Real-Time Training of Team Soccer Behaviors

Keith Sullivan and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030 USA
{ksulliv2,sean}@cs.gmu.edu

Abstract. Training robot or agent behaviors by example is an attractive
alternative to directly coding them. However training complex behav-
iors can be challenging, particularly when it involves interactive behav-
iors involving multiple agents. We present a novel hierarchical learning
from demonstration system which can be used to train both single-agent
and scalable cooperative multiagent behaviors. The methodology applies
manual task decomposition to break the complex training problem into
simpler parts, then solves the problem by iteratively training each part.
We discuss our application of this method to multiagent problems in
the humanoid RoboCup competition, and apply the technique to the
keepaway soccer problem in the RoboCup Soccer Simulator.

1 Introduction

In this paper we describe a Learning from Demonstration (LfD) system called
Hierarchical Training of Agent Behaviors, or HITAB, and its application to prob-
lems in RoboCup. In LfD, an agent learns a behavior in real-time based on
provided examples from a human demonstrator, usually through teleoperation
of the agent. The goal of HiTAB is to learn complex stateful behaviors in the
form of hierarchical finite-state automata (HFA), in real time, based on a small
number of samples provided by a demonstrator. HITAB can be applied both to
single-agent training and to command hierarchies of arbitrarily large swarms of
agents. We have used HiTAB to train humanoid robots, a team of differential-
drive robots, and a variety of virtual agents, up to thousands of agents at a time,
on many different problems.

The distinguishing feature of (single-agent) HiTAB is its approach to learning
behaviors based on a small number of samples, which in turn enables rapid
training in areas, such as behavior-based robotics, where samples are sparse.
HiTAB achieves this through manual task decomposition, breaking a complex
joint finite-state automaton into a hierarchy of much smaller automata to be
iteratively learned and composed. Though HiTAB uses standard classification
techniques to learn these automata, the resulting learned automata are often
very simple, indeed trivial. This is exactly the goal: simple automata in turn
define a low-dimensional space which can be learned with a small number of
samples.

All machine learning methods combine some degree of automated machine
induction and human domain knowledge. At the very least, a human is choos-
ing an appropriate representation and bias. HITAB lies at the far end of the

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 356-B67] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Real-Time Training of Team Soccer Behaviors 357

induction/knowledge tradeoff. By manually decomposing the problem into a
hierarchy of subproblems, the experimenter is defining the automaton’s gen-
eral architecture: HITAB’s machine learning is filling in the gaps. This puts
HiTAB somewhere between machine learning and outright programming by
demonstration.

In 2011 we applied HiTAB to train a humanoid kid-sized robot soccer behav-
ior the night before the RoboCup competition, then fielded it in the competi-
tion alongside hardcoded robot behaviors. Our ultimate goal is to train all the
top-level behaviors in our robot soccer team while at the competition.

In this paper we demonstrate another application of HITAB to the Robocup
domain: the keepaway problem in simulated soccer, using the RoboCup Soccer
Simulator. In this problem, a group of keepers must collectively pass the ball
amongst one another so as to prevent another team, the takers, from acquiring it.
This problem requires the experimenter to train a homogeneous but interactive
behavior among three agents.

The rest of this paper is organized as follows. We first discuss related work,
then detail how HiTAB works in the single-agent case (for details on the multi-
agent/swarm case, see [28]). We then discuss our prior and current attempts in
the RoboCup Kid-Size Humanoid league. Then, we show how HiTAB may be
applied to the keepaway problem in the RoboCup Soccer Simulator.

2 Related Work

Learning from Demonstration is a method to train agents by having a human
demonstrator perform actions for the agent [II2]. Since the agent is given the
proper action to perform in a given situation, LfD is, broadly speaking, a super-
vised learning problem, though authors often use reinforcement learning, with
a reward signal based on how closely a learned solution matches a trajectory
shown by the demonstrator [7J19]. A variation of LfD, called imitation learning,
attempts to mimic a demonstrator’s actual actions (as a human) rather than
observe the demonstrator teleoperate the robot [I4UT5].

