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Abstract. We present a new efficient algorithm to generate all
nonisomorphic automata with given numbers of states and input let-
ters. The generation procedure may be restricted effectively to strongly
connected automata. This is used to verify the Cerny conjecture for all
binary automata with n < 11 states, which improves the results in the
literature. We compute also the distributions of the length of the shortest
reset word for binary automata with n < 10 states, which completes the
results reported by other authors.
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We consider deterministic finite automata A = (Q, X, ), where @ is the set of
the states, X' is the input alphabet, and § : @ x ¥ — @ is the (complete)
transition function. The cardinality n = |Q] is the size of A, and if k = |X| then
A is called k-ary.

If there exists a w such that the image of Q by w consists of a single state,
then w is called a reset (or synchronizing) word for A, and A itself is called
synchronizing. The length of a shortest reset word of A is called its reset length.

The Cerny conjecture states that every synchronizing automaton A with n
states has a reset word of length < (n — 1)2. This conjecture was formulated by
éerny in 1964, and is considered the longest-standing open problem in combina-
torial theory of finite automata. So far, the conjecture has been proved only for
a few special classes of automata and a cubic upper bound has been established
(see Volkov [I9] for an excellent survey). It is known (and not difficult to prove)
that to verify the conjecture it is enough to consider only strongly connected
automata, that is, those whose underlying digraph is strongly connected.

Trahtman [I7/18] reports that, using a computer program, he has verified the
éerny conjecture for all strongly connected k-ary automata of size n with k = 2
andn <10,k <4 andn <7, and k = 3 and n = 8. Unfortunately, no method of
generating such automata is described and no details of computations are given.
There are 10?° binary automata of size n = 10, and it is out of reach of the present
computer technology to generate all of them, so some methods to generate only
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strongly connected automata (or a restricted class containing all the strongly
connected automata) must be used. Such a method is described in [I], the authors
restrict themselves to the class of initially-connected automata (with each state
reachable from a single start state), using a special string representation for such
automata and parallel programming. With these tools, they are able to verify
the éerny conjecture only for binary automata with n <9 states. (For 9 states,
there are about 700 billions initially-connected automata with 2 input letters.)

The theoretical part of Trahtman’s work [I7/18] is devoted mainly to the prob-
lem of efficiently finding the shortest (or a short) reset word. A number of good
algorithms are known at present for solving this problem (see 7] and references
given therein). We found however that the main problem arising in verifying the
Cerny conjecture for small automata is to overcome somehow the huge num-
ber of automata involved rather than to compute the reset length fast. Ideally,
one would like to consider only all nonisomorphic strongly connected automata
for such verification, but no efficient method to generate only automata from
this class is known. There are formulas enumerating the number of nonisomor-
phic automata (see [6] and [GITTIT3]), and methods to enumerate nonisomorphic
strongly connected automata ([8JI4]) Unfortunately, the ways they approach the
problem do not seem useful in the task of efficient generation of the objects.

In this paper we present a new algorithm to generate efficiently all nonisomor-
phic automata with given numbers of states and letters, and to compute the reset
length for them. The method can be extended to generate only specific classes of
automata without much additional cost. In particular, a version of the algorithm
generates all nonisomorphic strongly connected automata. While the algorithm
still produces isomorphic copies (and some not strongly connected automata for
the second version), it greatly reduces the number of considered automata as
well as the overall computation cost. Also we are able to speed-up computation
of reset length making use of the specific properties of the generating method.

Our method allows us us to verify and extend the known computational re-
sults. In particular, we prove that the Cerny conjecture is true for all binary
automata with n < 11 states. We obtain complete distributions of the reset
length for all automata of size n < 10. For n = 11 a new gap in the distribution
is observed, leading to a new conjecture concerning reset lengths.

1 Generating Automata

The algorithm is recursive. Given n > 1, we use known lists of all nonisomorphic
automata of size n and arity 1 (which are equivalent to certain digraphs). For
k > 2, having two lists of all nonisomorphic automata of size n and of arity k— 1
and 1, respectively, our algorithm generates a list of automata of size n and arity
k. To this aim, for each pair of automata, A from the first list, and B from the
second list, a special procedure, called Permutation procedure, is applied. It (1)
takes as an input the pair of automata A and B, from the first and the second
list, respectively, (2) generates all automata isomorphic to B (by permutations
of the states of B), and (3) matches each resulting automaton with A. In this
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way, we obtain all the automata of arity & whose restriction to the first £ — 1
letters is isomorphic to A, while the restriction to the last letter is isomorphic
to B. Matching all the pairs A, B, we obtain all nonisomorphic k-ary automata
of size n. Yet, many of these automata may appear in isomorphic copies.

