
Xiaoping Chen
Peter Stone
Luis Enrique Sucar
Tijn van der Zant (Eds.)

RoboCup 2012:
Robot Soccer
World Cup XVI

 123

LN
AI

 7
50

0

Lecture Notes in Artificial Intelligence 7500

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Xiaoping Chen Peter Stone
Luis Enrique Sucar Tijn van der Zant (Eds.)

RoboCup 2012:
Robot Soccer
World Cup XVI

13

Volume Editors

Xiaoping Chen
University of Science and Technology of China, Computer Science School
Hefei 230027, China
E-mail: xpchen@ustc.edu.cn

Peter Stone
The University of Texas at Austin, Department of Computer Science
Austin, TX 78712-1757, USA
E-mail: pstone@cs.utexas.edu

Luis Enrique Sucar
Instituto Nacional de Astrofísica, Óptica y Electrónica
72840 Puebla, Mexico
E-mail: esucar@inaoep.mx

Tijn van der Zant
University of Groningen, Faculty of Mathematics and Natural Sciences
Institute for Artificial Intelligence and Cognitive Engineering
9747 AG Groningen, The Netherlands
E-mail: tijn@ieee.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39249-8 e-ISBN 978-3-642-39250-4
DOI 10.1007/978-3-642-39250-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013941253

CR Subject Classification (1998): I.2, C.2.4, D.2.7, H.5, I.4-5, J.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

RoboCup 2012, the 16th in the annual series of RoboCup International Compe-
titions, was held during June 18–24, 2012, in the International Exhibition and
Convention Center of the World Trade Center in Mexico City, Mexico. This book
documents the event, and serves as the proceedings of the 16th edition of the
RoboCup Symposium, that is associated with the competition every year.

As one of its features, RoboCup aims to transfer research results and tech-
nological advances in robotics and related areas from the laboratory to the real
world. The annual RoboCup competitions play a particular role toward this pur-
pose. An autonomous robot is typically a large-scale system that integrates a
variety of techniques from different domains, and thus needs the extensive ef-
fort of a whole group. Meanwhile, different groups throughout the world have
developed different robots based on different ideas, concepts, and approaches.
Therefore, it is crucial to have these endeavors tested and compared under the
same conditions. RoboCup competitions have provided such tests and compar-
isons on a world-class scale annually. Each year the conditions are enhanced
deliberatively by the community, to keep the tests challenging, fruitful, and ap-
proaching closer to real-world conditions.

The RoboCup International Symposium has been an indispensable part of
RoboCup, where researchers exchange and discuss their cutting-edge ideas and
results related to the initiative, especially those that are stimulated and tested
by the competitions. Therefore, the symposium provides a unique forum for
exploring and disseminating insights and other results of the worldwide efforts
as a part of the RoboCup initiative.

For the 16th RoboCup International Symposium, we received 64 submis-
sions. The submissions were reviewed carefully by the International Program
Committee, which consisted of 54 members. Each paper was reviewed by three
reviewers. Overall, we accepted 25 of those (39%), of which 12 (19%) were cho-
sen for oral presentation. The symposium also included two invited talks, by
Edwin Olson and Martial Hebert. All accepted papers were presented as posters
during the symposium. The decision on the best paper award, given to the au-
thors of “Lateral Disturbance Rejection for the Nao Robot,” was made by an
Award Selection Committee, based on the results of the review process, and the
presentation of the three nominated papers at the symposium. The two other
nominees were “Robot Localization Using Natural Landmarks,” and “Throwing
Skill Optimization Through Synchronization and Desynchronization of Degree
of Freedom.”

This book begins with papers from some of the Champion teams in the 2012
RoboCup competitions. These papers both serve as an insight into the technical
challenges emphasized by each different event, and also document some of the
key technical innovations that were introduced in 2012. The papers that were

VI Preface

nominated for the best paper award come next, followed by the rest of the papers
that were accepted for oral presentation at the symposium. Finally, the papers
that were accepted for poster presentation round off the remainder of the book.

We would like to take this opportunity to thank the Program Committee
members and reviewers for their valuable work, especially their constructive
comments and suggestions about the submissions. We also thank all of the au-
thors for their contributions. We are grateful to the Award Selection Committee
members for their careful evaluation and decision of the best paper award. We
give our special thanks to the local Organizing Committee for their effective and
efficient arrangements and support offered the symposium.

Xiaoping Chen
Peter Stone

Luis Enrique Sucar
Tijn van der Zant

Organization

Program Committee

H. Levent Akin Bogazici University, Turkey
Luis Almeida Universidade do Porto, Portugal
Sven Behnke University of Bonn, Germany
Andrea Bonarini Politecnico di Milano, Italy
Ansgar Bredenfeld Dr. Bredenfeld UG, Germany
Stefano Carpin University of California, USA
Stephan Chalup The University of Newcastle, UK
Xiaoping Chen University of Science and Technology

of China, China
Eric Chown Bowdoin College, USA
Amy Eguchi Bloomfield College, USA
Alessandro Farinelli Verona University, Italy
Bernhard Hengst UNSW, CAS, NICTA, Australia
Todd Hester University of Texas at Austin, USA
Dirk Holz University of Bonn, Germany
Luca Iocchi Sapienza University of Rome, Italy
Mansour Jamzad Sharif University of Technology, Iran
Jianmin Ji University of Science and Technology

of China, China
Alexander Kleiner Linköping University, Sweden
Gerhard Kraetzschmar Bonn-Rhein-Sieg University, Germany
Michail Lagoudakis Technical University of Crete, Greece
Darwin Lau University of Melbourne, Australia
Tim Laue DFKI Bremen, Germany
Pedro Lima Institute for Systems and Robotics,

Instituto Superior Técnico, Portugal
Jim Little University of British Columbia, Canada
Norbert Michael Mayer National Chung Cheng University, Taiwan
Manuele Menegatti University of Padua, Italy
Cetin Mericli Carnegie Mellon University, USA
Tekin Mericli Bogazici University, Turkey
Eduardo Morales INAOE, Mexico
Tadashi Naruse Aichi Prefectural University, Japan
Itsuki Noda National Institute of Advanced

Industrial Science and Technology, Japan
Paul G. Plöger Bonn-Rhein-Sieg University of Applied

Science, Germany

VIII Organization

A. Fernando Ribeiro University of Minho, Portugal
Raul Rojas Freie Universität Berlin, Germany
Javier Ruiz-Del-Solar Universidad de Chile, Chile
Thomas Röfer Deutsches Forschungszentrum

für Künstliche Intelligenz GmbH,
Germany

Claude Sammut University of New South Wales,
Australia

Jesus Savage Universidad Nacional Autonoma de
Mexico, Mexico

Matthijs Spaan Delft University of Technology,
The Netherlands

Mohan Sridharan Texas Tech University, USA
Gerald Steinbauer Graz University of Technology, Austria
Peter Stone University of Texas at Austin, USA
Luis Enrique Sucar Nat. Inst. for Astrophysics, Optics and

Electronics, Mexico
Komei Sugiura National Institute of Information and

Communications Technology, Japan
Tomoichi Takahashi Meijo University, Japan
Yasutake Takahashi University of Fukui, Japan
Ubbo Visser University of Miami, USA
Oskar Von Stryk Technische Universität Darmstadt,

Germany
Alfredo Weitzenfeld University of South Florida Polytechnic,

USA
Feng Wu University of Southampton, UK
Xihong Wu Peking University, China
Tijn Van Der Zant University of Groningen,

The Netherlands
Mingguo Zhao Tsinghua University, China
Changjiu Zhou Singapore Polytechnic, Singapore

Table of Contents

Best Paper Award

Lateral Disturbance Rejection for the Nao Robot . 1
Juan José Alcaraz-Jiménez, Marcell Missura,
Humberto Mart́ınez-Barberá, and Sven Behnke

Champion Teams

HELIOS2012: RoboCup 2012 Soccer Simulation 2D League
Champion . 13

Hidehisa Akiyama and Tomoharu Nakashima

RoboCup 2012 Rescue Simulation League Winners 20
Francesco Amigoni, Arnoud Visser, and Masatoshi Tsushima

UT Austin Villa 2012: Standard Platform League World Champions 36
Samuel Barrett, Katie Genter, Yuchen He, Todd Hester,
Piyush Khandelwal, Jacob Menashe, and Peter Stone

TUMsBendingUnits from TU Munich:RoboCup 2012 Logistics League
Champion . 48

Sören Jentzsch, Sebastian Riedel, Sebastian Denz, and
Sebastian Brunner

Team CHARLI: RoboCup 2012 Humanoid AdultSize League Winner . . . 59
Coleman Knabe, Mike Hopkins, and Dennis W. Hong

RoboCup@Work League Winners 2012 . 65
Stefan Leibold, Andreas Fregin, Daniel Kaczor,
Marina Kollmitz, Kamal El Menuawy, Eduard Popp, Jens Kotlarski,
Johannes Gaa, and Benjamin Munske

UT Austin Villa: RoboCup 2012 3D Simulation League Champion 77
Patrick MacAlpine, Nick Collins, Adrian Lopez-Mobilia, and
Peter Stone

RoboCup 2012 Best Humanoid Award Winner NimbRo TeenSize 89
Marcell Missura, Cedrick Münstermann, Malte Mauelshagen,
Michael Schreiber, and Sven Behnke

X Table of Contents

NimbRo@Home: Winning Team of the RoboCup@Home Competition
2012 . 94

Jörg Stückler, Ishrat Badami, David Droeschel,
Kathrin Gräve, Dirk Holz, Manus McElhone,
Matthias Nieuwenhuisen, Michael Schreiber,
Max Schwarz, and Sven Behnke

Accepted Papers

How Much Worth Is Coordination of Mobile Robots for Exploration
in Search and Rescue? . 106

Francesco Amigoni, Nicola Basilico, and Alberto Quattrini Li

Robot Localisation Using Natural Landmarks . 118
Peter Anderson, Yongki Yusmanthia, Bernhard Hengst, and
Arcot Sowmya

Solving Multi-agent Decision Problems Modeled as Dec-POMDP:
A Robot Soccer Case Study . 130

Okan Aşık and H. Levent Akın

Towards a Principled Solution to Simulated Robot Soccer 141
Aijun Bai, Feng Wu, and Xiaoping Chen

People Detection in 3d Point Clouds Using Local Surface Normals 154
Frederik Hegger, Nico Hochgeschwender,
Gerhard K. Kraetzschmar, and Paul G. Ploeger

Simulation Competitions on Domestic Robots . 166
Jianmin Ji, Zhiqiang Sui, Guoqiang Jin, Jiongkun Xie, and
Xiaoping Chen

Throwing Skill Optimization through Synchronization and
Desynchronization of Degree of Freedom . 178

Yuji Kawai, Jihoon Park, Takato Horii, Yuji Oshima,
Kazuaki Tanaka, Hiroki Mori, Yukie Nagai, Takashi Takuma, and
Minoru Asada

Positioning to Win: A Dynamic Role Assignment and Formation
Positioning System . 190

Patrick MacAlpine, Francisco Barrera, and Peter Stone

Evacuation Simulation with Guidance for Anti-disaster Planning 202
Masaru Okaya and Tomoichi Takahashi

Table of Contents XI

Motion Capture and Contemporary Optimization Algorithms for
Robust and Stable Motions on Simulated Biped Robots 213

Andreas Seekircher, Justin Stoecker, Saminda Abeyruwan, and
Ubbo Visser

A CASE Tool for Robot Behavior Development . 225
Angeliki Topalidou-Kyniazopoulou, Nikolaos I. Spanoudakis, and
Michail G. Lagoudakis

A Distributed Cooperative Reinforcement Learning Method for
Decision Making in Fire Brigade Teams . 237

Abbas Abdolmaleki, Mostafa Movahedi, Nuno Lau, and
Lúıs Paulo Reis

Active Scene Text Recognition for a Domestic Service Robot 249
José Antonio Álvarez Ruiz, Paul Plöger, and
Gerhard K. Kraetzschmar

Evaluation of Colour Models for Computer Vision Using Cluster
Validation Techniques . 261

David Budden, Shannon Fenn, Alexandre Mendes, and
Stephan Chalup

Using Saliency-Based Visual Attention Methods for Achieving
Illumination Invariance in Robot Soccer . 273

F. Serhan Daniş, Tekin Meriçli, and H. Levent Akın

A Robust Place Recognition Algorithm Based on Omnidirectional
Vision for Mobile Robots . 286

Huimin Lu, Kaihong Huang, Dan Xiong, Xun Li, and Zhiqiang Zheng

Ball Sensing in a Leg Like Robotic Kicker . 298
Jonas Logghe, André Dias, José Almeida, Alfredo Martins, and
Eduardo Silva

Cooperative Global Tracking Using Multiple Sensors 310
Roman Marchant, Pablo Guerrero, and Javier Ruiz-del-Solar

Implementing a Real-Time Hough Transform on a Mobile Robot 322
John Morrison, Eric Chown, and Bill Silver

Extending Virtual Robots towards RoboCup Soccer Simulation and
@Home . 332

Sander van Noort and Arnoud Visser

A Survey about Faults of Robots Used in RoboCup 344
Gerald Steinbauer

XII Table of Contents

Real-Time Training of Team Soccer Behaviors . 356
Keith Sullivan and Sean Luke

SLAM in the Dynamic Context of Robot Soccer Games 368
Stefan Tasse, Matthias Hofmann, and Oliver Urbann

On Sensor Model Design Choices for Humanoid Robot Localization 380
Stefan Tasse, Matthias Hofmann, and Oliver Urbann

Keyword Index . 391

Author Index . 393

Lateral Disturbance Rejection for the Nao Robot

Juan José Alcaraz-Jiménez1, Marcell Missura2, Humberto Mart́ınez-Barberá1,
and Sven Behnke2

1 Information and Communications Engineering, Computer Science,
Univ. of Murcia, Spain

{juanjoalcaraz,humberto}@um.es
http://robolab.dif.um.es/

2 Autonomous Intelligent Systems, Computer Science, Univ. of Bonn, Germany
{missura,behnke}@cs.uni-bonn.de

http://ais.uni-bonn.de

Abstract. Maintaining balance in the presence of disturbances is cru-
cial for bipedal robots. In this paper, we focus on the lateral motion
component. In order to attain disturbance rejection and to quickly re-
cover balance, we combine three different control approaches. As a prin-
cipal building block, we generate center of mass trajectories with a
linear model predictive controller that takes scheduled footsteps into ac-
count. Strong disturbances generate unexpected angular momenta that
can compromise stability. A second control layer extends the underlying
preview controller with two recovery strategies that modify the planned
CoM trajectories to dampen the rotational velocity of the robot and
adapt the timing of the steps according to the expected orbital energy
of CoM trajectories at support exchange. Experiments with a real Nao
robot show that the system is able to recover from lateral disturbances
as long as the robot does not tip over the current support leg.

Keywords: Nao, Disturbances, Angular Momentum, Orbital Energy.

1 Introduction

The Nao bipedal robot enjoys an increasing amount of scientific attention, es-
pecially since it has been selected to play humanoid soccer in the RoboCup
standard platform league competitions. Several gaits that show reasonable per-
formance on the soccer field have been presented for the Nao. The response to
unexpected disturbances, however, remains a weakness of all gaits up to date.

Here, we are presenting a locomotion system based on the model predictive
control framework (MPC), whose performance is improved by two additional
controllers. The linear inverted pendulum model (LIPM) used by the MPC ne-
glects the angular momentum of the robot, which is not a good assumption if
the robot has been disturbed. To overcome this limitation, our first additional
controller decreases the tipping moment around the outer border of the sole, en-
suring a smooth recovery after disturbances. The second controller adjusts the
timing of the steps to account for increased single-support durations while the

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://robolab.dif.um.es/
http://ais.uni-bonn.de

2 J.J. Alcaraz-Jiménez et al.

Fig. 1. Nao robot reacting to lateral disturbances

robot is recovering from a lateral push. Both additional controllers are designed
for the lateral motion component exclusively. With this configuration, the robot
is able to reject relatively strong perturbations from the side—as long as it does
not tip over the current support leg.

The importance of lateral stability is often overlooked. While in sagittal di-
rection the swing foot can be flexibly placed virtually anywhere in front of or
behind the robot, in lateral direction the location and the timing of footsteps are
much more constrained. Most humanoid robots cannot cross their legs, therefore
the locations on the outer side of the support leg are not available to maintain
stability. Moreover, the rhythmic oscillation induced by the alternating role of
support between the left and the right leg dictates a steady timing which is
sensitive to disturbances and can quickly lead to a fall, if not adjusted on the
fly.

This paper is structured as follows. After reviewing related work in Section 2,
we describe the core of our walking engine in Section 3. Section 4 explains the
feedback controllers that modify the MPC approach and Section 5 discusses the
experimental results obtained.

2 Related Work

Numerous approaches have been proposed to implement dynamic walking for
bipedal robots. For example, central-pattern generated omni-directional gaits
proved to be an effective approach as they are used by leading teams [1,2] in
different leagues of the RoboCup competition.

On the other hand, locomotion systems based on the Linear Inverted Pen-
dulum Model (LIPM) [3] and the Zero Moment Point (ZMP) [4] concepts have
become more popular in recent years [5,6,7,8], because they provide a simpler

Lateral Disturbance Rejection for the Nao Robot 3

Vx,Vy, Vϕ

IMU
Joint
Actuators

J
A

Fig. 2. Architecture of our locomotion module

set of equations to generate Center of Mass (CoM) trajectories and reduce the
number of parameters to tune.

In order to exploit the ZMP stability criterion, Kajita et al. proposed the use
of Preview Control [9] to generate stable trajectories for the CoM. Following
this approach, Wieber presented a slightly modified version with an analytical
solution under certain constraints [10]. In this work, we utilize this solution for
the generation of CoM trajectories that will be subsequently modified by another
controller to reduce the angular momentum of the robot.

Kajita et al. described in [11] how the CoM trajectories that have been gener-
ated with a LIPM-based approach follow potential energy conserving orbits. In
this work, we define a target energy level that is used to adapt the timing of the
steps. The timing control is a key feature to recover the regular step frequency
after strong disturbances. In a similar way, the use of potential energy conserv-
ing orbits to regulate the duration of single support stages has also been used
in [12], where the focus is also set on the lateral component of the movement.
However, in that work only the duration and size of the steps are adapted, but
not the CoM trajectories.

3 Walking Pattern Generation

The balance controllers presented in this paper are embedded in the locomotion
architecture sketched in Fig. 2. The input received from a higher behavior layer
is used for the Footstep Planner to define the timing and position of future
footsteps and the trajectory of the swing foot. Further details can be found
in [13].

When the robot is walking, its feet swing alternately to reach the new positions
of the footstep route. The trajectory that a foot follows in the air is calculated
by the Swing-Foot Pattern Generator by means of Bezier curves. The output of
this module is a sequence of Cartesian positions and a rotation matrix of the
nonsupporting foot in the support-foot frame. These positions are delivered to
the inverse kinematics module.

4 J.J. Alcaraz-Jiménez et al.

Additionally, to prevent the robot from falling, it is necessary to assure certain
stability conditions. In this work, we will employ the LIPM model and the ZMP
stability criterion. The LIPM involves two assumptions. First, the robot behaves
like a single point mass concentrated at the center of the mass distribution of
the body. And second, the motion of the point mass is restricted to a horizontal
plane. The dynamic balance condition requires to keep the ZMP within the
convex hull of the support polygons. The ZMP trajectories are generated in the
ZMP Trajectory Planner module.

Given a certain state of the CoM, it is possible to utilize an optimal control
strategy called Model Predictive Control to generate the future positions of the
CoM that minimizes both, the tracking error of the ZMP trajectories, and the
first derivative of the CoM acceleration. In this way, the CoM and ZMP tra-
jectories are first discretized in constant time fragments of duration T , where a
constant jerk (

...
x k) is applied to the CoM:⎡
⎣xk+1

ẋk+1

ẍk+1

⎤
⎦ =

⎡
⎣1 T T 2/2
0 1 T
0 0 1

⎤
⎦
⎡
⎣xk

ẋk

ẍk

⎤
⎦+

⎡
⎣T 3/6
T 2/2
T

⎤
⎦ ...x k. (1)

Following the approach described in [10], we can find an analytical solution to
obtain the value of

...
xk

...
x k = −e

((
MT

u Mu +
R

Q
INxN

)−1

∗MT
u

(
Mxx̂− P ref

k

))
. (2)

The matrixes used in Equation (2), are defined in the expressions (3)-(6), where
pk is the reference position of the ZMP at the sample k, N is the number of ref-
erence samples and R/Q is a parameter to tune the trade-off between minimum
reference tracking error and minimum jerk.

e = [1, 0...0], (3)

Mu =

⎡
⎢⎢⎣

T 3

6 0 0
...

. . . 0

(1 + 3N + 3N2)T
3

6 . . . T 3

6 − T z
g

⎤
⎥⎥⎦ , (4)

Mx =

⎡
⎢⎢⎣
1 T T 2

2 − z
g

...
...

...

1 NT N2T 2

2 − z
g

⎤
⎥⎥⎦ , (5)

Pk =
[
pk . . . pk+N−1

]
. (6)

The position of the CoM obtained in (1) is delivered to the inverse kinematics
module that, together with the swing-foot pose, will generate the next posi-
tion for the joint actuators. Although the open-loop execution of the locomotion

Lateral Disturbance Rejection for the Nao Robot 5

θ
d

F

y
z

θ

F

FZMP

FI

FZMP’ FZMP τ FZMP '

θ < 0

τ FZMP

θ < 0

Fig. 3. On the left, the FZMP generates a moment that decreases θ. On the right,
the effect of the angular velocity controller is shown. Additional acceleration of the
CoM increases the inertial force and pushes the FZMP towards the axis of rotation,
which decreases the restoring moment and avoids a too large rotational velocity when
θ reaches the horizontal position.

approach described above is acceptable for low speeds, there are important de-
ficiencies in its performance that prevent the robot from attaining a robust gait
that rejects disturbances.

Since the system is based on the LIPM, the inertial effects due to rotations
of the different parts of the robot, which are important in the case of strong
disturbances, are neglected. In the next section, we propose a control approach
that copes with this simplification.

4 Balance Control

To improve the performance of the gait pattern generation described previously,
we modify the Balance Control module to include controllers that regulate the
angular velocity of the CoM and the timing of the next footstep. Since this work
focuses on the lateral component of the walking motion, we restrict the equations
to the frontal plane.

4.1 Angular Velocity Control

The ZMP specifies the point on the ground where the tipping moment acting on
the robot, due to gravitational and inertial forces, equals zero. This point can
only exist within the limits of the convex hull of the support polygons. When
the ground projection of gravitational and inertial forces lies outside the convex
hull, this point is called Fictitious Zero Moment Point (FZMP) [14]. The FZMP
involves the presence of a moment that causes a rotational acceleration of the
CoM around the closest point of the convex support region.

Given an angle θ between the sole of the support foot and the ground, the total
force F resulting from gravity and inertia generates a torque around the contact

6 J.J. Alcaraz-Jiménez et al.

yi+4

yi+4
yi+4

yi
yi

+
yi

yi+4

Gyro. Accel. ZMP Reference

θi

yci

y 'i

Fig. 4. The linear model predictive controller is complemented by the angular velocity
controller

point between sole and ground, as illustrated in Fig. 3. For a robot walking on a
flat surface, ZMP-based gaits usually assume θ(t) = 0, and place the target ZMP
position approximately at the center of the sole. If a small disturbance occurs, θ
will be different from zero and the support polygon reduces to a point at the edge
of the sole. In this situation, the target ZMP should be placed theoretically at
the edge of the foot to avoid applying any additional torque on the robot, which
is the goal of the ZMP stability criterion. Nevertheless, it is common practice
to neglect sole angles different from zero and to keep the projection of inertial
and gravitational forces approximately at the same point, which is no longer
a ZMP but a FZMP. This fact is generally beneficial for balance, because the
torque generated by the FZMP will increase the rotational velocity of the sole
such that θ decreases, as displayed in Fig. 3 (left).

When the sole reaches the horizontal position again, the robot is rotating with
a nonzero angular velocity θ̇, and has therefore an angular momentum that forces
the sole to keep rotating beyond the position θ = 0. The rotational velocity of
the sole θ̇ is then reduced by the torque that appears at the opposite side of
the sole, but high magnitudes of θ̇ in this instant can directly lead to a fall or
cause the landing of the swing-foot at an unexpected time and induce further
instabilities.

Our strategy to mitigate this problem is to add an offset yc to the position of
the CoM proportional to the estimated angle of the sole

yci = −Kcθi, (7)

where Kc is the positive proportional gain of the controller and i is the discrete
time index.

In this way, when the CoM of the robot rotates around the edge of the sole
of the supporting foot, the controller will accelerate the CoM to change the
position of the FZMP. While the angle between the sole and the ground is
growing, the FZMP is shifted away from the rotation axis to increase the torque
that decelerates the rotation. On the other hand, when the angle of the sole is
decreasing to recover the horizontal position, the FZMP is shifted towards the
axis of rotation (Fig. 3 right) to reduce the torque and to reach the horizontal

Lateral Disturbance Rejection for the Nao Robot 7

0 0.02 0.04 0.06 0.08 0.1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

y (m)

dy
/d

t (
m

/s
)

Boundaries
CoM actuator
Pendulum Origins

Fig. 5. The states of the CoM delivered by the preview controller are bounded in the
phase space. A robot walking on the spot is pushed twice and the trajectory of the
CoM reaches the limits.

position with a moderate angular velocity. The integration of the angular velocity
controller into the Linear Model Predictive Controller is illustrated in Fig. 4.

Since the lag estimated for the system is four cycles of 10ms, the actuator
commands must be delayed by this amount of time before fusing the control
signal of the angular velocity controller and the state of the CoM used by the
linear model predictive controller.

In order to obtain an estimate of the sole angle, we estimate the orientation
and angular velocity of the torso using the inertial sensors and subtract the
delayed torso angle as it was commanded by the actuators four cycles before.
The difference between the two angles is equal to the angle of the sole with
respect to the floor.

The gyrometers provide accurate angular velocity measurements that can be
integrated to obtain an estimate of the torso orientation. This orientation is
fused with the angle estimated by the accelerometers to reduce the cumulative
error generated by the integration of angular velocity. Since the use of the ac-
celerometers is not sufficient to contain this drift, the FSR sensors in the feet of
the robot are used to reset the zero position of the sole angle when a flat contact
is detected.

When the robot is pushed from a side, the angular velocity controller will
generate a yielding motion of the torso away from the pushing force to avoid the
inclination of the sole. This absorption effect must be limited, however, because
it can take the CoM to a position beyond the support foot, from where it is
not possible to recover. To avoid this situation, the permitted CoM states are
bounded in the phase space, as depicted in Fig. 5.

4.2 Step Timing Control

The combination of the linear model predictive controller and the angular veloc-
ity controller improves the balance of the robot significantly. Nevertheless, for
external disturbances exceeding a certain magnitude, it is necessary to adapt
the timing of the step.

8 J.J. Alcaraz-Jiménez et al.

Our strategy is to define a target orbital energy Et in the frame of the next
support foot and to calculate the remaining time to reach that orbital energy us-
ing the current pendulum origin. To determine the CoM trajectory with respect
to the current pendulum origin, we use the 3D-LIPM [3] equations

y(t) = y0 cosh(kt) +
ẏ0
k

sinh(kt), (8)

ẏ(t) = y0k sinh(kt) + ẏ0 cosh(kt). (9)

The position and velocity of the CoM at t = 0 are y0 and ẏ0, k =
√
g/h, where

g is the gravitational acceleration and h the CoM height. Since we know that
the CoM will “rebound” from the current support foot and accelerate towards
the next support foot, we set y0 to the apex of the trajectory and t = 0 at the
time when the CoM is at y0. Equations (8) and (9) can then be simplified to

y(t) = y0 cosh(kt), (10)

ẏ(t) = y0k sinh(kt). (11)

The current time and the apex position are calculated as

tn =
atanh

(
ẏn

ynk

)
k

, (12)

y0 =
yn

cosh(ktn)
, (13)

where yn and ẏn are the current estimated position and velocity of the CoM
with respect to the center of the current support foot.

Given the length of the step Sy, we can calculate the orbital energy relative
to the frame of the next support foot:

Esw(t) =
1

2

(
ẏ2(t)− g

zc
(y(t)− Sy)

2

)
. (14)

Our goal is to change the support foot when Esw has the value of the target
orbital energy Et. Substituting (10), (11), and (13) in (14), we can calculate the
optimal instant ts for the the support exchange

ts =
acosh

(
2Et+k2(S2

y+y2
0)

2y0k2Sy

)
k

. (15)

The remaining time to the optimal exchange instant will be Δts = ts − tn.
We calculate a limit case where the pendulum origin is placed at the limit of

the sole to estimate the minimum value for Δts. If the current scheduled time
to exchange the support Δtssch is less than Δtsmin , we add a delay of just one
control cycle to Δtssch . This way, the stepping motion is delayed as soon as the

Lateral Disturbance Rejection for the Nao Robot 9

instability is detected and we achieve robustness against noisy estimations of
the CoM position and velocity, since only large disturbances that are repeatedly
detected in multiple control cycles will cause a significant delay of the step
timing.

Finally, the support exchange is delayed until the CoM has reached at least
45% of the distance between the current and the next pendulum origin to enforce
a symmetrical pose of the robot at support exchange with the CoM half way
between the feet.

5 Experimental Results

In this section, we describe the experiments performed to validate our distur-
bance rejection approach. The platform used is the commercial humanoid robot
Nao, developed by the French company Aldebaran Robotics. During the exper-
iments, the robot is placed on a carpet similar to the ones used at RoboCup
competitions.

The goal of the first experiment is to validate the performance of our angular
velocity controller in combination with the preview control approach. During
this experiment, feet motion is disabled so that the robot stands still, but the
linear predictive controller is active and the ZMP is held fixed in the middle
between the two feet. With this setup, the robot is tilted laterally by 45 degrees,
so that it is standing on the outer edge of the sole. Then, the robot is released
and allowed to freely swing back to the middle position. Fig. 6 illustrates the
performance gained from the angular velocity controller. When the controller
is disabled, the angular momentum accumulated by the robot during the time
that the torso needs to recover the vertical position compels the robot to keep
rotating, and thus the robot oscillates from one side to the other during the
next four seconds. On the other hand, the angular velocity controller notably
compensates the overshoot of the angular velocity and the equilibrium position
is recovered in 1.25 seconds. When the angular velocity controller is disabled,

0 0.5 1 1.5 2 2.5 3 3.5 4

−100

−50

0

50

100

time (s)

an
gu

la
r

ve
lo

ci
ty

 (
de

g/
s)

Controller on
Controller off

Fig. 6. Overshooting is reduced when the angular velocity controller is enabled

10 J.J. Alcaraz-Jiménez et al.

0 0.5 1 1.5 2

−0.02

0

0.02

0.04

C
oM

y (
m

)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

Time (s)

Δ
ts

Δts

sch

Δts
min

Fig. 7. The robot is pushed at t=1s while walking on the spot and adapts the duration
of the step online. The scheduled time to change the support foot Δtssch is delayed
during three phases. The first two times the delay happens because the estimated lower
bound Δtsmin exceeds the scheduled time. The third time, Δtssch is delayed until the
CoM covers 45% of the distance between the current and the next support foot.

the magnitude of the peak angular velocity in the first rebound is reduced only
by 18%. Enabling the controller increases the reduction rate to 88%.

The goal of the second experiment is to demonstrate the performance of the
disturbance rejection system while walking on the spot. The value used for the
R/Q parameter of the linear model predictive controller is 1e−7, the CoM height
0.255m, the default distance between the feet is 0.1m, and the Kc gain for the
momentum controller is set to 0.5. The duration of every step is 0.25ms and 5%
of the time both feet are on the ground. The reference trajectories for the ZMP
jump from one foot to the other at the support exchange time and have an offset
of 0.01m towards center of the robot in the lateral dimension and an offset of
0.005m in forward direction with respect to the center of the foot.

An example for the effectiveness of the step timing control is shown in Fig. 7.
Here one can observe that after a strong disturbance, the robot delays the next
step in three phases and continues its normal walking rhythm afterwards.

Fig. 8 shows CoM trajectories during the pushing experiment. In the first row,
the preview controller is working in open-loop mode. Before the robot is dis-
turbed at t=2.5 s, the estimated position of the CoM follows a rhythmic pattern
which is not synchronized with the CoM position sent to the inverse kinematics
module. For example, at t=1.75 s, the measured and commanded CoM positions
have opposite signs. After the disturbance, the CoM rebounds from the support
leg, but the robot tips over on the opposite side.

In the second row, the angular velocity controller is enabled and the measured
and commanded CoM trajectories stay synchronized. However, when the robot
is pushed, the system is not able to recover the regular pace in time and tries to
lift the foot that supports the robot. As a result, the robot needs two seconds to
fully recover its balance.

Lateral Disturbance Rejection for the Nao Robot 11

open-loop

angular velocity
control

angular velocity
+ timing control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.05

0

0.05

C
oM

y

 Actuator

Measured

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.05

0

0.05

C
oM

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.05

0

0.05

Time (s)

C
oM

y

Fig. 8. Performance comparison of three different configurations for disturbance rejec-
tion.The robot is pushed at t=2.5 s while walking on the spot. On the top, the preview
controller is working in open-loop mode. In the second row, the angular velocity con-
troller is enabled. In the last row, the angular velocity controller and the timing control
are both switched on.

This problem is solved when the timing controller is added to the configura-
tion, as shown in the third row. In that case, the regular pace is recovered only
0.5 seconds after the disturbance.

The step timing controller alone (without angular velocity control) has worse
performance than the open loop mode in the walking on the spot experiment. The
open loop controller ignores the real position of the CoM and frequently supports
the robot with the swing foot. In such situations, the LIPM is no longer a suitable
model to describe the dynamics of the system because it does not take into account
vertical oscillations. On the other hand, when the timing controller is enabled,
the robot succeeds in using the scheduled foot to support the robot, but angular
momentum cumulates through steps and causes the robot to tip over.

The accompanying video material [15] shows the Nao robot dealing with sev-
eral disturbances while walking on the spot and recovering from states with high
angular velocity.

6 Conclusions

We presented a bipedal locomotion system that combines three different
approaches to reject disturbances and to rapidly recover the default posture and
gait frequency. The base of the system is a model predictive controller that gen-
erates CoM trajectories based on footsteps scheduled for the future. The internal
state of the CoM used by this controller is modified to reduce the angular mo-
mentum of the robot. Finally, the duration of every step is dynamically adapted
to make sure that the orbital energy of the next step is above a minimal threshold.

In future work we will extend the concepts employed to control the lateral
component of the walking motion to the sagittal dimension. The main difference
in this case is that the velocity of the CoM does not change its sign in every

12 J.J. Alcaraz-Jiménez et al.

step. On the other hand, the landing position of the feet can be freely modified,
since it is not limited by self-collisions.

Acknowledgement. This work is supported by the Spanish Ministry of Educa-
tion through its FPU program under grant AP2008-01816. Additionally, fund-
ing for the project is provided by Deutsche Forschungsgemeinschaft (German
Research Foundation, DFG) under grant BE 2556/6.

References

1. Behnke, S.: Online trajectory generation for omnidirectional biped walking. In:
IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1597–1603 (2006)

2. Graf, C., Härtl, A., Röfer, T., Laue, T.: A Robust Closed-Loop Gait for the Stan-
dard Platform League Humanoid. In: Workshop on Humanoid Soccer Robots of
the IEEE-RAS Int. Conf. on Humanoid Robots (2009)

3. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D Linear In-
verted Pendulum Mode: A simple modeling for a biped walking pattern generation.
In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2001)

4. Vukobratovic, M., Frank, A.A., Juricic, D.: On the Stability of Biped Locomotion.
IEEE Transactions on Biomedical Engineering 17(1), 25–36 (1970)

5. Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control
for biped robots. Robotics and Autonomous Systems 57(8), 839–845 (2009)

6. Gouaillier, D., Collette, C., Kilner, C.: Omni-directional closed-loop walk for NAO.
In: IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pp. 448–454 (2010)

7. Xue, F., Chen, X., Liu, J., Nardi, D.: Real Time Biped Walking Gait Pattern
Generator for a Real Robot. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U.
(eds.) RoboCup 2011. LNCS, vol. 7416, pp. 210–221. Springer, Heidelberg (2012)

8. Graf, C., Röfer, T.: A center of mass observing 3D-LIPM gait for the RoboCup
Standard Platform League humanoid. In: Röfer, T., Mayer, N.M., Savage, J.,
Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 102–113. Springer,
Heidelberg (2012)

9. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K.,
Hirukawa, H.: Biped Walking Pattern Generation by using Preview Control of
Zero-Moment Point. In: IEEE Int. Conf. on Robotics and Automation (2003)

10. Wieber, P.-B.: Trajectory Free Linear Model Predictive Control for Stable Walking
in the Presence of Strong Perturbations. In: IEEE-RAS Int. Conf. on Humanoid
Robots, Humanoids (2006)

11. Kajita, S., Yamaura, T., Kobayashi, A.: Dynamic walking control of a biped robot
along a potential energy conserving orbit. In: Robotics and Automation (1992)

12. Missura, M., Behnke, S.: Lateral Capture Steps for Bipedal Walking. In: IEEE-RAS
Int. Conf. on Humanoid Robots, Humanoids (2011)

13. Alcaraz-Jiménez, J.J., Herrero-Pérez, D., Mart́ınez-Barberá, H.: A Closed-Loop
Dribbling Gait for the Standard Platform League. In: Workshop on Humanoid Soc-
cer Robots of the IEEE-RAS Int. Conf. on Humanoid Robots, Humanoids (2011)

14. Vukobratovic, M., Borovac, B.: Zero-moment point - Thirty five years of its life.
International Journal of Humanoid Robotics 1(1), 157–173 (2004)

15. Alcaraz-Jiménez, J.J., Missura, M., Mart́ınez-Barberá, H., Behnke, S.: Nao robot
performs disturbance rejection and angular speed reduction tests,
http://www.ais.uni-bonn.de/movies/LateralControlNao.mp4

http://www.ais.uni-bonn.de/movies/LateralControlNao.mp4

HELIOS2012: RoboCup 2012 Soccer Simulation

2D League Champion

Hidehisa Akiyama1 and Tomoharu Nakashima2

1 Faculty of Engineering, Fukuoka University, Japan
akym@fukuoka-u.ac.jp

2 Graduate School of Engineering, Osaka Prefecture University, Japan
tomoharu.nakashima@kis.osakafu-u.ac.jp

Abstract. The Soccer Simulation 2D League is one of the oldest com-
petitions among the RoboCup leagues. In the simulation 2D league, the
simulator enables two teams of 11 simulated autonomous agents to play
a game of soccer with highly realistic rules and game play. This pa-
per introduces the RoboCup 2012 Soccer Simulation 2D League cham-
pion team, HELIOS2012, a joint team of Fukuoka University and Osaka
Prefecture University.

1 Introduction

The RoboCup Soccer Simulation 2D League is one of the oldest competitions
among the RoboCup leagues. It is based on the RoboCup Soccer 2D Simulator [1]
that enables two teams of 11 autonomous player agents and an autonomous coach
agent to play a game of soccer with highly realistic rules and game play. Due
to its stability, the 2D soccer simulator is a very good research and educational
tool for multiagent systems, artificial intelligence, and machine learning.

The 2D soccer simulator models only the (x, y) positions of objects. The
players and the ball are modeled as circles. In addition to its (x, y) location,
each player has a direction that its body is facing, which specifies the direction
it can move, and a separate direction in which it is looking, which determines the
vision area that the agent covers. Actions are abstract commands such as turning
the body or neck by a specified angle, dashing to one of eight directions with
a specified power, kicking at a specified angle with a specified power (when the
ball is near), or slide tackling in a given direction. A team consists of 11 players
including a goalie that has special capabilities of catching the ball when it is
near the goalie. The 2D soccer simulator does not model the physical motion of
any particular robot, but does capture realistic team level strategic interactions.

In 2012, up to 24 teams were allowed to participate in the 2D competitions.
Since the teams competing in the 2D League are already highly competitive,
the qualification was done based on a measurement of the quality of the team’s
scientific work expressed in the submitted team description paper and also the
log files with appropriate annotations. Finally, the 2D competitions included 19
teams from 9 countries.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 13–19, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 H. Akiyama and T. Nakashima

This paper introduces the RoboCup 2012 Soccer Simulation 2D League cham-
pion team, HELIOS2012, a joint team of Fukuoka University and Osaka Prefec-
ture University. Especially, we explain the planning framework implemented in
team HELIOS2012. There are two characteristic features in HELIOS2012. One is
online multiagent planning using tree search, and the other is the decrease in os-
cillations in decision making. The online multiagent planning using tree search
was first implemented in 2010, when HELIOS won the first championship in
RoboCup 2010. This framework plays an important role again for more flexible
and appropriate action selection in RoboCup 2012. The technique for decreasing
oscillations in decision making gives the stability of agent’s decision making so
that a particular action sequence is likely to be fully completed before the agent
changes its mind.

The remainder of this paper is organized as follows. Section 2 introduces
the tree search framework implemented in HELIOS2012. Section 3 introduces
the modified evaluation function model to decrease oscillations during planning
iterations with the tree search framework. Section 4 shows the result of RoboCup
2012 competitions. Section 5 concludes.

2 Online Multiagent Planning Using Tree Search

This section presents the tree search framework for online multiagent planning.
This framework is implemented in HELIOS2012. It enables an agent to plan
cooperative behavior which involves other agents. For more details of this frame-
work, please refer [2].

2.1 Framework for Searching Action Sequence

In order to simplify the problem, we consider only ball kicking actions in offensive
situations. This means that a cooperative behavior can be represented as a se-
quence of kick actions that are taken by multiple agents. Under this assumption,
a cooperative behavior can be generated by tree search algorithms.

The framework generates and evaluates a number of action sequences per-
formed by multiple agents in a continuous state-action space. Generated actions
are stored as a node of a search tree. A path from the root node to a leaf node
represents an action sequence that defines an offense plan taken by multiple
agents. Figure 1 shows an example of an action sequence.

This framework generates action sequences and evaluates their values using
the following modules:

– ActionGenerator: This module generates candidate action instances for a
node in the search tree. An action instance is generated if it is likely to be
performed successfully. The action instance and the predicted state are com-
bined to form an action-state pair instance. The action-state pair instance
is added as a new node in the search tree.

HELIOS2012: RoboCup 2012 Soccer Simulation 2D League Champion 15

Fig. 1. An example of an action sequence. The chain of four actions is shown: 1) pass
from Player 10 to Player 7, 2) dribbling by Player 7, 3) pass from Player 7 to Player
9, and 4) Player 9 shoots to the goal.

– FieldEvaluator: This module evaluates the value of the action-state pair
instances that are generated by ActionGenerator. We introduced various
state variables and hand-coded rules into the implementd Evaluator instance.
The rules evaluate each state variable and the sum of them is returned as
the value of action sequence.

In the current implementation, we employed the best first search algorithm [3]
as a tree search algorithm. Each node has a value calculated by FieldEvaluator
based on the corresponding action-state pair instance.

2.2 Experiments

In order to analyze the performance of our framework, we performed computa-
tional experiments with several parameter specifications. We used the following
parameters:

– Maximum tree depth : { 1(no tree search), 2, 3, 4, 5 }
– Maximum number of traversed node : { 10, 100, 1000, 10000, 100000 }
– ActionGenerator : { Normal, Reduced }
– FieldEvaluator : { Complex, Simple }

Type Normal for ActionGenerator is the same as the one used by HELIOS2011.
The number of actions that Type Reduced for ActionGenerator is allowed to
generate is about a half of that for Type Normal.

Type Complex for FieldEvaluator is the same as the one used by HELIOS2011,
which uses the hand-coded rules with various state variables. Type Simple for
FieldEvaluator also uses the hand-coded rules, however they are much simpler
than Type Complex. Figure 2 shows an example value mapping on the 2D sim-
ulation soccer field.

We used an average goal difference as a team performance indicator. Figure 3
shows the results for each parameter specification. All values are the average of
100 games. In all cases, we can find that the team performance becomes worse

16 H. Akiyama and T. Nakashima

(a) Example value mapping evalu-
ated by the Complex type FieldEval-
uator.

(b) Example value mapping evalu-
ated by the Simple type FieldEval-
uator.

Fig. 2. Example value mapping evaluated by FieldEvaluator used in the experiments.
The red color means the highest value and the black means the lowest value.

when the maximum number of traversed node is ten. This is because agents
easily fell into the local minimum. On the other hand, it seems that the team
performance is stable if the maximum number of traversed node is more than
or equals to 100. This result means that the valuable action sequences can be
found within nearly 100 node traversals.

Figure 4 shows the results for each pair of ActionGenerator and FieldEvalua-
tor. The results show that various state variables and rules should be considered
in FieldEvaluator. Furthermore, we can find that the number of action patterns
generated by ActionGenerator has some impact on the team performance. We
could not find the clear reason why the maximum tree depth has no correla-
tion to the team performance. We guess that the oscillation of decision making
caused by the poor accuracy of predicted state produced these results.

As future works, we have to establish the method to predict future state more
accurately and have to establish more effective search algorithm. We are now
trying to introduce various game tree search algorithms such as Monte Carlo
Tree Search [4].

3 Decreasing Oscillations in Multiagent Planning

The oscillation of decision making in this paper is defined as follows: When the
ball owner agent holds the ball more than one cycle,

– the action type is changed,
– the target player is changed, or
– the error of target position is over the pre-specified threshold.

It is important to decrease the oscillations of decision making in order to stabilize
the agent’s behavior. In this section, we introduce a modified evaluation function
model to decrease the oscillations of decision making.

HELIOS2012: RoboCup 2012 Soccer Simulation 2D League Champion 17

(a) ActionGenerator: Normal type.
FieldEvaluator: Complex type.

(b) ActionGenerator: Reduced type.
FieldEvaluator: Complex type.

(c) ActionGenerator: Normal type.
FieldEvaluator: Simple type.

(d) ActionGenerator: Reduced type.
FieldEvaluator: Simple type.

Fig. 3. The results of average goal difference for each setting

3.1 Modified Evaluation Function Model

We propose a modified evaluation function model that adjusts the values eval-
uated by FieldEvaluator. The evaluation value e is modified by the following
equation:

e′ = e× exp(−k
||ptn − ptm ||

(1 + (tn − tm))
), (1)

where e′ is the modified evaluation value, tn and tm are the current time and the
time at the previous decision making respectively, ptn and ptm are the current
target position and the target position at the the same tree depth of the previous
decision making, and k is a non-negative real value parameter to change the effect
of the time and the distance.

3.2 Experiments

Table 1 shows that the proposed model decreases the oscillations of decision
making. It seems that the suitable value of parameter k is between 1.0 and 5.0.

Table 2 and 3 shows the performance evaluation against the opponent teams
that participated in the RoboCup2011. We performed 20 games for each team
and analyzed the average ball possession ratio and the average goal difference.
The result shows the ball possession becomes better for some teams. On the
other hand, the goal difference becomes worse for most teams. It is necessary to
analyze the games in more detail to evaluate the team performance.

18 H. Akiyama and T. Nakashima

Fig. 4. The average goal difference for each pair of ActionGenerator and FieldEvalu-
ator. The maximum tree depth is fixed to four. Each line corresponds to the pair of
ActionGenerator and FieldEvaluator.

Table 1. The number of oscillations and their ratio. The results are the average values
of 20 games against agent2d.

k # of decision making # of oscillations ratio

0(No effect) 1926 1389 0.7212

0.1 2677 791 0.2955

0.5 3130 709 0.2265

1.0 3634 594 0.1635

3.0 4047 619 0.1530

5.0 4085 643 0.1574

10.0 4414 966 0.2188

50.0 5264 1012 0.1922

100.0 4676 963 0.2059

Table 2. Ball possession rate for each opponent team

Without model With model

agent2d 0.6578 0.6965

Edin 0.6429 0.6840

Hfut 0.5909 0.6014

Photon 0.5454 0.6037

RMAS 0.7720 0.7761

Wright 0.4381 0.4272

HELIOS2012: RoboCup 2012 Soccer Simulation 2D League Champion 19

Table 3. Average goal difference for each opponent team

Without model With model

agent2d 2.5 2.8

Edin 19.85 17.15

Hfut 19.2 15.8

Photon 18.65 18.05

RMAS 19.7 16.7

Wright 4.0 3.0

4 RoboCup 2012 Soccer Simulation 2D League Results

In RoboCup 2012, team HELIOS2012 won the championship by winning all 22
games during the competition, scoring 118 goals and conceding 3 goals.1 Team
WrightEagle from University of Science and Technology of China won the second
place, and team MarliK from University of Guilan of Iran won the third place.

5 Conclusion

This paper introduced the champion of RoboCup 2012 Soccer Simulation 2D
league. First, we described the tree search approach for multiagent planning im-
plemented in HELIOS2012. Second, we described the modified evaluation funci-
ton model to decrease oscillations in planning iterations. The HELIOS2012 team
won 2 championships and 2 runner-ups in the past 4 years of RoboCup com-
petitions. Moreover, team HELIOS have released a part of their source codes
in order to help new teams to participate in the competitions and to start the
research of multiagent systems2.

Acknowledgment. The authors would like to thank the additional contribut-
ing members of HELIOS2012 (Yosuke Narimoto and Katsuhiro Yamashita)

References

1. Noda, I., Matsubara, H.: Soccer server and researches on multi-agent systems. In:
Kitano, H. (ed.) Proceedings of IROS 1996 Workshop on RoboCup, pp. 1–7 (Novem-
ber 1996)

2. Akiyama, H., Nakashima, T., Aramaki, S.: Online cooperative behavior planning us-
ing a tree search method in the robocup soccer simulation. In: Proceedings of the 4th
International Conference on Intelligent Networking andCollaborative Systems (2012)

3. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall (2009)

4. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns in
monte-carlo go. Technical report, INRIA RR-6062 (2006)

1 The detailed competition results and all game log files can be found at:
http://www.socsim.robocup.org/files/2D/log/RoboCup2012/

2 More information about the HELIOS2012 team can be found at the team’s website:
http://sourceforge.jp/projects/rctools/

RoboCup 2012 Rescue Simulation League Winners

Francesco Amigoni1, Arnoud Visser2, and Masatoshi Tsushima3

1 Politecnico di Milano, Milano, Italy
francesco.amigoni@polimi.it

2 University of Amsterdam, Amsterdam, The Netherlands
a.visser@uva.nl

3 Ritsumeikan University, Shiga, Japan
is0077er@ed.ritsumei.ac.jp

Abstract. Inside the RoboCup Rescue Simulation League, the mission is to use
robots to rescue as many victims as possible after a disaster. The research chal-
lenge is to let the robots cooperate as a team. This year in total 15 teams from
8 different countries have been active in the competitions. This paper highlights
the approaches of the winners of the virtual robot competition, the infrastructure
competition, and the agent competition.

