The Evaluation of Weighted Moving Windows
for Software Effort Estimation

Sousuke Amasaki! and Chris Lokan?

! Okayama Prefectural University,
Department of Systems Engineering
amasaki@cse.oka-pu.ac. jp
2 UNSW Canberra,

School of Engineering and Information Technology
c.lokan@adfa.edu.au

Abstract. In construction of an effort estimation model, it seems ef-
fective to use a window of training data so that the model is trained
with only recent projects. Considering the chronological order of projects
within the window, and weighting projects according to their order within
the window, may also affect estimation accuracy. In this study, we exam-
ined the effects of weighted moving windows on effort estimation accu-
racy. We compared weighted and non-weighted moving windows under
the same experimental settings. We confirmed that weighting methods
significantly improved estimation accuracy in larger windows, though the
methods also significantly worsened accuracy in smaller windows. This
result contributes to understanding properties of moving windows.

1 Introduction

Software effort estimation is an important activity in software development. Its
accuracy has a significant effect on project success. Research on the topic has
studied two types of effort estimation approach: non-model-based methods (e.g.
“expert judgment”), and model-based approaches (e.g. COCOMO, CART, etc.)
[1]. A systematic review revealed that model-based software effort estimation
models have been popular [2].

A software effort estimation model is developed from training data. Evaluation
of the accuracy of the model is based on estimated efforts for testing data. Most
studies split project data into training data and testing data randomly, or used
a cross-validation approach.

In a practical sense, software projects can be ordered chronologically. Pre-
dicting the effort of future projects based on past projects, instead of forming
training and testing sets, is more reasonable. Furthermore, it also seems appro-
priate to use recent projects as a basis of effort estimation. This is because old
projects might be less representative of an organization’s current practices.

Lokan and Mendes [3] examined whether using only recent projects improves
estimation accuracy. They used a window to limit the size of training data so that
an effort estimation model uses only recently finished projects. As new projects

J. Heidrich et al. (Eds.): PROFES 2013, LNCS 7983, pp. 214-P28] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

The Evaluation of Weighted Moving Windows for Software Effort Estimation 215

are completed, old projects drop out of the window. They found that estimation
accuracy could increase by using the window.

Their view of a moving window assumes that old projects that are no longer in
the window are not included have no value as training data, and projects within
the window all have the same weight as training data. This does not take into
account the chronological order of projects within the window. Projects within
the window could be given different weights, according to their relative age to a
target project. Weighting projects according to the order within a window may
also affect estimation accuracy.

This study explored the effects of weighted moving windows for software ef-
fort estimation. The weighted moving windows generalizes the original moving
windows. Recent projects receive higher importance than older projects. Linear
regression models can consider different importance with case weights. The case
weights can make a window have gradual weights.

In this paper, we addressed the following questions:

RQ1. Isthere a difference in the accuracy of estimates between moving windows
and weighted moving windows?

RQ2. If there is a difference, are there any insights with regards to trends with
the use of different weighting functions?

2 Related Work

Research in software effort estimation models has a long history. However, few
software effort estimation models were evaluated with consideration of the chrono-
logical order of projects.

Auer and Biffl [4] evaluated dimension weighting for analogy-based effort es-
timation, considering the effect of a growing data set. However, the authors
used datasets having no date information. Thus, this evaluation method did not
consider chronological order. Mendes and Lokan [5] compared estimates based
on a growing portfolio with estimates based on leave-one-out cross-validation,
using two different data sets. In both cases, cross-validation estimates showed
significantly superior accuracy.

Some studies such as [6l7] used a project year in software effort estimation
model construction. However, these studies did not consider chronological order
in evaluation. Maxwell [8] demonstrated the construction and evaluation of soft-
ware estimation model with the consideration of chronology. A candidate effort
estimation model selected a year predictor. She also separated project data into
training and test data according to a year.

To the best of our knowledge, Kitchenham et al. [9] first mentioned the use
of moving windows. As a result of an experiment, they argued that old projects
should be removed from the data set as new ones were added, so that the size
of the dataset remained constant.

