can be believed that
transactions are required especially for workflow containing remote services or
data stores. We can also inferred from the scenarios that long transactions would
play a dominate role because of network delay and business logic. Assuring its
correctness is also important towards a practical application. So it is reason-
able for us to make extension to SOFL and enable it to deal with transactions,
including long transactions.

It is clear that the requirement of extension to SOFL about remote services
and transactions is reasonable and practical. We should add remote services,
remote data stores and transactions into both SOFL Specification and CDFD
based on the existing rules and grammars of SOFL. The detailed information of
our extensions is shown in the next section.

3 Approach

According to what we have carried out in previous sections, our extensions on
transactional remote services to SOFL can mainly be divided into remote el-
ements and transactions. So we will give out our detailed ideas about these
individually in the following.

3.1 Remote Elements

We have discussed the changes of programming model recently. These changes
can mainly be concluded to distributed architecture (including distributed pro-
gramming model such as Hadoop or distributed data store such as HDFS), us-
ing or revealing web service APIs, different database structure such as no-SQL
database, etc.[11] Meanwhile, the ultimate goal of SOFL is to model and review
core workflow of a software product. Thus extendibility of SOFL according to the
changes made by software world are essential, otherwise it might be eliminated
because of its fogyism.

SOFL is such a formal language that it does not care how much computing
resources or its distributing and connecting situation a workflow actually used.
This means information like whether distributed architectures are introduced,
what kind of database is used cannot be revealed from SOFL. In other words,
these information is transparent and inconsequential for modeling and reviewing

136 Y. Wang and H. Chen

because SOFL focuses on business logic more. But remote elements is different.
Invoking remote services is actually a part of workflow, or said business process.
Their differences over local services mainly lie on the unreliability of network
connection and the existence of network delay. The difference between using
remote data store and local ones is similar. To conclude, we do not care much
about the detailed implementation of services or data stores, but care much
about what we used is remote ones or local ones.

In the following chapters, we will discussed remote services and remote data
stores. Both their textual and visual appearance will be displayed.

Remote Process. Service is the most basic unit in SOA. Services are well-
defined business functionalities that are built as software components (discrete
pieces of code and/or data structures) that can be reused for different purposes.[9]
Service providers can be anyone who wants to be. They need to publish its in-
terface and access information to the service registry. So such services which
are invoked by a workflow and do not run on local node is called ‘Remote Ser-
vices’. By invoking remote services, a workflow need to provide input parameters
and receive output results as the access information mentioned through network
connection.

In SOFL, local function call is described by using ‘process’. A process has its
name, input parameters, output parameters, pre-conditions and post-conditions.
If it uses data stores, a data flow described by a straight line with an arrow will
be added in CDFD. Here pre-condition means the rule that input parameters
must obey, and post-condition means the calculating process of results, thus is
corresponds to function body.

In most cases, a remote service also have such five elements and their infor-
mation is published in registry node. We want to point out that function body
of remote service is transparent to service resumer in most cases. So the post-
condition of remote service should be filled by user according to the describing
and expect output information in service registry. The SOFL Specification we
designed for remote services (or said remote process in SOFL’s definition) is
shown in snippets 1.

Algorithm 1. SOFL Specification of Remote Process

1 remote process Sample (x: Ti 1, y : Ti 2)z : To 1, w : To 2

2 pre P(x, y)
3 post Q(x, y, z, w)
4 end process;

We can find that the only difference towards normal process in SOFL is the
keyword remote. It does not appear in original SOFL grammar, thus conflict
and ambiguity will not be caused by adding this. It has been mentioned above,
post-condition of remote process should be given out by user when modeling

Extension on Transactional Remote Services in SOFL 137

workflow according to the using scenario and intention of that service. More
specific example about how to fill the post-condition of remote process can be
seen in the next section.

After giving out the SOFL Specification extension, we continue to perform
the extension on CDFD. Its difference towards original process in SOFL is only
the letter ‘R’ in the right top side of the diagram. It can be seen in figure 1.

Fig. 1. CDFD of Remote Process

Besides difference in displaying symbol in CDFD and grammar, there are also
some extra constraints of remote process. They are listed as follows.

1. There is an extra and common pre-condition of all remote processes, which
is that the remote service must be accessible through network connection. Oth-
erwise it can be regarded as a violation of pre-condition of process, thus leading
to failure of the whole workflow.

2. Remote process in CDFD can not be decomposed into child-level further be-
cause the principle that detailed implementation of remote service is transparent
to service consumer.