1 Introduction

The RoboCup Rescue Simulation League consists of three competitions:
The Virtual Robot competition has the goal to study how a team of robots can work

together to get as fast as possible a situation assessment of a devastated area which
allows first responders to enter the danger zone well informed. The simulation of the
robots is realistic enough to apply the same algorithms to real rescue robots.

The Infrastructure competition is a prize to stimulate the innovation factor and the
impact of the competition. Progress inside the RoboCup Rescue Simulation League can
only be made when each year the challenge gets harder. This can be accomplished by
scaling the simulation environment up (larger disaster areas, more agents) or by includ-
ing more realism into the simulation models. The Infrastructure competition is meant
to foster innovation of models and components inside the simulation environment.

The Agent competition consists of a simulation platform which resembles a city
after an earthquake. In this environment intelligent agents can be spawned, which in-
fluence the cause of events in the simulation. The agents have the role of police forces,
fire brigades, and ambulance teams.

This paper presents the winner teams of the three competitions within the RoboCup
2012 Rescue Simulation League.

2 Virtual Robot Competition Winner Team PoAReT

PoAReT (Politecnico di Milano Autonomous Robotic Rescue Team) won the Vir-
tual Robot competition of the Rescue Simulation League at RoboCup 2012.
The PoAReT system is developed by six MSc students in Computer Engineer-
ing at the Politecnico di Milano. Full information about the team, including a

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 20–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

RoboCup 2012 Rescue Simulation League Winners 21

link to the source code and the list of members with their roles is available at
http://home.dei.polimi.it/amigoni/research/PoAReT.html. In the following sections, we
overview the PoAReT system architecture and summarize the most interesting scientific
results obtained during the competition.

2.1 System Architecture

This section outlines the main features of the PoAReT system, as reported in [1], to
which the reader is referred for further information. In developing PoAReT, we push
along the autonomy axis, attempting to equip the robotic system with methods that
enable its autonomous operation for extended periods of time. At the same time, the
role of human operator is not neglected, but is empowered by the autonomous features
of the system.

Besides the base station, our PoAReT system is composed of mobile platforms (usu-
ally the Pioneer All Terrain robot P3AT), each equipped with laser range finders, sonars,
and a camera. Laser range finders are used to build a geometrical map of the environ-
ment that is represented with two sets of line segments. The first set contains the line
segments that represent (the edges of) perceived obstacles. The second set contains the
line segments that represent the frontiers, namely the boundaries between the known
and the unknown portions of the environment.

The main cycle of activities of the PoAReT system is: (a) building a geometrical
map of the environment composed of line segments, (b) selecting the most convenient
frontiers to reach, and (c) coordinating the allocation of robots to the frontiers. A distin-
guishing feature of our system is that it can maintain a semantic map of the environment
that labels areas of the geometrical map with human-like names, like ‘room’ or ‘corri-
dor’. At the same time, the system performs the detection of victims on the basis of the
images returned by the onboard cameras and the interaction with the human operator
via the user interface.

The architecture of our system is organized in two different types of processes, one
related to the base station and one related to the mobile robots, to have a clear separation
between their functionalities. Fig. 1 shows the PoAReT system architecture.

The base station embeds the user interface module. The base station process can
spawn new robots in the USARSim environment [2]: for each robot, a new independent
process is created and started. The processes of the base station and of the robots com-
municate only through WSS [3] and do not share any memory space, as required by
the rules for the competition. A distance vector routing protocol [4] is implemented to
deliver messages. Although in principle there is no need to maintain a direct connection
between robots and base station (robots explore autonomously and, when connection
is active, they can report to the base station and share collected information with other
robots), the routing protocol maintains indirect connectivity between robots and base
station in order to extend the operative range of the human operator.

The PoAReT User Interface (UI) allows a single human operator to control a rel-
atively large group of robots in an easy way. It displays data to the user and accepts
commands from the user to control the spawned robots. It reduces the workload of the
operator and increases her/his situation awareness. These two objectives are reached
by our UI through a mixed-initiative approach [5]. The PoAReT UI allows a single

http://home.dei.polimi.it/amigoni/research/PoAReT.html

22 F. Amigoni, A. Visser, and M. Tsushima

Fig. 1. PoAReT system architecture. The base station module is in green, while the mobile robot
modules are in yellow.

operator to control the system by issuing high level commands to robots, like “explore
along a direction”, by controlling a single robot using waypoints, and by directly tele-
operating the robot manually. The UI is also able to filter notifications arriving from
the other modules, based on the operator’s preferences, past behaviour, and situation
parameters.

The robot process is structured in seven different modules, each one related to a
high-level functionality: motion control, path planning, SLAM, semantic mapping, ex-
ploration, coordination, and victim detection. Almost all of these modules are threads
that communicate through a queue system. The main functionalities of the above mod-
ules are described in the following.

First, we briefly discuss the motion control module, which is straightforward, given
the locomotion model of P3AT, and the path planning module. Path planning is invoked
to reach a position with a path that lies entirely in the known space (e.g., the position
can be a point on a frontier between known and unknown space). The algorithm we use
is a variant of RRT [6].

In our team, the simultaneous localization and mapping (SLAM) problem is tackled
by adopting a feature-based method similar to that described in [7]. The SLAM module
associates the line segments of a laser scan (points of a scan are approximated with line
segments by using the split and merge algorithm [8]) to the the linear features in the
map, with respect to distance measures, such as those described in [9, 10]. Then, the
module executes an Iterative Closest Line (ICL) algorithm (like [10]) with constraints
on the maximum rotation and on the maximum translation to align the scan and the
map. All the line segments of a scan are added to the map; periodically a test is carried
out to determine whether there is enough evidence to support the hypothesis of two
previously associated line segments being in fact the same; if so, they are merged.

The semantic mapping module performs a semantic classification of places and
works in parallel with the SLAM module. This module takes as input the line seg-
ment map of an indoor environment (updated by the SLAM module) and tries to extract
more information than the basic geometrical features, exploiting prior knowledge on

RoboCup 2012 Rescue Simulation League Winners 23

the typical structure of buildings. Our approach aims at extending that presented in [11]
and [12] to line segment maps. The mapped area is divided into single rooms, identi-
fying the area that belongs to each room and the doorways that divide the rooms. With
this information, the space portion marked as room is divided into different parts repre-
senting every single room separately. Later, each room is classified according to its own
characteristic, as a small room, a large room, or a corridor.

The exploration module selects new frontiers to explore, in order to discover the
largest possible amount of the environment within the time allowed in the competi-
tion. This module evaluates the frontiers by assigning them utilities and, finally, calls
the coordination module to find an allocation of robots to the frontiers. We employ an
exploration strategy that exploits the geometrical and semantic information gathered
by the robots. We take inspiration from [13], where the authors achieve a good explo-
ration performance by distinguishing if the robot is in a hallway or in a room. In our
system, we integrate this semantic information into a framework, called Multi-Criteria
Decision-Making (MCDM), that is described in [14].

The coordination module is responsible of allocating tasks to the robots. The mecha-
nism we use is market-based and sets up auctions in which tasks (i.e., frontiers to reach)
are auctioned to robots [15]. These market-based mechanisms provide a well-known
mean to bypass problems like unreliable wireless connections or robot malfunctions.

Finally, the victim detection module is responsible for searching victims inside the
competition environment. It works by analysing images coming from the robots’ cam-
eras and classifying them according to the presence or absence of victims. In the first
case, the victim detection module signals the human operator. We have chosen to im-
plement a skin detector using HSV (Hue, Saturation, Value) color space, followed by a
version of the Viola-Jones algorithm [16], a well-known image analysis method already
used by many teams in previous editions of the competition.

2.2 Discussion on Competition Results

Besides the good performance that allowed the PoAReT team to win the Virtual Robot
competition, some potentially interesting scientific outcomes have been obtained, as
discussed in this section.

Firstly, the geometrical maps built by the system and representing the environments
of the competition are of good quality, demonstrating the viability of using line seg-
ments to represent indoor environments. For example, Fig. 2 shows the geometrical
map built by the PoAReT system for the environment of the Day 2 of the competition.
Note that, in this run, the maps built by different robots are not merged together, in
order to reduce computational burden (this is why some obstacles are represented by
multiple aligned line segments). The structure of the environment is represented quite
well for understanding by human operator and, importantly, using a limited amount of
data (each line segment can be naı̈vely represented by four numbers). It is also inter-
esting noting that on the Day 3 of the competition, a non-regular indoor environment
has been used with several obstacles and with different (vertical) levels. In this case, the
segment-based approach has not been much effective to represent the environment.

Second, the availability of a semantic map has been exploited for improving path
planning. In particular, the identified doorways (i.e., openings between two rooms; an

24 F. Amigoni, A. Visser, and M. Tsushima

Fig. 2. The geometrical map built by the PoAReT system on Day 2 of the competition. The solid
line segments represent obstacles, the dashed line segments represent the frontiers, and the blue
triangles represent the positions of the robots.

example is shown on the right of Fig. 2) have been used by the path planner to set
waypoints such that a robot crosses a doorway by heading perpendicularly to the line
segment representing it. In this way, the robots of our system have been able to cross
narrow doors, significantly enhancing their path planning capability.

Third, the high level of autonomy exhibited by the PoAReT system has allowed to
explore structured indoor environments very quickly. For example, the results of the
first three days of the competition show that PoAReT found 11 victims in 41 minutes,
while the next two teams found the same number of victims in 57 and 59 minutes,
respectively.

Finally, the autonomy of the PoAReT system does not reduce the role of human
operator. In some runs at the competition, Kenaf and AirRobot mobile platforms have
been used. Kenafs have been controlled using a controller that is very similar to that of
P3AT (without fully exploiting the Kenaf abilities), while AirRobots have been teleop-
erated manually. The increased workload for the human operator has been compensated
by the ability of the system to reach areas (e.g., requiring to climb a stair) that P3ATs
cannot reach. In general, teams mainly composed of P3ATs and of some Kenafs and
AirRobots showed a good level of adaptability to environments, autonomous behavior,
and performance.

3 Infrastructure Competition Winner Team UvA Rescue

The University of Amsterdam is active in the Rescue Simulation League with the UvA
Rescue team since 2003 [17, 18]. For several years it had a close cooperation with
Oxford University [19]. On several occasions the team contributed to the infrastructure
of the competition [20–24]. The system presented at the 2012 Infrastructure competition
was developed by a master student in Artificial Intelligence [25].

RoboCup 2012 Rescue Simulation League Winners 25

3.1 The Context

It is well known [26–28] that an aerial robot is a valuable member of a robot team. Sev-
eral groups indicated the usage of aerial robots in their teams [29–31], as illustrated in
Fig. 3, but without a map it is difficult to coordinate the action between the teammem-
bers [28]. Because of the limited payload the aerial robots can carry, it is difficult to
equip those robots with range scanners. Without range scanners it is difficult for aerial
robots to navigate [32] and to create a map of the environment [33].

Fig. 3. An early example of the usage of an aerial robot in robot rescue team (courtesy [31]).

Nowadays, small quadrotors with on-board stabilization like the Parrot AR.Drone
can be bought off-the-shelf. These quadrotors make it possible to shift the research
from basic control of the platform towards applications that make use of their versa-
tile scouting capabilities. Possible applications are surveillance, inspection, and search
and rescue. The Parrot AR.Drone is attractive as platform, because it is stabilized both
horizontally and vertically. Horizontal movement is reduced based on the images of the
bottom camera, while the altitude is maintained based on the signal of a downlooking
sonar sensor. Still, the limited sensor suite and the fast movements make it quite a chal-
lenge to fully automate the navigation for such platforms. One of the prerequisites for
autonomous navigation is the capability to make a map of the environment.

Once such a map exists, a team of micro aerial vehicles could be used to explore an
area like a city block. The map is needed to coordinate the actions between the team
members. After a disaster one could not rely on prior satellite maps, part of the job
of the rescue team is to do a situation assessment and an estimation of damage (roads
blocked, buildings on fire, locations of victims visible from the sky).

In the paper presented at the Infrastructure competition [34] a method is described
that shows how such a visual map can be built. More details can be found in [25]. To
summarize; the visual map consists of a feature map which is built based on storing the

26 F. Amigoni, A. Visser, and M. Tsushima

most distinguishable SURF features on a grid. This map can be used to estimate the
movement from the AR.Drone on visual clues only, as described in previous work [35].
In this paper the focus is on an extension of the previous method, an experimental
method [25] to create an elevation map by combining the feature map with ultrasound
measurements. This elevation map is combined with textures stored on a canvas and
visualized in real time. An elevation map is a valuable asset when the AR.Drone has to
explore unstructured terrain, which is typically the case after a disaster (an urban search
and rescue scenario).

More details about how the feature map can be used to localize the AR.Drone can be
found in [35]. What is really innovative is how the 2D feature map is extended with a
method to build an elevation map based on sonar measurements, which was published
in the paper for the Infrastructure competition [34]. This paper demonstrates how the
elevation mapping method was validated with experiments.

3.2 Elevation Mapping Method

An elevation map can be used to improve navigation capabilities of both aerial and
ground robots. For example, ground robots can use elevation information to plan routes
that avoid obstacles.

The elevation information is stored in a grid that is similar to the feature map de-
scribed in [35]. For each ultrasound distance measurement, elevation δt is computed
and stored in the grid cell that corresponds to the world coordinates where a line per-
pendicular to the AR.Drone body intersects the world plane. These world coordinates
are the position where the center of the ultrasound sensor’s cone hits the floor. Because
the exact size of an object is unknown, the elevation is written to all grid cells within
a radius γelevationRadius around the intersection point. This process is visualized in
Figs. 4a and 4b.

(a) Obstacle enters range (b) Obstacle in range (c) Obstacle out of range

Fig. 4. Overview of the elevation map updates. The green cone indicates the range of the ul-
trasound sensor. The red line inside the cone represents the center of the cone, perpendicular
to the AR.Drone body. In 4a and 4b an elevation is measured. All grid cells within a radius
γelevationRadius around the center of the cone (red line) are updated to store the measured ele-
vation. 4c describes the refinement step. When no elevation is measured, all grid cells within the
cone (red cubes) are reset to zero elevation.

RoboCup 2012 Rescue Simulation League Winners 27

This approach may lead to cases where the size of an obstacle is overestimated in
the elevation map, as can be seen in Fig. 4b. Therefore, an additional refinement step
was added to the elevation mapping method. If no elevation is measured (δt ≈ 0), it
can be assumed there is no obstacle inside the cone of the ultrasound sensor. Using this
assumption, all grid cells within the cone can be reset to zero elevation and locked to
prevent future changes. This refinement step is visualized in Fig. 4c. The radius of the
cone is computed using the following equation:

r = tan(αultrasound × zsensor) (1)

where r is the radius of a cone of height zsensor and αultrasound is the opening angle
of the ultrasound sensor.

3.3 Elevation Mapping Results

The elevation mapping approach has been validated with several experiments. As shown
in Fig. 5, the AR.Drone is able to estimate the height and length of two obstacles (a
grey and blue box). The brown box is not detected due to its limited height. Therefore,
the measured (ultrasound) acceleration is insufficient to trigger an elevation event. As
expected, the ramp was not detected. The gradual elevation change does not produce a
significant acceleration.

Fig. 5. Elevation map of a flight over several obstacles. On the left the experimental setting (in-
cluding 4 obstacles) is visible, augmented in red with the path of AR.Drone. On the right the
resulting map is displayed, with at the back to elevated areas, representing the white and blue
box. For convenience the grid cells of the elevation map are colored with the texture at that point
as perceived by the downlooking camera of the AR.Drone.

Elevation changes are detected using a filtered second order derivative (acceleration)
of the sonar measurement zsensor, as illustrated in Fig. 6.

Obstacles that enter or leave the range of the ultrasound sensor result in sudden
changes in ultrasound distance measurements. These changes are detected when the
second order derivative exceeds a certain threshold γelevationEvent and an elevation
event is triggered. The threshold γelevationEvent was carefully chosen such that altitude
corrections performed by the AR.Drone altitude stabilization are not detected as being
elevation events. An elevation event ends when the sign of the second order derivative

28 F. Amigoni, A. Visser, and M. Tsushima

0 1 2 3 4 5 6 7 8 9

−400

−200

0

200

400

600

800

Time (seconds)

U
ltr

as
ou

nd
 d

is
ta

nc
e

m
ea

su
re

m
en

t (
m

m
)

Event 1 (UP)

Event 2 (DOWN)

z
sensor

z
sensor

 (EKF)

z
sensor

’ x 10−2 (EKF)

z
sensor

’’ x 10−4 (EKF)

Fig. 6. Response of the ultrasound sensor when flying over an object of approximately
(60, 60, 40)mm. The light gray lines indicate the threshold γelevationEvent and null-line. When
the second order derivative (magenta line) exceeds the threshold, an event is started (light gray
rectangle). An event ends when the derivative swaps sign. Each arrow indicates the change in
elevation caused by the event. The first event increases the elevation when entering an object
and the second event decreases the elevation when leaving the object. Between both events, the
AR.Drone performs an altitude correction, as can be seen by the relatively slow increase of the
distance. This increase is not informative about the elevation and is ignored by the elevation
mapping method.

0 1 2 3 4 5 6 7 8 9
0

200

400

Time (seconds)

E
le

va
tio

n
(m

m
)

Fig. 7. Elevation δ below the AR.Drone over time. The elevation increases to approximately
40 cm when flying above an obstacle. The elevation is decreased when the obstacle is out of
the ultrasound sensor’s range. There is a small error between both elevation events, resulting in
a small false elevation (±50 mm) after the AR.Drone flew over the obstacle and is flying above
the floor again.

Fig. 8. Photo and map of a large stair at our university which is traversed by the AR.Drone. The
depth of each step is 30 cm and the height of each step is 18 cm. The total height of the stair is
480 cm.

RoboCup 2012 Rescue Simulation League Winners 29

switches. This happens when the AR.Drone altitude stabilization starts to change the
absolute altitude to compensate for the change in measured altitude. Now, the elevation
change can be recovered by subtracting the measured distance at the end of the elevation
event from the measured distance before the elevation event was triggered, as illustrated
in Fig. 7.

In a final experiment, the AR.Drone flew with a constant speed over a large stair
(Fig. 8). The depth of each step is 30 cm and the height of each step is 18 cm. The
total height of the stair is 480 cm. After the stair is fully traversed by the AR.Drone, the
estimated elevation is compared against the actual height of the stair.

After fully traversing the stair, the measured elevation is 313 cm and the error is
480−313

480 ×100 = 35%. The shape of the measured elevation corresponds with the shape
of the stair. However, the approach underestimates the elevation. When traversing the
stair, the AR.Drone’s altitude stabilization increases the altitude smoothly, which causes
a continuous altitude increase. Therefore, the observed altitude difference within an el-
evation event is smaller than the actual altitude difference caused by an object. Another
explanation of the underestimation is the error in the triggering of elevation events (due
to thresholds). When an elevation event is triggered at a suboptimal timestamp, the full
altitude difference is not observed.

3.4 Summary

The experiments demonstrate what is possible for rapid development when a realistic
simulation environment for the AR.Drone is available. The simulation model of the
AR.Drone is made publicly available1 inside the USARSim environment. The valida-
tion of this model was described in [35]. We hope that the availability of such a model
inside the infrastructure of the RoboCup Rescue Simulation League will contribute in
attracting researchers to develop advanced algorithms for such a system.

The mapping method described in [34] is able to map areas visually with sufficient
quality for both human and artificial navigation purposes. Both the real and simulated
AR.Drone can be used as platform for the mapping algorithm. The visual map created
by the simulated AR.Drone contains fewer errors than the map of the real AR.Drone.
The difference can be explained by the variance in the lighting conditions encountered
by the real AR.Drone. Notice that the USARSim environment is based on a commercial
game engine (Unreal Tournement) which already simulates many lighting conditions
(e.g., shadows, reflections) quite realistically.

Earlier work [35] shows that the visual map can be used to localize the AR.Drone
and significantly reduce the error of the estimated position when places are revisited.
Important for a good visual map is that sufficient information is available on the ground;
for instance when long straight lines in a gym are followed the travelled distance is
underestimated. To conclude; visual mapping is an important capability to scale up the
robot team to the level where they can explore a city block, which is close to the current
challenge in the Agent competition of the RoboCup Rescue Simulation league.

1 http://sourceforge.net/apps/mediawiki/
usarsim/index.php?title=Aerial Robots#AR.Drone

http://sourceforge.net/apps/mediawiki/usarsim/index.php?title=Aerial_Robots#AR.Drone
http://sourceforge.net/apps/mediawiki/usarsim/index.php?title=Aerial_Robots#AR.Drone

30 F. Amigoni, A. Visser, and M. Tsushima

4 Agent Competition Winner Team Ri-one

This section describes the RoboCup 2012 Rescue Simulation League Agent competi-
tion champion team, Ri-one. Our team consists of four students from the Faculty of
Information Science and Engineering at Ritsumeikan University. The basic structure of
our agent is divided into models and skills.

4.1 Models

The agents have to make informed decisions. The decisions are based on information
which is embedded in a World Model. The World Model not only stores a priori and
perceived information, but also makes inferences to allow more efficient actions of the
agents.

Applying Point of Visibility Navigation Graph. When the agents have the intention to
move somewhere in the simulated city, they must send their path as a list of areas (cells)
to the server. The agents get the map without any obstacle at the start of simulation, and
receive information about nearby open space and obstacles via their sensors at each
step. Information given to agents about open space has the form of connected two-
dimensional closed shapes, as illustrated in Fig. 9. Obstacles blocking routes have also
the closed shapes. With this information, the agents must plan their path in limited
time. The path planning is typically performed with a graph search algorithm [36]. The
map cannot be converted directly into a graph of connected nodes because the shapes
of the cells are not always a convex polygon. The map has to be converted to a new
graph which is called a Point of Visibility Navigation Graph when the simulation starts.
Therefore, we developed the following method to generate this graph automatically.

In order to generate the graph, we have to consider the relation between nodes and
areas defined by the closed shapes. First of all, nodes can be defined as the points (do
not need to be centers) within the areas. This is necessary since the path to move along
is determined by the list of areas to be visited. However, when connecting the points
whose areas are adjacent does not guarantee a collision free path, as shown in red in
Fig. 9. Hence, we added additional nodes to the graph to solve this problem. These
intermediate nodes are placed on the boundaries of adjacent areas and not explicitly
shown in Fig. 9. Therefore, the end result is the undirected bipartite graph which has
two kinds of nodes, terminal nodes and non-terminal nodes. Terminal nodes can be
used as a start- or end-point of a path, and they must inside an area. On the other hand,
non-terminal nodes are intermediate points, on the edges between areas and cannot be
a start or an end node to any path.

The algorithm to generate Point of Visibility Navigation Graph has the following
pseudo code:

1. Set a terminal node to every area.
2. List all pairs of adjacent areas.

RoboCup 2012 Rescue Simulation League Winners 31

3. For all pairs of areas, define the middle point of the shortest line segment between
them (refer to two buildings as A and B, edge of A to B and B to A) as non-terminal
node.

4. Relate terminal nodes and non-terminal nodes mutually, according to their
visibility.

This method creates new traversable edges according to the visibility of nodes. Fig. 10
shows these lines. With the Point of Visibility Navigation Graph the agents can
efficiently perform collision free path planning.

Fig. 9. Connecting areas by connect-
ing the center of the cells. Blue and
red line segments represent traversable
and non-traversable paths, respec-
tively.

Fig. 10. Generated Point of Visibility
Navigation Graph. Cyan line segments
represent edges.

Estimating Fires. This estimation makes two assumptions. The first assumption is that
an influence of the building’s temperature depends on the temperature of another build-
ing on fire. The other assumption is that heat spreads in the form of concentric spheres
centered on the burning building. When a building whose temperature is t affects an-
other building r meters away from its center, a surface area of sphere with radius r is
defined to be S, and a coefficient defined to be k, the influence I satisfies the following
relation: ∮

S

IdS = kt (2)

This I is the influence within the sphere. Then, the angle formed by the lines from the
burning building to the intercept of the affected building and affected edge is defined to
be θ. An influence I of an infinitesimal surface of the sphere is defined as follows:

I = sin θ
kt

4πr2
(3)

Fig. 11 shows this idea. This will make it possible to estimate the probability that an
invisible building is on fire or not, by calculating the value of I in relation to the tem-
perature of that building.

32 F. Amigoni, A. Visser, and M. Tsushima

Fig. 11. Influence of temperature t of
a building on another building at dis-
tance r and angle θ

Fig. 12. The result of using Point
of Visibility Navigation Graph. The
traversable edges are represented by
cyan line segments and the non-
traversable edges are represented by
red line segments.

4.2 Agent Skills

Agents select the best actions from the World Model in order to carry out the operations.
The main idea of success of Team Ri-one is the Police Force’s skill.

Police Force. Police Forces clear the obstacles caused by the disaster. They must clear
the obstacles efficiently to help actions of other agents including Ambulance Teams
and Fire Brigades. Therefore, police forces have to choose an obstacle and decide the
amount to clear. In order to solve this problem, we use Point of Visibility Navigation
Graph from Section 4.1 to decide the obstacle which the police forces will clear. First, a
police force computes the shortest path to a target entity without considering obstacles.
Secondly, they consider the line segments which compose the shortest path in cleared
range. Since each line segment belongs to a single area because of the way the graph has
been defined, it is evaluated whether intersections of the line segments and the shapes
of all obstacles expanded by a fixed amount exist or not. When an intersection exists on
the path, they clear the obstacle. When an intersection does not exist on the path, they
move along the path. After that, if an intersection appears on the path, they clear the
obstacle likewise when they discover the new obstacle. By repeating this method, they
can reach the target entity without clearing obstacles which do not need to be cleared.
Fig.12 shows the result of the algorithm application.

4.3 RoboCup 2012 Rescue Simulation League Agent Competition Results

In RoboCup 2012, the Ri-one team won the competition. The success was based on
the reduction of unnecessary steps in the planning (for instance the improved Police
Force’s skill which ignores obstacles which do not have to be cleared) and on the pre-
diction of the dynamics of the simulation (for instance the estimation of the spread

RoboCup 2012 Rescue Simulation League Winners 33

of a fire). The improved efficiency was enough to beat our competitors with a narrow
margin2. The ZJUBase team from Institute of Cyber-Systems and Control, Zhejiang
University, China, won second place, and the S.O.S team from Amirkabir University of
Technology, Iran, won third place.

5 Conclusion

This paper gives a brief insight in the methods applied by the three winners of the
RoboCup Rescue Simulation League. It demonstrates the variety of methods which
have to be integrated to create a robot team which is able to cooperate to accomplish
the mission to rescue as many victims as possible. The Rescue Simulation League is a
competition which keeps on innovating. The DARPA organization has chosen robot res-
cue as the next challenge and it will be task of the RoboCup community to demonstrate
the value of its benchmarks with relation to the scenario of the DARPA Challenge.

Acknowledgement. The PoAReT team gratefully thanks the Fondazione Banca del
Monte di Lombardia for the financial support. The UvA research is partly funded by the
EuroStars project ‘SmartINSIDE’ and the Dutch ICT Innovation Platform Cooperation
Challenge ‘SI4MS’.

References

1. Amigoni, F., Caltieri, A., Cipolleschi, R., Conconi, G., Giusto, M., Luperto, M., Mazuran,
M.: PoAReT Team Description Paper. In: RoboCup 2012 CD (2012)

2. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot simulator
for research and education. In: Proceedings of the International Conference on Robotics and
Automation (ICRA 2007), pp. 1400–1405 (2007)

3. Pfingsthorn, M.: RoboCup rescue virtual robots: Wireless simulation server documentation.
Technical Report, Jacobs University (2008)

4. Comer, D.: Internetworking with TCP/IP, vol. 1. Addison-Wesley (2006)
5. Wang, J., Lewis, M.: Human control for cooperating robot teams. In: Proc. HRI, pp. 9–16

(2007)
6. LaValle, A., Kuffner, J.: Rapidly-exploring random trees: Progress and prospects. In: Donald,

B., Lynch, K., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions, pp.
293–308 (2001)

7. Garulli, A., Giannitrapani, A., Rossi, A., Vicino, A.: Simultaneous localization and map
building using linear features. In: Proc. ECMR, pp. 44–49 (2005)

8. Nguyen, V., Gächter, S., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of
line extraction algorithms using 2D range data for indoor mobile robotics. Autonomous
Robots 23(2), 97–111 (2007)

9. Elseberg, J., Creed, R., Lakaemper, R.: A line segment based system for 2D global mapping.
In: Proc. ICRA, pp. 3924–3931 (2010)

10. Li, Q., Griffiths, J.: Iterative closest geometric objects registration. Computers & Mathemat-
ics with Applications 40(10-11), 1171–1188 (2000)

2 The detailed competition results can be found at:
http://roborescue.sourceforge.net/

34 F. Amigoni, A. Visser, and M. Tsushima

11. Pronobis, A., Martinez Mozos, O., Caputo, B., Jensfelt, P.: Multi-modal semantic place clas-
sification. International Journal of Robotics Research 29(2-3), 298–320 (2009)

12. Martinez Mozos, O.: Semantic Labeling of Places with Mobile Robots. Springer (2010)
13. Stachniss, C., Mozos, O.M., Burgard, W.: Speeding up multi-robot exploration by consider-

ing semantic place information. In: Proc. ICRA, pp. 1692–1697 (2006)
14. Basilico, N., Amigoni, F.: Exploration strategies based on multi-criteria decision making for

searching environments in rescue operations. Autonomous Robots 31(4), 401–417 (2011)
15. Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market

economy. In: Proc. ICRA, pp. 3016–3023 (2002)
16. Viola, P., Jones, J.J.: Robust real-time face detection. International Journal of Computer Vi-

sion 57(2), 137–154 (2004)
17. Fassaert, M.L., Post, S.B.M., Visser, A.: The common knowledge model of a team of res-

cue agents. In: Proc. 1st International Workshop on Synthetic Simulation and Robotics to
Mitigate Earthquake Disaster (2003)

18. Post, S.B.M., Fassaert, M.L., Visser, A.: The high-level communication model for multia-
gent coordination in the robocuprescue simulator. In: Polani, D., Browning, B., Bonarini, A.,
Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 503–509. Springer, Heidel-
berg (2004)

19. de Hoog, J.: Role-Based Multi-Robot Exploration. PhD thesis, University of Oxford (2011)
20. Schmits, T., Visser, A.: An Omnidirectional Camera Simulation for the USARSim World. In:

Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS, vol. 5399,
pp. 296–307. Springer, Heidelberg (2009)

21. Balaguer, B., Balakirsky, S., Carpin, S., Visser, A.: Evaluating maps produced by urban
search and rescue robots: lessons learned from RoboCup. Autonomous Robots 27(4), 449–
464 (2009)

22. Terwijn, B., Formsma, O., Dijkshoorn, N., van Noort, S., de Hoog, J., Out, N., Bastiaan,
C., Visser, A.: Amsterdam Oxford Joint Rescue Forces: Community Contribution (2010)
(published online)

23. Formsma, O., Dijkshoorn, N., van Noort, S., Visser, A.: Realistic Simulation of Laser Range
Finder Behavior in a Smoky Environment. In: Ruiz-del-Solar, J. (ed.) RoboCup 2010. LNCS,
vol. 6556, pp. 336–349. Springer, Heidelberg (2010)

24. van Noort, S., Visser, A.: Validation of the dynamics of an humanoid robot in USARSim. In:
Proc. PerMIS (2012)

25. Dijkshoorn, N.: Simultaneous localization and mapping with the AR.Drone. Masters thesis,
Universiteit van Amsterdam (2012)

26. Davids, A.: Urban search and rescue robots: from tragedy to technology. IEEE Intelligent
Systems 17(2), 81–83 (2002)

27. Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., Ziparo, V.A.: Towards
heterogeneous robot teams for disaster mitigation: Results and Performance Metrics from
RoboCup Rescue. Journal of Field Robotics 24(11-12), 943–967 (2007)

28. Alnajar, F., Nijhuis, H., Visser, A.: Coordinated action in a Heterogeneous Rescue Team.
In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS,
vol. 5949, pp. 1–10. Springer, Heidelberg (2010)

29. Pfingsthorn, M., Rathnam, R., Stoyanov, T., Nevatia, Y., Ambrus, R., Birk, A.: Jacobs Virtual
Robot 2008 Team - Jacobs University Bremen, Germany. In: RoboCup 2008 CD (2008)

30. Calisi, D., Randelli, G., Valero, A., Iocchi, L., Nardi, D.: SPQR Rescue Virtual Robots Team
Description Paper. In: RoboCup 2008 CD (2008)

31. Balaguer, B., Carpin, S.: UC Mercenary Team Description Paper: RoboCup 2008 Virtual
Robot Rescue Simulation League. In: RoboCup 2008 CD (2008)

RoboCup 2012 Rescue Simulation League Winners 35

32. Visser, A., Nguyen, Q., Terwijn, B., Hueting, M., Jurriaans, R., van der Veen, M., Formsma,
O., Dijkshoorn, N., van Noort, S., Sobolewski, R., Flynn, H., Jankowska, M., Rath, S., de
Hoog, J.: Amsterdam Oxford Joint Rescue Forces - Team Description Paper - Virtual Robot
competition - Rescue Simulation League - RoboCup 2010. In: RoboCup 2010 CD (2010)

33. Nguyen, Q., Visser, A.: A color based rangefinder for an omnidirectional camera. In: Bal-
akirsky, S., Carpin, S., Lewis, M. (eds.) Proc. IROS Workshop on Robots, Games, and Re-
search: Success stories in USARSim, pp. 41–48 (2009)

34. Dijkshoorn, N., Visser, A.: An elevation map from a micro aerial vehicle for urban search
and rescue. In: RoboCup 2012 CD (2012)

35. Dijkshoorn, N., Visser, A.: Integrating sensor and motion models to localize an autonomous
AR. Drone. International Journal of Micro Air Vehicles 3(4), 183–200 (2011)

36. Buckland, M.: Programming Game AI by Example. Wordware Publishing (2005)

UT Austin Villa 2012:

Standard Platform League World Champions

Samuel Barrett, Katie Genter, Yuchen He, Todd Hester, Piyush Khandelwal,
Jacob Menashe, and Peter Stone

Department of Computer Science
The University of Texas at Austin

{sbarrett,katie,hychyc07,todd,piyushk,jmenashe,pstone}@cs.utexas.edu
http://www.cs.utexas.edu/~AustinVilla

Abstract. In 2012, UT Austin Villa claimed Standard Platform League
championships at both the US Open and RoboCup 2012 in Mexico City.
This paper describes the key contributions that led to the team’s victo-
ries. First, UT Austin Villa’s code base was developed on a solid founda-
tion with a flexible architecture that enables easy testing and debugging
of code. Next, the vision code was updated this year to take advantage
of the dual cameras and better processor of the new V4 Nao robots.
To improve localization, a custom localization simulator allowed us to
implement and test a full team solution to the challenge of both goals
being the same color. The 2012 team made use of Northern Bites’ port
of B-Human’s walk engine, combined with novel kicks from the walk. Fi-
nally, new behaviors and strategies take advantage of opportunities for
the robot to take time to setup for a long kick, but kick very quickly when
opponent robots are nearby. The combination of these contributions led
to the team’s victories in 2012.

Keywords: RoboCup, Nao, SPL, UT Austin Villa.

1 Introduction

RoboCup, or the Robot Soccer World Cup, is an international research initiative
designed to advance the fields of robotics and artificial intelligence, using the
game of soccer as a substrate challenge domain. The long-term goal of RoboCup
is to build a team of 11 humanoid robot soccer players that can beat the best
human soccer team on a real soccer field by the year 2050 [7].

RoboCup is organized into several leagues, including both simulation leagues
and leagues that compete with physical robots. This report describes the cham-
pionship team in the Standard Platform League (SPL)1. All teams in the SPL
compete with identical robots, making it essentially a software competition. All
teams use Aldebaran Nao humanoid robots2, shown in Figure 1.

UT Austin Villa has competed in the Standard Platform League with the
Nao robots every year since the Nao was introduced in 2008. Through these
years, we have built a substantial code infrastructure for robot soccer that served

1 http://www.tzi.de/spl/
2 http://www.aldebaran.com/

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 36–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.utexas.edu/~AustinVilla

UT Austin Villa 2012 37

Fig. 1. UT Austin Villa’s Aldebaran Nao robots (in pink) competing at RoboCup 2012

as the base for our championship in 2012 [1,2,4,5]. This paper describes the
team’s key components, including its software architecture, stream-lined vision
processing, localization for a field with same-colored goals, quick kicks from the
walk engine, and a strategy that adapts to the space each robot has on the
field. In addition, a partial release of the UT Austin Villa code can be found
at: http://www.cs.utexas.edu/~AustinVilla/?p=downloads/source_code_
and_binaries

Section 2 describes the software architecture that allows for easy extendability
and debugability. Updates to the vision system for the new Nao V4 robots are
explained in section 3. We discuss the development of our custom localization
simulator and our solution to the challenge of same-color goals in Section 4.
Section 5 describes the motion modules used on the robot, including new walk
engine kicks. In Section 6, we explain the team’s behavior and strategy, which
focused on making the right decision based on how close opponent robots were
to the ball. Finally, in Section 7, we recount the team’s successful performance
at RoboCup 2012.

2 Software Architecture

One of the most important aspects of developing RoboCup software is that it
needs to be easily debugable and testable. To this end, we have developed an ar-
chitecture that allows for easy debugging, modification, and testing of individual
modules of the code. The design’s key element is to enforce that the environ-
ment interface, the agent’s memory, and its logic are kept distinct (Figure 2).
In this case logic encompasses the expected vision, localization, behavior, and
motion modules. Figure 3 provides a more in-depth view of how data from those
modules interact with the system.

The design advantages of this architecture are:

Consistency. The core system remains identical irrespective of whether the
code is run on the robot, in the simulator or in our debug tool. As a result,

http://www.cs.utexas.edu/~AustinVilla/?p=downloads/source_code_
and_binaries

38 S. Barrett et al.

Fig. 2. Overview of the UT Austin Villa software architecture, which separates inter-
face, memory, and logic

we can test and debug code in any of the 3 environments without code
discrepancies. The robot, simulator and tools each have their own interface
class which is responsible for populating memory. The interface talks with
the system being run to populate perceptions in memory, and then reads
from memory to send commands back to the system.

Flexibility. The internal memory design is shown in Figure 3. We can easily
“plug & play” modules into the system by allowing each module to maintain
its own local memory and communicate to other modules using the common
memory area. By forcing communication through these defined channels we
prevent “spaghetti code” that often couples modules together. For example,
a Kalman Filter localization module reads the output of vision from com-
mon memory, work in its own local memory and then write object locations
back to common memory. The memory module takes care of the saving and
loading of the new local memory, so the developer of a new module does not
have to be concerned with the low-level saving/loading details associated
with debugging the code.

Debugability. At every time step only the contents of current memory is re-
quired to make the logic decisions. We can therefore save a “snapshot” of the
current memory to a log file (or send it over the network) and then examine
the log in our debug tool and discover any problems. The debug tool not
only has the ability to read and display the logs, it also has the ability to
take logs and process them through the logic modules. As a result we can
modify code and watch the full impact of that change in our debug tool
before testing it on the robot or in the simulator. The log file can contain
any subset of the saved modules. For example saving only percepts (i.e. the
image and sensor readings) is enough for us to regenerate the rest of the
log file by passing through all the logic modules (assuming no changes have
been made to the logic code).

It would be remiss not to mention the main disadvantage of this design. We
implicitly have to “trust” other modules not to corrupt data stored in memory.
There is no hard constraint blocking one module writing data into a location it

UT Austin Villa 2012 39

should not. For example localization could overwrite a part of common memory
that should only be written to by vision. We could overcome this drawback
by introducing read/write permissions on memory, but this would come with
performance overheads that we deem unnecessary.

Fig. 3. Design of the Memory module. The gray boxes indicated memory blocks that
are accessed by multiple logic modules. Dotted lines show connections that are either
read or write only (percepts are read only, commands are write only).

3 Vision

The team’s vision system divides the object detection task into 4 stages, each of
which is carried out on both cameras. These stages are listed below:

1. Segmentation - The raw image is read and segmented using a color table.
2. Blob Formation - The segmented image is scanned using horizontal and

vertical scan lines, and “blobs” are formed for further processing.
3. Object Detection - The blobs are merged into different objects. In this

paper, we shall primarily limit our discussion to line and curve detection.
4. Transformation - the information given by the pose of the robot is used

to generate ground plane transformations of the line segments detected.

These processing steps are outlined in detail in our previous technical report [2].
We therefore focus here on the modifications to allow the use of both cameras,
as well as a new set of color table generation and analysis tools.

3.1 Dual Cameras

A major hardware upgrade on the Nao V4 was support for streaming image
frames from both the top and bottom cameras simultaneously. Combined with
improved processing power and faster bus speeds, this made it possible to run

40 S. Barrett et al.

the object detection module on images from both cameras while maintaining the
hardware-enforced framerate limit of 30 Hz.

It was quickly determined that merging images would come at high compu-
tational cost due to small variations in the camera coloring and orientation.
Ultimately we chose to modularize the existing detection sequence to run on
each camera image. While there is a small amount of overlap between cameras,
this is ignored except in the case of the ball. When the ball is detected in both
cameras, we use the bottom camera’s detection as our selected candidate.

Two key advantages come from this use of both cameras. The first and most
obvious is an increased field of view and thus a greater number of detected
objects. The second advantage is that at specific head tilt levels the robot’s field
of view is guaranteed to range from its feet to the edge of the field. We therefore
keep the head at a constant downward angle and restrict head movements to
horizontal pans. Minimizing head motion in this manner significantly improved
our walk stability, and enabled the creation of camera-specific color tables. The
bottom camera, for instance, can identify a much wider range of YUV tuples
as orange, leveraging the knowledge that this camera rarely has the potential of
seeing false positives in its field of view.

3.2 Color Tables and Analysis

One of the significant modifications to our vision codebase came from a set of
analysis tools intended to improve the process of creating color tables. These
tools include a log annotation system for identifying key regions and objects in
image logs; a color table generation tool based on annotations; and an annotation
analysis tool. The annotation and analysis tools are shown in Figure 4.

(a) Annotations (b) Analysis

Fig. 4. Examples of the annotation and analysis tools in use. The blue circle around
the ball indicates an elliptical region selection for orange.

The annotation system allows us to graphically select regions of particular
images from log data, identify selections by name, and group selection sets over
multiple frames to designate the lifetime of a particular object. The tool pro-
vides the option of selecting regions as rectangles, ellipses, or polygons. Multiple
selections may be combined and labeled by name and color, allowing a user to
indicate all key objects in the frame.

UT Austin Villa 2012 41

These annotations provide the groundwork for color table generation and
detection analysis. The generator uses each annotation’s assigned label to asso-
ciate all encompassed YUV values with the indicated color. Color assignment
instances are then aggregated to determine false positives (FP), true positives
(TP), and false negatives (FN). Using this data, YUV-color mappings are then
sorted by their mapping score, FP/(TP + 1). This sorting enables the user to
prune off associations with many false positives. When generating color tables
for the ball, this pruning provides an effective way of removing mappings from
very dark regions under the ball, or from white areas due to reflections on the
ball’s surface. The analysis portion of the tool additionally displays all FP and
FN rates to provide some feedback on the quality of the current color table.

In most cases, no other analysis is provided. When analyzing orange mappings,
the tool provides feedback on detected ball candidates and selections as well. The
end result is that hundreds of frames of log data can be analyzed in seconds and
instantly provide black-box-style feedback on the efficacy of the generated (and
pruned) color table.

This technique was initially used with all of the field objects, however there
was little to no benefit for colors such as green and white that occur all over
the field. The technique was most effective with the ball, where annotations
were simple to create and evaluate. Initial setup time and overall accuracy of
the resulting color table was comparable with our previous method of creating
tables by hand, however with the added bonuses of measurable accuracy and
simplified ad-hoc adjustments.

4 Localization

For localization and world modeling, our goals were simple: always know where
you are, always know where the ball is, and have a good idea where the opponents
and teammates are as well. Like many other teams at the competition [9,6],
since 2011 we have used a multi-modal 7-state Unscented Kalman Filter (UKF)
for localization [2]. The UKF provides a number of benefits compared to other
approaches such as Monte Carlo localization as it is computationally efficient and
enables easy sharing and integration of ball information between teammates.

One of the major challenges facing teams in the 2012 RoboCup competition
is that the goals were no longer uniquely colored; instead, they were both yellow.
This change required major changes in the team’s localization system, as now
the robots must track which goal is which from their initial positions. First,
we removed all “resetting” code that would enable a robot to recover from a
kidnapping, as such code could reset the robot to a symmetrical position on the
wrong half of the field. Second, we had to improve and update odometry so the
robot could successfully track and maintain its position from the beginning of
the game using only ambiguous landmarks.

Even with these changes, there were still two problems that arose: bumps
and falls. First, the robot’s odometry can be incorrect if the robot is bumped
or pushed by another robot. Second, if the robot falls down, it is unsure of its

42 S. Barrett et al.

orientation upon getting up. In the corners and edges of the field, the robot knows
its location and can figure out its orientation from looking around. However, at
the middle of the field, two of the orientations are symmetrical. Our solution to
this problem at the US Open was to have the robot stay down if it fell near the
middle of the field. Rather than risk choosing the wrong direction, it was better to
take the 30 second penalty for failing to get up and be reset in a known location.
While this solution worked at the US Open when all teams (including us) were
still mid-development, we knew that it would not be sufficient for RoboCup.

Clearly, the robot would need to take advantage of shared information from
teammates to resolve which direction it was facing. However, testing and de-
bugging localization with full teams of robots is quite challenging. Therefore,
we wrote a localization simulator to implement, test, and debug our solutions,
shown in Figure 5. The simulator took advantage of the modularity of our code.
Instead of interfacing with the code at the perception and motor command lay-
ers, it populated the code with simulated output from the vision module, and
then used the code’s output to the kicking and walking modules to move the
robots in the simulation. The simulator proved useful not just for localization,
but also for testing various strategies and behaviors, as described in Section 6.

Fig. 5. The localization simulator, showing simulated observations for the green robot
in the center circle, along with that robot’s estimate of its own location in white

Our final solution to resolving the same-color goal issue was to have robots
check whether their teammates thought the ball was in the same location or in
the symmetrically opposite location. It is important to listen to more than one
teammate, as we do not want one teammate that is going the wrong way to
convince the entire team to start going the wrong direction. Thus, each robot
keeps a counter which is incremented each time it receives an estimate of the
ball within dist-thresh of the symmetrical opposite location of its estimate,
and decremented when it receives a message with the ball within dist-thresh
of its own estimate. If this counter reaches a threshold (opp-ball-thresh), the
robot spawns a new model with high probability placing it in the symmetrical
opposite location of where it was. Through thorough testing in the simulation,
we debugged and tuned the values of dist-thresh and opp-ball-thresh until
this approach worked reliably.

UT Austin Villa 2012 43

5 Motion

This section describes the walk engine as well as the kick engine that were
used by the UT Austin Villa team in the 2012 RoboCup competition. The walk
engine was used largely unmodified from an existing implementation, but several
important changes were made to the kick engine in 2012.

5.1 Walk Engine

In 2012, the UT Austin Villa team switched to using the walk engine developed
by the B-Human team from the University of Bremen [10]. To interface this
walk engine with our codebase, we started from the code released by Bowdoin
College’s Northern Bites team [8]. This code was used with mostly small changes,
the largest being the positioning of the arms. Inspired by the 2011 HTWK team,
UT Austin Villa chose to keep the robot’s arms behind its back in order to
reduce side collisions with other robots. This type of collision is especially hard
to avoid when approaching the ball, and it is also difficult to detect, often creating
differences between sensed odometry and actual movement. Therefore, keeping
the arms behind the robot proved to be very helpful.

Another change was in reducing the height of robot’s torso while walking.
Lowering this height increases the stability of the robot, leading it to stay upright
more often when colliding with other robots. However, walking lower puts more
strain on the joints, causing the leg joints to overheat more quickly. This problem
was especially apparent at the end of the finals, when UT Austin Villa’s robots
fell over frequently due to this overheating.

5.2 Kick Engine

Our kick engine was composed of two main kick types: kicks executed from a
static standing position and kicks executed directly from the walk engine. The
static standing kicks were more accurate and could go longer distances, but
required the walk engine to halt and the robot to be in a standing position.
The walk engine kicks, although limited to shorter distances, could be executed
without stopping the walk.

Static Standing Kicks. The static standing kicks were a simplified, quicker
version of the kicks we used at RoboCup 2011 [2]. Specifically, we shortened the
interpolation time for executing almost every kick state, and we removed the
second align state that we used in 2011.

For RoboCup 2012, the only static standing kicks that the robots used were
straight kicks ranging between 1.5 meters and 3.5 meters. The kick engine selects
the appropriate parameters for the kick based on the desired kick distance and the
current ball position with respect to the kicking foot. The robot’s joints are con-
trolled using inverse kinematics to reach each desired state in the allocated time.
Splines are used to compute the path for the foot to follow as it moves forward dur-
ing the kick state. The kick engine obtains the desired kick distance by controlling
the amount of time needed to move the foot during the kick state. The relationship

44 S. Barrett et al.

between the interpolation time and the distance was determined empirically, and
varied for each venue based on the field design and carpet texture.

Walking Engine Kicks. Our strategy in the past couple of years has been to
act quickly at the ball and keep the ball moving as much as possible. Hence, once
we switched to using the walk engine developed by the B-Human team [10], we
began experimenting with executing kicks while the walk engine was still run-
ning. We first considered the walk engine kicks that B-Human included in their
release, but then set out to improve on both their stability and their consistency.

Webuilt uponB-Human’smethodology of adding an offset in the x,y,z directions
at selected positions in a normal step to turn the step into a kick. For each of the
walk engine kicks, we picked four or five times in a normal step and defined the
amount that should be added in the x,y,z directions to the swing foot and the stance
foot. We then used splines to fit a smooth curve for the amount to be added to the
normal foot positions for both the stance foot and the swing foot at each time when
commands are sent to the robot during a walk engine kick.

In this manner, we implemented a 1.25 meter straight kick, a 1.0 meter 45
degree kick, and a 0.75 meter side kick that could be executed from the walk
engine. None of the walk engine kicks adapt to the position of the ball, but they
are only attempted if the robot approaches the ball such that the ball is in an
acceptable position for executing the desired walk engine kick.

