
L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 97–112, 2013.
© IFIP International Federation for Information Processing 2013

Hypervisor Event Logs as a Source of Consistent Virtual
Machine Evidence for Forensic Cloud Investigations

Sean Thorpe1, Indrajit Ray2, Tyrone Grandison3, Abbie Barbir4,
and Robert France2

1 Faculty of Engineering & Computing, University of Technology, Kingston, Jamaica
thorpe.sean@gmail.com

2 Department of Computer Science, Colorado State University, Fort Collins, USA
{Indrajit,france}@cs.colostate.edu

3 Proficiency Labs Intl, Ashland, Oregon
tgrandison@proficiencylabs.com

4 Bank of America
abbie.barbir@bankofamerica.com

Abstract. Cloud Computing is an emerging model of computing where users
can leverage the computing infrastructure as a service stack or commodity. The
security and privacy concerns of this infrastructure arising from the large co-
location of tenants are, however, significant and pose considerable challenges in
its widespread deployment. The current work addresses one aspect of the
security problem by facilitating forensic investigations to determine if these
virtual tenant spaces were maliciously violated by other tenants. It presents the
design, application and limitations of a software prototype called the Virtual
Machine (VM) Log Auditor that helps in detecting inconsistencies within the
activity timelines for a VM history. A discussion on modeling a consistent
approach is also provided.

1 Introduction

Temporal event logs meticulously record events that have occurred in the history of
the computer system, and therefore, constitute a valuable source of digital evidence.
Event logs are generated by the operating system as well as by other subsystems and
their applications. There has been a significant amount of research about the
examination and the auditing of such logs for post incident forensic purposes [1, 2].
With cloud computing service environments, the expectations for post incident
forensics is no different. Cloud computing is predicated on the well known service
oriented architecture (SOA) and harnesses the power of the virtualization stack. The
known services offered across the virtual stack layers are Infrastructure as Service
(IAAS), Platform as a Service (PAAS) and Software as a Service (SAAS). In our
work the PAAS provision, which handles the hypervisor logs, is our primary concern.
By studying the hypervisor logs, this work represents the first body of work in the
literature that seeks to explore closing the semantic gap of how eye witness forensic
data that can be collected between the lower layers and higher virtualization layers
and is motivated by prior work [1, 2, 21].

98 S. Thorpe et al.

In this work the log categorization used is the hypervisor event logs, which
contains a hierarchy of application logs, security logs, error logs and system logs.
Some have likened a log file in computer forensics to an eyewitness in a traditional
crime scene [1]. The analogy seems befitting when using the hypervisor logs to
manage virtual crime scenes for which the multi-tenant VMs are all co-located.

Providing a picture of what happened through the analysis of the hypervisor event
logs at a virtual crime scene is no trivial task. Detecting patterns that may be events of
interest by hand in a large log file is not feasible. Managing the sheer volume of log
data is a well known quantity problem. Logs must be parsed programmatically and
even this can take a very long time, with the exact amount of time varying
significantly, and is often dependent on the type of algorithm employed to detect the
patterns of interest [2].

As log data are explicitly a record of events, establishing their reliability is of
particular importance. Log files are written to very frequently and hence may get
corrupted or could be difficult to understand; as records may be saved in an
unexpected sequence as a result of unusual system behavior, e.g. software bug or
power outage. As log files are an obvious record of events, they are also an obvious
target for tampering. Suspicious events indicating that something is wrong may be
deliberately removed, rendering all or a part of the log potentially fraudulent.

Our work addresses the issue of deliberate tampering, internal contradictions and
inconsistent entries with these hypervisor event logs within the storage area network
(SAN) data centre environments. We attempt to improve on the state of the art by
providing a forensic platform that transparently monitors and records data access
events using these PAAS logs as a form of static snapshot state analysis for a post
incident VM cloud investigation. This approach complements the traditional
statistical trace analysis methods and the VM memory introspection methods
established in prior work [21, 22, 25]. As it relates to using the PAAS logs to detect
VM attacks, particularly session hijacking, this represents independent ongoing work
using several data mining techniques [23, 24] that unearth ground truth forensic
evidence based on anomalous patterns detected from such logs. As it is now, the
timestamps recorded in the hypervisor event logs may be unreliable, as result of both
flaws in the clocks that generate them and the nature of the software that records
entries to these data cloud logs.

The rest of this paper is organized as follows. Section 2 introduces our VM
profiling model. Section 3 examines approaches for the detection of inconsistency in
timelines, dealing both with inconsistencies in VM event timestamps and VM events
omitted from the hypervisor kernel system’s record. Section 4 describes the
experiments with the tool for testing the approaches discussed in Section 3. Section 5
describes the rule base for the experiments and evaluates the detection techniques
based on the rule base. Section 6 provides a formal discussion on constructing the
consistency approach, and Section 7 provides the discussion of the experimental
results. Section 8 presents a discussion of future work, Section 9 provides the related
work and we conclude in Section 10.