3. If this remote process has used data stores which does not belong to the
workflow, it should not be displayed in CDFD. But if the data store belongs
to the workflow, it still needs to be displayed. For instance, if a remote process
needs to modify data saved in local database which is abstracted as a data store
in SOFL, it should be displayed in CDFD with an arrow line linking from remote
process to it.

Remote Data Store. Remote data store means data stored on remote node
such as remote database or storage service. A remote data store is an external
data store because its storing location is external towards the workflow. So we
need to add mark # when they are declared in a module. To be distinguish from
normal data stores, we add keywords remote before variables. Thus, the SOFL
Specification of a process using remote data stores is shown in snippets 2.

The overall specification grammar is quite similar to normal data store, but
different at the keyword remote, which has already been defined and applied in
remote processes. According to the definition of external stores in SOFL, they
are global variables. Therefore, remote data stores are also global variables.

We have also designed the CDFD of process declared in snippets 2. It is shown
in figure 2.

138 Y. Wang and H. Chen

Algorithm 2. SOFL Specification of Processes Using Remote Data Store

1 process Sample2 (x: Ti 1, y : Ti 2)z : To 1, w : To 2

2 ext
3 remote rd #v 1 : Te 1
4 remote wr #v 2 : Te 2
5 pre P(x, y, v 1, v 2)
6 post Q(x, y, z, w, ˜v 2, v 1, v 2)
7 end process;

Fig. 2. CDFD of Processes Using Remote Data Store

Similar to CDFD of remote process shown in figure 1, the only different be-
tween remote data store and normal data store lies in the remote keyword in
specification and the ‘R’ mark in CDFD.

3.2 Transactions

A transaction by definition must be ACID which stands for atomic, consistent,
isolated and durable[12]. Usually it provides an “all-or-nothing” proposition,
stating that each work-unit performed in a database must either complete in
its entirety or have no effect whatsoever. In software products especially web-
based applications, transactions are widely used in order to ensure the correct
running of the whole system and avoid data inconsistency or business logic chaos.
The simplest and most popular example is transferring money between banks.
It can be said that most software products might not run correctly without
transactions.

SOFL has not introduced transactions according to its original definition. In
SOFL, a workflow is running by steps from one process to its successor without
operations of opposite direction such as rollback. Thus it is difficult for us to use
SOFL to model a workflow with transactions. We have performed our definition
of transactions in SOFL in the following paragraphs.

The most basic unit of SOFL-modeled workflow is process. So it is reasonable
to introduce transaction based on processes, which means transactions in SOFL
are composed with several processes. According to the feature in SOFL that
processes can be further decomposed and CDFD is hierarchical, we also want to
carry out some constraints on transactions as follows.

Extension on Transactional Remote Services in SOFL 139

1. All processes in a transaction must be neighbored in CDFD. This is also a
conventional constraint of transaction.

2. All processes in a transaction must be in a same CDFD. For example,
the top level of a workflow is composed with three processes named ‘A’, ‘B’,
‘C’ individually. ‘A’ can be further divided into ‘Aa’ and ‘Ab’. ‘B’ is composed
with ‘Ba’, ‘Bb’ and ‘Bc’. According to this rule, ‘Aa’ and ‘Ab’ can be in a same
transaction, but ‘Ab’ and ‘B’ can not composed of a transaction. This is mainly
because the inner structure of ‘A’ is transparent to ‘B’. And usually, a process
is relatively independent to other process. The fact that a process has several
child-level processes is mainly because it has divided its function into several
parts. Just focus on the previous instance, the function of ‘A’ and ‘B’ is different
and independent. It can not be very common that ‘Ab’ and ‘B’ need to be in a
same transaction. Similarly, ‘Ab’ and ‘Ba’ can not be in an transaction either.

If a transaction need a lot of time to finish, we call it long transaction. There is
not a very exact and strict boundary time to distinguish long transactions against
normal ones. Normal transaction is implemented by executing it in memory
and flush data to disk when committed. But such implementation can not be
applied directly to long transactions because the performance influence of write-
lock and data size. In order to ensure the ACID of long transactions, a series
of operation called ‘compensating transaction’ is introduced and invoked when
rollback operation is needed.