6 Behavior and Strategy

Our strategy was focused on three goals: 1) move the ball quickly; 2) move it
up-field towards the goal; and 3) keep the ball away from opponents. A key
component for our strategy was our module for selecting which of the possible
kicks to make [3]. This module iterated through an ordered list of kicks, selecting
the first acceptable kick, one that would move the ball towards the goal while
keeping it away from opponents. This procedure gave the robot speed compared
to the option of always turning to kick the ball directly at the goal.

One problem with this strategy is that it focused on quickness, even when
there were no opponents around and the robot could have taken more time to
make a better kick. One focus for this year was to judge how much time the robot
had to kick, based on how close the opponents were to the ball. We introduced
three thresholds. If the nearest opponent was very far away, the agent decided
it had time to rotate around the ball to make a long kick directly at the goal.
If the nearest opponent was closer than this threshold but not very close, then
the agent would not rotate at all, but could choose from a set of stronger, slower
kicks that required the robot to stop walking. If the opponents were within even
a smaller radius, then the robot chose from one of its kicks that it could execute
from the walk engine, without having to stop walking. Finally, if the opponent
was directly at the ball, the robot would choose to make a quick side kick 90
degrees to one side. Its goal was to choose the side free of opponent robots, or
the side with a teammate robot if there were no opponents on either side. This
decision making process enabled our agents to take advantage of when they had

UT Austin Villa 2012 45

more space to align for better kicks, while still being very quick at moving the
ball when they had to be.

The localization simulator enabled us to perform significant testing and de-
bugging of our strategies and kick selections. One of the main changes that came
out of these tests was the positioning of players away from the ball. We split the
field into two regions. In the back third of the field, one robot stayed to the side
of the ball to receive side kicks, and one forward positioned itself a few meters up
from the ball. In the rest of the field, one robot stayed to the side to receive side
kicks, and one defender stayed back from the ball a few meters. This positioning
proved to be very successful at the competition, as the team completed many
side kicks to the support player, and the defender was ready to come up and
contest the ball if the opponents got by the attacker.

Onemajor issue at RoboCup every year is handling problemswith wireless com-
munication, and this was a problem again in 2012. Our robots depend on wireless
communication to share ball information, resolve ambiguous orientations that re-
sult from the same-colored goals, and decide on which position each robot should
play.Once it becameclear thatwirelesswouldbean issue for the entire competition,
we developed a new positioning strategy for this scenario. If the robots detected
that wireless was down, one would permanently chase the ball, while the other two
went to static positions on the field. However, these two field players would still go
to kick the ball if it reached within a set distance of them. This strategy appeared
to be better than the approaches other teams took, such as removing all but one
robots from the field, or letting all the robots go to the ball all the time.

7 Competition

In 2012, UT Austin Villa won the Standard Platform League at the 16th Inter-
national RoboCup Competition in Mexico City, Mexico. 25 teams entered the
competition and games were played with four robots on each team. The tourna-
ment consisted of two round robin rounds, followed by an elimination tournament
with the top 8 teams. UT Austin Villa’s scores are shown in Table 1.

In the first round robin, UT Austin Villa was in a group with Nao Team
Humboldt and MRL. UT Austin Villa defeated both teams 8-0 to win the group.
In the second round robin, UT Austin Villa was placed with the Nao Devils,

Table 1. RoboCup 2012 Results

Round Opponent Score

Round Robin 1 Nao Team Humboldt 8-0
Round Robin 1 MRL 8-0

Round Robin 2 Nao Devils 5-1
Round Robin 2 Kouretes 8-0
Round Robin 2 NTU RoboPAL 9-0

Quarterfinal AUTMan 5-0 (forfeit)

Semifinal rUNSWift 7-6

Final B-Human 4-2

46 S. Barrett et al.

Kouretes, and NTU RoboPAL. UT Austin Villa defeated the Nao Devils 5-1,
Kouretes 8-0, and NTU 9-0 to place first in the group. UT Austin Villa played
AUTMan in the quarter-finals, where UT Austin Villa won 5-0 after AUTMan
opted for a forfeit partway through the game due to techinical difficulties. In
these games, UT Austin Villa experienced wireless issues but was still able to
test various strategy parameters to prepare for the semi-finals and finals.

In the semi-finals, UT Austin Villa faced rUNSWift from The University of
New South Wales. rUNSWift went up 2-0 and was ahead by 3-1 before the
first half ended with rUNSWift claiming a 3-2 advantage. In the second half,
rUNSWift extended its lead to 4-2 before UT Austin Villa tied it up at 4-4.
rUNSWift and UT Austin Villa then alternated goals until they were once again
tied at 6-6. Then, UT Austin Villa called a 5 minute timeout, during which we
implemented and uploaded an untested code change that would keep our goalie
from diving immediately after a kickoff. We chose to make this change because
rUNSWift’s long kickoffs towards the left corner of our goal box were causing
our goalie to dive on the kickoff and not recover in time to clear the ball. After
the timeout, UT Austin Villa claimed its first lead of the game, 7-6, with about
80 seconds left, and held on to win what several observers felt was the most
competitive SPL RoboCup game to date.

Less than two hours after winning their semi-final game, UT Austin Villa
faced previously undefeated B-Human from the University of Bremen in the
championship game. UT Austin Villa took advantage of an empty field after
B-Human’s robots were called for ball holding penalties to take an early 1-0
lead. UT Austin Villa’s lower walk stance height than B-Human gave them
better walk stability. Using this advantage and good positioning of its robots,
UT Austin Villa claimed a 2-0 lead in the first half, and extended the lead to
4-0 in the second half. However, the lower walk stance led to UT Austin Villa’s
robots’ knees over-heating, reducing their stability and creating problems with
getting up. B-Human took advantage of this weakness to score two late goals,
but not enough time remained for them to complete a comeback. UT Austin
Villa won the championship game 4-2.

8 Conclusion

This paper describes the technical work done by the UT Austin Villa team that
led to its 2012 championship in the Standard Platform League. Importantly, all
of the 2012 code was developed on a flexible architecture developed previously,
that enables easy testing and debugging of code. This year, we updated the
vision code to take advantage of the dual cameras and better processor of the
new Nao robots. To improve localization, we developed a localization simulator,
allowing us to implement and test a full team solution to the challenge of both
goals being the same color. Our 2012 team made use of Northern Bites’ port of
B-Human’s walk engine, combined with novel kicks from the walk. Finally, we
implemented new behaviors that would take advantage of when the robots had
time to setup for a long kick, and kick very quickly when there were other robots
around. The combination of all of these contributions led the team to victory

UT Austin Villa 2012 47

at RoboCup 2012 and gives us a good foundation to field competitive teams in
future competitions.

Acknowledgements. This year’s team builds upon all of the past UT Austin
Villa teams. We thank all the previous team members for their important contri-
butions, especially Michael Quinlan and Mohan Sridharan. This work has taken
place in the Learning Agents Research Group (LARG) at UT Austin. LARG
research is supported in part by NSF (IIS-0917122), ONR (N00014-09-1-0658),
and the FHWA (DTFH61-07-H-00030).

References

1. Barrett, S., Genter, K., Hausknecht, M., Hester, T., Khandelwal, P., Lee, J., Quin-
lan, M., Tian, A., Stone, P., Sridharan, M.: Austin Villa 2010 standard plat-
form team report. Technical Report UT-AI-TR-11-01, The University of Texas
at Austin, Department of Computer Sciences, AI Laboratory (January 2011)

2. Barrett, S., Genter, K., Hester, T., Khandelwal, P., Quinlan, M., Stone, P., Sridha-
ran, M.: Austin Villa 2011: Sharing is caring: Better awareness through information
sharing. Technical Report UT-AI-TR-12-01, The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory (January 2012)

3. Barrett, S., Genter, K., Hester, T., Quinlan, M., Stone, P.: Controlled kicking under
uncertainty. In: The Fifth Workshop on Humanoid Soccer Robots at Humanoids
(December 2010)

4. Hester, T., Quinlan, M., Stone, P.: UT Austin Villa 2008: Standing on Two Legs.
Technical Report UT-AI-TR-08-8, The University of Texas at Austin, Department
of Computer Sciences, AI Laboratory (November 2008)

5. Hester, T., Quinlan, M., Stone, P., Sridharan, M.: TT-UT Austin Villa 2009:
Naos across Texas. Technical Report UT-AI-TR-09-08, The University of Texas
at Austin, Department of Computer Science, AI Laboratory (December 2009)

6. Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient multi-hypotheses un-
scented kalman filtering for robust localization. In: Röfer, T., Mayer, N.M., Savage,
J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 222–233. Springer, Hei-
delberg (2012)

7. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: The robot
world cup initiative. In: Proceedings of The First International Conference on Au-
tonomous Agents. ACM Press (1997)

8. Neamtu, O., Dawson, W., Googins, E., Jacobel, B., Mamantov, L., McAvoy, D.,
Mende, B., Merritt, N., Ratner, E., Terman, N., Zalinger, J., Morrison, J., Chown,
E.: Northern Bites code release (2012), https://github.com/northern-bites

9. Quinlan, M.J., Middleton, R.H.: Multiple model kalman filters: A localization tech-
nique for roboCup soccer. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary,
S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 276–287. Springer, Heidelberg
(2010)

10. Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf,
C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T.,
Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-human team report
and code release (2011),
http://www.b-human.de/downloads/bhuman11_coderelease.pdf

https://github.com/northern-bites
http://www.b-human.de/downloads/bhuman11_coderelease.pdf

TUMsBendingUnits from TU Munich:

RoboCup 2012 Logistics League Champion

Sören Jentzsch, Sebastian Riedel,
Sebastian Denz, and Sebastian Brunner

Robotics and Embedded Systems, Department of Informatics,
Technische Universität München, Munich, Germany
{jentzsch,riedels,denz,brunnese}@in.tum.de

http://www6.in.tum.de/

Abstract. The new RoboCup Logistics League sponsored by Festo of-
fers a competition within a simulated industrial environment. In order
to solve the logistical tasks, all three Robotinos not only have to oper-
ate autonomously in a flexible, effective and robust way on their own,
they should also collaborate efficiently in order to maximize the over-
all outcome. In this paper, the first world champion of the Logistics
League, TUMsBendingUnits from the Technical University of Munich
(TUM), presents their logistical system with focus on approaches con-
cerning robot hardware modifications, software architecture, task plan-
ning and execution, multi-robot collaboration, visual perception, motion
planning and execution.

1 Introduction

The RoboCup Logistics League sponsored by Festo is a new industrially inspired
competition. After two years of demonstration the Logistics League has been
added to the approved RoboCup portfolio in 2012 [6], offering a competition
with focus on achieving a flexible and efficient material and information flow
inside a factory area.

A team consists of three robots based on the robot platform Robotino from
Festo [3] which have to operate autonomously without any kind of external com-
puting power, control station or human interference [5]. Each team competes for
the highest score in 15 minutes on its own separate competition area with a
size of 5.6m × 5.6m, as shown in Figure 1. The main task is to continuously
execute a 3-staged production cycle and to transport the final product to the
currently active delivery gate. Whereas the machine positions are known in ad-
vance, their types are not and have to be explored by the robots. Each product
is represented by a data carrying RFID tag mounted on a red hockey puck and
each machine consists of an RFID read/write device and a signal unit in order
to show the robot the actual status of this very machine. Alongside this main
task more logistical challenges have to be solved, for example dealing with out-
of-order machines, handling express goods within a certain timeframe, reacting

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 48–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www6.in.tum.de/

RoboCup 2012 Logistics League Champion 49

Fig. 1. Factory area of the Logistics League including the raw material zone (left),
the production machines (middle), the delivery gates (right) and three autonomously
operating Robotinos of the team TUMsBendingUnits

to changing delivery gates and recycling consumed goods in order to obtain new
raw materials.

In this paper, the winning team TUMsBendingUnits of the RoboCup Logistics
League 2012 championship in Mexico City presents their hard- and software
approaches which did master these logistical tasks.

2 TUMsBendingUnits: System Overview

Following the championship of the demonstrational Festo Logistics Competition
at RoboCup 2011 in Istanbul, team TUMsBendingUnits of the Technical Uni-
versity of Munich (TUM) could successfully defend their title at the RoboCup
Logistics League 2012. After convincingly winning all games at the semi-finals
group stage, TUMsBendingUnits won the finals against team Leuphana with a
new score record of 160:49.

This section describes the hard- and software of TUMsBendingUnits, which
includes the robot sensor equipment, software architecture, task planning and
execution, logistical collaboration between the robots, visual perception, as well
as motion planning and execution.

2.1 Robot Hardware

The Logistics League is based on the robot platform Robotino, designed and
manufactured by Festo [3]. Robotino is actuated by a three-wheeled holonomic
drive system. It provides an embedded PC/104 (AMD LX800 processor with 500
MHz) combined with an I/O control board and a LPC2377 32-bit microcontroller
to access actuators and sensors. Alongside basic equipment like a WLAN module
and the passive puck-pushing device, the teams are free to change or add any kind
of sensors. For our Robotinos, we use the default front IR sensor for monitoring
the puck possession, two pre-calibrated binary optical sensors to detect and
align with black lines on the ground, and two more optical sensors mounted
along the customized pushing device in order to align with production machines.
A Logitech Webcam C905 is used for visual perception and wheel odometry is
assisted by a CruizCore XG1000 gyroscope. Figure 2 (left) shows our final version
of the Robotinos.

50 S. Jentzsch et al.

Fig. 2. Robotino of TUMsBendingUnits (left) and their graphical visualization,
debugging and controlling tool (right) for the competition

2.2 Software Architecture

The overall software architecture of the Robotino consists of several layers which
are shown in Figure 3. In order to control the wheels and to manage analog and
digital inputs and outputs, the realtime-based control daemon of the PC/104’s
Ubuntu uses serial communication to access the I/O board. On top of this ar-
chitecture we have our application (TBU ACAPS), programmed in C++ using
several external libraries and an internal one (TBU BASE). Furthermore, we
established direct access to the control daemon’s shared memory segment, thus
effectively bypassing the Robotino-API ComServer and boosting the sensor- and
actuator-based communication frequency significantly.

Now let us take a closer look at the software architecture of our application,
as visualized in Figure 4.

Starting with the sensorial part, the sensor server has direct access to the shared
memory with all the raw sensor and odometry values while retrieving visual per-
ception data from the cameramodule depending on the currently desired detection
mode. Except for the sensor server, eachmodule consists of or operates within own
threads, thus resulting in a highly multithreaded architecture. The sensor event
generator module constantly polls the sensor values through the server and con-
verts the raw values to discrete events like EvCameraGreenLightDetected
orEvHasPuck, depending on certain changes in the data, triggers or thresholds.

The heart of our software architecture is the state machine, which asyn-
chronously processes events from the event queue and executes basic, generalized
routines, like grabbing a puck, driving to a certain machine or delivering a puck.
These behaviors are realized as own sub-state machines and invoked by the job
handler as the robot proceeds in the execution of its current job. Once a job
is completed, the job planner decides for a new job, taking the current state
of the plant as well as the robot’s teammates into account. This information is

RoboCup 2012 Logistics League Champion 51

 Contribution

PC-104: Ubuntu 09.04 with RTAI-Kernel-Patch PC-104: Ubuntu 09.04 with RTAI-Kernel-Patch

Application (TBU_ACAPS)
Boost OpenCV Pantheios

Logging TBU_BASE

ComServer

CtrlDaemon

I/O-Board: I/O-Board:

Analog/Digital I/O Wheel PID-Control (1 kHz)

Realtime

Direct
Access to

Shared
MemorymServ Shared

Memory

Serial
Communi-

cation

Fig. 3. Overall Robotino software layers with our software code on top of the realtime
components of the standardized Robotino platform

Job Planner
& Handler

State Machine

Motor Controller Path Planning &
Trajectory Generation

Communication
Module

(World Model)

Sensor Event
GeneratorSensor Server

Shared Memory
(Raw Sensor Values

& Odometry)

Camera

Fig. 4. Abstract block diagram of the software architecture, where each block repre-
sents a separate software module with the arrows indicating the main information flow
and function calls, respectively

subsumed in a world model structure, which is shared and synchronized between
the robots via the communication module.

The state machine itself has access to other modules, for example in order to
control the camera via the sensor server, ask for the next job, execute a motion
in the motion controller module or request the path planning module to plan a
certain path. With completion of a task, these modules again utilize event-based
communicatation with the state machine.

52 S. Jentzsch et al.

Finally, a graphical user interface running on an external computer was de-
veloped for debugging and basic interaction purposes, like starting or pausing
the robots (Figure 2, right). It visualizes the current world model and additional
information about each robot, like the current state-machine state, the camera
image and odometry values.

2.3 Task Planning and Execution

The Logistics League does not allow teams to utilize an external central control-
ling system and thus each robot has to be able to plan its next task on its own.
This chapter introduces our solution to decentralized planning and execution in
a multi-robot team.

Job Planning. The job planning module of each robot takes the current state
of the world model and the last executed job as input for determining the next
job. We distinguish two different types of jobs: the DeliverPuckJob and the
CheckInsertionAreaJob.

The DeliverPuckJob is the basic job type that covers all of the actions which
are required to solve the basic production cycle. It always takes a start node, such
as the input zone or a machine, a certain puck at that node, and a destination
to which the good has to be delivered to.

In order to meet the express good challenge within the official time span of
120 seconds, the CheckInsertionAreaJob periodically checks for an express good
within the insertion area. Note that, as all of our robots run the same software
code, we avoid delegating a robot only for the express good challenge, thus
focusing on the main production cycle.

The job planner creates a list of all possible jobs and then chooses the next
task based on the highest priority value for each job. These priority values are
assigned for each job as follows:

priority(dJob) = available(dJob) · (basicPriority(dJob)

− distPosStart(dJob) − distStartTarget(dJob)) (1)

priority(cJob) = available(cJob) · (timeElapsed()− distPosIA()) (2)

Equation 1 calculates the priority for the DeliverPuckJob (dJob) as follows:
At first, the function available checks for availability of the job and returns
1 only if the following conditions are met (otherwise 0): the picked up good
is available at the starting machine, the target machine has the appropriate
machine type, requires this good, has the status of being ready, has no blocking
good underneath and both the starting machine and the target machine are
not occupied by another robot. Then, we assign a certain basic priority to each
job type (basicPriority). For example, the basic priority for delivering the final
product to the delivery gate is much higher than exploring an unknown machine
with a raw material. These basic priorities were tuned manually in order to
prioritize certain job types and to boost the overall production of a final product

RoboCup 2012 Logistics League Champion 53

effectively. However, we also consider the distance which the robot has to drive
from its current position to the starting machine (distPosStart) and from the
starting machine to the target machine (distStartTarget), including a penalty if
the robot’s last job did not end on this very starting machine. Thus, in the end,
also jobs with a low basic priority but sufficiently short travel distances can be
prioritized over jobs with a higher basic priority.

Equation 2 outlines how the priority for the CheckInsertionAreaJob cJob is
calculated. First of all, the job is only available if at least 25 seconds elapsed
since the last check, we already identified at least one suitable target machine, the
maximum number of express goods were not reached yet and the express good
insertion area is not occupied by another robot (available). Then the priority
value depends linearly on the time elapsed since the last check (timeElapsed)
minus a penalty depending on the distance between the robot’s current position
and the insertion area of the express good (distPosIA).

In the end, the job planning module selects the job with the highest priority
value and passes it to the job handling module. If there is no job currently
available, the robot moves to a random neighboring grid node unblocking the
current node in order to avoid deadlock situations, and starts over again after a
certain amount of time.

Job Handling. The job handler takes over the selected job and sequentially
triggers the execution of appropriate sub-state machines. At first the robot needs
to get to the starting machine. This may or may not include leaving the current
machine (the current machine could also be the starting machine). If so, the job
handler calls the corresponding sub-state machine and passes over all relevant job
information, for example the exact starting and target machine. This allows the
sub-state machine to leave the current machine in the most suitable and efficient
direction. In similar manner sub-state machines are triggered for: actual driving
to the starting machine, picking up a puck, leaving the starting machine, driving
to the target machine and placing the puck underneath the RFID-device. After
completion of each sub-state machine, the world model is updated accordingly
and synchronized to the other robots. In case of the target machine showing red
light and thus signaling the out-of-order state, the job handler triggers the job
planning module in order to find a new target for the carried good. Finally, after
successfully executing the job, the next one is planned.

Logistical Collaboration. The logistical collaboration basically consists of
breaking the core production cycle of producing and delivering the final product
into atomic operations. These are exactly the DeliverPuckJobs, where we deliver
a puck from one machine to another, as there is no efficient way to hand over a
good from one robot to another. By operating on a synchronized world model,
the robots then automatically collaborate and avoid collisions.

Updating the world model has to be reliable. Every time a robot changes
the state of world model objects, such as grid nodes and machines and all their
properties, it synchronizes changes with the other robots. To prevent simultane-
ous write operations, every robot is only allowed to make changes when it holds

54 S. Jentzsch et al.

active TCP connections to all robots (including itself). As every robot only al-
lows for one incoming TCP connection and connections are established in a fixed
order, this effectively prevents conflicting write operations. A world model ver-
sion number further prevents from overriding a newer with an older world model
in case of rebooting a robot or network failures.

2.4 Visual Perception

In order to safely and precisely grab a puck or navigate to a certain key loca-
tion (e.g. to a production machine or a delivery gate), the robot’s motion must
be based on sensor data, instead of relying only on the internal odometry val-
ues. We utilize visual perception with our color camera to detect multiple pucks
(Figure 5), to perceive the light states of the production machines, and to locate
the currently active delivery gate from distance (Figure 6). For each task, we
dynamically switch certain camera parameters (e.g. brightness, contrast, satu-
ration, white balance temperature, gain, exposure, no backlight compensation)
in order to maximize the visual perception of task-specific key differences in the
image. For example, for the light state detection, we heavily increased the expo-
sure value and set the contrast to zero, which results in images shown in Figure
6, where only the lights turned on are perceived with their corresponding color
values, as opposed to lights visualized in Figure 5 (right), where basically each
light turned on consists of a white core.

Given these color images and the fact that memory and computation power
of our robot is very limited, we apply a sliding window technique on color-
thresholded HSV images in order to detect pucks and lights. Due to the per-
spective distortion of the camera, our window size for detecting pucks depends
on the current height in the image. To efficiently calculate the matching pixel
sum for each window (up to 19,200 windows for the whole 160x120 image), we
construct the integral image (or summed area table) for our binary image in
advance, as detailed in [7]. For the light detection this entire procedure is done
separately for every light color.

In case of detecting and navigating to pucks and the currently active delivery
gate, we have to transform pixel coordinates (center points of the matching
windows) to metric units in the robot’s local coordinate frame. For this task
we collected a sufficiently large amount of training data and used the machine
learning tool Eureqa [2] to identify an appropriate conversion function.

In order to ensure a robust light state detection including the occurrence of
yellow flashing light, we utilize a light state buffer as follows: We process our
images as usual, but only after at least a certain amount of time elapsed and a
certain amount of images were processed, we make our final decision based on
the recognized light states so far. Then, we clear the buffer and start over again.

2.5 Motion Planning and Execution

The regularly oriented and positioned machines allow for significant reduction
of the motion planning problem. Paths between points of interest (machines,

RoboCup 2012 Logistics League Champion 55

Fig. 5. Puck detection at the raw material zone (left) with the corresponding binary
image (middle) and near the production machines (right)

Fig. 6. Light state detection of production machines using modified camera parameters
showing green (left), yellow-green (middle), and detecting the currently active delivery
gate, that is the one with the green light turned on (right)

raw material zone, delivery gates, etc.) are planned on a coarse 9 × 9 grid,
as visualized in Figure 2 on the right. Each (x, y) grid node expands into four
oriented nodes (x, y, 0◦/±90◦/180◦) therefore leading to a shortest path problem
in a graph of only 324 nodes. Allowing only four orientations and 81 positions on
a rectangular grid, we restrict the motion to right-angled pathways through the
factory area. The established coarse ”motion corridors” have a slightly larger
size than Robotino’s diameter. For a smooth trajectory generation along the
calculated shortest path, the path is reduced to a list of n via poses V ∈ (x, y, φ)n.

Based on the via poses and constraints for maximum velocity and accelera-
tion, a trajectory is calculated following the Linear Segments Parabolic Blends
method (LSPB) detailed in [1]. Our trajectories are planned in the world frame,
treating x, y and φ as independent, but time-synchronized degrees of freedom
(Robotino has a holonomic drive system). Generally the LSPB approach is based
on linear interpolation between two via points (the ”linear segments”). To avoid
discontinuous velocity trajectories, parabolic blends are added at each via point.
In other words, the robot is allowed to (de)accelerate only near via points, re-
sulting in trapezoidal, continuous velocity trajectories. Finding a trajectory via
the LSPB method eventually means to find the minimum linear segment time
for each of the (n − 1) path segments and the minimum acceleration time for
each via point v ∈ V under the given dynamic constraints. As you cannot solve
for these time intervals in a closed form, Craig suggests a heuristic [1]. We de-
cided for an iterative approach: Starting with the first path segment and zero
segment time, we increase the segment time until all constraints are met and the

56 S. Jentzsch et al.

y
[m

m
]

x [mm]
0 100 200 300 400 500

0

100

200

300

400

500

phi

y

x

v
el
o
ci
ty

[m
m
/
s]

re
sp
.
[d
eg
re
e/
s]

samples
0 200 400 600 800 1000

−400

−200

0

200

400

600

Fig. 7. Generated trajectory sampled at 200 Hz with two intermediate via poses in
addition to start and end pose. The quiver plot on top visualizes position and orien-
tation of the sampled trajectory (small arrows at each fifteenth pose), the original via
poses are marked by filled dots. Notice how only the start and end pose are actually
reached, the intermediate via poses are only approximated. This plays nicely with our
coarse grid motion planning. The resulting movement is very smooth, yet still pre-
serves straight line motion on the corridors. The line plot at the bottom represents the
corresponding velocity trajectories.

RoboCup 2012 Logistics League Champion 57

necessary acceleration times are less than half of the segment time. We then
move on to the next segment to start with zero segment time again. After defin-
ing all time intervals, the trajectory is calculated by sampling it into a look-up
table with a sample frequency equal to our desired control loop frequency (an
example can be seen in Figure 7).

Trajectory control is then achieved by a position PD-controller targeted at
a control loop frequency of 200 Hz. The direct communication with Robotino’s
real-time subsystem via shared memory allowed us to achieve these short control
cycles on Robotino, as discussed in Chapter 2.2 (Figure 3).

3 Conclusion

This paper introduced the RoboCup Logistics League and the 2012 champion
TUMsBendingUnits1.

As the new Logistics League crowned the first world champion this year, our
main focus was on establishing a solid and stable overall logistical system. Avoid-
ing cost-intensive sensor equipment like laser scanners, we developed advanced
software routines within our event-based state machine, including for example
odometry calibration at certain locations or robust steering towards the ma-
chines. The overall software architecture allowed us to decouple modules quite
easily while the external graphical interface helped us to debug our approaches.
Whereas the visual perception algorithms were kept simple, the more sophisti-
cated motion execution, especially the trajectory following, ensured efficient path
following, resulting in significant time savings when executing a job. Overall our
system allowed all three robots to keep up a stable and coordinated material
flow while dealing with the logistical challenges of the competition, including
express goods, out-of-order machines, changing delivery gates, and recycling of
consumed goods. During the final game no human intervention was necessary
and all robots operated autonomously for the whole 15 minutes.

Compared to the other teams of the Logistics League, the communication and
collaboration between the robots and the motion routines set us apart the most.
Moreover, our software architecture allowed us to easily decouple, debug and
visualize our software components, which is of great value in order to achieve
the most stable and robust solution. For the next years, we plan to further boost
the dynamic and flexible behaviors concerning job handling, collaboration and
time-based path planning. Right now, tasks cannot be interrupted and the whole
path is reserved when driving to a certain grid location.

With increasing knowledge and performance capabilities of the Logistics
League teams, the competition itself will be further improved and refined in
the future. Following the roadmap of the Logistics League [4], alongside the core

1 More information about the team TUMsBendingUnits and video highlights from the
competition can be found on the following websites:
http://www.tumsbendingunits.de/ (under construction)
http://www.youtube.com/TUMsBendingUnits

http://www.tumsbendingunits.de/
http://www.youtube.com/TUMsBendingUnits

58 S. Jentzsch et al.

production cycle and the express good challenge, various new production strate-
gies will be introduced, for example Just-in-Time (JIT) and Just-in-Sequence
(JIS). Moreover, future dynamic adversarial obstacles will require a much more
sophisticated, reactive and flexible behavior of the robots and their collabora-
tion, especially concerning the path planning. These future changes will keep the
Logistics League challenging and contribute towards the goal of approaching an
industrial application.

Acknowledgments. The authors would like to thank the additional contribut-
ing member Peter Gschirr of TUMsBendingUnits, Andre Gaschler from the for-
tiss GmbH, Dr.-Ing. Gerhard Schrott and Prof. Dr.-Ing. Alois Knoll of the Chair
Robotics and Embedded Systems, Department of Informatics, Technische Uni-
versität München, for their huge support and commitment.

References

1. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Prentice Hall
(2004)

2. Eureqa, Cornell Creative Machines Lab,
http://creativemachines.cornell.edu/eureqa

3. Festo Didactic, Education and Research Robots: Robotino,
http://www.festo-didactic.com/int-en/learning-systems/

education-and-research-robots-robotino/

4. Logistics League Roadmap,
http://www.robocup2012.org/pdf/LL_2012_Roadmap.pdf

5. Logistics League Rulebook,
http://wiki.openrobotino.org/index.php?title=Logistics_League

6. RoboCup (2012), Sponsored Leagues: Logistics League by FESTO,
http://www.robocup2012.org/comp_SponsoredFesto.php

7. Richard, S.: Computer Vision: Algorithms and Applications. Springer, London
(2010)

http://creativemachines.cornell.edu/eureqa
http://www.festo-didactic.com/int-en/learning-systems/education-and-research-robots-robotino/
http://www.festo-didactic.com/int-en/learning-systems/education-and-research-robots-robotino/
http://www.robocup2012.org/pdf/LL_2012_Roadmap.pdf
http://wiki.openrobotino.org/index.php?title=Logistics_League
http://www.robocup2012.org/comp_SponsoredFesto.php

Team CHARLI: RoboCup 2012

Humanoid AdultSize League Winner

Coleman Knabe, Mike Hopkins, and Dennis W. Hong

RoMeLa, Mechanical Engineering, Virginia Tech, USA
{knabe,hopkns,dhong}@vt.edu

http://www.romela.org

Abstract. Autonomous soccer-playing humanoid robots have advanced
significantly in the past few years. Skill sets elementary to humans such as
omnidirectional bipedal walking, path planning, and gameplay strategy
have matured enough to allow for dynamic and exciting games. In this pa-
per team CHARLI, the two-time RoboCup Humanoid AdultSize League
winner, describes the design and fabrication of essential components such
as the spine and mechanical structure, then overviews the increase in per-
formance resulting from recent mechanical upgrades. Finally, we detail
the custom walking controller and gameplay module changes responsi-
ble for the outstanding performance of our self-constructed lightweight
full-sized humanoid platform, CHARLI-2.

1 Introduction

Team CHARLI is a collaborative effort between Virginia Tech’s Robotics and
Mechanisms Laboratory (RoMeLa) and the University of Pennsylvania’s GRASP
lab. Stemming from the success of team DARwIn in the KidSize class, team
CHARLI (Cognitive Humanoid Autonomous Robot with Learning Intelligence)
has participated in the Humanoid AdultSize League since its debut at RoboCup
2010. Having demonstrated the reliability of the 2011 CHARLI-2 platform by
winning the Louis Vuitton Best Humanoid Award – the first United States team
to secure the trophy in RoboCup history – few modifications were necessary to
comply with the 2012 rules. This paper details the design and fabrication issues
of selected innovative features of the CHARLI-2 platform, and then overviews
the hardware and software changes which steered team CHARLI to its second
consecutive AdultSize victory.

2 Design and Fabrication Considerations

The main emphasis of the CHARLI-2 platform, shown in Figure 1, is on a
lightweight design to reduce development cost, improve ease of handling, and
ensure safe operation. The construction of a reliable full-sized humanoid robot
requires several design considerations and manufacturing processes to create
multi-purpose subsystems and minimize weight.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 59–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.romela.org

60 C. Knabe, M. Hopkins, and D.W. Hong

Fig. 1. CHARLI-2 (left, right) and testing on a soccer field (center)

2.1 Spine

Some of the problems faced by full-sized humanoids are ease of handling, operator
safety, and a lightweight design; many utilize a bulky handle near the shoulders
or require multiple users to maneuver and position the robot. To address these
issues, CHARLI employs a unique multifunctional spine design.

Two stainless steel rods are the only load-bearing components needed for the
spine. However, an innovative design employing laser-cut acrylic disks resem-
bling human vertebrae not only improves aesthetic appeal, but also allows for
routing of wires through the center of the discs. The spine also functions as
a comfortable handle well above the robot’s center of gravity in an area free
of pinch points, which ensures safe, stable, handling and eliminates the added
weight of a conventional handle near the head or shoulders.

The base of the spine detaches from the waist, allowing us to separate CHARLI
into upper and lower portions for easy transportation. The detachable spine base
also permits changes to the waist and pelvis structure, so in the future we plan
to implement a waist yaw joint to increase the upper body range of motion.

2.2 Speaker

Design considerations for the speaker system focused on power consumption,
packaging, weight, and acoustics. To realize these design requirements a low-
power Mylar cone was outfitted in the chest cavity, using the chest covers as a
natural enclosure to enhance acoustic quality.

Though we typically use the speaker at demos to communicate and interact
with the audience, it is also one of the most useful subsystems for code devel-
opment and testing. Since it can be difficult to recognize errors in autonomous
behavior during runtime, descriptive audio clips — such as ball found, ball lost,
or orbit right-forward — were triggered by state machine transitions to provide
cues regarding the robot’s decision-making. This provides real-time monitoring
of autonomous decisions made by the robot, increasing the efficiency with which
we can debug the control software.

RoboCup 2012 Humanoid AdultSize League Winner 61

2.3 Mechanical Structure

Unlike the easily fabricated bent sheet metal components on the KidSize
DARwIn-OP, the mechanical structure for CHARLI-2 requires more rigid com-
ponents to sustain the increased dynamic loads associated with full-sized plat-
forms. Thus, the fabrication of a CHARLI frame is a more involved process
than its KidSize counterpart. Several manufacturing processes were considered
for their ease of fabrication, time savings, and achievable tolerances, and CNC
milling was determined to be the most effective.

The frame is primarily cut from aluminum alloy 6061 due to its machinability,
strength-to-weight ratio, and low cost. Figure 2 depicts the procedure used to
fabricate the CHARLI frame: we utilize CNC milling machines to cut the alu-
minum parts and a CAD-CAM program to generate the tool path and G-code
required for CNC control. Once milled, parts are removed from the aluminum
alloy sheets and post processed – cutting remaining features, threading holes,
and removing sharp burrs – to complete fabrication. Using this manufacturing
process, we can achieve intricate geometries with the precision and tolerances
required for high-performance robotics applications.

Fig. 2. Left: Designing a tool path. Center: Tool path simulation. Right: Resulting
milled aluminum alloy sheet.

2.4 Covers

Covers are a critical robot component, as they improve the safety and reliabil-
ity of the system and define the basic appearance of the robot. Covers provide
an essential barrier between the user and the vital internal circuitry to prevent
injury or electronic shorts. We considered several methods of fabricating cov-
ers, each with distinct advantages and disadvantages: injection molding is only
advantageous for mass production due to its high start-up cost, CNC milling a
cover from a large block of stock is extremely time-consuming, and carbon fiber
lay ups have low material costs but can result in weakened mechanical properties
due to uneven resin distribution.

Instead, fabrication of CHARLI’s lightweight covers is accomplished through
the cost-efficient, repeatable vacuum forming process depicted in Figure 3 [1].
Molds are carefully designed to avoid overstretching and webbing of the plastic,
and are then cut on CNC mills similar to the aluminum parts. Next, thin clear

62 C. Knabe, M. Hopkins, and D.W. Hong

plastic covers are shaped over the molds through vacuum forming. Post pro-
cessing of the covers involves trimming excess plastic and painting the interior,
resulting in the appealing glossy finish characteristic to CHARLI’s appearance.

Fig. 3. (Left to right) Cover molds, vacuum formed covers, and post processed covers

3 Mechanical Platform Upgrades

The only major mechanical change to the CHARLI-2 platform from 2011 to 2012
was an upgrade from Robotis’s Dynamixel EX-106+ actuators in the legs to the
new MX-106 actuators. The MX-series boosts performance over the previous
EX-series without a change in actuator cost or dimensions.

A contactless absolute encoder permits 360◦ rotation of the motors, a 40%
increase from the magnetic encoder [2], permitting CHARLI to utilize a larger
range of motion. Furthermore, the new actuators require a lower nominal oper-
ating voltage, allowing the use of lower voltage leg batteries to reduce weight.

Another new feature is the ability to receive bulk feedback data from the
actuators including the actual position, velocity, voltage, and/or current draw.
By monitoring the consumed current for each leg actuator, power consumption
was analyzed for various walking speeds and trajectories [1].

Despite the increased maximum torque, one tradeoff to using the MX-106
actuators is a 35% reduction in maximum speed inherent to the reduced gear
ratio [2], but we did not find this to inhibit walking performance.

4 Codebase Upgrades

One major RoboCup 2012 rule change was a 50% size increase of the AdultSize
field, presenting exciting challenges for AdultSize teams. Team CHARLI was able
to directly port the majority of the cross-platform software architecture employed
by team DARwIn for the KidSize competition [3]. However, CHARLI’s custom
walking controller and dedicated gameplay module required innovative changes
in order to complete the Dribble-and-Kick competition within the effectively
reduced timeframe.

RoboCup 2012 Humanoid AdultSize League Winner 63

4.1 Custom Walking Controller

CHARLI can walk at speeds of up to 0.4 m/s, but this speed was never attained
during matches in 2011 due to the inherent reduction in stability at maximum
walking velocity. Adapting to the larger field size this year required a faster stable
walking gait to minimize the time required to traverse the field. To enhance the
ZMP-based walking controller [1],[4] we conducted extensive testing to further
understand the multifaceted effects of the walking algorithm parameters on the
speed and stability of the gait.

The walking controller is tuned using a number of intuitive parameters such
the step period time, double stance phase ratio, and peak foot height. By reduc-
ing the step period time and double stance phase ratio, we created a faster, more
dynamic walking gait which which was more robust to disturbances. Increasing
the proportional feedback gains for the hip and ankle roll and pitch joints pro-
vided the stability necessary to maintain balance at higher speeds. Secondary
walking controller parameters were then adjusted to fine-tune the walk for vari-
ous surfaces.

The increased stability of the walking gait improved performance of turning
and side-stepping, allowing us to more effectively implement the omnidirectional
path planning included in the cross-robot software architecture and improve the
aiming accuracy during attacks.

4.2 Gameplay Module

We made several upgrades to the high-level gameplay module to futher reduce
the time required to complete each challenge. Ball dribbling was improved by
utilizing the side-step to adjust foot alignment during the approach. We also
implemented a range of kick speeds to provide more accurate ball placement
across the field.

We modified the 2011 goal-scoring algorithm to combine the robot’s angle
of approach to the ball with an adjustable gain to determine where to aim the
kick within the goal. As opposed to consistently kicking towards goal center, this
approach can reduce the number of blocked goals; however, shooting accuracy
was more sensitive to errors in localization prior to the kick, which can result in
missed goals.

Finally, we created a goalie module unprecedented in the AdultSize League.
Conventional AdultSize goalkeepers typically remain stationary at the center
of the goalie box or, range of motion permitting, temporarily squat with arms
extended to block the kick. Inspired by basic human goalie tactics, CHARLI
advances within the goalie box toward the incoming attacker in order to block
off the angle of attack available to the striker.

5 Conclusions

CHARLI was featured at the 2012 World Expo in South Korea, walking on stage
and interacting with the audience 12 hours per day for three months, demon-
strating the durability of the CHARLI-2 platform. Team CHARLI is committed

64 C. Knabe, M. Hopkins, and D.W. Hong

to introducing reliable innovative platforms to the humanoid community, and is
currently developing a new platform utilizing linear series-elastic actuators and
an impedance control walking algoritm capable of safe falling and recovery.

Recognizing the booming success of DARwIn-OP and the unified humanoid
robotics codebase, we also have aspirations of releasing an open platform version
of CHARLI. We believe this is the most effective method of advancing the field of
humanoid robotics and contributes toward the ultimate RoboCup goal of playing
soccer with humans.

Acknowledgements. We acknowledge the Office of Naval Research (ONR)
and the National Science Federation (NSF) for partially supporting this work
through grants ONR 450066 and CNS 0958406.

References

1. Han, J.: Bipedal Walking for a Full-sized Humanoid Robot Utilizing Sinusoidal Feet
Trajectories and Its Energy Consumption. PhD thesis, Virginia Polytechnic Institute
and State University (April 2012)

2. Robotis Dynamixel Actuators, http://www.robotis.com/xe/dynamixel_en/
3. McGill, S.G., Brindza, J., Yi, S.-J., Lee, D.D.: Unified humanoid robotics software

platform. In: The 5th Workshop on Humanoid Soccer Robots (2010)
4. Song, S., Ryoo, Y., Hong, D.: Development of an omni-directional walking engine

for full-sized lightweight humanoid robots. In: IDETC/CIE Conference (2011)

http://www.robotis.com/xe/dynamixel_en/

RoboCup@Work League Winners 2012

Stefan Leibold, Andreas Fregin, Daniel Kaczor, Marina Kollmitz,
Kamal El Menuawy, Eduard Popp, Jens Kotlarski, Johannes Gaa,

and Benjamin Munske

Institute of Mechatronic Systems, Leibniz Universität Hannover,
Appelstr. 11A, 30167 Hanover, Germany
luhbots@imes.uni-hannover.de

http://www.imes.uni-hannover.de

Abstract. One of today’s overall efforts in mobile industrial robotics is the en-
hancement of autonomy and flexibility considering required safety issues. The
new league RoboCup@Work being carried out for the first time in Mexico City,
Mexico 2012, focuses on boosting research activities in this field in order to create
new, innovative ideas and concepts meeting industrial needs.

This paper introduces the new league. Furthermore, it presents the approaches
of the winner team LUHbots, Leibniz Universität Hannover, Hanover, Germany,
at each competition in detail.

1 Introduction

RoboCup@Work is a new league of the RoboCup Federation [23]. It was carried out
for the first time at the RoboCup 2012 in Mexico City, Mexico. The new league is based
on existing RoboCup competitions incorporating proven concepts. However, the appli-
cability and relevance for the industry is high, because deployment of mobile robotics
in industrial scenarios is targeted. Furthermore, the new league aims to foster research
and development into new and not thoroughly covered areas of industrial robotics, e.g.

– perception, using multiple kinds of sensors and introducing new concepts of sen-
sorics to the industrial environment,

– path and motion planning, adapting established methods and developing new
concepts,

– object manipulation,
– planning and scheduling,
– learning, adapting to changing or unknown environments, and
– probalistic modeling.

”Examples for the work-related scenarios targeted by RoboCup@Work include

– loading and/or unloading of containers with/of objects with the same or different
size,

– pickup or delivery of parts from/to structured storages and/or unstructured heaps,
– operation of machines, including pressing buttons, opening/closing doors and draw-

ers, and similar operations with underspecified or unknown kinematics,

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 65–76, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.imes.uni-hannover.de

66 S. Leibold et al.

– flexible planning and dynamic scheduling of production processes involving multi-
ple agents (humans, robots, and machines),

– cooperative assembly of non-trivial objects, with other robots and/or humans,
– cooperative collection of objects over spatially widely distributed areas, and
– cooperative transportation of objects (robots with robots, robots with humans).”

[18]

Thus far, a RoboCup@Work competition consists of three parts: Two stages and the
finals. Each stage contains multiple tests with varying difficulty. The first stage focuses
on basic skills like perception, navigation and manipulation, the second stage consists
of more complex tests merging the skills of the first stage and combining them with new
elements. The finals consist of one or multiple tests of the previous two stages. Each test
is subdivided into single tasks. For each fulfilled task the teams can score a set number
of points. These points can forfeit due to collisions or other unwanted behaviors. In
addition to the tests, teams can score points within the Open Challenge, analogous to
RoboCup@Home. The Open Challenge is a free demonstration which is meant to be
a playground for innovative ideas and solutions that do not fit into the standard tests.
Although the structure of a RoboCup@Work competition is fixed, the contents of the
tests varies between competitions.

The mobile edutainment robot KUKA youBot [19] was the basic platform for the
teams this time. Any other robot platform meeting the prescribed requirements regard-
ing size and functionality, e.g. having at least one manipulator equipped with a gripper,
may be used as well. Since RoboCup@Work is industry orientated, the robots used for
the competitions should meet professional quality standards regarding robustness and
fashioning. However, a certification for industrial use is not required.

Four teams participated in the first RoboCup@Work 2012 in Mexico City. Our team,
the LUHbots, has been founded in 2012 consisting of overall seven diploma, bach-
elor and master students from the Faculty of Mechanical Engineering at the Leibniz
Universität Hannover (Hanover, Germany). The team is promoted by the Institute of
Mechatronic Systems, Hanover, Germany.

The remainder of this paper is structured as follows. Section 2 briefly describes the
robot platform and the team’s modifications of the stock model. Section 3 introduces
the tests performed at RoboCup 2012 in detail and our solutions to the posed problems.
Section 4 gives an outlook about future work and concludes this paper.

2 Hard– and Software

As mentioned before, the mobile edutainment robot youBot was the basic platform
for the teams at RoboCup@Work 2012. By offering the youBot, KUKA has the in-
tention to provide a platform for professional education and development of scalable
software components in mobile robotics research [7]. The robot consists of a holo-
nomic platform and a five degrees of freedom (5-DoF) manipulator. Both components
can be used separately or connected to each other. It is also possible to use two manip-
ulators on a single moving platform, e.g. for cooperative two arm manipulation. Due to
the four Mecanum wheels, the holonomic platform has a high mobility [9]. A Mini-ITX

RoboCup@Work League Winners 2012 67

computer with Intel R© AtomTM CPU integrated in the robot’s base can be used for con-
trolling the actuators. All of them, except for the gripper, provide an EtherCAT R© -
interface, allowing realtime communication [12]. Initially, the robot consists of rotary
encoders and current sensing in each actuator. In order to enable autonomous interaction
with the environment and to solve complex tasks, e.g. part handling in unknown envi-
ronment, the RoboCup@Work rules allow to midify the stock platform with additional
sensors. The team’s youBots holds additional sensors (see Fig. 1), as descibed in the
following. At the front of the youBot a Hokuyo URG-04LX-UG01 laser range finder
is attached having a dimension of only 50mm × 50mm × 70mm [16]. At 10Hz, it
provides a scan range between 20mm and 4000mm and a scan angle of 240◦. The pitch
angle is 0.36◦. Besides others, the laser range finder can be used for mapping, localiza-
tion, navigation, and safety related applications. A camera mounted at the end effector
of the manipulator allows visual servoing. The webcam LifeCam CinemaTM (Microsoft
Corporation, Redmond, USA) has been chosen for this task [22]. With its cylindric
shape it can be easily mounted on the robot. Providing an appropriate resolution, web-
cams are much cheaper in comparison to their industrial counterparts.

For RoboCup@Work all robots need to have an emergency stop system. The youBot
itself is shipped without any emergency system. Hence, in order to fulfill saftey require-
ments, a XBee-based wireless emergency system has been developed to stop the robot
remotely. In addition to that, an emergency stop button at the back of the robot can be
used. Another modification affects the manipulator. Originally it’s rotation area covers
169◦ in both direction assuming that the manipulator points forwards at 0◦. For being
able to load objects on the youBot’s cargo area without any overhead movement the
arm is mounted with a static offset of 30◦. This enables the up and unloading of ob-
jects with only rotational movement along the vertical axis. Thus we are able to reach
any point on the cargo area as we get a new coverage of 199◦ CCW and 139◦ CW. In
conclusion, with this modifications our youBot is technically prepared to cope with the
RoboCup@Work tasks.

ROS in combination with the Linux distribution Ubuntu is used as software platform
by all teams of this year’s RoboCup@Work. Especially ROS as main framework has
significant advantages:

– a huge number (more than 3,000) of open source software packages providing var-
ious functionalities is available,

– OpenCV [8] is integrated,
– software functionality can easily be split up between team members using ROS

nodes,
– developed ROS nodes can be tested independently,
– visualization (rviz) and simulation (gazebo) is already integrated,
– ROS comes with a ready-to-use navigation stack,
– multiple drivers are included such as various webcam drivers and a driver for the

hokuyu laser range finder.

68 S. Leibold et al.

webcam

USB WIFI stick

laser range finder

30◦ rotated mounted
manipulator

wireless
emergency stop

onboard
emergency stop

Fig. 1. Modified KUKA youBot equipped with additional sensors

3 RoboCup@Work Tests

The RoboCup@Work tests are processed in an enclosed area (arena) being confined
by walls (see Fig. 2). Elevated functional areas with a height of approx. 10cm, also
known as service areas e.g. for object manipulation and pick and place assignments,
are located immovably. Augmented Reality markers on the walls and floor can be used
for navigation (see Fig. 2). Additional static and/or dynamic obstacles may be placed
in the arena. Each challenge has to be performed within a specific, fixed time frame.
Prior to the start of each test, task specifications are sent to the acting robot by means
of a referee-box server. All communication with the robot has to be wireless and any
intervention during a run will result in abortion.

In 2012, the first stage was composed of the Basic Navigation Test (BNT), the Basic
Manipulation Test (BMT) and the Open Challenge (OC). Combined or competitive tests
were not performed this year. Each test was conducted with only one robot in the arena
at a time. In the following, the performed tests at RoboCup 2012 are described in detail.

3.1 Basic Navigation Test

Test Description. The purpose of the BNT is to prove the ability of the robot to localize
itself and navigate in a known environment. With the use of a given map, it has to
navigate autonomously to defined positions within the arena. The positions are tagged
by floor markers (see Fig. 2). Points are received for each marker which is completely
covered by the robot in a predefined position and orientation. Furthermore, extra points
are assigned to the fastest team, presumed that every pose was reached successfully.