Using more specific ideas we design a few variant of the algorithm with dif-
ferent task. They generate all nonisomorphic automata of a given size either
without isomorphic pairs or (for lower computational cost) with the number of
such pairs relatively small. We also show how the generation process can be re-
stricted effectively to strongly connected automata. The latter is used to verify
the Cerny conjecture for automata of a given size. Because of the space limit,
in this paper, we describe only the theoretical aspects of the procedure, called
Permutation procedure, which is designed to skip efficiently permutations of B
leading to isomorphic copies. Other variants and the details of the algorithm will
be given in the extended version of the paper.

1.1 Permutation Procedure

We say that two automata A = (Qa,X4,04) and B = (Qp, Xp,05), are iso-
morphic, if there exist two bijections ¢ : Q4 — Qp and ¥ : X4 — X such
that for all ¢ € Q4 and a € Xy

¢(6a(g;a)) = 68(8(q), ¥(a)). (1)

In other words, isomorphic automata are equal up to renaming the states and
the letters. In particular, two isomorphic automata have the same reset lengths,
and the classes of shortest reset words differ only up to renaming the letters
(given by ).

We note that various authors use various terminology here. For example, Har-
rison [0] calls such automata equivalent with respect to input permutations, and
reserves the term "isomorphic automata" for the situation when the bijection
¢ in () is the identity. If ¥4 = X'p, and A and B are isomorphic with ¢ be-
ing the identity, we will say that A and B over the same alphabet are strongly
isomorphic. Then the bijection ¢ itself is called a strong isomorphism or simply
isomorphism (meaning that it forms an isomorphism itself with the second bijec-
tion being the identity). In the case, when A = B, ¢ is called an automorphism.

We consider now an automorphism that fixes the states in a given set. For an
automaton A = (Q, ¥, 0), and a subset S of Q, we say that the states u,v € Q,

s
u,v € S are conjugate under S, and write u ~ v, if there exists a (strong)
automorphism ¢ : @ — @ such that

¢(w) = w for each w € S, @)
o(u) = v.
Figure [Il shows an example of an automaton over a one-letter alphabet with
some states conjugate under S = () and S = {5}. Namely, we have 1 2 2 and

s
3 ~ 4 for S C {5}. Note that there are no two different conjugate states under
any other S in this automaton.
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Fig. 1. An unary automaton with nontrivial automorphisms and conjugate states

The following facts are routine to prove.

Lemma 1. For each S C Q, the conjugation under S is an equivalence relation.
. . R S
Moreover, if R C S, then the relation ~ 2 ~.

Checking whether two states are S-conjugate may be done by computing the
corresponding group of automorphisms (fixing the states from S) or by gener-
ating and checking permutations with suitably prescribed images for S and w.
During the generation of permutations, natural conditions for a permutation to
be an automorphism, such as equality of indegrees, may be taken into account.
Although it has an exponential cost in the worst case, our experiments show
that for most of automata of small size, it works pretty fast.

In our procedure, to be able to skip superfluous permutations effectively we
do some preprocessing. We assume that the set of states of the automata on both
the input lists is Q = {1,2,...,n}. Before running the procedure, the following
structures are created for each pair A and B of automata (with k—1 and 1 letter
alphabet, respectively):

1. The structure PrevB. For each of the 2" subsets S C @ and for each j €
Q \ S, PrevB|[S][j] contains true, if and only if there exists some state
he@Q\S (1<h<y) forwhichhéjinB.

2. The structure PrevA. For each ¢ (1 < i < n) the entry PrevA[i] contains
the largest index h (1 < h < ¢) such that ¢ 2 hin A with Sp={1,...,h —1}.
It is possible that the index does not exist.

The first structure requires computing automorphisms of B for as many as 2™ (g)
conditions (in the worst case) fixing a set S and unordered pair {i,j} with
i,j ¢ S. For each automaton B (which is of arity 1) we compute it only once
and then we process all the pairs with B. The second structure requires com-
puting automorphisms only for (;L) pairs of states (determining the set of fixed
elements). For small n, this preprocessing can be done quickly and takes only a
negligible amount of time compared with processing the resulting automata.

Let A = (Q,X4,64) and B = (Q,Xp,0p) be two automata with Q =
{1,2,...,n}, |Xa]| = k —1 for some k > 1, and X' = {b} for some b ¢ X4.
Let 7 be a permutation of Q. Then, by U(A, B, 7) we denote the automaton
(Q, X4 U Xp,0), where § is an extension of 4 given by

8(q.b) = 7" (05 (n(q),b)). 3)
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We call it the (disjoint) union of A and B under permutation 7. The condition
b ¢ X4 is purely technical, so we may assume it always without further mention.
Note that this construction may be viewed as identifying each state ¢ in B with
the state 7~1(q) in A. An example is given in Figure 2 (loops are omitted).