The LD literature may be divided into two categories: those which learn
plans [22J31] and those which learn (usually stateless) policies [3[19] (for stateful
examples see [8/13]). In most cases, the plan literature builds sparse machines
describing occasional changes in behavior, whereas many, but not all, policy
methods learn fine-grained changes in action, such as might be found in trajec-
tory planning or control. The crucial difference between the two is that a plan
learner may receive a new sample only when the user occasionally specifies a
new behavior to perform; whereas trajectory policy learners may be inundated
with samples with every slight modification or course correction. This in turn
has an impact on the difficulty of learning: plan methods must often deal with
an extreme sparsity in samples. Our work lies in the plan method category.

Like our own work discussed here, a number of other authors construct com-
plex behaviors via scaffolding: breaking the task into smaller, easier to learn
pieces and combining these smaller tasks to form complex behaviors [T6l25]27].

358 K. Sullivan and S. Luke

Our approach requires manual decomposition and reassembly, but this is not the
only approach. Instead of the demonstrator specifying how to combine simpler
behaviors, the idea of behavior fusion has the agent learn how to automatically
combine simple behaviors into more complex behaviors [20/21]. Closely related
is the notion of automatic task decomposition which determines how to break
complex behavior into simpler components [9J10].

Our work is distinguished in its application to both single- and multi-agent
scenarios. Though in this paper we focus largely on single-agent learning, it
is done in a collective environment. Multiagent learning from demonstration is
a very difficult problem because of the gulf which exists between the desired
emergent macrophenomena and the per-agent microbehaviors which give rise to
them. This is particularly problematic for supervised learners, because in or-
der to learn in a supervised fashion each agent must receive the correct action
as a microbehavior: but the experimenter does not know what microbehaviors
should be done to achieve the desired macrophenomenon, and parallel control of
large numbers of agents is also difficult. As a result the vast majority of multi-
agent research has focused on reward-based techniques (reinforcement learning,
evolutionary computation, etc.) rather than supervised learning [23]. Of those
supervised learning methods used, most fall into the category of agent modeling,
where agents learn about each other rather than a task given by a demonstrator.
Still, there has been some work in multiagent LfD. Chernova et al. use confidence
estimation to train multiple robots individually and rely on emergent multirobot
behavior to accomplish the task [5l6]. A similar approach was used to train Sony
AIBO robots to play soccer [ATTIT2].

3 Hierarchical Training with a Single Agent

HiTAB’s basic model consists of hierarchical finite-state automata. Each state in
a HiTAB automaton corresponds to an agent behavior: and when in a given state,
the agent performs the associated behavior. Behaviors may be either atomic
behaviors hard-coded in the agent, or may themselves be other finite-state au-
tomata. Every automaton begins in its Start state, a blank state which immedi-
ately transitions to some other state. Automata may also have flag states, such
as the Done state, which raises a flag indicating that the automaton believes it
is done, then transitions to the Start state. Flag states allow parent automata
to detect completion of sub-behaviors as if they were sensor features.

Transitions between states are controlled by transition functions which map
the current state and feature vector to a new state. HITAB’s states are fixed
(they are the current behaviors in its library), but it learns a transition function
for every state in the automaton.

Learning the transition function is a classification task where the class labels
are the individual states and attributes are the environmental features. While
many classification algorithms are applicable, HITAB at present uses a version of
the C4.5 decision tree algorithm [24] with probabilistic leaf nodes. Decision trees
nicely handle different types of data (e.g., continuous, toroidal, and categorical

Real-Time Training of Team Soccer Behaviors 359

data), and do not require scaling of features relative to one another. Additionally,
many agent tasks can be approximated by rectangular partitions of the feature
space, which makes them a good target for decision trees. Leaf nodes in deci-
sion trees traditionally deterministically compute the class using the plurality of
examples which reach that leaf. HITAB instead uses a probability distribution
over the classes appearing at a leaf node.