 Hypervisor Event Logs as a Source of Consistent Virtual Machine Evidence 99

2 Virtual Machine Profiling Model

This work is based on concepts from the computer-profiling model described by
Marrington et al. [9]. The authors’ model of a computer system consists of objects
representing the various entities that form part of the computer system’s operation.
These entities include users, data files, system software, hardware devices, and
applications. The objects discovered on the computer system under examination,
collectively referred to as the set O, are classified according to their type. In their
model [9], there are four broad types of objects (Application, Principal, Content and
System) with increasingly specific subtypes.

We adopt in our work each of these categories as VM sets. The set of Application
objects, A, consists of all the application software on the VM host computer system.
The set of Principal objects, P, consists of all the computer system’s users and groups,
and all of the people and organizations otherwise discovered in the examination of the
computer system. Of these objects, some Principal objects are described as canonical
if they represent definite entities on the computer system that are actors in their own
right, such as users and groups. Principal objects may be described as non-canonical
if they represent people or groups of people who may not be actors on the system, but
may be, for instance, people mentioned in documents. The set of Content objects, C,
consists of all the documents, images and other data files on the host computer system
from which the VMs are running. The set of VM System objects, S, consists of all the
VM configuration information, system software and hardware devices on the VM
host computer system. A, S, C, and P are subsets of O, the set of objects on the cloud
system under investigation.

We characterize our model with the set of all times in the history of the VM host
computer system, Tv, and the set of all events, Evt, which have taken place in the
history of the VM host computer system. Let t be a time in Tv, x be the VM object that
triggered the VM event, y be the object that was the target of the event, ߝ describe the
action of the event, and ߙ describe the result of the event (successful, unsuccessful, or
unknown). An event evt in the set Evt consists of the quintuple

evt = t, x ∈ O, y ∈ O,ε,α() .

This same finite set Evt consists of two enumerable subsets, and one subset which
cannot be enumerated. The first subset – the recorded events set EvtR – consists of
VM events that are recorded in the VM host computer hypervisor system’s logs. The
second subset – the inferred events set EvtI – consists of events that are not recorded
in logs, but that can be inferred on the basis of other digital evidence on the system,
such as relationships between different objects. These two sets do not necessarily
describe the complete history of the cloud system in an exhaustive manner. There
may be other events that took place and were unrecorded and left no artifact from
which they could be inferred. These VM events are obviously unknown, and comprise
the final subset of Evt.

The set EvtI is particularly vulnerable to inconsistency or incompleteness in the
data obtained from the VM target computer’s file system. Contradictory, inaccurate or
missing information can lead to an incomplete timeline of a user’s activity. EvtR is a

100 S. Thorpe et al.

direct representation of the contents of the VM host hypervisor system’s logs, and
consequently, incorporates any inaccurate event records in the system logs. Further, if
a VM event is not logged, and cannot be inferred, it will not be an element of either
EvtR or EvtI. Handling unknown events within the VM history of the computer
system is a challenge and hence the less accurate the timeline of the target computer’s
activity will be. We address this challenge in an independent paper. For this work, we
focus on the declared events and making the inferences from these stated events. This
work provides a means for the semi-automated detection of inaccuracy or
incompleteness leading to chronological inconsistency in timelines of VM computer
activity.

Marrington et al. [6], discussed a timestamp-based technique for building a
timeline about a given object in the profile of the computer system. However, their
approach is not resilient to inaccuracies in timestamps, which may cause VM events
to appear out of sequence. Missing events, whether removed manually or simply
never recorded, lead to timelines that may present events out of the context they
actually occurred. We posit that as a general principle, the failure to detect an
inconsistency in a timeline is a greater problem for the purposes of VM activity time-
lining than falsely identifying an event as inconsistent. This is simply because false
positives can be manually investigated and dismissed, whereas false negatives will
never receive further attention. Nevertheless, it is obviously desirable to minimize the
rate of false positives in all detection techniques.

A limitation of any time-lining activity based on timestamps provided by a
computer’s system clock is the inaccuracy inherent in such clocks. This inaccuracy in
computer-generated timestamps is normal, and the solution suggested most frequently
in the literature is to note the system clock time of a computer under investigation at
the time of its examination and to determine the discrepancy between that time and
the time of a reference clock [1, 8]. However, this solution does not address the issue
of clock skew. A few works, notably [2, 10], propose algebra for the formal
expression of falsifiable hypotheses about the discrepancy between a computer’s
clock and physical time. The term proposed for such a phenomenon is a clock
hypothesis. In practice, it would be necessary to form a clock hypothesis for every
moment in time throughout the history of the VM host system. Our tool is intended to
detect internal inconsistency in timelines. An investigator could potentially be assisted
in the formation of VM clock hypotheses using the output of our tool.