MacDonell and Shepperd [10] investigated moving windows as part of a study
of how well data from prior phases in a project could be used to estimate later
phases. They found that accuracy was better when a moving window of the 5

216 S. Amasaki and C. Lokan

most recent projects was used as training data, rather than using all completed
projects as training data.

Lokan and Mendes [3] studied the use of moving windows with linear regres-
sion models and a single-company dataset from the ISBSG repository. Training
sets were defined to be the N most recently completed projects. They found the
following insights: the use of a window could affect accuracy significantly; pre-
dictive accuracy was better with larger windows; some window sizes were ’sweet
spots’.

Later they also investigated the effect on accuracy when using moving windows
of various durations to form training sets on which to base effort estimates [IT].
They showed that the use of windows based on duration can affect the accuracy
of estimates, but to a lesser extent than windows based on a fixed number of
projects.

This study is similar to [3] in that the same data set is investigated, using
the same range of window sizes. It differs in that one additional independent
variable is considered here, and models were based on variables selected with
Lasso[12] instead of stepwise regression. In addition, this study differs from [3],
and all other previous studies, by investigating different weights for projects of
different ages: the main point of the paper.

3 Research Method

3.1 Dataset Description

The data set used in this paper is the same one analyzed in [3]. This data set
is sourced from Release 10 of the ISBSG Repository. Release 10 contains data
for 4106 projects; however, not all projects provided the chronological data we
needed (i.e. known duration and completion date, from which we could calcu-
late start date), and those that did varied in data quality and definitions. To
form a data set in which all projects provided the necessary data for size, effort
and chronology, defined size and effort similarly, and had high quality data, we
removed projects according to the following criteria:

— The projects are rated by ISBSG as a high data quality (A or B).

— Implementation date and overall project elapsed time are known.

— Size is measured in IFPUG 4.0 or later (because size measured with an
older version is not directly comparable with size measured with IFPUG
version 4.0 or later). We also removed projects that measured size with
an unspecified version of function points, and whose completion pre-dated
IFPUG version 4.0.

— The size in unadjusted function points is known.

— Development team effort (resource level 1) is known. Our analysis used only
the development team’s effort.

— Normalized effort and recorded effort are equivalent. This should mean that
the reported effort is the actual effort across the whole life cycle.

— The projects are not web projects.

The Evaluation of Weighted Moving Windows for Software Effort Estimation 217

Table 1. Summary statistics for ratio-scaled variables

Variable Mean Median StDev Min Max
Size 496 266 699 10 6294
Effort 4553 2408 6212 62 57749
PDR 16.47 8.75 31.42 0.53 387.10

In the remaining set of 909 projects, 231 were all from the same organization
and 678 were from other organizations. We only selected the 231 projects from
the single organization, as the use of single-company data was more suitable
to answer our research questions than using cross-company data. Preliminary
analysis showed that three projects were extremely influential and invariably
removed from model building, so they were removed from the set. The final set
contained 228 projects.

We do not know the identity of the organization that developed these projects.

Release 10 of the ISBSG database provides data on numerous variables; how-
ever, this number was reduced to a small set that we have found in past anal-
yses with this dataset to have an impact on effort, and which did not suffer
from a large number of missing data values. The remaining variables were size
(measured in unadjusted function points), effort (hours), and four categorical
variables: development type (new development, re-development, enhancement),
primary language type (3GL, 4GL), platform (mainframe, midrange, PC, multi-
platform), and industry sector (banking, insurance, manufacturing, other).

Table [Il shows summary statistics for size (measured in unadjusted function
points), effort, and project delivery rate(PDR). PDR is calculated as effort di-
vided by size; high project delivery rates indicate low productivity. In [3], the
authors examined the project delivery rate and found it changes across time.
This finding supports the use of a window.

