
Shaoying Liu (Ed.)

 123

LN
CS

 7
78

7

Second International Workshop, SOFL 2012
Kyoto, Japan, November 2012
Revised Selected Papers

Structured Object-Oriented
Formal Language and Method

Lecture Notes in Computer Science 7787
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Shaoying Liu (Ed.)

Structured Object-Oriented
Formal Language and Method

Second International Workshop, SOFL 2012
Kyoto, Japan, November 13, 2012
Revised Selected Papers

13

Volume Editor

Shaoying Liu
Hosei University
Faculty of Computer and Information Sciences
Department of Computer Science
3-7-2 Kajino-cho Koganei-shi
Tokyo 184-8584, Japan
E-mail: sliu@hosei.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39276-4 e-ISBN 978-3-642-39277-1
DOI 10.1007/978-3-642-39277-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946042

CR Subject Classification (1998): F.3, D.2, D.2.4, D.3, F.4.1, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

There is a growing interest in applying formal methods in practice to improve
software productivity and quality, but only with a few exceptions, this interest
has not been successfully converted into reality. How to enable practitioners to
easily and effectively use formal techniques still remains challenging.

The Structured Object-Oriented Formal Language (SOFL) has been de-
veloped to address this challenge by providing a comprehensible specification
language, a practical modeling method, various verification and validation tech-
niques, and tool support through effective integration of formal methods with
conventional software engineering techniques. SOFL integrates data flow dia-
gram, Petri nets, and VDM-SL to offer a visualized and formal notation for
writing specifications; a three-step approach to requirements acquisition and
system design; specification-based inspection and testing methods for detecting
errors in both specifications and programs; and a set of tools to support modeling
and verification.

The WSOFL 2012 workshop was organized by the Shaoying Liu research
group at Hosei University with the aim of bringing industrial, academic, and
government experts of SOFL together to communicate and to exchange ideas.
The workshop attracted 19 submissions on formal specification, specification-
based testing, specification pattern, integration of formal specification and pro-
totyping, specification animation, application of SOFL, and supporting tools for
SOFL from over five countries. Each submission was rigorously reviewed by at
least two PC members or their co-reviewers on the basis of technical quality,
relevance, significance, and clarity, and 10 papers were accepted for publication
in the workshop proceedings. The acceptance rate is about 52.6%. The workshop
program featured a mini tutorial on SOFL and 11 paper presentations. Around
30 people from both industry and academy participated in the workshop.

I would like to thank the ICFEM 2012 organizers for accepting our proposal
and supporting the organization of the workshop, all of the program committee
members for their great efforts and cooperation in reviewing and selecting papers,
and my PhD students Xi Wang and Weikai Miao for their help in setting up the
EasyChair account and the homepage for the workshop. I would also like to
thank all of the attendees for their active participation in discussions at the
workshop. Finally, my gratitude goes to Alfred Hofmann and Anna Kramer of
Springer for their support in the publication of the workshop proceedings.

Shaoying Liu

Organization

Program Committee

Shaoying Liu (Chair) Hosei University, Japan
Michael Butler University of Southampton, UK
Steve Cha Korea University, Korea
Jian Chen Shaanxi Normal University, China
Yuting Chen Shanghai Jiaotong University, China
Jin Song Dong National University of Singapore
Mo Li Hosei University, Japan
Abdul Rahman Mat University Malaysia Serawak, Malaysia
Weikai Miao Hosei University, Japan
Fumiko Nagoya Aoyama Gakuyin University, Japan
Jeff Offutt George Mason University, USA
Shengchao Qin University of Teesside, UK
Jing Sun University of Auckland, New Zealand
Cong Tian Xidian University, China
Xi Wang Hosei University, Japan
Fauziah Zainuddin Hosei University, Japan
Hong Zhu Oxford Brookes University, UK
Wuwei Shen Western Michigan University, USA

Additional Reviewers

Chung-Ling Lin
Yanhong Huang

Table of Contents

Testing and Tools

Applying “Functional Scenario-Based” Test Case Generation Method
in Unit Testing and Integration Testing . 1

Cencen Li, Mo Li, Shaoying Liu, and Shin Nakajima

Supporting Tool for Automatic Specification-Based Test Case
Generation . 12

Weihang Zhang and Shaoying Liu

A Formal Specification-Based Integration Testing Approach 26
Weikai Miao and Shaoying Liu

Tools for Specification

Design and Implementation of a Tool for Specifying Specification
in SOFL . 44

Mo Li and Shaoying Liu

Development of a Supporting Tool for Formalizing Software
Requirements . 56

Xi Wang and Shaoying Liu

Model Checking

Abstract Model Checking with SOFL Hierarchy . 71
Cong Tian, Shaoying Liu, and Zhenhua Duan

Model Checking C Programs with MSVL . 87
Yan Yu, Zhenhua Duan, Cong Tian, and Mengfei Yang

Application and Prototyping

An Application of SOFL for Rapid Prototyping . 104
Fumiko Nagoya and Tetsuo Kitagawa

Applying SOFL to a Generic Insulin Pump Software Design 116
Chung-Ling Ling, Wuwei Shen, and Dionysios Kountanis

X Table of Contents

Extension on Transactional Remote Services in SOFL 133
Yisheng Wang and Haopeng Chen

Author Index . 149

Applying “Functional Scenario-Based”

Test Case Generation Method in Unit Testing
and Integration Testing�

Cencen Li1, Mo Li1, Shaoying Liu2, and Shin Nakajima3

1 Graduate School of Computer and Information Sciences,
Hosei University, Tokyo, Japan

{cencen.li.js,mo.li.3e}@stu.hosei.ac.jp
2 Department of Computer and Information Sciences,

Hosei University, Tokyo, Japan
sliu@hosei.ac.jp

3 Information Systems Architecture Science Research Division,
National Institute of Informatics, Tokyo, Japan

nkjm@nii.ac.jp

Abstract. Specification-based testing enables us to detect errors in the
implementation of functions defined in given specifications. Its effective-
ness in achieving high path coverage and efficiency in generating test
cases are always major concerns of testers. The automatic test case gen-
eration approach based on formal specifications proposed by Liu and
Nakajima is aimed at ensuring high effectiveness and efficiency, but this
approach has not been used under different testing environments. In this
paper, we first present the statical analysis of the characteristics of the
test case generation approach, and then show the experiments of using
this approach in two different real testing environments. The two prac-
tical testing cases include a unit testing and an integration testing. We
perform the testing not only for assessing Liu’s approach in practice, but
also trying to get some experience of using this approach in practice. The
static analysis and the results of experiments indicate that this test case
generation approach may not be effective in some circumstances, espe-
cially in integration testing. We discuss the results, analyze the specific
causes for the ineffectiveness, namely the low path coverage, and propose
some suggestions for improvement.

Keywords: experiment, functional scenario, specification-based,
testing.

1 Introduction

Specification-based testing enables us to detect errors in the implementation of
the functions defined in given specifications. Since performing specification-based

� This work is supported by NII Collaborative Research Program. Shaoying Liu is also
supported by the NSFC Grant (No. 60910004), and 973 Program of China Grant
(No. 2010CB328102).

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 C. Li et al.

testing is usually time consuming, automatic specification-based testing is always
attractive to the software industry. An automatic test cases generation approach
based on formal specification known as functional scenario-based testing(FSBT)
was first introduced in Liu’s paper [1], which is aimed to ensure high effectiveness
and efficiency of specification-based testing.

This automatic specification-based testing approach is applicable to any for-
mal specifications that are comprised of operations specified in terms of pre-
and post-conditions. The essence strategy underlying this testing approach is
to guarantee that every functional scenario defined in a specification is imple-
mented “correctly” by the corresponding program. A functional scenario of an
operation defines an independent relation between its input and output under a
certain condition, and usually expressed as a predicate expression. The predicate
expression is used as a foundation of automatic test case generation algorithm.
The function defined by a functional scenario is actually a function of the soft-
ware system, and it should be implemented in the program. Therefore, by using
the test cases derived from functional scenarios, the implementation of functions
defined in scenarios are expected to be tested consequently.

To assess this testing approach formally, we performed a static analysis and
an experiment in out previous publication [2]. The static analysis is carried out
to analyse the characteristics of the testing approach. We focused on uncovering
the relationship between functional scenario and corresponding execution path.
Based on the definition of functional scenario, it presents a specific function of
a system. Correspondingly, there should be an execution path in the program
to implement the function defined by the functional scenario. We separated the
relationship into five categories, and pointed out the circumstance in which each
kind of relationship occurs. The details will be briefly introduced in Section 3.

In this paper, we present two experiments of using the test case generation
method in different testing environments. One of the experiment is a unit testing,
and the other one is an integration testing. The details of the integration testing
have been presented in [2]. Here we discuss its results with the result of the
unit testing together. We compare and analyse the results and the procedures
of these two experiments. The results of experiments indicate that the testing
approach may have a high level path coverage in unit testing due to using lower
level specification to generate test cases. But the effectiveness of testing will
be reduced if the specification is not well-formed [3], or the function defined by
functional scenario is refined by programmers in implementation. This indication
confirms the conclusion of statical analysis practically. We totally performing two
experiments not only for assessing the test case generation method in practice,
but also trying to get some experience of using this method in practice.

The remainder of this paper is organized as follows. Section 2 includes brief
introduction of the original decompositional testing approach, including the test
strategy and the test case generation algorithm. In Section 3 we describe the
relations between functional scenarios and execution paths in program, which
are two basic concepts in our experiment. The experiment will be introduced in
Section 4 including purpose, environment, results and results analysis. We will

Applying “Functional Scenario-Based” Test Case Generation Method 3

Table 1. Test Cases Generation Algorithm

No. of Algorithms � Algorithms of test case generation for x1

1 = x1 = E

2 > x1 = E +Δx

3 < x1 = E −Δx

4 ≤,≥, �= similar to above

propose suggestions based on our experience in Section 5. Section 6 is related
work, and in Section 7 we conclude the paper and point out future research
directions.

2 Decompositional Approach to Automatic Test Case
Generation

In order to explain the test case generation algorithm, we need to define the for-
mal specification and functional scenario first. For simplicity, let S(Siv, Sov)[Spre,
Spost] denote the formal specification of an operation S, where Siv is the set of
all input variables, Sov is the set of all output variables, and Spre and Spost are
the pre and post-condition of S, respectively. For the post-condition Spost, let
Spost ≡ (C1 ∧D1) ∨ (C2 ∧D2) ∨ ... ∨ (Cn ∧Dn), where each Ci(i ∈ {1, ..., n}) is
a predicate called a “guard condition” that contains no output variable in Sov

and ∀i,j∈{1,...,n} ·i �= j ⇒ Ci ∧ Cj = false ; Di a “defining condition” that
contains at least one output variable in Sov but no guard condition. Then, a
formal specification of an option can be expressed as a disjunction expression
(∼Spre ∧ C1 ∧ D1) ∨ (∼Spre ∧ C2 ∧ D2) ∨ ... ∨ (∼Spre ∧ Cn ∧ Dn). A conjunc-
tion ∼Spre ∧Ci ∧Di is realized as a functional scenario. We treat a conjunction
∼Spre ∧ Ci ∧Di as a functional scenario because it defines an independent be-
havior: when ∼Spre ∧Ci is satisfied by the initial state (or input variables), the
final state (or the output variables) is defined by the defining condition Di.

Since test case generation usually depends on the pre-condition and guard
condition, and the defining condition Di usually does not provide the main in-
formation for test case generation. The defining condition Di is eliminated from
the functional scenario. The conjunction after eliminating defining condition is
∼Spre ∧Ci, called testing condition. For each atomic predicate Q in testing con-
dition, the input variables involved in each atomic predicate expression Q can be
generated by using an algorithm that deals with the following three situations,
respectively.

– Situation 1: If only one input variable is involved and Q has the format
x1
 E, where
 ∈ {=, <,>,≤,≥, �=} is a relational operator and E is a
constant expression, using the algorithms listed in Table 1 to generate test
cases for variable x1.

4 C. Li et al.

– Situation 2: If only one input variable is involved and Q has the format
E1
E2, where E1 and E2 are both arithmetic expressions which may involve
variable x1, it is first transformed to the format x1
 E. And then apply
Criterion 1.

– Situation 3: If more than one input variables are involved and Q has the
format E1
 E2, where E1 and E2 are both arithmetic expressions possibly
involving all the variables x1, x2, ..., xw. First randomly assigning values from
appropriate types to the input variables x2, x3, ..., xw to transform the format
into the format E1
 E2, and then apply Situation 2.

Note that if one input variable x appears in more than one atomic predicate
expressions, it needs to satisfy all the expressions which it is involved in.

3 Static Analysis

The objective of program testing is to test all parts of the program. This objec-
tive indicates that all of the execution paths in the program should be tested. An
execution path can be realized a sequence of statements from the start state of
the program to the termination. Based on the definition of functional scenario,
an execution path can be realized as an implementation of a functional scenario.
Theoretically, one functional scenario should correspond to one and only one ex-
ecution path if the program is implemented by following the formal specification
exactly. But in practice, the relation between functional scenario and execution
path may not be a one-to-one correspondence. In order to figure out how the
test cases derived from a functional scenario influence the coverage of execution
paths, we define that a scenario and a execution path have relation to each other
if all of the test cases derived from the scenario can be accepted by the execution
path. Although this definition is not sufficient to describe various relations be-
tween scenarios and paths, it is enough for the purpose of our experiment. The
summary of the relations between functional scenarios and execution paths are
listed in the following.

– One Scenario to No Path: If the function defined by the functional sce-
nario is not implemented in the program or implemented incorrectly, there is
no path being executed by applying the test cases derived from the scenario.
It may be caused by the programmer misunderstanding the specification, or
mistake made by the programmer during programming.

– One Scenario to One Path: This is the ideal situation, the program is
implemented according to the specification exactly. No refinement is made
in the specification or program.

– One Scenario to Multi Paths: This is the most common situation. It is
usually caused by the refinement, which may occur in specification or pro-
gram. Since some specifiers use top-down approach when they specify spec-
ifications, they will define the more general or more abstract process with
less details first, and then decompose the process into more than one lower

Applying “Functional Scenario-Based” Test Case Generation Method 5

level process with more details. When we try to find execution paths for the
functional scenarios extracted from a more abstract level specification, it is
possible to find more than one paths corresponding to one specific scenario
if the program is implemented based on the lower level specification. If the
information in lower level specification is not considered in test cases gen-
erating process, some of the relative paths will not be tested. Another kind
of refinement occurs in the program. It is usually made by the programmer
for different reasons, like improving the effectiveness of program, complying
with the special programming rules, etc.

– Multi Scenario to One Path: The relation multi scenarios to one path
is a reverse relation of one scenario to multi paths, it usually occurs when
programmer abstracts some functions defined in the specification. The best
reason for programmer to abstract the function is to simplify the program.

– Paths to No Scenario: This situation is very common in practice, but un-
fortunately it will often be ignored in specification-based testing. According
to the concept of specification-based testing, the process of testing is on the
basis of what the specification says. But, in the real testing environment,
even all of the execution paths which implement all of the defined functions
are tested, it does not mean that all parts of the program have been tested.
The most possible reason of the occurrence of this kind of relation is the in-
completeness of specification. The incompleteness can be caused by lacking
ideas or limitation of time, etc. But, in the meantime, the programmer may
try to, or have to, handle some exceptions or add some functions undefined in
the specification. One specific case is that the program needs to process the
input variables even the values of the input do not evaluate the predicates of
the scenarios to be true. This is because the specification just defines what
kind of inputs can be handled while the program must respond to all of the
possible inputs. Usually we think these kind of paths relative to process.

4 Experiments

In this section, we present two experiments. Each experiment performs a testing
by applying the functional scenario-based test case generation method. One of
the experiments is unit testing, and the other is an integration testing. Carrying
out these two testing experiments is not aim to compare the effectiveness of the
test cases generation method among specific cases, but to assess the effectiveness
of the method under different test environments and attain some experience in
using the method in practice.

In our cases, if the functional scenarios used to generate test cases are from
a lower level module, the testing can be realized as a “unit testing”. On the
contrary, if the functional scenarios used to generate test cases are from a higher
level module, we consider the testing as an “integration testing”. Different re-
searchers may have different understanding under their viewpoint. Here we just

6 C. Li et al.

use the concepts of unit testing and integration testing to different two kind of
testing cases, one is based on the relatively higher level specification and the
other one is based on the relatively lower level specification.

Since our major concern in the experiment is the effectiveness of the testing
approach or how many parts in the program of target system can be tested,
we use the coverage of the executable paths in the program to measure the
effectiveness of the testing approach.

4.1 Target Systems

Income Tax Calculation System. The Income Tax Calculation system is
the target system of the unit testing. This system is aim to help tax payers
to calculate their amount of tax. According to [13], the tax payers are divided
into two categories based on the type of their income. The two categories of tax
payers use different formulas to calculate the amount of tax, but they have the
similar process. The tax payer first calculates his or her “amount of income”,
and then calculates the“deduction of income”. Finally, the “amount of tax” is
calculated based on the the difference between “amount of taxable income” and
“deduction of income”.

The specifications of the Income Tax Calculation system are separated into
three levels. The top level, or the first level, specification contains 2 processes.
Each process, which presents a tax calculation process for one category of tax
payers, is decomposed into a module containing 3 processes in the second level
specification. These 3 processes in each second level module correspond to the
three steps in tax amount calculation mentioned previously. Each process in
the second level modules is decomposed to construct the lowest level, or the
third level, specification. There are 61 processes contained in the lowest level
specification. And totally 69 processes are defined in all three level specifications,
which are formally specified in SOFL. The implementation of the system is
developed by using Java under the Eclipse environment. The implementation
program contains 15 classes, and more than 2500 lines code.

IC Card System. The target system of the integration testing generating test
cases from specification directly is an IC card system. The IC card can be used
to take the public transportations, and it associates with a bank account. Since
card holders can use the card without authority, the maximum amount that
can be deposited in the IC card is limited to prevent the potential economic
loss from losing the card. Customers can swipe the cards to take transportation
or use the cards to buy train tickets. If the balance in card is not enough, the
customers can reload by cash or from associated banks account. The customers
can also transfer the money back to the bank accounts, but they can not get
cash from the IC cards directly. For the customers who need commute, they can
set monthly payment for one route to get discounts.

Applying “Functional Scenario-Based” Test Case Generation Method 7

We design and define 6 processes in the top level module. This module presents
the most abstract definition of the IC card system, and each of the 6 processes
represents a function of the system described previously. Based on the top-down
concept, we decompose each of these processes for further defining. There are
total 12 lower level processes defined in the specification and some of them are
reused to construct higher level processes. All of these 18 processes are specified
formally by using SOFL, and the implementation program contains 14 classes,
2200 lines code.

4.2 Unit Testing

The Income Tax Calculation system is the target system of the unit testing. To
perform the testing, we derive test cases from the processes defined in the lowest
level specification. Totally 29 processes derived from the same process in the first
level specification are used to generated test cases for testing their corresponding
program units. Total 615 test cases are generated from the 207 functional scenar-
ios, which are extracted from the 29 processes in the testing. The target program
units contain 223 execution paths, and 211 paths are tested by applying the 615
test cases. The average path coverage is approximately 94 percent. The excerpt of
the testing results are listed in Table 2. Item “Number of Scenario” identifies
the scenario in a process; “Relative Paths” shows how many execution paths
in program have relations with the scenarios; “Test Cases” denotes how many
test cases are generated from this scenario and “Tested Paths” indicates how
many paths are tested; “Coverage” shows the coverage of executable paths.

Table 2. Excerpt of Unit Testing Result

Process Number of Relative Test Tested Coverage

Name Scenario Paths Cases Paths (%)

IFDSTAT A 2 2 8 2 100

EI A 11 12 35 11 91

MI A 20 24 63 20 83

OI A 2 2 8 2 100

T A 1 3 1 1 100

4.3 Integration Testing

The target system of the integration testing is the IC card system. Only the
functional scenarios extracted from the 6 processes in the top level are used to
generate test cases. There are 112 execution paths in the program correspond to
the functions defined in the 6 processes. Total 192 test cases are generated from
the 17 functional scenarios in the testing, and the brief statistics of the results
are listed in Table 3. The details of this integration testing can be found in [2].

8 C. Li et al.

Table 3. Integration Testing Result

Process Number of Relative Test Tested Coverage

Name Scenario Paths Cases Paths (%)

RailwayTravel 5 12 35 6 50

PurchaseTickets 2 3 13 2 67

ReloadByCash 3 5 17 3 60

SetMonthlyPayment 2 78 77 28 36

ReloadFromAccount 3 7 34 3 43

TransferToAccount 2 7 16 2 29

4.4 Results Analysis

The result of the experiment indicates that the functional scenario-based test
cases generation method is more effective if the test cases are generated based on
relatively lower level specification. But the data in Table 2 shows that even the
test cases are derived from the lowest level specification, some execution paths
still cannot be tested. We think the ineffectiveness is caused by two reasons. The
first reason is that the specification is not well defined, and the second reason is
the refinement in program. These two reasons are also the causes of the relation
“one scenario to multi paths” and “paths to no scenarios” mentioned in Section
3. The results confirms our analysis that the existence of these two relations
usually reduces the rate of testing coverage.

Comparing to the unit testing, the situation faced by integration testing is
more complex. The reason is that the test cases used in the testing are gener-
ated based on relatively higher level specification. Therefore, the ineffectiveness
may be caused by the refinement in specification. In that case, the coverage of
paths can be improved by considering the lower level specification in test cases
generation process.

5 Proposals Based on Experience

In this section, we propose some suggestion based on our experience of using
the test case generation method. Some proposals are proposed for improve the
effectiveness of testing, and the others are proposed to make the process of
test case generation more efficient and effective. We hope these suggestion can
provide some helpful information to the testers who want to use the test case
generation method.

Proposal 1. Let ∼Spre ∧ Ci ∧ Di be a functional scenario in specification,
extend set of test cases G(∼Spre ∧ Ci) into G((∼Spre ∧ Ci) ∨ ¬(∼Spre ∧ Ci)) =
G(∼Spre ∧ Ci) ∪G(¬(∼Spre ∧ Ci))

Applying “Functional Scenario-Based” Test Case Generation Method 9

This proposal is used to generate test cases for the execution paths in relation
to “paths to no scenario”. We use G(p) to denotes the set of test cases derived
from predicate p. The predicate ¬(∼Spre ∧ Ci) in the proposal presents the
functions undefined in the scenario ∼Spre ∧Ci ∧Di. The test cases derived from
this predicate can be used to test the execution paths implementing functions
that are not defined in the scenario. Note that this predicate can be constructed
into a predicate expression in which the conjunction clauses may be the testing
condition of other functional scenario in the same operation. And this will result
in that the test cases derived from the predicate may satisfy other scenarios.
Although it is possible to generate test cases from the same testing condition
more than once, the duplication of generation do not affect the test coverage.

In order to test the paths in relation “one scenario to multi paths” that is
caused by refinement in specification. The test cases must be generated from
lower level specification. Usually, this situation happens in integration testing,
since the test cases generated in integration testing is based on the higher level
specification. Therefore the test cases generation process in integration testing
should consider the refined specification, as reflected in Proposal 2.

Proposal 2. Let F (x) be the disjunction of functional scenarios that contain
input variable x. And let F ′(x) be the disjunction of functional scenarios which
are in the decomposed module containing x. The test cases generated from the
scenarios in higher level module should satisfy the condition: ∀T ′

c ∈ G(F ′(x))
·∃Tc ∈ G(F (x)) ·Tc(x) = T ′

c(x).
The notation Tc in Proposal 2 denotes one test case of high level specification

while the notation T ′
c indicates one test case of lower level specification. Tc(x) and

T ′
c(x) present the value of input variable x in the test case Tc and T ′

c respectively.
Proposal 2 does not provide a specific method that can be used in test case
generation process. It is just a condition. If the generated test cases satisfy the
predicate in Proposal 2, we can say that the lower level specification has been
considered in the test case generation process.

Except for improving the effectiveness of testing, the following proposal is used
to refine the process of generating test case. According to the original method,
test case of one input variable will be generated based on one atomic predicate
in testing condition first, and then check whether the generated test case satisfy
the other atomic predicates in the testing condition. We find the selection of the
atomic predicate used to generated test case effect the effectiveness of generating
process pretty much. For example, assume that x is an input variable of type
nat0 (nature number), and predicate x > 50 ∧ x < 100 is a testing condition.
There are two atomic predicates x > 50 and x < 100 in the test condition.
Based on the original method, we first generate test case for x by adding Δx
to 50. In practice, Δx is a number generated randomly. In this case, the value
generated for x has infinite possibilities. So that the probability to generated
value is smaller than 100 is very low. On the contrary, if we first generate test
case for x based on atomic predicate x < 100. The range of the generated test
case, [1, 99], is finite. The probability that the generated test case is larger than

10 C. Li et al.

50 is pretty high. Therefore, the predicate x < 100 should be selected to generate
test case. We describe this idea generally in Proposal 3.

Proposal 3. Let F (x) be the disjunction of testing condition that contain input
variables x. Let F (x) = ap1(x)∧ap2(x)∧∧apn(x), in which api(x)(i ∈ 1, 2, ..., n)
indicates the atomic predicate consist of F (x). The range of test cases of x that
can generated based on api(x) is denoted as Ri, and the size of Ri is presented
as SZ(Ri). The atomic predicate apk, which is selected to generate test case
should the property: SZ(Rk) = min[SZ(R1), SZ(R2), , SZ(Rn)].

Applying Proposal 3 in practice is very difficult. If the test cases are gen-
erated manually, the person who generates test cases can make the judgements
based on his or her experience. But the original method is design to generate
test cases automatically. To applying Proposal 3, a knowledge base or rule base
system has to be built. Even though, selecting the appropriate atomic predicate
is still difficult.

6 Raleted Work

Specification-based testing methods have been well researched based on different
specification techniques. The test case generation method [1], which underlies our
experiment is applicable to any operation specified in terms of pre- and post-
conditions.The test case generation method based on algebraic specifications is
introduced in [6], and the method of generating test case from reactive system
specification is described in [7].

Cheon et al [8] use the assertions derived from formal specification in Ob-
ject Constraint Language (OCL) as test oracles, and combine random tesing
and OCL to carrying out automated testing for Java program. Michlmayr et al.
introduce a framework of performing unit testing of publish/subscribe applica-
tions based on LTL specification in [9]. Khrushid et al. [?] present a framework
named TestEra for testing Java program automatically based on specification. It
employs Alloy analyzer for instance enumeration to generate all non-isomorphic
test data [?]. Bandyopadhyay et al. [10] improve the existing test input genera-
tion method based on sequence diagrams of UML specification by consider the
effects of the messages on the states of the participating objects.

Some approaches are proposed to enhance the effectiveness of the specification-
based testing. Fraser et al. [11] investigate the effects of the test case length on
the test result. Based on their experiments of specification based testing for re-
active systems, they find a long test case can achieve higher coverage and fault
detecting capability than a short one. They intend to improve the effectiveness
of specification-based testing by change the length of test case. In [12], Liu et al.
propose a technique called “Vibration” method to ensure all of the representa-
tive program paths of the program are traversed by the test cases generated from
formal specification. This method provides a effective way for specification-based
test case generation.

Applying “Functional Scenario-Based” Test Case Generation Method 11

7 Conclusions and Future Work

In this paper, we performed two experiments to assess the functional scenario-
based test cases generation method. Based on the static analysis and test results
we find that this method is effective when the specification is well defined, but
it may be ineffective if the specification is not well defined. We propose some
improvement when the higher level specification are used in test case generation
to ensure more execution paths can be tested. The final results show that our
proposal can improve the effectiveness of the testing method. In the future, we
intend to use a large-scale system to assess the test cases generation method and
the proposals farther, and build a software tool to implement the testing method
with our proposals.

References

1. Liu, S., Nakajima, S.: A Decompositional Approach to Automatic Test Case Gen-
eration Based on Formal Specification. In: Fourth IEEE International Conference
on Secure Software Integration and Reliability Improvement, pp. 147–155 (2010)

2. Li, C., Liu, S., Nakajima, S.: An Experiment for Assessment of a “Functional
Scenario-based” Test Case Generation Method. In: Proceedings of International
Conference on Software Engineering and Technology, pp. 64–71 (2012)

3. Liu, S.: Integrating Specification-Based Review and Testing for Detecting Errors
in Programs. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 136–150. Springer, Heidelberg (2007)

4. Dick, J., Faivre, A.: Automating the Generation and Sequencing of Test Cases from
Model-based Specifications. In: Larsen, P.G., Wing, J.M. (eds.) FME 1993. LNCS,
vol. 670, pp. 268–284. Springer, Heidelberg (1993)

5. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer (2004) ISBN 3-540-20602-7

6. Gaudel, M.-C., Le Gall, P.: Testing Data Types Implementations from Algebraic
Specifications. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods
and Testing. LNCS, vol. 4949, pp. 209–239. Springer, Heidelberg (2008)

7. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

8. Cheon, Y., Avila, C.: Automating Java Program Testing Using OCL and AspectJ.
In: 7th International Conference on Information Technology, pp. 1020–1025 (2010)

9. Michlmayr, A., Fenkam, P., Dustdar, S.: Specification-Based Unit Testing of Pub-
lich/Subscribe Applications. In: Proceedings of the 26th IEEE International Con-
ference on Distributed Computing Systems Workshops, p. 34 (2006)

10. Bandyopadhyay, A., Ghosh, S.: Test Input Generation using UML Sequence and
State Machines Models. In: International Conference on Software Testing Verifica-
tion and Validation, pp. 121–130 (2009)

11. Fraser, G., Gargantini, A.: Experiments on the Test Case Length in Specification
Based Test Case Generation. In: ICSE Workshop on Automation of Software Test,
pp. 18–26 (2009)

12. Liu, S., Nakajima, S.: A “Vibration” Method for Automatically Generating Test
Cases Based on Formal Specifications. In: 18th Asia-Pacific Software Engineering
Conference, pp. 5–8 (2011)

13. http://www.nta.go.jp/tetsuzuki/shinkoku/shotoku/tebiki2010/pdf/43.pdf

http://www.nta.go.jp/tetsuzuki/shinkoku/shotoku/tebiki2010/pdf/43.pdf

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 12–25, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Supporting Tool for Automatic
Specification-Based Test Case Generation

Weihang Zhang1,2 and Shaoying Liu3

1 Graduate School of Software Engineering,
University of Science and Technology of China, Hefei, China

2 Graduate School of Computer and Information Sciences,
Hosei University, Tokyo, Japan

Sea10494@mail.ustc.edu.cn
3 Department of Computer and Information Sciences,

Hosei University, Tokyo, Japan
sliu@hosei.ac.jp

Abstract. Automatic test case generation is a potentially effective technique for
program testing, but it still suffers from the lack of appropriate tool support.
Our research presented in this paper mainly focuses on the developing of a tool
for automatic test case generation based on formal specifications. We take
advantage of the Liu’s decompositional test case generation method and put
forward a set of algorithms for automatically generating test cases based on
various data types. A supporting tool on the application of the approaches is
presented. The tool can generate test cases according to the users’ given test
conditions, and the result shows that our tool can produce test cases that satisfy
most kinds of test conditions.

Keywords: automatic test case generation, specification, SOFL, decomposi-
tional method, functional scenario.

1 Introduction

Formal specification is one of the most important techniques of formal methods and it
is used to precisely describe the most important information of the requirement for
software systems. The target document of specification supported by our tool is
the formal specification written in the SOFL, Structured Object-Oriented Formal
Language [1]. It provides a practical method for developing software system and faci-
litating the subsequent development activities such as automatic test case generation
and test result analysis.

Automatic test case generation based on formal specification is a potentially
effective technique for software reliability. Several techniques are available for spe-
cification based test case generation. For instance, test case generated from algebraic
specifications [2], from abstract state machines [3], and from B-method [4]. Liu et al.
put forward a decompositional approach to automatic test case generation based on
formal specifications [5]. The method is rigorous and practical, and it is good enough

 Supporting Tool for Automatic Specification-Based Test Case Generation 13

for realizing automation. However, there is no tool to support the entire automatic
test case generation process. In this paper, we describe a supporting tool to support
automatic test case generation based on SOFL specifications.

The structure of the supporting tool include generating test cases from various
kinds of data types, such as Numeric Types, Character Types, String Types, Set
Types, Sequence Types, and from compound predicate expressions, which include
conjunction expressions and disjunction expression.

The remainder of this paper is organized as follows. Section 2 describes the
concerned technique regarding the method of test case generation based on formal
specification. Section 3 discusses the specific information on the design of the sup-
porting tool. We will use a set of algorithms and some simple examples for illustra-
tion. Section 4 presents some details in a small experiment and introduces a prototype
of the supporting tool. Section 5 introduces a brief overview of related work. Finally,
we conclude the paper and point out future work in Section 6.

2 Approach to Automatic Specification-Based Test Case
Generation

According to the work by Liu [5], the decompositional method of automatic test case
generation based on formal specifications is concerned with generating a set of values
that satisfy all the testing conditions. A testing condition of an operation specification
is a constraint on the input variables and is expressed as predicate expression. With
our method and the algorithms introduced in this paper, test case will be automatically
derived from those predicate expressions.

In SOFL, the form of operation specification can be described as
S(S_iv,S_ov)[S_pre,S_post], where S_iv denotes all input variables for the operation,
S_ov represents all output variables whose values will be generated or updated after
operation, and S_pre,S_post are the pre- and post-conditions of operation specifica-
tion S, respectively.

1) Definitions: Suppose we have a post-condition of specification S, and it can be
described as: Spost = (C1∧D1) ∨ (C2∧D2) ∨…∨(Ci∧Di)

• Guard condition: A predicate Ci (i ∈ {1, 2…n}) is a “guard condition”. The
feature of guard condition is that it does not contain any output variables.
• Definition condition: A predicate Di(i ∈{1,2,…n}) is a “definition condi-
tion”, and there is at least one output variable but no guard condition.
• Functional scenario: In this case, a functional scenario fSof S is a conjunc-
tion:Spre∧Ci∧Di.
• Functional scenario form (FSF): A disjunction expression (Spre ∧ C1 ∧ D1) ∨(Spre∧C2∧D2) ∨…∨(Spre∧Ci∧Di) is a functional scenario form of specification S.

2) Testing condition: The testing condition in our method is the conjunction
Spre∧Ci, where Spre is the pre-condition, and Ci is the guard condition.

14 W. Zhang and S. Liu

3) Test strategy: Suppose operation S has a FSF (Spre∧C1∧D1) ∨(Spre∧C2∧D2) ∨…∨ (Spre∧Ci∧Di). Let T be a test set for S. Then, T must satisfy the condition
 (t∈TSpreሺtሻ∧Ciሺtሻ׌i ∈ሼ1,2,..nሽ׊)

The test strategy means that every testing condition must be tested and its correspond-
ing test case should be found in the test set T.

3 Supporting Tool for Automatic Test Case Generation Method

In our work, we aim to produce a package in C# to support automatic test case gen-
eration from various kinds of predicate expressions based on the component-based
software engineering approach. Before describing the supporting tool, we will explain
how a test case can be derived.

Fig. 1. Process of test case generation

Figure 1 shows the process of automatic test case generation based on the formal
specification. As we have introduced in the previous sections, in order to generate test
cases, functional scenarios derived from a formal specification must be given. And
then, with the generated functional scenarios, we are able to obtain the testing condi-
tions for the test. According to those derived test conditions, the supporting tool will
be able to generate the corresponding test case in terms of different data types and
expressions. In each chapter of this section, because the space of this paper is limited,
the specific information about the data type and the introduction of their operators
will be omitted. We just choose a few data types as examples and their corresponding
algorithms, which can be used to generate test case based on different predicate
expressions, for our discussion.

 Supporting Tool for Automatic Specification-Based Test Case Generation 15

The algorithms for the operation of each data type are defined in each of
the following classes, and all the classes are organized in the package named
ASBTestCaseGeneration.

3.1 Test Case Generation Algorithms Based on Numeric Data Type

The algorithms are implemented using several methods in a class named Numeric.
Each method deals with one specific case. The details of the methods are described
below.

Method 1: GenerateFromSingleVar01 ሺPሺx~ሻ: ,܏ܖܑܚܜܛ op: ሻx: real{…}. The܏ܖܑܚܜܛ
input variable in this method is x~, and the output variable is x.

Algorithm 1: We first discuss the algorithm for simple predicate expressions involv-
ing only one input variable, and any predicate expression P(x~) can be transformed
into the format as x~ΘExp，where Θdenotes the relational operators of =, >, <, >=,
<=, and <>, Exp is a constant expression which does not contain any variables. In
such kind of situation, the algorithm for generating test cases is described below.

Suppose the predicate expression is expressed as the format of x~ Θ Exp, then if Θ
denotes =, we have x = Exp; And if Θ denotes >, then we have x = Exp + α, where α
is a random positive numeric value. Also, if Θ denotes <, then we have x = Exp –α,
and α is a random positive numeric value as well. For the other situations, such as Θ
denotes >=, <=, <>, the methods for generating test cases are the same as above, and
they will not be described in detail.

Method 2: GenerateFromSingleVar02 ሺPሺx~ሻ: ,܏ܖܑܚܜܛ opt:string) x: real{…}.

