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Preface

This volume contains the papers presented at the 27th Annual WG 11.3
Conference on Data and Applications Security and Privacy (DBSec 2013). The
conference, hosted at Rutgers University, Newark, NJ, USA, during July 15–17,
2013, offered outstanding research contributions to the field of data and appli-
cations security and privacy. This year’s conference, for the first time at DBSec,
presented both the Best Paper Award and the Best Student Paper Award.

In response to the call for papers, 45 papers were submitted to the confer-
ence. Each paper was reviewed by at least three, and on average 4.04, members
of the Program Committee, on the basis of its significance, novelty and tech-
nical quality. The review process was followed by intensive discussions over a
period of one week. Of the papers submitted, 16 full papers and six short papers
were accepted for presentation at the conference. The conference program also
includes two invited talks by Johannes Gehrke (Cornell University) and Vincent
Poor (Princeton University). The accepted papers cover diverse research themes,
ranging from classic topics, such as access control and privacy, to emerging is-
sues, such as security and privacy in data outsourcing, mobile computing, and
cloud computing.

The success of this conference was the result of the efforts of many people. We
would especially like to thank Claudio Agostino Ardagna (Publicity Chair), Reza
Curtmola and Heechang Shin (Local Arrangements Chairs), and Vijayalakshmi
Atluri (IFIP WG 11.3 Chair). We would also thank the Program Committee
members and the external reviewers for their hard work in reviewing and dis-
cussing the papers. We gratefully acknowledge all authors who submitted papers
for enhancing the standards of this conference. Last but not least, thanks to all
the attendees. We hope you will enjoy reading the proceedings.

July 2013 Jaideep Vaidya
Soon Ae Chun
Lingyu Wang
Basit Shafiq
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Pierangela Samarati Università degli Studi di Milano, Italy
Basit Shafiq Lahore University of Management Sciences,

Pakistan
Heechang Shin Iona College, USA
Anoop Singhal National Institute of Standards and

Technology, USA
Traian Marius Truta Northern Kentucky University, USA
Jaideep Vaidya Rutgers University, USA
Lingyu Wang Concordia University, Canada
Meng Yu Virginia Commonwealth University, USA
Xinwen Zhang Huawei Research Center, USA
Jianying Zhou Institute for Infocomm Research, Singapore
Zutao Zhu Google Inc., USA



Organization IX

Additional Reviewers

Wanyu Zang
Wei Huo
Tobias Pulls
Yifei Wang
Wen Ming Liu
Chunhua Su
Jordi Soria-Comas
Sara Hajian
Dima Alhadidi
Mikhail Strizhov
Rose-Mharie Ahlfeldt
Md Munirul Haque
Bagus Santoso
William Garrison
Qingji Zheng

Zhan Qin
Chao Zhang
Yosr Jarraya
Rodrigo Roman
Cornelia Tadros
Meixing Le
Tarik Moataz
Liang Cai
Yihua Zhang
Shams Zawoad
Yoshikazu Hanatani
Daisuke Moriyama
Stere Preda
Junpei Kawamoto
Zhan Wang

Amril Syalim
Alessandra De

Benedictis
Nurit Gal-Oz
Michael

Emirkanian-Bouchard
Massimiliano Albanese
Tantan Liu
Rolando Trujillo-Rasua
Ruben Rios
Rasib H. Khan
Safaa Hachana
Ramadan Abdunabi
Ruoyu Wu



Table of Contents

Privacy I

Extending Loose Associations to Multiple Fragments . . . . . . . . . . . . . . . . . 1
Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia,
Giovanni Livraga, Stefano Paraboschi, and Pierangela Samarati

Database Fragmentation with Encryption: Under Which Semantic
Constraints and A Priori Knowledge Can Two Keep a Secret? . . . . . . . . . 17

Joachim Biskup and Marcel Preuß

Differentially Private Multi-dimensional Time Series Release for Traffic
Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Liyue Fan, Li Xiong, and Vaidy Sunderam

Access Control

Policy Analysis for Administrative Role Based Access Control without
Separate Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Ping Yang, Mikhail Gofman, and Zijiang Yang

Toward Mining of Temporal Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Barsha Mitra, Shamik Sural, Vijayalakshmi Atluri, and
Jaideep Vaidya

Towards User-Oriented RBAC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Haibing Lu, Yuan Hong, Yanjiang Yang, Lian Duan, and
Nazia Badar

Cloud Computing

Hypervisor Event Logs as a Source of Consistent Virtual Machine
Evidence for Forensic Cloud Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Sean Thorpe, Indrajit Ray, Tyrone Grandison, Abbie Barbir, and
Robert France

TerraCheck : Verification of Dedicated Cloud Storage . . . . . . . . . . . . . . . . . 113
Zhan Wang, Kun Sun, Sushil Jajodia, and Jiwu Jing

Privacy II

Fair Private Set Intersection with a Semi-trusted Arbiter . . . . . . . . . . . . . . 128
Changyu Dong, Liqun Chen, Jan Camenisch, and Giovanni Russello



XII Table of Contents

Bloom Filter Bootstrap: Privacy-Preserving Estimation of the Size of
an Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Hiroaki Kikuchi and Jun Sakuma

Using Safety Constraint for Transactional Dataset Anonymization . . . . . . 164
Bechara Al Bouna, Chris Clifton, and Qutaibah Malluhi

Data Outsourcing

Practical Immutable Signature Bouquets (PISB) for Authentication
and Integrity in Outsourced Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Attila A. Yavuz

Optimal Re-encryption Strategy for Joins in Encrypted Databases . . . . . 195
Florian Kerschbaum, Martin Härterich, Patrick Grofig,
Mathias Kohler, Andreas Schaad, Axel Schröpfer, and
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Extending Loose Associations

to Multiple Fragments

Sabrina De Capitani di Vimercati1, Sara Foresti1, Sushil Jajodia2,
Giovanni Livraga1, Stefano Paraboschi3, and Pierangela Samarati1

1 Università degli Studi di Milano, 26013 Crema, Italy
{firstname.lastname}@unimi.it

2 George Mason University, Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

3 Università degli Studi di Bergamo, 24044 Dalmine, Italy
parabosc@unibg.it

Abstract. Data fragmentation has been proposed as a solution for pro-
tecting the confidentiality of sensitive associations when publishing data
at external servers. To enrich the utility of the published fragments, a
recent approach has put forward the idea of complementing them with
loose associations, a sanitized form of the sensitive associations broken by
fragmentation. The original proposal considers fragmentations composed
of two fragments only, and supports the definition of a loose association
between this pair of fragments. In this paper, we extend loose associ-
ations to multiple fragments. We first illustrate how the publication of
multiple loose associations between pairs of fragments of a generic frag-
mentation can potentially expose sensitive associations. We then describe
an approach for supporting the more general case of publishing a loose
association among an arbitrary set of fragments.

Keywords: Loose associations, fragmentation, confidentiality con-
straints, privacy, data publishing.

1 Introduction

The strong need for sharing and disseminating information that characterizes our
global internetworked society raises a number of privacy concerns (e.g., [8,12]).
In fact, the vast amount of data collected and maintained in the digital infras-
tructure often includes sensitive information that must be adequately protected.
There is then a clear trade off between the need of easily accessing, using, and
distributing information, and the equally strong need of providing proper protec-
tion guarantees to sensitive information. Traditional solutions aimed at protect-
ing data undergoing public or semi-public release are based on k-anonymity [17]
and differential privacy [11], which protect respondents’ identities and their sen-
sitive information by releasing a sanitized version of the data. These solutions
however are not applicable in scenarios characterized by the need of releasing

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 1–16, 2013.
c© IFIP International Federation for Information Processing 2013



2 S. De Capitani di Vimercati et al.

non-modified information. Recent solutions have proposed the use of fragmenta-
tion for protecting sensitive associations among data [1,4,5]. Intuitively, fragmen-
tation protects sensitive associations among different pieces of data by storing
them in different fragments that cannot be joined. On one hand, fragmentation
improves data accessibility and query performance since it allows the storage of
plaintext values at the server side. On the other hand the utility of the published
data may be compromised since fragmentation breaks the associations existing
in the original data collection. This problem has been addressed by observing
that often it may be sufficient to guarantee that sensitive associations cannot
be precisely reconstructed (i.e., they can be reconstructed with a minimum de-
gree k of uncertainty). For instance, if the association between patients’ names
and the disease they suffer from is sensitive, it would be sufficient to guarantee
that a recipient cannot associate each patient with less than k possible diseases.
In these scenarios, fragments can be complemented with loose associations [9],
which permit to partially reconstruct the association between sub-tuples in frag-
ments, while not precisely disclosing the association among attribute values that
are considered sensitive. Loose associations partition the tuples in fragments in
groups and release the associations between sub-tuples in fragments at the granu-
larity of group (instead of the precise tuple-level association). Loose associations
can then be used for evaluating aggregate queries, with limited errors in the re-
sult, and for data mining. The existing approach operates under the assumption
that a fragmentation includes two fragments only, and produces a single loose
association between this pair of fragments. A fragmentation may however in-
clude an arbitrary number of fragments, and the definition of a loose association
may then consider the presence of multiple fragments. A naive solution would
publish multiple loose associations, one for each pair of fragments involved in
associations that need to be loosely released. Such an approach unfortunately
opens the door to privacy breaches since associations that go beyond the two
fragments are not considered, and could then be exposed (i.e., a recipient could
be able to reconstruct them).

In this paper, we aim at overcoming such a limitation, proposing a solution
for the definition of loose associations among arbitrary sets of fragments. The
remainder of the paper is organized as follows. Section 2 introduces the basic
concepts. Section 3 illustrates the privacy risks caused by the release of mul-
tiple loose associations. Section 4 presents our definition of loose association
among an arbitrary set of fragments. Section 5 describes the heterogeneity prop-
erties ensuring that a loose association satisfies a given privacy degree. Section 6
discusses the advantages and some interesting properties enjoyed by our novel
formulation. Section 7 discusses related work. Finally, Section 8 concludes the
paper.

2 Basic Concepts

We consider a scenario where a data owner publishes a set F = {F 1, . . . ,Fn} of
fragments of a private relation S . Sensitive associations among attributes in S
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Patients
Name YoB Edu ZIP Job MarStatus Disease

t1 Alice 1974 B.Sc 90015 Assistant Married Flu
t2 Bob 1965 MBA 90038 Manager Widow Diabetis
t3 Carol 1976 Ph.D 90001 Manager Married Calculi
t4 David 1972 M.Sc 90087 Doctor Divorced Asthma
t5 Greg 1975 M.Sc 90025 Doctor Single Flu
t6 Hal 1970 Th.D 90007 Clerk Single Calculi
t7 Eric 1960 Primary 90025 Chef Divorced Diabetis
t8 Fred 1974 Ed.D 90060 Teacher Widow Asthma

(a)

C

c1={YoB, Edu}
c2={ZIP, Job}
c3={Name, Disease}
c4={YoB, ZIP, Disease}
c5={YoB, ZIP, MarStatus}

(b)

F l

Name YoB

l1 Alice 1974
l2 Bob 1965
l3 Carol 1976
l4 David 1972
l5 Greg 1975
l6 Hal 1970
l7 Eric 1960
l8 Fred 1974

Fm

Edu ZIP

B.Sc 90015 m1

MBA 90038 m2

Ph.D 90001 m3

M.Sc 90087 m4

M.Sc 90025 m5

Th.D 90007 m6

Primary 90025 m7

Ed.D 90060 m8

(c)

Fig. 1. An example of relation (a), a set C of confidentiality constraints over it (b),
and a minimal fragmentation that satisfies the constraints in C (c)

that should not be revealed by the release of F are modeled through confiden-
tiality constraints [1].

Definition 1 (Confidentiality constraint). Given a relation schema S , a
confidentiality constraint c over S is a subset of the attributes in S .

Figure 1(b) illustrates a set C of confidentiality constraints defined over relation
Patients in Figure 1(a). A fragmentation can be published only if it satisfies all
the confidentiality constraints, that is, only if it does not disclose sensitive as-
sociations, neither directly in a single fragment (i.e., ∀F∈F , ∀c∈C : c �⊆F ), nor
indirectly by joining fragments (i.e., fragments are disjoint, ∀F i,F j∈F , i �=j:
F i∩F j=∅). In our discussion, we assume the released fragmentation to be min-
imal , meaning that merging fragments in F would violate at least a confiden-
tiality constraint. This is in line with the idea that the data owner does not
fragment relation S more than necessary. Figure 1(c) illustrates an example of
minimal fragmentation of relation Patients in Figure 1(a), which satisfies the
constraints in Figure 1(b).

To mitigate information loss caused by the fact that fragmentation breaks the
associations in the original relation, fragments can be complemented with loose
associations, introduced in [9] for fragmentations composed of a single pair of
fragments. To this aim, tuples in the two fragments are partitioned in groups,
and information on the associations between tuples in fragments is released at
the group (in contrast to tuple) level.

Given a fragmentation F={F l, Fm} and its instance {f l, fm}, tuples in f l
and f m are first independently partitioned in groups of size at least k l and km,
respectively. To this aim, the data owner defines a k-grouping function for each
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1974
1976

1975
1965

1970
1960

1974
1972

Alice
Carol

Greg
Bob

Hal
Eric

Fred
David

l1
l3

l5
l2

l6
l7

l8
l4

m1

m5

m3

m6

m2

m8

m7

m4

B.Sc
M.Sc

Ph.D
Th.D

MBA
Ed.D

Primary
M.Sc

90025

90007

90015

90001

90025

90038

90087

90060

FmFl

Name YoB Edu ZIP

(a)

F l

Name YoB Gl

l1 Alice 1974 ny1
l2 Bob 1965 ny2
l3 Carol 1976 ny1
l4 David 1972 ny4
l5 Greg 1975 ny2
l6 Hal 1970 ny3
l7 Eric 1960 ny3
l8 Fred 1974 ny4

A
Gl Gm

ny1 ez1
ny1 ez2
ny2 ez1
ny2 ez3
ny3 ez2
ny3 ez4
ny4 ez3
ny4 ez4

Fm

Gm Edu ZIP

ez1 B.Sc 90015 m1

ez3 MBA 90038 m2

ez2 Ph.D 90001 m3

ez4 M.Sc 90087 m4

ez1 M.Sc 90025 m5

ez2 Th.D 90007 m6

ez4 Primary 90025 m7

ez3 Ed.D 90060 m8

(b)

Fig. 2. Graphical representation (a) and corresponding relations (b) of a 4-loose asso-
ciation between fragments F l and Fm in Figure 1(c)

of the two fragments. A k -grouping function partitions tuples in a fragment
instance f in groups of size at least k , by associating a group identifier with each
tuple in f [9].

Definition 2 (k-Grouping). Given a fragment F i, its instance f i, and a set
GIDi of group identifiers, a k -grouping function over f i is a surjective function
Gi:f i→GIDi such that ∀gi ∈ GIDi :| G−1

i (gi) |≥ k.

Notation (k l,km)-grouping denotes a k l-grouping over f l and a km-grouping over
fm (note that k l may be different from km). Once each tuple in f l and in fm is
associated with a group identifier, the group-level relationships between tuples
in f l and in fm are represented by an additional relation A. For each tuple t
in the original relation, relation A includes a tuple containing the group where
t [F l] appears in f l and the group where t [Fm] appears in fm. For instance,
Figure 2(a) represents a partition in groups of size k l=km=2 of the tuples in
fragments f l and fm in Figure 1(c). For simplicity, given a tuple t in the orig-
inal relation, we denote with l (m , resp.) the sub-tuple t [F l] (t [Fm], resp.) in
fragment f l (f m, resp.). The edges connecting grey dots, which correspond to
tuples in groups, represent the group-level associations between tuples in the two
fragments implied by relation Patients in Figure 1(a). Figure 2(b) illustrates
relation A and fragments F l and Fm enriched with an attribute (Gl and Gm,
resp.) reporting the identifier of the group to which each tuple belongs.
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The partitioning of the tuples in the two fragments should be carefully de-
signed to guarantee that sensitive associations cannot be reconstructed exploit-
ing A. Intuitively, a loose association between a pair of fragments {F l, Fm}
enjoys a degree k of protection (referred to as k -looseness) if every tuple in A
indistinguishably corresponds to at least k distinct associations among tuples in
f l and fm with different values for the attributes involved in each confidential-
ity constraint c such that c⊆F l∪Fm. In fact, the release of a loose association
between F l and Fm only puts at risk constraints whose attributes are all repre-
sented by the two fragments. For instance, the first tuple in table A in Figure 2(b)
corresponds to four possible tuples (i.e., 〈l1,m1〉, 〈l1,m5〉, 〈l3,m1〉, 〈l3,m5〉), all
with different values for attributes YoB and Edu composing constraint c1, which
is the only constraint completely covered by F l and Fm. In other words, the
release of F l, Fm, and A satisfies k -looseness for each k ≤ k l · km, if for each
group gl in f l (gm in fm, resp.), the union of the tuples in all the groups with
which gl (gm, resp.) is associated in A is a set of at least k tuples with differ-
ent values for the attributes in each constraint c⊆F l∪Fm [9]. For instance, the
association in Figure 2 satisfies k -looseness for any k ≤ 4.

3 Problem and Motivating Example

Although effective for publishing loose associations between pairs of fragments,
the proposal in [9] cannot be directly applied to the release of multiple loose asso-
ciations between different pairs of fragments, since they might disclose sensitive
associations. To illustrate the problem, consider a fragmentation F composed of
3 fragments, say F l, Fm, and F r. A straightforward approach to release group-
level associations among these fragments consists in releasing two distinct loose
associations between two pairs of fragments in F (e.g., one between F l and Fm,
and one between Fm and F r). For instance, consider a fragmentation of relation
Patients in Figure 1(a) that satisfies the constraints in Figure 1(b), composed
of 3 fragments F l={Name, YoB}, Fm={Edu, ZIP}, and F r={Job, MarStatus,
Disease}. Figure 3 illustrates a 4-loose association between F l and Fm (Alm),
and a 4-loose association between Fm and F r (Amr) (note that tuples in fm
are partitioned according to two different grouping functions, one for each loose
association).

Such an approach clearly releases useful information on the associations be-
tween the tuples in F l and Fm, and between the tuples in Fm and F r. The loose
associations between F l and Fm, and between Fm and F r imply however an
induced association between F l and F r: F l can be loosely joined with Fm, which
in turn can be loosely joined with F r. Therefore, each tuple in f l is associated
with a group of tuples in fm, each of which is in turn associated with a group
of tuples in f r. As an example, tuple l7 in fragment f l in Figure 3 is associated
with tuples m3, m4, m6, and m7 in fragment fm. In turn, m3 and m6 are asso-
ciated with r1, r3, r5, and r6 in f r. Tuples m4 and m7 are instead associated
with r2, r4, r7, and r8 in f r. Therefore, l7 is possibly associated with any tuple
in f r. The induced association between F l and F r might then seem to enjoy a
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(a)

F l

Name YoB Gl

l1 Alice 1974 ny1
l2 Bob 1965 ny2
l3 Carol 1976 ny1
l4 David 1972 ny4
l5 Greg 1975 ny2
l6 Hal 1970 ny3
l7 Eric 1960 ny3
l8 Fred 1974 ny4

Fm

Gm1 Edu ZIP Gm2

m1 ez11 B.Sc 90015 ez22
m2 ez13 MBA 90038 ez23
m3 ez12 Ph.D 90001 ez22
m4 ez14 M.Sc 90087 ez24
m5 ez11 M.Sc 90025 ez21
m6 ez12 Th.D 90007 ez21
m7 ez14 Primary 90025 ez23
m8 ez13 Ed.D 90060 ez24

Fr

Gr Job MarStatus Disease

r1 jmd1 Assistant Married Flu
r2 jmd4 Manager Widow Diabetis
r3 jmd2 Manager Married Calculi
r4 jmd3 Doctor Divorced Asthma
r5 jmd1 Doctor Single Flu
r6 jmd2 Clerk Single Calculi
r7 jmd3 Chef Divorced Diabetis
r8 jmd4 Teacher Widow Asthma

Alm

Gl Gm1

ny1 ez11
ny1 ez12
ny2 ez11
ny2 ez13
ny3 ez12
ny3 ez14
ny4 ez13
ny4 ez14

Amr

Gm2 Gr

ez21 jmd1
ez21 jmd2
ez22 jmd1
ez22 jmd2
ez23 jmd3
ez23 jmd4
ez24 jmd3
ez24 jmd4

(b)

Fig. 3. Graphical representation (a) and corresponding relations (b) of a 4-loose asso-
ciation Alm between F l and Fm, and a 4-loose association Amr between Fm and F r,
with F l, Fm, and F r three fragments of relation Patients in Figure 1(a)

protection degree equal to (or even greater than) those enjoyed by Alm and Amr.
However, publishing loose associations Alm and Amr guarantees that sensitive
associations involving only attributes in F l and Fm, and only attributes in Fm

and F r are protected. It does not provide any guarantee on the protection of
sensitive associations involving attributes stored in F l and in F r, which are pos-
sibly exposed by the induced association. This is due to the fact that the loose
association between F l and Fm requires tuples in f l (fm, resp.) associated with
each group in fm (f l, resp.) to have different values for the attributes appearing
in constraints c⊆F l∪Fm (c1, in our example). Analogously, the loose associa-
tion between Fm and F r requires tuples in fm (f r, resp.) associated with each
group in f r (f m, resp.) to have different values for the attributes appearing in
constraints c⊆Fm∪F r (c2, in our example). Constraints c ⊆F l∪Fm∪F r such
that c∩F l �=∅ and c∩F r �=∅ (c3, c4, c5, in our example) are instead ignored. To
illustrate, the release of the fragments and loose associations in Figure 3 ex-
poses the sensitive association between attributes Name and Disease, violating
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constraint c3 in Figure 1(b). In fact, tuple l1 in f l is associated with tuples m1,
m3,m5, andm6 in fm. In turn,m1,m3, m5, andm6 in fm are all associated with
tuples r1, r3, r5, and r6 in f r. Thus, the observation of Alm and Amr reveals
that l1 is associated, in the original relation, with one among r1, r3, r5, and
r6, but r1[Disease]=r5[Disease]=Flu and r3[Disease]=r7[Disease]=Calculi.
Therefore, either association 〈Alice,Flu〉 or association 〈Alice,Calculi〉 belongs
to relation Patients with the same probability. The degree of protection for
constraint c3 offered by the release of the two loose associations in Figure 3 is
then 2 (and not 4 as for constraints c1 and c2). Note that the release of arbitrary
loose associations may completely expose sensitive associations. For instance, as-
sume that r3[Disease]=r6[Disease]=Flu. The released associations would still
be 4-loose, but they reveal that Alice suffers from Flu.

The privacy breach described above represents a serious issue for the data
owner since it exposes sensitive associations that she is not explicitly publishing.
She could then be unaware of the fact that the released fragments and loose
associations expose sensitive associations. In the remainder of this paper, we
illustrate our proposal for counteracting such a privacy problem. Our intuition
is to define a single loose association encompassing all the fragments among
which the data owner needs to publish group-level associations. In this way, we
aim at defining one loose association only that takes into consideration all the
confidentiality constraints among attributes stored by the released fragments.
Intuitively, since all the published fragments are involved in the same loose as-
sociation, publishing this association does not imply the disclosure of induced
associations that can be exploited by malicious recipients to precisely reconstruct
sensitive associations. As we will detail in the following sections, starting from
this loose association, the data owner may then choose to either release it as a
whole, or use it to build an arbitrary set of loose associations, with the guarantee
that no sensitive association be improperly exposed.

4 Loose Associations

Given a fragmentation F of a relation S and a set C of confidentiality constraints
over S , we define a loose association among the fragments in F (note that our
approach also permits to define a loose association among an arbitrary subset
of fragments in F). For the sake of readability, we refer the discussion to a
fragmentation F={F l, Fm, F r} composed of 3 fragments, while definitions are
formulated on fragmentations composed of an arbitrary number of fragments.
In line with previous works on fragmentation [1,4,9], we assume that data recip-
ients do not possess any additional knowledge besides released fragments, loose
associations, and confidentiality constraints defined by the data owner.

The first step necessary for the definition of a loose association among the
fragments in F is the identification of the subset of confidentiality constraints in
C that are relevant for F . A constraint is relevant for a set {F 1, . . . ,Fn} of frag-
ments if it includes only attributes represented by the fragments in {F 1, . . . ,Fn}.
Indeed, any other constraint cannot be violated by the release of a loose associ-
ation among fragments in {F 1, . . . ,Fn}.
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F l

NameYoB Gl

l1 Alice 1974 ny1
l2 Bob 1965 ny1
l3 Carol 1976 ny2
l4 David 1972 ny2
l5 Greg 1975 ny3
l6 Hal 1970 ny3
l7 Eric 1960 ny4
l8 Fred 1974 ny4

Fm
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m1 B.Sc 90015 ez1
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m5 M.Sc 90025 ez2
m6 Th.D 90007 ez3
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m8 Ed.D 90060 ez3
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r1 AssistantMarried Flu jmd1
r2 Manager Widow Diabetis jmd4
r3 Manager Married Calculi jmd2
r4 Doctor Divorced Asthma jmd1
r5 Doctor Single Flu jmd3
r6 Clerk Single Calculi jmd4
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(b)

Fig. 4. Graphical representation (a) and corresponding relations (b) of a 4-loose asso-
ciation among three fragments F l, Fm, and F r of relation Patients in Figure 1(a)

Definition 3 (Relevant constraints). Given a set T = {F1, . . . ,Fn} of frag-
ments and a set C of confidentiality constraints, the set CT of relevant constraints
for T is defined as CT = {c∈C:c⊆F 1 ∪ . . . ∪ Fn}.

For instance, the only constraint in Figure 1(b) relevant for the set of fragments
in Figure 1(c) is c1 as it is the only constraint whose attributes belong to the
set {Name, YoB, Edu, ZIP}.

Given a fragmentation F={F1, . . . ,Fn}, the tuples in each fragment are par-
titioned according to different grouping functions, which may adopt different
protection parameters (thus generating groups of different size). A (k1, . . . , kn)-
grouping is a set {G1, . . . ,Gn} of grouping functions defined over fragments
in {f 1, . . . , f n} (i.e., a set of k i-groupings over f i, i=1, . . . , n). As an exam-
ple, Figure 4 illustrates a (2,2,2)-grouping involving fragments F l={Name, YoB},
Fm={Edu, ZIP} and F r={Job, MarStatus, Disease} of relation Patients in
Figure 1(a), and the corresponding group association. It is easy to see that tuple
t1 in relation Patients is represented in fragments F l, Fm, and F r by tuples l1,
m1, and r1, respectively. The association among l1, m1, and r1 is represented
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by tuple 〈ny1,ez1,jmd1〉 in A, which defines an association among the groups to
which l1, m1, and r1 belong.

A group association A can be safely released only if it cannot be exploited
to reconstruct, totally or in part, sensitive associations among the released frag-
ments. A (k l,km,kr)-grouping guarantees that each tuple in A corresponds to
k l·km·kr different associations among tuples in f l, fm, and f r. However, some
tuples represented by these k l·km·kr associations might have the same values for
the attributes in a relevant constraint, thus reducing in practice the protection
degree enjoyed by the published group association. To guarantee that a group
association A does not expose relevant confidentiality constraints, each tuple
in A must refer to k distinct associations among sub-tuples in fragments that
do not have the same values for the attributes in relevant constraints. A group
association satisfying this property is said to be k-loose. To compare the val-
ues assumed in fragments by the attributes in relevant constraints, we formally
introduce the alike relationship between tuples as follows.

Definition 4 (Alike). Given a fragmentation F={F1, . . . ,Fn} with its in-
stance {f 1, . . . , f n}, and the set CF of confidentiality constraints relevant for F ,
ti,tj∈f z, z = 1, . . . , n, are said to be alike with respect to a constraint c∈CF , de-
noted ti�c tj iff c∩F z �=∅ ∧ ti[c∩F z ]=tj [c∩F z ]. Two tuples are said to be alike
with respect to a set CF of relevant constraints, denoted ti�CF tj, if they are alike
with respect to at least one constraint c∈CF .
Definition 4 states that given a fragmentation F , two tuples in a fragment in-
stance f i are alike if they have the same values for the attributes in a constraint
relevant for F . For instance, with reference to the (2,2,2)-grouping in Figure 4,
r4�c3

r8 since r4[Disease]=r8[Disease]=Asthma. Since we are interested in
evaluating the alike relationship w.r.t. the set CF of relevant constraints, in the
following we omit the subscript of the alike relationship whenever clear from the
context (i.e., we write t i�t j instead of t i�CF t j). The alike relationship guides
the definition of k -loose group associations among arbitrary sets of fragments,
as formally defined in the following.

Definition 5 (k-Looseness). Given a fragmentation F = {F 1, . . . ,Fn} with
its instance {f 1, . . . , f n}, the set CF of confidentiality constraint relevant for F ,
and a group association A over {f 1, . . . , f n}, A is said to be k -loose w.r.t. CF
iff ∀c∈CF , ∀F i∈F : c∩F i �=∅ and ∀gi∈GIDi, ∃F j∈F : c∩F j �=∅ that satisfies the
following condition: let T =

⋃
z{G−1

j (gz) | (gi, gz) ∈ A[Gi, Gj ]} =⇒ | T |≥k, and
∀tx,ty∈T , x �= y, tx ��c ty.

k -Looseness guarantees that sensitive associations represented by relevant con-
straints cannot be reconstructed with confidence higher than 1/k . According to
the definition above, a group association A is k -loose if each tuple in A cor-
responds to k possible tuples in the original relation that are not alike w.r.t.
any relevant constraint. Note that, however, there are cases in which the alike
requirement can be relaxed. In fact, whenever a value v in the domain of an
attribute is considered not sensitive (e.g., because it characterizes the majority
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of the tuples in the original relation), the alike relationship may consider such a
value as neutral . In this case, even if t i[Attr]=t j[Attr]=v, t i ��t j.

The definition of k -looseness translates into the satisfaction of a different
condition depending on whether the considered constraint involves two (like
in [9]) or more fragments.

– Constraints between two fragments. k -Looseness requires that, for each group
gl in f l, the union of the tuples in all the groups gm in fm with which gl
is associated is a set including at least k tuples that are not alike w.r.t. c
(and viceversa). With reference to the example in Figure 4, c1 cannot be
reconstructed since each group in f l is associated with two different groups
in fm including tuples that do not contain duplicates for Edu and viceversa.

– Constraints among more than two fragments. k -Looseness requires to break
the association between at least two of the fragments storing attributes in
c to guarantee that the sensitive association represented by c cannot be
reconstructed. We then need to guarantee that, for each group gl in f l, the
union of the tuples in all the groups gm in f m with which gl is associated or
the union of the tuples in all the groups gr in f r with which gl is associated is
a set of at least k tuples that are not alike w.r.t. c . Clearly, this property must
hold also for each group gm in fm and for each group gr in f r. For instance,
consider the fragments and group association in Figure 4 and constraint c5
over them. Sensitive associations among YoB, ZIP, and MarStatus cannot
be reconstructed even if group ny2 in f l is associated with groups jmd1 and
jmd2 in f r whose tuples have the same values for attribute MarStatus. In
fact, group ny2 is associated with groups ez1 and ez4 in fm, which do not
include tuples that are alike w.r.t. c5 (i.e., tuples in ez1 and ez4 have all
different values for ZIP).

This definition of k -looseness implies that the release of a (k l,km,kr)-grouping
induces a k -loose association with k=min(k l·km, km·kr, k l·kr). In fact, the con-
straints relevant for {F l,Fm} ({Fm,F r} and {F l,F r}, resp.) enjoy a protection
degree k lm=k l·km (kmr=km·kr and k lr=k l·kr, resp.). Constraints relevant for
{F l,Fm,F r} enjoy the minimum protection degree among k lm, kmr, and k lr

since, as illustrated above, it is not required that all the associations among the
attributes in the constraints be broken. Figure 4(b) illustrates the 4-loose associ-
ation induced by the (2,2,2)-grouping in Figure 4(a). This association guarantees
the same protection degree k=k lm=kmr=k lr=4 to each pair of fragments (and
then also to F).

5 Heterogeneity Properties

In this section, we enhance and extend the heterogeneity properties (i.e., group,
association, and deep heterogeneity), originally proposed to guarantee that a
group association between two fragments is k -loose, to provide the same guar-
antee to group associations defined on an arbitrary number of fragments.
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Group Heterogeneity. This property guarantees that groups do not include
tuples with the same values for the attributes in relevant constraints. In this
way, the minimum size k i of the groups in fragment F i, i = 1, . . . , n, reflects the
minimum number of different values in the group for each subset of attributes
that appear together in a relevant constraint.

Property 1 (Group heterogeneity). Given a fragmentation F = {F 1, . . . ,Fn}
with its instance {f 1, . . . , f n}, and the set CF of constraints relevant for F ,
grouping functions Gi over f i, i = 1, . . . , n, satisfy group heterogeneity iff
∀f i∈{f 1, . . . , f n}, ∀tz,tw∈f i: tz�tw =⇒ Gi(tz)�=Gi(tw).
The definition of this property is similar to the one operating on two fragments,
as it is local to the tuples in each fragment. It however operates on a different
set of constraints, that is, the set of constraints relevant for F . For instance, in
Figure 4 the grouping functions defined for the three fragments satisfy group
heterogeneity for CF={c1, . . . , c5}. On the contrary, the groupings for the three
fragments in Figure 3 do not satisfy group heterogeneity for F={F l,Fm,F r}
since, for example, r1�c3

r5 and they belong to the same group. However, these
groupings satisfy group heterogeneity for F1={F l, Fm} (where c1 is the only
relevant constraint) and for F2={Fm, F r} (where c2 is the only relevant con-
straint).

Association Heterogeneity. For loose associations between two fragments,
this property requires that A cannot have duplicates. This simple condition
is however not sufficient in our (more general) scenario. In fact, association
heterogeneity aims at guaranteeing that, for each constraint c in CF , each group
in f i is associated with at least k i different groups in at least one of the fragments
storing attributes in c (i.e., groups in f j such that c∩F j �=∅). If a group in f i is
associated with one group in f j only, it is easier for an observer to reconstruct
the correct associations among the tuples in these two groups (and therefore to
violate constraints). This condition implies that A cannot have two tuples with
the same group identifier for all the fragments storing attributes composing a
constraint (for constraints involving more than two fragments, it is sufficient
that one of the values in the tuple be different).

Since we consider minimal fragmentations, there exists at least one relevant
constraint for each pair of fragments in F (i.e., ∀{f i,f j}⊆F , i �= j, ∃c∈C s.t.
c⊆F i∪F j , Theorem A.2 in [9]). Therefore, a group association A satisfies associ-
ation heterogeneity if it does not have two tuples with the same group identifier
for any pair of fragments in F .
Property 2 (Association heterogeneity). A group association A satisfies associ-
ation heterogeneity iff ∀(gi1 , . . . , gin), (gj1 , . . . , gjn) ∈A: iz = jz =⇒ iw �= jw,
w = 1, . . . , n and w �= z.

Intuitively, association heterogeneity requires that the projection over A of any
subset of two attributes does not contain duplicate tuples. It is immediate to see
that the group association in Figure 4 satisfies association heterogeneity.
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Deep Heterogeneity. This property guarantees that a group in f i cannot
be associated with different groups in f j including duplicated values for the
attributes in a relevant constraint c⊆F i∪F j . The groups in f j with which a
group in f i is associated may be composed of tuples with exactly the same values
for the attributes in c , limiting the protection offered by the loose association. For
instance, groups jmd1 and jmd3 in Figure 4 have the same values for attribute
Disease (i.e., Flu and Asthma). Therefore, a group in f l cannot be associated
with both jmd1 and jmd3 because of constraint c3 (otherwise, the association
between F l and F r would be 2-loose instead of 4-loose).

Deep heterogeneity imposes diversity by looking at the values behind the
groups. The definition of deep heterogeneity over pairs of fragments requires
that the groups in fragment f i with which a group in f j is associated in A
do not contain alike tuples. A straightforward approach to extend deep het-
erogeneity would require diversity over all the fragments storing the attributes
composing the constraint. In other words, considering a constraint c composed
of attributes stored in fragments {F 1, . . . ,Fn}, all the groups in each fragment
f i (i = 1, . . . , n) with which a group in f j (j = 1, . . . , n, i �= j) is associated
in A should not contain tuples that are alike w.r.t. c . This condition is more
restrictive than necessary to define a k -loose association. In fact, it is sufficient,
for each fragment F j , to break the association with one of the fragments F i

(i = 1, . . . , n, i �= j) storing the attributes in c . For instance, with reference
to the example in Figure 4, it is sufficient that each group in f l be associated
with groups of non-alike tuples in either fm or f r to guarantee that the sensitive
association modelled by c5 is not exposed.

Property 3 (Deep heterogeneity). Given a fragmentation F = {F1, . . . ,Fn} with
its instance {f 1, . . . , f n}, and the set CF of constraints relevant for F , a group
associationA overF satisfies deep heterogeneity iff ∀c∈CF ; ∀F z ∈ F , F z∩c �= ∅;
∀ (gi1 ,gi2 . . . gin),(gj1 ,gj2 . . . gjn) ∈ A the following condition is satisfied:

iw = jw =⇒
∨

l=1,...,n, l �=w

�tx,ty: tx∈G−1
l (gil), ty∈G−1

l (gjl), tx �c ty.

Given a constraint c whose attributes appear in fragments {F i1 , . . . ,F ij}, deep
heterogeneity is satisfied w.r.t. c if the set of tuples in the groups {gx1, . . . , gxw}
in f ix with which a group gy in f iy is associated are not alike w.r.t. c , for at
least one fragment f ix , x = 1, . . . , j and x �= y. This property must be true
for all the groups in each fragment F ix , x = 1, . . . , j. This guarantees that, for
each constraint, no association can be precisely reconstructed by an observer.
An example of group association that satisfies deep heterogeneity is illustrated
in Figure 4. Note that deep heterogeneity is satisfied even though group ny2 in
f l is associated with groups jmd1 and jmd2 in f r, which include tuples r1�c5

r3
and r4�c5

r7. In fact, group ny2 is also associated with groups ez1 and ez4 in
fm that do not include tuples that are alike w.r.t. c5 (i.e., with the same value
for ZIP).

If the three properties above are satisfied by a (k1, . . . , kn)-grouping and its
induced group association, the group association is k -loose with k≤min(k i · k j)
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∀i, j = 1, . . . , n, i �= j, as stated by the following theorem (the proof has been
omitted for space constraints).

Theorem 1. Given a fragmentation F = {F1, . . . ,Fn} with its instance
{f 1, . . . , f n}, the set CF of constraints relevant for F , and a (k1,. . . ,kn)-grouping
that satisfies Properties 1, 2, and 3, the group association A induced by the
(k1, . . . , kn)-grouping is k-loose w.r.t. CF (Definition 5) for each k≤min(k i ·k j),
with i, j = 1, . . . , n, i �= j.

As a consequence of the above theorem, the protection degree that a (k1, . . . , kn)-
grouping that satisfies Properties 1, 2, and 3 offers may be different for each
confidentiality constraint c in CF . Indeed, the protection degree for a constraint
c is min(k i · k j), where F i,F j ∈ {F ∈ F : F ∩ c �= ∅}.

In this paper, for space constraints, we do not discuss how to compute a k -
loose association among an arbitrary set of fragments. We note however that
the solution in [9] can be extended to our scenario, by properly modifying the
enforcement of the above heterogeneity properties.

6 Discussion

The consideration of all the constraints relevant for the fragments involved in
the loose association guarantees that no constraint can be violated. Thus, our
loose association defined over an arbitrary set of fragments does not suffer from
the confidentiality breach illustrated in Section 3, mainly caused by the fact that
confidentiality constraints relevant for the fragments involved in induced associ-
ations are ignored. As an example, with reference to the 4-loose association in
Figure 4, each tuple in A corresponds to four different associations of (different)
values for attributes Name and Disease. This guarantees that constraint c3 is
satisfied, while it is violated by the example in Figure 3.

The release of a k -loose association among a set F of fragments is equivalent
to the release of 2n−n, with n = |F|, k -loose associations (one for each subset of
fragments in F). Indeed, the projection over a subset of attributes in A represents
a k -loose association for the fragments corresponding to the projected attributes.

Observation 1. Given a fragmentation F={F 1,. . . ,Fn}, a subset {F i, . . . ,F j}
of F , and a k-loose association A(G1, . . . , Gn) over F , group association
A′(Gi, . . . , Gj) = π(Gi,...,Gj)(A) is a k-loose association over {F i, . . . ,F j}.
For instance, with reference to the 4-loose association in Figure 4, the projection
of attributes Gl, Gm in A is a 4-loose association between F l and Fm.

Since a k -loose association defined over a set F of fragments guarantees that
sensitive associations represented by constraints in CF are properly protected,
the release of multiple loose associations among arbitrary (and possibly overlap-
ping) subsets of fragments in F provides the data owner with the same protec-
tion guarantee. The data owner can therefore decide to release either one loose
association A encompassing the associations among the fragments in F , or a
subset of loose associations defined among arbitrary subsets of fragments in F
by projecting the corresponding attributes from A.
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Observation 2. Given a fragmentation F={F 1,. . . ,Fn} and a k-loose asso-
ciation A(G1, . . . , Gn) over it, the release of an arbitrary set of k-loose associ-
ations {A1(Gh, . . . , Gi), . . . , Am(Gj , . . . , Gk)} with {Gh, . . . , Gk}⊆{G1, . . . , Gn} pro-
vides the same protection guarantee as the release of A.

For instance, with reference to our examples above, aiming at releasing two
distinct 4-loose associations, the data owner can release the 4-loose associations
obtained projecting 〈Gl,Gm〉 and 〈Gm,Gr〉 from the 4-loose association in Figure 4.
This solution does not suffer from the privacy breach illustrated in Section 3,
while providing associations between groups of the same size (i.e., the same
utility for data recipients).

The two observations above need to be considered if the data owner is in-
terested in releasing more than one loose association among arbitrary subsets
of fragments in F . On the contrary, if the loose associations of interest operate
on disjoint subsets of fragments (i.e., no fragment is involved in more than one
loose association), they can be defined independently from each other without
risks of unintended disclosure of sensitive associations.

Observation 3. Given a fragmentation F , and a set {F1, . . . , Fn} of subsets of
fragments in F (i.e.., Fi ⊆ F , i = 1, . . . , n), the release of n loose associations
Ai, i = 1, . . . , n is safe if ∀i, j = 1, . . . , n with i �= j, Fi∩Fj=∅.

7 Related Work

Several research efforts have addressed the problem of protecting pri-
vacy in data publishing, proposing approaches based on either sanitizing
(e.g., [6,10,11,13,14,15,16,20]) or fragmenting data (e.g., [1,2,4,5,7]) before their
release. Our approach provides the same privacy guarantees as the well-known k-
anonymity and �-diversity (with �=k) approaches, while releasing complete and
truthful information thanks to the adoption of a different protection technique.
Most fragmentation works, although showing similarities with our proposal, ad-
dress a problem orthogonal to ours, as they aim at breaking sensitive associations
while maximizing the ability of recipients of evaluating queries on fragments.

The works closest to ours complement fragmented data with information on
their association, without disclosing sensitive information [7,9,21]. Our proposal
is however more general, since these solutions operate on two fragments only,
while we consider an arbitrary number of fragments when defining loose associa-
tions. Anatomy [21] considers the specific problem of protecting the association
between respondents’ identities and a sensitive attribute while our solution per-
mits to protect any association among attributes. Also, Anatomy partitions the
original relation in groups of � tuples before splitting attributes in two disjoint
fragments. Hence, it can be considered a specific instance of our approach where
kl=1 and kr=� (or viceversa).

The work in [7] does not take into consideration the possible existence of
duplicate values for non-key attributes, exposing therefore to frequency-based
attacks sensitive associations on non-key attributes. Our heterogeneity properties
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overcome this issue, by preventing the presence of duplicates in the same group
of tuples.

Our work may bring some resemblance with the proposals in [3,18,19]. The
work in [19] adopts horizontal and vertical fragmentation to protect privacy of
sparse multidimensional data (e.g., transactional data). The approach in [3] fo-
cuses instead on protecting recommendation data expressed by customers (i.e.,
Netflix movie ratings). Besides operating on different data models, both these
proposals differ from our work since they are specifically targeted at protect-
ing respondents’ identities and their association with sensitive attributes. Also,
they both adopt a dual approach with respect to loose associations, requiring
homogeneity of values in fragments. The work in [18] addresses the problem of
destroying the correlation between two disjoint subsets of attributes, preserving
as much as possible the other correlations. Our approach does not aim at de-
stroying correlations among attributes, as our goal is to preserve them as much
as possible, while satisfying privacy constraints. Also, the solution in [18] adopts
masking techniques, while our approach maintains data truthfulness.

Alternative approaches to protect privacy in data release are based on differ-
ential privacy [10,11]. Although addressing a similar problem, differential pri-
vacy cannot be directly applied to the considered scenario. In fact, all these
approaches introduce noise in the dataset that depends on the expected users
queries. Our approach instead does not make assumptions on users queries and
aims at releasing truthful data.

8 Conclusions

We presented an approach for extending the definition of loose association to
multiple fragments. We first described the exposure risks that characterize the
release of multiple loose associations between pairs of fragments, and then pre-
sented an approach supporting the definition of a loose association among an
arbitrary number of fragments. We also discussed some properties of the pro-
posed solution.
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7FP under grant agreement 257129 (PoSecCo), by the Italian Ministry of Re-
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Abstract. Database outsourcing to semi-honest servers raises concerns
against the confidentiality of sensitive information. To hide such infor-
mation, an existing approach splits data among two supposedly mutu-
ally isolated servers by means of fragmentation and encryption. This ap-
proach is modelled logic-orientedly and then proved to be confidentiality
preserving, even if an attacker employs some restricted but nevertheless
versatile class of a priori knowledge to draw inferences. Finally, a method
to compute a secure fragmentation schema is developed.

Keywords: A Priori Knowledge, Confidentiality Constraint, Fragmen-
tation, Inference-Proofness, Logic, Outsourcing, Semi-Honest Server.

1 Introduction

Database outsourcing faces two directly conflicting goals: it should both reduce
storage and processing costs by storing data on external servers as well as prov-
ably comply with confidentiality requirements – in particular with privacy con-
cerns – in spite of storing data externally [10]. A basic solution presented in [2,9]
aims at resolving this conflict by means of the combined usage of fragmenta-
tion and encryption: a client’s database relation is losslessly decomposed into
(at least) two vertical fragments each of which is maintained by a different semi-
honest server; sensitive data is split into harmless parts, either by breaking an
association or by separating an encrypted piece of data from the cryptographic
key employed; moreover, the servers are (postulated to be) mutually isolated
and each attacker is assumed to have access to at most one server.

Consequently, due to splitting, each attacker (identified with a server) only
has accesses to non-sensitive data and, due to losslessness, an authorized user
(identified with the client) can still reconstruct the original data while, due to
isolation, only authorized users can do so.

Example 1. We consider the relational instance about medical data shown in
the upper half of Fig. 1. Suppose that social security numbers (SSN) should be
hidden, as well as associations between a patient identified by his name (Name)
� This work has been supported by the DFG under grant SFB 876/A5.
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R SSN Name Illness HurtBy Doctor

1234 Hellmann Borderline Hellmann White
2345 Dooley Laceration McKinley Warren
3456 McKinley Laceration Dooley Warren
3456 McKinley Concussion Dooley Warren

F1 tid SSN Name HurtBy Doctor

1 e1S Hellmann e1H White
2 e2S Dooley e2H Warren
3 e3S McKinley e3H Warren
4 e4S McKinley e4H Warren

F2 tid SSN HurtBy Illness

1 κ1
S κ1

H Borderline
2 κ2

S κ2
H Laceration

3 κ3
S κ3

H Laceration
4 κ4

S κ4
H Concussion

Fig. 1. A relational instance containing sensitive data items and associations together
with a possible fragmentation with encryption

and an illness treated (Illness), between a patient (Name) and a person who
caused an illness (HurtBy), and between an illness (Illness) and a person hav-
ing caused that illness (HurtBy), respectively. The lower half of Fig. 1 exhibits a
possible fragmentation with encryption: The sensitive association between Name
and Illness is “broken” by separating the attribute Name in the fragment F1

from the attribute Illness in the fragment F2. The sensitive associations be-
tween Name and HurtBy and between Illness and HurtBy are made “invisible”
by using encryption for the attribute HurtBy such that ciphertexts are stored in
fragment F1 and corresponding keys in fragment F2. The sensitive attribute SSN
is similarly treated by encryption. The newly introduced tuple identifiers (tid)
ensure the losslessness of the vertical decomposition (see, e.g., [1]).

At first glance two semi-honest servers seem to “keep the secrets” declared in
a confidentiality policy. However, a second thought raises some doubts on the
actual achievements: though each server only stores data that is non-sensitive
per se, an attacker might still be able to infer sensitive information by exploiting
his a priori knowledge obtained from further sources. In particular, this a priori
knowledge might comprise semantic constraints to be satisfied by the relation
being decomposed and individual fact data stemming from the “outside world”.

Example 2. Suppose an attacker has access to the fragment F1 and knows a
priori that Doctor White is a psychiatrist only treating patients suffering from the
Borderline-syndrome. The attacker can then conclude that patient Hellmann
suffers from the illness Borderline-syndrome, thereby violating the requirement
that associations between a patient and an illness treated should be hidden.
Moreover, if this attacker additionally knows that all patients suffering from
the Borderline-syndrome have hurt themselves, the attacker can conclude that
patient Hellmann has been hurt by Hellmann, thereby revealing an association
between a patient and a person who caused an illness.

The first violation is enabled by a priori knowledge connecting a fact shown in
the visible fragment with a fact in the hidden fragment, namely by means of
the constant symbols White and Borderline. Similarly, the second violation is
caused by a priori knowledge that connects two concepts across the decomposi-
tion, namely the concept of a patient and the concept of a hurt creator, where
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a concept will be formally represented by a variable ranging over the domain of
an attribute. Such connections might “transfer information” between the visible
fragment and the hidden fragment. In other words, an attacker a priori knowing
such connections might infer hidden information from visible information. Next,
we introduce a more abstract example in a more formal way.

Example 3. The client maintains a relational schema with relational symbol R,
attribute set AR = {a1, a2, a3, a4} and the functional dependency a2 → a3
as a semantic constraint. Confidentiality interests are expressed by a set C =
{{a1, a3}, {a4}} of two confidentiality constraints: {a1, a3} is intended to re-
quire to hide the associations between values of the attributes a1 and a3, and
{a4} requires to hide single values of attribute a4. The a priori knowledge com-
prises the functional dependency and a sentence expressing the following: “for
some specific values b and c for the attributes a2 and a3, resp., there exist a
value X1 for attribute a1 and a value X4 for attribute a4 such that the tuple
(a1 : X1 , a2 : b , a3 : c , a4 : X4) is an element of the relational instance r”. Fur-
thermore, fragment F1 has attribute set AF1 = {tid, a1, a2, a4} and fragment F2

attribute set AF2 = {tid, a3, a4} such that the common attribute a4 is encrypted.
Let fragment F1 exhibit a tuple (tid : no , a1 : a , a2 : b , a4 : ran), where

no is a tuple identifier and ran results from encryption. Combining the a priori
knowledge with the tuple exhibited, an attacker might infer that the value a
for attribute a1 is associated with the value c for attribute a3, thereby violating
the confidentiality constraint {a1, a3}. Thus fragment F1 is not inference-proof
under the given assumptions. In contrast, fragment F2 is harmless.

The a priori knowledge relates the fragments F1 and F2 by means of both the
functional dependency using variables and the association fact about a and b
dealing with constant symbols. Though taken alone, each of these items might
be harmless, their combination turns out to be potentially harmful. The next
example indicates that for the same underlying situation one fragmentation sat-
isfying required confidentiality constraints might be better than another one.

Example 4. Modifying Example 3 such that AF1 = {tid, a1, a4} and AF2 =
{tid, a2, a3, a4} would block the harmful inference. For, intuitively, the crucial
fact about the association of a with b does not span across the decomposition.

More generally, we will investigate the following problems in this article:

– Given a fragmentation, identify conditions on the a priori knowledge to prov-
ably disable an attacker to infer sensitive information.

– Given some a priori knowledge, determine a fragmentation such that an
attacker cannot infer sensitive information.

Our solutions will be based on a logic-oriented modelling of the fragmentation
approach presented in [2,9] within the more general framework of Controlled In-
teraction Execution, CIE, as surveyed in [3]. This framework assists a database
owner in ensuring that each of his interaction partners can only obtain a ded-
icated inference-proof view on the owner’s data: each of these views does not
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contain information to be kept confidential from the respective partner, even if
this partner tries to employ inferences by using his a priori knowledge and his
general awareness of the protection mechanism. Our main achievements can be
summarized as follows and will be elaborated in the remainder as indicated:

– We formalize the fragmentation approach of [2,9] (Sect. 2).
– We provide a logic-oriented modelling of that approach (Sect. 3).
– We exhibit sufficient conditions to achieve confidentiality (Sect. 4).
– We propose a method to compute a suitable fragmentation (Sect. 5).

These results extend the previous work [5] in which a more simple approach to
fragmentation proposed in [7] – splitting a relational instance into one externally
stored part and one locally-held part without resorting to encryption – is formally
analyzed to be inference-proof. In particular, the previous work is extended by a
more detailed formal modelling of fragmentation including encryption of values,
a more expressive class of sentences representing an attacker’s a priori knowledge
and a method to compute an inference-proof fragmentation.

2 Confidentiality by Fragmentation

In this section, we briefly formalize and extend the approach to fragmentation
proposed in [2,9]. All data is represented within a single relational instance r over
a relational schema 〈R|AR|SCR〉 with relational symbol R and the set AR =
{a1, . . . , an} of attributes, for simplicity assumed to have the same type given
by the infinite set U of values. Moreover, the set SCR contains some semantic
(database) constraints, which must be satisfied by the relational instance r.

The idea for achieving confidentiality basically lies in splitting the original
instance r vertically (i.e., by projections on subsets of AR) into two fragment
instances f1 and f2 each of which is stored on exactly one of the two external
servers instead of r. Those confidentiality requirements which cannot be satis-
fied by just splitting instance r are satisfied by encrypting the values of some
attributes. Each “encrypted attribute” is contained in f1 – storing ciphertexts –
as well as in f2 – storing globally unique cryptographic keys.

We assume an encryption function Enc : U × U → U satisfying the group
properties to achieve perfect (information-theoretic) security. A value of U might
be used not only as a plaintext but also as a cryptographic key and a ciphertext.
The decryption function is defined by Dec(e, κ) = v iff Enc(v, κ) = e.

Definition 1 (Fragmentation). Given a relational schema 〈R|AR|SCR〉, a
vertical fragmentation (F , E) of 〈R|AR|SCR〉 contains a set E ⊆ AR of so-called
“encrypted attributes” and a set F = {〈F1|AF1 |SCF1〉, 〈F2|AF2 |SCF2〉} in which
〈F1|AF1 |SCF1〉 and 〈F2|AF2 |SCF2〉 are relational schemas called fragments of
(F , E) both containing the distinguished attribute atid /∈ AR for tuple identifiers.
Moreover, for i ∈ {1, 2}, it holds that
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AFi
\ AR

(
AF1

\ E
)

∩ AR E ∩ AFi
∩ AR

(
AF2

\ E
)

∩ AR

AR a1, . . . , ah ah+1, . . . , ak ak+1, . . . , an

AF1
atid a1, . . . , ah ah+1, . . . , ak

AF2
atid ah+1, . . . , ak ak+1, . . . , an

Fig. 2. Rearrangement of columns of r, f1 and f2

(i) AFi := {atid} ∪ ĀFi with ĀFi ⊆ AR,
(ii) SCFi := {atid → ĀFi} with atid → ĀFi being a functional dependency

declaring atid as a primary key,
(iii) ĀF1 ∪ ĀF2 = AR and ĀF1 ∩ ĀF2 = E.
Given a relational instance r over 〈R|AR|SCR〉, the fragment instances f1 and
f2 over 〈F1|AF1 |SCF1〉 and 〈F2|AF2 |SCF2〉 are created by inserting exactly both
the tuples ν1 into f1 and ν2 into f2 for each tuple μ ∈ r. Thereby,

(a) ν1[atid] = ν2[atid] = vμ s.t. vμ is a globally unique tuple identifier,
(b) νi[a] = μ[a] for i ∈ {1, 2} and for each attribute a ∈ (ĀFi \ E),
(c) ν1[a] := Enc(μ[a], κ) and ν2[a] := κ for each a ∈ E s.t. κ is a cryptographic

key being random but globally unique for each value of each tuple.

W.l.o.g. we suppose that AR := {a1, . . . , ah, ah+1, . . . , ak, ak+1, . . . , an} is the
set of attributes of 〈R|AR|SCR〉 and that the columns of the instances r, f1 and
f2 are rearranged as visualized in Fig. 2. The columns h + 1, . . . , k differ in the
interpretation of the values stored in the instances r, f1 and f2: although each of
the tuples μ ∈ r, ν1 ∈ f1 and ν2 ∈ f2 assign values to the attributes ah+1, . . . , ak,
μ[aj ] is a plaintext value, ν1[aj ] is a ciphertext value and ν2[aj ] is a cryptographic
key. In contrast, for a1, . . . , ah (ak+1, . . . , an, respectively) corresponding tuples
of r and f1 (r and f2) share the same combination of values.

To enable an authorized user having access to both fragment-instances f1 and
f2 to query all information contained in the original instance r, fragmentation
ensures that in f1 and f2 exactly those two tuples ν1 ∈ f1 and ν2 ∈ f2 corre-
sponding to a tuple of r share the same unique tuple ID (item (a) of Def. 1).
Thus, if ν1[atid] = ν2[atid], two tuples ν1 ∈ f1 and ν2 ∈ f2 can be recomposed
to a tuple of r with the help of a binary operation denoted by �.

As the goal is to achieve confidentiality by fragmentation, a formal declara-
tion of confidentiality requirements is indispensable. In [2,9] this is obtained by
defining a set of so-called confidentiality constraints on schema level.

Definition 2 (Confidentiality Constraint). A confidentiality constraint c
over a relational schema 〈R|AR|SCR〉 is a non-empty subset c ⊆ AR.

Semantically, a confidentiality constraint c claims that each combination of val-
ues allocated to the set c ⊆ AR of attributes in the original instance r over
schema 〈R|AR|SCR〉 should neither be contained completely in the unencrypted
part of f1 nor be contained completely in the unencrypted part of f2.

Definition 3 (Confidentiality of Fragmentation). Let 〈R|AR|SCR〉 be a
relational schema, (F , E) a fragmentation of 〈R|AR|SCR〉 according to Def. 1
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and C a set of confidentiality constraints over 〈R|AR|SCR〉 according to Def. 2.
(F , E) is confidential w.r.t. C iff c �⊆ (AF1 \ E) and c �⊆ (AF2 \ E) for each c ∈ C.
Example 5. The fragmentation depicted in Fig. 1 is confidential w.r.t. the set
C = {c1, c2, c3, c4} of confidentiality constraints such that c1 = {SSN}, c2 =
{Name, Illness}, c3 = {Name, HurtBy}, and c4 = {Illness, HurtBy}.

3 A Logic-Oriented View on Fragmentation

In this section we will present a logic-oriented modelling of fragmentation, for
conciseness mostly focussing on the attacker’s point of view resulting from his
knowledge of the fragment instance f1, which is supposed to be known to him.

To set up the universe of discourse, we start by defining the set P of predicate
symbols of a language L of first-order logic with equality. First, to model the
attacker’s knowledge about the fragment instance f1, we need the predicate
symbol F1 ∈ P with arity k + 1 = |AF1 | (including the additional tuple ID
attribute plus k original attributes (cf. Fig. 2)). Second, to capture the attacker’s
awareness of the fragmentation, in particular his partial knowledge about the
hidden original instance r and the separated second fragmentation instance f2,
we additionally use the predicate symbols R with arity n = |AR| and F2 with
arity n− h+ 1 = |AF2 |. Additionally, the distinguished predicate symbol ≡ /∈ P
is available in L for expressing equality.

We employ the binary function symbols E and D for modelling the attacker’s
knowledge about the encryption function Enc and the inverse decryption func-
tion Dec. Finally, we denote tuple values by elements of the set Dom of constant
symbols, which will be employed as the universe of (Herbrand) interpretations
for L as well. In compliance with CIE (e.g., [4,6]) this set is assumed to be fixed
and infinite. Further, we have an infinite set Var of variables.

As usual, the formulas contained in L are constructed inductively using the
quantifiers ∀ and ∃ and the connectives ¬, ∧, ∨ and⇒. Closed formulas, i.e., for-
mulas without free occurrences of variables, are called sentences. This syntactic
specification is complemented with a semantics which reflects the characteristics
of databases by means of so-called DB-Interpretations according to [4,6]:

Definition 4 (DB-Interpretation). Given the language L described above,
an interpretation I over a universe U is a DB-Interpretation for L iff

(i) Universe U := I(Dom) = Dom,
(ii) I(v) = v ∈ U for every constant symbol v ∈ Dom,
(iii) I(E)(v, κ) = e iff Enc(v, κ) = e, for all v, κ, e ∈ U ,
(iv) I(D)(e, κ) = v iff Dec(e, κ) = v, for all v, κ, e ∈ U ,
(v) every P ∈ P with arity m is interpreted by a finite relation I(P ) ⊂ Um,
(vi) the predicate symbol ≡ /∈ P is interpreted by I(≡) = {(v, v) | v ∈ U}.
If item (v) is instantiated by taking the instances r, f1 and f2 as interpretations
of P=R, F1, and F2, respectively, the resulting DB-Interpretation Ir,f1,f2 – or
just Ir for short if f1 and f2 are derived from r according to Def. 1 – is called
induced by r (and f1 and f2).
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The notion of satisfaction/validity of formulas in L by a DB-Interpretation is
the same as in usual first-order logic. A set S ⊂ L of sentences implies/entails
a sentence Φ ∈ L (written as S |=DB Φ) iff each DB-Interpretation I satisfying
S (written as I |=M S) also satisfies Φ (written as I |=M Φ).

Considering an attacker knowing the fragment instance f1, the attacker’s pos-
itive knowledge about the tuples explicitly recorded in f1 can be simply mod-
elled logic-orientedly by adding an atomic sentence F1(ν[atid], ν[a1], . . . , ν[ak])
for each tuple ν ∈ f1. As the original instance r – and so its fragment instance
f1 – is assumed to be complete1, each piece of information expressible in L which
is not contained in r (f1, resp.) is considered to be not valid by Closed World
Assumption (CWA). The concept of DB-Interpretations fully complies with the
semantics of complete relational instances. Accordingly, an attacker knows that
each of the infinite combinations of values (vtid, v1, . . . , vk) ∈ Domk+1 not con-
tained in any tuple of f1 leads to a valid sentence ¬F1(vtid, v1, . . . , vk).

As this negative knowledge is not explicitly enumerable, it is expressed implic-
itly by a so-called completeness sentence (cf. [4]) having a universally quantified
variable Xj for each attribute aj ∈ AF1 (sentence (2) of Def. 5 below). This com-
pleteness sentence expresses that every constant combination (vtid, v1, . . . , vk) ∈
Domk+1 (substituting the universally quantified variables Xtid, X1, . . .Xk) ei-
ther appears in f1 or satisfies the sentence ¬F1(vtid, v1, . . . , vk). By construction,
this completeness sentence is satisfied by any DB-Interpretation induced by f1.

Example 6. For the medical example, the knowledge implicitly taken to be not
valid by CWA can be expressed as the following completeness sentence:

(∀Xt)(∀XS)(∀XN )(∀XH)(∀XD) [
(Xt ≡ 1 ∧ XS ≡ e1S ∧ XN ≡ Hellmann ∧ XH ≡ e1H ∧ XD ≡White) ∨
(Xt ≡ 2 ∧ XS ≡ e2S ∧ XN ≡ Dooley ∧ XH ≡ e2H ∧ XD ≡Warren) ∨
(Xt ≡ 3 ∧ XS ≡ e3S ∧ XN ≡ McKinley ∧ XH ≡ e3H ∧ XD ≡Warren) ∨
(Xt ≡ 4 ∧ XS ≡ e4S ∧ XN ≡ McKinley ∧ XH ≡ e4H ∧ XD ≡Warren) ∨
¬F1(Xt, XS , XN , XH , XD) ]

Based on the explanations given so far, an attacker’s knowledge about the frag-
ment instance f1 can be formalized logic-orientedly as follows:

Definition 5 (Logic-Oriented View on f1). Given a fragment instance f1
over 〈F1|AF1 |SCF1〉 according to Def. 1 with AF1 = {atid, a1, . . . , ak}, the posi-
tive knowledge contained in f1 is modelled in L by the set of sentences

db+f1 := {F1(ν[atid], ν[a1], . . . , ν[ak]) | ν ∈ f1} . (1)

The implicit negative knowledge contained in f1 is modelled in L by the singleton
set db−f1 containing the completeness sentence

(∀Xtid) . . . (∀Xk)

⎡
⎣ ∨
ν∈f1

⎛
⎝ ∧

aj∈AF1

(Xj ≡ ν[aj ])

⎞
⎠ ∨ ¬F1(Xtid, X1, . . . , Xk)

⎤
⎦ . (2)

1 Though not explicitly stated in [2,9], in this article we follow the usual intuitive
semantics of complete instances.
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Moreover the functional dependency atid → {a1, . . . , ak} ∈ SCF1 is modelled in
L by the singleton set fdF1

containing the sentence

(∀Xtid) (∀X1) . . . (∀Xk) (∀X ′
1) . . . (∀X ′

k) [F1(Xtid, X1, . . . , Xk) ∧
F1(Xtid, X

′
1, . . . , X

′
k)⇒ (X1 ≡ X ′

1) ∧ . . . ∧ (Xk ≡ X ′
k) ] .

(3)

Overall the logic-oriented view on f1 in L is dbf1 := db+f1 ∪ db−f1 ∪ fdF1
.

Proposition 1. Under the assumptions of Def. 5, the sentences (1), (2) and (3)
of dbf1 are satisfied by the DB-interpretation Ir, i.e., Ir |=M dbf1 .

Proof. Direct consequence of the definitions. ��

An attacker is assumed to know the process of fragmentation as well as the
schemas 〈R|AR|SCR〉 and 〈F2|AF2 |SCF2〉 of the instances kept hidden from him.
Thus he can infer that for each tuple ν1 ∈ f1 there are tuples ν2 ∈ f2 and μ ∈ r
satisfying the equation ν1 � ν2 = μ. So, an attacker knows all values assigned
to the set (AF1 \ E) ∩ AR of unencrypted attributes in μ from his knowledge of
ν1, whereas in general he only knows the existence of values for the remaining
attributes (sentence (4) of Def. 6 below). Similarly, the attacker is not able to infer
the cleartext values assigned to the attributes of E in μ: by the group properties
of the encryption function, each ciphertext considered might be mapped to each
possible cleartext without knowing the specific key hidden in fragment f2.

Next, an attacker knows that a tuple ν2 ∈ f2 can only exist if also correspond-
ing tuples ν1 ∈ f1 and μ ∈ r satisfying the equation ν1�ν2 = μ exist (sentence (5)
of Def. 6 below). According to the if-part of sentence (6) this requirement analo-
gously holds for the existence of each tuple of r. The only-if-part of sentence (6)
describes the fact that the (hypothetical) knowledge of both tuples ν1 ∈ f1 and
ν2 ∈ f2 with ν1[atid] = ν2[atid] would enable the attacker to reconstruct the
tuple μ ∈ r satisfying μ = ν1 � ν2 completely.

Based on the one-to-one correspondence between each tuple μ ∈ r and a tuple
ν1 ∈ f1 (ν2 ∈ f2, resp.), observing that two different tuples ν1, ν

′
1 ∈ f1 are equal

w.r.t. the values allocated to the unencrypted attributes of (AF1 \ E) ∩ AR, an
attacker can reason that there are also two tuples μ, μ′ ∈ r which are equal w.r.t.
the values allocated to these attributes, but differ in at least one of the values
allocated to AR \ (AF1 \ E) (sentence (7) (sentence (8) in case of f2) of Def. 6
below). Otherwise, the instance r would have duplicates.

Summarizing, and for now neglecting semantic constraints, an attacker’s logic-
oriented view on the (hidden) instances r and f2 can be modelled as follows:

Definition 6 (Fragmentation Logic-Oriented). Let (F , E) be a fragmenta-
tion of a relational schema 〈R|AR|SCR〉 with instance r and let f1 and f2 be the
corresponding fragment instances over the fragments 〈F1|AF1 |SCF1〉 ∈ F and
〈F2|AF2 |SCF2〉 ∈ F according to Def. 1.
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The knowledge about r and f2 deduced from the knowledge of f1 is expressed by

(∀Xtid) (∀X1) . . . (∀Xh) (∀Xh+1) . . . (∀Xk)
[

F1 (Xtid, X1, . . . , Xh, Xh+1, . . . , Xk)
⇒

(∃Yh+1) . . . (∃Yk) (∃Zk+1) . . . (∃Zn)
[

F2 (Xtid, Yh+1, . . . , Yk, Zk+1, . . . , Zn) ∧
R (X1, . . . , Xh, D (Xh+1, Yh+1) , . . . , D (Xk, Yk) , Zk+1, . . . , Zn)

]]
;

(4)

the knowledge about r and f1 deduced from the knowledge of f2 is expressed by

(∀Xtid) (∀Xh+1) . . . (∀Xk) (∀Xk+1) . . . (∀Xn)
[

F2 (Xtid, Xh+1, . . . , Xk, Xk+1, . . . , Xn)
⇒

(∃Y1) . . . (∃Yh) (∃Zh+1) . . . (∃Zk)
[

F1 (Xtid, Y1, . . . , Yh, Zh+1, . . . , Zk) ∧
R (Y1, . . . , Yh, D (Zh+1, Xh+1) , . . . , D (Zk, Xk) , Xk+1, . . . , Xn)

]]
;

(5)

the knowledge about f1 and f2 deduced from the knowledge of r as well as the
knowledge about r deduced from f1 and f2 is expressed by

(∀X1) . . . (∀Xh) (∀Xh+1) . . . (∀Xk) (∀Xk+1) . . . (∀Xn)
[

R (X1, . . . , Xh, Xh+1, . . . , Xk, Xk+1, . . . , Xn)
⇔

(∃Ztid) (∃Yh+1) . . . (∃Yk)
[

F2 (Ztid, Yh+1, . . . , Yk, Xk+1, . . . , Xn) ∧
F1 (Ztid, X1, . . . , Xh, E (Xh+1, Yh+1) , . . . , E (Xk, Yk))

]]
;

(6)

the knowledge about inequalities in r based on f1 is expressed by

(∀Xtid) (∀X ′
tid) (∀X1) . . . (∀Xh) (∀Xh+1) . . . (∀Xk)

(∀X ′
h+1

)
. . . (∀X ′

k)
[[

F1 (Xtid, X1, . . . , Xh, Xh+1, . . . , Xk) ∧
F1

(
X ′

tid, X1, . . . , Xh, X
′
h+1, . . . , X

′
k

) ∧ (Xtid �≡ X ′
tid)

]
⇒

(∃Yh+1) . . . (∃Yn) (∃Zh+1) . . . (∃Zn)
[

R (X1, . . . , Xh, Yh+1, . . . , Yk, Yk+1, . . . , Yn) ∧
R (X1, . . . , Xh, Zh+1, . . . , Zk, Zk+1, . . . , Zn) ∧

∨n
j=h+1 (Yj �≡ Zj)

]]
;

(7)

and the knowledge about inequalities in r based on f2 is expressed by

(∀Xtid) (∀X ′
tid) (∀Xh+1) . . . (∀Xk)

(∀X ′
h+1

)
. . . (∀X ′

k) (∀Xk+1) . . . (∀Xn)
[[

F2 (Xtid, Xh+1, . . . , Xk, Xk+1, . . . , Xn) ∧
F2

(
X ′

tid, X
′
h+1, . . . , X

′
k, Xk+1, . . . , Xn

) ∧ (Xtid �≡ X ′
tid)

]
⇒

(∃Y1) . . . (∃Yk) (∃Z1) . . . (∃Zk)
[

R (Y1, . . . , Yh, Yh+1, . . . , Yk, Xk+1, . . . , Xn) ∧
R (Z1, . . . , Zh, Zh+1, . . . , Zk, Xk+1, . . . , Xn) ∧

∨k
j=1 (Yj �≡ Zj)

]]
.

(8)

This view on r and f2 is referred to as the set of sentences dbR containing the
sentences (4), (5), (6), (7) and (8).
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Strictly speaking, dbR alone does not provide any knowledge about the relational
instance r; instead, only the combination of dbf1 and dbR describes the knowledge
about r that is available to an attacker. The essential part of this insight is
formally captured by the following proposition.

Proposition 2. Under the assumptions of Def. 6, the sentences (4), (5), (6),
(7) and (8) of dbR are satisfied by the DB-Interpretation Ir, i.e., Ir |=M dbR.

Proof. Omitted. See the informal explanations before Definition 6. ��
Note that – in contrast to sentence (6) – the equivalence does not hold for the
sentences (4) and (5), as it can be shown by a straightforward example.

Finally, we have to model the confidentiality policy logic-orientedly. A confi-
dentiality constraint c ⊆ AR claims that each combination of (cleartext-)values
allocated to the attributes of c should not be revealed to an attacker completely.
To specify this semantics more precisely, it is assumed that c only protects those
combinations of values which are explicitly allocated to the attributes of c in a
tuple of r. In contrast, an attacker may get to know that a certain combination
of values is not allocated to the attributes of c in any tuple of r.

The wish to protect a certain combination of values (vi1 , . . . , vi�) ∈ Dom |c| is
modelled as a “potential secret” in the form of a sentence (∃X)R(t1, . . . , tn) in
which tj := vj holds for each j ∈ {i1, . . . , i�} and all other terms are existen-
tially quantified variables. To protect each of the infinitely many combinations,
regardless of whether it is contained in a tuple of r or not, we use a single open
formula with free variables Xi1 , . . . , Xi� like an open query as follows.

Definition 7 (Confidentiality Policy). Let C be a set of confidentiality con-
straints over schema 〈R|AR|SCR〉 according to Def. 2. Considering a confiden-
tiality constraint ci ∈ C with ci = {ai1 , . . . , ai�} ⊆ {a1, . . . , an} = AR and the set
AR \ ci = {ai�+1

, . . . , ain}, constraint ci is modelled as a potential secret

Ψi(Xi) := (∃Xi�+1
) . . . (∃Xin)R(X1, . . . , Xn) ,

which is a formula in the language L . Thereby Xi = (Xi1 , . . . , Xi�) is the vector
of free variables contained in Ψi(Xi). The set containing exactly one potential
secret Ψi(Xi) constructed as above for every confidentiality constraint ci ∈ C
is called potsec(C). Moreover, the expansion ex(potsec(C)) contains all ground
substitutions over Dom of all formulas in potsec(C).
Example 7. For our example, c2 = {Name, Illness} is modelled as Ψ2(X2) :=
(∃XS)(∃XH)(∃XD)R(XS , XN , XI , XH , XD) with free variables X2 = (XN , XI).

4 Inference-Proofness of Fragmentation

Until now the logic-oriented modelling of an attacker’s view only comprises
knowledge the attacker can deduce from the outsourced fragment instance f1,
which is supposed to be visible to him. Additionally, however, the attacker might
also employ a priori knowledge to draw harmful inferences.
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Example 8. As in Example 2, suppose the attacker knows that Doctor White is
a psychiatrist only treating patients suffering from the Borderline-syndrome:

(∀XS)(∀XN )(∀XI)(∀XH)[R(XS , XN , XI , XH , White)⇒ (XI ≡ Borderline)] .

This knowledge enables the attacker to conclude that patient Hellmann suffers
from the illness Borderline-syndrome, thereby violating confidentiality con-
straint c2 = {Name, Illness}. Moreover, let the attacker additionally know that
all patients suffering from the Borderline-syndrome have hurt themselves:

(∀XS)(∀XN )(∀XH)(∀XD)[R(XS , XN , Borderline, XH , XD)⇒ (XN ≡ XH)] .

The attacker can then draw the conclusion that patient Hellmann has been hurt
by Hellmann, thereby violating c3 = {Name, HurtBy}.
Following the framework of CIE [3], we aim at achieving a sophisticated kind
of confidentiality taking care of an attacker’s (postulated) a priori knowledge.
This a priori knowledge is modelled as a finite set prior of sentences in L
containing only R and ≡ as predicate symbols. Moreover, we always assume
that the semantic constraints SCR declared in the relational schema are publicly
known, i.e., SCR ⊆ prior . Intuitively, we then would like to guarantee that a
fragmentation is inference-proof in the sense that – from the attacker’s point of
view – each of the potential secrets might not be true in the original relational
instance r. More formally: for each potential secret Ψi(vi) ∈ ex(potsec(C)) there
should exist an alternative instance r′ over 〈R|AR|SCR〉 that witnesses the non-
entailment dbf1 ∪ dbR ∪ prior �|=DB Ψi(vi). Clearly, deciding on non-entailment,
equivalently finding a suitable witness, is computationally infeasible in general.
Accordingly, we will have to restrict on approximations and special cases.

Regarding approximations, we might straightforwardly require for the witness
r′ that for at least one m ∈ {i1, . . . , i�} the value vm appearing in the potential
secret must not occur under the attribute am. Accordingly, we could try to
substitute vm in the original instance r by a newly selected constant symbol
v∗ to obtain r′. However, we also have to preserve indistinguishability of r and
r′ by the attacker, and thus m has to be chosen such that am /∈ (AF1 \ E).
Furthermore, to fully achieve indistinguishability, the alternative instance r′ has
to coincide with the original instance r on the part visible in fragment f1, i.e.,
Ir′ |=M dbf1 , and modifying the original instance r into the alternative r′ should
preserve satisfaction of the a priori knowledge, i.e., Ir′ |=M prior .

Regarding special cases, we will adapt two useful properties known from re-
lational database theory [1]. Genericity of a sentence in L perceives constant
symbols as being atomic and uninterpreted. Intuitively, all knowledge about a
constant symbol arises from its occurrences in the relational instance r. Clearly,
sentences with “essential” occurrences of constant symbols will not be generic.
But in general “essential” occurrences of constant symbols are difficult to iden-
tify. Moreover, renaming vm by v∗ should not modify the fragment f1 that is
visible to the attacker. Typedness restricts the occurrences of a variable within
a sentence to a single attribute (column), and thus prevents a “transfer of infor-
mation” from a visible attribute to a hidden one.
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We will now state our main result about the achievements of fragmentation
with encryption regarding preservation of confidentiality against an attacker who
only has access to one of the fragment instances, here exemplarily to fragment
instance f1. Facing the challenges discussed above, this main result exhibits a
sufficient condition for confidentiality. An inference-proof fragmentation of the
running example in terms of Theorem 1 is presented in Example 9 of Sect. 5.

Theorem 1 (Inference-Proofness on Schema Level). Let 〈R|AR|SCR〉 be
a relational schema with AR = {a1, . . . , an} and (F , E) be a fragmentation with
fragment 〈F1|AF1 |SCF1〉 ∈ F that is confidential w.r.t. a set C of confidentiality
constraints. Moreover, let SCR ⊆ prior be a set of sentences in L containing
only R and ≡ as predicate symbols, satisfying the following restrictions:

– Untyped dependencies with constants: each Γ ∈ prior is in the syntactic
form of (∀x)(∃y)[∨j=1,...,p ¬Aj ∨ Ap+1] with Al being an atom of the form
R(tl,1, . . . , tl,n) or (tp+1,1 ≡ tp+1,2) and tj,i is a variable or a constant symbol;
moreover, w.l.o.g., equality predicates may only occur positively, and there
might also be a conjunction of positively occurring R-atoms.

– Satisfiability: prior is DB-satisfiable and each Γ ∈ prior is not DB-tautologic
(and thus: each Γ ∈ prior is range-restricted and does not contain an exis-
tentially quantified variable in the negated atoms (premises)).

– Compatibility with (F , E) and C: there is a subset M ⊆ {h+ 1, . . . , n} s.t.
(1) M ∩ {i1, . . . , i�} �= ∅ for each ci ∈ C with ci = (ai1 , . . . , ai�);
(2) for each Γ ∈ prior there exists a partitioning XΓ

1 ∪̇ XΓ
2 = Var s.t.

(i) for each atom R(t1, . . . , tn) of Γ
• for all j ∈ {1, . . . , n} \M term tj can either be a (quantified)

variable of XΓ
1 or a constant symbol of Dom,

• for all j ∈M term tj must be a (quantified) variable of XΓ
2 ,

(ii) for each atom (Xi ≡ Xj) of Γ either Xi, Xj ∈ XΓ
1 or Xi, Xj ∈ XΓ

2 ,
(iii) for each atom (Xi ≡ v) of Γ with v ∈ Dom variable Xi is in XΓ

1 .

Then, inference-proofness is achieved: For each instance r over 〈R|AR|SCR〉
with fragment instance f1 such that Ir |=M prior and for each potential secret
Ψi(vi) ∈ ex(potsec(C)) we have dbf1 ∪ dbR ∪ prior �|=DB Ψi(vi),
i.e., there exists an alternative instance r′ over 〈R|AR|SCR〉 s.t.

(a) Ir′ |=M dbf1 ∪ dbR ∪ prior , and
(b) Ir′ �|=M Ψi(vi).

Proof (sketch). Consider any Ψi(vi) ∈ ex(potsec(C)) with vi = (vi1 , . . . , vi�).
Then ci := {ai1 , . . . , ai�} ∈ C, and thus by the assumptions there is an attribute
am ∈ ci with m ∈M ; moreover, either am ∈ E or am ∈ (ĀF2 \ E).

Starting the construction of r′ and thus of the induced Ir′ , to ensure Ir′ |=M

dbf1 according to Proposition 1, we define f ′
1 := f1 and Ir′(F1) := f ′

1.
Continuing the construction of Ir′ , we select a constant symbol v∗ �= vm from

the infinite set U that does not occur in the finite active domain of πM (r) and
define a bijection ϕ : U → U such that ϕ(vm) = v∗ and no value of πM (r) is
mapped to vm. Then we extend ϕ to a tuple transformation ϕ∗ that maps a
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value v for an attribute aj ∈ AR with j ∈ M to ϕ(v) and each value for an
attribute aj ∈ AR with j /∈ M to itself, and define r′ := ϕ∗[r]. Accordingly, the
predicate symbol R is interpreted by Ir′(R) := r′.

The instance r′ and its fragment instance f ′
1 together uniquely determine the

corresponding fragment instance f ′
2 – whose constructability is guaranteed by

the group properties of Enc – and thus we define Ir′(F2) := f ′
2.

By the selection of v∗ and the definition of ϕ, we immediately have Ir′ �|=M

Ψi(vi), and thus Ir′ complies with property (b). Furthermore, by the construc-
tion and according to Proposition 2, Ir′ |=M dbR. Finally, we outline the argu-
ment to verify the remaining part of property (a), namely Ir′ |=M prior .