The projects were developed for a variety of industry sectors, where insurance,
banking and manufacturing were the most common. Start dates range from 1994
to 2002, but only 9 started before 1998. 3GLs are used by 86% of projects;
mainframes account for 40%, and multi-platform for 55%; these percentages for
language and platform vary little from year to year. There is a trend over time
towards more enhancement projects and fewer new developments. Enhancement
projects tend to be smaller than new development, so there is a corresponding
trend towards lower size and effort.

There are two ways in which a window size might be defined: by the number
of projects [3], or duration [I1]. A window based on duration can be scaled to in-
clude only those projects that reflect recent development projects and practices.
In contrast, a window based on the number of projects can be scaled to provide
enough data for sound analysis. This study defines a window as containing a
fixed number of projects.

We adopted the same range of window sizes as [3]. The smallest window
size was based on the statistical significance of linear regression with windowed
project data: the smallest window size with which all regression models

218 S. Amasaki and C. Lokan

Table 2. Formulae of weighted functions

Name Formula

Triangular W(x)=1-|z|,|z| <1
Epanechnikov W)=1-2%]z| <1
Gaussian W (z) = exp(—(2.52)%/2)
Rectangular (Uniform) W(z) =1, |z| < 1

were statistically significant was 20 projects. The largest window size was based
on the necessary number of testing projects for evaluation. As a result, we used
window sizes from 20 to 120.

3.2 Weighted Moving Windows with Linear Regression

Linear regression is one of the popular methods for effort estimation. A typical
effort estimation model is as follows:

Effort = bg + b1 Size + . (1)

Here, by and by are regression coefficients, and € represents an error term follow-
ing a normal distribution. The regression coefficients are inferred from a training
set so as to minimize the following function:

n

> (Effort; — by — by Size;)” . (2)

i=1

Here, n denotes the sample size of training set.

EquationPlassumes that the errors of the training set are to be minimized equiv-
alently. Weighted linear regression controls the importance of training projects via
weighting. It minimizes the following function:

Zwi (Effort; — by — blSizei)2 . (3)
i=1

Here, w; represents case weights for the training set.

From this perspective, an unweighted moving window assigns zero-weights
to old projects, and equal weights to projects in the window. This formulation
also reveals a point that the past study overlooked: it takes into account the
chronological order of projects in the window.

This study weights projects in the training set so that a more recent project
has a heavier weight. Table 2 shows four weight functions that we examined. We
determined x as follows: '

z= (4)
Here, n; represents a rank of project ¢ in ascending order of date. That is, an
older project takes a lower rank and = becomes smaller.

The Evaluation of Weighted Moving Windows for Software Effort Estimation 219

N N
< | 4 =
@ @
o [}
£X) £X)
S o E3S]
< <
S S
[aV) [aV)
(< [}
= =
o T o T
old recent old recent
date from a target project date from a target project
(a) Triangular (b) Epanechnikov
N N
= E o
[ee}
<3 2 i
X | X o©
z° ER=N
< | <
o o]
| «
=] S
o o
O. 1 T T O) T T
old recent old recent
date from a target project date from a target project
(c¢) Gaussian (d) Recutangular

Fig. 1. Weighted function forms

Figure [I shows the forms of weighted functions. A rectangular function is
equivalent to non-weighted moving windows. Different curve functions affect
estimation accuracy differently. This study adopted three typical curves: linear,
concave, S-shape. These functions are common in local regression [13].

3.3 Modeling Techniques

Weighted linear regression models were built using almost the same procedure
as [3]:

1. The first step in building every regression model is to ensure numerical vari-
ables are normally distributed. We used the Shapiro-Wilk test on the training
set to check if Effort and Size were normally distributed. Statistical signifi-
cance was set at & = 0.05. In every case, Size and Effort were not normally
distributed. Therefore, we transformed them to a natural logarithmic scale.

220 S. Amasaki and C. Lokan

2. Independent variables whose value is missing in a target project were not
considered for inclusion in the estimation model.

3. Every model included Size as an independent variable. Beyond that, given
a training set of NV projects, no model was investigated if it involved more
than N/10 independent variables (rounded to the nearest integer), assuming
that at least 10 projects per independent variable is desirable [14].