Algorithm 2: Let us consider another format of simple predicate expression involving
only one input variable, but the predicate expression P(x~) is organized as the format
Exp1Θ Exp2, where Exp1 and Exp2 are both arithmetic expressions, and they may
contain variable x~.

For this situation, the algorithm for generating test cases is described below.
Suppose the predicate expression has the format Exp1Θ Exp2, we should transform

Exp1Θ Exp2 into the format x~ΘExp, and then apply the Algorithm 1 to generate the
value of x. For instance, suppose we have a predicate expression 2x +5>x+1, then we
can transform this expression into the format of x > -4. Finally, after applying the
algorithm 1, we can generate the value of x with -4+α, where α is a random positive
numeric value.

Method 3: GenerateFromMultiVar (Pሺxଵ~, xଶ~, … , x୬~ሻ: ,܏ܖܑܚܜܛ opt: ܏ܖܑܚܜܛሻ xଵ, x2, … , xn: ܔ܉܍ܚ{…}

Algorithm 3: The more complicated than the first two situations is when a predicate
expression contains more than one input variables, and the predicate expression Pሺxଵ~, xଶ~, … , x୬~ሻis expressed as the format Exp1Θ Exp2, where Exp1 and Exp2
are both arithmetic expressions, and they probably contain all the input variables

16 W. Zhang and S. Liu

x1~, x2~, … , xn~.The algorithm to process such kind of expression will be described
below.

In order to generate test cases to satisfy P(x1~, x2~, … , xn~),we should first
make x1~ as the variable to be discussed in our algorithm, then randomly generate
appropriate values for the input variables x2~, x3~, … , xn~, respectively.

Eventually, we are able to derive the value of x1 according to the method we have
discussed for Algorithm 2.For example, suppose we have a predicate expression
3x+y+z > 2x +5. In order to automatically generate the values of x, y, z. Firstly, we
should make x as the variable to be discussed in our method, and then randomly gen-
erate appropriate values for the input variables of y and z, such as y = 10, z = 20,
therefore, the expression can be transformed into the format 3x+10+20 > 2x+5, which
is suitable to apply the Algorithm 2 to generate the value of x. Finally, the test case
satisfying P(x1~, x2~, … , xn~) is: x=-25+α, y=10, z=20, where α is a random positive
numeric value.

Method 4: GenerateFromLinearExp (Pሺxଵ~, … , x୬~ሻ: ,܏ܖܑܚܜܛ opt: ,ሻ x1܏ܖܑܚܜܛ x2, … , xn: ܔ܉܍ܚ{…}

Algorithm 4: In order to effectively and efficiently generate test cases, we use a
special data structure to operate test case generation for linear equation. The data
structure is described below:

Index Variable Real

With such kind of data structure, any linear equation such as ax + b could be
expressed as the form as:

a x b

For example, 3x - 5 can be expressed as

3 x -5

Since every leaf node in binary tree can be transformed into the particular structure
described above, we are able to calculate linear equation easily.

Suppose any linear relational expression can be expressed as: exp1Θ exp2, where
exp1 and exp2 both represent arithmetic expressions, Θ denotes the relational opera-
tors of =, >, <, >=, <=, and <>. Suppose we have exp1 = ax + m, exp2 = bx + n. And
the expression is exp1 = exp2. Then, let us make exp1 the form we described above
as:

a x m

exp2 as:

b x n

After calculating, we have derived another expression px + q = 0 and it can be de-
scribed as:

p x q

Where p = a - b, q = m – n.
Finally, we can generate the value of x according to the expression x Θ (–b) / a,

where Θ is a relational operator.

 Supporting Tool for Automatic Specification-Based Test Case Generation 17

For example, we try to generate a value of x from the expression 4x+5 = 2x-2, where
exp1 = 4x+5, exp2= 2x-2, and Θ represents =. Then, we have the structure for exp1:

4 x 5

And structure for exp2:

2 x -2

After calculating the arithmetic expressions p=4-2=2, q= 5-(-2)=7, we have another
structure for the result:

2 x -7

Eventually, a value we generated is x = (-7)/2 = -3.5

Method 5: GenerateFromQuaExp ሺPሺݔଵଶ~, xଶ~, … , x୬~ሻ : string, opt: string) x1, x2, … , xn: ܔ܉܍ܚ{…}

Algorithm 5: For quadratic equations:
As you can see, we are able to use this kind of structure to describe any kinds of

Index-a Index-b Index-c Variable
quadratic equations such as a x2 +bx+c, and then we can get the corresponding
structure as

 a b c x

For example, expression x2+2x+4 can be described as the following form,

 1 2 4 x

Since the method of transforming quadratic expression into the particular structure
is similar to the linear expression, we can easily describe the specific structures for the
quadratic equation of x2+2x-2=1.

Then, the expression x2+2x-2 can be described below,
1 2 -2 x

Accordingly, the value 1 will be described as

0 0 1 Null

After calculating, we have derived another expression x2+2x-3=0. And it can be
transformed into the structure as below,

1 2 -3 x

As we know, for quadratic equation, when b2 െ 4ac ൒ 0, we can generate the val-

ues of x from the expression x ൌ ିୠטඥୠమିସୟୡଶୟ , and if b2 െ 4ac ൏ 0, then we cannot

get the value of x.
Here, we know that a=1, b=2, c=െ3, and 22 െ 4 כ 1 כ ሺെ3ሻ ൌ 16 ൐ 0, so we can

generate the values of x where x1 ൌ െ2൅ට22െ4כ1כሺെ3ሻ21כ ൌ 1, x2 ൌ െ2െට22െ4כ1כሺെ3ሻ21כ ൌ െ3.

Finally, we can generate the test case from the quadratic equation that is
 x1 ൌ 1 and x2 ൌ െ3.

18 W. Zhang and S. Liu

Since the space of this paper is limited, we will not give the corresponding struc-
ture of binary tree in detail.

3.2 Test Case Generation Algorithms Based on Set Type

In this chapter, we focus our discussion on the algorithms of automatically deriving
test cases from an expression involving all the input variables of the set type operator.
Since the underlying principles of the algorithms for all the set type operators in
SOFL are similar and the space of this paper is limited, we only choose some opera-
tors as examples for our discussion.

The algorithms are implemented using several methods in a class named Set. Each
method deals with one specific case. The details of the methods are described below.

Method 6: GenerateFromSubset(x_1~: :x(ܜ܍ܛ {…}x_1: set ,ܜ܍ܛ

Algorithm 6: Let us first use a simple example to explain the algorithm for the opera-
tor subset. Consider the predicate expression x subset x_1~. To generate a test case to
satisfy this expression, according to the method introduced in Algorithm 3, we first
randomly produce a set value for variable x_1~, and then in order to generate a test
case, we just need to appropriately produce the values of x. We can take any elements
in the generated set x_1 to make a new set value. Finally, the values of x_1 and x will
satisfy the predicate expression, and they are the results of our test.

For example, suppose we want to generate a test case from the expression x subset
x_1. Firstly, according the method, x_1 will be randomly generated, suppose it is
{4,9,12}. And then, to decide the value of x, we just need to get some elements from
the set x_1 we produced just now, suppose x is {9,12}. Finally, a test case for our test
is x = {9, 12} and x_1={4,9,12}.

Additionally, for the expression x_1 union(x_2 inter x_3) subset x_4 uion x_5,
where variables x_1, x_2,x_3,x_4,x_5 are all input variables of the set type, it is a
compound expression involving different operators, and it will be discussed in subse-
quence sections.

Method 7: GenerateFromUnionሺxଵ~: ,ܜ܍ܛ xଶ~: :ሻxܜ܍ܛ ,ܜ܍ܛ x_1: ,ܜ܍ܛ x_2: ܜ܍ܛ{…}

Algorithm 7: Let us consider anther algorithm for the operator union. Suppose we
have an expression x=union ሺx_1~ , x_2~), wherex_1~, and x_2~ are all input va-
riables of the operator union. To generate a test case for this predicate expression, we
should also first randomly produce set values for variables x_1~, x_2~, and then it is
quite simple to derive the result of the operation union (x_1, x_2). We can obtain all
the elements of x_1 in the resulting set x and then add the members of x_2 that are not
contained in x_1. Finally, the generated set values of x, x_1, and x_2 that satisfy the
predicate expression are the test case for our test.

For example, suppose we have an expression x=union (x_1, x_2), to generate a test
case from this expression, according to the algorithm, we should first randomly gen-
erate the values for the sets x_1 and x_2, suppose x_1 = {15, 17, 18, 20, 22} and x_2
= {8, 9, 17, 20, 23}. Then, obtain all the elements of x_1 to the set x, x = {15, 17, 18,
20, 22}. We can produce a suitable value for set x by adding the members of x_2 that

 Supporting Tool for Automatic Specification-Based Test Case Generation 19

are not contained in x_1, so x will be {15, 17, 18, 20, 22, 8, 9, 23}. Finally, a test case
for our test is x = {15, 17, 18, 20, 22, 8, 9, 23}, x_1 = {15, 17, 18, 20, 22} and x_2 =
{8, 9, 17, 20, 23}.

Method8: GenerateFromInterሺx_1~: ,ܜ܍ܛ x_2~: :ሻxܜ܍ܛ ,ܜ܍ܛ x1: ,ܜ܍ܛ x2: …ሼܜ܍ܛ ሽ

Algorithm 8: Let us discuss the algorithm for the operator inter. Let x_1~, x_2~ are
all input variables of the operator inter, and x=inter (x_1, x_2) is the target predicate
expression. In order to generate a test case to satisfy the expression, the method is
very similar to Algorithm 6 introduced above. Firstly, the set values for va-
riablesx_1~,x_2~ will be randomly produced, and then we focus on how to generate
values for variable x, we will give a pseudo code to explain this method:

Set Inter(Set s1, Set s2){
Set result;
for (i: =0 to s1.length - 1){

k: = 0;
while (s1 [i] != s2[k] && k< s2.length){

k++;
}
if (k >= s2.length)

i++;
else{

add s1 [i] to the set result;
i++;

}
}
return result;

}

Finally, we will obtain the result set value that represents the test case for variable x,
and with the generated value of x_1, and x_2, we have successfully gained the test
case for all input variables of the target predicate expression.

3.3 Test Case Generation Algorithms Based on Sequence Type

In this section, we will move forward to discuss the algorithms for automatically de-
riving test cases from a predicate expression involving all the input variables of the
sequence type operator. As we mentioned above, because the underlying principles of
algorithms for the operators in sequence type are quite similar, we just choose some
operators (subsequence, elements and concatenation) as examples for our discussion,
without giving all the descriptions for every operator in detail.

The methods for processing the sequence type are defined in a class named
Sequence.

Mehtod 9: GenerateFromSubseq(S: seq, i: int,j: int) x: seq{…}

Algorithm 9: In this part, we will describe the algorithm for the operator subsequence.

20 W. Zhang and S. Liu

Let S,i and j be input sequence variables, consider the predicate expression x = S (i, j),
where i and j are both integer values, and the expression means obtaining the
elements in sequence S from the position i to the position j, then make the obtained
elements as a new sequence that is the subsequence of sequence S.

To generate a test case to satisfy this expression, according to the method intro-
duced in Algorithm 3, we first randomly produce a sequence value for variable S, and
the length of sequence S must be not less than j, and then in order to generate a test
case for x, we just need to get values from the generated sequence S from the position
i to the position j. The elements we got from sequence S will be added into the se-
quence of x. Finally, the values of S and x will satisfy the predicate expression, and
they are the results of our test.

Method 10: GenerateFromElems(x_1: seq)x: set{…}

Algorithm 10: Let us discuss the algorithm for the operator elems. Let x_1, xbe the
input and output variables of the operator elems, respectively. And x_1 is sequence type,
x=elems(x_1) is the target predicate expression. To generate a test case for this predicate
expression, we should also first randomly produce a sequence value for variables x_1
and then it is quite simple to derive the result of the operation x=elems(x_1). We can
obtain all the elements from the sequence x_1, and then add the members to the set x to
form a new set value. Finally, the generated set value of x, and sequence value of x_1
that satisfy the predicate expression are the test cases for our test.

Method 11: GenerateFromConc(x_1: seq,x_2: seq) x: seq{…}

Algorithm 11: Let us consider anther algorithm for the operator conc. Suppose we
have an expression x=conc(x_1, x_2) , where x_1, and x_2 are all input variables of
the operator conc. In order to generate a test case to satisfy the expression, the method
is very similar to Algorithm 7 introduced above. The only difference is that in se-
quence, the duplication values are allowed to appear in a same sequence. Therefore, it
is quite simple to generate test case for this operator. Firstly, we should randomly
produce the sequence values for variables x_1, x_2, after that we include all the
members of the generated sequence x_1 in the sequence x and then extend it by add-
ing the members of the generated sequence x_2.

Finally, with the generated value of x, x_1 and x_2, we have successfully gained
the test case for all input variables of the target predicate expression.

For example, in order to generate a test case from the expression x=conc(x_1, x_2),
we should first randomly produce the values for variables x_1 and x_2, suppose x_1 =
[1,2,3,4,5] and x_2 = [4,5,6,7,8]. Then, we are able to obtain the value for variable x
by combining two sequence values of x_1 and x_2. Finally, x = [1, 2, 3, 4, 5, 4, 5, 6,
7, 8], x_1 = [1,2,3,4,5] and x_2 = [4,5,6,7,8] are the test cases for our test.

3.4 Algorithms for Automatic Test Case Generation Based on Conjunction
and Disjunction Expressions

We have introduced each basic data type, and two compound data types of Set and
Sequence in the previous sections. In this section, we will introduce the Conjunction
expression and the Disjunction expression, respectively. In each compound predicate
expression, no matter Conjunction or Disjunction, it will probably involve compound
data types (e.g., numeric, string, set, sequence), which are introduced in the previous

 Supporting Tool for Automatic Specification-Based Test Case Generation 21

sections. We will introduce the algorithms in detail on how to generate test cases ac-
cording to those kinds of compound predicate expressions.

1) For Conjunction Predicate Expressions: We will describe the algorithm for con-
junction expression in this section. The methods for dealing with the conjunction
expression are defined in a class named Conjunction.

Method 12: GenerateFromConjunctionExp(exp: string) xଵ, xଶ, … , x୬: ܔ܉܍ܚ {…}

Algorithm 12: To generate a test case for conjunction, the test case must satisfy all the
atomic predicate expressions in the conjunction. The fundamental idea for test case
generation for a conjunction is that we should first generate a group of values for all
the input variables of the operation from one of atomic predicate expression using the
algorithms introduced in the previous sections. And then we test the values to make
sure whether they satisfy other atomic predicate expressions or not, we will find a
test case for the conjunction if the test case satisfy all the remaining conjunction
constituents; Otherwise, it means the values are not suitable for the conjunction, and
we should use the algorithm again to generate another test value, and repeat the above
procedure until we find a suitable test case for all the constituents of the conjunction
predicate expression.

In order to explain the main idea of the algorithm explicitly, a pseudo code will be
given below:

voidGenerateFromConjunctionExp(String exp)
//The formal parameter exp is the target conjunction pre-
dicate expression, and the format of the expression
is Q୧ଵ∧Qi2∧…∧Qiw. Each atomic expression and each operator in
the atomic expression can be analyzed and detected, using
the function ConstAnalyse(string exp); However, since the
space in the paper is limited, the specific algorithm for
this function will be omitted.
{

j:= 1;
successful:= true;
ConstAnalyse(string exp) { … } //Using this function to

analyze the expression, it will return a resulting list
which contains every separate atomic expression in the
conjunction predicate expression Qi1∧Qi2∧…∧Qiw.

GenerateFromAtomicExp(string aExp) // Generate r values
v1,v2, … , vr as a test case that satisfies Qij, aExp is a
value from the list generated from function ConstAna-
lyse(string exp).

j:=j+1;
while(j<=w && j <const) // const is a given number,

in order to control the amount of Loop to avoid dead lock
happening in the program.

{
if (Qij (v1,v2,…,vr))

22 W. Zhang and S. Liu

j=j+1; // Qij (v1,v2,…,vr) means whether values
v1,v2, … ,vr satisfying the atomic expressionQijor not, if
it returns true, it says that the derived values satisfy
the expression Qij, otherwise, we have to generate the val-
ues again.

else {
successful = false;
break;

}
}
if (successful=true)

Output the r values v1,v2,…, vr as a successful test
case;

else
Output a message “no test case is generated.”;

}

2) For Disjunction Predicate Expressions: We will describe the algorithm for disjunc-
tion predicate expression. The methods for dealing with the disjunction expression are
defined in a class named Disjunction.

Method 13: GenerateFromDisjunctionExp(exp: string) x1, x2, … , xn: ܔ܉܍ܚ {…}

Algorithm 13: Compared with conjunction predicate expressions, test case generation
from a disjunction seems much simpler. To generate test cases for the disjunction Q1∨Q2∨…∨Qm, we just have to generate one test case for each disjunction constituent
until all the atomic predicate expressions in the disjunction are covered, respectively.
Finally, the generated test cases constitute a complete test set that is the result for the
disjunction.

An algorithm of automatic test case generation from Q1∨Q2∨…∨Qm will be giv-
en below:

GenerateFromDisjunctionExp(String str) {
j:= 1;
ConstAnalyse(string exp) { … } //Using this function to

analyze the expression, it will return a resulting list
which contains every separate atomic expression in the
conjunction predicate expression Q1∨Q2∨…∨Qm.

while(j<=m)
{

Generate and output r values v1,v2,…,vr as a suc-
cessful test case that satisfies Qj using the algorithm
given in the previous sections.

j:= j+1;
}
return;

}

 Supporting Tool for Automatic Specification-Based Test Case Generation 23

4 Design of the Tool

In this section, we will briefly introduce the prototype tool for supporting the auto-
matic specification-based test case generation methods. The support tool is imple-
mented using Visual Studio .Net 2010 with language C#.

In order to explain our work clearly and help readers understand the techniques for
the specification-base test case generation, we use a very simple case for illustration.
According to the work done by Liu et al. [8], we assume that in our tool, the function of
automatically generating all the test conditions from the derived functional scenarios of
an operation, which are automatically generated from formal specification, have been
realized. An example for the implementation of the tool will be given below.

Fig. 2. Illustration of set type predicate expression

Figure 2 shows an illustration of processing compound predicate expressions,
as we can see in the picture, test conditions for this process is ID inset
{“A”,”B”,”C”,”D”} and (ID = “A” ,result = conc([“Hosei”,”One”],[ID])) or
(ID = “B”, result = conc([“Hosei”,”Two”], [ID])) or (ID = “C” ,result =
conc([“Hosei”,”Three”], [ID])) or (ID = “D” ,result = conc([“Hosei”,”Four”], [ID])).
The test conditions are associated with the Set and Sequence types, therefore, we
should use the method for dealing with compound expressions. Eventually, the cor-
responding test case will be derived after processing.

24 W. Zhang and S. Liu

5 Related Work

The decompositional approach to automatic test case generation based on formal spe-
cification was first introduced in Liu’s paper [5], and it serves as a fundamental prin-
ciple of the design of our supporting tool. Since the method just describe the main
idea of automatic test case generation, in this paper, we have discussed some explicit
algorithms. In additional, there have existed various methods for specification-based
test case generation based on various specification techniques.

Bandyopadhyay et al.[3] put forward a testing methodology that combines infor-
mation from UML sequence models and state machine models into one testable mod-
el based on the improvement of the work of Dinh-Trong et.al., which provided an
approach to combine information from a class and a sequence diagram to generate test
input. Based on state machine models, they use a testing method to select a set of
transition sequences according to state machine coverage criteria, and then, with those
generated transition sequences, the tool they built to support their approach is able to
generate test inputs for each transition sequence.

Khrushid el al. [6] built a framework called TestEra for automatic testing of Java
program based on specification. Their tool employs Alloy analyzer to produce in-
stance of Alloy specification, where Alloy is a first-order declarative language based
on sets and relations. After that, using the pre- condition of those generated instance
of Alloy specification, the tool can automatically generate all non-isomorphic test
inputs. Furthermore, TestEra can automatically generate the corresponding Jave data
structure according to the description of the structural invariants of inputs.

Simon Burton [7] presents a framework of automatically generating tests for Z
specification based on user-defined test criteria. Heuristics can be used to detect errors
with the given resource constraints of the process. The framework allows for the au-
tomatic and formally generation of test sets based on formally defined testing heuris-
tics. In the tool, test cases can be automatically generated by formalizing testing
heuristics, analyzing properties of these heuristics.

6 Conclusion and Future Work

We have described the design and implementation of a supporting tool for automatic
test case generation based on formal specifications. Formal specification in terms of
pre- and post- conditions has tremendous advantages to be effectively utilized to gen-
erate test cases for testing programs. And tool support is crucial for the application of
automatic test case generation approach based on formal specification. Our tool
presented in this paper provides a package including many classes. Each class is de-
signed to process each data type, respectively. Correspondingly, there are a lot of
algorithms defined in each class for automatically generating test case according to
different operators and predicate expressions. Our supporting tool is also
crucial for the further research of automatic software testing. For example, our tool
can serve as the foundation for testing result analysis, each component of this tool can
be reused and integrated with the tool of testing result analysis easily.

 Supporting Tool for Automatic Specification-Based Test Case Generation 25

In the future, we plan to make our further research to develop a set of more effi-
cient algorithms for automatic test case generation. Since there are still some
challenges in automatic testing, for example, it is difficult to deal with some set
expressions including infinite set, such as x inset S, where S is a very large or infinite
set. Therefore, in order to totally realize automatic testing, our future work should be
focused on the algorithms that are capable to deal with all kinds of complicated
expressions with a practically acceptable efficiency.

References

1. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL Me-
thod. Springer (2004) ISBN 3-540-20602-7

2. Gaudel, M.-C., Le Gall, P.: Testing Data Types Implementations from Algebraic Specifi-
cations. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949,
pp. 209–239. Springer, Heidelberg (2008)

3. Bandyopadhyay, A., Ghosh, S.: Test Input Generation using UML Sequence and State
Machines Models. In: Proceedings of 2nd International Conference on Software Testing,
Verification, and Validation (ICST), Denver, USA, April 1-4, pp. 121–130. IEEE CS Press
(2009)

4. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann (2007)

5. Liu, S., Nakajima, S.: Decompositional test case generation based-on specification. In:
2010 Fourth International Conference on Secure Software Integration and Reliability Im-
provement, June 09-11 (2010)

6. Khurshid, S., Marinov, D.: TestEra: Specication-based Testing of Java Programs using
SAT. Automated Software Engineering 11(4) (2004)

7. Burton, S.: Automated Testing from Z Specifications, TR YCS-2000-329, University of
York, UK (2000)

8. Liu, S., Hayashi, T., Takahashi, K., Kimura, K., Nakayama, T., Nakajima, S.: Automatic
Transformation from Formal Specifications to Functional Scenario Forms for Automatic
Test Case Generation. In: 9th International Conference on Software Methodologies, Tools,
and Techniques, Yokohama, Japan, September 29-October 1, pp. 383–397. IOS Press
(2010)

A Formal Specification-Based Integration

Testing Approach

Weikai Miao and Shaoying Liu

Department of Computer Science, Hosei University, Tokyo, Japan
weikai.miao.x1@stu.hosei.ac.jp, sliu@hosei.ac.jp

Abstract. It is well recognized that formal specification-based test-
ing is a promising technique for software quality assurance. However,
the application of this basic principle in integration testing is still fac-
ing the major challenge that most formal specification can precisely de-
fine the expected functions on system operations but fall short of of-
fering a rigorous and intuitive representation of the system architecture
that specifies the relations between the system operations, which leads
to the difficulty in effective test data generation and test result analy-
sis. In this paper we propose an integration testing approach based on
the CDFDs (Condition Data Flow Diagram) of the SOFL (Structured
Object-Oriented Formal Language) formal specification as a solution.
Data flow paths are derived from the CDFDs. Test cases are then gener-
ated from the textual formal functional scenarios that precisely specify
the expected functions on the system operations associated to the paths.
The approach is described in detail by a running example. A case study
is presented to demonstrate the feasibility and effectiveness of this ap-
proach.

1 Introduction

Formal specification-based testing is regarded as one of the most promising ap-
proaches to software faults detection [1][2]. Formal specification acts as a firm
foundation for both test data generation and test results analysis, which can
significantly enhance the quality of ultimated software systems. Main stream
formal languages (e.g., Z [3], B [4] and VDM [5]) define system operations using
formal notations that rigorously specify the initial and final states (e.g., pre- and
post-conditions) of the operations. Both test cases and test oracles can then be
easily generated from the formal definitions for testing the operations.

However, current formal specification-based testing methods face a challenge
that most of them are powerful in unit testing but relatively difficult to be applied
in integrating testing. One major reason is that most formal languages adopt
mathematical notations for precisely defining the expected functions on system
operations but fall short of intuitively describing the entire system architecture
that specifies the interactions among the system operations. Subsequently, two
problems need to be solved for effectively applying specification-based testing in
integration testing. Firstly, inter-related pre- and post-conditions are not easy to

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 26–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Formal Specification-Based Integration Testing Approach 27

be identified and organized for test data generation of integration testing, which
leads to the difficulty in effective test case generation. The other problem lies
in the test results analysis. Since textual formal specification does not explicitly
describe interactions between system operations and system architecture, tra-
ditional path coverage approaches based on diagrams cannot be easily applied.
Therefore, appropriate and intuitive test oracles can hardly be derived for the
tester to analyze the test results.

As a solution to the above problems, conventional diagrams, for instance,
data flow and control flow diagrams, are usually applied together with specific
formal specifications for integration testing [6][7]. However, these diagrams just
act as supplementary descriptions of textual formal specification; few of them
are coherently integrated with textual formal specification due to the impre-
cise semantics of the graphical notations. As a result, formal specification-based
integration testing are not widely accepted by most practitioners.

For effective integration testing, comprehensive formal models including both
precise textual specifications and appropriate diagrams are demanded. To this
end, in this paper, we propose an integration testing approach based on the
CDFDs (Condition Data Flow Diagrams) of the SOFL (Structured Object-
Oriented Formal Language) formal language [8][9][10]. In textual SOFL formal
specification, each independent function of the system is formally represented by
a SOFL process in terms of formal pre- and post-conditions. Relations among
processes are rigorously described by the associated CDFDs intuitively.

The main principle underlying our integration testing approach is to first
derive all potential paths from the CDFDs and then generate adequate test
cases from the involved processes of these paths. Specifically, the pre- and post-
conditions of each process are further transformed into a formal functional sce-
nario form that is a disjunction of functional scenarios. Each functional scenario
rigorously specifies an independent execution of the system operation associated
to the process. All the involved functional scenarios of a path constitute a set of
functional scenario sequences that are covered by adequate test cases. Therefore,
intuitive diagrams can be used for rigorous paths extraction and test result anal-
ysis, and test cases can also be generated from the textual formal specification.
The approach strikes a balance between rigorous testing and intuitive test result
analysis, which is easy to be applied by practitioners.

The rest of this paper is organized as follows. A brief introduction to the
SOFL language is presented in Section 2. Techniques of the integration testing
approach are presented in Section 3. Section 4 describes the case study. Section
5 gives the comparison with the related work. Finally, we conclude the paper
and point out future research directions in Section 6.

2 A Brief Introduction to the SOFL Language

Before going into the technical details of the integration testing approach, it is
necessary to briefly introduce the SOFL.

As a formal specification language, SOFL is designed by integrating different
notations for constructing a precise and comprehensible formal specification.

28 W. Miao and S. Liu

A SOFL formal specification consists of a group of modules that are organized
in a hierarchical manner. Each module encapsulates the related processes that
specify the expected functions, the data stores that specify the data resources
accessed by the processes, and the invariants that specify the constraints to
be conformed by the processes and data stores. Each process here is the basic
specification component for defining the expected functions. A process mainly
consists of the input ports and the output ports for describing the input and
output variables, and the pre- and post conditions specifying the semantics.

Distinguished from other formal specification languages, the SOFL formal lan-
guage offers the CDFDs (Condition Data Flow Diagram) that integrates conven-
tional Data Flow Diagrams and VDM-SL [5] in a coherent manner to intuitively,
rigorously and comprehensibly describe the system architecture.

Figure 1 describes a typical SOFL specification with its corresponding CDFD.

module First

process A(x: real) y: real |z:sign
ext # wr D: real
post (x>0 and D = ~D+x
 and y = x-1)
 or bound (z)
end_process;

process B(y: real) v: real
post y>10 and v = y*2
end_process;

process C(u: real, z:sign) w: real
…

module Second

process H (z: sign, u: real)
s: real, w: real
...
end_process;

process T(s: real)
…

Fig. 1. An Example of the SOFL Formal Specification

The left part of Figure 1 describes a SOFL textual formal specification of two
modules. The right part of this figure describes the corresponding CDFDs. Mod-
ule First consists of processes A, B and C. These three processes are connected
by data flows, which represents the overall function of module First.

A process is composed of five parts: name, input port, output port, pre-condition
and post-condition. The name of a process is an identifier. The input and out-
put ports specify the input and output variables of the process. The pre- and
post-conditions rigorously define the semantics of the process. The semantics of

A Formal Specification-Based Integration Testing Approach 29

a process is interpreted as follows: when one of the input ports is available, which
means that all of its input variables are bound to specific values in their types,
the process will be executed. As a result of the execution, one of the output ports
is made available, which means that all of its output variables are bound to spe-
cific values of their types. If the input variables satisfy the pre-condition before
the execution, the output variables are required to satisfy the post-condition
after the execution of the process, provided that the execution terminates.

For instance, process A consists of one input port and two output ports. It
takes x of real type as the input variable and produces either y or z as the
output variable. The pre-condition of process A is set to be true which can be
omitted; the post-condition requires that the output variable y is equal to x− 1
if x is greater than 0, and the external variable D will be updated by following
condition D = ˜D + x; otherwise variable z will be made available.

In each CDFD, a process is represented by a rectangle box with a name in
the center. Each input port is denoted by a narrow rectangle on the left part of
the process box, which receives input data flows. Similarly, each output port is
denoted by a narrow rectangle on the right part of the process, which produces
output data flows. The pre- and post conditions are denoted by rectangles located
in the upper and lower parts of the process. For example, process B receives a
data flow y given by process A and produces an output data flow v.

Modules are organized into hierarchical structures to represent the system
architecture. In this example, process C is decomposed into a lower-level module
Second which consists of processes H and T.

3 CDFD-Based Integration Testing Approach

Following the SOFL method, formal specification is constructed and affiliated
with hierachical CDFDs for describing the system architecture. The bottom-
up strategy for integration testing can be adopted since lower-level CDFDs are
abstracted as processes in the higher-level CDFDs. Specifically, the integration
testing starts from the bottom level system modules. When a lower-level module
is thoroughly tested, it is nested as a process of its higher level system module for
integration testing. This iterative procedure continues until the top-level system
module is finally tested. Therefore, the fundamental problem to be resolved is
the integration testing of each individual module described by a CDFD. The
following steps can be taken for the integration testing of each module.

1. extracting all independent paths from the CDFD;
2. transforming the pre- and post-conditions of each process involved in each

path into the functional scenario form;
3. constructing the functional scenario sequences of the involved processes of

each path, and then testing the system using the test cases generated from
the constructed functional scenario sequences;

Figure 2 shows the CDFD of the running example that will be used for illustrating
our approach. The corresponding formal specification is described in Figure 3.

30 W. Miao and S. Liu

Fig. 2. CDFD of the Running Example

3.1 Path Extraction from CDFD

A CDFD specifies the interactions among a set of processes using data flows.

Definition 1. Let D be a universal set of data flows and M be a universal set
of SOFL processes involved in a CDFD, a path p of the CDFD is defined in the
format p ≡ (r1, r2, ..., rn) where r ∈ D ∪M .

A path is an ordered sequence of processes connected by data flows, starting
from a starting process and ending at a terminating process. A starting process
is a process whose input data flows are not the output data flows of any other
process in the same CDFD. A terminating process, on the contrary, is a process
whose output data flows are not the input data flows of any other process in the
CDFD. Based on the definition, data flow paths can be directly extracted from
the CDFD. Note that the control flow is treated as a special data flow in the
context of this paper.

In the CDFD shown in Figure 2, starting node process A forks two indepen-
dent data flows r and s from two output ports, respectively. Processes G and F
are two terminating processes, since none of their output data flows is received
by any other process. Therefore, two paths can be extracted from this CDFD.
The first path is (q, A, r, C, t, G,w) in which q, r, t and w are data flows. Process
A is the starting process of the path, and process G is the terminating process.

The other path is (q, A, s, B, u|v,D|E, x|y, F, z) which consists of processes
A, B, D, E, and F , and the related data flows q, s, u, v, x, y, and z. Starting
process A receives data flow q and produces the output s to process B. Processes
D and E receive two data flows u and v in parallel from process B; similarly,
process F receives data flows x and y in parallel as its input data.

A Formal Specification-Based Integration Testing Approach 31

process A (q: nat0) r: nat0 | s: nat
ext wr g
post q < 0 and s = q*5
 or q = 0 and r = 0 and g = ~g*r
 or q > 0 and r = q2 and g = ~g+r
end_process;

process C (r: nat0) t: nat0
pre r >= 0
post r > 0 and r < 64 and t = r*4
 or r > 64 and t = r-64
 or r = 0 and t = r+1
end_process;

process G (t: nat0) w: nat0
ext rd g
post t < 35 and w = ~g*2-t
 or t >= 35 and w =~g+t
end_process;

Fig. 3. Formal Specification of the Running Example

3.2 Transformation of Functional Scenario Form

Each path extracted from the CDFD is a set of processes connected by data
flows, which will be covered by adequate test cases. To facilitate the test case
generation, the pre- and post-conditions of each process involved in each path is
transformed into an equivalent disjunction of functional scenarios, each describ-
ing an independent function in terms of the input and output relation [10].

Specifically, let P (inP, outP)[preP, postP] denotes a formal process, where
inP is the set of all the input variables; outP is the set of all the output variables.
preP and postP denote the pre- and post conditions of P . The pre- and post-
conditions of P precisely define its functional behaviors in terms of the relations
between the input and output variables.

Definition 2. Given a formal process P in terms of pre- and post-conditions,
let the post-condition postP ≡ (C1∧D1)∨ (C2∧D2)∨ ...∨ (Cn∧Dn), where each
Ci (i = 1, ..., n) is a predicate called a guard condition that contains no output
variable and Di a defining condition that contains at least one output variable
but no guard condition. Then each ˜preP ∧ Ci ∧ Di (i = 1, ..., n) is called a
functional scenario.

A functional scenario preP ∧Ci∧Di describes that if the pre-condition preP and
guard condition Ci are both true, the output of the process is defined by defin-
ing condition Di. All of the functional scenarios of the process are expected to
cover all the behavioral situations when the input satisfies the pre-condition. To
test whether the associated system operations implement the required functions

32 W. Miao and S. Liu

specified by process P , test cases need to be generated from each conjunction
˜preP ∧ Ci.

Definition 3. Given a formal process P ≡ (˜preP ∧C1 ∧D1) ∨ (˜preP ∧C2 ∧
D2)∨ ...∨ (˜preP ∧Cn ∧Dn), each conjunction ˜preP ∧Ci (i = 1, ..., n) is called
the testing condition of the scenario ˜preP ∧ Ci ∧Di.

For a test case t generated from the testing condition ˜preP ∧ Ci, if the real
execution result r does not satisfy the defining condition Di, then we assert
that the system operations do not correctly implement the functional scenario
˜preP ∧Ci ∧Di. To sufficiently test the associated operations of a process, test
cases are required to cover all functional scenarios of the process.

The merits of the functional scenario forms lie in two aspects. Compared with
conventional disjunctive normal forms of pre- and post conditions, functional
scenario form is more appropriate in describing sophisticated semantics. More-
over, precise test oracles can be easily derived based on the relatively readable
functional scenario forms so that an effective test analysis can be achieved.

3.3 Test Case Generation Based on Functional Scenario Sequence

Since a path is a sequence of processes connected by data flows, the overall
functions represented by a path are actually specified by different functional
scenario sequences contributed by the involved processes; each process along the
path contributes one functional scenario for each functional scenario sequence.

Figure 4 describes one path derived from the CDFD of our running example.
The extracted functional scenarios of the processes involved in the path are listed
in Figure 5.

Fig. 4. A Path of the Running Example

The path (q, A, r, C, t, G,w) is represented by the sequence of the three in-
volved processes A, C, and G, and the data flows connecting them. For simplic-
ity, we use fni to denote the ith functional scenario of process n. For example,
fA2 is the second functional scenario of process A. As shown in Figure 5, the

A Formal Specification-Based Integration Testing Approach 33

fA1: q > 0 and r = q2 and g = ~g+r
fA2: q = 0 and r = 0 and g = ~g*r
fA3: q < 0 and s = q*5
fC1: r > 0 and r < 64 and t = r*4

fC2: r > 64 and t = r-64
fC3: r = 0 and t = r+1
fG1: t < 35 and w = ~g*2-t
fG2: t >= 35 and w = ~g+t

Fig. 5. Functional Scenarios of the Processes Involved in the Path of the Running
Example

testing condition of fA2 is q = 0 which specifies the constraints on the input
variable q of process A. The defining condition of fA2 is r = 0 and g = ˜g ∗ r
which precisely describes how the output variable r and the data store g are
defined.