We consider the following Γ ∈ prior (other cases are treated similarly):

(∀x)(∃y)[
∨

j=1,...,p

¬R(tj,1, . . . , tj,n) ∨R(tp+1,1, . . . , tp+1,n)] ,

where {tj,1, . . . , tj,n} ⊆ x ∪ Dom for j ∈ {1, . . . , p} and {tp+1,1, . . . , tp+1,n} ⊆
x ∪ y ∪ Dom . To demonstrate Ir′ |=M Γ , we inspect any variable substitution
σ′ : x→ Dom. If there exists j ∈ {1, . . . , p} such that Iσ′

r′ |=M ¬R(tj,1, . . . , tj,n),
we are done.

Otherwise, for all j ∈ {1, . . . , p} we have Iσ′
r′ �|=M ¬R(tj,1, . . . , tj,n) and thus

for each tuple μ′
j := (σ′(tj,1), . . . , σ′(tj,n)) we have μ′

j ∈ r′. Since r′ := ϕ∗[r],
for all j ∈ {1, . . . , p} there exists μj ∈ r such that ϕ∗[μj ] = μ′

j . Now exploiting
the properties of the set M – essentially, for each term exactly one case of the
definition of ϕ∗ applies – we can construct a variable substitution σ : x→ Dom
such that μj = (σ(tj,1), . . . , σ(tj,n)) and, accordingly, Iσr �|=M ¬R(tj,1, . . . , tj,n).

Since Ir |=M Γ , there exists a variable substitution τ : y → Dom such that
Iσ|τr |=M R(tp+1,1, . . . , tp+1,n), i.e., μp+1 := (σ|τ(tp+1,1), . . . , σ|τ(tp+1,n)) ∈ r.
By the definition of r′, we have μ′

p+1 := ϕ∗[μp+1] ∈ r′.
Exploiting the properties of M and using τ , we can construct a variable substi-

tution τ ′ : y → Dom such that μ′
p+1 = (σ′|τ ′(tp+1,1), . . . , σ

′|τ ′(tp+1,n)). Hence,

Iσ′|τ ′

r′ |=M R(tp+1,1, . . . , tp+1,n) and thus Iσ′|τ ′

r′ |=M Γ . ��
Theorem 1 provides a sufficient condition for inference-proofness on schema level,
i.e., for each relational instance satisfying the a priori knowledge prior . In some
situations, however, a security officer might aim at only achieving inference-
proofness of a fixed particular relational instance r. Such a situation could be
captured by a corollary. Essentially, if we know r and thus also f1 in advance,
we can inspect the usefulness of each implicational sentence Γ ∈ prior of form
(∀x)(∃y)[∨j=1,...,p ¬Aj∨Ap+1] to derive harmful information for the specific sit-
uation. If r already satisfies (∀x)[∨j=1,...,p ¬Aj ], then we can completely discard
Γ from the considerations. More generally, we could only consider the effects of
Γ for those variable substitutions σ of x that make [

∨
j=1,...,p ¬Aj ] false for r.

5 Creation of an Appropriate Fragmentation

If an attacker is supposed to have a priori knowledge, a fragmentation has to com-
ply with this knowledge to guarantee inference-proofness in terms of Theorem 1.
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F1 tid SSN Illness HurtBy Doctor

1 e1S Borderline e1H White
2 e2S Laceration e2H Warren
3 e3S Laceration e3H Warren
4 e4S Concussion e4H Warren

F2 tid SSN HurtBy Name

1 κ1
S κ1

H Hellmann
2 κ2

S κ2
H Dooley

3 κ3
S κ3

H McKinley
4 κ4

S κ4
H McKinley

Fig. 3. Inference-proof fragmentation w.r.t. a priori knowledge of Example 8

Hence, an algorithm computing a fragmentation should not only determine an ar-
bitrary fragmentation being confidential in terms of Def. 3. The algorithm should
rather consider all of these fragmentations and select one complying with the
user’s a priori knowledge (if such a fragmentation exists).

Example 9. Reconsidering the a priori knowledge presented in Example 8, this
knowledge does not compromise confidentiality if the fragmentation known from
Fig. 1 is modified as depicted in Fig. 3. In terms of Theorem 1, for an attacker
knowing f1 the set M can be chosen to contain the indices of SSN, HurtBy and
Name and for both sentences Γ1 and Γ2 of Example 8 the set of variables can be
partitioned s.t., for both i ∈ {1, 2}, XI , XD ∈ XΓi

1 and XS , XN , XH ∈ XΓi
2 .

In the following, an Integer Linear Program (ILP) (see [11]) computing a con-
fidential fragmentation complying with an attacker’s a priori knowledge is de-
veloped to solve this problem with the help of generic algorithms solving ILPs.2
As the optimization goal the set of “encrypted attributes” is chosen to be min-
imized to reduce the costs for processing queries over the fragmented database
as proposed in [2,9]. Other optimization goals are conceivable, too.

Given the attribute set AR of an original schema 〈R|AR|SCR〉, a set C of con-
fidentiality constraints and a set prior in terms of Theorem 1, the ILP presented
in the following computes the attribute sets ĀF1 and ĀF2 as well as the set E
of “encrypted attributes” of a fragmentation being confidential w.r.t to C and
complying with prior . The ILP contains the following binary decision variables:

– A variable aij , for both i ∈ {1, 2} and for each aj ∈ AR. If aij = 1, attribute
aj ∈ AR is in ĀFi ; if aij = 0, attribute aj ∈ AR is not in ĀFi .

– A variable aej for each aj ∈ AR. If aej = 1, attribute aj ∈ AR is an “encrypted
attribute”; if aej = 0, attribute aj ∈ AR is a “cleartext attribute”.

– A variable mj for each aj ∈ AR. If mj = 1, the index of attribute aj is in
M ; if mj = 0, the index of attribute aj is not in M .

– A variable XΓ for each variable X contained in a sentence Γ ∈ prior . If
XΓ = 1, variable X is in XΓ

1 ; if XΓ = 0, variable X is in XΓ
2 .

For each Γ ∈ prior the set VarΓj is assumed to contain XΓ if Γ is built over an
atom R(t1, . . . , tn) with tj being the variable X (note that each variable might
occur in different columns). Moreover, the set const(Γ ) is assumed to contain
the index j, if Γ is built over an atom R(t1, . . . , tn) with tj being a constant.
Then, the ILP computing an appropriate fragmentation is defined as follows:
2 For our prototype implementation “lp_solve” turned out to be an appropriate and

fast ILP solver (see http://lpsolve.sourceforge.net/).

http://lpsolve.sourceforge.net/
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Minimize the number of “encrypted attributes”, i.e., min:
∑n

j=1 a
e
j s.t. the

following constraints are fulfilled:

– “Cleartext attributes” in exactly one fragment, “encrypted ones” in both:
a1j + a2j = 1 + aej for each aj ∈ AR

– For i ∈ {1, 2}, fragment 〈Fi|AFi |SCFi〉 fulfills all confidentiality constraints:∑
aj∈c a

i
j ≤ |c| − 1 +

∑
aj∈c a

e
j for each c ∈ C and each i ∈ {1, 2}

– M ⊆ {h+ 1, . . . , n}, i.e., M is a subset of attributes in AF2 :
mj ≤ a2j for each aj ∈ AR

– M overlaps with the indices of the attributes of each c ∈ C:∑
aj∈cmj ≥ 1 for each c ∈ C

– For each formula Γ ∈ prior :
• In each R(t1, . . . , tn) of Γ : for each tj being a constant with j /∈M :
mj = 0 for each j ∈ const(Γ )
• Partitioning of variables into XΓ

1 and XΓ
2 :

XΓ = 1−mj for j ∈ {1, . . . , n} with VarΓj �= ∅ and each XΓ ∈ VarΓj
• In each atom (Xi ≡ Xj): variables Xi, Xj belong to the same partition:
XΓ

i = XΓ
j for each atom (Xi ≡ Xj)

• In each atom (X ≡ v): variable X belongs to partition XΓ
1 :

XΓ = 1 for each atom (X ≡ v)
– Each decision variable of this ILP is binary:

0 ≤ x ≤ 1 for each integer decision variable x of this ILP

If the ILP solver outputs a feasible solution, an inference-proof fragmentation
can be determined by constructing the sets ĀF1 , ĀF2 and E of Def. 1 according
to the allocation of the corresponding decision variables of the ILP.

Note that availability requirements such as storing a particular subset of at-
tributes within the same (or even a particular) fragment or keeping the values
of a particular attribute as cleartext values can be simply modelled by adding
appropriate constraints, i.e., (in-)equations, to the ILP.

6 Conclusion and Future Work

Motivated by the question, whether splitting of data vertically over two semi-
honest servers guarantees confidentiality, the fragmentation model introduced
in [2,9] is formalized, then modelled logic-orientedly and subsequently analyzed
w.r.t. its inference-proofness. This analysis considers an attacker employing his
a priori knowledge to draw harmful inferences and provides a sufficient condition
to decide whether a given combination of a fragmentation and a priori knowledge
is inference-proof w.r.t. a given confidentiality policy. Additionally, a generic ILP
formulation computing such an inference-proof fragmentation is developed.

As Theorem 1 only states a sufficient condition for inference-proofness, there
might be a more relaxed, most desirably even necessary definition of a pri-
ori knowledge still guaranteeing inference-proofness. A full characterization of
inference-proofness could also provide a basis for deciding on the existence of a
secure fragmentation for a given setting.
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Theorem 1 might be also enhanced in the spirit of k-anonymity by a more
sophisticated definition of confidentiality guaranteeing that an “invisible value”
cannot be narrowed down to a set of possible values of a certain cardinality.
A further analysis of confidentiality assuming that commonly used encryption
functions such as AES or RSA (which do not satisfy the group properties) come
into operation is desirable, too. Although a formal analysis based on probability
theory and complexity theory is indispensable to guarantee profound statements,
we expect these encryption functions to be “sufficiently secure” in practice.

In this article and previously in [5] each one of two existing approaches to
achieve confidentiality by vertical fragmentation is analyzed. As a third approach
– using an arbitrary number of fragments which are all supposed to be known to
an attacker – is presented in [8], a formal analysis of this approach in the spirit
of Theorem 1 might be another challenging task for future work.
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Abstract. Sharing real-time traffic data can be of great value to un-
derstanding many important phenomena, such as congestion patterns or
popular places. To this end, private user data must be aggregated and
shared continuously over time with data privacy guarantee. However,
releasing time series data with standard differential privacy mechanism
can lead to high perturbation error due to the correlation between time
stamps. In addition, data sparsity in the spatial domain imposes another
challenge to user privacy as well as utility. To address the challenges, we
propose a real-time framework that guarantees differential privacy for
individual users and releases accurate data for research purposes. We
present two estimation algorithms designed to utilize domain knowledge
in order to mitigate the effect of perturbation error. Evaluations with
simulated traffic data show our solutions outperform existing methods
in both utility and computation efficiency, enabling real-time data shar-
ing with strong privacy guarantee.

Keywords: Traffic Monitoring, Multi-Dimensional Time-Series, Differ-
ential Privacy.

1 Introduction

Sharing real-time traffic data is essential to discovering useful and previously
unknown knowledge. As illustrated in Figure 1(a): a wireless service provider
gathers data from individual users about their locations, speeds, mobility, etc.
The aggregated data, e.g. the number of users present at certain locations during
a given time period, can be shared with third party researchers to be mined for
commercial interest, such as popular places, as well as public interests, such as
congestion trends. Figure 1(b) provides a snapshot of aggregated traffic data at
a single time stamp. As is shown, the two-dimensional space is partitioned by a
100 × 100 grid. For each cell in the 2D space, Figure 1(b) plots the number of
users within its extent at the given time stamp. Since the spatial distribution of
wireless users could change over time due to movement, such a snapshot is needed
at every time stamp in order to perform real-time data mining tasks. However,
the privacy of individual users may be affected if their private data is shared
with untrusted third parties. The goal of our work is to enable the server/data
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Fig. 1. Traffic Data Monitoring

holder to share useful multi-location aggregates continuously (multi-dimensional
time series) while preserving individual privacy.

The current state-of-the-art paradigm for privacy-preserving data publishing
is differential privacy [1], denoted as “DP” in Figure 1(a). Differential privacy
requires that the aggregate statistics reported by a data publisher be perturbed
by a randomized algorithm A, so that the output of A remains roughly the same
even if any single tuple in the input data is arbitrarily modified. This ensures
that given the output of A, an adversary will not be able to infer much about
any single tuple in the input, and thus privacy is protected.

Despite the large number of methods on differentially private data publication
[4–6, 10, 11, 15–17], there does not currently exist an approach to sharing multi-
dimensional time series data. We summarize our challenges below:

– Due to the data correlation between time stamps, a straightforward appli-
cation of the standard differential privacy mechanism at every time stamp
leads to an overall perturbation error of Θ(T ) by composition theorem [12],
where T is the length of the time series, which severely limits the utility of
the published data when T is large.

– Another challenge is data sparsity in the spatial domain. As shown in Fig-
ure 1(b), the majority of cells in the 2D space have very low to zero frequency.
In reality, the total number of cells can be very large with respect to the
total number of users. The data sparsity poses great challenge for privacy-
preserving techniques since the perturbation noise is likely to dominate the
released value in presence of a small set of users.

– Furthermore, the monitoring application requires that private, released data
is provided in real-time. Therefore, existing techniques that require time-
series transformation or prohibitive computation time are not applicable to
performing real-time tasks.
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Our Contributions. In this paper, we propose a real-time framework and two
estimation algorithms to address the above challenges in multi-location traffic
monitoring with differential privacy. Domain knowledge, such as road network
and density, is utilized by our solutions to model the auto-correlation of in-
dividual cells over time as well as correlation between neighboring cells. The
temporal estimation algorithm establishes an internal time series model for each
individual cell and performs posterior estimation to improve the utility of shared
aggregate per time stamp. The spatial estimation algorithm builds a spatial in-
dexing structure based on Quadtree to group similar cells together and to reduce
the impact of data sparsity. Our solutions provide a strong privacy guarantee.
Both algorithms outperform baseline solution as well as state-of-the-art methods
in sharing time series or static multi-dimensional data, providing real-time data
release without compromising the utility of shared data.

The rest of the paper is organized as follows: Section 2 provides the problem
definition, preliminaries on differential privacy, and the baseline solution. Section
3 presents the technical details of our proposed solutions, i.e. temporal estimation
and spatial estimation. Section 4 presents a set of empirical results. Section 5
reviews previous works related to data sharing methods with differential privacy.
Section 6 concludes the paper and states possible directions for future work.

2 Problem Statement and Preliminaries

2.1 Problem

In the traffic monitoring application we consider, a set of objects are moving in a
two-dimensional space and a central server is collecting information about their
locations over time. We adopt a fine-grained 2D grid that partitions the space
G into w × w cells, where w is a constant number called resolution. We further
assume the expected collection time span is T and denote k as the discrete time
index where 0 ≤ k < T . For each cell c in G, we define the frequency series of c
as Xc= {xc

k| 0 ≤ k < T }, where xc
k represents the number of objects within its

extent at time stamp k. A multi-dimensional time series XG can be defined as
the set of frequency series of every cell c in G, i.e. XG = {Xc| c ∈ G}. A snapshot
of the spatio-temporal database XG

k is defined as the set of cell frequencies at
time k, i.e. XG

k = {xc
k| c ∈ G}. The same terms for the released data set RG can

be defined similarly.

Problem 1. Given a multi-dimensional time series XG where G = w×w cells,
for each snapshot XG

k , release in real-time a sanitized version RG
k such that the

overall release RG satisfies α-differential privacy, where α is a user-specified
privacy level.

Note that sharing RG will enable a variety of data mining tasks. Therefore we
use a generic utility metric, i.e. relative error, to measure the usefulness of the
released series for each cell c:
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Definition 1 (Utility Metric). The utility of a published series Rc = {rck}
can be measured by the average relative error, denoted as Ec, against the original
time-series Xc ={xc

k}.

Ec =
1

T

T−1∑
k=0

|rck − xc
k|

max{xc
k, δ}

(1)

where δ is a user-specified constant (also referred to as sanitary bound as in [14])
to mitigate the effect of excessively small query results, e.g. 0′s. Here we set
δ = 1 throughout the entire time-series for all cells.

2.2 Differential Privacy

The privacy guarantee provided by our solutions is differential privacy [1]. Sim-
ply put, a mechanism is differentially private if its outcome is not significantly
affected by the removal or addition of a single user. An adversary thus learns
approximately the same information about any individual user, irrespective of
his/her presence or absence in the original database.

Definition 2 (α-Differential Privacy [1]). A non-interactive privacy mech-
anism A gives α-differential privacy if for any dataset D1 and D2 differing on at
most one record, and for any possible anonymized dataset D̃ ∈ Range(A),

Pr[A(D1) = D̃] ≤ eα × Pr[A(D2) = D̃] (2)

where the probability is taken over the randomness of A.
The privacy parameter α, also called the privacy budget [12], specifies the de-
gree of privacy offered. Intuitively, a lower value of α implies stronger privacy
guarantee and a larger perturbation noise, and a higher value of α implies a
weaker guarantee while possibly achieving higher accuracy. We will examine the
privacy-utility tradeoff in the experiment section.

Laplace Mechanism. Dwork et al. [5] show that α-differential privacy can be
achieved by adding i.i.d. noise Ñ to each query result q(D):

q̃(D) = q(D) + Ñ (3)

p(Ñ = x) =
1

2λ
e−|x|/λ , λ = GS(q)/α (4)

The magnitude of Ñ conforms to a Laplace distribution in Equation (4) where
GS(q) represents the global sensitivity [5] of a query q. In the traffic monitoring
application, each aggregate value is a count query and GS(count) = 1. Later on
in this paper, we denote the Laplace distribution with 0 mean and λ scale as
Lap(0, λ).

Composition. The composition properties of differential privacy provide pri-
vacy guarantees for a sequence of computations, e.g. a sequence of count queries.

Theorem 1 (Sequential Composition [12]). Let Ai each provide αi-
differential privacy. A sequence of Ai(D) over the dataset D provides (

∑
i αi)-

differential privacy.
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Algorithm 1. Laplace Perturbation Algorithm(LPA)

Input: Raw data series XG, privacy budget α
Output: Released data series RG

1: for each cell c ∈ G do
2: for each time stamp k do
3: rck ← perturb xc

k by Lap(0, T
α
);

2.3 Baseline Solution

A baseline solution to sharing differentially private multi-dimensional time se-
ries is to apply the standard Laplace perturbation at each time stamp to every
frequency series. For any c, if every released aggregate satisfies α/T -differential
privacy, by Theorem 1 the released frequency series guarantees α-differential pri-
vacy. We summarize the baseline algorithm in Algorithm 1 and Line 3 represents
the Laplace mechanism to guarantee α/T -differential privacy for each released
aggregate. Empirical studies of the LPA algorithm against our proposed solu-
tions are included in Section 4.

3 Proposed Solutions

In this section, we present our proposed solutions for privacy-preserving traffic
monitoring. Figure 2 provides a high-level overview of the system framework. At
every time stamp, the input multi-dimensional data is perturbed by the Laplace
Perturbation mechanism to guarantee differential privacy. Then the perturbed
data can be post-processed by the Estimation module to produce a more accu-
rate, released version. Domain knowledge, such as road network and population
density, is utilized by Modeling/Aggregation, which in return interacts with the
perturbation component as well as the estimation method in use. Below we de-
scribe in detail two separate estimation algorithms: one is to perform time-wise
estimation for each individual cell, while the other is to perform spatial aggre-
gation and estimation over the entire 2D space.

Laplace 
Perturbation Estimation

Modeling/AggregationRaw Series Differentially Private
Series

Fig. 2. Differentially Private Traffic Monitoring Framework
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3.1 Temporal Estimation

For each cell c in space G, we can apply our recently proposed filtering-based
posterior estimation technique [9] to the cell frequency series Xc. The key idea is
to utilize an internal time series model for the frequency series and to estimate
the true aggregate values based on the Laplace perturbed values. The additional
innovation in this paper is that we model different types of cells according to the
domain knowledge on the road networks. Below we briefly show how to model
the cell frequency series and refer interested readers to our work [9] for further
implementation details.

Note that the internal model of cell frequencies depends on many factors, such
as location, overall population, road network, etc. Here we simply classify each
cell as sparse or dense based on road network connections and assume the same
internal model for cells within each category. For each cell c, its frequency series
Xc can be represented by the following process model:

xc
k+1 = xc

k + ωc , p(ωc) ∼ N(0, Qc) (5)

which states that the count values of consecutive time stamps should be con-
sistent except for a white, Gaussian noise ωc. In particular, ωc is called the
process noise and it follows a normal distribution. Qc value indicates the level
of variation between adjacent time stamps. Intuitively, sparse cells exhibit little
variation since very few objects travel within them, therefore we should specify
a small Qc value for such cells. On the other hand, higher Qc should be assigned
for dense cells since they are visited more frequently in reality.

The noisy observation, which is obtained from the Laplace Perturbation mech-
anism, can be modeled as follows:

zck = xc
k + ν , ν ∼ Lap(0, 1/α0) (6)

where ν, called the measurement noise, corresponds to the Laplace noise and
is independent of c. The differential privacy budget for each traffic count is
α0 = α/T , since the overall privacy budget α is uniformly allocated to each time
stamp.

For posterior estimation purpose, it is sufficient and computationally attrac-
tive to approximate ν by a white Gaussian error according to [9]:

ν ∼ N(0, R) . (7)

Therefore here we adopt the above Gaussian approximation for every cell and
use the Kalman filter based filtering technique [9] for posterior estimation.

The outline of the temporal estimation algorithm is presented in Algorithm 2.
For every time stamp k and each cell c, we derive a predicted frequency with
the Predict procedure. Upon receiving the noisy observation, we can derive a
posterior estimate with the Correct procedure, by linear combination of predic-
tion and observation. The derivation of posterior estimate as well as Predict and
Correct steps can be found in [9] and therefore omitted here for brevity.
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Algorithm 2. Temporal Estimation Algorithm

Input: Raw data series XG, privacy budget α
Output: Released data series RG

1: for each timestamp k do
2: for each cell c ∈ G do
3: prior ← c.Predict(k) ;
4: zck ← perturb xc

k by Lap(0, T
α
);

5: posterior ← c.Correct(k, prior, zck);
6: rck ← posterior;

The advantage of temporal estimation approach is that it utilizes the internal
time series model and the observations to form an educated guess, which is
shown in [9] to greatly improve the accuracy of released data per time stamp.
As for complexity, we can see that the computation time requirement is O(w2)
for every time stamp where w is the spatial resolution, since only O(1) operations
are performed for each cell.

3.2 Spatial Estimation

When every cell is perturbed individually, data sparsity imposes great utility
challenge, i.e. high relative error due to perturbation. We thus are motivated to
group similar cells to overcome the data sparsity issue. Considering the spatial
correlation among cells, it is very likely that neighboring cells are connected by
the same roads therefore are more similar to each other. To utilize this heuristic,
we propose to aggregate similar cells into partitions according to spatial vicinity
and perform estimation within each partition assuming uniformly distributed
objects within the partitions.

We propose a top-down space partitioning approach based on Quadtree due to
several considerations. One advantage of Quadtree is its efficiency: it recursively
partitions a 2D space into 4 quadrants disregard the actual object distribution
in the space. Another advantage of Quadtree is that it doesn’t incur any extra
privacy cost due to its independence from data. In contrast, the kdTree structure
proposed by Cormode et al [4] does require extra privacy budget spent on finding
the “private median”. Since the privacy budget for each time stamp is very
limited, we believe that Quadtree is more suitable in the multi-dimensional time
series scenario.

We outline the spatial aggregation algorithm based on Quadtree in Algo-
rithm 3. Line 5 checks every node/partition for the splitting condition. Line 6
splits a partition into four equal quadrants. The node.homogeneous() method re-
turns true if all the cells within the partition belong to the same category. Again,
each cell is pre-classified as sparse or dense based on domain knowledge. We stop
splitting a partition if it is homogeneous. Otherwise, as long as the predefined
depth threshold d is not violated, we further split the partition in the hope of
reducing the class impurity in each child partition. The value of d represents
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Algorithm 3. QuadTreeAgg Algorithm

Input: 2D grid G, depth threshold d
Output: QuadTree index structure QT

1: QT.root ← G;
2: queue.add(QT.root) ;
3: while ! queue.empty() do
4: node ← queue.remove() ;
5: if ! node.homogeneous() and node.depth < d
6: node.split() ;
7: queue.add(node.children) ;

Algorithm 4. Spatial Estimation Algorithm

Input: Raw data series XG, depth threshold d, privacy budget α
Output: Released data series RG

1: QT ← QuadTreeAgg(G, d); # initialize the quadtree index
2: for each timestamp k do
3: for each partition p ∈ QT do
4: pk ← ∑

c∈p x
c
k ;

5: p̃k ← perturb pk by Lap(0, T
α
);

6: rck ← p̃k/p.size(), c ∈ p ;

the aggregation level. Setting d = 0 implies that all cells are aggregated in one
partition. Since the uniform assumption within the partition does not hold, high
estimation error will be incurred. On the other hand, a higher value of d implies
that many partitions will be further split to produce homogeneous regions so
as to reduce estimation error. However, due to data sparsity, very few moving
objects will fall into each partition when it is small. Therefore, the perturbation
error will dominate the released data in that case. Clearly the optimal d value
depends on the spatial distribution of cells. We will examine the impact of d in
the experiment section.

Once the Quadtree index structure of the space G is established, we assume
uniform data distribution within each partition and estimate each cell frequency
with average partition frequency. The spatial estimate algorithm is described in
Algorithm 4. For each time stamp k, a partition count is aggregated from cells
for every partition (Line 4). It is then perturbed by the Laplace mechanism to
guarantee differential privacy (Line 5) and the average noisy count is used to
estimate the frequency of each cell within the partition (Line 6). The intuition is
that the cells within each partition have similar density. Therefore by uniformly
distributing the noisy partition count to each cell, we reduce the magnitude of
perturbation error applied to each cell without compromising the accuracy.

One advantage of the spatial estimation algorithm is that it relies on simple
and practical assumptions. The complexity is also O(w2) for each time stamp
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since every cell is visited O(1) times. Although it takes extra time to build
the spatial index for initialization, we see it as a one-time cost which can be
done off-line. The runtime of the spatial estimation is reduced because only one
perturbation noise is needed for every partition at every k (Line 5). In contrast,
both the baseline LPA algorithm and the temporal estimation algorithm will
generate one perturbation noise for each cell at every k. We will study their
runtime performance in the next section.

4 Evaluation

We implemented the proposed algorithms as well as alternative methods in Java
with JSC1 for simulating the statistical distributions. All experiments were con-
ducted using a 2.90GHz Intel Core i7 PC with 8GB RAM.

(a) Map of Oldenburg (b) Partitions by Quadtree

Fig. 3. Overview of Data Set

Data Set. We generated synthetic traffic data with the Brinkhoff generator [2].
The input of the generator is the road map of Oldenburg in Germany2 (Fig-
ure 3(a)),which contains 6,105 nodes and 7,035 edges, and the output is a set
of moving objects on the road network. We created the data set with 100 dis-
crete timestamps, with 500,000 objects at the beginning and 25,000 new ob-
jects introduced at every time stamp. The starting positions and destinations of
the moving objects are selected randomly by the generator (see [2] for detailed
network-based techniques). Once an object reaches its destination, it disappears
from the map. At the server side, we use a 2D grid with 1024 × 1024 cells to
record the locations of the moving objects, with each cell representing approxi-
mately 20× 20 square meters’ range in reality. We assign each cell a class label,

1 http://www.jsc.nildram.co.uk
2 http://iapg.jade-hs.de/personen/brinkhoff/generator/
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i.e. sparse or dense, based on the presence of roads within its extent. Roughly
95% cells are labeled sparse, indicating only the rest 5% have been visited by
the moving objects. Figure 3(b) visualizes the partition result achieved by the
Quadtree-based algorithm with the depth threshold d = 8. It can be seen that
spares regions around map edge are contained in larger partitions and densely
connected regions in map center are further split into smaller partitions. We will
evaluate the set of sparse cells and the set of dense cells separately since they
exhibit very different dynamics over time.

Comparison. We compare our proposed solutions against the state-of-the-art
methods which are summarized below:

– DFT is the Fourier Perturbation Algorithm recently proposed by Rastogi
and Nath [13] for sharing single time series. It first performs the Discrete
Fourier Transform on an input time series and retains only the first l DFT
coefficients. Those coefficients are then perturbed by the Laplace mechanism
to guarantee differential privacy. Finally, the Inverse Discrete Fourier Trans-
form is performed on the perturbed coefficients to produce a released series.
The number of coefficients to preserve, i.e. l, is a user-specified parameter. In
our empirical study, we set l = 20 according to their recommendation [13].

– kd-hybrid is proposed by Cormode et al [4] as their best method to achieve
differentially private space decomposition with static data. Without the help
of a grid, kd-hybrid builds a mixture index over the 2D data space that be-
gins with kd-tree and switches to quad-tree at a certain level. They slightly
modified the kd-tree algorithm, changing the fanout rate to 4 in order to re-
duce the privacy budget consumption. According to their studies, kd-hybrid
is most reliable among several representative differentially private space par-
titioning methods. They reported the optimal parameter setting empirically
with the height set to 8 and the switch level set to 4.

Since the DFT algorithm can be only performed with the complete series, it is
not compatible to real-time applications. However, we include it in our evalua-
tion since it serves as a good, off-line reference for utility. As for the kd-hybrid
algorithm, there are two limitations. One is its high privacy cost since the al-
gorithm iteratively spends budget on finding “private medians” for every data
snapshot. The other limitation is its high computation cost: application of the
kd-hybrid method requires constructing the index structure at every time stamp.
Experiments with the author’s provided implementation take hours for each it-
eration, since the domain size and the number of objects in our data set are
extremely large. We conclude that the kd-hybrid method is too expensive for the
continuous, real-time applications and therefore do not include the results in the
remaining section.
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Table 1. Parameter Settings

Symbol Description Default Value

α Total Privacy Budget 1

w Resolution for Each Dimension 1024

T Length of Multidimensional Time Series 100

Qsparse Process Noise for Sparse Cells 10−2

Qdense Process Noise for Dense Cells 103

R Gaussian Measurement Noise 106

d Depth Threshold for Quadtree 8

4.1 Parameter Impacts

The default parameter setting, unless otherwise noted, is summarized in Table 1.
Note that Qsparse and Qdense, which correspond to Qc in Equation (5) for sparse
and dense cells, can be chosen by domain users and our default setting may not
be optimal. As for R from Equation (7), we set its value according to our previous
studies [8], which shows that the optimally R is proportional to T 2/α2.
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Fig. 4. Impact of Depth Threshold on Quadtree-based Spatial Estimation

We study the impact of the depth threshold d used in Algorithm 3 in terms
of utility as defined in Equation (1) and runtime. Intuitively, the larger value d
takes, the finer partitions the algorithm results in, especially along the border of
sparse and dense regions. However, it also incurs a higher overhead to construct
the index as we can expect. Figure 4(a) plots separately the utility of released
series for sparse cells and dense cells when varying the depth threshold d. For
each class of cells, we plot the median relative error to avoid the extremely
small or large values. As we increase the threshold value, the error for sparse
cells gradually drops to 0 between d = 0 and d = 4 and remains stable when d
value is further increased. This is due to the fact that majority sparse cells are
located together (on map edge) and will not take too many splits to be separate
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from dense cells (in map center). Increasing the d value can help separating
those sparse cells on the boarder line. However, the utility of majority sparse
cells is not affected since those on the boarder line only count for a very small
percentage. On the other hand, dense cells require more splits to achieve optimal
separation (d = 8). When further split (d > 8), the perturbation noise greatly
impacts their utility due to data sparsity. Figure 4(b) shows the overhead for
constructing the aggregation index when varying the d value. It takes at most
0.9 second and we note that it is a one-time cost. As we expect, a higher depth
threshold requires more construction time (from d = 0 to d = 6). However,
when d > 6 the overhead does not grow since there are only very few partitions
that do not meet the homogeneous requirement at depth 6. As can be seen in
Figure 3(b), the densely connected areas in the map are split into finer partitions
compared to less populous areas on the map edge.
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Fig. 5. Utility of Individual Cells: Comparison of All Methods

4.2 Utility Performance

Utility vs. Privacy. Here we examine the trade-off between utility and pri-
vacy. Our proposed solutions, i.e. Kalman and Quadtree, are compared against
the baseline LPA and state-of-the-art DFT algorithm, in terms of utility of in-
dividual cells. Figure 5(a) and Figure 5(b) plot the utility of sparse cells and
dense cells respectively when varying the overall privacy budget, i.e. α value,
from [10−3, 100]. As we can see, the baseline LPA algorithm results in highest
relative error in both figures. The DFT algorithm results in high relative error
with sparse cells even with high privacy cost (α = 1), due to the perturbation
and reconstruction error. Our solutions Kalman and Quadtree outperform both
LPA and DFT especially with sparse cells, as Quadtree only results in 10% er-
ror and Kalman produces 0% error when α = 1. As for the dense cells, both
Kalman and Quadtree slightly outperforms DFT, which is supposed to be opti-
mal. When α = 1, DFT results in 83% error due to lack of smoothness in the
original frequency series, while our solutions provide comparable utility to DFT
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and real-time data release. Figure 6(a) and Figure 6(b) provide a closer look at
the utility curves within a more practical range of privacy budget α ∈ [0.1, 1].
DFT and LPA are not plotted in one or both figures because the errors they
result in are prohibitive. For sparse cells, Kalman provides optimal performance
even under small privacy budget (α = 0.1), thanks to the accurate modeling.
Quadtree is able to approach 0% error as α value increases. For dense cells,
we observe that Quadtree provides the best utility in the same privacy bud-
get range. We conclude that both our proposed solutions outperforms existing
methods, allowing for real-time data sharing without compromising the utility.
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Fig. 6. Closer Look at α ∈ [0.1, 1]

Utility of Range Queries. Here we evaluate our solutions with range queries,
where each query is a square window that covers a neighborhood of m×m cells.
For each m value, we randomly generate 100 queries of size m×m, evaluate each
method with the same set of queries, and plot the average relative error. Note
that when m = 1, each set query consists of one cell only and therefore the set
query error is equivalent to individual cell error. Our findings are summarized in
Figure 7. Our temporal estimation algorithm based on the Kalman filter clearly
outperforms Quadtree and LPA with smaller query windows (m ≤ 100). For all
three methods, the relative error shows a growing trend to different extent as the
query set size increases, mainly due to the data sparsity in the space. When m =
500, we observe that the error of Kalman keeps accumulating while Quadtree

and LPA show reduced relative error. We believe that it is because Kalman does
not explicitly utilize the spatial correlation between cells. When querying the
entire space (m = 1024), both Quadtree and LPA provide good utility because
the Laplace noise added to each cell is from a zero-mean distribution and the sum
of a large set of such noises is likely to be small. Overall, Quadtree outperforms
LPA by making sound estimation within close-to-uniform partitions.
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4.3 Runtime Performance

Lastly we compare the runtime performance of our solutions against the baseline
since computation time is critical to real-time applications. We measure and plot
the runtime for releasing the two-dimensional aggregates for 100 timestamps in
order to mitigate random disturbance from the operating system. The results
are summarized in Figure 8. As we can see, all three methods take less than 35
seconds to release 100 snapshots of 1024 × 1024 cell frequencies with differen-
tial privacy guarantee. Note that the state-of-the-art kd-hybrid takes hours to
release/evaluate one time stamp. Compared to LPA, our solution Kalman takes
roughly 2 more seconds in total to perform prediction and correction at every
time stamp. Quadtree turns out to be the most time efficient, even though it
has a small overhead in building the spatial index. This is because less pertur-
bation is performed by Quadtree, as at every time stamp we only generate one
perturbation noise for each partition rather than for each cell as in LPA.

5 Related Works

Here we briefly review the most relevant, recent works on differential privacy and
time-series data sharing. Dwork et al. [5] established the guideline to guarantee
differential privacy for individual aggregate queries by calibrating the Laplacian
noise to the global sensitivity of each query. Since then, various mechanisms
have been proposed to enhance the accuracy of differentially private data release.
Blum et al. [1] proved the possibility of non-interactive data release satisfying
differential privacy for queries with polynomial VC-dimension, such as predicate
queries. Dwork et al. [7] further proposed more efficient algorithms to release
private sanitization of a data set with hardness results obtained.

Several recent works [4, 10, 11, 15–17] study the counting queries on multi-
dimensional data, also referred to as histograms or contingency tables, where
the multi-dimensional data can be indexed by a tree structure and each level
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in the tree is an increasingly fine-grained summary/count. Cormode et al [4]
propose the class of “private spatial decompositions” and conclude that the
hybrid structure kd-hybrid provides an accurate yet efficient solution compared
to alternatives. When applied to highly self-correlated time-series data, all the
above methods, designed to perturb static data, become problematic because of
highly compound Laplace perturbation error.

Rastogi and Nath [13] proposed a Discrete Fourier Transform (DFT) based al-
gorithm which implements differential privacy by perturbing the discrete Fourier
coefficients. However, this algorithm cannot provide real-time private release in
a streaming environment. The recent works [3] [6] on continuous data streams
defined the event-level privacy to protect an event, i.e. one user’s presence at a
particular time point, rather than the presence of a user. Our previous work [9]
studies the problem of sharing single time-series with user-level differential pri-
vacy and we proposed an algorithm with filtering and adaptive sampling to
improve the utility of the shared series.

6 Conclusion

We have proposed a real-time framework and two estimation algorithms to ad-
dress the challenges of differentially private multi-dimensional time series release
with application in traffic monitoring. The temporal estimation algorithm estab-
lishes a single time-series model for each cell in the space and performs posterior
estimation to improve the utility of each released aggregate. The spatial estima-
tion algorithm builds a spatial index by Quadtree and group similar cells together
to overcome data sparsity. Domain knowledge is exploited by both estimation
methods and is shown beneficial. We observe that the temporal estimation algo-
rithm is highly accurate especially with sparse cells but requires modeling and
slightly more running time. On the other hand, the spatial estimation algorithm
relies on practical assumptions, demands less computation time, and provides
better utility for dense cells and larger range queries. Compared to alternative
methods, our solutions outperform the baseline LPA algorithm as well as state-
of-the-art methods in both utility and computation efficiency. Future work may
include in-depth study of complex spatial-temporal correlation between locations
and timestamps.
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Abstract. Access control is widely used in large systems for restricting resource
access to authorized users. In particular, role based access control (RBAC) is a
generalized approach to access control and is well recognized for its many ad-
vantages in managing authorization policies.

This paper considers user-role reachability analysis of administrative role
based access control (ARBAC), which defines administrative roles and speci-
fies how members of each administrative role can change the RBAC policy. Most
existing works on user-role reachability analysis assume the separate administra-
tion restriction in ARBAC policies. While this restriction greatly simplifies the
user-role reachability analysis, it also limits the expressiveness and applicability
of ARBAC. In this paper, we consider analysis of ARBAC without the separate
administration restriction and present new techniques to reduce the number of
ARBAC rules and users considered during analysis. We also present a number of
parallel algorithms that speed up the analysis on multi-core systems. The exper-
imental results show that our techniques significantly reduce the analysis time,
making it practical to analyze ARBAC without separate administration.

1 Introduction

Access control is widely used for restricting resource access to authorized users. In par-
ticular, role based access control (RBAC) [2] is broadly recognized as a generalized
approach to access control that has many advantages in performing authorization man-
agement. An RBAC policy is a tuple 〈U,R, P,UA,PA〉 where U , R and P are finite
sets of users, roles, and permissions, respectively. UA ⊆ U × R represents the user-
role assignment relation and PA ⊆ P × R represents the permission-role assignment
relation. RBAC also supports role hierarchy: r1 � r2 specifies that r1 is senior to r2 (or
r2 is junior to r1), which implies that every member of r1 is also a member of r2, and
every permission assigned to r2 is also available to members of r1.

Administrative role-based access control (ARBAC’97) [17] defines administrative
roles and specifies how members of each administrative role can change the RBAC
policy. ARBAC specifies user-role administration which controls the way changes are
made to the user-role assignments. This control is enforced by two types of rules:
(1) can assign(ra, c, rt) that grants an administrative role ra permission to assign a
target role rt to any user who satisfies the precondition c, and (2) can revoke(ra, rt)

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 49–64, 2013.
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that grants an administrative role ra permission to revoke a target role rt from a user.
The precondition c is a conjunction of literals, where each literal is either r (positive
precondition) or ¬r (negative precondition) for some role r. ARBAC’97 requires sep-
arate administration [22], i.e., administrative roles cannot be target roles in can assign
and can revoke rules or appear in the preconditions. In the rest of this paper, we repre-
sent the precondition c as P ∧ ¬N where P contains all positive preconditions and N
contains all negative preconditions in c.

The correctness of ARBAC policies is critical to system security because any design
flaws and human specification errors in ARBAC may result in the leak of confidential
data to unauthorized users. Large organizations may have large ARBAC policies. In
such organizations, manual inspection of ARBAC policies for correctness can be im-
practical because actions performed by different administrators may interfere with each
other in subtle ways. Thus, automated analysis algorithms are essential to ensure that
an ARBAC policy conforms to the desirable correctness properties.

This paper considers the user-role reachability analysis of ARBAC [22], which asks
“given an RBAC policy φ, an ARBAC policy ψ, a set of users U , a target user ut, and a
set of roles (called the “goal”), is it possible for users in U ∪ {ut} to assign ut to roles
in the goal”? Since many security analysis problems, such as user-role availability [16],
role containment [16], and weakest precondition [22], can be reduced to this problem,
user-role reachability is crucial for ARBAC analysis.

Researchers have shown that user-role reachability analysis is intractable even un-
der various restrictions on the ARBAC policy [16,18]. Most existing research on user-
role reachability analysis [9,8,14] follows the definition of ARBAC’97 that assumes
separate administration. By disallowing an administrative role to serve as the target
role in any of the ARBAC rules, it is sufficient to consider the user-role assignments
of only the target user. However, in practice, the separate administration restriction
does not always hold. For example, a university ARBAC policy may specify that the
role DeptChair can assign a member of role Faculty to role AdmissionComittee,
which can in turn assign any user to role Student. Formally, this specification
translates to the rules can assign(DeptChair, Faculty, AdmissionComittee)
and can assign(AdmissionCommittee, true, Student), which do not satisfy the
separate administration restriction.

Analysis of ARBAC without separate administration is significantly more challeng-
ing because we need to consider administrative actions that change the role member-
ships of all users, not only the target user. For example, a non-target user u may assign
another non-target user u1 to an administrative role, which can in turn change the role
assignments of the target user. Stoller et al. [22] tackled this problem by developing an
algorithm that is fixed parameter tractable with respect to the number of users and mixed
roles. That is, the algorithm is exponential to the number of users and mixed roles, but
is polynomial to the size of the policy when the number of users and mixed roles is
fixed. However, since the number of users is usually large in large organizations, the
algorithm does not scale well when analyzing ARBAC policies in such organizations.
For example, we have applied this algorithm to analyze a university ARBAC policy
containing 150 users and the program failed to terminate within 12 hours for 3 out of
the 10 randomly generated queries.
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Contributions: This paper presents a number of reduction techniques that improve the
scalability of the algorithm in [22]. Our main contributions are summarized below.

– We propose two static reduction techniques – optimized slicing (Section 3.1) and
hierarchical rule reduction (Section 3.4) – to reduce the number of ARBAC rules
considered during analysis.

– We develop a user equivalent set reduction technique that reduces the number of
users considered during analysis (Section 3.2).

– We propose a lazy reduction technique that delays performing unnecessary transi-
tions (Section 3.3).

– We present several parallel algorithms, which speed up the analysis on multi-core
or multi-processor platforms (Section 4).

– We evaluate the effectiveness of our reduction techniques and our parallel algo-
rithms on an ARBAC policy representing a university administration. The experi-
mental results show that our techniques significantly reduce the analysis time.

Organization: The rest of the paper is organized as follows. Section 2 describes the
user-role reachability analysis algorithm for ARBAC without separate administration
developed in [22]. Sections 3 and 4 present our reduction techniques and our parallel
algorithms, respectively. The experimental results are given in Section 5, followed by a
discussion of related research in Section 6. Section 7 concludes the paper.

2 Preliminaries: User-Role Reachability Analysis of ARBAC

User-role reachability analysis of ARBAC [22] asks: “given an RBAC policy φ, an
ARBAC policy ψ, a set of users U , a target user ut, and a set of roles (called the “goal”),
is it possible for users in U ∪ {ut} to assign ut to all roles in the goal”? Let UA0 be
a set of all user-role assignments in φ. The user-role reachability analysis instance is
represented as a tuple I = 〈UA0, ut, ψ, goal〉.

Stoller et al. [22] presented an algorithm for analyzing ARBAC without separate
administration, which is formalized in Algorithm 1. The algorithm is fixed parameter
tractable with respect to the number of users and mixed roles. A role is negative if it
appears negatively in some precondition in the policy; other roles are non-negative. A
role is positive if it appears in the goal, appears positively in some precondition in the
policy, or is an administrative role; other roles are non-positive. A role that is both neg-
ative and positive is a mixed role. Note that their algorithm is applied to ARBAC with-
out role hierarchy; ARBAC with role hierarchy can be converted to the corresponding
non-hierarchical policy using the algorithm in [18]. Let I = 〈UA0, ut, ψ, goal〉 be a
user-role reachability analysis problem instance. The algorithm works as follows.

First, the algorithm performs a slicing transformation (function slicing in Line
3), which back-chains along the ARBAC rules to identify roles and rules relevant to
the goal, and then eliminates the irrelevant ones. Function slicing takes into account
whether a role appears positively or negatively in the policy, and computes a set Rel+
of positive roles and a set Rel− of negative roles that are relevant to the goal. A set
RelRule of relevant rules is computed as a collection of all can assign rules whose
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Algorithm 1. The User-Role Reachability Analysis Algorithm in [22]
1: Processed = Rel+ = Rel− = ∅; RelRule = ∅;
2: procedure analysis(UA0, ut, ψ, goal)
3: (Rel+, Rel−, RelRule) = slicing(UA0, ψ, goal); W = Reached = {closure(UA0)};
4: if goal ⊆ {r | (ut, r) ∈ closure(UA0)} then return true; end if
5: while W �= ∅ do
6: remove a state s from W ;
7: for all can assign(ra, P ∧ ¬N, r) ∈ RelRule do
8: for all (user u ∈ U ) do
9: if (r ∈ (Rel+ ∩ Rel−), (u, r) �∈ s, P ⊆ {r | (u, r) ∈ s}, N ∩ {r | (u, r) ∈ s} = ∅,

and (u′, ra) ∈ s for some user u′)

10: then s′ = closure(s ∪ {(u, r)}); add transition s
ua(ra,u,r)→ s′ to G;

11: if goal ⊆ {r|(ut, r) ∈ s′} then return true; end if
12: if s′ �∈ Reached then W = W ∪ {s′}; Reached = Reached ∪ {s′} end if
13: end if end for end for
14: for all (can revoke(ra, r) ∈ RelRule)
15: for all (user u ∈ U )
16: if ((u, r) ∈ s and (u′, ra) ∈ s for some user u′)

17: then s′ = closure(s \ {(u, r)}); add transition s
ur(ra,u,r)→ s′ to G;

18: if goal ⊆ {r | (ut, r) ∈ s′} then return true; end if
19: if s′ �∈ Reached then W = W ∪ {s′}; Reached = Reached ∪ {s′} end if
20: end if end for end for
21: end while
22: return false;

23: procedure slicing(UA0, ψ, goal)
24: if goal = ∅ then return (∅, ∅, ∅) end if
25: Processed = Processed∪ goal; R+ = goal; R− = ∅; Rule = ∅;
26: for all can assign(ra, P ∧ ¬N, r) ∈ ψ where r ∈ goal do
27: (R1, R2, R3) = slicing(UA0, ψ, ({ra} ∪ P ) \ Processed); R+ = R+ ∪R1;
28: R− = R− ∪N ∪ R2; Rule = Rule ∪ {can assign(ra, P ∧N, r)} ∪R3;
29: end for
30: RelRev = {can revoke(ra, r) ∈ ψ | r ∈ R−}; Rule = Rule ∪RelRev;
31: for all can revoke(ra, r) ∈ RelRev where ra �∈ Processed do
32: (R4, R5, R6) = slicing(UA0, ψ, {ra}); R+ = R+ ∪R4;
33: R− = R− ∪R5; Rule = Rule ∪R6

34: end for
35: return (R+, R−, Rule)

36: procedure closure(s)
37: s1 = s;
38: for all can assign(ra, P ∧ ¬N, r) ∈ RelRule do
39: for all user u ∈ U do
40: if (r ∈ (Rel+ \ Rel−), (u, r) �∈ s, P ⊆ {r | (u, r) ∈ s}, N ∩ {r | (u, r) ∈ s} = ∅, and

(u′, ra) ∈ s for some user u′)
41: then s1 = s1 ∪ (u, r); end if end for end for
42: if s == s1 then return s1; else return closure(s1);
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targets are in Rel+ and all can revoke rules whose targets are in Rel−; only rules in
RelRule need to be applied during analysis.

Next, the algorithm constructs a reduced transition graph G using rules in RelRule.
Each state in G is a set of user-role assignments and each transition describes an allowed
change to the state defined by the ARBAC policy ψ. A transition is either ua(ra, u, r)
which specifies that an administrative role ra adds user u to role r, or ur(ra, u, r)
which specifies that an administrative role ra revokes user u from role r. The follow-
ing reductions are applied: (1) Transitions that revoke non-negative roles (i.e., roles in
Rel+ \Rel−) or add non-positive roles (i.e., Rel− \Rel+) are prohibited because they
do not enable any other transitions; (2) Transitions that add non-negative roles or revoke
non-positive roles are invisible; such transitions will not disable any other transitions.
Transitions that add or revoke mixed roles are visible. The invisible transitions together
with a visible transition form a single composite transition.

The graph G is constructed as follows. First, the algorithm computes closure(UA0),
which is the largest state that is reachable from UA0 by performing all invisible tran-
sitions enabled from UA0 (function closure in Line 3). The algorithm then computes
a set of all states reachable from closure(UA0) (Lines 5–21), and returns true iff there
exists a state s in G such that goal ⊆ {r | (ut, r) ∈ s} (Lines 4, 11, and 18).

In [22], they have also identified a condition called the hierarchical role assignment
(HRA), under which analysis of ARBAC without separate administration can be reduced
to analysis of ARBAC with separate administration. An ARBAC policy satisfies HRA
if, for all can assign(ra, P ∧ ¬N, r) where r is an administrative role, ra � r.

Example 1. Consider the following ARBAC policy ψ and the reachability analysis
problem for this policy with the initial RBAC policy UA0 = {(u1, r1), (u1, r3),
(u2, r2), (u2, r8), (u3, r2), (u3, r8), (ut, r6)}, the target user ut, and the goal {r5}.

1. can assign(r1, {r2} ∧ ¬∅, r3) 2. can assign(r6, {r4, r3} ∧ ¬∅, r5)
3. can assign(r1, {r6} ∧ ¬{r3}, r4) 4. can assign(r2, {r8, r1} ∧ ¬∅, r6)
5. can assign(r2, {r6} ∧ ¬∅, r7) 6. can revoke(r1, r2)
7. can revoke(r1, r3) 8. can revoke(r1, r4)

This policy does not satisfy the separate administration restriction, because role r6 is
both an administrative role in rule 2 and a target role in rule 4.

First, the algorithm performs slicing to compute a set Rel+ of positive relevant roles
and a set Rel− of negative relevant roles as follows. Initially, Rel+ contains all roles in
the goal, i.e. r5. Since the target role of rule 2 is r5, the algorithm adds positive precon-
ditions and administrative role of rule 2, i.e. r4, r3, and r6, to Rel+. The algorithm then
processes rules 1 and 3, whose target roles are r4 and r3, respectively, adds their posi-
tive preconditions and administrative roles, i.e. r2, r6, and r1, to Rel+, and adds their
negative preconditions, i.e. r3, to Rel−. Repeat this process until all roles in Rel+ are
processed, which results in Rel+ = {r1, r2, r3, r4, r5, r6, r8} and Rel− = {r3}. The set
of mixed roles is Rel+ ∩Rel− = {r3}; other roles are both positive and non-negative.
RelRule contains rules 1, 2, 3, 4, and 7.

Next, the algorithm computes the initial state closure(UA0). Since rule 3 is enabled
from UA0 and r4 is a non-negative role, (ut, r4) is added to UA0 through an invisible
transition. The algorithm then computes all states reachable from closure(UA0) using
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Fig. 1. Graph constructed in Example 1 using the algorithm in [22]

rules in RelRule. The resulting graph is given in Figure 1. Because the graph does not
contain (ut, r5), the goal is not reachable. �

3 Reduction Techniques

The analysis algorithm described in Section 2, although simple, does not scale well for
policies containing a large number of users. Let I = 〈UA0, ut, ψ, goal〉 be a user-role
reachability analysis problem instance. In this section, we present a number of tech-
niques for reducing the number of users and ARBAC rules considered during analysis.

3.1 Optimized Slicing

In this section, we present an approach to reduce the number of roles processed during
slicing, and hence reduce the number of relevant rules computed.

We say that a role is irrevocable if there does not exist a can revoke rule that revokes
the role. For the target user ut, we apply function slicing defined in Algorithm 1 to
perform slicing, except that Line 27 in the algorithm is replaced with the following:

S = {r | r ∈ (P ∪ {ra}) ∧ (r is nonnegative or irrevocable) ∧(ut, r) ∈ UA0};
(R1, R2, R3) = slicing(UA0, ψ, (({ra} ∪ P ) \ S) \ Processed);

Similarly, Line 32 of Algorithm 1 is replaced with the following:

S = {ra | (ra is nonnegative or irrevocable) ∧(ut, ra) ∈ UA0};
(R4, R5, R6) = slicing(UA0, ψ, ({ra} \ S)); R+ = R+ ∪R4;

Basically, prior to slicing, we collect a set of nonnegative and irrevocable roles in
the ARBAC policy. During slicing, we do not slice nonnegative or irrevocable roles
assigned to the target user in the initial policy UA0. This is safe because such roles will
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Algorithm 2. An Optimized Slicing Algorithm for Non-Target Users
1: Processed = ∅;
2: procedure optslicing(UA0, ψ, goal)
3: if (goal == ∅) then return (∅, ∅, ∅); end if
4: Processed = Processed ∪ goal; R+ = goal; R− = ∅; Rule = ∅;
5: for all can assign(ra, P ∧ ¬N, r) where (ut, r) ∈ goal do
6: if ((u, ra) ∈ UA0 for some user u and (ra is non-negative or irrevocable)) then
7: R1 = R2 = R3 = ∅;
8: else (R1, R2, R3) = slicing(UA0, ψ, {ra} \ Processed); end if
9: S = {r | r ∈ P ∧ (r is non-negative or irrevocable) ∧(ut, r) ∈ UA0};

10: (R′
1, R

′
2, R

′
3) = optslicing(UA0, ψ, (P \ S) \ Processed);

11: R+ = R+ ∪ S ∪ R1 ∪ R′
1; R− = R− ∪N ∪ R2 ∪R′

2; Rule = Rule ∪R3 ∪R′
3;

12: end for
13: RelRev = {can revoke(ra, r) | r ∈ R−}; Rule = Rule ∪RelRev;
14: for all can revoke(ra, r) ∈ RelRev do
15: if ra �∈ Processed ∧ (ra is negative ∨ra is a non-negative role not assigned to any user

in UA0) then
16: (R4, R5, R6) = slicing(ψ, {ra});
17: R+ = R+ ∪R4; R− = R− ∪ R5; Rule = Rule ∪R6

18: end if
19: end for
20: return (R+, R−, Rule);

not be revoked during the analysis and hence we do not need to reassign such roles to
the target user. In addition, since a negative role may become non-negative after slicing,
to further reduce the number of relevant rules computed, we perform slicing multiple
times until the set of negative roles remains unchanged.

For non-target users, it is sufficient to apply only rules that assign such users to
administrative roles, which have permission to assign the target user ut to the goal. The
pseudocode is given in Algorithm 2.

The reduction is given in Lines 6–10 and 15–16 of Algorithm 2. For every
can assign(ra, P ∧ ¬N, r) where r ∈ goal, we check if ra is a nonnegative or
irrevocable role assigned to a user in UA0. If so, we do not slice ra; otherwise, we
apply function slicing defined in Algorithm 1 to slice ra (Lines 6–8). This is different
from Algorithm 1, in which ra is always sliced. Next, we compute a set S of all
nonnegative or irrevocable roles in P that are assigned to the target user in UA0, and
for every rule whose target role is in P \ S, we recursively call function optslicing to
slice the administrative roles of such rules (Lines 9–10). Note that we do not slice roles
in P for non-target users, while Algorithm 1 does. Finally, for every can revoke(ra, r),
if ra is a nonnegative or irrevocable role assigned to some user in UA0, we do not slice
ra (Lines 15–16).

Example: Consider the ARBAC policy and the query in Example 1. First, we com-
pute a set of relevant roles and rules for the target user ut using our optimized slicing
mechanism. Since r6 is a non-negative role assigned to ut in UA0, we do not slice
r6. Therefore, for the target user, Rel+ = {r1, r2, r3, r4, r5, r6}, Rel− = {r3}, and



56 P. Yang, M. Gofman, and Z. Yang

RelRule = {1, 2, 3, 7}. Next, we compute a set of relevant roles and rules for non-
target users using our optimized slicing mechanism. Only administrative roles that have
permissions to assign the target user to the goal, i.e., r6 and r1, need to be sliced.
Since r6 and r1 are non-negative roles assigned to ut and u1 in UA0, respectively,
we do not slice these two roles. As a result, for non-target users, Rel+ = {r1, r6},
Rel− = {r3}, and RelRule = ∅. This means that there is no need to assign roles
to non-target users. The transition graph constructed with the optimized slicing con-
tains only one state {(u1, r1), (u1, r3), (u2, r2), (u2, r8), (u3, r2), (u3, r8), (ut, r6),
(ut, r4)}.

3.2 User Equivalent Set Reduction

In this section, we show that from each state it is sufficient to perform visible transitions
for the target user and non-target users assigned distinct sets of roles. Our technique is
based on a notion of user equivalent set defined below.

Definition 1. The user equivalent set w.r.t a state s is defined as ue(s) =
{(Uset1, Rset1), . . . , (Usetn, Rsetn)} where Rset1 �= . . . �= Rsetn, Uset1 ∪ . . .
∪ Usetn = {u|(u, r) ∈ s}, and for every u ∈ Useti, Rseti = {r|(u, r) ∈ s}.
The user equivalent set w.r.t a state s is basically an alternative representation of s,
in which all users assigned the same set of roles are grouped together. Let Gue be
the transition graph constructed using the user equivalent set representation. There is a
transition ue(s)

α→ ue(s′) in Gue if and only if there is a transition s
α→ s′ in G. The

goal is reachable in Gue if and only if there exists a state sg ∈ Gue and (Uset, Rset) ∈
sg such that ut ∈ Uset, and goal ⊆ Rset.

Our user equivalent set reduction works as follows. For every state s and every
(Uset, Rset) ∈ s, we compute only transitions for the target user and transitions for
one randomly selected non-target user in Uset, if Uset contains such users. This is dif-
ferent from Algorithm 1, which computes transitions for all users in Uset. Intuitively,
the user equivalent set reduction is correct because transitions performed on all users
in Uset are the same, and transitions performed on one user in Uset do not disable
transitions performed on other users in Uset. We use Gredue to represent the transition
graph constructed with the user equivalent set reduction.

The correctness of the reduction is formalized in Theorem 1. Given two states s1
and s2, we say that s1 ≡ s2 if there exists a substitution δ = {u1/u

′
1, . . . , un/u

′
n},

where u1 �= . . . �= un �= ut and u′
1 �= . . . �= u′

n �= ut, such that s1δ = s2. For
example, {({u1, ut}, {r1, r2}), ({u2}, {r2})} ≡ {({u2, ut}, {r1, r2}), ({u1}, {r2})}
holds because there exists a substitution δ = {u1/u2, u2/u1} such that
{({u1, ut}, {r1, r2}), ({u2}, {r2})}δ = {({u2, ut}, {r1, r2}), ({u1}, {r2})}.
Theorem 1. Let I = 〈UA0, ut, ψ, goal〉 be a user-role reachability analysis instance,
and Gredue and Gue be transition graphs constructed for I with and without using the
user equivalent set reduction. The goal is reachable in Gue iff the goal is reachable in
Gredue.

Example: Consider the user-role reachability analysis instance in Example 1. Since
non-target users u2 and u3 are assigned the same set of roles in the initial state, we
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Fig. 2. The transition graph constructed with the user equivalent set reduction

need to perform only transitions for u2 or u3, but not both, from the initial state. This
is different from Algorithm 1, which performs transitions for both u2 and u3 from the
initial state. The graph constructed with the user equivalent set reduction is given in
Figure 2, which contains 6 states and 9 transitions, i.e., 25% reduction on states and
47% on transitions.

Optimization: We can reduce the size of the state by replacing Uset in (Uset, Rset)
with a pair (counter, target), where counter records the number of non-target users
in Uset, and target is either 1 (ut ∈ Uset) or 0 (ut �∈ Uset).

3.3 Delayed Revocation

In this section, we propose to reduce the size of the transition graph by delaying tran-
sitions that can neither enable new transitions in s nor be disabled by any transitions.

Formally, a transition s
ur(ra,u,r)→ s′ is not performed from s (i.e. is delayed) if

1. trans(s) = trans(s′) ∪ {ur(ra, u, r)} where trans(s) and trans(s′) are sets of
all visible transitions enabled from s and s′, respectively,

2. s \ s′ = {(u, r)},
3. ra is non-negative or irrevocable.

Rules 1 and 2 specify that s
ur(ra,u,r)→ s′ does not enable new visible and invisible

transitions, respectively. Rule 3 specifies that s
ur(ra,u,r)→ s′ cannot be disabled by other

transitions.
Given a state s, we compute transitions that can be delayed in s as follows. First, we

perform all ua transitions that assign users in s to roles. Next, for every ur transition that
is enabled in s, we check if the transition enables any transition. If so, we perform the
transition from s. Otherwise, we add the transition to a set Delayed. Since performing
ur transitions may enable new ua and ur transitions, after all can revoke rules are
processed, we compute new transitions and check if any transitions in Delayed enable
other transitions. If so, such transitions are performed from s and are removed from
Delayed. Repeat the above process until no new transitions are computed.
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The correctness of the delayed revocation reduction is formalized in Theorem 2.

Theorem 2. Let I = 〈UA0, ut, ψ, goal〉 be a user-role reachability analysis instance,
s0 = closure(UA0), and Gdr and G be transition graphs constructed for I with and
without the delayed revocation reduction. The goal is reachable in G iff the goal is
reachable in Gdr.

Example: Consider the user-role reachability analysis instance in Example 1. Since
transition ur(r1, u1, r3) does not enable new transitions from the initial state and r1 is
non-negative, with delayed revocation reduction, this transition is not performed from
the initial state. The transition graph constructed contains 4 states and 8 transitions, i.e.,
50% reduction on the number of states and 47% reduction on the number of transitions.

3.4 Hierarchical Rule Reduction

Hierarchical rule reduction avoids considering rules whose administrative precondi-
tions are junior to non-negative or irrevocable administrative roles in UA0. This is safe
because senior roles inherit all administrative permissions of their junior roles, and
non-negative/irrevocable roles are never revoked during analysis. This reduction does
not reduce the size of the transition graph, but may reduce the analysis time since fewer
rules are applied during analysis.

Consider the user-role reachability analysis problem instance in Example 1 and
the role hierarchy r1 � r2. The following three rules are added after the pol-
icy is transformed into the non-hierarchical one: can assign(r1, {r8, r1} ∧ ¬∅, r6),
can assign(r1, {r6} ∧ ¬∅, r7), and can assign(r1, {r1} ∧ ¬∅, r3). Since r1 is a non-
negative role, r1 will never be revoked during analysis. As a result, rules 4 and 5 in
Example 1 are not useful for reaching the goal (since administrative roles of these two
rules are r2, which is junior to r1), and hence will not be applied during analysis.

4 Parallel Analysis Algorithm

Multi-core processors are becoming pervasive. In order for software applications to
benefit from the continued exponential throughput advances in new computer systems,
it is important to parallelize the applications. In this section, we extend Algorithm 1
to perform analysis in parallel. The pseudocode of our parallel algorithm is given in
Algorithm 3.

First, we perform slicing to eliminate irrelevant roles, as we do in Algorithm 1. We
then compute the initial state init of the transition graph and add init to a workset
W (Line 5). Next, we create n threads t0, . . ., tn (Line 6; || represents the concur-
rent execution of threads). Finally, each thread ti removes one state from W , com-
putes transitions enabled from the state using Lines 7 –10 and 14–17 of Algorithm 1,
and adds the target states to W and the set of reachable state Reached if the tar-
get states are not already in Reached (Lines 11–20). Since multiple threads may ac-
cess Reached at the same time, Reached needs to be protected by locks in order
to ensure the correct execution of the program. Obviously, locking and unlocking
Reached every time a thread accesses Reached imposes high overhead. To reduce
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Hash value :h1 S11 S12 S1k……Reached(h1)

Hash value: h2 S21 S22 S2r……Reached(h2)

……

Hash value: h m Sm1 Sm2 Smt……Reached(h ) Hash value: h m Sm1 Sm2 Smt……Reached(hm)

Fig. 3. Implementation of the set of reachable states Reached

Algorithm 3. User-Role Reachability Analysis Algorithm in [22].
1: Reached = W = Rel+ = Rel− = ∅; RelRule = ∅; done = 0;
2: procedure mcanalysis(UA0, ut, ψ, goal)
3: (Rel+, Rel−, RelRule) = slicing(UA0, ψ, goal); init = closure(UA0);
4: if goal ⊆ {r | (ut, r) ∈ init} then return true; end if
5: W = Reached(h(init)) = {init};
6: start(t1) || . . . || start(tn);
7: procedure start(ti)
8: while !done do
9: if( W == ∅ and all threads are idle) then done = 1; end if

10: while (W �= ∅)
11: lock(W ); remove a state s from W ; unlock(W );

12: for all transitions s
ua(ra,u,r)→ s′

13: if goal ⊆ {r | (ut, r) ∈ s′} then return true; end if
14: lock(Reached(h(s′));
15: if (Reached(h(s′)) does not exist)
16: Reached(h(s′)) = {s′}; unlock(Reached(h(s′)));
17: lock(W ); W = W ∪ {s′}; unlock(W );
18: else if (s′ �∈ Reached(h(s′)))
19: Reached(h(s′)) = Reached(h(s′)) ∪ {s′}; unlock(Reached(h(s′)));
20: lock(W ); W = W ∪ {s′}; unlock(W );
21: else unlock(Reached(h(s′))); end if
22: end if end for end while
23: end while
24: return false;

the time spent on waiting for locks to access Reached, we implemented Reached
as a hashtable shown in Figure 3. The hashtable is partitioned into multiple regions
Reached(h1), . . . , Reached(hm); Reached(hi) stores a set of states whose hash val-
ues are hi. Once a thread computes a transition s

α→ s′, it computes the hash value
h(s′) of s′, locks Reached(h(s′)), adds s′ to Reached(h(s′)) if s′ is not already
in Reached(h(s′)), and unlocks Reached(h(s′)). The above approach enables two
threads to access two different regions in Reached simultaneously. Our experimental
results show that locking Reached(h(s)) instead of Reached significantly improves
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the performance. This is because threads access Reached very frequently and checking
if a state is in Reached is relatively expensive. The algorithm terminates if the goal is
reached, or if W is empty and all threads are not performing any computation.

It is also possible to reduce the time spent on waiting for locks to access the workset
W by having each thread to have its own workset. Below, we present three approaches
to minimizing (or completely removing) the number of operations performed on lock-
ing/unlocking W .

– NoLock: In this approach, each thread is not allowed to access other threads’ work-
sets. Every time a thread computes a transition, it stores the target state in its own
workset, if the target state is not already in Reached. This approach eliminates the
requirement for locking, but may result in idle threads (due to empty workset).

– FullLock: In this approach, a thread is allowed to access other threads’ workset
to retrieve a state to process, if the thread’s workset is empty. This approach en-
sures that all threads will be approximately equally busy, but it requires to lock the
workset every time the workset is accessed.

– PartialLock: In this approach, whenever a thread ti computes a new transition,
it checks if thread t(i−1) mod n is idle. If so, it locks the workset of t(i−1) mod n,
adds the target state to the workset, unlocks the workset, and starts t(i−1) mod n.
The advantage of this approach is that locking is only needed when ti adds a state
to t(i−1) mod n’s workset. This approach has limitation that each thread ti has to
frequently check if t(i−1)modn is sleeping.

Discussion: Two threads can safely access the same region in Reached simultaneously
if neither thread adds a state to or removes a state from the same region. Thus, in some
cases, it may be possible to improve the performance by replacing mutual exclusion
locks on Reached with reader-writer locks. Unlike a mutual exclusion lock, which
prevents all concurrent accesses to a critical region, a reader-writer lock allows multiple
threads performing read operations to enter critical region. Our experiments, however,
show that such optimization does not yield performance improvement (in fact, it often
causes performance degradation). This is because multiple threads rarely access the
same region in Reached simultaneously during analysis, and reader-writer locks, due
to their complexity, impose greater overheads than mutual exclusion locks.

5 Performance Results

This section evaluates the effectiveness of our reduction techniques and our parallel
algorithms using the university ARBAC policy developed in [22] and the university
RBAC policy developed in [7]. All reported data were obtained on a 2.4GHz 2 Quad-
Core AMD Opteron Processor with 16GB RAM running Ubuntu 3.2.0.

The university RBAC and ARBAC policies contain 845 users, 32 roles, 329
can assign rules, and 78 can revoke rules, after being converted to the corresponding
non-hierarchical policies. The policies include rules for assignment of users to vari-
ous student and employee roles. Student roles include undergraduate student, graduate
student, teaching assistant, research assistant, honors student, etc. Employee roles in-
clude president, provost, dean, department chair, faculty, honor program director, etc. A
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Table 1. Performance of analysis algorithms without reduction, with a single reduction, and with
all reductions

50 non-target users
NoReduct OptSlice DelayedRev UserEquivSet AllReduct

State 111 45 54 15 4
Transition 620 264 278 61 9

Time 0.97 0.41 0.57 0.13 0.09

75 non-target users
NoReduct OptSlice DelayedRev UserEquivSet AllReduct

State 24909 245 6393 273 5
Transition 214165 2168 42718 3222 10

Time 34.30 6.18 10.99 0.15 0.09

100 non-target users
NoReduct OptSlice DelayedRev UserEquivSet AllReduct

State 12706 7552 7855 39 6
Transition 145115 99520 107323 225 11

Time 2363 2029.26 2166.81 0.81 0.1

sample can assign rule is: the honors program director can assign an undergraduate
student to the honors student role. A sample user-role reachability problem instance is:
can a user who is a member of the department chair role and a user who is a member
of the undergraduate student role assign the latter user to the honor student role?

The university ARBAC policy does not satisfy the separate administration restric-
tion. In addition, the policy has hierarchical role assignment w.r.t all administrative
roles except those for assigning users to roles honor student and graduate student. This
means that if the goal contains these two roles, then we cannot directly apply the algo-
rithm for analyzing ARBAC with separate administration to carry out analysis. In our
experiments, we randomly select one target user ut, one role r, and n non-target users
{u1, . . . , un}. We then apply analysis algorithms to check if users in {u1, . . . , un, ut}
together can assign ut to both honor student role and role r.

Effectiveness of Reduction Techniques. Table 1 gives the the size of the transition
graph and the execution time for three sets of experiments with different numbers of
randomly chosen non-target users (50, 75 or 100). Each data point reported in the table
is an average over 8 randomly generated queries. The five columns represent reduction
techniques applied during the experiments: with no reduction (NoReduct), with opti-
mized slicing (OptSlice), with user equivalent set (UserEquivSet), with delayed revoca-
tion (DelayedRev), and with all reductions (AllReduct). Note that we do not include the
hierarchical rule reduction in the table as it is not effective in our experiments. This is
because all administrative roles in the university policy that have junior roles are mixed
roles and remain mixed after applying all reductions.

We observe that, while all reduction techniques improve the performance, their ef-
fectiveness varies under different queries. UserEquivSet performs the best for all three
sets of experiments and DelayedRev is the least effective. Integrating all reductions
leads to a very effective solution. When the problem becomes difficult for the baseline
algorithm to solve, AllReduct achieves an improvement of four orders of magnitude
in execution time. In addition, when the number of non-target users is 150, NoReduct
fails to complete 3 of the 8 queries within 12 hours, whereas the average analysis time
of AllReduct is only 0.1 seconds.
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Table 2. Performance of the parallel algorithm without reduction

50 non-target users
15 threads 30 threads

NoReduct SharedWorkset NoLock FullLock PartialLock SharedWorkset NoLock FullLock PartialLock
Time 0.97 0.33 0.40 0.32 0.52 0.32 0.43 0.34 0.45

75 non-target users
15 threads 30 threads

NoReduct SharedWorkset NoLock FullLock PartialLock SharedWorkset NoLock FullLock PartialLock
Time 34.30 6.58 6.60 5.85 6.74 5.82 7.04 5.80 6.54

100 non-target users
15 threads 30 threads

NoReduct SharedWorkset NoLock FullLock PartialLock SharedWorkset NoLock FullLock PartialLock
Time 2363 1059.73 517.09 436.87 513.46 776.34 537.68 407.53 531.83

Performance Results of Parallel Algorithms. Table 2 gives the execution time of
four parallel analysis algorithms without reductions – SharedWorkset (Algorithm 3),
NoLock, PartialLock, and FullLock – with 15 and 30 threads. The results show that, on
average, FullLock performs the best, followed by PartialLock, NoLock, and Shared-
Workset. FullLock and SharedWorkset with 30 threads outperform those with 15
threads, because the threads often wait for locks to access the worksets in FullLock
and SharedWorkset, and hence more CPU cores are utilized with 30 threads than 15
threads. NoLock and PartialLock with 15 threads outperform those with 30 threads, be-
cause the threads do not or only occasionally wait for locks in NoLock and PartialLock,
and hence the CPU cores are mostly utilized with 15 threads.

6 Related Work

A number of researchers have studied user-role reachability analysis of ARBAC.
Schaad et al. [20] applied the Alloy analyzer [12] to check the separation of duty prop-
erties for ARBAC97; they did not consider preconditions for any operations. Li et al.
[16] presented algorithms and complexity results for various analysis problems for two
restricted versions of ARBAC97, called AATU and AAR; they did not consider negative
preconditions. Jayaraman et al. [14] presented an abstraction refinement mechanism for
detecting errors in ARBAC policies. Alberti et. al [1] developed a symbolic backward
algorithm for analyzing Administrative Attribute-based RBAC policies, in which the
policy and the query are encoded into a Bernays-Shonfinkel-Ramsey first order logic
formulas. Becker [3] proposed a language DYNPAL for specifying dynamic autho-
rization policies, which is more expressive than ARBAC, and presented techniques for
analyzing DYNPAL. Sasturkar et al. [19] showed that user-role reachability analysis
of ARBAC is PSPACE-complete, and presented algorithms and complexity results for
ARBAC analysis subject to a variety of restrictions. Stoller et al. [21] presented algo-
rithms for analyzing parameterized ARBAC. Gofman et al. [9] presented algorithms
for analyzing evolving ARBAC. Uzun et al. [23] developed algorithms for analyzing
temporal role-based access control models. However, none of the above works consider
analysis of ARBAC without separate administration.

Several researchers have considered analysis of ARBAC without separate adminis-
tration. Stoller et al. [22] provided fixed-parameter tractable algorithms for ARBAC
with and without the separate administrative restriction. Their algorithm for analyzing
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ARBAC without separate administration is exponential to the number of users in the
policy, which is usually large in practice. Our work significantly improved the scala-
bility of their algorithm by reducing the number of ARBAC rules and users considered
during analysis. Ferrara et al [4] converted ARBAC policies to imperative programs and
applied abstract-interpretation techniques to analyze the converted programs. However,
if the goal is reachable, their approach cannot produce a trace which shows how the
goal is reachable. Later, the same authors showed that if the goal is reachable in an AR-
BAC policy, then there exists a run of S with at most |administrative roles|+ 1 users in
which the goal is reachable [5]. However, their algorithm and reduction techniques are
different from ours. Their techniques can be combined with ours to further reduce the
analysis time. In addition, none of the above works present parallel analysis algorithms.

A number of researchers have considered analysis of fixed security pol-
icy [13,15,10,11], analysis of a single change to a fixed policy, or analysis of differences
between two fixed policies [15,6]. However, none of them consider analysis of ARBAC.

7 Conclusion and Future Work

This paper considers the user-role reachability analysis without the separate administra-
tion restriction, which was shown to be PSPACE-complete in general. We present new
analysis techniques with the goal of finding a practical solution to the problem. Our
techniques focus on reducing the number of ARBAC rules and users considered during
analysis and delaying unnecessary computations. We have also presented a number of
parallel algorithms that speed up the analysis on multi-core systems. The experimental
results on a university ARBAC policy show that our techniques significantly reduce the
analysis time. In the future, we plan to develop symbolic analysis algorithms to implic-
itly search the state space with a potential to further improve the performance of the
user-role reachability analysis.
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Chau for her contribution to the implementation of parallel algorithms.
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Abstract. In Role-Based Access Control (RBAC), users acquire per-
missions through their assigned roles. Role mining, the process of find-
ing a set of roles from direct user-permission assignments, is essential for
successful implementation of RBAC. In many organizations it is often
required that users are given permissions that can vary with time. To
handle such requirements, temporal extensions of RBAC like Temporal-
RBAC (TRBAC) and Generalized Temporal Role-Based Access Control
(GTRBAC) have been proposed. Existing role mining techniques, how-
ever, cannot be used to process the temporal element associated with
roles in these models. In this paper, we propose a method for mining
roles in the context of TRBAC. First we formally define the Temporal
Role Mining Problem (TRMP), and then show that the TRMP problem
is NP-complete and present a heuristic approach for solving it.

Keywords: TRBAC, Role Enabling Base, Temporal role mining, NP-
complete, Greedy heuristic.

1 Introduction

Role-Based Access Control (RBAC) [14] has emerged as the de-facto standard
for enforcing authorized access to data and resources. Roles play a pivotal part in
the working of RBAC. In order to implement RBAC, one of the key challenges
is to identify a correct set of roles. The process of defining the set of roles is
known as Role Engineering [5]. It can be of two types: top-down and bottom-up.
The top-down approach [13] analyzes and decomposes the business processes
into smaller units in order to identify the permissions required to carry out the
specific tasks. The bottom-up [15] approach uses the existing user-permission
assignments to determine the roles. Role mining is a bottom-up role engineering
technique. It assumes that the user-permission assignments are available in the
form a boolean matrix called the UPA matrix. A 1 in cell (i, j) of the UPA
denotes that user i is assigned permission j. Role mining takes the UPA matrix
as input and produces as output a set of roles, a UA matrix representing which
roles are assigned to each user and a PA matrix representing which permissions
are included in each role.

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 65–80, 2013.
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In many organizations, there is a need for restricting permissions to users
only for a specified period of time. In such cases, the available user-permission
assignments have temporal information associated with them. The roles that
are derived from these temporal user-permission assignments will also have lim-
ited temporal duration. The traditional RBAC model is incapable of support-
ing such temporal constraints associated with roles. In order to capture this
temporal aspect of roles, several extensions of RBAC have been proposed like
Temporal-RBAC (TRBAC) [1] and Generalized Temporal Role-Based Access
Control (GTRBAC) [8]. The TRBAC model supports periodic enabling and dis-
abling of roles. This implies that a role can be enabled during a certain set of
time intervals and remains disabled for the rest of the time. The set of time
intervals during which each role can be enabled is specified in a Role Enabling
Base (REB). To the best of our knowledge, none of the existing role mining
techniques take into consideration such temporal information while computing
the set of roles, and hence cannot be applied for mining roles in TRBAC or
GTRBAC models.

In this paper, we propose an approach for role mining in the context of the
TRBAC model. The problem of finding an optimal and correct set of roles from
an existing set of temporal user-permission assignments has been named as the
Temporal Role Mining Problem (TRMP), and the process of finding such a set is
termed as Temporal Role Mining. We first formally define TRMP and analyze its
complexity. We then propose an approach for solving TRMP that works in two
phases: i) enumerating a candidate set of roles and ii) selecting a minimal set of
roles using a greedy heuristic from the candidate role set and assigning them to
the appropriate users so that each user gets his required set of permissions for
only the set of time intervals specified in the original temporal user-permission
assignments. Our experimental results show how the number of the final set of
roles obtained using our approach varies with the number of permissions and
also the number of distinct time intervals present.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 presents some preliminaries related to RBAC and TRBAC. Section 4
defines the problem and analyzes its complexity. Section 5 describes our heuristic
approach to solve TRMP. In Section 6, we present experimental results and
finally conclude in Section 7 along with directions for future work.

2 Related Work

The problem of finding an optimal set of roles from a given set of user-permission
assignments is known as the Role Mining Problem (RMP). In [15] and [16], the
authors formally define RMP and show the problem to be NP-complete. They
also map RMP to the Minimum Tiling Problem of databases and use a known
heuristic algorithm for finding the minimum tiling of a database to solve RMP.

Vaidya et al. [17] present an unsupervised approach called RoleMiner which
is based on clustering users having similar permissions into groups. The authors
present two algorithms: CompleteMiner and FastMiner to enumerate the set
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of candidate roles. Lu et al. [9] model the problem of Optimal Boolean Matrix
Decomposition (OBMD) using binary integer programming. This enables them
to directly apply a wide range of heuristics for binary integer programming
to solve the OBMD problem. Since solving RMP essentially involves optimally
decomposing the boolean matrix UPA into two boolean matrices, UA and PA,
RMP is modeled as a boolean matrix decomposition problem. In [6], it is shown
that the role minimization problem is equivalent to the Minimum Biclique Cover
(MBC) problem. MBC being an NP-hard problem, the authors present a greedy
heuristic to find the minimum biclique cover of a bipartite graph which can be
used to solve RMP. In [2], [3] the authors propose a three-step methodology
to reduce the complexity of role mining as well as the administration cost by
restricting the process of role mining only to stable user-permission assignments,
i.e., user-permission assignments that belong to roles having weight above a
predefined threshold value. The unstable assignments are used to create single-
permission roles.

Other role mining approaches include role mining with noisy data [12], where
the input data is first cleansed to remove the noise before generating candidate
roles, role mining based on weights [10] in which a certain weight is associ-
ated with each permission depending on its importance, mining roles having
low structural complexity and semantic meaning [11], and Visual Role Mining
(VRM) [4], which enumerates roles based on a visual analysis of the graphical
representation of the user-permission assignments. Xu and Stoller [19] propose
algorithms for role mining which optimize a number of policy quality metrics.
Verde et al. present an approach in [18] to make role mining applicable to large
datasets and hence scalable.