3 VM Log Auditor for Timelines

We now describe the approaches employed by our log auditor software to detect
inconsistency in timelines. Inconsistency in virtual machine computer activity
timelines can arise because hypervisor kernel log events in the timeline are out of
sequence, or VM events that should be in the timeline are missing.

 Hypervisor Event Logs as a Source of Consistent Virtual Machine Evidence 101

3.1 Detecting Out of Sequence VM Timelines

There are some VM events that need to occur before some other event can happen.
This sort of relation between events is described as the happened-before relation [4].
Gladyshev and Patel [5] discuss the application of the happened-before relation to a
forensic context. An example of such a relation between two events would be that a
VM user x must “login” successfully to the computer system before the user x can
“execute” the application y. So the happened-before (՜) relation implies that in the
VM activity timeline, the time of the VM login event must be before the time of the
execution event. We express this as follows. Let x א P, y א Ty. Then א and tm, tn ,࡭
((tm, x, y, login, success) ՜ (tn , x, VM system, execution , success)) ⇒ (tm ൐ tn), where ⇒ is the logical implication operator . Note that the happened-before relation
is transitive [4, 5]:

After the construction of a VM log timeline (which is a sequence over the set Evt)
in the log auditor’s execution process, an evaluation can be applied to all VM events
ordered by their timestamp. If a VM event vmevta has a happened-before relation to
vmevtb, but the VM kernel log timestamp (tb) of vmevtb suggests that vmevtb occurred
before vmevta then we can say that ta and tb are inconsistent. In order to detect this
inconsistency, a rule base must be created which describes the happened-before
relations for the various types of events [15]. When the VM timeline is evaluated
against the rules base, the inconsistent events can be identified and assertions about
their time stamps can be made.

Consider the two rules vmevta → vmevtb and vmevtb → vmevtc with

vmevta = ta ∈Ty , x, system, login, success()
vmevtb = tb ∈Ty , x, a, execute, α ∈ success, fail, unknown{ }()
vmevtc = tc ∈Ty, x, system, logout, success()

where x is a User VM object, a is an Application VM objects, and system is a VM
System object representing the target VM computer system itself. Then, by the
transitivity property of the happened-before relation,

 vmevta → vmevtb() ∧ vmevtb → vmevtc()() vmevta → vmevtc()

For the purposes of this example, let the time-lining function VH x() produce a

timeline (where a timeline is an ordered set of discrete time instances) corresponding
to a single VM user session of the user x. The first rule states that a user x must be
logged in before executing any application. The second rule states that user x cannot
have logged out before performing that execution. If the execution event vmevtb

occurs, the login event vmevta must happen before it, and vmevtb must happen before
the logout event vmevtc. Therefore, the physical time tc at which the event vmevtc must
have occurred must be after the physical time tb at which the event vmevtb must have
occurred, which must in turn be after the physical time ta at which the event vmevta
must have occurred.

102 S. Thorpe et al.

This is stated as: VH x() ⊇ vmevta ,vmevtb ,vmevtc() ta > tb > tc()where  denotes

an ordered set.
If, given the two rules vmevta ՜ vmevtb and vmevtb ՜ vmevtc, it is not the case

that tc ൐ tb ൐ ta , then the timestamps (ta, tb, tc) do not reflect the physical times at which
the VM events must have occurred. The VM timestamps are therefore inaccurate, as
they suggest an internally inconsistent chronology. From this example, the utility of
the happened-before relation as a basis for proposing rules for the detection of
inconsistent VM events is apparent. A hypothesized chronology of a VM computer
system can be evaluated for internal inconsistencies by testing the hypothesized
sequence of events against a set of happened-before rules.

3.2 Detecting Missing VM Events

There are some happened-before relations where the first VM event is a precondition
for the second. In such relations, the presence of the second VM event necessarily
implies the presence of the first. In the example in Section 3.1, the VM login event
vmevta must occur before the VM application execution event vmevtb; in other words,
if vmevtb occurred, then vmevta must also have occurred. Note that this does not hold
true for all happened-before relations. This can be seen in the same example, where
although the execution event vmevtb must happen before the logout event vmevtc in
order for vmevtb to happen at all, the occurrence of the logout event vmevtc does not
imply that vmevtb also happened; vmevtb is not a precondition for vmevtc.

[10] extends the use of the happened-before relation of [3, 5] to imply causality.
The happened-before relation is therefore equivalent to the “precondition” predicate.
For the purposes of the log auditor, it is preferable to maintain the happened-before
relation as described by [3, 5] and to employ the “precondition” predicate to imply a
causal relationship. The happened-before relation allows for the detection of events
that are listed in the timeline out of the sequence in which they must have occurred,
whereas the “precondition” predicate allows for the detection of missing events.