Configuration. The ROS navigation stack [21] is adopted to appropriately solve the
task. Basically, it makes use of:

– a particle filter based Adaptive Monte Carlo Localization algorithm (amcl) [14]
– path planning algorithms with global and local planning according to the starting,

current and goal pose

RoboCup@Work League Winners 2012 69

Floor Marker
Service Area

4 – 6 metres

2
–

4
m

et
re

s

E
nt

ra
nc

e

Fig. 2. RoboCup@Work arena 2012 [18]

– an environment map
– the (laser–) sensor and odometry data

The general structure of the stack is visualized in Fig. 3.
The navigation stack is configured for a holonomic robot with rectangular base

frame and planar laser scanner input. Furthermore, gmapping [15] is used to create
environment maps.

Limitations of the Utilized Navigation Stack. Although the youBot is a holonomic
robot, the navigation stack only allows motion in directions that are sensed by the robot,
i.e. in the range of the laser scanner in order to prevent collisions. Any backwards or
sidewards movements are constrained. Since the floor markers have to be covered com-
pletely, the navigation to and the localization at the goal position have to be accurate.
Particle spreading and imprecise base-movement result in the need of permanently read-
justing the position close to the goal pose. Here, the constrained directions of motion
additionally complicate the positioning. The most crucial issues are the positions of
floor markers, being close to walls compared to the youBot’s dimensions. For obstacle
avoidance, the navigation stack inflates the outline of the walls to a certain radius (which
ideally represents the longest side of the robot’s base) when calculating the safely ac-
cessible area. With a radius that is sufficient to prevent collisions, the floor markers are
at positions that would demand the robot to trespass the inflated area. This, on the other
hand, results in random recovery behavior that handicaps successful navigation.

70 S. Leibold et al.

map

sensor
data

odometry

start pose

move base

command
velocity

fine
positioning

command
velocity

ROS navigation
stack

local
costmap

global
costmap

global
plan

local plan

amcl

goal
pose

map server

current pose

current pose

Fig. 3. Scheme of ROS navigation stack [21] and developed fine positioning mode

To sum up, the navigation stack is able to guide the robot close to the goal position.
However, it is not possible to reach a desired position with the requested accuracy. In
contrast, the disadvantageous goal positions combined with constrained and imprecise
movement and particle spreading lead to the robots to perform uncoordinated recovery
behavior at the goal positions, not managing to successfully complete the task.

Solutions. The navigation stack is used to guide the robot as close as possible to the re-
quested pose without triggering recovery behaviors. Afterwards, the algorithm switches
to an additionally implemented fine positioning mode (Fig. 3). During these time, the
current pose is compared to the goal pose on basis of the latest amcl pose estimate. The
difference is transformed and the resulting velocity commands are directed to the base
actuators. With a constant sampling frequency, the algorithm is looped until a threshold
is reached that provides sufficiently accurate positioning.

The developed fine positioning eliminates the constrained movement and reduces the
particle spreading thanks to the simple and direct goal approach. The obstacle inflation
is neglected because of the very limited space of motion during the fine positioning.
Furthermore, no moving obstacles were placed in the arena at the basic navigation test
in 2012. Thus, the risk of collisions could be eliminated. As one can see, this approach
is able to overcome all the obstacles hindering a successful task completion.

With this considerably simple modification, the LUHbots were able to reach the
goals quickly and accurately being the only team performing a complete test run.

3.2 Basic Manipulation Test

Test Description. The aim of the BMT is to prove the ability to recognize different
objects and manipulate them. For the RoboCup@Work 2012 the object pool contained
ten different objects of silver or black color, e.g. hexagon head and hex socket screws,
aluminum profile rails, and screw nuts in various sizes.

RoboCup@Work League Winners 2012 71

In preparation for the test, five objects are nominated and placed in random config-
uration in a defined service area. The test starts when the product names of three of
these objects are sent to the youBot by the referee-box. Those have to be grasped and
transported to the neighboring service area.

The task contains three main parts: The recognition of objects, e.g. by means of a
camera, manipulation and transportation of the objects with the robot. The scoring rates
a robust perception and the ability to distinguish different objects individually. Further-
more, it asks for a fast and correct identification of the objects and for safe manipulation.

Configuration. Many approaches of object recognition with 2D cameras are based on
feature detection and matching algorithms, such as SURF or SIFT algorithms [24][20].
Unfortunately, the objects used for the RoboCup@Work do not have enough unique
features for a robust identification using these techniques.Therefore, the proposed ap-
proach takes the object geometry, i.e. its contour for identification.

For the contour extraction within an image captured using a mono–camera the fol-
lowing image processing pipeline is proposed: The color image is undistorted and con-
verted into a gray scale image. In order to extract the contours, the image is first con-
verted into gray scale and thresholded in order to obtain a binary image. Each object
is stored in a database containing specific information concerning the contours, e.g. the
aspect ratio. Several following filters delete undefined contours until only geometries
within a defined tolerance range remain.

In the following a brief description of each step is given. Fig. 4 gives a overview
about the single steps processed by the recognition pipeline. Furthermore, Fig. 5 pro-
vides an example of the presented filter stages.

Processing of a Binary Image. For the processing of a binary image three different
methods are implemented: A threshold converter [4], an adaptive threshold converter [1]
and the canny edge detector [2]. The canny edge detector is the most advanced approach.
Nevertheless, regarding the given task, a simple threshold converter achieves the best
results in terms of robustness and reliability. With the converter it is possible to separate
silver from black objects because pixel that do not fit the target’s color are ignored.

Contour Filtering. The distance between the wrist–fixed camera and object is con-
stant. Thus the contour of an object does not vary and a elimination process is capable
of identifying the target object. Furthermore the identification does not need to be scale
invariant. Nevertheless, since the orientation of the objects is not given, the approach
needs to be rotation invariant. The methods used within the proposed contour filtering
are a contour size filter, an aspect ratio filter, a size filter and a shape matcher.

– contour size filter: To eliminate contours resulting from image interferences a tol-
erance field is implemented.

– aspect ratio filter: The algorithm calculates a minimum rotated bounding rectangle
for each remaining closed contour and returns its aspect ratio.

– size filter: Objects of the same type and similar aspect ratio, but different size are
separated by the absolute size of their bounding box.

– shape matcher: For a robust shape matching, this method calculates the Hu-mo-
ments [3] up to the third magnitude.

72 S. Leibold et al.

color image

gray image

image optimizing

binary image

threshold converter adaptive threshold
converter

canny edge detector

contour extractor

binary image

contour size filter aspect ratio filter

size filter shape matcher

matching contour

Fig. 4. Different steps of the visions class, that is capable of object recognition and identification
using the geometry of an object

original image binary image outer contours

threshold

converter

contour

detector

Fig. 5. Example for image processing, from original image to outer contours

RoboCup@Work League Winners 2012 73

Grasping. In order to grasp a detected object, it is necessary to determine its orien-
tation. The aforementioned algorithm generates this information for the filter stages in
form of a rotated bounding rectangle. Hence, only the longer side of the rectangle needs
to be determined as well as its angle to the horizontal. The centre point of the box serves
as the grasping point. Larger screw nuts represent an exception: The space of the grip-
per jaws is not sufficient to enclose such objects. Therefore, alternative grasping points
need to be defined, i.e. by teaching. Since the orientation of the objects can vary the
robot has to align itself according to the image before grasping.

Computational Effort. The algorithm works in a resource efficient manner. The image
processing is calculated by the on-board computer and, thereby, delivers an average
rate of more than 1Hz. The different filter stages lead to a preselection of suitable
objects. Sequencing the filter stages analogous to the needed computing time decreases
the overall processing time.

Advanced Features. At the RoboCup@Work 2012 all objects ware placed plain on
the service areas. Therefore, a top view on these objects is sufficient. For enabling the
identification of arbitrary placed objects in the future, a front view has already been
developed. Regarding future requirements, further derivatives of the object recognition
class have already been implemented. These extended functions include the removal of
image interferences on the binary image as well as the possibility to perform a more
detailed image analysis not just per frame but for small sequences. A color filter that
constrains a certain colour scale is already included. Furthermore, our vision class con-
tains an implementation of the SIFT algorithm for the identification of textured objects
by means of certain characteristics. All methods are modular and can be implemented
in different stages of the recognition pipeline.

3.3 Open Challenge

During the Open Challenge each team has the opportunity to demonstrate its own stren-
gths and capacities in five minutes giving a presentation simultaneously. The Open
Challenge is evaluated by the following criteria [18]: ”

– Relevance and applicability to industrial tasks,
– reuse for different platforms and robustness to different environments,
– professionalism of robot development and use of simulation technologies,
– novelty and scientific contribution,
– difficulty and success of demonstration.”

Our presentation is divided into two parts that are described in detail in the following
text: The first part presents the ButlerBot Application demonstrating object recognition
and complex manipulation. The second part contains a human machine interaction.

ButlerBot Application. At the end of a long working day, a cool drink appears like
a welcoming refreshment. Treating a robot such an ordinary task is not that simple but
requires highly sophisticated image processing and manipulation capabilities. In the

74 S. Leibold et al.

proposed application, the youBot retrieves a desired brand of drink and serves it au-
tonomously. The recognition of the bottle requires a two staged solution: In the first
step the area is analyzed for objects utilizing a shape detection algorithm. Afterwards, a
SIFT algorithm is applied to the preselected shapes. When the correct brand is identified
by its label, its position is approximated to grasp the bottle. Finally, the contents of the
bottle is poured into a tumbler. This requires a coordinated motion of the manipulator.
Therefore, we use a modified path planning based on fourth order polynomial velocity
profiles for a smooth and jolt free motion [17]. In order to plan a desired cartesian tra-
jectory considering collisions, endpoints and viapoints [11] are defined. In addition, the
path is parameterized in terms of velocity and acceleration. Using the inverse kinemat-
ics, the cartesian points are transformed into jointspace, where the path for each joint
is calculated. This ensures a safe motion along the desired trajectory with minimized
computational load.

Regarding industrial applications, the demonstration shows how hazardous and/or
valuable liquids can be handled autonomously by an autonomous robot. In addition, the
relevance of the developed methods of image processing and path planning is reinforced.

Human Maschine Interaction. The second part of the LUHbot’s Open Challenge
presents an approach for a human machine interaction to control the youBot by hand
gestures. Therefore, both hands are tracked using an ASUS Xtion Pro Live Camera [6].
It’s structed-light 3D sensor uses the aberration of projected light patterns to measure
the depth of the environment. The left hand moves the platform and the right hand the
robotic manipulator. As a middleware, OpenNI [5] is used to detect the skeleton and
return coordinate frames in ROS’ tf [13].

After a calibration process, the positions of the current hand fixed coordinate frames
are compared to their initial pose. For the base, the difference is used to calculate ve-
locity values for the driver, according to the hand movements (Fig. 6). The youBot arm
navigates to teached in positions depending on the performed gesture. A defined final
gesture exits the application.

Fig. 6. Hand gesture control of the robot - two coordinate frames are placed inside the user’s hand

RoboCup@Work League Winners 2012 75

4 Conclusion and Future Work

In this paper, the new league RoboCup@Work, carried out for the first time in Mexico
City, Mexico 2012, was introduced. Furthermore, specific approaches of the RoboCup-
@Work team LUHbots were presented.

For enabling new teams to take part in the RoboCup@Work league, the basic tests
will remain as a part of the competition. New challenges may include more complex
tasks being closer related to real-world problems and interests of the manufacturing in-
dustry. Human machine and machine machine interaction will rise in significance [10].

For fullfilling the upcoming requirements, our algorithms as well as our platform
will have to get more sophisticated, e.g. the gripper will be modified for grasping ob-
jects having greater sizes. The robot is going to be equipped with further sensors for a
more robust object detection on structured surfaces. Therefore we currently implement
3D-sensors for extending the perception capabilities to the third dimension. Especially
in the logistics context, a huge number of different objects w.r.t. their shape, weight
or color, have to be handled. The perception has to be more flexible in order to even
manipulate unknown objects. Regarding the fact that in logistics a huge number of ob-
jects has to be handled, our target is to become more flexible in handling even unknown
objects. An iterative, intelligent grasp algorithm can be considered for this purpose.
To see the artifical intelligence in a bigger context, the robot has to be enabled to re-
act autonomously on unpredictable incidents and learn from it. Within the extension of
the motion planning functionality of the manipulator, a force and torque controlled solu-
tion besides velocity control is in progress in order to implement additional methods for
collision avoidance. This extension can be used to increase the joint rigidy in a certain
direction to keep the endeffector in a defined workspace. Furthermore the force control
can even simplify the uncomfortable process of teaching the path points by conducting
the endeffector manually to the goal poses [11].

References

1. OpenCV class description: adaptiveThreshold. Internet (2010),
http://opencv.willowgarage.com/documentation/cpp/imgproc miscellaneous

image transformations.html?highlight=threshold#adaptiveThreshold
2. OpenCV class description: canny. Internet (2010),

http://opencv.willowgarage.com/documentation/cpp/

imgproc feature detection.html?highlight=canny#Canny
3. OpenCV class description: matchShapes. Internet (2010),

http://opencv.willowgarage.com/documentation/cpp/

imgproc structural analysis and shape descriptors.html#matchShapes
4. OpenCV class description: threshold. Internet (2010),

http://opencv.willowgarage.com/documentation/cpp/imgproc miscellaneous

image transformations.html?highlight=threshold#threshold
5. Introducing OpenNI. Internet (2011), http://openni.org
6. ASUS: Xtion pro. Internet (2012),

http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO Product website
7. Bischoff, R.: KUKA youBot – a milestone for education and research in mobile manipula-

tion. In: IEEE ICRA Workshop – A New Generation of Educational Robots. KUKA Labo-
ratories GmbH, Shanghai International Convention Center, Augsburg, China (2011)

http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html?highlight=threshold#adaptiveThreshold
http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html?highlight=threshold#adaptiveThreshold
http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?highlight=canny#Canny
http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?highlight=canny#Canny
http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#matchShapes
http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#matchShapes
http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html?highlight=threshold#threshold
http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html?highlight=threshold#threshold
http://openni.org
http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO

76 S. Leibold et al.

8. Bradski, G.: Open Source Computer Vision Library. Prentice Hall (2004)
9. Campion, G., Bastin, G., Dandrea-Novel, B.: Structural properties and classification of kine-

matic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and
Automation 12(1), 47–62 (1996), doi:10.1109/70.481750

10. Celik, I.B.: Development of a robotic-arm controller by using hand gesture recognition. In-
novations in Intelligent Systems and Applications, 1–5 (2012)

11. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education
Internation (2004)

12. EtherCAT Technology Group: The Ethernet Fieldbus EtherCAT (2009),
http://www.ethercat.org/en/publications.html

13. Foote, T., Marder-Eppstein, E., Meeussen, W.: tf. Internet (2012),
http://www.ros.org/wiki/tf

14. Gerkey, B.P.: amcl. Internet (2009), http://ros.org/wiki/amcl
15. Grisetti, G., Stachniss, C., Burgard, W.: Improved Techniques for Grid Mapping With

Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics 23(1), 34–46 (2007),
doi:10.1109/TRO.2006.889486

16. Hokuyo Automatic Co. Ltd.: Scanning Laser Range Finder URG-04LX-UG01 (Simple-
URG) - Specifications (2009)

17. Khalil, W., Dombre, E.: Modeling, Identification & Control of Robots, 3. auflage edn. Her-
mes Penton Science (2002)

18. Kraetzschmar, G., Nowak, W., Hochgeschwender, N., Bischoff, R.: RoboCup@Work Rule
Book 2012.4. Internet (2012)

19. KUKA Roboter GmbH: Desktop mobile manipulator for education and research, Product
information (2010), http://youbot-store.com

20. Labbé, M.: Find-object project homepage (2012),
http://code.google.com/p/find-object/

21. Marder-Eppstein, E.: Navigation. Internet (2007), http://ros.org/wiki/navigation
22. Microsoft Corporation: Microsoft R© LifeCam CinemaTM . Redmond, USA. Technical data

sheet (2011)
23. The RoboCup Federation: Robocup website. Internet (2011), http://www.robocup.org/
24. Van de Molengraft, M.: Roboearth project homepage. Internet (2012),

http://www.roboearth.org/

http://www.ethercat.org/en/publications.html
http://www.ros.org/wiki/tf
http://ros.org/wiki/amcl
http://youbot-store.com
http://code.google.com/p/find-object/
http://ros.org/wiki/navigation
http://www.robocup.org/
http://www.roboearth.org/

UT Austin Villa: RoboCup 2012 3D Simulation

League Champion

Patrick MacAlpine, Nick Collins, Adrian Lopez-Mobilia, and Peter Stone

Department of Computer Science, The University of Texas at Austin
{patmac,no1uno,alomo01,pstone}@cs.utexas.edu

Abstract. The UT Austin Villa team, from the University of Texas at
Austin, won the RoboCup 3D Simulation League in 2012 having also won
the competition the previous year. This paper describes the changes and
improvements made to the team between 2011 and 2012 that allowed it
to repeat as champions.

1 Introduction

UT Austin Villa won last year’s 2011 RoboCup 3D simulation competition in
convincing fashion by winning all 24 games it played. During the course of the
competition the team scored 136 goals and conceded none. This was a vast im-
provement over the team’s previous performance in 2010 when the team finished
just outside the top eight. However, despite further improvements for the 2012
competition, the results were much closer this year due to the vast improvement
of other teams in the competition.

While many of the components of the 2011 UT Austin Villa agent were reused
for the 2012 competition, including that of an optimized omnidirectional walk [1]
which was the crucial component in winning the 2011 competition, a number of
upgrades were made to the agent to maintain its performance relative to the
improvement other teams made between the 2011 and 2012 competitions. Ad-
ditionally, changes in the rules and format of the 2012 competition, particularly
increases in field size and the number of players on a team, necessitated other
modifications to the agent be made. This paper is not an attempt at a complete
description of the 2012 UT Austin Villa agent, the foundation of which is the
same as the 2011 agent fully described in a team technical report [2], but instead
focuses on changes made in 2012 that helped the team repeat as champions.

The remainder of the paper is organized as follows. In Section 2 a description
of the 3D simulation domain is given highlighting differences from the previous
year’s competition. Section 3 discusses how a hand-coded get up routine was
optimized to make it faster. Section 4 describes an updated kicking system.
Changes to a formation and positioning system needed for scaling to 11 agents
on a team are detailed in Section 5. Results of the tournament and analysis of
improvements to the agent are given in Section 6, and Section 7 concludes.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 77–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

78 P. MacAlpine et al.

2 Domain Description

The RoboCup 3D simulation environment is based on SimSpark,1 a generic phys-
ical multiagent system simulator. SimSpark uses the Open Dynamics Engine2

(ODE) library for its realistic simulation of rigid body dynamics with collision
detection and friction. ODE also provides support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

The robot agents in the simulation are homogeneous and are modeled after
the Aldebaran Nao robot,3 which has a height of about 57 cm, and a mass of
4.5 kg. The agents interact with the simulator by sending torque commands and
receiving perceptual information. Each robot has 22 degrees of freedom: six in
each leg, four in each arm, and two in the neck. In order to monitor and control
its hinge joints, an agent is equipped with joint perceptors and effectors. Joint
perceptors provide the agent with noise-free angular measurements every simu-
lation cycle (20ms), while joint effectors allow the agent to specify the torque
and direction in which to move a joint. Although there is no intentional noise
in actuation, there is slight actuation noise that results from approximations in
the physics engine and the need to constrain computations to be performed in
real-time. Visual information about the environment is given to an agent every
third simulation cycle (60ms) through noisy measurements of the distance and
angle to objects within a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well as force resistance
perceptors on the sole of each foot. Additionally, agents can communicate with
each other every other simulation cycle (40ms) by sending 20 byte messages.

For the 2012 competition games consisted of 11 versus 11 agents (up from 9
versus 9 agents in 2011). The field size was also increased to be 20 meters in
width by 30 meters in length (the 2011 competition was played on a field 14
meters in width and 21 meters in length).

3 Optimization of the Get Up Routine

A vital skill for an agent in the 3D simulation competition is the ability to stand
up from a prone position after having fallen over. In order to get up from a
prone position, the robot must choose certain joint angles at certain times to
control the movement of its body. The UT Austin Villa team devised a get up
routine which iterates through a series of poses, transitioning from one pose
to another after a pre-specified period of time. The poses are determined by
a series of specified joint angles. Thus, the get up routine can be numerically
parameterized by a sequence of time intervals and a set of joint angles. For the
2011 competition these values were chosen and hand-tuned manually.

How quickly a robot is able to recover from a fall is important so that it can
rejoin play as fast as possible. For the 2012 competition parameters for the get

1 http://simspark.sourceforge.net/
2 http://www.ode.org/
3 http://www.aldebaran-robotics.com/eng/

http://simspark.sourceforge.net/
http://www.ode.org/
http://www.aldebaran-robotics.com/eng/

3D Simulation Championship Paper 79

up routine were optimized through machine learning to decrease the time needed
to stand up. The following subsections explain how this was done.

3.1 Fall Detection and Get Up Motion

The robot detects that it is not upright when its accelerometers indicate that
the force of gravity is pulling in a direction not parallel to its torso. When this
happens, the robot spreads its arms outward to its side at 90 degree angles. This
way, when the robot lands it will fall on either its back or its front. After extend-
ing its arms to make sure it falls on its front or its back, the robot pauses for 0.7
seconds before determining which way it has fallen. The agent then proceeds to
enter one of two get up routines depending on whether it is lying on its back or
front. The get up routine used by a robot lying on its back iterates through the
series of poses shown in Figure 1.

(a) (b) (c) (d) (e)

Fig. 1. Routine for getting up after falling backwards. The robot begins lying on its
back (a) and then propels itself up with its arms (b). Next the robot throws its arms
forward and contracts its legs to get its center of mass in front of its feet (c). Using
momentum from the initial push the robot manages to roll into a squatting position (d)
after which the robot can get up by extending its knees and hips (e).

3.2 Optimization Process

Parameters for the robot’s get up were optimized using the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) algorithm [3]. CMA-ES was chosen
after previously finding it to be the most successful algorithm in optimizing
parameters for similar robot skills such as walking forward and turning [4]. CMA-
ES is a policy search algorithm that successively generates and evaluates sets
of candidates sampled from a multivariate Gaussian distribution. Once CMA-
ES generates a group of candidates, each candidate is evaluated with respect
to a fitness measure. When all the candidates in the group are evaluated, the
mean of the multivariate Gaussian distribution is recalculated as a weighted
average of the candidates with the highest fitnesses. The covariance matrix of the
distribution is also updated to bias the generation of the next set of candidates
toward directions of previously successful search steps.

80 P. MacAlpine et al.

In order to optimize the parameters of the robot’s get up routine, the robot
is forced to fall and then the time it takes for the robot to get up is measured.
A robot that is capable of standing can easily be given a continuous, meaningful
fitness based on how long it takes to get up and its stability once standing (as
measured by its likelihood of falling back down). Each evaluation begins with
the robot being set into an upright, neutral stance by the simulator. The robot
is given 1 second to make sure it is stable, and then it is forced to fall backwards.
The robot uses accelerometer readings to determine whether it is in an upright
position. If it detects that it is not, it will set an internal hasFallen flag and then
begin its get up routine. Once the get up routine completes, the agent checks to
see if it is upright, and if it is, it clears the hasFallen flag. Otherwise it continues
trying its get up routine.

During the evaluation, the robot records how much time the hasFallen flag
spends being true, and its fitness for the run is the negation of that. So if it falls
once, gets up after 2.5 seconds, and stays up, its fitness is -2.5. After forcing the
robot to fall, the evaluation runs for 4 seconds and then ends. If the robot gets
up in 2 seconds, but is unstable and falls back down after being up for a second,
then its fitness will be -3, since the total time it spent falling or getting up was 3
seconds. Punishing subsequent falls serves to ensure the get up routine is stable.

Additionally, in order to make sure it is stable enough to walk, the robot is
asked to perform a movement action after getting up. A complete evaluation
trial consists of seven falls and subsequent get ups where after each get up the
robot does one of the following: walks forwards, walks backwards, walks left,
walks right, turns left, turns right, or stands still. The average across all seven
evaluations gives the fitness score for a trial.

3.3 Optimization Results

The optimization process discussed in Section 3.2 was performed on the routines
for both the robot getting up from its front and back. Each optimization was
run across 200 generations of CMA-ES, using a population size of 150, and was
seeded with the original get up sequence hand-tuned parameter values (consisting
of joint angle positions and time intervals between poses). Information about
the number of parameters optimized, as well as the improvement in speed after
optimization are shown in Table 1. Both optimizations were able to reduce the
time required to get up to almost a third of their original hand-tuned times.

Table 1. Get up optimizations with the number of parameters optimized and the time
in seconds taken to get up before and after optimization

Optimization Parameters Hand-tuned Time (s) Optimized Time (s)

Get Up from Front 9 2.62 0.96
Get Up from Back 26 2.20 0.84

3D Simulation Championship Paper 81

4 Kicking

For the 2012 competition UT Austin Villa switched from a kicking system using
directional inverse kinematics based kicks [5] to a hybrid system that has both
fixed pose keyframe (better for distance) and inverse kinematics (more robust)
based kicks. The parameters for all kicks were optimized using the CMA-ES
algorithm described in Section 3.2. The following subsections detail the design
and optimization of the kicking system.

4.1 Fixed Pose Keyframe Kicks

Fixed pose keyframe kicks consist of a sequence of body positions, defined by
different joint angle positions, which the agent proceeds through in order to
kick the ball. Three such kicks were used in the 2012 competition: KickLong,
KickMedium, and KickQuick. For each of these the agent first places its support
(non-kicking) leg near the ball and shift its weight to the support leg. Next it
lifts its kicking leg, and pulls it backward, before finally swinging its kicking leg
forward to strike the ball.

KickLong kicks the ball the farthest of the three fixed pose keyframe kicks and
is only used on kickoffs. This kick’s primary purpose is to push the ball as far
as possible into the opponent’s end of the field on a kickoff. KickLong also kicks
the ball high in the air such that opposing agents can not block the kick as the
ball travels over their heads. The extreme motion used by the agent to propel
the ball causes the agent to fall flat on its back at the end of the kick.

KickMedium is a kick that also gets a lot of distance, but allows for the agent
to remain stable (not fall over) at the end of the kick. KickMedium is used for
free kicks as well as during regular play. The kick takes over two seconds to get
off thus requiring opponents be at least 2.5 meters away before starting the kick.

Although it doesn’t get as much distance as KickMedium, KickQuick is much
faster to get off as it takes less than a second to make contact with the ball.
KickQuick is designed for quickly kicking the ball when opponents are closing
in, and on average gets enough height on the ball to chip it over approaching
opponents’ heads. KickQuick only requires that the closest opponent be at least
1.0 meters away before starting the kick. Like KickLong, KickQuick destabilizes
the agent and causes it to fall over at the conclusion of the kick.

More information about the fixed pose keyframe kicks are found in Table 2.

4.2 Inverse Kinematics Based Kicks

A weakness of the fixed pose keyframe kicks in Section 4.1 is that they require
very precise positioning relative to the ball (discussed in Section 4.3) in order
for them to be executed. An alternative to this is to define a path relative to
the ball that the robot’s foot should follow during a kick, and then use inverse
kinematics to move the foot along this path. The main advantage gained through
such an approach is that a kick is able to adapt to the position of the ball and
thus does not require as precise positioning by an agent to line up the kick.

82 P. MacAlpine et al.

As described in [5], the UT Austin Villa team constructs an inverse kinematics
based kick (KickIK) by specifying waypoints relative to the ball for the foot to
travel through, and then interpolates between these points using a Cubic Hermite
Spline curve to determine the trajectory of the foot’s path during a kick. Figure 2
shows the relative waypoints for a forward kick. Inverse kinematics for the agent
are computed using OpenRAVE’s [6] kinematics solver.

Fig. 2. Waypoints relative to the ball that define the path of the foot for an inverse
kinematics based kick. (1) Lift leg to center behind ball. (2) Pull leg back from ball.
(3) Bring leg back to position of ball. (4) Kick through ball.

4.3 Kick Positioning

Outside of the kicking motion itself, how a robot positions itself in proximity
to the ball before executing a kick is probably the most critical component to
successfully striking the ball. When lining up to kick the ball, the UT Austin Villa
agent first approaches a target position behind the ball to kick from. The agent is
not allowed to proceed with the kick until it is within certain distance thresholds
of this target position both along the vectors perpendicular and parallel to the
ball from the target position. Before executing a kick the agent must also be
within a set angular threshold of facing toward the ball.

Using distance and angle thresholds when positioning to kick is a change from
UT Austin Villa’s 2011 inverse kinematics based kicking system’s positioning [5].
The 2011 agent’s kick was triggered as soon as inverse kinematics calculations
determined the robot’s foot could reach all necessary points along a curve to
kick through the ball. After the 2011 competition it was found that using inverse
kinematics calculations as a trigger for when to kick is problematic for a moving
robot. This is due to the robot’s momentum causing its body’s position and
orientation relative to the ball to change right after deciding to kick. These
changes in position and orientation, although often quite small, are enough to
prevent the robot’s foot from being able to reach the ball and force the robot to
reposition itself after aborting the kick.

4.4 Optimization Process

The CMA-ES algorithm discussed in Section 3.2 is used to optimize joint angles
for the fixed pose keyframe kicks mentioned in Section 4.1, as well as the X,

3D Simulation Championship Paper 83

Y, and Z positions of the waypoints defining a curve for an inverse kinematics
based kick detailed in Section 4.2. Roll, pitch, and yaw positions of the foot are
also optimized for each of the waypoints of an inverse kinematics based kick.
Additionally, for all kicks, the positioning parameters discussed in Section 4.3
of a target point behind the ball, and distance and angle thresholds for being in
position to kick, are learned.

When optimizing kick parameters the ball is placed at the center of the field
and the agent, placed 1.5 meters behind the ball (or directly behind the ball in
the case of KickLong as it is only used for kickoffs), is asked to walk forward and
kick the ball toward the center of the opponent’s goal. An agent is given a reward
for how far it is able to kick the ball in the forwards direction (distForward). To
promote accuracy a slight penalty is also given for the distance the ball is kicked
to either side (distSideways). Additionally, as it is important to quickly position
behind the ball so as to kick it before an opponent approaches, a penalty is
given for the amount of time it takes to position for a kick (timePositioning).
The following equation gives the reward an agent receives when performing a
kick (where distances are in meters and time is in seconds):

reward = distForward − .75 ∗ distSideways− timePositioning/8.0

If, while positioning to kick, the agent should run into the ball causing the ball
to travel greater than .3 meters from its starting spot, a reward of -1 is given for
the kick. This is done to ensure the agent doesn’t cheat during optimizations by
dribbling the ball forward before kicking to gain extra distance. Also the agent
is given a reward of -1 when kicking if it falls over while attempting kicks for
which it is expected to be stable after performing (KickMedium and KickIK).

All kick optimizations were done across 200 generations of CMA-ES using a
population size of 150. Ten kicks were performed for each candidate set of kick
parameters being evaluated. Candidates were then assigned a fitness value equal
to the average reward of these kicks.

4.5 Optimization Results

Results of optimizing UT Austin Villa’s different kicks are shown in Table 2.
KickLong was seeded with the 2011 team’s kick used for kickoffs. The 2011 kick
was optimized in a similar fashion to the 2012 kicks, however for 2012 six ad-
ditional parameters were learned for adjusting the joint angles of the support
(non-kicking) leg. Adding these parameters to the optimization, which increased
the number of parameters optimized from 18 to 24, provided a huge performance
boost as the kick distance more than doubled from the 2011 kick seed’s distance
of 5.3 meters. Allowing the agent to fall over after kicking, as opposed to requir-
ing it to be stable as was done in 2011, resulted in a further gain in performance
of about a meter as it allowed the agent to throw its body at the ball.

KickMedium and KickQuick were designed from the same seed as KickLong
except some of the frames of motion for them were sped up or removed in
order to make the kicks faster to get off. As the speed of the seed kick for

84 P. MacAlpine et al.

KickQuick had to be greatly modified to get it to kick over twice as fast as the
original 2011 kick seed, all possible joint angles on the kick were opened up
for optimization resulting in more than double the amount of parameters being
optimized compared to that of KickLong and KickMedium. Both KickMedium and
KickQuick’s kick distances were optimized to be well over that of the 2011 kick.

While KickIK has the shortest distance of all the kicks, it is the fastest to get
off and, due to its use of inverse kinematics, is generally more robust than the
fixed pose keyframe kicks. Additionally, as inverse kinematics allow the kick to
adjust to different ball positions, the optimized thresholds for positioning behind
the ball can be greater than that of the fixed pose keyframe kicks allowing for
faster kick positioning. The time required to position for KickIK is noticeably
faster than the time taken to position using the 2011 inverse kinematics based
kicks. This is due to the 2011 kicks using inverse kinematics calculations instead
of distance and angular thresholds as a trigger for when to kick.

It is worth mentioning that while many of the kicks get a lot of height, which is
great for kicking over opponents, height was never something that was optimized
for. Optimizing for distance results in the ball being kicked in the air as it is
able to travel farther when airborne with no friction from the ground slowing it
down.

Table 2. Kick optimizations with the number of parameters optimized, the maximum
height and distances recorded from ten kicks (with the median value shown in paren-
theses), the time taken to execute each, and also whether or not the agent is stable
and doesn’t fall over after executing the kick

Kick Parameters Distance (m) Height (m) Time (s) Stable

KickLong 24 12.20 (11.86) 1.57 (1.36) 2.44 No
KickMedium 24 10.80 (10.46) 1.30 (0.59) 2.12 Yes
KickQuick 51 8.79 (7.30) 1.11 (0.99) 0.92 No
KickIK 42 6.05 (4.82) 0.25 (0.06) 0.25 Yes

5 Dynamic Positioning

With the increase in team size from 9 to 11 agents for the 2012 competition two
new role positions were added to UT Austin Villa’s base formation: stopper and
mid roles. Both role positions, shown in Figure 3(a), stay on a line running from
the center of the goal to the ball. The stopper role stays 1/3 of the way between
the top of the goal box and the ball while the mid role stands 2/3 of the way be-
tween these two points. UT Austin Villa also created a more offensive formation
designed to take advantage of its new longer kicks described in Section 4. This
formation, shown in Figure 3(b), replaces the stopper role with a forwardCenter
role positioned 5 meters beyond the ball along a line from the ball to the center
of the opponent’s goal. The mid role is pushed back to be halfway between the
top of the goal box and the ball. A key feature of this formation is the notion of
kick anticipation where an agent attempting to kick the ball alerts its teammates
of the target position the ball is being kicked to. When this target position is

3D Simulation Championship Paper 85

(a) Base Formation (b) Kicking Formation

Fig. 3. Formations used by UT Austin Villa. Added positions for the 2012 competition
are shown in red.

broadcasted both forwardLeft and forwardRight role positions move to the area
that the ball is being kicked to in anticipation of the kick.

The UT Austin Villa team used a dynamic role and formation positioning
system described in [7] to position its players. This system, at its base, assigns
agents to the precomputed role positions on the field so as to avoid collisions and
minimize the longest distance any agent has to travel. The positioning system
is similar to the one used for the 2011 competition, but was upgraded with en-
hancements listed in [7]: using path costs and assigning the supporter (previously
called stopper in [7]) role to the nearest agent.

When considering assignments of agents to positions there are n! possible
combinations. Using dynamic programming the positioning system only needs
to evaluate n2n−1 assignments of agents to positions in order to compute an
optimal assignment. With the increase from 9 to 11 agents for the 2012 com-
petition scalability becomes a concern, however, because all computations must
be performed within 20ms (the cycle time of the server). As the goalie posi-
tions itself only n = 8 or 1024 combinations were required to be computed in
2011, but this jumped to n = 10 or 5120 combinations to process for the 2012
competition. Despite only needing 3.3ms to calculate positioning in 2011, the
5X increase in positioning computations for 2012 took up most of an agent’s
allotted processing time, and left it with little time for other components to do
necessary computations.

In order to keep the positioning system from taking too long, a self-monitoring
mechanism was put in place where the agent records the amount of time taken
to compute positioning role assignments as well as the number n of agents it
has assigned to role positions. Should the positioning system take longer than
MAX TIME (set to 10ms) to run, the agent reduces the maximum num-
ber of agents (maxN) the positioning system is allowed to evaluate by setting
maxN = maxN − 1. Alternatively if the positioning system takes less than
MAX TIME/2 to complete then the number of allowed agents to evaluate for
positioning is increased by setting maxN = maxN + 1. When maxN is less
than the number of n agents that need to be positioned then n−maxN agents
furthest from the ball are greedily assigned to their nearest role positions. The

86 P. MacAlpine et al.

intuition in greedily assigning agents furthest from the ball to possibly subopti-
mal role position assignments is that they are less critical to game performance
compared to agents closer to the ball. By monitoring the running time of the
positioning system, and reducing how many computations it does if it is taking
too long, the system can scale to different numbers of agents as well as adapt on
the fly to computers with different processors and fluctuating CPU loads.

6 Tournament Results and Analysis

In winning the 2012 RoboCup competition UT Austin Villa finished with a
record of 12 wins, 2 losses, and 3 ties.4 During the competition the team scored
39 goals and only conceded 4. This was not nearly as dominant of a performance
as was seen in the 2011 competition when the team won all 24 games it played
while scoring 136 goals and conceding none. Several reasons can be attributed
to this dip in performance. There was a general decrease in goals scored during
the tournament due to the larger field and increase in the number of agents
on a team. Additionally early in the tournament there were network problems
causing instability that resulted in many teams’ agents to lose their balance and
have trouble walking. This was very noticeable during the first round when UT
Austin Villa suffered both of its losses. UT Austin Villa eventually beat both the
teams it lost to (magmaOffenburg and RoboCanes) during the semifinals and
finals rounds. A large amount of credit must also be given to the other teams in
the tournament as they exhibited a substantial improvement in overall play.

As reported in [5], the 2011 UT Austin Villa team was able to beat all teams
in the 2011 competition by at least 1.45 goals on average, and when playing
100 games against every team from the 2011 tournament, UT Austin Villa won
every game but 21 of them which were ties (no losses). As seen in Table 3,
the 2012 UT Austin Villa team was only able to beat the 2012 2nd place team
(RoboCanes) by an average of 0.88 goals and tied them 32 times across 100
games. Although the data in Table 3 shows that UT Austin Villa winning the
2012 RoboCup competition was statistically significant, and that the team didn’t
lose any games or concede any goals against the other top teams, there was a
decent chance of the tournament being decided by penalty kicks due to UT
Austin Villa tieing the 2nd place team almost 1/3 of the time. It is thus not
surprising that the championship game wasn’t decided until the second half of
extra time (which UT Austin Villa won 2-0).

It is worth mentioning that the optimized get up mentioned in Section 3 for
when an agent is lying on its front (a situation that occurs much less frequently
than that of an agent lying on its back) was never used in the competition as
the tournament’s early network problems, and resulting agent instability, were
causing the get up routine to fail. Also it was noticed that kicking was often

4 Full tournament results, as well as a highlights video of the competition, can be
found at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

AustinVilla3DSimulationFiles/2012/html/results_3d/

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2012/html/results_3d/

3D Simulation Championship Paper 87

Table 3. UT Austin Villa’s released binary’s performance when playing 100 games
against released binaries of the 2nd, 3rd, and 4th places teams in the tournament:
RoboCanes, Bold Hearts, and magmaOffenburg respectively. Values in parentheses are
the standard error.

Opponent Average Goal Difference Record (W-L-T) Goals (For-Against)

RoboCanes 0.88 (0.08) 68-0-32 88-0
Bold Hearts 1.64 (0.09) 89-0-11 164-0

magmaOffenburg 1.87 (0.10) 94-0-6 187-0

just turning the ball over to the other team, and so in the later rounds of the
tournament the kicking formation was abandoned in favor of the base formation
(Figure 3), and the agent only kicked if it thought the kick would score a goal.

In order to quantify gains in performance due to improvements in the agent
for the 2012 competition, versions of the UT Austin Villa agent missing different
improvements were created and then played against the other teams that made
the semifinals. This includes an agent that does not use the optimized get ups
in Section 3, an agent without the improved kickoff using KickLong, as well as
one that does use KickLong on kickoffs but otherwise just dribbles (shown to
be the best performing agent for 2011 in [5]) instead of using any of the other
optimized kicks discussed in Section 4, and an agent using the base formation
(Figure 3(a)) and positioning system scaled to support 11 agents, but without
the improvements to positioning mentioned in Section 5. Additionally an agent
missing all improvements was evaluated, as well as a version of the agent using
the kicking formation (Figure 3(b)) and kick anticipation. Game performance of
different agent variants can be seen in Table 4.

Table 4. Average goal difference when playing 100 games against the released binaries
of the other teams in the semifinals: RoboCanes, Bold Hearts, and magmaOffenburg

Agent Average Goal Difference

2012 UT Austin Villa Released Binary 1.46
No Improved Kickoff 1.37

No Kicking 1.36
No Improved Positioning 1.19
No Improved Get Up .95

No Improvements (2011 Base) .92
Kicking Formation with Kick Anticipation .82

In Table 4 we see that all improvements to the agent were beneficial as missing
any single one of them hurt performance and resulted in a lower average goal
difference. The most important improvement was that of the optimized get up
which resulted in approximately a half a goal increase in performance against the
other top teams at the competition. Without any of the improvements for 2012
the team’s average goal difference dropped by over half a goal. This includes a
0.59 average goal difference against the 2nd place team (RoboCanes) resulting
in a nearly even split between the number of games won and tied against this
opponent. It is fortunate that the kicking formation with kick anticipation was
abandoned midway through the tournament as it gave the worst performance.

88 P. MacAlpine et al.

7 Conclusion

UT Austin Villa, bolstered by improvements to its get up routine, kicking, and
positioning systems, repeated as 3D simulation league champions at the 2012
RoboCup competition. Although the team was still largely able to lean on drib-
bling using its stable and fast omnidirectional walk [1] to win the competition,
the focus of the team for the 2013 competition will be to continue to improve
on its kicking system and integrate passing into the team’s strategy. It became
clear during the championship match,5 during which the team was unable to
score until the second period of extra time — capped off by a last second goal
on a kick from outside the goal box, that kicking will need to be a vital part of
the team’s strategy if UT Austin Villa is to win a third championship in a row.

Acknowledgments. This work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. LARG research is supported in part by
grants from the National Science Foundation (IIS-0917122), ONR (N00014-09-1-
0658), and the Federal Highway Administration (DTFH61-07-H-00030). Patrick
MacAlpine is supported by a NDSEG fellowship.

References

1. MacAlpine, P., Barrett, S., Urieli, D., Vu, V., Stone, P.: Design and optimization of
an omnidirectional humanoid walk: A winning approach at the RoboCup 2011 3D
simulation competition. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence (AAAI 2012) (2012)

2. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011 3D Simulation
Team report. Technical Report AI11-10, The Univ. of Texas at Austin, Dept. of
Computer Science, AI Laboratory (2011)

3. Hansen, N.: The CMA Evolution Strategy: A Tutorial (2009),
http://www.lri.fr/~hansen/cmatutorial.pdf

4. Urieli, D., MacAlpine, P., Kalyanakrishnan, S., Bentor, Y., Stone, P.: On optimizing
interdependent skills: A case study in simulated 3d humanoid robot soccer. In: Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011)
(2011)

5. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011: A champion agent
in the RoboCup 3D soccer simulation competition. In: Proc. of 11th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2012) (2012)

6. Diankov, R., Kuffner, J.: Openrave: A planning architecture for autonomous
robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute, Pittsburgh, PA
(2008)

7. MacAlpine, P., Barrera, F., Stone, P.: Positioning to win: A dynamic role assignment
and formation positioning system. In: Stone, P. (ed.) RoboCup 2012. LNCS (LNAI),
vol. 7500, pp. 190–201. Springer, Heidelberg (2013)

5 Videos of the championship match, as well as more information about the UT Austin
Villa team, can be found on the UT Austin Villa team’s homepage:
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

http://www.lri.fr/~hansen/cmatutorial.pdf
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

RoboCup 2012 Best Humanoid Award Winner

NimbRo TeenSize

Marcell Missura, Cedrick Münstermann, Malte Mauelshagen,
Michael Schreiber, and Sven Behnke

Autonomous Intelligent Systems, Computer Science, Univ. of Bonn, Germany
{missura,behnke}@cs.uni-bonn.de, schreiber@ais.uni-bonn.de

http://ais.uni-bonn.de

Abstract. Over the past few years, soccer-playing humanoid robots ad-
vanced significantly. Elementary skills, such as bipedal walking, visual
perception, and collision avoidance have matured enough to allow for
dynamic and exciting games. In this paper, team NimbRo TeenSize, the
winner of the RoboCup 2012 Best Humanoid Award, presents its robotic
platform and its approaches to perception and behavior control.

1 Introduction

In the RoboCup Humanoid League, mostly self-constructed robots with a human-
like body plan compete with each other. The league comprises three size classes:
KidSize (<60 cm), TeenSize (90–120cm), and AdultSize (>130 cm). The Teen-
Size robots started to play 2 vs. 2 soccer games in 2010 and moved to a larger
soccer field of 9×6m in the year 2011. This year, a 3 vs. 3 demonstration game
showed that –in principle– TeenSize robots are ready to play soccer the way it is
done in the KidSize class, given enough participating teams and robots. In addi-
tion to the soccer games, the robots face technical challenges, such as throwing
the ball into the field from a side line.

Fig. 1. Left: NimbRo robots Dynaped, Copedo, and Bodo playing in the 3 vs. 3 demo
game. Right: Copedo performing the ThrowIn Challenge.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 89–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://ais.uni-bonn.de

90 M. Missura et al.

Team NimbRo has a long and successful history in RoboCup with overall
ten wins in international Humanoid League competitions since 2005. In 2012,
our team won the TeenSize competition for the fourth time in a row and com-
pleted the Technical Challenge with the maximum possible score. We have been
awarded the Louis Vuitton Best Humanoid Cup for the second time.

2 Mechatronic Design of NimbRo TeenSize Robots

The mechatronic design of our robots, which are shown in Fig.1, is focused on
robustness, weight reduction, and simplicity.

Copedo: Our main innovation for the RoboCup competition this year was the
construction of a new TeenSize robot that we named “Copedo” (Figure 1).
Copedo is 114 cm tall and weighs 8 kg. Its body plan is derived from its suc-
cessor Dynaped, including the 5-DOF legs with parallel kinematics (Fig. 2(a))
and the spring-loaded passive joint between the hip and the spine (Fig. 2(b)).
Copedo, however, is equipped with an additional protective joint in the neck to
protect the head. Our new generation of protective joints is now able to snap
back into position automatically after being displaced by mechanical stress, such
that the robot remains operational after falling to the ground and does not need
to be set manually. Copedo is constructed from milled carbon fiber parts that are
assembled to rectangular shaped legs and flat arms. The torso is constructed en-
tirely from aluminum and consists of a cylindric tube that contains the hip-spine
spring and a rectangular cage that holds the information processing devices.

Most importantly, Copedo is equipped with 3-DOF arms that include elbow
joints to enable the robot to get up from the ground and to pick up the ball
from the floor and to throw it (Figure 1, right). Including a neck joint to pan the
head, Copedo has 17 actuated DOF. The hip roll, hip pitch, and knee DOF are
actuated by master-slave pairs of Dynamixel EX-106+ servo motors. All other
DOF are driven by single motors including EX-106+ motors for ankle roll, EX-
106 motors for hip yaw and shoulder pitch, RX-64 motors for shoulder roll and
elbow, and an RX-28 motor for the neck yaw joint.

(a) (b)

Fig. 2. Mechanical construction of Copedo: (a) leg with parallel kinematics; (b) spring-
loaded overload protection in the hip and the neck joint

RoboCup 2012 Best Humanoid Award Winner NimbRo TeenSize 91

3 Perception

For visual perception of the game situation, we process 752×480 YUV images
from a IDS uEye camera with fish eye lens. We detect the ball, goal-posts, poles,
penalty markers, field lines, corners, T-junctions, X-crossings, obstacles, team
mates, and opponents utilizing color, size and shape information. We estimate
distance and angle to each detected object by removing radial lens distortion
and by inverting the projective mapping from field to image plane. To account
for camera pose changes during walking, we learned a direct mapping from the
IMU readings to offsets in the image.

For proprioception, we use the joint angle feedback of the servos and apply
it to the kinematic robot model using forward kinematics. Before extracting the
location and the velocity of the center of mass, we rotate the kinematic model
around the current support foot such that the attitude of the trunk matches the
angle we measured with the IMU. Temperatures and voltages are also monitored
for notification of overheating or low batteries.

For localization, we track a three-dimensional robot pose (x, y, θ) on the field
using a particle filter [1]. The particles are updated using a linear motion model.
Its parameters are learned from motion capture data [2]. The weights of the par-
ticles are updated according to a probabilistic model of landmark observations
(distance and angle) that accounts for measurement noise. To handle unknown
data association of ambiguous landmarks, we sample the data association on a
per-particle basis. The association of field line corner and T-junction observa-
tions is simplified using the orientation of these landmarks. Further details can
be found in [3] and [4].

Learning Colors of Unknown Balls: This year, for the first time, the robots
had to learn to recognize an unknown ball in the Obstacle Avoidance and Drib-
bling Challenge. To this end, we defined a region of interest in the field-of-view of
the robot, which contained only the field color (green carpet) and the unknown
ball (Fig. 3(a)). In this area, we segmented all colors different from the field color,
white, and black (Fig. 3(b)). The remaining color histograms were thresholded
with a minimum color count and smoothed. We fitted a Gaussian mixture model
to the colors of the unknown ball and used its parameters to initialize the ball
color in our color table (Fig. 3(c)). Dynaped was the only TeenSize robot to
complete this challenge (Fig. 3(d)).

(a) (b) (c) (d)

Fig. 3. Ball learning: (a) region of interest with unknown ball; (b) segmented pixels;
(c) UV color histogram; (d) Dynaped completing the Dribbling Challenge

92 M. Missura et al.

4 Behavior Control

We control our robots using a layered framework that supports a hierarchy of
reactive behaviors [5]. When moving up the hierarchy, the update frequency of
sensors, behaviors, and actuators decreases, while the abstraction level increases.
Currently, our implementation consists of three layers. The lowest, fastest layer is
responsible for generating motions, such as walking—including capture steps [6],
kicking, and the goalie dive. At the next higher layer, we model the robot as a
simple holonomic point mass that is controlled with the force field method to
generate ball approach trajectories, ball dribbling sequences, and to implement
obstacle avoidance. The topmost layer of our framework takes care of team
behavior, game tactics and the implementation of the game states as commanded
by the referee box. Please refer to [4] for further details.