None of the above-mentioned approaches consider the presence of temporal
elements in user-permission assignments. We study the problem of role mining
in the context of a temporal extension of RBAC, namely, TRBAC [1].

3 Preliminaries

In this section, we present some preliminaries related to RBAC and TRBAC.

3.1 Role-Based Access Control

According to the NIST standard [7], the RBAC model consists of the following
components:

Definition 1. RBAC

– USERS, ROLES, OPS, and OBJS are respectively the set of users, roles,
operations, and objects.

– UA ⊆ USERS×ROLES, a many-to-many mapping of user-to-role assign-
ment.

– The set of permissions, PRMS.
PRMS ⊆ {(op, obj)|op ∈ OPS ∧ obj ∈ OBJS}.
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– PA ⊆ ROLES × PRMS, a many-to-many mapping of role-to-permission
assignment.

– assigned users(R) = {u ∈ USERS|(u,R) ∈ UA}, the mapping of role
R ∈ ROLES onto a set of users.

– assigned permissions(R) = {p ∈ PRMS|(p,R) ∈ PA}, the mapping of
role R ∈ ROLES onto a set of permissions.

3.2 Temporal Role-Based Access Control

The TRBAC model allows periodic enabling and disabling of roles. Temporal
dependencies among such actions are expressed using role triggers. The enabling
or disabling of roles is expressed using simple event expressions or prioritized
event expressions. Role status expressions, having the form enabled R or ¬enabled
R, describe whether a role R is currently enabled or not. Event expressions, role
status expressions and role triggers together build up the Role Enabling Base
(REB), which contains various temporal constraints related to the enabling and
disabling of roles. The model also allows runtime requests to be issued by an
administrator to dynamically change the status of a role, so as to be able to
react to emergency situations.

In order to represent the set of time intervals for which a role can be enabled,
the TRBAC model uses the notion of periodic expressions [1]. Periodic time can
be represented as 〈[begin, end], P 〉, where P is a periodic expression representing
an infinite set of periodic time instants and [begin, end] is a time interval that
imposes an upper and a lower bound on the instants of P . The representation of
periodic expression is based on the notion of Calender. A calender is a finite set
of consecutive time intervals. Let Cd, C1, ..., Cn be a set of calenders. A periodic
expression P is defined as:

P =

n∑
i=1

Oi · Ci � r · Cd (1)

where O1 = all, Oi ∈ 2N ∪ {all}, Ci � Ci−1 for i = 2, ..., n, Cd � Cn, and r ∈ N.
The symbol � denotes sub-calender relationship. The first part of the periodic
expression P before the symbol � represents the starting points of the set of time
intervals denoted by P and the second part denotes the duration of each time
interval in terms of a natural number r and calender Cd.

4 Mining Roles Having Temporal Constraints

In this section, we discuss how the user-permission assignments having associated
temporal information can be represented, then formally define the temporal role
mining problem, and finally present an analysis of its complexity.
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4.1 Temporal UPA Matrix

The temporal role mining process takes as input a temporal user-permission
assignment relation, which describes the sets of time intervals for which one or
more permissions are assigned to each user. Such a user-permission assignment
relation can be directly available in an organization or can be derived from the
access logs. We represent these temporal user-permission assignments using a
Temporal UPA (TUPA) matrix. The rows of the matrix represent the users and
the columns represent the permissions. Each cell (ui, pj) of the matrix contains
either a zero or a set Tij of time intervals for which user ui is assigned permission
pj . Each set of time intervals Tij is represented using a periodic expression of
the form of Eqn. 1. Table 1 shows an example TUPA matrix.

Table 1. An Example TUPA Matrix

p1 p2 p3

u1 〈[1/1/2010,∞], all.Days+ 0 〈[1/1/2010,∞], all.Days+
{8}.Hours 	 1.Hours〉, {8}.Hours 	 1.Hours〉

〈[1/1/2010,∞], all.Days+
{10}.Hours 	 1.Hours〉

u2 0 〈[1/1/2010,∞], all.Days+ 〈[1/1/2010,∞], all.Days+
{6}.Hours 	 1.Hours〉, {8}.Hours 	 1.Hours〉

〈[1/1/2010,∞], all.Days+
{8}.Hours 	 2.Hours〉

u3 0 〈[1/1/2010,∞], all.Days+ 0
{9}.Hours 	 1.Hours〉

In this matrix, user u1 is assigned permission p1 for two different sets of
time intervals: everyday from 8 am to 9 am and from 10 am to 11 am. u1 is
also assigned p3 for a single set of time intervals: everyday from 8 am to 9 am.
Similarly, u2 is assigned p2 everyday from 6 am to 7 am and from 8 am to 10
am. u2 is also assigned p3 everyday from 8 am to 9 am. Finally, u3 is assigned
only p2 for a single set of time intervals: everyday from 9 am to 10 am. It may be
observed that, in the TUPA matrix, a user can be assigned different permissions
for the same or different sets of time intervals and also the same permission can
be assigned to different users for the same or different sets of time intervals. In
general, the sets of time intervals that are not equal can be either overlapping
or disjoint.

4.2 Problem Definition

The TUPA matrix is given as input to the temporal role mining process. The
output of the process is a set of roles ROLES, a UA matrix, which is a boolean
matrix denoting the roles assigned to each user, a PA matrix, which is a boolean
matrix denoting the permissions included in each role and a Role Enabling Base
(REB), containing, for each role, a set of time intervals during which the role can
be enabled. The permissions are thus available to the users through the assigned
roles only during the sets of time intervals during which the corresponding roles
are enabled as specified in the REB.
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We say that the output is consistent with the input TUPA matrix if each user,
on being assigned a subset of the set of mined roles, gets a set of permissions for
a set of time intervals as he was originally assigned in the given TUPA matrix.
Thus, the Temporal Role Mining Problem (TRMP) can be formally defined as:

Definition 2. TRMP
Given a set of users USERS, a set of permissions PRMS and a temporal user-
permission assignment TUPA, find a set of roles ROLES, a user-role assignment
UA, a role-permission assignment PA, and an REB consistent with the TUPA,
such that the total number of roles is minimized.

4.3 Complexity Analysis

In this subsection, we provide a formal analysis of the complexity of TRMP. Be-
fore proceeding with the formal analysis, we first formulate the decision version
of TRMP. The Decision-TRMP problem (DTRMP) can be defined as:

Definition 3. DTRMP
Given a set of usersUSERS, a set of permissionsPRMS, a temporal user-permission
assignment TUPAand a positive integer k, is there a set of roles ROLES, a user-role
assignment UA, a role-permission assignment PA and an REB, consistent with the
TUPA, such that |ROLES |≤ k ?

Given a certificate consisting of a set ROLES, a UA, a PA and an REB, it can
be verified in polynomial time whether |ROLES|≤ k and whether the ROLES,
UA, PA and REB are consistent with the TUPA by finding out the set of time
intervals during which each user gets a particular permission through one or
more roles assigned to him and comparing with the TUPA. Thus DTRMP is in
NP.

Next we show that a known NP-complete (or NP-hard) problem is polynomial
time reducible to DTRMP. For this, we select RMP. The Decision RMP, which
has been shown to be NP-complete [15], can be stated as:

Definition 4. Decision RMP
Given a set of users URMP , a set of permissions PRMP , a user-permission as-
signment UPA and a positive integer k, is there a set of roles R, a user-role
assignment UARMP and a role-permission assignment PARMP consistent with
the UPA, such that |R| ≤ k ?

Given an instance of the Decision RMP, URMP and PRMP are respectively
mapped to USERS and PRMS using identity transformations. UPA is mapped
to TUPA where each zero entry of UPA is mapped to a zero entry of TUPA and
each non-zero entry of UPA is assigned a fixed set of time intervals, say T0 in
the TUPA. This reduction is in polynomial time.

To complete the proof, it is to be shown that the output instance of Decision
RMP (consisting of R, UARMP and PARMP ) is such that |R | is less than or
equal to k if and only if the output instance of DTRMP (consisting of ROLES,
UA, PA and REB) is such that |ROLES| has a value less than or equal to k.
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Given an instance of the Decision RMP, let R, UARMP and PARMP constitute
the output instance such that |R | ≤ k. Now, the output instance of DTRMP
can be constructed from the output instance of the Decision RMP as follows: R
denotes the set of roles ROLES, UARMP denotes the UA and PARMP denotes
the PA. The REB is constructed by associating the same set of time intervals
corresponding to each of the roles in ROLES. Since the set of time intervals
during which each role in ROLES can be enabled are the same, so if the output
instance of the Decision RMP is consistent with the given UPA, then the output
instance of the DTRMP is also consistent with the given TUPA. Therefore, the
output instance of DTRMP constructed from the output instance of Decision
RMP is a valid solution of DTRMP. Similarly, it can be shown that given an out-
put instance of DTRMP, a valid solution to Decision RMP can be constructed.
Thus, DTRMP produces as output a set of roles ROLES having size k or less, a
UA, a PA and an REB if and only if Decision RMP gives a set of roles R of size
k or less, a UARMP and a PARMP . Therefore, DTRMP is NP-complete.

5 Heuristic Approach for Solving TRMP

Since TRMP has been shown to be NP-complete in Section 4, we present a
heuristic approach for solving it in this section. It works in two phases:

– Candidate Role Generation: This phase enumerates the set of candidate
roles from an input TUPA matrix.

– Role Selection: This phase selects the least possible number of roles from
the candidate roles using a greedy heuristic so that the generated UA, PA
and REB together is consistent with the TUPA matrix.

5.1 Candidate Role Generation

A TUPA matrix is given as input to the candidate role generation phase. Each
non-zero entry of TUPA represents a triple 〈ui, pj , Tij〉. This implies that user ui

is assigned permission pj for the set of time intervals Tij . Let us denote the set
of all such triples by UT . A role is a collection of permissions which is enabled
during a certain set of time intervals and can be assigned to a specific set of users.
So, each triple of UT can be considered as a role consisting of a single user, a
single permission and a set of time intervals. We call such roles as unit roles. In
the first phase, a set UnitRoles of all such unit roles is initially constructed.

Before going into the details of the successive steps, we show how the creation
of roles depends on the interrelationships among the sets of time intervals for
which permissions are assigned to users. Let a user u1 be assigned two permis-
sions, namely, p1 for the set of time intervals T11 and p2 for the set of time
intervals T12. Now, three scenarios may arise.

– If T11 = T12, then a role r will be created containing p1 and p2. r will be
enabled during T11.
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– If T11 ∩ T12 = φ, i.e., T11 and T12 are disjoint, then two roles: r1 containing
p1, and r2 containing p2 will be created. r1 will be enabled during T11 and
r2 will be enabled during T12.

– If T11 ∩ T12 �= φ, i.e., T11 and T12 have a non-empty intersection, then three
roles will be created: r1 containing p1 and p2 which will be enabled during
T11∩T12, r2 containing only p1 which will be enabled during T11−(T11∩T12),
and r3 containing only p2 which will be enabled during T12 − (T11 ∩ T12).
Either one of r2 and r3 might be superfluous depending on whether T11 ⊂ T12

or T12 ⊂ T11.

Thus, it is seen that depending upon how the various sets of time intervals
are related to one another, they may have to be split differently while creating
roles. Moreover, since (T11 ∩ T12) ⊆ T11, (T11 ∩ T12) ⊆ T12 and each of T11 and
T12 is a subset of itself, the set of time intervals during which a role can be
enabled is a subset of the common sets of time intervals associated with the
permissions included in that role. Since the sets of time intervals associated with
the permissions are the non-zero TUPA matrix entries, the set of time intervals
during which a role can be enabled can be considered to be a subset of the non-
zero TUPA matrix entries. Therefore, each role can be considered to be a subset
of one or more triples of UT .

After constructing the set of unit roles, a set of initial roles is next constructed
as follows: For each user, if a common set of time intervals exists among all the
permissions assigned to him, then the user, the permissions and the common set
of time intervals are put together to form a role. If after creation of this role,
corresponding to any one or more permissions, there remains any set of time
intervals that is not included in the role, separate roles are created for each of
those permissions by including the corresponding user and the remaining set of
time intervals. If no common set of time intervals exists among all the permissions
assigned to the user, then separate roles are created by combining the user, each
of the permissions and the corresponding sets of time intervals. We call the set
of all the initial roles as InitialRoles.

In the final step of phase 1, a generated set of roles is constructed by per-
forming pairwise intersection between the members of InitialRoles. We call this
set as GeneratedRoles. For any two roles i and j of InitialRoles, let u be the
user associated with i and u′ be the user associated with j. If both i and j have
one or more common permissions and the associated sets of time intervals have
a non-empty intersection, then the following roles are created:

– a role r1 containing the users u and u′, the permissions common to both i
and j, and the common set of time intervals between i and j.

– a role r2 containing user u, the permissions common to both i and j, and
the remaining set of time intervals (if any, after creating r1) associated with
role i.

– a role r3 containing user u′, the permissions common to both i and j, and
the remaining set of time intervals (if any, after creating r1) associated with
role j.
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– a role r4 containing user u, permissions of i which are not present in j, and
the set of time intervals associated with i.

– a role r5 containing user u′, permissions of j which are not present in i, and
the set of time intervals associated with j.

Roles r2 and r3 are created by combining the sets of time intervals that get split
as a result of creating role r1 with the appropriate users and permissions. After
creating the generated set of roles, the candidate set of roles CandidateRoles is
created by taking the union of UnitRoles, InitialRoles and GeneratedRoles. If
the sets of time intervals associated with any two roles in CandidateRoles are
the same and either their permission sets are identical or the user sets associated
with them are identical, then the two roles are merged to create a single role by
either taking union of their user sets or that of their permission sets respectively.
This completes phase 1.

5.2 Role Selection

The set of candidate roles created in the Candidate Role Generation phase is
given as input to the Role Selection phase. In this phase, a minimal cardinality
subset of CandidateRoles is selected so that each user after being assigned a
subset of the set of selected roles, gets each of the permissions assigned to him
for only those sets of time intervals as specified in the TUPA matrix. As already
mentioned, each role can be considered to be a subset of the set UT . A set of
such roles can be considered to be a set of subsets of UT . We say that a role
r covers a triple 〈ui, pj , Tij〉 of UT if r contains the user ui, permission pj and
either a proper or an improper subset of the set of time intervals Tij . Each role
covers one or more triples of the set UT and each triple of UT can be covered by
more than one role (if a set of time intervals corresponding to a non-zero TUPA
entry gets split into two or more sets of intervals during role creation). So, there
arises a need to distinguish between fully covered and partially covered triples.

Definition 5. Fully Covered, Partially Covered
Let Tim be a set of time intervals corresponding to the triple t = 〈ui, pm, Tim〉
and rk be a role such that rk = ({ui, uj}, {pm, pn}, {Tk}). If Tim ⊆ Tk, then rk
fully covers the triple t. If Tk ⊂ Tim, then rk partially covers t.

The task of the role selection phase is to select the minimum number of roles to
fully cover all the triples of UT . It uses the following greedy heuristic: at each
stage, the role that fully covers the maximum number of uncovered triples is
selected. If more than one role fully covers the maximum number of triples, the
tie is broken by selecting the role that partially covers the maximum number of
triples. This is done because the sets of time intervals remaining after a number
of sets of time intervals get partially covered may be covered by a single role if
the corresponding user and permission sets are the same. At each stage, after
selecting a role, the fully covered triples of UT are marked appropriately and the
partially covered ones are updated.
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After all the triples are fully covered, it is checked whether any two or more
of the selected roles can be merged. If so, the appropriate roles are merged into
a single role. In the merging step at the end of the candidate role generation
phase, the merged roles are not compared with each other for further merging.
It may so happen that two or more roles created as a result of merging at the
end of the previous phase can be merged further to form a single role. If these
roles are selected by the role selection phase, then they are merged in this final
merging step. If not, then no merging is required. This final merging step can
further reduce the number of roles.

Algorithm 1. Enumerate Candidate Roles
Require: P (u): the set of permissions assigned to user u
Require: U(i): the set of users associated with role i
Require: T (P (u)): the common set of time intervals among all the permissions assigned to user u
Require: Tup: the set of time intervals for which user u is assigned permission p
Require: T (x): the set of time intervals during which role x can be enabled
1: Initialize UnitRoles, InitialRoles, GeneratedRoles, CandidateRoles as empty sets
2: for each triple ({u}, {p}, {Tup}) corresponding to a non-zero entry of TUPA do
3: UnitRoles ← UnitRoles ∪ ({u}, {p}, {Tup})
4: end for
5: for each user u ∈ TUPA do
6: if T (P (u)) �= φ then
7: InitialRoles ← InitialRoles ∪ ({u}, {P (u)}, {T (P (u))})
8: for each p ∈ P (u) do
9: InitialRoles ← InitialRoles ∪ ({u}, {p}, {Tup − T (P (u))})
10: end for
11: else
12: InitialRoles ← InitialRoles ∪ ({u}, {p}, {Tup})
13: end if
14: end for
15: for each role i ∈ InitialRoles do
16: InitialRoles ← InitialRoles − i
17: for each role j ∈ InitialRoles do
18: if {i ∩ j} �= φ and T (i) ∩ T (j) �= φ then
19: 	 {i ∩ j} denotes the common set of permissions of roles i and j
20: GeneratedRoles ← GeneratedRoles ∪ ({u, u′}, {i ∩ j}, {T (i) ∩ T (j)}) ∪ ({u}, {i ∩

j}, {T (i)− (T (i)∩T (j))})∪ ({u′}, {i∩ j}, {T (j)− (T (i)∩T (j))})∪ ({u}, {i− (i∩ j)}, {T (i)})∪
({u′}, {j − (i ∩ j)}, {T (j)}) 	 u and u′ are the users associated with roles i and j respectively

21: end if
22: end for
23: end for
24: CandidateRoles ← UnitRoles ∪ InitialRoles ∪ GeneratedRoles
25: for each i, j ∈ CandidateRoles do
26: if T (i) = T (j) then
27: if i = j then 	 permission sets of i and j are same
28: CandidateRoles ← {CandidateRoles − i − j} ∪ ({U(i) ∪ U(j)}, {i}, {T (i)})
29: else
30: if U(i) = U(j) then
31: CandidateRoles ← {CandidateRoles − i− j} ∪ ({U(i)}, {i ∪ j}, {T (i)})
32: end if
33: end if
34: end if
35: end for

The algorithm for enumerating the set of candidate roles is given in Algorithm
1. The sets UnitRoles, InitialRoles,GeneratedRoles and CandidateRoles are
initialized as empty sets in line 1. The set UnitRoles is created from the set of
triples corresponding to the non-zero entries of the TUPA matrix in lines 2 - 4.
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Lines 5 - 14 create the set of initial roles. The set of generated roles is created
in lines 15 - 23 by performing pairwise intersection between the members of
InitialRoles. The set CandidateRoles is created in line 24 by taking union of
UnitRoles, InitialRoles and GeneratedRoles. Finally, for each candidate role,
it is checked whether it can be merged with any other candidate role, and if
possible, the two roles are merged (lines 25 - 35).

The algorithm for selecting the minimal set of roles from CandidateRoles is
shown in Algorithm 2. Select Final Roles takes as input the set CandidateRoles.
It keeps track of the number of triples of UT that remain uncovered, using
entry count. entry count is initialized to the number of triples of UT (line 1).
The while loop of lines 2 - 9 selects a role that fully covers the maximum number
of uncovered triples in each iteration (line 3) until all the triples are fully covered.
If there is a tie, the role that partially covers the maximum number of uncovered
triples is selected (line 5). UT is updated in line 7 by marking appropriately the
triples which get fully covered and by modifying the ones which get partially
covered. entry count is next updated (line 8). Finally, when no uncovered triples
are left the set of selected roles is checked to determine if any of the roles can
be merged. If so, the appropriate roles are merged (line 10). Lastly, the UA, PA
and REB are constructed from the set of selected roles (line 11).

Algorithm 2. Select Final Roles
Require: entry count: the number of uncovered triples of UT

Require: fully covered: the number of triples that are fully covered in a particular iteration
1: entry count ← |UT |
2: while entry count > 0 do
3: select a role that fully covers the maximum number uncovered triples
4: if there is a tie then
5: select the role that partially covers the maximum number of triples
6: end if
7: update UT

8: entry count ← entry count − fully covered
9: end while
10: merge roles, if possible, in the set of selected roles
11: create UA, PA and REB from the set of selected roles

5.3 Illustrative Example

We illustrate how our approach works using the TUPA matrix given in Table
2 which is a simplified representation of Table 1. In this table, each non-zero
TUPA matrix entry is a set of one or two time intervals. The proposed approach
is, however, generic enough to handle complex sets of time intervals represented
in the form of periodic expressions as mentioned in Section 3.

A. Candidate Role Generation
Algorithm 1 constructs the set UnitRoles as follows.
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Table 2. Simplified Representation of the TUPA Matrix given in Table 1

p1 p2 p3

u1 8 am - 9 am 0 8 am - 9 am
10 am - 11 am

u2 0 6 am - 7 am 8 am - 9 am
8 am - 10 am

u3 0 9 am - 10 am 0

UnitRoles = {r1 = ({u1}, {p1}, {8 am − 9 am}), r2 = ({u1}, {p1}, {10 am −
11 am}), r3 = ({u1}, {p3}, {8 am−9 am}), r4 = ({u2}, {p2}, {6 am−7 am}), r5 =
({u2}, {p2}, {8 am−10 am}), r6 = ({u2}, {p3}, {8 am−9 am}), r7 = ({u3}, {p2},
{9 am− 10 am})}

The set InitialRoles is next constructed by considering each user of the TUPA
matrix one at a time.

InitialRoles = {r8 = ({u1}, {p1, p3}, {8 am− 9 am}), r9 = ({u1}, {p1},
{10 am−11 am}), r10 = ({u1}, {p3}, {8 am−9 am}), r11 = ({u2}, {p2}, {6 am−
7 am}), r12 = ({u2}, {p2, p3}, {8 am−9 am}), r13 = ({u2}, {p2}, {9 am−10 am}),
r14 = ({u2}, {p3}, {8 am− 9 am}), r15 = ({u3}, {p2}, {9 am− 10 am})}

By performing pairwise intersection between the members of InitialRoles, the
set of generated roles is obtained.

GeneratedRoles = {r16 = ({u1, u2}, {p3}, {8 am− 9 am}), r17 = ({u1}, {p1},
{8 am−9 am}), r18 = ({u2}, {p2}, {8 am−9 am}), r19 = ({u2, u3}, {p2}, {9 am−
10am})}

Finally, after taking union of the three sets of roles created, merging the roles
and renaming them, the set CandidateRoles is obtained.

CandidateRoles = {r1 = ({u1}, {p1, p3}, {8 am− 9 am}), r2 = ({u1}, {p1},
{10 am−11 am}), r3 = ({u2}, {p2}, {6 am−7 am}), r4 = ({u2}, {p2, p3}, {8 am−
9 am}), r5 = ({u1, u2}, {p3}, {8 am − 9 am}), r6 = ({u2, u3}, {p2}, {9 am −
10 am}), r7 = ({u2}, {p2}, {8 am− 10 am})}

B. Role Selection
The set CandidateRoles is given as input to Algorithm 2. In the first iteration,
both r1 and r5 fully cover the maximum number of uncovered triples, i.e., 2,
and neither of them partially covers any of the triples. This tie is broken by
selecting r1. As a result, triples 〈u1, p1, {8am−9am}〉 and 〈u1, p3, {8am−9am}〉
are fully covered. In the next iteration, there is a tie among all the remaining
candidate roles as each of them fully covers 1 triple. Among these roles, only
r4 and r6 each covers 1 triple partially. This tie is broken by selecting r4. Now
the triple 〈u2, p3, {8am− 9am}〉 gets fully covered and the triple 〈u2, p2, {8am−
10am}〉 after getting partially covered becomes 〈u2, p2, {9am− 10am}〉. Each of
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the remaining triples is fully covered by selecting the roles r6, r2 and r3 one by
one. After sorting the roles according to their indices and renaming r6 to r5, the
resulting UA, PA and REB are shown in Tables 3, 4 and 5, respectively.

Table 3. UA Matrix

r1 r2 r3 r4 r5
u1 1 1 0 0 0
u2 0 0 1 1 1
u3 0 0 0 0 1

Table 4. PA Matrix

p1 p2 p3

r1 1 0 1
r2 1 0 0
r3 0 1 0
r4 0 1 1
r5 0 1 0

Table 5. REB

Role Enabling Time Interval
r1 all.Days + {8}.Hours 	 1.Hours
r2 all.Days + {10}.Hours 	 1.Hours
r3 all.Days + {6}.Hours 	 1.Hours
r4 all.Days + {8}.Hours 	 1.Hours
r5 all.Days + {9}.Hours 	 1.Hours

6 Experimental Results

We test the performance of the proposed temporal role mining algorithm on a
number of synthetically generated TUPA matrices. Instead of directly creating
random TUPA matrices, we first create UA, PA and REB randomly and then
combine them to obtain the random TUPA matrix. For all the datasets, the
number of users is fixed at 100. The REB is created by varying the number of
distinct time intervals from 1 to 3. When the number of distinct time intervals
is 2, we consider three cases that may arise: (i) one time interval is contained in
the other (2C) (ii) the two time intervals overlap, but neither is contained in the
other (2O) and (iii) the two time intervals are disjoint (2D). When the number
of distinct time intervals is 3, we consider 5 scenarios: (i) two intervals overlap,
neither one is contained in the other and the third one is disjoint (2O1D) (ii) all
the three intervals are disjoint (3D) (iii) one interval is contained in the other
and the third is disjoint (2C1D) (iv) two intervals are contained in the third one
(3C) and (v) all the three intervals overlap, but no interval is contained in any
of the remaining intervals (3O). For generating the data, the number of roles is
taken to be one-tenth of of the number of permissions, except in two cases: (i)
when the number of permissions is 10, the number of roles is taken as 2 for both
one and two distinct time intervals and (ii) when the number of distinct time
intervals is three and the number of permissions is 10 or 20, the number of roles
is taken as 3. For achieving high confidence level, we created 20 datasets for each
parameter setting and the final number of roles reported is the mean and mode
of the output of all the 20 runs.

Table 6 shows the variation of the number of roles with the number of per-
missions when there is only one distinct time interval for all the user-permission
assignments. In this scenario, the temporal role mining problem reduces to non-
temporal role mining. The results of Table 6 indicate correctness of our approach
since the number of roles obtained in each case is the same as the number of
roles with which the dataset was generated.

Table 7 shows the variation of the number of roles with the number of permis-
sions when the number of distinct time intervals is two. This table shows that
as the number of permissions increases, the number of roles also increases. The
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Table 6. No. of Roles (Mean|Mode) vs. No. of Permissions when the No. of Distinct
Time Intervals is 1

Number of Permissions Number of Roles (Mean|Mode)
10 2.0 |2
20 2.0 |2
30 3.0 |3
40 4.0 |4

Table 7. No. of Roles (Mean|Mode) vs. No. of Permissions when the No. of Distinct
Time Intervals is 2

Number of Roles (Mean|Mode)
Number of Permissions 2C 2O 2D

10 2.7 |2 2.8 |2 2.8 |2
20 2.9 |2 3.2 |2 2.7 |2
30 5.5 |3 8.4 |12 5.6 |7
40 7.4 |7 21.8 |23 9.9 |12

increase in the number of roles is attributed to the splitting of time intervals
during role creation. The increase is relatively less for case 2C because, if a user
is assigned a permission for both the time intervals, then actually he is assigned
the permission for a single time interval, namely, the one which contains the
other. But still the number of roles generated is more than that obtained for one
distinct time interval, because a single user can acquire different permissions
during either one of the two distinct time intervals, resulting in the splitting of
the time intervals during role creation. Case 2O generates a large number of roles
as the two time intervals get split during role creation. Finally, for case 2D, the
time intervals do not get split during role creation and so the number of roles is
comparatively less than case 2O.

Finally, in Table 8, we show the variation of the number of roles with the
number of permissions for all the five cases mentioned above for three distinct
time intervals. Here also it is seen that with the increase in the number of
permissions, the number of roles increases. Case 3O generates the maximum
number of roles as overlap among three time intervals results in the maximum
amount of time interval splitting. Cases 3C and 3O generate more number of
roles than cases 2C and 2O respectively, thus showing that with the increase
in the number of distinct time intervals, the number of roles generated also
increases. Case 2O1D generates lesser number of roles than case 3O, as overlap
between two time intervals results in less splitting than that occurring in case of
overlap among three time intervals. The number of roles obtained in case 3D is
less than the rest of the cases, since these 4 cases result in time interval splitting
during role creation which is completely absent in case 3D. Cases 2O1D and 3O
respectively generate more number of roles than cases 2C1D and 3C as overlap
among time intervals causes greater amount of splitting than containment of
time intervals within one another.

Our results show that, as the number of distinct time intervals increases and
there exists some overlap among them, the number of roles finally produced also
increases due to the splitting of time intervals during role creation. The effect of
overlap is more significant than that of permissions.
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Table 8. No. of Roles (Mean|Mode) vs. No. of Permissions when the No. of Distinct
Time Intervals is 3

Number of Roles (Mean|Mode)
Number of Permissions 2O1D 3D 2C1D 3C 3O

10 6.2 |7 5.6 |6 5.7 |3 6.6 |6 7.8 |8
20 7.4 |6 5.2 |6 5.9 |7 7.0 |6 7.7 |3
30 7.3 |7 6.5 |7 6.7 |7 6.3 |6 9.9 |15
40 13.3 |12 9.0 |8 11.6 |10 8.5 |4 19.9 |23

7 Conclusions and Future Directions

Temporal role mining is essential for creating roles in systems that assign permis-
sions to users for varying sets of time intervals. In this paper, we have formally
defined the Temporal Role Mining Problem (TRMP) and proved it to be NP-
complete. We have proposed an approach for mining roles from temporal user-
permission assignments. Our approach first creates a candidate set of roles and
then selects a minimal subset of the candidate role set using a greedy heuristic
to cover all the requisite assignments.

Future work in this area would include designing of other heuristics that
can further reduce the number of roles finally obtained. Different optimization
metrics besides the number of roles may be defined that would generate more
meaningful roles having temporal constraints. An approximate solution approach
could be designed that would allow a certain amount of inaccuracy in terms of the
time duration for which some users would acquire certain permissions through
one or more roles assigned to him.
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Abstract. Role mining recently has attracted much attention from the role-based
access control (RBAC) research community as it provides a machine-operated
means of discovering roles from existing permission assignments. While there is
a rich body of literature on role mining, we find that user experience/perception
- one ultimate goal for any information system - is surprisingly ignored by the
existing works. This work is the first to study role mining from the end-user
perspective. Specifically, based on the observation that end-users prefer simple
role assignments, we propose to incorporate to the role mining process a user-role
assignment sparseness constraint that mandates the maximum number of roles
each user can have. Under this rationale, we formulate user-oriented role mining
as two specific problems: one is user-oriented exact role mining problem (RMP),
which is obliged to completely reconstruct the given permission assignments, and
the other is user-oriented approximate RMP, which tolerates a certain amount of
deviation from the complete reconstruction. The extra sparseness constraint poses
a great challenge to role mining, which in general is already a hard problem. We
examine some typical existing role mining methods to see their applicability to
our problems. In light of their insufficiency, we present a new algorithm, which
is based on a novel dynamic candidate role generation strategy, tailored to our
problems. Experiments on benchmark datasets demonstrate the effectiveness of
our proposed algorithm.

Keywords: Access Control, Role Mining, Sparseness, Binary, Optimization.

1 Introduction

Role-based access control (RBAC) restricts system access to authorized users by as-
signing permissions to roles and then assigning roles to users. RBAC has become a de
facto access control model, due to its many advantages, including the convenience of
authorization allocation and the reduction of the system administrative workload. En-
terprises still employing their old access control systems want to migrate to RBAC. To
accomplish the migration, the first phase is to define a good role set. While the role
defining problem is seemingly straightforward, it has been recognized as one of the
costliest phases in the implementation of RBAC and poses a great challenge to the sys-
tem engineers. The difficulty comes from the fact that a RBAC system engineer usually
has little knowledge on the semantic meanings of user responsibilities and business
processes within an enterprise.
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Role mining has proven to be an effective (machine-operated) means of discovering
a good role set. Its key idea is to utilize data mining technologies to extract patterns from
existing permission assignments of the old access control system, which are then used
to establish roles. This greatly facilitates the implementation of RBAC (by migrating
from the old access control system). In the literature, role mining has been extensively
studied. In a nutshell, the existing literature investigates role mining with different ob-
jectives, including minimization of the number of roles, minimization of the adminis-
tration cost, minimization of the complexity of the role hierarchy structure, and others.
However, we find that none of the existing works has ever considered to improve end-
user experience (of the underlying RBAC system), which should be one ultimate goal
for any practical information system. Needless to say, users’ experience/perception of a
system represents system usability and directly affects the eventual success of the sys-
tem in practice. As such, we argue that user-friendliness should be an essential criterion
for evaluating the quality of role mining.

In this paper, we study user-oriented role mining, being the first to explore the role
mining problem from the end-user perspective. Our daily experiences tell us that end
users often prefer fewer role assignments; as long as a user acquires all the needed per-
missions, the fewer roles she has to bear, the better usability she may feel upon the
system. That is, from the end-user perspective, a good RBAC system should have as
sparse user-role assignments as possible. This coincides with an advantage of RBAC:
recall that one reason accounting for the wide acceptance of RBAC is that it allows users
to carry very few roles while enjoying their (potentially many) access rights. However,
on the flip side, if we create a unique role for every user, in which case user-role assign-
ments are trivially the most sparse, then the resultant RBAC system would contain too
many roles. This absolutely contradicts to a premise of RBAC, which is to map permis-
sion roles with functional roles within an organization. As such, a user-oriented RBAC
solution should not compromise other advantages of RBAC. To this end, we propose to
limit the maximum number of roles a user can take on top of regular role mining. Such
a strategy would well balance user friendliness and other system quality factors such as
administrative overhead. While the idea is clear, the added constraint poses extra chal-
lenges to role mining, considering that role mining in general has already been a hard
problem. Towards tackling the obstacle, we make the following contributions: (1) we
formulate user-oriented role mining as two specific problems, i.e., user-oriented exact
RMP (Role Mining Problem) and user-oriented approximate RMP; (2) in searching for
efficient solutions to the formulated problems, we examine several typical role mining
algorithms and reveal that they do not meet our needs; (3) in view of the weaknesses of
the existing algorithms, we present an efficient algorithm, tailored to the user-oriented
role mining problems; (4) to investigate the effectiveness of our algorithm, we conduct
experiments on benchmark datasets and obtain promising experimental results.

The remainder of the paper is organized as follows. Section 2 reviews existing role
mining works in the literature. Section 3 presents the user-oriented role mining prob-
lem. Section 4 presents optimization models. The heuristic algorithm is provided in
Section 5. Experimental results on benchmark access control data sets are reported in
Section 6. Section 7 concludes the paper.
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2 Related Work

The concept of role engineering was introduced in 1995 by Coyne [1]. It aims to define
an architectural structure that is complete, correct and efficient to specify the organiza-
tion’s security policies and business functions. Coyne’s approach is a top-down process
oriented strategy for role definition. With the top-down approach, one starts from re-
quirements and successively refine the definitions to reflect the business functions [13].

Top-down approaches are only suitable for small size enterprises. For medium or
large size cases, the bottom-up approach that utilizes the existing user-permission as-
signments to formulate roles is preferred. In particular, data mining techniques are often
employed in the bottom-up approach to identify promising roles. Kuhlmann et al. [5]
coined the concept of role mining using data mining. In [14], an algorithm ORCA is
proposed to build a hierarchy of permission clusters using data mining technologies.
However, overlap between roles is not allowed in ORCA, which contradicts to normal
practice in real applications. Vaidya et al. [18] propose a subset enumeration approach,
which can effectively overcome this limitation.

An inherent issue with all of the above approaches is that there is no formal notion
for goodness of role. Vaidya et al. [15] propose to use the number of roles to evaluate
the goodness of a role set. They [16] also introduce to use the administrative task as
an evaluative criterion. Role hierarchy is another important evaluative criterion, as it
is closely related to the semantic meanings of roles. Related works on role hierarchy
include [10]. Ma et al. [9] also use weights to combine multiple objectives. Our work
in this paper strengthens this line of research by being the first to incorporate user
experience/perception as an extra evaluative criterion in role mining.

Beside the above works on finding a role set with respect to different criteria, there
are other interesting works with different flavors. Lu et al. [6,8] present an optimization
framework for role engineering. They even extend their work to incorporate negative
authorizations in [7]. Frank et al. [3] provide a probabilistic model to analyze the rele-
vance of different kinds of business information for defining roles that can both explain
the given user-permission assignments and describe the meanings from the business
perspective. They [4] also introduce a model to take the attributes of users into account.
Studies on role mining in the presence of noisy data are presented in [17].

3 Conflict Resolution

In this section, we study and formulate user-oriented role mining. As we have discussed
in the introduction, from users’ perspective a user-friendly RBAC system should assign
as few roles as possible to each user; no user is happy with being overwhelmed by as-
suming too many roles (titles). Ideally, a user would wish to carry only one role given
that the role provides with him all the necessary access privileges for him to work and
function smoothly. Indeed, in reality most organization’s systems are designed that way.
For example, in a school system, the majority of people carry only one role among STU-
DENT, FACULTY, STAFF, and VISITOR. In a software company, most employees are
either ACCOUNTANT, ENGINEER, or MANAGER. Thus, user-oriented role mining
is characterized with the fact that user-permission assignments should be sparse. This
gives rise to the definition of user-oriented role mining, as stated below.
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Definition 1. (User-Oriented Role Mining) User-Oriented Role Mining is to discover
a RBAC solution with respect to some evaluation criterions, such that after role assign-
ments users get the same permissions as before and the resultant user-role assignments
are sparse.

To concretize user-oriented role mining, we have two questions to answer: (1) what
evaluation criterion should be used to evaluate the goodness of a RBAC solution? (2)
what level of spareness of user-role assignments is appropriate? Towards answering
these questions, we examine existing role evaluation criteria for some insights.

3.1 Existing Evaluation Criteria

Role mining is typically formulated as certain optimization problems with objectives and
constraints. As summarized by Molloy et al. at [10], there are five main factors which
can be used to evaluate the goodness of a RBAC solution. They are the number of roles
|R|, the complexity of user-role assignments |UA|, the complexity of role-permission
assignments |PA|, the number of direct user-permission assignments |DUPA|, and the
complexity of reduced role hierarchy |t reduce(RH)|. Among them, |R|, |UA| , and
|PA| are routine notations in RBAC, and no further exposition is needed on them. Direct
user-permission assignments DUPA imply that roles of one single user are treated as
special roles. |DUPA| is the amount of such direct user-permission assignments in a
deployed RBAC solution. Role hierarchyRH ⊆ R×R represents the partial order over
roles R. t reduce(RH) denotes the transitive reduction of the role hierarchy.

Almost all role mining evaluative criteria can be generally described with the
weighted structural complexity measure introduced in [10], which sums up the above
five factors, with possibly different weights for each factor.

Definition 2. (Weighted Structural Complexity Measure) Given a weight vector
W =< wr, wu, wp, wd, wh >, where wr, wu, wp, wd, wh ∈ Q+ ∪ {0}1, the weighted
structural complexity of an RBAC state γ, which is denoted aswsc(γ,W ) is computed as:

wsc(γ,W ) = wr ∗ |R|+ wu ∗ |UA|+ wp ∗ |PA|
+wd ∗ |DUPA|+ wh ∗ |t reduce(RH)|

Role mining in general involves minimizing wsc(γ,W ). However, a minimization im-
plicating all factors not only is too complex, but may not lead to a good RBAC system,
as they may counteract with each other in the minimization. Depending on the objec-
tive to achieve, a specific role mining task often chooses to minimize a subset of factors
relevant to the underlying objective. In particular, minimizing the number of roles |R|
might be the most studied role mining problem, where in the weighted structural com-
plexity measure, wr is a positive number while others are all 0. Such a specific role
mining problem is referred to as basic RMP (Role Mining Problem), and it has been
proven equivalent to the classic set cover problem. It is true that the number of roles
can describe the complexity of a RBAC solution in a certain way. However, some-
times a RBAC solution minimizing the number of roles might not be able to capture
the internal organizational structure within an company. We shall show this by a toy

1 Q+ is the set of all non-negative rational numbers.
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example with six users, three permissions, and user-permission assignments such that
u1 : {p1, p2, p3},u2 : {p1, p2, p3},u3 : {p1, p2, p3},u4 : {p1}, u5 : {p2}, u6 : {p3}.

Under the objective of minimizing |R|, it gives a solution such that each individual
permission is a role. As a result, there are three roles in total and u1, u2 and u3 are
assigned to three roles to cover their permissions. However, even without the semantic
information of permissions and the knowledge of user responsibilities, by simply ob-
serving the data set, one would conjecture that the permission set of {p1, p2, p3} should
be one role, as the permission set is shared by three out of six users.

However, if we incorporate the consideration of the size of the total user-role as-
signments, it can lead us to the right track. With the goal of minimizing |UA|, each
user will get one role and each unique set of user permissions is treated as a role. As a
result, the role of {u1, u2, u3} is discovered. This example suggests the importance of
incorporating the complexity of |UA| as a part of the role mining goal.

The sum of user-role assignments and role-permission assignments of |UA|+ |PA|
is commonly viewed as the representation of the system administrative cost. The min-
imization of |UA| + |PA| is called edge RMP [16]. However, as far as an end-user is
concerned, |UA| is the only part that she can experience of a RBAC system. A user
would not care how complex PA is. For example, a student would not care about how
many permissions her STUDENT role actually contains, and all she cares is the sim-
plicity of executing her role (or roles).

Other evaluative criteria, such as minimizing the complexity of the resultant role
hierarchy [10], are also more from the system administrator perspective, rather than the
end-user perspective.

By examining existing evaluative criterion, we found that the only factor in the
Weighted Structural Complexity Measure that matters to end-users is the size of user-
role assignments |UA|. However, if the user-oriented RMP is defined as the minimiza-
tion of |UA|, the trivially optimized solution is to create a unique role for every user.
That absolutely contradicts to the premise of role mining, which is to map permis-
sion roles with functional roles. As such, a user-oriented RMP solution should balance
the user-friendliness and the overall quality of the system. Among five factors in the
weighted structural complexity measure, the number of roles |R| would be the best
representative of the succinctness and goodness of a RBAC solution and is also the
most studied criterion. So we propose to define the user-oriented RMP as the minimiza-
tion of the combination of the number of roles and the size of user-role assignments,
wr ∗ |R|+ wu ∗ |UA|.
3.2 User-Oriented RMP

User-Oriented Exact RMP. Given m users, n permissions, user-permission assign-
ments UPAm×n, and the evaluation criteria of wr ∗ |R|+wu ∗ |UA|, the user-oriented
exact RMP is to find UAm×k and PAk×n to completely reconstruct UPA while mini-
mizing the evaluation criterion. It can be formulated as below:

min wr ∗ |R|+ wu ∗ |UAm×k|
s.t.

{
UPAm×n = UAm×k ⊗ PAk×n

(1)

where⊗ is the Boolean product operator [6].
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However, directly working on this formulation has two difficulties. First, it is not
easy to determine weights of wr and wu in practice, as a role mining engineer may not
have a global sense on the importance of |R| and |UA|. Second, it is difficult to solve an
optimization problem with a complex objective function. It would be relatively easier
to solve an optimization problem with an objective of either |R| or |UA|. In light of
them, we redefine the user-oriented exact RMP as the following.

Problem 1 (User-Oriented Exact RMP). Givenm users, n permissions, user-permission
assignments UPAm×n and a positive number t, it is to discover a role set PAk×n and
the user-role assignments UAm×k such that: (1) the number of roles k is minimized,
(2) the role assignments UA and the permission-role assignments PA accurately and
completely reconstruct the existing user-permission assignments UPA, and (3) no user
gets more than t roles.

Mathematically, it can be described in an optimization form as follows.

min k

s.t.

⎧⎪⎨
⎪⎩
UAm×k ⊗ PAk×n = UPAm×n∑

j UA(i, j) ≤ t, ∀i
UA ∈ {0, 1}m×k, PA ∈ {0, 1}k×n

(2)

It is not difficult for a role mining engineer to find out the maximum roles a user can
have. For example, it could be achieved through discussions with company operators
and an investigation of the general organizational structure of the company. When the
maximum roles each user can have is limited to a small number, |UA| is naturally
enforced to be small.

Another property is that Equation (2) can be easily converted to Equation (1) with
the method of Lagrange multipliers. If we move the constraint

∑
j UA(i, j) ≤ t to

the objective function by adding
∑

j UA(i, j) − t as a penalty component, Equation 2
becomes

min |R|+
∑
i

λi(
∑
j

UA(i, j)− t)

s.t.
{
UPAm×n = UAm×k ⊗ PAk×n

(3)

where λi is the Lagrange multiplier for the constraint of∑
j UA(i, j) ≤ t. Further, we could assume that all Lagrange multipliers have the same

value λ. Then the equation is changed to the following.

min wr ∗ |R|+ λ|UA| − λ ∗ t
s.t.

{
UPAm×n = UAm×k ⊗ PAk×n

(4)

Since λ∗t is a constant, it can be dropped from the objective function. Now the resultant
optimization problem is the same as Equation 1. The effect of adjusting the Lagrange
multiplier (penalty parameter) λ is equivalent to adjusting k, the maximum roles a user
can have.



Towards User-Oriented RBAC Model 87

User-Oriented Approximate RMP. Role mining with exact coverage of permission
assignments is only suitable when the given permission assignments contain no er-
ror. The recent research results on the role mining on noisy data[12,17]. suggest that
when the given user-permission assignments contain noise, it is not necessary to en-
force a complete reconstruction, as it causes the over-fitting problem. In such cases,
approximate role mining may return better results. So in this paper, we also consider
the user-oriented approximate RMP, which is defined as below.

Problem 2 (User-Oriented Approximate RMP). Given m users, n permissions, user-
permission assignments UPAm×n, a positive integer number t and a positive fractional
number δ, it is to discover a role set PAk×n and the user-role assignmentsUAm×k such
that: (1) the number of roles k is minimized, (2) the role assignments UA and the role
set PA reconstruct the existing user-permission assignments UPA with the error rate
less than δ, and (3) no user gets more than t roles.

The problem can be roughly described in the following optimization form.

min k

s.t.

⎧⎪⎨
⎪⎩
||UAm×k ⊗ PAk×n − UPAm×n||1 ≤ δ ·∑ij UPAij∑

j UA(i, j) ≤ t, ∀i
UA ∈ {0, 1}m×k, PA ∈ {0, 1}k×n

(5)

3.3 NP-hardness

Recall that the basic RMP is to minimize the number of role while the resultant
RBAC solution completely reconstructs the given user-permission assignments. The
user-oriented exact RMP is a generalization of the basic RMP. If we make the number
of the maximum roles each user can have be a large enough number, so that the sparse-
ness constraint does not take effect, then the user-oriented exact RMP becomes the
basic RMP. The basic RMP is known to be NP-hard, as it can be reduced to the classic
NP-hard set cover problem [15]. Therefore, the user-oriented exact RMP is NP-hard.
Similarly, the user-oriented approximate RMP is a generalization of the approximate
RMP, which is NP-hard. Thus, it is also NP-hard.

4 Optimization Model

Among many existing role mining approaches, the optimization approach has been fa-
vored by researchers, due to the existence of many public and commercial optimization
software packages. The user-oriented RMP problems can be formulated by optimiza-
tion models as well, which enables an engineer to directly adopt an existing software
package.

We formulate the user-oriented exact RMP first, which can be viewed as a vari-
ant of the basic RMP with a constraint that each user cannot have more than t roles.
Suppose we have located a set of q candidate roles, represented by a binary matrix
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CR ∈ {0, 1}q×n, where CRkj = 1 means candidate role k contains permission j.
Then the user-oriented exact RMP is reduced to finding the minimum roles from CR
to completely reconstruct existing user-permission assignments while no one can have
more than t roles. The problem can be formulated as the following ILP.

minimize
∑
k

dk

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑q
k=1 UAikCRkj ≥ 1, if UPAij = 1∑q
k=1 UAikCRkj = 0, if UPAij = 0

dk ≥ UAij , ∀i, j∑
j UAij ≤ t ∀i

dk, UAij ∈ {0, 1}

(6)

In the model, UAik and dk are variables. The detailed description of the model is given
as follows:

– Binary variable UAik determines whether candidate role k is assigned to user i and
binary variable dk determines whether candidate role k is selected. So the objective
function

∑
k dk represents the number of selected roles.

– The first constraint enforces that if user i has permission j, at least one role con-
taining permission j has to be assigned to user i.

– The second constraint enforces that if user i has no permission j, no role containing
permission j can be assigned to user i.

– The third constraint dk ≥ UAij ensures dk to be 1 as long as one user has role k.
–

∑
j UAij ≤ t enforces that a user cannot have more than t role assignments.

The user-oriented approximate RMP can be viewed as a variant of the approximate
RMP with the constraint that no user can have more than t roles. Similarly, we simplify
the problem by locating a candidate role set CR. At the basis of the ILP formulation
for the approximate RMP, an ILP formulation for the user-oriented approximate RMP
is presented as follows.

minimize
∑
t

dk

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑q
k=1 UAikCRkj + Vij ≥ 1, if UPAij = 1∑q
k=1 UAikCRkj − Vij = 0, if UPAij = 0

MUij − Vij ≥ 0, ∀i, j
Uij ≤ Vij ,∀i, j∑

i

∑
j Uij ≤ δ ·∑ij UPAij

dk ≥ UAik, ∀i, k∑
j UAij ≤ t ∀i

dj , UAik, Uij ∈ {0, 1}, Vij ≥ 0

(7)

In the model, UAik, Vij , Uij and dk are variables and M is a large enough constant.
The detailed descriptions of the model are given as follows:

– In the first two constraints, Vij acts as an auxiliary variable. Without Vij , the con-
straints would enforce the exact coverage as the ILP model for the user-oriented
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exact RMP. With the existence of Vij , the exact coverage constraint is relaxed. The
value of Vij indicates whether the constraint for element (i, j) is violated.

– The third and fourth constraints convert Vij to a binary value Uij . If Vij is 1, which
means the constraint for element (i, j) is violated, Uij has to be 1; otherwise Uij is
0. The fifth constraint

∑
i,j Uij ≤ δ ·∑ij UPAij enforces the error rate to be less

than δ.
– The constraint of dk ≥ UAik ∀i, k enforces dk to be 1 as long as a user is assigned

to role K . So the objective function represents the number of roles being selected.
–

∑
j UAij ≤ t ensures no user gets more than t role assignments.

Although the optimization framework allows us to directly adopt fruitful optimization
research results, the ILP in general is NP-hard. Existing algorithms and software pack-
ages for general ILP problems only work for small-scale problems. For mid to large
size RMP problems, specially designed efficient heuristics are still required.

5 Heuristic Algorithm

In this section, we propose a tailored algorithm for the two user-oriented RMP variants
formulated above. It is a heuristic solution, employing an iterative approach to discover
roles. The key of our algorithm is a dynamic role generation strategy. Lately, we hap-
pened to notice that the idea of dynamic role generation was briefly mentioned in [11],
but no further details were seen.

5.1 User-Oriented Exact RMP

The user-oriented exact RMP is to find a minimum set of roles to accurately and com-
pletely reconstruct the existing user-permission assignments with the constraint that no
user can have more than t roles. Before coming to the details of our algorithm, we start
by introducing a preprocessing stage that helps to reduce the problem complexity.

In the preprocessing stage, there are two steps. The first step is to reduce the data size
by removing users with the same permission assignments. This step is also employed
in other role mining methods, such as [18]. To do so, we group all users who have the
exact same set of permissions, which can be done in a single pass over the data by
maintaining a hash table of the sets of permissions gradually discovered.

The second step identifies a subset of users U ′ who have permissions that no other
people have. These user-permissions assignments, {UAi:|i ∈ U ′}, will be included into
the final role set. In other words, these users only get one role, which are themselves.
Our argument is that if a user has a permission that is exclusively for herself, she must
have at least one role containing that permission, and that role is not shared by other
people. As such, from the end-user perspective, why not simply package all permissions
of that user as one role and assign the only role to her? Therefore, the number of role
assignments is significantly reduced while without increasing the total role number.
This preprocessing step can significantly reduce the data size as well and simplify the
subsequent role mining task.

Note that after the two preprocessing steps, in the remaining data, all user permis-
sions assignments are unique and every permission is assigned to at least two users.
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The general structure of our algorithm is to iteratively choose a candidate role and as-
sign it to users until all existing permission assignments are covered while the constraint
that no user gets more than t roles is carefully respected. We mention that such an idea
of iterative role assignment has also been used in many other role mining methods such
as the Lattice Model [2], the FastMinder [18] and the optimization-based heuristic [6].
The distinguishing element of our algorithm is the way of generating candidate roles.

The core of our algorithm is a dynamic role generation strategy. All of the other role
mining algorithms generate a static set of candidate roles. Given n permissions, there
are 2n possible roles. If we consider too many candidate roles, the computing time is
expensive. Conversely, if we consider only a very limited set of candidate roles, we
might not be able to find a good role set. To avoid the extreme cases, our strategy is
dynamic candidate roles generation. Specifically, rather than generating a static set of
roles at the start of the algorithm, we generate a small set of promising roles at each
iteration of the algorithm and the role set is updated according to the remaining user-
permission assignments as the algorithm proceeds. There are two advantages: (i) we
do not need to maintain and consider a large candidate role set all the time; (ii) the
candidate role pool always keeps the potentially interesting roles.

In particular, we always consider the remaining user-permission assignments as po-
tentially interesting roles. For instance, consider Table 1 as the existing user-permission
assignments. Our algorithm treats the permission assignments for each user as a candi-
date role. So in this case, there are three candidate roles: cr1 (0 0 1 1 1 1), cr2 (0 0 1 1
0 0), and cr3 (1 1 1 1 0 0).

Table 1. Existing Assignments

p1 p2 p3 p4 p5 p6
u1 0 0 1 1 1 1
u2 0 0 1 1 0 0
u3 1 1 1 1 0 0

Table 2. Remaining Assignments

p1 p2 p3 p4 p5 p6
u1 0 0 0 0 1 1
u2 0 0 0 0 0 0
u3 1 1 0 0 0 0

Suppose now cr2 is chosen and it is assigned to all of the three users. Then the
remaining permission assignments become Table 2, and they are treated as candidate
roles for the next step in the algorithm. So the candidate roles are updated to be the
following: cr1 (0 0 0 0 1 1) and cr2 (1 1 0 0 0 0).

With the candidate roles being defined, we need to figure out two things: (1) how to
select a candidate role at each step? (2) how to enforce the constraint that no user can
have more than t roles. For the first question, there are some studies and discussions
in the literature. Here are some well known strategies. Vaidya et al. [18] chooses the
candidate role which covers the most remaining permission assignments. Ene et al. [2]
selects the candidate role with the least number of permissions. We have tested both of
them and found out they do not work well in our case. As such, we use an alternative
strategy: we choose the candidate role which covers the most users. In other words, the
selected candidate role can be assigned to the most users. In fact, our strategy is justified
by that the need for a permission set to become a role comes from the fact that they are
shared by many people. Suppose that {p1, p2} are possessed by three people, while
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Algorithm 1. User-Oriented Exact RMP
Input: UPA, t
Output: UA, PA
1: UA ← ∅, PA ← ∅, UPA′ ← ∅;
2: CRoles ← UPA;
3: while UPA′ �= UPA do
4: Call RSelector;
5: Call CGenerator;
6: end while

{p1, p2, ..., p10} are possed by only one person. It is more reasonable to make {p1, p2}
as a role than {p1, p2, ..., p10}. To illustrate this candidate role selection strategy, look
at Table 1 again. Among those three candidate roles, (0 0 1 1 0 0) can be assigned to
three people, so it is chosen.

To enforce the constraint that no user gets more than t roles, we make some special
arrangement, when a user Ui has been covered by t − 1 roles and still has uncovered
permissions. In such a case, we either need to create a role to cover all remaining per-
missions of Ui or revoke roles that have been assigned to Ui. Suppose we create a new
role which consists of all remaining permissions of Ui and assign it to Ui. Then, we
may need to check if the new role can be repetitively used by other users, otherwise it
is costly. If no one else can take the new role, we make all permissions of Ui as a single
role. Thus we can revoke all roles that have been assigned to Ui and assign the sole role
to the user. In this way, at the same cost of adding one role, the role assignments for
the user are significantly reduced, which is exactly the goal of this work. Based on this
idea, the following steps are implemented to enforce that no user gets more than t roles.

When a user Ui has been covered by t− 1 roles and still has uncovered permissions,
we stop choosing roles from the candidate role set. Instead, we first treat the uncovered
permissions of Ui as a candidate role, and evaluate its suitability by checking if some
other user who has been assigned less than t − 1 roles will take this candidate role. If
so, it means that the role can be repetitively used, then we include the role into the final
role set and assign it to users. Otherwise, we discard it, and then make all permissions
of the user Ui as a role, assign the role to Ui and delete all of the other role assignments
to Ui. The complete algorithm is stated in Algorithms 1-3 (UAi: denotes the ith row
of UA, which represents the role assignments to user i; UPAi: denotes the ith row of
UPA, which represents the permissions assigned to user i).

5.2 User-Oriented Approximate RMP

The user-oriented approximate RMP is the same as the user-oriented exact RMP,
except that the complete reconstruction is not required. The above algorithm for the
user-oriented exact RMP can be easily modified for the the user-oriented approxi-
mate RMP by changing the termination condition from UPA �= UPA′ to ||UPA −
UPA′|| > δ. Consequently, the algorithm stops early and avoids covering too much
noisy information.
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Algorithm 2. RSelector
Input: UPA, UPA′, CRoles, UA, t
Output: r, UA, PA, UPA′

1: if ∃i s.t. |UAi:| = t− 1 then
2: temp ← UPAi: \ UPA′

i:

3: if ∃j s.t. UPAj: ⊇ temp, j �= i then
4: r ← temp
5: else
6: r ← UPAi:

7: UAi: ← ∅
8: end if
9: else

10: r ← argmaxr∈CRoles|UPAi: s.t. UPAi ⊇ r|
11: end if
12: Update PA by including r;
13: Update UA by assigning r to all valid users;
14: Update UPA′;

Algorithm 3. CGenerator
Input: UPA, UPA′

Output: CRoles
1: CRoles ← ∅;
2: for i = 1 → |UPA| do
3: if UPAi \ UPA′

i �= ∅ then
4: CRoles ← {CRoles, UPAi \ UPA′

i}
5: end if
6: end for

5.3 Computational Complexity Analysis

The key of the above user-oriented role mining algorithm is the continuous updating of
candidate roles. At each iteration of the algorithm, a candidate role is chosen and the
role coverage is determined. The total computations then depend on the number of iter-
ations. Consider a user-permission dataset with m users and n permissions. According
to our algorithm, at each iteration, at least one user’s permissions are completely cov-
ered. So the maximum required iterations are m. At each iteration step, each candidate
role is compared against each remaining user. As the number of candidate roles is less
than m, the number of remaining users is less than m and each user (or role) has up
to n permission, so the incurred computations at each iteration cannot be over m2n.
Therefore the computation complexity of our algorithm is upper bounded by m3n.

6 Experiments and Results

Experiments are conducted on benchmark access control datasets. They are ameri-
cas small, apj, healthcare, domino, firewall1 and firewall2, which can be found at the
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HP website 2. americas small and apj are user profiles from Cisco firewalls. health-
care was obtained from the US Veteran’s Administration. The domino graph is from
a set of user and access profiles for a Lotus Domino server. firewall1 and firewall2
are results of running an analysis algorithm on Checkpoint firewalls. Descriptions on
the data sets including the number of users, the number of permissions, and the size
of user-permission assignments are given in Table 3. More detailed descriptions can be
found in [2].

The first experiment evaluates the user-oriented exact RMP. We want to know whether
our Dynamic algorithm can effectively enforce the sparseness constraint and whether
the output of the algorithm is comparable to the optimal RBAC solution without the
sparsity constraint. To find the answers, we run the Dynamic algorithm on those real
data sets with different sparsity constraints. We compare our results with the benchmark
role mining algorithm, Lattice [2]. As far as we know, Lattice has the best reported re-
sult with respect to the minimization of the number of roles and the minimization of
the system administrative cost. The experimental results are reported in Tables 4 - 7. In
these tables, δ denotes the error rate. The exact RMP requires the error rate to be 0. So
we only look at the portion of the results with δ = 0. Other parameters are: t denotes
the maximum number of role assignments enforced in our algorithm, |UA| denotes the
size of user-permission assignments and |PA| denoting the size of permission-role as-
signments. Note that δ and t has no effect on the Lattice algorithm, as Lattice returns
an exact RBAC solution and the solution is unique. In the results, the value at the row
of Lattice and the column of t is the maximum number of roles that a user has in the
RBAC solution returned by the Lattice algorithm.

Table 3. Data Description

Data Set |U| |P | |UPA|
healthcare 46 46 1,486

domino 79 231 730
firewall1 365 709 31,951
firewall2 325 590 36,428

apj 2,044 1,164 6,841
americas small 3,477 1,587 105,205

In the results, when t decreases, the size of UA decreases accordingly. However, the
value of |UA| + |PA| changes in an opposite direction. This matches our expectation.
Specifically, when t is a small value, each user gets few role assignments. Thus, we
need roles with more permissions, so each user can still get enough permission assign-
ments. When the sparseness constraint becomes more strict, the number of required
roles increases. As a result, the value of |PA| increases accordingly.

Furthermore, we are pleased to see that even with the sparseness constraint being
enforced, the complexity of the RBAC solution returned by Dynamic is still compara-
ble to that of Lattice. For example, in Table 8, when t is 2, Dynamic returns a RBAC
solution with only 18 roles, while Lattice returns a solution with 15 roles and the maxi-
mum role assignments of 4. Another observation is that the |UA| value of the solutions

2 http://www.hpl.hp.com/personal/Robert Schreiber/
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Table 4. fire1

δ t |R| |UA| |UA| + |PA|
Dynamic 0.00 2 90 365 7100

4 85 454 6890
6 84 600 6897
8 80 1516 6638

0.05 2 37 250 5688
4 48 361 5685
6 41 529 5523
8 39 1416 5671

0.10 2 30 250 4619
4 27 330 4297
6 26 439 3868
8 14 1464 2970

0.15 2 17 250 2661
4 9 422 1762
6 10 563 1810
8 7 1334 2055

0.20 2 11 250 1881
4 8 426 1655
6 6 1131 1839
8 6 1131 1839

Lattice 0.00 9 66 874 1953

Table 5. americas small

δ t |R| |UA| |UA| + |PA|
Dynamic 0.00 2 259 3477 25229

4 256 3722 23610
6 249 3890 22194
8 246 4269 20119

0.05 2 224 3283 23174
4 184 3566 21349
6 183 3780 20109
8 185 4160 18406

0.10 2 205 3220 21421
4 154 3453 19870
6 157 3715 18451
8 147 4042 16318

0.15 2 180 3096 19929
4 138 3383 17966
6 137 3604 16630
8 127 4036 14698

0.20 2 171 3096 18505
4 130 3384 16530
6 123 3673 14971
8 117 3915 14238

Lattice 0.00 10 192 4782 9830

Table 6. fire2

δ t |R| |UA| |UA| + |PA|
Dynamic 0.00 2 11 325 1499

0.05 2 11 325 1499
0.10 2 7 285 1092
0.15 2 7 285 1092
0.20 2 7 285 1092

Lattice 0.00 3 10 434 1110

Table 7. domino

δ t |R| |UA| |UA| + |PA|
Dynamic 0.00 2 23 79 716

0.05 2 17 71 695
0.10 2 14 64 680
0.20 2 10 53 657

Lattice 0.00 3 20 110 713

returned by Dynamic can be much less than that of the solutions returned by Lattice.
For instance, in Table 5, the value of |UA| for Dynamic with δ of 0 and t of 2 is 3477,
while that for Lattice is 4782.

The second experiment is to study the user-oriented approximate RMP. We want to
know how the RBAC solution varies with the error rate. We run the Dynamic algorithm
by varying the value of δ from 0.05 to 0.20. Results are reported in Tables 4 - 7. We
observe that when the complexity of the RBAC solutions decrease drastically when δ
increases. For instance, in Table 4, with t of 8, only 39 roles are required to cover the 95
percent of permission assignments (i.e., δ = 0.05), while 80 roles are required for the
complete coverage (i.e., δ = 0). In terms of the coverage of permission assignments,
those 39 roles appear more promising than the remaining 41 roles. In cases where data
noise is believed to exist, the approximate version of Dynamic appears to be more
useful.

To summarize, the two experiments have demonstrated the effectiveness of our user-
oriented RMP approach. We highlight that one primary advantage of Dynamic is that
it allows a RBAC engineer to tune the sparsity constraint to reflect the real need. This
feature is not supported by any existing role mining method. More importantly, the
overall system complexity of the resultant solution is comparable to that of the optimal
solution without any sparsity constraint.
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Table 8. healthcare

δ t |R| |UA| |UA| + |PA|
Dynamic 0.00 2 18 46 545

3 18 53 468
0.05 2 5 46 191

3 6 54 201
0.10 2 5 45 191

3 6 54 201
0.15 2 5 45 191

3 6 54 201
0.20 2 5 45 191

3 3 72 126
Lattice 0 4 15 106 209

Table 9. apj

δ t |R| |UA| |UA| + |PA|
Dynamic 0.00 2 564 2044 5565

3 497 2218 5221
4 485 2277 5096

0.05 2 477 1664 4995
3 394 1538 4362
4 381 1571 4215

0.10 2 407 1292 4449
3 358 1449 4122
4 352 1501 4043

0.15 2 348 876 3878
3 322 1258 3831
4 317 1313 3766

0.20 2 315 816 3609
3 290 1064 3533
4 289 1169 3550

Lattice 0.00 6 454 2437 4117

7 Conclusion

In this paper, we studied the role mining problem from the end-user perspective. Unlike
other existing role mining approaches which primarily aim to reduce the administra-
tive workload, our approach strives to incorporate better user experience into the role
decision process. As end-users prefer simple role assignments, we add a sparseness
constraint that mandates the maximum number of roles a user can have to the role
mining process. The number usually can be determined in practice by a brief study
on the general business processes of an organization. Basing on this rationale, we for-
mulated user-oriented role mining as two specific problems. One is the user-oriented
exact RMP, which is obliged to completely reconstruct given permission assignments
while obeying the sparseness constraint. It is applicable for scenarios where the given
dataset has no noise. The other is the user-oriented approximate RMP, which tolerates
a certain amount of deviation from the complete reconstruction. It suits for datasets
containing noises. We studied existing role mining methods, and found that some of
them can be applied to our problems with simple modification. For better efficiency, we
also designed new algorithms tailored to our problems, which are based on a dynamic
candidate role generation strategy. Experimental results demonstrate the effectiveness
of our approach in discovering a user-oriented RBAC solution while without increasing
the overall administrative workload too much.

Future work can go along two directions. One is to study the feasibility of employing
some statistical measures such as Bayesian information criterion to facilitate the role
mining process. The motivation is that sometimes the accurate sparseness constraint
(the maximum role that a user can have) is not available. We could employ some statis-
tical criteria to choose the RBAC model with a good balance of model complexity and
describability. The other direction is to consider the dynamic sparseness constraint. In
this work, we assume that the same sparseness constraint is enforced to everyone. How-
ever, it might be the case that some user requires many role assignments due to some
need. In such cases, a more practical role mining approach is to minimize the sparsity of
the whole user-role assignments rather than enforcing a sparseness constraint for every
user.
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Abstract. Cloud Computing is an emerging model of computing where users 
can leverage the computing infrastructure as a service stack or commodity. The 
security and privacy concerns of this infrastructure arising from the large co-
location of tenants are, however, significant and pose considerable challenges in 
its widespread deployment. The current work addresses one aspect of the 
security problem by facilitating forensic investigations to determine if these 
virtual tenant spaces were maliciously violated by other tenants. It presents the 
design, application and limitations of a software prototype called the Virtual 
Machine (VM) Log Auditor that helps in detecting inconsistencies within the 
activity timelines for a VM history. A discussion on modeling a consistent 
approach is also provided. 

1 Introduction 

Temporal event logs meticulously record events that have occurred in the history of 
the computer system, and therefore, constitute a valuable source of digital evidence. 
Event logs are generated by the operating system as well as by other subsystems and 
their applications. There has been a significant amount of research about the 
examination and the auditing of such logs for post incident forensic purposes [1, 2]. 
With cloud computing service environments, the expectations for post incident 
forensics is no different. Cloud computing is predicated on the well known service 
oriented architecture (SOA) and harnesses the power of the virtualization stack. The 
known services offered across the virtual stack layers are Infrastructure as Service 
(IAAS), Platform as a Service (PAAS) and Software as a Service (SAAS). In our 
work the PAAS provision, which handles the hypervisor logs, is our primary concern. 
By studying the hypervisor logs, this work represents the first body of work in the 
literature that seeks to explore closing the semantic gap of how eye witness forensic 
data that can be collected between the lower layers and higher virtualization layers 
and is motivated by prior work [1, 2, 21].  
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In this work the log categorization used is the hypervisor event logs, which 
contains a hierarchy of application logs, security logs, error logs and system logs. 
Some have likened a log file in computer forensics to an eyewitness in a traditional 
crime scene [1]. The analogy seems befitting when using the hypervisor logs to 
manage virtual crime scenes for which the multi-tenant VMs are all co-located.  

Providing a picture of what happened through the analysis of the hypervisor event 
logs at a virtual crime scene is no trivial task. Detecting patterns that may be events of 
interest by hand in a large log file is not feasible. Managing the sheer volume of log 
data is a well known quantity problem. Logs must be parsed programmatically and 
even this can take a very long time, with the exact amount of time varying 
significantly, and is often dependent on the type of algorithm employed to detect the 
patterns of interest [2].  

As log data are explicitly a record of events, establishing their reliability is of 
particular importance. Log files are written to very frequently and hence may get 
corrupted or could be difficult to understand; as records may be saved in an 
unexpected sequence as a result of unusual system behavior, e.g. software bug or  
power outage. As log files are an obvious record of events, they are also an obvious 
target for tampering. Suspicious events indicating that something is wrong may be 
deliberately removed, rendering all or a part of the log potentially fraudulent. 

Our work addresses the issue of deliberate tampering, internal contradictions and 
inconsistent entries with these hypervisor event logs within the storage area network 
(SAN) data centre environments. We attempt to improve on the state of the art by 
providing a forensic platform that transparently monitors and records data access 
events using these PAAS logs as a form of static snapshot state analysis for a post 
incident VM cloud investigation. This approach complements the traditional 
statistical trace analysis methods and the VM memory introspection methods 
established in prior work [21, 22, 25]. As it relates to using the PAAS logs to detect 
VM attacks, particularly session hijacking, this represents independent ongoing work 
using several data mining techniques [23, 24] that unearth ground truth forensic 
evidence based on anomalous patterns detected from such logs. As it is now, the 
timestamps recorded in the hypervisor event logs may be unreliable, as result of both 
flaws in the clocks that generate them and the nature of the software that records 
entries to these data cloud logs.    

The rest of this paper is organized as follows. Section 2 introduces our VM 
profiling model. Section 3 examines approaches for the detection of inconsistency in 
timelines, dealing both with inconsistencies in VM event timestamps and VM events 
omitted from the hypervisor kernel system’s record. Section 4 describes the 
experiments with the tool for testing the approaches discussed in Section 3. Section 5 
describes the rule base for the experiments and evaluates the detection techniques 
based on the rule base. Section 6 provides a formal discussion on constructing the 
consistency approach, and Section 7 provides the discussion of the experimental 
results. Section 8 presents a discussion of future work, Section 9 provides the related 
work and we conclude in Section 10. 
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2 Virtual Machine Profiling Model 

This work is based on concepts from the computer-profiling model described by 
Marrington et al. [9]. The authors’ model of a computer system consists of objects 
representing the various entities that form part of the computer system’s operation. 
These entities include users, data files, system software, hardware devices, and 
applications. The objects discovered on the computer system under examination, 
collectively referred to as the set O, are classified according to their type. In their 
model [9], there are four broad types of objects (Application, Principal, Content and 
System) with increasingly specific subtypes.  

We adopt in our work each of these categories as VM sets. The set of Application 
objects, A, consists of all the application software on the VM host computer system. 
The set of Principal objects, P, consists of all the computer system’s users and groups, 
and all of the people and organizations otherwise discovered in the examination of the 
computer system. Of these objects, some Principal objects are described as canonical 
if they represent definite entities on the computer system that are actors in their own 
right, such as users and groups. Principal objects may be described as non-canonical 
if they represent people or groups of people who may not be actors on the system, but 
may be, for instance, people mentioned in documents. The set of Content objects, C, 
consists of all the documents, images and other data files on the host computer system 
from which the VMs are running. The set of VM System objects, S, consists of all the 
VM configuration information, system software and hardware devices on the VM 
host computer system. A, S, C, and P are subsets of O, the set of objects on the cloud 
system under investigation.  

We characterize our model with the set of all times in the history of the VM host 
computer system, Tv, and the set of all events, Evt, which have taken place in the 
history of the VM host computer system. Let t be a time in Tv, x be the VM object that 
triggered the VM event, y be the object that was the target of the event,  describe the 
action of the event, and  describe the result of the event (successful, unsuccessful, or 
unknown). An event evt in the set Evt consists of the quintuple

evt = t, x ∈ O, y ∈ O,ε,α( ) . 

This same finite set Evt consists of two enumerable subsets, and one subset which 
cannot be enumerated. The first subset – the recorded events set EvtR – consists of 
VM events that are recorded in the VM host computer hypervisor system’s logs. The 
second subset – the inferred events set EvtI – consists of events that are not recorded 
in logs, but that can be inferred on the basis of other digital evidence on the system, 
such as relationships between different objects. These two sets do not necessarily 
describe the complete history of the cloud system in an exhaustive manner. There 
may be other events that took place and were unrecorded and left no artifact from 
which they could be inferred. These VM events are obviously unknown, and comprise 
the final subset of Evt. 

The set EvtI is particularly vulnerable to inconsistency or incompleteness in the 
data obtained from the VM target computer’s file system. Contradictory, inaccurate or 
missing information can lead to an incomplete timeline of a user’s activity. EvtR is a 
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direct representation of the contents of the VM host hypervisor system’s logs, and 
consequently, incorporates any inaccurate event records in the system logs. Further, if 
a VM event is not logged, and cannot be inferred, it will not be an element of either 
EvtR or EvtI. Handling unknown events within the VM history of the computer 
system is a challenge and hence the less accurate the timeline of the target computer’s 
activity will be. We address this challenge in an independent paper. For this work, we 
focus on the declared events and making the inferences from these stated events. This 
work provides a means for the semi-automated detection of inaccuracy or 
incompleteness leading to chronological inconsistency in timelines of VM computer 
activity. 

Marrington et al. [6], discussed a timestamp-based technique for building a 
timeline about a given object in the profile of the computer system. However, their 
approach is not resilient to inaccuracies in timestamps, which may cause VM events 
to appear out of sequence. Missing events, whether removed manually or simply 
never recorded, lead to timelines that may present events out of the context they 
actually occurred. We posit that as a general principle, the failure to detect an 
inconsistency in a timeline is a greater problem for the purposes of VM activity time-
lining than falsely identifying an event as inconsistent. This is simply because false 
positives can be manually investigated and dismissed, whereas false negatives will 
never receive further attention. Nevertheless, it is obviously desirable to minimize the 
rate of false positives in all detection techniques. 

A limitation of any time-lining activity based on timestamps provided by a 
computer’s system clock is the inaccuracy inherent in such clocks. This inaccuracy in 
computer-generated timestamps is normal, and the solution suggested most frequently 
in the literature is to note the system clock time of a computer under investigation at 
the time of its examination and to determine the discrepancy between that time and 
the time of a reference clock [1, 8]. However, this solution does not address the issue 
of clock skew. A few works, notably [2, 10], propose algebra for the formal 
expression of falsifiable hypotheses about the discrepancy between a computer’s 
clock and physical time. The term proposed for such a phenomenon is a clock 
hypothesis. In practice, it would be necessary to form a clock hypothesis for every 
moment in time throughout the history of the VM host system. Our tool is intended to 
detect internal inconsistency in timelines. An investigator could potentially be assisted 
in the formation of VM clock hypotheses using the output of our tool. 

3 VM Log Auditor for Timelines 

We now describe the approaches employed by our log auditor software to detect 
inconsistency in timelines. Inconsistency in virtual machine computer activity 
timelines can arise because hypervisor kernel log events in the timeline are out of 
sequence, or VM events that should be in the timeline are missing.  
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3.1 Detecting Out of Sequence VM Timelines 

There are some VM events that need to occur before some other event can happen. 
This sort of relation between events is described as the happened-before relation [4]. 
Gladyshev and Patel [5] discuss the application of the happened-before relation to a 
forensic context. An example of such a relation between two events would be that a 
VM user x must “login” successfully to the computer system before the user x can 
“execute” the application y. So the happened-before ( ) relation implies that in the 
VM activity timeline, the time of the VM login event must be before the time of the 
execution event. We express this as follows. Let x  P, y , and tm, tn  Ty. Then 
((tm, x, y, login, success)  (tn , x, VM system, execution , success )) ⇒ (tm  tn), where ⇒ is the logical implication operator . Note that the happened-before relation 
is transitive [4, 5]: 

After the construction of a VM log timeline (which is a sequence over the set Evt) 
in the log auditor’s execution process, an evaluation can be applied to all VM events 
ordered by their timestamp. If a VM event vmevta has a happened-before relation to 
vmevtb, but the VM kernel log timestamp (tb) of vmevtb suggests that vmevtb occurred 
before vmevta then we can say that ta and tb are inconsistent. In order to detect this 
inconsistency, a rule base must be created which describes the happened-before 
relations for the various types of events [15]. When the VM timeline is evaluated 
against the rules base, the inconsistent events can be identified and assertions about 
their time stamps can be made.  

Consider the two rules vmevta → vmevtb  and vmevtb → vmevtc with 

 

vmevta = ta ∈Ty ,  x,  system,  login, success( )
vmevtb = tb ∈Ty ,  x,  a,  execute, α ∈ success, fail, unknown{ }( )
vmevtc = tc ∈Ty,  x,  system,  logout, success( )

  

where x is a User VM object, a is an Application VM objects, and system is a VM 
System object representing the target VM computer system itself. Then, by the 
transitivity property of the happened-before relation,  

 vmevta → vmevtb( ) ∧ vmevtb → vmevtc( )( ) vmevta → vmevtc( )   

For the purposes of this example, let the time-lining function VH x( ) produce a 

timeline (where a timeline is an ordered set of discrete time instances) corresponding 
to a single VM user session of the user x. The first rule states that a user x must be 
logged in before executing any application. The second rule states that user x cannot 
have logged out before performing that execution. If the execution event vmevtb 

occurs, the login event vmevta must happen before it, and vmevtb must happen before 
the logout event vmevtc. Therefore, the physical time tc at which the event vmevtc must 
have occurred must be after the physical time tb at which the event vmevtb must have 
occurred, which must in turn be after the physical time ta at which the event vmevta 
must have occurred.  
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This is stated as: VH x( ) ⊇ vmevta ,vmevtb ,vmevtc( ) ta > tb > tc( )where   denotes 

an ordered set. 
If, given the two rules vmevta    vmevtb   and vmevtb    vmevtc, it is not the case 

that tc  tb  ta , then the timestamps (ta, tb, tc) do not reflect the physical times at which 
the VM events must have occurred. The VM timestamps are therefore inaccurate, as 
they suggest an internally inconsistent chronology. From this example, the utility of 
the happened-before relation as a basis for proposing rules for the detection of 
inconsistent VM events is apparent. A hypothesized chronology of a VM computer 
system can be evaluated for internal inconsistencies by testing the hypothesized 
sequence of events against a set of happened-before rules.  

3.2 Detecting Missing VM Events 

There are some happened-before relations where the first VM event is a precondition 
for the second. In such relations, the presence of the second VM event necessarily 
implies the presence of the first. In the example in Section 3.1, the VM login event 
vmevta must occur before the VM application execution event vmevtb; in other words, 
if vmevtb occurred, then vmevta must also have occurred. Note that this does not hold 
true for all happened-before relations. This can be seen in the same example, where 
although the execution event vmevtb must happen before the logout event vmevtc  in 
order for vmevtb to happen at all, the occurrence of the logout event vmevtc does not 
imply that vmevtb also happened; vmevtb is not a precondition for vmevtc.  

[10] extends the use of the happened-before relation of [3, 5] to imply causality. 
The happened-before relation is therefore equivalent to the “precondition” predicate. 
For the purposes of the log auditor, it is preferable to maintain the happened-before 
relation as described by [3, 5] and to employ the “precondition” predicate to imply a 
causal relationship. The happened-before relation allows for the detection of events 
that are listed in the timeline out of the sequence in which they must have occurred, 
whereas the “precondition” predicate allows for the detection of missing events. 

If the VM event vmevta that “happened” does not exist in either the set of recorded 
VM events, EvtR, or in the existing set of inferred VM events, EvtI, then it is a 
missing VM event. It is a missing VM event because it was removed from, or never 
recorded in the VM’s hypervisor kernel logs, and it was not previously inferred on the 
basis of relationships and object fields. These VM events could also be called inferred 
VM events, but it is convenient to preserve a distinction between events detected 
using this approach and other VM inferred events. 

Precondition VM events which are absent from EvtR and EvtI can be added to the 
set of missing VM events, which we call EvtM.  

The VM login event vmevta and the VM application execution event vmevtb, and 
the logout event vmevtc have the same definitions as in the previous example. The 
new rule states that if the event vmevtb occurred in the timeline of the VM User object 
x, then the event vmevta must also have occurred.  

Missing VM events are suspicious and hence important. They are important 
because it is possible to deliberately delete them from the hypervisor kernel system 
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logs. Detecting that an event is missing allows for the construction of a more 
complete timeline, hence helping the VM investigator gain a more complete 
understanding of the VM computer system. By automatically indicating that at a 
particular point in the timeline an event was either not recorded or its record was 
deleted, the forensic software could provide a lead for the subsequent manual 
investigation. This, in turn, may determine why the record is missing. However, it 
should be noted that there are many instances where an event may be missing as a 
result of non-suspicious VM host computer activity.  

The log auditor infers VM events to describe an action by or on an object with 
associated VM temporal data. These inferred VM events are combined with VM 
events recorded in the hypervisor kernel system logs in order to provide as complete a 
timeline as possible. In the experiments on computers running VMware sessions on 
Microsoft Windows, our software prototype inferred many VM events that occurred 
prior to the enabling of many logging options. There were very few recorded VM 
events from that early time period in the VM’s computer history, and thus these 
inferred VM events were out-of-context. Such inferred VM events may appear to 
have occurred outside of the VM user sessions, or in an otherwise inconsistent 
fashion, however, the absence of complete information must obviously be considered 
in the VM investigator’s assessment as to whether or not the event is suspicious.  