4. Models were based on variables selected with Lasso[12] instead of stepwise
regression because preliminary investigation showed that Lasso gave more
accurate estimates than stepwise; details not presented here (Lasso imple-
mentation we used is the “glmnet” function from glmnet package for R.)

5. To verify the stability of an effort model, we used the following approach:
Calculate Cook’s distance values for all projects to identify influential data
points. Any projects with distances higher than (3 x 4/N), where N repre-
sents the total number of projects, were removed from the analysis.

This procedure performs variable selection, and thus all variables introduced in
Section [B] are just candidates for independent variables. Models constructed in
our experiment can be different for every project.

3.4 Effort Estimation on Chronologically-Ordered Projects

This study evaluated the effects of moving windows of several sizes along with
a timeline of projects’ history. The effects were measured by performance com-
parisons beteen moving windows and a growing portfolio. A growing portfolio
uses all past projects as the training set. No project ever gets a weight of zero.
This evaluation method was performed with the following steps:

1. Sort all projects by starting time

2. Find the earliest project py for which at least w 4 1 projects, where w is a
window size, were completed prior to the start of pg

3. For every project p; in chronological sequence, starting from pg, form four
estimates using weighted and non-weighted moving windows, and another
using growing portfolio. For moving windows, the training set is the w most
recent projects that finished before the start of p;. For growing portfolio, the
training set is all of the projects that finished before the start of p;.

4. Evaluate estimation results.

3.5 Performance Measures

Performance measures for effort estimation models are based on the difference
between estimated effort and actual effort. As in previous studies, this study
used MMRE, PRED(25), and MMAE [I] for performance evaluation.

To test for statistically significant differences between accuracy measures, we
used the Wilcoxon ranked sign test and set statistical significance level at a =
0.05. wilcoxsign test function of coin package for R was used with default
options. We also controlled false dicovery rate (FDR) of multiple testing [I5]
with the qvalue function of qvalue package. FDR is a ratio of the number of
falsely rejected null hypotheses to the number of rejected null hypotheses.

The Evaluation of Weighted Moving Windows for Software Effort Estimation 221

Table 3. Mean absolute residuals with different window sizes

Window Testing (a) (b) (c) (d)

size (N) Projects Growing MAE p—val. MAE p—val. MAE p—val. MAE p—val.
20 201 2638 2830 0.107 2829 0.023 2879 0.087 2709 0.140
30 178 2578 2613 0.894 2552 0.917 2648 0.849 2570 0.651
40 165 2541 2599 0.358 2520 0.716 2618 0.342 2523 0.834
50 153 2527 2483 0.973 2423 0.616 2452 0.893 2376 0.460
60 136 2458 2279 0.204 2268 0.302 2262 0.246 2320 0.101
70 126 2300 2147 0.054 2178 0.222 2070 0.087 2060 0.122
80 126 2300 2083 0.011 2033 0.001 2111 0.015 2239 0.084
90 111 2236 2022 0.004 1967 0.001 2074 0.057 2053 0.001

100 88 2314 1930 0.002 2041 0.002 2051 0.041 2192 0.001
110 75 1981 1684 0.004 1771 0.011 1662 0.012 1845 0.000
120 71 1982 1715 0.002 1782 0.006 1696 0.002 1852 0.002

(a) Triangular, (b) Epanechnikov, (c) Gaussian, (d) Rectangular

4 Results

4.1 Accuracy with Different Window Sizes

Tables Bl and @ show the effects of window sizes on mean absolute residuals and
mean MRE. The first column shows window sizes, and the second column shows
the total number of projects used as a target project with the corresponding
window size. The larger a window size is, the smaller the number of testing
projects is. The 3rd column shows accuracy measures with a growing portfolio for
the corresponding window sizes. The 4th column shows accuracy measures for the
Triangular function. The 5th column shows the p—value from statistical tests on
accuracy measures between a growing portfolio and the Triangular function. The
remained columns show accuracy measures and p—value for the other weighted
functions. The results were computed for all window sizes; the tables only show
every tenth window size, due to space limitations. This is still sufficient to show
the essential trends.