If the VM event vmevta that “happened” does not exist in either the set of recorded
VM events, EvtR, or in the existing set of inferred VM events, EvtI, then it is a
missing VM event. It is a missing VM event because it was removed from, or never
recorded in the VM’s hypervisor kernel logs, and it was not previously inferred on the
basis of relationships and object fields. These VM events could also be called inferred
VM events, but it is convenient to preserve a distinction between events detected
using this approach and other VM inferred events.

Precondition VM events which are absent from EvtR and EvtI can be added to the
set of missing VM events, which we call EvtM.

The VM login event vmevta and the VM application execution event vmevtb, and
the logout event vmevtc have the same definitions as in the previous example. The
new rule states that if the event vmevtb occurred in the timeline of the VM User object
x, then the event vmevta must also have occurred.

Missing VM events are suspicious and hence important. They are important
because it is possible to deliberately delete them from the hypervisor kernel system

 Hypervisor Event Logs as a Source of Consistent Virtual Machine Evidence 103

logs. Detecting that an event is missing allows for the construction of a more
complete timeline, hence helping the VM investigator gain a more complete
understanding of the VM computer system. By automatically indicating that at a
particular point in the timeline an event was either not recorded or its record was
deleted, the forensic software could provide a lead for the subsequent manual
investigation. This, in turn, may determine why the record is missing. However, it
should be noted that there are many instances where an event may be missing as a
result of non-suspicious VM host computer activity.

The log auditor infers VM events to describe an action by or on an object with
associated VM temporal data. These inferred VM events are combined with VM
events recorded in the hypervisor kernel system logs in order to provide as complete a
timeline as possible. In the experiments on computers running VMware sessions on
Microsoft Windows, our software prototype inferred many VM events that occurred
prior to the enabling of many logging options. There were very few recorded VM
events from that early time period in the VM’s computer history, and thus these
inferred VM events were out-of-context. Such inferred VM events may appear to
have occurred outside of the VM user sessions, or in an otherwise inconsistent
fashion, however, the absence of complete information must obviously be considered
in the VM investigator’s assessment as to whether or not the event is suspicious.

This scenario is an example of how the normal configuration of the VM computer
system may make an event seem inconsistent.

4 VM Log Auditor Software

A summary of the VM Log Auditor architectural components are provided in Fig. 1.
As a VM log inconsistency checking profile tool it maps all hypervisor events, as they
are extracted from the kernel logs. It uses a set of shell script parsers to provide an
associative and transformational mapping [17,18] of these logs into a normalized
database with a set of discovered and inferred VM event tables. The prototype
software examines the suspect target VM host file system (which is mounted read-
only) and enumerates the set of VM objects of applications, files, and users of the
target VMware essx3i computer system. We achieve this by performing a Storage
Area Network (SAN) disk image of the suspected VM host to our evidence server in
our test bed. The parsed hypervisor log events are described as the set of recorded
VM events (EvtR) in our Oracle database. Finally, a set of events are inferred from
the temporal data associated with each log file which may be as a result of
modification, access or creation (MAC) events which have occurred. These events are
the inferred VM events (EvtI), and are saved in a separate table in the database called
Inferred VM Events. It is useful to note that the inferred VM events EvtI is
particularly vulnerable to inconsistency or incompleteness of data obtained from the
VM host file system. The two sets EvtR and EvtI do not exhaustively describe the
complete history of the VM hosted computer system. Hence where an event is not
logged or it cannot be inferred we described this as an unknown or missing event. It
stands to reason that the more missing or unknown events the less complete the

104 S. Thorpe et al.

timeline of the suspect VM
limitation we omit the form
process, the software protot
temporal inconsistency in a

The detection techniques
against the events in eac
implemented by a C# obje
objects have two event obje
The objects vmevta and vm
events are compared. A kn
basis of the fields of each
value, or be null. If the arc
known VM event that ma
archetype has a null value f
VM event’s corresponding

The rule object can also
require that both matching
can also specify that the su
vice versa. This allows for t

Fig. 1. Architec

In the object that repres
event, and vmevtb would re
rule object would be set to t
the same object. Given this
would be as follows:

M host computer system being investigated. Due sp
mal completeness proof. After conducting this automa
type provides a basic interface for the purpose of detect

a given timeline.
s described in this paper match the VM events in a timel
ch rule being tested. Programmatically, every rule

ect, and every event is implemented by a C# object. R
ects as fields, one called vmevta and another called vme

mevtb are archetype VM events, against which known V
nown VM event is compared against the archetypes on
h. The fields of the archetype events can have a spec
chetype has a specific value for a particular field, then
atches the archetype must have the same value. If
for a particular field, it can match any value for the kno
field.
 be set to match subject and target fields, that is to say
VM events have the same subject or target field. The r

ubject field of one event is the target of the other event
the definition of generic rules.

ctural components of the VM log auditor prototype

sented this rule, vmevta would represent the “logon” V
epresent the “modified” VM event. A Boolean field of
true to indicate that the subject of each VM event had to
s, the values of the fields of the objects vmevta and vm

pace
ated
ting

line
e is
Rule
evtb.
VM
the

cific
any
the

own

y, to
rule
t, or

VM
the

o be
evtb

 Hypervisor Event Logs as a Source of Consistent Virtual Machine Evidence 105

vmevta = {null, null, s, logon, success}
vmevtb = {null, null, null, modified, success}:

The prototype log auditor software does not yet implement the concept of a user VM
session. A logon or logoff VM event is treated the same as any other event. This
means that the user needs to specify which events are to be treated as the beginning
and end of the user session timeline. In order to check timelines of a computer
system’s complete history, the prototype software would need to have a concept of
user session built into it. This is an item of future work.