1 0 1 Q 2 1 0
\ [
\ \
2 0 2 I3 2 0
/P‘
3 0 31 1 3 Q
\ )
4 0 1 b 4 4 ¢
A B a1t U(A, B,r)

Fig. 2. The union U(A, B, w) with 7 = (1, 3,2)

The main part of our algorithm is the PERMUTB procedure presented as Algo-
rithm Il It takes as the input two automata A and B on Q = {1,2,...,n}, with
alphabets of arity & — 1 and 1, respectively. It starts from the empty (partial)
permutation my = () and extends it in a recursive manner. A partial permuta-
tion m; is an injective function from {1,...,i} to {1,...,n}. For each complete
permutation m, the automaton U(A, B, 7,,) is generated. The permutations are
generated in the lexicographical order subject to two restrictions (reducing the
number of isomorphic automata):

1. Let h = PrevA[i+1]. If such h exists and 7;(h) > j then matching (i+1) — j
is skipped, since (as we prove below) a suitable isomorphic automaton has
been generated earlier. This results in starting the corresponding “for loop”
from m = m;(h) + 1.

2. For each j, if PrevB[Sp][j] is true then matching (i + 1) — j is skipped.
Again, we will prove that a suitable isomorphic automata have been already
generated.

In the theorem below we use the notation Al for the automaton obtained from
A={(Q,X4,04) by restricting its alphabet to a subset I" of X.

Theorem 1. Let A = (Q,X4,64) and B = (Q, Xp,dp) be two automata with
disjoint alphabets X4 and X'p (where |Xg| = 1) and the same set of states
Q = {1,2,...,n}. Then, for each automaton C over the alphabet X4 U X'p
such that C|x, = A and Cl|x, = B, PERMUTB(0,,0) generates at least one
isomorphic copy of C.

The proof will be given in the extended version of the paper.
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Algorithm 1. Permutation Procedure
Require: A, B — the input automata.
Require: PrevA, PrevB — preprocessed structures.
1: procedure PERMUTB(%,7;,5)
2: if i = n then

3: Report automaton U(A, B, 7,) — the union of A and B under 7,

4: else

5: m <+ mi(PrevA[i+1]) + 1, or m « 1 if PrevA[i + 1] does not exist.
6: for j =m,...,n do

7 if j ¢ S and not PrevB|S][j] then

8: Extend 7; to miy1(x) putting mi41(4 4+ 1) = j.

9: PERMUTB (4 + 1,mi41,S U {j})

10: end if

11: end for

12: end if

13: end procedure

2 Some Experimental Results

The problem of computing the reset length of an automaton is computationally
hard (see [12], and [3] for approximating hardness). In spite of this the expo-
nential algorithms used so far can work efficiently enough. Yet, they can vary in
efficiency for different automata (see [TUIIHITTITY]).

To compute the reset length for each of the generated automata we use the
standard BF'S algorithm in the power automaton with storing visited subsets of
states in an array (see [I5JI99]), and with preprocessing transitions (comput-
ing the images of subsets) allowing faster computations for a huge number of
automata. We have found this the fastest method for considered small n values
when using bit-vector encoding for sets, allowing to represent them as integers.
It can also report that an automaton is not synchronizing, without separately
using the standard synchronization checking algorithm on the pair automaton
(J417]). Further technical improvements applied are described in the extended
version.

We have computed the exact numbers of all nonisomorphic binary automata
and those strongly connected and/or synchronizing for sizes n < 10. Also com-
plete distributions of the reset length in this range are computed. Our results
confirm all the results reported in [I] and particular facts formulated in [I7]. For
n = 11 we have computed a partial distribution proving, in particular, that all
binary DFA of size 11 satisfy the Cerny conjecture. We plan also to perform
similar computations for k£ > 2.

2.1 The Number of Nonisomorphic Automata

The results up to 10 states are shown in Table [l The total number of DFA is
known due to the formula in [6], and we have obtained computationally exactly
the same numbers. We have computed also the numbers of synchronizing DFA,
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strongly connected, and the number of synchronizing strongly connected DFA.
The numbers of nonisomorphic strongly connected DFA on 2 labeled letters (up
to strong isomorphism) have been considered in [I0] (up to n < 6). They are
about 2 times larger than those with unlabeled (for example, there are 658,885
such DFA for n = 6).

We can see that the fraction of synchronizing DFA to all DFA grows, and
we may conjecture that it tends to 1 as it has been conjectured for the labeled
model (P. Cameron and [16]). This growth is more rapid in strongly connected
DFA; the corresponding fraction here is about 0.999 for n = 10.