Figures 2] and [B] show the difference in mean MAE and mean MRE between
a growing portfolio and moving windows. The x-axis is the size of the window,
and the y-axis is the subtraction of the accuracy measure value with a growing
portfolio from that with moving windows at the given x-value. Smaller values
of MAE and MRE are better, so the window is advantageous where the line
is below 0. Circle points mean a statistically significant difference, in favor of
moving windows. Square points mean a statistically significant difference, with
moving windows being worse than a growing portfolio. We consider a window
is effective if the corresponding q-value is below 0.05 (this means that that the
number of falsely rejected hypotheses was at most 5% of rejected hypotheses).

Figures and tables revealed common characteristics among weighted and non-
weighted moving windows:

222 S. Amasaki and C. Lokan

Table 4. Mean MRE with different window sizes

Window Testing (a) (b) (c) (d)

size (N) Projects Growing MRE p—val. MRE p—val. MRE p-val. MRE p—val.
20 201 1.28 1.47 0.171 1.56 0.021 1.53 0.118 1.45 0.100
30 178 1.35 1.45 0.839 1.37 0.664 1.49 0.927 1.26 0.612
40 165 1.35 1.43 0.539 1.37 0.856 1.45 0.426 1.31 0.914
50 153 1.39 1.35 0917 1.26 0.630 1.39 0.852 1.27 0.316
60 136 1.42 1.23 0.213 1.23 0.364 1.25 0.219 1.23 0.027
70 126 1.48 1.34 0.038 1.37 0.061 1.24 0.037 1.31 0.020
80 126 1.48 1.29 0.000 1.29 0.000 1.29 0.001 1.36 0.001
90 111 1.37 1.20 0.000 1.17 0.000 1.24 0.002 1.17 0.000

100 88 1.36 1.09 0.000 1.13 0.000 1.16 0.007 1.18 0.000
110 75 1.39 1.12 0.000 1.15 0.000 1.14 0.000 1.16 0.000
120 71 1.38 1.12 0.000 1.13 0.000 1.08 0.000 1.18 0.001

(a) Triangular, (b) Epanechnikov, (c) Gaussian, (d) Rectangular

— With smaller windows, all measures are always better using a growing port-
folio. Shown in Figs. and the difference was significant only in one
window size. For mean MRE, the difference was found only in the case of
using Epanechnikov function.

— In medium windows, moving windows become advantageous. The window
size where it becomes advantageous is different among types of weighted
functions. Using the Rectangular function becomes advantageous at a smaller
window size than using the other functions.

— With larger windows, all measures are always better using moving windows,
and the difference was significant in 70 < w < 120. Some weighted functions
showed significance in smaller windows. Improvements in mean MRE range
from 10% to 30%, averaging 20%. Improvements in mean MAE range from
70 to 384, averaging 231. The difference was larger when using gradually
weighted functions.

The difference in PRED(25) also showed similar trends, though the results are
not shown due to space limitations. With smaller windows, a growing portfolio
showed better performance than moving windows. With larger windows, moving
windows became advantageous.

4.2 Accuracy Comparisons among Different Weighting Functions

Figures @ and Bl show the difference in mean MAE and mean MRE between
Rectangular and the other functions. Weighted moving windows is advantageous
where the line is below 0. Figures [and Bl reveal the following;:

— With smaller windows, using the Rectangular function is advantageous. The
difference was significant around 20 < w < 50 for MMRE.

— With medium windows, weighted and non-weighted moving windows are
competitive. There was no clear preference between them. There was no
significant difference.