Suppose a path is composed of n processes ranging from P1 to Pn, the number

N of the possible functional scenario sequences of the path is equal to
n∏

i=1

F (Pi)

where function F returns the number of functional scenarios of a process Pi. To
sufficiently test a path, an intuitive way is to generate test data from all the
n∏

i=1

F (Pi) functional scenario sequences.

Processes A and C provide three functional scenarios, respectively; and pro-
cess G offers two functional scenarios. Therefore, 18 (3 ∗ 3 ∗ 2 = 18) functional
scenario sequences can be derived from the involved processes of this path. Each
functional scenario sequence consists of three functional scenarios provided by
the three involved processes of the path, respectively. For instance, sequence
(fA1, fC1, fG1) is one of the derived functional scenario sequences of the path.

However, not all functional scenario sequences can be used for test cases gen-
eration. For some functional scenario sequences, the outputs specified by the
defining condition of a predecessor functional scenario never satisfy the testing
condition of the successor functional scenario. Thus, no test data can be derived
from the entire functional scenario sequence. For instance, functional scenario
sequence (fA2, fC1, fG1) of the above example cannot be used for test data gener-
ation since no output value of variable r defined by the defining condition r = 0
of fA2 can satisfy the testing condition r > 0 of fC1. Therefore, no test data
can be generated from the functional scenario sequence. Only feasible functional
scenario sequence can be used as the foundation for test case generation.

Definition 4. A functional scenario sequence (f1, f2, ..., fn) is feasible if and
only if there exists at least one initial input that leads to the satisfactory of each
testing condition of each involved functional scenario fi (i : 1, ..., n).

In our example, (fA1, fC1, fG1) is a feasible functional scenario sequence. Given
input value 2 of the input variable q of the first functional scenario fA1, the
testing condition q > 0 of fA1 is satisfied. Suppose data store variable ˜g is 0,
the output variable r is equal to 4 and g is updated to be 4. In this case, the

34 W. Miao and S. Liu

second functional scenario fC1 of the functional scenario sequence is activated
since its testing condition r > 0 and r < 64 is satisfied by the value 4 of r. Thus,
the value of its output variable t is evaluated to be 16. Subsequently, the last
functional scenario fG1 is activated since its testing condition t < 35 is satisfied
by the value of t. The final output value of variable w should be equal to -8.

Based on the feasible functional scenario sequences derived from each path,
test cases can be generated. It is well known that providing the correctness
assurance by testing is infeasible in practice. What we can do is to generate
adequate test cases that allow every functional scenario sequence to be exercised
at least once (the more, the better), which is reflected in the following criterion.

Criterion 1. Let H ≡ (preP1 ∧C1 ∧D1, preP2 ∧C2 ∧D2, ..., prePn ∧Cn ∧Dn),
(n ≥ 1) be an functional scenario sequence of a path p where prePi ∧ Ci ∧ Di

denotes a functional scenario of an involved process of p. Let T be a test set
(a set of test cases). Then, T is said to satisfy the scenario coverage of H iff
for each test data t ∈ T , t satisfies the conjunction of all the testing conditions
n∧

i=1

prePi ∧ Ci of the n processes of H.

In order to generate a test set T that specifies the required condition in this
criterion, we can generate at least one test case to cover the functional scenario
sequence H . However, directly generating test data from complete functional
scenario sequences of the data flow paths is not easy to be achieved and also
inefficient for detecting errors at early stages of testing.

A more practical way to test case generation is to take the incremental
strategy. For each path under test, each feasible functional scenario sequence
is dynamically constructed for deriving test cases. Specifically, the first step is
to select one functional scenario of the starting process of the path. After run-
ning the corresponding test cases generated from the functional scenario, one
functional scenario of the second process is then selected and combined with
the functional scenario of the starting process for constructing a functional sce-
nario sequence. Then the feasibility of the current functional scenario sequence is
checked according to Definition 4. If the functional scenario sequence is infeasi-
ble, another functional scenario of the second process is selected. Otherwise, one
functional scenario of the third process along the path is added into the func-
tional scenario sequence. This procedure continues until one functional scenario
of the terminating process along the path has been added into the functional
scenario sequence. Once one functional scenario of the terminating process is
added a complete feasible functional scenario sequence is constructed for cover-
ing the entire data flow path. A path is sufficiently tested if and only if all of its
functional scenario sequences are covered by test cases.

To check whether the system correctly implements the expected functions
specified by the functional scenario sequences, a test oracle is constructed.

Let Gn ≡
n∧

i=1

prePi∧Ci be the conjunction of all the testing conditions of the

processes ofH , and t be a test case that covers Gn. Let qi be the inputs and ri be
the execution result of the ith functional scenario of H by running the software

A Formal Specification-Based Integration Testing Approach 35

under test using t, respectively. ri is expected to satisfy the defining condition
Di of the ith functional scenario prePi ∧Ci ∧Di of H , but if this is not true, it
will imply a difference between the behavior required by the functional scenario
sequence and the behavior provided by the software. Formally, the condition

Condition 1. R(H, t, ri) ≡ Gn(t) ∧
n∨

i=1

¬Di(qi, ri)

is used as a test oracle to determine whether such a difference exists. If this con-
dition holds, we assert that the system under test does not correctly implement
the expected functions.

The test case generation and the test result analysis procedures presented
above are implemented by the following algorithm in JAVA pseudo code. In this
algorithm, Num is a function that returns the number of functional scenarios of
a process. Function Conc is a concatenation operator of sequences. Function fq
represents the qth functional scenario of a process, and function R implements
the test oracle of condition 1.

Algorithm 1. boolean IntTest (p: an n-length array representing a path of n
processes){

A: an empty set of functional scenario sequence;
k = Num(p[1]);
for(i = 1, ...k) A = A ∪ {fi(p[1])}
for(j = 2, ..., n){
k = Num(p[j]);
for each element a ∈ A {

for(q : 1, .., k) {
a = Conc(a, (fq(p[j])));
if(a is infeasible) A = A/{a};

}
}
for each element a ∈ A {

Generating a test set T for a;
if (∃t∈T ·R(a, t, r)) return false;

}
return true;
}

Following the algorithm, functional scenarios of all the processes along a path
are gradually picked up for constructing the functional scenario sequences. The
set of functional scenario sequence A is initially empty. In this paper, we assume
that the functional scenarios of each starting process are covered by adequate
test cases at the stage of unit testing. Therefore, all the functional scenarios of
the starting process involved in the path are directly added into set A.

When dealing with each process p[j], each functional scenario sequence a in
set A will be be concatenated with each functional scenario of p[j], respectively.
Then the feasibility of each functional scenario in the updated set A is checked,

36 W. Miao and S. Liu

and infeasible functional scenario sequences are removed from A. For each func-
tional scenario sequence a in set A, a test set T is generated and the test result
r obtained by running each test case t (t ∈ T) will be analyzed in the context of
the test oracle defined by Condition 1. If any software fault is detected, the algo-
rithm is terminated and the false signal is responded. When all the functional
scenarios involved in A are covered by test data, functional scenarios of the next
process along the path are added into A. This procedure continues until all the
feasible functional scenario sequences of a path are covered by test cases.

Table 1 describes a part of the testing procedure for covering the path
(q, A, r, C, t, G,w) shown in Figure 4.

Table 1. Test Case Generation of the Running Example

current functional scenario sequences test case test result expected result

(fA1, fC1) q = 7 t = 196 t = 196

(fA1, fC2) q = 9 t = 17 t = 17

(fA1, fC3) / / /

...

(fA1, fC1, fG1) q = 1 w = −2 w = −2

(fA1, fC1, fG2) q = 6 w = 144 w = 180

As the first step, all functional scenarios of the starting process A are added
into the set of functional scenario sequences. Then each functional scenario of
the second process C is added into the set and concatenated with the functional
scenarios of process A. To cover the current functional scenario sequence (fA1,
fC1), we generate the test data 7 for the input variable q of fA1 to run the
system. As the result of executing the test data, the value of the output variable
t provided by the system under test is equal to 196, which satisfies our expected
output value. Similarly, (fA1, fC2) is also covered by a test case.

However, we find that functional scenario sequence (fA1, fC3) is infeasible
according to Definition 4. Therefore, this functional scenario sequence is elimi-
nated. When all the functional scenario sequences contributed by the first and
second processes are covered by test cases, the terminating process G of this
path is added after process C for integration testing. As an example, (fA1, fC1,
fG1) is required to be covered by test cases. We assume that the current value
of variable g is 0. After running test data 1 of input variable q, the real output
value of variable w is -2, which satisfies the expected output results.

Then we proceed to generate test data for the functional scenario sequence
(fA1, fC1, fG2). We assume that the current value of variable g is set to 0. After
running test data 6 of input variable q, the real output value of variable w is 144,
which violates the expected output value 180 inferred from fG2. Therefore, the
test oracle is evaluated to be true, which indicates that the functional behavior
of the system under test is inconsistent with the functional scenario sequence.
In this case, we can determine that some faults exist in the system under test.

A Formal Specification-Based Integration Testing Approach 37

4 A Case Study

We have conducted a case study for evaluating the effectiveness of our approach.

4.1 Background

The software of our case study is an Online Travel Agency System (OTAS),
which offers major functions for travelers including tickets reservation operations,
hotel reservation operations, payment operations, and etc. Since the system is too
large to be described within this section, we just choose one sub-system called
Online Hotel Reservation Sub-system (OHRS) of the OTAS for evaluating our
testing approach. CDFDs of the OHRS are shown in Figure 6.

Fig. 6. CDFD of the OHRS

38 W. Miao and S. Liu

The top-level module Portal of OHRS consists of three processes portal,
HotelOpr and PaymentOpr, which is described by the CDFD shown in the
top part of Figure 6. In this module Portal, process portal takes control flows
s 1 and s 2 as input data, and produces output control flows hotel and pay for
activating process HotelOpr and PaymentOpr respectively.

Processes HotelOpr and PaymentOpr are actually lower-level modules that
abstract the functions of hotel and payment operations. These two modules are
described by the CDFDs shown in the middle and lower parts of Figure 6.

In the CDFD of module HotelOpr, process sel receives requests for reserving
rooms or cancelling reservation. Process V acancy Ch stands for the function
of vacant room checking and process Reserve represents the function of room
reservation. Process Cancel is responsible for handling reservation cancellation.
Two data stores hotelRec and rlist represent the necessary data records of room
and reservation information.

In the CDFD of module PaymentOpr, process Login represents the function
of account authentication. Process sel offers options for different operations in-
cluding depositing and withdrawing currency, showing balance and transferring
currency between accounts. These operations are specified by processes Deposit,
Withdraw, Show and Transfer. Data stores acc login and account represent
valid user information and detailed account information.

In order to evaluate the ability in software error detection of integration test-
ing approach, we insert 58 errors into the program of the OHRS. The program
is rigorously implemented according to the specification and CDFDs. Before
inserting the software errors, we also have checked the conformance of the op-
erations involved in the program to their corresponding formal processes in the
specification via unit testing.

4.2 Results and Analysis of the Case Study

Eight paths are extracted from the CDFDs of our OHRS, which are listed in
Figure 7.

For example, path 2 stands for the execution scenario of hotel room reser-
vation, either a successful or a failed reservation. The functions represented by
path 2 are precisely specified by the involved functional scenarios of the three
processes. Specifically, process sel produces one functional scenario of selecting
reservation operation. Process V acancy Ch produces the functional scenario of
a successful vacant room checking. Process Reserve produces two functional sce-
narios that represent the successful and failed reservation, respectively. There-
fore, two functional scenario sequences (2 = 1 ∗ 1 ∗ 2) are derived from path
2, which represent the successful and the failed room reservation, respectively.
For a concise illustration, we just focus on the functional scenario sequence of
successful room reservation. The corresponding involved functional scenarios of
the functional scenario sequence are described in Figure 8.

As shown in Figure 8, the functional scenario of process sel represents that
if the signal variable hotel is available and the input variable sel is equal to
0, the signal variable v will be available. The functional scenario of process

A Formal Specification-Based Integration Testing Approach 39

Paths

1. ([sel, hotel], Psel, [v, vac], [PVacancy_Ch, hotelRec], no_van)
2. ([sel, hotel], Psel, [v, vac], [PVacancy_Ch, hotelRec], [res_room, Res_info],
 [PReserve, hotelRec, rlist], res_result)
3. ([sel, hotel], Psel, [Can, can_req], [Pcancel, hotelRec, rlist], can_res)

4. ([pay, acc, pass], [PLogin, acc_login], login_fail)
5. ([pay, acc, pass], [Plogin, acc_login], account, PSel, [dep_in, Dep_amt],
 [PDeposit, account], dep_res)
6. ([pay, acc, pass], [PLogin, acc_login], account, PSel, [with_in, wit_amt],
 [PWithdraw, account], wit_res)
7. ([pay, acc, pass], [PLogin, acc_login], account, PSel, Show_in,
 [Pshow, account], show_res)
8. ([pay, acc, pass], [PLogin, acc_login], account, PSel, [tra_in, trans_info],
 [PTransfer, account], tra_res)

Fig. 7. Paths Derived from the CDFDs of OHRS

process sel (sel: nat0, hotel: sign) v: sign |Can: sign
post sel = 0 and bound (hotel) and bound (v)
 or
 ...
end_process

process Vacancy_Ch (v: sign, Vac: Check_Vacancy) res_room: ResRequest | no_van: string
ext # rd hotelRec
post bound (v) and (exist [x: hotelRec] | x.stay_period = vac.stay_period and x.amount >= vac.amount)
 and res_room.stay_period = vac.period and res_room.amount = vac.amount
 or
 ...
end_process

process Reserve (res_room: ResRequest, res_info: ResInfo) res_result: string
ext # wr hotelRec
 # wr rlist
post (exist [x: hotelRec] | x.stay_period= res_room.stay_period and x.amount >= res_room.amount)

 ...
or

 …
end_process

Fig. 8. Involved Functional Scenarios of Path 2

1. sel = <0>, stay_period = <20110901-1>, amount = <1>, res_info.name = < Nomura >, res_info.email = < nomura@... >

2. sel = <0>, stay_period = <20110901-3>, amount = <2>, res_info.name = < Mitsui >, res_info.email = < Mitsui@... >

Fig. 9. Sample Test Cases for Testing the OHRS

40 W. Miao and S. Liu

V acancy Ch represents that if the input signal variable v is available and if
there exist enough rooms recorded in data store hotelRec satisfying the required
staying period and room type, the room reservation request will be sent to the
next process Reserve. The functional scenario of process Reserve indicates that
a new reservation record will be successfully done and added into the data store
rlist, if there exist enough rooms satisfying the received request.

Test cases are then generated from the functional scenario sequences of each
path. Some sample test cases for covering the functional scenario sequence of
path 2 are listed in Figure 9.

Test case 1 stands for the execution of hotel reservation. The input value
of variable sel is set to be 0. The staying period of room request is set to be
20110901-1. The required amount of room is 1, respectively. The customer’s
name and email address are also generated.

By comparing the expected results derived from the involved functional sce-
narios and the execution results, we can determine the correctness of the OHRS.
Once all the paths are covered by adequate test cases, a system module is thor-
oughly tested. Then we can proceed to test the high-level modules. Table 2
describes the test results of each path derived from the CDFDs of our OHRS.

In this table, number of functional scenario sequences of each path, inserted
errors, detected errors and the corresponding error detection rate of each path
derived from the CDFDs of the OHRS are listed. Specifically, for each path, we
insert at least one error to its corresponding program statements. Since some
paths derived from the CDFD share same program statements, corresponding
errors are also shared by these paths. For example, 10 errors correspond to both
path 1 and path 2 extracted from the CDFD. The detection rate of errors are
described in the fifth column of Table 2.

The error detection rates of modules HotelOpr, PaymentOpr and Portal
are 79.5%, 91% and 100%, respectively. That is, 49 inserted errors are detected
through the integration testing. The overall error detection rate is approximately
84.5%.

Table 2. Test Result of the OHRS

path functional scenario inserted errors detected errors detection rate
sequences

path 1 1 13 3 23.1%

path 2 2 30 23 76.7%

path 3 2 1 1 100%

path 4 1 2 2 100%

path 5 2 7 7 100%

path 6 2 4 4 100%

path 7 2 4 3 75%

path 8 2 5 4 80%

A Formal Specification-Based Integration Testing Approach 41

5 Related Work

Our approach inherits the model-based testing principle but differs in the aspects
of specifications and the test data generation for integration testing. Classical
formal specification languages, for instance, Z [3], the B [4] method and VDM
[5], facilitate the precise requirements modeling, but lack effective mechanisms
to describe the system architectures in an intuitive and rigorous manner, which
makes integration testing and test result analysis difficult for practitioners.

Various integration testing approaches adopt the control flow diagrams, es-
pecially the UML sequence diagram for test case generation. In work [11], the
authors transform the UML sequence diagram into the Sequence Dependency
Diagram for test case generation. Similarly, the authors of work [7] and [12] com-
bine the state-machine and UML sequence diagram for test data generation of
integration testing. The work [6] also adopts the UML sequence diagram as the
foundation for the integration testing of object-oriented programs.

The sequence diagrams facilitate the integration testing by clearly specify-
ing the sequence of messages between different system components. However,
since the sequence diagram only focuses on the control flows between system
operations, other characteristics of the expected function, such as data flows,
are represented by other diagrams or notations. As a result, practitioners need
to deal with various diagrams or models, which degrades the efficiency and ef-
fectiveness of the integration testing. Distinguished from these approaches, our
CDFD integrates the control flows and data flows in a unified diagram, which
can be used as a firm foundation for rigorous test case generation and intuitive
test results analysis for industry practitioners.

In the work [13] and [14], state charts are used as the foundation of test
case generation for integration testing. As pointed out by the authors of [7],
state charts are more powerful in unit testing rather than in integration testing.
For large-scale software, state charts may be very large and complicated for
analysis. To some extent, state charts are subject to the tester, which cannot
precisely specify the expected functions, especially from the perspective of data
structute definitions. Therefore, deriving rigorous test oracles from state charts
for integration testing is also difficult.

Most researches on SOFL specification-based testing focus on unit testing
level [15][10] while integration testing based on SOFL still demands more re-
search efforts. In this paper, we further extends the CDFD-based integration
testing approach proposed in [16] where a basic data flow path coverage crite-
rion is put forward. Our new approach integrates the functional scenario-based
test data generation with the basic paths coverage of CDFDs which allows for
both rigorous test data generation and sufficient coverage on potential functional
scenarios of the system under test.

6 Conclusion

In this paper, we propose a formal specification-based integration testing ap-
proach. Data flow paths are derived from rigorous CDFDs, and formal func-

42 W. Miao and S. Liu

tional scenario sequences are extracted from the paths as the foundation for test
case generation. A functional scenario sequence coverage criterion and the cor-
responding algorithm are proposed and illustrated by a running example. The
case study demonstrates the effectiveness and the feasibility of the approach.

To further promote this approach, we will continue exploring precise rules and
effective techniques for constructing functional scenario sequences. Moreover, a
powerful supporting tool is also one of future research projects.

Acknowledgment. This work is supported by SCAT foundation. It is also
partly supported under the National Program on Key Basic Research Project
(973 Program) Grant No. 2010CB328102; and NSFC No 61133001.

References

1. Bernot, G., Gaudel, M., Marre, B.: Software Testing based on Formal Specifica-
tions: A Theory and a Tool. Software Engineering Journal 6(6), 387–405 (1991)

2. El-Far, I.K., Whittaker, J.A.: Model-based Software Testing. Wiley (2001)
3. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall Inter-

national (UK) Ltd. (1998)
4. Abrial, J.-R.: The B-Book. Cambridge University Press (1996)
5. Jones, C.: Systematic Software Development Using VDM, 2nd edn. Prentice Hall

(1990)
6. Li, Z., Maibaum, T.: An Approach to Integration Testing of Object-Oriented Pro-

grams. In: Seventh Int’l Conf. on Quality Software, pp. 268–273 (October 2007)
7. Kansomkeat, S., Offutt, J., Abdurazik, A., Baldini, A.: A Comparative Evaluation

of Tests Generated from Different UML Diagrams. In: Ninth ACIS Int’l Conf. on
Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, pp. 867–872 (August 2008)

8. Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: A Formal Engi-
neering Methodology for Industrial Applications. IEEE Transactions on Software
Engineering (1), 24–45 (1998)

9. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer (2004)

10. Liu, S., Tamai, T., Nakajima, S.: A Framework for Integrating Formal Specifica-
tion, Review, and Testing to Enhance Software Reliability. International Journal
of Software Engineering and Knowledge Engineering 21(2), 259–288 (2011)

11. Samuel, P., Joseph, A.: Test Sequence Generation from UML Sequence Diagrams.
In: Ninth ACIS Int’l Conf. on Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing, SNPD 2008, pp. 879–887 (August
2008)

12. Bandyopadhyay, A., Ghosh, S.: Test Input Generation Using UML Sequence and
State Machines Models. In: Int’l Conf. on Software Testing Verification and Vali-
dation, ICST 2009, pp. 121–130 (April 2009)

13. Kansomkeat, S., Rivepiboon, W.: Automated-Generating Test Case using UML
Statechart Diagrams. In: 2003 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on Enablement
through Technology, SAICSIT 2003, pp. 296–300. South African Institute for Com-
puter Scientists and Information Technologists (2003)

A Formal Specification-Based Integration Testing Approach 43

14. Castro, L.M., Francisco, M.A., Guĺıas, V.M.: A Practical Methodology for Inte-
gration Testing. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.)
EUROCAST 2009. LNCS, vol. 5717, pp. 881–888. Springer, Heidelberg (2009)

15. Liu, S.: Utilizing Formalization to Test Programs without Available Source Code.
In: The Eighth Int’l Conf. on Quality Software, QSIC 2008, pp. 216–221 (August
2008)

16. Chen, Y., Liu, S., Nagoya, F.: An Approach to Integration Testing Based on Data
Flow Specifications. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407,
pp. 235–249. Springer, Heidelberg (2005)

Design and Implementation of a Tool

for Specifying Specification in SOFL�

Mo Li1 and Shaoying Liu2

1 Graduate School of Computer and Information Sciences,
Hosei University, Tokyo, Japan
mo.li.3e@stu.hosei.ac.jp

2 Department of Computer and Information Sciences,
Hosei University, Tokyo, Japan

sliu@hosei.ac.jp

Abstract. Structure Object-oriented Formal Language (SOFL) is not
just a formal language for writing formal specification. It is also an ap-
proach and a methodology. SOFL provides a three-step approach for
modelling a software system using formal specification. Writing specifi-
cation can be realized as the most important and fundamental task in this
modelling approach. In practice, the activity of writing specification is
error-prone, especially the activity of specifying formal specification. We
think there are two reasons that cause the difficulty of specifying speci-
fication. One reason is that some specifiers may not be familiar with the
formal notations used in SOFL, especially the mathematical notations.
And the other reason is that there is no tool to guide the specifiers to
write specification and make the specifying process easy. In this paper,
we show a prototype of a tool that can provide the specifiers with a strong
support in the process of specifying specification. This tool provides an
integration environment for specifying all kinds of specifications used in
SOFL approach, including informal specification, semiformal specifica-
tion, formal specification, CDFD, and class. And the tool also provides
the function to organize the specifications of a same software system.

Keywords: formal method, specification, modelling approach, tool.

1 Introduction

Formal methods have been recognized as an effective approach for software de-
velopment. One of the products of formal method is formal specification. Formal
specification can describe a software system precisely. The requirement of the
software system is specified by formal notations, usually mathematical notations,
in the formal specification. The content and structure of formal specifications
is different over different formal specification languages. Several formal specifi-
cation languages exist, like VDM-SL [4], Z [5], Object-Z [6], and so on. SOFL

� This research is supported in part by NII Collaborative Program, SCAT Research
Foundation, and Hosei University. It is also partly supported by China 973 program
under Grant No. 2010CB328102 and NSFC under Grant Nos. 61133001, 60910004..

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 44–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Design and Implementation of a Tool for Specifying Specification in SOFL 45

(Structure Object-oriented Formal Language) [1] is one of the these formal lan-
guages.

SOFL is not only a formal language for writing formal specification, but also
an approach and a methodology. SOFL provides a three-step approach for mod-
elling a software system using formal specification. And a lot of techniques have
been created for verifying and validating the formal specification and correspond-
ing implementation program based on formal specification. The combination of
SOFL three-step modelling approach and relative verification and validation
techniques provide a framework of the entire software system development pro-
cess. The soul of this framework is the formal specification. It is the final product
of modelling process and the basis of following verification, validation and imple-
mentation. Writing formal specification can be realized as the most important
and fundamental task in SOFL approach.

In practice, specifying formal specification is an error-prone activity. We think
there are two reasons that cause the difficulty of specifying formal specification.
One reason is that some specifiers may not be familiar with the formal notations
used in SOFL, especially the mathematical notations. And the other reason is
that there is no tool to guide the specifiers to write specification and make the
specifying process easy. The tool support is actually very important. Since there
is a lot of special concepts in SOFL, tool support can facilitate the specifiers to
deal with these concept. Typically, CDFD (Conditional Data Flow Diagram) is
an unique concept in SOFL. Drawing CDFD is required when specifying formal
specification. A specific tool that can be used to draw CDFD directly will be
very helpful.

In this paper, we show a prototype of a tool that can provide the specifiers
with a strong support in the process of specifying specification. This tool pro-
vides an integration environment for specifying all kinds of specifications used in
SOFL approach, including informal specification, semiformal specification, for-
mal specification, and class. And the tool also provides the function to organize
the specifications of a same software system. The prototype is implemented in
C# programming language under the environment of Microsoft Visual Studio
2008.

The rest of this paper is organized as follows. We introduce some special con-
cepts of SOFL in Section 2. Specifically, we also explain the three-step modelling
approach in this section. In Section 3, we describe the major functions of the tool
and explain how these functions support the modelling approach. We demon-
strate the architecture of the tool in Section 4 and introduce the implementation
in Section 5. Section 6 is related work. And finally, we conclude in Section 7.

2 SOFL Three-Step Modelling Approach

In the first step of three-step modelling approach, the informal specification
should be specified. The informal specification is written in natural language
and is the simplest specification in SOFL. It is used to communicate with the
end users or domain experts. The basic unit of informal specification is “module”.

46 M. Li and S. Liu

Amodule is a group of descriptions of functions. It is like a component in software
system.

The second step of the modelling approach is to build semiformal specification.
The semiformal specification consists of two aspects. One is process specification,
and the other is CDFD. The process specification is plain text specification.The
basic unit in process specifications is “process”. A process is an independent
operation that processes data, and different processes contact with each other
via data flows. A group of processes and their relationship are integrated to
compose a “module”. A module can be considered as a higher level process.
Each process can also be decomposed into a lower level module. We use “module”
and “specification” changeably in the following paper. Usually these two terms
indicate the same thing, namely the process specification of a module.

The counterpart of process specification is CDFD, a graphic specification. For
each module, there is a corresponding CDFD. The CDFD uses visual notation
to express the relation between different processes that are included in formal
specification. A process in a CDFD is treated as a transition and a data flow as a
token. When all the input data flows of the process become available, the process
will be enabled and executed. The CDFD is both a formal and intuitive notation
that is suitable for describing the process specification. Note that, even the
semiformal specification is composed by process specification and corresponding
CDFD. Drawing a CDFD for a semiformal module is not required by SOFL.

The third, or the final step of the three-step approach is to specify formal
specification. The formal specification has the same structure of semiformal spec-
ification. It is also composed by CDFD and corresponding process specification.
The difference is that the notations used in formal process specification are for-
mal notations, and drawing CDFD for a formal module is not an optional. SOFL
requires the specifiers to draw CDFD for each formal module.

Except for the informal, semiformal and formal specification, there is another
kind of specification include in the SOFL specifications. It is the “class” speci-
fication. Since SOFL is an object-oriented formal language, the most important
concept of object-oriented design, class, is included in the SOFL specification.

The finished specifications should be verified and validated. The incorrect
parts of the specifications will be corrected or modified. And then the modified
specifications will be verified and validated again. This process will repeat. It is
similar to the cycle of software development.

3 Design of the Tool

Based on the previous introduction, the entire process of modelling software
system by using SOFL can be divided into two stages. The first stage is to
specifying specifications used in SOFL, and the second stage is to verify and
validate the formal specifications finished in the first stage. As shown in Figure
1, our tool is also separated into two parts and each part corresponds to one
stage mentioned above. In this paper, we focus on describing the first part of the
tool, namely the part that supports specifying specifications. The tool provides

Design and Implementation of a Tool for Specifying Specification in SOFL 47

Fig. 1. The components of the tool

not only a plain text editor, but also a group of functions that facilitate the users
in the specifying process expediently.

According to the three-step modelling approach, for each target system, spec-
ifiers should construct the informal specification first, then the semi-formal spec-
ification, and finally the formal specification. In order to support this specifying
process, our tool provides following 10 major functions:

1. creating a software project
2. adding an informal module
3. specifying informal specification
4. adding a semiformal module
5. specifying semiformal process specification
6. adding a formal module
7. specifying formal process specification
8. drawing CDFD
9. specifying class
10. export specifications, including CDFDs

Most of functions listed above correspond to specifying specifications in SOFL:
informal specification, semiformal specification, formal specification, and class.
Specially, semiformal and formal specification include process specification and
CDFD. The difference is that the CDFD in semiformal specification is optional,
but the CDFD in formal specification is required. Since the CDFD is a different
presentation of corresponding formal process specification, keeping consistency
between CDFD and process specification is one of our major concern.

48 M. Li and S. Liu

4 Architecture of the Tool

The specifications are the final products of using our tool. To help users organiz-
ing the working space, all of the specifications that describe the same software
system is grouped. The combination of the specifications is called a “project”.
Figure 2 shows the hierarchy of the specifications. The CDFD with shadow box
indicates that the CDFD in semiformal specification is optional.

Fig. 2. The hierarchy of SOFL specifications

All of the specifications including CDFD are saved as XML files in our tool.
We use the module as the basic unit to create a XML file. For example, if users
add a new formal module to the SOFL project, two new independent XML files
will be created to save the CDFD and process specification, respectively. All the
specifications saved in XML files can be exported as other files format for later
reference. The XML files will also be used as bases for verification and validation.

Table 1. The files used to save specifications

No. Suffix Description

1 .soflproject save the hierarchy of the SOFL project

2 .ifModule save the specification of a informal module

3 .sfModule save the process specification of a semiformal module

4 .sfCDFD save the CDFD of a semiformal module, the content can be empty

5 .fModule save the process specification of formal module

6 .cdfd save the CDFD of a formal module

7 .classSpec save the class definition

Design and Implementation of a Tool for Specifying Specification in SOFL 49

Fig. 3. The Viewer for specifying formal specification

Fig. 4. The architecture of the tool

Expect for the XML files, which are used to save the specifications, one specific
XML file is used to store the hierarchy of all the specifications, namely, the
hierarchy of SOFL project. The internal structure of this XML file is consistent
with the structure shown in Figure 2. Table 1 lists all the XML files that will
be created by the tool. “Suffix” column shows the suffix of the XML file, and
“Description” column explains the content of the XML file.

50 M. Li and S. Liu

In our tool, we use different combinations of small windows to provide users
with the interfaces for different tasks. The small windows in the tool are called
“Explorers”. Each explorer focuses on presenting one aspect of a specific task.
An combination of explorers is called an “Viewer” in the tool. For example,
Figure 3 shows the default viewer for specifying formal specification. Except
for the default viewers, users can rearrange the layout of the explorers to build
customized viewers for different tasks. The users who used to use Eclipse or
Visual Studio will be familiar with such kind of interface.

Figure 4 demonstrates the architecture of the tool. Users use the functions
provided by the tool through different viewers. All the specifications and CDFDs
specified by the users are stored in a group of XML files.

5 Formal Specification Editor

There is not doubt that the formal specification is the most important part in
SOFL. Almost all of the verification and validation techniques are designed based
on formal specification. But specifying formal specification is the most challenge
task when using SOFL. Even the skilful developer would make mistake when
specifying formal specification. And the formal notations in formal specification
will sometime confuse the readers, too. In order to help the users to specify and
understand the formal specification, SOFL uses a graphic specification called
CDFD to simplify the process specification. The CDFD can be realized as a
overview of the corresponding process specification. When specifying a formal
specification, the user can draw CDFD first, and use the CDFD as a guideline
to write process specification.

In our tool, two XML files will be created when the user adds a new formal
module to a software project. Figure 3 shows the default viewer for specifying
formal specification. This viewer includes four explorers. The two explorers at
the left hand side are “Hierarchy Explorer” and “Property Explorer”. The cen-
ter explorer is “CDFD Drawboard”, and the explorer at the right hand side is
“Formal Editor”.

The “Hierarchy Explorer” displays the hierarchy of the project. The root node
of the tree structure in the “Hierarchy Explorer” presents the project’s name.
Under the project’s name there are four second level nodes, and each node corre-
sponds to a specific specification type. Different kinds of specifications, namely
modules are listed under corresponding node. The viewer for specifying for-
mal specification will open when node presenting a formal module being double
clicked.

5.1 Drawing CDFD

Drawing CDFD is the first step to specify a formal module. Of course draw-
ing CDFD first is not required, but we strongly recommend it. In the tool, the
“Property Explorer” and “CDFD Drawboard” work together to help users draw
CDFD. On the top of the explorer “CDFD Drawboard”, there is a tool bar.

Design and Implementation of a Tool for Specifying Specification in SOFL 51

Each button in this tool bar corresponds to a component in CDFD. Users can
add a figure of a component onto the board by clicking the corresponding but-
ton. The figure of a component is called an “object” on the board. User can
move the objects, resize the objects like using other popular drawing tool. Two
objects can be connected via data flow. The point at which object and data
flow are connected are called “connector”. In different figures, the numbers of
connectors are different. For example, considering the two processes “ProcessA”
and “ProcessB” shown in Figure 3, there are two connectors at the left side
of “ProcessA” but only one connector at the left side of “ProcessB”. This is
because “ProcessA” has two input ports, while “ProcessB” has only one input
port.

Some components of CDFD have their own name or specific properties. In or-
der to edit the name or properties of an object in the board, users can just simply
select the object by clicking it, and the corresponding properties will be list in
the “Property Explorer” automatically. Users can change the name or values of
properties, and the modification will change the figure of the object directly.
For the sake of space, we just demonstrate one example here. For instance, the
selected object in Figure 3 is “ProcessA”. It has a name and properties such as
input port number and so on. All of the properties are listed in the “Property
Explorer” at the left-bottom corner. We can see that the input port number is 2,
output port number is 1, and name is “ProcessA”. In addition, we add an addi-
tional property for this component, “ShapeColor”. Users can select a predefined
color to highlight the object.

5.2 Specifying Formal Process Specification

The “Formal Editor” explorer in Figure 3 is used to specify the formal process
specification, the counterpart of CDFD. The entire explorer is divided into two
sections. One is for editing and the other is for displaying. The editing section is
separated into three parts. For top to bottom, the three parts are “Component
List”, “Head Displayer”, and “Content Editor”. The “Component List” is a
drop-down list and all the components of a process specification are listed in
it. The component includes Constant Declaration, Type Declaration, etc. Users
can select one specific component to edit each time. Note that the processes
defined in the process specification are also listed in this drop-down list. Users
can also select a process to edit. Once users select a specific component in the
“Component List”, the “Head Displayer” will display the head declaration of
this component. And the users can edit the content of the selected component.
Everything that users type in the “Content Editor” will be displayed in the
displaying section automatically. For example, the component selected to edit in
Figure 3 is process “ProcessA”. We can see the head declaration of “ProcessA”
is displayed in the “Head Displayer”, and the content in “Content Editor” is
also presented in displaying section.

52 M. Li and S. Liu

Table 2. The events that may effect the consistency

No. of Event Event Effected Process

1 change process’s name 1

2 change process’s input port number 1

3 change process’s output port number 1

4 change data flow’s name 2

5 change data flow’s type 2

6 add a new process to CDFD 1

7 delete a process from CDFD 1

8 add a new data flow to CDFD usually 0

9 delete a data flow from CDFD 2

10 connect a process and a data flow 1

11 disconnect a process and a data flow 1

5.3 Keeping Consistency Mechanism

One of the mistakes made in specifying formal specification is inconsistency
between CDFD and corresponding process specification. In our tool, we provide
a well designed mechanism to keep the consistency between CDFD and process
specification. We defined total 11 events that can effect the consistency. These 11
events are listed in Table 2. The column “Event” is the description of the event,
and the column “Effected Process” is the number of processes whose definition
will be changed by the event. For instance, the forth raw of the table indicates
that the event of changing the name of a data flow will effect two processes
in the process specification. The two processes are connected by the data flow.
When this event happen, the corresponding definition of these two processes in
the process specification should be changed.

In order to make this mechanism work well, we require all of these events must
happen in the process of drawing CDFD. It means all the change and modifi-
cation described in Table 2 must be done through “CDFD Drawingboard” and
“Property Explorer”. And the content of process specification will be modified
automatically. Users cannot do these change or modification in the “Formal Ed-
itor”. Of course we can provide users with a check list based on Table 2 for
inspecting the consistency, but we think build this mechanism into the tool will
give the users a very good guide to specify the specification and it can avoid
mistakes in inspecting the consistency.