5 Rule Base for Experiments

The VM log auditor software prototype incorporates a small set of rules to check for
VM temporal inconsistency. It provides a backend functionality that allows the user to
specify a timeline to be checked for inconsistency. It then checks that timeline against
the rule base. The rules built into the prototype software for the purposes of these
experiments use the following algorithm.

vmevtA = (null, null, s, “logon”, “success”)
vmevtB = (null, null, null, “modified”, “success”)
rule = vmevtA happened-before vmevtB
where field 2 of vmevtA == x and where field 2 of vmevtB == x
for each vmevt in VH(x)
 if vmevt = (*, x, s, “logon”, “success”)
 a = index of vmevt
 if vmevt = (*, x, *, “modified”, “success”)
 b = index of vmevt
next vmevt
if a > b then
 rule has been broken

Fig. 2. VM Inconsistency Algorithm

The data structures in our implementation that represented each of the archetype
VM events in the rules base, had null values in place of the fields x, y.

5.1 Experimental Setup

In order to obtain data for these experiments, we employed a suspect test VMWare
essx3i private network hosted computer running on Windows 7 within the
University’s local area network. This deployment represents our private cloud test
environment for the course of the timeline experiments carried out. All system
logging options were turned on in order to give us as complete a set of hypervisor
event logs which are all stored in a comma delimited format (.csv) on the host oracle
databases. We logged onto the VM test host computer twice for the purpose of
generating two different VM user sessions: the first, an “innocent” user session, and

106 S. Thorpe et al.

the second, a user session in which a document was created with misleading
authorship information. The details of these two sessions are described below.

We also tinkered with the detection outcomes of meddling with the hypervisor
logs. For this purpose, a copy of the case file and database about the suspicious test
VM host computer system inspected by the log auditor tool was provided, and then
manually modified the database table containing the discovered VM events. As these
discovered VM events are derived from the VMWare essx3i kernel system event logs,
the removal or modification of recorded VM events in the set EvtR effectively
simulates the removal or modification of VM event records in the same. The
investigator removed the log-on/log-off VM events from the first user session, and
modified the timestamps of these events on the second user session so that they would
be presented out of their real sequence if ordered by timestamp.

5.2 Evaluation of VM Detection Techniques

This section describes each of the VM timelines examined in each these experiments
and provides the results of the log auditor’s analysis of inconsistency. There are four
VM log timelines (two unmodified, and two modified) that correspond directly to user
sessions. Each of the timelines is a combination of the VM inferred events and the
recorded VM events in the history of the VM hosted computer system between two
boundary events, ordered by timestamp. Due to space limitations the detailed timeline
trace tables that capture the recorded and inferred events have been omitted.

Timeline A - Normal VM User Session

Timeline A was a normal user VM session during which a text document was created.
The user “thorpe” logged into the VM host computer system at 9:48 pm on 12
October 2011, and created the file “vmsyslog.doc” at 9:51pm. The VM user then
browsed the Internet for a few minutes and logged off at 10:00 pm. Nothing
suspicious happened in the user VM session. The timeline consisted of all of the
events that took place during the user VM session, both recorded and inferred. Our
software inserted these VM events into its Oracle 11g VM event database during its
automated examination of the target system.

Most events in timeline A were discovered events (i.e. discovered in the VMWare
essx3i hypervisor kernel event logs running under Windows 7), however, the events
with “CREATED”, “MODIFIED” or “OPENED” as their actions were inferred
events (i.e. inferred on the basis of an object, its relationships, or other information
about the object).

Timeline B - Deliberate Misattribution of Authorship

Timeline B represents a user VM session during which the user created a text
document with misleading authorship information, in an effort to shift responsibility
for that document to an innocent third party. The user “VMuser” logged into the
computer system at 9:51pm on 13 October 2011, and at 9:55pm a Word document
was created with “anoynmous ” as the listed author. The user “VMuser ” then logged
off.

 Hypervisor Event Logs as a Source of Consistent Virtual Machine Evidence 107

Timeline B was analyzed for inconsistency with our prototype software. The
events are all related to the authorship of the word document entitled “WORDOC
letter from anonymous”. The anonymous user was not logged in at the time the text
document was created, and yet the author field listed “anonymous” as the document’s
author.