This scenario is an example of how the normal configuration of the VM computer 
system may make an event seem inconsistent. 

4 VM Log Auditor Software 

A summary of the VM Log Auditor architectural components are provided in Fig. 1. 
As a VM log inconsistency checking profile tool it maps all hypervisor events, as they 
are extracted from the kernel logs. It uses a set of shell script parsers to provide an 
associative and transformational mapping [17,18] of these logs into a normalized 
database with a set of discovered and inferred VM event tables. The prototype 
software examines the suspect target VM host file system (which is mounted read-
only) and enumerates the set of VM objects of applications, files, and users of the 
target VMware essx3i computer system. We achieve this by performing a Storage 
Area Network (SAN) disk image of the suspected VM host to our evidence server in 
our test bed. The parsed hypervisor log events are described as the set of recorded 
VM events (EvtR) in our Oracle database. Finally, a set of events are inferred from 
the temporal data associated with each log file which may be as a result of 
modification, access or creation (MAC) events which have occurred. These events are 
the inferred VM events (EvtI), and are saved in a separate table in the database called 
Inferred VM Events. It is useful to note that the inferred VM events EvtI is 
particularly vulnerable to inconsistency or incompleteness of data obtained from the 
VM host file system. The two sets EvtR and EvtI do not exhaustively describe the 
complete history of the VM hosted computer system. Hence where an event is not 
logged or it cannot be inferred we described this as an unknown or missing event. It 
stands to reason that the more missing or unknown events the less complete the 
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vmevta = {null, null, s, logon, success} 
vmevtb  = {null, null, null, modified, success}: 

The prototype log auditor software does not yet implement the concept of a user VM 
session. A logon or logoff VM event is treated the same as any other event. This 
means that the user needs to specify which events are to be treated as the beginning 
and end of the user session timeline. In order to check timelines of a computer 
system’s complete history, the prototype software would need to have a concept of 
user session built into it. This is an item of future work.  

5 Rule Base for Experiments 

The VM log auditor software prototype incorporates a small set of rules to check for 
VM temporal inconsistency. It provides a backend functionality that allows the user to 
specify a timeline to be checked for inconsistency. It then checks that timeline against 
the rule base. The rules built into the prototype software for the purposes of these 
experiments use the following algorithm. 

vmevtA = (null, null, s, “logon”, “success”) 
vmevtB = (null, null, null, “modified”, “success”) 
rule = vmevtA happened-before vmevtB 
where field 2 of vmevtA == x and where field 2 of vmevtB == x 
for each vmevt in VH(x) 
 if vmevt = ( *, x, s, “logon”, “success” ) 
  a = index of vmevt 
 if vmevt = ( *, x, *, “modified”, “success” ) 
  b = index of vmevt 
next vmevt 
if a > b then 
 rule has been broken 

Fig. 2. VM Inconsistency Algorithm 

The data structures in our implementation that represented each of the archetype 
VM events in the rules base, had null values in place of the fields x, y. 

5.1 Experimental Setup 

In order to obtain data for these experiments, we employed a suspect test VMWare 
essx3i private network hosted computer running on Windows 7 within the 
University’s local area network. This deployment represents our private cloud test 
environment for the course of the timeline experiments carried out. All system 
logging options were turned on in order to give us as complete a set of hypervisor 
event logs which are all stored in a comma delimited format (.csv) on the host oracle 
databases. We logged onto the VM test host computer twice for the purpose of 
generating two different VM user sessions: the first, an “innocent” user session, and 
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the second, a user session in which a document was created with misleading 
authorship information. The details of these two sessions are described below. 

We also tinkered with the detection outcomes of meddling with the hypervisor 
logs. For this purpose, a copy of the case file and database about the suspicious test 
VM host computer system inspected by the log auditor tool was provided, and then 
manually modified the database table containing the discovered VM events. As these 
discovered VM events are derived from the VMWare essx3i kernel system event logs, 
the removal or modification of recorded VM events in the set EvtR effectively 
simulates the removal or modification of VM event records in the same. The 
investigator removed the log-on/log-off VM events from the first user session, and 
modified the timestamps of these events on the second user session so that they would 
be presented out of their real sequence if ordered by timestamp. 

5.2 Evaluation of VM Detection Techniques 

This section describes each of the VM timelines examined in each these experiments 
and provides the results of the log auditor’s analysis of inconsistency. There are four 
VM log timelines (two unmodified, and two modified) that correspond directly to user 
sessions. Each of the timelines is a combination of the VM inferred events and the 
recorded VM events in the history of the VM hosted computer system between two 
boundary events, ordered by timestamp. Due to space limitations the detailed timeline 
trace tables that capture the recorded and inferred events have been omitted.   

Timeline A - Normal VM User Session 

Timeline A was a normal user VM session during which a text document was created. 
The user “thorpe” logged into the VM host computer system at 9:48 pm on 12 
October 2011, and created the file “vmsyslog.doc” at 9:51pm. The VM user then 
browsed the Internet for a few minutes and logged off at 10:00 pm. Nothing 
suspicious happened in the user VM session. The timeline consisted of all of the 
events that took place during the user VM session, both recorded and inferred. Our 
software inserted these VM events into its Oracle 11g VM event database during its 
automated examination of the target system. 

Most events in timeline A were discovered events (i.e. discovered in the VMWare 
essx3i hypervisor kernel event logs running under Windows 7), however, the events 
with “CREATED”, “MODIFIED” or “OPENED” as their actions were inferred 
events (i.e. inferred on the basis of an object, its relationships, or other information 
about the object). 

Timeline B - Deliberate Misattribution of Authorship   

Timeline B represents a user VM session during which the user created a text 
document with misleading authorship information, in an effort to shift responsibility 
for that document to an innocent third party. The user “VMuser” logged into the 
computer system at 9:51pm on 13 October 2011, and at 9:55pm a Word document 
was created with “anoynmous ” as the listed author. The user “VMuser ” then logged 
off. 
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Timeline B was analyzed for inconsistency with our prototype software. The 
events are all related to the authorship of the word document entitled “WORDOC 
letter from anonymous”. The anonymous user was not logged in at the time the text 
document was created, and yet the author field listed “anonymous” as the document’s 
author. 

There are two sets of “CREATED” events for both the suspect Word document 
and its template. Hence “anonymous” could not have been the author of the text 
document. This is so because there are two sources of information that lead the log 
auditor inferring such an event. The earlier timestamp is obtained from the text 
document’s metadata, and represents the time at which the document was first 
created. The later timestamp is obtained from the target VM host computer’s file 
system, and is the time at which the document was first saved as a file on the host VM 
physical disk. Both sets of “CREATED” VM events derive their subject field from 
the same source, the Word document’s author field.  

Timeline C - VM user Session with Logon/Logoff Events Deleted   

Timeline C was derived from timeline A. The recorded and inferred VM events in the 
prototype’s events database were copied and manually modified. The resulting 
timeline, timeline C, was identical to timeline A without the logon/ logoff VM events. 
The removal of these two discovered VM events left user activity outside of a 
logon/logoff-bound VM user session. This demonstrates that removing VM user 
session information from the hypervisor event log will draw attention to the inferred 
VM events that took place during the session. 

Timeline D - With VM user Modified Timestamps  

Timeline D was derived from timeline A, with the timestamp of the user’s logoff VM 
event deliberately modified so as to appear to have taken place prior to the creation of 
the text document.  

The event was listed as breaking three rules, all of which assert that if a file is 
modified, accessed or created, it must be modified, accessed or created prior to the 
user logging out of the VM host computer system. The results of the analysis of 
timeline D were just as expected. 

The detection of this VM event demonstrates the suitability of this approach to 
detecting events whose timestamps are modified. 

6 Constructing Consistent Timelines 

The temporal inconsistencies can be handled by the creation of a consistent VM 
timeline. A consistent VM timeline, in the context of VM computer profiling, is 
defined as a sequence of VM events ordered by physical time at which they occurred 
with no obviously missing VM events.  The physical time at which the event occurred 
may or may not correspond to the VM hosted computer generated timestamp of a VM 
event, which may be missing from the sets EVTR and EVTI, but which are detected 
using the techniques that establish VM relationships via hypervisor log object 
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profiles.  EVTM is the set of all of the missing VM events detected on the basis of a  
precondition rule. The sequence EVTC is a sequence over EVT ordered into a 
consistent VM timeline. This section describes a technique for constructing such a 
timeline.   

There are some VM events, especially members of EVTM, for which there is no 
timestamp. There are other VM events for which there is a timestamp, but whose 
timestamp is provably incorrect (as determined by detecting the out of sequence 
experiments). Gladyshev and Patel describe the process of determining the time at 
which a given event takes place by bounding the event’s time [4], and we adopt this 
approach for our VM log auditor tool. The upper and lower bounds for the time of an 
event can be determined if the VM event must have occurred between two other VM 
events. The range between these bounds, i.e. the time interval ∆t, is the range of 
possible times at which the VM event could have occurred. The range can be further 
narrowed if it is known that there is a minimal delay d , which applies to a particular 
happened-before  relation [4, 5].  If it is known that there is at least a ten seconds 
greater than the time of the first event. The range of possible times at which a VM  
event vmevtb might have occurred can be calculated.  

This approach can only provide a range of times in lieu of a missing or inaccurate 
timestamp, but such a range is the best possible indication of when the event 
occurred. As it is impossible to obtain perfect timestamps for every VM event in the 
history of the VM computer system, the sequence EVTC cannot be ordered on the 
basis of the available timestamps. The available timestamps will not be precise 
enough for ordering the events in and themselves, although they might be useful in 
determining some other basis for ordering events.  

Instead of timestamps, the use of a Lamport logical clock [7] is proposed to 
provide the basis of ordering the consistent timeline EVTC. The timestamp (or time 
interval in the case of VM events with indeterminate time) of a VM event will be used 
as a variable in the clock, but it will be the clock and not the timestamp which will be 
used as the basis for ordering VM hosted events.   

The VM hosted computer BIOS clock C is defined to be a function which assigns a 
number to every VM event in the consistent timeline EVTC. The number produced by 
C has no bearing on physical time, but each VM event has a timestamp t for a time 
interval  ∆ t  which can be used to determine the physical time of the VM event.  The 
number produced by C must be lower for VM events which occurred earlier in the 
VM history of the computer system than the number produced for VM events which 
occurred later. This will permit events to be sorted by the number produced by the 
clock C on the ascending order basis.  

Given a complete set of rules to detect inconsistent and missing VM events, the 
number of unknown VM events in the VM computer system’s history can be 
minimized. The proportion of the set of all of the VM events that occurred in the VM 
history of the VM hosted computer system EVT that is known can be maximized. A 
VM event is a known event if it is an element of the sets EVTR, EVTI, or EVTM. 
Each of the known events will have an associated timestamp, or, in the case of VM 
events with no timestamps or with provably incorrect timestamps, and the narrowest 
possible time interval during which the event could have occurred. The clock function 
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C will combine the timestamp or time interval for each known event with the rules 
relating that event to the other knowable VM events, and produce a number (i.e. 
Lamport timestamp) according to which the VM event may be sorted into the 
consistent timeline EVTC. In the case of potentially concurrent events (which have no 
happened-before relations to other VM events) whose timestamps or time intervals 
are inconclusive relative to other VM events, the number produced by C will be 
identical. In such cases, some arbitrary mechanism can be used to sort VM events into 
the consistent timeline EVTC. Once completed, the consistent timeline EVTC will 
represent the best sequential ordering of known events that make up the associated 
VM history profile.   

This permits an investigator to view both a consistent timeline, and the original 
inconsistent timeline along with the reasoning as to why the original hypervisor 
temporal log data was inconsistent. Then the investigator could then make an 
informed judgment about the cause of the inconsistencies in the VM computer system 
timeline.   

7 Discussion of Results 

The results of the experiments demonstrate that automatically detecting temporal 
inconsistency in VM hosted computer activity timelines constructed from realistic 
data is possible using our tool. These experiments applied a simple rule set to a VM 
hosted computer system’s activity timeline, and the results demonstrate that 
inconsistency can be detected in several basic scenarios. The happened-before 
relation and the precondition predicate can be used together to construct effective 
rules to draw an investigator’s attention to suspicious VM events. Timeline B 
demonstrated that such rules can be applied to detect an event (in this case, the 
creation of a document) initiated by a different user than first suggested by the VM 
file system.  

Timeline C showed that the deletion of a hypervisor kernel system log set of 
entries pertaining to important VM events can be detected. If the deleted events are 
preconditions for other events, which are recorded or inferred, then they can be 
detected. Timeline D demonstrated that, by applying a rational set of rules in an 
automated analysis of a timeline, VM events can be detected that should have 
occurred in another sequence than their timestamps suggest. 

The experiment’s use of data from a VM hosted computer system demonstrated 
that this approach to detecting temporal inconsistency on VM log data is robust 
enough to be tested in real cases. The ideal next step will be to perform experiments 
with the log auditor using large scale live incident case data, which will test the 
robustness and suitability of the approach with respect to real investigations. 

The noise in real VM event data is a lesser problem to the VM log auditing tool 
than it is to a human investigator. By distilling VM event records down to the most 
important fields that are common to most events, our approach is likely to reduce the 
complexity and heterogeneity of the various types of VM events.  
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8 Future Work 

We plan to improve the log auditor so that the software can automatically detect user 
sessions given our ongoing work [16]. At the moment, the prototype software requires 
the user to specify the bounds (i.e. start and finish) of a user VM session before it is 
able to check the timeline of that VM session for internal consistency. 

We would like to extend the VM log auditor process and software to construct 
consistency-check timelines of VM hosted computers running non-Windows 
operating systems.  

The basic model presented in this paper doesn’t detect hidden nested states that 
may exist on the VM host as extracted from the hypervisor logs particularly as a 
remote or distributed logging service. We plan to extend the existing model to now 
explore and formalize this concurrency problem.   

9 Related Work 

Although there has not been any formal accepted definition for cloud forensics, its 
fundamentals are still entrenched in a view that the data provided as case evidence has 
to be court admissible. The provision of a time-lining technique together with the 
practical approaches for gathering and inferring VM events comprise a technique for 
tracing the history of the VM hosted computer system as possible source of such 
potential forensic evidence is motivated by prior work [20, 21, 22, 25]. In this paper, 
we attempt to improve on the state of the art by providing a forensic platform that 
transparently and distinctively monitors and records data access events using the 
hypervisor kernel event logs. This work adopts a static state snapshot log approach to 
support post incident off line forensic investigations. Our work complements the live 
trace analysis and VM introspection methods [21, 22, 25] and the static snapshot 
finite state hypothesis computational models [5, 6, 11].  

10 Conclusion 

This work has produced a tool, implementing techniques for detecting contradictory 
and missing VM events in the history of the computer system. The experiments with 
this software demonstrate that the techniques that have been proposed can be used 
successfully to detect temporal inconsistencies in a VM computer activity timeline. 
The automatic detection of inconsistencies that might indicate deliberate tampering 
could assist a human investigator in a subsequent manual examination of the VM 
hosted system running within the data center. 
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Abstract. When hardware resources are shared between mutually dis-
trustful tenants in the cloud, it may cause information leakage and
bring difficulties to regulatory control. To address these concerns, cloud
providers are starting to offer hardware resources dedicated to a single
user. Cloud users have to pay more for such dedicated tenancy; however,
they may not be able to detect the unexpected misuse of their dedi-
cated storage due to the abstraction layer of the cloud. In this paper, we
propose TerraCheck to help cloud users verify if their dedicated storage
devices have been misused to store other users’ data. TerraCheck de-
tects the malicious occupation of the dedicated device by monitoring the
change of the shadow data that are residual bits intentionally left on the
disk and are invisible by the file system. When the cloud providers share
the dedicated disk with other users, such misuses can be detected since
the shadow data will be overwritten and become irretrievable. We de-
scribe the theoretical framework of TerraCheck and show experimentally
that TerraCheck works well in practice.

Keywords: Dedicated Storage, Cloud Security, Verification.

1 Introduction

Cloud service significantly reduces costs by multiplexing hardware resources
among users [12]. The co-resident data belonging to different users may lead to
information leakage, which has become a major security concern for cloud users.
For instance, a malicious VM is capable of retrieving the encryption keys [22]
from a victim VM hosted on the same physical machine. Sensitive information
can be compromised through the covert communication channels based on the
shared CPU cache [20], memory bus [19], hard disks [15,18] and so on in the
cloud.

Cloud providers are starting to offer physically isolated resources in order
to lower the entry barrier of cloud adoption for processing sensitive data. For
instance, in Amazon cloud [1], Dedicated Instances are a form of EC2 instances
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launched within the Amazon Virtual Private Cloud (Amazon VPC) that runs
on hardware dedicated to a single customer. A dedicated instance ensures that
the resources, such as CPU, memory, disk storage and network, are isolated
physically at the hardware level. Unsurprisingly, the cloud users have to pay
more for the dedicated resources than the regular ones.

Although the dedication property is guaranteed by the Service Level Agree-
ment (SLA), a misbehaved cloud provider may fail to meet the isolation require-
ment due to either accidental configuration error or intentionally reassigning the
unallocated resources to other users. As a consequence, the dedicated resource,
for example the storage device, will store the data belonging to unexpected users
and cause information leakage. Because the cloud users usually can only see a
logical view of their resources due to the abstraction layer or the business model
of cloud computing [11], they may not be aware of or not be able to detect
the violation of the desired dedicated configuration before the security breaches
occur.

In this paper, we propose TerraCheck to help cloud users verify if the unallo-
cated disk space has been occupied by undesired users without the cooperation
of the cloud provider. We assume that the cloud providers are honest-but-greedy,
i.e., trustworthy for managing user’s data without violating the data privacy
but greedy for allocating the storage resources not being in use by the dedicated
user to other tenants. To detect the greedy allocation, TerraCheck places shadow
data on the unallocated disk space and verifies the dedication by detecting the
change of the shadow information.

Shadow data are portions of the residue left behind when files are deleted
from the disk. As such, this data cannot be accessed directly by the file system,
but can be recovered using forensic techniques. We group the set of residual bits
related to the same original file as “shadow chunk”. We record the hash value
and physical disk address of each shadow chunk as verification metadata. To
verify the integrity of each shadow chunk, we utilize disk forensics techniques
to retrieve shadow chunks according to the prior recorded disk addresses. If the
shadow chunks cannot be recovered entirely, it indicates that the unallocated
disk space has been overwritten and the dedication property is violated.

Our shadow chunk method has two advantages, comparing to simply stuffing
the unallocated disk space with void files. First, it makes the cheating behavior
of the honest-but-greedy cloud provider very costly. The retrieval of the shadow
chunks relies on the physical disk address of each chunk. If the misbehaved cloud
providers move the shadow data to some non-dedicated devices and make the
shadow data still retrievable, they must map the prior recorded disk address to
the addresses of the new device. Instead, accessing files relies on the file system
and can be redirected to another device with less effort. Second, shadow data
will not affect the normal use of the dedicated device. The attested disk area
filled by the shadow chunks remains available for allocation in the view of the file
system. However, if the attested disk area is filled by files, it cannot be occupied
by the dedicated user immediately.
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We present two schemes for verifying the dedication property of cloud stor-
age. The basic TerraCheck scheme can detect the unexpected occupation of
a dedicated storage device with high accuracy by checking the retrievability
of every chunk. With sampling, our advanced probabilistic TerraCheck scheme
can discover 10% unexpected occupation of the dedicated storage device with
95% probability, by randomly challenging 29 chunks. Therefore, a smaller chunk
achieves low computational cost, but results in the large storage of metadata.
Furthermore, with the help of Bloom filter with 1% false positive rate, the size
of verification metadata can be reduced 5.5 times.

The rest of the paper is organized as follows. In Section 2, we describe the
threat model and general assumptions. Section 3 presents the requirements and
operations of the dedication verification. Section 4 describes both the basic and
advanced probabilistic TerraCheck schemes. Section 5 implements two schemes
and evaluates both the computational and storage costs. Section 6 overviews the
related work. Section 7 concludes this paper.

2 Threat Model and Assumptions

The dedication property of cloud storage is guaranteed by the terms in SLA.
However, a misbehaved cloud provider may fail to meet such dedication require-
ment due to either accidental configuration errors or intentionally being greedy
with the unallocated storage resources: First, configuration error may allocate
dedicated storage space to undesired tenants. For instance, in Amazon dedicated
instance, the dedication property is enabled by the “Dedicated” attribute con-
figured at the launch time. The “Dedicated” attribute may be silently disabled
(e.g., for software update, server migration or testing). Second, a cloud provider
may intentionally place the non-frequently accessed data, such as archive data,
to the unoccupied disk space where it is supposed to belong to one specific
customer.

We consider the misbehaved cloud providers as honest-but-greedy. Honest
means that the cloud providers are not motivated to corrupt user’s data or
violate the data privacy with respect to the business reputation. However, the
cloud providers may be greedy for allocating the storage not in used by the ded-
icated user to other tenants. Although the honest-but-greedy cloud providers are
only interested in the large amount of unused disk space belonging to a dedi-
cated user, they cannot control the behavior of the co-resident tenants once the
cloud provider accidentally allocates the unoccupied space to another tenant.
Co-resident tenants may threaten the security and privacy of the existing user
data, such as exploiting covert channels to retrieve encryption key [22] and other
sensitive information [15] or violating the access control policy [18].

We also consider the cloud providers are economically rational. Misbehaved
cloud providers will not defeat our verification mechanism by paying higher
storage overhead. For example, the cloud provider can intecept the write call or
monitor the process of placing the shadow data. However, by doing these, the
cloud provider has to store the shadow data somewhere else in order to be able
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to response the verification challenge correctly and occupy the dedicated storage
at the same time.

We assume the usage of the dedicated storage is well-planned by the user. For
example, the user allocates a determined amount of dedicated disk space to each
VM. This is a common practice [11] of resource management in the cloud. When
the user launches a small number of VMs, only part of the dedicated storage
is allocated. The rest of the dedicated storage should be protected from being
exploited by other users due to both the security and performance reasons. We
refer this part of the disk space as attested area. The disk space being in use by
the dedicated user is called occupied area. Additionally, the attested area may
scale up and down based on the occupation of the dedicated disk. TerraCheck
requires a small amount of trusted disk space for storing verification metadata
on the occupied area. We assume the occupied area is trusted, since an honest-
but-greedy cloud provider is trustworthy for managing user data.

3 System Model

In TerraCheck, both occupied and attested disk spaces are assigned to the user
by the cloud provider and under the management of file system. Occupied area
is the disk space which has stored user’s data; attested area is the empty disk
space that is available to be allocated by the user. TerraCheck only focuses on
the verification of dedicated storage assigned by the cloud provider rather than
the physical disk, since the users of dedicated storage cannot control the disk
space that doesn’t belong to them. The verification of dedicated storage that
solely occupies a physical disk is another research topic, which can be addressed
by existing co-residency checking techniques [18,17].

We first formalize the model of TerraCheck. Suppose a user C pays and pos-
sesses a dedicated disk with the capacity of s in the cloud. The dedicated disk is
divided into two areas as shown in Fig. 1. The occupied area with the capacity of
sa disk space has been allocated by C for storing the data associated with run-
ning VMs or as general purpose storage. We consider occupied area is trusted by
C to execute the TerraCheck and store the verification metadata. The attested
area with the capacity of su disk space remains unallocated where su = s− sa.
Attested area is the verification target of TerraCheck. When C needs more disk
space by increasing the size of occupied area, the size of attested area will shrink
accordingly. The goal of TerraCheck is to verify if the attested area has been
maliciously taken by other users or the cloud provider.

TerraCheck consists of four major procedures, as shown in Fig. 1. First, it
places shadow chunks on the attested area of the target disk. The shadow chunks
are deleted files which cannot be accessed from the file system directly by sys-
tem calls. Instead, shadow chunks can be recovered by disk forensics technique
as long as they have not been overwritten. Second, it generates metadata, such
as the hash value of the shadow chunks, for monitoring the alternation of shadow
chunks. The metadata are stored on the occupied area where it has been allo-
cated for storing the data associated with running VMs or as general purpose
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Fig. 1. Overview of TerraCheck

storage. Third, TerraCheck challenges the shadow chunks by using disk forensic
techniques to recover them. Lastly, it compares the forensics results with the
verification metadata. If any one of the shadow chunks has been altered and
cannot be recovered, a violation of dedication property is detected.

3.1 Verification Requirements

A solution for verifying the dedicated storage should satisfy the following tech-
nical requirements.

– Accuracy. The verification mechanism should ensure the users to trust the
result of the verification. When the misbehaved cloud providers break the
dedication property by reassigning the dedicated storage to undesired ten-
ants, the user should be able to detect such violation with a high probability.

– Efficiency. The verification procedure should be fast, without obviously in-
terrupting the disk activities against the allocated part of the disk. Moreover,
The metadata used for verification should be small; otherwise, it is unaccept-
able to use the same amount or more disk space to store the original shadow
data on the local disk. When the dedicated user occupies or releases more
disk space, for example, for running more VMs or shutting down existing
VMs, the disk area to be attested varies. Every time the customer needs to
scale the disk space up or down, the affected shadow chunks should be as
few as possible.
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Table 1. Summary of Operation Parameters

Variable Meaning
C The cloud user who possesses the dedicated device and

executes dedication verification
n The number of shadow chunks placed on attested disk area
lk Length of each shadow chunk
th Header tag of each chunk
tf Footer tag of each chunk
K The set of shadow chunks
su Size of unallocated disk space
idki

ID of shadow chunk i
F The set of files for generating shadow chunks

imgAA Disk image of attested area
metaDB File for storing verification metadata

bi Starting disk address of chunk i on attested area
ei Ending disk address of chunk i on attested area

idARx ID of attested region x
metaFILTER File for storing Bloom filter

3.2 System Operations

TerraCheck consists of five basic operations. ChunkGen generates the shadow
chunks and places them on the attested area. MetaGen generates the verifica-
tion metadata and stores them on the occupied area. ChalGen generates the
information of challenged chunks. Retrieve executes the forensics of challenged
chunks and calculates their hash values. V erify operation compares the result
of Retrieve with the verification metadata recorded in MetaGen and makes the
decision of the dedication verification. Table 1 summarizes all the variables used
in this paper.

– ChunkGen(n, lk, th, tf)→K = {k1, k2, ..., kn}: TerraCheck fills attested
area with a set of chunks K = {k1, k2, ..., kn} and n ∗ lk = su. Each chunk ki
has a header tag th and a footer tag tf to represent the start and the end of
a chunk, respectively. The total length of the header and the footer lth + ltf
is less than lk. This algorithm takes the number of chunks, the length of each
chunk, the header th, the footer tf as inputs and generates n temporary files
F = {f1, f2, ..., fn} first. Every file fi in F starts with th, ends with tf and
the rest of it is filled by random bits. Every file fi has the same length as lk.
All the files in F are stored on attested area and then deleted from the file
system. The bits left on attested area associated with each file fi are the set
of chunks K = {k1, k2, ..., kn}. Each chunk contains three parts - the header,
the footer, and a random body.

– MetaGen(n, th, tf , imgAA, h)→{metaDB, ⊥}: It takes the number of
chunks, the header, footer tag information, the disk image of attested area
and a hash function as inputs, returns the verification metadata or abor-
tion. h : {0, 1}∗→{0, 1}m denotes a fixed hash function that outputs m
bits hash value. The MetaGen algorithm retrieves the chunks from imgAA

by matching the th and tf and calculates the hash value of each chunk.
The results of verification metadata metaDB is stored on occupied area.
metaDB = {(idki , bi, ei, h(ki))|i ∈ {1, 2...n}, ki ∈ K} lists the ID of a chunk
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and the boundary of each chunk on the disk, such as the start block number
bi and the end block number ei of chunk ki, and the hash value of each chunk
h(ki). Each chunk can be retrieved from the raw disk based on the start and
end block number without the help of the file system. Let |metaDB| be the
number of items in metaDB. If |metaDB| �= n, it indicates that some chunks
either cannot be recovered from the disk image of attested area or a mis-
matched header or footer involved among the chunks. In this case, MetaGen
fails and outputs abortion symbol ⊥.

– ChalGen(metaDB, idki)→chal: This algorithm generates a challenge chal
based onmetaDB and the ID of the queried chunk. chal = (idki , bi, ei, h(ki))∈
metaDB is the chunk to be examined.

– Retrieve(chal, h)→result: It takes the challenge and the hash function as
inputs and calculates the hash value after retrieving the chunk based on the
information specified in chal. It returns the hash value of the chunk in chal.

– Verify(result, chal)→{“success”, “failure”}: The Verify algorithm takes
result and chal as inputs and compares the hash value in result with that
in chal. If the two hash values match, it outputs “success” and otherwise
outputs “failure”.

4 TerraCheck Schemes

We propose two schemes. The basic TerraCheck can accurately verify the vi-
olation of the dedication with a high computation and storage overhead. The
advanced TerraCheck can detect the violation of the dedication with a high
probability, while reducing the verification overhead dramatically.

4.1 Basic Scheme

Our goal is to make sure that the attested area hasn’t been allocated to other
users. Our basic TerraCheck scheme consists of four phases.

– Initial. In the initial phase, the attested area is filled by all zeros. This oper-
ation prevents the existing content on the disk from affecting our placement
results.

– Placement. We place the shadow chunks on the attested area by using the
ChunckGen and MetaGen algorithms. If MetaGen → ⊥, a failure occurs,
TerraCheck should be restarted from the initial phase. Otherwise, MetaGen
generates valid verification metadata metaDB.

– Verification is a procedure to patrol on the dedicated storage device and
collect the evidence for the undesired occupation by calling Challenge,
Retrieve and V erify algorithms until each shadow chunk placed in the
attested area has been checked. The V erification phase would be stopped
once V erify algorithm returns a “failure” for any chunk. The dedication
property is preserved if all the chunks passed the examination.
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– Update is executed when the size of attested area is subject to change. It
is difficult to predict the set of affected chunks since the allocation of disk
space depends on the disk scheduling. Therefore, both the shadow chunks
and their associated verification metadata become useless and subjects to
deletion. The initial phase and placement phase should be restarted with
the new attested area.

The basic TerraCheck can successfully check the dedication property with high
accuracy. If n − t shadow chunks are recoverable, it means that t chunks are
altered so that around t∗ lk out of su disk space has been allocated or corrupted
maliciously. Theoretically, we can 100% detect the alternation of any number of
chunks. However, the basic TerraCheck scheme has two main limitations:

– Computational Cost. The verification phase has to read through the whole
attested area and calculate the hash value for every shadow chunk.

– Update Operation. When the size of attested area has to be changed, Ter-
raCheck should be restarted from the initial phase against the new attested
area.

4.2 Advanced Scheme

To mitigate the limitations of the basic TerraCheck scheme, we propose a prob-
abilistic based TerraCheck scheme. To reduce the computational cost, we ran-
domly sample the chunks during the Verification procedure. In order to provide
efficient update operation, we introduce multiple regions within the attested
area, we call them attested region. The attested region is the smallest unit for C
to scale up the size of the occupied area. For example, C plans to attach a certain
size of disk space to a newly launched VM. When the size of the occupied area
is shrunk due to the termination of a VM, a new attested region will be created.
Each attested region contains multiple shadow chunks. The shadow chunk is the
smallest unit for challenge and verification. In addition, we use Bloom filter to
reduce the storage for saving the verification metadata.

Attested Region. We introduce attested region for conveniently scaling up
and down the size of attested area. The attested area is divided into multiple
attested regions. The size of attested region depends on how a user uses the
dedicated disk. For example, if it uses the disk as the attached secondary storage
for running VMs, and each VM is attached by a fixed amount of disk space, such
amount is an optimal size for each attested region. When an attested region
should be deleted, the related verification metadata are deleted and excluded
from the TerraCheck procedure. The attested region can also serve the purpose
of preventing the cloud provider from manipulating the allocation status of the
dedicated storage. That is, only the user of dedicated storage can extend the size
of occupied area by generating more attested region.
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Fig. 2. Probabilistic Framework of Advanced TerraCheck

Probabilistic Verification. The sampling would greatly reduce the computa-
tional cost, while still achieving a high detection probability. We now analyze
the probabilistic guarantees offered by a scheme that supports chunk sampling.

Suppose the client probes p chunks during the Challenge phase. Clearly, if the
cloud provider destroys chunks other than those probed, the cloud provider will
not be caught. Assume now that t chunks are tampered and become unrecover-
able, so that at least st = t∗ lk size of disk space are maliciously allocated. If the
total number of chunks is n, the probability that at least one of the probed chunks
matches at least one of the tampered chunks is ρ = 1− n−t

n · n−t−1
n−1 , ..., ·n−p+1−t

n−p+1 .

Since n−t−i
n−i ≥ n−t−i−1

n−i−1 , it follows that ρ ≥ 1− (n−t
n )p.

When t is a fraction of the chunks, user C can detect misbehaviors by asking
for a constant amount of chunks, independently on the total number of file blocks.
As shown in Fig. 2, if t = 1% of n, then TerraCheck asks for 459 chunks, 300
chunks and 230 chunks in order to achieve the probability of at least 99%, 95%
and 90%, respectively. When the number of corrupted chunks goes up to 10%
of the total chunks, the violation can be detected with 95% probability, by only
challenging 29 chunks. As the number of corrupted chunks increases, the number
of chunks required to be checked is decreased. The sampling is overwhelmingly
better than scanning all chunks in the basic TerraCheck scheme. Therefore, we
can challenge a fixed number of chunks to achieve certain accuracy. The size of
each chunk will determine the computation cost. When the size of each chunk
is small, the overhead for retrieving all challenged chunks from dedicated disk
is low.

Advanced Operations. For establishing efficient TerraCheck, we need to refine
both the MetaGen and ChalGen algorithms.

MetaGen(n, th, tf , imgAA, h)→{metaDB, ⊥}: The results of verification
metadata metaDB = {(idARx , idki , bi, ei, h(ki))|i ∈ {1, 2...n}, ki ∈ K}. It lists
the ID of the located attested region, the ID of a chunk and the boundary of
each chunk on the disk, such as the start block number bi and the end block
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number ei of chunk ki, and the hash value of each chunk h(ki). Each chunk can
be retrieved from the raw disk based on the start and end block number and the
ID of the attested region without the help of the file system.

ChalGen(metaDB)
r→chal. It randomly generates a challenge chal based on

metaDB. chal = (idARr , idkr , br, er, h(kr)) ∈ metaDB is the chunk to be exam-
ined.

Our advanced TerraCheck scheme consists of the same phases as the basic
TerraCheck. Advanced operations will be involved in the related phases, and the
update phase should be modified as follows.

– Update. Since the attested area is further divided into attested regions,
when a user needs to extend or shrink the disk space for occupied area,
only limited number of attested regions are deleted or added so that the
TerraCheck against the rest of chunks remains valid. When the occupied
area scales up, the metadata related to the erased attested region will be
deleted. The rest of metadata are still available for TerraCheck.

Reducing Metadata Storage. In the basic TerraCheck scheme, the size of
metaDB for storing the verification metadata is linear to the number of shadow
chunks. The number of chunks could be very large if the user wants to achieve
a lower computational cost, as we discussed in the probabilistic verification. In
order to reduce the amount of storage for verification metadata in TerraCheck,
we take advantage of Bloom filter to store the metadata for verification.

Bloom filter [4] is a space-efficient data structure for representing a set in
order to support membership queries. Bloom filter is suitable to the place where
one might like to keep or send a list for verification, but a complete list requires
too much space. We use Bloom filter to represent a set S = {x1, x2, ..., xn} of n
elements as an array of m counters, initially all set to 0. It uses k independent
hash functions h1, h2, ..., hk with range [1, m]. For mathematical convenience,
we make the natural assumption that these hash functions map each item in the
universe to a random number over the range {1, ...,m}. For each element x ∈ S,
the bits hi(x) are set 1 for 1 ≤ i ≤ k. A location can be set as 1 multiple times.
To check if an item y is a member of S, we check whether all hi(y) are 1. If not,
then clearly y is not a member of S. If all hi(y) are 1, we assume that y is in S.
We know that a Bloom filter may yield a false positive, where it suggests that
an element x is in S even though it is not.

The probability of a false positive for an element not in the set, or the false
positive rate, can be estimated, given our assumption that hash functions are
perfectly random. After all the elements of S are hashed into the Bloom filter,

the probability that a specific bit is still 0 is PRzero = 1− 1
m

kn ≈ e−
kn
m . The

probability of a false positive is (1− PRzero)
k. A Bloom filter with an optimal

value for the number of hash functions can improve storage efficiency.
We modify our TerraCheck model for utilizing Bloom filter to reduce the

storage cost of the verification metadata.



TerraCheck: Verification of Dedicated Cloud Storage 123

– BF-MetaGen(th, tf , imgAA, h)→{metaFILTER, ⊥} The algorithm takes
the header, footer tag information, the disk image of attested area and a
hash function as inputs, returns the verification metadata or an abortion.
metaFILTER is a Bloom filter which involves the hash value of every shadow
chunk.

– BF-Verify(result, metaFILTER)→{“success”, “failure”}: It takes result
and metaFILTER as inputs and checks if the hash value in result is valid and
associates with any chunks. If the hash value can be found frommetaFILTER,
the algorithm outputs “success” and otherwise “failure”.

5 Implementation and Evaluation

We implement and evaluate both basic TerraCheck scheme and advanced Ter-
raCheck scheme. All experiments are conducted on a Dell PowerEdge460 server
with Intel Core i5 CPU running at 3.10GHz, and with 4096 MB of RAM. The
system runs Ubuntu 12.04 (LST) that is configured with Xen Hypervisor. The
dedicated storage device is a WestDigital SATA 7200 rpm hard disk with 1TB
capacity and 64MB cache. For evaluation purpose, we used SHA-1 as the hash
function h. The random values used for challenging the chunks in the advanced
TerraCheck are generated using the function proposed by Shoup [7]. All data
represent the mean of 20 trials.

We implement a large attested area in basic TerraCheck and implement an at-
tested region in advanced TerraCheck as a logical volume. The occupied area may
involve multiple logical volumes. LVM (Logical Volume Management) technol-
ogy is exploited to automate the update operation when the size of the occupied
disk space varies. We rely on the retrievability of the shadow chunks on each
logical volume to check the dedication property. We utilize Scalpel [14], which
is an open source file recovery utility with an emphasis on speed and memory
efficiency, to retrieve the shadow chunks based on their header tag and footer
tag. To perform file recovery, Scalpel makes two sequential passes over each disk
image. The first pass reads the entire disk image and searches for the headers,
footers and a database of the locations of these headers. The second pass re-
trieves the files from the disk image based on the location information of the
header and footer. Scalpel is file system-independent and will carve files from
FATx, NTFS, ext2 and ext3, or raw partitions.

We evaluate both the computation overhead and storage cost during each
phase of TerraCheckand demonstrate the compliance with the requirements of
both accuracy and efficiency identified in Section 3.1.

Initial Phase. During the initial phase, the attested area is filled by all zeros.
The time for this phase is determined by, and linear to the size of attested area
su. It takes about 10 seconds for cleaning 1 GB of the attested area. Both basic
TerraCheck and advanced TerraCheck have the same performance at this phase.

Placement Phase. There are two steps for placing the chunks. The first step is
to generate and store the chunks to the attested area. The cost of this operation is
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Table 2. Time for Retrieving Chunks

Chunk Size 512KB 1MB 2MB 4MB 8MB 16MB

Retrieve Time 13 ms 15 ms 20 ms 29 ms 48 ms 86 ms

determined by the chunk size and the size of the attested area. On our testbed,
it takes 12 seconds to store 100MB of shadow chunks. The second step is to
generate the metadata. It takes 8.198 seconds for Scalpel to scan 1 GB of the
attested area in the first pass and store the location information.

Verification Phase. The basic TerraCheck examines all the chunks based on
the verification metadata recorded inmetaDB. Therefore, the time for generating
the challenge can be ignored. The advanced TerraCheck randomly challenges the
chunks. The generation of random number takes less than 0.1 ms. The challenged
chunks are retrieved from the attested area based on the start and end location
recorded as the verification metadata. Therefore, the performance is determined
by the disk access time. Tab. 2 shows the disk access time in our experiment.

After retrieving the challenged chunks, TerraCheck compares the hash value
of the retrieved chunk with the verification information. In basic TerraCheck,
all the chunks residing on the attested area should be checked, which uses the
time for calculating the hash value of all the chunks. The advanced TerraCheck
scheme randomly challenges the chunks to achieve the detection of undesired
disk occupation. We simulate the behaviors that a proportion of attested area is
altered. For instance, if a random 1% of an attested area with 10000 chunks are
altered, such a situation could be detected with a 90% probability by challenging
217 chunks on average, which is close to the theoretical result.

Update Phase. For the basic TerraCheck scheme, the performance of the up-
date is the same as the overhead of executing the initial and placement phases.
The performance of the advanced TerraCheck scheme depends on the change
of the size of the attested area. When the occupied area is extended, the ad-
vanced TerraCheck scheme only needs to update the metaDB by deleting the
items of affected chunks. When the occupied area is shrunk, more attested re-
gions should be created on the attested area. The generation of each attested
region takes about 400 ms regardless the size of the attested region. Therefore,
TerraCheck scheme can scale with a low overhead when users update the size of
attested area frequently.

Reducing Metadata Storage. apgbmf [2] is originally used to manage Bloom
filter for restricting password generation in APG password generation soft-
ware [16]. We use apgbmf version 2.2.3 as a standalone bloom filter management
tool.

We consider each hash value of the shadow chunk as an item of password
dictionary in the context of apgbmf. We create a Bloom filter for such hash value
dictionary. During the verification phase of TerraCheck, if a recovered chunk is
unaltered, its hash value will pass the Bloom filter, i.e, the hash value is one of the
hash values which associates an original shadow chunk with a high probability.
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When we allow a 1% fault positive rate, the storage cost with Bloom filter is
reduced 5.5 times as shown in Fig. 3. When the number of chunks is more than
10 million, the metadata only requires 36 MB as compared to 200 MB without
using Bloom filter.

6 Related Work

Cloud service providers [1,13] are starting to offer physically isolated resources
to lower the entry barrier for enterprises to adopt cloud computing and stor-
age. For instance, in Amazon cloud [1], Dedicated Instances are a form of EC2
instances launched within the Amazon Virtual Private Cloud, which runs hard-
ware dedicated to a single customer. Some research has been done to guarantee
the exclusive occupation of dedicated resources for security reasons. The side
channel based on CPU L2 cache has been used to verify the exclusive use of
a physical machine [21]. Ristenpart et al. [15] propose to use the existing side
channels to verify the co-residency of VMs. [10] allows application designers to
build secure applications in the same way as on a dedicated closed platform by
using a trusted virtual machine monitor. However, it requires the modification
of commercial hypervisor.

Researchers have also investigated techniques to verify various security prop-
erties claimed in the SLAs. Dijk et al. [8] prove that the files are stored with
encryption at the cloud server side by imposing a resource requirement on the
process of translating files from the plain texts to the cipher texts. Proof of Re-
trievability (PoR) [9] aims to verify if the files are available in the cloud storage
at any time. However, PoR cannot verify where the files are located. RAFT [5]
can verify that a file is stored with sufficient redundancy by measuring the re-
sponse time for accessing “well-collected” file blocks. Another work [3] proposes
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a mechanism to verify that the cloud storage provider replicates the data in mul-
tiple geo-locations, by measuring the network latency. [18] proposes a method to
verify the disk storage isolation of conflict-of-interest files so that Chinese Wall
security policy [6] can be successfully enforced in cloud storage environment.

7 Conclusion

In this paper, we propose TerraCheck to help cloud users verify the exclusive use
of their dedicated cloud storage resources. TerraCheck places shadow chunks on
the dedicated disk and detects the change of the shadow information by taking
advantage of disk forensics technique. We further improve the computational
efficiency by randomly challenging the chunks and reduce the storage by applying
Bloom filter.
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Abstract. A private set intersection (PSI) protocol allows two parties to compute
the intersection of their input sets privately. Most of the previous PSI protocols
only output the result to one party and the other party gets nothing from running
the protocols. However, a mutual PSI protocol in which both parties can get the
output is highly desirable in many applications. A major obstacle in designing a
mutual PSI protocol is how to ensure fairness. In this paper we present the first
fair mutual PSI protocol which is efficient and secure. Fairness of the protocol
is obtained in an optimistic fashion, i.e. by using an offline third party arbiter.
In contrast to many optimistic protocols which require a fully trusted arbiter,
in our protocol the arbiter is only required to be semi-trusted, in the sense that
we consider it to be a potential threat to both parties’ privacy but believe it will
follow the protocol. The arbiter can resolve disputes without knowing any private
information belongs to the two parties. This feature is appealing for a PSI protocol
in which privacy may be of ultimate importance.

1 Introduction

An interesting problem in secure computation is private set intersection (PSI). Namely,
how to enable two mutually untrusted parties to compute jointly the intersection of their
private input sets. PSI has many potential applications in private data mining, online
recommendation services, online dating services, medical databases and so on. There
have been many protocols proposed to solve the PSI problem [1–10]. The majority
of them are single-output protocols, i.e. only one party obtains the intersection and
the other party gets nothing. However, there are many motivating scenarios in which
both parties want to know the intersection. Several examples have been given in [6] to
demonstrate the need for such mutual PSI protocols:

– Two real estate companies would like to identify customers (e.g., homeowners) who
are double-dealing, i.e., have signed exclusive contracts with both companies to
assist them in selling their properties.

– A government agency needs to make sure that employees of its industrial contrac-
tor have no criminal records. Neither the agency nor the contractor are willing to
disclose their respective data-sets (list of convicted felons and employees, respec-
tively) but both would like to know the intersection, if any.

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 128–144, 2013.
c© IFIP International Federation for Information Processing 2013
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A mutual PSI protocol must be fair, i.e. if one party knows the intersection, the other
party should also know it. However fairness is hard to achieve in cryptographic pro-
tocols (see Section 2 for a brief overview). To efficiently achieve fairness, most fair
cryptographic protocols are optimistic which requires help from an offline arbiter who
is a trusted third party. The arbiter only participates if one party unfairly aborts the pro-
tocol and can recover the output from the protocol for the honest party. Incorporating
optimistic fairness in PSI protocols is not easy for two reasons: firstly, although there
is a generic structure, there is no generic construction for optimistic fair protocols. Sec-
ondly, the arbiter usually has to get access to some private information and therefore
has to be fully trusted. However, in reality it is hard to find such a fully trusted third
party. Think about the examples above: an independent entity, e.g. an auditing service
provider, could be well qualified to resolve the disputes, however giving a third party
access to private data may raise privacy concerns. We can find more cases in which
the two parties may trust a third party for fairly resolving disputes, but may not trust it
for privacy.

In this paper, we present the first fair mutual PSI protocol. The protocol has built-in
support for optimistic fairness and does not require setup assumptions such as certified
input sets. In addition, the third party acting as the arbiter can resolve disputes without
knowing the private inputs or the output of the PSI protocol. Hence we can significantly
reduce the trust placed on the arbiter. This makes the protocol more flexible in terms of
practical usage as any third party can become an arbiter as long as they are believed to
be able to correctly carry out instructions.

2 Related Work

Private Set Intersection (PSI) protocols allow two parties, each with a private set, to
securely compute the intersection of their sets. It was first introduced by Freedman et al
in [1]. Their protocol is based on oblivious polynomial evaluation. Dachman-Soled et al
[2], Hazay and Nissim [3] followed the oblivious polynomial evaluation approach and
proposed protocols which are more efficient in the presence of malicious adversaries.
Hazey and Lindell [4] proposed another approach for PSI which is based on oblivious
pseudorandom function evaluation. This approach is further improved by Jarecki and
Liu [5]. De Cristofaro et al [6, 7] proposed PSI protocols with linear communication
and computational complexities. Huang et al [11] presented a PSI protocol based on
garble circuits, and shows in the semi-honest model the protocol can be very efficient.
There are also protocols based on commutative encryption [12, 13].

All of the above protocols are single-output, i.e. one party gets the output and the
other party gets nothing. This is a traditional way to simplify protocol design in the ma-
licious model because it removes the need for fairness, i.e. how to prevent the adversary
from aborting the protocol pre-maturely after obtaining the output (and before the other
party obtains it) [14].

Nevertheless, there have been a few mutual PSI protocols which are designed to
output the intersection to both parties. Kissner and Song [8] proposed the first mutual
PSI protocol. The protocol itself does not guarantee fairness, but relies on the assump-
tion that the homomorphic encryption scheme they use has a fair threshold decryption
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protocol. However, unless there is an online trusted third party, it is also non-trivial
to achieve fairness in threshold decryption protocols. On the other hand, if an online
trust third party is available, the PSI functionality can be trivially computed by giv-
ing the input sets to the trusted party. Camenisch and Zaverucha [9] sketched a mutual
PSI protocol which requires the input sets to be signed and certified by a trusted party.
Their mutual PSI protocol is obtained by weaving two symmetric instances of a single-
output PSI protocol with certified input sets. Fairness is obtained by incorporating an
optimistic fair exchange scheme. However this protocol does not work in general cases
where inputs are not certified because it is hard to force the two parties to use the same
inputs in the two instances. Another mutual PSI protocol is proposed by Kim et al [10],
but they specifically state that fairness is not considered in their security model.

Fairness is a long discussed topic in cryptographic protocols. Cleve [15] showed that
complete fairness is impossible in two-party protocols in the malicious model. How-
ever, partial fairness can be achieved. Partial fairness means that one party can have
an unfair advantage, but the advantage is computationally insignificant. Many protocols
achieve partial fairness by using the gradual release approach [16–18]. However, this
approach is very inefficient in nature. The Optimistic approach, which uses an offline
trusted third party, has been widely used to obtain fairness efficiently. It is called op-
timistic because it cannot prevent the unfair behaviour but later the trusted third party
can recover the output for the honest party. There has been a long line of research in
this direction [19–25]. Previously, the trusted third party in an optimistic fair protocol
which requires non-trivial computation on the inputs needs to be fully trusted and can
get the output or inputs of the protocol if one party raises a dispute. This might not
be desirable when the output or inputs should be strictly kept private. There are also
other approaches for achieving partial fairness efficiently. But usually they work only
for a specific problem. For example, the concurrent signatures protocol [26] allows two
parties to produce and exchange two ambiguous signatures until an extra piece of infor-
mation (called keystone) is released by one of the parties. The two parities obtain the
signature from the other party concurrently when the keystone is released and therefore
fairness is achieved. Kamara el al [27] proposed a new computation model in which
a non-colluding server is involved. Fairness can be achieved in this model if there is
a semi-trusted server, but the server has to be online during the computation. In our
protocol we also require a semi-trusted server but it can be offline most of the time.

3 Building Blocks

3.1 Homomorphic Encryption

A semantically secure homomorphic public key encryption scheme is used as a build-
ing block in the protocol. There are two types of homomorphic encryption, additive
and multiplicative. The additive homomorphic property can be stated as follows: (1)
given two ciphertexts Epk(m1), Epk(m2), Epk(m1 + m2) = Epk(m1) · Epk(m2);
(2) given a ciphertext Epk(m1) and a constant c, Epk(c · m1) = Epk(m1)

c. The
multiplicative homomorphic property can be stated as follows: (1) given two cipher-
texts Epk(m1), Epk(m2), Epk(m1 ·m2) = Epk(m1) ·Epk(m2); (2) given a ciphertext
Epk(m1) and a constant c, Epk(m

c
1) = Epk(m1)

c.
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3.2 The Freedman-Nissim-Pinkas (FNP) Protocol

Our starting point is the PSI protocol in the semi-honest model proposed by Freedman
et al. [1], which is based on oblivious polynomial evaluation. In this protocol, one party
A has an input set X and another party B has an input set Y such that |X | = |Y | = n.1

The two parties interact as follows

1. A chooses a key pair (pk, sk) for an additive homomorphic encryption scheme and
makes the public key pk available to B.

2. A defines a polynomial Q(y) = (y−x1)(y−x2) . . . (y−xn) =
∑n

i=0 diy
i, where

each element xi ∈ X is a root of Q(y). A then encrypts each coefficient di using
the public key chosen in the last step and sends the encrypted coefficients Epk(di)
to B.

3. For each element yj ∈ Y , B evaluates Q(yj) obliviously using the homomorphic

property Epk(Q(yj)) =
∏n

i=0 Epk(di)
yi
j . B also encrypts yj using A’s public key.

B then chooses a random rj and uses the homomorphic property again to compute
Epk(rj ·Q(yj)+yj) = Epk(Q(yj))

rj ·Epk(yj). B sends each Epk(rj ·Q(yj)+yj)
to A. 2

4. A decrypts each ciphertext received from B. If yj ∈ X ∩ Y , then Q(yj) = 0, thus
the decryption will be yj which is also an element in X , otherwise, the decryption
will be a random value. By checking whether the decryption is in X , A can output
X ∩ Y while learns nothing about other elements in Y but not in X .

3.3 Zero Knowledge Proof

A zero knowledge proof protocol allows a prover to prove the validity of a statement
without leaking any other information. The protocol presented in Section 3.2 is secure
against semi-honest adversaries. However, in the presence of malicious adversaries we
have to prevent the adversaries from deviating from the protocol. We enforce this by
requiring each party to use zero knowledge proofs to convince the other party that it
follows the protocol correctly. We will name the protocols as PK(...) and use the nota-
tion introduced in [28] to present the protocols in the rest of the paper

u {ωi ∈ I∗(mωi)}ni=1 : ∃{χj ∈ I∗(mχj )}mj=1 : φ(ω1, ..., ωn, χ1, ..., χm)

In short, the prover is proving the knowledge of ω1, ..., ωn and the existence of
χ1, ..., χm such that these values satisfy certain predicate φ(ω1, ..., ωn, χ1, ..., χm).
Each ωi and χj belongs to some integer domain I∗(mωi) and I∗(mχj ). Each pred-
icate is a boolean formula built from atomic predicates of discrete logarithms y =∏n

i=1 g
Fi(ω1,...,ωn)
i , where Fi is an integer polynomial. All quantities except ω1, ..., ωn

are assumed to be publicly known.

1 In our protocol described in 4, we have a different requirement on the size of the input sets.
This is due to the fact that the FNP protocol is a single output PSI protocol and ours is a mutual
PSI protocol.

2 For the sake of simplicity, we neglect the optimisations made in the paper to polynomial eval-
uation by using balanced allocation scheme and Horner’s rule.
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For example, the following means that given a certain group structure and a tuple
(α, β, g, h), the prover can prove in zero knowledge that it knows the discrete logarithm
x of α and there exists some s such that β = hxgs.

u x ∈ Zq : ∃s ∈ Zq : α = gx ∧ β = hxgs

3.4 Verifiable Encryption

In a nutshell, a verifiable encryption scheme is a public key encryption scheme accom-
panied by an efficient zero knowledge proof of the plaintext satisfies certain properties
[29]. It has numerous applications in key escrow, secret sharing and optimistic fair
exchange. In optimistic fair exchange protocols, a convention is to let a party create a
verifiable escrow of a data item. The escrow is essentially an encryption of the escrowed
item under the offline arbiter’s public key. A public data called a label is attached so that
the arbiter can verify the decryption against the label to ensure certain properties hold.
It also allows efficient zero knowledge proof of correct decryption to be constructed.

3.5 Perfectly Hiding Commitment

In our protocol, we also use a perfectly hiding commitment scheme [30] in zero knowl-
edge proof protocols. Generally speaking, a commitment scheme is a protocol between
two parties, the committer and the receiver. The committer can commit to a value v by
generating a commitment com(v) and sends it to the receiver. The commitment can be
used as input to zero knowledge proof protocols. The commitment has two properties:
hiding which means it is infeasible for the receiver to find v; binding which means it
is infeasible for the committer to find another v′ such that com(v′) = com(v). The
strength of hiding and binding can be perfect or computational. In our case, we want
a perfectly hiding commitment scheme which means the receiver cannot recover the
value committed, even with unbounded computational power.

4 Overview of the Protocol

In this section, we give a high level view of the protocol as depicted in Fig. 1. The proto-
col has two sub-protocols: a PSI protocol to compute the set intersection between A and
B and a dispute resolution protocol. Note in our protocol, all encryptions are in expo-
nential form, i.e. rather than encrypting directly a message m, we encrypt gm where g is
a generator of a certain group. This modification is necessary to allow zero knowledge
proof, and the modification does not affect the correctness or security of the encryption
schemes. With this modification, oblivious polynomial evaluation is still possible if we
use a multiplicative homomorphic encryption scheme rather than an additive one. The
polynomial is moved to the exponent and the evaluation is done by operations on ex-
ponents. This is a standard technique in homomorphic encryption. For example, given
Epk(g

a), Epk(g
b) and x, we can evaluate ax + b obliviously and get Epk(g

ax+b) by
computing (Epk(g

a))x · Epk(g
b). Having polynomial evaluation results on exponents

is sufficient for our protocol, as the parties only need to test whether for certain y, Q(y)
is 0. This can be done effectively because Q(y) = 0 iff gQ(y) = 1.
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Fig. 1. Overview of the Fair PSI protocol

– Setup: Choose a homomorphic encryption scheme E, a verifiable encryption
scheme E , publish the public parameters. The offline arbiter R also generates a
key pair for E and publishes the public key through a CA.

– Private Set Intersection: A and B are parties who engage in the computation of
the set intersection, and each has a private input set X and Y respectively. In our
protocol we require that A’s set contains at least one random dummy element in
each protocol execution. The sizes of X and Y are also required to be different.
Namely, |X | = n′, |Y | = n such that n′ > n. The requirements are placed to
protect A’s polynomial (see remark 1). A and B each also generates a random key
pair for E and sends the public key to the other. They also negotiate a message
authentication code (MAC) key k. This key is used by both parties to ensure the
messages in the protocol execution comes from the other party. A general method
to achieve this is using a MAC algorithm. To simplify presentation, we omit the
MAC in the protocol description .
1. A generates a polynomial based on A’s set X as described in Section 3.2. If

dn′ is zero, regenerates the random dummy elements in X and the polynomial
again until dn′ is not zero. A encrypts all the coefficients as EpkA(g

d0), ...,
EpKA(g

dn′ ) and sends the ciphertexts to B. A then runs a zero knowledge
proof protocol PKpoly to prove that the polynomial is indeed correctly con-
structed.

2. For each element yj ∈ Y , B evaluates the polynomial using the homomorphic
property. Unlike in the FNP protocol that evaluates to EpkA(rj ·Q(yj)+yj), in
our protocol, B also uses another random blinding factor r′j to blind the result.

So the polynomial evaluates to EpkA(g
rj ·Q(yj)+r′j+yj ). B sends all ciphertexts

to A. B then encrypts all the blinding factors r′j using R’s public key with a

label L as ELpkR
(gr

′
j ). L includes a session ID and a hash value of all communi-

cation in the the protocol execution so far (see remark 2). B sends the encrypted
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blinding factors to A, and uses PKprop to prove that (1) the polynomial eval-
uation is properly done and (2) the encryption of blinding factors is properly
done.

3. A decrypts each EpkA(g
rj ·Q(yj)+r′j+yj ) and then encrypts each grj ·Q(yj)+r′j+yj

using B’s public key. Each ciphertext EpkB (g
rj·Q(yj)+r′j+yj) is sent to B and

A must prove to B that the ciphertext is a correct re-encrypted ciphertext of
the correspondingEpkA(g

rj·Q(yj)+r′j+yj ). B then decrypts each ciphertext and
checks whether there is gyj+r′j that matches the decryption grj·Q(yj)+r′j+yj , if
so yj is in X ∩ Y .

4. B then sends gr
′
1 , ..., gr

′
n and proves they are correct with regard to the encryp-

tion sent in step 2. Then A will be able to test all combinations of gxi+r′j to see
whether there is a match of a decryption grj ·Q(yj)+r′j+yj it obtained in step 3,
if so xi is in X ∩ Y . If B does not send gr

′
1 , ..., gr

′
n or fail to prove they are

valid, A can raise a dispute with R by sending a dispute resolution request.
– Dispute Resolution:

1. A sends all messages sent and received in the first two setps of the PSI protocol
execution to R.R verifies it by checking the consisitence between the messages
and the label. If the transcript ends before the end of step 2 of the PSI protocol,
R simply aborts as neither party gets any advantage.

2. A then encrypts each grj·Q(yj)+r′j+yj using B’s public key. The ciphertext
EpkB (g

rj ·Q(yj)+r′j+yj ) is sent to R andA must prove to R that the ciphertext is
a correct re-encrypted ciphertext of the corresponding EpkA (g

rj·Q(yj)+r′j+yj)
in the transcript.

3. R decrypts ELpkR
(gr

′
1), ..., ELpkR

(gr
′
n) and sends gr

′
1 , ..., gr

′
n to A, so that A can

learn the intersection X ∩ Y .
4. R also sends all EpkB (g

rj ·Q(yj)+r′j+yj ) to B.

Remark 1: In the initialisation stage of the PSI protocol, we require A to randomise its
set X by adding at least one random and secret dummy element, and make sure |X | >
|Y |. This is to protect A’s privacy. Plaintext in each EpkB (g

rj ·Q(yj)+r′j+yj ) needs to be
released to B in the PSI protocol. As rj and r′j are chosen by B, B might be able to
recover gQ(yj). B can recover A’s polynomial if it can obtain at least n′ (gQ(yj), yj)
pairs. In any execution of the protocol, B can recover at most n pairs. Because n′ > n,
the attack is not possible. Randomising the polynomial in each execution prevents B
from pooling information gathered from different executions to recoverA’s polynomial.

Remark 2: We let B to encrypt blinding factors with a label L in step 2. The label L
is for two purposes: (1) to ensure timeliness of dispute resolution. A session ID is at-
tached to each protocol execution and B uses it as an input when generating the label.
We assume a standard format and semantics of the session ID have been agreed by all
parities beforehand, so that R can verify the identities of the two parties involved and
that the protocol execution is within a certain time window. (2) To ensure the integrity
of the messages in the first two steps of the protocol. As only A can raise a dispute
resolution, B needs to ensure A cannot get any advantage by modifying critical mes-
sages, e.g. the encrypted coefficients and polynomial evaluation results. By using the
hash of past communication as an input for the label, B can ensure that. This is because
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the ciphertext with the label is encrypted under R’s public key so cannot be modified
without R’s private key, and any modification to the messages will invalidate the label
so R can detect it.

Remark 3: In our protocol B adds an additional blinding factor r′j when evaluating A’s
polynomial. This is because if we follow the FNP protocol and do not add this blinding
factor, then there is no good way to deal the case in which A aborts after decrypting
all EpkA(g

rj ·Q(yj)+yj ). In this case to maintain fairness, B needs R to recover the set
intersection. A would have to to provide a verifiable encryption of its private key skA
in order for R to decrypt EpkA(g

rj ·Q(yj)+yj) for B. But that will violate A’s privacy
because given the private key R can also recover A’s polynomial coefficients from the
transcript. Our design is better because now R only gets random numbers gr

′
1 , ..., gr

′
n

which contain no information about both parties’ sets.

Remark 4: In the last step of the dispute resolution protocol, R sends
EpkB (g

rj ·Q(yj)+r′j+yj ) to B. This is needed because from the transcript, R cannot tell
whether A has sent them to B or not. It is possible that A unfairly aborts the protocol
after finishing step 2 and then uses R to recover the result. we add this step to make
sure B also receives the output in this case. And because this is the only case that A can
gain advantage by unfairly aborting the protocol, we do not need a dispute resolution
protocol for B.

5 A Concrete Construction

5.1 Verifiable Encryption

As a setup requirement. the arbiter R must have a key pair of a verifiable encryption
scheme. In the second step of the PSI protocol, B must encrypt the blinding factors
r′1, r

′
2, ..., r

′
n under R’s public key. The encryption scheme used by R is the Cramer-

Shoup encryption [31] with a small modification. The system works in this way:

– Setup: On input 1k, output two prime numbers p, q such that q divides p−1, a cyclic
group G with two generator g, h such that G is the unique order q subgroup of Z∗

p.

Choose u1, u2, v1, v2, w
R← Zq . Compute a = gu1hu2 , b = gv1hv2 , c = gw. Then

publish (a, b, c) along with G, q, g, h as the public key and retain (u1, u2, v1, v2, w)
as the private key.

– Encryption: To encrypt a message m, calculate the following:

• e1 = gz, e2 = hz, e3 = czm where z
R← Zq .

• σ = H(e1, e2, e3, L) , where H is a hash function and L is the label.
• e4 = azbzσ

• The ciphertext is (e1, e2, e3, e4).
– Decryption: To decrypt, compute σ = H(e1, e2, e3, L), then verify
eu1
1 eu2

2 (ev11 ev22 )σ = e4. If the verification succeeds, then decrypt m = e3/(e
w
1 )

The only modification we made to the original Cramer-Shoup encryption is that L is
added as an ingredient of σ. All security properties of the Cramer-Shoup encryption are
inherited.
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5.2 A Homomorphic Encryption Scheme

At the core of our construction is a semantically secure homomorphic encryption
scheme. Our choice is the ElGamal [32] encryption scheme. This allows us to con-
struct efficient zero knowledge proofs needed in the protocol. To simplify design, we
share certain parameters between E and E . The scheme is described as follows:

– Setup: Use the same group G and generator g as in section 5.1. Choose x
R← Zq

and compute gx. The public key is pk = (G, g, gx, q) and the private key is sk = x.

– Encryption: Choose r
R← Zq and output the ciphertext c(m) = (gr,m(gx)r).

– Decryption: The ciphertext is decrypted as m(gx)r · (gr)−x = mgrx−rx = m.

ElGamal is multiplicative homomorphic, so it is suitable in our protocol. As mentioned
before we will convert the plaintext m to gm before encryption, so that oblivious poly-
nomial evaluation is possible using ElGamal.

5.3 Zero Knowledge Proof Protocols

PKpoly: Proof of Correct Construction of a Polynomial In step 1 of the PSI proto-
col, A has to prove to B that the polynomial is constructed correctly. Namely, A has to
convince B that it knows the polynomial and the polynomial has no more than n′ roots.
For each coefficient di, the ciphertext is EpkA(g

di) = (gti , gdigxAti) = (αdi , α
′
di
),

where ti is a random number in Zq . To prove it knows the polynomial, A runs the
following protocol:

u di ∈ Zq : ∃ti ∈ Zq : αdi = gti ∧ α′
di

= gdi(gxA)ti

As the maximum degree of the polynomial is determined beforehand and can be verified
by counting the number of encrypted coefficients received, then for a polynomial of
degree n′, the only case that it can have more than n′ roots is when all coefficients are
zero. To show the coefficients are not all zero, we require A to prove that dn′ is not zero
by running

∃tn′ , t′n′ ∈ Zq : αdn′ = gtn′ ∧ α′
dn′ = (gxA)t

′
n′ ∧ tn′ �= t′n′

Intuitively, t′n′ = tn′ + dn′/xA and therefore tn′ = t′n′ iff dn′ = 0. So by verify-
ing tn′ �= t′n′ , B can be convinced that dn′ �= 0. To prove the inequality of discrete
logarithms, we can use the protocol proposed in [29].

PKprop: Proof of Proper Polynomial Evaluation and Encryption In step 2 of the
PSI protocol, B must prove that each EpkA(g

rj ·Q(yj)+r′j+yj ) is a proper ciphertext for
grj·Q(yj)+r′j+yj , and also each ELpkR

(gr
′
j ) is a proper encryption under R’s public key

and the label L.
Recall that for an encrypted coefficient di, EpkA(g

di)=(gri , gdigxAri) =(αdi , α
′
di
).

Then for each term diy
i
j of the polynomial, the ciphertext computed using the homo-

morphic property from EpkA(g
di) is EpkA(g

diy
i
j ) = ((αdi)

yi
j , (α′

di
)y

i
j ). Similarly, for

each rj ·Q(yj), the ciphertext is

EpkA(g
rj ·Q(yj)) = ((

n′∏
i=0

(αdi)
rjy

i
j), (

n′∏
i=0

(α′
di
)rjy

i
j ))
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B also encrypts gr
′
j+yj by itself, and the ciphertextEpkA(g

r′j+yj ) = (gr̂
′
j , gr

′
jgyjgxAr̂′j ).

The ciphertext of the whole can be obtained by multiplying the corresponding compo-
nents of the two:

EpkA(g
rj ·Q(yj)+r′j+yj ) = (α, β) = ((

n′∏
i=0

(αdi)
rjy

i
j ) ·gr̂′j , (

n′∏
i=0

(α′
di
)rjy

i
j ) ·gr′jgyjgxAr̂′j )

For each ELpkR
(gr

′
j ), the ciphertext is (e1j , e2j , e3j, e4j), such that e1j = gzj , e2j =

hzj , e3j = czjgr
′
j ,e4j = azjbzjσ where zj

R← Zq and σ = H(e1j , e2j, e3j , L).
The proof has two steps. In the first step, B commits to yj and rjy

i
j for each yj ∈ Y

and 0 ≤ i ≤ n′. We use the Pedersen Commitment Scheme [30] here. This commitment
scheme is known to be perfectly hiding and computationally binding. It is a discrete
logarithm based scheme, that enables us to re-use the parameters used for the encryption
schemes. We use the same group G, and parameters q, g, h as in section 5.1. To commit
to v, choose a random s and create com(v) = gvhs. So we have com(yj) = gyjhs̃j ,

and com(aj,i) = grjy
i
jhsi for each aj,i = rjy

i
j . Then starting from i = 1, B must

prove that the value committed in com(aj,i) is the product of the values committed in
com(aj,i−1) and com(yj). To do this, we use the protocol from [33] which proves a
committed value in γi is the product of two other values committed in δ, γi−1:
∃yj , aj,i−1, aj,i, s̃j , si−1, si ∈ Zq : γi = gaj,ihsi ∧ δ = gyjhs̃j ∧ γi−1 = gaj,i−1hsi−1

The protocol is correct because aj,i = aj,i−1 · yj . Now A has a series of correct
commitments of a geometric sequence aj,i = rjy

i
j for 0 ≤ i ≤ n′. In the second step,

B runs the following protocol for each 0 ≤ j ≤ n:

u r′j , yj ∈ Zq : ∃aj,0, ..., aj,n′ , r̂′j , zj ∈ Zq : δ = gyjhs̃j

n′∧
i=0

γi = gaj,ihsi

∧α = (
n′∏
i=0

(αdi)
aj,i) · gr̂′j ∧ β = (

n′∏
i=0

(α′
di
)aj,i) · gr′jgyjgxAr̂′j

∧e1j = gzj ∧ e2j = hzj ∧ e3j = czjgr
′
j ∧ e4j = azjbzjσ

B proves in the first two lines that it knows yj , r′j , also each exponent aj,i in α and β
match the value committed in γi, yj in β matches the value committed in δ, r′j matches
the value encrypted in e3j , and (α, β) is a proper ciphertext of the polynomial evaluation
result. In the last line, B proves that the verifiable encryption is correct.

PKre-enc: Proof of Correct Re-encryption In step 3 of the PSI protocol and step
2 of the dispute resolution protocol, A must prove that each value sent is the cor-
rect ciphertext EpKB (g

rj ·Q(yj)+r′j+yj ). A generates the ciphertext by first decrypting
EpKA(g

rj ·Q(yj)+r′j+yj), and then re-encrypting the result using B’s public key. The
two ciphertexts are

EpkA(g
rj ·Q(yj)+r′j+yj ) = (gtj , grj·Q(yj)+r′j+yjgxAtj ) = (gtj ,mjg

xAtj )

EpkB (g
rj ·Q(yj)+r′j+yj ) = (gt

′
j , grj·Q(yj)+r′j+yjgxBt′j = (gt

′
j ,mjg

xBt′j ))
where tj , t′j are random numbers. The protocol is then:

∃xA, t
′
j ∈ Zq : pkA = gxA ∧ α = mj(g

tj )xA ∧ β = gt
′
j ∧ γ = mj(g

xB )t
′
j

The proof shows that the two ciphertexts are correct and encrypt the same plaintext.
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PKdec: Proof of Correct Decryption In step 4 of the PSI protocol, B needs to prove
that each gr

′
j is a correct decryption of ELpkR

(gr
′
j ). For each ELpkR

(gr
′
j ), the ciphertext is

(e1j , e2j , e3j, e4j), such that e1j = gzj , e2j = hzj , e3j = czjgr
′
j ,e4j = azjbzjσ where

zj
R← Zq and σ = H(e1j , e2j, e3j , L). What B needs to show is that it knows zj and zj

is used consistently in all ciphertext compoents.
∃zj ∈ Zq : e1j = gzj ∧ e2j = hzj ∧ e3j = czjgr

′
j ∧ e4j = azj(bσ)zj

If gr
′
j is not the correct decryption, then B cannot find a zj that satisfies the relation.

5.4 Complexity Analysis

Now we give an account of the complexity of the protocol. The computational and
communication complexity of the zero knowledge proof protocol is linear in the number
of statements to be proved, so we separate it from the main protocol. In the PSI protocol,
A needs to perform 3n′ exponentiations to encrypt the coefficients in step 1, and 3n
exponentiations to decrypt and re-encrypt the polynomial evaluation results in step 3,
B needs 2(n′n + 2n) exponentiations to evaluate the polynomial obliviously and 3n
exponentiations for the verifiable encryption in step 2. The messages sent in the protocol
consist of 2n′ + 9n group elements. In the dispute resolution protocol, R needs 6n
exponentiations to verify and decrypt the ciphertexts of the verifiable encryption. The
total traffic generated includes 5n group elements, plus the transcript sent in step 1. In
total, the computational complexity is O(nn′) and the communication complexity is
O(n + n′). The complexity of the zero-knowledge proof protocols: PKpoly is O(n′),
PKprop is O(nn′), PKre-enc is O(n), and PKdec is O(n). The complexity of our
protocol is similar to other PSI protocols in the malicious model [2, 3].

6 Security Analysis

6.1 Security Model

The basic security requirements of our protocol are correctness, privacy and fairness.
Informally, correctness means an honest party is guaranteed that the output it receives
is correct with regard to the actual input and the functionality realised by the protocol;
privacy means no party should learn more than its prescribed output from the execution
of the protocol; fairness means a dishonest party should receive its output if and only if
the honest party also receives its output.

We define a security model to capture the above security requirements in terms of the
simulation paradigm [14]. We model the parties A, B and R as probabilistic interactive
Turing machines. A functionality is denoted as f : XA ×XB → YA × YB , In our pro-
tocol, the functionality to be computed by A and B is the set intersection. The model is
similar to the one used in the optimistic fair secure computation protocol [23]. Gener-
ally speaking the protocol is executed in a real world model where the participants may
be corrupted and controlled by an adversary. To show the protocol is secure, we define
an ideal process which satisfies all the security requirements. In the ideal process, there
is an incorruptible trusted party which helps in the computation of the functionality, e.g.
in our case the set intersection. The protocol is said to be secure if for every adversary
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in the real world model there is also an adversary in the ideal world model who can
simulate the real world adversary.

The Real World. The protocol has three participants A,B and R. All participants have
the public parameters of the protocol including the function f∩, the security parameter
κ, R’s public key and other cryptographic parameters to be used. A has a private input
X , B has a private input Y and R has an input ∈ {�,⊥}. The participants of the
protocol can be corrupted by an adversary. The adversary can corrupt up to two parties
in the protocol. We use C to denote the adversary. The adversary can behave arbitrarily,
e.g. substitute local input, abort the protocol prematurely, and deviate from the protocol
specification. At the end of the execution, an honest party outputs whatever prescribed
in the protocol, a corrupted party has no output, and an adversary outputs its view.
For a fixed adversary C, and input X,Y , the joint output of A,B,R,C is denoted by
OABRC(X,Y ) which is the random variable consisted of all the outputs as stated.

The Ideal Process. In the ideal process, there is an incorruptible trust party T , and
parties Ā, B̄, R̄. Ā has input X , B̄ has input Y and R̄ has an input ∈ {�,⊥}. The
operation is as follows:

– Ā sends X ′ or ⊥ to T, then B̄ sends Y ′ or ⊥ to T, then R̄ sends two messages
bA ∈ YA ∪ {�,⊥} and bB ∈ YB ∪ {�,⊥} to T . The actual input X ′ and Y ′ may
be different from X and Y if the party is malicious.

– T sends private delayed output to Ā and B̄. T ’s reply to Ā depends on Ā and B̄’s
messages and bA. T ’s reply to B̄ depends on Ā and B̄’s messages and bB .
• T to Ā: (1) If bA = �, Ā sends X ′ and B̄ sends Y ′, T sends X ′ ∩ Y ′ to Ā.

(2) Else if bA = �, but Ā or B̄ sends ⊥, T sends ⊥ to Ā
(3) Else if bA �= �, T sends bA to Ā.
• T to B̄: (1) If bB = �, Ā sends X ′ and B̄ sends Y ′, T sends X ′ ∩ Y ′ to B̄.

(2) Else if bB = �, but Ā or B̄ sends ⊥, T sends ⊥ to B̄.
(3) Else if bA �= �, T sends bB to B̄ .

Honest parties in the ideal process behave as follows: Ā and B̄ send their input to T and
R̄ sends ba = � and bB = �. The ideal process adversary C̄ controls the behaviours of
corrupted parties. It gets the input of a corrupted party and may substitute them. It also
gets T ’s answer to corrupted parties. For a fixed adversary C̄, and input X,Y , the joint
output of Ā, B̄, R̄, C̄ in the ideal process is denoted by OĀB̄R̄C̄(X,Y ).

Simulatability. The security definition is in terms of simulatability:

Definition 1. Let f∩ be the set intersection functionality. We say a protocol Π securely
computes f∩ if for every real-world adversary C, there exists an adversary C̄ in the
ideal process such that for all X ∈ XA, for all Y ∈ XB , the joint distribution of all
outputs of the ideal process is computationally indistinguishable from the outputs in the
real world, i.e.,

OĀ,B̄,R̄,C̄(X,Y )
c≈ OABRC(X,Y )

The design of the ideal process captures the security we want to achieve from the real
protocol. Our assumption is that in real world, we can find a semi-trusted arbiter that
can be trusted for fairly resolving disputes, but not for privacy. Then by incorporating
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such an arbiter in a two-party private set intersection protocol, we can achieve fairness,
correctness and privacy. In the ideal process, if R̄ follows the protocol and does not
collude with Ā or B̄ then all security properties are guaranteed. In this case, Ā and B̄
will always get the correct intersection with regard to the actual input to the protocol,
and know nothing more than that. On the other hand, if R̄ is corrupted and colludes
with Ā or B̄, then fairness is not guaranteed. However, even in this case privacy is
guaranteed. That is, the corrupted parties will not get more information about the honest
party’s set other than the intersection.

6.2 Security Proof

We are now ready to state and prove the security of our protocol. The protocol uses zero
knowledge proof protocols as subprotocols. As they are obtained by using existing se-
cure protocols and standard composition techniques, they are consequently secure and
we omit the security proofs of them. To prove the main theorem below, we work in a
hybrid model in which the real protocol is replaced with a hybrid protocol such that
every invocation of the subprotocols is replaced by a call to an ideal functionality com-
puted by a trusted party. In our case we need ideal functionalities for zero knowledge
proofs and certification authority. If the subprotocols are secure, then by the compo-
sition theorem [34] the output distribution of the hybrid execution is computationally
indistinguishable from the output distribution of the real execution. Thus, it suffices to
show that the ideal execution is indistinguishable from the hybrid execution.

Theorem 1. If the encryption E and E are semantically secure, and the associated
proof protocols are zero knowledge proof, the optimistic fair mutual private set inter-
section protocol securely computes f∩.

Because of limited space, below we only sketch the proof. The detailed proof will ap-
pear in the full version.

Proof. Let’s first consider the cases that the adversary C corrupts two parties.

Case 1: C corrupts and controls A and B. This is a trivial case because C has full
knowledge on X,Y and if the encryption scheme used by R is semantically secure, a
simulator can always be constructed.

Case 2: C corrupts and controls A and R. We construct a simulator S in the ideal
process that corrupts and controls Ā and R̄. It uses the adversary C as a subroutine and
we will show the simulatability holds in this case.

1. S is given A and R’s inputs, S invokes an ideal functionality CA to obtain R’s key
pair, then invokes C and plays the role of B.

2. S generates a public/private key pair pkB/skB and gives the public key to C.
3. S receives the encrypted coefficients EpkA(di) from C. S also receives di, 0 ≤ i ≤

n′ for the ideal computation of PKpoly, where di is a coefficient of the polynomial.
If the polynomial is not correctly constructed, then S instructs Ā to send ⊥ to T
and terminates the execution. If the polynomial is correct, S extracts input X ′ from
the coefficients, instructs Ā to send X ′ to T and instructs R̄ to send bA = � to T .
S then receives the intersection X ′ ∩ Y from T .
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4. S then constructs Y ′ from the intersection received in last step by adding random
dummy elements until |Y ′| = n. Then It generates a set of random blinding factors
r′1, r′2, ..., r′n, computes EPKA(g

rj ·Q(y′
j)+r′j+y′

j ) and encrypts all blinding factors
using R’s public key. It also generates commitments for each y′j and rjy

′i
j . S sends

all commitments and ciphertexts to C and also emulates the ideal computation of
PKprop by sending “accept” to C. Depends on C’s reply, executes step 5, 6 or 7.
In the next three steps, S will send an instruction to T when it is ready to output,
then T sends the delayed output to B̄

5. If C instructs both A and R to abort, then S instructs R̄ to send bB = ⊥ to T , then
outputs whatever C outputs and terminates.

6. If C instructs A to abort and instructs R to send n ciphertexts, S decrypts them
using B’s private key, constructs a set by testing whether any elements in Y ′ match
the decryption results. Then S collects all matching elements, put them in a set
and instructs R̄ to send the set as bB . Then S outputs whatever C outputs and
terminates.

7. If C instructs A to send n ciphertexts, then S extracts a set of elements from the
reply and engages in the ideal computation of PKre−enc. If the reply is correct,
S instructs R̄ to send bB = � to T and sends gr

′
1 , ..., gr

′
n to C. If the reply is not

correct and C instructs R to abort, S instructs R̄ to send bB = ⊥ to T . If the reply
is not correct and C instructs R to send n ciphertexts, S extracts a set of elements
from the cipehrtexts and instructs R̄ to send the set as bB to T . Then it outputs
whatever C outputs and terminates.

In the joint output, the honest parties’ outputs are always the same. All we need to check
is whether the view of the simulator is indistinguishable from the view of an adversary
in the hybrid execution. The difference between a simulation and a hybrid execution is
that in the simulation S uses Y ′ which is not the same as Y . However, this does not
affect the distribution of the views. From how Y ′ is constructed we can see that Y ′

contains the correct intersection (Y ∩ X ′ ⊆ Y ′). For those elements in the intersec-
tion, they produce the same distributions in the simulation (using Y ′) and the hybrid
execution (using Y ). For any elements y′j ∈ Y ′ and yj ∈ Y not in the intersection, the
commitments produced should be indistinguishable because the commitment scheme
is perfectly hiding. Also grj ·Q(yj)+r′i+y′

j and grj ·Q(y′
j)+r′i+yj are uniformly random

because Q(yj) and Q(y′j) are both non-zero, and so are the ciphertexts of them. The
blinding factors and their ciphertexts are uniformly random in both the simulation and
the hybrid execution. Therefore the two views are indistinguishable.