In practice, the implementations of compensating transaction is roughly di-
vided into two. The first is writing the inverse operation by user and execute
it as rollback. The other is to take snapshots before transaction starts and set
all variables to that value when rollback is needed. Its detailed implementation
contains the following steps. Before the first process of a transaction is started,
a snapshot of the whole system is taken and saved. This snapshot is actually
a set of values of current variables of the whole system. Then the transaction
started by executing processes it contains in a certain order. When it need to
rollback for some reasons, the snapshot is used. We define a set of operations as
compensating transaction which sets the value of variable to the original state.
It is determined by the snapshot taken before the starting of the transaction. Af-
ter these set operations has finished, the transaction has rollback to its original
state, thus guarantee the “all-or-nothing” feature.

Our extension supports both methods. If user has not written his compen-
sating transaction, taking snapshot is used by default. The selection of rollback
strategy is made by user.

There are hierarchical relations among transactions, which means nested trans-
actions are allowed. A remarkable difference between nested transactions against
normal ones mainly lies on the retry count. We assume transaction A contains
transaction B and we set retry count to n. This means A is failed if and only if B
has rollback for n times. In other words, failure of B only once would not cause
failure of A if n is greater than 1. Moreover, in general case, nested transactions
are long transactions.

140 Y. Wang and H. Chen

We have discussed the definition and some constraints of transactions in
SOFL along with long transactions and the implementation of their compensat-
ing transactions. We are ready to give out our extension on grammar in SOFL
Specification. Because multiple processes can be involved in a transactions, so
we need to declare a transaction first, and then refer it in the process definition
block if it belongs to this transaction. In addition, because all processes of a
transaction must be in a same CDFD, so the declaration of transaction can be
placed in the module which is composed with these processes. A sample module
with transaction is defined in snippet 3.

In snippet 3, a module named ‘Sample Module’ is defined and indicates
‘Sample Parent Module’ as its parent module. The general procedure of declar-
ing a module is defined in the following order: constants, types, variables, invari-
ants, behavior and processes. Our extension is to add transactions sections be-
tween invariants and behavior and start with the keyword transaction. Trans-
action has the only attribute: name. It is also the only mark when using to
distinguish from others, thus it must be unique. In order to show hierarchical
structure, ‘Trans 2’ behaves as the child transaction of ‘Trans 1’ with retry
count equaling 3.

There is also an extra transaction definition section in process definition sec-
tions just after the name and parameter section. It indicates which transaction
it belongs to. Literally, ‘Trans 1’ only contains one process, but actually it acts
as the parent transaction of ‘Trans 2’, thus it contains all these three processes
by analyzing the hierarchical relationships. A process can belong to multiple
transactions. The transaction section in process definition sections is able to de-
clare all transactions it belongs to by using semicolons as their separators, but
ancestor transactions need not to be declared.

Process named ‘Sample Compensating Process’ is defined as the compen-
sating transaction of ‘Trans 2’ by using keyword compensating transaction.
Note that each process can only declare one transaction name as its compen-
sating transaction. There are not any compensating transactions declaring for
‘Trans 1’, thus the default taking snapshots method is used.

Transactions can also be displayed in CDFD using special symbols. We define
a dashed box around processes as all of these processes belong to a same trans-
action. Its name is marked in the dashed box to be distinguished against others.
Just take the snippet 3 as an instance, its CDFD is demonstrated in figure 3.

Compensating transaction ‘Sample Compensating Process’ is not displayed
in CDFD because it is not the basic flow of this workflow. Dashed box is shown
only in CDFD of this level. It would not display in other level, such as the CDFD
for module ‘Sample Parent Process’ in the example.

4 Evaluation

We have performed our detailed extension method on SOFL about transactional
remote services both in CDFD and SOFL Specification in the previous section.
In this section, we try to demonstrate a case modeling with extended SOFL to

Extension on Transactional Remote Services in SOFL 141

Algorithm 3. SOFL Specification of Module with Transaction

1 module Sample Module / Sample Parent Module
2 transaction
3 Trans 1;
4 Trans 2 / Trans 1 retry 3;
5 behav CDFD Sample Module
6 process Sample Process 1 (x: Ti 1, y : Ti 2)z : To 1, w : To 2

7 transaction
8 Trans 2;
9 ext

10 rd v 1 : Te 1
11 wr v 2 : Te 2
12 pre P(x, y, v 1, v 2)
13 post Q(x, y, z, w, ˜v 2, v 1, v 2)
14 end process;
15 process Sample Process 2 (z: To 1, w : To 2)v : To 3

16 transaction
17 Trans 2;
18 ext rd v 2 : Te 2
19 pre P’(z, w, v 2)
20 post Q’(z, w, v)
21 end process;
22 process Sample Process 3 (v: To 3)u : To 4

23 transaction
24 Trans 1;
25 ext
26 wr v 3 : Te 3
27 pre P”(v, u, v 3)
28 post Q”(v, u, ˜v 3, v 3)
29 end process;
30 process Sample Compensating Process (v:

To 3)x : Ti 1, y : Ti 2, z : To 1, w : To 2

31 compensating transaction Trans 2;
32 ext
33 wr v 2 : Te 2
34 pre P”(v, v 2)
35 post Q”(v, x, y, z, w, ˜v 2, v 2)
36 end process;
37 end module;

show its using scenario and effect. By introducing this, a more clear and deep
understanding of extended SOFL will be able to build.