The Evaluation of Weighted Moving Windows for Software Effort Estimation 223

© ©

=) =)

S o S o

88 88

2 2

=) =)

© © A

é o W é o \\}

c c

© ©

£g £g

c & c &

ol ol

[0} [0}

o o

c =

[T =] [CN =]

83 831

5 I T T T T T T 5 I T T T T T T

20 40 60 80 100 120 20 40 60 80 100 120
Window Size (number of projects) Window Size (number of projects)
(a) Triangular (b) Epanechnikov

© ©

=) =)

S o 2o

88 88

2 2

=) =)

© © T,\

é o é o VV'\

c c

© ©

g [= g o

c & c &

ol ol

[0} [0}

o o

c =

[CN =] [T =]

831 831

5 I T T T T T T 5 I T T T T T T

20 40 60 80 100 120 20 40 60 80 100 120
Window Size (number of projects) Window Size (number of projects)
(c) Gaussian (d) Rectangular

Fig. 2. The difference of accuracy measures between growing and windowing (mean
MAE)

— With larger windows, weighted moving windows is advantageous. The range
of advantageous window sizes were different among types of weighted func-
tions. The lines in Fig. Ml are always below zero when w > 90 for the three
functions. The lines in Fig. Blsometimes rise above zero for Epanechnikov and
Gaussian functions. However, statistical tests supported only the weighted
functions. For statistically significant windows, improvements in mean MRE
range from 1% to 10%, averaging 5%. No significance in case of mean MAE.

The small number of rejected hypotheses might cause the insignificance for mean
MAE. With the small number of rejected hypotheses, for instance 10, g-value of
0.05 would limit the number of falsely rejected hypotheses to 0.05 x 10 < 1. We
expect any of significant windows and can allow looser g-value. With g-value of
0.2, for instance, we could also find significances for mean MAE. Thus, we could
say weighted moving windows also had posivitve effects on mean MAE.

224 S. Amasaki and C. Lokan

< ~
o o
w w
oo (1]
S o] S o]
c c
© ©
: LW\ -
c Qo c Q /\
S S v
[0} [0}
o o
5 5
23 23
57 57
< <
O 7 T T T T T [= Ry T T T T T
20 40 60 80 100 120 20 40 60 80 100 120
Window Size (number of projects) Window Size (number of projects)
(a) Triangular (b) Epanechnikov
< ~
o o
w w
[T] []
S o] S o]
c c
© ©
[} [}
€ €
c2 c <
@ ° o °
[0} [0}
(] o
]]
23 23
a' a'
< <
O 7 T T T T T [= Ry T T T T T
20 40 60 80 100 120 20 40 60 80 100 120
Window Size (number of projects) Window Size (number of projects)
(c) Gaussian (d) Rectangular

Fig. 3. The difference of accuracy measures between growing and windowing (mean
MRE)

5 Discussion

5.1 Answer to RQ1

The null hypothesis was rejected on statistical tests for the difference between all
weighted moving windows and a growing portfolio. For Epanechnikov function,
for instance, the null hypothesis was rejected in window duration of 20 and
21, and from 69 to 120, based on mean MAE; 21 and from 69 to 120, based on
mean MRE. The use of weighted moving windows can affect estimation accuracy
against a growing portfolio.

On statistical tests for the difference between weighted and non-weighted mov-
ing windows, the null hypothesis was also rejected. For the Triangular function,
for instance, the null hypothesis was rejected in window duration from 22 to 51,
and from 99 to 120, based on mean MRE. The difference based on mean MAE

The Evaluation of Weighted Moving Windows for Software Effort Estimation 225

T© o T© o
28 33
i3 i3
e 1
2 2
3 3
g8 {\/\M 28-
© ©
c /\ AA Il < /\ 4 ﬂ
S o 1y S o v i
g N R
= c 24
e e
8 | 8 |
c =
[[
23] 83
5 (? T T T T T T 5 (? T T T T T T
20 40 60 80 100 120 20 40 60 80 100 120
Window Size (number of projects) Window Size (number of projects)
(a) Triangular (b) Epanechnikov

300
. |

100
|

Differences in mean absolute residual
-100 0
)
——
—]
i
——]

-300

20 40 60 80 100 120
Window Size (number of projects)

(c) Gaussian

Fig.4. The difference of accuracy measures between Rectangular and the other
weighted functions (Mean MAE)

was insignificant through all window sizes. However, Fig. @] depicted positive ef-
fects of moving window approach. We thus concluded that the use of weighted
moving windows can also affect estimation accuracy against non-weighted mov-
ing windows.