Case 3: C corrupts and controls B and R. We construct a simulator S in the ideal
process that corrupts and controls B̄ and R̄. It uses the adversary C as a subroutine.

1. S is given B and R’s inputs, S invokes an ideal functionality CA to obtain R’s key
pair, then invokes C and plays the role of A.

2. S generates a key pair pkA/skA and gives the public key to C.
3. S generates a random set X ′ such that |X ′| = n′, then constructs a polynomial

using elements in X ′. S encrypts the coefficients, sends them to C and simulates
the ideal computation of PKpoly by sending “accept” to C.
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4. S receives the commitments and ciphertexts from C, then receives inputs to the
ideal computation of PKprop, including (yj , r

′
j), 0 ≤ j ≤ n. If the ciphertexts are

not properly produced, S instructs B̄ to send ⊥ to T , otherwise S extract Y ′ and
instructs B̄ to send Y ′ to T and instructs R̄ to send bB = � to T , and receives
X ∩ Y ′ from T .

5. S constructs another set X ′′ such that X ∩ Y ′ ⊆ X ′′ and |X ′′| = n′. S then
constructs another polynomial Q′′, and evaluates the polynomial using (yj , g

r′j ) to
construct EpkB (g

rj ·Q′′(yj)+r′j+yj ). The ciphertexts are sent to C, S also simulates
the ideal computation of PKre−enc by sending “accept” to C. Depends on C’s
reply, executes step 6,7 or 8. In the next three steps, S will send an instruction to T
when it is ready to output, then T sends the delayed output to Ā

6. If C instructs B to send the blinding factors, then S instructs R̄ to send bA = �,
outputs whatever C outputs and terminates.

7. If C instructs both B and R to abort, then S instructs R̄ to send bA = ⊥, outputs
whatever C outputs and terminates.

8. If C instructs B to abort and R to send n blinding factors, use the blinding factors
to extract a set, and then instructs R̄ to send the extracted set as bA to T . S then
outputs whatever C outputs and terminates.

The difference between a simulation and a hybrid execution is that the simulator uses
X ′ and X ′′ rather than the honest party’s input X . Using X ′ does not affect the distribu-
tion of the view if E is semantically secure, because the ciphertexts generated using A’s
public key are indistinguishable. Using X ′′ also does not affect the distribution of the
view. For the two sets X ′′ and X , two polynomials are constructed from them Q′′ and
Q. We also know X ′′∩Y ′ = X∩Y ′, so Q′′(yj) = 0 iff Q(yj) = 0 for any yj ∈ Y ′. For
each grj·Q

′′(yj)+r′j+yj and grj·Q(yj)+r′j+yj , if Q′′(yj) = 0 then Q(yj) = 0 so the dis-
tribution of the two depends only on yj and r′j , if Q′′(yj) �= 0 then Q(yj) �= 0 and both

Q′′(yj) and Q′′(yj) are uniformly random, so grj ·Q
′′(yj)+r′j+yj and grj·Q(yj)+r′j+yj are

also uniformly random. Therefore the distributions of the views are indistinguishable.
For cases that C corrupts only one party, proofs can be constructed similarly. In the

case that R is corrupted, R is not involved in the protocol because A and B are honest,
so it is trivial to construct a simulator. In the case that A or B is corrupted, the simulator
can be constructed as in case 2 step 1 – 4 or case 3 step 1 – 5, except now R̄ is honest
and always sends � to T . The view from the simulation is still indistinguishable.

7 Conclusion and Future Work

In this paper, we have presented a fair mutual PSI protocol which allows both parties
to obtain the output. The protocol is optimistic which means fairness is obtained by
using an offline third party arbiter. To address the possible privacy concerns raised by
introducing a third party, the protocol is designed to enable the arbiter to resolve dis-
pute blindly without knowing any private information from the two parties. We have
analysed and shown that the protocol is secure.

The communication and computation complexity of our protocol are both O(nn′).
The main overhead comes from the oblivious polynomial evaluation and the large ac-
companying zero knowledge proof. We would like to investigate PSI protocols based on
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other primitives, e.g. [6, 7], to see whether efficiency can be improved. Another area we
would like to investigate is whether the protocol structure that we use to obtain fairness
can be made general so that it can be applied to other secure computation protocols.
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Abstract. This paper proposes a new privacy-preserving scheme for es-
timating the size of the intersection of two given secret subsets. Given the
inner product of two Bloom filters (BFs) of the given sets, the proposed
scheme applies Bayesian estimation under assumption of beta distribu-
tion for an a priori probability of the size to be estimated. The BF retains
the communication complexity and the Bayesian estimation improves the
estimation accuracy.

An possible application of the proposed protocol is an epidemiologi-
cal datasets regarding two attributes, Helicobactor pylori infection and
stomach cancer. Assuming information related to Helicobactor Pylori in-
fection and stomach cancer are separately collected, the protocol demon-
strates that a χ2-test can be performed without disclosing the contents
of the two confidential databases.

1 Introduction

With the rapid development of database systems and online services, large
amounts of information are being collected and accumulated from various data
sources independently and simultaneously. Privacy- preserving data mining
(PPDM) has been attracting significant attention as a technology that could
enable us to perform data analysis over multiple databases containing sensitive
information without violating subjects’ privacy.

In this paper, we investigate the problem of set intersection cardinality. Given
two private sets, the goal of this problem is to evaluate the cardinality of the
intersection without disclosing the sets mutually. Set intersection cardinality
has been extensively studied as a building block of PPDM, including asso-
ciation rule mining [17], model and attribute selection[16], and other aspects
[4]. Our major application of this problem is epidemiological analysis, including
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privacy-preserving cohort studies. We wish to perform cohort studies over multi-
ple independently collected medical databases, which are not allowed to disclose
identifying information about patients.

Consider two databases developed independently by two organizations. One
organization collects individual medical information, including patient ID, pa-
tient name, patient address, presence or absence of disease 1, disease 2, and so
on. The other organization collects individual genome information from research
participants; including participant ID, participant name, participant address,
presence or absence of genome type 1, genome type 2, and so on. The objective
of a cohort study may be to investigate the association between the outbreak
of a specific disease and genomes. For this analysis, the analyst makes use of
four-cell contingency tables; each cell counts the number of patients who have
(do not have) a specific disease and have (do not have) a specific genome type.
If both tables are private, the set intersection cardinality may be used for eval-
uating of the count of each cell without sharing database content. In this study,
we consider the following four requirements for practical situations.

Requirement 1. The time and communication complexity should be linear
with respect to the number of records n. This is because statistical analysis,
including cohort studies, usually treats databases with a large number of
records.

Requirement 2. The time and communication complexity should be indepen-
dent of the size of the ID space. In the use case described above, both orga-
nizations independently collect information from individuals. Thus, unique
IDs are not given to records. Instead, the protocol must generate a unique
ID for each record with the combination of individual attributes, such as
the name and address. Because the space required for the combination of
such user attributes is often much larger than the number of individuals,
this requirement is important.

Requirement 3. The protocol should be designed considering the asymme-
try of computational capabilities of organizations. Assume that a research
institute that holds genome information provides epidemiological analysis
services upon request to hospitals that hold medical information. In such
a case, it is expected that the computational capabilities of the hospitals
are poor. Therefore, a reasonable solution can be the outsourcing of compu-
tation; the research institute offers servers with high computational power
and the hospital outsources most of the computation required for the anal-
ysis to the research institute. This example indicates that the protocol of
set intersection cardinality should be designed considering the asymmetry of
computational capabilities.

Requirement 4. The outputs of the protocol may be random shares. This
requirement implicitly suggests that the set intersection cardinality may be
used as a part of a larger-scale protocol. If the outputs of the protocol are
random shares, these can be seamlessly used for inputs to other privacy-
preserving protocols.
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In this paper, we propose a set intersection cardinality protocol that satisfies
these requirements.

Related Work

Let SA and SB be private inputs of the set intersection cardinality. Let nA and
nB be the cardinalities of SA and SB, respectively.

Agrawal et al. [1] presented a set intersection cardinality protocol using com-
mutative encryption under DDH (Decisional Diffie-Hellman) assumption. The
time complexity of this protocol is O(nA + nB); this is linear in the size of the
databases and is independent of the size of the ID space. However, this protocol
assumes that the two parties have nearly the same computation power. Fur-
thermore, the protocol cannot output random shares. De Cristofaro and Tsudik
[5] introduced an extension of [1]. It also requires O(n) computation by both
parties.

Freedman et al. [7] proposed a set intersection protocol using oblivious polyno-
mial evaluation. This protocol can be converted to the set intersection cardinality
with a slight modification, and achieves O(nB+log lognA) time/communication
complexity. Furthermore, the time complexity is independent of the ID space
size and random shares can be output. This protocol also assumes that both
parties have equal computational power.

All the above protocols guarantee exact outputs. Kantarcioglu et al. [11] ap-
proach the set intersection cardinality differently. Their protocol maps the input
set onto a binary vector using a Bloom filter (BF)[2], and the set intersection
cardinality is statistically estimated from the scalar product of the two binary
vectors. With this approach, the results become approximations, although the
computation cost is expected to be greatly reduced. The dimensionality of the
vector used in this protocol is equal to the ID space size; this does not meet
Requirement 2. In [11], a technique to shorten large IDs using hash functions
was used with their protocol. As shown later by our theoretical analysis, given
an error rate ε, the optimal range of hash functions for n elements is O(n2). This
indicates that such Naive ID generation can be too inefficient for practical use.

Camenisch and Zaverucha [3] has introduced the certified set intersection
cardinality problem. This protocol considers asymmetry in the security assump-
tions of the parties, but does not consider asymmetry in their computational
capability.

Ravikumar et al. used the TF-IDF measures to estimate the scalar product
in [15]. As for epidemiological study, Lu et al. studied the contingency tables
in [13].

Thus, to our knowledge, no set intersection cardinality protocol satisfies the
four requirements above, which should be met for practical privacy-preserving
data analysis, especially for the outsourcing models.
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Our Contribution

In this manuscript, we present a protocol that satisfies the four requirements.
Considering the first and second requirement, the sets are independently mapped
onto BFs, and then the set intersection cardinality is statistically estimated from
the scalar product of the two binary vectors representing the BFs.

As discussed later, the size of the BF must be O(n2) to control the false
positive rate in [11]; this does not meet Requirement 2. Our protocol therefore
uses a number of BFs of size O(n). The set intersection cardinality is obtained
by iteratively applying Bayesian estimation to the scalar products of the BFs.

In the proposed protocol, the scalar product protocol is used as a building
block. Modulo exponentiation is performed only by one party and this fits well
with the outsourcing model (Requirement 3). In addition, the outputs can nat-
urally be made random shares (Requirement 4).

We demonstrate our protocol with an epidemiological datasets regarding two
attributes, Helicobactor pylori infection and stomach cancer. Assuming informa-
tion related to Helicobactor Pylori infection and stomach cancer are separately
collected, we demonstrate that a χ2-test can be performed without disclosing
the contents of the two databases.

2 Preliminary

2.1 Bloom Filter

A BF is a simple space-efficient data structure for representing a set to support
membership queries[2]. Recently, BFs have been used not only for database ap-
plications but also for network problems including detecting malicious addresses,
packet routing, and the measurement of traffic statistics.

A BF for representing a set S = {a1, . . . , an} of n elements is an array of m
bits, initially all set to 0. The BF uses k independent hash functions H1, . . . , Hk

such that Hi : {0, 1}∗ → {1, . . . ,m}. The hash functions map each element
in the map to a random number uniformly chosen from {1, . . . ,m}. Let B(S)
be a set representing a BF defined by B(S) =

⋃
a∈S B(a) such that B(a) =

{H1(a), . . . , Hk(a)}. Now let b be an m-dimensional vector, (b1, . . . , bm), which

is an alternative representation of the BF, defined by bi =

{
1 if i ∈ B(S),
0 if i �∈ B(S),

for

i = 1, . . . ,m. For example, the hash functions that map an element a as H1(a) =
2, H2(a) = 7 characterize a BF with m = 8, B(a) = {2, 7}. Alternatively,
b(a) = (0, 1, 0, 0, 0, 0, 1, 0). We can use either the set or vector representation of
BF, depending on the cryptographic building blocks used. Note the following
relationship between the set and vector representations, b(S1) ·b(S2) = |B(S1)∩
B(S2)|.

To test if a is an element of set S, we can verify that

∀i = 1, . . . , k Hi(a) ∈ B(S), (1)
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which holds if a ∈ S. However, it also holds, with a small probability, even if
a �∈ S. That is, BFs suffer from false positives. According to [2], after all the
elements of S are hashed into the BF, the probability that element i does not

belong to B(S), i.e., that the i-th bit of b(S) is 0, is p =
(
1− 1

m

)kn ≈ e−kn/m.We

therefore have a probability of false positives given by p′ =
(
1− (1− 1

m )kn
)k ≈(

1− e−kn/m
)k

. If k is sufficiently small for given m and n, Equation (1) is likely
to hold only for the element of S. Conversely, with too large a value for k,
the BF is mostly occupied by 1 values. In [2,6], the optimal BF was found for
k∗ = ln 2 · (m/n), which minimized the false-positive probability.

2.2 Cryptographic Primitives

Secure Scalar Product. The scalar product of two vectors is performed se-
curely by using a public-key encryption algorithm in Algorithm 1.

Algorithm 1. Secure Scalar Product

Input: Alice has an n-dimensional vector x = (x1, . . . , xn). Bob has an n-dimensional
vector y = (y1, . . . , yn).
Output: Alice has sA and Bob has sB such that sA + sB = x · y.
1. Alice generates a homomorphic public-key pair and sends the public key to Bob.
2. Alice sends to Bob n ciphertexts E(x1), . . . , E(xn), encrypted with her public key.
3. Bob chooses sB at random, computes c = E(x1)

y1 · · ·E(xn)
yn/E(sB) and sends c

to Alice.
4. Alice uses her secret key to decrypt c to obtain sA = D(c) = x1y1+ · · ·+xnyn−sB

Security Model. We assume that the parties are honest-but-curious, which is
known as semi-honest model, with parties that own private datasets following
protocols properly but trying to learn additional information about the datasets
from received messages.

We also assume the Decisional Diffie-Hellman hypothesis (DDH), that is, a
distribution of (ga, gb, gab) is indistinguishable from a distribution of (ga, gb, gc),
where a, b, c are uniformly chosen from Zq.

3 Difficulties in ID-less Datasets

3.1 Problem Definition

We are considering the problem of a two-party protocol that can evaluate the
size of the intersection of two sets without revealing the sets themselves.

Let A and B be parties owing subsets SA and SB, respectively. For an agreed
threshold t, they each wish to know if

X = |SA∩B| = |SA ∩ SB| ≥ t (2)
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is true, without revealing SA or SB to the other party. Here, X is a random
variable describing the size of the intersection SA∩B.

Note that we are not interested in learning about the intersection, itself but
are only interested in evaluating its size because the size is often useful in many
privacy-preserving applications. For example, an epidemic study might test if
the difference between two subsets is statistically significant. The difference of
|XA∩B| and t may even be confidential in some applications.

3.2 Näıve ID Generation

Consider a dataset of n elements with multiple attributes, such as name, sex, age
and address, but with no unique identity being assigned. Instead, the elements
are uniquely specified by attributes, e.g., name and birthday. Let A be a set of
attrbutes A = {a1, . . . , an}.

The simplest way to generate a pseudo identity is to use a hash function
h : {0, 1}∗ → {1, . . . , �}. Using this hash function, we assign h(ai) to the i-th
element. For efficiency reasons, we assume the range is sufficiently large that we
can neglect the occurrence of a collision such that h(ai) = h(aj) for some i �= j.
Letting hA be the set of all pseudo identities, defined as hA = {h(ai) | ai ∈ A},
we can see observe any collision of identities by testing whether |hA| = n.

If the size � of the ID set increases, collisions can be avoided, but the com-
putational cost will accordingly increase with �. Clearly, � ≥ n, but finding the
optimal size is not trivial. To solve the tradeoff between accuracy and perfor-
mance reduction, let us assume we have an optimal � that is sufficiently large to
uniquely determine the given set of n elements.

This problem is equivalence to the problem known as “birthday paradox”,
whereby, among a set of n randomly chosen people, there is a probability that
some pair of them have the same birthday. When identities (birthdays) are chosen
with a uniform probability of 1/�, the probability that all n identities are unique
is given by

n−1∏
j=1

(
1− j

�

)
≈

n−1∏
j=1

e−j/� = e−n(n−1)/2� ≈ e−n2/2�.

Therefore, given the probability ε with which n hash values are unique, we have
n2

2� = ln ε−1, from which follows the solution of our problem. The optimal range
of hash functions for n elements is given as � = n2/2 ln ε−1, for which n elements
will have distinct identities with a probability of ε.

3.3 Kantarcioglu’s Scheme

In [11], Kantarcioglu, Nix and Vaidya proposed the following cryptographic pro-
tocol using BF in an approximate algorithm for the threshold scalar (dot) prod-
uct.

Let Y be a random variable representing the number of matching bits in the
two BFs of SA and SB. That is, Y is defined by Y = |B(SA)∩B(SB)|. There is
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a positive correlation between X , defined by true size of intersection SA∩B, and
Y , which enables us to predict X from Y which can be obtained from BFs in a
secure way.

Based on the properties of BFs [2], Equation (2) is equivalent to

ZA + ZB + ZAB ≥ ZAZB
1

m
(1− 1

m
)−kt, (3)

where ZA (ZB) is the number of 0s in B(SA) (B(SB)), respectively. ZAB is
the number of matching 0s in the two BFs of SA and SB. That is, ZAB =
m−|B(SA)∩B(SB)| = m−Y . To evaluate the inequality privately, Kantarcioglu
et al. performs a secure protocol for the scalar product of two vectors [8] to obtain
u1 and u2 such that b(SA) · b(SB) = m− ZAB = u1 + u2 and a secure protocol
for the multiplication of two integers ZA and ZB to obtain v1 and v2 such that
v1+v2 = (1−1/m)−kt/mZAZB. Finally, they use SFE for the shared comparison
of two integers to test if (ZA + u1 −m) + (ZB + u2) ≥ (v1 + v2).

According to their experimental results [11], their approximation algorithm
using BFs with m = 3, 000, k = 2, and n = 20, 000 ran in 4 minutes, whereas an
exact version required 27 minutes.

3.4 Difficulties in ID-less Datasets

In [11], Kantarioglu et al. claim that as long as, m ! n, their method would
be much faster than the typical implementation of a secure scalar (dot) product
protocol1. Their experimental results show that the accuracy of approximation
increases as m increases2. We will show that these properties do not hold in
our target, ID-less datasets model, where the two datasets have no consistent
identities and hence n elements are specified with some unique attribute(s).

1. (Accuracy) The size of intersection is approximated in their scheme based
on the expected value of probability of common bits in BFs. The accuracy is
expected to be improved as m increases. However, this is not true in large m
because that the vector becomes too sparse. To be adaptively dense vector,
we must increase the number of hash functions, k. This is not trivial. In
[11], the experimental behavior with some parameters were shown and no
guarantee in accuracy.

2. (Performance) The size of BF,m, increases up to n2 in ID-less datasets. As
we discussed in Section 3.2, the range of hash function should be as large as
n2 in order to minimize the probability to fail to uniquely identify elements.
This is too large to find the intersection since some schemes running in O(n)
complexity in private set intersection are known, e.g., [1], [5].

1 In Section 2.2 (Computation and Communicational cost). In Section 3, they assume
that the vector of 20000 elements, whose density was 10 %, that is, the vector
contains 2000 1’s (= n), and it performs 20000-dimensional vector’s scalar product
for exact match and m = 3000 BF for their scheme.

2 In Section 3.1, Figure 1(b).
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Table 1. Comparison between [11] and ours

item [11] Proposed

approximation Equation (3) Equation (7), (6)
priori distribution – Beta distribution

BF size (m) large (n2) small (n/ ln 2)
accuracy no guarantee improved with Bayesian estimation from s tests

3. (Overhead) Their scheme requires the secure multiplication as well as scalar
product. It is not necessary in private set intersection.

In later section, we will present our scheme which overcomes the above limita-
tions. Table 1 gives a summary of comparison between the scheme in [11] and
proposed scheme.

4 Proposed Scheme

4.1 Probability Distribution of Matching Bits in BFs

Suppose that given SA∩B = SA ∩ SB, random variable X of the cardinality of
SA∩B, and instance x = X , we wish to estimate the number of matching 1s
bits in their two BFs, i.e., y = |B(SA) ∩B(SB)|. The quantity y is equal to the
number of 1s values in the conjunction of the two BF vectors. This subsection
presents the mathematical properties of BFs, which will be used to estimate X
in the subsequent subsection.

An element a in SA ∪ SB belongs to either SA∩B or SA ∪ SB − SA∩B. The
former case always ensures that a ∈ B(SA) ∩B(SB). Therefore, the probability
that a certain bit in the conjunction of BFs is 0 after k random bits are set to
1 is qX = (1− 1

m)kx. In the latter case, an element in SA ∪ SB − SA∩B does not
always have a value of 1 because it yields a false positive. That is, an element
a in SA can have the same hash value Hi(a) = Hj(b) as some element b �= a
in SB. The probability that a certain bit is 0 in the BF for a in SA − SA∩B

is qA = (1 − 1
m)k(nA−x). Similarly, the BF of an element in SB − SA∩B having

a certain bit being 0 has a probability of qB = (1 − 1/m)(nB−x)k. Therefore,
the probability of a certain bit in the BF for SA ∪ SB − SA∩B being 1 is given
by the product of the compliment of each event, namely (1 − qA)(1 − qB) =
1− qA − qB + qAqB.

Because the conjunction of BF has 1 for a certain bit by being either an
element of SA∩B or SA ∪ SB − SA∩B, we have the probability θ for a bit being
1 as the disjunction of the two events namely

θ = 1− qX(1− (1− qA)(1− qB))

= 1− (1− 1

m
)knA − (1− 1

m
)knB + (1− 1

m
)k(nA+nB−x). (4)

Consequently, the conditional probability of Y = |B(SA)∧B(SB)| being y, given
x = |SA ∩ SB|, is given by the binomial distribution B(m, θ), of m independent
binary events with success probability θ. That is,
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Pr(Y = y|X = x) =

(
m

y

)
θy(1 − θ)m−y. (5)

4.2 Bayesian Estimation of X

Given known parameter values and Pr(X |Y ), we wish to identify the posterior
distribution Pr(Y |X) using Bayes’ rule.

One possible solution is an approximation based on a the likelihood value
from a single observation, as described by Kantarcioglu et al. [11]. Their scheme
suffers from the complexity of O(m). That is, a secure scalar product will re-
quire m ciphertexts, which is greater than n. Moreover, the accuracy achieved
is inadequate.

Instead, we will use recursive Bayesian estimation using several small BFs.
That is more efficient because each individual BF used to perform the secure
scalar product between two BFs will be smaller. Moreover, the iteration over
multiple BFs improves the accuracy of the estimation. Given the properties
of beta distribution, the iteration process can be performed with lightweight
overheads.

Using the conjugate prior distribution of Equation (5), we assume a beta
distribution Be(α, β), which gives

Pr(θ) =
θα−1(1 − θ)β−1∫ 1

0 θα−1(1− θ)β−1dy
.

The initial prior distribution is given by Be(1, 1), which yields a uniform distri-
bution Pr(θ) = 1. Using Bayes’ theorem, we obtain the posterior probability of
θ given y as

Pr(θ|y) = Pr(θ)Pr(y|θ)∫
Pr(θ)Pr(y|θ)dθ ∝ Pr(θ)Pr(x|θ) ∝ θα−1+y(1− θ)β−1+m−y,

which results again in a beta distribution Be(α′, β′) with new parameters as
α′ = α+ y, and β′ = β +m− y.

Helicobactor Pylori infection is considered to be an event that occurs to each
individual independently. Modeling such a situation with the binomial distribu-
tion is considered to be reasonable; beta distribution, the natural conjugate prior
distribution of the binomial distribution, is used as the prior distribution in our
protocol mainly due to its mathematical convenience. The initial prior was set
to the non-informative uniform distribution in the experiments. Nonetheless, it
is difficult to exclude the subjectivity from the settings of the prior distributions,
and the obtained experimental results need to be carefully examined.

The mean of the beta distribution is denoted by E[θ] = α/(α + β). We can

therefore estimate θ̂ when the BFs of two sets have y matching bits as follows,
θ̂ = α′

α′+β′ =
1+y
2+m . After estimating θ̂, the size of the intersection is given by the

inverse of Equation (4), a mapping θ−1, as

x̂ = nA + nB − 1

k
log1− 1

m

(
θ̂ − 1 + (1− 1

m
)knB + (1 − 1

m
)knA

)
. (6)
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The inverse mapping can be evaluated locally in the final stage of privacy preser-
vation (without encryption). We are not concerned that if Equation (6) might
appear complicated to evaluate.

4.3 “Bootstrap” of BFs

To improve the accuracy, there are two approaches.

(1) Enlarge the size of BF, m, and the estimate θ̂, 3

(2) Estimate θ̂ from multiple observations of Y1, Y2, . . . , Ys.

Using a BF with more bitsm could decrease the false positives in the membership
test with the cost increasing as m. It is of interest that the value of m does not
play a significant role in estimating of the intersection size, as we had expected.
We will now show the mathematical properties that explain this observation.

(1) Variance of the Beta Distribution for a Large BF. According to the
known variance of the beta distribution V ar[θ] = αβ/((α+ β)2(α+ β + 1)), we
illustrate the change of variance with respect to m in Fig. 1. Since the variance
determines the standard deviation, which provides a confidence interval for the
estimation, we can predict the accuracy via the reduction in variance. Fig. 1
shows that the variance of θ̂ decreases slightly as m increases. However, the
reduction in variance is not significant, given the increased cost of the required
ciphertexts. For example, a BF with m = 100 requires 10 times more ciphertexts
than that for an element in S with n = |S| = 10.

3 We do not consider the number of hash functions k because there are some con-
straints between m and k, such as kn < m and k = (ln 2)m/n for minimizing false
positives.
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(2) Variance from “Bootstrap” s Small BFs. Let y1, y2, . . . , ys be the se-
quence of matching bits in s independent BFs for SA and SB. Recursive Bayesian
estimation based on the sequence gives the posterior probability Pr(θ|y1, . . . , ys)
for the beta distribution Be(α′, β′) defined by

α′ = α+

s∑
i=1

yi, β′ = β −
s∑

i=1

yi + sm.

The estimation of θ̂ is provided from the mean of the beta distribution, namely

θ̂ =
α+

∑s
i=1 yi

α+ β + sm
(7)

Fig. 2 illustrates the reduction in the variance of θ̂. It implies that the boot-
strapping reduces the confidence interval for the estimation of θ significantly
with increasing s.

4.4 Proposed Scheme

We give the procedure for estimating the size of the intersection without revealing
each set in Algorithm 2. At Step 1, both parties A and B compute BFs for
their n-element sets SA and SB with parameters, size of BF m and the number
of hash function k such that k = (m/n) ln 2. For tradeoff between efficiency
and accuracy, k = 1 and m = n/ ln 2 can be used. Since this process can be
performed locally and the hash function performs very efficiently, we consider
the overhead is negligible. Both parties participate the secure scalar product
protocol (Algorithm 1), which is the most significant part in computation. The
scalar product of two BFs, y, gives the number of common 1’s bit in BFs, which
can be divided into two integers, making the SFE possible to approximate θ̂ in
Equation (7) without revealing any yi. Step 4 is performed in public (or locally)

after θ̂ reaches at convergence.
Instead of extend the size of BF, we perform the secure scalar product pro-

tocols multiple times to get the sequence of y1, y2, . . . , ys, which will be used
to predict the θ̂ in Bayesian estimation. Both parties iterate the test until the
expected accuracy is given. The confidence interval is given by the standard
deviation of estimated value.

4.5 Security

The following theorem shows the security of Algorithm 2.

Theorem 1. Suppose A and B behaves in the semi-honest model. Let SA and
SB be inputs for Bloom Filter Bootstrap. Then, after execution of Bloom Filter
Bootstrap, A and B learns random shares of yi for i = 1, . . . , s; nothing but yi
and what can be inferred from yi is learned by both A and B.
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Algorithm 2. Bloom Filter Bootstrap BFB(SA, SB)

Input: SA, SB of n elements, m (size of the BF), k (number of hash functions).
Output: x̂ (estimate of the size of the intersection of sA and SB).

1. A computes BF b(SA) for SA and B computes BF b(SB).
2. A and B jointly perform Algorithm 1 to obtain yi = b(SA) · b(SB) for i = 1, . . . , s.
3. Estimate θ̂ using Equation (7).
4. Identify x̂ using Equation (6).

Sketch of the Proof. Message exchange occurs only in step 2, so the security of
step 2 is proved. Since step 2 is multiple invocation of the scalar product proto-
col, the security is reduced to that of the scalar product protocol. By following
the security proof in [8], the security of Bloom Filter Bootstrap is immediately
proved. Note that computation in step 4 is performed by A without communi-
cation with B, the security is not compromised by execution of these steps.

4.6 Complexity

We examine the complexities of our proposed scheme in terms of computation
and communication costs. When these quantities are almost identical, we unify
these by simply n. Protocols are compared in Table 2. In comparison with [11],
we assume the ID-less model, where the size of BF can increase up to n2.

Table 2 shows that the computational cost for A is linear to ms, while the cost
for B is 0 (no modular exponentiation is required). Hence, it is preferable for
outsourcing solution to our Requirement 3, where hospitals do not have powerful
computational resources and become B in our protocol.

The protocols are classified into three groups. The first group is the scheme
based on Oblivious Polynomial Evaluation. Scheme FNP[7] is designed to reveal
not only the size of intersection but also the elements in the intersection. We
show the performance for comparison purpose.

The second class, consisting of AES[1] and CT[5], is classified as Oblivious
Pseudo-Random Functions (OPRF). AES depends on the commutative one-way
function, while CT uses the RSA (Fig. 3 in [5]) and the blind RSA (Fig. 4)
encryptions. The privacy of scheme (Fig. 3 in [5]) is proved as the view of honest-
but-curious party is indistinguishable under the One-More Gap Diffie-Hellman
assumption in the random oracle model.

Table 2. Complexity Comparison of protocols

FNP[7] AES[1] CT[5] KNV[11] Proposed

primitives OPE commutative enc. (blind) RSA SSP w. BF SSP w. BF
comp. at A nA log log nB nA + nB 2nA + 1 m ms
BF size – – – n2 ≥ m > kn m = n/ ln 2

comp. at B nB + nA log log nB 2nA + nB nA + nB + 1 0 0
complexity O(nA log log nB) O(n) O(n) O(n2) O(n)
comm. cost nA + nB nA + nB 2nA + nB m+ 1 ms+ 1

OPE (Oblivious Polynomial Evaluation), SSP (Secure Scalar Product).
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Table 3. Results of estimating X for var-
ious intersection sizes, x, for the dataset
(nA = nB = 100, m = 400, k = 3)

x 20 40 60 80

E[Y ] 125.24 141.45 160.98 184.11
σ(Y ) 6.78 5.92 5.34 5.15
E(θ) 0.31 0.35 0.40 0.46

x̂ 19.523 38.869 58.969 79.411

Table 4. Results of estimating X for var-
ious BF sizes, m for the dataset (nA =
nB = 100, x = 40)

m 200 400 600 800
k 1 3 4 6

E[Y ] 46.62 141.45 189.64 283.66
σ(Y ) 3.146 5.923 6.436 7.488
E(θ) 0.24 0.35 0.32 0.35

x̂ 39.490 38.869 39.604 39.227

The last class is based on BF and Secure Scalar Product schemes. KNV[11]
uses a single BF with large size, while ours iterates s independent BFs with small
size. The sizes are shown in Table.

5 Accuracy Evaluation

5.1 Simulation with DBLP Dataset

We evaluate the accuracy of the proposed scheme using a public dataset of author
names, DBLP4.

Four pairs of datasets SA and SB with nA = nB = 100 were chosen from
DBLP with the intersection sizes x = 20, 40, 60, 80. Table 3 shows the experi-
mental results for the estimation of x, for x = 20, 40, 60, and 80, where we used
a BF with of size m = 400, a number of hash functions k = 3, and iterated
the estimation s times. The results show that our scheme estimates the inter-
section within an error of ±1. The numbers of matching bits in the BFs, Y , are
distributed according to the binominal distribution. Note that all BFs estimate
a size of the intersection close to the actual size of 40, but the differences are
unstable.

5.2 Optimal BF Design

The accuracy of estimation depends on the size of BF, m, and the number of
hash function, k, and the iteration of testing, s. In order to clarify the strategy
for optimal accuracy, we examine the Mean Absolute Error (MAE) with respect
to m and k. Figure 3 shows MAE in terms of m from 40 through 280, where
nA = nB = 100, x = 20, k = 1 and s = 20. Figure 4 shows MAE with respect
to k = 1, . . . , 6 where m = 200. The MAE decreases as m increases, while the
computational/communicational overhead increases accordingly. On the other
hand, the increase of k does not reduce MAE.

A possible reason for the source of the error might be the restriction of m and
k. As we discussed in Section 4.3, the optimal size for the BF is not trivial. We

4 DBLP, A Citation Network Dataset, V1, (http://arnetminer.org/citation).
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therefore suggest choosing k = 1 first and then determining a near-optimal BF
size by

m = kn/ ln 2 = 1 · 100/ ln 2 = 144.26.

Since large m increases the computational cost at secure scalar product, we
conclude minimize k, i.e., k = 1 and optimize m = n/ ln 2.

The accuracy can be improved by iteration of small BF tests rather than in-
creasing the size of BFs. In fact, Figure 5 demonstrates the reduction of variance
of observation of E[Y ], indicated by bar plot, when s = 10. The solid line repre-
sents the distribution of Y , which is widely distributed than that of E[Y ]. It is
known as Central Limit Theorem[14], that as s increases, the amount of sampling

variation decreases. Figure 6 shows that the variance of estimated probability θ̂
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reduces as the iteration s increases. The experiment shows even small s = 10
gives conversion of probability θ. The selection of optimal s can be made based
on the variance of the prediction of θ. As we have showed in Section 4.3, the
variance of beta distribution decreases with s, which determines the accuracy of
approximation.

Finally, we obtain the estimate of intersection size, x̂, by Equation 6. We
illustrate the distribution of θ and the corresponding estimation of x.

5.3 Performance

We implemented the proposed scheme in Java, JDK 1.6, with BigInteger class. As
additive homomorphic public key algorithm, we use Paillier cryptosystem with
1024 bit key. With platform of commodity PC, Intel Core (TM) i7-663DQM,
2 GHz, 4 GB, running Windows 7 (64 bit), the encryption runs in te = 15.7
[s], the decryption takes td = 21.5 [s] in average. The secure scalar product
of 64-bit vectors (nA = nB = 64, x = 5) is performed in 5.28 [s], i.e., 82.5
[ms/element]. With this platform, the processing time to deal with the problem
in [11], n = 2000, k = 1, and m = n/ ln 2 = 2885, is 4 minute and 125 second.

6 Privacy-Preserving Risk Analysis of H. pylori

Helicobacter pylori, or H. pylori, is a bacterium that is found in the stom-
achs of two-thirds of the world’s population. Epidemiology studies have shown
that individuals infected with H. pylori have an increased risk of cancer of the
stomach[10,12].

Although H. pylori has been classified as a cancer-causing agent, it is not
known how H. pylori infection increases the risk of cancer of the stomach. Some
researchers have estimated that the risk of cancer the noncardiac region of the
stomach is nearly six times higher for H. pylori–infected individuals than for
uninfected people[9]. Some cohort studies revealed that the risk of gastric cardiac
cancer among H. pylori–infected individuals was about one-third of that among
uninfected individuals. The source of uncertainty is that the number of gastric
cancers in the cohort study was too small to make a definitive statement. Cancer
is a highly confidential matter and people will not reveal that they have it.

Our proposed methodology addresses the problem of epidemiology studies
that preserve the privacy of the patients. The cryptographic protocol allows
several small cohorts to be aggregated and analyzed for more certain evidence of
increase or reduction of risk. Given two datasets of patients with cancer and H.
pylori, the proposed protocol determines the size of the intersection of the two
sets without revealing any entries in the datasets. With a secure hash function,
the proposed scheme identifies a patient from their personal attributes.
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6.1 Contingency Tables

The epidemiology study aims to determine whether an H. pylori-infected in-
dividual has increased the risk of gastric cancer. The evidence is shown by a
measure of relative risk (RR), the probability of disease among exposed individ-
uals divided by the probability of disease among the unexposed. Suppose that a
sample of N individuals is arranged in the form of the 2 × 2 contingency table
in Table 5; the relative risk (RR) of H. pylori is estimated by

RR =
Pr( cancer | H. pylori)
Pr(cancer |unexposed) =

a

a+ b
/

c

c+ d
≈ ad

bc
,

where we assume a! b and hence a+ b = b.
To examine whether H. pylori-infection increases the risk of cancer, i.e., RR >

1, we test the null and the alternative hypotheses.

H0: The proportion of patients with cancer among individuals infected with
H. pylori is equal to the proportion of patients with cancer among those
uninfected.

HA: The proportions of patients with cancer are not identical in the two popu-
lations.

The chi-square test compares the observed frequencies in each category of the
contingency table, O, with the expected frequencies given that the null hypoth-
esis is true, E. To perform the test, we calculate the sum

χ2 =

k∑
i=1

(Oi − Ei)
2

Ei
=

(N − 1) ((ad− bc)±N/2)
2

(a+ c)(b+ d)(a+ b)(c+ d)
,

where k is the number of cells in the table. The probability distribution of
this sum is approximated by a χ2 distribution with (2 − 1)(2 − 1) = 1 degree
of freedom. Alternatively, by taking it squire root, we may assume that χ is
normally distributed with mean 0 and standard deviation 1.

Table 5. 2× 2 Contingency table for H. pylori and stomach cancer

H. pylori Cancer No cancer total

Yes a b a+ b
No c d c+ d

total a+ c b+ d N

Table 6. Chiba Cancer Center dataset
CAN

year male female total

2003 2,330 1,134 3,464
2004 2,610 1,242 3,852
2005 2,559 1,205 3,763

total 7,500 3,581 11,081

Table 7. MHW dataset of H. pylori in-
fections PYL

year male female total

2001 2,671 5,206 7,877
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6.2 Datasets

In our experiment, we have two datasets collected by independent agencies.

1. Patients with gastric cancer CAN.
The Chiba Cancer Center has performed an epidemiology study of causes
and effects of cancer conditions since 1975 in Chiba Prefecture, Japan. Ta-
ble 6 shows the statistics for three years from 2003, used in this study.
The dataset contains private attributes, including name, gender, birthday,
mailing address, ZIP code, and medical treatments, e.g., patient ID, days of
operations, day of death, type of cancers, and degree of tumor differentiation.

2. Individuals infected with H. pylori PYL.
The Japanese Ministry of Health and Welfare (MHW) carried out a medical
examination in 2001 in a small village in Chiba Prefecture. The dataset
contains the number of H. pylori-infected individuals but their cancer status
is not known.

6.3 Hypothesis Testing

Our proposed algorithm estimates the size of the intersection of the two datasets,
thus allowing the estimation of relative risk of H. pylori.

The statistics show that the population in Chiba Prefecture in 2003 was
6, 056, 462 (3, 029, 486 male). The dataset in Table 6 has nA = 7401 recodes
of patients with cancer. Table 7 contains nB = 2629 individuals infected with
H. pylori. We apply a BF with size m = 14, 000, k = 1 and s = 10 to the two
datasets and obtain the scalar product, y = b(CAN) · b(PYL) as μ(y) = 1023.9 on

average. Based on Bayes’ theorem, we estimate the probability θ̂ in Equation (7)
as

θ̂ =
α+

∑s
yi

α+ β + sm
= 0.073142.

From Equation (6), x̂ = 81.1702, while the exact size of the intersection is 80.
The number of individuals who are infected with H. pylori but do not have is
therefore na− x̂ = 2549. The other values can be obtained similarly. Finally, the
numbers of individuals are summarized in Table 8.

Table 8. Experimental results for CAN and PYL

H. pylori Cancer No cancer total

Yes 80 2,549 2,629
No 7,321 2,990,050 2,997,371

total 7,401 2,992,599 3,000,0005

5 The number is referred from statistics in Chiba prefecture. There are potential in-
dividuals infected by H. Pylori who was not counted in the table.
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An estimate of the relative risk of having cancer among H. pylori-infected
individuals is therefore

RR =
80 · 222, 964
2, 549 · 7, 321 = 12.81.

The chi-square test of the null hypothesis yields

χ =

√
3, 000, 000− 1(80 · 222, 964− 2, 549 · 7, 321− 3, 000, 000/2)√

7, 401 · 2, 992, 599 · 2, 629 · 230, 285
= 28.71 > N(.05/2) = 1.960,

which is too high to assume the null hypothesis. Therefore, we reject the null
hypothesis at the 0.05 level of confidence.

In the experiment in Intel Xeon E5620 2.40 GHz, Memory 16GB, the process-
ing of the BF takes 17,030 second (=4.7 hour), while the naive ID generation
requires a scalar product of n2 = 4.9× 107, which is estimated to be 223 hours.

7 Conclusions

We have proposed an efficient algorithm for the estimation of the size of the
intersection of two private sets. The proposed scheme gives a Bayesian estimation
of the intersection size based on the mathematical properties of the number of
matching bits in two BFs. A well-known secure scalar product protocol enables
us to evaluate the number of matching bits in a privacy-preserving way and
to test hypothesizes that are useful in epidemiological studies. We have shown
the properties of the accuracy of estimation for various parameters and the
experimental results for the DBLP public dataset. One of our main results is
that the bootstrap approach, iterating small BFs several times, is better than
using a single large BF.

The extension of scalar product protocol to multiple parties can be done by
replacing the Step 3 as that Bob forwards n ciphertexts computed with his secret
vector as E(x1)

y1 , . . . , E(xn)
yn to Carol who then perform the original Step 3

as c = E(x1)
y1z1 · · ·E(xn)

ynzn/E(sB). The extension of Bloom filter to multiple
parities is not trivial and one of our future work.
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Abstract. In this paper, we address privacy breaches in transactional
data where individuals have multiple tuples in a dataset. We provide
a safe grouping principle to ensure that correlated values are grouped
together in unique partitions that enforce l-diversity at the level of indi-
viduals. We conduct a set of experiments to evaluate privacy breach and
the anonymization cost of safe grouping.

1 Introduction

Data outsourcing is on the rise, and the emergence of cloud computing provides
additional benefits to outsourcing. Privacy regulations pose a challenge to out-
sourcing, as the very flexibility provided makes it difficult to prevent against
trans-border data flows, protection and separation of clients, and other con-
straints that may be required to outsource data. An alternative is encrypting
the data [5]; while this protects privacy, it also prevents beneficial use of the
data such as value-added services by the cloud provider (e.g., address normal-
ization), or aggregate analysis of the data (and use/sale of the analysis) that
can reduce the cost of outsourcing. Generalization-based data anonymization
[18,19,12,9] provides a way to protect privacy while allowing aggregate analysis,
but doesn’t make sense in an outsourcing environment where the client wants to
be able to retrieve the original data values.

An alternative is to use bucketization, as in the anatomy [23], fragmentation
[4], or slicing [11] models. Such a database system has been developed [15,16].
The key idea is that identifying and sensitive information are stored in separate
tables, with the join key encrypted. To support analysis at the server, data items
are grouped into buckets; the mapping between buckets (but not between items
in the bucket) is exposed to the server. An example is given in Figure 1 where
attribute DrugName is sensitive: Figure 1b is an anatomized version of table pre-
scription with attributes separated into PrescriptionQIT and PrescriptionSNT .

The bucket size and grouping of tuples into buckets ensures privacy constraints
(such as k-anonymity[18,19] or l-diversity[12]) are satisfied.

Complications arise when extending this approach to transactional datasets.
Even with generalization-based approaches, it has been shown that transac-
tions introduce new challenges. While approaches as (X,Y )-privacy [21] and

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 164–178, 2013.
c© IFIP International Federation for Information Processing 2013
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Name Country Drug Name
Roan (P1) United States Mild Exfoliation
Lisa (P4) Columbia Azelaic acid
Roan (P1) United States Retinoic Acid
Elyse (P2) United States Mild Exfoliation
Carl (P3) France Azelaic acid
Roan (P1) United States Retinoic Acid
Lisa (P4) Columbia Cytarabine
Roan (P1) United States Azelaic acid
Lisa (P4) Columbia Retinoic Acid
Carl (P3) France Cytarabine
Carl (P3) France Azelaic acid
Roan (P1) United States Retinoic Acid
Bob (P5) Columbia Esom. Magnesium 
Carl (P3) France Mild Exfoliation
Alice (P6) United States Adapalene

(a) Original Prescription table

Name Country GID GID Drug Name
Roan (P1) United States 1 1 Mild Exfoliation
Lisa (P4) Columbia 1 1 Azelaic acid
Roan (P1) United States 1 1 Retinoic Acid
Elyse (P2) United States 2 2 Mild Exfoliation
Carl (P3) France 2 2 Azelaic acid
Roan (P1) United States 2 2 Retinoic Acid
Lisa (P4) Columbia 3 3 Cytarabine
Roan (P1) United States 3 3 Azelaic acid
Lisa (P4) Columbia 3 3 Retinoic Acid
Carl (P3) France 4 4 Cytarabine
Carl (P3) France 4 4 Azelaic acid
Roan (P1) United States 4 4 Retinoic Acid
Bob (P5) Columbia 5 5 Esom. Magnesium 
Carl (P3) France 5 5 Mild Exfoliation
Alice (P6) United States 5 5 Adapalene

(b) PrescriptionQIT and PrescriptionSNT

Fig. 1. Table Prescription anonymized

km-anonymity [20] include restrictions on the correlation of quasi-identifying
values and can be used to model transactional data [3], they still face limita-
tions when applied to bucketization approaches.

We give examples of this based on Figure 1b. The anonymized table satisfies
the (X,Y)-privacy and (2,2)-diversity privacy constraints[13]; given the 2-diverse
table, an adversary should at best be able to link a patient to a drug with
probability 1/2.

Inter-group dependencies occur when an adversary knows certain facts about
drug use, e.g., Retinoic Acid is a maintenance drug taken over a long pe-
riod of time. As P1 is the only individual who appears in all groups where
Retinoic Acid appears, it is likely that P1 is taking this drug. Note that this
fact can either be background knowledge, or learned from the data.

Intra-group dependencies occur where the number of transactions for a sin-
gle individual within a group results in an inherent violation of l-diversity
(this would most obviously occur if all transactions in a group were for
the same individual.) By considering this separately for transactional data,
rather than simply looking at all tuples for an individual as a single “data
instance”, we gain some flexibility.

We present a method to counter such privacy violations while preserving data
utility. Our contributions can be summarized as follows:

– An in-depth study of privacy violation due to correlation of individuals’
related tuples in bucketization techniques.

– A safe grouping technique to eliminate privacy violation. Our safe group-
ing technique ensures that quasi-identifier and sensitive partitions respect
l-diversity privacy constraint.

The approach is based on knowing (or learning) the correlations, and forming
buckets with a common antecedent to the correlation. This protects against
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inter-group dependencies. Identifiers are then suppressed where necessary (in an
outsourcing model, this corresponds to encrypting just the portion of the tuple in
the identifier table) to ensure the privacy constraint is met (including protection
against intra-group correlation.)

In the next section, we present our adversary model. Section 3 gives further
background on prior work and its limitations in dealing with this problem. In
Section 4, we define the basic notations and key concepts used in the rest of
the paper. A definition of correlation-based privacy violation in transactional
datasets is given in Section 5. In Section 6, we present our a safe grouping
constraint that forms the basis of our anonymization method. Section 7 gives
a safe grouping algorithm. A set of experiments to evaluate both the practical
efficiency and the loss of data utility (suppression/encryption) is given in Section
8. We conclude with a discussion of next steps to move this work toward practical
use.

2 Adversary Model

In our adversary model, we assume that the adversary has knowledge of the
transactional nature of the dataset. We also assume that he/she has outside
information on correlations between sensitive data items that leads to a high
probability that certain sets of items would belong to the same individual. This is
illustrated in the introduction (example 1) where the fact that the drug Retinoic
Acid is known to be taken for a long period of time makes it possible to link it
to patient P1.

We do not care about the source of such background information; it may be
public knowledge, or it may be learned from the anatomized data itself. (We
view learning such knowledge from the data as beneficial aggregate analysis of
the data.)

3 Related Work

In [21], the authors consider that any transaction known by the adversary could
reveal additional information that might be used to uncover a sensitive linking
between a quasi-identifier and a sensitive value. They define (X,Y)-privacy to
ensure on one hand that each value of X is linked to at least k different values
of Y , and on the other hand, no value of Y can be inferred from a value of X
with confidence higher than a designated threshold. A similar approach proposed
in [20] in which the authors extend k-anonymity with km-anonymity requiring
that each combination of at most m items appears in at least k transactions,
where m is the maximum number of items per transaction that could be known
by the adversary. (Also related is the problem of trail re-identification[14].) As
demonstrated in the example in Figure 1b, these techniques are limited when it
comes to bucketization, as more subtle in intra and intra group correlations may
lead to a breach of l-diversity.
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In [11] the authors proposed a slicing technique to provide effective protection
against membership disclosure, but it still remains vulnerable to identity disclo-
sure. An adversary with knowledge of the transactional nature of the dataset
may still be able to associate an individual identifier to correlated sensitive val-
ues. The authors in [6] discuss privacy violations in the anatomy privacy model
[23] due to functional dependencies (FDs). In their approach, they propose to
create QI-groups on the basis of a FD tree while grouping tuples based on the
sensitive attribute to form l-diverse groups. Unfortunately, dealing with FDs’ is
not sufficient, as less strict dependencies can still pose a threat.

In [22], the authors consider correlation as foreground knowledge that can be
mined from anonymized data. They use the possible worlds model to compute
the probability of associating an individual to a sensitive value based on a global
distribution. In [8], a Näıve Bayesian model is used to compute association prob-
ability. They used exchangeability [1] and DeFinetti’s theorem [17] to model and
compute patterns from the anonymized data. Both papers address correlation in
its general form where the authors show how an adversary can violate l-diversity
privacy constraint through an estimation of such correlations in the anonymized
data. As it is a separate matter, we consider that correlations due to transactions
where multiple tuples are related to the same individual ensure that particular
sensitive values can be linked to a particular individual when correlated in the
same group (i.e., bucket). We go beyond this, addressing any correlation (either
learned from the data or otherwise known) that explicitly violates the targeted
privacy goal.

4 Formalization

Given a table T with a set of attributes {A1, ..., Ab}, t[Ai] refers to the value
of attribute Ai for the tuple t. Let U be the set of individuals of a specific
population, ∀u ∈ U we denote by Tu the set of tuples in T related to the
individual u. Attributes of a table T that we deal with in this paper are divided
as follows;

– Identifier (Aid) represents an attribute that can be used (possibly with exter-
nal information available to the adversary) to identify the individual associ-
ated with a tuple in a table. We distinguish two types of identifiers; sensitive
and nonsensitive. For instance, the attribute Social Security Number is a
sensitive identifier ; as such it must be suppressed (encrypted). Nonsensitive
identifiers are viewed as public information, and include both direct identi-
fiers such as Patient ID in Figure 4, and quasi-identifiers that in combination
may identify an individual (such as <Gender, Birthdate, Zipcode>, which
uniquely identifies many individuals.)

– Sensitive attribute (As) contains sensitive information that must not be link-
able to an individual, but does not inherently identify an individual. In our
example (Table 1a), the attribute DrugName is considered sensitive and
should not be linked to an individual.
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Definition 1 (Equivalence class / QI-group). [18] A quasi-identifier group
(QI-group) is defined as a subset of tuples of T =

⋃m
j=1 QIj such that, for any

1 ≤ j1 �= j2 ≤ m, QIj1 ∩QIj2 = φ.

Note that for our purposes, this can include direct identifiers as well as quasi-
identifiers; we stick with the QI-group terminology for compatibility with the
broader anonymization literature.

Definition 2 (l-diversity). [13] a table T is said to be l-diverse if each of
the QI-groups QIj(1 ≤ j ≤ m) is l-diverse; i.e., QIj satisfies the condition
cj(vs)/|QIj | ≤ 1/l where

– m is the total number of QI-groups in T
– vs is the most frequent value of As

– cj(vs) is the number of tuples of vs in QIj
– |QIj | is the size (number of tuples) of QIj

Definition 3 (Anatomy). Given a table T , we say that T is anatomized if it
is separated into a quasi-identifier table (TQIT ) and a sensitive table (TSNT ) as
follows:

– TQIT has a schema (A1, ..., Ad, GID) where Ai (1 ≤ i ≤ d) is either a
nonsensitive identifying or quasi-identifying attribute and GID is the group
id of the QI-group.

– TSNT has a schema (GID,As
d+1) where As

d+1 is the sensitive attribute in T .

To express correlation in transactional data we use the following notation cdid :
Aid

1 , ..., Aid
n ��� As where Aid

i is a nonsensitive identifying attribute and As is
a sensitive attribute, and cdid is a correlation dependency between attributes
Aid

1 , ..., Aid
n on one hand, and As on the other.

Next, we present a formal description of the privacy violation that can be
caused due to such correlations.

Table 1. Notations

T a table containing individuals re-
lated tuples

ti a tuple of T

u an individual described in T

Tu a set of tuples related to individual
u

A an attribute of T

Aid an identifying attribute of T

As a sensitive attribute of T

QIj a quasi-identifier group

T ∗ Anonymized version of table T
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5 Correlation-Based Privacy Violation

Inter-group correlation occurs when transactions for a single individual are placed
in multiple QI-groups (as with P1, P3, and P4 in Figure 1a). The problem arises
when the values in different groups are related (as would happen with association
rules); this leads to an implication that the values belong to the same individual.
Formally:

Definition 1 (Inter QI-group Correlation). Given a correlation dependency
of the form cdid : Aid ��� As over T ∗, we say that a privacy violation might
exists if there are correlated values in a subset QIj(1 ≤ j ≤ m) of T ∗ such that
vid ∈ πAidQI1∩ ...∩πAidQIm and |πAsQI1∩ ...∩πAsQIm| < l where vid ∈ Aid is
an individual identifying value, l is the privacy constant and an adversary knows
of that correlation.

The example shown in Figure 1, explains how an adversary with prior knowledge
of the correlation, in this case that Retinoic Acid must be taken multiple times,
is able to associate the drug to the patient Roan (P1) due to their correlation
in several QI-groups. (The same would also apply to different drugs that must
be taken together.)

An intra-group violation can arise if several correlated values are contained
in the same QI-group. Here the problem is that this gives a count of tuples
that likely belong to the same individual, which may limit it to a particular
individual in the group. Figure 2 is an example of Intra QI-group Correlation,
formally defined as follows:

Fig. 2. Intra QI-group correlation

Lemma 1 (Intra QI-group Correlation). Given a QI-group QIj (1 ≤ j ≤
m) in T ∗ that is l-diverse, we say that a privacy violation might occur if indi-
vidual’s related tuples are correlated in QIj such that f(QIj , u) + cj(vs) > |QIj |
where

– vs is the most frequent As value in QIj,
– cj(vs) is the number of tuples t ∈ QIj with t[As] = vs,
– u is the individual who has the most frequent tuples in QIj,
– f(QIj , u) is a function that returns the number of u ’s related tuples in QIj
– |QIj | is the size of QIj (number of tuples contained in QIj)

Proof. Let r be the number of remaining sensitive values in QIj , r = |QIj | −
cj(vs). If f(QIj , u) + cj(vs) > |QIj |, this means that f(QIj , u) > |QIj | − cj(vs)
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and therefore f(QIj , u) > r. That is, there are e tuples related to individual u
such that f(QIj , u) = e to be associated to r sensitive values of QIj where e > r.
According to the pigeon-hole principle, at least a tuple t of Tu will be associated
to the sensitive value vs which leads to a privacy violation.

It would be nice if this lemma was “if and only if”, giving criteria where a privacy
violation would NOT occur. Unfortunately, this requires making assumptions
about the background knowledge available to an adversary (e.g., if an adversary
knows that one individual is taking a certain medication, they may be able to
narrow the possibilities for other individuals). This is an assumption made by
all k-anonymity based approaches, but it becomes harder to state when dealing
with transactional data.

Let us go back to Figure 2, an adversary is able to associate both drugs
(Retinoic Acid and Azelaic Acid) to patient Roan (P1) due to the correlation of
their related tuples in the same QI-group.

In the following, we provide an approach that deals with such privacy viola-
tions.

6 Safe Grouping for Transactional Data

As we have shown in the previous section, bucketization techniques do not cope
well with correlation due to transactional data where an individual might be
represented by several tuples that could lead to identify his/her sensitive values.
In order to guarantee safety, we present in this section our safe grouping safety
constraint .

Safety Constraint (Safe Grouping). Given a correlation dependency in the
form of cdid : Aid ��� As, safe grouping is satisfied iff

1. ∀u ∈ U , the subset Tu of T is contained in one and only one quasi identifier
group QIj (1 ≤ j ≤ m) such that QIj respects l-diversity and contains at
least k subsets Tu1 , ..., Tuk

where u1, ..., uk are k distinct individuals of the
population and,

2. Pr(ui1 |QIj) = Pr(ui2 |QIj) ≤ 1/l where
ui1 , ui2 , i1 �= i2 are two distinct individuals in QIj with (1 ≤ i ≤ k) and
Pr(ui|QIj) is the probability of ui in QIj .

Safe grouping ensures that individual tuples are grouped in one and only one
QI-group that is at the same time l-diverse, respects a minimum diversity for
identity attribute values, and every subset Tu in QIj are of equal number of
tuples.

Figure 3 describes a quasi identifier group (QI1) that respects safe grouping
where on one hand, we assume that there are no other QI-groups containing P1
and P3 and on the other hand, two tuples from TP1 are anonymized to guarantee
that Pr(P1|QI1) = Pr(P3|QI1) ≤ 1/2. Note that we have suppressed some data
in order to meet the constraint; this is in keeping with the model in [15] where
some data is left encrypted, and only “safe” data is revealed.
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Lemma 1. Let QIj for (1 ≤ j ≤ m) be a QI-group that includes k individuals,
if QIj satisfies safe grouping then k is at least equal to l

Proof. Consider an individual u inQIj , according to the safe grouping, Pr(u|QIj)
≤ 1/l. Or Pr(u|QIj) is equal to f(QIj , u)/|QIj| where f(QIj , u) = |QIj |/k rep-
resents the number of individual’s u related tuples in QIj . Hence, 1/k ≤ 1/l and
k ≥ l

Corollary 1 (Correctness). Given an anonymized table T ∗ that respects safe
grouping, and a correlation dependency of the form cdid : Aid ��� As, an ad-
versary cannot correctly associate an individual u to a sensitive value vs with a
probability Pr(As = vs, u|T ∗) greater than 1/l.

Proof. Safe grouping guarantees that individual’s u related tuples Tu are con-
tained in one and only one QI-group (QIj), which means that possible association
of u to vs is limited to the set of correlated values that are contained in QIj .
Hence, Pr(As = vs, u|T ∗) can be written as Pr(As = vs, u|QIj). On the other
hand,

Pr(As = vs, u|QIj) =
Pr(As=vs,u)∑

k
i=1 Pr(As=vs,ui)

where k is the number of individuals in

QIj and Pr(As = vs, ui) is the probability of associating individual ui to a sensi-
tive value vs. Recall that safe grouping guarantees that for a given individual ui,
Pr(As = vs, ui) is at the most equal to 1/l . Summarizing, Pr(As = vs, u|QIj)
is at the most equal to 1/k where k ≥ l according to Lemma 1.

Fig. 3. Table Prescription respecting our safety constraint

We can estimate1, for example, Pr(As = RetinoicAcid,Aid = P1|T ∗) to be 4/5
where it is possible to associate Roan (P1) to Retinoic Acid in 4 of 5 QI-groups
as shown in Figure 1b. However, as you can notice from Figure 3, safe grouping
guarantees that Pr(As = RetinoicAcid,Aid = P1|T ∗) remains limited to the
possible association of values in QI1 and thus bounded by l-diversity.

1 Pr(As = RetinoicAcid,Aid = P1|T ∗) as calculated remains an estimation where a
much deeper aspect on how to calculate the exact probability of values correlated
across QI-groups can be seen in [22] and [8]
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The safe grouping constraint is restrictive, but may be necessary. While we
do not have a formal proof that it is optimal, we can find examples where any
straightforward relaxation can result in a privacy violation (we do not elaborate
due to space constraints.)

We note that using safe grouping, we do not intend to replace anatomy. In
fact, we preserve table decomposition as described in the original anatomy model
by separating a table T into two subtables (TQIT , TSNT ) while providing a
safe grouping of tuples on the basis of the attributes related by a correlation
dependency.

7 Safe Grouping Algorithm

In this section, we provide an algorithm to enforce ensure safe grouping for
transactional data. The algorithm guaranties the safe grouping of a table T based
on an identity attribute correlation dependency cdid : Aid ��� As (Aid ∈ TQIT

and As ∈ TSNT ).
The main idea behind the algorithm is to create k buckets based on the

attribute (Aid) defined on the left hand side of a correlation dependency in a
reasonable time.

The safe grouping algorithm takes a table T , a correlation dependency Aid ���
As, a constant l to ensure diversity, and a constant k representing the number of
individuals (individuals’ related tuples) to be stored in a QI-group. It ensures a
safe grouping on the basis of the attribute Aid. In Step 2, the algorithm hashes
the tuples in T based on their Aid values and sorts the resulting buckets. For any
individual, all their values will end up in the same bucket. In the group creation
process from steps 4-17, the algorithm creates a QI-group with k individuals. If
the QI-group respects l-diversity the algorithm adds it to the list of QI-groups
and enforces the safety constraint in step 8 by anonymizing tuples in TQIT

including values that are frequently correlated in the QI-group. In other terms, it
makes sure that individuals’ related tuples in the QI-group are of equal number.

If l-diversity for the QI-group in question is not met, the algorithm en-
forces it by anonymizing tuples related to the most frequent sensitive value
in the QI-group. After the l-diversity enforcement process, the algorithms veri-
fies whether the group contains k buckets, and if not anonymizes (which could
mean generalizing, suppressing, or encrypting the values, depending on the target
model.)

From steps 19 to 26 the algorithm anatomizes the tables based on the QI-
groups created. It stores random sensitive attribute values in the TSNT table.

While safe grouping provides safety, its ability to preserve data utility is
limited to the number of distinct values of Aid attribute.
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Algorithm 1. SafeGrouping

Require: a table T , cdid : Aid ��� As, l, k, minConf , maxConf and exp
Ensure: safe grouping for T

1: TQIT = ∅; TSNT = ∅; gn = 0; i = 0, j = 0;
2: Hash the tuples in T by their Aid values (one bucket per Aid value)
3: Sort the set of Buckets based on their number of tuples.
4: while there are k groups QI ∈ Buckets do
5: if QI is l-diverse then
6: gn = gn+ 1
7: QIgn = QI
8: Enforce safety constraint on QIgn
9: Remove QI from Buckets
10: else
11: Enforce l-diversity over QI
12: if size of QI < k then
13: Suppress tuples in QI
14: else
15: Go to Step 6
16: end if
17: end if
18: end while
19: for j = 1 to gn do
20: for each tuple t ∈ QIj do
21: insert tuple (t[A1], ..., t[A], ...t[Am], j) into TQIT

22: end for
23: for each random value vs of As ∈ QIj do
24: insert tuple (j, vs) into TSNT

25: end for
26: end for

8 Experiments

We now present a set of experiments to evaluate the efficiency of our approach,
both in terms of computation and more importantly, loss of data utility. We
implemented the safe grouping code in Java based on the Anonymization Tool-
box [7], and conducted experiments with an Intel XEON 2.4GHz PC with 2GB
RAM.

8.1 Evaluation Dataset

In keeping with much work on anonymization, we use the Adult Dataset from the
UCI Machine Learning Repository [2]. To simulate real identifiers, we made use
of a U.S. state voter registration list containing the attributes Birthyear, Gender
, Firstname, and Lastname. We combined the adult dataset with the voter’s list
such that every individual in the voters list is associated with multiple tuples
from the adult dataset, simulating a longitudinal dataset from multiple census
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years. We have constructed this dataset to have a correlation dependency of the
following form
Firstname, Lastname ��� Occupation; where Occupation is a sensitive at-
tribute, Firstname, Lastname are identifying attributes and remaining
attributes are presumed to be quasi-identifiers.

We say that an individual is likely to stay in the same occupation across
multiple censuses. Note that this is not an exact longitudinal dataset; n varies
between individuals (simulating a dataset where some individuals move into or
out of the census area. The generated dataset is of size 48836 tuples with 21201
distinct individuals.

In the next section, we present and discuss results from running our safe
grouping algorithm.

8.2 Evaluation Results

We elaborated a set of measurements to evaluate the efficiency of safe grouping.
These measurements can be summarized as follows:

– Evaluating privacy breach in a naive anatomization. We note that the same
test could be performed on the slicing technique [11] as the authors in their
approach do not deal with identity disclosure,

– Determining anonymization cost represented by the loss metric to capture
the fraction of tuples that must be (partially or totally) generalized, sup-
pressed, or encrypted in order to satisfy the safe grouping and,

– Comparing the computational cost of our safe grouping algorithm to anatomy
[23].

8.2.1 Evaluating Privacy
After näıve anatomization over the generated dataset, we have identified 5 ex-
plicit violations due to intra QI-group correlations where values of Aid are cor-
related in a QI-group. On the other hand, in order to determine the number of
violations due to inter QI-group correlation, we calculate first the possible associ-
ations of Aid and As values across a näıve anatomized table. This is summarized
in the following equation for values vid and vs respectively.

G(vid, vs) =
∑m

j=1 fj(vid, vs)∑m
j=1 gj(vid)

where

fj(vid, vs) =

{
1 if vid and vs are associated in QIj
0 otherwise

and,

gj(vid) =

{
1 if vid exists in QIj
0 otherwise
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At this point, a violation occurs for significant2 Aid values if;

1. G(vid, vs) > 1/l. This represents a frequent association between vid and vs
where vid is more likely to be associated to vs in the QI-groups to which it
belongs and,

2. |πAsQI1 ∩ ... ∩ πAsQIm| < l where QI1, ..., QIm are the QI-groups to which
vid belongs.

After we applied the above test to the anatomized dataset, we have identified
for l = 2 and l = 3, 167 and 360 inter QI-groups correlation violations. We note
that a much deeper study on violations due to data correlation can be found in
[22][8][10].

8.2.2 Evaluating Anonymization Cost
We evaluate our proposed anonymization algorithms to determine the loss metric
(LM) representing the number of tuples in T and TQIT that need to be sup-
pressed in order to achieve the safety constraint. Figure 3 shows a anonymized
version of table prescription where grouping is safe and has a loss metric equal
to LM(Prescription) = 2/13.

We investigate the anonymization cost for a correlation dependency cdid :
Firstname, Lastname ��� Occupation using the safe grouping algorithm. We
anonymize the dataset with k = 7, 8, 9 and l = 2, 3, 4, 5, 6, 7 for which the dataset
satisfies the eligibility condition (see [13]). At each execution, we compute the
LM. The results are shown in Figure 4.

From Figure 4, we can see that the LM increases with l, and for (k = 9,
l = 7) the computed loss metric LM is high; notice that the number of tuples
to anonymize in order to preserve l-diversity reaches 35%. Nonetheless, for small
values of l an acceptable value of LM is computed. Anonymizing datasets using
safe grouping can be seen as a trade-off between cost and privacy where for
small values of l, LM produces values less than 10% leading to a relatively
small anonymization cost. Another aspect to consider is how to define k w.r.t
l to guarantee a minimum LM. Note that for transactional data, it is possible
for k (the number of individuals, not transactions, in a group) to be smaller
than l; however, this makes satisfying the privacy criteria difficult, leading to
substantial anonymized data. The experiments show that high data utility can
be preserved as long as k is somewhat greater than l.

8.2.3 Evaluating Computation Cost
We now give the processing time to perform safe grouping compared to anatomy.
Figure 4d shows the computation time of both safe grouping and anatomy over
a non-transactional dataset with different k values. Theoretically, a worst case
of safe grouping could be much higher; but in practice, for a small values of l the

2 Significance is measured in this case based on the support of Aid values and their
correlation across QI-groups. For instance, vid is considered significant if it exists in
at least α QI-groups where α is a predefined constant greater than 2.
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(a) % of tuples anonymized to ensure the
safety constraint and l-diversity for k = 7

(b) % of tuples anonymized to ensure the
safety constraint and l-diversity for k = 8

(c) % of tuples anonymized to ensure the
safety constraint and l-diversity for k = 9

(d) Computational Cost Evaluation

Fig. 4. Safe grouping evaluation in transactional datasets 4a, 4b and 4c

safe grouping has better performance than anatomy. Furthermore, as k increases
the safe grouping computation time decreases due to reduced I/O access needed
to test QI-groups’ l-diversity.

9 Conclusion

In this paper, we proposed a safe grouping method to cope with defects of buck-
etization techniques in handling correlated values in a transactional dataset.
Our safe grouping algorithm creates partitions with an individual’s related tu-
ples stored in one and only one group, eliminating these privacy violations. We
showed, using a set of experiments, that there is a trade-off to be made between
privacy and utility. This trade-off is quantified based on the number of tuples
to be anonymized using the safe grouping algorithm. Finally, we investigated
the computation time of safe grouping and showed that despite the exponential
growth of safe grouping, for a small range of values of l, safe grouping outper-
forms anatomy while providing stronger privacy guarantees.
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Abstract. Database outsourcing is a prominent trend that enables organizations
to offload their data management overhead (e.g., query handling) to the external
service providers. Immutable signatures are ideal tools to provide authentication
and integrity for such applications with an important property called immutabil-
ity. Signature immutability ensures that, no attacker can derive a valid signature
for unposed queries from previous queries and their corresponding signatures.
This prevents an attacker from creating his own de-facto services via such de-
rived signatures. Unfortunately, existing immutable signatures are very compu-
tation and communication costly (e.g., highly interactive), which make them im-
practical for task-intensive and heterogeneous applications.

In this paper, we developed two new schemes that we call Practical and
Immutable Signature Bouquets (PISB), which achieve efficient immutability
for outsourced database systems. Both PISB schemes are very simple, non-
interactive, and computation/communication efficient. Our generic scheme can
be constructed from any aggregate signature coupled with a standard signature.
Hence, it can flexibly provide performance trade-offs for various types of appli-
cations. Our specific scheme is constructed from Condensed-RSA and Sequential
Aggregate RSA. It has a very low verifier computational overhead and end-to-end
delay with a small signature size. We showed that PISB schemes are secure and
also much more efficient than previous alternatives.

Keywords: Applied cryptography, outsourced databases, immutable digital sig-
natures, distributed systems, public key cryptography.

1 Introduction

It is a growing trend that the data is outsourced and being managed (e.g., query handling,
maintenance) on remote servers, which are maintained by third party outsourcing ven-
dors. One such data outsourcing approach is “database as a service” (DAS) model [1], in
which clients outsource their data to a database service provider1,2 that offers a reliable
maintenance and access for the hosted data [2].

1 http://www.ibm.com/software/data/db2
2 http://www-935.ibm.com/services/us/en/
it-services/storage-and-data-services.html

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 179–194, 2013.
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Data outsourcing can significantly reduce the cost of data management (e.g., via con-
tinuous service, expertise, upgrade/maintanence) and therefore it is highly beneficial for
entities with limited management capabilities such as small to medium businesses [2–
4]. However, despite its merits, data outsourcing brings various security
challenges, since the sensitive data is hosted in a (semi or fully) untrusted environment.
These security challenges include but not limited to the confidentiality [5], access pri-
vacy [6], authentication and integrity [7]. Another challenge is to provide the security
efficiently such that the data outsourcing still remains practical and cost efficient.

In this paper, we focus on providing authentication and integrity of outsourced data
via aggregate signatures (e.g., [8]), while also guaranteeing a vital security property
called signature immutability in a practical manner.

In Section 1.1, we give our data and system models. In Section 1.2, we describe the
signature mutability problem and limitations of existing solutions. In Section 1.3, we
summarize our contributions and highlight the desirable properties of our schemes.

1.1 System and Data Model

We follow Mykletun et al.’s Outsourced Database Model (ODB) [3,7], which is a variant
of traditional “database as a service” model [1].

System Model: There are three types of entities in the system; data owners, server
(database service provider) and data queriers (clients). These entities behave as follows.
• Data Owners: A data owner can be a single or a logical entity such as an orga-

nization. Each data owner in the system signs her database elements (e.g., each tuple
separately) and then outsources them along with their signatures to the server. This
protects the integrity and authentication of outsourced data against both the server and
outside adversaries (e.g., in the case of the server is compromised).

The data owner computes the individual signature of each database element (e.g.,
each tuple) with an aggregate signature scheme (e.g., [8]), which allows the combina-
tion of these signatures according to the content of a query. This enables the server to
reply any query on the outsourced data with a compact constant size signature (instead
of sending a signature for each element in the query, which entails a linear communica-
tion overhead). This outsourcing step is performed offline, and therefore its cost is not
the main concern.
• Server (Service Provider): The server maintains the data and handles the queries

of data queriers. The server is trusted with these services, but it is not trusted with the
integrity and authentication of the hosted data. Hence, each data owner digitally signs
her data before outsourcing it as described previously.

Once a data querier (i.e., clients who perform data queries) queries the server, the
server computes a constant size signature by aggregating the corresponding individual
signatures of database elements associated with this query. Recall that the server knows
these individual signatures, since the data owner provided all individual signatures to
the server at the offline phase. The server then performs necessary cryptographic op-
erations to ensure the immutability of this aggregate signature. Observe that the server
faithfully follows the immutability operations, since the immutability prevents external
parties to offer similar services free of charge.
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Fig. 1. Mykletun et al.’s Outsourced Database Model (ODB)

The query handling phase is performed online. The server is expected to handle
larger number of queries simultaneously with a minimum end-to-end delay. Therefore,
the cost of signature immutability operations are highly critical.
• Data Queriers (Clients): Queriers are heterogeneous entities, which may be

resource-constrained in terms bandwidth, battery and/or computation (e.g., a mobile
device or a PDA). A querier can make a query on the database elements belonging to
a single or multiple data owners. The former is called non-cross signer queries while
the latter is called cross signer queries. The data querier verifies the corresponding
aggregate signature of her query, along with cryptographic tokens transmitted for the
immutability.

Figure 1 summarizes the ODB model described above.

Data Model and Scope: We assume that the data is managed with a traditional rela-
tional database management system and the queries are formulated with SQL. Our work
handles SQL queries involving SELECT clauses, which return the selection of a set of
records or fields matching a given predicate. Our work does not address SQL queries
involving data aggregation that return a single value for a given query.

The granularity of data integrity and authentication may vary according to the appli-
cation (e.g., attribute level). One possible choice is to provide them at the tuple level
(i.e., sign each tuple individually), which offers a balance between the storage, trans-
mission and computation overheads introduced by the cryptographic scheme [3].

1.2 Problem Statement and Limitations of Existing Solutions

Ability to aggregate different signatures into a single signature is advantageous, but it
also allows any party to derive new aggregate signatures from the existing ones. For in-
stance, assume that the server provides signatures (σ1,l, σ1,k) on queries (m1, . . . ,ml)
and (m1, . . . ,mk), respectively, where 1 < k < l and the aggregation operation
is addition (e.g., [8]). Any querier can derive a valid signature on query elements
mk+1, . . . ,ml (that have not been queried before) by simply computing σk+1,l =
σ1,l − σ1,k.



182 A.A. Yavuz

)( cba

am1= Bob m2= access DB2 

m1= Alice
m2= Eve

m3= access DB1 
m4= restrict DB2 

m2= restrict DB2

b

c

m2= Bob
m1= Alice

m3= access DB1 
m4= access DB2 

m1= Eve

Fig. 2. An example of signature mutability in the content access control applications

This property has undesirable effects on many real-life applications. One example
is content access control mechanisms for outsourced databases. Assume that the data
owner requires the server to enforce an access control policy, in which each client can
access only certain parts of the database via an access token (i.e., a signature). A group
of clients can possess different access privileges from those owned by each client in
isolation. Figure 2 exemplifies how three colluding clients can derive a valid token (i.e.,
signature) with an access right beyond their actual privileges.

Another example is paid database services, in which the server acts as an autho-
rized re-distribution agent for the information contained in the outsourced database.
Assume that the server charges a fee for each music album queried (downloaded) over
the outsourced database. Signature mutability allows an unauthorized splitting and re-
distribution of authentic query replies. Colluding clients may gather various music al-
bums and their signatures, and combine and re-sell them according to their will (without
paying/obtaining any authorization) [7].

Mykletun et al. [7] introduce signature immutability techniques to address these
problems. Their RSA-based techniques prevent an adversary from deriving new sig-
natures by hiding the actual aggregate signature via an interactive Guillou-Quisquater
(GQ) [9] based protocol. This approach is interactive and therefore introduces high
communication overhead and end-to-end delay. Their non-interactive RSA variant uses
a signatures of knowledge method, which substantially increases the computational cost
and has large signature size. Their BLS signature method iBGLS [8] offers a small
signature size, but it is very computationally costly due to cryptographic pairing oper-
ations. Hence, none of these techniques are suitable for nowadays task-intensive and
heterogeneous outsourcing applications.

1.3 Our Contribution

To address these limitations, we develop novel cryptographic schemes called Practi-
cal Immutable Signature Bouquets (PISB), which is suitable for outsourced database
systems. Specifically, we developed a Condensed-RSA (C-RSA) and Sequential Ag-
gregate RSA (SA-RSA) based scheme called PISB -CSA-RSA and a generic scheme
called PISB -Generic. We summarize the desirable properties of our schemes below:

• Non-interactive Signature Immutability: PISB schemes do not require any multi-
round interaction among the server and queriers. Hence, they are much more com-
munication efficient than previous alternatives. For instance, our PISB -CSA-RSA
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Table 1. The client/server overhead of PISB and its counterparts for 10 items in a query (in ms)

- PISB-GenericPISB-CSA-RSA GQ-based [7] SKROOT [7]iBGLS [7]
Server Comp. 0.66 / 0.39 4.03 1.5 92.4 2.2
Client Comp. 224.97 0.46 1.57 92.77 245.7

Extra rounds 0 0
3 rounds ( each
3 passes)

0 0

(Est.) End-to-end 225.63 4.49 292 185.17 247.9
Signature size 60 byte 1 KB 9 KB 4 KB 20 byte

sk size 40 byte 2 KB 1 KB 5 KB 20 byte
pk size 80 byte 1 KB 1 KB 1 KB 40 byte

Aggregation TypeCross/non-cross Non-cross Non-cross Non-cross Cross
Provable Sec. Yes Yes No No No

Pre-computability Yes No No No No

• Analytical comparison, key/parameter sizes and measurement details are given in Section 6.
• The immutable signature size is the aggregate signature size plus the size of additional cryptographic tags transmitted
(e.g., protection signatures, values transmitted for multi-rounds).
• PISB -Generic is instantiated with BLS [8] as ASig (20 byte aggregate signature) and with ECDSA [10] as Sig (40
byte protection signature) for pre-computed parameters (0.36 ms) [11] or pre-computed tokens [12] (0.03 ms).
• End-to-end delay is the sum of client and server execution times plus the estimated communication delay introduced by
multi-rounds. Only GQ-based scheme requires multi-rounds, which substantially increase its end-to-end delay.

• Remark: PISB-CSA-RSA is significantly more efficient than all of its counterparts at the client side, which makes it

suitable for mobile or resource-constrained queriers. Its end-to-end delay is also 40 to 60 times lower than its alternatives.

PISB-Generic offers various performance trade-offs with its generic structure (e.g., only alternative with

pre-computability). This instantiation of PISB -Generic offers small signature/key sizes and high server efficiency

simultaneously. PISB-Generic and PISB-CSA-RSA are suitable for cross and non-cross signer models, respectively

(see Section 1.2). PISB schemes are also provable secure.

incurs only 1KB communication overhead, while GQ-based scheme in [3,7] requires
9KB. Moreover, the non-interactive nature of our schemes make them packet loss
tolerant, which is a desirable property for mobile and ad-hoc clients (queriers).
• High Computational Efficiency: PISB schemes are much more computationally ef-

ficient than their counterparts. PISB -CSA-RSA is the most client efficient scheme
among its counterparts, being a magnitude of time faster than SKROOT-based and
iBGLS schemes in [3,7]. Therefore, PISB -CSA-RSA is an ideal alternative for bat-
tery and/or computational limited clients (queriers) such as mobile and hand-held
devices. It is also plausibly efficient at the server side while achieving this client ef-
ficiency. PISB -Generic is the most server efficient scheme among its counterparts
due to its pre-computability property. This enables the server to responde large num-
ber queries in peak times without being bottlenecked.
• Small Signature Sizes: PISB -CSA-RSA is the only RSA-based scheme that can

compute a compact immutable aggregate signature, which makes it more commu-
nication efficient than its counterparts [3,7]. PISB -Generic has a much smaller sig-
nature size than RSA-based schemes and also has a comparable signature size with
iBGLS in [3, 7] (while being much more computationally efficient).
• Minimum End-to-end Delay: PISB schemes have a much smaller end-to-end delay

than all of their counterparts, which offers a better service quality.
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• Provable Security: Previous works (e.g., [3,7]) give only heuristic security arguments
regarding the signature immutability. Our work is the only one providing a formal
security model and proofs for the signature immutability.

Table 1 outlines the properties and compares PISB schemes with their counterparts.
The remainder of this paper is organized as follows. Section 2 provides definitions

used by our schemes. Section 3 defines our security model. Section 4 describes the
proposed schemes in detail. Section 5 provides the security analysis. Section 6 gives
the performance analysis and compares our schemes with their counterparts. Section 7
outlines related work and Section 8 concludes this paper.

2 Preliminaries

In this section, we give the preliminary definitions used by our schemes.

Definition 1. A signature scheme Sig is a tuple of three algorithms (Kg , Sign,Ver)
defined as follows:

- (sk , pk ) ← Sig.Kg(1κ): Given the security parameter 1κ, the key generation algo-
rithm returns a private/public key pair (sk , pk) as the output.

- s← Sig.Sign(sk ,m): The signing algorithm takes sk and a message m as the input.
It returns a signature s as the output.

- c ← Sig.Ver(pk ,m, s): The signature verification algorithm takes pk , m and s as
the input. It outputs a bit c, with c = 1 meaning valid and c = 0 meaning invalid.