5.4 Specifying Semiformal Specification

Specifying semiformal specification is similar to specifying formal specification.
Two specifications have almost same structure. In our tool, the default viewer for

Design and Implementation of a Tool for Specifying Specification in SOFL 53

specifying semiformal specification is similar to the default viewer for specifying
formal specification. Figure 5 is the snapshot of default viewer for specifying
semiformal specification. Compare to Figure 3, the “CDFD Drawboard” and
“Property Explorer” disappear. This is because drawing CDFD is optional in
the process of specifying semiformal specification. And the “Formal Editor” is
replaced by “Semiformal Editor”. The “Semiformal Editor” looks like “Formal
Editor”. The only difference is the tool bar in “Semiformal Editor”. We can
see from Figure 5 that there are two buttons in the tool bar. The two buttons
correspond to adding a process and a function to the “Component List” respec-
tively. When specifying formal specification, adding a process to specification is
an event that will effect the consistency between CDFD and process specifica-
tion. Therefore, a process can be added to the process specification by adding a
process object to the CDFD. But in the process of specifying semiformal spec-
ification, we do not force the users to draw CDFD, drawing CDFD is just an
option. If the users do not want to draw CDFD, they can use the two buttons
in the “Semiformal Editor” to add process or function definition to the semifor-
mal process specification. In this case, there is no need to check the consistency
between semiformal process specification and its corresponding CDFD, and we
do not provide the relative functions in the tool.

If users want to draw CDFD for a semiformal process specification, he or she
can just simply double click the node with the suffix “.sfCDFD”, and the same
“CDFD Drawboard” and “Property Explorer” shown in Figure 3 will be opened.
Note that the occurrences of the events listed in Table 2 will not be presented
in “Semiformal Editor”.

6 Related Work

The tool described in this paper provides several functions that can make the
process of specifying SOFL specification easier. There is another tool that can
support specifying SOFL formal specification is introduced in [7]. Compare to
our tool, this tool does not provide the function to check and keep the consistency
between the CDFD and formal process specification. Furthermore, the flexibility
of this tool is limited, while our tool is designed not only for providing support
for specifying specification, but also for utilizing the latest published verification
and validation techniques. The prototype introduced in [8] is designed to exact
functional scenarios from SOFL formal specification. It reads formal specification
from XML files and generate all possible functional scenarios. The functional
scenario is the basic in several verification and validation techniques.

Several tools have been to support different formal languages or formal meth-
ods. Overture [9] is a community-based project of open-source tools to support
modelling and analysis in the design of software systems using VDM. It provides
several functions such as editing, checking, debugging, etc. B4Free [10] is a set
of tools for the development of B formal models. B4Free offers a graphic rep-
resentation and numerous functionalities to present and manage projects in B
language. And it also provides automatic management of dependencies between

54 M. Li and S. Liu

Fig. 5. The default Viewer for specifying semiformal specification

B components. The Rodin Platform [11] is an Eclipse-based IDE for Event-B
that provides effective support for refinement and mathematical proof. PiZA [12]
is an animator for Z. It translates the Z specifications into Prolog to generate
output variables.

7 Conclusions and Future Work

In this paper, we present the prototype of a tool that supports the entire spec-
ification specifying process when using SOFL three-step modelling approach.
The tool offers customized editor for each kind of specification and numerous
functions facilitating specifiers. These functions include manage SOFL project,
checking consistency between CDFD and formal process specification, etc. All
of the specifications specified by users and the hierarchy of project are saved in
XML files. The XML files of formal specifications will be used as basis for later
verification and validation. If the users want to distribute the specifications, the
specifications can be exported as different formats. The process specification can
be experted as MS Word file or PDF file, and the CDFD can be exported as
JPEG file or BMP file.

As show in Figure 1, the goal of our tool is not to provide an editing environ-
ment only. We want to provide an entire environment for the SOFL three-step
modelling approach and the following verifying and validating process. Obvi-
ously, building a powerful specifying tool is a good start. On the one hand,
verification and validation cannot be performed without formal specification.
On the other hand, a well defined and uniform formal specification file can sim-
plify the process of tool support verification and validation. In the future, our

Design and Implementation of a Tool for Specifying Specification in SOFL 55

work can be separated into two parts. The first part is to refine the exiting tool.
Enhance the usability of the tool. The second part of our work is to build a
parser for formal specification. Almost all of the verification and validation tech-
niques are based on analysing the formal specification. Therefore, build a parser
is necessary.

References

1. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer (2004) ISBN 3-540-20602-7

2. Liu, S., Sun, Y.: Structured Methodology + Object-Oriented Methodology + For-
mal Methods: Methodology of SOFL. In: 1st IEEE International Conference on
Engineering of Complex Computer Systems, pp. 137–144. IEEE Press, Ft. Lan-
derdale (1995)

3. Liu, S., Shibata, M., Sato, R.: Applying SOFL to Develop a University Information
System. In: 6th Asia-Pacific Software Engineering Conference, pp. 404–411. IEEE
Press, Takamatsu (1999)

4. Dawes, J.: The VDM-SL Reference Guide. Pitman (1991)
5. Diller, A.: Z: An Introduction to Formal Methods. John Wiley & Sons (1994)
6. Meira, S.R.L., Cavalcanti, A.L.C.: Modular Object-Oriented Z Specifications. In:

5th Annual Z User Meeting on Z User Workshop, pp. 173–192. Springer, London
(1991)

7. Liu, S.: Integrating top-down and scenario-based methods for constructing software
specifications. In: 8th International Conference on Quality Software, pp. 105–113.
IEEE Press, Oxford (2008)

8. Li, M., Liu, S.: Automatically Generating Functional Scenarios from SOFL CDFD
for Specification Inspection. In: 10th IASTED International Conference on Soft-
ware Engineering, Innsbruck, Austria, pp. 18–25 (2011)

9. Overture: Formal modelling in VDM, http://www.overturetool.org/
10. B4Free, http://www.b4free.com/index-en.php
11. Event-B.org, http://www.event-b.org/
12. Hewitt, M.A., O’Halloran, C.M., Sennett, C.T.: Experiences with PiZA, an ani-

mator for Z. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.) ZUM 1997. LNCS,
vol. 1212, pp. 37–51. Springer, Heidelberg (1997)

http://www.overturetool.org/
http://www.b4free.com/index-en.php
http://www.event-b.org/

Development of a Supporting Tool

for Formalizing Software Requirements

Xi Wang and Shaoying Liu

Department of Computer Science, Hosei University, Japan

Abstract. Formal specification precisely documents expected behaviors
of the system under construction, which provides a firm foundation for
ensuring software quality and facilitating software maintenance. How-
ever, describing software requirements in formal specifications remains
a challenge for practitioners and becomes one of the obstacles toward
widespread use of formal methods in industry. To deal with the problem,
this paper describes an interactive tool that assists designers in software
requirement formalization. It retrieves informal requirements from the
designer and automatically generates the corresponding formalization re-
sult. Based on a knowledge base stored in XML files, the tool implements
a core engine for producing comprehensible guidance. By conducting a
case study on a banking system, the effectiveness of the tool is shown.

1 Introduction

Statistic data shows that formal methods largely improve the quality of soft-
ware products by conducting verification based on formal specifications [1][2][3].
However, according to our experience with industry, the development community
refuses to adopt such technique in real practice, which announces a considerable
gap between formal methods and software development process. One of the major
reasons is the difficulty in formalizing software requirements into formal specifi-
cations, especially in describing functions in formal expressions (such as pre- and
post-conditions of operations), which requires sophisticated math background,
as well as tremendous patience and care. As complexity rises, organizing large
amount of informal ideas in a designated formal manner without missing any
information becomes even harder. Thus, having realized the fact that building
formal specifications is a time-consuming and error-prone activity, and needs a
long-term training, practitioners still prefer conventional approach to developing
software which seems more practicable and controllable.

Describing functions in formal expressions comprises two tasks: function de-
sign, which mainly depends on human intelligence, and formalization of the
function description, which focuses on tedious syntax problems and would cause
more and more errors as the complexity of the function rises. Therefore, we be-
lieve that the formal specification technique will be acceptable to practitioners
if the first task can be guided and the automation level of the second task can
be enhanced. To this end, this paper describes a tool that aims at generating
formal expressions automatically with obtained informal ideas from developers

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 56–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Development of a Supporting Tool for Formalizing Software Requirements 57

for formal specification construction. It is composed of a knowledge base and a
core engine. By conducting a proposed knowledge retrieval algorithm, the core
engine retrieves appropriate knowledge from the knowledge base to retrieve de-
sired functions from the designer through interactions in natural language and
formalizes such information.

The knowledge base is built on the basis of the pattern system proposed in our
previous work [4]. In the pattern system, a set of patterns are pre-defined with a
same structure, each providing a solution to the formalization of a kind of func-
tion. These patterns are organized in a hierarchical manner in the pattern system
and the application of an individual pattern may need the application of others.
In order to simplify the implementation of the core engine and avoid frequent
modification of it, the application process of the pattern system, rather than the
pattern system itself, is treated as knowledge and stored in the knowledge base.

Finite State Machine (FSM) is employed to represent the knowledge in the
knowledge base since applying the pattern system is to interact with the devel-
oper for the target formal expression and FSM is a formal modeling language
easy to be manipulated in an automated way for describing interactive behaviors.
Furthermore, as a classic language with a long development history, it includes
many mature techniques that can be directly adopted. We depict the application
process in one FSM model and introduce some symbols into the model to enable
the representing of all its aspects.

When implementing the tool, XML files are used to store the knowledge base
where a set of tags are created to identify different kinds of information in the
FSM model and the informal explanation of some symbols are attached for gener-
ating comprehensible guidance. Based on the XML file, the core engine extracts
necessary information by recognizing the pre-defined tags before conducting the
proposed knowledge retrieval algorithm to retrieve and formalize informal ideas.

To evaluate the effectiveness of the tool, we conduct a case study on modeling
the behavior of an example banking system. The result shows that developers
who are not familiar with formal notations can also write formal expressions
using the tool since they will only be required to make decisions on function
design issues and all the annoying syntactic work is handled by machines. As soon
as the tool retrieved necessary details of the desired functions, a corresponding
formal expression will be generated.

It should be noted that the underlying theory of the tool is language indepen-
dent, we use SOFL [5][6][7] as an example formal notation to demonstrate how
the tool works.

The remainder of this article is organized as follows. Section 2 overviews the
related work. Section 3 presents the design and the implementation of the tool. A
case study on an example banking system is given in Section 4. Finally, Section
5 concludes the paper and points out the future work.

2 Related Work

Many researches have been done on formal specification construction method.
S. Liu [8] proposes an approach to constructing software specifications by

58 X. Wang and S. Liu

integrating top-down and scenario-based methods. J. Ding et al. [9] propose
a refinement method based on a set of formal refinement patterns for software
architecture design using Software Architecture Model (SAM). Stephney et al.
[10] describe a pattern language for using notation Z in computer system en-
gineering. S. Vadera et al. [11] describe an interactive approach for producing
formal specifications from English specifications. Konrad et al. [12] create real-
time specification patterns in terms of three commonly used real-time temporal
logics based on an analysis of timing-based requirements of several industrial em-
bedded system applications and offer a structured English grammar to facilitate
the understanding of the meaning of a specification.

A majority of these methods cope with formal specification construction at
a more abstract level compared with formal expression generation. Others that
are intended to support the construction process at the bottom level can be
divided into two kinds. One is automatic or semi-automatic transformation from
informal descriptions into formal specifications using NLP (Natural Language
Processing). However, since NLP is still considered as a unreliable technique,
the correctness of the transformation result is hard to guarantee. The other
is the introduction of specification patterns to provide solutions to re-occurred
problems in writing formal expressions. But they are only capable of facilitating
the formalization of some typical properties and before the suggested formal
expression is generated, developers have to read through and understand all of
the patterns to select an appropriate one and apply it to the specific problem.
Thus, despite of the rising interest, this area is still lack of tool-support.

By contrast, informal descriptions is not treated as the input of our tool. The
desired functions are obtained by gradually clarifying informal ideas with human
involvement. Thus, the performance of the tool will not be affected by NLP
technology. Besides, the knowledge stored in the tool is invisible to developers
and designed for machines to generate guidance, which provides a possibility to
automate the generation process of formal expressions.

3 Tool Design and Implementation

Before presenting the design and implementation of the tool, SOFL is briefly
introduced which serves as the example formal notation in this paper. Readers
who wish to understand the details can refer to the SOFL book [5].

3.1 SOFL

SOFL (Structured Object-Oriented Formal Language) is a formal engineering
method providing both a formal language and a practical method for developing
software systems.

SOFL specification language integrates Data Flow Diagrams, Petri nets and
VDM-SL. A specification in SOFL is composed of a set of modules in a hierar-
chical manner reflecting the architecture of the real system under construction.
Each module is associated with a CDFD (Condition Data Flow Diagram) repre-
senting the behavior of the module and encapsulates necessary data, including

Development of a Supporting Tool for Formalizing Software Requirements 59

Pattern
System

Knowledge base

interface

informal idea

guidance and
formalization

result

Core engine

knowledge
retieval

Knowledge
retrieval

algorithm

stored

transfor-
mation

implemen-
tation

XML
files

Fig. 1. The overall structure of the tool

types and variables, and processes used in the CDFD. These processes are con-
nected by their interfaces and each of them describes the relation between its
associated input and output in terms of pre- and post-conditions.

Since this paper concentrates on formal expression generation process, we as-
sume that the hierarchical relation between specification modules is determined,
as well as their attached types, variables and process interfaces, and the tool is
aimed at assisting developers in writing pre- and post-conditions.

3.2 Tool Design

The description of the tool starts from an overview on the design of the tool and
the included components will then be presented in details respectively.

Overview. Figure 1 shows the overall structure of the tool.
It is composed of two major components: a knowledge base and a core en-

gine. For each unit function of a pre- or post-condition, by retrieving appropri-
ate knowledge from the knowledge base, the core engine produces guidance to
capture informal ideas from the developer and generates corresponding formal-
ization result. The knowledge in the knowledge base is represented in a FSM
model transformed from the pattern system and a set of tags are created to
store the FSM model in XML files. By recognizing these tags, the core engine
extracts necessary information from the XML files and implements a proposed
knowledge retrieval algorithm to interact with the designer through the interface
of the tool.

60 X. Wang and S. Liu

Knowledge Base. As the critical component of the tool, the knowledge base
is built on the basis of a pattern system where each pattern is defined as follows
to be applied by machines to guide the formal description of a kind of functions.

name the identity of the pattern
explanation summary of the functions that the pattern is able to describe
constituents a set of elements that must be specified to apply the pattern

and a set of rules for guiding the specifying process
solution a set of rules for generating formal expressions according to the

specified elements

Figure 2 shows an example pattern where dataType(x) denotes the data type of
variable x and constraint(obj)denotes certain constrains on object obj.

name: delete
explanation: Describing the deletion of data items from certain variables
constituents : obj, objD: Boolean, specifier , onlyOne: Boolean

rules for guidance :
1. if dataType(obj) = basic type then objD = true

else if dataType (obj) = composite | product then objD = false
……

2. (dataType(obj), objD) specifier /* the rule for determining the definition of specifier
according to the data type of the given obj and the value of objD */

(int, true) 㽲 int | set of int
(T 㸢 T’, false) 㽳 (T 㸢 T’ constraint(dom)  constraint(rng)  constraint(dom, rng) 

specifier (1) 㼾 specifier (1))  (dom  rng  dom 㼻 rng)
composite type with n fields f 1, …, fn, false) 㽴㸢 fi  specifier 㼾 specifier (1 㻟 i 㻟 n)
……

……

solution:
(dataType(obj), objD, specifier , onlyOne, reused) 㸢 formalization result

(seq of T, true, constraint(T), false, true) 㽲 㸢

let X = {x:T  constraint (x)} and
exists ![i: int]  ~obj(i) inset X and forall[j: int]  ~obj(j) inset X  j > i and ~obj(0, i - 1) = hd(seqs)
and forall [k: {1, …, len(seqs) - 2}]  exists![l: int]  ~obj(l) inset X and

conc(seqs(k), conc(~obj(l), seqs(k + 1))) = ~obj(l - len(seqs(k)), l + len(seqs(k + 1)))
and exists ![m: int]  ~obj(m) inset X and forall[n: int]  ~obj(n) inset X  n < m

and ~obj(m, len(~obj)) = seqs(len(seqs))
in dconc(seqs)

(composite type with n fields f 1, …, fn, false , fi, false , true) 㽳㸢 delete(obj.fi)
(T 㸢 T’, false, (dom = v, rng), true, false} 㽴㸢 obj = override(~obj, v 㸢 delete (~obj(v)))

……

Fig. 2. Pattern delete

Item explanation and constituents reveal that the pattern delete is applied
for describing deletion functions which need four elements to be specified: obj
denoting the object from which the required data items are deleted; objD de-
noting deletion from parts of obj if evaluated as false and denoting deletion
directly from obj if evaluated as true; specifier denoting the constraints on the
data items to be deleted; onlyOne denoting more than one data item need to be
deleted if evaluated as false.

Development of a Supporting Tool for Formalizing Software Requirements 61

Besides for listing necessary elements in constituents, rules for guiding the
specifying process of these elements are also provided in “rules for guidance”.
For example, if the given obj satisfies certain if condition in rule 1, element
objD will be designated with a value accordingly. Otherwise, the developer will
be asked to make a decision on the value of objD based on the understanding
of the intended function. In rule 2, the definition of specifier is determined by
the given obj and objD. For instance, mapping 1 indicates that if the given obj
is an integer and objD is evaluated as true, element specifier can be either an
integer or a set of integer.

Item solution is defined as a mapping where the formalization result can
be generated depending on five factors: the data type of the given obj, the
values designated to objD, specifier and onlyOne, and whether the pattern is
reused. It can be seen from mapping 2 and 3, there exist informal expressions
in the formalization result comprised of pattern names and parameters. For
instance, expression “delete(obj.fi)” in mapping 3 is a combination of pattern
name “delete” and a parameter “obj.fi”, which represents the formalization
result generated by applying pattern delete with its first element obj designated
as obj.fi. Such an application process is conducted within another upper-level
one and its involved pattern is identified as being reused.

The well-defined individual patterns are organized hierarchically by classi-
fying functions, which forms a pattern system with categories and patterns in
different levels. After analyzing a large number of typical formal specifications
from industry, we found that they describe system behaviors mainly using three
basic functions and the top level of the pattern system is accordingly designed
with three categories: Relation patterns for describing relations between ob-
jects, Recreation patterns for describing modifications on certain objects and
Retrieval patterns for describing certain system variables in formal expressions.
These categories are further classified into sub-categories or patterns. For ex-
ample, Modification and Rearrangement are two of the sub-categories within
Recreation category. The former includes pattern add, alter and delete while the
latter includes pattern sort, group and so on.

To expand the range of expressive functions, the pattern system needs to be
updated by introducing new patterns and adding rules in solution items of exist-
ing patterns. Therefore, if it is directly stored in the knowledge base, the knowl-
edge retrieval algorithm would be increasingly complex and frequently modified.
To this end, the application process of the pattern system is treated as knowl-
edge in our tool which describes how the target formal expression is generated
through an interaction process, since the semantics of interaction processes will
remain the same when they are updated.

Before describing the details of the knowledge, its representation language is
first introduced. Since the knowledge is designed for machines to use and remains
invisible to designers, whether machine processing can be effectively supported
is the major concern of the representation language. As a mature technique for
modeling interactive system behaviors, FSM is easy to be manipulated in an

62 X. Wang and S. Liu

s

x = v1,
y = v2

s'
a/b c(x > 0)/d

x = v1 + a y = v2 - c

s''

Fig. 3. An example FSM

automatic manner and used to represent the knowledge of the tool. We define it
as follows.

Definition 1. A FSM (Finite State Machine) is a 9-tuple
(Q, q0, F, V P, I,G, ϕ, δ, λ) where Q is a non-empty finite set of states,
q0 ∈ Q is the initial state, F ⊂ Q is the set of accept states, V P is a set of
triples (V, V ′, θ) where V is the finite set of system variables, V ′ is a set of
values and θ : V −→ V ′ indicates the value of each v ∈ V , I is the finite
set of symbols, G is the finite set of guard conditions, ϕ : Q −→ V P is the
state function indicating the values of the involved variables on each state,
δ : Q × (I × P(G)) −→ Q is the transition function relating two states by
input and guard conditions, λ : Q × (I × P(G)) −→ I is the output function
determining output based on the current state and input.

In a FSM, each state denotes certain stage of the guidance production process,
each i ∈ I denotes a symbol for composing inputs and outputs, and each g ∈ G
denotes a constraint. Figure 3 shows an example FSM EA where

QEA = {s, s′, s′′}, q0EA = s, FEA = {s′′},
V PEA = {vp1, vp2, vp3} where vp1 = ({x, y}, {v1, v2}, {x→ v1, y → v2}),
vp2 = ({x, y}, {v1 + a, v2}, {x → v1 + a, y → v2}),
vp3 = ({x, y}, {v1 + a, v2− c}, {x → v1 + a, y → v2− c}),
IEA = {a, b, c, d}, GEA = {x > 0}, ϕEA = {s → vp1, s

′ → vp2, s → vp3},
δEA = {(s, (a,∅)) → s′, (s′, (c, {x > 0})) → s′′},
λEA = {(s, (a,∅)) → b, (s′, (c, {x > 0})) → d}

It demonstrates values of system variables on different states by the attached
equations. When EA is activated and stays on state s, system variable x and y
are initialized as v1 and v2 respectively. After receiving an input a, symbol b is
set as output and EA is transferred to state s′ where the value of variable x is
modified to “v1 + a”. Finally, state s′′ will be reached when receiving input c if
property “x > 0” establishes. Meanwhile, variable y will be set as “v2− c”.

Definition 2. Given a FSM A and a state s ∈ QA, AccA(s) ∈ P(I × P(G)) is
an acceptable set on s iff ∀acc∈AccA(s) · (∃s′∈QA · δ(s, acc) = s′).

For each state s in A, (i, G) ∈ AccA(s) means that there exists a transition
originated from s, which will be activated if input i is received and each g ∈ G
can be satisfied. Note that (i,∅) ∈ AccA(s) and (ε,G) ∈ AccA(s) may also
establish. The former indicates a transition that will be triggered on s when

Development of a Supporting Tool for Formalizing Software Requirements 63

Table 1. Symbols involved in FSM models

symbol definition
∑

S Providing items in set S for the designer to choose from

&itemi Selection of item itemi

#k Asking for pressing key k

req(x) Element or variable x is required to be designated with a value

legal(i) Input symbol i is written in defined variables and formal notations

patterns The variable indicating all the patterns in use

pattern The variable indicating the pattern currently being applied

elems A variable of sequence type that holds the values of the elements of pattern

#mM.v The value of variable v in module M

formalExp The variable that holds the generated formal result

... ...

receiving i under any condition and the latter indicates that if each g ∈ G is
satisfied on s, the corresponding transition will be activated without any input.

In order to enable accurate description of input and output in FSM models,
several symbols are introduced as shown in Table 1.

With the definition of the FSM language, the knowledge of the tool can be
given by first analyzing the application process of the pattern system, which
consists of two stages: pattern selection and pattern application. Pattern selec-
tion is conducted by guiding the developer through the pattern system from its
top categories to a pattern p in the bottom level. And the explanation item of p
helps confirm that p is able to assist the description of the intended function.

As soon as the decision on selecting p is made, the application of p starts from
specifying all the elements in its constituents item under the guidance produced
from “rules for guidance”. The obtained element information is then analyzed
in the context of the solution item and a formal result is generated by applying
the appropriate mapping. If there still exist informal expressions in the formal
result, they will be further formalized by applying the involved patterns until
reaching a formal expression.

Figure 4 shows the FSM model of the above application process of the pattern
system where s0 is the initial state and s is one of the accept states.

Paths connecting state s0 and s8 represent the pattern selection process and
the selected pattern is determined on state s8. Originating from state s8, dif-
ferent paths indicate application processes of different patterns. Due to the sake
of space, only the path for the pattern delete is drawn as an example. It starts
from specifying the first element obj in the constituents item. The FSM model
will then be transferred to the next state according to the data type of the given
obj, which reflects rule1 in “rules for guidance”. After all the four elements are
clarified, state t6 will be reached and the generation of the formalization result
is started. Transition t6 → r0 indicates one of the generation paths which sets
variable formalExp as “override(˜obj, v → delete(˜obj(v)))”. Since an informal
expression delete(˜obj(v)) is included, the FSM is not terminated on r0 and the

64 X. Wang and S. Liu

 /
(relation,

recreation,
retrival)

&Relation/ {Non-Hierarchical
relation, Hierarchical

 relation}

&Retrieval/
{Direct,

 Indirect}

&Recreation/
{Modification,

Rearrangement,
 }

patterns = {},
pattern = null,

formalExp =

&p1/

&p2/

&p3/

patterns = {p1},
pattern = p1

patterns = {p2},
pattern = p2,

patterns = {p3},
pattern = p3,

 /

 /

 /

(pattern =
 delete) /

 /
 req(obj)

v (dataType(v) =
T → T) / req(objD)

false /
{constraint(

dom), }

&constraint(
dom) /

#elems
 = []

 | #elems |
 = 4

(dataType(obj) =
T → T , ...) /

formalExp =
override(~obj, v →

delete(~obj(v)))

(legal(
formaExp)) /
formalExp

Fig. 4. The FSM modeling the application process of the pattern system

paths originating from r0 describe the formalization of the expression. The end
state of these paths is the accept state s where legal(formalExp) is satisfied.

Core Engine. A knowledge retrieval algorithm is designed to be implemented
by the core engine to utilize the FSM model and determine the behavior of the
tool. It is conducted as the following steps:

1. Set the current state cs as s0 of the FSM model, and set output as empty.
2. Receive input from the developer if the output requires responses.
3. Analyze the labels in Acc(cs). For the satisfied transition s → s′ labeled

i(G)/o, display o to the designer if it is not empty, set the current state as
s′ and modify variable values according to ϕ(s′).

4. If the current state is an accept state, the tool is terminated with a formal
expression. Otherwise, repeat step 2-4.

3.3 Tool Implementation

The major concern when implementing the above design is the format for storing
the FSM model in the tool. Considering that XML is becoming widely used in
industry for its simplicity, it is used to carry the information in the knowledge
base so that the knowledge can be better shared by other communities.

As a markup language, XML requires a set of tags to identify data with
different meanings. Table 2 shows the XML tags for the FSM model.

In order to demonstrate how the FSM model is represented using the above
tags, the previous example FSM written in XML is given in Figure 5.

Development of a Supporting Tool for Formalizing Software Requirements 65

Table 2. Tags for identifying the elements in the FSM model

tag the corresponding elements in the FSM model

<state> states in Q

<transition> transitions originating from certain state

<input> input of a transition label

<guard> guard condition of a transition label

<output> output of a transition label

<dest> destination states of transitions

<inf> value information of variables on states

<para> variable names

<value> the value of variables

... ...

<state>
<name>s</name>
<inf>
<para>x</para>
<value>v1</value>

</inf>
<inf>
<para>y</para>
<value>v2</value>

</inf>
<transition>
<input>a</input>
<guard></guard>
<output>b</output>
<dest>s'</dest>

</transition>
</state>

<state>
<name>s'</name>
<inf>
<para>x</para>
<value>v1+a</value>

</inf>
<transition>
<input>c</input>
<guard>x>0</guard>
<output>d</output>
<dest>s''</dest>

</transition>
</state>

<state type = “ accept”>
<name>s''</name>
<inf>
<para>y</para>
<value>v2-c</value>

</inf>
</state>

Fig. 5. The example FSM written in XML

Table 3. The informal explanation of the symbols in the FSM model

symbol the corresponding informal guidance
∑{s1, ..., sn} Please choose from the following items: 1. s1 ... n.sn

req(x) Please provide a value for x

#k Please press key k

... ...

Besides, symbols introduced for denoting output in the FSM model are
associated with informal explanations to enable automatic production of in-
formal guidance, as shown in Table 3. Let’s take the first one as an example.
With the informal explanation of symbol

∑{s1, ..., sn}, output
∑{relation,

recreation, retrieval} of the transition s0 → s1 of the FSM model can be auto-
matically transformed into “Please choose from the following items. 1. relation
2. recreation 3. retrieval” when it is exposed to the designer as guidance.

When implementing the tool, the FSM model of the pattern system is stored
as knowledge in a XML file based on the pre-defined XML tags. The core en-
gine extracts state and transition information from the file for implementing

66 X. Wang and S. Liu

Fig. 6. The interface of the tool

Fig. 7. A snapshot of the tool

Development of a Supporting Tool for Formalizing Software Requirements 67

the knowledge retrieval algorithm and produces comprehensible guidance with
informal explanations attached to symbols in output.

Figure 6 shows the interface of the tool where the top left part gives the
architecture of the formal specification under construction, the right half part
displays the content of the selected module with different parts shown in different
areas. The most important component “Interaction Area” in the bottom left
exposes guidance and receives response from the designer.

4 Case Study

A case study on a banking system is presented to illustrate how the tool works.
The banking system mainly provides five services to its customers: deposit, with-
draw, currency transfer and private information management. In the function
private information management, the customer is able to check his account infor-
mation including balance and transaction history, and delete unnecessary data
from the account. For the sake of space, we take the deletion of the designated
transactions as an example.

After creating a new specification for the banking system from the “File”
menu, the tool begins to guide the description of each module sequentially,
including the declaration of types and variables, and the writing of pre- and
post-condition. Assume that a module named PIM is created for describing
the function private information management and all the necessary types and
variables are already defined as shown in Figure 7.

In module PIM , process tranDel corresponds to the function of deleting
designated transactions from certain account. It takes two inputs: accountNo
denoting the account from which the designated transactions are required to be
deleted and delDate denoting the date of the transactions to be deleted, and
produces an output msg denoting a message for conveying the success of the
deletion operation.

The pre-condition of the process is set as true and writing formal expression
for the post-condition needs assistance, which activates the core engine to start
working on the FSM model stored in the XML file. Running from state s0,
the tool first captures the informal idea, through interactions, on an abstract
level where the category of the intended function is determined. Since the main
behavior of process tranDel is a deletion operation, “deleting existing items”
will be chosen under guidance, which is reflected by the “Interaction Area” of
the tool as shown in Figure 8.

Then the tool helps clarify the details of the intended deletion operations.
Leaving state s8 for state t2 where the first element obj is required to be speci-
fied, the core engine generates the corresponding informal requirement “Specify
the object you intend to delete data items from.” in the Interaction Area. Ac-
cording to the example deletion function, deletion operation is performed on
the database that stores the information of all the valid accounts, which is rep-
resented by variable account store defined in the specification. Thus, variable
account store should be the object that contains the data items to be deleted

68 X. Wang and S. Liu

Fig. 8. A snapshot of the Interaction Area

Fig. 9. A snapshot of the Interaction Area

and will be designated as the value of obj when provided as the response to
the above requirement. With the given value, the core engine analyzes all the
transitions originating from state t2 and obtains the one whose guard condition
is satisfied. Due to the fact that variable account store is of mapping type, tran-
sition t2 → t3 is activated and the corresponding output req(objD) is displayed
as “Choose from: 1. deletion from account store 2. deletion from the data items
within account store”. Once decision is made, the core engine continues travers-
ing the FSM model in the knowledge base and leads the interaction with the
designer accordingly, until reaching state t6 where all the necessary informa-
tion for describing the example deletion function is achieved. Part of the above
process is shown in Figure 9.

Development of a Supporting Tool for Formalizing Software Requirements 69

Fig. 10. A snapshot of the Processes Area

Transition t6 → r0 will then be activated since its guard conditions are all
satisfied by the given element values. On the destination state r0, a formalization
result is designated to variable formalExp. It can be seen from the FSM model,
state r0 is not an accept state and the tool will keep on guiding the designer to
formalize the informal expressions in the formalization result. Finally, the core
engine terminates on the accept state s with a formal expression automatically
generated and designated to the post-condition of process tranDel shown in
Figure 10. Within the context of SOFL language, the generated formal expression
correctly reflect the retrieved informal idea.

Such a case study shows that the tool is able to remind the necessary aspects
in describing certain kinds of functions, capture the informal ideas of the in-
tended functions and organize the obtained information into formal expressions,
through interactions. Since the interactions are done in natural language and
the tool handles all the tasks involving formal notations, designers can be free
from insignificant details and focus on function design.

5 Conclusion

This paper describes a tool for supporting the process of formalizing software
requirements. Our main goal is to prevent practitioners from overwhelming tasks

70 X. Wang and S. Liu

on formal notation details. Instead of automating the whole process, human be-
ings are expected to help make critical decisions since designing system behaviors
is an intelligent activity.

Although the case study presented in this paper shows potential strength of
the tool, it is relatively small and an empirical one is needed. We intend to invite
industrial practitioners to use the tool in real practice so that the feasibility of the
underlying theory can be evaluated and the usability of the tool can be improved.

To facilitate the overall construction process, methods for supporting other
aspects of formal specifications need to be considered, such as declaration of
types and variables, and architecture design. Besides, due to the fact that the
performance of the tool largely depends on the knowledge base, how to efficiently
update it is a major concern. We intend to explore a self-learning mechanism in
the future which enables the knowledge base to be updated through interactions.

Acknowledgement. This work is partly supported by the SCAT Foundation
and Hosei University. It is also partly supported under the National Program on
Key Basic Research Project(973 Program) Grant No. 2010CB328102; and NSFC
No 61133001.

References

1. Raymond Abrial, J.: Formal methods: Theory becoming practice. Journal of Uni-
versal Computer Science, 619–628 (2007)

2. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice
and experience. ACM Comput. Surv. 41, 19:1–19:36 (2009)

3. Almeida, J.: An overview of formal methods tools and techniques. Springer (2011)
4. Wang, X., Liu, S., Miao, H.: A pattern system to support refining informal

ideas into formal expressions. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS,
vol. 6447, pp. 662–677. Springer, Heidelberg (2010)

5. Liu, S.: Formal Engineering for Industrial Software Development. Springer (2004)
6. Liu, S., Offutt, A., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: A formal engineering

methodology for industrial applications. IEEE Transactions on Software Engineer-
ing 24, 24–45 (1998)

7. Liu, S.: Formal engineering for industrial software development – an introduction to
the SOFL specification language and method. In: Davies, J., Schulte, W., Barnett,
M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 7–8. Springer, Heidelberg (2004)

8. Liu, S.: Integrating top-down and scenario-based methods for constructing software
specifications. Inf. Softw. Technol. 51, 1565–1572 (2009)

9. Ding, J., Mo, L., He, X.: An approach for specification construction using property-
preserving refinement patterns. In: Proceedings of the 2008 ACM Symposium on
Applied Computing, SAC 2008, pp. 797–803. ACM, New York (2008)

10. Stepney, S., Polack, F., Toyn, I.: An outline pattern language for Z: Five illustra-
tions and two tables. In: Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.) ZB
2003. LNCS, vol. 2651, pp. 2–19. Springer, Heidelberg (2003)

11. Vadera, S., Meziane, F.: From English to formal specifications. The Computer
Journal 37, 753–763 (1994)

12. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering, ICSE 2005, pp. 372–381.
ACM, New York (2005)

Abstract Model Checking with SOFL Hierarchy�

Cong Tian1, Shaoying Liu2, and Zhenhua Duan1

1 ICTT and ISN Lab, Xidian University, Xi’an, China
{ctian,zhhduan}@mail.xidian.edu.cn

2 Department of Computer Science, Hosei University, Japan
sliu@hosei.ac.jp

Abstract. Based on the underlying control flow graphs of programs, model
checking can be applied to software for effective verification. However, state
space explosion forms a major bottleneck that blocks the development of soft-
ware model checking. Undoubtedly, how to achieve proper abstract models of
programs is a key problem. In this paper, instead of the traditional abstraction-
refinement method, we present a new abstract model checking approach for effi-
cient verification of software in large scale by utilizing SOFL hierarchy. Within
this approach, programs are verified from the high-level to low-level structures,
and the state space throughout the verification can be effectively controlled.

Keywords: Model checking, abstraction, SOFL, verification, SPIN.

1 Introduction

Model checking [1–3] is proved to be a successful technology for the verification of
hardware. It works, however, on only finite state machines, and most software systems
have infinitely many states. Therefore, kinds of techniques are developed for obtaining
finite models of software. Even though, the state space of the model can be exponen-
tially larger than the description of the program. This problem, known as state space
explosion, is one of the biggest stumbling blocks to the practical application of model
checking in the verification of large scale software. How to control state space has
therefore been a major direction of research in software model checking [4–7].

Currently, several approaches such as abstraction [8–11], program slicing [12], par-
tial order reduction [13], symbolic [14] and bound [15] techniques, etc., are applied
to model checking to reduce the state space for efficient verification. Among the tech-
niques, abstraction is certainly the most important one in software model checking since
it can obtain finite models from infinite state space. Traditional abstraction technique
preserves all the behaviors of the concrete system but may introduce behaviors that are
not presented originally. Thus, if a property is satisfied in the abstract model, it will still
be satisfied in the concrete model. But if a property is unsatisfiable in the abstract model,
it may still be satisfied in the concrete model, and none of the behaviors that violate the

� This work is supported in part by Hosei University HIF Fellowship, Okawa Foundation, NSFC
Grant (No. 61003078, 61272117, 61133001 and 60910004), 973 Program of China Grant (No.
2010CB328102), and ISN Lab Grant No. ISN1102001.