The motivation behind HiTAB was to develop a LfD system which could
rapidly train complex, stateful agent behaviors in real time. As mentioned be-
fore, training complex agent behaviors typically requires many samples. HITAB
employs task decomposition to reduce the number of samples necessary to pro-
duce a detailed behavior. It does this in various ways:

— Behaviors (which take the form of finite-state automata) are organized into
a hierarchy, allowing the operator to decompose a large joint behavior into
many simpler behaviors which are trained independently, then reused in
different situations by higher-level trained behaviors.

— Each behavior may be trained solely in the context of features and lower-
level behaviors relevant to it. In contrast, training a single large behavior
would require the joint of all basic behaviors and features, resulting in a
much higher dimensional learning space. This results in dramatic savings:
typically decomposition allows the dimensionality, and corresponding need
for samples, to decrease from exponential to polynomial sizes.

— Behaviors and sensor features are parameterizable. Thus an operator may
train a behavior such as go to X, and later reuse it as go to the ball or go to
the nearest wall, etc.

— Incorrectly trained behaviors may be retrained without having to retrain the
entire top-level joint behavior.

Running HiTAB. An automaton starts in its Start state. Each timestep, while
in state S;, the automaton first queries the transition function to determine the
next state Siy1, transitions to this new state, and if Sy # Siy1, stops performing
S¢’s behavior and starts performing S;y1’s behavior. It then performs one pulse
of the state’s underlying behavior: if the behavior is an atomic behavior such as
“go forward”, this might result in a single step forward. If the behavior is itself
an HFA| this results in recursively performing the aforementioned transition and
pulsing procedure on the underlying automaton.

Training with HiTAB. To begin training an automaton, the operator first selects
the features to be used as attributes for the automaton’s transition classifiers.
Training then iterates between a training mode and a testing mode.

In the training mode, the demonstrator is in control. Each time the demon-
strator directs the agent to perform a new behavior, the agent begins performing
it, and also records a tuple (S, ﬁ, S¢+1) which stores the current feature vector,
along with the previous and new states. If state S;y; has a behavior designed
to be executed exactly once, then no additional examples are recorded. Other-
wise, a useful default example is stored of the form (S;;1, f,;, St+1). This helps

360 K. Sullivan and S. Luke

HiTAB’s classifier realize that S;41 should be continuously performed unless, as
indicated by a further example, the situation changes again

Ultimately the demonstrator switches to the testing mode, which causes the
transition functions to be built from the collected examples. For a given state
S;, HITAB reduces all examples of the form (S;, ﬁ, S;) to samples of the form
(fi,S;) which are input to the classifier (f; are the features and S; are the
labels). The resulting classifier defines the transition function for outgoing edges
from S;.

The agent then starts following the learned behavior autonomously. If the
demonstrator observes the agent performing an incorrect behavior, he may step
in and switch the agent back to training mode to collect additional examples.

Ultimately the trained behavior is saved to the behavior library. To do this,
HiTAB first trims unused states and features. In addition, any parameterized
behaviors and features are bound to a target (e.g., “nearest obstacle”), or to a
parameter of the automaton itself. After saving to the library, the behavior may
be used as a state in a higher-level automaton to be learned at a later time.

Formal Model. The HFA is at the heart of HITAB. An automaton is a tuple
(S,B,F,T,G) € H defined as follows:

— 8 ={851,...,5,} is the set of states in the automaton. Included is one special
state, the Start state Sy, and zero or more flag states (such as Done). Exactly
one state is active at a time, designated S;. The purpose of a flag state is
simply to raise a flag in the automaton to indicate that the automaton
believes that some condition is now true. Flags in an automaton appear as
optional features in its parent automaton.

— B={B,..., By} is the set of basic behaviors. Each state is associated with
either a basic behavior or another automaton from H, though recursion is
not permitted.