5.2 Answer to RQ2

Weighted moving windows showed inferior estimation accuracy when using small
windows. The difference was statistically significant, and there is an advantage
in using non-weighted moving windows. However, weighted functions perform as
well as a growing portfolio: the difference of estimation accuracy between them
was insignificant. In contrast, weighted moving windows showed superior esti-
mation accuracy when using larger windows. The difference was also statistically
significant, and there is an advantage in using moving windows.

226 S. Amasaki and C. Lokan

@ | @]
o o
w w
oC o OC o
S o S o
c c
[[
o Q —
€7 €7
£ £
8o J\.n M 8o \ A\
2 bl
o o
= O = O
ol ol
N N
< <
20 40 60 8 100 120 20 40 60 8 100 120
Window Size (number of projects) Window Size (number of projects)
(a) Triangular (b) Epanechnikov
@ |
o
w
T
S o
c
[
O~
€7
£
o
g vv |
[}
o
= O
o
N
ol
|

20 40 100 120
Window S|ze (number of projects)

(c) Gaussian

Fig.5. The difference of accuracy measures between Rectangular and the other
weighted functions (Mean MRE)

The above characteristics can be explained with an interaction between win-
dow sizes and the steepness of weighted function curves. The Triangular, Epanech-
nikov and Gaussian functions assign a small (near to zero) weight to the oldest
projects in a window. The other projects receive heavier weights in accordance
with distance from the date of a target project within the window. With small
size windows, weighted function assigns steeply declining weights. With large
window sizes, a weighted function assigns gently declining weights. When the
degree of steepness meshes with a window size, a weighted function contributes
to improvement of estimation accuracy.

The difference in advantageous window sizes among weighted functions sup-
ports the explanation. Figure[ldepicts the difference of steepness among weighted
functions. Gaussian is the steepest function, and Epanechnikov is the most gentle
function. The steepness of Triangular function is between them. Non-weighted
moving windows assigns equal weights and is more gentle than Epanechnikov

The Evaluation of Weighted Moving Windows for Software Effort Estimation 227

function. In Figs. @ and [steep functions became advantageous more slowly
than gentle functions. Those functions are too steep to reflect the importance of
recent projects. With large windows, steep functions meshed with window sizes
and improved estimation accuracy significantly. However, the range of significant
windows was narrower than that of gentle functions as shown in Figs. @ and

The results support that weighted moving windows can improve estimation
accuracy with appropriate steepness.

6 Threats to Validity

This study shares the same threats to validity as the previous studies.

First, we used only one dataset. The dataset is a convenience sample and may
not be representative of software projects in general. Thus, the results may not
be generalized beyond the dataset; this is true of all studies based on convenience
samples. We trust that numerous potential sources of variation can be removed
from the dataset by the selection of a single-company dataset. Since the dataset
is large and covers a long time span, we assume it is a fair representation of this
organization’s projects. The inclusion of the sector as an independent variable
helps to allow for variations among sectors in the dataset.

Second, all the models employed in this study were built automatically. Au-
tomating the process necessarily involved making some assumptions, and the va-
lidity of our results depends on those assumptions being reasonable. For example,
logarithmic transformation is assumed to be adequate to transform numeric data
to an approximately normal distribution; residuals are assumed to be random
and normally distributed without that being actually checked; multi-collinearity
between independent variables is assumed to be handled automatically by the
nature of Lasso. Based on our past experience building models manually, we
believe that these assumptions are acceptable. One would not want to base im-
portant decisions on a single model built automatically, without at least doing
some serious manual checking, but for calculations such as chronological estima-
tion across a substantial data set we believe that the process here is reasonable.

Third, this study used weighted linear regression. Many effort estimation mod-
els have been proposed, and each model can show better accuracy in particular
situations. However, linear regression is a popular and accurate effort estimation
models. We thus think it is a good choice among major effort estimation models.