There are two sets of “CREATED” events for both the suspect Word document
and its template. Hence “anonymous” could not have been the author of the text
document. This is so because there are two sources of information that lead the log
auditor inferring such an event. The earlier timestamp is obtained from the text
document’s metadata, and represents the time at which the document was first
created. The later timestamp is obtained from the target VM host computer’s file
system, and is the time at which the document was first saved as a file on the host VM
physical disk. Both sets of “CREATED” VM events derive their subject field from
the same source, the Word document’s author field.

Timeline C - VM user Session with Logon/Logoff Events Deleted

Timeline C was derived from timeline A. The recorded and inferred VM events in the
prototype’s events database were copied and manually modified. The resulting
timeline, timeline C, was identical to timeline A without the logon/ logoff VM events.
The removal of these two discovered VM events left user activity outside of a
logon/logoff-bound VM user session. This demonstrates that removing VM user
session information from the hypervisor event log will draw attention to the inferred
VM events that took place during the session.

Timeline D - With VM user Modified Timestamps

Timeline D was derived from timeline A, with the timestamp of the user’s logoff VM
event deliberately modified so as to appear to have taken place prior to the creation of
the text document.

The event was listed as breaking three rules, all of which assert that if a file is
modified, accessed or created, it must be modified, accessed or created prior to the
user logging out of the VM host computer system. The results of the analysis of
timeline D were just as expected.

The detection of this VM event demonstrates the suitability of this approach to
detecting events whose timestamps are modified.

6 Constructing Consistent Timelines

The temporal inconsistencies can be handled by the creation of a consistent VM
timeline. A consistent VM timeline, in the context of VM computer profiling, is
defined as a sequence of VM events ordered by physical time at which they occurred
with no obviously missing VM events. The physical time at which the event occurred
may or may not correspond to the VM hosted computer generated timestamp of a VM
event, which may be missing from the sets EVTR and EVTI, but which are detected
using the techniques that establish VM relationships via hypervisor log object

108 S. Thorpe et al.

profiles. EVTM is the set of all of the missing VM events detected on the basis of a
precondition rule. The sequence EVTC is a sequence over EVT ordered into a
consistent VM timeline. This section describes a technique for constructing such a
timeline.

There are some VM events, especially members of EVTM, for which there is no
timestamp. There are other VM events for which there is a timestamp, but whose
timestamp is provably incorrect (as determined by detecting the out of sequence
experiments). Gladyshev and Patel describe the process of determining the time at
which a given event takes place by bounding the event’s time [4], and we adopt this
approach for our VM log auditor tool. The upper and lower bounds for the time of an
event can be determined if the VM event must have occurred between two other VM
events. The range between these bounds, i.e. the time interval ∆t, is the range of
possible times at which the VM event could have occurred. The range can be further
narrowed if it is known that there is a minimal delay d , which applies to a particular
happened-before relation [4, 5]. If it is known that there is at least a ten seconds
greater than the time of the first event. The range of possible times at which a VM
event vmevtb might have occurred can be calculated.

This approach can only provide a range of times in lieu of a missing or inaccurate
timestamp, but such a range is the best possible indication of when the event
occurred. As it is impossible to obtain perfect timestamps for every VM event in the
history of the VM computer system, the sequence EVTC cannot be ordered on the
basis of the available timestamps. The available timestamps will not be precise
enough for ordering the events in and themselves, although they might be useful in
determining some other basis for ordering events.

Instead of timestamps, the use of a Lamport logical clock [7] is proposed to
provide the basis of ordering the consistent timeline EVTC. The timestamp (or time
interval in the case of VM events with indeterminate time) of a VM event will be used
as a variable in the clock, but it will be the clock and not the timestamp which will be
used as the basis for ordering VM hosted events.

The VM hosted computer BIOS clock C is defined to be a function which assigns a
number to every VM event in the consistent timeline EVTC. The number produced by
C has no bearing on physical time, but each VM event has a timestamp t for a time
interval ∆ t which can be used to determine the physical time of the VM event. The
number produced by C must be lower for VM events which occurred earlier in the
VM history of the computer system than the number produced for VM events which
occurred later. This will permit events to be sorted by the number produced by the
clock C on the ascending order basis.

Given a complete set of rules to detect inconsistent and missing VM events, the
number of unknown VM events in the VM computer system’s history can be
minimized. The proportion of the set of all of the VM events that occurred in the VM
history of the VM hosted computer system EVT that is known can be maximized. A
VM event is a known event if it is an element of the sets EVTR, EVTI, or EVTM.
Each of the known events will have an associated timestamp, or, in the case of VM
events with no timestamps or with provably incorrect timestamps, and the narrowest
possible time interval during which the event could have occurred. The clock function

 Hypervisor Event Logs as a Source of Consistent Virtual Machine Evidence 109

C will combine the timestamp or time interval for each known event with the rules
relating that event to the other knowable VM events, and produce a number (i.e.
Lamport timestamp) according to which the VM event may be sorted into the
consistent timeline EVTC. In the case of potentially concurrent events (which have no
happened-before relations to other VM events) whose timestamps or time intervals
are inconclusive relative to other VM events, the number produced by C will be
identical. In such cases, some arbitrary mechanism can be used to sort VM events into
the consistent timeline EVTC. Once completed, the consistent timeline EVTC will
represent the best sequential ordering of known events that make up the associated
VM history profile.