— F = {f1,..., fm} is the set of observable features in the environment. At
any given time each feature has a numerical value. The collective values of
F at time ¢ is the environment’s feature vector fi = (f1, ..., fm)-

- T= ﬁ x S — S is the transition function which maps the current state Sy
and the current feature vector f; to a new state Syy1.

— Optional free variables (parameters) G = {Gi,...,G,} for basic behav-
iors and features generalize the model: each behavior B; and feature f; are
replaced as B;(G1,...,G,) and fi(G1,...,G,). The evaluation of the tran-
sition function and the execution of behaviors are based on ground instances
of the free variables. For example, rather than have a behavior called go to
the ball, we can create a behavior called goTo(A), where A is left unspeci-
fied. Similarly, a feature might be defined not as distance to the ball but as

! Default examples are distinguished in HiTAB’s decision tree mechanism: if the deci-
sion tree is choosing to place its pivot between a default example and a non-default
example, the pivot is placed immediately adjacent to the non-default example. This
differs from the normal case, where the pivot is placed exactly half-way between the
two examples.

Real-Time Training of Team Soccer Behaviors 361

distanceTo(B). If such a behavior or feature is used in an automaton, either
its parameter must be bound to a specific target (such as “the ball” or “the
nearest obstacle”), or it must be bound to some higher-level parent of the
automaton itself. Thus HFAs may themselves be parameterized.

4 Training Teams of Agents

We have applied HiITAB in three ways to train teams or swarms of agents to
perform group behaviors:

1. A single agent behavior is trained in isolation, then distributed to multiple
agents. The behavior does not require agent interaction and can be essentially
done in parallel.

2. A homogeneous behavior is trained to be used by multiple coordinated
agents. For example, the agents learn to form ranks, or work together to
capture a prey. Because the behavior must interact with other agents, this
kind of training can be challenging. In lieu of training multiple agents simul-
taneously, we have taken a new approach, which we call behavior bootstrap-
ping. Here, we train an agent to perform a rudimentary version of the desired
behavior in the context of do-nothing teammates. We then distribute this
rudimentary behavior to the teammates, then train the agent on a slightly
more capable behavior in the context of teammates performing the rudi-
mentary behavior. We then distribute the slightly more capable behavior to
the teammates, and train an even more capable behavior, and so on, until
the desired sophisticated behavior is achieved. This approach is only really
effective with a relatively small number of agents.

3. A collection of coordinated homogeneous behaviors are trained among a
swarm of a (potentially very large) number of agents. The way this is done
is by organizing the swarm into a command hierarchy: small groups of agents
are assigned a commander (a virtual agent); then small groups of comman-
ders are assigned a commander, and so on until the whole swarm is structured
as a tree. We use HiTAB to train commanders in essentially the same way as
real (leaf node) agents are trained. A commander’s atomic behaviors corre-
spond to the learned top-level behaviors of its subordinate agents, and when
it begins to perform an atomic behavior it directs its subordinates to all be-
gin performing the equivalent top-level behavior. The resulting hierarchical
command structure strikes a mid-ground between a fully distributed swarm
and a fully centralized one.

Examples of the third approach may be found in [28]. Because the number of
agents is small (three teammates), in this paper we concentrate on the first two
approaches, and particularly on the novel use of behavior bootstrapping to train
three agents in concert.

We note that these methods, or at least the last two, fall under the multiagent
learning subcategory defined in [23] as team learning, whereby a single learner is

362 K. Sullivan and S. Luke

used at any particular time to train a team of agents. This is in contrast to con-
current learning, where multiple learners are simultaneously operating. Further,
we note that the group behaviors described above are all homogeneous. However
ultimately we aim to be able to train heterogeneous or mixed homogeneous and
heterogeneous behaviors in large numbers of agents.