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 71–86, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 C. Tian, S. Liu, and Z. Duan

property in the abstract model can be reproduced in the concrete model. In case a spuri-
ous counterexample is found, the abstraction should be refined in order to eliminate the
spurious behaviors. This process is repeated until either a real counterexample is found
or the abstract model satisfies the property. Throughout the abstraction-refinement loop,
how to check whether or not a counterexample is a real one, and how to achieve a small-
est (coarsest) refined model are both difficult problems [9, 16, 17]. In addition, infinite
iterations of abstraction-refinement may occur in case of infinite systems. Extremely,
there may exist a counterexample that cannot be judged to be spurious or real.

In this paper, we present a new abstract model checking approach for efficient verifi-
cation of software in large scale by utilizing SOFL hierarchy. SOFL, standing for Struc-
tured Object-oriented Formal Language [18–20], is both a specification language and
a method that integrates formal methods with commonly used techniques for require-
ments analysis, design, and verification in software engineering. A system specification
written in SOFL is a set of related modules in a hierarchical fashion. Each module is a
functional abstraction represented by a Condition Data Flow Diagram (CDFD) where
each vertex denotes a process (an operation, or a set of exclusive operations) and each
edge indicates a data flow. Within this approach, programs are verified from the high-
level (abstract model) to low-level (partially refined model) structures, and the state
space throughout the verification can be effectively controlled.

To this end, how a finite state model can be extracted from the underlying structure,
CDFD, of a SOFL specification is investigated. Then how consistency properties such
as feasibility, composability, invariant-conformance consistency and decompositional
consistency can be verified is discussed. Assuming the consistency of the specification
itself, whether the specification can satisfy the desired properties in the requirement
is verified. We also show how the verification can be implemented using the model
checker SPIN [21]. The main contributions of this paper are in two folds: (1) A new
kind of abstract model checking is proposed where the abstraction-refinement loop is
replaced by a model checking process in hierarchy style. (2) An automatic approach to
feasibility and composability checking of pre- and post-condition based specification is
proposed.

The reminder of this paper is structured as follows. Section 2 briefly introduces the
basic concepts, like hierarchy, processes, data stores and control structures in SOFL.
In Section 3, how a SOFL specification can be transformed to a Kripke structure is
presented with coarse graphs being the intermediary. In sequel, how the Kripke structure
can be represented as a PROMELA model where some inconsistency traps are inserted
into is discussed in Section 4. Section 5 is concerned with the verification of consistency
of specifications as well as the desired properties in the requirements. In Section 6, the
framework of SOFL hierarchy based abstract model checking is drawn. Finally, the
conclusion and future research directions are pointed out in Section 7.

2 SOFL Hierarchy

Generally speaking, a system specification written in SOFL is a set of related modules in
a hierarchical fashion. Each module is a functional abstraction represented by a CDFD
where each vertex denotes a process (or an operation) and each edge indicates a data

Abstract Model Checking with SOFL Hierarchy 73

flow. As illustrated in Fig.1, the high level specification is portrayed by the CDFD-1,
and a refined specification produced by decomposing processes P and Q is described
by CDFD-2 and CDFD-3, respectively. In what follows, we briefly present processes,
data stores and some structures in CDFDs.

Fig. 1. An illustration of SOFL Hierarchy

2.1 Processes

A process performs an action, task, or operation that takes input and produces output. To
model the variety of operations, a process can take several different forms: single port
and multiple ports. A process is composed of five parts: name, input port, output port,
pre-condition and post-condition. Fig. 2 (1) shows a single port process. The name A
of the process is given in the center of the box. The input port is denoted by the narrow
rectangle on the left part of the box, which receives the input data flows x1, ..., xn. The
output port is given on the right part of the box, similar to the input port, to connect to
the output data flows y1, ..., ym. The upper part of the box, a narrow rectangle, denotes
the precondition, while the lower part of the box represents the postcondition. Fig. 2 (2)
depicts a process, named B, with multiple ports. Each xi (i = 1, ..., n) or yj (j = 1, ...,m)
denotes a group of data flows. The short horizontal lines between the input ports denote
the exclusive relation between the groups of data flows in the sense that only one of them
can be consumed in producing the output data flow. Similarly, the short horizontal lines
between the output ports related to y1, ..., ym denote the exclusive relation among y1, ...,
ym. Note that, which of y1, ..., ym is generated can be nondeterministic; but it can also
be deterministic, depending on how process B is formally specified. For convenience, a
process with m, m ≥ 1, input ports and n, n ≥ 1, output ports is called a m-n process.

x1
x2

xn
· · ·

y1
y2

ym
· · ·A

x1

xn

y1

ym
B· · · · · ·

(1) (2)

Fig. 2. Processes

74 C. Tian, S. Liu, and Z. Duan

2.2 Data Stores and Structures

In SOFL, a data store (store for short) is defined as a variable that holds data in rest. In
contrast to data flows, stores do not actively transmit data to any process; rather they
hold data that is always ready to supply to any process when requested. A store has a
name and number for reference by people who are involved in the building of the spec-
ification. There are two ways to connect a store to a process, each denoting a different
kind of access to the data in the store by the process: read and write. Fig.3 illustrates
the different connections between processes and stores. The connection between store
s1 and process A on the left hand side represents a read from the store by the process
during its execution. Note that s1 stays unchanged before and after the execution of the
process. The connection between store s2 and process B given on the right hand side
represents a writing to or updating s2 by B. This does not exclude the case of reading
data from s2, but must ensure that writing to the store is definitely involved. A writ-
ing to the store may include the cases of updating part of the data of s2 or completely
replacing the current data of s2 with new data.

x1 y1A

1 s1

x2 y2B

2 s2

Fig. 3. Connections between processes and stores

To facilitate the usage of SOFL specifications in practice, several other structures, in-
cluding single condition structure, binary condition structure, multiple conditions struc-
ture, non-determinism structure, and broadcasting structure, ect., are provided in SOFL.
Considering the facts that these structures can be easily modeled by processes and data
flows, and that they are not directly used in this paper, we omit the corresponding intro-
duction to save space.

3 From SOFL Specifications to Kripke Structures

For the purpose of model checking, this section focuses on how to extract a finite state
model from the underlying structure, CDFD, of a specification written in SOFL. To this
end, we first transform a CDFD to a state-based graph structure with parallel by decom-
posing processes as operations. Further, a Kripke structure [23] is obtained by replacing
parallel with interleaving, and then decomposing states according to Disjunctive Nor-
mal Forms (DNF) of predicates obtained from the pre- and post-conditions.

3.1 Detachment of Processes

Actually, a process in SOFL can be seen as a capsulation of a set of exclusive operations.
This relation is formally expressed below.

We adopt the definition of operations presented in [18] and modify it slightly.

Abstract Model Checking with SOFL Hierarchy 75

Definition 1. An operation OP is a four tuple, OP = (OPIV ,OPOV ,OPPre,OPPost),
where OP is the name, OPIV the set of all the input variables, OPOV the set of all
the output variables, OPPre the pre-condition, and OPPost the post-condition of the
operation. ��
For convenience, we also represent a process as a tuple.

Definition 2. A m-n process P is a four tuple, P = (IV,OV, Pre, Post), where IV =
{IV1, IV2, ..., IVm} is the set of input variable groups with respect to the m input ports;
similarly, OV = {OV1,OV2, ...,OVn} is the set of output variable groups with respect
to the n output ports; Pre and Post are the pre- and post-conditions of the process,
respectively. ��
Based on the above definitions, a m-n process, P = (IV,OV, Pre, Post), can be further
represented as a set of operations: P = {P i j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. For each i
and j, P i j = (P i jIV ,P i jOV ,P i jPre,P i jPost), where P i jIV = IVi, P i jOV = OV j,
P i jPre = Pre, and P i jPost = Post. Note that the name, P i j, of the operation indicates
that the operation is obtained by consuming the data flows received by the ith input port
and producing data flows to the jth output port of process P. Apparently, a m-n process
can be detached as m × n operations. Especially, when P is a single port process, only
one operation is obtained.

Based on the relationship between operations and processes, as shown in Fig. 4,
a m-n process P can be intuitively detached as the nondeterministic mode of all the
operations contained in P. Accordingly, by detaching all the processes as operations, a
CDFD can be transformed into a state-based graph. In such a graph, each node is named
by P i n (or P o n), meaning that this node is obtained from the nth input (or output)
of process P. Further, the labels of node P i n (or P o n) are Pre and IVn (or Post and
OVn) which are adopted from process P = (IV,OV, Pre, Post), directly.

P i 1

P re P ost

P re P ost

· · ·
P re P ost

P i 2

P i n

P o 1

P o 2

P o m

IV1

IV2

IVn

OV1

OV2

OVm

· · ·

Fig. 4. Detachment of a process

76 C. Tian, S. Liu, and Z. Duan

3.2 Data Stores

Data stores in SOFL can be treated as ‘rd’ (readable) or ‘wr’ (writable) external vari-
ables. Specifically, a ‘rd’ external variable of operation OP provides an unmodifiable
input value to the operation, while a ‘wr’ external variable provides both input and out-
put values to the operation. Based on this, for a ‘rd’ external variable, it is included in
OPIV as an input variable, and for a ‘wr’ external variable, we add it into both OPIV

and OPOV as input and output variables of the operation OP. Thus, it is unnecessary
to consider the operations on data stores individually. To center on the essence of the
verification approach, all the variables involved are restricted to numeric types.

3.3 Elimination of Parallel

In the graph structure obtained by detaching processes, parallel components may exist
since processes in CDFDs may execute in parallel. For instance, in the CDFD shown
in Fig. 5 (1), processes B and C may execute in parallel. Correspondingly, in the graph
structure illustrated in Fig. 5 (2) obtained by detaching processes, the two branches
[B i 1,B o 1] and [C i 1,C o 1] departing from state A o 1 can proceed in parallel.
However, in finite state models, such as automata, Kripke systems and transition sys-
tems, true concurrency is not permitted. Instead, interleaving is used to describe the
parallel executions.

A

(1)

B

C

D A i 1 A o 1

B i 1

C i 1

B o 1

C o 1

D i 1

(2)

D o 1

Fig. 5. CDFD with parallel

To replace a parallel component with interleaving, all the parallel branches in the
parallel component are shuffled. For example, as illustrated in Fig. 6, the parallel com-
ponent in Fig. 5 (2) is replaced with interleaving. Accordingly, with this method, all the
parallel components in the graph obtained from a CDFD can be eliminated. For clarity,
the graph obtained from a CDFD by detaching processes and then eliminating parallel
is called a coarse graph.

3.4 Construction of Kripke Structures

After eliminating parallel components, the underlying structure of a finite state model
is built. However, each state in the established coarse graph is labeled with a predicate
logic formula obtained from the pre- or post-conditions in the specification as well as a
set of input or output variables. Now we focuses on how to further transform the coarse
graph to a Kripke structure where each state is labeled with a set of atomic predicates.

Abstract Model Checking with SOFL Hierarchy 77

A o 1

B i 1 B o 1 C i 1 C o 1

B i 1 B o 1C i 1 C o 1

B i 1 B o 1C i 1 C o 1

C i 1 C o 1B i 1 B o 1

D i 1 D o 1

... ...

Fig. 6. Replacement of parallel with interleaving

For the predicate F labeled on a state s in the coarse graph, we first transform F to
DNF, F =

∨

i

∧

j
Qi j, where each Qi j is an atomic predicate. Let Var(Qi j) be the set of

variables appearing in Qi j, V the set of variables labeled on state s, and V ′1, ..., V ′n the
set of variables labeled on state s′1, ..., s′n, respectively. Qi j is eliminated from of F if
one of the following two conditions holds:

– s is obtained from an input port of a process in the original CDFD, and Var(Qi j) ∩
V = ∅;

– s is obtained from an output port of a process, say P, s′1, ..., s′n are the corresponding
states formed from the input ports of P, and Var(Qi j) ∩ (V ∪ V ′1 ∪ ... ∪ V ′n) = ∅.

For clarity, the DNF achieved by eliminating redundant atomic predicates is denoted as
F′. Subsequently, s is decomposed into several states with respect to the conjunction
clauses in F′. We use an example to explicitly illustrate the essence of the transfor-
mation. For state s1 in the coarse graph shown in Fig.7 (1) with predicate F being
the label, we first transform formula F to disjunctive normal form, and then elim-
inate the redundant atomic predicates. Without loss of generality, we assume F′ =
Q1 ∧ Q2 ∨ ¬Q1 ∧ Q3 ∨ ¬Q2 ∧ Q3. Accordingly, as illustrated in Fig.7 (2), state s1

is decomposed into three new states with the labels being {Q1,Q2}, {¬Q1,Q3} and
{¬Q2,Q3}, respectively. Meanwhile, the transitions related to the original state s1 are

s0 s1 s2 s0 s2s1
1

s1
2

s1
0

(1) (2)

F Q1, Q2

¬Q1, Q3

¬Q2, Q3

Fig. 7. From coarse graphs to Kripke structures

78 C. Tian, S. Liu, and Z. Duan

duplicated and put onto the new created states. With this method, a Kripke structure
can be obtained through the coarse graph of a specification.

4 Establishment of PROMELA Models

To detect the inconsistency of a specification, some traps are inserted into the obtained
Kripke structure, and a transition system is established.

Recall that in the Kripke structure obtained in the previous section, a node s is labeled
with a set Sp of atomic predicates and a set Sv of variables (the set of input or output
variables of the corresponding input or output port of the original process). In fact,
if s is obtained from an input port, all the variables occurring in Sp are contained in
Sv, whereas, there may exist some predicates P ∈ Sp such that none of the variables
occurring in P are contained in Sv, if s is obtained from an output port. In the latter
case, according to whether there exist variables occurring in both P and Sv, predicates
in Sp are classified into guard conditions and defining conditions. The formal definition
is presented below.

Definition 3. In a Kripke structure, for a state s, obtained from an output port, with
labels Sp and Sv,

– P ∈ Sp is called a guard condition if Var(P) ∩ Sv = ∅;
– P ∈ Sp is called a defining condition if Var(P) ∩ Sv � ∅. ��

Accordingly, the set Sp of atomic predicates can be separated into Sp = Scp ∪ Sdp, where
Scp is the set of guard conditions and Sdp the set of defining conditions. Intuitively, a
guard condition does not change the value of any variables, while a defining condition
redefines (or updates) the value of some variables. Therefore, for a state s obtained from
an input port, all the predicates in Sp are guard conditions since pre-conditions do not
change the value of any variables.

By treating a state as some operations on variables and a transition as the guard
condition of the subsequent operations, the Kripke structure can be represented as a
transition system. Specifically, for a node obtained from an input port, say node P i 1
in Fig. 8 (1), Sp is relabeled on the edge incoming to node P i 1 as shown in P i 1 in
Fig. 8 (2); while for a node obtained from an output port, for example node P o 1 in

P i 1

Sp

P o 1

Sv
S′

p = S′
cp ∪ S′

dp
S′

v
P i 1

Sp
P o 1

Sv
S′

v
S′

dp
S′

cp

(1) (2)

P i 1
Sp

Sv
(3)

P i 1
Sp

Sv(4)

Init

Fig. 8. From Kripke structure to transition system

Abstract Model Checking with SOFL Hierarchy 79

Fig. 8 (1), the guard conditions S ′cp are moved to the edge incoming to node P o 1
as depicted in Fig. 8 (2). Further, for an initial node, like P i 1 in Fig. 8 (3), a node
Init denoting the initialization of variables is added as the previous node of P i 1 as
illustrated in Fig. 8 (4).

To facilitate the consistency checking, we further add infeasibility and incomposabil-
ity traps into the transition systems. As depicted in Fig. 9 (1), when none of the guard
conditions in P o 1, ..., P o m can be satisfied, a transition from node P i 1 to an extra
node !Fea, meaning infeasible, is added; In contrast, as shown in Fig. 9 (2), when none
of the guard conditions in Q i 1, ..., Q i m are satisfied, a transition from node P o 1 to
an extra node !Com, meaning incomposable, is included.

P i 1

P o 1

P o 2

P o m

...

Sv,1Sdp,1

Sp

Scp,2
S
cp,m

Sv,2Sdp,2

Sv,mSdp,m

S cp
,1

Sv

!Fea

!Scp,1∧!Scp,2∧!Scp,m

P o 1
Sp,2

S
p,n

S p,1

Sv

Q i 1

Q i 2

Q i n

...

Sv,1

Sv,2

Sv,n

Scp

Sdp

!Com

!Sp,1∧!Sp,1∧!Sp,n

(1)

(2)

Fig. 9. Transition system with infeasibility or incomposability traps

Subsequently, to implement the verification within the model checker SPIN, the tran-
sition system is further expressed in the syntax of PROMELA language which can be
accepted by SPIN. The translation from a transition system to a PROMELA model is
simple:

– treating each state in the transition system as a progress state label in PROMELA;
– expressing the transition relations from a state with a selection structure

in PROMELA.

Table. 1 shows the outline of PROMELA model of a SOFL specification.

80 C. Tian, S. Liu, and Z. Duan

5 Verification of SOFL Specifications

Generally speaking, the properties in a SOFL specification can be categorized into two
folds: (1) consistency of the specification itself, e.g. feasibility and composability; (2)
satisfaction of the functional requirement, i.e. whether the specification precisely re-
flects the critical properties, such as safety and liveness, in the requirement.

5.1 Consistency

In literature [20], for the purpose of specification inspection, consistency properties are
classified into four categories: feasibility, composability, invariant-conformance consis-
tency, and decompositional consistency. In the remainder of this part, we concentrate
on how to manage these four kinds of consistency properties with model checking.

Feasibility. The feasibility of a process means that for any input meeting its pre-
condition, there exists an output that satisfies its post-condition, i.e. the consistency
between the pre- and post-conditions of a process. Correspondingly, in the transition
system, as illustrated in Fig. 10, if node !Fea is reachable from node P i 1, we say that
output port 1 of process P is infeasible. Accordingly, if node !Fea is reachable from all
of the nodes in P i 1, ..., P i n, we can declare that process P is infeasible.

P i 1 P o 1

P o 2

P o m

...

Sv,1Sdp,1

Sp1
S
cp,2S

cp
,m

Sv,2Sdp,2

Sv,mSdp,m

Scp,1

Sv1

!Fea

!Scp,1∧!Scp,2∧!Scp,m

P i n
Spn

Scp,2

Scp,m

S cp
,1

Svn

...

!Scp,1∧!Scp,2∧!Scp,m

Fig. 10. Feasibility checking

To check the feasibility of a CDFD, we use temporal logic formula �(inFea ! = true)
to describe that always state !Fea is unreachable. When implemented using SPIN, in the
case of no errors being reported, the specification is feasible. Otherwise, some errors are
reported, and each time a counter example is provided by the simulator in SPIN. Based
on each counter example, an infeasible input port of some process can be detected. For
instance, if a counter-example< A i 1,A o 1,B i 1,B o 1,C i 1, !Fea > is reported as
shown in Fig.11, we say that input port 1 of process C is infeasible. By analyzing all the
counter-examples, if all the input ports of a process, say P, is infeasible, it determines
that process P is infeasible.

Abstract Model Checking with SOFL Hierarchy 81

Table 1. Outline of the PROMELA model

active proctype CDFD-PROMELA()

{
type x1; ... type xn;

/∗Declaration and initialization of variables involved in the CDFD∗/
bool inFea=0; bool inCom=0;

/∗ Boolean variables for Feasibility and composability∗/
Init: /∗ Init state∗/
if /∗ Transitions from Init state ∗/
:: S p,1 goto P i 1
:: ...

:: S p,m goto P i m
:: !S p,1∧!S p,m goto !Com /∗ Go to !Com state ∗/
:: ...

:: S q,1 goto Q i 1
:: ...

:: S q,n goto Q i n
:: !S q,1 ∧ ...∧!S q,n goto !Com /∗ Go to !Com state ∗/
fi;

... ...

P i 1: /∗ P i 1 state∗/
if /∗ Transitions from P i 1 state ∗/
:: S cp,1 goto P o 1
:: ...

:: S cq,n goto P o n
:: !S cp,1 ∧ ...∧!S cp,n goto !Com /∗ Go to !Com state ∗/
fi;

... ...

P o 1: /∗ P o 1 state ∗/
if /∗ Transitions from P o 1 state ∗/
:: S r,1 goto R i 1
:: ...

:: S r,m goto R i m
:: !S r,1 ∧ ...∧!S r,m goto !Fea /∗ Go to !Fea state ∗/
fi;

... ...

!Inf: /∗ !Inf state∗/
inFea=1; skip;

!Com: /∗ !Com state∗/
inCom=1; skip;

}

82 C. Tian, S. Liu, and Z. Duan

A i 1

!Fea

A o 1 B i 1 C i 1B o 1 C o 1

Fig. 11. A counterexample

Composability. Composability is intended to ensure that the pre-condition of a pro-
cess in a specification is always satisfied by its input data. The pre-condition of a pro-
cess defines the responsibility for the operational environment that supplies the input
data. To ensure this property, the pre-condition of the process and the post-conditions
of all the preceding processes must be consistent, because the preceding processes pro-
duce the input data flows for the process. Correspondingly, in the transition system,
as illustrated in Fig. 12, if node !Com is reachable from node P o 1 via transition
!S p1,1∧!S p1,2∧!S p1,m, we say input port 1 of process Q is incomposable. Accordingly,
if all of the input ports of process Q is incomposable, we can declare that process Q is
incomposable.

Q i 1P o 1

R o 1

Sp1,1

!Com

Q i n

S
p
n
,1

...

!Sp1,1∧!Sp1,2∧!Sp1,m

S p1
,m

Spn,m

!Spn,1∧!Spn,2∧!Spn,m

Fig. 12. Composability checking

To check the composability of a CDFD, we use temporal logic formula �(inCom ! =
true) to describe that always state !Com is unreachable. When implemented using
SPIN, in the case of no errors being reported, the specification is composable. Oth-
erwise, some errors are reported, and each time a counter example is provided by the
simulator in SPIN. Based on each counter example, an incomposable input port of some
process can be detected. For instance, if a counter-example< A i 1,A o 1,B i 1,B o 1,
!Com > is reported as shown in Fig.13, we say that input port 1 of process C is incom-
posable. By analyzing all the counter-examples, if all the input ports of a process, say
P, is incomposable, it determines that process P is incomposable.

Invariant-Conformance Consistency. The invariant-conformance consistency
requires that each invariant cannot be violated by the pre- and post-conditions of the
related processes. That is, when the pre- or post-condition of a related process evalu-
ates to true, the invariant must hold. This can be directly verified via model checking

Abstract Model Checking with SOFL Hierarchy 83

A i 1

!Com

A o 1 B i 1 C i 1B o 1 C o 1

Fig. 13. A counterexample

by expressing the invariant with a temporal logic formula. Here we use an example
to show how to express an invariant in a temporal logic formula. Let x be an inte-
ger variable ranging over [−255, 255]. Thus, throughout the execution, it is always
required that −255 ≤ x ≤ 255. This can be expressed by temporal logic formula:
�((x ≤ 255) ∧ (x ≥ −255)). When implemented using a model checker, anytime, if the
invariant is violated, a counterexample is provided to show where it occurs.

Decompositional Consistency. Decompositional consistency is a property concerned
with a process and its decomposition. A process is consistent with its decomposition if,
and only if, for any input satisfying the pre-condition of the process, the output produced
by the decomposition satisfies the post-condition of the process. Without loss of gener-
ality, we show how the decompositional consistency can be verified through a simple
example. The CDFD depicted in Fig.14 (2) is a decomposition of the process in Fig.14

x1 y1
P y2x2

Pre

Post

x1
y1P 1

Pre1

Post1
x2

y2P 2

Pre2

Post2

z

x1
y1P 1

Pre∧ Pre1

Post∧ Post1
x2

y2P 2

Pre∧Pre2z

(1)

(2)

(3)

Post∧Post2

Fig. 14. Kripke structure with decompositional consistency information

84 C. Tian, S. Liu, and Z. Duan

(1). The decompositional consistency can be checked via checking the composability
of process P 1, as well as the feasibility of processes P 1 and P 2 in Fig.14 (3). The pre-
condition of process P 1 (or P 2) in Fig.14 (3) is the conjunction of the pre-conditions
of process P and P 1 (or P 2) in Fig.14 (1) and (2), respectively; the post-conditions
of processes P 1 (or P 2) in Fig.14 (3) are the conjunction of the post-conditions of
process P in Fig.14 (1) and process P 1 (or P 2) in Fig.14 (2), respectively.

5.2 Critical Properties in Functional Requirements

Assuming the consistency of a specification, it is still hard to make sure that the spec-
ification correctly reflects the functional requirements of the users. In particular, it is
important that whether the significant properties are satisfied in the specification.

The requirements that designers wish to impose on systems fall basically into two
categories: (1) safety properties state that “something bad never happens”; (2) liveness
properties express that “something good will eventually happen”. For a safety property,
it is usually described with a temporal logic [22] formula, �¬p, where p is a predicate
indicating something bad. Whereas, for a liveness property, formula ♦q is used to spec-
ify that q, something good, will eventually occur. In what follows, take the ATM system
(in Japan) for example, we show how to check the satisfaction of the critical properties
in users’ requirements.

One important property in ATM system is: No overdraw is allowed. To express this
property in temporal logic formulas, several useful variables are defined first.

int account balance; /* The-balance of the account*/
int withdraw amount; /* Amount to be withdrawn*/
bool withdrawn = 0; /* Requested amount has not been withdrawn*/

Accordingly, the property can be specified with the following temporal logic formulas.
Safety: Anytime, if the withdraw amount requested is larger than the current balance,
the transaction will never be done.

�((withdraw amount > account balance)→ (withdrawn == 0))

Liveness: Anytime, if the withdraw amount requested is less or equal to the current
balance, the transaction will eventually be done.

�((withdraw amount <= account balance)→ ♦(withdrawn == 1))

Providing the PROMELA model and the above desired properties, SPIN can be used
to check whether the system satisfies the properties, automatically.

6 Abstract Model Checking Framework

Based on the discussions in the previous sections, we present the framework for ab-
stract model checking with SOFL hierarchy. As portrayed in Fig.15, on abstract mod-
els (Kripke structures) of each level, feasibility, composability, invariant-conformance
consistency as well as critical properties can be checked,independently. While between
the two models under refinement (decomposition) relationship, decompositional
consistency are checked.

Abstract Model Checking with SOFL Hierarchy 85

Fig. 15. Abstract model checking framework

7 Conclusion

We present a new abstract model checking approach for efficient verification of soft-
ware in large scale by utilizing SOFL hierarchy. Within this approach, programs are
verified from the high-level to low-level structures, and the state space throughout the
verification can be effectively controlled.

In our experience, the method works well for all the examples we adopted currently.
However, it still needs to be evaluated via big examples with industrial scale. To do
so, supporting tools will be developed in the near future for automatically establish-
ing PROMELA model from a specification written in SOFL. We will also extend the
approach to deal with data with complex data structures, such as set, sequence, and
composite types.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)

2. Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:
Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–
351. Springer, Heidelberg (1982)

3. Clarke, E.M., Grumber, O., Peled, D.: Model Checking. MIT Press (2000)
4. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4) (2009)
5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.

Software Tools for Technology Transfer 9(5-6), 505–525 (2007)

86 C. Tian, S. Liu, and Z. Duan

6. Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, L.S., Zheng, H.: Bandera: Extract-
ing finite-state models from Java source code. In: ICSE 2000: Software Engineering, pp.
439–448 (2000)

7. Havelund, K., Pressburger, T.: Model checking Java programs using Java Pathfinder. Soft-
ware Tools for Technology Transfer (STTT) 2(4), 72–84 (2000)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169.
Springer, Heidelberg (2000)

9. Clarke, E.M., Gupta, A., Strichman, O.: SAT Based Counterexample-Guided Abstraction-
Refinement. IEEE Trans. Computer Aided Design 23(7), 1113–1123 (2004)

10. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction
Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794 (2003)

11. Saı̈di, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs, N., Peled,
D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg (1999)

12. Dwyer, M.B., Hatcliff, J.: Slicing Software for Model Construction. In: PEPM 1999, pp.
105–118 (1999)

13. Godefroid, P., Wolper, P.: A Partial Approach to Model Checking. Inf. Comput. 110(2), 305–
326 (1994)

14. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Check-
ing: 1020 States and Beyond. In: LICS 1990, pp. 428–439 (1990)

15. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Ad-
vances in Computers 58, 118–149 (2003)

16. Tian, C., Duan, Z.: Making Abstraction-Refinement Efficient in Model Checking. In: Fu,
B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 402–413. Springer, Heidelberg
(2011)

17. He, F., Song, X., Hung, W.N.N., Gu, M., Sun, J.: Integrating Evolutionary Computation with
Abstraction Refinement for Model Checking. IEEE Trans. Computers 59(1), 116–126 (2010)

18. Liu, S., Nagoya, F., Chen, Y., Goya, M., McDermid, J.A.: An Automated Approach to
Specification-Based Program Inspection. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005.
LNCS, vol. 3785, pp. 421–434. Springer, Heidelberg (2005)

19. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL Method.
Springer, Berlin, ISBN 3-540-20602-7

20. Liu, S., McDermid, J.A., Chen, Y.: A Rigorous Method for Inspection of Model-Based For-
mal Specifications. IEEE Transactions on Reliability 59(4), 667–684 (2010)

21. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineering 23(5),
279–295 (1997)

22. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pp. 46–67. IEEE, New York (1977)

23. Kripke, S.A.: Semantical analysis of modal logic I: Normal propositional calculi. Z. Math.
Logik Grund. Math. 9, 67–96 (1963)

24. D’Silva, V., Kroening, D., Weissenbacher, G.: A Survey of Automated Techniques for For-
mal Software Verification. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 27(7), 1165–1178 (2008), doi:10.1109/TCAD.2008.923410

Model Checking C Programs with MSVL�

Yan Yu1, Zhenhua Duan1,��, Cong Tian1, and Mengfei Yang2

1 ICTT and ISN Lab, Xidian University, Xi’an, 710071, P.R. China
2 China Academy of Space Technology, Beijing, 100094, P.R. China

Abstract. This paper presents an approach for model checking C programs with
MSVL. To do so, we translate C programs into MSVL (modeling simulation and
verification language) programs, and specify the desired property by a propo-
sitional projection temporal logic (PPTL) formula; then we employ the unified
model checking approach to check whether the MSVL program satisfies the
PPTL formula. If so, the program is correct; otherwise, a counterexample can
be found. The translation algorithm from C to MSVL programs is introduced in
details. In addition, an example is given to illustrate how the approach works.

Keywords: Temporal Logic, MSVL, Model Checking, Verification, Translation.

1 Introduction

C is one of the most widely used programming languages for the development of soft-
ware systems. How to guarantee the correctness and reliability of C programs is a grand
challenge to computer scientists and software engineers. In the past four decades, a
number of testing techniques and verification approaches have been proposed for test-
ing and verifying C programs with success. In particular, model checking is an auto-
matic approach for verification[1–3] of C programs. With this approach, to verify a C
program, an abstract model which describes the behaviors of the program must be ex-
tracted from the C program. Further, the property[4–6] to be verified can be specified
by a temporal logic[7, 9, 10] (TL) formula. Then, a model checker is employed to check
whether or not the model satisfies the property. If the model cannot satisfy the property,
a counterexample is provided. As we can see, using model checking for verifying C
programs suffers from the process which extracts the model from C programs since this
process is not straightforward. On the other hand, with temporal logic programming,
such as MSVL (modeling simulation verification language), approach for model check-
ing, the behaviors of a system is described by an MSVL program and the property to
be verified is described by a propositional projection temporal logic (PPTL) formula.
Then, the unified model checking algorithm can be employed to verify whether or not
the MSVL program satisfies the PPTL formula. As a matter of fact, with this approach,
to verify C programs we have to rewrite the C program into MSVL programs, this is
another burden for programmers. So we are motivated to work out a general translation

� This research is supported by NSFC Grants (No. 61133001, 6091004, 61272117, 61272118,
61003078, and 61202038), 973 Program (No.2010CB328102), and ISN Lab Grant No.
ISN1102001.

�� Corresponding author.

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 87–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

88 Y. Yu et al.

program which can automatically transfer a C program into a MSVL program, so that
the model checking process can be automatically and directly conducted based on C
programs.

To do so, we first analyze syntax and semantics of the C programs by means of
lex and yacc within Paser Generator, and store the information in terms of a specified
storage structure; second, we present an algorithm to achieve the translation from C
statements to MSVL statements one by one; finally, all of statements in MSVL corre-
sponding to C statements are generated. As a result, whenever a C program is input as a
parameter, an equivalent MSVL program is produced. Therefore, to verify a C program,
we only need to translate the C program into MSVL program and then verify the MSVL
program based on the existing verification techniques.

The contributions of this paper are two-fold: (1) We design and implement a trans-
lator in C++ which translates any C program into an equivalent MSVL program. (2)
We give an example to show how the translator works and conduct a model checking
process to verify the property of the C program automatically.

The rest of this paper is organized as follows. In the next section, the unified model
checking approach with MSVL and PPTL is briefly presented. In Section 3, an algo-
rithm is formalized to implement the translation from C programs to MSVL programs.
An example is given in Section 4 to show how the translation algorithm works, and
how we use the algorithm to achieve our goals of directly verifying a C program. Fi-
nally, conclusions are drawn in Section 5.

2 Preliminaries

2.1 Projection Temporal Logic

2.1.1 Syntax
Let Π be a countable set of propositions, and V a countable set of typed static and
dynamic variables. B = {true, false} represents the boolean domain and D denotes
all the data we need including integers, strings, lists, etc. The terms e and formulas p
are given by the following grammar:

e ::= v | ©e | -©e | f(e1, . . . , en)
p ::= π | e1 = e2 | P (e1, . . . , en) | ¬p | p1 ∧ p2 | ∃v : p | ©p | (p1, . . . , pm) prj p

where π ∈ Π is a proposition, and v a dynamic or static variable. In f(e1, . . . , en)
and P (e1, . . . , en), f is a function and P a predicate. It is assumed that the types of
the terms are compatible with those of the arguments of f and P . A formula (term) is
called a state formula (term) if it does not contain any temporal operators (i.e.©, -©
and prj), otherwise it is a temporal formula (term).

2.1.2 Semantics
A state s is a pair of assignments (Iv, Ip) where for each variable v ∈ V defines s[v] =
Iv[v], and for each proposition π ∈ Π defines s[π] = Ip[π]. Iv[v] is a value in D or
nil (undefined), whereas Ip[π] ∈ B. An interval σ =< s0, s1, · · · > is a non-empty
(possibly infinite) sequence of states. The length of σ, denoted by |σ|, is defined as ω

Model Checking C Programs with MSVL 89

if σ is infinite; otherwise it is the number of states in σ minus one. To have a uniform
notation for both finite and infinite intervals, we will use extended integers as indices.
That is, we consider the set N0 of non-negative integers and ω, Nω = N0 ∪ {ω}, and
extend the comparison operators, =, <,≤, to Nω by considering ω = ω, and for all i ∈
N0, i < ω. Moreover, we define � as ≤ −{(ω, ω)}. With such a notation, σ(i..j)(0 ≤
i � j ≤ |σ|) denotes the sub-interval < si, . . . , sj > and σ(k)(0 ≤ k � |σ|) denotes
< sk, ..., s|σ| >. The concatenation of σ with another interval (or empty string) σ′ is
denoted by σ·σ′. To define the semantics of the projection operator we need an auxiliary
operator for intervals. Let σ =< s0, s1, · · · > be an interval and r1, . . . , rh be integers
(h ≥ 1) such that 0 ≤ r1 ≤ r2 ≤ · · · ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is
the interval (called projected interval), σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl >, where
t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. For example,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >

An interpretation for a PTL term or formula is a tuple I = (σ, i, k, j), where σ =<
s0, s1, · · · > is an interval, i and k are non-negative integers, and j is an integer or
ω, such that i ≤ k � j ≤ |σ|. We use (σ, i, k, j) to mean that a term or formula is
interpreted over a subintervalσ(i..j) with the current state being sk. For every term e, the
evaluation of e relative to interpretation I = (σ, i, k, j) is defined as I[e], by induction
on the structure of a term, as shown in Fig.1, where v is a variable and e1, . . . , em are
terms.

I[v] = sk[v] = Ikv [v]

I[©e] =

{
(σ, i, k + 1, j)[e] if k < j
nil otherwise

I[-©e] =

{
(σ, i, k − 1, j)[e] if i < k
nil otherwise

I[f(e1, . . . , em)] =

{
f(I[e1], . . . , I[em]) if I[eh] �= nil for all h
nil otherwise

Fig. 1. Interpretation of PTL terms

The satisfaction relation, |=, for formulas is inductively defined as follows.

1. I |= π if sk[π] = Ikp [π] = true.
2. I |= e1 = e2 if I[e1] = I[e2].
3. I |= P (e1, . . . , em) if P is a primitive predicate other than = and, for all h, 1 ≤

h ≤ m, I[eh] �= nil and P (I[e1], . . . , I[em]) = true.
4. I |= ¬p if I �|= p.
5. I |= p1 ∧ p2 if I |= p1 and I |= p2.
6. I |= ∃v : p if for some interval σ′ which has the same length as σ, (σ′, i, k, j) |= p

and the only difference between σ and σ′ can be in the values assigned to variable
v at k.