The standard security notion for a signature scheme is Existential Unforgeability under
Chosen Message Attacks (EU -CMA) [13], which is defined below.

Definition 2. EU -CMA experiment for Sig is defined as follows:

- Setup. Challenger algorithm B runs the key generation algorithm as (sk , pk ) ←
Sig.Kg(1κ) and provides pk to the adversary A .

- Queries. Beginning from j = 1 and proceeding adaptively, A queries B on any
message mj of her choice up to qs messages in total. For each query j, B computes
sj ← Sig.Sign(sk ,mj) as the signing oracle ofA and returns sj to A .

- Forgery. Finally,A outputs a forgery (m∗, s∗) and wins the EU -CMA experiment, if
Sig.Ver(pk ,m∗, s∗) = 1 and m was not queried to B .

Sig is (t, qs, ε)-EU -CMA secure, if noA in time t making at most qs signature queries
has an advantage at least with probability ε in the above experiment.

An aggregate signature scheme (e.g., [8]) aggregates multiple signatures of different
signers into a single compact signature. Hence, it can be used for cross querier
applications.

Definition 3. An aggregate signature scheme ASig is a tuple of four algorithms (Kg ,
Sign,Agg,Ver) defined as follows:
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- (
−→
sk,
−→
pk)← ASig.Kg(1κ): Given the security parameter 1κ and a set of signers U =

{1, . . . , u}, the aggregate key generation algorithm generates a private/public key
pair (sk i, pk i) for i = 1, . . . , u, as in Definition 1 key generation algorithm. The ag-

gregate key generation algorithm returns a private/public key pair
−→
sk=(sk1, . . . , sku)

and
−→
pk = (pk1, . . . , pku) as the output.

- si ← ASig.Sign(sk i,mi): As in Definition 1 signature generation algorithm.
- σ1,u ← ASig.Agg({pk i,mi, si}ui=1): The aggregation algorithm takes {pk i,mi,
si}ui=1 as the input. It combines individual signatures si, 1 ≤ i ≤ u and returns
an aggregate signature σ as the output.

- c← ASig.Ver({pk i,mi}ui=1, σ1,u): The aggregate verification algorithm takes {pk i,
mi}ui=1 and σ1,u as the input. It outputs a bit c, with c = 1 meaning valid and c = 0
meaning invalid.

The EU -CMA experiment for ASig is a straightforward extension of Definition 2, in
which A is required to produce a forgery under a public key pk ∈ −→pk that is not under
his control during the experiment (see [8] for details).

Condensed-RSA (i.e., C -RSA) [3,7] aggregatesRSA signatures computed under the
same private key. Hence, it is used for non-cross querier (signer) applications.

Definition 4. C -RSA is a tuple of three algorithms (Kg, Sig ,Ver) defined as follows:

- (sk , pk ) ← C -RSA.Kg(1κ): Given the security parameter 1κ, the key generation
algorithm generates a RSA private/public key pair. That is, it randomly generates
two large primes (p, q) and computes n = p · q. The public and secret exponents
(e, d) ∈ Z∗

φ(n) satisfies e · d ≡ 1 mod φ(n), where φ(n) = (p − 1)(q − 1). The key
generation algorithm returns sk ← (n, d) and pk ← (n, e) as the output.

- σ ← C -RSA.Sig(sk ,−→m): Given sk and messages −→m = (m1, . . . ,ml), the sign-
ing algorithm returns a signature σ ← ∏l

j=1 sj mod n as the output, where sj ←
[H(mj)]

d mod n for j = 1, . . . , l. H is a full domain hash function (e.g., [14]) de-
fined as H : {0, 1}∗ → Zn.

- c ← C -RSA.Ver(pk ,−→m,σ): Given pk = (n, e), −→m and σ, if σe =
∏l

j=1 H(mj)
mod n then the signature verification algorithm returns bit c = 1 else c = 0.

A sequential aggregate signature (e.g., [15]) requires that the signature generation and
verification are performed in a specific order. The signature generation and aggregation
operations are unified.

In PISB -CSA-RSA, we use a (simplified) single signer (and aggregator) instan-
tiation of SA-RSA [15] (also see Remark 1 in Section 4). However, for the sake of
completeness, we give the full description of SA-RSA for multiple-signers below.

Definition 5. Sequential Aggregate RSA (denoted as SA-RSA) is a tuple of three algo-
rithms (Kg, ASign,Ver) defined as follows:

- (
−→
sk,
−→
pk) ← SA-RSA.Kg(1κ): Given the security parameter 1κ and a set of signers

U = {1, . . . , u}, the key generation algorithm generates a RSA private/public key
pair sk i ← (ni, di) and pk i ← (ni, ei), ensuring that 2k−1(1 + (i − 1)/u) ≤ ni <
2k−1(1 + i/u), where k = |ni| for i = 1, . . . , u. It returns a private/public key pair−→
sk ← {ni, di}ui=1 and

−→
pk ← {ni, ei}ui=1 as the output.
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- σ1,u ← SA-RSA.Sig(sku, {mi}u−1
i=1 ,mu, {pk i}u−1

i=1 , pku, σ1,u−1): The signer u re-
ceives aggregate signatureσ1,u−1 on messages {mi}u−1

i=1 under public keys {pk i}u−1
i=1 .

The signer u first verifies σ1,u−1 with the verification algorithm SA-RSA.Ver . If it

succeeds, the signer u computes the signature on −→m = (m1, . . . ,mu) under
−→
pk as

hu = H(−→m||−→pk) and yu = hu + σ1,u−1. The sequential aggregate signature outputs
the signature σ1,u ← ydu

u mod nu.

- c←SA-RSA.Ver(−→m,
−→
pk, σ1,u): Given σ1,u on−→m under public keys

−→
pk={ni, ei}ui=1,

first check 0 ≤ σ1,u ≤ nu. If gcd(σ1,u, nu) = 1 then yu ← σeu
1,u mod nu else

yu ← σ1,u. Compute hu ← H(−→m||−→pk) and σ1,u−1 ← (yu − hu) mod nu. Ver-
ify signatures recursively as described until the base case u = 1, in which check
(σ1,1 − h1) mod n1 = 0 where h1 ← (m1||pk1). If it holds return c = 1 else c = 0.

3 Security Model

Our security model reflects how PISB system model works. That is, our security model
formally captures the immutability of aggregate signatures for the EU -CMA experi-
ment, which we call Immutable-EU -CMA (I -EU -CMA) experiment.

Definition 6. I -EU -CMA experiment for PISB is defined as follows:

- Setup. Challenger algorithmB runs (SK ,PK )← PISB .Kg(1κ) and providesPK to
the adversary A .

- Queries. A queries B on any message −→mj = (mj,1, . . . ,mj,l) of her choice for
j = 1, . . . , qs. B replies each query j with a signature γj computed under PK .

- Forgery.A outputs a forgery (m∗, γ∗) and wins the EU -CMA experiment, if

(i) PISB .Ver(PK ,m∗, γ∗) = 1,

(ii) m∗ �⊆ {−→mj}qsj=1 or ∃I ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I
−→mk

That is, the forgery is valid and m∗ has not been queried or it is a subset and/or any
combination of previously queried data items (−→m1, . . . ,

−→mqs).

PISB is (t, qs, ε)-I -EU -CMA secure, if no A in time t making at most qs signature
queries has an advantage at least with probability ε in the above experiment.

4 The Proposed Schemes

In this section, we describe our proposed schemes. For each PISB scheme, we first give
the intuition behind the scheme followed by its detailed description.

PISB-CSA-RSA Scheme: An effective way to provide the signature immutability is to
compute a protection signature over all data items associated with the query. That is, the
server computes a signature on all data items in the query with his own private key. He
then aggregates the protection signature over the aggregate signature computed from
data owner’s signatures. Breaking the immutability of this final aggregate signature is
as difficult as forging the server’s protection signature [3, 7].
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Despite its simplicity, this method is not applicable to aggregate signatures such as
C -RSA, in which only the signatures computed under the same public key can be ag-
gregated (also called as non-cross signer aggregate signature). Recall that C -RSA can-
not aggregate signatures belonging to different signers, since an RSA modulus n can
not be safely shared among multiple signers (this leads to the factorization of n, expos-
ing the private keys [16]). Hence, despite C -RSA is an efficient scheme, its immutable
variants (e.g., [3, 7]) are inefficient as discussed in Section 1.2.

It is highly desirable to construct a scheme that can compute an aggregate RSA
signature involving both a data owner and the server (without exposing their private
keys via the factorization of modulo). Our main observation is that, this goal can be
achieved by levering the sequential aggregate signatures from trapdoor permutations
(e.g., SA-RSA [15]) together with C -RSA. They allow distinct signers to sequentially
compute an aggregate signature under distinct public keys (Definition 5).

In PISB -CSA-RSA, the data owner computes RSA signatures s1, . . . , sl on m1, . . .
,ml with her keys (n, d). During the query phase, the server computes a C -RSA sig-
nature σ′ by aggregating RSA signatures. The server then uses SA-RSA to compute an
immutable aggregate signature γ on m1, . . . ,ml with his keys (n, d) by aggregating
it on σ′. The public key of the system is (〈n, e〉, 〈n, e〉). The verification order of the
client is with SA-RSA under (n, e) for γ and then with C -RSA under (n, e) for σ′.

One may observe that breaking the immutability of PISB -CSA-RSA is as difficult
as breaking RSA. We give the formal security analysis of PISB -CSA-RSA in Section
5 (Theorem 2).

The PISB -CSA-RSA algorithms are defined below.

1) (SK ,PK )← PISB -CSA-RSA.Kg(1κ): The data owner executes (sk , pk) ←
C -RSA.Kg(1k), where sk = (n, d) and pk = (n, e). The server generates a RSA pri-
vate/public key pair sk ← (n, d) and pk ← (n , e) such that n < n . The system
private/public key are SK ← (sk , sk) and PK ← (pk , pk).

2)
−→
V ← PISB -CSA-RSA.Init(−→m, sk): The data owner computes an individual sig-

nature sj ← [H(mj)]
d mod n for j = 1, . . . , l, where −→m = (m1, . . . ,ml). The data

owner sets the message-signature pairs as
−→
V ← (−→m,

−→
S ) and provide

−→
V to the server,

where
−→
S = (s1, . . . , sl).

3) γ ← PISB -CSA-RSA.Sign(sk ,−→m,
−→
V ): The server receives a non-cross-signer

query −→m = (m1, . . . ,ml). It fetches the corresponding signatures (s1, . . . , sl) on
−→m from

−→
V and computes σ′ ← ∏l

j=1 sj mod n. It then computes h ← H(−→m||pk ),
y ← (h+ σ′) mod n and γ ← yd mod n .

4) c← PISB -CSA-RSA.Ver(PK ,−→m, γ): Given γ, the verifier computes y′ ←
γe mod n and σ′ ← (y′ − h′) mod n , where h′ ← H(−→m||pk ). If
C -RSA.Ver(pk ,−→m,σ′) = 1 then return c = 1 else c = 0.

Remark 1. In PISB -CSA-RSA, we use a simplified SA-RSA variant [15] with the
following properties: (i) SA-RSA is used in a single signer setting (the server as the
signer and aggregator). (ii) The public key correctness controls (e.g., range check and
gcd control) are not required, since the public keys are already certified in our system
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model. That is, ni belongs to a legitimate signer and gcd(ei, φ(ni)) = 1 holds. This
retains the computational efficiency of traditional small RSA exponents.

PISB-Generic Scheme: Our generic scheme relies on a very simple observation: It is
possible to guarantee the immutability of an aggregate signature by simply computing
a standard digital signature on it. That is, the server can simply sign the aggregate
signature with his private key and define the immutable signature as a signature pair.

PISB -Generic slightly increases the signature size, since a secondary signature is
transmitted along with the aggregate signature. However, this is actually more com-
munication efficient than GQ-based and SKROOT-based methods in [3, 7]. That is, a
secondary standard signature (e.g., ECDSA [10] with 40 bytes) is much smaller than
cryptographic values transmitted (e.g., up to 9 KB) to achieve the immutability in [3,7].

PISB -Generic also allows the server to choose any signature scheme to provide the
immutability. For instance, the server may use ECDSA tokens [12] or offline/online
signatures [17], which enable very fast response times in demand peaks via pre-
computability. This flexibility makes PISB -Generic more efficient at the server side
than existing alternatives (see Table 1). However, note that, iBGLS has slightly smaller
signature size (i.e., 20 byte) than that of PISB -Generic (with the expense of a much
higher server computational overhead).

The PISB -Generic algorithms are defined below.

1) (SK ,PK )← PISB -Generic.Kg(1κ): Execute (
−→
sk,
−→
pk)← ASig.Kg(1κ) for data

owners U = {1, . . . , u}. Execute (sk , pk) ← Sig.Kg(1κ) for the server. The system

private and public keys are SK = (
−→
sk, sk) and PK = (

−→
pk, pk), respectively.

2)
−→
V ← PISB -Generic.Init(

−→
M,
−→
sk,PK ): Let

−→
M = {−→m1, . . . ,

−→mu} be database
elements to be outsourced, where each −→mi = (mi,1, . . . ,mi,l) belongs to the data
owner 1 ≤ i ≤ u. Each data owner i computes si,j ← ASig.Sign(sk i,mi,j) for

i = 1, . . . , u and j = 1, . . . , l. Set
−→
V ← (

−→
M,
−→
S ,PK ) and provide

−→
V to the server,

where
−→
S = {si,j}u,li=1,j=1.

3) γ ← PISB -Generic.Sign(sk ,−→m,
−→
V ): The server receives a cross-signer query

−→m = {m1, . . . ,mk} on a subset of k data owners U ∈ U. Fetch the correspond-

ing public key and signatures on −→m from
−→
V as V ← {pki,mi,j , si,j}i∈U,∃j:mi,j∈−→

M

and compute σ ← ASig.Agg(V ). Also compute s′ ← Sig.Sign(sk , σ) and set
γ ← (σ, s′).
4) c← PISB -Generic.Ver(PK ,−→m, γ): Given γ = (σ, s′) and pk ← {pk i}i∈U , if

Sig.Ver(pk , s′, γ) = 1 and ASig.Ver(
−→
pk,−→m,σ) = 1 hold return c = 1, else c = 0.

5 Security Analysis

We prove that PISB schemes are I -EU -CMA secure in Theorem 1 and Theorem 2.
We ignore terms that are negligible in terms of κ.
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Theorem 1. PISB -Generic is (t, qs, ε)-I -EU -CMA secure, if
ASig is (t′, qs, ε)-EU -CMA secure and Sig is (t′, qs, ε)-EU -CMA secure, where
t′ = O(t) + qs · (Op+Op′) and (Op,Op′) denote the cost of signature generation for
ASig and Sig , respectively.

Proof: Suppose algorithmA breaks (t, qs, ε)-I -EU -CMA secure PISB -Generic. We
then construct a simulator B , which breaks (t′, qs, ε)-EU -CMA secure ASig or (t′, qs,
ε)-EU -CMA secure Sig by using A as subroutine.

We set the EU -CMA experiments for ASig and Sig . B is given a ASig public
key
−→
pk and a Sig public key pk as the input, where (

−→
sk,
−→
pk) ← ASig.Kg(1κ) and

(sk , pk )← Sig.Kg(1κ). B is given an access to ASig.Sign and Sig.Sign oracles under−→
sk and sk up to qs signature queries on both, respectively (as in Definition 2).

We then set the I -EU -CMA experiment for PISB -Generic, in which B executes
A as follows:

- Setup: Given (
−→
pk, pk), B sets the PISB -Generic public key PK ← (

−→
pk, pk ) as in

PISB -Generic.Kg algorithm. By Definition 6, B gives PK to A and also permits
A to make qs PISB -Generic signature queries.

- Queries: A queries B on messages −→mj = (mj,1, . . . ,mj,u) of her choice for j =
1, . . . , qs. B handles these queries as follows:

(a) Given A ’s j-th query −→mj , B queries ASig.Sign oracle on −→mj under
−→
pk. The

ASig.Sign oracle returns sj,i ← ASig.Sign(sk i,mj,i) for i = 1, . . . , u. B then

computes the aggregate signature as σj ← ASig.Agg(
−→
pk,−→mj , sj,1, . . . , sj,u).

This step is identical to PISB -Generic.Init algorithm, where
−→
M in this experi-

ment is comprised of u vectors each with qs data items.

(b) B queries Sig.Sign oracle on σj under pk . The Sig.Sign oracle returns s′j ←
Sig.Sign(sk , σj) (as in PISB -Generic.Sign algorithm, executed by the server).
B repliesA with γj = (σj , s

′
j).

- Forgery of A :A outputs a forgery (m∗, β∗ = 〈σ∗, s′∗〉) and wins the I -EU -CMA ex-
periment if

(i) PISB -Generic.Ver(PK ,m∗, β∗) = 1,

(ii) m∗ �⊆ {−→m1, . . . ,
−→mqs} or ∃I ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I

−→mk

If A loses in the I -EU -CMA experiment then B also loses in the EU -CMA experi-
ments forASig and Sig , and thereforeB aborts. Otherwise,B proceeds for two possible
forgeries as follows:

a) If m∗ �⊆ {−→m1, . . . ,
−→mqs} then B returns the forgery (m∗, σ∗) against ASig , which

is non-trivial since B did not ask m∗ to ASig.Sign . This forgery is valid since
PISB-Generic.Ver(PK ,m∗, β∗) = 1 implies ASig.Ver(

−→
pk,m∗, σ∗) = 1.

b) If ∃I ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I
−→mk then B returns the forgery (σ∗, s′∗) against

Sig , which is non-trivial since B did not ask σ∗ to Sig.Sign . This forgery is valid
since PISB -Generic.Ver(PK ,m∗, β∗) = 1 implies Sig.Ver(pk , σ∗, s′∗) = 1.
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The execution time of B is that ofA plus the time required to handleA ’s queries. That
is, for each query of A , B requests one ASig and Sig signature, whose total costs for
handling qs queries is qs · (Op+Op′). Hence, t′ = O(t) + qs · (Op+Op′).
A does not abort the during the query phase, as the simulation of B is perfectly

indistinguishable. That is, the real and simulated views of A are identical, and each
value in these views are computed identically as described during the experiment. The
probability thatA wins the experiment without querying B is negligible in terms of κ.
Therefore, B wins with the probability ε that A wins. �
Theorem 2. PISB -CSA-RSA is (t, qs, ε)-I -EU -CMA secure if RSA signature
scheme is (t′, (2 · l)qs, ε)-EU -CMA secure, where t′ = O(t) + 2(l · qs)Exp and
Exp and l denote modular exponentiation and number of messages in a single
PISB -CSA-RSA query, respectively.

Proof: Suppose algorithm A breaks (t, qs, ε)-I -EU -CMA secure PISB -CSA-RSA.
We then construct a simulator B that breaks (t′, (2 · l)qs, ε)-EU -CMA secure RSA by
using A as subroutine.

We set two separate EU -CMA experiments for B , in which it is given RSA public
keys pk = (n, e) and pk = (n, e) and provided signature oracles under their corre-
sponding private keys sk = (n, d) (i.e., oracle O1) and sk = (n , d) (i.e., oracle O2),
respectively.B will simulateA ’s signature queries via (O1,O2). B then executesA for
the I -EU -CMA experiment for PISB -CSA-RSA as follows:

- Setup: Given (pk , pk), B sets the PISB -CSA-RSA public key PK ← (pk , pk) as in
PISB -CSA-RSA.Kg algorithm. By Definition 6, B gives PK toA and allowsA to
ask qs PISB -CSA-RSA signatures under PK .

- Queries: A queries B on messages −→mj = (m1, . . . ,ml) of her choice for j =
1, . . . , qs. B handles these queries as follows:
(a) Given A ’s j-th query −→mj , B queries O1 on each mi and obtains corresponding

si under pk for i = 1, . . . , l (as in PISB-CSA-RSA.Init , data owner).
(b) B computes σ′ ← ∏l

i=1 si mod n, h← H(−→mj ||pk ) and y ← h+ σ′. B queries
O2 on y under pk and obtains γ (as in PISB -CSA-RSA.Sign, executed by the
server).

- Forgery of A :A outputs a forgery (m∗, γ∗) and wins the I -EU -CMA experiment if
(i) PISB -CSA-RSA.Ver(PK ,m∗, γ∗) = 1,

(ii) m∗ �⊆ {−→m1, . . . ,
−→mqs} or ∃I ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I

−→mk

If A loses in the I -EU -CMA experiment then B also loses in the EU -CMA exper-
iments for RSA against O1 and O2, and therefore B aborts. Otherwise, B computes
y∗ ← (γ∗)e mod n and σ∗ ← y∗ −H(m∗||pk ) and continues as follows:

a) If m∗ �⊆ {−→m1, . . . ,
−→mqs} then B returns the forgery (m∗, s∗) against O1, where

s∗ is computed from σ∗ by removing the corresponding individual signatures of
data items in m∗ that have been queried before (if m∗ is not a vector then use s∗

itself). This forgery is non-trivial since B did not ask m∗ to O1 during the exper-
iment. B also returns the forgery (y∗, γ∗) against O2, which is non-trivial since
B did not ask y∗ to O2 during the experiment. Both forgeries are valid since
PISB-CSA-RSA.Ver(PK ,m∗, γ∗) = 1 implies m∗ and y∗ are valid under pk
and pk , respectively.
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b) If ∃I ⊆ {1, . . . , qs} : m∗ ⊆ ||k∈I
−→mk holds then B returns the forgery (σ∗, γ∗)

againstO2. This forgery is valid and non-trivial as discussed the above.

The execution time and probability analysis are similar to Theorem 1 (i.e., the simula-
tion is perfectly indistinguishable) and therefore are not repeated here. �

6 Performance Analysis and Comparison

In this section, we present the performance analysis of PISB schemes and compare
them with the existing alternatives. Table 1 (see Section 1) and Table 2 summarize our
performance analysis and comparison.

Computational Overhead: In PISB -Generic, the server requires a Sig.Sign plus
the aggregation of l individual ASig signatures. The client requires a Sig.Ver plus
ASig.Ver for l data items. In PISB -CSA-RSA, the server requires a C -RSA.Sig com-
putation plus l modular multiplications. The client requires a single RSA.Ver plus
C -RSA.Ver for l data items.

The PISB -CSA-RSA is the most client efficient scheme among all of its counter-
parts, since it only requires RSA and C -RSA signature verifications with a small expo-
nent (e.g., e = 3). Therefore, it is an ideal choice for battery or computational limited
queriers such as mobile devices. Its server side overhead is also plausible and smaller
than SKROOT-based scheme. The end-to-end delay of PISB -CSA-RSA (l = 10) is
50, 65, 41, and 55 times lower than that of PISB -Generic, GQ-based, SKROOT-based
and iBGLS schemes, respectively.

The PISB -Generic can be instantiated with various signature schemes, which al-
lows different performance trade-offs. BGLS and ECDSA combination achieves both
small signature size and high server efficiency, which is a desirable configuration for
many applications. Using ECDSA with pre-computation offers the smallest server re-
sponse time among all of its counterparts. However, BGLS increases the signature ver-
ification cost, incurring high overhead to the resource-constrained verifiers. Another
alternative is to combine C -RSA and ECDSA, which achieves both very low server
and client computational overheads with the cost of a slightly larger signature size.
ECDSA can be replaced with an online/offline [17] or one-time signature [18], which
offers even faster server response with the expense of a very large signature size.

In both PISB and Mykletun et. al. schemes [3, 7], the initialization phases are per-
formed offline (before the deployment) by the data owners, whose costs are similar for
all schemes and therefore are omitted in this comparison. We focus on the client/server
overheads, since they are the online (real-time) overheads and the most important per-
formance metrics for our envisioned applications.

Communication and Storage Overhead: PISB schemes do not require any multi-
round communication to achieve the immutability. Therefore, their signature overhead
is the aggregate signature plus the protection signature in PISB -Generic, and only the
aggregate signature itself in PISB -CSA-RSA. The private and public key sizes are the
sum of that of their base signature schemes.

PISB -Generic with BGLS and ECDSA has the smallest key and signature sizes
among its counterparts with the exception of iBGLS (which has a much larger
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Table 2. The client and server overhead of PISB and its counterparts for l data items (analytical)

- Client Comp. Server Comp. Sig. SK PK
PISB -Generic Sig .Ver + ASig .Ver l Sig .Sign + ASig .Agg l |σ| |sk | |pk |
PISB-CSA-RSA 3Mul + l(H +Mul) Exp

|n|
|n| + l ·Mul |n| 2|n| 2|n|

GQ-based 3Exp
|b|
|n| + l(H +Mul) 3Exp

|b|
|n| + l ·Mul 9|n| |b|+ |n| |b|+ |n|

SKROOT-based 4Exp
|n|
|2n| + l(H +Mul) 4Exp

|n|
|2n| + l ·Mul 4|n| 5|n| |n|

iBGLS (l + 1)(BM +H) EMul + l · EAdd |q′| |q′| |p′|+ |q′|

• Notation: Exp
|x|
|y| denotes a modular exponentiation with a modulus and exponent sizes |y| and |x|, respectively. Mul

denotes modular multiplication under modulus n. BM , EAdd, and EMul denote ECC bilinear map, scalar addition and
scalar multiplication over modulus q′ , respectively. ASig.Ver l denotes the aggregate signature verification for l items
(the notation applies to ASig.Agg). We omit constant number of low-cost operations if there is an expensive operation
(e.g., a single H or Mul is omitted if there is an Exp). We use double-point scalar multiplication for ECDSA verifications
(1.3 · Emul instead of 2 · EMul). |σ|, |sk | and |pk | denote the bit lengths of signature, private key and public key for
Sig , respectively (Sig is selected as ECDSA with |q′| in Table 1).
• Parameters: Given κ = 80, we select |n| = 1024, |H| = 160, |q′| = 160, |p′| = 512, |b| = 30.
• Multi-round schemes: GQ-based scheme needs three communication rounds (each three passes) to achieve κ ≥ 80, in
which each pass needs to transmit an element from Z∗

N .

• Measurements: Table 1 (see Section 1.3) shows the estimated execution times for l = 10 data items (query elements).

Estimated execution times are measured on a computer with an Intel(R) Core(TM) i7 Q720 at 1.60GHz CPU and 2GB

RAM running Ubuntu 10.10. We used MIRACL [11] library.

end-to-end delay and client computation overhead). PISB-CSA-RSA also has much
smaller signature and key sizes than that of GQ-based and SKROOT-based schemes.
Despite GQ-based scheme is client and server computationally efficient, it is not practi-
cal due to its multi-round communication requirement (introduces a substantial commu-
nication delay as shown in Table 1, Section 1). Note that multi-round communication is
undesirable for wireless and low bandwidth applications due to the packet loss potential.

Overall, our analysis indicates that PISB schemes are much more efficient and prac-
tical than Mykletun et. al. immutable signatures for outsourced database systems.

7 Related Work

Our schemes rely on aggregate signatures as the building block. Aggregate signatures
aggregate n individual signatures associated with n different users (or data items) into a
single, compact signature. The first aggregate signature scheme was proposed in [8],
and then several new schemes achieving more advanced properties were developed
(e.g., sequentiality [19], ID-based for low storage overhead [20]). We discussed ag-
gregate, sequential aggregate [15, 21] and condensed signatures [3, 7] in Section 2.

Mykletun et. al. proposed the first immutable aggregate signatures [3,7], which have
been extensively compared with our schemes in Section 6. Immutable signatures serve
as a cryptographic tool for various data outsourcing applications such as database-as-
a-service [22] and data protection methods (e.g., [23, 24]). They are also used with
other cryptographic primitives such as forward-secure signatures to obtain forward-
secure and aggregate logging systems (e.g., [25–27]). Immutability techniques used in
these schemes require linear overhead and therefore are not suitable for our envisioned
applications.
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Note that our work focuses on the authentication and integrity services. There are
extensive studies on the data privacy for outsourced database systems (e.g., [28, 29]),
which are complementary to our work.

8 Conclusion

In this paper, we developed new cryptographic schemes called PISB , which provide
practical immutable signatures for outsourced databases. PISB -CSA-RSA provides
the signature immutability with a very low verifier computational overhead, which is
ideal for battery/computation limited queriers (e.g., mobile devices). It also offers a
very low end-to-end delay, which is desirable for task-intensive applications by in-
creasing the service quality. PISB -Generic offers various options such as signature
pre-computability with its generic construction, which enables a quick server response
during query peak times. Both PISB schemes are non-interactive and have small sig-
nature sizes. We demonstrate that PISB schemes are much more efficient than pre-
vious immutable signatures. Hence, PISB schemes are ideal choices for providing
immutability, authentication and integrity services for outsourced database systems.
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Abstract. In order to perform a join in a deterministically, adjustably
encrypted database one has to re-encrypt at least one column. The prob-
lem is to select that column that will result in the minimum number of
re-encryptions even under an unknown schedule of joins. Naive strategies
may perform too many or even infinitely many re-encryptions. We pro-
vide two strategies that allow for a much better performance. In partic-
ular the asymptotic behavior is O(n3/2) resp. O(n log n) re-encryptions
for n columns. We show that there can be no algorithm better than
O(n log n). We further extend our result to element-wise re-encryptions
and show experimentally that our algorithm results in the optimal cost
in 41% of the cases.

Keywords: Encrypted Database, Proxy Re-encryption, Adjustable Join.

1 Introduction

Recently, encrypted databases [2,7,9] that provide the client with additional
protection in the cloud or database-as-a-service setting have emerged. In these
databases all data are encrypted at the client – where also the keys are exclusively
stored – and queries are performed over encrypted data. In order to perform
a selection, e.g. SELECT x FROM y WHERE z = 1, the columns for selection (z
in the example) needs to be encrypted using deterministic encryption, i.e., a
plaintext always enciphers to the same ciphertext. In order to perform a join,
e.g. SELECT a.b, c.d FROM a, c WHERE a.e = c.f, the columns for the join
(e and f in the example) need to be encrypted using the same key. This is
achieved using an operation called proxy re-encryption (PRE) [3]. In PRE a
proxy translates a ciphertext under one key KA to a ciphertext under another
key KB without knowing either of the two keys.

The encrypted database performs this PRE when required, i.e. when it has
received a query performing a join over two previously unjoined columns. The
client then issues a PRE key to the databases which re-encrypts at least one
column, such that both columns are encrypted under the same key. The (equi-)
join operator can then operate using the same algorithm as on an unencrypted
database.

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 195–210, 2013.
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The reason for dynamically adjusting the database encryption to the queries
is that this PRE reveals additional information to an attacker observing the
database. He now obtains additional ciphertexts he can use in cryptanalysis
of the keys. Deterministic encryption is only provably secure in high-entropy
domains [1], such that these additional ciphertexts may be of significant help.

When the database issues the PRE key, it has to choose a column which to
re-encrypt; in the example either e or f. Furthermore, it has to make this choice
under an unknown schedule of future joins. Naive approaches may even lead to
an infinite number of re-encryptions.

In this paper we present a re-encryption column selection algorithm that re-
sults in at most O(n3/2) re-encryptions for n columns under any schedule of
join operations. Furthermore we give a second algorithm that occasionally leads
to re-encryption of both columns to be joined, but which results in a better
bound of at most O(n logn) re-encryptions (where, of course, the PRE of two
columns counts as two PREs). We show that this is the best possible bound we
can achieve under the assumption of an a priori unknown schedule.

The remainder of the paper is structured as follows. We review related work
and background on encrypted databases in Section 2. Section 3 gives an introduc-
tion to the problem using the naive approaches. Our algorithms including proofs
of bounds on the number of re-encryptions are shown in Section 4 . We show
our experimental evaluation in Section 5. Section 6 summarizes our findings.

2 Related Work

The design goal of encrypted databases in the database-as-a-service setting is to
move the encryption layer above the query processing layer. All query process
operators are supposed to work on encrypted data. This ensures that (almost)
any query can be processed on the encrypted data.

The first such database was introduced in [7]. It provided special operators
for many queries and it was necessary to post-process and filter many queries.
This was improved by [2] where the database operators remain unchanged. This
enables using existing, commercial database systems for encryption in the cloud.
Nevertheless, it requires the use of special encryption schemes such as order-
preserving encryption [4].

In [2] the encryption was replaced by using the identifiers in the data dictio-
nary and leaving the dictionary at the client. This requires even less modification
to the database and is as secure as order-preserving encryption. Nevertheless, it
does not allow aggregation.

Order-preserving [4] or even deterministic encryption is commonly not consid-
ered very secure. It is therefore advisable to encrypt only the columns necessary
for performing the queries using these encryption schemes. Yet, these columns
may not be known in advance and the database must adjust its encryption state
to the queries performed.



Optimal Re-encryption Strategy for Joins in Encrypted Databases 197

In order to adjust the encryption to the queries on the fly, [9] proposed the use
of onion encryption. While it is possible to choose an optimally secure encryption,
if all queries are known upfront, it is difficult to do so, if any queries are processed
on the fly. Therefore each data item is encrypted using onion encryption and
decrypted to the corresponding onion layer on the fly. Our encryption onion is
composed of the following layers:

– L3 – Randomized Encryption: IND-CPA secure encryption allowing only
retrieval using AES encryption in CBC mode.

– L2 – Deterministic Encryption: Allows processing of equality comparisons.
In deterministic encryption one plaintext always enciphers to the same ci-
phertext.

– L1 – Order-Preserving Encryption: Allows processing of greater-than com-
parisons using the encryption scheme of [4].

– L0 – Data: The data to be encrypted.

The layers of the onion represent a strict order, i.e. the lower the layer the
less secure, but also the more operations it supports. It is important that each
lower layer supports all operations that the upper layer supports, such that a
decryption never needs to be undone.

The client analyzes each query before executing it. It determines the necessary
encryption layer in the onion encryption in the database. Then, before sending
the query, the client performs the decryption of the column to that onion layer.
No encryption from a lower to a higher encryption layer is ever performed. As
such, the level (layer) of encryption in the database is dynamically adjusted to
the queries processed.

In order to perform an equi-join operation data is decrypted to the determin-
istic layer L2, but different columns may still be encrypted using different keys.
In this case proxy re-encryption (PRE) [3] can be performed. In PRE a proxy
translates a ciphertext encrypted under one key into a ciphertext under another
key without decrypting it first, i.e. the proxy does not learn the plaintext or any
of the two keys. The proxy does, however, learn a relation between the two keys,
such that the security against cryptanalysis is reduced to the secrecy of one key.

We use a proxy re-encryptable, deterministic encryption scheme. An example
is the symmetric Pohlig-Hellman encryption [8].

Let p be the prime order of a group Zp. Let m be an element of Zp representing
a message to encipher. Let ord(p) = p−1 be the order of the multiplicative group
Z∗
p of invertible elements in Zp. We uniformly choose an element e of Zord(p),

such that gcd(e, ord(p)) = 1. We encrypt m to the ciphertext c as

c = me mod p

We decrypt the ciphertext c as

m = ce
−1 mod ord(p) mod p

The element e is the secret key. Let two database columns A and B have two
different keys eA and eB, respectively, but both encrypted at the deterministic
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layer L2. Furthermore, assume we have chosen to re-encrypt column A to the
key of columns B. We then compute the PRE key k as

k = e−1
A eB mod ord(p)

The database can now perform the proxy re-encryption operation. Each cipher-
text c of column A is re-encrypted to a ciphertext c′ using the PRE key k as

c′ = ck = meAk = meAe−1
A eB mod ord(p) = meB mod p

In [9] the authors suggest to use this encryption scheme, but on elliptic curves.
Unfortunately, their encryption scheme is not decryptable, since they use gm in-
stead of m. This may require additional storage on the database. Old-fashioned
Pohlig-Hellman encryption over multi-precision integers is decryptable. The au-
thors also provide a cryptanalysis of their scheme in [10] under an adjustable
join attack. This extends to Pohlig-Hellman encryption.

3 Naive Approaches

Let there be a database with n columns A, B, C and so forth. Initially each
column is deterministically encrypted under its own key. We then perform a
number of queries on the database, possibly involving join operations. We write

Join(A, B)
Join(B, C)

for first joining columns and A and B and then columns B and C. Joins with
k ≥ 2 columns can be simulated by joining k − 1 pairs. However, the order in
which the pairs are chosen is not arbitrary. We will give more details on how to
do this efficiently in section 4.8. In order to perform a join operation, at least
one column needs to be re-encrypted. We write

Join(A, B): A← B

if column A gets re-encrypted to the key of column B.
The order of the two columns in the join operation is determined by the

query string. Therefore the database connector has to choose the right column
to re-encrypt.

We consider the effect of a few simple, straight-forward strategies. This should
highlight that such simple strategies – while plenty – do not result in the best
performance. The first strategy is to always use the first column in the query
string. Assume the following schedule

Join(A, B): A← B
Join(A, C): A← C
Join(A, B): A← B
Join(A, C): A← C

...
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Clearly, this may lead to infinitely many re-encryptions and is therefore inadvis-
able. There is a maximum number of re-encryptions for any schedule and ideally
this should be achieved.

Next, consider a total order of columns, e.g. lexicographically. We always re-
encrypt the lower to the upper. Now, assume the following schedule

Join(A, B): A← B
Join(B, C): B ← C
Join(A, B): A← C
Join(C, D): C ← D
Join(B, C): B ← D
Join(A, B): A← D

...

This leads to n(n−1)
2 , i.e. O(n2) re-encryptions. Clearly, this is sub-optimal, since

the same schedule can be completed with n− 1 PREs in the following way

Join(A, B): A← B
Join(B, C): C ← B
Join(A, B)
Join(C, D): D ← B
Join(B, C)
Join(A, B)

...

We follow this idea in the formal definition of our algorithms in the next section.

4 Algorithms

4.1 Data Structures

In our algorithms we store two types of objects: columns and keys. For the sake
of exposition, we store these objects as database table rows, but it could as well
be Java objects or C/C++ structures. Storing them in database tables enables
to be shared between multiple clients of the encrypted database and ensures
persistence between different runs of the application of one client.
In the table Keys we store

– KeyId: An unique identifier for the key. It is the primary database key of the
table.

– Rank: A rank of the key.

In the table Columns we store

– ColumnId: An unique identifier for the column. It may be or be generated
from the name of the column TABLE.COLUMN which enables searching using
the name. It is the primary key of the table.
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– Cost: The cost of re-encrypting this column. For now we assume uniform
cost of 1 for each column. We discuss non-uniform costs in 4.9.

– KeyId: The identifier of the associated key. This is a foreign key of this table
and the primary key of the Keys table.

4.2 Initialization

Algorithm 1. Initialization

function Init
for all column do

cost ← 1
Insert keyId, cost Into Keys
Insert columnId, cost, keyId Into Columns

end for
end function

We initialize each column with its own key and cost of 1. Each key is initialized
with the cost of the associated column. This is performed as in Algorithm 1.
When uploading the encrypted data into the database, the data of each column
will be encrypted under its associated key. Subsequently we can perform queries
with optional joins.

4.3 Key Retrieval

Algorithm 2. Key Retrieval

function GetKey(column)
return Select keyId From Columns Where columnId = column

end function

When we perform a query we must encrypt parameters and decrypt return
values. We therefore need to retrieve the corresponding key identifier for the
accessed columns. Algorithm 2 shows that this can be performed using a simple
query.

4.4 Column Selection

When performing a join between two columns A and B we need to select one for
re-encryption. The function in Algorithm 3 returns the identifier of the column to
be re-encrypted. It has already updated the data structure to reflect its new key
– that of the other column. We call the column that does not get re-encrpyted
the steady column.
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Algorithm 3. Column Selection

function Join(columnA, columnB)
keyA ← GetKey(columnA)
keyB ← GetKey(columnB)
if keyA = keyB then

5: return null
end if
rankA ← Select rank From Keys Where keyId = keyA
rankB ← Select rank From Keys Where keyId = keyB
if rankA > rankB then

10: lower ← columnB
(lowerKey, lowerRk) ← (keyB, rankB)
(upperKey,upperRk) ← (keyA, rankA)

else
lower ← columnA

15: (lowerKey, lowerRk) ← (keyA, rankA)
(upperKey,upperRk) ← (keyB, rankB)

end if
lowerCost ← Select cost From Columns Where columnId = lower
Update Keys Set rank = lowerRk − lowerCost Where keyId = lowerKey

20: Update Keys Set rank = upperRk+ lowerCost Where keyId = upperKey
Update Columns Set keyId = upperKey Where columnId = lower
if lowerRank − lowerCost = 0 then

Delete From Keys Where keyId = lowerKey
end if

25: return lower
end function

We make the choice simply by the rank of the key. The column with the key
with the lower rank gets re-encrypted. Afterwards, we add the cost of the re-
encrypted column to the rank of the steady column and subtract the same cost
from the rank of the key of the re-encrypted column.

If the rank of the key of the re-encrypted column reaches 0, then we can delete
the key entry, since it no longer encrypts any column.

Note that for any (infinite) schedule of joins the algorithm leads to a finite
number of proxy re-encryptions only (i.e. it returns a value different from null
only a finite number of times). This can be seen easily if we consider a variant of
the algorithm where we omit the deletion of keys of rank 0 (lines 22 through 24).
Then the sum of the absolute values of differences of the ranks over all pairs of
keys is a non-negative integer which is bounded (by

(
n
2

)
times the maximal

possible rank) and which increases by at least 2 in each re-encryption step.
The algorithm is reminiscent of the Union-Find algorithm [6], but we do not

join the entire group, just the selected column. This reduces the cost for one
join operation, since we need to re-encrypt at most one column and not an
entire group, but does not increase worst-case cost – due to the re-encryption of
columns in shrinking groups – as we show in our analysis next.
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4.5 Analysis

We analyse the worst-case performance of our re-encryption selection algorithms.
Here (and also in the analysis of the enhanced algorithm in section 4.7) we obtain
the maximal security simply by taking the maximal possible number of different
keys given the required functionality, i.e. whenever two columns are not joined
in any previous step of the schedule they remain encrypted under different keys.

Let there be n columns and let t(n) be the maximum number of re-encryptions
that Algorithm 3 performs where the maximum is taken over all possible sched-
ules of join operations. We now provide a proof that t(n) = O(n3/2).

Theorem 1. Algorithm 3 needs at most 2n3/2 re-encryptions for any sched-
ule. This bound is optimal in the sense that the asymptotic behavior of t(n) is
O(n3/2).

Before we start with the proof of this theorem we recall some notation: A par-
tition of n is a sequence λ = (λ1, . . . , λk) where λ1 ≥ . . . ≥ λk ≥ 1 are integers
such that λ1+λ2 + . . .+λk = n. The partition λ can graphically be represented
by a Young diagram which is composed of k rows containing λ1, . . . , λk boxes
(where the top row has length λ1). By abuse of notation we use λ to denote both
the partition and the associated Young diagram as in

λ = (5, 4, 1) =

The dominance order � on partitions is defined by

λ � μ :⇐⇒ ∀i ≥ 1 : λ1 + . . .+ λi ≥ μ1 + . . .+ μi .

(Here λi = 0 resp. μi = 0 for i greater than the number of rows of λ resp. μ.)
It is well known (see [5]) that λ � μ iff λ can be obtained from μ by succesively
moving single boxes from lower to higher rows. The set of all partitions of n
together with the dominance order � is a poset Ln and (1, . . . , 1) resp. (n) is
the unique minimal resp. maximal element of Ln.

Partitions as well as the dominance order occur naturally in our algorithm:
Let λ1 ≥ . . . ≥ λk ≥ 1 be the sizes of the groups at any time during the execution
of the algorithm (ordered non-increasingly). Then clearly λ = (λ1, λ2, . . . , λk) is
a partition of n.

This way for every given schedule of join operations the Algorithm 3 produces
a series of partitions λ(1), λ(2), . . . of n. The first partition in the sequence is
always (1, 1, . . . , 1) (n ones) and the schedule can be further extended as long as
there is more than one group left i.e. until it reaches the maximal partition (n).

We observe how λ changes when a single step of the algorithm is applied. We
remove one element (database column) from one group and add it to another
group of at least the same size. In terms of the associated Young diagrams this
amounts simply to moving one box up into a higher row. In other words, the
series of partitions derived from a join schedule is an increasing (w.r.t. �) chain
in the poset Ln.
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On the other hand for any series of partitions λ(1), λ(2), . . . of n such that
λ(i+1) is obtained from λ(i) by moving-up one box we can easily derive a join
schedule that produces exactly this series of tableau in the way described above.
To this end we just annotate each box with a database column label at the begin.
Thereafter, we interpret moving-up such a box (keeping its label) by executing a
join of the corresponding database column with any other column in the target
row.1

Therefore, finding the worst case number of steps of our algorithm is equivalent
to finding the longest totally ordered chain in the lattice Ln of partitions. Hence
the theorem follows directly from

Proposition 1. (a) The longest increasing sequence in the poset (Ln,�) con-
sists of at most 2n3/2 elements.
(b) The longest increasing sequence in the poset consists of at least 2

3n
3/2 ele-

ments.

Proof. (a) Let k = [
√
n] and consider an increasing (w.r.t. �) series of Young

diagrams of maximal length. We obtain this maximal length by counting the total
number of move-up operations of boxes (and adding 1 for the initial diagram).
To do so we have a look at the path of each of the n boxes individually. The key
observation is that in each step the box not only moves up, but also moves to
the right at least one place. Therefore after at most k of its moves it has reached
(the end of) a row in the Young diagram with length ≥ k + 1. Since there are
only n < (k+1)2 boxes altogether this must be a row with index less than k+1.
Hence, the box we considered can from now on only have k − 1 further moves
which is a total of 2k − 1.

This holds for every box and hence we obtain n(2k − 1) + 1 ≤ 2n3/2 as an
upper bound on the length of the given sequence.

(b) We write n = 1
2k(k+1)+r for suitable non-negative integers k and r ≤ k.

Then we can construct a sequence of ”triangular shaped” Young diagrams:

(1, . . . , 1)→ (2, 1, . . . , 1)→ (3, 2, 1, . . . , 1)→ (4, 3, 2, 1, . . . , 1)→ · · ·
· · · → (k, k − 1, . . . , 2, 1, . . . , 1)

(In the last diagram there are 1 + r ones at the end.) Each step in this se-
quence further decomposes into a certain number of move-up operations for
single boxes. Now let’s count these single move-up operations . To go from
(j, j − 1, . . . , 2, 1, . . . , 1) to (j + 1, j, . . . , 2, 1, . . . , 1) we need to move one box j
times, the next box j−1 times and so on. This sums up to 1

2j(j+1). Altogether

we have
∑k

j=1
j(j+1)

2 = k(k+1)(2k+7)
12 single moves.

Next we move the ”remaining” r ones to the first row. This amounts to rk
single moves.

We continue from (k + r, k − 1, . . . , 2, 1) to (n) in a symmetric (but reverse)
way. Just interchange the role of rows and columns in the diagrams. This adds

1 Caution: Be aware that although this reverse construction may suggest so, in the
procedure of going from join schedules to Young diagrams a box is not associated
with a fixed column and a row is not associated with a fixed key!
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another k(k+1)(2k+7)
12 and hence we get the lower bound k(k+1)(2k+7)

6 + kr + 1
for the length of the maximal chain. From this we get the claim by a direct
calculation. ��

Algorithm 3 is very well suited for practical purposes. We give some experimental
data of its behavior in section 5.

4.6 Enhanced Version of the Algorithms

We show how to improve the worst case behavior of the algorithm. Note that
choosing a key that is neither of the two columns but from a third column is
in general not a viable option. While this may decrease the overall cost, it may
also decrease security. Consider an example where columns A and B are joined
under C’s key.

Join(E, C): E ← C
Join(D, C): D ← C
Join(A, B): A← C, B ← C

Clearly, if this schedule continues with

Join(B, C)
Join(A, C)

then the overall cost is optimal, but the operation is speculative in terms of secu-
rity. If the schedule does not continue, the adversary is given more information.
All columns are encrypted under the same key. He now can use all of them for
cryptanalysis.

In the alternative where we replace the third join operation with

Join(A, B): A← B

there are two remaining, disjunct keys: one for C, D, E and one for A, B.
Clearly, this complicates cryptanalysis. Choosing one of the two keys of the joined
columns always yields the minimal amount of ciphertexts for cryptanalysis, since
at least one re-encryption is necessary in order to perform the join.

As a consequence we only consider re-encryption selection algorithms as ad-
missible that guarantee that two columns have different keys unless there is a
chain of (previous) joins which links these two columns.

Now for our enhanced algorithm we group columns not by the fact that they
share a common key but by the fact that there is a chain of previous join op-
erations that links one column to another. To distinguish this from the groups
(cf. section 4.4) we considered before we will call a cluster of columns (at any
given time) the set of columns that is connected w.r.t. previous joins. Note that
clusters are unions of groups. Let’s call a cluster key the (common) key of the
largest group in a cluster.

We modify our data structures and algorithms to be able to account for cluster
keys by introducing the additional column
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– ClusterKeyId: The identifier of key associated to the cluster this column
belongs to.

in the table Columns. During initialization the cluster key of a column gets the
same value as the key: Hence the insert statement of Algorithm 1 now reads

Insert columnId, cost, keyId, keyId Into Columns

Yet another algorithm (similar to Algorithm 2) defines a function GetClus-
terKey to extract the ClusterKeyId for a column.

Algorithm 4. Column Selection (enhanced)

function Join2(columnA, columnB)
if GetKey(columnA) = GetKey(columnB) then

return null
end if

5: keyA ← GetClusterKey(columnA)
keyB ← GetClusterKey(columnB)
rankA ← Select rank From Keys Where keyId = keyA
rankB ← Select rank From Keys Where keyId = keyB
if rankA > rankB then

10: lower ← columnB
(lowerKey, lowerRk) ← (keyB, rankB)
upper ← columnA
(upperKey,upperRk) ← (keyA, rankA)

else
15: lower ← columnA

(lowerKey, lowerRk) ← (keyA, rankA)
upper ← columnB
(upperKey,upperRk) ← (keyB, rankB)

end if
20: lowerCost ← Select Sum(cost) From Columns Where clusterKeyId =

lowerKey
Update Keys Set rank = lowerRk − lowerCost Where keyId = lowerKey
Update Keys Set rank = upperRk+ lowerCost Where keyId = upperKey
Update Columns Set keyId = upperKey Where columnId = lower
Update Columns Set clusterKeyId = upperKey Where clusterKeyId =

lowerKey
25: if lowerRk − lowerCost = 0 then

Delete From Keys Where keyId = lowerKey
end if
if GetKey(upper) = GetClusterKey(upper) then

return lower
30: end if

Update Columns Set keyId = upperKey Where columnId = upper
return (lower, upper)

end function
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The main change in the column selection algorithm (cf. Algorithm 4) is that
now it may return two columns which shall be re-encrypted. By keeping track
of the cluster a column belongs to we can without degrading the security re-
encrypt both columns of a join to the cluster key of higher rank (which they will
eventually have anyway). This means there need not be a steady column any
more.

4.7 Analysis of the Enhanced Algorithm

Consider the function T defined by T (1) = 0 and

T (n) = T
(⌊

n
2

⌋)
+ T

(⌈
n
2

⌉)
+

⌊
n
2

⌋
for n = 2, 3, . . . (1)

or, more explicitly,

T (2i) = 2T (i) + i (2)

T (2i+ 1) = T (i) + T (i+ 1) + i . (3)

Remark. Using these recursions for T one can also easily prove that T (n) =∑
i<n Q(i) where Q(i) is the sum of the digits of i in its binary expansion. We

omit the details here because we will not need this representation in the sequel.

Lemma 1. For all n ≥ 1 we have T (n) ≤ n
2 log2 n where equality holds iff n is

a power of 2.

Proof. From the equations (2) and (3) we directly derive the claim by induction
because 2(12 i log2 i) + i = i

(
(log2 i) + 1

)
= 1

2 (2i) log2(2i) and (using Jensen’s
inequality applied to the concave function x %→ x log2 x)

(i log2 i+(i+1) log2(i+1))
2 ≤ i+(i+1)

2 log2
i+(i+1)

2 = 2i+1
2 (log2(2i+ 1)− 1)

hence

1
2 i log2 i+

1
2 (i + 1) log2(i+ 1) + i < 1

2 (2i+ 1) log2(2i+ 1) .

Moreover, it is clear that equality in T (n) ≤ n
2 log2 n holds iff we never have to

the recursion (3), i.e. iff n is a power of 2. ��
The significance of the function T arises from

Theorem 2. For any proxy re-encryption algorithm which is admissible in the
sense of section 4.6 there is a schedule on n columns that needs at least T (n)
re-encryptions, i.e. its asymptotic behavior is O(n log n).

Proof. We divide the columns into two sets of sizes
⌊
n
2

⌋
and

⌈
n
2

⌉
. For either

of them we have a worst case schedule with at least T (
⌊
n
2

⌋
) resp. T (

⌈
n
2

⌉
) re-

encryptions. After concatenating these two schedules we get a schedule which
still ends in two clusters with different keys2 and which can be extendend by
another

⌊
n
2

⌋
joins. Hence we end up with a schedule that by equation (1) requires

T (n) re-encryptions. ��
2 This is where we use admissibility!
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Theorem 3. Algorithm 4 applied to n columns needs at most T (n) re-
encryptions. Hence it has the optimal worst-case behavior.

The proof of this theorem uses another lemma:

Lemma 2. For all n ≥ 2 we have

T (n) = max
1≤i≤n/2

(
T (i) + T (n− i) + i

)
. (4)

Proof (Theorem). Let T̃ (n) be the number of re-encryption for the worst sched-

ule on n columns. To show that in fact T̃ = T we look at the last step where
there are two clusters of sizes i and n− i respectively (for some i ≤ n

2 ). Then

T̃ (n) = max
1≤i≤n/2

(
T̃ (i) + T̃ (n− i) + i

)
(for n ≥ 2).

because the columns in the cluster of size n − i contribute with T̃ (n − i) re-
encryptions no matter if these are executed before or after the two clusters have
been joined. Columns of the cluster of size i contribute with at most T̃ (i) re-
encryptions before the two clusters are joined and with i re-encryptions after
the two clusters are joined. Comparing with Lemma 2 shows that T̃ satisfies the
same recursion as T . ��

Proof (Lemma). The proof is again by induction: For 1 ≤ i <
⌊
n
2

⌋
we calculate

T (i) + T (n− i) + i

= T
(⌊

i
2

⌋)
+ T

(⌈
i
2

⌉)
+

⌊
i
2

⌋
+ T

(⌊
n−i
2

⌋)
+ T

(⌈
n−i
2

⌉)
+

⌊
n−i
2

⌋
+ i

= T
(⌊

i
2

⌋)
+ T

(⌈
n−i
2

⌉)
+

⌊
i
2

⌋
+ T

(⌈
i
2

⌉)
+ T

(⌊
n−i
2

⌋)
+

⌊
n+i
2

⌋
= T

(⌊
i
2

⌋)
+ T

(⌈
n−i
2

⌉)
+

⌊
i
2

⌋
+ T

(⌊
i+1
2

⌋)
+ T

(⌈
n−i−1

2

⌉)
+

⌊
n+i
2

⌋
= T

(⌊
i
2

⌋)
+ T

(⌈
n−i
2

⌉)
+

⌊
i
2

⌋
+ T

(⌊
i+1
2

⌋)
+ T

(⌈
n−i−1

2

⌉)
+

⌊
i+1
2

⌋
− ⌊

i+1
2

⌋
+

⌊
n+i
2

⌋
≤ T

(⌊
i
2

⌋
+

⌈
n−i
2

⌉)
+ T

(⌊
i+1
2

⌋
+

⌈
n−i−1

2

⌉)− ⌊
i+1
2

⌋
+

⌊
n+i
2

⌋
Note that in the last step we use the induction hypothesis (and furthermore use
that

⌊
i+1
2

⌋
<

⌈
n−i−1

2

⌉
because i <

⌊
n
2

⌋
).

Now
⌊
i
2

⌋
+
⌈
n−i
2

⌉
=

⌊
n
2

⌋
unless n is odd and i is even (in which case the value

is
⌈
n
2

⌉
), and likewise

⌊
i+1
2

⌋
+

⌈
n−i−1

2

⌉
=

⌊
n
2

⌋
unless n is odd and i + 1 is even

(where again the value is
⌈
n
2

⌉
).

In any case one of the expressions
⌊
i
2

⌋
+

⌈
n−i
2

⌉
and

⌊
i+1
2

⌋
+

⌈
n−i−1

2

⌉
equals⌊

n
2

⌋
and the other equals

⌈
n
2

⌉
. Hence finally

T (i) + T (n− i) + i ≤ T
(⌊

n
2

⌋)
+ T

(⌈
n
2

⌉)
+

⌊
n
2

⌋
because − ⌊

i+1
2

⌋
+

⌊
n+i
2

⌋ ≤ ⌊
n
2

⌋
. ��
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4.8 Multiple Simultaneous Joins

In queries like SELECT a.b, c.d, e.f FROM a, c, e WHERE a.x = c.z AND

b.y = c.z we need to re-encrypt multiple columns. As already stated we simu-
late this by joining pairs of columns one after the other. Given a set of k columns
that need to be compared for the join, we chose a column corresponding to a
key with the highest occuring rank. Then we form pairs consisting of this col-
umn and all the other columns successively. Since both our algorithms encrypt
”towards the higher rank” this ensures that all columns have the same key as
the chosen column after k− 1 executions of the algorithm. The number of proxy
re-encryptions thereby is bounded by k− 1 for the Algorithm 3 and by k for the
Algorithm 4 (since each of the columns is re-encrypted at most once).

4.9 Non-uniform Costs

So far we have assumed uniform costs of 1 for each column, but some columns
may be easier to re-encrypt than others. Particularly, the re-encryption cost is
linear in the number of elements per column. This means, that it is easier to
re-encrypt two columns of size 1 and 2, respectively, than one column of size 4.

We now consider element-wise re-encryption costs by incorporating non-
uniform column costs, e.g. the size of the column, in our algorithms. Simply,
initialize the columns with their respective costs in Algorithm 1. This may signif-
icantly reduce the overall costs. Following the example above, consider columns
A, B and C of respective sizes 2, 1 and 4 and the join schedule

Join(A, B)
Join(C, A)

Uniform costs may suggest the following re-encryptions: A ← B, C ← A. This
results in 6 element re-encryptions. The worst possible performance for any set
of re-encryptions. Instead non-uniform costs using column sizes dictate these
re-encryptions: B ← A, A ← C. The result are 3 element re-encryptions. Fur-
thermore, the maximum number of element re-encryptions using either of our
algorithms in this example is 4. This is also the minimum worst-case cost under
any schedule of join operations.

It is therefore important to note that the analysis of minimum worst-case
cost of re-encryption of Section 4 in the general case remains intact. We always
achieve the best worst-case cost assuming any future schedule of join operations.
To see this, view a column with non-uniform cost c as a group of c columns with
uniform cost 1 that always operate successively. Let N be the sum of the costs
of all columns, then our algorithm incurs costs of at most O(N logN).

Nevertheless, in some cases of non-uniform costs we may perform too many
re-encryptions for a specific schedule resulting in sub-optimal costs, since the
future schedule is unknown. Consider columns A, B, C and D of sizes 1, 5, 2
and 3 and the following join schedule
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Join(A, B): A← B
Join(C, D): C ← D
Join(A, C)

In the third join our algorithm dictates C ← A leading to 5 element re-
encryptions. This clearly leads to the minimal costs of also 5 for a future

Join(B, C)

but in case there is no future join, costs are not optimal. It would be more
efficient to re-encrypt as A← C resulting in a cost of 4 element re-encryptions.
Yet, choosing to re-encrypt as A ← C will increase the worst-case cost under
many future join schedules. We therefore choose to optimize the worst-case cost
where our bound is tight.

The number of elements in a column may vary, because rows may be inserted
or deleted. This further complicates the analysis and possible algorithms also
have to account for these future operations. We leave this as future work and
currently assume fixed non-uniform costs.

5 Experiments

We performed a number of experiments in order to measure the difference be-
tween the best re-encryption cost and our Algorithm 3. We chose n = 8 columns
and a join schedule of length m = 16. Note that we need to find the optimum
schedule in 2m = 65536 options.

Fig. 1. Cost difference between optimum and Algorithm 3
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We chose the schedule uniformly random among all possible pairs of differ-
ent columns. Pairs could occur repeatedly. We chose the cost for each column
uniformly random between 1 and 100.

We performed 1000 experiments. In each we recorded the optimum cost and
the cost of our Algorithm 3. In 41% of the experiments our algorithm delivered
the optimum schedule. The mean difference to the optimum was 26, i.e. roughly
half an average column cost. The maximum difference was 193 and the median
difference was 9, such that few large sub-optimal cases account for the majority
of the difference.

In Figure 1 we depict our results. We have sorted all experimental results in
increasing optimal cost (black line). The gray line depicts the corresponding cost
of our algorithm.

6 Conclusion

In this paper we have considered the problem of selecting a column for re-
encryption in a deterministically, adjustably encrypted database. To the best of
our knowledge this is the first paper considering this problem. We have provided
an algorithm that achieves the best possible worst-case bound and a simpler
algorithm that performs very well in experimental settings.
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Abstract. With the advent of Cloud Computing, data are increasingly being
stored and processed by untrusted third-party servers on the Internet. Since the
data owner lacks direct control over the hardware and the software running at the
server, there is a need to ensure that the data are not read or modified by unau-
thorized entities. Even though a simple encryption of the data before transferring
it to the server ensures that only authorized entities who have the private key can
access the data, it has many drawbacks. Encryption alone does not ensure that the
retrieved query results are trustworthy (e.g., retrieved values are the latest values
and not stale). A simple encryption can not enforce access control policies where
each entity has access rights to only a certain part of the database. In this paper,
we provide a solution to enforce access control policies while ensuring the trust-
worthiness of the data. Our solution ensures that a particular data item is read
and modified by only those entities who have been authorized by the data owner
to access that data item. It provides privacy against malicious entities that some-
how get access to the data stored at the server. Our solutions allow easy change
in access control policies under the lazy revocation model under which a user’s
access to a subset of the data can be revoked so that the user can not read any new
values in that subset of the data. Our solution also provides correctness and com-
pleteness verification of query results in the presence of access control policies.
We implement our solution in a prototype system built on top of Oracle with no
modifications to the database internals. We also provide an empirical evaluation
of the proposed solutions and establish their feasibility.

Keywords: Access Control, Cloud Computing, Query Verification, Private Out-
sourcing.

1 Introduction

Access control mechanisms are an important part of a database system with which the
data owner limits a user’s access to a subset of the data. In a typical setting, the database
server enforces access control policies by rewriting user queries to limit access to the
authorized subset. When the data owner wants to revoke or grant a user, access to a
certain part of the data, the data owner does that by informing the server. Traditionally,
the server is assumed to be trustworthy and the data owner assumes that the access
control policies will be faithfully enforced by the server. However, this assumption is
not reasonable when the database is hosted at a third-party server, e.g., cloud, as the
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data owner lacks control over the hardware and software running at the server. Even
when the server is trusted, there is a threat from a malicious insider or an intruder.

Another important problem that arises when the database systems are hosted at an
untrusted server is to verify the trustworthiness of query execution. Much work has
been done [1,2,3,4] towards verifying correctness and completeness of query results.
However, most of these solutions do not work in the presence of access control rules, as
they leak information that is outside the query range and outside the scope of the user’s
authorization.

In this paper, we provide solutions that ensure that a data item in the database is read
and modified only by authorized users, and none other (including the server). The data
encrypted by our solution is still queriable. Our solution provides mechanisms to verify
the trustworthiness of query results in the presence of access control rules. For this, we
extend our previous work [1] on ensuring the trustworthiness of data retrieved from an
untrusted database that can be modified by multiple entities. The contributions of this
work are:

– A novel mechanism to enforce access control rules without trusting the server
– Solutions that allow users to verify the correctness and completeness of query re-

sults in the presence of access control rules
– A demonstration of the feasibility of the solution through a prototype in Oracle,

and its evaluation

The rest of this paper is organized as follows. Section 5 discusses some related work.
Section 2 describes our model and presents some preliminary tools that are necessary
for this work. Section 3 presents our solutions. A discussion of the implementation of
the solution and an empirical evaluation is presented in Section 4. Finally, Section 6
concludes the paper.

2 Preliminaries

In this section, we start by explaining the different entities involved in our model. Then,
we explain Merkle Hash Trees and Merkle B+ Tree which we use for building our
solutions, and also discuss their use to verify the correctness and completeness of query
results.

2.1 Model

There are three main entities involved: Alice, the database owner; Bob, the (untrusted)
database server that will host the database; and Carol, the user(s) that will access this
data (may include Alice) from the server. Users are authorized by Alice and can inde-
pendently authenticate themselves with the server. A user can read or write data to the
parts of the database she is authorized to. Figure 1 shows the various entities in this
model.

Alice wants to ensure that the data are accessed by only those entities that were
authorized by her. Alice and Carol want to ensure that the query results were indeed
correct and complete in presence of access control policies.
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Fig. 1. The various entities involved: The database owner (Alice); The database server(Bob); and
Authorized users (Carol)

An acceptable solution should allow Alice to grant or revoke access to a user at any
point in time, without much work. The solution will disable Bob from being able to read
the encrypted data. However, Alice and Carol should still be able to execute queries and
run updates on the encrypted data.

Note that our assumptions about Bob are minimal. In most settings, the server is
likely to be at least semi-honest – i.e., it will not maliciously compromise data privacy
by not following access control rules, or compromize data integrity by maliciously mod-
ifying the data or query results. However, due to poor implementation, failures, over
commitment of resources, or other reasons, some loss of data or breach of privacy may
occur. Given the lack of direct control over the server, Alice should not assume that Bob
is infallible.

Lazy Revocation Model: As mentioned before, simple encryption can ensure that only
authorized users can read or write the data. However, this introduces many problems.
One such problem is related to dynamic access control rules. In a simple encryption
method, when a user’s access is revoked from a subset of the data, the data have to be
re-encrypted. This can be a very costly process due to network usage and computation
for encryption. To alleviate this burden, we consider the Lazy Revocation Model. Under
this model, when a user is granted access to a subset of the database, the user can read
or write to that subset. If the user’s access is revoked from that subset, the data are not
re-encrypted immediately. Instead, the new values in that subset are encrypted with a
new version of the key so that the evicted user can no longer read the new values in that
subset. Since the user had access to the old data before eviction, it can be assumed that
the user had cached that data, hence it is not important to re-encrypt old values. We will
consider the lazy revocation model for access control policies.



214 R. Jain and S. Prabhakar

Table 1. Symbol Table

Symbol Description

ti the ith tuple of a relation
h(x) the value of a one way hash function over x
Φ(n) label of node n in MB-tree or MHT
Hi label of the ith node in the MB-tree
a||b concatenation of a and b
VO a verification object

Proof root label of the MB-tree
R a set of ranges that partitions the data
ri ri ∈ R

Si, Ki State and key for range ri
Enck(x) encryption of x using symmetric-key k

Bn access control bitmap for node n

2.2 Correctness and Completeness

We begin by discussing the use of Merkle Hash Trees (MHT) to prove correctness. And
then further discuss a variant, the MB-tree, which we use to prove completeness. We
will use an MB-tree as a building block for our overall solution. Correctness requires
that any data item in the query result are indeed part of the database and is not a fabri-
cated value. An MHT can be used to establish the correctness of query results. An MHT
is a binary tree with labeled nodes. We represent the label for node n as Φ(n). For an
internal node, n, with children nleft and nright, Φ(n) is defined as:

Φ(n) = h(Φ(nleft)||Φ(nright)) (1)

where || is concatenation and h is a one-way hash function. Table 1 explains the symbols
used in this paper. Labels for leaf nodes are computed as the hash of the tuple value
represented by that leaf. The root label is called ‘Proof’.

Initially, an MHT is created on top of the database table. Alice stores only the root
hash value (Proof ) to authenticate future query results. To prove the correctness of a
tuple, i.e., to verify that a tuple existed in the database, Alice can ask Bob for some extra
data (called Verification Object (VO)) from the MHT and recompute the root hash label.
If the computed root hash label is the same as that she stored initially, she is convinced
about the correctness of the tuple.

Completeness requires that all data items that should have been part of the query
result are indeed present in the query result. Correctness and completeness combined
establish the correntness of read-only queries. MHT can be extended to use B+ trees
instead of a binary tree [2]. MB-trees can be used to verify both correctness and com-
pleteness. To prove completeness of a range query, Bob provides extra data with which
Alice can verify that tuple values just preceeding, and just following (in sorted order)
the query results were indeed outside the query range. Alice can also verify that no data
is missing from the query result and the returned values are indeed part of the database.
For more details, please refer to [1,2]. Figure 2 shows a sample MB-tree structure built
on the attribute A of Table 2.
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Table 2. Sample Data Table

tupleID A

1 23
2 29
3 35
4 48
5 59
6 63
7 65
8 70

Table 3. Bucketized Data Table

tupleID A∗ Enc(A)

1 [20-30) EncK1(23)
2 [20-30) EncK1(29)
3 [30-40) EncK1(35)
4 [40-50) EncK2(48)
5 [50-60) EncK2(59)
6 [60-70) EncK2(63)
7 [60-70) EncK3(65)
8 [70-80) EncK3(70)

As an example, consider a query σ30<A<60. The result for this query would include
t3, t4, and t5. To verify the correctness and completeness of the query results, the server
sends VO to the user which includes the tuples just preceeding and just following the
query ranges (i.e., t2 and t6). The VO also includes any node labels that are required to
compute the root label (i.e., h(t1) and H7). Using VO, the user can generate the Proof .
If the computed proof matches with the proof value computed by Alice, the user is
assured that the query results were correct and complete.

Access Control: In the presence of access control rules, traditionally, the query range
is divided into multiple parts to ensure that each sub range is accessible to the user.
In that case, each sub range can be verified individually. However, for verification, the
server has to reveal the tuples bordering each sub-range. These bordering tuples may
not be accessible to the user, leading to information leakage. In the next section, we will
discuss our proposed solutions to enforce access control rules while still allowing query
verification and privacy from the server or hackers.

Updates: MHT or MB-tree work for static databases. When the data can be modified by
users without prior knowledge of the data owner, as is the case in our model, MB-tree
cannot be used directly. [1] proposes solutions with which authorized users can executed
transactions at the server without being vetted by the data owner. These transactions
can read or write data. This is done by engaging the server in a protocol that requires

H1 59

H2 35 H3 65

H4 23 29 H5 35 48 H6 59 63 H7 65 70

t1 t2 t3 t4 t5 t6 t7 t8

Fig. 2. An MB-tree on attribute A of Table 2
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the server to declare the database state on which the transaction was executed and the
database state that the transaction produced. The user can verify that the transaction read
values from the declared consistent state to produce the next consistent state. However,
this solution does not enforce access control rules. In the next section, we provide a
solution that allows the user run and verify transactions in the presence of access control
rules.

3 Access Control

As mentioned before, access control rules allow the data owner to restrict a user’s access
to a certain part of the database. The database owner may also want to hide the data from
the server as well, while still allowing the users to read and query the data. The difficulty
introduced by using access control rules is two fold. Firstly, verification algorithms have
to be modified to assure the user that the partial database table visible to the user is
indeed correct and complete. Secondly, the data have to be encrypted so the user sees
only the allowed data, and, the data remain private from the server or an intruder. The
server should still be able to run queries on this data. In this section, we provide our
solutions to these problems.

In this paper, we consider fine-grained access control policies. We assume that the
access control policies expose a user to a subset of each database table (this is the
approach adopted by some commercial systems like Oracle VPD). In particular, we
consider the following system for defining access control rules: R = {ri|0 ≤ i ≤ k} is
a set of ranges on an attribute that partitions the data into k disjoint subsets. Each user
is allowed access (read and write) to a part of the database table defined by a subset of
R, i.e., the user, Carol, can access tuples {ti|ti ∈ ∪ril}, where {ril} ⊂ R is the set of
ranges accessible to Carol.

3.1 Verification in Presence of Access Control

Given a range query, all tuples that satisfy the range query may not be accessible to the
user. In such case, the verification using the regular MB-tree VO will not work. Also,
verification of query results usually involves reading extra tuple values [2,4]. These
tuples may not be accessible to the verifier due to the access control rules. In such case,
the verifier will not be able to verify a query or a transaction. Suitable adjustments to
the authentication data structures are required to enable the verification of a query in
presence of access control rules.

To solve this problem, we modify the MB-tree as follows: Each node, n, is extended
with an access control bitmap, Bn, in which the ith bit is “on” if there is a tuple in the
subtree that belongs to the range ri. Node labels are computed using Equation 2.

Φ(n) = h(Bchild 1||Φ(nchild 1)|| . . . ||Bchild k||Φ(nchild k)) (2)

The VO now contains the nearest tuple value just preceding and the nearest tuple value
just following the query range such that these tuples are accessible to the user. VO also
contains all the tree nodes required to prove the correctness of these tuples and to prove
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B1, H1 59

B1 : 111

B2, H2 35

B2 : 011

B3, H3 65

B3 : 110

B4, H4 23 29

B4 : 001

B5, H5 35 48

B5 : 011

B6, H6 59 63

B6 : 010

B7, H7 65 70

B7 : 100

t1

B8 : 001

t2

B9 : 001

t3

B10 : 001

t4

B11 : 010

t5

B12 : 010

t6

B13 : 010

t7

B14 : 100

t8

B15 : 100

Fig. 3. Augmented MB-tree to allow Access Control

that the tuples that were left out of the query results were indeed inaccessible to the
user.

As an example, consider the following access control ranges on attribute A:

r1 : [0, 35]
r2 : [36, 64]
r3 : [65, 100]

Under these accesss control ranges, each access control bitmap will have three bits,
one for each access control range. Figure 3 shows an augmented MB-tree, as described
above, built on Table 2.

When a user who is authorized to access r1 and r3 executes a range query σ25<A<50,
tuple t2 and t3 will form the query result. Tuple t4 will not be part of the query result as
it is not accessible to the user. To verify the correctness and completeness of the query
result, the user has to verify that the missing tuples were indeed inaccessible to her. The
user will also have to verify that the nearest tuple just before the query range was indeed
t1 and the nearest tuple just following the query range (and also accessible to the user)
is indeed t7.

To prove the completeness of the query result, the VO of this query will include t1
and t7. To prove that the ommitted tuples (i.e., t4, t5, and t6) were indeed inaccessible
to the user, the VO will also include the bitmaps B6 and B11. Using B6, the user can be
convinced that tuples t5, and, t6 were indeed inaccessible to her. Similarly, using B11

the user can be assured that Tuple t4 was inaccessible to her. As in the case of regular
MB-tree, the VO will include all other necessary labels required to calculate the root
label.

3.2 Enforcing Privacy for Access Control

In this subsection, we present our solutions to encrypt the database, so that a user can
read/write only the subset of the data that she has been authorized to access. The server
(or any intruder) cannot read the data. As mentioned before, in this work we consider
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the lazy revocation model. Under this model, once a range, ri, is removed from a user’s
accessible ranges, the future tuples in ri are encrypted using a new key. All remaining
and future users who can access ri will be distributed the new key. Any pre-existing
tuples in ri are not necessarily re-encrypted with the new key. To decrypt the data in
the range ri, the user may need the current or previous keys of that range. Only the data
owner decides which ranges are accessibe to the user.

The Key Regression scheme [5] provides a mechanism for versioning encryption
keys for symmetric-key encryption. Given a version of the key, the user can compute
all previous versions of the key. However, future versions of the key can not be derived
using the current key. In the start, all data items in an access control range are encrypted
using the first version of the key. Each user authorized to access the range is given
that key. When a user is evicted from the range, the key is updated to a newer version.
All future data items in the range are now encrypted using the new version of the key.
Since the users cannot generate the new version of the key, the evicted user cannot read
future tuples in the range. A Key Regression scheme is defined using four algorithms.
Algorithm setup is used by the data owner to setup the initial state. Algorithm wind
is used to generate the next state. Algorithm unwind is used to derive the previous
state, and keyder is used to generate the symmetric key for a given state. The tuples are
encrypted using the symmetric key. We consider a particular key regression scheme that
uses RSA to generate states.

Consider an RSA scheme with private key < p, q, d >, public key < N, e >, and
security parameter k, such that p and q are two k-bit prime numbers, N = pq, and
ed = 1(modϕ(N) where ϕ(N) = (p− 1)(q − 1). For each range ri, a secrent random
number Si ∈ Z∗

N is selected as the initial state.
Algorithm wind, unwind and keyder are defined in Algorithms 1, 2, and, 3

respectively.

Algorithm 1. wind (N , e, d, Si)

nextSi = Sd
i (mod N)

return nextSi

Algorithm 2. unwind (N , e, Si)
prevSi = Se

i (mod N)
return prevSi

Algorithm 3. keyder(Si)
Ki = SHA1(Si)
return Ki

For each range, ri, in range set R, the data owner generates a secret state Si ∈ Z∗
N .

The user stores the current states for each range it has access to. Using the current state
of a range, the user can compute the corresponding symmetric-key to encrypt or decrypt
the data in that range. Whenever, a range is added or removed from a user’s accessible
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ranges, the state corresponding to that range is moved to the next state and all users who
still have access to that range are informed about the new version of the state. If a tuple
in a range is encrypted using a newer key, the user requests the new state from the data
owner.

Due to encryption, the server cannot execute range queries. To be able to execute
range queries on data, we use bucketization to divide the data into multiple buckets.
Range queries are then suitably modified to search data among these bucket ranges.

Bucketization: Bucketization involves partitioning the attribute domain into multiple
equi-width or equi-depth partitions. Attribute values are then converted from a specific
value in the domain to the bucket labels. Table 3 is an example of equi-width bucketiza-
tion of Table 2 where each partition width is 10. Using equi-width bucketization reveals
the density in each bucket. Equi-depth, on the other hand, requires frequent adjustments
(which requires communication with the user) when database is updated frequently.
[6,7] show that only limited information can be deduced due to bucketization.

As shown in Table 3, the attribute A∗ represents the bucket labels after bucketiza-
tion, and the encrypted tuple value is kept in a separate attribute. User queries are now
executed on A∗. To verify the correctness and completeness of query results, our aug-
mented MB-tree can be built on top of the bucketized field, A∗. The verification process
will remain the same, except now tuples will be inserted in the tree according to A∗.

Thus, combining the solutions proposed in Subsections 3.1 and 3.2, the data owner
and the users can be convinced that the data were not maliciously modified, and the data
were accessed by the user that had appropriate authorizations.

4 Experiments

To demonstrate the feasibility and evaluate the efficiency of the proposed solutions, we
implement our solutions on top of Oracle. The solutions are implemented in the form
of database procedures using Pl/SQL and no internal modifications were done on the
database. While we expect that the ability to modify the database internals or to exploit
the index system will lead to a much more efficient implementation, our current goal is
to establish the feasibility of our approach and to demonstrate the ease with which our
solution can be adopted for any generic DBMS. Users are implemented using Python.

Setup: We create a synthetic database with one table uTable containing one million
tuples of application data. uTable is composed of a table with two attributes (TupleID
and A). The table is populated with random values of A between −107 and 107. When
tuples are encrypted, the ciphertext is stored in attribute EncA. Table 4 describes the
different tables and indexes used in our prototype. An MB-tree is created on attribute
A (integer). We consider three transactions implemented as stored procedures, namely
Insert, Delete, and Select. Insert creates a new tuple with a given value of attribute A.
Delete deletes the tuples which have a given value of attribute A and Select is a range
query over attribute A. The experiments were run on an Intel Xeon 2.4GHz machine
with 12GB RAM and a 7200RPM disk with a transfer rate of 3Gb/s, running Oracle
11g on Linux. We run Oracle with a strict serializable isolation level. We use a standard
block size of 8KB.
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Table 4. Relations and Indexes in the database

Table Attributes Indexes

uTable TupleID, A, EncA2, keyVersion2 A
uTableMBT id, level, Label, keys, children, child-

Labels, key min, key max, access-
Bitmap1, childAccessBitmap1

id, (key min, key max,
level)

AccessControlRanges id, key min, key max
AccessControlRules AcessControlRule id, Use id

Implementation Details: The MB-tree has been implemented in the form of a database
table – each node in the MB-tree is represented by a tuple in the MB-tree table
(uTableMBT). Ideally, the MB-tree should be maintained as a B+ index trees of the
database. However, that requires internal modifications to the index system of the
database. We leave that for future work. Each MB-tree node, identified by a unique
id, stores uTable tuples in the range [key min, key max). level denotes the height of
the node from the leaf level, i.e., leaf nodes have level = 0, and the root has the highest
level. The keys field stores the keys of the node, and the children and childLabels
fields store the corresponding child ids and labels respectively. Label stores the la-
bel of the node. When access control mechanisms are in place, two more attributes,
accessBitmap and childAcessBitmaps, are added to store the access control bitmap
of the node and access control bitmaps of the child nodes respectively.

4.1 Results

We now present the results of our experiments. To provide a base case for comparison,
we compare the performance of our solutions with a regular MB-tree based solution
[2], where access control rules are not supported. This solution leaks information for
transaction verification. Furthermore, this solution does not provide privacy against a
malicious server. We analyze the costs of construction for the authentication data struc-
tures, execution of a transaction, and verification of a transaction.

The fanout for the authentication structure is chosen so as to ensure that each tree
node is contained within a single disk block. In each experiment, time is measured
in seconds, storage and IO is measured as the number of blocks read or written as
reported by Oracle.The reported times and IO are the total time and IO for the entire
workload. Each experiment was executed 3 times to reduce the error – average values
are reported. In the plots, Normal represents the solution from [2], AC represents our
solution where access control bitmaps are added to the nodes to support access control
rules, and AC + Enc represents our solution that encrypts the tuple values and uses
bucketization. AC and AC + Enc both allow query verification in the presence of
access control rules. AC +Enc also provides privacy against the server or an intruder.

1 Used when supporting Access Controls.
2 Used when supporting Access Controls with Encryption.



Access Control and Query Verification for Untrusted Databases 221

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 50000  75000  100000  125000  150000

Ti
m

e 
(in

 s
ec

on
ds

)

Datasize

AC+Enc
AC

normal

(a) Time vs data size

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50000  75000  100000  125000  150000

Bl
oc

ks

Datasize

AC+Enc
AC

normal

(b) Blocks used vs data size

Fig. 4. Construction time and storage overhead

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5000  10000

Ti
m

e 
(in

 s
ec

on
ds

)

# of inserts

AC+Enc
AC

normal

(a) Time vs # of inserts

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 5000  10000

Bl
oc

ks
 re

ad

# of inserts

AC+Enc
AC

normal

(b) I/O vs # of inserts
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When bucketization is used, we divide the data into 1000 buckets. We use 200 access
control ranges.

Construction Cost: First, we consider the overhead of constructing (bulk loading) the
proposed data structures. To support access control rules, our solution requires aug-
menting MB-tree nodes with additional values that store the access control bitmaps. To
provide privacy from the server, key regression is used that allows different versions of
the encryption key. This requires storing additional attibutes to store the ciphertext and
the key version. Figures 4(a) and 4(b) show the effect of data size on construction time
and storage overhead, respectively. As expected, the storage cost is higher for our so-
lutions. However, the construction time does not change significantly as the additional
computation required for encryption is done by the user, keeping the computation cost
for the server similar to just maintaining the MB-tree.