5 Team Robot Training of Humanoids at RoboCup

The goal of HiTAB is to allow real-time training of behaviors fast enough that
it can be done in the field and on-the-fly by an operator. This has been demon-
strated in previous work [I829] for virtual agents, a single differential-drive
robot, and a humanoid robot. But it had never been tested in a real-world chal-
lenge scenario. Thus as a proof of concept we fielded HiTAB-trained robots in
RoboCup 2011.

Since 2009, we have competed in the RoboCup Kid-sized Humanoid League
with the RoboPatriots [30]. Our humanoid robots have top-level behaviors in the
form of hard-coded hierarchical finite-state automata. Such behaviors include
locating the ball, servoing and approaching the ball, aligning with the goal,
kicking and reattempting kicks, and so on.

On the soccer field the night before the 2011 competition, we deleted one
of the hard-coded behaviors (servoing and approaching the ball) and trained a
behavior in its place. We did this by directly teleoperating the humanoid on the
field. We then saved out the trained behavior, and during the competition, the
robots loaded this behavior from a file and used it in an interpreter along side
the remaining hard-coded behaviors.

This behavior was not complex: it was meant as a proof of concept. However,
the learned behavior worked perfectly. After discussions with colleagues at the
competition, we have come to the conclusion that, to the best of our knowledge,
this is the first time a team at RoboCup has used a behavior taught to the robots
on the field at the competition itself.

For RoboCup 2012, our goal is to train most, if not all, of the top-level be-
haviors on the field at the competition. In essence, we will attempt to teach the
team how to play soccer the night before the competition.

6 Team Robot Training of Keepaway Soccer

In preparation for the RoboCup 2012 humanoid goal, we applied HiTAB to the
task of simulated soccer keepaway in the RoboCup Soccer Simulator. In the
keepaway problem, a team of keepers tries to maintain possession for as long as
possible from a team of takers. The two teams compete in a bounded area (in
our case, a 20m X 20m box) within a regular soccer field in the RoboCup Soccer
Simulator. In our version of keepaway, the agents have 360 degree and infinite
view and cannot collide with the ball. We did not permit our keepers to dribble.

The keepaway problem presents several challenges. First, its limited inter-
agent communication requires agents to learn independently, but the resulting

Real-Time Training of Team Soccer Behaviors 363

Keepaway ApproachBall
otherwise ’ always >

)

distance to ball < 1.1

)

Iwasyelledat gone

| am the closest
teammember to
the ball
—— | ControlBall

distance to ball > 1.8 - GoSlow

*'7

distance to ball < 1.6

distance to ball > 3.4 | GoMedium

*'7

ControlBall distance to ball <3.3

distance to ball > 6.6 ——>

distance to closest taker < 5.5 GotoBall

always always —»| ApproachBall

cannot kick ball can kick ball angletoball=+3 angle to ball <+3

always — GotoBall TurnToBall

Fig. 1. Four automata trained for the Keepaway Problem. In each case, the automa-
ton begins in Start. The Done behavior does nothing but raises a done flag in the
automaton’s parent, which is detected by the done feature (compare ControlBall with
Keepaway). Real-valued numbers shown are the result of the training examples pro-
vided.

< always

behaviors require coordination. Second, keepaway (and soccer in general) has a
large state space. Third, the RoboCup Soccer Simulator injects random noise in
agents’ actions and sensors.

In this example we used HiTAB plus behavior bootstrapping to learn coor-
dinated behaviors among the three agents. We first manually decomposed the
keeper behaviors into a structure similar to Stone et al [26]. The keepers were
provided with the following hard-coded behaviors: GoFast, GoMedium, GoSlow,
Stop, Pass, GetOpen, and TurnToBall.

— The GoFast, GoMedium, and GoSlow functions moved the keeper straight
ahead at velocities of 100, 90, and 75 respectively.