7. I |= ©p if k < j and (σ, i, k + 1, j) |= p.

90 Y. Yu et al.

8. I |= (p1, . . . , pm) prj q if there exist integers k = r0 ≤ r1 ≤ . . . ≤ rm ≤
j such that (σ, i, r0, r1) |= p1, (σ, rl−1, rl−1, rl) |= pl (for 1 < l ≤ m), and
(σ′, 0, 0, |σ′|) |= q for one of the following σ′:
(a) rm < j and σ′ =σ↓(r0, ..., rm)·σ(rm+1..j)

(b) rm = j and σ′ =σ↓(r0, . . . , rh) for some 0 ≤ h ≤ m.

A formula p is said to be:

1. satisfied by an interval σ, denoted by σ |= p, if (σ, 0, 0, |σ|) |= p.
2. satisfiable, if σ |= p for some σ.
3. valid, denoted by |= p, if σ |= p for all σ.
4. equivalent to another formula q, denoted by p ≡ q, if |= (p ↔ q).

The abbreviations true, false,∧,→ and ↔ are defined as usual. In particular, true
def
=

P ∨ ¬P and false
def
= ¬P ∧ P for any formula P . Also some derived formulas are

shown in Fig.2.

empty
def
= ¬© true more

def
= ¬empty

halt(p)
def
= �(empty ↔ p) keep(p)

def
= �(¬empty → p)

fin(p)
def
= �(empty → p) skip

def
= ¬empty

x◦ = e
def
= ©x = e x := e

def
= skip ∧ x◦ = e

len(0)
def
= empty len(n)

def
= ©len(n− 1)(n > 0)

Fig. 2. Derived formulas

2.2 Propositional Projection Temporal Logic

Let Prop be a countable set of atomic propositions. The formula of PPTL is given by
the following grammar:

p ::= π | ©p | ¬p | p1 ∨ p2 | (p1, . . . , pm) prj p | p+
where π ∈ Prop, p1, . . . , pm are all well-formed PPTL formulars. A formula is called
a state formula if it contains no temporal operators.

Following the definition of Kripke structure, we define a state s over Prop to be a
mapping from Prop to B = {true, false}, s : Prop → B. We will use s[π] to denote
the valuation of π at state s. Intervals, interpretation and satisfaction relation can be
defined in the same way as in the first order case.

2.3 Modeling, Simulation and Verification Language

The language MSVL with frame [8] technique is an executable subset of PTL and
used to model, simulate and verify concurrent systems. The arithmetic expression e and
boolean expression b of MSVL are inductively defined as follows:

e ::= n | x | ©x | -©x | e0 op e1(op ::= +| − | ∗ |/|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

Model Checking C Programs with MSVL 91

where n is an integer and x is a variable. The elementary statements in MSVL are de-
fined as follows:

Assignment: x = e
P-I-Assignment: x ⇐ e

Conditional: if b then p else q
def
= (b → p) ∧ (¬b → q)

While: while b do p
def
= (b ∧ p)∗ ∧�(empty → ¬b)

Conjunction: p ∧ q
Selection: p ∨ q
Next: ©p
Always: �p
Termination: empty
Sequential: p; q
Local variable: ∃x : p
State Frame: lbf(x)
Interval Frame: frame(x)

Parallel: p ‖ q
def
= p ∧ (q; true) ∨ q ∧ (p; true)

Projection: (p1, . . . , pm) prj q

Await: await(b)
def
= (frame(x1) ∧ · · · ∧ frame(xh)) ∧�(empty ↔ b)

where xi ∈ Vb = {x|x appears in b}
where x denotes a variable, e stands for an arbitrary arithmetic expression, b a boolean
expression, and p1, . . . , pm, p and q stand for programs of MSVL. The assignment
x = e, x ⇐ e, and empty, lbf(x) as well as frame(x) can be regarded as basic
statements and the others composite ones.

The assignment x = e means that the value of variable x is equal to the value of
expression e. Positive immediate assignment x ⇐ e indicates that the value of x is
equal to the value of e and the assignment flag, px, for variable x is true. Statements
if b then p else q and while b do p are the same as that in the conventional imper-
ative languages. p ∧ q means that p and q are executed concurrently and share all the
variables during the mutual execution. p ∨ q means p or q are executed. The next state-
ment ©p means that p holds at the next state while �p means that p holds at all the
states over the whole interval from now. empty is the termination statement meaning
that the current state is the final state of the interval over which the program is exe-
cuted. The sequence statement p; q means that p is executed from the current state to
its termination while q will hold at the final state of p and be executed from that state.
The existential quantification ∃x : p intends to hide the variable x within the process
p. lbx(x) means the value of x in the current state equals to value of x in the previous
state if no assignment to x occurs, while frame(x) indicates that the value of vari-
able x always keeps its old value over an interval if no assignment to x is encountered.
Different from the conjunction statement, the parallel statement allows both the pro-
cesses to specify their own intervals. e.g., len(2)‖len(3) holds but len(2) ∧ len(3) is
obviously false. Projection can be thought of as a special parallel computation which
is executed on different time scales. The projection (p1, . . . , pm) prj q means that q is
executed in parallel with p1, . . . , pm over an interval obtained by taking the endpoints

92 Y. Yu et al.

of the intervals over which the p,is are executed. In particular, the sequence of p,is and q
may terminate at different time points. Finally, await(b) does not change any variable,
but waits until the condition b becomes true, at which point it terminates.

Further, the following derived statements are useful in practice.

Multiple Selection: ORn
K=1

def
= p1 ∨ p2 ∨ . . . ∨ pn

Conditional: if b do p
def
= if b do p else empty

When: when b do p
def
= await(b); p

Guarded Command: b1 → pn� . . .�bn → pn
def
= ORn

k=1 (when bk do pk)

Repeat: repeat p until c
def
= p;while¬c do p

2.4 Unified Model Checking Approach

The idea of unified model checking approach [11] is as follows: modeling the system to
be verified by an MSVL program p, and specifying the desired property of the system
by a PPTL formula φ, to check whether or not the system satisfies the property, we need
to prove the validation of

p → φ

If p → φ is valid, the system satisfies the property, otherwise, the system violates the
property. Equivalently, we can check the satisfiabbility of

¬(p → φ) ≡ p ∧ ¬φ

If p ∧ ¬φ is unsatisfiable, (p → φ) is valid, and the system satisfies the property, oth-
erwise, the system fails to satisfy the property. For each σ |= p ∧ ¬φ, σ determines a
counterexample that the system violates the property. Accordingly, our model checking
approach can be translated to the satisfiability of PTL formulas of the form p ∧ ¬φ,
where p is an MSVL program and φ is a formula in PPTL. Since both model p and
property φ are formulas in PTL, we call this model checking approach as unified model
checking.

To check the satisfiability of PTL formula p ∧ ¬φ, we construct the NFG (Normal
Form Graph) of p ∧ ¬φ. As depicted in Fig.3, initially, we create the root node p ∧
¬φ, then we rewrite p and ¬φ into their normal forms respectively. By computing the
conjunction of normal forms of p and ¬φ, new nodes ε and pfj ∧ ¬φfs, and edges
(p ∧ ¬φ, pei ∧ ¬φck, ε) from node p ∧ ¬φ to ε, (p ∧ ¬φ, pcj ∧ ¬φcs, pfj ∧ ¬φfs) from
p ∧ ¬φ to pfj ∧ ¬φfs are created. Further, by dealing with each new created nodes
pfj ∧ ¬φfs using the same methods as the root nodes p ∧ ¬φ repeatedly, the NFG of
p ∧ ¬φ can be produced. Thus, it is apparent that each node in the NFG of p ∧ ¬φ is in
the form of p′ ∧ ¬φ′, where p′ and φ′ are nodes in the NFGs of p and ¬φ respectively.

In the NFG of formula q ≡ p ∧ ¬φ, a finite path, Π =< q, qe, q1, q1e, . . . , ε >, is an
alternate sequence of nodes and edges from the root to ε node, while an infinite path,
Π =< q, qe, q1, q1e >, is an infinite alternate sequence of nodes and edges emanating
from the root. Similar to the proof in [12], it can be proved that, the paths in the NFG
of q precisely characterize models of q. Thus, if there exists a path in the NFG of q, q is
satisfiable, otherwise unsatisfiable.

Model Checking C Programs with MSVL 93

Fig. 3. Constructing NFG of p ∧ ¬φ

3 Translating C Programs into MSVL Programs

In this section, we present the main procedure of transforming a C program into an
MSVL program, Fig.4 shows the general process. First of all, the original C program is
input into the lexical and syntax analyzers for the analysis. After this process, all useful
fragments including identifiers, operators, expressions, and statements in a C program
are identified and stored in a specified structure. Finally, we invoke the translation pro-
gram written in C++ to extract information from the storage structure and to output the
translated MSVL program.

Fig. 4. General Process of the Translation

3.1 Lexical and Syntax Analysis

The first step is to identify the identifiers and statements in the original C program. We
accomplish the identification with the help of a common tool named Parser Generator
(PG) which integrates Lex and Yacc together. PG is a generator of lexical and syntax
analyzers. What we need to do first is to specify the regular expressions for key words
(or tokens) and all statements in C program. The regular expressions are defined in
two kinds of documents with the extension being .l and .y. Lex source file is a table of
regular expressions and corresponding program fragments. It will be translated into a
program which reads an input C program stream, copying it to an output stream and par-
titioning the input stream into tokens which match our given expressions. Yacc source

94 Y. Yu et al.

file specifies the structures of the input, together with code to be invoked as each such
structure is recognized, and Yacc turns such a specification into a subroutine. As we can
see, based on these two kinds of specific documents, PG will automatically generate an
analysis program in C++, which implements the identification of original C programs.

The key step of lexical and syntax analysis is the specification of regular expressions
for basic tokens and statements in C programs. A C program normally consists of a list
of elementary statements, and for each normative statement, it may contain keywords,
basic expressions, sub-statements or a block of statements.

Lex source file specifies the regular expressions of basic constructs in C language,
such as variables, characters set, data types, constants, keywords (reserved words in
C language), identifiers, arrays and so on. Yacc source file defines regular expressions
for elementary C statements, as well as the corresponding handle functions when such
statements are matched. Fig.5 shows the basic process of lexical and syntax analysis.
At first, source files lexer.l and parser.y are input into PG process. After the analy-
sis, executable programs in C++ are generated. By compiling the programs, we finally
obtain an analyzer for C programs.

Fig. 5. Process of Lexical and Syntax Analysis

3.2 Storage Structure

To store information, we formalize two classes: one for expressions and statements
named AstNode, and the other one for statement blocks named StmtBlock. Member
variables of AstNode and StmtBlock are shown in Fig.6 and Fig.7 respectively.

As shown in Fig.6, class AstNode contains four primary member variables: AstN-
ode *left , AstNode *right , StmtBlock *block and AstNodeType type . left and right
are used to store basic expressions or sub-statements that may appear in elementary C
statements. type is an enumeration variable used to indicate the type of statements or
expressions. For instance, ANTFOR represents “for-statement” and ANTADD stands
for plus(+) operation. The remaining member variables such as string str1 and int int1
are auxiliaries used to store the name of a variable or the value of an integer variable.
Each statement in C programs is related to an instance of class AstNode.

Fig.7 shows the structure of class StmtBlock, it contains two primary member vari-
ables: AstNode *stmt and StmtBlock *block . Actually, a StmtBlock instance can be
regarded as a list of AstNode instances which relates to a statement block.

Model Checking C Programs with MSVL 95

AstNode

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AstNode ∗ left
AstNode ∗ right

StmtBlock ∗ block
AstNodeType type

string str1
int int1

Fig. 6. Class AstNode Structure

stmtblock

{
AstNode ∗ stmt

StmtBlock ∗ next

Fig. 7. Class StmtBlock Struture

Member functions are also needed to manipulate the member variables. Here we
mainly introduce function allco() since it is frequently used.

- For class AstNode, alloc() generates an AstNode instance dynamically, meanwhile,
the function needs three formal parameters: AstNode *left , AstNode *right and
AstNodeType type.

- For class StmtBlock, alloc() generates a StmtBlock instance dynamically. The
function needs only one formal parameter: AstNode *p, which points to the head
of the AstNode list.

Whenever a regular expression in Yacc source file is matched, corresponding handle
functions such as alloc() will be invoked, therefore, statement fragments can be stored
in the newborn class instance. Functions dealing with setting and getting member vari-
ables are also needed, we omit the details here.

As to the storage of the whole C program, we make use of a container in STL(Stan-
dard Template Library) named vector, which acts as a dynamic array. A variety of func-
tions are encapsulated in vector, so we can call them directly, such as push back() and
pop back(). stmt is a container we defined to store all statements in a C program. To
store a C fragment in container stmt, we only need to call function stmt.push back().

3.3 Translation

3.3.1 Translation Algorithm
Algorithm TransForm is formalized to realize the translation. Given a C program frag-
ment S as input, we first check the type of S since different types invoke different meth-
ods. The pseudo code of algorithm TranForm are shown in Table.1. In the algorithm,
GetStmt is used to transform a C statement into an MSVL statement, while GetExpr will
transform a basic expression into an MSVL expression. GetBlock aims at the transform-
ing of a statement block. The general process of the algorithm is given below:

96 Y. Yu et al.

- Input required C fragments into the translation procedure
- Specific methods will be invoked
- These methods translate C fragments and output MSVL fragments

Table 1. Algorithm for translating C fragments to MSVL fragments

Function TransForm(S)
/*precondition: S is an elementary fragment of C program */
/*postcondition: Transform(S) computes an equivalent MSVL fragment*/
begin function

case
S is a statement: return GetStmt(S);
S is an expression: return GetExpr(S);
S is a statement block: return GetBlock(S);

end case
end function

In algorithm GetStmt, basic statements such as integer declaration, if statement,
while statement, for statement, printf and scanf need to be considered. Intuitively, “;”
represents an empty statement, “exp;” stands for an expression statement and “x=exp;”
is an assignment statement. However, in order to improve the efficiency of GetStmt,
some auxiliary methods such as GetIfStmt and GetDeclaration are also required. The
algorithm is straightforward which includes all cases and uses the corresponding rules
to transform related fragments as shown in Table.5 and Table.6.

Table 2. Algorithm for translating a C statement to an MSVL statement

Function GetStmt(S)
/*precondition: S is an elementary C statement */
/*postcondition: GetStmt(S) computes an equivalent MSVL statement*/
/* exp is a standard expression, block is a statement block, s represents a
complete statement, x is a variable, parameter stands for a string */
begin function

case
S is ; return ;
S is exp; return exp;
S is x=exp; return x:=exp and skip;
S is if -statement: return GetIfStmt(S);
S is while(exp){block}: return while(exp){block};
S is int-declaration-statement: return GetDeclaration(S);
S is for(s exp1;exp2){block}: return s while(exp1){block;exp2;};
S is printf (“parameter”,exp): return output(exp);
S is scanf (“parameter”,exp): return input(exp);

end case
end function

Model Checking C Programs with MSVL 97

Table 3. Algorithm for translating C expressions to MSVL expressions

Function GetExpr(S)
/*precondition: S is an elementary C expression */
/*postcondition: GetExpr(S) computes an equivalent MSVL expression*/
/*x and y are standard expressions*/
/*e represents a constant, a variable or an identifier */
begin function

case
S is e: return e
S is x� (� =[++|- -]): return x:=x+1 and skip | x:=x-1 and skip
S is x=y: return x:=y and skip
S is x==y: return x=y
S is x[+,-,*,/,%,!=]y: return x[+,-,*,/,%,!=]y
S is x*=y (*=[<|>]): return x=y or x*y
S is x[+|-|*|/|%]=y: return x:=x[+|-|*|/|%]y and skip
S is x&&y: return x and y
S is x||y: return x or y
S is x,y: return x,y
S is (x): return (x)

end case
end function

As to algorithm GetExpr given in Table.3, elementary C expressions are consid-
ered, such as identifier, constant, arithmetic expression, logical expression, relational
expression, bracket expression and so on. Table.4 displays the transformation rules of
algorithm GetBlock. Since a statement block is a list of statements linked by pointers,
to transform a state block we can repeatedly call GetStmt(S) as long as S is not null.
next(S) in algorithm GetBlock means that S points to the next statement.

Table 4. Algorithm for translating a statement block

Function GetBlock(S)
/*precondition: S is an elementary C statement block */
/*postcondition: GetBlock(S) computes an equivalent MSVL block*/
begin function

repeat{GetStmt(S); S=next(S);} until (S=null;)

end function

98 Y. Yu et al.

Table 5. Algorithm for translating if -statement

Function getIfStmt(S)
/*precondition: S is an elementary if-statement in C language */
/*postcondition: getIfStmt(S) computes an equivalent MSVL if-statement*/
/*exp is an standard expression and block is a statement block*/
begin function

case
S is if (exp)s: return if (exp)then {s}
S is if (exp){block}: return if (exp)then{block}
S is if (exp){block1}else{block2}: return if (exp)then{block1}

else{block2}
S is if (exp1){block1}else if (exp2){block2}: return if (exp1)then

{block1}else if (exp2){block2}
end case

end function

Table 6. Algorithm for Translating int-declaration-statement

Function getDeclaration(S)
/*precondition: S is an elementary int-declaration-statement in C language */
/*postcondition: getDeclaration(S) computes an equivalent MSVL int-

declaration-statement*/
/*var list represents a list of variables connected by “,” */
/*exp list represents a list of expression connected by “,”*/
/*ei is one of the expressions that appear in exp list*/
begin function

case
S is int x;: return int x;
S is int var list;: return int var list;
S is int x=exp;: return int x; x:=exp and skip;
S is int exp list;: return getDeclaration(ei);

(0<i<=len(exp list))
end case

end function

3.3.2 Implementation
We now focus on the implementations of algorithm TransForm, which includes
GetStmt(), GetExpr() and GetBlock(). The algorithm has two kinds of input param-
eters: AstNode, StmtBlock , and different parameters invoke different methods. Since
GetStmt() and GetExpr() have much in common, we omit the details for GetExpr()
here. Brief descriptions of GetStmt() and GetBlock() are shown in Fig.8 and Fig.9.
As we can see, method Switch is the core algorithm for implementations. It generates

Model Checking C Programs with MSVL 99

Method: GetStmt()
Parameter Type: AstNode
Function: Realize the translation and output of elementary statements
Process:

- GetType() is called to get type, which specifies the type of a statement.
- Call Switch(type) to realize the transformation and output

Fig. 8. GetStmt()

Method: GetBlock()
Parameter Type: StmtBlcok
Function: Realize the translation and output of a statement block
Process:

- A repeated calling of GetStmt()

Fig. 9. GetBlock()

different results according to parameter type. type is more like a statement label which
informs Switch of which transformation rule should be effective .

So far, the transformation from basic C programs to MSVL programs is almost done.
However, some problems are worth paying attention in order to make sure that the final
output fits the MSVL interpreter well. What we need to point out here is an obvious
difference between C and MSVL: in C programs, the last statement in a block must
ends with a semicolon(;), however, in MSVL the semicolon has been saved. To take
both situations into consideration, a method named GetStmt last() is designed to cope
with this problem. GetStmt last() is totally as the same as GetStmt() except that the
former gets rid of the semicolon at the end of a statement.

4 A Case Study

In this section, we will give a basic but typical C program which consists of a number
of elementary C statements. Then, by employing our translation algorithm, we can get
an equivalent MSVL program.

4.1 Greatest Common Divisor and Lowest Common Multiple

There are many ways to find the Greatest Common Divisor (GCD) and the Lowest
Common Multiple (LCM) of two positive integers. Here we use Euclidean Algorithm
(Euclid’s Algorithm) to find GCD and a particular formula to calculate LCM of two
positive integers.

100 Y. Yu et al.

4.1.1 Euclidean Algorithm
This algorithm finds GCD by performing repeated division starting from the two num-
bers we want to find out the GCD until we get a remainder of 0. Below are the steps to
compute GCD of positive integers, 12 and 8, by using Euclid’s algorithm.

- Divide the larger number by the small one. In this case we divide 12 by 8 to get a
quotient of 1 and remainder of 4.

- Next we divide the smaller number (i.e. 8) by the remainder from the last division
(i.e. 4). So 8 is divided by 4, and we get a quotient of 2 and remainder of 0.

- Since we already get a remainder of 0, the last number that we used to divide is the
GCD, i.e 4.

Implementations of the algorithm may be expressed in pseudo code. For example, the
division-based version may be programmed as below:

function gcd(a, b)
while b != 0
t := b
b := a mod b
a := t
return a

4.1.2 A Formula to Find LCM
We can use the following formula to calculate LCM of positive integer a and b if we
already know GCD(a, b).

Fig. 10. Formula for Calculating LCM

4.2 Translation from C to MSVL

The implementation code in Fig.11 shows how to find GCD and LCM of two positive
integers: a and b. It is based on the algorithm we mentioned in section 4.1. Note that the
code contains elementary C statements, such as variable declaration, assignment state-
ment, arithmetic expression, if statement, while statement, printf statement and scanf
statement. After employing the transformation algorithm to the original C program, an
equivalent MSVL program is generated as shown in Fig.12.

To test the correctness of the MSVL program, as illustrated in Fig.13, we use two
positive integers: 256 and 60. According to the execution result, GCD(256,60) equals
to 4 and LCM(256,60) equals to 3840, which is apparently correct.

Model Checking C Programs with MSVL 101

#include<stdio.h>
int main()
{

int num1,num2,a,b,t;
printf("please input two numbers:");
scanf("%d %d",&a,&b);
if(a<b){

t=a;
a=b;
b=t;}

num1=a;num2=b;
while(num2!=0){

t=num2;
num2=num1%num2;
num1=t;}

printf("GCD:%d\n",num1);
printf("LCM:%d\n",(a*b)/num1);
return 0;

}

Fig. 11. C Program

frame(num1,num2,a,b,t) and skip;
int num1,num2,a,b,t;
output("please input two numbers:") and skip;
input(a) and input(b)and skip ;
if (a<b) then{
t:= a and skip;
a:= b and skip;
b:= t and skip
} and skip;
num1:= a and skip;
num2:= b and skip;
while(num2!=0){
t:= num2 and skip;
num2:= num1 % num2 and skip;
num1:= t and skip
};
output ("GCD:",num1) and skip ;
output ("LCM:", (a*b)/num1) and skip

Fig. 12. MSVL Program

Fig. 13. Executing of the Final MSVL program

4.3 Verification with MSVL

After the translation, we can apply the existing unified model checking approach to
the MSVL program. Since the C program and the MSVL program are equivalent, the
validity of the MSVL program also indicates the validity of the original C program.
As to our example, two positive integers are 256 and 60. It is easy to find out that
the property “final GCD either less than 60 or equals to 60” should always hold. By
employing propositions p and q to denote gcd<small and gcd=small respectively,

102 Y. Yu et al.

Fig. 14. Verification Result

this property can be specified by �(p ∨ q) in PPTL. Under the verification mode of
MSVL, we add the following code

</
define p:gcd<small;
define q:gcd=small;
always(p or q)

/>

to the beginning of the MSVL program. In this property, gcd represents the final GCD
of the two positive integers, small is the smaller integer of the two positive integers.
After running the program, an empty NFG with no edge is produced as shown in Fig.14.
Hence,the formula is unsatisfiable, and the system satisfies the property.

5 Conclusion

In this paper, we present a translator from C programs to MSVL programs. Therefore,
by transforming a C program into an equivalent MSVL program, we can employ the
existing techniques to verify the correctness of C programs. This enables us to translate
the problem of checking whether or not the C program satisfies the property to the
problem of checking the satisfiability of MSVL programs.

However, we just realize the transformation from basic C programs to MSVL pro-
grams at the moment. For some complex C programs, further investigations are still
needed. Currently, the translator is merely a prototype, and lots of efforts are needed to
improve it. In addition, to examine our method, several big case studies are required in
the near future.

Model Checking C Programs with MSVL 103

References

1. Ostroff, J.S.: Verification of safety critical systems using TTM/RTTL. In: Huizing, C.,
de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600,
pp. 573–602. Springer, Heidelberg (1992)

2. Yang, M., Wang, Z., Pu, G., Qin, S., Gu, B., He, J.: The Stochastic Semantics and Verification
for Periodic Control Systems. Science China: Information Sciences 55(12), 1–19 (2012)

3. Qin, S., Luo, C., Chin, W.-N., He, G.: Automatically Refining Partial Specifications for Pro-
gram Verification. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 369–385.
Springer, Heidelberg (2011)

4. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time
Syst. 2(4), 255–299 (1990)

5. Ghezzi, C., Mandrioli, D., Morzenti, A.: Specifying real-time properties with metric tempo-
ral logic. J. Syst. Softw. 12(2), 107–123 (1990)

6. Jahanian, F., Mok, A.K.: Safety analysis of timing properties in real-time systems. IEEE
Trans. Softw. Eng. SE-12(9), 890–904 (1986)

7. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal
Logic Programming. PhD Thesis, University of Newcastle upon Tyne (1996)

8. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2006)
9. Alur, R., Henzinger, T.A.: A really temporal logic. In: Proceedings of the 30th IEEE Con-

ference on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos
(1989)

10. Melliar-Smith, P.M.: Extending interval logic to real time systems. In: Banieqbal, B., Pnueli,
A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 224–242.
Springer, Heidelberg (1989)

11. Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In:
Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg
(2008)

12. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection temporal
logic with infinite models. Acta Informatica 45(1), 43–78 (2008)

An Application of SOFL for Rapid Prototyping

Fumiko Nagoya and Tetsuo Kitagawa

Graduate School of International Management, Aoyama Gakuin University, Japan
fnagoya@gsim.aoyama.ac.jp, tkitagawa@aoyamagakuin.jp

Abstract. A prototype is a model of a product or information system
to show the capabilities. It is common practice to build prototypes in
agile software development to help end-users and developers understand
the requirements elicitation and validation for a system. Though the
prototypes can serve with behaviors and structures, some requirements
such as safety-critical functions are difficult to prototype. Formal meth-
ods are used to reveal ambiguity, inconsistency and incompleteness for
development computer systems with commonly used formal specifica-
tion languages. Formal methods are mathematically-based techniques.
Nevertheless few specifiers have used complete mathematics from the
beginning. Most of specifiers have discussed with end-users about impli-
cations of user requirements, created an initial specification, and revised
as a result of the user’s feedbacks. This paper presents an experimental
project adapting rapid prototyping into a formal engineering method.
SOFL, the formal engineering method, serves as a bridge between for-
mal methods and rapid prototyping. It has great potential to improve
development costs and product quality.

1 Introduction

Prototyping has been widely known after the publication of Brooks’ The Myth-
ical Man-Month. Prototyping is viewed as the process which is a well-defined
phase in software development [1]. It allows that “final implementation is devel-
oped that meets the project specifications” [2]. Additionally, it makes it possible
to increase effective communication [3], between end-users and developers. In
particular, software prototyping has substantial advantages over hardware, to
decrease development time and costly mistakes [4], [5], hence the name rapid
prototyping [6]. Since, a number of different definitions, processes, and classifi-
cations for rapid prototyping have been provided by researchers and developers.
Following Floyd [1], all of them are classified based on goals of prototyping:
exploratory, experimental, or evolutionary prototyping.

Balzer et al., have visualized a future of automation-based software paradigm
[7] as integrating prototypes into formal specifications. In this paradigm, the spec-
ifications are created andmaintained by end-users. Subsequently, the revised spec-
ifications become prototypes of desired system, and the prototypes are validated
and implemented by machine aided. Such implementation process makes it pos-
sible to be fast, reliable, and inexpensive software development. Unfortunately,
regardless of many researcher’s contributions and efforts, the automation-based

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 104–115, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Application of SOFL for Rapid Prototyping 105

software paradigm is not feasible. Because, the wide gap between formal methods
and actual developments in industry has not yet resolved.

This paper addresses the gap, and proposes a model for integrating rapid
prototyping and formal engineering methods. Formal engineering methods are
designed to serve as a bridge between formal methods and developments of
applications. Structured Object-Oriented Formal Language (SOFL) is a com-
prehensible language for requirements and design specifications [8]. It provides
a practical notation using Data Flow Diagram [9], Petri nets [10], and VDM-
SL [11]. Also, SOFL is a method for combination of structured methods and
object-oriented methods to construct specifications. Structured methods [12],
[9] induce functional decomposition of the top level module into a hierarchy
of low level modules by top-down approach. Object-oriented methods offer an
approach to discover the classes and objects that form the vocabulary of the
problem domain, identifying the semantics and the relationships among them,
and specifying the interface and the implementation of these classes and ob-
jects [13]. SOFL facilitates the functional decomposition and translation into
object-oriented programming such as C++ and Java.

Our ongoing project is an application software development. The application
offers a working model for forecasting financial statements and calculating busi-
ness valuations by two materials: disclosed documents in the Financial Services
Agency of the Japanese Government, and users’ expectations. In this project,
main reason for using a rapid prototyping is driving implicit knowledge of a
domain expert.

The remainder of this paper is organized as follows. Section 2 briefly introduces
rapid prototyping, our proposed development model, and key factors for rapid
prototyping. Section 3 describes the background and motivation, and elaborates
how to use SOFL for this project. Section 4 explains our experience, although
this project has not been completed yet. Lastly, in section 5 we give conclusions
and point out future research.

2 Rapid Prototyping

Rapid prototyping is the activity which occurs early in the software development
life cycle [14]. Software development life cycle is a process to create software sys-
tems. Various software development models exist, for example, waterfall model,
spiral model, prototyping model, etc.

Royce [15] described the waterfall model that software development life cycle
consists of several steps from system requirements to operation of the products,
and each steps should complete before their successors begin. The spiral model
of software development life cycle was defined by Boehm [16] as iterative devel-
opment model. It has characteristics of both the waterfall model and prototyping
model. In this section, we describe prototyping model and our proposed formal
engineering prototyping model at first. These prototyping model and formal en-
gineering prototyping model have the following features: ‘user participation’ and
‘iterative procedure’. We mention the features of successful rapid prototyping,
continuously.

106 F. Nagoya and T. Kitagawa

Rapid

prototyping

Plan for

prototype

Delivery and

maintenance

Informal

requirements

Requirements

analysis

Iterate

Fig. 1. Prototype Model

2.1 Formal Engineering Prototyping Model

The prototyping model is represented in Figure 1. The typical prototyping model
comprises four phases: requirements analysis, plan for prototype, rapid proto-
typing, and delivery and maintenance. This model has flexibility to unforeseen
changes compared with waterfall model and spiral model. In the prototyping
model, it is possible to check whether the prototype meets user requirements by
demonstration. However, it is impossible to develop safety-critical system by lack
of verification, and difficult to maintain for long-term as there is no specification.

Figure 2 shows our suggested formal engineering prototyping model. It is a
combination of prototyping model and continuous phases: formal specification,
coding, testing, and delivery and maintenance. In this model, a rapid prototype
serves as an informal specification. In other words, the rapid prototype guides
to write a formal specification. The model may receive the following benefits of
formal methods. A formal method forces to be precise [17], reveal ambiguities,
inconsistencies, and incompleteness [18], and supports automatic or machine-
assisted analysis for verification and validation.

2.2 User Participation

The user of ‘user participation’ should be included not only a sample of the
actual future users, but also domain experts. Because, users may not have a
clear idea what they want the new system to do. Additionally users may feel
that it is hard to describe their knowledge of the system domain. On the other
hand, domain experts have knowledge and experiences of the system domain,
and quite familiar with the user’s requirements, expectations, and behaviors. It
is so important that a domain expert is taking part in system development team.
However, Loucopoulos and Karakostas have pointed out that it is difficult for
developers to elicit the knowledge from its source, especially when the source is
a human ’expert’ [19]. Developers are faced with a major difficulty in obtaining

An Application of SOFL for Rapid Prototyping 107

Coding

Testing

Delivery and

Maintenance

Formal

Specification

Rapid

prototyping

Plan for

prototype

Informal

requirements

Requirements

analysis

Iterate

Fig. 2. Formal engineering prototyping model

good understandings of the program domain. It is caused by communication
problems that domain experts and system engineers use different languages.
Iterative procedure of rapid prototyping contributes to solve the communication
problems.

2.3 Iterative Procedure

The ‘iterative procedure’ means the repeating cycle that a rapid prototype is
reviewed by users whether or not the prototype matches their requirements,
and improved based on user’s feedback. Naumann and Jenkinshave described
prototyping is a four-step procedure between user and developer [20]. Figure 3
illustrates the four-step procedure which is repeated until the user accepts next
version.

1. Identify the User’s Basic Information Requirements
A developer elicits user’s basic needs including data requirements, report
formats, user interfaces.

2. Develop a Working Prototype
The developer quickly creates a working model for the system. The initial
prototype includes user interfaces and/or database.

3. Implement and Use the Prototype System
The developer demonstrates the prototype to the user. The user try to use
the prototype and takes notes for their feedback they would like made.

4. Revise and Enhance the Prototype System
The developer and user discuss desired changes based on the user’s feedback.
Changes and enhancements for new version are determined. The developer
creates next version and goes back to Implement and Use the Prototype
System step until the user is satisfied with the revised prototype.

108 F. Nagoya and T. Kitagawa

Feedback

Next version

1. Identify 2. Develop

 User Developer

3. Implement

and Use

4. Revise and

Enhance

Working

prototype

Basic

requirements

Fig. 3. Four step procedure

This iterative procedure might be support by an appropriate rapid prototyping
tool. Such tools design screens, create a simple user interface, display animations,
and/or add annotations. A great number of rapid prototyping tools are available,
but no one is perfect. The following sections will explains an experimental project
and how to perform in each phase of formal engineering prototyping model step
by step.

3 Experimental Project

This section introduces our ongoing application development project. This ap-
plication will offer building a financial simulation model for forecasting financial
statements and calculating business valuations based on the financial reports
and user’s expectations. This project has been conducted by a small team con-
sisting of first author as a developer and second author as a domain expert.
The developer is used to using the SOFL in order to software development, and
the domain expert has more than three decades of experience both sell side
and buy side investment analyst in marketable security. First, we describe our
background and motivation for this project. Then, we explain our detail project
about requirements analysis, plan for prototype, rapid prototyping, and formal
specification continuously.

3.1 Background and Motivation

The financial reports have been available to see online in the form of HTML
from Electronic Disclosure for Investors’ NETwork (EDINET) system operated
by the Financial Services Agency of the Japanese Government. The EDINET
system is similar to the Electronic Data-Gathering, Analysis, and Retrieval sys-
tem (EDGAR) system used by the U.S. Securities and Exchange Commission.
Some disclosure documents are permitted to be filed electronically by issuers of
listed or others who are required by laws. These documents are disclosed online
to increase the efficiency and fairness of the securities market.

An Application of SOFL for Rapid Prototyping 109

In past days, general individual investors and other stakeholders who tried to
conduct business analysis were difficult to get digital data except professional
security analysts using online database such as Bloomberg terminal service. In
April 2008, the Japanese Government published a rule for the mandatory use of
XBRL(:eXtensible Business Reporting Language) in reporting financial informa-
tion on EDINET. Past half decade of XBRL files for Japanese companies listed
on stock exchanges are available download from EDINET. After online disclosure
of financial reports, some of software tools have supported to business analysis,
but these functions are unsatisfactory and still expensive for personal use. Then,
we have decided to develop a system for forecasting financial statement for our
target users who are individual investors and MBA students learning business
analysis.

3.2 Requirements Analysis

Figure 4 sketches a whole architecture of the application based on informal
requirements. The software uses XBRL file as input data. XBRL is a XML-based
languages, and it is an open technology standard for reporting and analyzing
business and financial information. A XBRL file contains four primary financial
statements (F/S) : the income statement (I/S), the balance sheet (B/S), the
statement of cash flows (C/S) and statement of changes in net assets, but it does
not include note and annexed detailed statement in Japan. These statements over
three or five-years period are required as raw materials of an analysis in order
to make sure consistency of accounting policies [21].

This application will provide the following features.

1. Read and parse XBRL files.
2. Save data of historical F/S by accounting period.
3. Display historical B/S, I/S, C/S, and calculated financial indicators.
4. Provide a panel for inputting user’s assumptions
5. Calculate future free cash flows based on user’s assumptions.
6. Create forecasting B/S, I/S, C/S, and display them.
7. Calculate business valuations and display it.

The financial indicators represent ratio analysis that relates I/S, B/S, C/S to
one another. The indicators provide a useful clue as to evaluate a company’s
current position and judge reasonable projections. The user’s assumptions are
key drivers to this model. The plane for inputting user’s assumptions supplies
a questionnaire to assess percentage changes in growth of revenues, profits, and
cash flows based on user’s projection including macro-economic forecast, capi-
tal markets analysis, industry outlook and company business analysis [22]. The
business values are computed on the basis of present values of all its future cash
flows and risks.

3.3 Plan for Prototype

In this phase, we settled a rough schedule for prototyping, prototyping tool, and
scope of the prototyping. The development time for this prototype was predicted

110 F. Nagoya and T. Kitagawa

XBRL

Historical F/S

C/SI/SB/S Financial

Indicators

Forecasting F/S Business

Valuation

Assumptions

C/SI/SB/S

Fig. 4. Software architecture

Historical F/S

C/S

I/SB/S

Forecasting F/S

F/S

Assumptions

Prototype

Financial

Indicators

B/S I/S C/S

XBRL

Business

Valuation

Fig. 5. Scope of prototyping

two or three weeks. To prototype successfully, we chose Microsoft Excel 2010
(Excel) as rapid prototyping tool. The main reason we used Excel is familiar
with the domain expert.