7 Conclusion

This paper investigated the use of weighted moving windows as a way to im-
prove non-weighted moving windows. We have shown that it has a statistically
significant effect on estimation accuracy in terms of MRE. Although different
weighted functions affected estimation accuracy differently, weighted moving
windows were significantly advantageous in larger windows. Non-weighted mov-
ing windows were significantly advantageous with smaller windows.

228 S. Amasaki and C. Lokan

What these results suggest is that it can be better to use a weighted window
of projects with a weighted function having appropriate steepness. Weighted
moving windows gradually decrease the importance of past projects. If a decrease
curve is too steep or too gentle, weighted moving windows makes estimation
accuracy worse. How to determine appropriate steepness is a crucial question

Our future work involves replication with other datasets such as Maxwell
dataset and the CSC dataset used in past studies.

References

1. Port, D., Korte, M.: Comparative studies of the model evaluation criterions mmre
and pred in software cost estimation research. In: Proc. of the 2nd ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement.
ACM (2008)

2. Jorgensen, M., Shepperd, M.: A Systematic Review of Software Development Cost
Estimation Studies. IEEE Trans. Softw. Eng. 33(1), 33-53 (2007)

3. Lokan, C., Mendes, E.: Applying moving windows to software effort estimation. In:
Proc. of the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, pp. 111-122 (2009)

4. Auer, M., Biffl, S.: Increasing the accuracy and reliability of analogy-based cost
estimation with extensive project feature dimension weighting. In: Proc. of Inter-
national Symposium on Empirical Software Engineering, pp. 147-155. IEEE (2004)

5. Mendes, E., Lokan, C.: Investigating the use of chronological splitting to compare
software cross-company and single-company effort predictions: a replicated study.
In: Proc. of the 13th Conference on Evaluation & Assessment in Software Engi-
neering (EASE 2009). BCS (2009)

6. Keung, J.W., Kitchenham, B.A., Jeffery, D.R.: Analogy-X: Providing Statisti-
cal Inference to Analogy-Based Software Cost Estimation. IEEE Trans. Softw.
Eng. 34(4), 471-484 (2008)

7. Li, J., Ruhe, G.: Analysis of attribute weighting heuristics for analogy-based soft-
ware effort estimation method AQUA+. Empir. Softw. Eng. 13(1), 63-96 (2007)

8. Maxwell, K.D.: Applied Statistics for Software Managers. Prentice Hall (2002)

9. Kitchenham, B., Lawrence Pfleeger, S., McColl, B., Eagan, S.: An empirical study
of maintenance and development estimation accuracy. J. Syst. Softw. 64(1), 57-77
(2002)

10. MacDonell, S.G., Shepperd, M.: Data accumulation and software effort prediction.
In: Proc. of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM (2010)

11. Lokan, C., Mendes, E.: Investigating the Use of Duration-based Moving Windows
to Improve Software Effort Prediction. In: Proc. of the 19th Asia-Pacific Software
Engineering Conference, pp. 819-927. IEEE Computer Society (2012)

12. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist.
Soc. Ser. B, 267-288 (1996)

13. Loader, C.: Local Regression and Likelihood. Statistics and Computing. Springer

14. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics. Harper-Collins (1996)

15. Storey, J.D.: A direct approach to false discovery rates. J. Roy. Statist. Soc. Ser.
B 64, 479-498 (2002)

	The Evaluation of Weighted Moving Windows
for Software Effort Estimation
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Dataset Description
	3.2 Weighted Moving Windows with Linear Regression
	3.3 Modeling Techniques
	3.4 Effort Estimation on Chronologically-Ordered Projects
	3.5 Performance Measures

	4 Results
	4.1 Accuracy with Different Window Sizes
	4.2 Accuracy Comparisons among Different Weighting Functions

	5 Discussion
	5.1 Answer to RQ1
	5.2 Answer to RQ2

	6 Threats to Validity
	7 Conclusion
	References