— The Pass function kicked the ball to the “most open” teammate. Openness
was defined by determining the maximum angle subtended by the vector
between the passer and receiver, and the vector between the passer and the
closest taker. Kick strength accounted for friction and was proportional to

364 K. Sullivan and S. Luke

the distance between the passer and receiveld. The passer would then yell
to the receiver to inform him of the incoming ball.

— GetOpen moved the keeper away from its teammates via a simple potential
field, but constrained to be within 10 meters of the center of the box.

— TurnToBall rotated the keeper to directly face the ball.

The features we used were: DistanceTo(X), DirectionTo(X), IWasYelledAt, Bal-
lIsKickable, and ATeammatelsCloserToBall, where X could be set to either the
ball, the closest keeper, or closest taker. The binary features IWas YelledAt, Bal-
lIsKickable and ATeammatelsCloserToBall were true when a yell message was
received (from a passer), the ball was within kicking range, or another keeper
was closer to the ball, respectively, and were false otherwise.

Given these basic behaviors and features, we trained four automata in the
following order, as shown in Figure [Tt

1. ApproachBall: A P-Controller in automaton form, based on GoFust,
GoMedium, GoSlow, Stop, and DistanceTo(ball). This automaton attempted
to move the agent until it was within kicking distance of the ball location.

2. GotoBall: Iterated between ApproachBall and TurnToBall, using the angle
to ball. This automaton attempted to servo on the ball location, and did not
require state.

3. ControlBall: Used the GotoBall, Stop, and Pass behaviors, the optional
Done state, and the DistanceTo(Closest Taker) and BalllsKickable features.
This automaton servoed on the ball, waited until a taker was sufficiently
close, then passed the ball, plus some error handling.

4. Keepaway: The top-level automaton, used GetOpen and ControlBall, plus
three features: ATeammatelsCloserToBall, IWasYelledAt, and Done. This
automaton would initially either get open or take control of the ball depend-
ing on whether the agent was initially closest to the ball. It then iterated
between the GetOpen and ControlBall behaviors depending on whether the
agent believed it was in control of the ball at any given time.

Keepaway was notable in that it was trained via a simple form of behavioral
bootstrapping. We began by training a single agent to either go to ControlBall
or GetOpen when started. We then distributed this behavior to all the agents.
We next restarted the game, which caused one agent to go to ControlBall while
the others went to GetOpen. We further trained the ball-controlling agent to
pass the ball and then get open, and then copied that behavior to all agents.
After restarting again, we trained a single open agent to transition to ControlBall
when yelled at, and distributed the final version of the behavior.

7 Experiments

We ran our learned keepaway behaviors for 200 episodes. An episode ended when
the takers gained possession of the ball, or when the ball was kicked out of the

2 The exact kick strength computation followed the U Texas Austin code used in
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/.

http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/

Real-Time Training of Team Soccer Behaviors 365

Table 1. Number of data points to train the final behaviors, and an approximation of
the total time to train the final behaviors.

Behavior Number of Examples Time to Train (minutes)
ApproachBall 18 10
GotoBall 10 10
ControlBall 11 45
Keepaway 10 90

keepaway box. The takers were from [26], but running at one quarter the speed
of the original. All experiments were conducted using the MASON multiagent
simulation package [I7] (running HiTAB) plus the RoboCup Soccer Simulator.

Our trained keepers maintained possession for an average of 14.6 + 0.87 sec-
onds, and completed an average of 3.8 passes per episode. We were able to train
the behaviors to play successfully: but obviously they will require more tweaking
to keep the ball away from the takers for a longer duration.

We also wanted to examine how quickly behaviors could be trained using
HiTAB. Table [Il shows the length of time spent actually training the agents
(including collecting the samples and constructing the HFA), and the number
of examples collected for the final trained model. Typically, the demonstrator
required several iterations to train the final behavior due to demonstrator error
or experimentation with different ways of achieving the desired behavior (and
thus different automata structures). Keepaway took longer to train due to the
behavioral bootstrapping involved. In particular, the majority of the time was
spent determining how to manage the system such that two agents were in the
correct configuration to collect appropriate data: inability to manipulate the
agents was largely a GUI issue which can be remedied in the future.