The scope of the prototyping is illustrated by Figure 5. There are three differ-
ences of functions between the prototype and the user requirements. First, the
prototype does not convert from XBRL file to Excel file, and uses Excel data
as input. The fully converted file in Excel is available from web services or ex-
isting tools. Secondly, we need to generate C/S from historical B/S and I/S for
measuring future cash flows. As we mentioned above, the business value depend
on the future cash flows. Unfortunately, the regular F/S does not provide for
the future cash flows automatically. Third, the prototype provides only basic
functions to calculate future cash flows in forecasting years. It means that this
application will not implement a complicated business valuation method except
net present value method.

An Application of SOFL for Rapid Prototyping 111

Get

Financial

Data

Provide

What-if

Questions

Make

Assumption

data

Drive items

for Abbr.

B/S & I/S

Generate

Abbr. C/S

Input

Answers

Calculate

subtotal &

differences

Show

Forecasting

Indicators

Create

Forecasting

F/S

Show

Historical

Indicators

Calculate

FCF

x_data bi_data td_data

err_meg

c_data

h_data

as_data

f_data1

fc_data fi_data

hi_data

q_data a_data
providing

questions

getting_

data
1

1

c_data

Historical

data
1

Forecasting

data
2

f_data

f_data2

2

2

as_data

Fig. 6. A top level CDFD

3.4 Rapid Prototyping

The initial prototype was provided by the domain expert. The prototype was a
simple spreadsheet and all amounts were based on temporary data for a fictitious
company. But it made certain that the developer understands necessary financial
items in analysis point of view, question items in assumptions, expressions for
calculating financial indicators.

The developer changed the initial prototype through ‘iterative procedure’ as
following:

– The prototype uses real data converted into Excel file from XBRL file.
– The future cash flows are derived from all items of B/S, Net Incomes, and
Depreciation Expense in I/S, and Cash Dividend in C/S.

– The prototype displays abbreviated financial statements for a comprehensive
look-and-feel.

The domain expert confirmed the revised prototype and returned his feed-backs.
The developer learned desired functions, user interface, and domain knowledge
about investments in marketable security. The prototype was updated every
week for one month through iterative procedure.

3.5 Formal Specification

After the prototype was completed, the formal specification have been devel-
oped using SOFL [8] specification language. A SOFL specification consists of a
collection of related modules in a hierarchical fashion. Modules are mainly used
to express a functional abstraction. Each module encapsulates of processes (like
methods in Java), data flows, and data stores (like files or database). Also a
module has a condition data flow diagram (CDFD) to represent its functional
behavior. The developer began to construct the SOFL specification based on the
prototype as below.

112 F. Nagoya and T. Kitagawa

file name = company name + year;
statement = consolidation | non-
consolidation;

Worksheet = {<XBRL_B/S>, …
<Abbr_I/S>,<Model>,<Assumption>};

B/S ={Asset, Liability, Net_Asset};

/*Asset is a set of
{Cash_and_deposit, Notes_and_
accounts_receivable_trade,
Inventories, …}*/
Asset = acount_name +amount
debit_balance + closing date;
…………………….

Company_name: string;
Year :nat;
Consolidation:bool;

AccountList = {Company_name,
Company_code, Consolidation,…} ;
ResultList = { Company_name, …
Model_item_list};

Acount_name: string;
Amount = int
/*The unit is one million Yen*/
Debit_balance; bool
Closing date: Date;
Node = string | nil
…………………….

Prototype

Fig. 7. Stepwise data refinement

1. A top level CDFD was drawn as the architecture of the prototype.
2. All attributes of objects in prototype were defined by a stepwise method.
3. The high level module decomposed into low level operations as processes.

A CDFD is a graphical notation associated with the architecture of specifica-
tion. The top level CDFD which is derived by the functional behaviors of our
prototype is depicted in Figure 6. Each box in this diagram denotes a process,
each arrowed line denotes a data flow, and the box with number represent data
store. The solid directed denotes an active data flow, while the dotted line de-
notes a control data flow. Numbered circle represents connecting node, a circle
with a dot inside denotes a broadcasting node. The top level CDFD suggests
primarily constructive information statically. It assists in writing a formal tex-
tural notations based on the predicate logic. A prototype is suited for dynamic
representation, but not be enough for showing constructional design.

Figure 7 shows the stepwise data refinement which can be used to facilitate
the construction of formal specifications. First, items of raw and columns, work-
sheet names and file names in the prototype are found as related objects. For
example, the item of cash in B/S worksheet have several attributes like name,
account balance, closing date, kind of currency, etc. After finding related ob-
jects, all attributes consisted of the related objects in our prototype are defined
clearly as middle panel. The attributes are finally utilized for type definitions of
input, output, and external variables in operation specifications. Therefore, each
attribute presents how declared types and constraints would be used to write
the specifications as right panel.

Figure 8 shows that the top level module breaks up into low level operations
as processes. The top-left graph represents a part of the top level CDFD illus-
trated in Figure 6. The top level CDFD corresponds to the module ‘Forecasting
system’ written in the top-right text box. To reduce of the complexity of a
one level CDFD, SOFL supports the construction of hierarchical CDFDs and
the associated modules by process decomposition [8]. The process ‘Generates

An Application of SOFL for Rapid Prototyping 113

Calculate

difference

B/S items

Generate

Abbr. C/S

Break down

shareholder’s

equity

Create

Forecasting

F/S

1

2

1

Delete

subtotal

items

Add positive

and negative

depreciation

module Generate Abbr. C/S_Decom ;

const; type; var; inv;

process Calculate difference B/S items ;

process Delete subtotal items ;

process Add positive and negative depreciation

process Break down shareholder’s equity

process Classify into three categories;

end_module;

Classify into

three

categories

module Forecasting system;

const; type; var; inv;

process Init;

 :

process Generate Abbr. C/S

process Create Forecasting F/S

 :

end_module;

Fig. 8. Process decomposition

Abbr. C/S’ is decomposed into the CDFD pictured by the bottom-left graph
in Figure 8, and its associated the module which named ‘Generates Abbr.
C/S Decom’ described in the bottom-right text box.

4 Experience

Our project has finished only requirements analysis, plan for prototype, rapid
prototyping, and formal specification phase. However, we have obtained the ex-
perience as following.

– A prototyping tool known how to use by both a domain expert and develop-
ers ensures a smoother communication. If the domain expert and developers
work closely together without having common understanding of a prototyp-
ing tool, it is impossible to serve for efficient elicitation of user requirements
and early detection of over and short functions against the user’s intentions.

– A scope of prototype leads to be completed on schedule. A weakness of
rapid prototyping is that desires to produce better software products are no
limit, however the development cost is depend on times. Therefore we should
decide what point to stop for developing the prototype, in advance.

– SOFL powerfully supports to transform from the prototype into the for-
mal specification. It facilitates to clarify the whole structure of software by
graphical notations, to define all attributes of objects in prototype by step-
wise data refinement, and to decompose a high level operation into low level
operations.

We have also discovered the difficulty in the formal engineering prototyping
modeling.

114 F. Nagoya and T. Kitagawa

– It is difficult to validate that the contents defined by the formal specification
match the corresponding prototype. A validation methodology is needed to
ensure the consistency and completeness.

5 Conclusions and Future Research

We have presented a formal engineering prototyping model using SOFL to serve
as a bridge between formal methods and rapid prototyping. The model consists
of requirements analysis, plan for prototype, rapid prototyping, formal specifi-
cation, coding, testing, and delivery and maintenance. In this paper, we have
explained concrete activities for our ongoing application development project,
and included illustrations of each phase for the requirements analysis, plan for
prototype, rapid prototyping, and formal specification. SOFL have assisted to
transform from the rapid prototyping into a formal specification.

There is no guarantee that the model fits in any software project. But our
experience suggests that our model has great potential to improve development
costs and product quality with the benefit of rapid prototyping and formal meth-
ods. We assume there are three keys to realize the automation-based software
paradigm : prototyping tool, scope of prototype, and formal specification.

To investigate the effectiveness of the model adapting rapid prototyping into
SOFL, we need to conduct case studies for verification in our ongoing project.
Additionally, we have faced the difficulty to validate whether the formal spec-
ification matches the corresponding prototype. Our future research is to figure
out a solution for these verification and validation problems between rapid pro-
totyping and formal specifications.

References

1. Floyd, C.: A systematic look at prototyping. In: Approaches to Prototyping, pp.
1–17 (1984)

2. Basili, V.R., Turner, A.J.: Iterative enhancement: A practical technique for soft-
ware development. IEEE Trans. Software Eng. 1, 390–396 (1975)

3. Alavi, M.: An assessment of the prototyping approach to information systems de-
velopment. Commun. ACM 27, 556–563 (1984)

4. Boehm, B.W., Gray, T.E., Seewaldt, T.: Prototyping versus specifying: A multi-
project experiment. IEEE Trans. Softw. Eng. 10, 290–302 (1984)

5. Gordon, V.S., Bieman, J.M.: Rapid prototyping: Lessons learned. IEEE Softw. 12,
85–95 (1995)

6. Gomaa, H.: The impact of rapid prototyping on specifying user requirements. SIG-
SOFT Softw. Eng. Notes 8, 17–27 (1983)

7. Balzer, R., Cheatham Jr., T.E., Green, C.: Software technology in the 1990’s: Using
a new paradigm. Computer 16, 39–45 (1983)

8. Liu, S.: Formal Engineering for Industrial Software Development. Springer (2004)
9. DeMarco, T.: Structured Analysis and System Specification. Prentice Hall PTR,

Upper Saddle River (1979)
10. Reisig, W.: Petri nets: An introduction. Springer-Verlag New York, Inc., New York

(1985)

An Application of SOFL for Rapid Prototyping 115

11. Jones, C.B.: Systematic software development using VDM. Prentice Hall Interna-
tional (UK) Ltd. (1986)

12. Yourdon, E.: Modern structured analysis. Yourdon Press (1989)
13. Booch, G.: Object oriented design with applications. Benjamin-Cummings Pub-

lishing Co., Inc., Redwood City (1991)
14. Gordon, V.S., Bieman, J.M.: Reported effects of rapid prototyping on industrial

software quality. Software Quality Journal 2, 93–108 (1993)
15. Royce, W.W.: Managing the development of large software systems: Concepts and

techniques. In: Proceedings of the 9th International Conference on Software En-
gineering, ICSE 1987, pp. 328–338. IEEE Computer Society Press, Los Alamitos
(1987)

16. Boehm, B.W.: A spiral model of software development and enhancement. Com-
puter 21, 61–72 (1988)

17. Morgan, C.: Programming from specifications. Prentice-Hall, Inc. (1990)
18. Clarke, E.M., Wing, J.M.: Formal methods: State of the art and future directions.

ACM Comput. Surv. 28, 626–643 (1996)
19. Loucopoulos, P., Karakostas, V.: System Requirements Engineering. McGraw-Hill,

Inc., New York (1995)
20. Naumann, J.D., Jenkins, A.M.: Prototyping: The new paradigm for systems devel-

opment. MIS Q. 6, 29–44 (1982)
21. Sengupta, C.: Financial Analysis and Modeling Using Excel and VBA (Wiley Fi-

nance). Wiley (2009)
22. Hooke, J.C.: Security Analysis and Business Valuation on Wall Street + Com-

panion Web Site: A Comprehensive Guide to Today’s Valuation Methods (Wiley
Finance). Wiley (2010)

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 116–132, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Applying SOFL to a Generic Insulin Pump Software
Design

Chung-Ling Lin, Wuwei Shen, and Dionysios Kountanis

Department of Computer Science,
Western Michigan University

Abstract. Software embedded into medical devices demands a higher standard
on its safety, as compared to most commercial software. One of the most impor-
tant reasons is that the safety issue should be thoroughly investigated. In the
United States, Food and Drug Administration (FDA) is entitled to scrutinize
medical devices to ensure they are safe to the public before they enter the mar-
ket. However, the review of medical device software has been quite challenging
because not only the design of medical device software is complicated and er-
ror-prone but also the validation of the software system against regulatory re-
quirements is notoriously difficult. Thus, some methodologies based on formal
methods have been proposed to alleviate the pain faced by both software devel-
opers and regulators such as FDA staff. In this paper, we study how to use the
Structured-Object-Based-Formal Language, which is called SOFL to develop a
software system controlling an insulin pump, called the Generic Insulin Infu-
sion Pump (GIIP). This case study facilitates the understanding of how SOFL
can be applied to software systems related to medical devices in terms of the
design and review aspects.

1 Introduction

One of the most challenging issues facing the software engineering community is how
to develop a software system that, software engineers can guarantee, satisfies the
specified requirements. To support any type of guarantee, there is an implicit need to
establish sufficient evidence that the system will perform dependably, as intended.
The quality of this evidence can be a key factor in regulator and third party assess-
ments of dependability claims. This need is particularly important for safety and
security critical products such as medical devices.

To complicate matters further, as systems evolve to meet new demands, it is essen-
tial to be able to establish evidence that any changes made to the system do not affect
the integrity of existing dependability properties and introduce new errors in the
process.

Traditional software development methodologies emphasize process oriented prac-
tices as a means of assuring design artifacts are complete and consistent. This practice
often leads to ambiguities within and between requirements and subsequent specifica-
tions. The software development landscape is littered with failures rooted in this
practice.

 Applying SOFL to a Generic Insulin Pump Software Design 117

Clearly, it is essential to establish complete and consistent requirement and specifi-
cations if a product is to have any chance at meeting it intended use needs. While a
quality process is essential to developing a quality product, practices within this
process can have a direct bearing on the outcome. Over past decades many technolo-
gies have been developed, ranging from structured design and object oriented design,
to formal methods based design. Interest in mathematically based design has been a
constant and much progress has been made in facilitating development in a practica-
ble manner.

However, in reality, formal methods cannot marry well-established industrial
process due to lack of the affordability and efficiency to handle a large scale of speci-
fication and proof. The divorce between practical software processes and formal me-
thods has been extensively investigated in the past decades.

Formal engineering method (FEM) [1] has been proposed to bridge the gap be-
tween software engineering and formal methods. FME addresses the issue of adapting
formal methods for industrial software process so that software engineers can easily
grasp formal methods and, at the same time, they do not lose the power of the mathe-
matical support. In this paper, we apply the Structured-Object-based-Formal Lan-
guage (SOFL) [2] to a case study of the Generic Insulin Infusion Pump (GIIP) [3].
SOFL targets on the unification of mathematical notations and industrial software
processes via the application of structured method for requirements analysis and spe-
cification and an object-oriented approach for design and implementation.

The software design of a generic insulin infusion pump has been illustrated as a
case study to demonstrate how a medical device-based software system can be de-
signed, implemented, and finally reviewed [4]. In the medical device industry, each
manufacturer not only has its own requirements on a product such as an insulin infu-
sion pump but also meets regulatory requirements such as safety requirements im-
posed by FDA. Otherwise, the product cannot be approved for the market. In this case
study, we will concentrate on the basal management, part of the GIIP system, to dem-
onstrate how SOFL can be applied to design a software system for a medical device.
With the application of SOFL methodology, we help illustrate how a medical device-
based software system can be leveraged in terms of design, development, validation
and finally regulatory review.

The paper is organized as follows. Section 2 introduces SOFL and GIIP applica-
tion. A software design based on SOFL for GIIP application is given in Section 3. We
draw a conclusion in Section 4.

2 Preliminary

In this section, we briefly introduce SOFL, and then describe the GIIP model.

2.1 Introduction to SOFL

The SOFL is a formal framework that unites formal methods with industrial software
development processes. In general, SOFL establishes a structured way to specify the
requirements of a software system using an object-oriented approach for subsequent

118 C.-L. Lin, W. Shen, and D. Kountanis

design and implementation based on these requirements. Formal methods can be ap-
plied across the entire SOFL-driven development process, to assure high quality spe-
cifications and verification at different levels of the intended software system. For
example, SOFL allows software engineers to reason about the completeness of
software specifications.

A SOFL specification includes a hierarchical condition data flow diagram (CDFD)
that links a hierarchy of specification modules together. A CDFD is a directed graph
consisting of data flows, data stores and condition processes. A CDFD describes the
static interfaces between components and the dynamical interaction between these
components and corresponding data flow. Figure 1 illustrates the basic components of
CDFD. The condition process is specified with a pre- and post-condition. A data flow
descriptor identifies how data is exchanged between condition processes. A data store
defines a variable of a specific type. The specification module (s-module) describes
the precise functionality of the condition processes in terms of their inputs and out-
puts. The s-module also provides a static definition of all components and details of
the system in a textual form.

Fig. 1. CDFD Components

2.2 Introduction to GIIP

The Generic Insulin Infusion Pump (GIIP) (safety) model [5] was developed by FDA
to be an open system research platform that establishes safety properties generic to
insulin infusion pumps. It was envisioned that academics and manufacturers would
experiment with the model and share improvements on its design details and experi-
ment with it to help establish new or improved innovative development technologies.
All the requirements of the system can be attributed to two categories: functional
requirements given in the GIIP Functional Specification Document [6] and safety
requirements given in the Safety Document [7].

The software design of GIIP allows a user to program a time period and an insulin
infusion rate so a patient receives the administration of insulin via an insulin infusion
pump. Based on the specification [6], the software model of GIIP consists of three
primary functional modules: delivery control logic, time management, and interface
to User Interface (UI) devices. The design of the system concentrates on the delivery
control logic module, which includes several major components as illustrated in Fig-
ure 2. The Delivery Control Logic is composed of Basal Management, Bolus Man-
agement, Pump Delivery Mechanism Interface (PDMI), and Alarm Handler. Also, all
relevant events are recorded via Data/Event Logging (DEL).

 Applying SOFL to a Generic Insulin Pump Software Design 119

Fig. 2. GIIP Architecture

In this paper, we focus our design on the Basal Management component of the
GIIP system. The basal management component is to allow a user/patient to program
different insulin infusion rates within 24 hours in a day. Each insulin infuse rate
should be given by an effective period Ӎ the start time, end time Ӎ and the corresponding
basal rate, called a segment. All insulin infuse rates of a day are programmed to a file,
called a Basal Profile.

However, sometimes a patient may require special administration of insulin due to
some reasons. In this case, the component provides a user with a mechanism to
program a high-priority temporary profile, called a Temporary Basal, which consists
of the duration time and the basal rate. In summary, the basal management component
should accomplish two major functionalities: 1) manage basal profiles, and 2)
produce the correct information such as the insulin infuse rate based on
(normal/temporary) basal profiles to the corresponding component [6].

2.3 GIIP Safety Requirements

The objective of developing the GIIP system is to assure its compliance to a set of
core safety requirements, which are articulated to mitigate previous insulin pump
failures and other significant safety issues [7]. Throughout this paper, we consider
several safety requirements from [7] that govern safe basal administration in GIIP.
For the convenience of readers, we reiterate these requirements as follows:

Safety Requirement 1: The pump shall allow the user to program a basal profile
with a set of basal rates, ranging from 0.05 to x Units/hour.

Safety Requirement 2: For each basal rate in the profile, the user shall define the
duration of the particular rate.

120 C.-L. Lin, W. Shen, and D. Kountanis

Safety Requirement 3: The pump shall allow the user to set at least two basal
profiles at the same time, and require the user to activate no more than
one profile at any single point in time.

Safety Requirement 4: The programmed infusion rate of a temporary basal shall not
exceed x Units/hour and the duration of a temporary basal shall not
exceed y hours.

Safety Requirement 5: The pump shall allow a user to stop a temporary basal while
it is in administration.

3 Design of Basal Management Component

In this section, we first outline the structure of the Basal Management component, and
then explain in detail how its design is refined to lower levels in a top-down style.

3.1 Top Level Design

In general, the Basal Management component takes the responsibility of managing
basal administration according to requests received from the user. The user is al-
lowed to send the component two types of requests regarding basal administration: 1)
the BP-req requests, which allow the user to program and manage a basal profile, and
2) the TB-req requests, which allow the user to program and manipulate a temporary
basal. Based on such requests, the component decides the current basal rate and out-
puts it to the insulin delivery mechanism (abstracted as the PDMI component) of the
system for delivering insulin. The component also needs to log any changes made to
basal administration and report them to the event logging mechanism in the system
(abstracted as the DEL component). Figure 3 summarizes, in the format of a CDFD,
the interaction that the Basal Management component has with other components in
order to fulfill its functionalities.

Fig. 3. Top Level CDFD for Basal Management

In Figure 3, a process, Basal Controller, is introduced to represent the Basal Man-
agement component. Textual SOFL specifications, as illustrated in Figure 4, are
embedded in this process to explicitly define the functionalities of the Basal Man-
agement component. As shown in Figure 4, the textual specifications of a process
include declaration of variables and data types to be used by the process and its
functionalities specified in an object-oriented style.

 Applying SOFL to a Generic Insulin Pump Software Design 121

The user manages basal administration mainly by instructing the Basal Manage-
ment component to manipulate basal profiles. In particular, the user can request the
component to add, delete, update, activate, or deactivate a selected basal profile. To
manipulate requests from the user, the component declares an enumeration data type,
BasalProfile-request, to define the types of operation on basal profiles (see line 2 in
Figure 4); and a variable of this type, BP-req, to store such request(s) from the user
(see line 12 in Figure 4).

Fig. 4. Module of Top Level CDFD

With regard to managing temporary basal, the user can instruct the component to
either start or stop a temporary basal. Thus, the Basal Controller process declares an
enumerate data type TemporaryBasal-request , which consists of two possible values
SET TB and STOP TB, to represent the operations on temporary basal administration.
A variable TB-req, with the type TemporaryBasal-request, is declared to record the
request(s) from the user regarding temporary basal manipulation.

As aforementioned, any changes to the basal administration, normal or temporary,
need to be logged. In Figure 4, lines 7-11, a data type Report is declared for such logs.
The Report type consists of three fields: field Index corresponds to the unique index
number of the basal profile being affected by the change; field type indicates what
type of change, BasalProfile-request or TemporaryBasal-request, happens on the
selected basal profile; and field Time records the exact time when the change occurs.
Notably, field Time has the type of STime, a quadruple recording the date, hour,
minute, and second elements of the time.

122 C.-L. Lin, W. Shen, and D. Kountanis

3.2 Basal Profile Requests (BP-Req)

It is worth noting that, the textual specifications of a process also needs to define the
expected way of how the process’s functionalities are decomposed, if the complexity
of these functionalities justifies further refinement. Take the Basal Controller process
for instance. The functionalities of this process can be generally decomposed into
those for normal basal management and for temporal basal manipulation. As shown in
the second part of Figure 41, lines 20-21 explicitly define such decomposition. We
first explain in this section how a lower-level CDFD is designed for managing normal
basal profiles, and then explain that for temporary basal in section 3.3.

Figure 5 enumerates variables and data types used in managing normal basal ad-
ministration. Firstly, a data type, Profile, is declared for basal profiles. The Profile
type is composed of a set of segments, each of which has the type Segment, A basal
profile with the type Profile distinguishes itself from others with a unique index num-
ber, stored in its key field.

Each segment in a basal profile is a combination of its effective period (field Effec-
tivePeriod) and the associated basal rate (field basalrate), where the effective period
is defined as the start and end time of the period. Type EffectivePeriod is thus de-
clared as a production of two Systime-typed elements. Note that type Systime is dif-
ferent from STime in that the former has only three fields for hour, minute and second
elements, while the latter has an extra field for date.

In the system, each basal profile stored is assigned with a unique index number,
through which this profile can be fetched, edited, and removed. So, we define type
Profiles as a set of profile at line 11 and type Index as nature number (denoted as nat)
to represent the index of a profile at line 12. The basal profiles in the system are
stored in variable profiles, which is declared at line 39 with type Profiles. To map an
index number to the corresponding basal profile, a data type, ProfilesRecord, is de-
clared at line 13 A a variable profiles-record typed as ProfilesRecord, is declared at
line 34 to store the basal profile fetched based on a user-indicated index number.

With regard to basal delivery, the system takes one of two possible modes at any
point of time: Delivery and No Delivery. Thus, line 13 of Figure 5 declares an enume-
ration type DeliveryMode with two values: Delivery and NoDelivery, and line 35
declares a variable mode to store the system’s current delivery mode, with the type of
DeliveryMode.

To eliminate the possible confusion in basal administration, safety requirement 3
enforces that no more than one basal profile be activated at any single point of time.
To implement this requirement, we define the variable activeprofileindex (line 36 in
Figure 5) to maintain the index of the basal profile currently being activated. Appar-
ently, activeprofileindex can take only one value at any point of time.

A temporary basal is defined by its duration and its associated temporary basal
rate. The data type TemporaryBasal, a record type, defined at lines 24-27 of Figure 5,
is introduced to represent this fact. The TemporaryBasal has a nat-typed field

1 The second part of Figure 4 also includes declaration for the DEL and PDMI components.

Since these two components are not the focus of this paper, we skip their details here.

 Applying SOFL to a Generic Insulin Pump Software Design 123

Fig. 5. Type and Variable Declarations for BP Request

duration to define the duration of a temporary basal in hours, and the real-typed field
rate documents its temporary basal rate (in Unit/Hour). Any temporary basal input by
the user is stored in the variable tempbasal (line 37 in Figure 5), the type of which is
TemporaryBasal. The current system time is represented by variable currentTime,
whose type is SysTime given at line 40.

The BP-Req type of requests can be further refined to the following five types [6],
based on what action the user intends to perform on the basal profiles:

• Request to add a basal profile (denoted as AddBasal)
• Request to delete an existing basal profile (denoted as DeleteBasal)
• Request to update an existing basal profile (denoted as UpdateBasal)
• Request to activate an existing basal profile (denoted as ActivateBasal)
• Request to deactivate the currently activated basal profile (denoted as Deactivate-

Basal)

124 C.-L. Lin, W. Shen, and D. Kountanis

Fig. 6. Decomposition of Basal Controller (BP-Request, Partial)

These five types of requests are declared from line 16 to line 23 in Figure 5. Note that
AddBasal requests can be distinguished by the new basal profile(s) they address.
Thus, we declare the data type AddRequest as equivalent to type Profile. The actual
AddBasal requests received from the user are stored by variable add-req.

DeleteBasal requests, on the other hand, refer to the basal profiles to be deleted by
their index numbers. Thus, we declare type DeleteRequest as nat, while all Delete-
Basal requests are stored in variable del-req, which is declared at line 30 of Figure 5.

UpdateBasal requests require a user to provide the index of the profile to be up-
dated, as well as the new profile to replace it. Therefore, a record type UpdateRequest
is declared at line 15 of Figure 5 representing such a request, which consists of two
fields: a nat-typed field index for the index, and a Profile-typed field profile for the
new profile. In addition, all UpdateBasal requests from the user are stored in variable
upd-req.

ActivateBasal requests are similar to DeleteBasal requests. Thus, a type Activate-
Request is declared for these requests, which is also nat to indicate the index of the
basal profile under concern. ActivateBasal requests are stored in variable act-req.

DeactivateBasal requests do not require any additional parameters. Thus, the type
DeactivateRequest for these requests is declared as a void type. A variable deact-req
with type DeactivateRequest is declared to store DeactivateBasal requests from the
user.

In our GIIP design, the Basal Controller component manipulates BP-Req requests
from the user based on the types of such requests. That is to say, the behavior of the
component is decomposed several subsets, each of which corresponding to a particu-
lar type of BP-Req requests. The CDFD in Figure 6 illustrates such decomposition.
Moreover, a process is defined for manipulating each type of requests. The rest of this
section discusses the details of all these processes.

 Applying SOFL to a Generic Insulin Pump Software Design 125

Figure 7 depicts the process for handling AddBasal requests. The user can create
multiple basal profiles that, if valid, are stored in the basal profiles record in the sys-
tem. A basal profile is valid if it complies with safety requirements 1-3. Thus, the
process in Figure 7 first validates whether an input profile against these safety re-
quirements using the precondition at line 5. The precondition calls the method vali-
date, which is defined by lines 16-22. The validate method first compares the start
time (parameter 1 of effectiveperiod) and end time (parameter 2 of effectiveperiod) of
the effective period of each segment in the basal profile under concern. If the former
is before the later, then the method checks if the basal rate associated with this sege-
ment is greater than 0 Unit/Hour and less than a thereshold specified by the user (de-
noted as X in Figure 7). Any basal profile failed in these checks is considered as
invalid and will be discarded.

If an input profile is valid, the process adds it into the profiles record through the fol-
lowing steps: 1) Add the new basal profile to the set profiles at line 8. 2) Point the current
index to the new profile and override the previous profiles record using the keyword
override; 3) Update the index of the next profile by increasing index by 1, as shown at
line 10, and 4) generate a report on this action and send it to the DEL component.

Fig. 7. Module for Add Profile

Figure 8 shows the process responding to DeleteBasal requests. This process first
checks the presence of the profile to be deleted in the profiles record, as enforced by
the pre-condition at line 6. If the profile does not exist in the profiles record, the
process simply discards the request. Otherwise, it locates the index of the profile and
removes it from the record (line 8). The process, like others, also generates a report if
a profile is deleted, and sends the report to the DEL component.

Furthermore, if a request of deleting one basal profile is valid, and the profile
to be deleted is currently the active profile (i.e., index of the request equals to

126 C.-L. Lin, W. Shen, and D. Kountanis

acitveprofileindex), then the component needs to conduct the following tasks (as
shown from line 9 to line 12 in Figure 8):

1. Deactivate the profile to be deleted without activating another one (i.e., setting the
acitveprofileindex to -1);

2. If there is no temporary basal currently in process, set the delivery mode to No Deli-
very, indicating that there is no basal, in any form, currently under administration.

Fig. 8. Module for Delete Profile

The Update process shown in Figure 9 is defined to manipulate UpdateBasal Re-
quests. Similar to handling DeleteBasal requests, this process first checks if a basal
profile with the index indicated by the user exists in the profiles record. If not, the
process simply ignores the request. Otherwise, the process validates the new basal

Fig. 9. Module for Update Profile

 Applying SOFL to a Generic Insulin Pump Software Design 127

profile by calling the validate method. If the new basal profile is valid, the process
replaces the previous profile in the profiles record that has the user-specified index
number with the new basal profile. If this happens, a report is generated and sent to
the DEL component for logging.

Since the profiles record may contain multiple profiles, a user can activate one of
them and use it to decide the output basal rate. The Activate process, as illustrated in
Figure 10, is crafted to assist the user in dosing so. This process first checks whether
or not the selected basal profile, i.e., parameter act_req, exists in the profiles record
(line 5). If yes, the process updates the active profile variable activeprofileindex to the
index of the selected profile, act-req,(line 6). After this, the system switches to the
Delivery mode (line 7), and generates a log and feeds it to the DEL (line 8).

Fig. 10. Module for Activate Profile

The system allows a user to deactivate an active profile, a feature implemented by
the Deactivate process in Figure 11. This process first voids the activeprofileindex
variable by settings it to -1 (line 6) , and then, if there is no temporary basal defined,
switches to the No delivery mode (line 8). The entire process is recorded in a log sent
to the DEL (line 9).

Fig. 11. Module for Deactivate Basal Rate

128 C.-L. Lin, W. Shen, and D. Kountanis

In order to decide the actual basal rate, we define the UpdateBasalRate process that
calculates the actual basal rate continuously during the system execution. The process
is shown in Figure 12 based on the following rules:

1. If the delivery mode is NoDelivery, the basal rate is 0;
2. Otherwise, if there is a temporary basal in progress, then the basal rate is set as the

temporary basal rate;
3. Otherwise, the process should find the active profile (if any) from the profiles

record, decide the right segment in the active profile that covers the current time,
and use the basal rate associated with this segment as the actual basal rate.

Fig. 12. Module for Update Basal Rate

3.3 Temporary Basal Requests (TB-Req)

A user can instruct the system to start or stop a temporal basal. In particular, the user
can send to the system a SET TB request for programming and start a temporary basal.
Or he/she can request to stop the currently ongoing temporary basal with STOP TB
requests. In particular, a SET TB request carries a temporal basal (duration and tempo-
rary rate) as the parameter, while a STOP TB request has no parameter.

Figure 13 illustrates how the GIIP system should respond to these types of request,
where a Set TB process is introduce to manipulate SET TB requests and a Stop TB
process to manipulate STOP TB requests.

 Applying SOFL to a Generic Insulin Pump Software Design 129

Fig. 13. Basal Controller Design for Temporary Basal Requests

Figure 14 provides type and variable declarations for the GIIP design with regard
to managing temporary basal requests, where the types SetTBRequest and StopTBRe-
ques are defined for the two types of requests related to temporary basal, respectively.
Note that type StopTBRequest is actually a void type, as it does not require any para-
meter to stop the current temporary basal. Variables set-req and stop-req are declared
to stop the temporary basal requests from the user.

Fig. 14. Type and Variable Declarations for TB Request

A process SetTB, as shown in Figure 15, is defined to specify the process for the
GIIP to respond to a SET TB request from the user. As imposed by safety require-
ment 4, any new temporary basal that the user intends to initial, should have a tempo-
rary basal rate not greater than x Units/hour and a duration not greater than y hours
(both x and y are thresholds pre-specified by the user). The SetTB process first checks
to assure that no other temporary basal is currently stored in the system (see line 3 of
Figure 15), and then checks whether the input temporary basal is valid by calling the
validateTB method. The validateTB method, defined from line 8 to line 12 in Figure
15, checks whether or not the configuration of the input temporary basal is within the
ranges prescribed in safety requirement 4. . If the input temporary basal is valid, the
component stores it in variable tempbasal, generates a report indicating that the input
temporary basal is initiated, and feeds the report to the DEL componet . Once variable
tempbasal is set, the UpdateBasalRate process will update the output basal rate ac-
cording to the temporary basal.

130 C.-L. Lin, W. Shen, and D. Kountanis

Fig. 15. Module for SetTB

In terms of stopping the current temporary basal, the StopTB process, shown in
Figure 16, simply clears variable tempbasal by setting it to nil.

Fig. 16. Module for Stop TB Request

4 Related Work

To assure the correctness of safety-critical software systems, many formal methods
based approaches have been proposed in last few decades, including Alloy [8], ASM
[9], B [10], and Z [11]. All of these approaches are built on solid mathematical foun-
dation. Although such solid mathematical foundation enable formal verification to be
conducted on software systems thus developed, it also restricts the applicability of
these approaches in industrial development practices. That is to say, developers who
intend to take advantage of these approaches, they have to first become familiar with
the mathematical foundation underlying them. Consequently, the extra learning curve
and sophisticate mathematical background hinder engineers from applying these ap-
proaches in real industrial practices.

5 Conclusion

The application of formal methods in industrial practices has been hurdled by both the
steep learning curve to master these methods and computational expressiveness un-
derlying these methods. The SOFL methodology intends to overcome these hurdles

 Applying SOFL to a Generic Insulin Pump Software Design 131

by integrating together a formal representation framework and an object-oriented
development process. It has been proven as effective when applied to various applica-
tions [12].

In this paper, we applied the SOFL methodology to develop the Generic Insulin In-
fusion Pump design. While concentrating on the Basal Management component in the
GIIP system, our work can easily be extended to the rest of the GIIP system. More
importantly, this case study helps us understand how SOFL leverages the develop-
ment of a complex software system, such as medical device software, from the
following aspects:

1. A software development process driven by the SOFL helps to capture the tra-
ceability [13] among different software artifacts, such as SOFL specifications
and SOFL implementation modules. Good quality traceability information can
greatly improve the correctness and maintainability of complex software sys-
tems. For example, the missing trace information from a requirement to a de-
sign element indicates that the requirement is more likely missed in the system
[14]. Moreover, good traceability information can help third-party reviewers
understand such systems with less effort and more accuracy.

2. The formal and practical aspects of the SOFL methodology introduce more
rigorousness to the development of complex software systems. Formal verifica-
tion can be applied to inspect the correctness and consistency of SOFL specifi-
cations for these systems, which in turn helps developers as well as third-party
reviewers establish higher confidence in these systems.

As the future work, we plan to apply the SOFL methodology to the rest of the GIIP
system, and to investigate effective verification techniques for inspecting SOFL speci-
fications.

Acknowledgements. The authors would like to thank Drs. Yi Zhang and Paul Jones
at FDA who provided valuable and helpful suggestions about the GIIP project, and
the great comments and feedback about this paper. Last, the first author appreciates
their guidance of the GIIP project during his internship in summer 2011.