This permits an investigator to view both a consistent timeline, and the original
inconsistent timeline along with the reasoning as to why the original hypervisor
temporal log data was inconsistent. Then the investigator could then make an
informed judgment about the cause of the inconsistencies in the VM computer system
timeline.

7 Discussion of Results

The results of the experiments demonstrate that automatically detecting temporal
inconsistency in VM hosted computer activity timelines constructed from realistic
data is possible using our tool. These experiments applied a simple rule set to a VM
hosted computer system’s activity timeline, and the results demonstrate that
inconsistency can be detected in several basic scenarios. The happened-before
relation and the precondition predicate can be used together to construct effective
rules to draw an investigator’s attention to suspicious VM events. Timeline B
demonstrated that such rules can be applied to detect an event (in this case, the
creation of a document) initiated by a different user than first suggested by the VM
file system.

Timeline C showed that the deletion of a hypervisor kernel system log set of
entries pertaining to important VM events can be detected. If the deleted events are
preconditions for other events, which are recorded or inferred, then they can be
detected. Timeline D demonstrated that, by applying a rational set of rules in an
automated analysis of a timeline, VM events can be detected that should have
occurred in another sequence than their timestamps suggest.

The experiment’s use of data from a VM hosted computer system demonstrated
that this approach to detecting temporal inconsistency on VM log data is robust
enough to be tested in real cases. The ideal next step will be to perform experiments
with the log auditor using large scale live incident case data, which will test the
robustness and suitability of the approach with respect to real investigations.

The noise in real VM event data is a lesser problem to the VM log auditing tool
than it is to a human investigator. By distilling VM event records down to the most
important fields that are common to most events, our approach is likely to reduce the
complexity and heterogeneity of the various types of VM events.

110 S. Thorpe et al.

8 Future Work

We plan to improve the log auditor so that the software can automatically detect user
sessions given our ongoing work [16]. At the moment, the prototype software requires
the user to specify the bounds (i.e. start and finish) of a user VM session before it is
able to check the timeline of that VM session for internal consistency.

We would like to extend the VM log auditor process and software to construct
consistency-check timelines of VM hosted computers running non-Windows
operating systems.

The basic model presented in this paper doesn’t detect hidden nested states that
may exist on the VM host as extracted from the hypervisor logs particularly as a
remote or distributed logging service. We plan to extend the existing model to now
explore and formalize this concurrency problem.

9 Related Work

Although there has not been any formal accepted definition for cloud forensics, its
fundamentals are still entrenched in a view that the data provided as case evidence has
to be court admissible. The provision of a time-lining technique together with the
practical approaches for gathering and inferring VM events comprise a technique for
tracing the history of the VM hosted computer system as possible source of such
potential forensic evidence is motivated by prior work [20, 21, 22, 25]. In this paper,
we attempt to improve on the state of the art by providing a forensic platform that
transparently and distinctively monitors and records data access events using the
hypervisor kernel event logs. This work adopts a static state snapshot log approach to
support post incident off line forensic investigations. Our work complements the live
trace analysis and VM introspection methods [21, 22, 25] and the static snapshot
finite state hypothesis computational models [5, 6, 11].

10 Conclusion

This work has produced a tool, implementing techniques for detecting contradictory
and missing VM events in the history of the computer system. The experiments with
this software demonstrate that the techniques that have been proposed can be used
successfully to detect temporal inconsistencies in a VM computer activity timeline.
The automatic detection of inconsistencies that might indicate deliberate tampering
could assist a human investigator in a subsequent manual examination of the VM
hosted system running within the data center.

References

1. Rodgers, M.: The role of criminal profiling in the computer forensics process. Computers
& Security 22(4), 292–298 (2003)

 Hypervisor Event Logs as a Source of Consistent Virtual Machine Evidence 111

2. Rodgers, M., Goubalt–Larrecq, J.: Log auditing through model checking. In: Proceedings
of the 14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova Scotia
(June 2001)

3. Boyd, C., Forster, P.: Time and date issues in forensic computing a case study. Digital
Investigation 1(1), 18–23 (2004)

4. Buchholz, F., Tjaden, B.: A brief study of time. In: Proceedings of the 7th Digital
Forensics Workshop, Pittsburg, Pennsylvania, USA (August 2007)

5. Fidge, C.: Logical time in distributed computing systems. Computer 24(1), 28–33 (1991)
6. Gladyshev, P., Patel, A.: Formalizing event time bounding in digital investigations.