We believe the experiments show HiTAB’s ability to train a complex multi-
agent behavior in a reasonable timeframe, and without requiring a significant
amount of data. Based on these results, we think our goal to train the RoboPa-
triot soccer behavior in Mexico City is viable.

8 Conclusions and Future Work

This paper demonstrated a supervised learning from demonstration system ca-
pable of training complex behaviors in a multiagent problem domain in real
time. Our system, HiTAB, achieves this through manual behavior decomposi-
tion, per-sub-behavior feature reduction, and machine learning through classifi-
cation. HITAB’s purpose is to do learning on a very small number of samples. Its
use of behavior decomposition places us on the far end of what may be reason-
ably called machine learning, and very close to explicit programing by example.
Multiagent supervised training (as opposed to user modeling) is unusual, and
HiTAB is nearly unique in tackling this problem.

The primary difficulties we encountered in adapting HiTAB for the soccer
keepaway problem centered on representation: HiTAB employs classification

366 K. Sullivan and S. Luke

rather than regression, yet many of the behaviors in the robot soccer domain
benefit from regression. For example, the GetOpen behavior computed the direc-
tion to go based on a potential field, which HiTAB could not easily do. Intelligent
interception would also benefit from regression, as was originally demonstrated
n [27]. It is reasonable to use HiTAB to train higher-level behaviors composed
from lower-level behaviors which were either hard-coded or developed through
another learning technique (such as a regression technique). Finally, our ulti-
mate goal is to develop HiTAB towards heterogeneous multiagent behaviors. In
the keepaway problem there is little need for heterogeneity: but in the Robocup
Humanoid leagues it is plausible for all three robots to be heterogeneous, ei-
ther by differences in capability (goalies) or simply behavior (a forward versus a
midfielder).

References

1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and Autonomous Systems 57, 469-483 (2009)

2. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: Fisher, D.H.
(ed.) Proceedings of International Conference on Machine Learning (ICML), pp.
12-20. Morgan Kaufmann (1997)

3. Bentivegna, D.C., Atkeson, C.G., Cheng, G.: Learning tasks from observation and
practice. Robotics and Autonomous Systems 47(2-3), 163-169 (2004)

4. Browning, B., Xu, L., Veloso, M.: Skill acquisition and use for a dynamically-
balancing soccer robot. In: Proceedings of the American Association of Artificial
Intelligence (AAAI), pp. 599-604 (2004)

5. Chernova, S.: Confidence-based Robot Policy Learning from Demonstration. Ph.D.
thesis, Carnegie Mellon University (2009)

6. Chernova, S., Veloso, M.: Confidence-based multi-robot learning from demonstra-
tion. International Journal of Social Robotics 2, 195-215 (2010)

7. Coates, A., Abbeel, P., Ng, A.Y.: Apprenticeship learning for helicopter control.
Communications of the ACM 52(7), 97-105 (2009)

8. Dixon, K., Khosla, P.K.: Learning by observation with mobile robots: A compu-
tational approach. In: Proceedings of IEEE International Conference on Robotics
and Automation (ICRA) (2004)

9. Eyharabide, V., Amandi, A.: Automatic task model generation for interface agent
development. Inteligencia Artificial 9(26), 49-57 (2005)

10. Garland, A.: Learning hierarchical task models by demonstration. Tech. Rep. TR-
2001-03, Mitsubishi Electric Research Laboratories (2001)

11. Grollman, D., Jenkins, O.: Dogged learning for robots. In: Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), pp. 2483-2488.
IEEE (2007)

12. Grollman, D.H., Jenkins, O.C.: Can we learn finite state machine robot controllers
from interactive demonstration? In: Sigaud, O., Peters, J. (eds.) From Motor Learn-
ing to Interaction Learning in Robots. SCI, vol. 264, pp. 407-430. Springer, Hei-
delberg (2010)