Insert Cost: We study the performance as the number of Insert transactions is in-
creased. For this experiment no verification is performed. Figures 5(a) and 5(b) show
the results. As expected, our solution incurs a higher overhead for IO as it requires
keeping additional data. These costs increase linearly with the number of transactions.
Surprisingly, this does not translate into a significant increase in the running time. This
represents the computational overhead of hashing and concatenations which dominates
the cost. Delete operation shows similar costs (not presented due to lack of space).
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Search Cost: Search cost is influenced by both the size of the result (larger results will
be more expensive to verify) and number of access control rules as that requires verify-
ing that the tuples that were dropped from the query result were indeed not accessible
to the user. To evaluate the performance of our solution for range queries (Search), we
run 100 Search transactions for different ranges (thereby with different result set size)
and verify all transactions. Figures 6(a) and 6(b) show the results. As the result set size
increases, execution time and the amount of IO increase. For the regular MB-tree solu-
tion, the query range is divided into multiple sub-ranges based on access control rules.
Each sub-range that is accessible to the user is returned as query result. For verification,
the server has to return the right and left most paths of each sub-range. However, in our
solution, an access control bitmap is enough to verify that the sub-range is not accessi-
ble. This decreases the VO size and computation cost. As shown in the figure 6(a), our
solution performs slightly better than MB-tree as our solution requires lesser VO size.
As the result set size increases, the verification object size increases which results in an
increase in verification time. The performance of our solution is comparable to that of
an MB-tree alone.

Verification Cost: Our solution changes the Verification Object significant as our so-
lution does not require bordering tuples outside the accessible range. However, since
the node labels now include access control bitmaps, it increases the VO size. We now
demonstrate the change in VO size in our solutions. To demonstrate the overhead of
insert verification, we run 1000 Insert transactions and verify them. Average VO size is
reported in figure 7(a). As expected, the VO size is higher for our solutions as it requires
additional information, like access control bitmaps and key versions.

To demonstrate the overhead of search query verification on the system, we run 1000
Search transactions with varying ranges and varying access control ranges. The average
VO size is reported in Figure 7(b). As discussed before, in a normal MB-tree, to support
access control, a query range has to be divided into multiple sub-ranges so that the
query accesses only the part of the data that are accessible to the user. For each sub-
range, the VO includes the tuple just before and just following the sub-range. VO also
includes all necessary nodes that are required to verify that the bordering tuples indeed
existed the database. However, in our solution, this is not necessary. Each node contains
information if the descendant tuples are accessible or not. Hence, VO does not always
require the bordering tuples. Figure 7(b), that shows the effects of our solution on the
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VO size validates this. VO size for AC is smaller than the normal MB-tree. VO size for
AC + Enc is comparable to MB-tree. This is due to the ciphertexts.

Overall, we observe that our solutions are efficient and provide mechanisms for ac-
cess control with reasonable overheads and perform better than current solutions in
some cases.

5 Related Work

Much work has been done towards providing mechanisms to verify the correctness and
completeness of query results from an untrusted database server [1,2,3,4,8,9]. While
some of the earlier work only considered correctness of query results [8,10], later work
consider both correctness and completeness [2,4]. Some of these work have also consid-
ered data updates from multiple sources [1,4]. [1] proposes a solution that uses Merkle
B-Trees as authentication data structure, and allows multiple entities to independently
run transactions on the untrusted database. Most of these works do not consider issues
related to data privacy and access control. In these works, the user requires additional
data items for verification, leading to information leakage.

Some work has been done towards providing verification for correctness and com-
pleteness in the presence of access control rules [11,12,13,14,15]. While [12] supports
one-dimensional range queries and data updates, [11] supports multi-dimensional range
queries and does not handle updates. Both these solutions do not provide privacy against
the server. [13] provides a tree based solution for verifying correctness of query results
without information leakage. However, this solution does not provide mechanisms for
verifying completeness. [14,15] focus on the access control problems with data authen-
ticity for XML data. These solutions provide solutions for data privacy against users but
not the server or an intruder. The server or any intruder would have full access to the
data leading to breach of privacy.

[16] proposes solutions to provide privacy against the server. Data are encrypted
before sending it to the server. The data are encrypted in such a way that user queries
can still be executed on the encrypted data. However, this solution does not provide
access control mechanisms. Much work has been done towards key management
[17,18,19,5,20]. [5,20] consider the lazy revocation model under which following the
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revocation of user membership from a group, the content publisher encrypts future con-
tent in that group with a new cryptographic key and the new key is distributed to only
current group members. The content publisher does not immediately re-encrypt all pre-
existing content since the evicted member could have already cached that content. [5]
proposes a key derivation mechanism with which a user can derive old encryption keys
using the current keys, however, it does not allow a user to derive future keys. When a
user is evicted from the group, all future updates are encrypted using a newer version
of the key. This saves a lot of computation and I/O cost whenever access control rules
are changed. [17,18,19] propose key management solutions for access hierarchies. [17]
proposes a solution to not only restrict a user’s access to a subset of the data, but also
restricts the user’s access to a limited time.

In this paper, we propose solutions to solve both problems collectively – our solu-
tions provide mechanisms to ensure trustworthiness of query results while ensuring that
access control policies are enforced, and it also provides mechanisms for encrypting the
data that ensures that a data item is accessed (read and/or write) by only those entities
that were authorized to access it.

6 Conclusion

In this paper, we considered the problem of implementing access control policies on an
untrusted database server, while ensuring that the query results are trustworthy. With
our solution, the data owner can be assured that the data will be read by only those
users that were authorized by her apriori. Furthermore, the data owner and the users
can be assured of the trustworthiness of the query results without violating the access
control policies. We demonstrate that the solutions can be implemented over an existing
database system (Oracle) without making any changes to the internals of the DBMS.
Our results show that the solutions do not incur heavy costs and are comparable to
current solutions for query verification (that do not support access control rules). We
believe that the efficiency of the solutions can be further improved by modifying the
internals and exploiting the index structures to get better disk performance. We plan to
explore these issues in future work.
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Abstract. The booming of the Android platform in recent years has at-
tracted the attention of malware developers. However, the permissions-
based model used in Android system to prevent the spread of malware,
has shown to be ineffective. In this paper, we propose DroidRisk, a frame-
work for quantitative security risk assessment of both Android permis-
sions and applications (apps) based on permission request patterns from
benign apps and malware, which aims to improve the efficiency of An-
droid permission system. Two data sets with 27,274 benign apps from
Google Play and 1,260 Android malware samples were used to evaluate
the effectiveness of DroidRisk. The results demonstrate that DroidRisk
can generate more reliable risk signal for warning the potential malicious
activities compared with existing methods. We show that DroidRisk can
also be used to alleviate the overprivilege problem and improve the user
attention to the risks of Android permissions and apps.

Keywords: Android App, Android Permission, Malware, Risk Assess-
ment, DroidRisk.

1 Introduction

The use of touchscreen based mobile devices like smartphones has seen unprece-
dented growth in recent years due to their portability and real-time information
access. According to a recent study from research firm Ovum [10], smartphones
will dominate the mobile phone market with a compound annual growth rate
of 24.9% from 2011 to 2017 and 1.7 billion devices are estimated to be shipped
by 2017. The dominance of smartphones is largely attributed to the Google An-
droid mobile OS which took 68% of the global market in the second quarter of
2012 [3]. This is mainly due to it being open source and the large collection of
mobile applications (apps) in the unrestricted official and third-party Android
app markets. In September 2012, the Google’s official app store, Google Play
(previously known as Android Market [6]), hit total 25 billion app downloads
with more than 675,000 apps [7].
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However, the popularity of Android platform has also attracted the attention
of malware developers. It was reported that more than 260,000 Android de-
vices were affected by a mobile virus called DroidDream in the official Android
Market within 48 hours in 2011 [5]. Felt et al. did a survey of mobile malware
on three different mobile platform including Android [20]. They found that the
most common malicious activities are collecting user information and sending
premium-rate SMS message. Zhou et al. collected 204,040 apps from five differ-
ent Android markets between May to June in 2011 [27]. 211 malware were found
in the collected apps, where 32 from the official Android Market and 179 from
the third-party markets.

The security mechanism used in Android platform to prevent the spread of
malware is the permission-based model, which protects the access to sensitive
privacy data (contact list, emails, phone call logs, location etc.) and system re-
sources (GPS, camera, WiFi etc.). An Android app needs the user’s approval
of the requested permissions to be installed in the user’s device. Felt et al. con-
ducted two usability studies on the effectiveness of Android permission system
[21]: one Internet survey of 308 Android users and a laboratory survey of 25
Android users. The studies showed that only 17% of participants paid attention
to permissions during app installation, which indicates that the current Android
permission system fails to protect most users from malware.

Several recommendations were made in [21] to improve the low attention
and comprehension rate of Android permission system such as re-organizing
and re-naming categories, description of permissions focusing on risk instead of
resources, smaller permission list etc.. However, based on our own experiences
of installing Android apps, the main reason causing the ineffectiveness problem
is the text-based permission warning interface for app installation, which can
be easily ignored by the users [24]. Our solution for this problem is to have
a quantitative assessment of the risk levels of Android permissions and apps.
With the quantitative risk information, users can easily understand the risk of
an app to be malicious and pay more attention to those permissions with high
risk levels.

This paper has made the following contributions:

– We propose DroidRisk, a framework for quantitative security risk assessment
of Android permissions and apps based on permission request patterns, which
follows the U.S. National Institute of Standards and Technology (NIST)
guide for IT security risk management [11]. To the best of our knowledge, this
is the first attempt to quantitatively assess the risk levels of both Android
permissions and apps.

– We evaluate the effectiveness of DroidRisk with two datasets. The benign
app dataset has 27,274 popular apps collected from Google Play in July
2012. The malware dataset consists of 1,260 Android malware samples from
the Android Malware Genome Project [26]. We show that reliable risk signal
can be generated with the quantitative risk levels of apps for warning the
potential malicious activities.
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– We show that DroidRisk can be applied to alleviate the overprivilege
problem.

– We have implemented two applications of DroidRisk to improve the user
attention to the risks of Android permissions and apps: a modified App web
page in Android market with the quantitative risk information of the app
and its requested permissions, and an Android app to evaluate the risk levels
of apps installed in local device.

2 Related Work

Due to its importance for Android security and user privacy, the permission sys-
tem has attracted lots of research interests. There are several studies on how the
permissions are used by Android apps. In [13], Barrera et al. did an empirical
analysis of the permission-based security models by analyzing 1,100 most popular
Android apps using the Self-Organizing Map (SOM) algorithm. They found that
among the defined permissions only a small portion of them are actively used by
developers. Another finding of their study is that the requested permissions are
not strongly correlated with application categories. Felt et al. did a survey of 100
paid and 856 free apps from Android Market in [20]. It was observed that 93%
of free and 82% of paid apps request at least one dangerous permission. They
also built a tool called Stowaway that can detect whether a compiled Android
app requests more permissions than necessary, i.e. overprivileged [18]. Among
the apps they investigated, about one-third were actually overprivileged. In [25],
Wei et al. studied the permission evolution in the Android ecosystem. One of
their key observations is that the set of dangerous-level permissions always out-
numbers other permission types in all versions of the Android platform and it
is still growing. Frank et al. studied the permission request patterns of Android
apps using pattern mining technique [22]. They tried to relate the permission
request pattern with the app’s reputation which can be served as an indicator
of app quality. Although all these works revealed something about the permis-
sion request patterns of Android apps, they didn’t attempt to identify potential
malware.

Recently, the app’s permission request pattern has been used to generate
risk signal for warning potential malicious activities. Enck et al. proposed a
light weight application certification service called Kirin that uses a rule-based
strategy to identify suspicious apps based on their requested permissions [16].
However, because the rules were defined manually, they can’t adapt to the chang-
ing characteristics of current permissions and apps. For example, the 9th rule
of Kirin is no longer valid because the permission SET PREFERRED APPLICATION

has been deprecated since Android API level 7. In [27], Zhou et al. proposed a
system called DroidRanger to detect malicious apps in official and alternative
Android markets. The first component in DroidRanger is permission-based filter-
ing which uses some dangerous permissions such as RECEIVE SMS and SEND SMS

to find potential malicious apps. It was shown that only 0.66% of apps needed
further analysis after the permission-based filtering step. Chia et al. studied per-
missions systems of Facebook apps, Chrome extensions and Android apps to
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find the reliable signals to identify potential harmful and inappropriate apps
[15]. They investigated several signals including the adjusted community rating,
the availability of the developer’s website and the number of apps published by
the developer. However, none of those signals was found to be reliable. In [24],
Sarma et al. proposed a set of risk signals by examining the permission request
patterns from apps in Android Market and the collected malicious apps. The
proposed risk signals include rare critical permissions (RCP), rare pairs of crit-
ical permissions (RPCP), combination of RCP and RPCP, and category-based
RCP (CRCP). The RCP signal is triggered if at least one of the critical permis-
sions is requested by less than certain percentage of the Android Market apps.
The RPCP signal is triggered if for a pair of critical permissions, any individual
permission occurs more frequent than they occur as a pair. The CRCP signal
is the combination of category information with RCP. Though RCP has shown
superior performance compared with Kirin in terms of warning and detection
rates [24], the users do not have any idea about the risk levels of requested per-
missions by an app and the app itself as there is no quantitative assessment of
the risk levels.

3 Application Dataset

In this section, we describe the benign app and malware datasets collected for
our study. We also provide the statistics of requested permissions of these two
datasets.

3.1 Data Collection

Benign App Dataset. Among the large number of Android markets available
worldwide, Google Play is the largest and most reliable one. An antivirus system,
called Google Bouncer, is deployed to detect the malicious apps uploaded by
developers [1]. Any malicious app found by Google Bouncer, that may be harmful
to users or tries to steal privacy information, will be removed from Google Play.
Thus, it is reasonable to assume that the apps from Google Play perform no
malicious activities and can be used to construct the benign app dataset.

To collect the information of apps from Google Play, we developed a crawler
to automatically extract the name, category and the requested permissions of
each app from its corresponding web page. In total we collected the informa-
tion of 27, 274 popular apps from Google Play in the middle of July, 2012. The
collected apps belong to 26 subcategories under ”Applications” category and 8
subcategories under ”Games” category.

Malware Dataset. The Android malware dataset used in our study is from the
Andriod Malware Genome Project [26]. This dataset consists of 1, 260 Android
malware samples in 49 families from different markets which has a much larger
size compared with the malware dataset of 121 samples used in [24]. 86% of
the samples are repackaged versions of normal apps. 36.7% of them leverage
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root-level exploits. More than 90% try to remote control the device. 45.3% and
51.1% of them stealthily send short messages or make calls and collect privacy
user information, respectively. Unfortunately, there is no category information
for this malware dataset.

3.2 Statistics of Requested Permissions

Many malware request more permissions than the need of their claimed functions
to perform malicious activities. For example, a game-like malware may request
the permission to send short messages, which could result in a financial loss to
the user. In this section, we provide the statistics of permissions requested by
benign apps and malware, which inspire our work of DroidRisk.

Frequently Requested Permissions. Figure 1 shows the top 20 requested
permissions in the benign app and malware datasets. INTERNET is the most
frequently used permission by both the benign apps and malware. There are
many reasons to request permission for internet access: some of the apps need
to log in; some are designed to use internet like browsers and email clients;
some need to load advertisement etc. As a result, Internet-related permissions,
such as ACCESS NETWORK STATE and ACCESS WIFI STATE, become very popu-
lar. Another set of widely used permissions are location related ones such as
ACCESS FINE LOCATION and ACCESS COARSE LOCATION for location based ser-
vices. The most significant differences between benign apps and malware ob-
served from Figure 1 are: malware are more favor of changing the settings and
use money-related services such as short message service (SMS). Changing set-
tings, especially changing the network settings, generally is the first step before
a malware performs any malicious activity. Sometimes malware even try to kill
background processes, which could help them avoid being detected by anti-virus
apps. It can be seen that SMS is a popular service among malware as four SMS-
realted permissions are much more popular in malware than benign apps. In
[26], Zhou and Jiang introduced a family of malware targeting on the financial
charging. This kind of malware may stealthily edit and send out SMS to waste
the user’s money. They may subscribe premium-rate services without the user’s
consent for profit.

Number of Requested Permissions. Figures 2(a) and 2(b) show the per-
centages of malware and benign apps requesting certain number of permissions,
respectively. As can be seen, malware are likely to request more permissions than
benign apps. It is shown that 58.8% and 92.7% of the benign apps request no
more than 4 and 11 permissions respectively, while the numbers for malware are
7.5% and 49.3%. Figures 2(c) and 2(d) show the percentages of malware and
benign apps requesting certain number of dangerous permissions, respectively.
It can be easily seen that malware also request more dangerous permission than
benign apps. More than half of the benign apps request 2 or less dangerous per-
missions and 91.8% of them have no more than 7 dangerous permissions. For
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Fig. 1. Top 20 most popular permissions in: (a) malware dataset (b) benign app dataset
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Fig. 2. Percentage of apps requesting certain number of permissions: (a) malware (b)
benign apps; Percentage of apps requesting certain number of dangerous permissions:
(c) malware, (d) benign apps

malware, 62.5% of them have at least 7 dangerous permissions, and around a
quarter of them request 13 or more dangerous permissions. Clearly, malware are
more interested in dangerous permissions for their malicious activities.

4 Methods

4.1 Quantitative Security Risk Assessment

Quantitative methods have been used to assess the financial risk for a long time
[12] but they are still relatively new for security risk assessment. To guide the risk
management for IT systems, NIST published a set of IT security risk manage-
ment best practices in 2002 [11]. According to the NIST guide, risk assessment
is the first step of IT risk management. To quantitatively assess the risk level
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of an system, it needs to find the risk of each potential adverse event for the
system, which is defined as [11,23]:

R(Ei) = L(Ei)× I(Ei) (1)

where Ei is the ith potential adverse event, R(Ei) is the risk of Ei, L(Ei) and
I(Ei) are the likelihood and the impact of Ei, respectively. The likelihood rep-
resents the probability that a weakness is exploited by the attacker, while the
impact refers to the magnitude of harm caused by this weakness being exploited
[23]. Assume the adverse events are independent, the system risk Rsys can be
obtained by summing the risk values of individual adverse events as shown in
Equation (2):

Rsys =
∑
i

R(Ei) =
∑
i

L(Ei)× I(Ei) (2)

where i = 1, 2, ..., n and n is the total number of potential adverse events.

4.2 DroidRisk – Quantitative Security Risk Assessment of Android
Permissions and Apps

The DroidRisk framework for quantitative risk assessment of Android permis-
sions and apps follows the NIST guide. We consider an Android app A as the
system and each permission pi requested by A as the individual adverse event.
By assuming that the permissions requested by A are independent, the risk level
of the app A, RA, can be defined as:

RA =
∑
i

R(pi) =
∑
i

L(pi)× I(pi) (3)

where R(pi) is the risk level of permission pi, L(pi) and I(pi) are the likelihood
and the impact of permission pi respectively, i = 1, 2, ..., n and n is the total
number of requested permissions by A.

The key problem to be solved in the DroidRisk framework is to calculate the
likelihood L(pi) and the impact I(pi) for a requested permission pi. We define
the likelihood L(pi) as the probability that the app A is malware if pi is requested
by A, i.e. P (A is malware | pi). This posteriori conditional probability can be
calculated using Bayes’ rule as show in Equation (4):

P (A is malware | pi) = P (pi | A is malware)× P (A is malware)

P (pi)
(4)

where P (pi | A is malware) is the priori probability that a malware requests
permission pi, P (A is malware) is the priori probability that an app is malware
for all collected apps, and P (pi) is the priori probability that any collected app,
benign or malicious, requests permission pi.
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For estimating impact levels of permissions, we consider two classes of per-
missions, normal and dangerous1. Although it is hard to evaluate the exact level
of harm caused by a permission if it is requested by a malware, it is certain
that dangerous permissions are more harmful than normal permissions. Thus,
we set the impact level of normal permissions, Inp as 1 while give dangerous
permissions a higher impact level. In Section 5.2, we used an empirical method
to determine the impact level of dangerous permissions, Idp.

5 Results

In this section, we first present the likelihood values calculated for Android
permissions based on two datasets we collected. We then show how to determine
the impact level for dangerous permissions with an empirical method followed
by the presenting of risk levels of Android permissions and apps from the two
datasets. Finally we demonstrate that DroidRisk can be used to assess the risks
of apps in third-party markets.

5.1 Likelihood of Android Permissions

With the collected benign app dataset and malware dataset, we can calculate
the likelihood of each Android permission using Equation (4). Figure 3 shows
the top 20 permissions with highest likelihood values. The blue bar represents
the likelihood of a normal permission while the red bar is for the likelihood of a
dangerous permission.

There are 14 dangerous permissions on the list. WRITE APN SETTINGS has the
highest likelihood among all permissions, which can change the network setting,
thus to intercept and inspect the network traffic without the user’s awareness.
There are 5 SMS and MMS related dangerous permissions on the list, which
means that SMS and MMS services are the major target of malware develop-
ers. Unlike other systems which don’t pay attention to normal class permis-
sions, we have 6 of them on the list. These permissions may be used by mal-
ware to facilitate some malicious activities. For example, INSTALL PACKAGES and
DELETE PACKAGES are used by several malware families such as JSMSHider and
GoldDream to perform update attack and KILL BACKGROUND PROCESSES is used
by an Android Trojan named AnserverBot to avoid being detected by certain
anti-virus apps [26]2.

1 Android characterizes the potential risk of the permissions using 4 protection levels –
normal, dangerous, signature and signatureOrSystem. Since signature or signature-
OrSystem permissions can’t be granted to third party apps, we category them into
normal class. The protection level for a given permission in this study is obtained
from Android API level 9.

2 KILL BACKGROUND PROCESSES has been used to replace the old name
RESTART PACKAGES for permission - ‘kill background processes’ since the release of
Android API level 8.
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5.2 Impact Level of Dangerous Permissions

Based on the discussion in Section 4.2, the impact level of dangerous permissions,
Idp should be higher than the impact level of normal permissions, Inp. Since there
is no way to obtain the actual level of harm caused by normal permissions or
dangerous permissions, we solved the problem with an empirical method using
ROC (Receiver Operating Characteristic) curve. ROC curve is an efficient tool to
evaluate the binary classification performance and select the optimal threshold
setting [17]. In our case, once Idp is determined, we can obtain the risk level of
each Android permission, and then compute the risk levels of benign apps and
malware according to their requested permissions. As one of our design goals is
to classify benign apps and malware with a single threshold of risk level, ROC
curve is the appropriate choice to find the value of Idp which gives the best
classification performance.

ROC curve is plotted with the true positive rate (TPR) versus the false posi-
tive rate (FPR) under various threshold settings. Figure 4 shows the ROC curve
generated for Idp = 2. In Figure 4, the ideal classification performance is ob-
tained at the upper left corner, which means no classification error. The closer
the ROC curve to the upper left corner, the better the classification performance.
Therefore, a popular metric used to measure the classification performance is the
area under curve (AUC) [14], which is the area between the ROC curve and the
x-axis. Usually a AUC greater than 0.9 is considered as excellent classification
performance.The value of Idp is determined as 1.5 which gives the highest AUC
value (0.9313).
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5.3 Risk Levels of Android Permissions and Apps

Once the impact value of dangerous permissions is obtained, we are able to
compute the risk levels of all Android permissions. Figure 5 shows the top 20
permissions with highest risk levels. Compared with the top 20 list for likeli-
hood, there is no new permission on the list but the rankings of most dangerous
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permissions are promoted because of higher impact level. WRITE APN SETTINGS

is still on the top of the list with highest risk level among all permissions.
We also compute the risk levels for all benign apps and malware in our datasets

by simply summing the risk levels of requested permissions as shown in Equation
(3). Figure 6 shows the histograms of the risk levels of benign apps and malware.
It can be easily observed that majority of benign apps have risk levels less than
2, while malware typically have higher risk levels.
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Fig. 6. Risk level histograms, (a)
malware, (b) benign apps

As seen in Figure 6(b), there are few benign apps with very high risk levels.
We did an investigation on top 20 benign apps with highest risk levels which
are shown in Figure 7. The top 6 apps on this list are solely used for in-store
demonstration of certain mobile devices. Some of them are warned by the ven-
dors not for public use. The possible reason is that such apps may need lots of
permissions to demonstrate different features of the device. It’s not surprising
to see 6 security apps on this list since they usually require lots of permissions
to monitor the whole system and may block, intercept or change the behaviors
of the system or other apps. Therefore, it is highly recommended that users
should carefully choose the security apps for their devices since there are mal-
ware pretending to be anti-virus apps [2]. The rest of the apps on this list are
communication tools used for SMS, calls, email exchange etc. Since SMS, calls
and other communications may leak privacy information or result in unexpected
financial charge, users need to pay special attention to those apps.

5.4 Third Party Android Market

Besides Google Play, there are lots of third party android markets available
worldwide, which are considered as the major source of malware [27]. Many
of such markets are not capable to do a malware detection before they put a
new app on the shelf. Some of them even solely depend on the feedback from



236 Y. Wang et al.

users to decide whether an app needs to be removed from their markets or not.
However, third party markets are more preferred than Google Play by many
users. One reason is that these users need free apps which cannot be found in
Google Play, e.g. free app of the day in Amazon appstore for Android. Another
reason is that some users need a localized version of the original app, especially
for users whose native language is not English. We arbitrarily selected a third
party Android market in China, mumayi [9], to investigate the risk of third party
Android markets.

We downloaded 602 popular apps from mumayi using a crawler and collected
their requested permission information. We then computed the risk level of each
collected app using DroidRisk. Figure 8 shows the boxplots of the risk levels
of apps from Google Play, apps from mumayi and malware. The median risk
levels for apps from Google Play, apps from mumayi and malware are 0.32, 1.35
and 3.22, respectively. This indicates that to install an app from the third party
market is more risky than the official market, Google Play.
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6 Applications of DroidRisk

In this section, we show that reliable risk signal to identify potential malware
can be generated with the quantitative risk information obtained by DroidRisk.
The applications of DriodRisk for alleviating the overprivilege problem and im-
proving the user attention to the risks of Android permissions and apps are also
presented.

6.1 Reliable Risk Signal

Risk signals are used by users to identify potential malware. A reliable risk signal
should be triggered by as many malware as possible, and rarely be triggered by
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benign apps. We compare the performance of DroidRisk with two state-of-art
methods: Kirin from [16], RCP and RCP + RPCP from [24] using 10-fold
cross-validation. The risk signal for RCP is generated with rule #RCP (θ) ≥ 1
which is the simplest one in [24]. The risk signal for RCP +RPCP is generated
with rule #RCP (2) + #RPCP (1) ≥ θ which is the best performing one in
[24]. The performance of Kirin is obtained with 7 rules as described in [24].
Figure 9 presents the ROC curves of different method for fold-1. For other folds,
we obtained similar results. From Figure 9, we can observe that DroidRisk has
significant better classification performance than other methods. One possible
reason is that DroidRisk tries to capture the request patterns of both normal
and dangerous permissions while there are only 9 manually defined rules in Kirin
and only 24 or 26 critical permissions are used for RCP and RCP +RPCP .

Figure 9 also shows that the risk signal of Kirin is not tunable as the rules are
predefined. Although the risk signals generated by RCP and RCP +RPCP are
adjustable, it is not easy to find a reliable one since there are several parameters
to be tuned. With the quantitative risk information generated by DroidRisk,
the risk signal is generated from a single threshold of risk level which can be
easily found using ROC curve. The simple thresholding operation also makes it
suitable to be implemented in resource-constrained mobile devices.

The results of the 10-fold cross validation are shown in Figure 10, where F-
score is used as the performance measure. The parameters of DroidRisk, RCP
and RCP +RPCP are chosen as the best performing ones for the training sets.
It can be seen that DroidRisk has the best performance among all the methods.
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6.2 Overprivilege Problem

Android permission system gives the app developers the ability of requesting
any permission no matter they actually use it or not. Many developers and users
rarely pay attention to whether the requested permissions are useful for them
or not. As a result, Android apps tend to be overprivileged, which may raise
security problems. We randomly selected 50 popular apps from both the third
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party Android market, mumayi, and Google Play. We used the Stowaway [18]
to detect unnecessary permissions in each app. Table 1 shows the statistics of
the collected apps due to the overprivilege problem. The boxplots in Figure 11
show how the unnecessary permission affect the risk levels of apps from mumayi
and Google play. It can be seen that the overprivilege problem is common in
both the official and third party markets although the problem is much severe
in third party market. The median risk level of apps from mumayi has increased
from 1.04 to 1.43 due to overprivilege. Although the median risk level of apps
from Google Play only increases from 0.64 to 0.66, we did find 7 apps whose risk
levels raise above the threshold set by DroidRisk because of those unnecessary
permissions, which makes them suspicious to be malware. Since the app devel-
opers always try to get more downloads, declaring unnecessary permissions to
result in a high risk level for the app will make the user more likely to cancel
the download because of the warning of our DroidRisk system. Thus, the over-
privilege problem can be alleviated since the developers need to be more careful
about requesting permissions for their apps, especially those related to possible
malicious activities.

Table 1. Statistics of the collected apps from
mumayi and Google Play due to overprivilege
problem

mumayi Google Play

Percentage of overprivi-
leged apps

64% 44%

Average # of unnecessary
permissions

1.92 0.84

Fig. 11. Risk levels with and with-
out unnecessary permissions for
apps from, (a-b): mumayi, (c-d):
Google Play

6.3 Improving User Attention to Risks of Android Permissions and
Apps

One problem with current Android permission system is that all information
related to the risks of permissions are text descriptions while users often do
not pay attention to the text information due to various reasons [21]. One of the
design goals of DroidRisk is to improve the user attention of the risks of Android
permissions and apps. In the following, we show two applications that utilize the
quantitative risk information obtained by DroidRisk to reach this design goal.

App Web Page with Quantitative Risk Information: Each Android app
has a web page after it is submitted to an Android market, official or third party.
Users often browse the market to find out interesting apps for their devices.
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Fig. 12. Screenshot of the Fake
SMS Creator Free app’s web
page in Aptoide with quantita-
tive risk information

(a) (b)

Fig. 13. DroidRisk Android App: (a)
view of the list of installed apps with
their corresponding risk levels, (b) view
of the list of permissions requested by
an app and their risk levels

Since the text-based permission information shown in the app’s web page is
not effective in informing the user about the risk of the app, we developed a
solution to present the quantitative risk information of the app and its requested
permissions in the web page. The solution was implemented in FireFox browser
by creating a GreaseMonkey3 script to change the display of the app’s web page.
Figure 12 uses the Fake SMS Creator Free app’s web page in Aptoide, a third
party market[4], as an example to show how the risk information of the app and
its requested permissions are displayed in the web page. The current design uses a
colored box that displays the risk value of an app or a requested permission. The
color scheme of the design corresponds to the risk level. When the user’s mouse
moves above the box of the app’s risk level, a textbox will be shown to alert the
potential risk and ask the user to see the list of permissions. It is expected that
this design with the quantitative risk information and the color-based visual cue
can significantly improve the attention rate of Android permission system.

DroidRisk Android App: To let the users evaluate the risks of apps installed
in their local devices, we developed an Android App of the same name as the
framework. This app extracts the permissions requested by each installed app
and computes the risk level of the app. Figure 13(a) shows the app’s interface
which shows the list of installed apps with their corresponding risk levels. The
user can tap any app to see the list of permissions requested by the app and
their risk levels (Figure 13(b)). The app also uses a color scheme to give the
users a direct visual cue of the risk level. We plan to expand the functionalities
of DroidRisk app in future to report the risk level of any app in any Android
market once the user provides the corresponding information.

3 GreaseMonkey is a Firefox add-on that allows the user to customize the display or
behavior of a web page using a user script [8].
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7 Conclusion

In this paper, we demonstrate that the proposed DroidRisk framework can be
used to improve the efficiency of Android permission system for informing the
user about the risks of Android permissions and apps. It can be easily incor-
porated into existing Android malware detection systems as the first barrier to
prevent the spread of malware. It will be especially useful for those third party
markets without malware detection capability. In our future work, we will in-
vestigate alternative ways to find the impact levels of Android permissions, e.g.
based on the study of [19] which ranks the risks of permissions according to
the users’ ratings. We will also explore security rules involving multiple permis-
sions and evaluate their corresponding risks which may be underestimated by
DroidRisk.
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Abstract. Multi-tenancy, elasticity and dynamicity pose several novel challenges
for access control in mobile smartphone clouds such as the Android

TM
cloud. Ac-

cessing subjects may dynamically change, resources requiring protection may be
created or modified, and a subject’s access requirements to resources may change
during the course of the application execution. Cloud tenants may need to ac-
quire permissions from different administrative domains based on the services
they require. Moreover, all the entities participating in a cloud may not be trusted
to the same degree. Traditional access control models are not adequate for mo-
bile clouds. In this work, we propose a new access control framework for mobile
smartphone clouds. We formalize a trust-based access control model with delega-
tion for providing fine-grained access control. Our model incorporates the notion
of trust in the Role-Based Access Control (RBAC) model and also formalizes the
concept of trustworthy delegation.

Keywords: access control model, delegation, mobile cloud security, trust.

1 Introduction

Smartphones and other mobile devices are increasingly shifting the personal computing
model away from traditional desktops and laptops to mobile cloud computing. In this
model, cloud computing, mobile devices and networks seamlessly interact with each
other to provide newer types of services that were previously not possible (such as lo-
cation based services). The unique characteristics of mobile cloud computing – namely,
multi-tenancy, elasticity, massive scalability [15], and mobility – introduce novel chal-
lenges to authorization and access control. To begin with, multi-tenancy results in the
co-residency of machines (virtual machines, database engines etc.) and other resources
owned by different clients or tenants at the same privileged position in the cloud with
respect to one another. As a result, a guest operating system can exploit vulnerabilities
in the hypervisor and run processes on other guests or the host, and security breaches
can arise in one smartphone client and propagate to another easily via the cloud. Proper
authorization and access control techniques should therefore not only protect tenant re-
sources from un-authorized disclosure and modification from attackers, but also should
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allow segregation of tenants from one another, and isolation of computation, storage
and network resources of the mobile cloud provider from tenants.

A mobile cloud environment is inherently very dynamic. The accessing entities may
change, resources requiring protection may be created or modified, and an entity’s ac-
cess to resources may change during the course of an application execution. Users need
to dynamically acquire permissions from different domains based on the services they
need. Interactions among entities may occur in ad hoc manners and where the access-
requesting entity may not be known in advance by the access-granting entity. In such
situations, traditional identity-based access control models such as Discretionary Ac-
cess Control (DAC), Mandatory Access Control (MAC) [21], or Role-based Access
Control (RBAC) [17,12], that rely on the access-granter knowing the identity of access
requester beforehand and authenticating the requester, can no longer be applied.
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Fig. 1. Mobile smartphone cloud application illustrating need for delegation

Last but not least, in a mobile cloud environment resources are often distributed and
managed by different service providers and clients move from one service provider to
another to obtain the needed service. To support a specific service, there is frequently
the need for coordination and interaction between these different providers. A tenant of
one service provider may need to access other providers to obtain the relevant service.
This is illustrated by the application scenario in Fig. 1. A mobile smartphone user in-
vokes the voice assistant application (VAC) on her smartphone and instructs it to make a
reservation for that evening’s show at an en-route theater closest to her destination. VAC
computes the time to reach the destination by accessing a navigation service (NavC),
identifies candidate theaters by consulting a location service (LocC) and selects one
from the list, contacts a ticket service provider cloud (TktC) for a reservation and con-
tacts the user’s mobile wallet provider (MobWC) to purchase the ticket from TktC.

For accessing different services the authorization sequence can potentially be as fol-
lows. The user initially authorizes the VAC for the ticket purchase task; however the
VAC cannot carry out the task on its own and therefore needs to pass on the authoriza-
tion (or portions thereof) to various other cloud providers. Moreover, if the different
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service providers are all tenants of one or more infrastructure cloud(s) (as shown in
Fig. 1), then each service provider needs to rely on the infrastructure to manage ac-
cess control to its resources. Delegation of authorization is the principle that allows one
service provider to act on behalf of the user to make the user’s access rights available
to other service providers. There is a need to manage and mediate interactions with
distributed resources having distributed administrators. However, authentication of the
requesting client (required in conventional access control) may be difficult in mobile
smartphone cloud systems. For example, it may not be possible for the VAC to be reg-
istered with both the MobWC and the TktC. Hence, delegation may need to proceed
without associated authentication. This is further complicated by the fact that often the
privilege to delegate may itself need to be delegated.

In this work, we propose a new trust-based access control model that supports com-
plex delegation across different members of the mobile cloud for providing fine-grained
access controls. This model is based on extensions to the RBAC model, and adapts con-
cepts from the trust-based access control models proposed earlier by us [7,19]. We
assume an existing context sensitive non-binary trust model such as the one in [16]. For
this work, we identify the different trust-based access control model elements that are
needed for addressing specific challenges in smartphone clouds (Section 3.1), and the
relationships among those elements (Section 3.2). We formalize the model and give the
rules of access (Sections 3.3 and 3.4). The smartphone cloud system is very dynamic
and allows frequent updates to its RBAC relations. Using traditional RBAC relations to
control delegation in such environments is of limited advantage because of the result-
ing inconsistencies in role hierarchy. We adapt the notion of administrative scope to re-
solve dynamically any inconsistency involved in controlling delegations (Section 3.5).
Finally, we propose algorithms to perform trust-based delegation, including chained
delegation (Section 4).

2 Related Work

Role-Based Access Control (RBAC) is used extensively within organizations for ad-
ministering and managing privileges and is often considered the de-facto standard for
access control.

While the advantages of RBAC are numerous, researchers are increasingly identify-
ing limitations in the model for newer and emerging applications. The biggest limita-
tion is the lack of support for delegation in the standard RBAC model and the failure to
support dynamic adaptation of access control policies based on changing needs. Many
researchers have extended RBAC to support delegation [3,2,10,18,22,24,25]; however
these models fail to support the need for ad hoc authorization and ad hoc delegation and
thus cannot readily be adapted to the cloud environment. Researchers have also pro-
posed Credential-based or Attribute-based access control models [6,5] to address the
challenges of unknown users in access control. Unfortunately, these models do not al-
low access control decisions to be dynamically updated or revoked based on the history
of the requester, or based on changing requirements of the requester.
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Recently, researchers have proposed the notion of risk-adaptable access control mod-
els [9,14,13] and trust-based access control models [7,4,23] to facilitate dynamic adap-
tation of access control policies based on operational needs and situational awareness.
A recent work [1] combines these two philosophies into one comprehensive model.
However, none of these works address the problem of delegation in mobile cloud sys-
tems. Nonetheless, these approaches look promising and form the basis of the current
model.

3 Formal Access Control Model with Delegation

The proposed trust-based access control model is defined in terms of a set of elements
and relations among those elements with trust-based constraints defined on these rela-
tions. We use a modified graph-theoretic approach similar to the one proposed by Chen
and Crampton [8] to express the model semantics. This model is designed to integrate
delegation and revocation, with revocation being the reverse process of delegation. The
model offers the possibility to perform a single-step as well as a multi-step delegation
and revocation. It enables both roles and permissions to be delegated. Fig. 2 provides
a schematic overview of the proposed model. We use the access control scenario from
Figure 1 to exemplify the model.
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3.1 Model Elements

The model elements are of the following types: user, user properties, role, object, ac-
tion, permissions, constraints, trust level, session instance, session type, session, and
session history. The corresponding element sets are represented by the symbols U ,
Prop, R, O, Act, P, Const, D , SI , ST , S, SH .

In this model, roles are separated into two broad classes: regular roles and delegat-
able roles. A user cannot delegate permissions assigned to a regular role, while permis-
sions assigned to a delegatable role can be delegated. The cloud system is responsible
for creating each regular role, while each delegatable role is created and owned by an
individual user. Therefore, a regular role is a durable role, while a delegatable role is
temporary, created and deleted at the user’s discretion. In the cloud system, each user
owns a set of delegatable roles that form a role hierarchy determined by the user. All
user assignment to regular roles relations and all permission assignment to regular roles
relations are managed by the cloud system, while each individual user is responsible for
managing all user assignment to delegatable roles relations and all permission assign-
ment to delegatable roles relations.

User. A user u∈U is a human being, a device, an organization or any active agent run-
ning on behalf of these. Three categories of users can be found in the cloud, namely,
tenant, a tenant-as-provider, and a provider. A tenant is a user that is receiving reg-
ular services offered in the cloud, while a tenant-as-provider is a cloud user that
is receiving regular services as well as offering regular services. The last category,
provider, refers to the cloud provider. To understand these notions, let consider the
example of Netflix that uses Amazon’s cloud. A Netflix subscriber is a tenant, while
Netflix is the tenant-as-provider. The provider in this case is Amazon’s cloud.

User properties. Each user u has a certain set of properties Pu, called user properties.
The set Prop =

⋃
u∈U Pu. A user can manifest any subset Pu of Pu (i.e., Pu ∈ 2Pu)

in a particular session. User properties are used in our model to compute trust levels
of users (see later in the list). Some examples of elements of user properties are:
user credentials, public key certificates, and membership in groups.

Role. The concept of role is the same as in the RBAC model. A role r ∈ R is a job
function with some associated semantics regarding the responsibilities conferred to
the user. A user assigned to a role specifies the operational needs of the cloud. The
set of roles R can be further subdivided into six disjoint subsets as follows:
1. TENANT-REGULAR-ROLE (TRR) – A set of job functions that are relevant

for receiving regular services. For example, the human user in our scenario can
be an elite member with the mobile wallet service provider that bestows him
with certain privileges. In this case “elite member” will be an example of a
tenant-regular role.

2. TENANT-DELEGATABLE-ROLE (T DR) – A set of job functions that are rel-
evant for delegating services. Going back to our earlier scenario, the VAC ins-
tance working on behalf of the user to purchase tickets needs to have permis-
sion at the MobWC to use the user’s wallet. Thus, a role such as “wallet user
for ticket purchase” which the VAC needs to assume to execute the operation
will be an example of tenant-delegatable-role.
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3. TENANT-AS-PROVIDER-REGULAR-ROLE (TPRR) – A set of job func-
tions that are relevant for receiving regular services as well as offering regular
services. The NavC cloud is a provider of navigation services. It uses the infras-
tructure cloud to provide some of its services (such as the computation needed
for the navigation). As a result, we will have a tenant-as-provider-regular-role
”navigation computation” at the infrastructure cloud.

4. TENANT-AS-PROVIDER-DELEGATABLE-ROLE (TPDR) – A set of job
functions that are relevant for receiving as well as offering delegation services.
The VAC will have a tenant-as-provider-delegatable role “make ticket reserva-
tion” that will allow it to delegate different components of the ticket reserva-
tion.

5. PROVIDER-REGULAR-ROLE (PRR) – A set of job functions that are rele-
vant for providing regular services. The instance of MobWC that will access
the user’s wallet needs to have permission to debit the wallet to provide the ser-
vice. Thus, an example of this role will be “debit user wallet” that the instance
of MobWC needs to acquire for this task.

6. PROVIDER-DELEGATABLE-ROLE (PDR) – A set of job functions that are
relevant for providing delegation services. Assume that the TktC offers the tick-
eting service by using a database provider cloud to keep record of the transac-
tion. Thus, an instance of the TktC that is performing the ticketing operation for
the current user needs to delegate the record update operation to the database
provider. A “decrement available seats” role will be an example of a provider-
delegatable-role in this scenario.

Object. An object o ∈ O is a data resource as well as a system resource. It can be
thought of as a container that contains information. The set O (OBJECTS) is parti-
tioned into three subsets:
1. TENANT-OBJECTS (TO) – Objects from this set are accessed when some

services are needed. An example is the user’s wallet at the MobWC.
2. TENANT-AS-PROVIDER-OBJECTS (T PO) – Objects from this set are ac-

cessed for receiving as well as providing services. An example is the database
used by the TktC to keep record of transactions.

3. PROVIDER-OBJECTS (PO) – Objects in this set are accessed purely for pro-
viding services. Examples include objects used by the infrastructure cloud such
as network objects.

Action. An action a ∈ A is an executable image of a program that operates on some
object. The set A (ACTIONS) may have three subtypes ACTIONS:
1. TENANT-ACTIONS (TA) – This set of actions act on objects from the set

TENANT-OBJECTS. An example is “debit wallet”.
2. TENANT-AS-PROVIDER-ACTIONS (T PA) – This set is comprised of actions

that operate on elements of TENANT-AS-PROVIDER-OBJECTS. An example
is “update database”.

3. PROVIDER-ACTIONS (PA) – This set is comprised of actions that operate on
elements of PROVIDER-OBJECTS. An example is “perform read on disk”.

Permission. A permission p ∈ P is an authorization to perform a certain task within
the system. A permission is assigned to a role. The set P (PERMISSIONS) is par-
titioned into three subsets as follows:
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1. TENANT-PERMISSIONS (TP) – The set of all ordered pairs 〈TO,TA〉 where
TO ∈ TENANT-OBJECTS and TA ∈ TENANT-ACTIONS; that is,
T P = 2TO×TA.

2. TENANT-AS-PROVIDER-PERMISSIONS (TPP) – The set of all ordered
pairs 〈T PO,T PA〉 where T PO ∈ TENANT-AS-PROVIDER-OBJECTS and
T PA ∈ TENANT-AS-PROVIDER-ACTIONS; that is,
T PP = 2TPO×TPA.

3. PROVIDER-PERMISSIONS (PP) – The set of all ordered pairs 〈PO,PA〉
where PO∈ PROVIDER-OBJECTS and PA∈ PROVIDER-ACTIONS; that is,
PP = 2PO×PA.

Trust level. A trust level∈D is a real number between 0 and 1, with 0 being the lowest
level of trustworthiness and 1 the highest and intuitively encodes the security risk
of the access decision. The larger the value of the trust level the less risky it is to
grant access to the user. A user u associated with a role r at some instant of time has
a trust level. The function T (u,r) gives the trust level of the corresponding user
associated with the role r.

Role trust range. A role trust range is an interval [rtmin,1] that is associated with
roles. The role trust range indirectly encodes the situational factors under which
the access decision is made. Each role r ∈ R is associated with a role trust range
that gives the minimum trust value rtmin required for a user to be assigned to the
corresponding role. The function L (r) returns the value rtmin for the given role r.

Permission trust range. A permission trust range is an interval [ptmin,1] that is asso-
ciated with permissions. Each permission Perm ∈ P is associated with a permis-
sion trust range that gives the minimum trust value ptmin required by a role to be
assigned the corresponding permission. The function L (Perm) returns the value
ptmin for the given permission Perm.

Constraint. A constraint ∈ Cons is defined as a predicate which when applied to a
relation between two elements returns a value of “acceptable” (True or 1) or “not-
acceptable” (False or 0). Constraints can be viewed as conditions imposed on the
relationships and assignments and encode the situational factors under which access
decisions need to be made.

Session instance. A session instance ∈ SI is a ‘login’ instance of an user. It is the set
of roles activated by the user in that login instance. A user can instantiate mul-
tiple logins thereby initiating multiple session instances at the same time. A ses-
sion instance is uniquely identified by a system generated id.

Session type. A session instance is identified with a type that is defined by the set
of user properties manifested in that session instance by the user. For a ses-
sion instance us activated by a user u with set of properties Propu (Propu ⊆Pu),
the session type is propu. Formally, the set ST = 2Prop.

Session. A session ∈ S is identified by a session instance with a session type. A session
with session instance us and type Propu is denoted by the symbol us

propu. Formally,
S = SI× ST .

Session history. A session history ∈ SH is a set of information regarding the user’s
roles, behavior and trust levels in a previous use of a session of that type.
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3.2 User-Role and Permission-Role Assignment

We propose a graph theoretic semantics for our model. An authorization graph is
defined in terms of a set V of vertices and a set E of edges. The set of ver-
tices V = U ∪ T RR ∪ TDR ∪ T PRR ∪ T PDR ∪ PRR ∪ PDR ∪ TP ∪ T PP ∪ PP cor-
responds to the entities users, tenant-regular-roles, tenant-delegatable-roles, tenant-
as-provider-regular-roles, tenant-as-provider-delegatable-roles, provider-regular-roles,
provider-delegatable-roles, tenant-permissions, tenant-as-providers-permissions and
provider-permissions respectively. The set of edges E = URRA∪UDRA∪ PRRA∪
PDRA∪RRHa∪DRHa ∪RRHu ∪DRHu corresponds to the different relationships be-
tween the model’s entities.

We now define some relationships with roles that form the building block for the
access control model, as follows:

Definition 1. User-Regular-Role Assignment (URRA) = (U × TRR)∪ (U × TPRR)∪
(U × PRR) is a many-to-many relationship that provides the regular roles to which
different users can be assigned in the cloud. It is represented as a pair of user-regular-
roles.

Definition 2. User-Delegatable-Role Assignment (UDRA) = (U × TDR) ∪ (U ×
T PDR)
∪ (U×PDR) is a many-to-many relationship identifying delegatable roles to which dif-
ferent users can be assigned in the cloud. This relationship is represented as a pair of
user-delegatable-roles.

Definition 3. Permission-Regular-Role Assignment (PRRA) = (T RR×TP)∪(T PRR×
T PP)∪ (PRR×PP) is a many-to-many relationship providing the set of permission-
regular-roles that indicate to regular roles which permissions they are allowed to ac-
quire.

Definition 4. Permission-Delegatable-Role Assignment (PDRA) = (T DR×TP)∪
(T PDR× T PP)∪ (PDR× PP) is a many-to-many relationship providing the set of
permission-delegatable-roles identifying the permissions for which delegatable roles
are authorized.

The role-hierarchy defines parent-child relationships between different roles. This al-
lows for easy administration of roles by reducing the number of explicit assignments
in the URRA, UDRA, PRRA, and PDRA relations. Regular roles are organized in a
Regular-Role-Hierarchy while delegatable roles are organized in a Delegatable-Role-
Hierarchy with the two hierarchies being disjoint. We define the two hierarchies as
follows:

Definition 5. The Role-hierarchy (RH) = ℜ×{a,u}, is a partial order on the set of
roles where ℜ = ((T RR×TRR)∪ (T PRR×TPRR)∪ (PRR×PRR)) in case role is a
regular role. In the same case RH is written RRH to represent a regular role-hierarchy.
When considering the case when role is a delegatable role, then (ℜ = ((T DR×TDR)∪
(T PDR×TPDR)∪ (PDR×PDR)), and RH becomes DRH to represent a delegatable
role-hierarchy. The set {a,u} can be considered as one of these:
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– the role-activation hierarchy
– the permission-usage hierarchy

Let ≤a denote the reflexive transitive closure of ℜa while ≤u denotes the reflexive
transitive closure of ℜu. Then role-activation hierarchy and permission-usage hierarchy
are defined as follows.

Definition 6. Role-activation hierarchy (ℜa) = {(r,r′) : (r,r′,a) ∈ℜ} is a subset of ℜ
such that a user u may activate a role r in a session instance if there exists a role r′
such that {u,r′} ∈URRA and r ≤a r′ if r and r′ are regular roles, or {u,r′} ∈UDRA
and r ≤a r′ when r and r′ are delegatable roles.

Definition 7. Permission usage hierarchy (ℜu) = {(r,r′) : (r,r′,u) ∈ ℜ} such that a
user is authorized for permission p if there exists roles r,r′ such that u may activate r′,
with (p,r) ∈ PRRA and r ≤u r′ in the case r,r′ are regular roles, or with (p,r) ∈ PDRA
and r ≤u r′ when r,r′ are delegatable roles. In the first case ℜu becomes RRHu, while it
becomes DRHu when roles are delegatable.

3.3 Evaluating Access Requests

The cloud security administrator assigns trust constraints in the form of a corresponding
trust interval to roles, permissions, and other associations between entities based on
different characteristics of each model. Note that in the cloud structure, users, tenants
or providers of the senior role can perform the same set of duties as its junior role; hence
an entity who will be assigned to the senior role require more trustworthiness than the
entity who will be assigned to junior role only. Based on this observation, when we
introduce the notion of trust value, we assume that the trust value of the senior role
always dominates the trust values of its junior roles.

We have previously proposed the notions of activation path, usage path and access
path in [19] to evaluate if an access control request should be denied or granted accord-
ing to the current policy. We adapt and extend these notions here to determine access
request for mobile smartphone clouds.

Definition 8. An activation path (or act-path) between two nodes v1 and vn in the au-
thorization graph is a sequence of vertices v1, . . . ,vn ∈ E such that either (v1,v2) ∈
URRA and (vi−1,vi) ∈ RRHa for i = 3, . . . ,n on a regular-role hierarchy or (v1,v2) ∈
UDRA and (vi−1,vi) ∈DRHa for i = 3, . . . ,n on a delegatable-role hierarchy.

Definition 9. A usage path (or u-path) between two nodes v1 and vn in the authoriza-
tion graph is a sequence of vertices v1, . . . ,vn ∈ E such that either (vi,vi+1) ∈ RRHu for
i = 1, . . . ,n−2, and (vn−1,vn)∈ PRRA on a regular-role hierarchy or (vi,vi+1)∈DRHu

for i = 1, . . . ,n− 2, and (vn−1,vn) ∈ PDRA on a delegatable-role hierarchy.

Definition 10. An access path (or acs-path) between two nodes v1 and vn in the autho-
rization graph is a sequence of vertices v1, . . . ,vn, such that (v1,vk) is an act-path, and
(vk,vn) is an u-path.

Based on these definitions of usage path, access path and activations we propose three
different access control models, namely, the standard model, the strong model and the
weak model. The models differ with respect to the trust constraints that must be satisfied
by the entities for the authorization to be successful.
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3.4 The Standard Model

In the standard model, individual entities are associated with trust values and describe
how much the user is trusted to perform a specific role. The role trust range associ-
ated with a tenant role, a tenant-as-provider role or a provider role specifies the mini-
mum trust level with respect to that role that the user has to acquire in order to activate
the corresponding role. Similarly, the permission trust range associated with a tenant-
permission, tenant-as-provider-permission or provider-permission specifies the mini-
mum trust level with respect to the current role of the user, that needs to be acquired in
order to invoke these permission.

Let the trust values for the user be specified by a function T : ((Uh×Rh)∪ (Ud ×
Rd))→ t ∈D and the trust ranges for role and permission by functions L : (R∪P)→
[l,1]⊆D .

– For u ∈U,r ∈ R, T (u,r) denotes the trust value of u with respect to r;

– For r ∈ R, L (r) denotes the trust interval in which r is active;

– For p ∈ P, L (p) denotes the trust interval in which p is active.

For any path v1, . . . ,vn in the graph G = (V,E,T ,L ), where E = URRA∪UDRA∪
PRRA∪PDRA∪RRHa∪DRHa∪RRHu∪DRHu, we write L̂ (v2, . . . ,vn) = L̂ (v2,vn)⊆
D to denote

n⋂
i=2

L (vi). In other words, L̂ (v2,vn) is the trust interval in which every

vertex vi ∈ R∪P is enabled.

Authorization in the Standard Model is based on the policy decision point making
the following three determinations corresponding to the requested access:

1. Is the role that the user needs to activate in the current session in order to acquire
the desired permission, authorized for the permission?

2. Can the user activate the corresponding role?
3. Is the user authorized for the desired permission?

If the policy decision point makes a positive determination for all these conditions a
decision to allow the access is made. These three determinations are made based on the
following propositions.

Proposition 1. A role v1 ∈ R is authorized for permission vn ∈ P if and only if there
exists an u-path v1,v2, . . . ,vn and L (v1)⊆ L̂ (v1,vn).

Proposition 2. A user v1 ∈ U may activate role vn ∈ R if and only if there exists an
act-path v1,v2, . . . ,vn and T (v1,v2) ∈L (v2).

Proposition 3. A user v1 ∈U is authorized for permission vn ∈ P if and only if there
exists an acs-path v1,v2, . . . ,vk, . . . ,vn such that vk ∈ R for some k, v1, . . . ,vk is an act-
path, vk, . . . ,vn is a u-path, v1 can activate vk, and vk is authorized for vn.
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3.5 Controlling Delegation

A delegation operation temporarily changes the access control state so as to allow the
delegatee to use the initial user’s access privileges. Delegation operations are classified
into two kinds: grant operations and transfer operations [3]. Grant operations are de-
fined by grant delegation models and allow the delegated access rights to be available to
both the delegator and the delegatee, after a successful completion of a delegation oper-
ation. Transfer operations, on the other hand, are defined by transfer delegation models
to allow the delegated access right to be acquired by the delegatee, while preventing the
delegator from continuing to use the delegated access right. Most works done in this
field focus on grant operation [3,2,18,22,24,25]. Crampton and Khambhammettu first
introduced the notion of transfer operation in [10].

Designing a mechanism for delegation control involves specifying under which con-
dition a delegation operation is permitted. This requires resolving, in order, the follow-
ing two issues: (1) Determine whether or not a given user is authorized to delegate a role
or permission available to the user. (2) Determine whether a given role or permission
can be delegated to a user.

Relations have been the main way to control delegation [2,24,25] in role-based sys-
tems. Two principal relations, can delegate and can receive, are used for controlling
delegation. Relations are suited to be used in a RBAC system but only where RBAC
relations remain static. However, in a cloud system, RBAC relations, such the role hi-
erarchy, are frequently updated. This situation can generate serious inconsistencies in
relations can delegate and can receive that specify respectively, who is authorized to
delegate access rights, and who is allowed to receive delegated access rights. For this
reason, we have opted to use the concept of administrative scope [11] to deal with
delegation control. Administrative scope is a concept borrowed from RHA family of
administrative models, and is defined as follows [11].

Definition 11. Let r ∈ R. We define σ(r) the administrative scope of a role r as the set
σ(r) = {r′} such that if a role r′ ∈ σ(r) then in the graph formed by the role hierarchy,
any path starting at r′ passes through r.

Definition 12. Let s be a session activated by a user u. We define σ(s) the administra-
tive scope of a session s as σ(s) = ∪r∈sσ(r). The idea expressed by this definition is
that the administrative scope of a session is simply the union of administrative scopes
of all roles activated in the session s by the user u.

The concept of administrative scope provides us with a way to divide a role hierarchy
graph into sub-hierarchies that form a natural unit of administration for the role r. Two
approaches are the most favored for performing role-based administration, ARBAC97
and administrative scope. Among these two approaches, administrative scope is found
to be a more flexible approach [11]. This quality makes it suitable for role-based dele-
gation in a highly dynamic environment that is the cloud system.

Using administrative scope, a user u is allowed to delegate a role r only if r ∈ σ(s),
the administrative scope of the users session. This limits the user to delegate only roles
that are within his administrative scope. Administrative scope can be used to regulate
who can receive a delegation. A user v is authorized to receive a delegation of a role
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r from user u if for all r′ < r such that r′ /∈ σ(s), there exists r′′ such that r′ ≤ r′′ and
(v,r′) ∈UDA. In order words, the delegatee v is authorized to receive the delegation of
a role r if v is already authorized for all role r′ < r. In order for the delegatee to receive
a delegation, the idea is to require him to be already assigned to any roles outside the
delegators administrative scope that the delegatee will inherit by successfully receiving
the delegation.

4 Chaining Delegation and Transfer

A user that has previously received some access rights through a delegation process
may decide to further delegate those rights. This can result in what can be called a
chained delegation. In this delegation chain the trustworthiness of users is used by each
node as a factor to decide about the level of delegation. These trust values form a trust
chain. We use the notion of trust graph expressed in [20] to formalize the notion of
trust chain in a given context. A trust graph T = (N,E) is a directed acyclic graph that
is defined in terms of a set N of nodes and a set E of edges. Nodes represent entities
in the delegation chain, while edges represent trust relationship between these entities.
These entities could be either users or roles respectively for user delegation and role
delegation.

Using trust graphs node ni trusting node n j can be represented by (ni,n j). The degree
to which an entity ni trusts n j is represented by a weight denoted by w(ni,n j), 0 <
w(ni,n j)≤ 1, on the edge (ni,n j). In order to control the propagation of the access right
during a delegation process, every entity puts a constraint on its trust relationship. This
trust constraint is denoted by c(ni,n j) where 0 < c(ni,n j) ≤ 1. Access rights can be
propagated only if c(ni,n j) ≤ w(ni,n j). This implies that delegation cannot be carried
along every edge of the trust graph. Therefore identifying valid paths to carry on a
delegation becomes a challenging problem.
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Fig. 3. Example of a trust graph

We consider the trust graph represented in Fig. 3. The numbers that are within boxes
associated with the edges denote the trust values on the corresponding edges of the
graph while the numbers that are not inside boxes denote the trust constraints. Assume
that the entity J desires to identify all the valid paths it can use to delegate some access
rights to entity K. Using the trust values and the trust constraints, the first challenge is to
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determine all valid paths and thereafter to compute the transitive trust value for each of
the found valid paths from J to K. We use three operators on trust values – a comparison
operator to compare the trust value and the trust constraint, a parallel operator to find
the minimum of two trust values, and a sequential operator that gives the product of
two trust values.

Definition 13. Comparison Operator ' : [0,1]× [0,1] → 0,1 is a binary operation
whose input is a trust value and a trust constraint, and that returns 1 when the trust
value is greater or equal to the trust constraint. Otherwise, the operator returns 0.

Definition 14. Parallel Operator, denoted ⊕ : [0,1]× [0,1]→ [0,1], is a binary oper-
ator whose inputs are two trust values, and that returns the minimum of the two trust
values.

Definition 15. Sequential Operator, denoted ⊗ : [0,1]× [0,1]→ [0,1], is a binary op-
erator whose inputs are two trust values, and that returns the product of these two trust
values.

The comparison operator is used to identify all the valid paths in a trust graph. Those
valid paths are the ones able to carry on the delegation from J to K. The checking of
valid paths may return either multiple valid paths, or a single valid path. In either case,
we need to compute the transitive trust value. The parallel operator is used to compute
the transitive trust value in case of multiple valid paths while the sequential operator is
used for the same purpose but in case of a single valid path.

These operators are used within algorithm 1 to find the transitive trust value. The
algorithm works as follows. Using a set of edges of the trust graph given as input,
the algorithm uses the comparison operator on each pair of edges that form an arc to
compare its trust values to its trust constraint. All arcs whose trust value is at least equal
to the trust constraint are retained. If after being linked those arcs form one or more
paths from the source node to the destination node, then those paths are considered to
be the valid paths. If the algorithm find multiple valid paths, it uses the parallel operator
to find the path with the minimum transitive trust value. Otherwise, the algorithm uses
the sequential operator to return the transitive trust value of the unique path. In case of
multiple valid paths, we made the design decision to choose the path with the minimum
transitive trust value in order to be more conservative and more protective. Choosing the
path with a maximum transitive trust value is also a valid choice, but is not considered
in this work.

To see how the propagation of delegation works, we use the trust graph in Fig. 3
and execute our algorithm in order to find the transitive trust value from node J to
node K. Before running the algorithm on the given graph, a processing step is nec-
essary. This preprocessing involves doing a Depth-First Search on the graph in or-
der to collect all the arcs from nodes J to K. The result of the DFS is as follows.
DFS(G) = (J,C),(C,D),(D,K),(C,B),(B,K),(J,A),(A,D),(A,B). This list of edges
is provided to the algorithm as input.
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Algorithm 1. Algorithm to identify all valid paths for delegation propagation
Input: edges e1, ...,en
Output: set of valid paths and transitive trust on the valid paths
valid paths←{}
for all i : 1 ≤ i ≤ n do

comp trusti← 0
end for
for all i : 1≤ i≤ n do

compt trustl ← w(ei)' c(ei)
if comp trustl = 1 then

valid paths← (ei)
end if

end for
if |Valid paths| > 1 then

Let valid paths = {(n1,n21 , . . . ,nk−11 ,nk1 ),(n1,n22 , . . .
nk−12 ,nk2 ), ...,(n1 ,n2 j , ...,nk−1 j ,nk j )}
min← 1;
for all l : 1≤ l ≤ j do

trans trustl ← 0
end for
for all l : 1≤ l ≤ j do

for all i : 1≤ i≤ (k−2) do
trans trustl ← trans trustl +w(ni,ni+1)⊗w(ni+1),ni+2)

end for
end for
for all l : 1≤ l ≤ j do

min← min⊕ (trans trust)l
end for

end if
if | valid paths |= 1 then

Let valid paths = {n1,n2, . . . ,nk}
trans trustl ← 0
for all i : 1≤ i≤ (k−2) do

trans trustl ← trans trustl ×w(ni,ni+1)⊗w(ni+1,ni+2)
end for

end if
return valid paths, trans trustl

Given the list of arcs, we run the algorithm as follows.

– (J,C) : w(J,C) ' c(J,C) = 0.6 ' 0.6 = 1 valid paths = {(J,C)}
– (C,D) : w(C,D) ' c(C,D) = 0.7 ' 0.6 = 1 valid paths = {(J,C),(C,D)}
– (D,K) : w(D,K) ' c(D,K) = 0.8 ' 0.6 = 1 valid paths = {(J,C),(C,D),(D,K)}
– (C,B) : w(C,B) ' c(C,B) = 0.6 ' 0.5 = 1 valid paths = {(J,C),(C,D),(D,K),(C,B)}
– (B,K) : w(B,K) ' c(B,K) = 0.7 ' 0.5 = 1 valid paths = {(J,C),(C,D),(D,K),(C,B),(B,K)}
– (J,A) : w(J,A) ' c(J,A) = 0.5 ' 0.7 = 0 valid paths = {(J,C),(C,D),(D,K),(C,B),(B,K)}
– (A,D) : w(A,D) ' c(A,D) = 0.4 ' 0.6 = 0 valid paths = {(J,C),(C,D),(D,K),(C,B),(B,K)}
– (A,B) : w(A,B) ' c(A,B) = 0.6 ' 0.7 = 0 valid paths = {(J,C),(C,D),(D,K),(C,B),(B,K)}
– Finally valid paths = {J,C,D,K}, {J,C,B,K}

Since we have found two valid paths, we will run the first if statement of the algorithm
as follows.

– trans trust1 = 0+ 0.6⊗ 0.7⊗0.8= 0.336
– trans trust2 = 0+ 0.6⊗ 0.6⊗0.7= 0.252
– min = trans trust1⊕ trans trust2 = 0.336⊕ 0.252

trans trust2 = 0.252 is the minimum transitive trust value. Therefore the valid path
J,C,B,K is the one that will be used to propagate the delegation of access rights from J
to K.
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5 Conclusion

In this work, we formalized a trust-based access control model for providing fine-
grained access in smartphone clouds. The model extends traditional RBAC with the
notion of trust and also addresses the problem of trustworthy delegations. A lot of work
remains to be done. We plan to analyze this model and detect inconsistencies and errors
in the policy specification. The access control configuration of the cloud is dynamic in
nature. Towards this end, we plan to investigate how to perform access control analysis
in real-time to ensure that security breaches do not occur. We also plan to deploy this
model in real-world environments and study its impact on the performance and usability
of cloud applications.
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Abstract. The data-mining-as-a-service (DMaS) paradigm enables the
data owner (client) that lacks expertise or computational resources to
outsource its mining tasks to a third-party service provider (server). Out-
sourcing, however, raises a serious security issue: how can the client of
weak computational power verify that the server returned correct mining
result? In this paper, we focus on the problem of frequent itemset mining,
and propose efficient and practical probabilistic verification approaches
to check whether the server has returned correct and complete frequent
itemsets.

Keywords: Cloud computing, data mining as a service, integrity veri-
fication.

1 Introduction

Cloud computing, an emerging trend of provisioning scalable computing ser-
vices, provides the opportunity that data mining is offered as an outsourced ser-
vice. Though the data-mining-as-a-service (DMaS) paradigm is advantageous
to achieve sophisticated data analysis in a cost effective way, end users hesitate
to place full trust in Cloud computing. This raises serious security concerns.
One of the main security issues is the integrity of the mining result. There are
many possible reasons for the service provider to return incorrect answers. For
instance, the service provider would like to improve its revenue by computing
with less resources while charging for more. Therefore, it is important to pro-
vide efficient mechanisms to verify the result integrity of outsourced data mining
computations.

In this paper, we focus on frequent itemset mining, an important data min-
ing problem, as the main outsourced data mining service. We aim to address
the particular problem of verifying whether the server has returned correct and
complete frequent itemsets. By correctness, we mean that all itemsets returned
by the server are frequent. By completeness, we mean that no frequent itemset
is missing in the server’s result.

The key idea of our verification methods is to construct a set of (in)frequent
itemsets from real items, and use these (in)frequent itemsets as evidence to check
the integrity of the server’s mining result. We remove real items from the origi-
nal dataset to construct artificial infrequent itemsets, and insert copies of items
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that exist in the dataset to construct artificial frequent items. A nice property
of our verification approach is that the number of required evidence (in)frequent
itemsets is independent from the size of the dataset as well as the number of real
frequent itemsets. This is advantageous as our verification approach will be es-
pecially suitable for verification of frequent mining on large datasets. Compared
with the verification techniques based on fake items (e.g, [13]), our verification
techniques are more robust to catch the untrusted server that may try to escape
verification by utilizing additional background knowledge such as the item fre-
quency distribution information in the outsourced data. Our experimental results
show that our verification approach can achieve strong correctness/completeness
guarantee with small overhead.

The paper is organized as follows. We discuss related work in Section 2 and
preliminaries in Section 3. We present our EF and EI construction mechanisms
for completeness and correctness verification in Section 4 and 5 respectively. In
Section 6 we describe the post-processing procedures at the client side. In Section
7, we evaluate the performance of our approach. We conclude in Section 8.

2 Related Work

The problem of verifiable computation was tackled previously by using interac-
tive proofs [4], probabilistically checkable proofs [2], zero-knowledge proofs [14],
and non-interactive verifiable computing [3]. Unfortunately, this body of the-
ory is impractical, due to the complexity of the algorithms and difficulty to use
general-purpose cryptographic techniques in practical data mining problems.

In the last decade, intensive efforts have been put on the security issues of
the database-as-a-service (DaS) paradigm (e.g., [6,9]). The main focus is the
integrity (i.e., correctness and completeness) of result of range query evaluation.
Only until recently some attention was paid to the security issues of the data-
mining-as-a-service (DMaS) paradigm [10]. However, most of these work only
focus on how to encrypt the data to protect data confidentiality and pattern
privacy, while we focus on integrity verification of mining result.

There is surprisingly very little research [13,8] on result verification of out-
sourced data mining computations in the DMaS paradigm. Among these work,
[13] is the one the most related to ours. It proposed a result verification scheme
for outsourced frequent itemset mining. Its basic idea is to insert some fake
items that do not exist in the original dataset into the outsourced data; these
fake items construct a set of fake (in)frequent itemsets. Then by checking the
fake (in)frequent itemsets, the client can verify the correctness and completeness
of the mining answer by the server. Though effective, this method assumes that
the server has no background knowledge of the items in the outsourced data, and
thus it has equal probability to cheat on the fake and real itemsets. We argue
that using fake items cannot catch the malicious server that may have some back-
ground knowledge of the outsourced dataset. For example, if the server knows
that there are k unique items in the original dataset, let k′(k′ > k) be the number
of items in the outsourced dataset. The probability that an item is real is k/k′.
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If the number of artificial items is relatively small compared with the number of
real items, the server has a high probability to identify a real item. Furthermore,
the verification approach in [13] still preserves the frequency of items, which
may enable the server to identify the real/artificial items by the frequency-based
attack (e.g, [12,11]). Our approach is much more challenging than using fake
items (as in [13]), since insertion/deletion of real items may modify the true
frequent itemsets. Our goal is to minimize the undesired change on the real
frequent itemsets, while provide quantifiable correctness/completeness guarantee
of the returned result.

3 Preliminaries

Frequent Itemset Mining. Given a transaction dataset D that consists of n
transactions, let I be the set of unique items in D. The support of the itemset
I ⊆ I (denoted as supD(I)) is the number of transactions in D that contain I.
An itemset I is frequent if its support is no less than a support threshold minsup

[1]. The (in)frequent itemsets behave the following two monotone properties: (1)
any superset of an infrequent itemset must be infrequent, and (2) any subset of
a frequent itemset must be frequent.

Untrusted Server and Verification Goal. Due to many reasons (e.g., code
bugs, software misconfiguration, and inside attack), a service provider may re-
turn incorrect data mining results. In this paper, we consider the server that
possesses the background knowledge of the outsourced dataset, including the
domain of items and their frequency information, and tries to escape from ver-
ification by utilizing such information. We formally define the correctness and
completeness of the frequent itemset mining result. Let F be the real frequent
itemsets in the outsourced database D, and FS be the result returned by the

server. We define the precision P of FS as P = |F∩FS|
|FS| (i.e., the percentage of re-

turned frequent itemsets that are correct), and the recall R of FS as R = |F∩FS|
|F |

(i.e., the percentage of correct frequent itemsets that are returned). Our aim is
to catch any answer that does not meet the predefined precision/recall require-
ment with high probability. Formally, given a dataset D, let F s be the set of
frequent itemsets returned by the server. Let prR and prP be the probability to
catch F s of recall R ≤ α1 and precision P ≤ α2, where α1, α2 ∈ [0, 1] are given
thresholds. We say a verification method M can verify (α1, β1)-completeness
((α2, β2)-correctness, resp.) if prR ≥ β1 ( prP ≥ β2, resp.), where β1 ∈ [0, 1]
(β2 ∈ [0, 1], resp.) is a given threshold. Our goal is to find a verification mecha-
nism that can verify (α1, β1)-completeness and (α2, β2)-correctness.

4 Construction of Evidence Frequent Itemsets (EFs)

Our key idea of completeness verification is that the client uses a set of frequent
itemsets as the evidence, and checks whether the server misses any evidence fre-
quent itemset in its returned result. If it does, the incomplete answer by the
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server is caught with 100% certainty. Otherwise, the client believes that the
server returns incomplete answer with a probability. In particular, the probabil-
ity prR of catching the incomplete frequent itemsets FS of recall R by � evidence
frequent itemsets (EFs) is prR = 1−R�. Clearly, to satisfy (α1, β1)-completeness
(i.e., prR ≥ β1), it must be true that � ≥ )logα1(1 − β1)*. Further analysis can
show that to catch a server that fails to return a small fraction of frequent item-
sets with high completeness probability does not need large number of EFs. For
instance, when α1 = 0.95 and β1 = 0.95, only 58 EFs are sufficient. Apparently
the number of required EFs is independent from the size of the dataset as well
as the number of real frequent itemsets. Therefore our verification approach is
especially suitable for large datasets.

We propose the MiniGraph approach to construct EFs. The basic idea of the
MiniGraph approach is to construct itemsets that are guaranteed to be infrequent
in the original dataset D. To construct these itemsets quickly without doing any
mining, we construct the itemsets that contain at least one infrequent 1-itemset.
The MiniGraph approach consists of the following steps:

Step 1: Pick the shortest infrequent itemset (can be 1-itemset) of the largest
support as Is.

Step 2: Find transactions Ds ⊆ D that contain Is. Construct the MiniGraph
G from Ds, with the root of G representing Is, and each non-root node in G
representing a transaction in Ds. There is an edge from node Ni to node Nj if
the transaction of node Nj is the maximum subset of the transaction of node Ni

in D (i.e., no other transactions in D that contain the transaction of node Ni).

Step 3: Mark all nodes at the second level of G as candidates. For each can-
didate, all of its subset itemsets that contain Is will be picked as EFs. If the
total number of candidates is less than � = )logα1(1 − β1)*, we add the next
infrequent 1-itemset of the largest frequency as another Is, and repeat Step 1 -
3, until we either find � EFs or there is no infrequent 1-itemset left.

Step 4: For each EF , construct (minsup − s) copies as artificial transactions,
where s is the support of EF in D.

The time complexity of the MiniGraph approach is O(|D|).

5 Construction of Evidence Infrequent Itemsets (EIs)

Our basic idea of correctness verification is that the client uses a set of in-
frequent itemsets as the evidence, and checks whether the server returns any
evidence infrequent itemset. If it does, the incorrect answer by the server is
caught with 100% certainty. Otherwise, the client believes that the server re-
turns the incorrect answer with a probability. In particular, the probability prP
of catching the incorrect frequent itemsets with precision P by using � EIs is
prP = 1 − P �. To satisfy (α2, β2)-correctness (i.e., prP ≥ β2), it must satisfy
that � ≥ )logα2(1−β2)*. As prP and prR (Section 4) are measured in the similar
way, we have the same observation of the number of EIs as the number of EFs.

Our EI construction method will identify a set of real frequent itemsets and
change them to be infrequent by removing items from the transactions that
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contain them. Our goal is to minimize the number of items that are removed.
Next, we explain the details.

Step 1: Pick Evidence Infrequent Itemsets (EIs). First, we exclude items
that are used as Is for EF construction from the set of 1-itemset candidates.
This ensures that no itemset will be required to be EI and EF at the same
time. Second, we insert all infrequent 1-itemsets into the evidence repository
R. If |R| ≥ �= )logα2(1 − β2)*, we terminate EI construction. Otherwise, we

compute h, the minimal value to make
(
m−|R|

h

) ≥ �−|R|, where m is the number

of unique items in D. Third, we compute k, the minimal value to make
(
k
h

)
≥ �− |R|. We pick the first k frequent 1-itemsets S following their frequency in
ascending order, and construct all h-itemset candidates Sh that contain h items
from S. The h-itemset candidates of non-zero support in D will be inserted into
R. To efficiently find the itemset I that has non-zero support in D, we make use
of a simpler version of the FP -tree [7] to store D in a compressed way. More
details of this data structure is omitted due to space limit.

Step 2: Pick Transactions for Item Removal.We aim at transforming those
frequent EIs (i.e., artificial infrequent EIs) picked by Step 1, notated as AI, to
be infrequent. To achieve this, we pick a set of transactions D′ ⊆ D, so that for
each frequent itemset I ∈ AI, supD′(I) ≥ supD(I)−minsup + 1.

Step 3: Pick Item Instances for Removal. We decide which items in the
transactions picked by Step 2 will be removed. To minimize the total number of
removed items, we prefer to remove the items that are shared among patterns
in AI. Therefore, we sort items in AI by their frequency in AI in descending
order. We follow this order to pick items to be removed.

The time complexity of the EI construction approach is O(|EI||D| + k!|T |),
where k is the number of frequent 1-itemsets for construction of EIs, and T is
the FP-tree constructed for checking the existence of itemsets in D. Normally
k << m, where m is the number of items in D, and |T | << |D|.

6 Post-processing

There are two types of side effects by introducing EFs and EIs that need to
be compensated: (1) EFs may introduce artificial frequent itemsets that do
not exist in D; and (2) EIs may make some real frequent itemsets disappear.
Removal of artificial frequent itemsets is straightforward. As the client is aware
of the seed item Is that is contained in all EF s, it only needs to remove all
the returned frequent itemsets that contain Is. To recover missing real frequent
itemsets, the client maintains locally all AIs when it constructs EIs. During
post-processing, the client adds these AIs back to FS as frequent itemsets.

7 Experiments

In this section, we experimentally evaluate our verification methods. All ex-
periments were executed on a Macbook Pro machine with 2.4GHz CPU, 4GB
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memory, running Mac OS X 10.7.3. We implemented a prototype of our algo-
rithm in Java.

We evaluated our algorithm on two type of datasets: (1) the dense dataset in
which most of transactions are of similar length, and contain > 75% of items; and
(2) the sparse dataset in which the transactions are of skewed length distribution.
We use the NCDC dataset1 (500 items, 365 transactions) as the dense dataset,
and the Retail dataset2 (16470 items, 88162 transactions) as the sparse dataset.
Due to its density/sparsity, NCDC dataset has a large number of frequent 1-
itemsets, while Retail dataset has a large number of infrequent 1-itemsets. We
use the Apriori algorithm [1], a classic frequent itemset mining algorithm, as
the main mining algorithm. We use the implementation of Apriori algorithm
available at http://www.borgelt.net/apriori.html.

Robustness.We measure the robustness of our probabilistic approach by study-
ing the probability that the incorrect/incomplete frequent itemsets can be caught
by using artificial EIs/EFs. We use the Retail dataset and vary α1 and α2 val-
ues to control the amount of mistakes that the server can make on the mining
result. For each α1 (α2, resp.) value, we randomly modify (1 − α1) ((1 − α2),
resp.) percent of frequent (infrequent, resp.) itemsets (including both true and
artificial ones) to be infrequent (frequent, resp.). Then with various β1 and β2

values, we construct artificial tuples to satisfy (α1, β1)-completeness and (α2, β2)-
correctness. Detection of any missing EF or the presence of any EIs will be
recorded as a successful trial of catching the server. We repeat 1,000 times and
record the percentage of trials (as detection probability) that the server is caught,
with α1, α2 ∈ [0.7, 0.9] and β1, β2 ∈ [0.7, 0.9]. It shows that the detection proba-
bility for the completeness and correctness verification is always higher than β1

and β2 respectively. This proves the robustness of our probabilistic approach.
The results are omitted due to limited space.

Completeness Verification. First, we measure the EF construction time for
various α1 and β1 values. The result in Figure 1 (a) shows that EF construction
time grows when α1 and β1 grow, since the MiniGraph approach has to search
for more Is to construct more EFs for higher completeness guarantee.

Second, we measure the amount of inserted artificial transactions and compare
it with the size of the database. In particular, let t be the number of artificial
transactions to be inserted, we measure the ratio r = t

m , where m is the number
of real transactions in D. As shown in Figure 1 (b), for Retail dataset, the
inserted artificial transactions only take a small portion of the original database.
For example, when β1 ≤ 0.99, the ratio is less than 3%. Even for large values
such as α1 = β1 = 0.999, the ratio is no more than 25% .

Correctness Verification. First, we measure the EI construction time on
NCDC dataset. The performance result is shown in Figure 2 (a). It is not

1 National Climatic Data Center of U.S. Department of Commerce:
http://lwf.ncdc.noaa.gov/oa/climate/rcsg/datasets.html

2 Frequent Itemset Mining Dataset Repository:
http://fimi.ua.ac.be/data/.
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surprising that it needs more time to construct EIs for higher α2 and β2 values.
With a closer look of the result, when β2 = 0.9 and 0.99, EI construction is
very fast (no more than 1 second), since all EIs are real infrequent itemsets
and there is no need to remove any item. However, when β2 grows to 0.999, the
construction time jumps to 400 - 600 seconds, since now the algorithm needs to
find frequent itemset candidates to be EIs as well as the items to be removed.
We also measure the EI construction time of Retail dataset. It does not increase
much when β2 increases from 0.9 to 0.999, since all EIs are real infrequent 1-
itemsets.