Our case is to model a workflow of purchasing commodity. It is quite common
in web-based applications. The approximate processes are listed as follows.

1. Login to our system. In order to keep pace with popular SSO technology
(stands for Single Sign On), user need to send his user name and password to a

142 Y. Wang and H. Chen

Fig. 3. CDFD of Module with Transaction

user authentication center. If authentication succeeds, UC provides our system
with the user’s ID along with some necessary user-related information. In general
case, UC exposes a web service API to all its downstream system. Therefore a
remote process of invoking that service is needed.

2. Online Payment. We have introduced a third-party online payment system
to our workflow. Such systems includes PayPal or e-bank. It is also a remote
process. After succeeding in payment, it returns flag indicating the successful
message.

3. Increase Possessions. Add the number of the user’s purchased commodity
by 1 in user’s profile. For data consistency, procedure No.2 and 3 must be “all-
or-nothing”, thus they must be in an transaction.

We use three processes to model this workflow, corresponding to three procedures
mentioned above. Among these, login process and online-payment process are
remote processes while the rest is local. Besides, we should introduce two local
data stores saving user’s authentication data and data about user’s amount of
possessions. The last key point is that the second and third process need to
be included in a transaction to avoid situations such as failing in payment but
succeed in adding possessions. The detailed information of these three processes
are listed as follows.

1. Login. This is a remote process. It takes user’s user name and password
as input, and judge whether he is a valid user of our system. If true, it gives
out detailed information of this user, otherwise an error message acts as its
output. Dealing with this error message may need another process (maybe named
‘DisplayMessage’), but it is not the key point of our sample, thus it is omitted.
‘Login’ also need to read information from data store named ‘account info’,
which saves user’s authentication information.

2. Online Payment. This is also a remote process. It takes user’s information as
input and returns a flag indicating whether the payment operation is successful
along with his information for next process. Actually it needs a wr operation
to user’s data about his balance, but it should not be displayed in our system
because it is transparent to our workflow.

Extension on Transactional Remote Services in SOFL 143

3. Increase Possessions. This is a normal process. It takes the current user as
input and gives out a flag showing whether it succeeds. It needs to search the
user’s possession information by user’s information and overwrite it, thus a wr
operation to data store named ‘possession info’.

After analyzing requirements and making a rough design about the system,
we try to give out its detailed SOFL Specification of this workflow. Just as
what we have discussed above, this specification contains remote processes and
transactions. The module is named ‘Purchae’. It is shown in snippet 4.

We have omitted the process ‘Display Message’ which deals with the error
message ‘Login’ gives out. Moreover, as an example, we have also simplify the
workflow. For instance, we assume there is only one type of commodity. In prac-
tice, information about commodities and their prices, stocks can always be very
large. To transplant it into real use, we may need to add a process dealing with
what commodities the user want to buy and their total prices between ‘Login’
and ‘Online Payment’. Also, logics dealing mistakes are also omitted such as
when user’s balance is not enough to afford or commodity is out of stock.

In this example, remote process and transaction is involved. We need to note
some key points.

1. Post-conditions of remote processes are added by user, thus we cannot find
the detailed implementation of online payment in post-condition of
‘Online Payment’. We focus on their input and output variables to ensure the
reasonability and correctness of the whole workflow.

2. We have not defined the compensating transaction for ‘Purchase T rans’,
thus taking snapshot is used by default.

3. Data store ‘account info’ belongs to our system, thus it appears in CDFD,
But user’s data about his balance is transparent to our workflow, so it should
not appear in CDFD.

4. If we try to use account information from other systems, ‘account info’
can be remote data store. This requirement is also common if several systems
try to work together and share their users. The CDFD of this workflow is shown
is figure 4.