Get-up Motion: We designed get-up motions for Copedo using a simple, linear
interpolated keyframe technique [7]. The motions are executed open-loop after
a prone or supine position has been detected. The challenge of performing a
get-up motion with parallel kinematics, and thus missing a degree of freedom
to pitch the foot, is that the robot is not able to explicitly place its foot flat
on the ground. Using its arms, the robot pushes itself up from the floor while
retracting its legs and rotating around the front or the back edge of the foot.
When the center of mass crosses this edge, the robot will inevitably start tilting
quickly towards the other side, pass the pose where the foot is flat on the ground
with a relatively high rotational velocity, and is in danger of tipping over again.
We found that holding the legs not fully retracted combined with some servo
compliance results in a springy leg behavior that quickly dampens the back and
forth rocking on the foot edges. Using this technique, active balancing is not
required. Once the robot has reached a stable squatting position with the feet
flat on the ground, it only has to stretch its legs to regain a standing posture
and can continue walking. The get-up motions are illustrated in Figure 4.

Fig. 4. Top row: Get-up motion from the prone posture. Bottom row: Get-up motion
from the supine posture. In both motion sequences, the robot passively rocks back and
forth on the foot edges from frames 3 to 5.

RoboCup 2012 Best Humanoid Award Winner NimbRo TeenSize 93

5 Conclusions

The 2012 competition showed notable progress in the development of the Teen-
Size class. Four participating teams were able to play dynamic soccer games and
to complete several technical challenges. The highlights this year were the 3 vs. 3
demo game, where six goals were scored, and an exceptionally exciting final game
between team NimbRo (Germany) and CIT Brains (Japan). The Japanese team
was able to gain a lead in the first half with a surprisingly aggressive strategy.
After a tie of 2:2 at half time, NimbRo played more offensively in the second
half and achieved a final score of 6:3 for NimbRo.

In the future, the Humanoid League will continue to raise the bar. In the
next year, equally colored goals will force the teams to deal with completely
symmetric landmarks for localization and new technical challenges will require
more sophisticated sensomotoric skills.

In order to make it easier for other teams to participate in the TeenSize class,
our team NimbRo developed a modular open TeenSize robot platform, which
will be released open-source and which will be made available to other teams for
an affordable price [8].

Acknowledgement. This work is supported by Deutsche Forschungsgemein-
schaft (German Research Foundation, DFG) under grant BE 2556/6.

References

1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2001)
2. Schmitz, A., Missura, M., Behnke, S.: Learning footstep prediction from motion

capture. In: Ruiz-del-Solar, J. (ed.) RoboCup 2010. LNCS, vol. 6556, pp. 97–108.
Springer, Heidelberg (2010)

3. Schulz, H., Behnke, S.: Utilizing the structure of field lines for efficient soccer robot
localization. Advanced Robotics 26, 1603–1621 (2012)

4. Lee, D.D., Yi, S.-J., McGill, S., Zhang, Y., Behnke, S., Missura, M., Schulz, H., Hong,
D., Han, J., Hopkins, M.: RoboCup 2011 Humanoid League winners. In: Röfer, T.,
Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp.
37–50. Springer, Heidelberg (2012)

5. Behnke, S., Stückler, J.: Hierarchical reactive control for humanoid soccer robots.
International Journal of Humanoid Robots (IJHR) 5, 375–396 (2008)

6. Missura, M., Behnke, S.: Lateral capture steps for bipedal walking. In: Proceedings
of IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2011)

7. Stückler, J., Schwenk, J., Behnke, S.: Getting back on two feet: Reliable standing-up
routines for a humanoid robot. In: Proceedings of The 9th International Conference
on Intelligent Autonomous Systems (IAS-9) (2006)

8. Schreiber, M., Behnke, S.: Humanoid TeenSize Open Platform. In: Projects for Pro-
moting RoboCup, 2012. Poster shown at 16th International RoboCup Symposium,
Mexico City (2012)

NimbRo@Home: Winning Team

of the RoboCup@Home Competition 2012

Jörg Stückler, Ishrat Badami, David Droeschel, Kathrin Gräve,
Dirk Holz, Manus McElhone, Matthias Nieuwenhuisen, Michael Schreiber,

Max Schwarz, and Sven Behnke

Rheinische Friedrich-Wilhelms-Universität Bonn
Computer Science Institute VI: Autonomous Intelligent Systems

Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
{stueckler,droeschel,graeve,holz,nieuwenhuisen,schreiber}@ais.uni-bonn.de,

{badami,mcelhone,schwarz,behnke}@cs.uni-bonn.de
http://www.NimbRo.net/@Home

Abstract. In this paper we describe details of our winning team Nimb-
Ro@Home at the RoboCup@Home competition 2012. This year we im-
proved the gripper design of our robots and further advanced mobile
manipulation capabilities such as object perception and manipulation
planning. For human-robot interaction, we propose to complement face-
to-face communication between user and robot with a remote user inter-
face for handheld PCs. We report on the use of our approaches and the
performance of our robots at RoboCup 2012.

1 Introduction

The RoboCup@Home league [16,17] was established in 2006 to foster the de-
velopment and benchmarking of dexterous and versatile service robots that can
operate safely in everyday scenarios. The robots have to show a wide variety
of skills including object recognition and grasping, safe indoor navigation, and
human-robot interaction. At RoboCup 2012, which took place in Mexico City,
21 international teams competed in the @Home league.

With our team NimbRo@Home we compete in the RoboCup@Home league
since 2009. We improved the performance of our robots in the competitions,
from third place in 2009 to second place in 2010 to winning in 2011 and 2012.

So far, we focused on hardware design and a system that balances indoor
navigation, mobile manipulation, and human-robot interaction. In this year, we
further advanced object recognition, modelling, and pose tracking capabilities.
We also integrated motion planning for manipulation in complex scenes into
the system. Last but not least, we developed a novel remote user interface on
handheld computers that allows the user to control the autonomous capabilities
of the robots on three levels.

In the following, we will give a short overview on the ruleset of the RoboCup-
@Home competition 2012. We then detail our system with a focus on the novel
components, compared to 2011. Finally, we will report on the performance of
our robots at the 2012 competition.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 94–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.NimbRo.net/@Home

NimbRo@Home: Winning Team of the RoboCup@Home Competition 2012 95

2 Design of the RoboCup@Home Competition 2012

2.1 Overview

The competition consists of regular tests, i.e., tests with a predefined procedure,
open demonstrations, and a technical challenge [5]. In two preliminary stages,
the five best teams are selected for the final that is conducted as an open demon-
stration.

Regular tests cover basic mobile manipulation and human-robot interaction
skills that all robots shall be able to demonstrate. The storylines of the regular
tests are embedded in application scenarios. In these tests, the robots must act
autonomously and fulfill the tasks within a limited amount of time. In the open
demonstrations, the teams can choose their own task for the robot in order to
demonstrate results of their own research. Finally, the technical challenge has
been introduced to test a specific technical aspect in a benchmark. In this year,
the robots had to demonstrate object recognition in cluttered scenes.

While the rules and the tests are announced several months prior to the
competition, the details of the competition environment are not known to the
participants in advance. During the first two days of the competition, the teams
can map the competition arena, which resembles an apartment, and train object
recognition on a set of 25 objects which are used as known objects with names
throughout the recognition and manipulation tests. The arena is subject to minor
and major changes during the competition and also contains previously unknown
objects.

Performance is evaluated according to objective measures in the regular tests.
Juries assess the quality of the open demonstrations based on score sheets. In
the final, the jury consists of members of the league’s executive committee and
external jury members from science, industry, and media.

2.2 Tests and Skills

In Stage I, the teams compete in the tests Robot Inspection and Poster Session,
Follow Me, Clean Up, Who Is Who, and the Open Challenge. During the Robot
Inspection and Poster Session, the robots have to navigate to a registration desk,
introduce themselves, and get inspected by the league’s technical committee,
while the team gives a poster presentation. In the Follow Me test, the robots
must keep track of a previously unknown guide in an unknown (and crowded)
environment. This year, the robots had to keep track of the guide despite a person
blocking the line-of-sight. Then, they had to follow the guide into an elevator
and demonstrate that they can find the guide after he/she went behind a crowd.
Clean Up tests object recognition and grasping capabilities of the robots. They
have to retrieve as many objects as possible within the time limit, recognize
their identity, and bring them to their designated locations. The Who Is Who
test is set in a butler scenario, where the robot first has to learn the identity of
three persons. Then it has to take an order of drinks for each person, to grasp
the correct drinks among others, and to deliver them to the correct person. The

96 J. Stückler et al.

Fig. 1. The cognitive service robot Cosero. Left: Cosero moves a chair during the
RoboCup@Home Final 2012 in Mexico City. Right: Cosero’s grippers feature Festo
FinRay fingers that adapt to the shape of objects.

Open Challenge is the open demonstration of Stage I. Teams can freely choose
their demonstration in a 5min slot.

Stage II consists of the General Purpose Service Robot test, the Restaurant
test and the Demo Challenge. In the General Purpose Service Robot test, the
robots must understand and act according to complex, incomplete or erroneous
speech commands which are given by an unknown speaker. The commands can
be composed from actions, objects, and locations of the regular Stage I tests.
In the Restaurant test, the robots are deployed in a previously unknown real
restaurant, where a guide makes them familiar with drink, food, and table lo-
cations. Afterwards, the guide gives an order to deliver three objects to specific
locations. Finally, the Demo Challenge follows the theme “health care” and is
the open demonstration of Stage II.

3 Hardware Design

We designed our service robots Cosero and Dynamaid [13] to cover a wide range
of tasks in human indoor environments (see Fig. 1). They have been equipped
with two anthropomorphic arms that provide human-like reach. Two torso joints
extend the workspace of the arms: One joint turns the upper body around the
vertical axis. A torso lift moves the whole upper body linearly up and down,
allowing the robot to grasp objects from a wide range of heights—even from
the floor. Its anthropomorphic upper body is mounted on a mobile base with
narrow footprint and omnidirectional driving capabilities. By this, the robot can
maneuver through narrow passages that are typically found in indoor environ-
ments, and it is not limited in its mobile manipulation capabilities by holonomic
constraints.

In 2012, we improved Cosero’s gripper design. We actuate two Festo FinGrip-
per fingers using RX-64 Dynamixel actuators on two rotary joints (see Fig. 1).

NimbRo@Home: Winning Team of the RoboCup@Home Competition 2012 97

When the gripper is closed on an object, the bionic fin ray structure of the fin-
gers adapts its shape to the object surface. By this, the contact surface between
fingers and object increases significantly, compared to a rigid mechanical struc-
ture. A thin layer of anti-skidding material on the fingers establishes a robust
grip on objects.

For perceiving its environment, we equipped the robot with diverse sensors.
Multiple 2D laser scanners on the ground, on top of the mobile base, and in
the torso measure objects, persons, or obstacles for navigation purposes. The
lasers in the torso can be rolled and pitched for 3D obstacle avoidance. We use
a Microsoft Kinect RGB-D camera in the head to perceive tabletop objects and
persons.

The human-like appearance of our robots also supports intuitive interaction
of human users with the robot. For example, the robot appears to look at in-
teraction partners while it tracks them with its head-mounted RGB-D camera.
With its human-like upper body, it can perform a variety of gestures.

4 Mobile Manipulation

Some regular tests in the RoboCup competition involve object handling. Cur-
rently, objects are placed separated on horizontal surfaces such as tables and shelf
layers. The robot needs to drive to object locations, to perceive the objects, and
to grasp them.

We further advanced our mobile manipulation and perception pipelines. We
developed means for object grasping in complex scenarios such as bin picking,
and to track the pose of arbitrary objects in RGB-D images, for example, for
moving chairs.

4.1 Motion Control

We implemented omnidirectional driving controllers for the mobile base of our
robots [10]. The driving velocity can be set to arbitrary combinations of linear
and rotational velocities. We control the 7-DoF arms using differential inverse
kinematics with redundancy resolution. The arms also support compliant control
in task-space [11].

4.2 Indoor Navigation

During the tests, the setup of the competition arena can be assumed static. We
acquire 2D occupancy grid maps of unknown environments using GMapping [4].
We then employ state-of-the-art methods for localization and path planning
in grid maps [10]. For obstacle-free driving along planned paths, we support
the incorporation of all distance sensors of our robots. Point measurements are
maintained in an ego-centric 3D map and projected into a 2D occupancy grid
map for efficient local path planning.

98 J. Stückler et al.

Fig. 2. Object recognition. Top: We recognize objects in RGB images and find location
and size estimates. Bottom: Matched features vote for position in a 2D Hough space
(left). From the features (middle, green dots) that consistently vote at a 2D location, we
find a robust average of relative locations (middle, yellow dots) and principal directions
(right, yellow lines).

4.3 Grasping Objects from Planar Surfaces

We developed efficient segmentation of RGB-D images to detect objects on pla-
nar surfaces [14]. On the raw measurements within the object segments, we plan
top or side grasps on the objects. A collision-free grasp and reaching motion
is then executed using parametrized motion primitives. Our method allows to
grasp a large variety of typical household objects with cylindrical or box-like
shapes. We implemented such highly efficient detection and motion planning to
spend only little time for object manipulation during a test.

4.4 Object Recognition

Our robots recognize objects by matching SURF features [1] in RGB images to
an object model database [10]. We improved our previous approach by enforcing
consistency in the spatial relations between features (see Fig. 2).

In addition to the SURF feature descriptor, we store feature scale, feature
orientation, relative location of the object center, and orientation and length of
principal axes in the model. During recall, we efficiently match features between
an image and the object database according to the descriptor using kd-trees.

NimbRo@Home: Winning Team of the RoboCup@Home Competition 2012 99

Fig. 3. Motion planning in a bin-picking scenario. We extend grasp planning on object
segments with motion planning (reaching trajectory in red, pregrasp pose as larger
coordinate frame) to grasp objects from a bin. For collision avoidance, we represent
the scene in a multi-resolution height map. We decrease the resolution in the map with
the distance to the object. This reduces planning time and models safety margins that
increase with distance to the object.

Each matched feature then casts a vote to the relative location, orientation,
and size of the object. We consider the relation between the feature scales and
orientation of the features to achieve scale- and rotation-invariant voting.

With this object recognition method, our robots can recognize and localize
objects in an RGB image as evaluated in this year’s technical challenge. When
unlabelled object detections are available through other modalities such as planar
RGB-D segmentation (Sec. 4.3), we project the detections into the image and
determine the identity of the object in these regions of interest.

4.5 Motion Planning in Complex Scenes

Our grasp planning module finds feasible, collision-free grasps at the object.
The grasps are ranked according to a score which incorporates efficiency and
stability criteria. The final step in our grasp and motion planning pipeline is
now to identify the best-ranked grasp that is reachable from the current posture
of the robot arm.

In complex scenes, we solve this by successively planning reaching motions
for the found grasps ([9], see Fig. 3). We test the grasps in descending order of
their score. For motion planning, we employ LBKPIECE [15].

To speed up the process of evaluating collision-free grasp postures and plan-
ning trajectories, we employ a multiresolution height map that extends our prior
work on multiresolution path planning [2]. Our height map is represented by mul-
tiple grids that have different resolutions. Each grid has M ×M cells containing
the maximum height value observed in the covered area (Fig. 3). Recursively,
grids with quarter the cell area of their parent are embedded into each other, until
the minimal cell size is reached. With this approach, we can cover the same area
as a uniform N ×N grid of the minimal cell size with only log2((N/M) + 1)M2

cells. Planning in the vicinity of the object needs a more exact environment

100 J. Stückler et al.

Fig. 4. Object pose tracking. We train multi-view 3D models of objects using multi-
resolution surfel maps. We estimate the pose of objects in RGB-D images through
real-time registration towards the model. We apply object tracking, for instance, to
track the model (upper right) of a watering can for approaching and grasping it.

representation as planning farther away from it. This is accomplished by center-
ing the collision map at the object. This approach also leads to implicitly larger
safety margins with increasing distance to the object.

4.6 Object Modelling and Pose Tracking

Many object handling tasks assume object knowledge that cannot be deduced
from a single view alone. If an object model is available, the robot can infer valid
grasping points or use the model to detect objects and to keep track of them.
For example, to implement the handling of a watering can or the moving of a
chair with our robot, we teach-in grasping and motion strategies. These grasps
and motions are specified in the local reference frame of an object model. To
be able to reproduce the motions, the robot needs to perceive the pose of the
object. While the robot moves, we register RGB-D images to the model at high
frame rates to keep track of the object. This way, the robot does not require a
precise motion model.

In our approach, we train a multi-resolution surfel map of the object ([12],
see Fig. 4). The map is represented in an octree where each node stores a normal
distribution of the volume it represents. In addition to shape information, we
also model the color distribution in each node.

Our object modelling and tracking approach is based on an efficient regis-
tration method. We build maps from RGB-D images and register these repre-
sentations with an efficient multi-resolution strategy. We associate each node in
one map to its corresponding node in the other map using fast nearest-neighbor
look-ups. We optimize the matching likelihood for the pose estimate iteratively
to find the most likely pose.

We acquire object models from multiple views in a view-based SLAM ap-
proach. During SLAM, we generate a set of key frames that we register to
each other. We optimize pose estimates of the key frames to best fit the spatial

NimbRo@Home: Winning Team of the RoboCup@Home Competition 2012 101

relations that we obtain through registration. While the camera is moving, we
register the current RGB-D image to the closest key frame. Each time the trans-
lational or angular distance is above a threshold, we include the current frame
as a new key frame into the map. For SLAM graph optimization, we employ the
g2o framework [6]. Finally, we merge all key frames based on their pose estimate
in a multi-view map.

Once we have a model, we can register RGB-D camera images against it to
retrieve the pose of the object. We initialize the pose of the tracker to a rough
estimate using our planar segmentation approach.

5 Human-Robot Interaction

5.1 Intuitive Direct Human-Robot Interaction

Domestic service robots need intuitive user interfaces so that laymen can eas-
ily control the robots or understand their actions and intentions. Speech is the
primary modality of humans for communicating complex statements in direct
interaction. For speech synthesis and recognition, we use the commercial sys-
tem from Loquendo [7]. Loquendo’s text-to-speech system supports natural and
colorful intonation, pitch and speed modulation, and special human sounds like
laughing or coughing.

We also implemented pointing gesture synthesis as a non-verbal communi-
cation cue. Cosero performs gestures like pointing or waving. Pointing gestures
are useful to direct a user’s attention to locations and objects. The robots also
interpret gestures such as waving or pointing [3].

5.2 Convenient Remote User Interfaces

We develop handheld user interfaces to complement natural face-to-face inter-
action modalities [8]. Since the handheld devices display the capabilities and
perceptions of the robot, they improve common ground between the user and
the robot (see Fig. 5). They also extend the usability of the robot, since users
can take over direct control for skills or tasks that are not yet implemented with
autonomous behavior. Finally, such a user interface enables remote interaction
with the robot, which is especially useful for immobile persons.

The user interface supports remote control of the robot on three levels of
autonomy. The user can directly control the drive and the gaze using joystick-
like control UIs or touch gestures. The user interface also provides selection UIs
for autonomous skills such as grasping objects or driving to locations. Finally, the
user can configure high-level tasks such as fetch and delivery of specific objects.

The user interface is split into a main interactive view in its center and two
configuration columns on the left and right side (see Fig. 5, top). In the left
column, further scaled-down views are displayed that can be dragged into the
main view. In this case, the dragged view switches positions with the current
main view. One view displays live RGB-D camera images with object perception

102 J. Stückler et al.

Fig. 5. Handheld User Interface. The user interface provides controls on three levels
of autonomy. Top: Complete GUI with a view selection column on the left, a main
view in the center, and a configuration column on the right. We placed two joystick
control UIs on the lower and right corners for controlling motions of the robot with
the thumbs. Lower right: 3D external view generated with Rviz. Lower middle: The
navigation view displays the map, the estimated location, and the current path of the
robot. Lower right: The sensor view displays laser scans and the field-of-view of the
RGB-D camera in the robot’s head.

overlays (Fig. 5, top). The user may change the gaze of the robot by sweep
gestures, or select objects to grasp. A further view visualizes laser range scans
and the field-of-view of the RGB-D camera (Fig. 5, bottom right). The navigation
view shows the occupancy map of the environment and the pose of the robot
(Fig. 5, bottom center). The user can set current pose and goal pose. While the
robot navigates, the view shows the current path. Finally, we also render a 3D
external view (Fig. 5, bottom left).

On the right (Fig. 5, top), high-level tasks such as fetch and delivery can be
configured. For fetching an object, for instance, the user either selects a specific
object from a list, or chooses a detected object in the current sensor view.

6 Competition Results at RoboCup 2012

With our robot system, we achieved scores among the top rankings in almost
every test of the competition1. In Stage I, Cosero and Dynamaid registered for
the competition in the Robot Inspection and Poster Session. In the new Follow
Me test, Cosero learned the face of the guide and was not disturbed later by

1 A video can be found at http://www.NimbRo.net/@Home

NimbRo@Home: Winning Team of the RoboCup@Home Competition 2012 103

Fig. 6. Left: Cosero follows a guide into an elevator during the Follow Me test. Middle:
In the Restaurant test, a guide shows Cosero drink and food locations in a real and
previously unknown restaurant. Right: Cosero waters a plant in the final.

another person blocking the line-of-sight. It followed the guide into the elevator
(see Fig. 6) and left it on another floor. Unfortunately, it falsely detected a
crowd of people and could not finish the test. In Who Is Who, Cosero learned
the faces of three persons, took an order, fetched three drinks in a tray and each
of its arms, and successfully delivered two of them within the time limit. In the
Clean Up test, our robot Cosero had to find objects that were distributed in the
apartment, recognize them, and bring them to their place. Our robot detected
three objects, from which two were correctly recognized as unknown objects.
It grasped all three objects and deposited them in the trash bin. In the Open
Challenge, we showed a “housekeeping” scenario. Cosero demonstrated that it
could recognize a waving person. It took over an empty cup from this person and
threw it into the trash bin. Afterwards, it approached a watering can and watered
a plant. After finishing all tests of Stage I, our team lead the competition with
5,071 points, followed by WrightEagle (China) 3,398 points and ToBi (Germany)
2,627 points.

In the second stage, Cosero recognized speech commands from two out of three
categories in the General Purpose Service Robot test. It recognized a complex
speech command consisting of three actions. While it successfully performed the
first part of the task, it failed to recognize the object in a shelf. It also understood
a speech command with incomplete information and posed adequate questions
to retrieve missing information. The third speech command was not covered by
the grammar and, hence, could not be understood. Overall, Cosero achieved the
most points in this test. In the Demo Challenge with the theme “health care”,
an immobile person used a handheld PC to teleoperate the robot. The person
sent the robot to fetch a drink. The robot recognized that the requested drink
was not available and the user selected another drink in the transmitted camera
image. After the robot delivered the drink, it recognized a pointing gesture and
navigated to the referenced object in order to pick it up from the ground. In the

104 J. Stückler et al.

Restaurant test, our robot Cosero was guided through a previously unknown bar
(see Fig. 6). The guide showed the robots where the shelves with items and the
individual tables were. Our robot built a map of this environment and took an
order. Afterwards, it navigated to the food shelf to search for requested snacks.
The dim lighting conditions in the restaurant, however, prevented Cosero from
recognizing the objects. After both stages, we accumulated 6,938 points and
entered the final with a clear advantage towards WrightEagle (China, 4,677
points) and eR@sers (Japan, 3,547 points).

In the final, our robot Cosero demonstrated the approaching, bi-manual grasp-
ing, and moving of a chair to a target pose. It also approached and grasped a
watering can with both hands and watered a plant (see Fig. 6). After this demon-
stration, our robot Dynamaid fetched a drink and delivered it to the jury. In the
meantime, Cosero approached a transport box, from which it grasped an ob-
ject using grasp planning. This demonstration convinced the high-profile jury,
which awarded the highest number of points in all categories (league-internal
jury: scientific contribution, relevance, presentation and performance; external
jury: originality, usability, difficulty and success). Together with the lead after
Stage II, our team received 100 normalized points, followed by eR@sers (Japan,
74 points) and ToBi (Germany, 64 points).

7 Conclusion

In this paper, we presented the contributions of our winning team NimbRo to the
RoboCup@Home competition 2012 in Mexico City. Since the 2011 competition,
we improved object recognition, developed model learning and tracking, and im-
plemented motion planning to further advance the mobile manipulation capabili-
ties of our robots.We also developed a novel remote user interface on handhelds to
complement natural face-to-face interaction through speech and gestures.

Our robots scored in all the tests of the competition and gained a clear ad-
vantage in the preliminary stages. In the final, our robots convinced the high
profile jury and won the competition.

In future work, we will further develop robust object recognition in difficult
lighting conditions. More fluent and flexible speech and non-verbal cues will
improve the naturalness of human-robot interaction. Finally, we also plan to
investigate tool-use and learning for object handling.

Acknowledgments. This project has been partially supported by the FP7
ICT-2007.2.2 project ECHORD (grant agreement 231143) experiment ActReMa.

References

1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 404–417. Springer, Heidelberg (2006)

NimbRo@Home: Winning Team of the RoboCup@Home Competition 2012 105

2. Behnke, S.: Local multiresolution path planning. In: Polani, D., Browning, B.,
Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp.
332–343. Springer, Heidelberg (2004)

3. Droeschel, D., Stückler, J., Holz, D., Behnke, S.: Towards joint attention for a
domestic service robot – Person awareness and gesture recognition using time-
of-flight cameras. In: Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA) (2011)

4. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping
with Rao-Blackwellized particle filters. IEEE Trans. on Robotics 23(1) (2007)

5. Holz, D., Mahmoudi, F., Rascon, C., Wachsmuth, S., Sugiura, K., Iocchi, L., del
Solar, J.R., van der Zant, T.: RoboCup@Home: Rules & regulations (2012),
http://purl.org/holz/rulebook.pdf

6. Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A gen-
eral framework for graph optimization. In: Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA) (2011)

7. Loquendo S.p.A. Vocal technology and services (2007), http://www.loquendo.com
8. Muszynski, S., Stückler, J., Behnke, S.: Adjustable autonomy for mobile teleoper-

ation of personal service robots. In: Proc. of the IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN) (2012)

9. Nieuwenhuisen, M., Stückler, J., Berner, A., Klein, R., Behnke, S.: Shape-primitive
based object recognition and grasping. In: Proc. of the 7th German Conference on
Robotics (ROBOTIK) (2012)

10. Stückler, J., Behnke, S.: Integrating indoor mobility, object manipulation, and
intuitive interaction for domestic service tasks. In: Proc. of the IEEE Int. Conf. on
Humanoid Robots (Humanoids) (2009)

11. Stückler, J., Behnke, S.: Compliant task-space control with back-drivable servo
actuators. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011.
LNCS, vol. 7416, pp. 78–89. Springer, Heidelberg (2012)

12. Stückler, J., Behnke, S.: Model learning and real-time tracking using multi-
resolution surfel maps. In: Proc. of the AAAI Conference on Artificial Intelligence
(AAAI 2012) (2012)

13. Stückler, J., Droeschel, D., Gräve, K., Holz, D., Kläß, J., Schreiber, M., Steffens,
R., Behnke, S.: Towards robust mobility, flexible object manipulation, and intuitive
multimodal interaction for domestic service robots. In: Röfer, T., Mayer, N.M.,
Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 51–62. Springer,
Heidelberg (2012)

14. Stückler, J., Steffens, R., Holz, D., Behnke, S.: Efficient 3D object perception and
grasp planning for mobile manipulation in domestic environments. In: Robotics
and Autonomous Systems (2012)

15. Şucan, I.A., Kavraki, L.E.: Kinodynamic motion planning by interior-exterior cell
exploration. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Al-
gorithmic Foundation of Robotics VIII. STAR, vol. 57, pp. 449–464. Springer,
Heidelberg (2009)

16. van der Zant, T., Wisspeintner, T.: A proposal for a new league where RoboCup
goes real world. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) Robo-
Cup 2005. LNCS (LNAI), vol. 4020, pp. 166–172. Springer, Heidelberg (2006)

17. Wisspeintner, T., van der Zant, T., Iocchi, L., Schiffer, S.: RoboCup@Home: Scien-
tific competition and benchmarking for domestic service robots. Interaction Stud-
ies 10(3), 393–428 (2009)

http://purl.org/holz/rulebook.pdf
http://www.loquendo.com

How Much Worth Is Coordination of Mobile

Robots for Exploration in Search and Rescue?

Francesco Amigoni1, Nicola Basilico2, and Alberto Quattrini Li1

1 Politecnico di Milano, Milano, Italy
francesco.amigoni@polimi.it, quattrini.li@elet.polimi.it

2 University of California, Merced, USA
nbasilico@ucmerced.edu

Abstract. Exploration of unknown environments is an enabling task
for several applications, including map building and search and rescue.
It is widely recognized that several benefits can be derived from deploy-
ing multiple mobile robots in exploration, including increased robustness
and efficiency. Two main issues of multirobot exploration are the explo-
ration strategy employed to select the most convenient observation loca-
tions the robots should reach in a partially known environment and the
coordination method employed to manage the interferences between the
actions performed by robots. From the literature, it is difficult to assess
the relative effects of these two issues on the system performance. In this
paper, we contribute to filling this gap by studying a search and rescue
setting in which different coordination methods and exploration strate-
gies are implemented and their contributions to an efficient exploration
of indoor environments are comparatively evaluated. Although prelim-
inary, our experimental data lead to the following results: the role of
exploration strategies dominates that of coordination methods in deter-
mining the performance of an exploring multirobot system in a highly
structured indoor environment, while the situation is reversed in a less
structured indoor environment.

Keywords: search and rescue, exploration, coordination, multirobot.

1 Introduction

Robotic exploration of unknown environments is fundamental for several real-
world applications, including map building and search and rescue. It is widely
recognized that several benefits can be derived from deploying multiple mobile
robots in exploration, ranging from an increased robustness of the whole sys-
tem to a more efficient exploration [1–3]. Two important issues of multirobot
exploration are exploration strategies and coordination methods. An exploration
strategy is employed to select the most convenient observation locations the
robots should reach in a partially known environment [4]; in short an explo-
ration strategy is used to answer the question “where to go next?”. A coor-
dination method is employed to manage the interferences between the actions
performed by robots [5]; in the context of exploration, a coordination method

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 106–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

How Much Worth Is Coordination of Mobile Robots 107

is used to allocate tasks to robots and basically to answer the question “who
goes where?”. Prior work evaluates these two issues mostly in a separated way,
making it difficult to assess their relative effects on exploration.

In this paper, we contribute to fill this gap by comparatively evaluating some
coordination methods and exploration strategies in a search and rescue setting
according to their contribution to an efficient exploration of indoor environments.
We selected the search and rescue application because there is an international
competition, namely the RoboCup Rescue Virtual Robot Competition1, that
provides a simulated common ground (e.g., metrics and software tools) for as-
sessing the performance of exploring multirobot systems, enabling comparison
and reproduction of results.

The general setting we consider is the following. A team of robots has to search
an initially unknown environment for victims. Since no a priori knowledge about
the possible locations of the victims is assumed to be available, we can reduce
the problem of maximizing the number of victims found in a given time interval
to the problem of maximizing the amount of area covered by robots’ sensors
in the same time interval. Broadly speaking, the robots operate according to
the following steps: (a) they perceive the surrounding environment, (b) they
integrate the perceived data within a map representing the environment known
so far, (c) they decide where to go next and who goes where, and (d) they
go to their destination locations and start again from (a). In our experiments,
we employ a publicly available simulator [6] and controller [7]. In this way, we
can focus on the exploration strategies and coordination methods (step (c))
exploiting an already tested framework for steps (a), (b), and (d).

The original contribution of this paper is not in proposing new exploration
strategies or coordination methods, but in taking some initial steps in shedding
light on their relative impact on the performance of multirobot systems employed
in search and rescue applications. We contribute to answer the following question:
With limited computing or time resources, should developers spend more efforts
on developing an effective exploration strategy or coordination method?

2 Coordinated Multirobot Exploration

Robotic exploration can be defined as a process that discovers unknown fea-
tures in environments by means of mobile robots. Coordinated multirobot ex-
ploration has been mainly studied for map building [8, 9] and for search and
rescue [10]. Previous works on coordinated multirobot exploration have focused
in a rather separated way on evaluation of either coordination methods or ex-
ploration strategies.

Exploration strategies are used to select locations that autonomous robots
should reach in order to discover the physical structure of environments that
are initially unknown. In the following, we survey a representative sample of the
several exploration strategies that have been proposed in literature.

1 http://www.robocuprescue.org/virtualsim.html

108 F. Amigoni, N. Basilico, and A. Quattrini Li

Unsurprisingly, most of the work on exploration strategies for discovering the
physical structure of environments has been done for map building. The main-
streamapproachmodels exploration as an incrementalNextBestView (NBV)pro-
cess, i.e., a repeated greedy selection of the next best observation location. Usually,
at each step, anNBV system considers a number of candidate locations on the fron-
tier between the known free space and the unexplored part of the environment (in
such away they are reachable from the current position of the robot) and selects the
best one [11]. The most important feature of an exploration strategy is the utility
function it uses to evaluate candidate locations in order to select the best one.

In evaluating candidate locations, different criteria can be used. A simple one
is the distance from the current position of the robot [12], according to which the
best observation location is the nearest one. Most works combine different criteria
in more complex utility functions. For example, in [13] the cost of reaching a
candidate location is linearly combined with its benefit. Another example of
combination of different criteria is [14], in which the distance of a candidate
location from the robot and the expected information gain of the candidate
location are combined in an exponential function. In [15], a technique based on
relative entropy is used to combine traveling cost and expected information gain.
In [16], several criteria (such as uncertainty in landmark recognition and number
of visible features) are combined in a multiplicative function.

The above strategies aggregate different criteria in utility functions that are
defined ad hoc and are strongly dependent on the criteria they combine. In [17],
the authors proposed a more theoretically-grounded approach based on multi-
objective optimization, in which the best candidate location is selected on the
Pareto frontier. Following the same theoretically-grounded approach, decision
theoretical tools have been applied to the definition of exploration strategies [18].
More details on this approach will be illustrated in Section 3.2.

Compared with exploration strategies for map building, relatively few explo-
ration strategies for autonomous search and rescue have been proposed. A work
that explicitly addressed this problem is [7], which proposes to combine some
criteria in an ad hoc utility function that will be described in Section 3.2. In [10],
traveling cost to reach a location is used as the main criterion for evaluating can-
didate locations, while the utility of the locations (calculated according to the
proximity of other robots) is used as a tie-breaker. The exploration strategy for
search and rescue of [19] uses a formalism based on Petri nets for exploiting a
priori information about the victims’ distribution to improve the search.

In this paper, we evaluate, relatively to some coordination methods, the
exploration strategies proposed in [18] and [7], as representative samples of
theoretically-grounded and ad hoc exploration strategies, respectively.

Coordination methods are used to manage the interactions between multiple
robots. Here we are interested in coordination methods that are used to allocate
locations to the robots during exploration. One of the earliest works in the field
of multirobot exploration is by Yamauchi [12], in which robots navigate, in an
uncoordinated way, to the closest accessible unvisited frontiers and integrate
their local maps in a global map of the environment.

How Much Worth Is Coordination of Mobile Robots 109

A series of works [1, 2] (and, partially, [20]) propose an interesting approach
in which the coordination method is embedded within the exploration strategy.
In particular, the utility value of a candidate location is reduced according to
the number of robots that can view it. In this way, robots are pushed to select
different locations to reach. Experimental results show that this coordinated
behavior has better performance than uncoordinated behavior (in which different
robots can select the same location to reach) and slightly worse performance than
a method that finds the optimal allocation of candidate locations to robots.

Coordination methods based on market mechanisms have been extensively
studied. For example, in [21] coordination of mobile robots is performed by a
central executive that, beyond collecting local maps and combining them into a
single global map, manages an auction by asking bids to the robots and assigning
tasks (i.e., locations to reach) according to the received bids. Bids contain in-
formation about expected utility for pairs robot-location; utility are calculated
as the expected information gain at the location minus the cost for reaching
it. A similar coordination method is presented in [22] in connection with three
techniques for generating the locations that the robots should reach (a random
technique, a closest-point greedy technique, and a quadtree-based technique).
These points are evaluated using an utility function similar to that used in [21].
Experimental results show that the auction-based coordination method performs
better with a random and a quadtree-based generation of locations, while (as
expected) outperforming the uncoordinated methods. Qualitatively similar find-
ings are reported also in [23], which proposes an auction-based coordination
method not only for task assignment, but also for coalition formation.

In this paper, we evaluate, relatively to some exploration strategies, some
variants of the coordination method employed in [7], which produces the same
allocation of the market-based coordination method of [21]. Our results comple-
ment those of [22], by considering more complex ways for generating the locations
allocated to robots.

3 The Search and Rescue Setting

In this section, we describe the search and rescue setting in which we investi-
gated the relative impact of exploration strategies and coordination methods
on performance of exploring multirobot systems. In our setting, the goal is to
explore an initially unknown indoor environment for finding the largest number
of human victims within a given time. Assuming no a priori knowledge about
the possible locations of the victims, the problem of maximizing the number of
victims found in a given time interval is equivalent to the problem of maximizing
the amount of area covered by robots’ sensors in the same interval. We consider
a time interval of 15 minutes. We first describe the adopted simulation environ-
ment and robot controller. Then, we describe the exploration strategies and the
coordination methods we consider.

110 F. Amigoni, N. Basilico, and A. Quattrini Li

3.1 The Simulation Environment and the Robot Controller

In order to perform repeated tests under controlled conditions, we use a robot
simulator. We selected USARSim [6] because it is a high fidelity 3D robot sim-
ulator and it is employed in the RoboCup Rescue Virtual Robot Competition.

From an analysis based on availability of code and performance obtained in
the RoboCup Rescue Virtual Robot Competition, we selected the controller de-
veloped by the Amsterdam and Oxford Universities (Amsterdam Oxford Joint
Rescue Forces, AOJRF2) for the 2009 competition [24]. The main reason for us-
ing an existing controller is that we can focus only on the exploration strategies
and on the coordination methods, exploiting existing and tested methods for
navigation, localization, and mapping. The controller manages a team of robots.
The robotic platform used is a Pioneer P2AT equipped with range scanner sen-
sors and sensors able to detect human victims. The map of the environment is
maintained by a base station, whose position is fixed in the environment, and
to which robots periodically send data. The map is two-dimensional and repre-
sented by three occupancy grids. The first one is obtained with a small-range
(3 meters) scanner and constitutes the safe area, i.e., the area where the robots
can safely move. The second one is obtained from maximum-range scans (20
meters) and constitutes the free area, i.e., the area which is believed to be free
but not yet safe. Moreover, a representation of the clear area is maintained as
a subset of the safe area that has been checked for the presence of victims (this
task is accomplished with simulated sensors for victim detection). Given a map
represented as above, a set of (connected) boundaries between safe and free re-
gions are extracted. The center point of the free area beyond each boundary is
considered as a candidate location to reach. The utility u(p, r) of a candidate
location p for a robot r is evaluated as discussed in the next section.

3.2 Exploration Strategies

As discussed in Section 2, exploration strategies differ in the utility functions
they use to evaluate and select the candidate locations. The following criteria
are combined in our utility functions:

– A(p) is the amount of free area beyond the frontier of p computed according
to the free area occupancy grid;

– P (p) is the probability that a robot, once reached p, will be able to transmit
information (e.g., the perceived data or the locations of victims) to the base
station (whose position in the environment is known), this criterion depends
on the distance between p and the base station;

– d(p, r) is the distance between p and current position of robot r, this criterion
can be calculated with two different methods: dEU (), using an approximate
method that calculates the Euclidean distance, and dPP (), using a path
planner procedure that returns the exact value of the distance (if no safe path
completely contained in the explored area can be found, then dPP () = ∞);
obviously, calculating dPP () requires more time than calculating dEU ();

2 http://www.jointrescueforces.eu/

http://www.jointrescueforces.eu/

How Much Worth Is Coordination of Mobile Robots 111

– b(r) is the battery level of robot r (from 0, full, to 1, empty); the larger its
value, the smaller the amount of residual energy in the battery.

Given these criteria, we define two exploration strategies. The first one is a
slight variation of the strategy proposed in [7] and is called AOJRF strategy. It
integrates the above criteria in an ad hoc utility function:

u(p, r) =
A(p)P (p)

d(p, r)b(r)
. (1)

The second exploration strategy is calledMCDM strategy and combines the crite-
ria of the setN = {A,P, d, b} using the Multi-Criteria Decision Making (MCDM)
approach. Refer to [18] for a complete description; here we just sketch how the
approach works. We call uj(p, r), with j ∈ N , the utility value for candidate loca-
tion p and robot r according to criterion j. To apply MCDM, utilities have to be
normalized to a common scale I = [0, 1]. We use a linear relative normalization.
For example, given a robot r, the utility of a candidate p related to the distance
d() is normalized using ud(p, r) = 1−(d(p, r)−minq∈C d(q, r))/(maxq∈C d(q, r)−
minq∈C d(q, r)), where C is the set of candidate locations. Note that the larger
uj(p, r), the better the pair p and r.

Basically, the MCDM strategy replaces function (1) with the following
function:

u(p, r) =
4∑

j=1

(u(j)(p, r)− u(j−1)(p, r))μ(A(j)), (2)

where μ : P(N) → [0, 1] (P(N) is the power set of set N) is such that μ({∅}) = 0,
μ(N) = 1, and, if A ⊂ B ⊂ N , then μ(A) ≤ μ(B). That is, μ is a normalized
fuzzy measure on the set of criteria N that will be used to associate a weight to
each group of criteria. u(j), with (j) ∈ N , indicates the j-th criterion according to
an increasing ordering with respect to utilities, i.e., after that criteria have been
ordered to have, for candidate p and robot r, u(1)(p, r) ≤ . . . ≤ u(n)(p, r) ≤ 1.
It is assumed that u(0)(p, r) = 0. Finally, the set A(j) is defined as A(j) = {i ∈
N |u(j)(p, r) ≤ ui(p, r) ≤ u(n)(p, r)}.

Using (2) is a more principled way than (1) to compute utilities, because
it allows to consider criteria’s importance and their mutual dependency re-
lations. Criteria belonging to a group G ⊆ N are said to be redundant if
μ(G) <

∑
i∈G μ(i), synergic if μ(G) >

∑
i∈G μ(i), and independent otherwise.

We use the weights reported in the following table, which have been manually
set in order to obtain good performance (according to [18]).

criteria A d P b A, d A,P A, b d, P d, b P, b A, d, P A, d, b A, P, b d, P, b

μ() 0.4 0.3 0.05 0.25 0.75 0.55 0.55 0.4 0.32 0.28 0.9 0.8 0.85 0.4

The two exploration strategies have been selected because they are repre-
sentative of the two main classes of strategies that have been proposed for ex-
ploration of unknown environments (see Section 2). In particular, the AOJRF
strategy represents ad hoc strategies, while the MDCM strategy represents more
theoretically-grounded strategies.

112 F. Amigoni, N. Basilico, and A. Quattrini Li

3.3 Coordination Methods

While exploration strategies evaluate the goodness of a candidate location p
for a robot r, coordination methods are used to assign candidate locations to
robots. We define three coordination methods for allocating candidate locations
to robots. They start from a set of candidate locations (generated as discussed
in Section 3.1) and a set of robots, and their goal is to assign a location to each
robot.

The first coordination method, which is executed by each robot independently,
knowing (from the base station) the current map and the positions of the other
robots is derived directly from [7]:

1. compute the global utility u(p, r) of allocating each candidate p to each robot
r (using (1) or (2)) where d(p, r) is calculated using the Euclidean distance
dEU () (namely using an underestimate of the real distance),

2. find the pair (p∗, r∗) such that the previously computed utility is maximum,
(p∗, r∗) = argmaxp,r u(p, r),

3. re-compute the distance between p∗ and r∗ using dPP () with the path plan-
ner (namely considering the real distance) and update the utility of (p∗, r∗)
using such exact value instead of the Euclidean distance,

4. if (p∗, r∗) is still the best allocation, then allocate location p∗ to robot r∗,
otherwise go to Step 2,

5. eliminate robot r∗ and candidate p∗ and go to Step 2.

This first coordination method is called AOJRF original coordination. The rea-
son behind the utility update of Step 3 is that computing dPP () requires a
considerable amount of time. Calculating it for all the candidate locations and
all robots would be not affordable in the rescue competition, since a maximum
exploration time is enforced. Although in pathological cases all pairs (p, r) could
be re-evaluated, in practice this is done only for few of them. Note that, being
dEU () an underestimate of the real distance and being (1) and (2) monotoni-
cally decreasing with d(), the method is guaranteed to select the best pair (p∗, r∗)
according to u() calculated with dPP ().

The AOJRF original coordination method produces the same results of the
market-based mechanism proposed in [21] and is applied considering (1) or (2)
to calculate utilities for bids. Both methods first select the pair (p∗, r∗) with the
largest utility u(), then, among the pairs left after elimination of those involving
p∗ and r∗, they select the pair (p∗∗, r∗∗) with the largest utility, and so on.

The second coordination method, called AOJRF simplified coordination, is
similar to the previous one, but does not re-compute the distance in the Step 3.
It selects the best pair (p∗, r∗) only on the basis of the Euclidean distance.

In the third coordination method, called no coordination, each robot selfishly
selects its best candidate location, without considering the presence of other
robots. This means that Steps 1-4 are performed only for one robot r∗ (the
robot that is running the method) and that Step 5 is skipped. Note, however,
that Step 3 is executed and distance re-computed.

How Much Worth Is Coordination of Mobile Robots 113

The three coordination methods are in decreasing order of “optimality” in
allocating locations to the robots, with the AOJRF original coordination method
producing the best allocation and the no coordination method the worst. The
last two methods can end up with sub-optimal allocations in which a robot is
assigned a location that is supposed to be close but is actually far (AOJRF
simplified coordination method) or in which two robots are assigned the same
location (no coordination method).

4 Experimental Results

We consider teams of two and three robots (plus the base station) deployed
in the “DM-compWorldDay4b 250” and “DM-VMAC1” environments, called
office and open environments, respectively (see Fig. 1). Both the environments
are indoor with the office environment (about 800 m2) presenting an intricate
cluttered structure and the open environment (about 1300 m2) presenting more
open spaces. We define a configuration as an environment, a number of robots,
an exploration strategy, and a coordination method. For each configuration, we
execute 5 runs (with randomly selected starting locations for the mobile robots
such that they are separated by about 20 meters) of 15 minutes each. We assess
performance by measuring the amount of free, safe, and clear area every 30
seconds of the exploration. Due to space limitations, we report only data on safe
area at the end of runs (free area is less significant and clear area is similar to
the safe area). Of course, the larger the mapped safe area within 15 minutes,
the better the performance. Under the assumption that victims are uniformly
spread in the environment, this metric is basically equivalent to the metric that
counts the number of victims found. Experiments have been run in real-time as
in the competition, to realistically account for time spent in movements and in
computation.

Fig. 1. The office environment (left) and the open environment (right)

To have a base line in comparing the results, we consider a random coor-
dination method that randomly assigns robots to candidate locations, without
evaluating them. We expect this random method to perform worse than other
combinations of exploration strategies and coordination methods.

114 F. Amigoni, N. Basilico, and A. Quattrini Li

Tab. 1(a) shows results for the office environment. With all the three coordi-
nation methods, the MCDM strategy seems to behave better than the AOJRF
strategy, although differences are not statistically significant, according to an
ANOVA analysis with a threshold for significance p-value < 0.05 [25]. The dif-
ference between the safe area mapped at the end of the 15 minutes is more
evident with the AOJRF original coordination method. Conversely, the differ-
ence between the two exploration strategies is less evident with the AOJRF
simplified coordination method. These results can be explained by saying that
MCDM better exploits the more precise information used with the AOJRF orig-
inal coordination method (a precise distance value obtained with path planning
procedures instead of an approximate Euclidean distance value). Multirobot ex-
ploration introduces some benefits, as shown by the configurations with three
robots that consistently outperform those with two robots (consider that a single
robot maps approximately 250 m2 with the MCDM strategy and 230 m2 with
the AOJRF strategy). Finally, the random method has, as expected, the worst
performance (we tested it only with two robots).

Table 1. Average safe area (and standard deviation) mapped after 15 minutes (units
are m2)

(a) office environment

2 robots 3 robots
AOJRF strategy MCDM strategy AOJRF strategy MCDM strategy

AOJRF original coordination 299.77(53.60) 341.95(12.54) 341.58(98.62) 387.41(66.67)
AOJRF simplified coordination 257.53(54.65) 262.43(15.62) 320.40(63.71) 325.14(42.21)

no coordination 306.36(65.91) 330.27(46.38) 332.58(42.03) 374.28(40.31)
random 211.68(18.86) 211.68(18.86)

(b) open environment

2 robots 3 robots
AOJRF strategy MCDM strategy AOJRF strategy MCDM strategy

AOJRF original coordination 430.18(78.86) 498.45(51.12) 483.46(130.14) 511.83(118.35)
AOJRF simplified coordination 586.77(72.16) 678.27(48.77) 673.48.77(85.61) 690.16(36.69)

no coordination 356.92(65.97) 425.05(99.01) 458.55(80.30) 498.08(81.03)
random 472.71(115.48) 472.71(115.48)

The performance of the AOJRF original coordination method and that of
the method without coordination are very similar and better than that of the
AOJRF simplified coordination method. The difference between the safe area
mapped at 15 minutes with the AOJRF original coordination and with the AO-
JRF simplified coordination methods is statistically significant for the MCDM
strategy (p-value= 2.05 · 10−5 for two robots and p-value= 0.04321 for three
robots), but not for the AOJRF strategy (p-value= 0.25 for two robots and p-
value= 0.6972 for three robots). Similarly, the difference between the no coordi-
nation and the AOJRF simplified coordination methods is statistically significant
for the MCDM strategy (p-value= 0.0147 for two robots and p-value= 0.0485 for
three robots), but not for the AOJRF strategy (p-value= 0.23797 for two robots
and p-value= 0.7304 for three robots).

How Much Worth Is Coordination of Mobile Robots 115

Tab. 1(b) shows the results for the open environment. Also in this case, the
MCDM strategy seems to behave better than the AOJRF strategy with all the
three coordination methods, although differences are not statistically significant.
The difference between the safe area mapped at the end of the 15 minutes is
more evident with the no coordination method, suggesting that a theoretically-
grounded exploration strategy like MCDM can be more effective in limiting the
problems of uncoordinated robots in the open environment.

In the open environment, the AOJRF simplified coordination method outper-
forms the other methods. The difference between the safe area mapped at 15
minutes with the AOJRF simplified coordination and with the AOJRF original
coordination methods is statistically significant both for the MCDM strategy
(p-value= 5.00 · 10−4 for two robots and p-value= 0.0123 for three robots) and
for the AOJRF strategy (p-value= 0.0113 for two robots and p-value= 0.02594
for three robots). Similarly, the difference between the AOJRF simplified coor-
dination and the no coordination methods is statistically significant both for the
MCDM strategy (p-value= 9.00 · 10−4 for two robots and p-value= 0.00131 for
three robots) and for the AOJRF strategy (p-value= 8.00 · 10−4 for two robots
and p-value= 0.0035 for three robots).