13. Hovland, G., Sikka, P., McCarragher, B.: Skill acquisition from human demonstra-
tion using a hidden markov model. In: Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2706-2711. IEEE (1996)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Real-Time Training of Team Soccer Behaviors 367

Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynam-
ical systems in humanoid robots. In: Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), pp. 1398-1403 (2002)

Jenkins, O., Mataric, M., Weber, S.: Primitive-based movement classification for
humanoid imitation. In: Proceedings of the IEEE-RAS International Conference
on Humanoid Robotics (Humanoids) (2000)

Lockerd, A., Breazeal, C.: Tutelage and socially guided robot learning. In: Proceed-
ings of IEEE International Conference on Intelligent Robots and Systems (IROS),
vol. 4, pp. 3475-3480. IEEE (2004)

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-
agent simulation environment. Simulation 81(7), 517-527 (2005)

Luke, S., Ziparo, V.: Learn to behave! rapid training of behavior automata. In:
Grzes, M., Taylor, M. (eds.) Proceedings of Adaptive and Learning Agents Work-
shop at AAMAS 2010, pp. 61-68 (2010)

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: Learn-
ing from demonstration and adaptation of biped locomotion. Robotics and Au-
tonomous Systems 47(2-3), 79-91 (2004)

Nicolescu, M., Jenkins, O., Olenderski, A.: Behavior fusion estimation for robot
learning from demonstration. In: Proceedings of Workshop on Distributed Intelli-
gent Systems: Collective Intelligence and Its Applications. IEEE Computer Society
(2006)

Nicolescu, M., Jenkins, O., Stanhope, A.: Fusing robot behaviors for human-level
tasks. In: Proceedings of the International Conference on Development and Learn-
ing (ICDL), pp. 76-81. IEEE (2007)

Nicolescu, M.N.: A Framework for Learning from Demonstration, Generalization
and Practice in Human-Robot Domains. Ph.D. thesis, University of Southern Cal-
ifornia (2003)

Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387-434 (2005)

Quinlan, J.R.: C4.5: Programs for Machine Learning, 1st edn. Morgan Kaufmann
Series in Machine Learning. Morgan Kaufmann (January 1993)

Saunders, J., Nehaniv, C.,; Dautenhahn, K.: Teaching robots by molding behavior
and scaffolding the environment. In: Proceedings of the ACM/IEEE International
Conference on Human-Robot Interaction (HRI) (2006)

Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup-soccer
keepaway. Adaptive Behavior 13(3), 165-188 (2005)

Stone, P., Veloso, M.: Layered learning and flexible teamwork in robocup simulation
agents. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS
(LNAI), vol. 1856, pp. 495-508. Springer, Heidelberg (2000)

Sullivan, K., Luke, S.: Learning from demonstration with swarm hierarchies. In:
Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS) (2012)
Sullivan, K., Luke, S., Ziparo, V.A.: Hierarchical learning from demonstration on
humanoid robots. In: Proceedings of the Humanoid Robots Learning from Inter-
action Workshop at Humanoids (2010)

Sullivan, K., Russell, K., Andrea, K., Stout, B., Luke, S.: RoboPatriots: George Ma-
son University 2012 RoboCup team. In: Proceedings of the 2012 RoboCup Work-
shop (2012)

Veeraraghavan, H., Veloso, M.M.: Learning task specific plans through sound and
visually interpretable demonstrations. In: Proceedings of IEEE International Con-
ference on Intelligent Robots and Systems (IROS), pp. 2599-2604. IEEE (2008)

	Real-Time Training of Team Soccer Behaviors
	1 Introduction
	2 Related Work
	3 Hierarchical Training with a Single Agent
	4 Training Teams of Agents
	5 Team Robot Training of Humanoids at RoboCup
	6 Team Robot Training of Keepaway Soccer
	7 Experiments
	8 Conclusions and Future Work
	References