Fig. 4. CDFD of Purchase

144 Y. Wang and H. Chen

Algorithm 4. SOFL Specification of Purchase

1 module Purchase;
2 type
3 Login Info = composed of
4 user name: string
5 password: string
6 end;
7 Account Info = composed of
8 user id: nat
9 email: string

10 end;
11 LoginAccountFile = map Login Info to Account Info;
12 PossessionAccountFile = map Account Info to nat0;
13 var
14 ext #account info: LoginAccountFile;
15 ext #possession info: PossessionAccountFile;
16 inv
17 forall[x: Account Info] | not exists [y: Account Info] | x.user id = y.user id;
18 transaction Purchase Trans;
19 behav Purchase CDFD;
20 remote process Login(login info: Login Info) current user: Account Info |

error msg: string
21 ext rd account info
22 post if login info inset dom(account info)
23 then current user = account info(login info)
24 else error msg = ”Your password or user name is incorrect.”
25 end process;
26 remote process Online Payment(current user: Account Info)current user out:

Account Info, flag: bool
27 transaction Purchase Trans;
28 post current user out = current user
29 and flag = true
30 end process;
31 process Increase Possession(current user: Account Info, flag: bool)flag out:

bool
32 transaction Purchase Trans;
33 ext wr possession info
34 pre flag = true
35 post possession info = override(˜possession info, map:current user − >

˜possession info(current user) + 1)
36 and flag out = true
37 end process;
38 end module;

Extension on Transactional Remote Services in SOFL 145

5 Related Work

Workflow technology has attracted attentions of researches for a period of times.
In workflow researching field, a representative language is BPEL[13]. Because of
its ambiguities and lack of formal semantics,many researches have been performed
to formalize BPEL by introducing process algebgra, Petri nets, automata, etc.

Process algebras is also used to form workflow. It contains ACP (stands for
Algebra of Communicating Processes), CSP (stands for Communication Sequen-
tial Processes), CCS (Calculus of Communicating Systems), etc[14]. Researches
on modeling business logic by process algebra is a popular topic these years.
Salaun has presented a method for verifying business processes based on pro-
cess algebras which mainly focus on their interactions[15]. The shortage of using
process algebra to model business process mainly lies in its lack of support on
dynamic process instantiation and correlation set. Process algebra also does not
support dynamic structure alteration, which is important in business aspect.

Petri net is a strict and mathematical describing language. It can also used
to verify workflow in an dynamic way. Using Petri net to model a business
is an ideal and reliable method, especially after the introducing of high-order
Petri net. Many researchers have tried their way to translate BPEL to Petri
net[16][17][18]. But Petri net is based on graphical unit, thus its complexity
boosts when modeling a large scaled and practical workflow. Moreover, data
types in Petri net is also limited. Workflow involving rich data types is difficult
to be described by Petri net.

According to the definition, automata is a public and base model of formal
specification for systems which contains a set of stats, actions and transitions
between states[19]. It is convenient to describe workflow because corresponding
definitions can also be found in workflow. Diaz has researched a set of methods
converting business processes writtin in BPEL-WSCDL to timed automata[20].
Fu has developed a tool which translating BPEL to guarded automata[21]. But
limited by the feature of automata, it is also not suitable for describing large-
scaled system because of the complicated structures and loss of accuracy.

Comparing to these relatively mature researches, SOFL starts later. The ini-
tial development of SOFL was made at the University of Manchester in the
United Kingdom in 1989[22]. After that, SOFL had developed gradually with
contribution of many researchers. Shaoying Liu has formalized its grammar and
introduced to people in his papers and books.[5] A remarkable advantage of
SOFL against other software formal language is its support of automatic verify-
ing and validating. Several tools have also been developed to finish these[23][24].
Although its researches have not attract much people yet, its potential power
and solid foundation is still convinced that it will keep going on.

6 Conclusion

As the rapid growth of software, both developers and users keeps changing. Be-
cause the number of software users boost, software need to face greater challenges

146 Y. Wang and H. Chen

not only on its functional requirements, but also its performance, availability,
quality, etc. Being different from classic testing method, modeling software work-
flow using formal language is another attractive way to ensure software quality.
Besides, it is more convincible to people because its mathematical base.

In this paper, we have performed several extensions on grammar of SOFL in
order to make it able to keep pace with the developing software world. These
extension points are listed as follows.

1. Extensions on remote elements. This can further be divided into remote
processes and remote data stores. We use remote processes to model invoking re-
mote services in workflow, which is popular in SOA. Remote data stores are used
to model invoking remote storage services in workflow. It is similar to remote
processes. Remote elements are different from normal elements in several points.
Its grammar on SOFL Specification mainly highlights in keyword remote.