The results for the office environment are rather surprising: coordinately al-
locating tasks to robots and allocating tasks without any coordination lead to
the same performance. Although the initial separation of robots could help to
decompose the problem, this observation can be explained by saying that what
is predominantly important in exploring the highly structured office environ-
ment is the quality of the information used to evaluate the candidate locations
(like the distance returned by path planning procedures instead of the Euclidean
distance). This result does not contradict previous results that concluded that
coordinated robots perform better than uncoordinated robots (see Section 2).
It seems rather to complement previous works, which considered much simpler
exploration strategies than those used in this paper. The use of exploration
strategies, like MCDM and AOJRF strategies, that efficiently exploit good qual-
ity information to select observation locations effectively balances computational
effort and accuracy of information. Indeed, although obtaining more accurate in-
formation (i.e., planning a path between the current location of the robot and
the candidate location) requires more time and could represent a problem with
the 15 minutes deadline, the resulting selection of a good observation location
has a global benefit in highly structured environments.

The results for the open environment suggest that coordination becomes more
important when the environment is less structured. This can be explained by not-
ing that, in the office environment, robots can choose from many candidate loca-
tions and the intricate structure of the environment “pushes” robots to spread,
while, in the open environment, the number of candidate locations is smaller and
robots need to be coordinated to effectively spread across the environment and
map it. Accordingly, in the open environment, the worst performance is obtained
with the no coordination method, which is outperformed also by the random
method, suggesting that assigning candidate locations randomly to robots is more

116 F. Amigoni, N. Basilico, and A. Quattrini Li

effective than letting robots independently choosing their best candidate locations.
In the open environment, the quality of information seems not so important
(AOJRF simplified coordination method using Euclidean distance outperforms
AOJRF original coordination method using distance returned by path planning
procedures), mainly because obtaining accurate information requires some efforts,
thus leaving less time to exploration, which can be performed quickly in unclut-
tered open environments.

5 Conclusion

This paper offered a first contribution to assess the relative influence of ex-
ploration strategies and coordination methods on the performance of multirobot
systems employed in search and rescue applications. One of our results is that the
quality of information used to evaluate candidate locations seems more relevant
than assigning locations to robots in a coordinated way for a highly structured
indoor environment. We are not claiming that coordination is useless, but that,
in some settings, its impact on the exploration performance is less important
than that of exploration strategies. From the other hand, in a less structured
environment, coordination methods have a stronger impact than exploration
strategies on the amount of area discovered.

The above conclusions are not yet definitive and need more efforts to be fur-
ther assessed. For example, larger multirobot systems and other environments,
exploration strategies, coordination methods, and integrated approaches will be
considered. Also, more realistic situations involving real physical robots (with
issues like damaged robots and loss of communication) and human disaster re-
sponse teams will be considered. Finally, generalization of the outcomes of this
paper to other applications involving exploration (like map building, where the
quality of the map is an issue) could be investigated.

Acknowledgement. The authors gladly thank Chiara Nichetti for her contri-
butions to the experimental part of this work.

References

1. Burgard, W., Moors, M., Schneider, F.: Coordinated multi-robot exploration. IEEE
T. Robot. 21(3), 376–378 (2005)

2. Burgard, W., Fox, D., Moors, M., Simmons, R., Thrun, S.: Collaborative multi-
robot exploration. In: Proc. ICRA, pp. 476–481 (2000)

3. Sariel, S., Balch, T.: Real time auction based allocation of tasks for multi-robot
exploration problem in dynamic environments. In: Proc. AAAI Workshop on Inte-
grating Planning and Scheduling, pp. 27–33 (2005)

4. Amigoni, F.: Experimental evaluation of some exploration strategies for mobile
robots. In: Proc. ICRA, pp. 2818–2823 (2008)

5. Gerkey, B., Mataric, M.: A formal analysis and taxonomy of task allocation in
multi-robot systems. Int. J. Robot. Res. 23, 939–954 (2004)

How Much Worth Is Coordination of Mobile Robots 117

6. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: A robot
simulator for research and education. In: Proc. ICRA, pp. 1400–1405 (2007)

7. Visser, A., Slamet, B.: Including communication success in the estimation of infor-
mation gain for multi-robot exploration. In: Proc. WiOPT, pp. 680–687 (2008)

8. Lopez-Sanchez, M., Esteva, F., Lopez de Mantaras, R., Sierra, C., Amat, J.: Map
generation by cooperative low-cost robots in structured unknown environments.
Auton. Robot. 5, 53–61 (1998)

9. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-
theoretic approach to multi-robot mapping and exploration. In: Proc. IROS, pp.
3232–3238 (2003)

10. Marjovi, A., Nunes, J., Marques, L., de Almeida, A.: Multi-robot exploration and
fire searching. In: Proc. IROS, pp. 1929–1934 (2009)

11. Tovey, C., Koenig, S.: Improved analysis of greedy mapping. In: Proc. IROS, pp.
3251–3257 (2003)

12. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proc. Int’l
Conf. Autonomous Agents, pp. 47–53 (1998)

13. Stachniss, C., Burgard, W.: Exploring unknown environments with mobile robots
using coverage maps. In: Proc. IJCAI, pp. 1127–1134 (2003)

14. Gonzáles-Baños, H., Latombe, J.C.: Navigation strategies for exploring indoor en-
vironments. Int. J. Robot. Res. 21(10-11), 829–848 (2002)

15. Amigoni, F., Caglioti, V.: An information-based exploration strategy for environ-
ment mapping with mobile robots. Robot. Auton. Syst. 5(58), 684–699 (2010)

16. Tovar, B., Munoz, L., Murrieta-Cid, R., Alencastre, M., Monroy, R., Hutchinson, S.:
Planning exploration strategies for simultaneous localization and mapping. Robot.
Auton. Syst. 54(4), 314–331 (2006)

17. Amigoni, F., Gallo, A.: A multi-objective exploration strategy for mobile robots.
In: Proc. ICRA, pp. 3861–3866 (2005)

18. Basilico, N., Amigoni, F.: Exploration strategies based on multi-criteria decision
making for searching environments in rescue operations. Auton. Robot. 31(4), 401–
417 (2011)

19. Calisi, D., Farinelli, A., Iocchi, L., Nardi, D.: Multi-objective exploration and search
for autonomous rescue robots. J. Field. Robot. 24(8-9), 763–777 (2007)

20. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed
multirobot exploration and mapping. Proc. IEEE 94(7), 1325–1339 (2006)

21. Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes,
H.: Coordination for multi-robot exploration and mapping. In: Proc. AAAI, pp.
852–858 (2000)

22. Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by
a market economy. In: Proc. ICRA, pp. 3016–3023 (2002)

23. Hawley, J., Butler, Z.: Hierarchical distributed task allocation for multi-robot ex-
ploration. In: Proc. DARS, pp. 445–458 (2010)

24. Visser, A., de Buy Wenniger, G., Nijhuis, H., Alnajar, F., Huijten, B., van der
Velden, M., Josemans, W., Terwijn, B., Sobolewski, R., Flynn, H., de Hoog, J.:
Amsterdam Oxford joint rescue forces - Team description paper - RoboCup 2009.
In: Proc. RoboCup (2009)

25. Pestman, W.: Mathematical Statistics: an Introduction. de Gruyter (1998)

Robot Localisation Using Natural Landmarks

Peter Anderson, Yongki Yusmanthia,
Bernhard Hengst, and Arcot Sowmya

School of Computer Science and Engineering,
University of New South Wales, UNSW Sydney 2052 Australia

Abstract. This paper introduces an optimised method for extracting
natural landmarks to improve localisation during RoboCup soccer
matches. The method uses modified 1D SURF features extracted from
pixels on the robot’s horizon. Consistent with the original SURF al-
gorithm, the extracted features are robust to lighting changes, scale
changes, and small changes in viewing angle or to the scene itself. Fur-
thermore, we show that on a typical laptop 1D SURF runs more than
one thousand times faster than SURF, achieving sub-millisecond per-
formance. This makes the method suitable for visual navigation of re-
source constrained mobile robots. We demonstrate that by using just two
stored images, it is possible to largely resolve the RoboCup SPL field end
ambiguity.

1 Introduction

In the RoboCup soccer Standard Platform League (SPL), the field set-up has
changed over the years to progressively remove navigation beacons and other
colour coded visual cues. In keeping with this trend, in the 2012 SPL competition
the goal-posts at either end of the field are to be made the same colour for
the first time. This implies that a robot forced to localise from an unknown
starting position will not be able to resolve one end of the field from the other.
In RoboCup matches this requirement can arise after a complicated fall, for
example when robots become entangled, slip, and are rotated unwittingly.

B-Human’s 2011 Open Challenge demonstration addressed the field-end am-
biguity challenge by using a team-wide ball model, enabling a kidnapped robot
to recover by fusing their own ball observations with those of their team-mates
[10]. The authors acknowledged, however, that this approach could fail in sit-
uations where a robot is alone, unaware that it has been kidnapped, or if the
team-wide ball model is incorrect. An own goal is the potentially disastrous re-
sult of one of these localisation failures. To avoid these problems and to allow
a single robot to localise, a method for extracting unique natural landmarks
from images of the unspecified environment beyond the field is required. In this
context, a natural landmark is defined as a set of scale-invariant local features
that can be used to find point correspondences, and ultimately a perspective
transformation, between two images containing the same object.

SURF (Speeded Up Robust Features) [2], [1] and SIFT (Scale-Invariant Fea-
ture Transform) [9] are two existing methods for extracting invariant local

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 118–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Robot Localisation Using Natural Landmarks 119

features from images. However, these methods are relatively computationally
expensive and difficult or impossible to implement in real time on a resource
constrained robot. To overcome these resource limitations, this paper introduces
an optimised feature detector consisting of a modified one dimensional SURF
algorithm (1D SURF), applied to a single row of grey-scale pixels captured at
the robot’s horizon. The horizon image is chosen for analysis because, for a robot
moving on a planar surface, the identified features cannot rotate or move verti-
cally, and must always remain in the same order. The use of a 1D horizon image
and other optimisations dramatically reduces the computational expense of the
algorithm, while exploiting the planar nature of the robot’s movement and still
providing acceptable repeatability of the features.

By using 1DSURFwe show that a resource limitedmobile robot is able to mem-
orise and recognise natural landmarks seen at the horizon in typical indoor envi-
ronments in real time. Consistent with the original SURF algorithm, the extracted
landmarks are robust to lighting changes, scale changes, small scene changes and
small changes inviewing angle.Wehaveused theAldebaranNaohumanoid robot to
evaluate the 1D SURF algorithm, but the method could be applied to other vision-
based robot localisation problems where the robot moves on a planar surface and
can estimate the position of the horizon in images. The remainder of this paper
is organised as follows: section 2 outlines related work, section 3 describes the 1D
SURF algorithm and section 4 presents experimental results.

2 Background

Both SIFT [9] and SURF [2], [1] are feature representations that are designed to
be stable under scale and viewpoint changes. Each method identifies potential
features by searching for extrema at all possible scales of a grey-scale image. In
SIFT, this step is implemented efficiently by using the difference of Gaussians
function applied in scale-space to a series of smoothed and re-sampled images.
Once features have been identified, they are accurately localised in both scale
and location by interpolating from a 3D quadratic function fitted to local sample
points. Next, feature points that are poorly located along an edge are eliminated
and an orientation is assigned to each feature, so all future operations can be
performed in a rotation invariant manner. SIFT calculates a 128-dimension de-
scriptor vector for each identified feature based on the 8-bin histogram of the
image gradient in 4x4 subregions around the feature point location. This, com-
bined with the use of a Gaussian weighting function and normalisation of the
descriptor vector, produces features that are invariant to scaling and rotation,
as well as small viewpoint and illumination changes.

SURF is related to SIFT, but instead of using a Difference of Gaussian filter,
SURF uses simple box filters which can be evaluated very efficiently using inte-
gral images. Box filters are used to approximate Gaussian second order partial
derivatives and find the determinant of the Hessian matrix, which is referred to
as the blob response at a particular location and scale. Features are yielded at
local maxima of this response, found by thresholding the response and apply-
ing non-maximal suppression in a 3x3x3 neighbourhood over the image and in

120 P. Anderson et al.

scales. Like SIFT, SURF also involves feature localisation by interpolating from
a fitted 3D quadratic function, and orientation assignment. The SURF feature
descriptor uses integral images in conjunction with Haar wavelets to calculate a
64-dimension descriptor vector. This is calculated by summing both the signed
and absolute values of both the horizontal and vertical Haar wavelet response
over 25 sample points to generate a 4-dimension vector in each of 4x4 subregions
around the feature point location.

A comparison of SIFT and SURF using a standard testing procedure based
on a range of real-world images found SURF to be faster and more accurate than
SIFT [8]. For this reason we have chosen SURF as the basis of our 1D feature
representation. Several other papers have adapted SIFT methods to operate on
1D data. The closest work to ours [3], [4], [5], use a 1D variation of SIFT to lo-
calise a mobile robot fitted with an omni-directional camera. This was achieved
by identifying SIFT-like features in a 1D circular panoramic image, calculat-
ing feature descriptors based on colour and curvature information, and using
a circular dynamic programming algorithm to match features between images.
Compared to this work, we target a robot camera with a horizontal viewing
angle of only 47.8 degrees, rather than 360 degrees, which dramatically reduces
the amount of information available in a 1D horizon image. Furthermore, for
reasons of computational efficiency we do not use colour information and use
SURF rather than SIFT as the basis for our method.

3 1D SURF

In many respects the 1D SURF algorithm represents the equivalent of SURF,
but using only one image dimension rather than two. SURF searches for blob
response extrema in a 3D scale-space consisting of horizontal location, vertical
location and scale. In 1D SURF, the search is conducted in a 2D scale-space con-
sisting of horizontal location and scale only. However, there are also some other
significant modifications and simplifications which were made to the original
algorithm, as outlined below.

As indicated in Figure 1 Left, the input to the 1D SURF algorithm is a single
row of grey-scale image pixels. The intensity values of these pixels are calculated
by sub-sampling every 4 pixels along the robot’s horizon, and taking the sum
over a band of 30 vertical pixels at each sample point. The vertical sum minimises
the sensitivity of extracted features to errors in the location of the horizon, and
the sum is faster to compute than the mean. The resulting increase in pixel
intensity values can be compensated in the response threshold. The position
of the horizon in the image is determined by reading the robot’s limb position
sensors and calculating the forward kinematic chain from the foot to the camera,
in accordance with the Denavit-Hartenberg parameters previously determined
by the rUNSWift team [7].

Robot Localisation Using Natural Landmarks 121

Scale

SURF 1D SURF

Fig. 1. Left: Image captured by the Nao robot showing superimposed 30 pixel horizon
band in red, and the extracted grey-scale horizon pixels at the top of the image. Right:
Identification of local maxima in scale-space. Pixel ’X’ is selected as a maxima if it is
greater than the marked pixels around it.

To identify local maxima of the blob response in scale-space, SURF thresholds
the responses, then each pixel in 3D scale-space is compared to its 26 neighbours
in a 3x3x3 neighbourhood to determine if it is a local maximum. In the case of 1D
SURF, rather than searching for local maxima in a 3x3 scale-space neighbour-
hood, we apply a weaker test and only require that responses be extrema in the
single space dimensional, as illustrated in Figure 1 Right. This relaxation ensures
that sufficient feature points will be detected. It is an important aspect of the
approach that a large number of relatively poor-quality features are generated,
rather than relying on a small number of very distinctive features. A typical 1D
horizon image containing 640 pixels might generate 50 - 70 features, depending
on the parameter values chosen. In our case we use a scale-space consisting of 4
octaves of 3 intervals each.

Since in 1D SURF all features are defined with reference to the horizon, the
SURF orientation assignment step is no longer necessary and can be disregarded.
SURF interpolates the location of features in both space and scale to sub-pixel
accuracy by fitting a 3D quadratic curve to the local image function. In our
application, we found that the additional accuracy provided by this step was not
worth the computational burden, and it was also discarded. Finally, although
the 1D SURF feature descriptor is calculated analogously to the SURF feature
descriptor, due to the reduction in sample space and by using 3 subregions
instead of 4, we produce a 6-dimension feature descriptor rather than a 64-
dimension feature descriptor, allowing for much faster matching of descriptors
across images.

3.1 Application to Natural Landmark Recognition

A simple method is presented to memorise, and subsequently recognise, natu-
ral landmarks using 1D SURF features. Given a test image and a stored image,

122 P. Anderson et al.

landmark recognition is performed by matching features in the test image to
their nearest neighbours in the stored image, based on the Euclidean distance
between feature descriptors. As before [9], feature matches are considered to be
valid if the nearest-neighbour distance ratio is less than 0.7. Similarly [5], we
then assign a recognition score to the test image calculated as the sum over all
valid matched features of the inverse distance between feature descriptors. A
high recognition score indicates that the test image contains the same natural
landmark as the stored image with high likelihood.

The above method, which we will refer to as nearest neighbour (NN) matching,
does not preclude feature matches that are out of order, or otherwise inconsis-
tent in terms of scale or horizontal displacement. Therefore a second matching
method is presented, which first matches nearest neighbour features, and then
uses RANSAC [6] to discard feature matches that do not agree on a consistent
landmark pose, before recalculating the recognition score. A consistent pose is
defined as a set of matched features that conform to a straight line matching
function as follows, where xtest,i and xstored,i represent the horizontal pixel lo-
cation of the ith matched feature in the test and stored images respectively, and
βs and βd are scaling and displacement parameters:

xtest,i = βsxstored,i + βd (1)

Given the robot’s limited horizontal field of view, we find a straight line match-
ing function is a reasonable approximation of the true feature matching func-
tion, which is curved in the presence of translation. Compared to NN matching,
recognition scores calculated with this method will be lower, but have potentially
greater discriminatory power. We will refer to this method as nearest neighbour
matching with RANSAC (NN with RANSAC). The further advantage of this
method is that it provides useful information about the robot’s motion between
the two images. The use of RANSAC to discard inconsistent matches generated
by NN matching is shown in Figure 2.

4 Experimental Results

Two experiments were used to evaluate the performance of 1D SURF for robot
localisation. In each experiment, the images used were captured using the Alde-
baran Nao RoboCup edition v3.2, a humanoid robot equipped with a 500MHz
AMD Geode LX800 processor. The Nao has two 640x480 pixel 30 fps digital cam-
eras, each with a horizontal field of view of 47.8 degrees, which can be accessed
one at a time.

4.1 Classification Experiment

The first experiment was designed as a classification task, to assess whether the
recognition score between two images could be used by the robot to determine
whether both images contained the same landmark. Data for the experiment

Robot Localisation Using Natural Landmarks 123

Fig. 2. Left: Matching features in two similar images based on nearest neighbour (NN)
matching. Right: Matching features in the same two images after using RANSAC to
discard matches that don’t agree on a consistent pose (NN with RANSAC). As in Figure
1, each image displays the horizon band in red and the extracted grey-scale horizon
pixels at the top of the image. Matching features are plotted in the top-right panel
against their horizon location in each image. The text panel illustrates the number of
features detected in each image, the number of matches, the recognition score and the
time taken to extract the features on a 2.4GHz laptop.

was captured by rotating the robot at a single location on the field, and cap-
turing 88 images at approximately 4 degree increments. During this process the
background around the field consisted of a typical office environment. From this
image library we generated a test bank of 480 matched images and 2,065 un-
matched images. Two images were considered to match if the angle between
them was less than 20 degrees, implying at least 58% of each image horizon
overlapped with the other image. Example images from the test bank and the
resulting recognition scores are shown in Figure 3.

Although this experiment contains no changes in scale, illumination or view-
ing angle, it provides a useful baseline against which to tune parameters and
assess the likely rate of false positive landmark recognitions. Feature extraction
and matching was performed off-board the robot using a 2.4GHz Core 2 Duo
Processor laptop. This enabled the classification accuracy and speed of 1D SURF
to be easily compared against SURF, for which we used the OpenSURF1 library
implementation.

The sensitivity and specificity of SURF (using NN matching) and 1D SURF
(using NN matching, and NN with RANSAC matching) with variation in the
recognition score discrimination threshold is shown in Figure 4. 1D SURF (using
the horizon pixels only) is clearly less robust than SURF (processing the entire

1 http://www.chrisevansdev.com/computer-vision-opensurf.html

124 P. Anderson et al.

Fig. 3. Left: Two images that almost completely overlap. Although the features on the
horizon are not very distinctive, a high recognition score is generated using 1D SURF
and NN with RANSAC feature matching. Right: Two images with no overlap, resulting
in a low recognition score using the same method. As before, matching features are
plotted in the top-right panel against their horizon location in each image, and the
text panel contains key statistics.

image). However, as illustrated in Table 1, 1D SURF uses only a fraction of the
features, and runs more than one thousand times faster than SURF in this exper-
iment. With the mean extraction time below 0.2ms, real-time feature extraction
on the Nao during RoboCup soccer matches is a clear prospect. Also, using
RANSAC to enforce a consist landmark pose results in a small improvement in
classification accuracy.

Table 1. Running time of feature extraction and matching algorithms evaluated on a
2.4GHz Core 2 Duo laptop

Feature
extraction
technique

Feature matching technique Mean
no.
features

Mean
extraction
time (ms)

Mean
matching
time (ms)

Area under
ROC curve

SURF Nearest neighbour (NN) 429 222.3 19.1 98.8%
1D SURF Nearest neighbour (NN) 59.2 0.158 0.069 88.0%
1D SURF NN with RANSAC 59.2 0.158 0.076 89.6%

4.2 Field Experiment

Having validated the performance of 1D SURF on highly similar images, the
second experiment was designed to assess the performance of 1D SURF under

Robot Localisation Using Natural Landmarks 125

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

SURF − NN
1D SURF − NN
1D SURF − NN with RANSAC
No discrimination

Fig. 4. ROC curve for classifying test images as matched or unmatched using the
recognition score. Using NN with RANSAC matching on this data set, a threshold
recognition score of 100 captured 70% of true positives with a 5% false positive rate.

x (m)

y
(m

)

Right goal recognition, robot facing left

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

x (m)

y
(m

)

50

50

50

100

100

10
0

150

150

150
150

200

20
0200

25
0

25
0250

300

300

Right goal recognition, robot facing right

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

x (m)

y
(m

)

50

10
0

100

100

100

100 150150

150

150

20
0

20
0

200

250

250

300

300

Left goal recognition, robot facing left

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

x (m)

y
(m

) 50
50

50

Left goal recognition, robot facing right

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

Fig. 5. Recognition scores of a single goal image from different areas of the field.
Clockwise from top left: Recognition of right-hand goal when facing left, recognition
of right-hand goal when facing right, recognition of left-hand goal when facing right,
recognition of left-hand goal when facing left.

126 P. Anderson et al.

x (m)

y
(m

)

50

50

50

Right goal recognition, robot facing left

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

x (m)

y
(m

)

50
50

100

100

100

100
150

150

Right goal recognition, robot facing right

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

x (m)

y
(m

)

150

15
0

15
0150

15
0

200

200

200

150

Left goal recognition, robot facing left

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

x (m)

y
(m

)

50

50
Left goal recognition, robot facing right

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

Fig. 6. Recognition scores of a single goal image from different areas of the field, with
the overhead field lighting turned off, and the goals themselves removed. Clockwise
from top left: Recognition of right-hand goal when facing left, recognition of right-hand
goal when facing right, recognition of left-hand goal when facing right, recognition of
left-hand goal when facing left.

changes in scale, viewing angle, illumination and with small scene changes. It
was performed on-board the Nao robot to provide a clearer assessment of the
processing speed of the method with constrained hardware. In this experiment,
we used NN with RANSAC matching and evaluated 1D SURF the way it might
be used in a SPL match; to distinguish one end of the field from the other. To
do this, we positioned the Nao in the centre of the field, captured one image
of each goal area, and stored the extracted feature vectors. Next, we moved
the Nao through a 1m grid of positions covering a 4m x 4m area of the field
(25 positions in total), and recorded the recognition scores at each point when
manually positioned to face approximately towards each goal. By moving the
Nao around the field, large changes in scale and viewing angle were generated.
At each point we hoped to observe a large recognition score for the stored goal
the robot was actually facing, and a low recognition score for the other goal,
indicating that this technique could be used to reliably distinguish field ends
during a match. During this entire experiment both goals were coloured yellow,
and background objects were approximately 2m behind the goals themselves.

Robot Localisation Using Natural Landmarks 127

Fig. 7. Top row: Stored images of the left-hand and right-hand goal areas respectively.
Row 2: Examples of correctly matched field views. Markers indicate the scale and po-
sition of the match. Row 3: Examples of correctly matched views with goals removed
and overhead lights turned off. Bottom row: Some field views that could not be con-
fidently matched to the stored images, possibly due to overexposure and occlusion of
key features respectively.

128 P. Anderson et al.

The recognition scores recorded during this exercise are overlaid on a field
map in Figure 5. Using a recognition threshold of 100 (as determined during
the classification experiment), each field end is correctly recognised from the
single stored image in more than half of the 4m x 4m test area. A very strong
recognition response (greater than 200) is observed in a radius of approximately
1m around the location of the original stored image. Finally, there were zero false
positives recorded when facing the opposite end of the field. The recognition
response to the opposite end of the field is almost always less than 50. Overall,
these results indicate that even with just two stored images, a kidnapped robot
could resolve one end of the field from the other from most mid-field positions. To
provide a clearer indication of the field environment used during the experiment,
Figure 7 depicts the stored goal images and examples of views from different
areas of the field.

In many robot navigation applications, including RoboCup SPL, robots are
subject to varied lighting conditions and the natural landmarks in a given scene
will change over time. To test the robustness of 1D SURF in the face of these
challenges, we repeated the experiment with the overhead field lighting turned
off and both goals removed (to simulate some measurable change to the original
scene). The stored features extracted from the original goal images were not
changed. As shown in Figure 6, the recognition response to the correct field
end is less peaked than before, but the recognition area is still large and again
there are no false positives. It is interesting to note that the recognition area
for the left-hand goal actually increases once the goal itself is removed. The
goal itself can actually be something of a nuisance in the recognition process,
since with large perspective changes it occludes features in the background that
might otherwise be identified. Using a representative sample of field locations,
the mean execution time to extract 1D SURF features on the Nao robot was
12ms. Although this is considerably slower than the 0.158ms extraction time
achieved on the laptop, it is still fast enough to enable features to be extracted
in real time at the full 30 fps frame rate of the Nao camera.

5 Evaluation and Conclusion

This paper has presented an optimised method for extracting local features from
1D images of a mobile robot’s horizon. The extracted 1D SURF features are ro-
bust to lighting changes, scale changes, and small changes in viewing angle or
to the scene itself, making them suitable for robot navigation in indoor environ-
ments. Using 1D SURF features and a NN with RANSAC matching technique,
we demonstrate that (in a relatively distinctive environment with few scene
changes) it is possible to resolve the RoboCup SPL field end ambiguity in real
time using just two stored images.

In actual RoboCup matches, it is likely that the background environment
will be more challenging than our laboratory tests due to the coming and going
of spectators during the match. As such, we anticipate that in practise it will
be necessary to store more than two images, and to update them during the

Robot Localisation Using Natural Landmarks 129

match as the natural landmarks around the field change. In future work we
will investigate methods to simultaneously localise and map changing natural
landmarks around the field, rather than relying on a fixed set of stored images.

Acknowledgements. The authors gratefully acknowledge the support of the
School of Computer Science and Engineering, past and present members of
the rUNSWift team, and associated staff and students in the school’s robotic
laboratory.

References

1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf).
Computer Vision and Image Understanding 110(3), 346–359 (2008)

2. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 404–417. Springer, Heidelberg (2006)

3. Briggs, A., Detweiler, C., Mullen, P., Scharstein, D.: Scale-space features in 1d
omnidirectional images. In: Omnivis 2004, the Fifth Workshop on Omnidirectional
Vision, Prague, Czech Republic, pp. 115–126 (2004)

4. Briggs, A., Li, Y., Scharstein, D., Wilder, M.: Robot navigation using 1d panoramic
images. In: Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, ICRA 2006, pp. 2679–2685. IEEE (2006)

5. Briggs, A.J., Detweiler, C., Li, Y., Mullen, P.C., Scharstein, D.: Matching
scale-space features in 1d panoramas. Computer Vision and Image Understand-
ing 103(3), 184–195 (2006)

6. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM 24(6), 381–395 (1981)

7. Hartenberg, R.S., Denavit, J.: A kinematic notation for lower pair mechanisms
based on matrices. Journal of Applied Mechanics 77, 215–221 (1955)

8. Juan, L., Gwun, O.: A comparison of sift, pca-sift and surf. International Journal
of Image Processing (IJIP) 3(4), 143–152 (2009)

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2), 91–110 (2004)

10. Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf,
C., Haas, T.J.d., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T.,
Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-human team report
and code release 2011 (2011), http://www.b-human.de/publications/

http://www.b-human.de/publications/

Solving Multi-agent Decision Problems Modeled
as Dec-POMDP: A Robot Soccer Case Study

Okan Aşık and H. Levent Akın

Boğaziçi University, Department of Computer Engineering, 34342, İstanbul, Turkey

Abstract. Robot soccer is one of the major domains for studying the coordina-
tion of multi-robot teams. Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) is a recent mathematical framework which has been used
to model multi-agent coordination. In this work, we model simple robot soccer
as Dec-POMDP and solve it using an algorithm which is based on the approach
detailed in [1]. This algorithm uses finite state controllers to represent policies
and searches the policy space with genetic algorithms. We use the TeamBots sim-
ulation environment. We use score difference of a game as a fitness and try to
estimate it by running many simulations. We show that it is possible to model a
robot soccer game as a Dec-POMDP and achieve satisfactory results. The trained
policy wins almost all of the games against the standard TeamBots teams, and a
reinforcement learning based team developed elsewhere.

Keywords: DEC-POMDP, genetic algorithms, robot soccer, simulation, high-
level planning.

1 Introduction

Robots are physical agents which interact with their environment via their sensors and
actuators. The main problem of a robot is finding a method to map its sensor inputs to
actuator outputs to achieve its designated goal. This can be modeled as a decision mak-
ing problem. There are many methods to solve decision making problems. Approaches
based on Markov Decision Process (MDP) models are widely used compared to other
methods.

There are some tasks which require the cooperation of agents, such as robot soc-
cer. All robots act autonomously, but they should be coordinated. Decision making is a
more complicated problem for such multi-robot situations because individual actions of
the robots should result in the completion of the task of the team, such as scoring. De-
centralized Partially Observable Markov Decision Process (Dec-POMDP) model is one
of the promising approaches to solve multi-agent decision making under uncertainty.
There are different formalizations for Dec-POMDP, in our study we use Bernstein’s
model [2].

In this paper, we model robot soccer as a Dec-POMDP problem and use the GA-
FSC algorithm in [1]. The algorithm represents policies as finite-state controllers and
searches the policy space with genetic algorithms. We use TeamBots [3] 2D robot soc-
cer simulator as the simulation environment. We show that it is possible to develop a
successful team that defeats all the predefined teams in the TeamBots environment and
also a reinforcement learning based team developed in another study [4].

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 130–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Solving Multi-agent Decision Problems Modeled as Dec-POMDP 131

The organization of the rest of the paper is as follows. Section 2 introduces related
work. Section 3 presents the algorithm we used to solve Dec-POMDP problem. Section
4 introduces our experiments and results. We present our conclusions and intended
future work in Section 5.

2 Related Work

We can categorize Dec-POMDP algorithms as exact and approximate algorithms. Op-
timally solving Dec-POMDP problems, have been shown to be NEXP-complete [5].
Therefore, exact solutions are not feasible for almost all real-world applications, and
the current research is mainly about finding approximate solutions. The algorithms de-
veloped so far are generally tested on benchmark Dec-POMDP problems such as Dec-
Tiger, multi-access broadcast channel, meeting in a grid, box pushing, and fire fighting
problems [1]. They are used to compare and contrast the performances of different
algorithms.

Wu and Chen solves the soccer problem modeled as a Dec-POMDP with Correlation-
MDPs in the RoboCup domain [6]. They base their work on the memory-bounded dy-
namic programming algorithm proposed by Bernstein et al [2]. Their main contribution
is proposing an approximate algorithm to calculate the correlation device. They used the
algorithm to improve the coordination of soccer playing agents in the RoboCup 2006
Soccer 2D Simulation Competitions, and they won all the matches except one. This
study is important in terms of showing the capabilities of the Dec-POMDP framework
in the robot soccer domain.

Keepaway soccer was put forth as a testbed for machine learning [7], and there is a
wide variety of reinforcement algorithms which are tested with keepaway soccer [8, 9,
10, 11]. Di Pietro et al used evolutionary algorithms to learn a policy which results in
coordinated behavior [12]. They formulate the problem so that the agent decisions are
based on parameters such as the distance to the recipient. The evolutionary algorithm
searches for the optimal parameters to keep the ball as long as possible which is the
ultimate goal of keepaway soccer. This work is close to our work in terms of using
an evolutionary algorithm and trying to solve the soccer problem, but their solution is
problem specific which is a sub-problem of robot soccer.

Although there are many studies on how to learn to play soccer, they have either
combined their solution with the existing planning framework or solved a subset of
soccer problem such as keepaway soccer [7, 13]. In this paper, we model robot soccer
as a Dec-POMDP and represent the policy as a finite state controller. The robots execute
the trained policy represented as finite state controllers throughout the game.

3 Solving Problems Modeled as Decentralized Markov Decision
Processes

The Decentralized Partially Observable Markov Decision Process (DEC-POMDP) [5]
model consists of 7-tuple (n, S,A, T,Ω,Obs,R) where:

132 O. Aşık and H. Levent Akın

– n is the number of agents.
– S is a finite set of states.
– A is the set of joint actions which is the Cartesian product of Ai (i = 1, 2..., n) i.e.

the set of actions available to agenti.
– T is the state transition function which determines the probabilities of the possible

next states given the current state S and the current joint action a.
– Ω is the set of joint observations which is the Cartesian product ofΩi (i = 1, 2..., n)

i.e. the set of observations available to agenti. At any time step the agents receive
a joint observation o = (o1, o2, ..., on) from the environment.

– Obs is the observation function which specifies the probability of receiving the joint
observation o given the current state S and the current joint action a.

– R is the immediate reward function specifying the reward taken by the multiagent
team given the current state and the joint action.

3.1 Dec-POMDP Policies and Finite State Controllers

A Dec-POMDP policy is a mapping of the observation history to the actions. Generally,
policies are represented as a policy tree where observations lead to actions. However,
the tree representation is not sufficiently compact. The Finite state controller (FSC)
representation is one of the viable candidates to represent policies. A FSC is a special
finite state machine. It consists of a set of states and transitions. The main difference
here is that those states called FSC nodes, and are abstract and different from the
environment states. Every FSC node corresponds to one action which is the best action
for that particular state. Transitions take place when a particular observation is taken at
a particular FSC node. An example finite state controller can be seen in Figure 1. This
finite state controller is designed for a problem having only two observations and three
actions. In a FSC, there is always a starting state. Let us assume that the starting state is
S1 so that A1 is executed first. If the robot gets an observation O2, it updates its current
FSC node to S2 and executes the action A2. Action execution and FSC node update
continues until the the end of the episode. This finite state controller represents the
policy of a single robot. The critical point about the finite state controller representation
is that we can model a Dec-POMDP policy with different numbers of nodes. Since
every node corresponds to one action, the minimum number of nodes is the number
of actions. Since having greater number of nodes than the number of actions does not
improve the performance of the algorithm[1], in our experiments, the number of FSC
nodes is equal to the number of actions.

3.2 Genetic Algorithms

In genetic algorithms, a candidate solution is encoded in a chromosome and the set of
all chromosomes is called a population. The fitness of a candidate solution determines
how good the candidate is. Through the application of evolutionary operators such as
selection, crossover, and mutation, a new population is created from the current pop-
ulation. When the convergence criteria are met, the algorithm terminates and the best
candidate becomes the solution of the algorithm [14].

Solving Multi-agent Decision Problems Modeled as Dec-POMDP 133

Fig. 1. An Example Finite State Controller

Encoding. In order to solve a Dec-POMDP using genetic algorithms, we should encode
the candidate solution, the policy. In this study, the encoding of a FSC as a chromo-
some is as follows: the first n genes represent node-action mapping and their values are
between 1 and the number of actions (A). Then, for each node, there is an observation-
node mapping which denotes the transition when an observation is taken as seen in
Figure 2. The value of this range is between 1 and S which represents the number of
nodes. The whole chromosome of the Dec-POMDP policy is constructed by concate-
nating every robot’s policy.

Fig. 2. An Example FSC Encoding

Fitness Calculation. Fitness calculation is one of the most critical parts of any genetic
algorithm. For Dec-POMDP problems for which transition and reward functions can be
stated, it is possible to calculate fitness values for a given policy. However, for problems
with unknown transition and reward functions, only approximate fitness calculation is
possible.

One method of calculating fitness approximately is by running a large number of
simulations with a given policy. The fitness of a policy have been shown to stabilize
after 1000 simulations for Dec-POMDP benchmark problems [1]. However, for a stable
fitness calculation, we should run as many simulations as possible, but the reasonable
number of simulations is highly problem dependent. There is a trade-off between the
precision of the calculation and the running time complexity of the calculation. One of

134 O. Aşık and H. Levent Akın

the most important factors that have an effect on choosing the number of simulations
is accuracy. We need to estimate the fitness value sufficiently accurately so that the
chromosomes can be ranked.

3.3 The GA-FSC Algorithm

Even though an evolutionary strategy based approach has been proposed in [15], it
has been shown to be not sufficiently scalable with the number of agents. In [1] it
has been shown that the finite state controller based approach performs better than the
previous approach in [15]. For this reason we use the genetic algorithms based approach
proposed in [1].

This algorithm has two major components :

– Encoding the candidate policy: A policy is represented as a FSC and is encoded
as an integer chromosome whose details will be given below.

– Searching the policy space for the best policy with genetic algorithm: In [1],
two fitness calculation approaches are proposed: exact and approximate. For the
robot soccer problem considered here, exact calculation is not possible since the
dynamics of the environment are not known exactly. The approximate calculation
method, however, relies on running many simulations with a given policy and tak-
ing the average reward of those simulations as the fitness of the policy.

The algorithm has three stages: pre-evolution, during evolution, and post-evolution.
After a random population is formed, the k best chromosomes are selected based on
their fitnesses. Those k chromosomes are copied to the best chromosomes list. At the
end of each generation, the best k chromosomes of the population are compared to the
chromosomes in the best chromosomes list, if it one of the best chromosomes of this
generation is better than one of the current best chromosomes, its fitness is calculated
more precisely by running additional simulations. If it is still better, it is added to the
current best chromosomes list. At the end of the evolution which is determined by
setting a maximum generation number, the best of best chromosomes list is determined
by running additional simulations. In this study, we keep 10 chromosomes in the best
chromosomes list.

3.4 Robot Soccer Dec-POMDP Model

We use the TeamBots simulation environment [3] as a testbed for our Dec-POMDP al-
gorithm. The model is directly related to the simulation environment. Different models
are required for different simulation environments. Since we have already used Team-
Bots simulation in different studies, we have a well-established MDP model. To model
the robot soccer as Dec-POMDP model, we need to define the set of actions, set of
observations and the number of states. The finite set of actions is as follows:

A = {Go to ball,Go to support position,Go to defense position,

Pass to the closest teammate,Pass to the teammate closest to the opponent goal}

Solving Multi-agent Decision Problems Modeled as Dec-POMDP 135

The finite set of observations is as follows: The TeamBots field is divided with 2 equally
spaced lines from the narrow edge and 3 equally spaced lines from the wide edge. In
total there are 12 grid cells as seen in Figure 3. The Location information is based on
this grid.

Fig. 3. TeamBots Field

We define two observation metrics in those grid cells. The first observation metric
called Dominance has three possible values based on the number of players in the cell
the ball resides:

– Equal number of players,
– The opponent team has more players, and
– Our team has more players.

The other observation metric is called Closeness. It also has three possible values which
are based on which player is the closest to the ball:

– An opponent player is the closest,
– A teammate is the closest, and
– The robot itself is the closest.

Therefore, the observation set includes three critical pieces of information about the
environment: The location of the the ball in the grid, the player the closest to the ball,
and the team which is the dominant one in the cell where the ball resides.

Observation = Location × Closeness × Dominance

4 Experiments and Results

All the experiments in this study are done with the TeamBots simulation environment
using the JGAP genetic algorithms package [16]. In the standard TeamBots package
there are four standard teams. They are in the order of increasing power: BrianTeam,

136 O. Aşık and H. Levent Akın

Kechze, SibHeteroG, AIKHomoG. In addition there is a team called NullTeam which
is used for learning very basic behaviors such as dribbling the ball. The players of
the NullTeam are immobile during the game. The matches are played with teams of 5
players.

We train against all teams iteratively starting from the easiest team up to the hardest
team. Our ultimate goal is to fine tune the algorithm so that it is best suited for solving
the robot soccer problem modeled as a Dec-POMDP. Since we need a stable fitness
calculation, the number of simulations used for estimating the fitness of a candidate
policy is one of the parameters we need to determine.

4.1 Genetic Algorithm

When we define our problem as a Dec-POMDP and use GA-FSC as a solver, the
quality of the solution is highly dependent on the parameters of the genetic algorithm.
We determined the genetic algorithm parameters shown in Table 1 empirically.

Table 1. Parameters of the Genetic Algorithm

Parameter Value
Population Size 50
Mutation Rate 0.1
Crossover Rate 0.5
NB : Number of Simulations Before Evolution 100
ND : Number of Simulations During Evolution 50
NA : Number of Simulations After Evolution 500
Fitness Metric Score
Maximum Number of Generations 50
Convergence Limit 20

The evolution cycle for training the Dec-POMDP team against a selected standard
team is as follows. The first population is initialized randomly. Then, we determine the
best chromosomes of the evolution by running NB simulations. In each generation, we
determine the fitness of the chromosomes in the population by runningND simulations.
At the end of every generation, we get the top 10 chromosomes of the population and
recalculate their fitness by running NB simulations. If any one of them is still good
enough to be in the best chromosomes list, it is added to the list and the evolution con-
tinues. As the termination criteria we use reaching the maximum number of generations
or the maximum fitness not changing for a specified number of generations. When the
evolution ends we calculate the best solution from the best chromosomes list by running
NA simulations.

Training is carried out in stages. We first train against the NullTeam, then against
the other standard TeamBots teams, in the order of increasing difficulty. The population
of a previous team is used for the next team except the NullTeam whose population is
randomly initialized.

Solving Multi-agent Decision Problems Modeled as Dec-POMDP 137

4.2 Fitness Calculation

The main problem about the fitness calculation is that we try to estimate the fitness
of a policy by taking many simulation runs. Therefore, we need to find the number of
simulation runs which is enough to rank the chromosomes so that the genetic algorithm
can converge. In Figure 4, we show the change in the rank of 50 chromosomes over
the number of simulations. The change in rank is calculated by summing the change
of all chromosomes between two consecutive runs. It is found that 50 simulation runs
are enough to distinguish good solution candidate since after 50 simulations the rank of
chromosomes do not oscillate much. However, we need to determine two more numbers
for simulation runs to achieve higher precision when deciding whether the policy is
good enough to be kept as one of the best solutions, and when deciding what is the
best of all best candidates. By considering running time limitations, we choose 100
simulation runs to decide whether a policy is good enough to be in the best chromosome
list, and we choose 500 simulation runs to decide what is the best solution of best
chromosomes list.

Fig. 4. The Change in the Rank of Chromosomes by the Number of Simulations

In robot soccer, the fitness of a policy can be calculated in different ways. One of the
possible fitness calculation methods is the score difference. However, score difference
may not be a good method since it may not be selective enough to differentiate a good
soccer player policy from a bad one when their score is the same. When policies are
randomly initialized, none of the policies in the population scores goals against the
good teams so that they all have the same fitness. We know that some policies are
more successful at playing soccer, but they cannot score. Those chromosomes should
be selected for next generations. Therefore, to solve this problem, we train policies
iteratively starting with the weaker teams and continuing with the stronger teams. The
performance of the method can be seen in Table 2.

138 O. Aşık and H. Levent Akın

Table 2. The Performance of Iterative Training with Score Difference Fitness Method

Opponent Average Score
Difference of 500
Evaluation Runs

Average Score
Difference at The
End of Evolution
for That Team

Best Score Differ-
ence

Win Draw Loss

NullTeam 8.42 43.96 19 499 1 0
BrianTeam 7.04 22.9 13 500 0 0
Kechze 3.68 4.97 9 493 7 0
SibHeteroG 1.31 1.74 4 399 90 11
AIKHomoG 2.48 3.77 7 460 37 3
Mericli et al team
(RL-Based)

1.74 N.A. 6 421 78 1

The difference between the average scores at the end of evolution and the average
scores of 500 evaluation runs is high for weak teams such as NullTeam, and BrianTeam.
Since the policies trained against those teams easily converge to successful policies
which are a series of simple actions, the score of the evaluation run is lower than the
score at end of evolution for that team. Another reason for this difference is that the
final best policy is highly adapted to the last teams it is trained against.

One of the most important performance measures for the algorithm is the number
of wins and losses. As it is seen in Table 2, the trained policy never loses against
NullTeam, BrianTeam, Kechze, and loses only 11 games against SibHeteroG, 3 games
against AIKHomoG out of 500 games. Although, the average score difference against
SibHeteroG, and AIKHomoG is not very high, the number of wins are quite satisfactory.

In addition to the standard TeamBots teams, we also report the average scores against
the team trained by Mericli et al [4]. Even though our team was trained only against the
TeamBots teams we have a positive average score against the Mericli et al team and we
win most of the games as seen in Table 2.

4.3 Evaluation of DEC-POMDP Policies

Although there is no benchmark for the TeamBots simulation environment, in order to
assess the performance of our method we compare our average score with the scores re-
ported in [4]. Although the focus of the work reported in [4] is different from our work,
both studies use the same MDP model and the simulation environment, i.e., the same
basic actions, state definition, and observation definition. They use the reinforcement
learning approach with soccer metrics developed by Mericli et al [17]. In Table 3, we
compare our results with the scores reported in [4]. Although, our average scores are
lower, we achieve positive average scores against all teams and win most of the games
against SibHeteroG. However, the reinforcement learning based team has a negative
average score against SibHeteroG.

Solving Multi-agent Decision Problems Modeled as Dec-POMDP 139

Table 3. The Comparison of Average Scores

Opponent Team Average Scores of Dec-POMDP
Based Approach

Average Scores of Reinforcement
Learning Based Approach [4]

NullTeam 8.42 28.25
BrianTeam 7.04 17.80
Kechze 3.68 12.67
SibHeteroG 1.31 -4.90
AIKHomoG 2.48 N.A.

5 Conclusions

Robot soccer is one of the best testbeds for studying a variety of different techniques
in the multi-robot domain. In this paper, we propose the application of a Dec-POMDP
algorithm for developing team strategies for robot soccer. We implemented the algo-
rithm in the TeamBots 2D simulator and compared the results with the previous work.
We found that the algorithm is quite suitable for solving robot soccer decision prob-
lems since we get positive average scores against teams of different strength and win
almost all of the matches. Another contribution of the study is that we investigated dif-
ferent parameters of the proposed algorithm and their effect to the performance of the
solution.

One of the most important limitations of this algorithm is the estimation of the fitness
of individual chromosomes. Since it is based on repeating the simulation many times, as
the fidelity of the simulator increases, the running time of the simulator also increases.
Therefore, we need to deal with a trade-off between the running time, and the accuracy.

In future work, we plan to develop a better fitness evaluation method and experiment
with it in the RoboCup 2D simulator. Our ultimate future plan is to implement and
experiment this algorithm in the RoboCup 3D simulator and use it in the RoboCup
Standard Platform League.

Acknowledgments. This study was supported by Boğaziçi University Research Fund
project 09M105.

References

[1] Eker, B.: Evolutionary Algorithms for Solving DEC-POMDP Problems. PhD thesis,
Boğaziçi University (2012)

[2] Bernstein, D.S., Hansen, E.A., Zilberstein, S.: Bounded Policy Iteration for Decentralized
POMDPs. In: Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, pp. 1287–1292 (2005)

[3] Balch, T.: Teambots mobile robot simulator (2000)
[4] Meriçli, Ç., Meriçli, T., Levent Akın, H.: A Reward Function Generation Method Using

Genetic Algorithms: A Robot Soccer Case Study. In: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2010, Richland,
SC, vol. 1, pp. 1513–1514 (2010); International Foundation for Autonomous Agents and
Multiagent Systems

140 O. Aşık and H. Levent Akın

[5] Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The Complexity of Decentralized
Control of Markov Decision Processes. Math. Oper. Res. 27, 819–840 (2002)

[6] Wu, F., Chen, X.: Solving Large-Scale and Sparse-Reward DEC-POMDPs with
Correlation-MDPs. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007.
LNCS (LNAI), vol. 5001, pp. 208–219. Springer, Heidelberg (2008)

[7] Stone, P., Sutton, R.S.: Scaling Reinforcement Learning toward RoboCup Soccer. In: Proc.
18th International Conf. on Machine Learning, pp. 537–544. Morgan Kaufmann, San Fran-
cisco (2001)

[8] Stone, P., Sutton, R.S., Singh, S.: Reinforcement Learning for 3 vs. 2 Keepaway. In: Stone,
P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 249–
258. Springer, Heidelberg (2001)

[9] Stone, P., Sutton, R.S., Singh, S.: Reinforcement Learning for 3 vs. 2 Keepaway. In: Stone,
P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 249–
258. Springer, Heidelberg (2001)

[10] Whiteson, S., Kohl, N., Miikkulainen, R., Stone, P.: Evolving Soccer Keepaway Players
Through Task Decomposition. Machine Learning 59, 5–30 (2005), 10.1007/s10994-005-
0460-9

[11] Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway Soccer: From Machine Learn-
ing Testbed to Benchmark. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.)
RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 93–105. Springer, Heidelberg (2006)

[12] Pietro, A.D., While, L., Barone, L.: Learning In RoboCup Keepaway Using Evolutionary
Algorithms. In: GECCO 2002, pp. 1065–1072 (2002)

[13] Amato, C., Bernstein, D.S., Zilberstein, S.: Optimal Fixed-Size Controllers for Decentral-
ized POMDPs. In: Proceedings of the AAMAS Workshop on Multi-Agent Sequential De-
cision Making in Uncertain Domains, Hakodate, Japan, pp. 61–71 (2006)

[14] Levent Akın, H.: Evolutionary Computation: A Natural Answer to Artificial Questions.
In: Proceedings of ANNAL: Hints from Life to Artificial Intelligence, pp. 41–52. METU,
Ankara (1994)

[15] Eker, B., Levent Akın, H.: Using evolution strategies to solve DEC-POMDP problems. Soft
Computing-A Fusion of Foundations, Methodologies and Applications 14(1), 35–47 (2010)

[16] Meffert, K., Meseguer, J., Marti, E.D., Meskauskas, A., Vos, J., Rotstan, N.: Jgap: Java
genetic algorithms package (2011)

[17] Meriçli, Ç., Levent Akın, H.: A Layered Metric Definition and Evaluation Framework
for Multirobot Systems. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.)
RoboCup 2008. LNCS, vol. 5399, pp. 568–579. Springer, Heidelberg (2009)

Towards a Principled Solution

to Simulated Robot Soccer

Aijun Bai, Feng Wu, and Xiaoping Chen

Department of Computer Science,
University of Science and Technology of China

{baj,wufeng}@mail.ustc.edu.cn, xpchen@ustc.edu.cn

Abstract. The RoboCup soccer simulation 2D domain is a very large
testbed for the research of planning and machine learning. It has com-
peted in the annual world championship tournaments in the past 15
years. However it is still unclear that whether more principled techniques
such as decision-theoretic planning take an important role in the success
for a RoboCup 2D team. In this paper, we present a novel approach
based on MAXQ-OP to automated planning in the RoboCup 2D do-
main. It combines the benefits of a general hierarchical structure based
on MAXQ value function decomposition with the power of heuristic and
approximate techniques. The proposed framework provides a principled
solution to programming autonomous agents in large stochastic domains.
The MAXQ-OP framework has been implemented in our RoboCup 2D
team, WrightEagle. The empirical results indicated that the agents de-
veloped with this framework and related techniques reached outstanding
performances, showing its potential of scalability to very large domains.