References

[1] Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL Me-
thod. Springer (2004) ISBN 3-540-20602-7

[2] Liu, S., Offutt, J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: A Formal Engineering Me-
thodology for Industrial Applications. IEEE Transactions on Software Engineering 24(1),
24–45 (1998)

[3] Zhang, Y., Jones, P., Jetley, R.: A Hazard Analysis for a Generic Insulin Infusion Pump.
Diabetes Science and Technology 4(2) (2010)

[4] Vogel, D.: Medical Device Software Verification, Validation, and Compliance. Artech
House (2011)

[5] Generic Infusion Pump Project, http://rtg.cis.upenn.edu/gip.php3
[6] FDA, GIIP Functional Specifications (2011)

132 C.-L. Lin, W. Shen, and D. Kountanis

[7] Zhang, Y., Jetly, R., Jones, P., Ray, A.: Generic Safety Requirements for Developing
Safe Insulin Pump Software. Diabetes Science and Technology 5(6), 1403–1419 (2011)

[8] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press (2006)
ISBN 978-0-262-10114-1

[9] Gurevich, Y.: Evolving Algebras. In: Specification and Validation Methods, pp. 9–36.
Oxford University Press (1995) ISBN 0-521-49619-5

[10] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996) ISBN 0-521-49619-5

[11] Schuman, S.A., Meyer, B., Abrial, J.-R.: A Specification Language. In: McKeag, R.M.,
Macnaghten, A.M. (eds.) On the Construction of Programs. Cambridge University Press
(1980)

[12] Liu, S., Stavridou, V., Dutertre, B.: The Practice of Formal Methods in Safety Critical
Systems. Journal of Systems and Software 28(1), 77–87 (1995)

[13] Spanoudakis, G., Zisman, A.: Software Traceability: A Roadmap. In: Handbook of Soft-
ware Engineering and Knowledge Engineering. World Scientific Publishing (2004)

[14] Yadla, S., Huffman Hayes, J., Dekhtyar, A.: Tracing Requirements to Defect Reports: An
Application of Information Retrieval Techniques. Innovations in Systems and Software
Engineering: A NASA Journal 1, 116–124 (2005)

Extension on Transactional Remote Services

in SOFL

Yisheng Wang and Haopeng Chen

School of Software, Shanghai Jiao Tong University
Shanghai, 200240, China

easonyq@hotmail.com, chen-hp@sjtu.edu.cn

Abstract. Software quality always attracts considerable attentions of
people. Software running without any mistakes is always a dream of all
developers. Besides traditional testing method using in practice such as
path coverage, selection coverage, etc, people try to use some more formal
and reliably method to ensure the quality. SOFL, stands for Structured
Object-oriented Formal Language, is a kind of formal language which can
be used to describe, validate and verify core business flow of software.
As software developing model keeps changing for years, we need to make
some extensions to SOFL. In this paper, we have performed extension
on transactional remote services designed for SOFL. Our extension can
mainly be divided into two parts: remote services and transactions. By
introducing these, SOFL is able to keep pace with the changing software
developing model, thus ensuring software quality in a more mathematical
and different way comparing with traditional testing.

1 Introduction

A mature and practical commercial software product always needs a relatively
long period of time and cooperation of many people including managers, de-
signers, developers and testers. Nevertheless, software quality still cannot be
perfectly guaranteed. Bugs and maintaining costs are bottlenecks of software in-
dustry to some extent[1].Theoretically, each software product contains potential
problems and whether it would crash in the next second remains unknown[2].
People have already found a lot of ways to improve software quality such as
standard developing processes and software testing methods. Using these clas-
sic methods such as RUP developing process[3], UML[4], black-box testing and
white-box testing can improve software quality, but still 100% correct is unable
to be reached or proved.

Actually, there are some other researches focusing on formal methods in soft-
ware developing. SOFL[5] is a kind of formal language which can be used to
describe, validate and verify a business workflow in a software product. Usually
we use SOFL Specification and CDFD (stands for Control and Data Flow Dia-
gram) to model a workflow. These can still be divided into some basic elements
such as Module, Process, Dataflow, Datastore, etc. In general CDFD describes

S. Liu (Ed.): SOFL 2012, LNCS 7787, pp. 133–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 Y. Wang and H. Chen

relationships of these elements such as dataflow connecting two neighboring pro-
cesses. It should be noted that there also exists hierarchical relationship between
two CDFD Diagrams. SOFL Specification carries out the detailed implementa-
tion of a module, including its pre and post condition, data store, input and
output variables. It plays a complementary role together with CDFD.

After modeling a workflow using SOFL, we are able to find whether there
are some potential mistakes in the model by validating and verifying which will
be described afterward. The correctness of a workflow validated and verified by
SOFL can be ensured by formal methods[6][7].

The programming model of software product always keeps changing. Invoking
remote services helps developers to reuse codes as well as avoid duplicating
time-consuming developing job, which is not supported or introduced in SOFL.
Moreover, transaction is an important part in software product, especially for
web-based applications with relatively complicated business logic. If SOFL can
keep pace with this changing trend, its influential range will spread, thus promote
fames of software formalization. This is also what our extensions aim to.

The rest of the paper is organized as follows: Section 2 lists some motivations
of our work. Section 3 introduces the detailed extensions we have performed,
dealing with remote services and transactions individually. Section 4 summa-
rizes a practical case modeling with SOFL along with our extensions. Section 5
introduces related work by others on SOFL recently. Section 6 summarizes the
main contribution of this paper and comments on further research.

2 Motivation

As the day passed, software developing model has changed a lot comparing with
several tens of years ago. What software developers focus on now is to reuse as
much existing remote services as possible rather than writing and testing same
and duplicate codes. This is also the sharing notion of both component-based
software engineering[8] and SOA[9]. The difference between component and ser-
vice mainly lies in the location of the reusing piece of codes. Components can
be withdrawn and run locally while services can not. In general case, we invoke
remote services by providing input parameters and waiting for output results
through network connections. Its running process is totally different comparing
with local processes. Moreover, as Cloud Computing gaining more and more at-
tentions of people, this notion has been inherited and carried forward by invoking
remote services in Cloud[10].

In SOFL, there are several concepts dealing with ‘external’ elements. ‘External
Process’ means a virtual process situated before the first process or after the
last process. Generally, external processes are used to describe the end user or
third-party system in a workflow. Users providing input data or operations and
third-party system which receives output data from the workflow can be called
external processes towards it. Another concept reads ‘external stores’ which is
a kind of data store. It is used to describe ‘external devices or files, such as
displays, files on disks, printers, keyboards’[5]. All these seems to be not very

Extension on Transactional Remote Services in SOFL 135

related with the scenario of reusing. Unfortunately, support on these aspects of
SOFL is quite weak. As SOA and Cloud Computing boosts in a fantastic speed,
SOFL should also keep its pace with these popular notions.

Another key point towards web-based application, especially dealing with on-
line payment or finance elements is transaction. A well-informed instance is
saving, withdrawing or transferring money from a bank, which we can simply
find in our database textbook. More importantly, as the introducing of invoking
remote services, the possibility of invoking exceptions increased because of the
unreliability of network connections. According to Probability Theory , if more
than one remote services or data stores are involved in a workflow, the proba-
bility of mistakes will boosts in an exponential speed. It can be believed that
transactions are required especially for workflow containing remote services or
data stores. We can also inferred from the scenarios that long transactions would
play a dominate role because of network delay and business logic. Assuring its
correctness is also important towards a practical application. So it is reason-
able for us to make extension to SOFL and enable it to deal with transactions,
including long transactions.

It is clear that the requirement of extension to SOFL about remote services
and transactions is reasonable and practical. We should add remote services,
remote data stores and transactions into both SOFL Specification and CDFD
based on the existing rules and grammars of SOFL. The detailed information of
our extensions is shown in the next section.

3 Approach

According to what we have carried out in previous sections, our extensions on
transactional remote services to SOFL can mainly be divided into remote el-
ements and transactions. So we will give out our detailed ideas about these
individually in the following.

3.1 Remote Elements

We have discussed the changes of programming model recently. These changes
can mainly be concluded to distributed architecture (including distributed pro-
gramming model such as Hadoop or distributed data store such as HDFS), us-
ing or revealing web service APIs, different database structure such as no-SQL
database, etc.[11] Meanwhile, the ultimate goal of SOFL is to model and review
core workflow of a software product. Thus extendibility of SOFL according to the
changes made by software world are essential, otherwise it might be eliminated
because of its fogyism.

SOFL is such a formal language that it does not care how much computing
resources or its distributing and connecting situation a workflow actually used.
This means information like whether distributed architectures are introduced,
what kind of database is used cannot be revealed from SOFL. In other words,
these information is transparent and inconsequential for modeling and reviewing

136 Y. Wang and H. Chen

because SOFL focuses on business logic more. But remote elements is different.
Invoking remote services is actually a part of workflow, or said business process.
Their differences over local services mainly lie on the unreliability of network
connection and the existence of network delay. The difference between using
remote data store and local ones is similar. To conclude, we do not care much
about the detailed implementation of services or data stores, but care much
about what we used is remote ones or local ones.

In the following chapters, we will discussed remote services and remote data
stores. Both their textual and visual appearance will be displayed.

Remote Process. Service is the most basic unit in SOA. Services are well-
defined business functionalities that are built as software components (discrete
pieces of code and/or data structures) that can be reused for different purposes.[9]
Service providers can be anyone who wants to be. They need to publish its in-
terface and access information to the service registry. So such services which
are invoked by a workflow and do not run on local node is called ‘Remote Ser-
vices’. By invoking remote services, a workflow need to provide input parameters
and receive output results as the access information mentioned through network
connection.

In SOFL, local function call is described by using ‘process’. A process has its
name, input parameters, output parameters, pre-conditions and post-conditions.
If it uses data stores, a data flow described by a straight line with an arrow will
be added in CDFD. Here pre-condition means the rule that input parameters
must obey, and post-condition means the calculating process of results, thus is
corresponds to function body.

In most cases, a remote service also have such five elements and their infor-
mation is published in registry node. We want to point out that function body
of remote service is transparent to service resumer in most cases. So the post-
condition of remote service should be filled by user according to the describing
and expect output information in service registry. The SOFL Specification we
designed for remote services (or said remote process in SOFL’s definition) is
shown in snippets 1.

Algorithm 1. SOFL Specification of Remote Process

1 remote process Sample (x: Ti 1, y : Ti 2)z : To 1, w : To 2

2 pre P(x, y)
3 post Q(x, y, z, w)
4 end process;

We can find that the only difference towards normal process in SOFL is the
keyword remote. It does not appear in original SOFL grammar, thus conflict
and ambiguity will not be caused by adding this. It has been mentioned above,
post-condition of remote process should be given out by user when modeling

Extension on Transactional Remote Services in SOFL 137

workflow according to the using scenario and intention of that service. More
specific example about how to fill the post-condition of remote process can be
seen in the next section.

After giving out the SOFL Specification extension, we continue to perform
the extension on CDFD. Its difference towards original process in SOFL is only
the letter ‘R’ in the right top side of the diagram. It can be seen in figure 1.

Fig. 1. CDFD of Remote Process

Besides difference in displaying symbol in CDFD and grammar, there are also
some extra constraints of remote process. They are listed as follows.

1. There is an extra and common pre-condition of all remote processes, which
is that the remote service must be accessible through network connection. Oth-
erwise it can be regarded as a violation of pre-condition of process, thus leading
to failure of the whole workflow.

2. Remote process in CDFD can not be decomposed into child-level further be-
cause the principle that detailed implementation of remote service is transparent
to service consumer.

3. If this remote process has used data stores which does not belong to the
workflow, it should not be displayed in CDFD. But if the data store belongs
to the workflow, it still needs to be displayed. For instance, if a remote process
needs to modify data saved in local database which is abstracted as a data store
in SOFL, it should be displayed in CDFD with an arrow line linking from remote
process to it.

Remote Data Store. Remote data store means data stored on remote node
such as remote database or storage service. A remote data store is an external
data store because its storing location is external towards the workflow. So we
need to add mark # when they are declared in a module. To be distinguish from
normal data stores, we add keywords remote before variables. Thus, the SOFL
Specification of a process using remote data stores is shown in snippets 2.

The overall specification grammar is quite similar to normal data store, but
different at the keyword remote, which has already been defined and applied in
remote processes. According to the definition of external stores in SOFL, they
are global variables. Therefore, remote data stores are also global variables.

We have also designed the CDFD of process declared in snippets 2. It is shown
in figure 2.

138 Y. Wang and H. Chen

Algorithm 2. SOFL Specification of Processes Using Remote Data Store

1 process Sample2 (x: Ti 1, y : Ti 2)z : To 1, w : To 2

2 ext
3 remote rd #v 1 : Te 1
4 remote wr #v 2 : Te 2
5 pre P(x, y, v 1, v 2)
6 post Q(x, y, z, w, ˜v 2, v 1, v 2)
7 end process;

Fig. 2. CDFD of Processes Using Remote Data Store

Similar to CDFD of remote process shown in figure 1, the only different be-
tween remote data store and normal data store lies in the remote keyword in
specification and the ‘R’ mark in CDFD.

3.2 Transactions

A transaction by definition must be ACID which stands for atomic, consistent,
isolated and durable[12]. Usually it provides an “all-or-nothing” proposition,
stating that each work-unit performed in a database must either complete in
its entirety or have no effect whatsoever. In software products especially web-
based applications, transactions are widely used in order to ensure the correct
running of the whole system and avoid data inconsistency or business logic chaos.
The simplest and most popular example is transferring money between banks.
It can be said that most software products might not run correctly without
transactions.

SOFL has not introduced transactions according to its original definition. In
SOFL, a workflow is running by steps from one process to its successor without
operations of opposite direction such as rollback. Thus it is difficult for us to use
SOFL to model a workflow with transactions. We have performed our definition
of transactions in SOFL in the following paragraphs.

The most basic unit of SOFL-modeled workflow is process. So it is reasonable
to introduce transaction based on processes, which means transactions in SOFL
are composed with several processes. According to the feature in SOFL that
processes can be further decomposed and CDFD is hierarchical, we also want to
carry out some constraints on transactions as follows.

Extension on Transactional Remote Services in SOFL 139

1. All processes in a transaction must be neighbored in CDFD. This is also a
conventional constraint of transaction.

2. All processes in a transaction must be in a same CDFD. For example,
the top level of a workflow is composed with three processes named ‘A’, ‘B’,
‘C’ individually. ‘A’ can be further divided into ‘Aa’ and ‘Ab’. ‘B’ is composed
with ‘Ba’, ‘Bb’ and ‘Bc’. According to this rule, ‘Aa’ and ‘Ab’ can be in a same
transaction, but ‘Ab’ and ‘B’ can not composed of a transaction. This is mainly
because the inner structure of ‘A’ is transparent to ‘B’. And usually, a process
is relatively independent to other process. The fact that a process has several
child-level processes is mainly because it has divided its function into several
parts. Just focus on the previous instance, the function of ‘A’ and ‘B’ is different
and independent. It can not be very common that ‘Ab’ and ‘B’ need to be in a
same transaction. Similarly, ‘Ab’ and ‘Ba’ can not be in an transaction either.

If a transaction need a lot of time to finish, we call it long transaction. There is
not a very exact and strict boundary time to distinguish long transactions against
normal ones. Normal transaction is implemented by executing it in memory
and flush data to disk when committed. But such implementation can not be
applied directly to long transactions because the performance influence of write-
lock and data size. In order to ensure the ACID of long transactions, a series
of operation called ‘compensating transaction’ is introduced and invoked when
rollback operation is needed.

In practice, the implementations of compensating transaction is roughly di-
vided into two. The first is writing the inverse operation by user and execute
it as rollback. The other is to take snapshots before transaction starts and set
all variables to that value when rollback is needed. Its detailed implementation
contains the following steps. Before the first process of a transaction is started,
a snapshot of the whole system is taken and saved. This snapshot is actually
a set of values of current variables of the whole system. Then the transaction
started by executing processes it contains in a certain order. When it need to
rollback for some reasons, the snapshot is used. We define a set of operations as
compensating transaction which sets the value of variable to the original state.
It is determined by the snapshot taken before the starting of the transaction. Af-
ter these set operations has finished, the transaction has rollback to its original
state, thus guarantee the “all-or-nothing” feature.

Our extension supports both methods. If user has not written his compen-
sating transaction, taking snapshot is used by default. The selection of rollback
strategy is made by user.

There are hierarchical relations among transactions, which means nested trans-
actions are allowed. A remarkable difference between nested transactions against
normal ones mainly lies on the retry count. We assume transaction A contains
transaction B and we set retry count to n. This means A is failed if and only if B
has rollback for n times. In other words, failure of B only once would not cause
failure of A if n is greater than 1. Moreover, in general case, nested transactions
are long transactions.

140 Y. Wang and H. Chen

We have discussed the definition and some constraints of transactions in
SOFL along with long transactions and the implementation of their compensat-
ing transactions. We are ready to give out our extension on grammar in SOFL
Specification. Because multiple processes can be involved in a transactions, so
we need to declare a transaction first, and then refer it in the process definition
block if it belongs to this transaction. In addition, because all processes of a
transaction must be in a same CDFD, so the declaration of transaction can be
placed in the module which is composed with these processes. A sample module
with transaction is defined in snippet 3.

In snippet 3, a module named ‘Sample Module’ is defined and indicates
‘Sample Parent Module’ as its parent module. The general procedure of declar-
ing a module is defined in the following order: constants, types, variables, invari-
ants, behavior and processes. Our extension is to add transactions sections be-
tween invariants and behavior and start with the keyword transaction. Trans-
action has the only attribute: name. It is also the only mark when using to
distinguish from others, thus it must be unique. In order to show hierarchical
structure, ‘Trans 2’ behaves as the child transaction of ‘Trans 1’ with retry
count equaling 3.

There is also an extra transaction definition section in process definition sec-
tions just after the name and parameter section. It indicates which transaction
it belongs to. Literally, ‘Trans 1’ only contains one process, but actually it acts
as the parent transaction of ‘Trans 2’, thus it contains all these three processes
by analyzing the hierarchical relationships. A process can belong to multiple
transactions. The transaction section in process definition sections is able to de-
clare all transactions it belongs to by using semicolons as their separators, but
ancestor transactions need not to be declared.

Process named ‘Sample Compensating Process’ is defined as the compen-
sating transaction of ‘Trans 2’ by using keyword compensating transaction.
Note that each process can only declare one transaction name as its compen-
sating transaction. There are not any compensating transactions declaring for
‘Trans 1’, thus the default taking snapshots method is used.

Transactions can also be displayed in CDFD using special symbols. We define
a dashed box around processes as all of these processes belong to a same trans-
action. Its name is marked in the dashed box to be distinguished against others.
Just take the snippet 3 as an instance, its CDFD is demonstrated in figure 3.

Compensating transaction ‘Sample Compensating Process’ is not displayed
in CDFD because it is not the basic flow of this workflow. Dashed box is shown
only in CDFD of this level. It would not display in other level, such as the CDFD
for module ‘Sample Parent Process’ in the example.

4 Evaluation

We have performed our detailed extension method on SOFL about transactional
remote services both in CDFD and SOFL Specification in the previous section.
In this section, we try to demonstrate a case modeling with extended SOFL to

Extension on Transactional Remote Services in SOFL 141

Algorithm 3. SOFL Specification of Module with Transaction

1 module Sample Module / Sample Parent Module
2 transaction
3 Trans 1;
4 Trans 2 / Trans 1 retry 3;
5 behav CDFD Sample Module
6 process Sample Process 1 (x: Ti 1, y : Ti 2)z : To 1, w : To 2

7 transaction
8 Trans 2;
9 ext

10 rd v 1 : Te 1
11 wr v 2 : Te 2
12 pre P(x, y, v 1, v 2)
13 post Q(x, y, z, w, ˜v 2, v 1, v 2)
14 end process;
15 process Sample Process 2 (z: To 1, w : To 2)v : To 3

16 transaction
17 Trans 2;
18 ext rd v 2 : Te 2
19 pre P’(z, w, v 2)
20 post Q’(z, w, v)
21 end process;
22 process Sample Process 3 (v: To 3)u : To 4

23 transaction
24 Trans 1;
25 ext
26 wr v 3 : Te 3
27 pre P”(v, u, v 3)
28 post Q”(v, u, ˜v 3, v 3)
29 end process;
30 process Sample Compensating Process (v:

To 3)x : Ti 1, y : Ti 2, z : To 1, w : To 2

31 compensating transaction Trans 2;
32 ext
33 wr v 2 : Te 2
34 pre P”(v, v 2)
35 post Q”(v, x, y, z, w, ˜v 2, v 2)
36 end process;
37 end module;

show its using scenario and effect. By introducing this, a more clear and deep
understanding of extended SOFL will be able to build.

Our case is to model a workflow of purchasing commodity. It is quite common
in web-based applications. The approximate processes are listed as follows.

1. Login to our system. In order to keep pace with popular SSO technology
(stands for Single Sign On), user need to send his user name and password to a

142 Y. Wang and H. Chen

Fig. 3. CDFD of Module with Transaction

user authentication center. If authentication succeeds, UC provides our system
with the user’s ID along with some necessary user-related information. In general
case, UC exposes a web service API to all its downstream system. Therefore a
remote process of invoking that service is needed.

2. Online Payment. We have introduced a third-party online payment system
to our workflow. Such systems includes PayPal or e-bank. It is also a remote
process. After succeeding in payment, it returns flag indicating the successful
message.

3. Increase Possessions. Add the number of the user’s purchased commodity
by 1 in user’s profile. For data consistency, procedure No.2 and 3 must be “all-
or-nothing”, thus they must be in an transaction.

We use three processes to model this workflow, corresponding to three procedures
mentioned above. Among these, login process and online-payment process are
remote processes while the rest is local. Besides, we should introduce two local
data stores saving user’s authentication data and data about user’s amount of
possessions. The last key point is that the second and third process need to
be included in a transaction to avoid situations such as failing in payment but
succeed in adding possessions. The detailed information of these three processes
are listed as follows.

1. Login. This is a remote process. It takes user’s user name and password
as input, and judge whether he is a valid user of our system. If true, it gives
out detailed information of this user, otherwise an error message acts as its
output. Dealing with this error message may need another process (maybe named
‘DisplayMessage’), but it is not the key point of our sample, thus it is omitted.
‘Login’ also need to read information from data store named ‘account info’,
which saves user’s authentication information.

2. Online Payment. This is also a remote process. It takes user’s information as
input and returns a flag indicating whether the payment operation is successful
along with his information for next process. Actually it needs a wr operation
to user’s data about his balance, but it should not be displayed in our system
because it is transparent to our workflow.

Extension on Transactional Remote Services in SOFL 143

3. Increase Possessions. This is a normal process. It takes the current user as
input and gives out a flag showing whether it succeeds. It needs to search the
user’s possession information by user’s information and overwrite it, thus a wr
operation to data store named ‘possession info’.

After analyzing requirements and making a rough design about the system,
we try to give out its detailed SOFL Specification of this workflow. Just as
what we have discussed above, this specification contains remote processes and
transactions. The module is named ‘Purchae’. It is shown in snippet 4.

We have omitted the process ‘Display Message’ which deals with the error
message ‘Login’ gives out. Moreover, as an example, we have also simplify the
workflow. For instance, we assume there is only one type of commodity. In prac-
tice, information about commodities and their prices, stocks can always be very
large. To transplant it into real use, we may need to add a process dealing with
what commodities the user want to buy and their total prices between ‘Login’
and ‘Online Payment’. Also, logics dealing mistakes are also omitted such as
when user’s balance is not enough to afford or commodity is out of stock.

In this example, remote process and transaction is involved. We need to note
some key points.

1. Post-conditions of remote processes are added by user, thus we cannot find
the detailed implementation of online payment in post-condition of
‘Online Payment’. We focus on their input and output variables to ensure the
reasonability and correctness of the whole workflow.

2. We have not defined the compensating transaction for ‘Purchase T rans’,
thus taking snapshot is used by default.

3. Data store ‘account info’ belongs to our system, thus it appears in CDFD,
But user’s data about his balance is transparent to our workflow, so it should
not appear in CDFD.

4. If we try to use account information from other systems, ‘account info’
can be remote data store. This requirement is also common if several systems
try to work together and share their users. The CDFD of this workflow is shown
is figure 4.

Fig. 4. CDFD of Purchase

144 Y. Wang and H. Chen

Algorithm 4. SOFL Specification of Purchase

1 module Purchase;
2 type
3 Login Info = composed of
4 user name: string
5 password: string
6 end;
7 Account Info = composed of
8 user id: nat
9 email: string

10 end;
11 LoginAccountFile = map Login Info to Account Info;
12 PossessionAccountFile = map Account Info to nat0;
13 var
14 ext #account info: LoginAccountFile;
15 ext #possession info: PossessionAccountFile;
16 inv
17 forall[x: Account Info] | not exists [y: Account Info] | x.user id = y.user id;
18 transaction Purchase Trans;
19 behav Purchase CDFD;
20 remote process Login(login info: Login Info) current user: Account Info |

error msg: string
21 ext rd account info
22 post if login info inset dom(account info)
23 then current user = account info(login info)
24 else error msg = ”Your password or user name is incorrect.”
25 end process;
26 remote process Online Payment(current user: Account Info)current user out:

Account Info, flag: bool
27 transaction Purchase Trans;
28 post current user out = current user
29 and flag = true
30 end process;
31 process Increase Possession(current user: Account Info, flag: bool)flag out:

bool
32 transaction Purchase Trans;
33 ext wr possession info
34 pre flag = true
35 post possession info = override(˜possession info, map:current user − >

˜possession info(current user) + 1)
36 and flag out = true
37 end process;
38 end module;

Extension on Transactional Remote Services in SOFL 145

5 Related Work

Workflow technology has attracted attentions of researches for a period of times.
In workflow researching field, a representative language is BPEL[13]. Because of
its ambiguities and lack of formal semantics,many researches have been performed
to formalize BPEL by introducing process algebgra, Petri nets, automata, etc.

Process algebras is also used to form workflow. It contains ACP (stands for
Algebra of Communicating Processes), CSP (stands for Communication Sequen-
tial Processes), CCS (Calculus of Communicating Systems), etc[14]. Researches
on modeling business logic by process algebra is a popular topic these years.
Salaun has presented a method for verifying business processes based on pro-
cess algebras which mainly focus on their interactions[15]. The shortage of using
process algebra to model business process mainly lies in its lack of support on
dynamic process instantiation and correlation set. Process algebra also does not
support dynamic structure alteration, which is important in business aspect.

Petri net is a strict and mathematical describing language. It can also used
to verify workflow in an dynamic way. Using Petri net to model a business
is an ideal and reliable method, especially after the introducing of high-order
Petri net. Many researchers have tried their way to translate BPEL to Petri
net[16][17][18]. But Petri net is based on graphical unit, thus its complexity
boosts when modeling a large scaled and practical workflow. Moreover, data
types in Petri net is also limited. Workflow involving rich data types is difficult
to be described by Petri net.

According to the definition, automata is a public and base model of formal
specification for systems which contains a set of stats, actions and transitions
between states[19]. It is convenient to describe workflow because corresponding
definitions can also be found in workflow. Diaz has researched a set of methods
converting business processes writtin in BPEL-WSCDL to timed automata[20].
Fu has developed a tool which translating BPEL to guarded automata[21]. But
limited by the feature of automata, it is also not suitable for describing large-
scaled system because of the complicated structures and loss of accuracy.

Comparing to these relatively mature researches, SOFL starts later. The ini-
tial development of SOFL was made at the University of Manchester in the
United Kingdom in 1989[22]. After that, SOFL had developed gradually with
contribution of many researchers. Shaoying Liu has formalized its grammar and
introduced to people in his papers and books.[5] A remarkable advantage of
SOFL against other software formal language is its support of automatic verify-
ing and validating. Several tools have also been developed to finish these[23][24].
Although its researches have not attract much people yet, its potential power
and solid foundation is still convinced that it will keep going on.

6 Conclusion

As the rapid growth of software, both developers and users keeps changing. Be-
cause the number of software users boost, software need to face greater challenges

146 Y. Wang and H. Chen

not only on its functional requirements, but also its performance, availability,
quality, etc. Being different from classic testing method, modeling software work-
flow using formal language is another attractive way to ensure software quality.
Besides, it is more convincible to people because its mathematical base.

In this paper, we have performed several extensions on grammar of SOFL in
order to make it able to keep pace with the developing software world. These
extension points are listed as follows.

1. Extensions on remote elements. This can further be divided into remote
processes and remote data stores. We use remote processes to model invoking re-
mote services in workflow, which is popular in SOA. Remote data stores are used
to model invoking remote storage services in workflow. It is similar to remote
processes. Remote elements are different from normal elements in several points.
Its grammar on SOFL Specification mainly highlights in keyword remote.

2. Extensions on transactions. Transactions are important to software product
because of its “all-or-nothing” feature. After extension, we are able to declare
transaction name in module declaring section and add transaction declaring to
process definition section to indicate which transaction(s) it belongs to. Trans-
actions can be nested. One process can be included by multiple transactions. Its
compensating transaction can be written by user, or using taking snapshots by
default. All these two extra declaring section starts with keyword transaction.

We have also given out an simple example dealing with purchasing commodities
to show the using scenarios and methods of our extensions. The changes we made
to SOFL is not very large, and it does not conflict with normal SOFL grammar
either because we use new keywords. These extensions can also be illustrated in
CDFD by introducing different mark to distinguish.

SOFL is a new comer comparing with some elder and mature formal language
members such as automata, Petri net and process algebra. But its potential
power can not be regardless. As more researches have been done in SOFL, it
is believed that SOFL will attracts increasingly more people including both
researchers and users, thus ensure software quality in a more convincible way.

References

1. Marciniak, J.J.: Encyclopedia of Software Engineering, 2nd edn. Wiley Publica-
tions (1994)

2. Cai, L., Yang, G.: Software Quality Assurance Testing and Evaluating. Tsing Hua
University Publications (2007)

3. Aked, M.: RUP in brief. In: Risk Reduction with the RUP Phase Plan, pp. 1–10.
IBM (November 2003)

4. Pressman, R.S.: Software Engineering, a Practitioner’s Approach. McGraw-Hill
Science/Engineering/Math. (2009)

5. Liu, S.: Formal Engineering for Industrial Software Development. Springer (2008)
6. Liu, S.: A property-based approach to reviewing formal specifications for consis-

tency. In: Proc. of 16th International Conference on Software Systems Engineering
and Their Applications, pp. 1–6 (2003)

Extension on Transactional Remote Services in SOFL 147

7. Liu, S.: An automated rigorous review method for verifying and validating formal
specifications. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 15–19. Springer,
Heidelberg (2004)

8. Sun, C., Zhang, X., Zheng, L.: The research of the component-based software
engineering. In: Sixth International Conference on Information Technology: New
Generations, ITNG 2009, pp. 1590–1591 (2009)

9. Bell, M.: Introduction to Service-Oriented Modeling. Wiley and Sons (2008)
10. Raicu, I., Lu, S., Foster, I., Zhao, Y.: Cloud computing and grid computing 360-

degree compared. In: Grid Computing Environments Workshop, GCE, pp. 1–10
(August 2008)

11. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: The new generation of
web applications

12. Korth, H.F., Silberschatz, A.: Database System Concepts, 4th edn. McGraw-Hill
Education (2006)

13. Morimoto, S.: A survey of formal verification for business process modeling. In:
Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part
II. LNCS, vol. 5102, pp. 514–522. Springer, Heidelberg (2008)

14. Sipei, L., Jin, W., Lei, W., Park, S.: Description logic rule, matching process alge-
bra based OWL-S modeling, and composition

15. Schaerf, M., Salaun, G., Bordeaux, L.: Describing and reasoning on web services
using process algebra. In: Proceedings of the IEEE International Conference on
Web Services, pp. 43–50 (2004)

16. Verbeek: Analyzing bpel processes using petri nets
17. Van der Aalst: Verification of workflow nets
18. Dumas, M., Van der Aalst, Verbeek, H.M.W.: An approach based on bpel and petri

nets (extended version)
19. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation, 3rd edn. Addison-Wesley (2006)
20. Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Automatic

translation of WS-CDL choreographies to timed automata. In: Bravetti, M., Kloul,
L., Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 230–242.
Springer, Heidelberg (2005)

21. Fu, X., Bultan, T., Su, J.: Analysis of interacting bpel web services. In: Proc. of
13th International Conference on the World Wide Web, pp. 621–630 (2004)

22. Sun, Y., Liu, S.: Structured methodology+object-oriented methodology+formal
methods: methodology of sofl

23. Miyamoto, K., Liu, S., Fukuzaki, T.: A gui and testing tool for sofl
24. Wang, Y., Zheng, Q., Chen, H.: Soflipse: Tool for automatic modelling and review-

ing sofl workflows. International Journal of Computing Technology and Information
Security 1, 88–98 (2011)

Author Index

Chen, Haopeng 133

Duan, Zhenhua 71, 87

Kitagawa, Tetsuo 104
Kountanis, Dionysios 116

Li, Cencen 1
Li, Mo 1, 44
Ling, Chung-Ling 116
Liu, Shaoying 1, 12, 26, 44, 56, 71

Miao, Weikai 26

Nagoya, Fumiko 104
Nakajima, Shin 1

Shen, Wuwei 116

Tian, Cong 71, 87

Wang, Xi 56
Wang, Yisheng 133

Yang, Mengfei 87
Yu, Yan 87

Zhang, Weihang 12

	Preface
	Organization
	Table of Contents
	Testing and Tools
	Applying “Functional Scenario-Based”
Test Case Generation Method in Unit Testing
and Integration Testing

	1 Introduction
	2 Decompositional Approach to Automatic Test Case Generation
	3 Static Analysis
	4 Experiments
	4.1 Target Systems
	4.2 Unit Testing
	4.3 Integration Testing
	4.4 Results Analysis

	5 Proposals Based on Experience
	6 Raleted Work
	7 Conclusions and Future Work
	References

	Supporting Tool for Automatic
Specification-Based Test Case Generation

	1 Introduction
	2 Approach to Automatic Specification-Based Test Case Generation
	3 Supporting Tool for Automatic Test Case Generation Method
	3.1 Test Case Generation Algorithms Based on Numeric Data Type
	3.2 Test Case Generation Algorithms Based on Set Type
	3.3 Test Case Generation Algorithms Based on Sequence Type
	3.4 Algorithms for Automatic Test Case Generation Based on Conjunction and Disjunction Expressions

	4 Design of the Tool
	5 Related Work
	6 Conclusion and Future Work
	References

	A Formal Specification-Based Integration
Testing Approach

	1 Introduction
	2 A Brief Introduction to the SOFL Language
	3 CDFD-Based Integration Testing Approach
	3.1 Path Extraction from CDFD
	3.2 Transformation of Functional Scenario Form
	3.3 Test Case Generation Based on Functional Scenario Sequence

	4 A Case Study
	4.1 Background
	4.2 Results and Analysis of the Case Study

	5 Related Work
	6 Conclusion
	References

	Tools for Specification
	Design and Implementation of a Tool
for Specifying Specification in SOFL

	1 Introduction
	2 SOFL Three-Step Modelling Approach
	3 DesignoftheTool
	4 Architecture of the Tool
	5 Formal Specification Editor
	5.1 Drawing CDFD
	5.2 Specifying Formal Process Specification
	5.3 Keeping Consistency Mechanism
	5.4 Specifying Semiformal Specification

	6 Related Work
	7 Conclusions and Future Work
	References

	Development of a Supporting Tool
for Formalizing Software Requirements

	1 Introduction
	2 Related Work
	3 Tool Design and Implementation
	3.1 SOFL
	3.2 Tool Design
	3.3 Tool Implementation

	4 Case Study
	5 Conclusion
	References

	Model Checking
	Abstract Model Checking with SOFL Hierarchy

	1 Introduction
	2 SOFL Hierarchy
	2.1 Processes
	2.2 Data Stores and Structures

	3 From SOFL Specifications to Kripke Structures
	3.1 Detachment of Processes
	3.2 Data Stores
	3.3 Elimination of Parallel
	3.4 Construction of Kripke Structures

	4 Establishment of PROMELA Models
	5 Verification of SOFL Specifications
	5.1 Consistency
	5.2 Critical Properties in Functional Requirements

	6 Abstract Model Checking Framework
	7 Conclusion
	References

	Model Checking C Programs with MSVL

	1 Introduction
	2 Preliminaries
	2.1 Projection Temporal Logic
	2.2 Propositional Projection Temporal Logic
	2.3 Modeling, Simulation and Verification Language
	2.4 Unified Model Checking Approach

	3 Translating C Programs into MSVL Programs
	3.1 Lexical and Syntax Analysis
	3.2 Storage Structure
	3.3 Translation

	4 A Case Study
	4.1 Greatest Common Divisor and Lowest Common Multiple
	4.2 Translation from C to MSVL
	4.3 Verification with MSVL

	5 Conclusion
	References

	Application and Prototyping
	An Application of SOFL for Rapid Prototyping

	1 Introduction
	2 Rapid Prototyping
	2.1 Formal Engineering Prototyping Model
	2.2 User Participation
	2.3 Iterative Procedure

	3 Experimental Project
	3.1 Background and Motivation
	3.2 Requirements Analysis
	3.3 Plan for Prototype
	3.4 Rapid Prototyping
	3.5 Formal Specification

	4 Experience
	5 Conclusions and Future Research
	References

	Applying SOFL to a Generic Insulin Pump Software
Design

	1 Introduction
	2 Preliminary
	2.1 Introduction to SOFL
	2.2 Introduction to GIIP
	2.3 GIIP Safety Requirements

	3 Design of Basal Management Component
	3.1 Top Level Design
	3.2 Basal Profile Requests (BP-Req)
	3.3 Temporary Basal Requests (TB-Req)

	4 Related Work
	5 Conclusion
	References

	Extension on Transactional Remote Services
in SOFL

	1 Introduction
	2 Motivation
	3 Approach
	3.1 Remote Elements
	3.2 Transactions

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Author Index