International Journal of Digital Evidence 4(2), 1–14 (2005)
7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21(1), 558–565 (1978)
8. Marrington, A., Mohay, G., Clark, A., Morarji, H.: Event-based computer profiling for the

forensic reconstruction of computer activity. In: Proceedings of the AusCERT Asia Pacific
Information Technology Security Conference, Gold Coast, Australia (May 2007)

9. Marrington, A., Mohay, G., Morarji, H., Clark, A.: A Model for Computer Profiling. In:
Proceedings of the 5th International Workshop on Digital Forensics at the International
Conference on Availability, Reliability and Security, Krakow, Poland (February 2010)

10. Nolan, R., O’Sullivan, C., Branson, J., Waits, C.: First responder’s guide to computer
forensics. Software Engineering Institute, Carnegie Mellon University, Pittsburg, USA
(May 2005)

11. Schatz, B., Mohay, G., Clark, A.: A correlation method for establishing provenance of
timestamps in digital evidence. In: Proceedings of the 6th Annual Digital Forensic
Research Workshop, West Lafayette, Indiana, USA (August 2006)

12. Willassen, S.Y.: Hypothesis-based investigation of digital timestamps. Advances in Digital
Forensics IV 285(1), 75–86 (2008)

13. Willassen, S.Y.: Timestamp evidence correlation by model based clock hypothesis testing.
In: Proceedings of the 1st International Conference on Forensic Applications and
Techniques in Telecommunications, Information, and Multimedia and Workshop,
Adelaide, Australia (January 2008)

14. Willassen, S.Y.: A model based approach to timestamp evidence interpretation.
International Journal of Digital Crime and Forensics 1(2), 1–12 (2009)

15. Thorpe, S., Ray, I., Grandison, T.: A Formal Temporal Log Model for the synchronized
Virtual Machine Environment. Journal of Information Assurance and Security 6(5), 398–
406 (2011)

16. Thorpe, S., Ray, I., Barbir, A., Grandison, T.: Towards a Formal Parameterized Context
for a Cloud Computing Forensic Database. In: Proceedings of the 3rd Digital Forensics
and Cybercrime Conference, Dublin, Ireland (October 2011)

17. Thorpe, S., Ray, I., Grandison, T.: Associative Mapping Techniques for the synchronized
virtual machine environment. In: Proceedings of the 4th Computational Intelligence in
Security for Information Systems Conference, Torremolinos, Spain (June 2011)

18. Thorpe, S., Ray, I., Grandison, T.: Enforcing Data Quality Rules for the synchronized
virtual machine environment. In: Proceedings of the 4th Computational Intelligence in
Security for Information Systems Conference, Torremolinos, Spain (June 2011)

19. Thorpe, S.: PhD Thesis - The Theory of a Cloud Computing Digital Investigation using the
Hypervisor kernel logs, University of Technology Jamaica (February 2013)

20. Thorpe, S.: A Virtual Machine History Model Framework for a Data Cloud Investigation.
Journal of Convergence 3(4), 9–14 (2012)

112 S. Thorpe et al.

21. Srinivas, K., Snow, K., Monrose, F.: Trail of Bytes: Efficient support for Forensic
Analysis. In: Proceedings of the ACM Conference on Communication Security, Chicago,
Illinois, USA (October 2010)

22. Gidwani, T., Argano, M., Yan, W., Issa, F.: A Comprehensive Survey of Event Analytics.
International Journal of Digital Crime and Forensics 4(3), 33–46 (2012)

23. Thorpe, S., Ray, I., Grandison, T., Barbir, A.: A Model for Compiling Truthful Forensic
Evidence from the Log Cloud Hypervisor Databases. In: Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC), Work in Progress Session,
Orlando, USA (December 2012)

24. Thorpe, S., Ray, I., Grandison, T., Barbir, A.: Log Audit Explanation Templates with
Private Data Clouds. In: Proceedings of the 28th Annual Computer Security Applications
Conference (ACSAC), Work in Progress Session, Orlando, USA (December 2012)

25. Pauw, W., Heisig, S.: Visual and algorithmic tooling for system trace analysis: A case
study. ACMSIGOPS Operating System Review 44(1), 97–102 (2010)

	Hypervisor Event Logs as a Source of Consistent Virtual Machine Evidence for Forensic Cloud Investigations
	1 Introduction
	2 Virtual Machine Profiling Model
	3 VM Log Auditor for Timelines
	3.1 Detecting Out of Sequence VM Timelines
	3.2 Detecting Missing VM Events

	4 VM Log Auditor Software
	5 Rule Base for Experiments
	5.1 Experimental Setup
	5.2 Evaluation of VM Detection Techniques

	6 Constructing Consistent Timelines
	7 Discussion of Results
	8 Future Work
	9 Related Work
	10 Conclusion
	References