Second, we measure the amount of item instances that are removed by EI
construction. In particular, let t be the number of item instances to be removed,
we measure the ratio r = t

|D| . The result of NCDC dataset is shown in Figure

2 (b). It can be seen that the number of item instances to be removed is a
negligible portion (no more than 0.045%) of NCDC dataset. There is no item
that is removed from Retail dataset, as it has a large number of infrequent 1-
itemsets, which provides sufficient number of EI candidates. This shows that we
can achieve high correctness guarantee to catch small errors by slight change of
the dataset.
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8 Conclusion

In this paper, we present our methods that verify the correctness and complete-
ness of outsourced frequent itemset mining. We propose a lightweight verification
approach that constructs evidence (in)frequent itemsets. In particular, we remove
a small set of items from the original dataset and insert a small set of artificial
transactions into the dataset to construct evidence (in)frequent itemsets. Our
experiments show the efficiency and effectiveness of our approach. An interesting
direction to explore is to design verification approaches that can provide deter-
ministic correctness/completeness guarantee without extensive computational
overhead.
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Abstract. Security risk analysis should be conducted regularly to main-
tain an acceptable level of security. In principle, all risks that are
unacceptable according to the predefined criteria should be mitigated.
However, risk mitigation comes at a cost, and only the countermeasures
that cost-efficiently mitigate risks should be implemented. This paper
presents an approach to integrate the countermeasure cost-benefit assess-
ment into the risk analysis and to provide decision makers with the neces-
sary decision support. The approach comes with the necessary modeling
support, a calculus for reasoning about the countermeasure cost and ef-
fect, as well as means for visualization of the results to aid decision makers.

1 Introduction

Security risk analysis concludes with a set of recommended options for mitigat-
ing unacceptable risks [8]. The required level of security and the acceptable level
of risk should be defined by the risk criteria. However, deciding which counter-
measures to eventually implement depends also on the trade-off between benefit
and spending. No matter the criteria and the mitigating effect of the counter-
measures, risk mitigation should ensure return on investment in security [2].
Currently there exists little methodic support for systematically capturing and
analyzing the necessary information for such decision making as an integrated
part of the security risk analysis process.

The contribution of this paper is an approach to integrate the assessment of
countermeasures and their cost and effect into the risk analysis process. The
approach comes with the necessary modeling support, a calculus for reasoning
about risks, countermeasures, costs and effects within the risk models, as well as
support for decision making. A formal foundation is provided to ensure rigorous
analysis and to prove the soundness of the calculus. The approach is generic
in the sense that it can be instantiated by several established risk modeling
techniques. The reader is referred to the full technical report [12] for the formal
foundation, the soundness proofs and other details. The report demonstrates the
instantiation in CORAS [9] with an example from the eHealth domain.

In Section 2 we present our approach, including the method, the modeling
support and the analysis techniques. Section 3 gives a small example. Related
work is presented in Section 4, before we conclude in Section 5.

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 266–273, 2013.
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2 Our Approach

Our approach (see Fig. 1) takes a risk model resulting from a risk assessment
and the associated risk acceptance criteria as input, and delivers a recommended
countermeasure alternative as output. Hence, the approach assumes that the risk
assessment has already been conducted, i.e. that risks have been identified, es-
timated and evaluated and that the overall risk analysis process is ready to
proceed with the risk treatment phase. We moreover assume that the risk analy-
sis process complies with the ISO 31000 risk management standard [8], in which
risk countermeasure is the final phase. Our process consists of three main steps.

In Step 1, the risk model is annotated with relevant information including
the countermeasures, their cost, their reduction effect (i.e. effect on risk value),
as well as possible effect dependencies (i.e. countervailing effects among coun-
termeasures). In Step 2, we perform countermeasure analysis by enumerating
all countermeasure alternatives (i.e. combinations of countermeasures to address
risks) and reevaluating the risk picture for each alternative. This analysis makes
use of the annotated risk model and a calculus for propagating and aggregating
the reduction effect and effect dependency along the risk paths of the model.
Step 3 performs synergy analysis for selected risks based on decision diagrams.
The output is a recommended countermeasure alternative.

Fig. 2 presents the underlying concepts of our approach. A Risk Model is
a structured way of representing unwanted incidents, their causes and conse-
quences using graphs, trees or block diagrams. An unwanted incident is an event
that harms or reduces the value of an asset, and a risk is the likelihood of an
unwanted incident and its consequence for a specific asset [8]. A Countermeasure
mitigates risk by reducing its likelihood and/or consequence. The Expenditure
includes the expenditure of countermeasure implementation, maintenance and so
on for a defined period of time. The Effects Relation captures the extent to which
a countermeasure mitigates risks. The Effects Relation could be the reduction
of likelihood, and/or the reduction of consequence of a risk. The Dependency
relation captures the countervailing effect among countermeasures that must
be taken into account in order to understand the combined effect of identified
countermeasures. The Calculus provides a mechanism to reason about the anno-
tated risk model. Using the Calculus, we can perform countermeasure analysis
on annotated risk models to calculate the residual risk value for each individual
risk. A Decision Diagram facilitates the decision making process based on the
countermeasure analysis.

As already explained, the input required by our approach is the result of a
risk assessment in the form of a risk model, and the corresponding risk

STEP 3. 
Perform synergy 

analysis

STEP 1.
Annotate risk 

model

STEP 2. 
Perform 

countermeasure analysis

[INPUT]
Risk Model and 

Risk Acceptance Criteria

[OUTPUT]
Recommended 

Countermeasure 
Alternative

Fig. 1. Three-steps approach
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acceptance criteria. To ensure that our approach is compatible with established
risk modeling techniques, we only require that the risk model can be understood
as a risk graph. A risk graph [3] is a common abstraction of several established
risk modeling techniques such as Fault Tree Analysis (FTA), Event Tree Analy-
sis (ETA), Attack Trees, Cause-Consequence Diagrams, Bayesian networks, and
CORAS risk diagrams. Hence, our approach complies with these risk modeling
techniques, and can be instantiated by them.

A risk graph is a finite set of vertices and relations (see Fig. 3(a)). Each
vertex v represents a threat scenario, i.e. a sequence of events that may lead to
an unwanted incident, and can be assigned a likelihood f, and a consequence co.
The likelihood can be either probabilities or frequencies, but here we use only the
latter. A leads-to relation from v1 to v2 means that the former threat scenario
may lead to the latter. The positive real numbers decorating the relations capture
statistical dependencies between scenarios, such as conditional probabilities.

2.1 Detailing of Step 1 – Annotate Risk Model

This step is to annotate the input risk model with required information for
further analysis. There are four types of annotation as follows.

Countermeasures are represented as rectangles. In Fig. 3(b) there is one coun-
termeasure, namely cm. An expenditure is expressed within square brackets fol-
lowing the countermeasure name (e in Fig. 3(b)). This is an estimation of the
expense to ensure the mitigation of countermeasure including the expense of
implementation, maintenance, and so on. An effects relation is represented by

v1

[f1, co1]

v2

[f2, co2]

v3

[f3, co3]
v4

[f4, co4]

v6

[f6, co6]
v5

[f5, co5]

v7

[f7, co7]

fa

fb

fc

fd

ff

fe

(a)

vcm
[e]

fe,ce

(b)

v

cm1

fd, cd
cm2

(c)

Fig. 3. A risk graph (a) and its extended annotations: Effect relation (b), and Depen-
dency relation (c)
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a dashed arrow decorated by two numbers (fe and ce in Fig. 3(b)). It captures
the mitigating effect of a countermeasure in terms of reduced frequency (i.e. fre-
quency effect - fe), reduced consequence (i.e. consequence effect - ce), or both.
Both fe and ce are relative percentage values, i.e. fe, ce ∈ [0, 1]. A dependency
relation is represented by a dash-dot arrow with solid arrowhead decorated by
two numbers, namely a frequency dependency - fd and a consequence dependency
- cd as illustrated in Fig. 3(c). A dependency relation captures the impact of a
countermeasure on the effect of another when both are implemented. In Fig. 3(c)
the fd impacts fe while the cd impacts ce. Both fd and cd are relative percentage
values, i.e. fd, cd ∈ [0, 1].

2.2 Detailing of Step 2 – Countermeasure Analysis

The countermeasure analysis is conducted for every risk of the annotated risk
model. The analysis enumerates all possible countermeasure combinations, called
countermeasure alternatives (or alternatives shortly), and evaluates the residual
risk value (i.e. residual frequency and consequence value) with respect to each al-
ternative to determine the most effective one. The residual risk value is obtained
by propagating the reduction effect along the risk model.

From the leftmost threat scenarios (i.e. scenarios that have only outgoing
leads-to relations), frequencies assigned to threat scenarios are propagated to
the right using the formal calculus. The reader is referred to [12] for the full
formal calculus and for the soundness proofs. During the propagation, frequencies
assigned to leads-to relations, reduction effects, and effect dependencies are taken
into account. Finally, the propagation stops at the rightmost threat scenarios
(i.e. scenarios that have only incoming leads-to relations). Based on the results
from the propagation, the residual risk value is computed.

A Decision Diagram, as depicted in Fig. 4 for two different risks, is a directed
graph used to visualize the outcome of a countermeasure analysis. A node in the
diagram represents a risk state which is a triplet of a likelihood, a consequence,
and a countermeasure alternative for the risk being analyzed. The frequency
and consequence are the X and Y coordinates, respectively, of the node. The
countermeasure alternative is annotated on the path from the initial state S0

(representing the situation where no countermeasure has yet been applied). No-
tice that we ignore all states whose residual risks are greater than those of S0

since it is useless to implement such countermeasures.

2.3 Detailing of Step 3 – Synergy Analysis

The synergy analysis aims to recommend a cost-effective countermeasure alter-
native for mitigating all risks. It is based on the decision diagrams of individual
risks (generated in Step 2), the risk acceptance criteria, and the overall cost
(OC) of each countermeasure alternative. The OC is calculated as follows:

OC(ca) =
∑
r∈R

rc(r) +
∑

cm∈ca

cost(cm) (1)
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Here, ca is a countermeasure alternative; R is the set of risks; rc() is a func-
tion that yields the loss (in monetary value) due to the risk taken as argument
(based on its likelihood and consequence); cost() is a function that yields the
expenditure of the countermeasure taken as argument.

The synergy analysis is decomposed into the following three substeps:

Step 3A Identify countermeasure alternatives: Identify the set of countermea-
sure alternatives CA for which all risks are acceptable with respect to the risk
acceptance criteria. CA could be identified by exploiting decision diagrams.

Step 3B Evaluate countermeasure alternatives: If there is no countermeasure
alternative for which all risks fulfill the risk acceptance criteria (CA = ∅),
do either of the following:
• identify new countermeasures and go to Step 1, or
• adjust the risk acceptance criteria and go to Step 3A.

Otherwise, if there is at least one such countermeasure alternative (CA �= ∅),
calculate the overall cost of each ca ∈ CA.

Step 3C Select cost-effective countermeasure alternative: If there is at least one
countermeasure ca ∈ CA for which OC(ca) is acceptable (for the customer
company in question) select the cheapest and terminate the analysis. Oth-
erwise, identify more (cheaper and/or more effective) countermeasures and
go to Step 1.

The above procedure may of course be detailed further based on various heuris-
tics. For example, in many situations, with respect to Step 3A, if we already
know that countermeasure alternative ca is contained in CA then we do not have
to consider other countermeasure alternatives ca′ such that ca ⊆ ca′. However,
we do not go into these issues here.

3 Example

In the following we give a small example of the synergy analysis based on our
eHealth assessment [12]. The scenario is on remote patient monitoring, where
one of the identified risks is loss of monitored data (LMD). Table 1 is input
from Step 2, namely the result of the analysis of seven treatment alternatives
given three identified treatments. The corresponding decision diagram is depicted
in Fig. 4(a). The shaded area to the lower left are the acceptable risks levels,
whereas the upper right are the unacceptable levels. Notice that while the treat-
ment alternatives for LMD reduce only the consequence, some of the alternatives
for loss of integrity of monitored data (LID) also reduce the frequency.

The results of the synergy analysis of three risks are depicted in Table 2. Their
respective treatment alternatives that yield acceptable risk levels are shown in
the middle, whereas their combinations are shown in the first column. The third
column shows the overall costs as calculated in Step 3. If also the costs are
acceptable, the cheapest alternative should be selected.
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Table 1. Analysis for the risk Loss of monitored data

Each treatment alternative S is shown in the first column (Risk State) followed by its combination
of treatments. The Frequency column is the number of occurrences in ten years. Both Frequency
and Consequence columns are valued after considering the treatments.

Ensure sufficient QoS from network provider
Implement Redundant Network connection
Implement Redundant Handheld

Risk State Treatment Frequency Consequence

S0 26.4 5000
S1 • 21.36 5000
S2 • 12.96 5000
S3 • • 7.92 5000
S4 • 12.96 5000
S5 • • 7.92 5000
S6 • • 10.08 5000
S7 • • • 5.04 5000
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Fig. 4. Decision diagrams of two risks in the eHealth scenario

4 Related Work

In risk management, decision on different risk mitigation alternatives has been
emphasized in many studies [6,10,11]. The guideline in [11] proposes cost-benefit
analysis to optimally allocate resources and implement cost-effective controls af-
ter identifying all possible countermeasures. This encompasses the determination
of the impact of implementing (and not implementing) the mitigations, and the
estimated costs of them. Another guideline [6] provides a semi-quantitative risk
assessment. The probability and impact of risks are put into categories which are
assigned scores. The differences between the total score for all risks before and
after any proposed risk reduction strategy relatively show the efficiency among
strategies, and effectiveness of their costs. It also suggests that the economic
costs for baseline risks should be evaluated. However, the proposed methods for
conducting the evaluation have not been designed to assess cost of treatments,
but rather cost of risks.
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Table 2. Results from synergy analysis of three risks

Individual Risk

Treatment Alternative LID LMD DAS Overall Cost

{UBA,SCO,IRH,IRN,USW} S3 S3 S3 101740
{UBA,SCO,IRH,IRN,EQS,USW} S3 S7 S3 102340
{UBA,IRH,IRN,USW} S2 S3 S3 104500
{UBA,IRH,IRN,EQS,USW} S2 S7 S3 105100
{UBA,SCO,IRH,IRN} S3 S3 S2 108740
{UBA,SCO,IRH,IRN,EQS} S3 S7 S2 109340
{UBA,IRH,IRN} S2 S3 S2 111500
{UBA,IRH,IRN,EQS} S2 S7 S2 112100

Norman [10] advocates the use of Decision Matrix to agree on countermeasure
alternative. A Decision Matrix is a simple spreadsheet consisting of countermea-
sures and their mitigated risks. The approach, however, is not clearly defined,
and the spreadsheets are complicated to implement and follow. Meanwhile, our
proposal is graphical and backed up with a formal definition and reasoning. But-
ler [4] proposes the Security Attribute Evaluation Method (SAEM) to evaluate
alternative security designs in four steps: benefit assessment, threat index eval-
uation, coverage assessment, and cost analysis. This approach, however, focuses
mostly on the consequence of risks rather than cost of countermeasures, whereas
our approach captures both.

Chapman and Leng [5] describe a decision methodology to measure the
economic performance of risk mitigation alternatives. It focuses on the cost-
difference aspect, but does not consider the benefit-difference (i.e. level of risks
reduced) among alternatives.

Houmb et al. [7] introduce SecInvest, a security investment support frame-
work which derives a security solution fitness score to compare alternatives and
decide whether to invest or to take the associated risk. SecInvest relies on a
trade-off analysis which employs existing risk assessment techniques. SecInvest
ranks alternatives with respect to their cost and effect, trade-off parameters, and
investment opportunities. However, this approach does not provide a systematic
way to assess the effects of alternatives on risks, and does not take into account
the dependency among countermeasures in an alternative.

Beresnevichiene et al. [1] propose a methodology incorporating a multi-
attribute utility evaluation and mathematical system modeling to assist decision
makers in the investment on security measures. It can be employed in existing
risk assessment methods, including ours, to evaluate the residual risk.

5 Conclusion

We have presented an approach to select a cost-effective countermeasure alter-
native to mitigate risks. The approach requires input in the form of risk models
represented as risk graphs. The approach analyses risk countermeasures with
respect to different aspects such as the mitigating effect, how countermeasures
affect others, and how much countermeasures cost. We have developed a formal
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calculus extending the existing calculus for risk graphs. The extended calcu-
lus can be used to propagate likelihoods and consequences along risk graphs,
thereby facilitating a quantitative countermeasure analysis on individual risks,
and a synergy analysis on all the risks. The outcome is a list of countermeasure
alternatives quantitatively ranked according to the their overall cost. These al-
ternatives are represented not only in tabular format, but also graphically in the
form of decision diagrams. The approach is generic in the sense that it can be
instantiated by several existing risk assessment techniques.
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1 Lab-STICC, Télécom Bretagne, Cesson Sévigné, France
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Abstract. Shamir proposed the setbase approach as a means of im-
proving security and privacy of the traditional biometric system. In this
paper, we propose privacy-preserving drawer size standards for the bio-
metric setbase. The proposal incorporates database privacy metrics such
as k-anonymity and l-diversity into the definition of privacy-preserving
drawer size standard for the biometric setbase. We also empirically eval-
uate the system reliability of the prototype setbase for the purpose of
studying the trade-off values between the level of privacy protection and
the level of system security.

Keywords: database fragmentation, setbase, k-anonymity, l-diversity,
biometric privacy.

1 Introduction

The setbase approach was proposed by Adi Shamir [6] (see also [2]) as a means
of improving security and privacy of the traditional biometric system. The tradi-
tional biometric database uses a one-to-one data linking between biometric data
stored in the biometric database and personal information stored in the identity
database. The setbase approach depends on the creation of drawers in which the
biometric and personal data are stored. The linking between the identity and
the corresponding biometric data takes places at the level of linking identical
drawer IDs in the databases. Since each drawer contains multiple records, the
identification of an identity is blurred which leads to privacy protection of an
individual. With the number of drawers sufficiently large, the probability of an
identity theft can be made negligible. Furthermore, the lack of cryptographic
mechanisms in a setbase can be seen as another privacy virtue because we do
not want to place too much trust in a single entity as for instance the owner of
the cryptographic keys.

Given the theoretic interest of Shamir’s proposal, there have been hitherto no
studies in the literature on how practical shamir’s scheme is. Specifically, one
would like to know at least in theory:

L. Wang and B. Shafiq (Eds.): DBSec 2013, LNCS 7964, pp. 274–281, 2013.
c© IFIP International Federation for Information Processing 2013
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1. Set of metrics capable of measuring the privacy level of the setbase approach.
2. Value ranges of the important setbase system parameters, such as the number

of drawers and possible sizes of a drawer.
3. Impact of the setbase parameters on the level of database privacy.

The importance of choosing the appropriate drawer sizes in a setbase can be seen
in the context of preserving privacy of individuals in a biometric database. To
make things concrete, we explain the concept using the crime investigation ex-
ample. In such a scenario, the investigator has gathered some generic information
such as the sex, the age group, and the domicile region of a suspect. Further-
more, the investigator based on the biometric data (e.g. fingerprints collected at
the crime scene) is able to locate the drawer in which a suspect is located. To
identify the person, he must retrieve the identity of a suspect. If the drawer size
is small, the investigator would have a little trouble in sieving out entries inside
the drawer that satisfy his searching criteria. In the extreme case of a traditional
biometric database (one-to-one biometric and identity association), the identity
of a suspect would be revealed once a successful bio and identity matching is
achieved. The increase of the drawer size would make an investigator’s search
more difficult. Thus strong privacy in a setbase requires a large drawer size. The
downside of a large drawer size is that it would expose the system to a higher
chance of drawer ID collision attacks (see section 3). The appropriate choices
of the drawer size for a setbase require a judicious way of balancing between
privacy and security.

1.1 Our Contribution

The starting point of our project is a prototype implementation of the biometric
setbase in the context of studying its suitability for the integration with the
French national identity cards. There had been many propositions in the French
National Assembly advocating the protection of sensitive information such as
those contained in the national identity cards [1,5]. The main goal of our project
is on the one hand to measure the feasibility of the setbase approach for a
real world implementation, and on the other hand to quantify as accurately as
possible how much privacy is enhanced by using the setbase approach.

In order to measure the privacy level of the setbase, we had to develop a drawer
size standard that depends on a set of well known database privacy metrics. The
current paper relies on the concept of k-anonymity and l-diversity as a means
of measuring the privacy level of data tables contained in the database. Our
study is based on the French population data released from National Institute
of Statistics and Economic Studies. The present study shows that the drawer
size standard proposed in the paper permits feasible setbase solution for the
integration with the traditional biometric database currently in use.

1.2 Paper Outline

The paper is organized as follows. The proposed privacy-preserving drawer size
formula is presented in section 2. We evaluate the prototype system performance
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empirically in section 3. Section 4 provides a detailed analysis of the trade-off
between security and privacy when deciding the drawer size.

1.3 Notation

We use the following notations throughout the paper:

NT : the number of drawers that is maintained by the system
TT : the size of a drawer that is maintained by the system

2 Database Tracing Modeling

The aim of this section is to provide some reasonings behind the privacy-
preserving drawer size formula:

TT = Tol(k) · E(X)P +Nexpire (1)

where Tol(k) is a linear function depending on the k-anonymity parameter (see
[4,3] for the definition). Nexpire is a fixed number that represents the number
of expired entries in the drawer. It is a numerical parameter belonging to the
drawers due to the definite expiration date of the biometric data. The value
Nexpire is usually determined by the relevant government policies in the public
domains. The random variable X represents the number of sequential searches
required before one hits an identity record that satisfies the specified sex, age
group, and domicile region criteria. The random variable X assumes a geomet-
ric distribution. And the expected value E(X)P is calculated from the default
population distributions Ps, Pa,Pd on the sex, age group, and domicile region
attributes inside the biometric identity database.

We first introduce the required variables in modeling the identity tracing
procedure during the biometric-identity matching procedure. The deduction of
(1) takes place in section 2.3.

2.1 Database Related and Search Variables

The database related variables and the search variable are discrete random vari-
ables. They are summarized in Table 1.

The random variable S represents the sex of an identity. It takes on two values
1 (male), and 2 (female) with the corresponding probabilities {ps1, ps2}. The ran-
dom variable A represents the age group to which an identity belongs. In this pa-
per, A has 8 possible values with the corresponding probabilities {pa1, pa2 , ..., pa8}.
The values represent 8 different age groups that covers the age span of an entire
population. The values {pa1 , pa2 , ..., pa8} are taken from the current census data as
shown in table 2.1

1 National Institute of Statistics and Economics Studies,
http://www.insee.fr/en/themes/tableau.asp
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Table 1. Random Variables

Random
Variable

Description

S Sex: 1 (M), 2 (F)

A Age Group: 1, 2, ..., 8

D Domicile Region: 1, 2, ..., 101

X The number of searches needed
before the condition S = i and
A = j and D = k is satisfied,
for fixed i, j, k

Table 2. Age Distribution

Age Group Probability

< 15 ans 0.185

15− 24 ans 0.123

25− 34 ans 0.123

35− 44 ans 0.134

45− 54 ans 0.136

55− 64 ans 0.127

65− 74 ans 0.081

> 75 ans 0.09

The random variable D represents the domicile of an identity. This variable
has a range of 1 to 101 with the corresponding probabilities

{
pd1, p

d
2, ..., p

d
101

}
.

This is a French scenario because currently there exists 101 French departments.2

The random variable X represents the number of sequential searches required
before one hits a personal record in the identity database that satisfies the spec-
ified sex, age group, and domicile region criteria. The search random variable X
has a value range from 1 to the size of a drawer TT , and it assumes a discrete
geometric distribution.

2.2 Anonymity Related Variables

The variables described in this section are related to the quantization of
anonymity levels for a specific criterion. To guarantee the k-anonymity require-
ment for a specific criterion, we require that each specified criterion in the re-
leased table has at least k occurrences [3]. Table 3 summarizes the variables.

Tols,a,d: the minimum standard needed for achieving indistinguishability among
people who satisfy the respective criterion. In order to achieve k-anonymity,
one should have Tols ≥ 2k, T ola ≥ 8k, T old ≥ 101k.

ωi: the weights associated with the variables Tols, T ola and Told respectively.
They represent the reliability of information held by an investigator. The
weight ωi is normally set at 1 unless there are reliability issues on the infor-
mation, which would lead ωi to a value strictly less than 1. The value ωi = 0
indicates that the specific criterion is not used in the investigation.

Tol: the global value that represents the tolerance for all the criteria used in the
investigation. It is defined as

Tol = ω1Tols + ω2Tola + ω3Told. (2)

We explain below the lower bound associated with each anonymity related Tols
(see the variable description above). In the course of sequential searching for a

2 http://www.insee.fr/en/methodes/

default.asp?page=definitions/departement.htm

http://www.insee.fr/en/methodes/default.asp?page=definitions/departement.htm
http://www.insee.fr/en/methodes/default.asp?page=definitions/departement.htm
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Table 3. Anonymity Related Variables

Variable Description

k the anonymity-preserving level k

Tols the minimum standard needed for achieving indistin-
guishability among people who have the same sex cri-
terion

Tola the minimum standard needed for achieving indistin-
guishability among people who have the same age group
criterion

Told the minimum standard needed for achieving indistin-
guishability among people who have the same domicile
criterion

ω1 weight for Tols, 0 ≤ ω1 ≤ 1

ω2 weight for Tola, 0 ≤ ω2 ≤ 1

ω3 weight for Told, 0 ≤ ω3 ≤ 1

Tol global tolerance := ω1Tols + ω2Tola + ω3Told

specific criterion, we use a random variable Y to represent the outcome of each
search, whether be success or failure. To preserve k-anonymity, we require that
the expected number of successful identifications exceeds k among n sequential
searches. That is

E(Y ) = np ≥ k ⇐⇒ n ≥ k

p
(3)

where n is the number of searches, p the probability of a successful identification.
The value p is determined by the probability associated with the particular
search criterion. For practical calculations as used in deriving the lower bounds
associated with Tols, T ola, T old, we have used a rough estimate p = 1/#Group,
where #Group is the number of groups under a specific criterion.

2.3 Derivation of Formula (1)

We prove the privacy-preserving drawer size formula (1) in this section. To de-
termine the drawer size TT , one must fix a priori a search scenario specifying
the sex, age group, and domicile region criteria. For instance, the search profile
contains the following information: sex S = i, age group A = j, domicile D = k,
where i, j, k are fixed in their respective domains. Henceforth, the expected value
E(X)P based on the default distributions Ps, Pa,Pd is

E(X)P =
1

Pr(S = i;A = j;D = k)

=
1

psi · paj · pdk
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assuming a geometric distribution on the search random variable X . Thus, the
number of persons in the drawer satisfying the condition (S = i;A = j;D = k)
is expected to be about TT/E(X). To preserve indistinguishability among the
matched individuals, TT/E(X) must exceed the anonymity tolerance Tol(k):

TT

E(X)
≥ Tol(k)⇐⇒ TT ≥ E(X) · Tol(k).

The formula (1) now follows if we let TT = E(X)·Tol(k). And one may obviously
without loss of generality assume Nexpire = 0 in the proof.

3 Empirical Study of System Reliability

3.1 Attack Model

We present an attack model here, based on which the reliability of the system
can be defined. In an identity theft scenario, the attacker assumes the identity of
another person (or he hijacks the biometric data of another person). Presenting
himself before the registration authority, the theoretical probability of his success
in finding a match between the drawer ID of the identity and the drawer ID of
the biometric data is:

p =
1

NT
(4)

and we define the system reliability as 1 − p. The lower attack probability is
equivalent to a higher system reliability.

3.2 Test Methodology

Our confidence tests are based upon the attack model described above. The test
is performed on the prototype setbase system. Specifically for a fixed population
of 10,000 and a fixed number of drawers, we perform identity thefts at the regis-
tration authority, and record the number of attack successes. The test results are
recorded in Table 4. The theoretical attack rates are recorded in the second col-
umn. The observed attack rates are recorded in the third column. The observed
attack rate is expressed as a ratio of the number of observed attack successes
over the number of attack attempts. For the statistics generated in this section,
we have performed attack attempts in the range of 1000 to 5000. The system
reliability rates are obtained by subtracting the observed attack rates from 1.
Figure 5 is a plot of the system reliability versus the number of drawers NT .

The observed attack rates adhere to the theoretical attack rates. This indicates
that the basic architecture of the prototype system is sound and corresponds to
how it should be. The source of absolute deviation between the theoretical rates
and observed rates stems from the system performance fluctuations, and the
inherent system errors.
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Table 4. Probability of Attack Success
for various NT

Test Population = 10, 000

Nb. Draw-
ers NT

Theoretical
attack
Prob.

Observed
Prob.

10 10% 10.4%

50 2% 2.3%

100 1% 1.1%

500 0.2% 0.4%

1, 000 0.1% 0.1%

5, 000 0.02% 0.01%

Table 5. Confidence Test: System Re-
liability versus NT

4 Privacy versus Security

For sufficiently large population, the variables number of drawers (NT ) and size
of a drawer (TT ) are related by

Population ≈ NT · TT. (5)

If we need privacy protection in the system, one possible solution would be to
determine the minimum drawer size by means of formula (1). We then may
adjust the number of drawers to reach a suitable system reliability level. We
make this analysis rigorous in this section. Without consideration of privacy, we
could chose a suitable NT based on the test results described in the previous
section (Table 4).

We need the following data for carrying out the relational analysis: TT,NT ,
anonymity level k, attack probability, system reliability. Precisely, we first cal-
culate the anonymity-preserving drawer size TT based on the general formula
(1). The next step is to calculate NT using the formula (5), and the correspond-
ing attack probability is calculated using the single attempt attack model (4).
The reliability of the system is subsequently derived by subtracting the attack
probability from 1.

We demonstrate the relation between TT and NT by studying the relation
between the anonymity level variable k and the system reliability variable. Fig-
ure 1 and Figure 2 are two typical relational plots for the variables k and system
reliability. Figure 1 reflects the entire range of k, 2 ≤ k ≤ 30. Figure 2 reflects the
range k, 2 ≤ k ≤ 10 within which the highest system reliability rates occur. As
can be been from the plots, the relation between k and system reliability is lin-
ear, inversely proportional. This fact again illustrates the underlying principle of
the setbase: a stricter anonymity requirement (large k) requires a larger drawer
size to be in place, that corresponds to a decrease on the number of drawers
which in turn leads to a lower system reliability rate.
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Fig. 1. System Reliability vs. Anonymity
Level k, 2 ≤ k ≤ 1000

Fig. 2. System Reliability vs. Anonymity
Level k, 2 ≤ k ≤ 100

5 Conclusion

We have in this paper proposed a privacy-preserving drawer size standard for
the setbase. The standard incorporates well known data privacy metrics such as
k-anonymity and l-diversity as part of the drawer size formulation. The math-
ematical formulation gives one the ability to adjust the drawer size according
the desired level of privacy. The future research in this direction includes is-
sues such as how one can incorporate other database privacy notions into the
privacy-preserving drawer size standard.
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Abstract. In this paper, we consider the scenario where a set of parties
need to cooperate with one another. To safely exchange the informa-
tion, a set of authorization rules is given to the parties. In some cases, a
trusted third party is required to perform the expected operations. Since
interactions with the third party can be expensive and there maybe risk
of data exposure/misuse, it is important to minimize their use. We for-
mulate the minimization problem and show the problem is in NP -hard.
We then propose a greedy algorithm to find close to optimal solutions.

Keywords: Authorization rule, Trusted third party, Join Path.

1 Introduction

In many cases, enterprises need to interact with one another cooperatively to
provide rich services. For instance, an e-commerce company needs to obtain
data from a shipping company to know the status and cost of a shipping order,
and the shipping company requires the order information from the e-commerce
company. Furthermore, the e-commerce company may have to exchange data
with warehouses and suppliers to get the information about the products. In
such an environment, information needs to be exchanged in a controlled way so
that the desired business requirements can be met but other private information
is never leaked. For example, a shipping company has all the information about
its customers. However, only the information about the customers that deal
with the e-commerce company in question should be visible to the e-commerce
company. The information about the remaining customers should not be released
to the e-commerce company. In addition, the data from shipping company may
include other information such as which employee is delivering the order, and
such information should not be released to the e-commerce company. Therefore,
we need a mechanism to define the data access privileges in the cooperative data
access environment.

We assume that each enterprise manages its own data and all data is stored
in a standard relational form such as BCNF, but it is possible to extend the
model to work with other data forms. The data access privileges of the enter-
prises are regulated by a set of authorization rules. Each authorization rule is
defined either on the original tables belonging to an enterprise or over the loss-
less joins of the data from several different parties. Using join operations, an
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authorization rule only releases the matched information from the parties. For
instance, if the e-commerce company can only access the join result of its data
and the shipping company’s data, then only the tuples about the shipping or-
ders from the e-commerce company can be visible to the e-commerce company.
In addition, the attributes such as “delivery person” are never released to the
e-commerce company, so suitable projection operations are applied on the join
results in authorization rules to further restrict the access privileges. Hence, the
requirement of selective data sharing can be achieved. Selection operations are
not considered in the authorization rules.

Under such a scenario, an enterprise may be given an authorization rule on
the join result of several relational tables. To obtain the join result, it is required
to have one party that has the privileges to access all the basic relations and
perform the required join operations. However, due to the access restrictions
laid down by the authorization rules, it is possible that no party is capable of
receiving all required data. Therefore, we may have to introduce a trusted third
party to perform join operations.

Third parties may be expensive to use and the data given to them could
be at greater risk of exposure than the data maintained by original parties. In
this paper, we focus on the problem of using third parties minimally in order
to deliver the information regulated by the given authorization rules. We model
the cost of using third party as the amount of data being transferred to the third
party, and prove that finding the minimal amount of data to implement a given
rule is NP -hard. Therefore, we propose efficient greedy algorithm and evaluate
its performance against brute force algorithm. The rest of the paper is organized
as follows. Section 2 discusses the related work. Section 3 defines the problem
and introduces some concepts. Section 4 discusses minimizing the cost of using
third parties. Finally, Section 5 concludes the discussion.

2 Related Work

In previous works, researchers proposed models [5] for controlling the cooperative
data release. There is also a mechanism [8] to check if an authorization rule can
be enforced among cooperative parties. In addition, many classical works discuss
query processing in centralized and distributed systems [2,7,3]. However, these
works do not deal with constraints from the data owners, which make our prob-
lem quite different. There are works such as Sovereign joins [1] to provide third
party join services, we can think this as one possible third party service model
in our work. Such a service receives encrypted relations from the participating
data providers, and sends the encrypted results to the recipients.

Because of the risks associated with third parties, secure multiparty compu-
tation (SMC) mechanisms have been developed that ensures no party needs to
know about the information of other parties [6,9,4]. However, the generic solu-
tion of a SMC problem can be very complicated depending on the input data
and does not scale in practice. Therefore, we consider using the third party to
implement the rules.
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3 Problem Definition and Concepts

We assume the possible join schema is given and all joins are lossless so that
a join attribute is always a key attribute of some relations, and only select-
project-join queries are considered. An authorization rule denoted as rt is a
triple [At, Jt, Pt], where Jt is called the join path of the rule which indicates
the join over the relational tables, At is the authorized attribute set which is the
authorized attributes on the join path, and Pt is the party authorized to access
the data. For instance, an example rule could be (R.K,R.X, S.Y ), (R ��R.K

S) → Pt, where R.K is the key attribute of both R and S, and join path is
R �� S.

We assume that a trusted third party (TP ) is not among the existing co-
operative parties and can receive information from any cooperative party. We
assume that the TP always performs required operations honestly, and does not
leak information to any other party. In our model, we assume the trusted third
party works as a service. That is, each time we want to enforce a rule, we need
to send all relevant information to the third party, and the third party is only
responsible for returning the join results. After that, the third party does not
retain any information about the completed join requests. We say an authoriza-
tion rule can be enforced only if there is a way to obtain all the information
regulated by the rule. With the existence of a third party, we can always enforce
a rule by sending relevant information from cooperative parties to TP . We aim
to minimize the amount of data to be sent to the third party.

To find the minimal amount of data to be sent, we can just select rules from
the given authorization rules. It is because each rule defines a relational table
and we can quantify the amount of information using the data in the tables.
We say that a rule is Relevant to another if the join path of a rule contains a
proper subset of relations of the join path of the other rule. All the rules being
selected must be relevant to the target rule denoted as rt, which is the rule to
be enforced. If a relevant rule of rt is not relevant to any other relevant rules
of rt with longer join paths on the same party, we call it a Candidate Rule.
We only choose from candidate rules to decide the data that needs to be sent to
the TP .

4 Minimizing Cost

In this section, we consider the problem of choosing the proper candidate rules to
minimize the amount of information sent to the third party. In our cost model,
the amount of information is quantified by sum of the number of attributes
picked from each rule multiplied by the number of tuples in that selected rule.
Thus, we want to minimize Cost =

∑k
i=1 π(ri)∗w(ri), where ri is a selected rule,

k is the number of selected rules, and π(ri) is the number of attributes selected
to be sent, and w(ri) is the number of tuples in ri.
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4.1 Rules with Same Number of Tuples

We first assume the candidate rules have the same w(ri) value. To find the
candidate rules that can provide enough information to enforce rt, we map each
attribute in rt to only one candidate rule so that all of these attributes can
be covered. Once we get such a mapping, we have one solution including the
selected rules and projections on desired attributes. Among these solutions, we
want the minimal cost solution according to our model. Since we assume all
the candidate rules have the same number of tuples, it seems that the total
cost of each candidate solution should always be the same. However, it is not
true because the join attributes appearing in different relations are merged into
one attribute in the join results. We can consider the example in Figure 1. The
boxes in the figure show the attribute set of the rules, and the join paths and
rule numbers are indicated above the boxes. There are four cooperating parties
indicated by Pi and one TP , and the three basic relations are joining over the
same key attributes R.K. Among the 4 candidate rules, if we select r2, r3 to
retrieve the attributes R.X and S.Y (non-key attributes), we need to send R.K
and S.K which are their join attributes to the third party as well. Whereas,
if we choose r1, then we only need to send 3 attributes as R.K and S.K are
merged into one attribute in r1. Thus, choosing a candidate rule with longer
join path may reduce the number of attributes actually being transferred. Fewer
rules means fewer overlapped join attributes to be sent (e.g., R.K in r1 and
T.K in r4 are overlapped join attributes). In addition, selecting fewer rules can
result in fewer join operations performed at the third party. Since we assume
the numbers of tuples in candidate rules are the same, the problem is converted
to identify minimal number of candidate rules that can be composed to cover
the target attribute set. The problem can be reduced to unweighted set covering
problem which is NP -hard.

T.K,T.Z

R.K, R.X, S.K, S.Y, T.K, T.Z

R R.KS R.KT rt

Trusted Third Party

T.K,T.Z
T r4

P4R.K,R.X
R r2

P2 S.K,S.Y
S r3

P3R.K,R.X,S.K,S,Y
R R.KS r1

P1

R.K,R.X,S,Y

Fig. 1. An example of choosing candidate rules

Theorem 1. Finding the minimal number of rules sent to the third party to
enforce a target rule is NP -hard.

Proof. Consider a set of elements U = {A1, A2, ..., An} (called the universe),
and a set of subsets S = {S1, S2, ...Sm} where Si is a set of elements from U .
The unweighted set covering problem is to find the minimal number of Si so
that all the elements in U are covered. We can turn it into our rule selection
problem. For this we start with the attribute set {A0, A1, A2, ..., An}, where A0
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is the key attribute of some relation R and Ai’s are non-key attributes of R.
For each Si ∈ S, we construct a candidate rule ri on R with the attribute set
Si

⋃{A0} and assign it to a separate cooperative party. Therefore, if we can find
the minimal set of rules to enforce some target rule rt in polynomial time, the
set covering problem can also be solved in polynomial time.

4.2 Rules with Different Number of Tuples

In general, the numbers of tuples in the relations/join paths are different, and
they depend on the length of the join paths and the join selectivity among the
different relations. Join selectivity [7] is the ratio of tuples that agree on the
join attributes between different relations, and it can be estimated using the
historical and statistical data of these relations. In classical query optimization,
a large number of works assume such values are known when generating the
query plans. We also assume that this is the case. Therefore, we can assign each
candidate rule ri with a cost csti = w(Ji) ∗ π(ri), where π(ri) is the per tuple
cost of choosing rule ri, and w(Ji) is the number of tuples in join path Ji. The
problem is similar to (but not identical to) the weighted set covering problem.
In our problem, once some attributes are covered by previously chosen rules, the
following chosen rules should project out these attributes so as to reduce cost.
Therefore, our cost function should be as follows where Si is the attribute set of
rule ri and U is the target attribute set. Basically, the equation says if the key
attribute of a rule has already been covered, then one more attribute is added
to the cost of choosing this rule.

cost(C) =

k∑
i=1

w(Si)π(Si), π(Si) =

{
|Sj

⋂
(U \ ⋃i−1

j=1 Sj)|, if (key(Si) /∈ ⋃i−1
j=1 Sj)

|Sj

⋂
(U \ ⋃i−1

j=1 Sj)| + 1, if (key(Si) ∈ ⋃i−1
j=1 Sj)

(1)

Corollary 1. Finding the minimal amount of information sent to the third party
to enforce a target rule is NP -hard.

Proof. Based on Theorem 1, if we have a polynomial algorithm to find the min-
imal amount of information with rules of different costs, we can assign the same
cost to each candidate rule so as to solve the unweighted version of the problem.

In the weighted set covering problem, the best known greedy algorithm finds
the most effective subset by calculating the number of missing attributes it
contributes divided by the cost of the subset. In our case, we also want to select
the attributes with least costs from the available subsets. Similar to the weighted
set covering algorithm which selects the subset Si using the one with minimal
w(Si)
|Si\U| , we select the rule with the minimal value of w(Si)∗π(Si)

|Sj

⋂
(U\⋃i−1

j=1 Sj)| , where π(Si)

is defined in equation (1).
In our problem, with one more rule selected, the third party need to perform

one more join operation, and possibly one more join attribute need to be trans-
ferred to the third party. Therefore, when selecting a candidate rule, we examine
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Algorithm 1. Selecting Minimal Relevant Data For Third Party
Require: The set R of candidate rules of rt on cooperative parties
Ensure: Find minimal amount of data being sent to TP to enforce rt
1: for Each candidate rule ri ∈ R do
2: Do projection on ri according to the attributes in rt
3: Assign ri with its estimated number of tuples ti
4: The set of selected rules C ← ∅
5: Target attribute set U ← merged attribute set of rt
6: while U �= ∅ do

7: Find a rule ri ∈ R that minimize α =
w(Si)∗π(Si)

|Sj
⋂
(U\⋃i−1

j=1
Sj)|

8: R ← R \ ri
9: for Each attribute Ai ∈ (ri

⋂
U) do

10: cost(Ai) ← w(Si)
11: ri ← πU (ri) ∗ w(Si)
12: U ← U \ ri
13: C ← C

⋃
ri

14: Return C

Fig. 2. Minimal communication costs found by two algorithms

the number of attributes this rule can provide and the costs of retrieving these
attributes. In the second case of π(Si) in equation (1), the cost of one extra
attribute is added. However, if this selected rule can provide many attributes to
the uncovered set, the cost of this additional attribute can be amortized. This
makes the algorithm prefer rules providing more attributes and results in less
number of selected rules which is consistent with our goal. We present our greedy
algorithm in Algorithm 1.

We evaluated the effectiveness of our greedy algorithm against brute force
algorithm via preliminary simulations. In this simulation evaluation, we use a
join schema with 8 parties. The number of tuples in a rule is defined as a function
of the join path length, basically w(Ji) = 1024/2length(Ji)−1. In other words,
we assume as the join path length increases by one, the number of tuples in
the results decreases by half. We tested with randomly generated target rules
with join path length of 4 and 7. Figure 2 shows the comparison between two
algorithms. In fact, the two algorithms generate almost the same results. In
Figure 2, the legend of “BruteForce4” indicates the target rule has the join path
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length of 4, and brute force algorithm is used. Among these solutions, in less
than 2% of the cases the two algorithms produce different answers. In addition,
the maximal difference between them is just 5%. The results also indicate the
join path length of the target rule affects the costs, but two algorithms give
similar solutions independent of the join path length.

5 Conclusions and Future Work

In this paper, we considered a set of authorization rules for cooperative data
access among different parties. A trusted third party may be required to do the
expected join operations so as to enforce a given rule. We discussed what is the
minimal amount of data to be sent to the third party. As the problem is NP -
hard, we proposed greedy algorithms to generate solutions which were close to
the optimal ones. In the future, we will look into the problem of how to combine
the third parties with the existing parties to generate optimal safe query plans.
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Abstract. We present a solution to the problem of privacy invasion in
a multiparty digital rights management scheme. (Roaming) users buy
content licenses from a content provider and execute it at any nearby
content distributor. Our approach, which does not need any trusted third
party—in contrast to most related work on privacy-preserving DRM—is
based on a re-encryption scheme that runs on any mobile Android device.
Only a minor security-critical part needs to be performed on the device’s
smartcard which could, for instance, be a SIM card.

1 Introduction

Mobile users access digital content provided in the cloud from anywhere in the
world. Music streaming services like Spotify enjoy popularity among users. The
lack of bulky storage on mobile devices is compensated for by such services by
streaming the content to the users’s devices. Content is downloaded on demand
and can be used only during playback. Thus, paying users are able to access huge
amounts of content. There exist certain price models that allow the playback for
a certain number of times, until a specific day (e.g., movie rentals), etc.

In such a scenario, we have content providers (CPs) that sell licenses to users
and there are content distributors (CDs) that provide the content. Users can
access content from CDs that are closest or provide best service at the moment.
This bears advantages for roaming users as they can choose local distributors.
Such scenarios are called multiparty DRM systems in the literature.

A drawback of today’s DRM systems is that CPs/CDs can build content usage
profiles of their users as they learn which user plays back content at a certain
time, etc. Here we contribute with this paper. We suggest a privacy-preserving
multiparty DRM system. In such a system, users anonymously buy content and
anonymously playback the content. Moreover, neither CPs nor CDs can link
content playbacks to each other and thus cannot build usage profiles under a
pseudonym—as the past has shown that profiles under a pseudonym, assumed
to be unrelatable to users, can be related to users given external information
and thus, inverting user privacy again [1]. One major advantage of our approach
compared to related work on privacy-preserving DRM is that we do not need a
trusted third party (TTP) that checks licenses.
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2 Related Work

In [2] a scenario where a content owner provides its content to users via local
distributors is presented—similar to our scenario. Users buy licenses for content
from a license server (trusted third party). Once a license is bought, the user
gets in possession of the decryption key which allows him to access the content
as often as desired. Differentiated license models are not intended—however, if
license enforcement additionally took place on the client-side, such models could
be implemented. As content download and license buying are done anonymously,
none of the parties can build user profiles. [3] presents a privacy-preserving DRM
scheme for multiparty scenarios without a TTP. A user anonymously requests
a token set from the content owner that allows anonymous purchase of content
licenses from content providers (CPs). A drawback is that CPs are able to build
usage profiles of content executions under a pseudonym. [4] presents a DRM sce-
nario that allows users to anonymously buy content from any CP and execute
it at any computing center within the cloud. The users’ permission to execute
the content is checked before every single execution. Their solution is resistant
against profile building. The authors suggest employing a re-encryption scheme
based on secret sharing and homomorphic encryption to achieve unlinkability of
executions. The approach is extended in [5] by employing an adapted version of
proxy re-encryption [6]. The scheme makes explicit use of a service provider as
TTP. The approach towards privacy-preserving DRM in [7] also requires a TTP
for license checking before execution. It makes use of a number of cryptographic
primitives such as proxy re-encryption, ring signatures and an anonymous recip-
ient scheme to provide unlinkability of executions.

3 System Model

Our multiparty DRM scenario involves CPs, CDs, and users. The focus is on
mobile users with different content access devices (CADs) accessing content. As
devices have different hardware trust anchors—e.g., smartphones are equipped
with SIM cards, tablet computers have trusted platform modules (TPMs), etc.—
we subsume those trust anchors under the term smartcards in the following.1

The CP takes the role of, e.g., a film studio or music label that produces
content. Users interact with the CP by buying a license that allows playback
of the content—under certain terms that are mediated. The user’s smartcard is
used to check whether the user is still allowed to access the content. Then, a
nearby CD is contacted and the CD streams the content to the user. The CD
can have contracts with different CPs, which allows the user to access content
by different CPs from a single source—as it is the case with state-of-the-art
streaming servers as well. The CD might get paid for providing its services by
the CPs (or even the users). We do not cover this aspect in the paper at hand.

We assume that CPs and CDs are honest-but-curious, i.e., they follow the
protocol but try to find out as much as possible to track users. Users are assumed

1 SIM cards are smartcards and TPMs are a special form of smartcards as well.
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as active adversaries, i.e. trying to break the protocol to execute content without
a license. Our protocol is not based on any TTP checking licenses.

DRM Requirements:
We identify the CP, CD, and the user as stakeholders. The requirements are:

Content Provider: Req. I: Support for different license models, Req. II: Pro-
tection of the content (confidentiality), and Req. III: Enforcement of licenses.

User: Req. IV: Profile building (under a pseudonym) must not be possible for
any involved party. To achieve Req. IV, the the following aspects must be met:
Anonymous content (license) buying towards content provider, and anonymous
content execution towards content distributor, Unlinkability of content (license)
purchases towards the content provider, and Unlinkability of content executions
towards the content distributor.

4 Privacy-Preserving Multiparty DRM System

System Initialization: Let G1 and G2 be cyclic groups with the same prime
order q, the security parameter n = ||q||, <g> = G1, and Z = e(g, g) ∈ G2.
Users are equipped with smartcards (SCs) that are programmed and shipped by
trustworthy SC providers that install a private key sksc and the corresponding
digital certificate certsc on every smartcard. The private key and certificate are
shared by all SCs since they are used for anonymous authentication towards the
CP during the process of purchasing content. Authentication of SCs is required
so that only legitimate SCs can be used to purchase content, however, CPs must
not be able to recognize SCs. Moreover, the current time of production of the
SC is set as the SC’s timestamp ts. Content offered by the CP is encrypted using
a symmetric encryption algorithm such as AES [8] and a separate content key
cki for each content i. The user employs an anonymous payment scheme with
his/her bank to get supplied with payment tokens pt.

Content Purchase: We assume that the connection between user and CP is
anonymized (e.g., by using an anonymization network such as Tor [9]). The
user initiates the content purchase via his/her content access device (CAD) by
authenticating towards the SC with his/her PIN and initiating the TLS [10]
handshake with the CP. The SC executes the KG algorithm as in [6] to gener-
ate a temporary key pair2 (pk-tmpsc = (Za1 , ga2), sk-tmpsc = (a1, a2)), where
a1, a2 ∈ Zq are chosen randomly. During the TLS handshake, CP challenges
CAD’s SC with a nonce r and asks for SC’s certificate. CAD forwards r to SC
which signs r and pk-tmpsc with SC’s private key sksc. The signature and SC’s
certificate certsc, as well as pk-tmpsc are forwarded to CAD and CAD forwards
them, together with the content-idi of the content i to be bought, as well as
the payment token pt to pay for the license. From this moment on, the com-
munication between CAD and CP is authenticated and encrypted via TLS. CP
verifies the response by checking the signature. This way, CAD’s SC has anony-
mously authenticated towards CP, meaning CP knows that pk-tmpsc is from an

2 A new temporary key pair is used for each content purchase.



292 R. Petrlic and S. Sekula

authentic SC and the corresponding sk-tmpsc does not leave the SC. CP creates
the license for content i. This license includes a license identifier id, a times-
tamp ts, the content-idi, the license terms, and CP’s certificate certcp. Note
that the license terms depend on the license model. The license is encrypted
under SC’s pk-tmpsc. Moreover, the content key cki for content i is encrypted
under pk-tmpsc as well. The license, the signature of the license, the content-idi
and the encrypted content key (cki)pk−tmpsc are forwarded to CAD. CAD stores
(cki)pk−tmpsc and forwards the license and the signature to SC. The SC verifies
the license’s signature and decrypts the license with sk-tmpsc. Then it checks
whether the id was not used before and whether ts is newer than the current ts
on the SC—both to prevent replay attacks. The SC’s ts is then set to the newer
ts of the license.3 Finally, the license is stored under the content-idi on the SC.

Content Execution: To playback the purchased content, the user first selects
a CD of his choice (this choice could be automated as well, e.g., dependent of
the region the user currently is in). We assume that the connection between
user and CD is anonymized (e.g., by using Tor [9]). The CAD establishes a TLS
connection [10] with CD—CD authenticates towards CAD with its certificate.
CAD afterwards requests a new certificate from CD. CD creates a new key-pair
using KG as in [6]: (pk-jcd = (Za1 , ga2), sk-jcd = (a1, a2)), where a1, a2 ∈ Zq

are chosen randomly and j denotes the jth request to the CD. The pk-jcd is
included in the newly generated certificate cert-jcd, as well as a unique certificate
id and the current timestamp ts. CD self-signs the certificate4. The certificate
is forwarded to the CAD. The user authenticates towards the SC with his PIN
entered on the CAD and the SC then forwards the list of available content-
ids to CAD. The user chooses the content-idi to be executed and forwards it,
together with cert-jcd to SC. SC checks whether the signature of cert-jcd is valid,
whether CD was certified by a known CA, whether the certificate id was not used
before and whether the ts is newer than the current ts on the SC. If these tests
pass, the new ts from the certificate is set on the SC. It is important to note,
that SC checks whether the certificate really belongs to a CD. If this was not
the case, the user might be able to launch an attack by including a self-signed
certificate that he has generated himself. Hence, if SC would not verify that the
certificate belonged to a CD, the user might acquire a re-encryption key from
SC that allowed him to decrypt the content key, granting him unlimited access
to the content. Furthermore, SC checks whether the license terms still allow the
content to be played back. If this is the case, the terms are updated. Then, SC
generates the re-encryption key rkpk−tmpsc→pk−jcd by using the RG algorithm
as in [6], taking as input CD’s public key ga2 ∈ pk-jcd, and its own private
key a1 ∈ sk-tmpsc (as created during the content purchase). The re-encryption
key is then forwarded to CAD. CAD re-encrypts the encrypted content key
(cki)pk−tmpsc by employing the R algorithm as in [6] with rkpk−tmpsc→pk−jcd as
input to retrieve (cki)pk−jcd—i.e., the encrypted content key under CD’s public

3 Note that the SC does not have an internal clock and thus cannot keep track of
(authenticated) time. The time can only be set via new and verified licenses.

4 The signing certificate was issued by a valid certificate authority, though.
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key. The re-encrypted content key is then forwarded to CD and CD decrypts the
ciphertext using theD algorithm as in [6] with its private key a2 ∈ sk-jcd as input
to retrieve cki. The content—retrieved from CP—can now be decrypted by CD
using cki and the symmetric scheme as employed during system initialization.
Eventually, the content is provided, for example, streamed, to the user’s CAD.

Authorization Categories [11]: There might be content that should not be
accessible to everybody, such as X-rated content. Before initially obtaining a
SC, the user provides certain information to the SC provider (e.g., his passport).
The SC provider will then securely5 store the required information on the user’s
SC. If we assume that the user’s SC now contains information like the user’s
date of birth or home country, it can check whether or not the user is allowed
to access content. This means that if the user requests access to, for instance,
X-rated content, the SC checks the user’s date of birth and according to this
information either allows or denies access to the queried content.

5 Evaluation and Discussion

Performance Analysis: The user’s CAD performs the re-encryption of the
content key. CP and SC are involved in a challenge-response protocol for au-
thentication of SC which is not too expensive. Further, CP has to encrypt the
content key using SC’s public key and the content using the content key. The
latter is a symmetric encryption executed only once per content. Additionally,
CD decrypts the re-encrypted content key as well as the content obtained from
CP. The required generation of keys is not expensive. We show that current
smartphones are easily capable of executing the required tasks by implementing
a demo application on an Android smartphone. We have implemented the re-
encryption using the jPBC (Java Pairing Based Cryptography) library6. The app
that has been developed re-encrypts 128Bytes of data—the length of a symmet-
ric key to be encrypted—in 302ms on a Samsung Galaxy Nexus (2× 1.5GHz)
running Android 4.2. Due to a lack of a proper SC7, we could not implement the
re-encryption key generation algorithm RG as in [6]. Thus, to show the practi-
cability of the implementation, we must refer to [12]. The authors have imple-
mented elliptic curve scalar point multiplications and additions for a smartcard
in C and Assembler—which are needed in our approach as well. As the authors
conclude, the standard Javacard API (version 2.2.2) cannot be used as the avail-
able EC Diffie-Hellman key exchange only provides the hashed version of the
key derivation function. [12] However, we need the immediate result of the key
derivation function, i.e., the result of the EC point multiplication. Our own im-
plementation of the EC point multiplication on the smartcard’s CPU did not
yield practicable results—as the efficient cryptographic co-processors could not
be utilized due to proprietary code.

5 Secure storage in this context especially means integrity-protection.
6 http://gas.dia.unisa.it/projects/jpbc/
7 According to the specifications, the NXP JCOP card 4.1, V2.2.1 can be used to
implement the needed functionality.

http://gas.dia.unisa.it/projects/jpbc/
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Evaluation of Requirements: CP is able to provide different kinds of rights
to users for content playback. Our system allows for the most popular models
like flatrate, execute at most n-times, execute until a certain date, etc., and thus
we meet Req. I. CP distributes its content only in encrypted form. Thus, none
of the parties not in possession of the content decryption key is able to access
the content and our protocol meets Req. II. Smartcards, as trusted devices, are
used in our protocol to enforce licenses. Thus, if the SC’s check of a license fails,
the re-encryption key is not generated and the user is not able to execute the
content. A replay attack with an “old” CD certificate fails as the SC does not
accept the ts—since it is older than the current one stored on the SC. The SC’s
property of tamper-resistance is required since we assumed users to be active
adversaries. Thus, we meet Req. III. Concernng Req. IV we have:

(1) Users anonymously pay for content (licenses), i.e., they do not need to
register with CP/CD and need not provide their payment details, which is why
they stay anonymous during their transactions with CP and CD.

(2) All SCs use the same certificate for anonymous authentication towards CP,
thus CP cannot link different purchases made with the same SC. SC’s public key
pk-tmpsc is newly generated for each content (license) purchase—preventing CP
from linking purchases to each other. Moreover, the anonymous payment scheme
provides unlinkability of individual payments. Furthermore, we assumed the con-
nection between user and CP to be anonymized via Tor. Thus, unlinkability of
content (license) purchases is achieved.

(3) The user only provides the re-encrypted content key to CD. Content i is
only encrypted once during initialization with cki and thus, cki does not contain
any information connected to the user or the user’s CAD. As a new re-encryption
key is generated for each content execution, the encrypted content key “looks”
different for CD each time and hence, CD cannot link any pair (cki)pk−jcd ,
(cki)pk−kcd

, for j �= k to each other. Further, we assumed the connection between
user and CD to be anonymized via Tor. Therefore, multiple transactions executed
by the user are unlinkable for the CD.

Moreover, even if an attacker gets access to the user’s CAD, he does not learn
which content has been bought and executed. The list of available content is
only revealed by the SC after authentication with the proper PIN and the CAD
application does not keep track of executed content. Thus, to sum it up, profile
building (even under a pseudonym) is neither possible for CP nor CD.

Comparison to Related Work: In Tab. 1 we compare our proposed scheme
to related work in the field of privacy-preserving digital rights management.

Need for TTP: One of the main advantages of our scheme compared to related
work is that it does not need a trusted third party which is involved in the
license checking process as in [5, 7] during each content execution. In [2], the
license server constitutes the TTP. However, it is not involved in the protocol
for each single content execution but only once, when retrieving the license.
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Table 1. Comparison of our scheme to related work in terms of properties

Properties Paper
at hand

[7] [5] [2] [3]

Need for TTP no yes yes yes no

Need for trusted hardware yes no no no yes

Support for differentiated
license models

yes yes yes no yes

Unlinkability of
content executions

yes yes yes yes no

Computational efficiency good medium bad good good

Flexibility in choosing
content distributor

yes yes yes yes yes

Need for trusted hardware: In our protocol a smartcard performs the license
checking. Trusted hardware is not needed by other protocols that rely on some
TTP. A trusted platform module (TPM) is needed in the protocol presented
in [3] to securely store tokens at the user’s computing platform.

Support for differentiated license models: The protocol presented here and in
[5, 7] allow for differentiated license models. The protocol presented in [2] does
not allow such flexibility—once a license is bought for some content, it may be
executed by the user as often as desired. The authors of [3] do not clearly state
whether differentiated license models are intended. From the protocol’s point of
view, it should be possible to implement, e.g., execute at most n times-models
as a token set provided by the content owner. Such token sets could include
n tokens. Further, licenses that allow only a single content execution could be
mapped to each token by the content provider8 later on.

Unlinkability of content executions: All of the approaches covered here, except
for [3], provide unlinkability of content executions and thus, prevent any party
from building a content usage profile (under a pseudonym).

Computational Efficiency: In terms of computational overhead, our proposed
scheme is very efficient, as discussed above. The scheme presented in [7] makes
use of a number of different cryptographic primitives and thus performs less well.
In [5], the entire content is re-encrypted for each content execution. Efficient
standard cryptographic primitives are used in [2, 3].

Flexibility in choosing content distributor: All the schemes presented in this
overview provide users with the possibility to freely choose the CDs. In other
two-party DRM scenarios, such a flexibility is typically not provided.

6 Conclusion

We have come up with a privacy-preserving multiparty DRM concept. Users
anonymously buy content licenses from a CP and anonymously execute the
content at any CD by, for example, streaming the content from CDs nearby.

8 Content distributor in our scenario.
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Anonymity in this context means that none of the involved parties is able to
build a content usage profile—not even under a pseudonym. In contrast to re-
lated work on privacy-preserving DRM, our approach does not require a trusted
third party. We implemented our concept on a state-of-the-art smartphone and
proved its practicability for a multiparty DRM scenario in a mobile environment
in which a user buys a license allowing the playback of, e.g., some TV show—
roaming in different regions, the user is free to choose the nearest streaming
server (content distributor) and hence, getting the best throughput.
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Abstract. The temporal role based access control (TRBAC) models support the
notion of temporal roles, user-to-role and permission-to-role assignment, as well
as allow role enabling. In this paper, we argue that role hierarchies can be tem-
poral in nature with a dynamism that allows it to have a different structure in dif-
ferent time intervals; and safety analysis of such extensions is crucial. Towards
this end, we propose the temporal role based access control model extended with
dynamic temporal role hierarchies, denoted as TRBACRH, and offer an approach
to perform its safety analysis. We also present an administrative model to govern
changes to the proposed role hierarchy.

1 Introduction

The temporal extension of the role based access control (TRBAC) model assumes one
or more of the following features: temporal User to Role Assignments, temporal Per-
mission to Role Assignments, role enabling, and role hierarchies [2,7]. In this paper,
we introduce dynamic temporal role hierarchies for TRBAC. Role Hierarchies (RH), or
sometimes called Role to Role Assignments (RRA), are one of the three basic relations
that are defined in RBAC along with URA and PRA [9]. Whether the basis for RH in
an enterprise is either functional or administrative, it simply allows higher level (senior)
roles inherit the permissions assigned to the lower level (junior) roles.

In this paper, we argue that the role hierarchies can be temporal in nature, i.e., they
may change with time. Although role hierarchies in prior temporal extensions of RBAC
have been specified, they do not allow temporal constraints to be specified on RH that
not only restrict the time during which the hierarchy is valid, but also change its struc-
ture by shifting the position of the roles in the hierarchy. Essentially this means that a
senior level role cannot always inherit the permissions of a junior level role. Also, a role
may change its level in the hierarchy, for example, a junior level role may be elevated
to a higher level role during certain time periods. To capture this dynamic structure,
we enhance the traditional definition of TRBAC with Dynamic Temporal Role Hier-
archy (DTRH), and we denote the resulting model, TRBACRH, a temporal role based
access control model with dynamic temporal role hierarchies. Although enterprises usu-
ally specify a static hierarchy, DTRH comes into play in some temporary or periodical
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(a) Role Hierarchy when General Manager is
at Plant 2

(b) Role Hierarchy when General Manager is
at Plant 1

Fig. 1. Role Hierarchies on Different Days of the Week

exceptional situations that are required for operational purposes. In the following, we
provide such a motivating example.

Consider a manufacturing company with two different production plants, one hav-
ing the headquarters of the company. The company has a CEO and a General Manager
(GM) who works at both the plants; an Accounting Manager (AM), a Manufacturing
Manager (MM), and a Human Resources Manager (HR) for each plant. Although CEO
works at the headquarters, GM works in both of the plants in different days of the week.
As in Figures 1(a) and 1(b), when he is present at a plant, he manages the operations
and audits the actions of the AM of that plant. However, when he is at the other plant,
MM has the responsibility to audit the operations of AM without completely assuming
the GM role, which is considered to have many additional permissions. Since the hier-
archical relationships among the roles change, this situation can be specified by DTRH,
by simply having a policy which makes MM move to the second level, on top of AM
only on the days when GM is away. Nevertheless, it is still possible to represent the
scenario in this example using a static role hierarchy. However, lack of temporal role
hierarchies will force the system administrators to create a dummy role, like “Manager
and Auditor” (MA), that does not essentially represent a regular job function. Also, this
role should have the required permission and hierarchy assignments that MM needs.
Moreover, MM should be assigned to two separate roles (MM and MA) which are en-
abled and disabled in regular time intervals. Clearly, creation of such redundant dummy
roles increases the administrative burden [4].

Role delegation, is another way of handling such scenarios [3,12,1,11,5]. Users are
delegated to the necessary roles of the users that are away. Although this process seems
more practical than dealing with dummy roles, some complications are possible. The
delegatees might not be allowed to assume all of the permissions of the role that they
are delegated. At this point, we have to note that [12] and [5] provides a scheme for
partial delegation by either temporary dummy roles or blocking some permissions in the
delegated role. Even though our example scenario can be modeled using role delegation
without imposing significant overhead, employing temporal role hierarchies has still
an advantage as it lends itself for performing safety analysis since none of the role
delegation studies propose it.

The main contribution of this paper is to perform safety analysis of TRBACRH.
Whether handling the temporal role hierarchies is done using the specification of DTRH,
using dummy roles or delegation, none of the prior work on safety analysis considers
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RBAC models with temporal constraints on role hierarchies. The safety analysis of
TRBACRH leads us to expand the set of possible safety questions. As discussed above,
having DTRH can reduce redundancy and facilitate the administration in various dy-
namic work environments. Since we have a dynamic hierarchy, which is controlled by
an administrative model (Section 3.2), the implicit role assignments require much more
attention than before. There is no problem of this sort in the case of static role hierar-
chies, however a simple manipulation in the hierarchy could create a security breach,
and should be detected in advance to prevent any such occurrence. Therefore, we need
to examine new security questions in the analysis of systems with dynamic temporal
role hierarchies. A possible safety question can be: “Will a user u ever get implicitly as-
signed to role r in the future?” A liveness question can be: “Will a user u ever lose any
role that he is implicitly assigned in the future?” Finally, a mutual exclusion question
can be: “Will users u1 and u2 ever get implicitly assigned to role r at the same time slot
in the future?”

We define the TRBACRH by extending the definitions of TRBAC with the dynamic
temporal role hierarchies, as well as its administrative model. We also propose an ap-
proach to perform safety analysis on this model to answer potential safety questions
discussed above. For our analysis, we adopt the TRBAC safety analysis approach re-
cently proposed by Uzun et al. [10]. Specifically, we decompose the TRBACRH analy-
sis problem into multiple RBAC analysis problems and simply employ existing RBAC
analysis techniques to solve the TRBACRH analysis.

2 Preliminaries

Temporal Role Based Access Control Model: Temporal RBAC was first proposed
by Bertino et al. [2] to be an RBAC model with the capability of role enabling and
disabling via periodical and duration constraints. Joshi et al. [7] extended this model
to have temporal capabilities on user to role and role to permission assignments along
with some other components like constraints, role triggers and role hierarchies. In both
of these models, the time notion is embedded using Calendar expression which is com-
posed of periodicity and duration expressions. Uzun et al. [10] provide a simplified
version of the temporal models of [2] and [7] in order to provide strategies to perform
safety analysis on TRBAC. The main difference between this model and the models by
[2] and [7] is the simplified calendar expression, which only has periodicity constraints.
Since we base our temporal role hierarchies on the TRBAC model by [10], we now give
some of its components and notation.

Let U , R, PRMS be finite sets of users, roles and permissions, respectively, of a
traditional RBAC system. Although the PA relation, PA ⊆ PRMS × R is defined
the same way as in RBAC [9], UA relation is defined in a different way, considering
the temporal nature of the model. The unit time is represented by discrete time slots.
Let TMAX be a positive integer. A time slot of Times is a pair (a, a + 1), where a
is an integer, and 0 ≤ a < a + 1 ≤ TMAX . We use the term time interval, for a
consecutive series of time slots. A schedule s over TMAX is a set of time slots. The
model has the periodicity property (just like the preceding TRBAC models) which is
provided by having schedules that repeat themselves in every TMAX time slots. This
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temporal notion is embedded into two different components of the model: TUA ⊆
(U ×R× S) is the temporal user to role assignment relation and RS ⊆ (R× S) is the
role-status relation which controls the role enabling and disabling. A tuple (u, r, s) ∈
TUA represents that user u is a member of the role r only during the time intervals of
schedule s. A tuple (r, s) ∈ RS imposes that role r is enabled only during the time
intervals of s and therefore it can only be assumed at these times. Thus, a user u can
assume role r at time t ∈ [0, TMAX ] provided that (u, r, s1) ∈ TUA, (r, s2) ∈ RS,
and t ∈ (s1 ∩ s2), for some schedules s1 and s2. The administrative model for TRBAC
is used to change these two temporal components. More specifically, the administrative
rules t can assign, t can revoke, can enable and can disable is used to assign
/ revoke roles to users, and enable / disable roles, respectively. Applying these rules
change the assignments along with their schedules.

Static and Temporal Role Hierarchies: A Role Hierarchy relationship (r1 ≥ r2)
between roles r1 and r2 means that r1 is superior to r2, so that any user who has r1 as-
signed, can inherit the permissions assigned to r2. In traditional RBAC, this assignment
is, naturally, static [9]. However, presence of a temporal dimension brings some addi-
tional flexibility on how these hierarchies work. Previously proposed models for tem-
poral role hierarchies [6,7] focus on the permission and activation inheritance through
the role hierarchies in the presence of role enabling and disabling. Particularly, the role
hierarchy is still static, but the temporal constraints on the role enabling determines
whether the role hierarchy will provide inheritance for a role at a given time. Three
types of hierarchy relations for temporal domain are proposed: Inheritance Only Hi-
erarchy (≥), Activation Only Hierarchy (�) and General Inheritance Hierarchy (+).
Lastly, a Hybrid Hierarchy exists when the pairwise relations among different roles are
of different types. Interested readers may consult [6,7] for details.

3 Dynamic Temporal Role Hierarchies in TRBAC

The flexibility to have a different hierarchy structure at different time intervals makes
Dynamic Temporal Role Hierarchy different than the Temporal Role Hierarchy in [7].
In order to represent this additional capability, we provide a new Role to Role Relation
called dynamic temporal role hierarchy policy, and an administrative model to make
modifications on it, like the RRA97 relation of ARBAC97 [8].

3.1 Dynamic Temporal Role Hierarchy Policies

A TRBAC policy with the presence of dynamic temporal role hierarchies, denoted as
TRBACRH, and is defined as follows: Let S be the set of all possible schedules over
TMAX . A TRBACRH policy overTMAX is a tupleM = 〈U,R,PRMS ,TUA,PA,RS ,
DTRH〉where DTRH ⊆ (R×R×S× {weak, strong}) is the temporal role hierar-
chy relation. In our model, DTRH is represented as a collection of dynamic temporal
role hierarchy policies, which are tuples consisted of a pair of roles associated with
a schedule that denotes the time slots that the policy is valid. In our model, we have
dynamic temporal role hierarchy for inheritance only relation DTRHI , for activation
only relation DTRHA and for general inheritance relation DTRHIA. For notational
simplicity, we use DTRH , when we refer to any one of them.
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Definition 1. A dynamic temporal role hierarchy policy (r1 ≥s,weak r2) ∈ DTRHI

between roles r1 and r2 is an inheritance-only weak temporal relation, that is valid in
the time slots specified by a schedule s. Under this policy, a user u who can activate r1
can inherit permissions of r2 at time t if (1) (u, r1, s1) ∈ TUA (2) (r1, s2) ∈ RS and
(3) t ∈ (s1 ∩ s2 ∩ s), provided that there exists schedules s1 and s2 that determine the
time slots that u is assigned to r1 and r1 is enabled, respectively.

Definition 2. A dynamic temporal role hierarchy policy (r1 �s,weak r2) ∈ DTRHA

between roles r1 and r2 is an activation-only weak temporal relationship, that is valid
in the time slots specified by a schedule s. Under this policy, a user u can activate r2 at
time t if (1) (u, r1, s1) ∈ TUA (2) (r2, s2) ∈ RS and (3) t ∈ (s1 ∩ s2 ∩ s), provided
that there exists schedules s1 and s2 that determine the time slots that u is assigned to
r1, and r2 is enabled, respectively.

Definition 3. A dynamic temporal role hierarchy policy (r1 +s,weak r2) ∈ DTRHIA

between roles r1 and r2 is a general weak temporal relationship, that is valid in the
time slots specified by a schedule s. Under this policy, a user u can activate r2 at time
t, or inherit permissions of r2 if (1) (u, r1, s1) ∈ TUA (2) (r2, s2) ∈ RS and (3)
t ∈ (s1∩s2∩s), provided that there exists schedules s1, and s2 that determine the time
slots that u is assigned to r1 and r2 is enabled, respectively.

In the above three definitions, the relations become strong, (i.e: r1 ≥s,strong r2) ∈
DTRHI , (r1 �s,strong r2) ∈ DTRHA and (r1 +s,strong r2) ∈ DTRHIA), when
(2) is replaced with (r1, s2), (r2, s3) ∈ RS and (3) is replaced with t ∈ (s1∩s2∩s3∩s)
where s3 is the schedule that determine the time slots that r2 is enabled. Now, let us give
an example about how these policies work.

Consider that we have temporal access control system with three roles, r1, r2 and r3
and TMAX = 3. Suppose that we have the following DTRH and RS policies defined:
(1) (r1, (0, 2)) ∈ RS (2) (r2, (0, 1)) ∈ RS (3) (r3, (1, 3)) ∈ RS (4) (r1 ≥(0,3),strong

r2) ∈ DTRHI (5) (r1 ≥(0,3),weak r3) ∈ DTRHI . According to these policies, a
user who has r1 assigned can inherit permissions of r2 only in the time interval (0, 1),
because r2 is not enabled in (1, 3) and the role hierarchy relation is strong. However,
u can inherit permissions of r3 in (0, 2), even if r3 is not enabled in (0, 1), since the
relation is weak.

A hybrid relation in a dynamic temporal role hierarchy, DTRHH , may contain all
of the tuples defined in the above definitions, and each relation among different roles is
determined using the type of that specific relation.

Dynamic temporal role hierarchy policies (r1 ≥s,weak r2) ∈ DTRH satisfy the
following properties for a given schedule s: (1) Reflexive: (r1 ≥s,weak r1) ∈ DTRH ,
(2) Transitive: If (r1 ≥s,weak r2), (r2 ≥s,weak r3) ∈ DTRH , then (r1 ≥s,weak r3) ∈
DTRH . (3) Asymmetric: If (r1 ≥s,weak r2) ∈ DTRH then (r2 ≥s,weak r1) �∈
DTRH . These properties apply for both strong and the other types of relations (�,+)
as well.

3.2 Administrative Model for TRBAC with Dynamic Temporal Role Hierarchies

Administrative models are required for RBAC systems in order to govern the modi-
fications on the access control policies [8]. Without these models, the access control
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policies are considered static as DTRH , which is a static policy unless there is an ad-
ministrative model to allow for modifications. Uzun et al.[10] present an administrative
model for TRBAC. In this section, we propose an extension to that model, which makes
it cover TRBACRH. This extension is composed of a rule called t can modify, similar
in semantics to the can modify in [8], but with additional capabilities for temporal di-
mension. This rule updates the valid time slots of the dynamic temporal role hierarchy
policies. Also, in contrast to precondition structures that have been proposed in the liter-
ature for other administrative rules (like can assign), it has two sets of preconditions,
one for senior and one for junior role in order to protect the integrity of the hierarchy.
The rule is composed of eight parameters that should be satisfied to execute the rule.
Let t be the time slot that the rule is required to be executed. (1) admin denotes the
administrative role that a user must belong in order to execute the rule. (2) srule is a
schedule that denotes the time slots in which the rule is executable. In order to satisfy,
t ⊆ srule . (3) shierarchy is a schedule that denotes the time slots of the hierarchy policy
that the rule is authorized to modify. (4) type ∈ {strong, weak} denotes the type of the
hierarchy relation. (5) rsr is the senior role of the hierarchy policy. (6) rjr is the junior
role of the hierarchy policy. (7) SR(Pos,Neg) denotes the positive and negative pre-
conditions of the senior role rsr. The preconditions are satisfied in the following way:
Let ŝ denote the time slots that are intended to be modified by the rule (ŝ ⊆ shierarchy).
For each r ∈ Pos, there must be a role hierarchy policy (r ≥ŝ,type rsr) ∈ DTRH and
for each r ∈ Neg, there must not be a hierarchy policy (r ≥ŝ,type rsr) ∈ DTRH . (8)
JR(Pos,Neg) denotes the positive and negative preconditions of the junior role rjr .
The preconditions are satisfied in the following way. Let ŝ denote the time slots that are
intended to be modified by the rule (ŝ ⊆ shierarchy). For each r ∈ Pos, there must be
a role hierarchy policy (rjr ≥ŝ,type r) ∈ DTRH and for each r ∈ Neg, there must
not be a hierarchy policy (rjr ≥ŝ,type r) ∈ DTRH . Under these parameters, a tuple
(admin , srule , SR(Pos,Neg), JR(Pos,Neg), shierarchy, rsr , rjr , type) ∈
t can modify allows to update the role hierarchy relation rsr ≥s,type rjr as follows:
Let ŝ be a schedule over TMAX with ŝ ⊆ shierarchy . Then, if this rule can be executed at
time t, and the preconditions are satisfied w.r.t. schedule ŝ, then the tuple rsr ≥s,type rjr
is updated to rsr ≥s∪ŝ,type rjr or rsr ≥s\ŝ,type rjr , depending on the intended modifi-
cation. This definition is for inheritance only hierarchies, but it also applies to activation
only and general inheritance hierarchies, by replacing≥ with � and+.

4 Toward Safety Analysis of TRBAC Systems with Dynamic
Temporal Role Hierarchies

An important aspect of any access control model is its safety analysis. This is nec-
essary to answer security questions such as those given in Section 1. In this section,
we examine how safety analysis of the TRBAC model with DTRH can be carried out.
The basic idea is to use the decomposition approach proposed in [10], which reduces
the TRBAC safety problem into multiple RBAC safety sub-problems and handles each
sub-problem separately using an RBAC safety analyzer that has been proposed in the
literature. Here, we need to make two assumptions: (1) The administrative model for
the dynamic temporal role hierarchy given in Section 3.2 cannot completely be decom-
posed into a traditional RBAC. The underlying reason is the precondition structure of



Analysis of TRBAC with Dynamic Temporal Role Hierarchies 303

dynamic temporal role hierarchies, that does not exist in ARBAC97 role hierarchy com-
ponent RRA97. Decomposing TRBAC into multiple RBAC safety sub-problems relax
the schedule components, but the precondition requirements remain in effect. Since,
there is no known RBAC safety analyzer that can handle preconditions in role hierar-
chies, we assume that the administrative model for dynamic temporal role hierarchy
contains rules with no precondition requirement for safety analysis purposes. (2) The
safety questions and the structure of the analysis in [10] are based on checking the
presence of a particular role (or roles) being assigned to a particular user. There is no
permission level control available in the model. Hence, we restrict our safety analysis
on the Activation-Only hierarchies. So, we assume DTRH = DTRHA. Moreover, we
assume all relationships are strong.

The decomposition that we utilize is the Role Schedule Approach of [10]. In this ap-
proach the sub-problems are constructed using the role schedules of the administrative
rules. In TRBAC, the administrative rules for role assignment and role enabling have
two separate schedules: Rule Schedule and Role Schedule. Rule schedule is similar to
the srule of t can modify and determines the periods in which the rule is valid. Simi-
larly, the role schedule is similar to the shierarchy of the t can modify and determines
the time slots that the rule is authorized to modify TUA and RS policies. The key ob-
servation that makes this decomposition possible is the independency among different
time slots, and the periodic behavior of the model. Particularly, if we are interested in
the safety analysis of a time slot t, then we only need to consider the administrative
rules, that are authorized to modify time slot t of TUA and RS relations. Furthermore,
since the system is periodic, for any long run analysis, we can safely assume that the va-
lidity constraints of the rules (srule) will be enforced implicitly even if they are ignored.
For detailed discussion, readers may refer to [10]. In TRBACRH, we perform similar
operations to generate sub-problems. Our model has the same property of having inde-
pendency among the time slots. First, we define the dynamic temporal role hierarchy
policies for a single time slot t, denoted as DTRHt ⊆ DTRH to be a collection of
role hierarchy policies in the system that satisfies:

DTRHt = {(ri �s1,strong rj)|t ∈ s1}∀ri, rj ,∈ R

where s1 and s2 are the schedules of role hierarchy rules. The dynamic role hierarchy
policies in the time slot t of RHt, then reduces to (ri �strong rj). These policies be-
come non-temporal role hierarchy policies for the time slot t. Similarly, administrative
rules for a specific time slot t is defined as:

(admin , srule , SR(∅, ∅), JR(∅, ∅), shierarchy, rsr , rjr , type) ∈ t can modifyt, t ∈
shierarchy

Hence, the set t can modifyt contains the administrative rules that are authorized to
modify the tth time slot of the dynamic temporal role hierarchy policies. In other words,
if one is interested in the safety analysis for time slot t, then there is not any other
administrative rule authorized to modify time slot t, but the rules in t can modifyt.
The administrative rules for t are reduced to (admin , rsr, rjr , type) which belong to
the can modify ⊆ admin × 2R of the RRA97 of [8].

The above defined two sets, RHt and t can modifyt provide safety analysis us-
ing the Role Schedule Approach in [10]. When decomposed, there are k RBAC safety



304 E. Uzun et al.

sub-problems, where k is the number of time slots. Any RBAC safety analyzer that is
capable of handling role hierarchies and the can modify relation can be used to an-
alyze these sub-problems. Repeating this operation for each of these k sub-problems
will yield the safety analysis of the TRBACRH system. The computational complexity
of this process depends linearly on the computational complexity of the RBAC safety
analyzer and k.

5 Conclusion and Future Work

In this paper, we introduced the concept of dynamic temporal role hierarchy, which, can
be viewed as a different role hierarchy at different times. We develop an administrative
model for RBAC with dynamic temporal role hierarchies along with a road map for its
safety analysis. Currently we are implementing safety analysis using the RBAC anal-
ysis tools available. Implementing administrative model of the dynamic temporal role
hierarchies in the safety analysis will require new tools to fully capture the capabilities
of the model. This will be our future work.
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