Keywords: RoboCup, Soccer Simulation 2D, MAXQ-OP.

1 Introduction

As one of oldest leagues in RoboCup, soccer simulation 2D has achieved great
successes and inspired many researchers all over the world to engage themselves
in this game each year [5]. Hundreds of research articles based on RoboCup 2D
have been published.1 Comparing to other leagues in RoboCup, the key feature of
RoboCup 2D is the abstraction made, which relieves the researchers from having
to handle low-level robot problems such as object recognition, communications,
and hardware issues. The abstraction enables researchers to focus on high-level
functions such as cooperation and learning. The key challenge of RoboCup 2D
lies in the fact that it is a fully distributed, multi-agent stochastic domain with
continuous state, action and observation space [8].

Stone et al. [9] have done a lot of work on applying reinforcement learning
methods to RoboCup 2D. Their approaches learn high-level decisions in a keep-
away subtask using episodic SMDP Sarsa(λ) with linear tile-coding function

1 http://www.cs.utexas.edu/~pstone/tmp/sim-league-research.pdf

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 141–153, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.utexas.edu/~pstone/tmp/sim-league-research.pdf

142 A. Bai, F. Wu, and X. Chen

approximation. More precisely, their robots learn individually when to hold the
ball and when to pass it to a teammate. Most recently, they extended their work
to a more general task named half field offense [6]. On the same reinforcement
learning track, Riedmiller et al. [7] have developed several effective techniques
for learning mainly low-level skills in RoboCup 2D.

In this paper, we present an alternative approach based on MAXQ-OP [1] to
automated planning in the RoboCup 2D domain. It combines the main advan-
tages of online planning and hierarchical decomposition, namely MAXQ. The
proposed framework provides a principled solution to programming autonomous
agents in large stochastic domains. The key contribution of this paper lies in
the overall framework for exploiting the hierarchical structure online and the
approximation made for computing the completion function. The MAXQ-OP
framework has been implemented in our team WrightEagle, which has been par-
ticipating in annual competitions of RoboCup since 1999 and have got 3 cham-
pions and 4 runners-up of RoboCup in recent 7 years.2 The empirical results
indicated that the agents developed with this framework and the related tech-
niques reached outstanding performances, showing its potential of scalability to
very large domains.

The remainder of this paper is organized as follows. Section 2 introduces some
background knowledge. Section 3 describes the MAXQ-OP framework in detail.
Section 4 presents the implementation details in the RoboCup 2D domain, and
Section 5 shows the empirical evaluation results. Finally, Section 6 concludes the
paper with some discussion of future work.

2 Background

In this section, we briefly introduce the background, namely RoboCup 2D and
the MAXQ hierarchical decomposition methods. We assume that readers already
have sufficient knowledge on RoboCup 2D. For MAXQ, we only describe some
basic concepts but refer [4] for more details.

2.1 RoboCup Soccer Simulation 2D

In RoboCup 2D, a central server simulates a 2-dimensional virtual soccer field
in real-time. Two teams of fully autonomous agents connect to the server via
network sockets to play a soccer game over 6000 steps. A team can have up to
12 clients including 11 players (10 fielders plus 1 goalie) and a coach. Each client
interacts independently with the server by 1) receiving a set of observations;
2) making a decision; and 3) sending actions back to the server. Observations
for each player only contain noisy and local geometric information such as the
distance and angle to other players, ball, and field markings within its view
range. Actions are atomic commands such as turning the body or neck to an
angle, dashing in a given direction with certain power, kicking the ball to an
angle with specified power, or slide tackling the ball.

2 Team website: http://www.wrighteagle.org/2d

http://www.wrighteagle.org/2d

Towards a Principled Solution to Simulated Robot Soccer 143

2.2 MAXQ Hierarchical Decomposition

Markov decision processes (MDPs) have been proved to be a useful model for
planning under uncertainty. In this paper, we concentrate on undiscounted goal-
directed MDPs (also known as stochastic shortest path problems). It is shown
that any MDP can be transformed into an equivalent undiscounted negative
goal-directed MDP where the reward for non-goal states is strictly negative [2].
So undiscounted goal-directed MDP is actually a general formulation.

The MAXQ technique decomposes a given MDP M into a set of sub-MDPs
arranged over a hierarchical structure, denoted by {M0,M1, · · · ,Mn}. Each sub-
MDP is treated as a distinct subtask. Specifically, M0 is the root subtask which
means solving M0 solves the original MDP M . An unparameterized subtask Mi

is defined as a tuple 〈Ti, Ai, R̃i〉, where:
– Ti is the termination predicate that defines a set of active states Si, and a

set of terminal states Gi for subtask Mi.
– Ai is a set of actions that can be performed to achieve subtask Mi, which

can either be primitive actions from M , or refer to other subtasks.
– R̃i is the optional pseudo-reward function which specifies pseudo-rewards for

transitions from active states Si to terminal states Gi.

It is worth pointing out that if a subtask has task parameters, then different
binding of the parameters, may specify different instances of a subtask. Primitive
actions are treated as primitive subtasks such that they are always executable,
and will terminate immediately after execution.

Given the hierarchical structure, a hierarchical policy π is defined as a set
of policies for each subtask π = {π0, π1, · · · , πn}, where πi is a mapping from
active states to actions πi : Si → Ai. The projected value function of policy π for
subtask Mi in state s, V π(i, s), is defined as the expected value after following
policy π at state s until the subtask Mi terminates at one of its terminal states
in Gi. Similarly, Qπ(i, s, a) is the expected value by firstly performing action Ma

at state s, and then following policy π until the termination of Mi. It is worth
noting that V π(a, s) = R(s, a) if Ma is a primitive action a ∈ A.

Dietterich [4] has shown that a recursively optimal policy π∗ can be found by
recursively computing the optimal projected value function as:

Q∗(i, s, a) = V ∗(a, s) + C∗(i, s, a), (1)

where

V ∗(i, s) =
{
R(s, i) if Mi is primitive
maxa∈Ai Q

∗(i, s, a) otherwise
, (2)

and C∗(i, s, a) is the completion function fot optimal policy π∗ that estimates
the cumulative reward received with the execution of (macro-) action Ma before
completing the subtask Mi, as defined below:

C∗(i, s, a) =
∑
s′,N

γNP (s′, N |s, a)V ∗(i, s′), (3)

144 A. Bai, F. Wu, and X. Chen

where P (s′, N |s, a) is the probability that subtask Ma at s terminates at state
s′ after N steps.

3 Online Planning with MAXQ

In this section, we explain in detail how our MAXQ-OP solution works. As men-
tioned above, MAXQ-OP is a novel online planning approach that incorporates
the power of the MAXQ decomposition to efficiently solve large MDPs.

3.1 Overview of MAXQ-OP

In general, online planning interleaves planning with execution and chooses the
best action for the current step. Given the MAXQ hierarchy of an MDP, M =
{M0,M1, · · · ,Mn}, the main procedure of MAXQ-OP evaluates each subtask by
forward search to compute the recursive value functions V ∗(i, s) and Q∗(i, s, a)
online. This involves a complete search of all paths through the MAXQ hierarchy
starting from the root task M0 and ending with some primitive subtasks at the
leaf nodes. After the search process, the best action a ∈ A0 is chosen for the
root task based on the recursive Q function. Meanwhile, the best primitive action
ap ∈ A that should be performed first is also determined. This action ap will be
executed to the environment, leading to a transition of the system state. Then,
the planning procedure starts over to select the best action for the next step.

Algorithm 1. OnlinePlanning()

Input: an MDP model with its MAXQ hierarchical structure
Output: the accumulated reward r after reaching a goal
r ← 0;1

s ← GetInitState();2

while s �∈ G0 do3

〈v, ap〉 ← EvaluateState(0, s, [0, 0, · · · , 0]);4

r ← r+ ExecuteAction(ap , s);5

s ← GetNextState();6

return r;7

As shown in Algorithm 1, state s is initialized by GetInitState and the func-
tion GetNextState returns the next state of the environment after ExecuteAction
is performed. It executes a primitive action to the environment and returns a re-
ward for running that action. The main process loops over until a goal state in G0

is reached. Obviously, the key procedure of MAXQ-OP is EvaluateState, which
evaluates each subtask by depth-first search and returns the best action for the
current state. Section 3.2 will explain EvaluateState in more detail.

Towards a Principled Solution to Simulated Robot Soccer 145

3.2 Task Evaluation over Hierarchy

In order to choose the best action, the agent must compute a Q function for
each possible action at the current state s. Typically, this will form a search tree
starting from s and ending with the goal states. The search tree is also known as
an AND-OR tree where the AND nodes are actions and the OR nodes are states.
The root node of such an AND-OR tree represents the current state. The search
in the tree is processed in a depth-first fashion until a goal state or a certain
pre-determined fixed depth is reached. When it reaches the depth, a heuristic is
often used to evaluate the long term value of the state at the leaf node.

Algorithm 2. EvaluateState(i, s, d)

Input: subtask Mi, state s and depth array d
Output: 〈V ∗(i, s), a primitive action a∗

p〉
if Mi is primitive then return 〈R(s,Mi),Mi〉;1

else if s �∈ Si and s �∈ Gi then return 〈−∞, nil〉;2

else if s ∈ Gi then return 〈0, nil〉;3

else if d[i] ≥ D[i] then return 〈HeuristicValue(i, s), nil〉;4

else5

〈v∗, a∗
p〉 ← 〈−∞, nil〉;6

for Mk ∈ Subtasks(Mi) do7

if Mk is primitive or s �∈ Gk then8

〈v, ap〉 ← EvaluateState(k, s, d);9

v ← v+ EvaluateCompletion(i, s, k, d);10

if v > v∗ then11

〈v∗, a∗
p〉 ← 〈v, ap〉;12

return 〈v∗, a∗
p〉;13

When the task hierarchy is given, it is more difficult to perform such a search
procedure since each subtask may contain other subtasks or several primitive
actions. As shown in Algorithm 2, the search starts with the root task Mi and
the current state s. Then, the node of the current state s is expanded by trying
each possible subtask of Mi. This involves a recursive evaluation of the subtasks
and the subtask with the highest value is selected. As mentioned in Section 2,
the evaluation of a subtask requires the computation of the value function for
its children and the completion function. The value function can be computed
recursively. Therefore, the key challenge is to calculate the completion function.

Intuitively, the completion function represents the optimal value of fulfilling
the task Mi after executing a subtask Ma first. According to Equation 3, the
completion function of an optimal policy π∗ can be written as:

C∗(i, s, a) =
∑
s′,N

γNP (s′, N |s, a)V π∗
(i, s′), (4)

146 A. Bai, F. Wu, and X. Chen

Algorithm 3. EvaluateCompletion(i, s, a, d)

Input: subtask Mi, state s, action Ma and depth array d
Output: estimated C∗(i, s, a)
G̃a ← ImportanceSampling(Ga , Da);1

v ← 0;2

for s′ ∈ G̃a do3

d′ ← d;4

d′[i] ← d′[i] + 1;5

v ← v + 1

|G̃a| EvaluateState(i, s
′, d′);6

return v;7

where

P (s′, N |s, a) =∑〈s,s1,...,sN−1〉 P (s1|s, π∗
a(s)) · P (s2|s1, π∗

a(s1))

· · ·P (s′|sN−1, π
∗
a(sN−1)).

(5)

More precisely, 〈s, s1, . . . , sN−1〉 is a path from the state s to the terminal state s′

by following the optimal policy π∗
a ∈ π∗. It is worth noticing that π∗ is a recursive

policy constructed by other subtasks. Obviously, computing the optimal policy
π∗ is equivalent to solving the entire problem. In principle, we can exhaustively
expand the search tree and enumerate all possible state-action sequences starting
with s, a and ending with s′ to identify the optimal path. Obviously, this may
be inapplicable for large domains. In Section 3.3, we will present a more efficient
way to approximate the completion function.

Algorithm 2 summarizes the major procedures of evaluating a subtask. Clearly,
the recursion will end when: 1) the subtask is a primitive action; 2) the state is
a goal state or a state outside the scope of this subtask; or 3) a certain depth
is reached, i.e. d[i] ≥ D[i] where d[i] is the current forward search depth and
D[i] is the maximal depth allowed for subtask Mi. It is worth pointing out, dif-
ferent maximal depths are allowed for each subtask. Higher level subtasks may
have smaller maximal depth in practice. If the subtask is a primitive action,
the immediate reward will be returned as well as the action itself. If the search
reaches a certain depth, it also returns with a heuristic value for the long-term
reward. In this case, a nil action is also returned, but it will never be chosen by
higher level subtasks. If none of the above conditions holds, it will loop over and
evaluate all the children of this subtask recursively.

3.3 Completion Function Approximation

To exactly compute the optimal completion function, the agent must know the
optimal policy π∗ first which is equivalent to solving the entire problem. However,
it is intractable to find the optimal policy online due to the time constraint.
When applying MAXQ-OP to large problems, approximation should be made
to compute the completion function for each subtask. One possible solution
is to calculate an approximate policy offline and then to use it for the online

Towards a Principled Solution to Simulated Robot Soccer 147

computation of the completion function. However, it may be also challenging to
find a good approximation of the optimal policy if the domain is very large.

Notice that the term γN in Equation 3 is equal to 1 when γ = 1, which is the
default setting of this paper. Given an optimal policy, the subtask will terminate
at a certain goal state with the probability of 1 after several steps. To compute
the completion function, the only term need to be considered is P (s′, N |s, a)–a
distribution over the terminal states. Given a subtask, it is often possible to
directly approximate the distribution disregarding the detail of execution.

Based on these observations, we assume that each subtask Mi will terminate
at its terminal states in Gi with a prior distribution of Di. In principle, Di can be
any probability distribution associated with each subtask. Denoted by G̃a a set
of sampled states drawn from prior distribution Da using importance sampling
[10] techniques, the completion function C∗(i, s, a) can be approximated as:

C∗(i, s, a) ≈ 1

|G̃a|
∑

s′∈G̃a

V ∗(i, s′). (6)

A recursive procedure is proposed to estimate the completion function, as shown
in Algorithm 3. In practice, the prior distribution Da–a key distribution when
computing the completion function, can be improved by considering the domain
knowledge. Take the robot soccer domain for example. The agent at state s may
locate in a certain position of the field. Suppose s′ is the goal state of successfully
scoring the ball. Then, the agent may have higher probability to reach s′ if it
directly dribbles the ball to the goal or passes the ball to some teammates who
is near the goal, which is specified by the action a in the model.

3.4 Heuristic Search in Action Space

For some domains with large action space, it may be very time-consuming to
enumerate all possible actions exhaustively. Hence it is necessary to introduce
some heuristic techniques (including prune strategies) to speed up the search
process. Intuitively, there is no need to evaluate those actions that are not likely
to be better. In MAXQ-OP, this is done by implementing a iterative version of
Subtasks function which dynamically selects the most promising action to be
evaluated next with the tradeoff between exploitation and exploration. Different
heuristic techniques can be used for different subtasks, such as A∗, hill-climbing,
gradient ascent, etc. The discussion of the heuristic techniques is beyond the
scope of this paper, and the space lacks for a detailed description of it.

4 Implementation in RoboCup 2D

It is our long-term effort to apply the MAXQ-OP framework to the RoboCup 2D
domain. In this section, we present the implementation details of the MAXQ-OP
framework in WrightEagle.

148 A. Bai, F. Wu, and X. Chen

4.1 RoboCup 2D as an MDP

In this section, we present the technical details on modeling the RoboCup 2D
domain as an MDP. As mentioned, it is a partially-observable multi-agent do-
main with continuous state and action space. To model it as a fully-observable
single-agent MDP, we specify the state and action spaces and the transition and
reward functions as follows:

State Space. We treat teammates and opponents as part of the environment
and try to estimate the current state with sequences of observations. Then, the
state of the 2D domain can be represented as a fixed-length vector, containing
state variables that totally cover 23 distinct objects (10 teammates, 11 oppo-
nents, the ball, and the agent itself).

Action Space. All primitive actions, like dash, kick, tackle, turn and turn neck,
are originally defined by the 2D domain. They all have continuous parameters,
resulting a continuous action space.

Transition Function. Considering the fact that autonomous teammates and
opponents make the environment unpredictable, the transition function is not
obvious to represent. In our team, the agent assumes that all other players share
a same predefined behavior model: they will execute a random kick if the ball
is kickable for them, or a random walk otherwise. For primitive actions, the
underlying transition model for each atomic command is fully determined by
the server as a set of generative models.

Reward Function. The underlying reward function has a sparse property: the
agent usually earns zero rewards for thousands of steps before ball scored or con-
ceded, may causing that the forward search process often terminate without any
rewards obtained, and thus can not tell the differences between subtasks. In our
team, to emphasize each subtask’s characteristic and to guarantee that positive
results can be found by the search process, a set of pseudo-reward functions is
developed for each subtask.

To estimate the size of the state space, we ignore some secondary variables for
simplification (such as heterogeneous parameters and stamina information). To-
tally 4 variables are needed to represent the ball’s state including position (x, y)
and velocity (vx, vy). In addition with (x, y) and (vx, vy), two more variables are
used to represent each player’s state including body direction db, and neck di-
rection dn. Therefore the full state vector has a dimensionality of 136. All these
state variables have continuous values, resulting a high-dimensional continuous
state space. If we discretize each state variable into 103 uniformly distributed
values in its own field of definitions, then we obtain a simplified state space
with 10408 states, which is extremely larger than domains usually studied in the
literature.

Towards a Principled Solution to Simulated Robot Soccer 149

Fig. 1. MAXQ task graph for WrightEagle

4.2 Solution with MAXQ-OP

In this section, we describe how to apply MAXQ-OP to the RoboCup soccer
simulation domain. Firstly, a series of subtasks at different levels are defined as
the building blocks of constructing the MAXQ hierarchy, listed as follows:

– kick, turn, dash, and tackle: They are low-level parameterized primitive ac-
tions originally defined by the soccer server. A reward of -1 is assigned to
each primitive action to guarantee that the optimal policy will try to reach
a goal as fast as possible.

– KickTo, TackleTo, and NavTo: In the KickTo and TackleTo subtask, the goal
is to kick or tackle the ball to a given direction with a specified velocity,
while the goal of the NavTo subtask is to move the agent from its current
location to a target location.

– Shoot, Dribble, Pass, Position, Intercept, Block, Trap, Mark, and Formation:
These subtasks are high-level behaviors in our team where: 1) Shoot is to
kick out the ball to score; 2) Dribble is to dribble the ball in an appropriate
direction; 3) Pass is to pass the ball to a proper teammate; 4) Position is to
maintain the teammate formation for attacking; 5) Intercept is to get the ball
as fast as possible; 6) Block is to block the opponent who controls the ball;
7) Trap is to hassle the ball controller and wait to steal the ball; 8) Mark is to
mark related opponents; 9) Formation is to maintain formation for defense.

– Attack and Defense: Obviously, the goal of Attack is to attack opponents to
score while the goal of Defense is to defense against opponents.

– Root: This is the root task. It firstly evaluate the Attack subtask to see
whether it is ready to attack, otherwise it will try the Defense subtask.

The graphical representation of the MAXQ hierarchical structure is shown in
Figure 1, where a parenthesis after a subtask’s name indicates this subtask will
take parameters. It is worth noting that state abstractions are implicitly intro-
duced by this hierarchy. For example in the NavTo subtask, only the agent’s own
state variables are relevant. It is irrelevant for the KickTo and TackleTo subtasks
to consider those state variables describing other players’ states. To deal with
the large action space, heuristic methods are critical when applying MAXQ-OP.
There are many possible candidates depending on the characteristic of subtasks.

150 A. Bai, F. Wu, and X. Chen

For instance, hill-climbing is used when searching over the action space of KickTo
for the Pass subtask and A* search is used when searching over the action space
of dash and turn for the NavTo subtask.

As mentioned earlier, the method for approximating the completion function
is crucial for the performance when implementing MAXQ-OP. In RoboCup 2D,
it is more challenging to compute the distribution because: 1) the forward search
process is unable to run into an sufficient depth due to the online time constraint;
and 2) the future states are difficult to predict due to the uncertainty of the en-
vironment, especially the unknown behaviors of the opponent team. To estimate
the distribution of reaching a goal, we used a variety techniques for different
subtasks based on the domain knowledge. Take the Attack subtask for example.
A so-called impelling speed is used to approximate the completion probability.
It is formally defined as:

impelling speed(s, s′, α) =
dist(s, s′, α) + pre dist(s′, α)
step(s, s′) + pre step(s′)

, (7)

where α is a given direction (called aim-angle), dist(s, s′, α) is the ball’s running
distance in direction α from state s to state s′, step(s, s′) is the estimated steps
from state s to state s′, pre dist(s′) estimates final distance in direction α that
the ball can be impelled forward starting from state s′, and pre step(s′) esti-
mates the respective steps. The aim-angle in state s is determined dynamically
by aim angle(s) function. The value of impelling speed(s, s′, aim angle(s)) in-
dicates the fact that the faster the ball is moved in a right direction, the more
attack chance there would be. In practice, it makes the team attack more effi-
cient. As a result, it can make a fast score within tens of steps in the beginning
of a match. Different definitions of the aim angle function can produce substan-
tially different attack styles, leading to a very flexible and adaptive strategy,
particularly for unfamiliar teams.

5 Empirical Evaluation

To test how the MAXQ-OP framework affects our team’s final performance, we
compared three different versions of our team, including:

Fig. 2. A selected scene from the final match of RoboCup 2011

Towards a Principled Solution to Simulated Robot Soccer 151

– Full: This is exactly the full version of our team, where a complete MAXQ-
OP online planning framework is implemented as the key component.

– Random: This is nearly the same as Full, except that when the ball is
kickable for the agent and the Shoot behavior finds no solution, the Attack
behavior randomly chooses a macro-action to perform between Pass and
Dribble with uniform probability.

– Hand-coded: This is similar to Random, but instead of a random selection
between Pass and Dribble, a hand-coded strategy is used. With this strategy,
if there is no opponent within 3m from the agent, then Dribble is chosen;
otherwise, Pass is chosen.

The only difference between Full, Random and Hand-coded is the local se-
lection strategy between Pass and Dribble in the Attack behavior. In Full, this
selection is automatically based on the value function of subtasks (i.e. the so-
lutions found by EvaluateState(Pass, ·, ·) and EvaluateState(Dribble, ·, ·) in
the MAXQ-OP framework). Although Random and Hand-coded have dif-
ferent Pass-Dribble selection strategies, the other subtasks of Attack, including
Shoot, Pass, Dribble, and Intercept, as that of Full, remain the same.

For each version, we use an offline coach (also known as a trainer) to inde-
pendently run the team against the Helios11 binary (which has participated in
RoboCup 2011 and won the second place) for 100 episodes. Each episode begins
with a fixed scene (i.e. the full state vector) taken from the final match we have
participated in of RoboCup 2011, and ends when: 1) our team scores a goal, de-
noted by success; or 2) the ball’s x coordination is smaller than -10, denoted by
failure; or 3) the episode lasts longer than 200 cycles, denoted by timeout. It
is worth mentioning that although all of the episode begin with the same scene,
none of them is identical due to the uncertainty of the environment.

The selected scene, which is originally located at cycle #3142 of that match, is
depicted in Figure 2 where white circles represent our players, gray ones represent
opponents, and the small black one represents the ball. We can see that our player
10 was holding the ball at that moment, while 9 opponents (including goalie)
were blocking just in front of their goal area. In RoboCup 2011, teammate 10
passed the ball directly to teammate 11. Having got the ball, teammate 11
decided to pass the ball back to teammate 10. When teammate 11 had moved
to an appropriate position, the ball was passed again to it. Finally, teammate
11 executed a tackle to shoot at cycle #3158 and scored a goal 5 cycles later.

Table 1 summarizes the test results showing that the Full version of our team
outperforms both Random and Hand-coded with an increase of the chance
of sucess by 86.7% and 64.7% respectively. We find that although Full, Ran-
dom and Hand-coded have the same hierarchical structure and subtasks of
Attack, the local selection strategy between Pass and Dribble plays a key role
in the decision of Attack and affects the final performance substantially. It can
be seen from the table that MAXQ-OP based local selection strategy between
Pass and Dribble is sufficient for the Attack behavior to achieve a high perfor-
mance. Recursively, this is also true for other subtasks over the MAXQ hierarchy,

152 A. Bai, F. Wu, and X. Chen

Table 1. Empirical results of WrightEagle in episodic scene test

Version Episodes Success Failure Timeout

Full 100 28 31 41

Random 100 15 44 41

Hand-coded 100 17 38 45

Table 2. Empirical results of WrightEagle in full game test

Opponent Team Games Avg. Goals Avg. Points Winning Rate

BrainsStomers08 100 3.09 : 0.82 2.59 : 0.28 82.0 ± 7.5%

Helios10 100 4.30 : 0.88 2.84 : 0.11 93.0 ± 5.0%

Helios11 100 3.04 : 1.33 2.33 : 0.52 72.0 ± 8.8%

Oxsy11 100 4.97 : 1.33 2.79 : 0.16 91.0 ± 5.6%

such as Defense, Shoot, Pass, etc. To conclude, MAXQ-OP is able to be the key
to success of our team in this episodic scene test.

We also tested the Full version of our team in full games against 4 best
RoboCup 2D opponent teams, namely BrainsStomers08, Helios10, Helios11 and
Oxsy11, where BrainStormers08 and Helios10 were the champion of RoboCup
2008 and RoboCup 2010 respectively. In the experiments, we independently ran
our team against the binary codes officially released by them for 100 games on
exactly the same hardware. Table 2 summarizes the detailed empirical results
with our winning rate, which is defined as p = n/N , where n is the number of
games we won, and N is the total number of games. It can be seen from the table
that our team with the implementation of MAXQ-OP substantially outperforms
other tested teams. Specifically, our team had about 82.0%, 93.0%, 72.0% and
91.0% of the chances to win BrainsStomers08, Helios10, Helios11 and Oxsy11
respectively.

While there are multiple factors contributing to the general performance of a
RoboCup 2D team, it is our observation that our team benefits greatly from the
abstraction we made for the actions and states. The key advantage of MAXQ-OP
in our team is to provide a formal framework for conducting the search process
over a task hierarchy. Therefore, the team can search for a strategy-level solution
automatically online by given the pre-defined task hierarchy. To the best of our
knowledge, most of the current RoboCup teams develop their team based on
hand-coded rules and behaviors.

6 Conclusions

This paper presents a novel approach to automated planning in the RoboCup 2D
domain. It benefits from both the advantage of hierarchical decomposition and
the power of heuristics. Barry et al. proposed an offline algorithm called DetH*
[3] to solve large MDPs hierarchically by assuming that the transitions between

Towards a Principled Solution to Simulated Robot Soccer 153

macro-states are totally deterministic. In contrast, we assume a prior distribution
over the terminal states of each subtask, which is more realistic. The MAXQ-
OP framework has been implemented in the team WrightEagle. The empirical
results indicated that the agents developed with this framework and the related
techniques reached outstanding performances, showing its potential of scalability
to very large domains. This demonstrates the soundness and stability of MAXQ-
OP for solving large MDPs with the pre-defined task hierarchy. In the future,
we plan to theoretically analyze MAXQ-OP with different task priors and try to
generate these priors automatically.

Acknowledgments. This work is supported by the National Hi-Tech Project
of China under grant 2008AA01Z150 and the Natural Science Foundation of
China under grant 60745002 and 61175057. The authors thank Haochong Zhang,
Guanghui Lu, and Miao Jiang for their contributions to this work. We are
also grateful to the anonymous reviewers for their constructive comments and
suggestions.

References

1. Bai, A., Wu, F., Chen, X.: Online planning for large MDPs with MAXQ decom-
position (extended abstract). In: Proc. of 11th Int. Conf. on Autonomous Agents
and Multiagent Systems, Valencia, Spain (June 2012)

2. Barry, J.: Fast Approximate Hierarchical Solution of MDPs. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2009)

3. Barry, J., Kaelbling, L., Lozano-Perez, T.: Deth*: Approximate hierarchical so-
lution of large markov decision processes. In: International Joint Conference on
Artificial Intelligence, pp. 1928–1935 (2011)

4. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Machine Learning Research 13(1), 63 (May 1999)

5. Gabel, T., Riedmiller, M.: On progress in roboCup: The simulation league
showcase. In: Ruiz-del-Solar, J. (ed.) RoboCup 2010. LNCS (LNAI), vol. 6556,
pp. 36–47. Springer, Heidelberg (2011)

6. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half field offense in roboCup soccer: A mul-
tiagent reinforcement learning case study. In: Lakemeyer, G., Sklar, E., Sorrenti,
D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 72–85.
Springer, Heidelberg (2007)

7. Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement learning for robot
soccer. Autonomous Robots 27(1), 55–73 (2009)

8. Stone, P.: Layered learning in multiagent systems: A winning approach to robotic
soccer. The MIT press (2000)

9. Stone, P., Sutton, R., Kuhlmann, G.: Reinforcement learning for robocup soccer
keepaway. Adaptive Behavior 13(3), 165–188 (2005)

10. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for
mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)

People Detection in 3d Point Clouds

Using Local Surface Normals

Frederik Hegger, Nico Hochgeschwender, Gerhard K. Kraetzschmar,
and Paul G. Ploeger

Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany
{frederik.hegger,nico.hochgeschwender,gerhard.kraetzschmar,

paul.ploeger}@h-brs.de

Abstract. The ability to detect people in domestic and unconstrained
environments is crucial for every service robot. The knowledge where
people are is required to perform several tasks such as navigation with
dynamic obstacle avoidance and human-robot-interaction. In this paper
we propose a people detection approach based on 3d data provided by
a RGB-D camera. We introduce a novel 3d feature descriptor based on
Local Surface Normals (LSN) which is used to learn a classifier in a
supervised machine learning manner. In order to increase the systems
flexibility and to detect people even under partial occlusion we introduce
a top-down/bottom-up segmentation. We deployed the people detection
system on a real-world service robot operating at a reasonable frame
rate of 5Hz. The experimental results show that our approach is able
to detect persons in various poses and motions such as sitting, walking,
and running.

Keywords: Human-Robot Interaction, People Detection, RGB-D.

1 Introduction

Domestic service robots such as the Care-O-bot 3 [5] and PR2 [3] are deployed
more and more in realistic, unconstrained, and unknown environments such as
offices and households. In contrast to artificial environments the real-world is
populated with humans which are walking, sitting, and running. In order to
interact in such environments with humans in a safe manner a service robot must
be aware of their positions, movements, and actions. Therefore, a robust people
detection system is crucial for every domestic service robot. An appropriate
sensor type providing perceptual information about the environment is required
to detect people in a robust and reliable manner. Quite recently, a new type
of cameras has been become available, namely RGB-D cameras such as the
Microsoft Kinect1 and Asus Xtion2. Those cameras provide a 3d point cloud and
additional RGB values at the same time. The low-cost and the high frequency of

1 www.xbox.com/kinect
2 www.asus.com

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 154–165, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.xbox.com/kinect
www.asus.com

People Detection in 3d Point Clouds Using Local Surface Normals 155

30Hz makes the Kinect very attractive for the robotics community. Hence, the
people detection approach described in this paper proposes to use and processes
RGB-D data provided by a Kinect sensor. Previous contributions in the field of
people detection are based on range data provided by laser range finders. In [1]
Arras et al. proposed a system which segments a complete scan into smaller
clusters, extracting geometric features, and then classifies the cluster in human
or non-human. The classifier has been created in a supervised machine learning
manner with methods such as AdaBoost and SVM. This principle has been
extended in [7] by mounting two additional laser range finders on different height
in order to retrieve a more sophisticated view on the scene. Spinello et al. [11]
extended this idea by extracting a fixed set of 2d vertical scan lines from a
full 3d point cloud. The detection is performed in each layer separately. The
layers are later fused with a probabilistic voting scheme. Other approaches are
based on vision as a primary modality. They apply well-known techniques such
as implicit shape models [13], haar-like features [14], or histogram of oriented
gradients [12] for feature extraction. However, all these approaches operate only
in 2d space. First approaches operating in 3d are described by Satake et al. [9]
where template matching (depth templates) is used to detect the upper body
of humans. In [2] and [8] the 3d point cloud is first reduced to a 2.5d map in
order to keep the computational effort low. The classification itself is again based
on different 2d features and a machine learning classifier. The approach which
comes close to our approach has been introduced by Spinello and Arras [10].
In a hybrid manner the detection is based on a combination of 3d depth and
2d image data. Inspired from a histogram of oriented gradients (HOG) detector
Spinello proposes a novel histogram of oriented depths (HOD) for the detection
in 3d. Both information (HOG and HOD) are fused which yields in a robust and
later GPU-optimized people detection system.

In contrast to [10], our approach uses only the 3d point cloud provided by a
Microsoft Kinect camera. The data is split into smaller clusters using a layered
sub-division of the scene and a top-down/bottom-up segmentation technique. A
random forest classifier is used to label the resulting 3d clusters either as human
or non-human. Inspired from [6], we extended the idea of using local surface
normals (LSN) and composed a new feature vector based on a histogram of local
surface normals plus additional 2d and 3d statistical features. An overview of
the complete processing pipeline is depicted in Figure 1. The major contribution
of our approach is a novel feature descriptor based on local surface normals and
the capability to robustly detect persons in various poses/motions, even if they
are partially occluded like sitting behind a table or desk.

2 People Detection Using Local Surface Normals

In this section we introduce our 3d people detection approach using Local Surface
Normals (LSN). The approach consists of four phases as shown in Figure 1,
namely Preprocessing, Top-Down Segmentation, Classification, and Bottom-Up
Segmentation.

156 F. Hegger et al.

Fig. 1. The processing pipeline is divided into four phases (blue boxes). Each phase con-
sists of several sub-components (orange boxes) which perform the actual computation
of the input data.

2.1 Preprocessing

A single point cloud from the Kinect sensor consists of ≈ 300.000 points. In
order to keep the overall processing time reasonable we carefully reduced the
raw input data in the preprocessing phase.

Region of Interest (ROI). A major disadvantage of the Kinect camera is the
increasing depth discretization error for large distances. Beyond 5m the depth
values are very noisy and shaky. Therefore, the ROI is defined as 0.5m <=
depth <= 5.0m and 0.0m <= height <= 2.0m. The height has been choosen
because people usually appear in this range. The ROI steps already reduces (de-
pending on the actual scene) the point cloud to ≈ 110.000 points in average.

Subsampling. The remaining points provided by the ROI step are further re-
duced by a subsampling routine to make the point cloud more sparse, i.e. a 3d
grid with a predefined cell size is overlayed over the full point cloud. The points
inside each box are merged to a single new point. An increased cell size will yield
to a sparse point cloud. We have used a cell size of 3cm x 3cm x 3cm which still
maintains the desired accuracy for the normal estimation and simultaneously
reduces the point cloud to ≈ 16.000 points in average.

Local Surface Normals (LSN). In the classification phase (see Section 2.3)
we propose a feature vector which consists of a histogram of local surface nor-
mals. A local surface normal is computed through fitting a plane to the k-nearest
neighbors of the target point. A more detailed description of the algorithm can
be found in [6]. Before the preprocessed point cloud is forwarded to the segmen-
tation phase, for all remaining points the local surface normals are computed.
In case the normals would be calculated after the segmentation, the accuracy
of the normal estimation for those points which lie on the border of a cluster
would be significant lower. A reasonable part of the neighborhood might already
belong to another cluster.

People Detection in 3d Point Clouds Using Local Surface Normals 157

2.2 Top-Down Segmentation

The segmentation of large 3d point clouds is a (computational) costly and com-
plex exercise. Segmentation approaches such as region growing or graph-based
approaches are known to have a huge computational complexity. Therefore, such
approaches are not feasible in robotics where reasonable performance is crucial.

Layering. We propose a basic top-down segmentation technique (see Figure 2).
The general idea is decompose the point cloud into a fixed set of different 3d
height layers and then start to segment each layer separately in smaller clusters.
In detail, the layering and segmentation algorithm can be explained as follows:
Let P = {p1, ..., pN} be a point cloud with pi = (x, y, z) and N which is equal
to the number of points in the point cloud. Then P is split into a fixed number
of 3d layers L = {l1, ..., lM} with

M =
(Zmax − Zmax)

SH

where Zmin and Zmax are the minimum and maximum height values of the prede-
fined ROI and SH is the desired slice height. For each layer lj the minimum and
maximum height is calculated. For instance, assuming a predefined slice height of
20cm then the first layer l1 contains only points with 0.0m <= pi(z) <= 0.2m.
The remaining layers l2, ...lM will be established according to this principle.
As experimentally validated we consider a slice height of 25cm as optimal (see
Section 3).

(a) schematic layer-
ing

(b) layering result (c) schematic seg-
mentation

(d) segmentation re-
sult

Fig. 2. Images (a) and (b) show the layering process, where each point cloud is divided
into a set of 3d layers according to a manually defined slice height. For the layering,
we have applied a slice height of 25cm. Each layer is segmented into clusters using a
Euclidean Clustering approach (see Image (c) and (d)). The different colored points
indicate either the different height layers or the segmented 3d clusters.

Clustering. The actual segmentation generates for each layer lj a sequence
of small clusters C = {c1, ..., cO}, where each cluster cj,k contains a subset of
points located in lk. The segmentation applies an Euclidean clustering technique
which is less parameterizable. Only a distance threshold thresEuclDist has to be
defined which defines whether a target point is added to the cluster or not.
Furthermore, thresEuclDist also determines whether there are many small clus-
ters (thresEuclDist ← 0) or only a few large clusters (thresEuclDist → ∞). As

158 F. Hegger et al.

mentioned, we have used a grid-size of 3cm for subsampling. According to this
dimensions and a certain amount of noise, we set thresEuclDist = 2×grid size in
order to ensure that two persons which stand close to each other are not merged
to a single cluster. The proposed fine-grained clustering has the advantage over
a clustering without prior layering when one object is partially occluded by an-
other object. For instance, if a person is sitting at a table, our approach creates
several smaller clusters for both objects. Instead, the pure Euclidean clustering
would create a single cluster which consists of a table and the person, because the
person is sitting very close to the table or has put the arms on it. Furthermore,
the user-defined slice height plays also an important role for the performance of
the segmentation. A reasonable small height ends up in really tiny clusters with
few local surface normals which are not sufficient for a robust classification. On
the other hand, a large slice height creates also large clusters (where two or more
objects would get merged to a single cluster) which would alleviate the specific
advantage of the proposed segmentation stage.

2.3 Classification of 3d Clusters

The previous segmentation phase produces a list of 3d clusters. In the classifica-
tion phase we want to assign a label to each cluster (human or non-human). We
approached the two-class classification problem with a supervised machine learn-
ing technique. We evaluated the performance of three popular machine learner
on different datasets recorded in different environments, namely AdaBosst, SVM
and Random Forests [4]. The results showed that for all datasets the Random
Forest classifier outperforms both other machine learning techniques.

Feature Calculation. As a feature vector for the Random Forest we propose a
histogram of local surface normals (HLSN). The use of such a feature vector can
be motivated as follows: households and offices contain to a large extend walls,
tables, desks, shelfs, and chairs. More precisely, a reasonable part of daily envi-
ronments consists of horizontal and vertical planes. Whereas the human body
has a more cylindrical appearance. With a histogram of LSNs we can express
this property to distinguish between human and non-human clusters. We com-
pute a fix-sized histogram over the normals for all points in a cluster which is
the input for a feature vector. However, the Random Forests algorithm expects
a one dimensional input vector. Therefore, a separate histogram for each normal
axis (x, y and z) is established. In addition, the width and the depth of a cluster
is added to the feature vector, which helps to decrease the false positive rate.

Classifier. Learning the Random Forest classifier requires a large-set of train-
ing samples. As in other fields the collection of positive and negative training
samples is a time consuming task, especially when many samples (> 1000) are
required and the annotation of each sample has to be done manually. Therefore,
we integrated a procedure to capture positive and negative training samples au-
tomatically. Negative samples have been collected with a mobile service robot.
We established a map of our University building which at least consisted of an
office, laboratory, long corridor and an apartment. For each room a navigation

People Detection in 3d Point Clouds Using Local Surface Normals 159

goal has been manually annotated. An automatic procedure generated a random
order in which the rooms should be visited. The robot started to navigate au-
tonomously through all the environments and simultaneously segmenting each
incoming point cloud. Each extracted cluster has been labeled as negative ex-
ample. During the whole run we ensured that there has been no person in the
field-of-view (FOV) of the robot. This process guarantees that the samples are
indeed collected in a random manner. The positive samples have been collected
with a static mounted Kinect camera. The camera was placed in a laboratory
where people are frequently walking and sitting around. We defined a ROI which
does not contain any object and consequently provides an empty point cloud.
In case the person passed the ROI, the segmentation stage extracted the related
clusters and labeled them as positive samples.

2.4 Bottom-Up Segmentation

In the last phase we obtain a sequence of 3d clusters which are classified as
human. However, those “part-based” detections have to be assembled and as-
sociated to one respective person. A graph-based representation based on the
cluster’s center is created. The advantage is that not the whole data points of
a cluster have to be processed which keeps the computational effort low. Each
center point is then connected to its two nearest neighbors as long as the Eu-
clidean distance between those points does not exceed a certain threshold. Each
cluster has always a maximum height (equal to the predefined slice height) which
allows us to derive the threshold, because the center points of two neighboring
clusters can only have a maximum distance of 2 × slice height. When all the
points in the queue have been processed the overall graph can be split in its
connected components, which builds the actual person detection. Due to false
positive detection when classifying the extracted 3d clusters, we consider a suc-
cessful person detection only, if at least three clusters belong to one person (at
least ≈ 45cm of the persons body must visible).

3 Experimental Evaluation

In order to evaluate the proposed people detection system we performed several
experiments with different objectives as described below.

3.1 Experiment Objectives

Objective 1. Investigate the impact of the predefined slice height on the clas-
sification error.

The segmentation is based on separating the point cloud into several fix-sized
layers. The amount of layers depends on the chosen slice height. In this experi-
ment we investigated the impact of the predefined slice height on the resulting
classification error. The experiment was executed several times with different
slice heights ranging from 10cm to 100cm (= half of the maximum perceivable

160 F. Hegger et al.

height). Every range value below 10cm results in very few points which is not
sufficient to represent a comprehensive distribution. Thus one requirement for
the people detection approach is the ability to detect people even if they are
partially occluded. In each experiment the slice height is constantly increased
by 5cm (when starting at the minimum). A 10-fold cross-validation was applied.
In order to evaluate the segmentation behavior against occlusion, synthetic gen-
erated occlusion (e.g., a cupboard) was added to the data. The experiment was
repeated three times with different amount of occlusion, namely no occlusion,
50%, and 70% (see also Figure 3). Moreover, Gaussian noise was added to the
synthetic data in order to achieve approximation to the Kinect data.

(a) No occlusion (b) 50% occlusion (c) 70% occlusion

Fig. 3. Different occlusion levels

Objective 2. Investigate the actual people detection performance.
In order to assess the detection rates under different circumstances we defined

two categories, namely poses and motions. For the pose category we evaluated
the detection rate for persons sitting on a chair and for persons which where
partially occluded (at least 30% of the whole body). For the motion category
we evaluated three different natural motions: not moving, random walking, and
random running. We executed the experiment with ten subjects in three different
environments. In our RoboCup@Home laboratory, a real German living room,
and the entrance of our University where people frequently enter and leave the
building. The test procedure (or test cases) looked as follows:

1. Standing pose: the persons were asked to position themselves in various
random positions and usual body postures.

2. Sitting pose: the persons were asked to sit down on a chair and position
themselves in various random positions and usual sitting postures.

3. Partially occluded pose: the persons were asked to stand behind a cup-
board of 80 cm height and to move up and down in a natural way.

4. Not moving motion: it is identical to the test for standing person and
only mentioned for completeness.

5. Random walking motion: the test was execute at the entrance of our Uni-
versity. Many people were entering and leaving the building. Even sometimes
in small groups.

6. Random running motion: the persons were asked to run in a jogging
manner through the FOV of the camera in various paths.

People Detection in 3d Point Clouds Using Local Surface Normals 161

For each of the ten persons and the corresponding posture/motion 200 frames
have been evaluated. To avoid manual annotation a simplified change detection
was applied. Initially the point cloud size (after ROI building) of ten subsequent
frame has been averaged and stored. In the evaluation phase the size of the
recent acquired point cloud is compared to the stored size. If the difference is
above certain threshold, the person has entered the cameras FOV. This simplified
evaluation was applied for the test cases 2, 3 and 6. In case of test case 1 and
4, we waited until the person reached a new position and then evaluated each
time five frames. For test case 5, each frame had to be manually annotated since
the number of persons in the FOV was varying between one and five during the
whole test.

Objective 3. How does the people detection system behave in a scenario-like
setting.

So far the people detection system has been evaluated stand-alone. However,
we are interested in how the system behaves when it is integrated on a real-
world domestic service robot. We have integrated the system on our Care-O-bot
3 robot and performed a more scenario-like evaluation, where an autonomous
mobile service robot tries to find a predefined number of persons in the envi-
ronment. The scenario is basically derived from the “Who is who?” test in the
RoboCup@Home competition where five people are spread around in the apart-
ment. As an initial knowledge, the robot has a map of the environment and a set
of room poses for each part of the apartment (e.g., living room or kitchen). In
our test implementation a script first generates random positions in the map for
five persons (also defining whether the person should sit or stand). In case the
proposed position is blocked (e.g., a wall or table) the person will be assigned to
stand/sit next to the generated pose. When all persons are placed at the gen-
erated positions, the robot generates a random path through all available room
poses. The rest of the experiment consists of executing a drive & search behavior
which we have implemented for the RoboCup@Home competition.

3.2 Experiment Results

Objective 1. Figure 5 depicts the cross-validation error with respect to the
actual slice height. In case of no occlusion of the actual person the classification
decreases with an increasing slice height. Above 50cm the error converges to an
error rate of ≈ 15%. However, occlusion causes a major increase of the error rate
when applied to an increased slice height. The reason is that the segmentation
with high slice height creates clusters which might contain parts of the human
and part of the object which causes the occlusion. We used the experiment to
determine a good (minimized error rate) slice height. Thereby, we calculated the
mean curvature for all three error curves and identified the global minima. A
slice height of 25cm yielded in the minimum averaged error of 15.49%.

Objective 2. As shown in Table 1 our system shows a quite robust performance
at least for standing person. In Figure 4 some detections for person poses are
shown. The performance is independent from the actual distance to the person

162 F. Hegger et al.

and is only limited by the predefined maximum distance of 5 meters. However,
we observed a degrading detection rate when the person is sitting. The detection
rate is significant lower, namely 74.94%. This is due to the fact that the training
was only performed with standing persons. Therefore, only the head and the
upper body can be detected. The horizontal leg parts can not be detected.

Table 1. Detection rates for different human poses and motions

Poses Detection Rate Motions Detection Rate

standing 87.29% not moving 87.29%

sitting 74.94% rnd. walk 86.32%

part. occl. 82.35% rnd. run 86.71%

(a) bending (b) random pose (c) partially occluded + sit-
ting

Fig. 4. Detections for various person poses

In case the Random Forest would have trained also with sitting person, there
would be clusters whose normal distribution would be similar to horizontal planes
(because the upper leg is parallel aligned). Of course, this would cause a very high
false positive rate. However, when a person is sitting, the upper body is still vis-
ible and sufficient for a quite robust detection with the model trained only with
standing persons. Although, it is significant lower than detecting standing per-
sons. Persons which were partially occluded, e.g. behind a table or a cupboard,
can be detected similar robust to standing person, because only a minority of
the lower body is occluded. For different motion speeds, only slightly different
results could be observed. It does not matter in which speed the person is moving
or even standing still, since the detection is done frame by frame. Only the pose
configuration is different for the different motions. In general, the experiment
showed that people are detected in various pose configurations and speeds with
an average detection rate of 84.15%. A short video showing the people detection
can be found on: http://www.youtube.com/watch?v=d0O4nQE8Qko.

Objective 3. In total ten runs of the described experiment were executed (see
Table 2). In all cases the robot was able to find at least the two standing persons

People Detection in 3d Point Clouds Using Local Surface Normals 163

10 20 30 40 50 60 70 80 90 100

0.15

0.2

0.25

0.3

0.35

0.4

slice height (cm)

er
ro

r
ra

te

without occlusion
with 50% occlusion
with 70% occlusion
mean

Fig. 5. Error rates of the segmentation in the presence of occlusion

Table 2. Result of 10 executed runs with auto-generated person positions (three stand-
ing and two sitting). TP = true positives, FN = false negatives, FP = false positives.