2. Extensions on transactions. Transactions are important to software product
because of its “all-or-nothing” feature. After extension, we are able to declare
transaction name in module declaring section and add transaction declaring to
process definition section to indicate which transaction(s) it belongs to. Trans-
actions can be nested. One process can be included by multiple transactions. Its
compensating transaction can be written by user, or using taking snapshots by
default. All these two extra declaring section starts with keyword transaction.

We have also given out an simple example dealing with purchasing commodities
to show the using scenarios and methods of our extensions. The changes we made
to SOFL is not very large, and it does not conflict with normal SOFL grammar
either because we use new keywords. These extensions can also be illustrated in
CDFD by introducing different mark to distinguish.

SOFL is a new comer comparing with some elder and mature formal language
members such as automata, Petri net and process algebra. But its potential
power can not be regardless. As more researches have been done in SOFL, it
is believed that SOFL will attracts increasingly more people including both
researchers and users, thus ensure software quality in a more convincible way.

References

1. Marciniak, J.J.: Encyclopedia of Software Engineering, 2nd edn. Wiley Publica-
tions (1994)

2. Cai, L., Yang, G.: Software Quality Assurance Testing and Evaluating. Tsing Hua
University Publications (2007)

3. Aked, M.: RUP in brief. In: Risk Reduction with the RUP Phase Plan, pp. 1–10.
IBM (November 2003)

4. Pressman, R.S.: Software Engineering, a Practitioner’s Approach. McGraw-Hill
Science/Engineering/Math. (2009)

5. Liu, S.: Formal Engineering for Industrial Software Development. Springer (2008)
6. Liu, S.: A property-based approach to reviewing formal specifications for consis-

tency. In: Proc. of 16th International Conference on Software Systems Engineering
and Their Applications, pp. 1–6 (2003)

Extension on Transactional Remote Services in SOFL 147

7. Liu, S.: An automated rigorous review method for verifying and validating formal
specifications. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 15–19. Springer,
Heidelberg (2004)

8. Sun, C., Zhang, X., Zheng, L.: The research of the component-based software
engineering. In: Sixth International Conference on Information Technology: New
Generations, ITNG 2009, pp. 1590–1591 (2009)

9. Bell, M.: Introduction to Service-Oriented Modeling. Wiley and Sons (2008)
10. Raicu, I., Lu, S., Foster, I., Zhao, Y.: Cloud computing and grid computing 360-

degree compared. In: Grid Computing Environments Workshop, GCE, pp. 1–10
(August 2008)

11. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: The new generation of
web applications

12. Korth, H.F., Silberschatz, A.: Database System Concepts, 4th edn. McGraw-Hill
Education (2006)

13. Morimoto, S.: A survey of formal verification for business process modeling. In:
Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part
II. LNCS, vol. 5102, pp. 514–522. Springer, Heidelberg (2008)

14. Sipei, L., Jin, W., Lei, W., Park, S.: Description logic rule, matching process alge-
bra based OWL-S modeling, and composition

15. Schaerf, M., Salaun, G., Bordeaux, L.: Describing and reasoning on web services
using process algebra. In: Proceedings of the IEEE International Conference on
Web Services, pp. 43–50 (2004)

16. Verbeek: Analyzing bpel processes using petri nets
17. Van der Aalst: Verification of workflow nets
18. Dumas, M., Van der Aalst, Verbeek, H.M.W.: An approach based on bpel and petri

nets (extended version)
19. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation, 3rd edn. Addison-Wesley (2006)
20. Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Automatic

translation of WS-CDL choreographies to timed automata. In: Bravetti, M., Kloul,
L., Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 230–242.
Springer, Heidelberg (2005)

21. Fu, X., Bultan, T., Su, J.: Analysis of interacting bpel web services. In: Proc. of
13th International Conference on the World Wide Web, pp. 621–630 (2004)

22. Sun, Y., Liu, S.: Structured methodology+object-oriented methodology+formal
methods: methodology of sofl

23. Miyamoto, K., Liu, S., Fukuzaki, T.: A gui and testing tool for sofl
24. Wang, Y., Zheng, Q., Chen, H.: Soflipse: Tool for automatic modelling and review-

ing sofl workflows. International Journal of Computing Technology and Information
Security 1, 88–98 (2011)

	Extension on Transactional Remote Services
in SOFL

	1 Introduction
	2 Motivation
	3 Approach
	3.1 Remote Elements
	3.2 Transactions

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