Table 1. The exact numbers of nonisomorphic binary DFA of size n in the classes of
all, synchronizing, strongly connected, and strongly connected synchronizing DFA. In
the last column there is the fraction of the number of synchronizing DFA to all DFA.

n Total Synchronizing Strongly connected S. c¢. and synchronizing Synch./Total
2 7 4 4 2 0.57
3 74 51 29 21 0.69
4 1,474 1,115 460 395 0.76
5 41,876 34,265 10,701 10,180 0.82
6 1,540,696 1,318,699 329,794 322,095 0.86
7 68,343,112 60,477,844 12,310,961 12,194,323 0.88
8 3,540,691,525 3,210,707,626 538,586,627 536,197,356 0.91
9 209,612,916,303  193,589,241,468 26,959,384,899 26,904,958,363 0.92
10 13,957,423,192,794 13,070,085,476,528 1,518,185,815,760 1,516,697,994,964 0.94

Let us compare our method of generating all strongly connected DFA with
that of [II2] by generating of all ICDFA (initially connected DFA). There are
about 7x 10! and 4.4x10'3 of ICDFA with n = 9 and n = 10 states, respectively.
In our method we have generated only about 3x 10'? and 1.7 x 10'2 DFA in these
cases. In fact there are about 2.7 x 10'° and 1.5 x 10'2? nonisomorphic strongly
connected DFA, so in our method the relative number of extra generated DFA
is really low. This is confirmed by statistics we have made.

2.2 The Distribution of Reset Lengths for n = 10.

Since generating automata for each pair in Algorithm [Il can be computed inde-
pendently we performed paralleled computations on a small computer grid. Our
computations have been done on 16 computers with Intel(R) Core(TM) i7-2600
CPU 3.40GHz 4 cores and 16GB of RAM. Computing the complete distribu-
tion for all DFA with n = 10 states took above 800 days of total CPU time

Table 2. The exact numbers N (¢) of all and Nyc(¢) of strongly connected nonisomor-
phic binary automata of size 10 with the shortest reset word of length ¢ > 56

14 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
N(¢) 607369168491810 8 9106213 0 0 0 0 021 100O0O0O0GO0°1
Nsc(€) 343160 58 381810 8 9 18 103 0 0 0 0 0 2 1 1 0 0 0 0 0 O 1
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(~ 13 days of paralleled computations). Restricting to the class of strongly con-
nected DFA reduced this time to about 80 days of CPU (~ 2 days of paralleled
computations).

2.3 The Distribution of Reset Lengths for n = 11.

In order to verify the Cerny conjecture for all binary DFA of size n = 11 it is
sufficient to restrict the tested class of DFA to strongly connected. We have not
obtained the complete distribution of reset lengths because of the huge number
of DFA. In this case, we were performing the isomorphism test only for DFA with
long reset length. We have also excluded the automata with a single synchronizing
letter. The number of remaining strongly connected DFA we have to check was
79,246,008,127,339. The total CPU time of this experiment was above 4 years (~
25 days of parallel computations). Note that for n = 11 there are about 3 x 101°
of ICDFA, so we really needed a different method than that used in [IJ.

Table 3. The exact numbers Ny.(¢) of strongly connected nonisomorphic binary au-
tomata of size 11 with the reset length ¢ > 76

14 76 77 78 79 80 81 82 83 84 85 86878389 90 91 92 93 94 95 96 97 98 99 100
Nec(/) 320092212 2 1 00000 3 2 1 00000O0O0 1
Classes - - D Hoy Gy — — — — — En Wn D'y — — — — — — — Gn
A, D" v Fn
PBn

Table [ presents the obtained exact numbers of all nonisomorphic binary
DFA of size n = 11 with large reset lengths. Also some slowly synchronizing
DFA classes are presented in the table. The notation here follows [I] (this topic
is discussed in more detail in the extended version of the paper). The most
interesting observation is a gap between ¢ = 77 and 80: there exist no binary
automaton of size n = 11 with the reset length equal to 78 or 79. First, Trahtman
[17] noted that the reset length (n — 1) corresponding to the class of the Cerny
automata is separated from the second large reset length by a gap (in the classes
of considered DFA of small size). Then the authors of [I] observed that there is
a second gap in the distribution for n = 9. They called the DFA between the
two gaps slowly synchronizing. There is no other gap for n < 10.

We suppose that this kind of irregularity in the upper part of the reset length
distributions occur also for larger numbers of states and that more gaps for larger
number of states appear. We state the following:

Gap Conjecture. For any natural number g > 1, there exists a big enough
natural number n such that there are at least g gaps in the distribution of the
reset length of all binary automata of size n.
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