Run TP standing TP sitting FN standing FN sitting FP

1 3 2 0 0 2

2 3 1 1 1 2

3 2 2 1 0 1

4 3 2 0 0 2

5 2 1 1 1 2

6 2 2 1 0 1

7 2 1 1 1 1

8 3 2 0 0 2

9 3 1 0 1 2

10 3 1 0 1 1

and always one sitting person. The missed detections where caused by a occlusion
through another person or when the person was sitting in an arm chair and only
a small part of the shoulder and head was visible. Beside the successful and
missing detections, there were quite a lot false positive detections. In each run
at least one false positive detection occurred. Due to the fact that a detected
person (in this cases a false detection) is approached only once and then stored,
the false detections do not effect the overall performance so much. Only the
time for approaching the false detection for the first time is gone. However, in
other scenarios this effect could result in a worst performance. Nevertheless, the

164 F. Hegger et al.

integration of the people detection component into a higher level behavior was
able to successfully detect the majority of people in the environment. Standing
people could be detected with a rate of 86.67% and sitting person with 75.00% in
this experiment. Astonishingly, the detection rates from this experiment almost
reflect the results acquired in the experiment for the second objective.

4 Conclusion

We presented an approach to detect the 3d position of people in 3d point clouds
using a feature vector which is composed of a histogram of local surface nor-
mals. The preliminary segmentation is based on a top-down/bottom-up tech-
nique which supports the detection of partially occluded persons, e.g. standing
behind a desk or cupboard. The information gained from the local surface nor-
mals enables our system to detect a person in various poses and motions, e.g.,
sitting on other objects, bended to the front or side, walking fast/slow. With the
presented approach we are able to detect even multiple people up to a distance
of 5m with a detection rate of 84%. Future improvements will cover a reduction
of false positive detections by extending the existing feature set with additional
geometrical and statistical features. The proposed approach covered only the
detection of people in 3d, a 3d tracking system would also enhance the overall
system performance. We further aim an implementation on GPU, in order to
improve the processing performance towards a real-time system. Another step
would be the integration of color information into the detection process, which
is provided simultaneously with the point cloud data by the Kinect sensor.

Acknowledgement. We gratefully acknowledge the continued support by the
b-it Bonn-Aachen International Center for Information Technology.

References

1. Arras, K.O., Mozos, O.M., Burgard, W.: Using Boosted Features for the Detection
of People in 2D Range Data. In: Proceedings of the IEEE International Conference
on Robotics and Automation, Rome, Italy, pp. 3402–3407 (2007)

2. Bajracharya, M., Moghaddam, B., Howard, A., Brennan, S., Matthies, L.H.: A
Fast Stereo-based System for Detecting and Tracking Pedestrians from a Mov-
ing Vehicle. The International Journal of Robotics Research 28(11-12), 1466–1485
(2009)

3. Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M.,
Mosenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers:
Lessons learned with the pr2. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA) (2011)

4. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

5. Graf, B., Reiser, U., Hagele, M., Mauz, K., Klein, P.: Robotic home assistant care-
o-bot 3 - product vision and innovation platform. In: Proceedings of the IEEE
Workshop on Advanced Robotics and its Social Impacts (ARSO) (2009)

People Detection in 3d Point Clouds Using Local Surface Normals 165

6. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using
RGB-D cameras. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup
2011. LNCS, vol. 7416, pp. 306–317. Springer, Heidelberg (2012)

7. Mozos, O.M., Kurazume, R., Hasegawa, T.: Multi-Layer People Detection using
2D Range Data. In: Proceedings of the IEEE ICRA 2009 Workshop on People
Detection and Tracking, Kobe, Japan (2009)

8. Navarro-Serment, L.E., Mertz, C., Hebert, M.: Pedestrian Detection and Tracking
Using Three-dimensional LADAR Data. The International Journal of Robotics
Research 29(12), 1516–1528 (2010)

9. Satake, J., Miura, J.: Robust Stereo-Based Person Detection and Tracking for a
Person Following Robot. In: Proceedings of the IEEE ICRA 2009 Workshop on
People Detection and Tracking, Kobe, Japan (2009)

10. Spinello, L., Arras, K.O.: People Detection in RGB-D Data. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2011), San Francisco,
USA (2011)

11. Spinello, L., Arras, K.O., Triebel, R., Siegwart, R., Luber, M., Tipaldi, G.D., Lau,
B., Burgard, W., et al.: A Layered Approach to People Detection in 3D Range
Data. In: IEEE International Conference on Robotics and Automation, Anchorage,
Alaska, vol. 55, pp. 30–38 (2010)

12. Spinello, L., Siegwart, R.: Human Detection using Multimodal and Multidimen-
sional Features. In: Proceedings of the International Conference in Robotics and
Automation (ICRA), Pasadena, USA (2008)

13. Spinello, L., Siegwart, R., Triebel, R.: Multimodal People Detection and Tracking
in Crowded Scenes. In: Proc. the AAAI Conf. on Artificial Intelligence: Physically
Grounded AI Track, Chicago, USA, pp. 1409–1414 (2008)

14. Zivkovic, Z., Kroese, B.: Part based People Detection using 2D Range Data and
Images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, USA, pp. 214–219 (2007)

Simulation Competitions on Domestic Robots

Jianmin Ji, Zhiqiang Sui, Guoqiang Jin, Jiongkun Xie, and Xiaoping Chen�

Multi-Agent Systems Lab, School of Computer Science and Technology
University of Science and Technology of China, 230026, Hefei, China

{jizheng,zqsui,abxeeled,devilxjk}@mail.ustc.edu.cn, xpchen@ustc.edu.cn

Abstract. This paper reports a series of simulation competitions on
domestic robots. All of these five competitions were based on a simula-
tion platform focused on evaluating high-level functions of a domestic
robot, including task planning and dialogue understanding. The object
of holding these competitions is to promote research and development
of service robots while avoiding limitations imposed by hardware of real
robots. We also analyze the results and performances of participating
teams since the competition was first held in 2009, showing that more
and more terms are participating and they are performing better and
better.

Keywords: RoboCup@Home, domestic robots, simulation platform, task
planning, dialogue understanding.

1 Introduction

Researchers from Artificial Intelligence (AI), Robotics and related areas have
shown increasing interest in developing intelligent service robots [1,3,8,12]. One
of the most promising applications for a service robot is to provide services
for untrained and non-technical users at home. Then, as a part of RoboCup,
RoboCup@Home league [13] was held to develop service robots for future per-
sonal domestic applications and the RoboCup@Home competition is held each
year since 2006. In the competition, a number of standard tests are used to evalu-
ate robots’ functions and performance in a realistic non-standardized home envi-
ronment setting. These tests focus on functions which are essential for domestic
applications including human-robot interaction, task planning, navigation, map-
ping, vision, object recognition, object manipulation, system integration and so
on. However, due to the limitations of hardware and complexity of robotics tech-
niques like vision, navigation, etc, it is not easy to test the different realizations
of high-level cognitive functions of a real robot frequently or to develop a real
robot to participate in competitions such as RoboCup@Home. In this paper, we
report an effort against these limitations.

Five competitions have been held so far. All of them are based on the same
simulation platform, though it has been upgraded several times. The platform

� Corresponding author.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 166–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Simulation Competitions on Domestic Robots 167

is intended to evaluate the performance of a robot on task planning and dia-
logue understanding. A typical application scenario of a robot is to extract and
understand users’ requirements and information from dialogue through natural
language interface, then resolve corresponding tasks and compute a plan of mo-
tions and sub-tasks to meet these requirements. Clearly, these two functions are
indispensable for domestic applications, in addition to robots’ hardware and un-
derlying technologies in robotics. The platform simulates the low-level functions
of an ordinary domestic robot and the features of common home environments
related to the tests, by sending to each competing program a list of testing prob-
lems expressed in some verbal languages. The competing programs are required
to try to solve all the testing problems, ie, to understand each problem and
generate a plan for it within a given time limit. The competing programs are
evaluated in terms of the performance of the plans they generate.

The first competition was held on December 2009 with 4 teams, while in
2011 two competitions were held with 12 teams and more challenging testing
problems. In this paper, we analyze the results of all five competitions. It shows
that more and more teams are participating and they are performing better
and better. It also indicates that the platform can be used to compare different
approaches for task planning and dialogue understanding of a domestic robot.

The rest of the paper is organized as follows. Section 2 presents the simulation
platform. Section 3 and 4 report the results of competitions and compare the
different approaches employed by the participating teams. Further discussions
and conclusions are given in Section 6 and Section 7, respectively.

2 A Simulation Platform for Task Planning and Dialogue
Understanding of Domestic Robots

Task planning and dialogue understanding play essential roles in the development
of a domestic robot’s high-level functions. In principle, these functions can be
realized by various approaches. Then it is extremely interesting to compare these
approaches in solving the same problems that involve these functions under the
same conditions.

For this purpose, we developed a software platform for testing the relevant
high-level functions of competing programs which may be developed by differ-
ent approaches. The platform simulates the low-level functions of an ordinary
domestic robot which could automatically move to a specific place, has an arm
with a gripper to manipulate small objects and a plate to handle an object each
time. The platform also simulates the features of common home environments
related to the tests, including the location of an object, whether an object is
portable, etc. Human-robot dialogue is simulated in a simplified way, by sending
to each competing program a list of testing problems expressed in some verbal
languages.

The competing programs are required to try to solve all the testing problems,
ie, to understand each problem and generate a plan for it within a given time

168 J. Ji et al.

limit, 5 seconds. The competing programs are evaluated in terms of the perfor-
mance of the plans they generate. Obviously, the simulated tests on the software
platform are much simpler than what can be done with a real robot. But we get
much more experimental data from the competitions on the platform, which in
turn make the comparisons between different approaches possible.

Now we show some details.

The Primitive Actions of the Simulated Robot. A set of primitive actions
are pre-defined in the platform. They keep fixed for all the testing problems.
Following the AI convention, each primitive action is specified by its precondi-
tions and effects. In the original version of the platform, there are five primitive
actions, listed below.

– move(X): The robot moves and arrives at location X .
– pickup(A): The robot picks up object A.
– putdown(A): The robot puts down object A.
– toplate(A): The robot puts object A in its plate.
– fromplate(A): The robot picks object A up from its plate.

Note that there is a plate on the robot, so that the robot can carry two objects,
one in the plate and the other in its gripper. The definitions of these actions are
also specified in PDDL statements1.

The Testing Problems. Each testing problem is specified by a scenario de-
scription and a task description. The scenario description specifies the initial
state of the home environment, which simulates the robot’s perception since a
real robot perceives its environment state through its sensors. The task descrip-
tion consists of one or more goals, constraints, and other additional information
which the user tells the robot when he/she requests a specific service.

A scenario description provides the information of the types of the objects
appeared in the scenario, their locations and other attributes. It also provides
the current state of the robot. A scenario description is stored as a file in the
following form. The objects and agents existing in the scenario are assigned
a unique positive integer, denoted as num. In particular, number 1 represents
the robot. For simplicity, number 0 is used to represent “nothing”. Different
locations are labeled as non-negative integers, denoted as loc. And sort denotes
the type of the object. The properties (prop) of an object include the object’s
type, location, color and size:

color := white | red | green | yellow | blue | black
size := big | small

prop := sort(num). | color(num). | size(num). | location(num, loc).

The robot’s state includes its location, the state of the plate and the state of its
gripper:

robot := location(1, loc). | plate(num). | plate(0). | hold(num). | hold(0).
1 http://www.wrighteagle.org/homesimulation/en/competitions.php

http://www.wrighteagle.org/homesimulation/en/competitions.php

Simulation Competitions on Domestic Robots 169

A statement about a scenario description, denoted as state, is either a property
of an object or a state of the robot: state := prop | robot.

We assume that human-robot dialogues are spoken in limited segments of
natural languages (LSNLs) [5]. A task description specifies a user’s task and
may consist of three components: goal, constraint, and additional information.
They are expressed in a simplified LSNL (actually, a command language). In
fact, we set some sub-competitions for a real LSNL, however the results are
similar for simplified LSNL. Therefore, we concentrate on the sub-competitions
for the command language here.

Formally, a goal is defined as follows.

goal := give(human, obj1) | puton(obj1, obj2) | goto(obj1) |
putdown(obj1) | pickup(obj1),

where

adj := big | small | white | black | red | green | yellow | blue
obj := sort | adj sort

The additional information info is defined as follows, which specifies some sup-
plementary information to the initial state of the problem:

info := on(obj1, obj2) | near(obj1, obj2) | onplate(obj1)
A constraint cons is defined as:

cons := not goal | not info | not not info,
which specifies the conditions that must be satisfied during the process of task
execution. not goalmeans the action specified in goal is forbidden, not infomeans
the condition specified in info needs to be avoided, and not not info means the
condition specified in info needs to be maintained.

Finally, a task description is defined as a set of goal, cons and info, and a
statement task := goal | info | cons.
Scoring Criteria. A competition consists of two stages, each containing 40
testing problems. The competing programs are evaluated according to their to-
tal scores for all the testing problems in two stages. In the first stage, every task
description only contains goals, while constraints and other additional informa-
tion are used for the testing problems in the second stage.

The score of a competing program gets from a testing problem depends on the
number of goals and constraints that the program accomplishes or maintains, as
well as the number of primitive actions in the resulting plan generated by the
program for the problem. The concrete criteria are as follows:

– Accomplishment of a goal: A goal is considered to be accomplished, if the
final state after performing the plan generated by the competing program
meets the goal specification.

170 J. Ji et al.

– Maintaining a constraint: A constraint is considered to be maintained, if it
has been satisfied from the initial state to the final one, in other words, every
step of the plan’s execution meets the requirement of the constraint.

The scoring system is defined as following:

– 10 marks for completing a goal.
– 5 marks for maintaining one constraint.
– −3 marks for each move action.
– −1 mark for each primitive action of the rest.

Therefore, the score for a testing problem is computed as: 10× the number of
completed goals + 5× the number of maintained constraints − 3× the number
of move actions − the number of the rest actions.

Like other RoboCup simulation leagues, we also developed a simulator log-
player to play back robot’s actions in the visual simulation environment for a
test problem, as shown in Figure 1.

Fig. 1. The Simulator Logplayer for the Simulation Platform

3 Early Competitions

Three competitions based on the testing platform were held in 2009 and 20101,
respectively. These competitions have similar testing problems. As time goes by,
more teams participated and generally they performed better.

5 teams in total participated in the first two competitions on December 2009
and May 2010. All the 80 testing problems are the same in the two competitions.
These problems were released after the first competition. All the participants
to the second competition knew all the problems from beginning. They also
debugged their programs with the problems. In this section, we report the results
of the second competition and make comparisons based on the results.

Simulation Competitions on Domestic Robots 171

We take three representative competing programs for comparison. They are
representatives of the three approaches employed in the competitions and each
of them got the highest score in its class. The first one is ours; the competing
program is just the high-level part of KeJia robot [4,5], which is implicated via
a nonmonotonic logic programming language called Answer Set Programming
(ASP) [2]. This represents the nonmonotonic approach (denoted as NM). The
second one is realized with search technology (Search). The third one is based
on naive problem-solving approach (PS).

NM Approach. As presented in [4,5], the task planning problem in the com-
petition is converted into that of finding an answer set of an ASP program,
where the actions of the robot, the scenario descriptions and the task descrip-
tions are represented as ASP rules. Due to the progress on ASP and ASP solvers,
as well as the framework problem [11], causality [10], etc, this approach shows
many advantages as expected. In particular, there is no difference in handling
goals and constraints in this approach, while all the participants adopting other
approaches complained about the difficulty of handling constraints. However,
efficiency is still the major bottleneck for this approach. In KeJia system, we use
iclingo [9] (an incremental ASP solver) to compute answer sets. For a testing
problem with 20 portable objects and 14 locations, the system can compute an
optimal plan with 12 actions in 5 seconds. More complicated problems may not
be solved within the time limit.

Search Approach. The search approach treats a testing problem as a search
problem. The competing program is based on a depth-first search algorithm with
some pruning strategies. Firstly, the initial state is acquired from the scenario
description and the additional information in the task description. Based on
the initial state, the algorithm chooses an primitive action to expand, if the
succeeding state meets the requirement of the task, then a plan is computed and
it would be stored if it is better than the current best partial plan. If a plan is
found, there are not any proper actions to expand, or the search steps are longer
than the current best plan, then the algorithm will backtrack to the precious
state. Due to the very large state space, strong pruning strategies are needed to
ensure that the algorithm terminates in a finite time. But these strategies may
exclude the optimal plan—this is the price for the efficiency of the program.

PS Approach. This approach requires the programmer to predict the detailed
solutions for the possible cases of testing problems. A simple strategy is to code
a solution for each goal in the task description. The generated plan can be im-
proved by adjusting the order of goals and choosing proper objects. For example,
if there are two goals “give” and “puton”, the program can choose the objects
which are initially at the same location, then an optimal plan can be achieved
by holding these two objects at the same time (pick up one and put another
on the plate). It is not easy for this approach to handle constraints in the task
description. Instead, the constraints were only employed to rule out some for-
bidden actions. This approach is efficient, but not flexible or reliable. It cannot

172 J. Ji et al.

guarantee to compute the optimal plan for every problem. Re-programming is
needed when the domain of the problem changes.

Results. There are 14 locations, 8 to 21 different portable objects in the testing
scenarios. Initially the robot may have some portable object on its plate or in
its gripper. We have run the platform for the second competition on a computer
with an AMD Athlon(tm) II X4 620 CPU and a 2GB RAM, the logs and the
competing programs can be downloaded from the web site1.

For a single problem in stage 1, there are 2 to 4 different goals in the task de-
scription and optimally it will take 5 to 15 actions to accomplish a task. Note that
the difficulty of a testing problem depends on whether or not it contains “related
goals”.Two goals in a problem are called related, if interleaving the execution of ac-
tions for them can reduce the total cost (an example is given in Section 5). If goals
in a problem are not related, then they can be accomplished separately without
loss of efficiency. Based on this observation, we list the results with and without
related goals, respectively. The results of stage 1 are shown in Table 1.

Table 1. Results of stage 1 for the 2nd competition

competing program
score for problems
without related goals (14)

score for problems
with related goals (26)

total score
(40 problems)

NM approach 261 460 721

search approach 242 343 585

PS approach 274 410 684

The competing program based on the NM approach returns the optimal plans
for 38 problems in stage 1, while the competing programs based on the search
and PS approaches find out plans, which may not be optimal, for all problems.
For problems without related goals, the NM approach program and the PS ap-
proach program compute the same results, except for one problem for which NM
runs out of time. For problems with related goals, the NM program can always
compute the optimal plans if it completes the task within the time limit, while
the PS program returns the plans which are closed to the optimal plans.

For a single problem in stage 2, there are 2 to 4 different goals, at most 5
constraints and 3 pieces of additional information. Optimally, a program will
take 5 to 13 actions to accomplish a task. If a problem contains constraints, it
requires further reasoning. For example, “pickup(red bottle)” is a goal and “not
not on(bottle,table)” is a constraint, which means that “there must be a bottle
on the table”. Suppose that initially the ‘red bottle’ is the only bottle on the
table. Then the robot should first put another bottle on the table to accomplish
the task. Therefore, constraints add another kind of difficulty. The results of
stage 2 are shown in Table 2.

The NM approach returns the optimal plans for 39 problems in stage 2, while
the search and PS approach find out plans for all problems. The results show that
the NM approach works better for problems with constraints if it can complete
the planning in time (it runs out of time for one problem with constraints). It is

Simulation Competitions on Domestic Robots 173

Table 2. Results of stage 2 for the 2nd competition

competing program
score for problems
without constraints (9)

score for problems
with constraints (31)

total score
(40 problems)

NM approach 133 700 833

search approach 112 552 664

PS approach 120 625 745

Table 3. Results of stage 1 for the 3rd competition

competing program
score for problems
without related goals (8)

score for problems
with related goals (32)

total score
(40 problems)

Team A (NM) 156 705 861

Team B (NM) 149 697 846

Team C (PS) 132 654 786

Team D (search) 117 597 714

Team E (PS) 108 542 650

Team F (PS) 131 515 646

Team G (PS) 124 508 632

Team H (PS) 118 464 582

Team I (PS) 20 -77 -57

Team J (PS) -20 -98 -118

Team K (PS) -36 114 -150

Table 4. Results of stage 2 for the 3rd competition

competing program
score for problems
without constraints (5)

score for problems
with constraints (35)

total score
(40 problems)

Team A (NM) 87 948 1035

Team B (NM) 69 854 923

Team C (PS) 84 815 899

Team D (search) 74 826 900

Team E (PS) 58 798 856

Team F (PS) 72 739 811

Team G (PS) 76 726 802

Team H (PS) 87 653 740

Team I (PS) 17 266 283

also shown that the competing program by search approach encountered more
difficulty in handling constraints.

For most testing problems in both stages, the NM approach program can find
out the optimal plans in 5 seconds, but fails for some complicated problems
(need more than 12 actions to accomplish). This indicates that the NM program
is “religious” and “cautious”. The search approach program returns plans for all
problems in both stages, but the pruning strategies rule out the optimal plans
for most problems. The PS approach program returns plans for all problems.

174 J. Ji et al.

Although for most problems in stage 1 the results are closed to optimal plans,
the gap grows for complicated problems, especially when there are constrains.

Another competition was held on July 20101. The competition uses 80 new
testing problems with the similar size of previous problems. There are 11 different
teams in the competition. Their results and corresponding approaches are listed
in Table 3 and 4. Note that, the results still meet the previous observation.

4 The 4th and 5th Competition

In 2011, two competitions based on the simulation platform were held on May1

and August2 respectively with more challenging testing problems. Each of the
competitions has 12 teams. Different from previous ones, more primitive actions
are allotted to the virtual robot and more variables are considered in these com-
petitions. In particular, a new type of objects named “container” is introduced
and four new primitive actions become available to the virtual robot.

– putin(A,C): The robot puts object A into container C.
– takeout(A,C): The robot takes out object A from container C.
– open(C): The robot opens container C.
– close(C): The robot closes container C.

Generally, each testing problem involves 30 portable objects and 17 locations,
which requires 12 to 23 actions to accomplish the test.

Clearly, testing problems became more challenging. However, most teams still
performed well. Despite approaches reported in Section 3, some new approaches
are employed in the competitions.

Improved NM Approach. On top of the NM approach, “macro actions”
are introduced as consecutive executions of some original actions. When a plan
contains a macro action, it means the robot should execute a sequence of actions
at the step. Clearly, using macro actions can reduce the number of actions in
a plan, thus improve the efficiency of the original approach. However, the plan
contained with macro actions may not be an optimal solution. We can remedy
the problem through careful definitions of macro actions.

IDA* Search Approach. The approach is based on the Iterative Deepening
A* (IDA*) search algorithm, which is a variant of the A* search algorithm using
iterative deepening to keep the memory usage lower than in A*. The heuristic is
essential for the performance of the approach and some pruning techniques are
still required for certain cases.

NM Plus PS Approach. The NM approach can compute an optimal plan
taking a long time, while the PS approach can compute a plan in shorter time
that is not necessarily optimal. This approach combines the benefits of both
approaches. It first provides a skeleton of the solution by the PS approach, then
fulfills details by the NM approach. However, the solution may not be optimal.

Improved PS Approach. The approach improves the original PS approach
through a much deeper analysis of structures of corresponding testing problems.

2 http://www.wrighteagle.org/rco/athome/2011/results.php

http://www.wrighteagle.org/rco/athome/2011/results.php

Simulation Competitions on Domestic Robots 175

For each testing problem, the approach creates a directed graph based on the
initial and goal locations of related objects. Then, a strategy of solving the
problem is chosen based on the structure of the graph.

The results of the 5th competition (similar to the results of the 4th compe-
tition) are listed in Table 5. It shows that most teams perform well and the
Improved NM approach and the IDA* approach perform better than others.

Table 5. Results of the 5th competition

Team Name score for stage 1 (40 problems) score for stage 2 (40 problems)

Team A(improved NM) 1060 1880

Team B(IDA*) 1061 1850

Team C(NM+PS) 912 1735

Team D(NM+PS) 1003 1691

Team E(improved PS) 954 1672

Team F(improved PS) 844 1671

Team G(PS) 787 1486

Team H(PS) 816 1448

Team I(PS) 588 -

Team J(PS) 435 -

Team K(PS) 357 -

Team L(PS) 0 -

5 Discussion

Since 2010, the RoboCup@Home competition has added a new suit of tests,
named General Purpose Service Robot (GPSR) [6,7]. Different from other tests,
GPSR is not incorporated into a story and there is not a predefined set of actions.
In the test, the domestic robot is asked to serve user’s needs which are specified
in English. Note that, the requirements for high-level functions in GPSR are
similar to the requirements in simulation competitions reported in this paper.

We believe that, besides underlying robotics techniques, high-level functions
are also crucial for future domestic applications of a service robot. In the simu-
lation competitions, the following three issues related to high-level functions are
mainly considered.

(1) Planning for Complicated Tasks Figure 2 shows an example of a
complicated task. Suppose you and your friend are setting in the living room
and you ask your robot to fetch two cans of beer from the dining room. This
request is a complex task consisting of two related goals, move the first can from
the dining room to the living room and move the second from the dining room to
the living room. If the robot cannot understand or make use of the relatedness
of the goals, it will fetch the cans one by one separately, as shown in Figure 2a.
Obviously, it is not necessarily optimal and is typically inefficient. An optimal
plan is shown in Figure 2b. This is the way an intelligent robot is expected to
do it. In the simulation platform, the optimal plan would get the highest score.
Different testing problems in competitions correspond to various complicated
tasks in domestic applications.

176 J. Ji et al.

(a) (b)

Fig. 2. Related goals

(2) From Dialogue Understanding to Planning An important require-
ment for a intelligent service robot is to extract knowledge and information from
human-robot dialogue, and translate them to task planners, with which the task
planners can make use of the knowledge and information to solve new problems
and the robots can accumulate knowledge and improve performance. In competi-
tions, we use tasks specified in LSNLs or a simplified LSNL to simulate sentences
in the human-robot dialogue.

(3) Efficiency Issues Robots are required to quickly respond to users’ ut-
terances. Then efficiency issues become more acute, dialogue understanding and
task planning should be terminated in a short time. In competitions, each pro-
gram needs to return a result in 5 seconds, which is taken as the length of time
that users can tolerate.

From the results of the series of competitions, we can see that most teams
perform better and better, especially these teams using the Improved NM ap-
proach or the IDA* approach. With the accumulation of the five competitions,
we can see that the testing problems become more and more challenging. In the
1st competition, a testing problem may contain 14 different locations and 8 to
21 portable objects, and the problem can be solved less than 15 steps. While
in the 4th and 5th competitions, a testing problem involves 17 locations and 30
portable objects, and the problem requires 12 to 23 actions to be solved. On
the other hand, the performance of participating teams also become better and
better. In the first two competitions, only a few teams performed well. While in
the last two competitions, most teams can solve almost all testing problems and
the differences of their performances are lessening.

6 Conclusion

In this paper, we report five simulation competitions based on a platform for eval-
uating high-level function of a domestic robot. These competitions focus on the
performance of a robot on task planning and dialogue understanding while avoid-
ing the consideration of robots’ hardware. From the results of the series of compe-
titions, we can see that more and better approaches have been developed through
the competitions, indicating that the competitions are welcome by researchers and
students (graduates and undergraduates) and also helpful for promoting research

Simulation Competitions on Domestic Robots 177

and education on high-level functions of service robots. In addition, we hope this
competition will help drawmore and more teams to participate in real robot com-
petitions as real robots become available to more and more people.

In the future, we will extend the simulation competition to consider other
high-level functions of domestic robots, including coping with dynamic environ-
ments, failure recovery, uncertain information processing, human-robot dialogue
during the execution of a current plan, multi-robot scenarios and so on.

Acknowledgments. This work is supported by the National Hi-Tech Project of
China under grant 2008AA01Z150 and the National Natural Science Foundation
of China under grants 60745002 and 61175057. We thank Daniele Nardi, Wei
Liu and Fangkai Yang for their help to this work. We are also grateful to the
anonymous reviewers for their constructive comments and suggestions.

References

1. Asoh, H., Vlassis, N., Motomura, Y., Asano, F., Hara, I., Hayamizu, S., Ito, K.,
Kurita, T., Matsui, T., Bunschoten, R., Kröse, B.: Jijo-2: An office robot that
communicates and learns. IEEE Intelligent Systems 16(5), 46–55 (2001)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, New York (2003)

3. Burgard, W., Cremers, A., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner,
W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artificial
Intelligence 114(1-2), 3–55 (1999)

4. Chen, X., Jiang, J., Ji, J., Jin, G., Wang, F.: Integrating nlp with reasoning about
actions for autonomous agents communicating with humans. In: Proceedings of
the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology (IAT 2009), pp. 137–140 (2009)

5. Chen, X., Ji, J., Jiang, J., Jin, G., Wang, F., Xie, J.: Developing high-level cognitive
functions for service robots. In: Proceedings of theNinth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 989–996 (2010)

6. Committee, R.H.T., et al.: Robocup@home: Rules and regulation (2010)
7. Committee, R.H.T., et al.: Robocup@home: Rules and regulation (2011)
8. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains.

Robotics and Autonomous Systems 56(11), 980–991 (2008)
9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:

Engineering an incremental asp solver. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

10. Lin, F.: Embracing causality in specifying the indeterminate effects of actions. In:
Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI
1996), pp. 670–677 (1996)

11. Reiter, R.: The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In: Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp.
359–380 (1991)

12. Tenorth, M., Beetz, M.: KnowRob — knowledge processing for autonomous per-
sonal robots. In: Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2009), pp. 4261–4266 (2009)

13. Wisspeintner, T., van der Zant, T., Iocchi, L., Schiffer, S.: Robocup@home: Scien-
tific competition and benchmarking for domestic service robots. Interaction Stud-
ies 10(3), 392–426 (2009)

Throwing Skill Optimization through Synchronization
and Desynchronization of Degree of Freedom

Yuji Kawai1, Jihoon Park1, Takato Horii1, Yuji Oshima1, Kazuaki Tanaka1,2,
Hiroki Mori1, Yukie Nagai1, Takashi Takuma3, and Minoru Asada1

1 Dept. of Adaptive Machine Systems, Graduate School of Engineering,
Osaka University, Osaka, Japan

2 CREST, Japan Science and Technology Agency
3 Dept. of Electrical and Electronic Systems Engineering,

Osaka Institute of Technology, Osaka, Japan
robocup@er.ams.eng.osaka-u.ac.jp

Abstract. Humanoid robots have a large number of degrees of freedom (DoFs),
therefore motor learning by such robots which explore the optimal parameters
of behaviors is one of the most serious issues in humanoid robotics. In contrast,
it has been suggested that humans can solve such a problem by synchronizing
many body parts in the early stage of learning, and then desynchronizing their
movements to optimize a behavior for a task. This is called as ”Freeze and Re-
lease.” We hypothesize that heuristic exploration through synchronization and
desynchronization of DoFs accelerates motor learning of humanoid robots. In
this paper, we applied this heuristic to a throwing skill learning in soccer. First,
all motors related to the skill are actuated in a synchronized manner, thus the robot
explores optimal timing of releasing a ball in one-dimensional search space. The
DoFs are released gradually, which allows to search for the best timing to actuate
the motors of all joints. The real robot experiments showed that the exploration
method was fast and practical because the solution in low-dimensional subspace
was approximately optimum.

1 Introduction

Skilled behaviors of a humanoid robot are important in the robot soccer domain. Soc-
cer skills such as throwing, kicking, and biped locomotion require coordination of the
whole body movements with a large number of degrees of freedom (DoFs). Designing
a skilled behavior of a humanoid robot with high DoFs is one of the most serious issues.

There exist many studies on the heuristic exploration approach to solve such prob-
lems. Among them, evolutionary computation (e.g., [1,2]) and particle swarm optimiza-
tion (e.g., [3, 4]) enabled the robot to acquire faster gait. Main optimization parameters
in these studies have been trajectories of limbs or parameters of Central Pattern Gener-
ators. However, the number of iterations including evaluation of performance was very
large because of a vast. Generally, real robots are prone to be easily broken, therefore
optimization methods with much less trials are desired.

Peter and his colleagues [5–7] have demonstrated that Hill Climbing and Policy Gra-
dient algorithms successfully optimized the parameters for quadruped locomotion and

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 178–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Throwing Skill Optimization through Synchronization 179

Fig. 1. Throwing for exploration of optimal parameters

kicking a ball. These algorithms converge to solution more rapidly than evolutionary
computation and particle swarm optimization. However, the complexity of a robot’s
body still intrinsically causes a large number of iterations.

We take an idea from the progression of skills in humans who have their high-
dimensional motor space. Bernstein [8] (see also [9, 10]) suggested freezing and re-
leasing of DoFs in skill acquisition. In the early stage of learning of a motor skill, some
DoFs are reduced (frozen). The DoFs are then released (freed) gradually as the skill pro-
gresses. These stages of motor learning enable to reduce the search space dimension-
ality. Yamamoto and Fujinami [11] also found a common organization of acquisition
of a periodic skill: synchronization and desynchronization. They compared clay knead-
ing movements for pottery of experienced subjects with those of the experts. While the
experienced subjects tend to synchronize their body parts, slight phase differences be-
tween body parts are observed in the experts’ movements. Their group [12] found the
similar process for proficiency of samba dance. A possible interpretation of the syn-
chronization of movements in the early learning for the skill is that smaller number of
parameters of the movements simplify the optimization by reducing the dimensionality.

We introduce this idea of synchronization and desynchronization to optimization
methods, and then apply the method to progress of soccer throwing skill. Of impor-
tance in the acquisition of skilled throwing is the timing when to release the ball. A
robot searches for the best timing to actuate each joint based on timing of releasing a
ball through practice as shown in Fig. 1. All joints related to the throwing skill are syn-
chronized initially. That is, the robot optimizes roughly the timing of releasing a ball in
one-dimensional space. The joints are then gradually released, which allows the robot
to search more optimal parameters. As a result, the robot acquires skilled throwing even
with a small number of trials.

This paper is organized as follows: In section 2, we explain heuristic exploration
using synchronization and desynchronization of DoFs. Throwing parametrization of a

180 Y. Kawai et al.

Fig. 2. An example of exploration by Hill Climbing algorithm through synchronization and
desynchronization. In case of a two-dimensional objective function, the two parameters, S1 and
S2, are synchronized at first. These parameters are desynchronized after optimization in one-
dimensional space. The glay area means the neighborhood of a local solution in two-dimensional
space. The constraint on the search space enables faster exploration.

humanoid robot and the experimental setting are described in sections 3 and 4, respec-
tively. Section 5 then demonstrates that the proposed optimization method results in
quicker exploration of optimal parameters. In section 6, the results are given and future
issues are discussed, and in section 7, we conclude our research.

2 Heuristic Exploration through Synchronization and
Desynchronization

2.1 Synchronization and Desynchronization

Fig. 2 illustrates an example of exploration through synchronization and desynchroniza-
tion of parameters. Here, we assume a two-dimensional search space, that is, the only
two parameters are S1 and S2. There are two stages of optimization: synchronization
and desynchronization.

Synchronization. The search space is restricted to synchronization of all parameters,
namely, S1 = S2 (= S3 = · · ·= Sn). An initial value is selected in one-dimensional search
space (on the dashed line in Fig. 2). An optimal parameter is then explored on this line.

Desynchronization. The restriction is gradually lifted after finishing the optimization
in the previous search space. The search space is hence extended to one of other dimen-
sions. Initial values are the best one in the previous stage. A solution of this algorithm
is an optimal set of parameters when all parameters are explored.

The following is a procedure:

1. Synchronization process (above): one-dimensional search by freezing.
2. i = 1, and repeat the following until all dimensions are explored.

Throwing Skill Optimization through Synchronization 181

2-1 Release one dimension (i = i+ 1) and apply an optimization method starting
from the optimal solution in the previous stage (before releasing) as the initial
value in i-dimensional search space.

2-2 Find the optimal one in this space. If i= n (the full dimension), then the optimal
one is globally optimal. Else, go to 2-1

Therefore, the dimension of the search space is gradually increasing while the search
area is expected to decreasing owing to starting the optimization from reasonable initial
value.

2.2 Optimization Method

Every time one dimension is released, an optimization method is applied in the search
space. We use a Hill Climbing algorithm and a modified particle swarm optimization
(PSO). These algorithms are widely applied to parameter optimization problems (see
[3–5, 7]). In the both algorithms, the initial value in next search space is solution in
previous one.

Hill Climbing. A Hill Climbing algorithm is one of the simplest optimization meth-
ods. It is well-known that this algorithm explores a solution quickly. An initial value is
selected and evaluated in the search space. All neighbors of the initial one are evaluated,
and the highest-scoring parameter among the neighbors is selected. The selected value
is the next center, and then repeat the evaluation and the selection until no higher scores
can be found.

Modified Particle Swarm Optimization (PSO). PSO [13] is a probabilistic optimiza-
tion method just as genetic algorithms. Initially, a swarm of N particles is generated in
the D-dimensional search space. Here, we introduce an initial value to this algorithm
so that the optimization can inherit the best parameters in the previous search space.
Although the existing PSO gives randomly the positions of initial particles, we give the
initial positions according to normal distribution, where its mean and variance are the
initial value and v, respectively. These particles are assigned a position xi and a velocity
vi (1 ≤ i ≤ N), which are both D-dimensional vectors. Each particle is evaluated by the
performance. At each iteration, the velocity of each particle is updated depending on
two values: the personal best position pbesti (1 ≤ i ≤ N) and the global best position
gbest. pbesti is the best position that each particle has ever evaluated. gbest is the best
position that all particles have evaluated. Each velocity vt

i at iteration t is updated by:

vt+1
i = wvt

i + cprt
p × (pbestt

i − xt
i)+ cgrt

g × (gbestt − xt
i), (1)

where, w, cp and cg are weights. rp and rg are normal random numbers between 0 and
1. We restrict the range of velocity between −vmax and vmax, which is determined by:

vmax = k× xmax, (2)

where, xmax is the range of exploration in each dimension, and 0.1 ≤ k ≤ 1. The next
positions of particles xt+1

i are calculated by:

xt+1
i = xt

i + vt+1
i . (3)

182 Y. Kawai et al.

(a) Front view of VisiON 4G and its
essential DoFs for throwing.

(b) DoF configuration of VisiON 4G. The yel-
low joints are used in this experiment.

Fig. 3. The number of the substantial DoFs used in the current experiment is 4: the pitch shoulder,
the roll elbow, the pitch waist and the pitch knee. we assume symmetry of the motors. The DoF
of the knee consists of 6 motors. The elbow affects the holding and releasing the ball.

We judge the end of the exploration when gbest does not change during n iterations in
the current experiment.

3 Throwing Parametrization

A robot searches the optimized combination of the start timing of each joint to throw the
ball as far as possible. The VisiON 4G robot was used for this experiment (see Fig. 1), a
commercial humanoid robot manufactured by Vstone Co.,Ltd. Fig. 3 depicts the robot’s
DoF configuration. The robot has 22 DoFs and each joint is actuated by a VS-SV410
servomotor.

We, however, selected essential 4 DoFs for throwing:

– Pitch shoulder: throwing the ball overhead.
– Roll elbow: holding and releasing the ball.
– Pitch waist: achieving more force by the reaction.
– Knee: stretching the both knees, which consisting of 6 motors.

Unfortunately, VisiON 4G does not have the DoF of pitch elbow, which is required for
human throwing.

Fig. 4 shows the definition of the parameters. We did not use velocities or positions
of individual DoFs but the timing of movements of three DoFs (shoulder, knee, and
waist) as the parameters. Here, DoF of the elbow is a base of the timing because it
is important for a skilled throwing to optimize the timing of releasing the ball. We
defined the timing of the start of movements of the shoulder, knee and waist based on the

Throwing Skill Optimization through Synchronization 183

(a) Synchronization of DoFs in the first stage

(b) Desynchronization of DoFs in the latter stage

Fig. 4. The number of parameters increases gradually in the learning. In the early stage of learning
(a), the DoFs of the shoulder, the knee and the waist are synchronized. The robot explores the
optimal tinit , namely timing of releasing of the ball in the one-dimensional space. In the last stage
of learning (b), the timing of the start of the each DoF, ts, tw and tk, is optimized.

elbow’s timing as ts, tw and tk, respectively. The robot learns the optimal t = (ts, tw, tk)
through practice. Initially, the 3 DoFs are synchronized, i.e., ts = tw = tk = tinit , and
then the robot optimizes tinit (see Fig. 4(a)). Secondly, one DoF, the shoulder, the waist
or the knee, is differentiated from other DoFs. If the DoF of the shoulder is selected
here, the parameters are ts and tw = tk. In the last stage of learning, all of DoFs are
desynchronized. Thus the robot searches optimal t in the three-dimensional space (see
Fig. 4(b)).

4 Experimental Setting

In order to validate the proposed optimization method, we conduct experiments using a
real robot. The robot explores optimal combinations of ts, tw, and tk.

The performance is evaluated by the distance between a robot’s toe and a ball
fall point. The throwing distance is measured by a visual inspection through video

184 Y. Kawai et al.

Fig. 5. The experimental environment to optimize the parameters for throwing. We recorded the
distance between a robot’s toe and a ball fall point.

recording with a measuring tape as shown in Fig. 5. We evaluate the distance of throw-
ing regardless of the posture after throwing (keep standing or not).

The robot starts its motion from the same initial pose as shown in Fig. 1 in each trial.
We give the ball to the robot so that the robot can hold the ball with both hands. It takes
10 steps to execute throwing motion, where 1 step is 1/30 sec. The range of exploration
is set to [-5, +2] based on start timing of the elbow. The robot rests for 5 minutes every
time after 10 trials to prevent overheat of the motors.

Optimization experiments are conducted off-line. We evaluate optimization methods
using dataset obtained by exhaustive search in advance. Two trials of the experiment
are performed, each of which consists of 512 different timings. The objective function
is given the mean of two trials. We tested four optimization algorithms: Hill Climb-
ing and PSO through synchronization and desynchronization, and existing Hill Climb-
ing and PSO. We then compare the number of the evaluations and achieved optimal
performance.

In the Hill Climbing algorithm, one iteration needs 26 evaluations in three-
dimensional search space. We, however, does not count the evaluations of the pa-
rameters where the robot once searched. The variables in the PSO are empirically
determined: 8 particles are initially positioned according to a normal distribution, whose
variance is set to 3. We set w = cp = cg = 0.5 in Eq. (1) and k = 0.25 in Eq. (2). The
optimization is finished when the gbest does not change for 3 iterations.

An initial parameter is given as an integer between -5 and 2 (i.e., 8 patterns). Each
optimization method is conducted 8 times for all initial parameters. The proposed PSO
is ran 10 times with each initial parameter setting because PSO includes randomness.
In the existing PSO, randomly-selected initial parameters are given, and then we test it
80 times.

Throwing Skill Optimization through Synchronization 185

(a) Hill Climbing algorithm

(b) PSO

Fig. 6. The results of (a) Hill Climbing algorithm and (b) PSO. The blue and the pink bars indicate
the number of trials and throwing performance, respectively. The proposed methods desynchro-
nized DoF of shoulder (left), waist (middle), or knee (right) from other DoFs in the second stage.
N is the number of particles. The dashed line denotes the global optimum (59cm). Each errer bar
indicates the standard deviation.

5 Result

5.1 Number of Trials and Throwing Performance

Fig. 6 shows the results of optimization methods: (a) Hill Climbing algorithm and (b)
PSO. The pink bars denote average of the number of trials in each optimization method.
Less trials mean faster exploration, which relieves the robot of load. The blue bars
denote average of flying distance of a ball, i.e., throwing performance. There are three
results in the proposed optimization through synchronization and desynchronization:
shoulder (left), waist (middle) or knee (right) was differentiated from other DoFs in the
second stage.

It is noted that the results of both proposed methods show less trials than the ex-
isting methods. We can find that all results of Hill Climbing show high throwing

186 Y. Kawai et al.

(a) One-dimensional search space

(b) Two-dimensional search space

Fig. 7. Objective function. Proposed algorithm optimizes tinit in the one-dimensional space (a)
in the first stage of exploration. In two-dimensional search space with tw = −1 (b), the global
optimal parameter topt is (-1, -1, 1) which results in a distance travelled of 59cm.

performance (see Fig.6(a)), which are equivalent to global optimum: the dashed lines
(59cm) in Fig. 6. The results of proposed PSO through synchronization are less variance
and nearly the same performance as existing PSO with N = 8. Therefore, the proposed
method can reduce the number of trials while maintaining the high performance.

The number of trials in PSO, compared to the results of the proposed Hill Climb-
ing, is much less. However, the throwing performance of PSO with N = 8 is worse
than global optimum. More particles (e.g., N = 20) are required for the same level of
throwing performance as Hill Clibming. There esists a tradeoff between performance
and number of particles in PSO.

5.2 Objective Function

In Fig. 7, we show the objective function obtained by exhaustive search to discuss above
result. Fig. 7(a) illustrates one-dimensional objective function, where the optimal tinit is

Throwing Skill Optimization through Synchronization 187

explored in the first stage. There are two local maxima: tinit = −1 and -5. The global
optimum topt is (ts, tw, tk) = (-1, -1, 1) as shown in Fig. 7(b). Thus, the result of optimiza-
tion in one-dimensional space should be -1 so that the robot can find the topt finally. In
Hill Climbing, the optimal tinit is -1 if initial value is more than -3. On the other hand,
a particle swarm found -5 as global best and then all particles move toward -5 in PSO.
This is why the optimization by PSO with synchronization of DoFs was worse than by
Hill Climbing (see Fig. 6).

The synchronization of the DoFs of the shoulder and the waist simplifies to reach
topt because the topt is ts = tw = −1. Thus, the Hill Climbing through synchronizing
the DoFs of ts and tw in the second stage results in the least number of trials as shown
the knee’s pink bar in Fig. 6(a). The adequate order of releasing the DoFs may be task-
dependent.

6 Discussion

6.1 Necessity of Optimization in Real World

It is hard for a robot to acquire a skilled throwing. There exists a gap between the real
and the virtual world even if we use a realistic simulator or make a dynamical math-
ematical model of a robot. One of the differences originates from the environmental
complexity. The robot’s body, for example, interacts with the ball during throwing. The
ball deforms slightly and the robot undergoes reaction forces. This interaction seems to
influence the performance. Most simulators, however, cannot address detailed touch cal-
culations. The inherent delay of motors from motor commands is also a crucial problem.
Many athletic behaviors such as throwing are instantaneous movements. The throwing
took only 1/3 sec in this experiment. Thus the motor’s slight delay makes a difference
of performance. After all, it is necessary for acquisition of skilled behavior to optimize
the parameters in high-dimensional space using a real robot.

6.2 Synchronization and Desynchronization in Human Skilled Behaviors

We demonstrated that optimization of the robot’s throwing skill was accelerated by syn-
chronization and desynchronization of the DoFs. The humanoid robot, consequently,
could acquire the skilled throwing with less trials (see Fig. 6). The optimal throwing
had asynchrony with small differences between DoFs’ timing. This asynchrony of DoFs
is also observed in human throwing. In the throwing by an expert the timing to maxi-
mum velocities of body parts does not always correspond to the timing of releasing of a
ball [14]. In addition, skillful cyclical movements such as clay kneading [11] and samba
dance [12] have the slight phase differences between body parts. These studies [11, 12]
also showed that there is a process from synchronization to desynchronization of the
body parts in acquisition of these periodic skills. The results reported here may suggest
that the process in human motor learning has a role of reduction of the motor dimension-
ality and then accelerates optimization of the movement. Our study, however, does not
explain how human optimizes their skills through the process. The desynchronization
in human skilled behaviors may result from dynamic interaction between body parts
with compliance and environment. More detailed modeling of human motor learning is
necessary to expand our approach.

188 Y. Kawai et al.

6.3 Possibility of Application to other Skills

The proposed optimization method were evaluated in throwing task as a case study in
this paper. The optimal parameters for throwing in current experiment were (ts, tw, tk) =
(−1,−1,1), which implies that desynchronization with small differences was important
for skilled throwing. Athletic behaviors are instantaneous movements, which can be re-
garded as synchronization of body parts. From a micro perspective, however, a little
desynchronization of movements of each body part is required for skilled athletic be-
haviors (e.g. [14]). In other words, the timing optimized in synchronization of the DoFs
is close to the global optimum. Thus, the local maximum reached in the first stage
of exploration could be a reasonable initial estimate even if the space dimensionality
increases.

We can apply the proposed method to other athletic behaviors if the tasks’ optimal
parameters exist around synchronized parameters. A slight differentiation of the timing
of leg’s DoFs may be important in high-kicking (kicking the ball as high as possible),
which has been an official technical challenge in the RoboCup soccer humanoid league
since 2012. We will attempt to optimize these soccer skills by applying the proposed
method. In addition, velocity of body parts is also important for skilled behavior. We
will address the skill acquisition with more parameters such as velocity or acceleration.

7 Conclusion

In this paper, we presented a practical optimization method through synchronization and
desynchronization of a robot’s body parts. All of the DoFs related to the skill were syn-
chronized in the first stage of learning. Thus, the robot optimized the timing of the start
of releasing the ball in one-dimensional space. The DoFs were then desynchronized one
by one, which enabled the robot to explore the optimal timing of the start of each joint’s
movement. The reduction of the search space dimensionality, consequently, could de-
crease the number of trials. Our experiments showed that the optimization through syn-
chronization of the DoFs resulted in as high performance as the result of optimizing
without synchronization even if less trials were used.

This optimization method may be leveraged when acquiring quick movements such
as throwing, kicking and so on. Instantaneous athletic skills can be synchronized be-
haviors. Thus the optimization of synchronized DoFs might be more plausible, i.e., not
just a local solution. The robot can reach quickly a valid solution because of usage of
the best solution in the previous stage.

Acknowledgment. The authors gratefully acknowledge the contribution of the team
members of the JEAP, which is an acronym for JST ERATO Asada Project, for all
materials, and also Associate Prof. Tomomichi Sugihara and a former student, Hirotaka
Kimura (Currently, the City of Nagoya, Japan) at Osaka University for their suggestion
about heuristic exploration.

Throwing Skill Optimization through Synchronization 189

References

1. Hornby, G.S., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O.: Autonomous evolution
of gaits with the sony quadruped robot. In: Proc. of the Genetic and Evolutionary Computa-
tion Conference, vol. 2, pp. 1297–1304 (1999)

2. Daoxiong, G., Jie, Y., Guoyu, Z.: A review of gait optimization based on evolutionary com-
putation. Applied Computational Intelligence and Soft Computing (2010)

3. Rong, C., Wang, Q., Huang, Y., Xie, G., Wang, L.: Autonomous evolution of high-speed
quadruped gaits using particle swarm optimization. In: Iocchi, L., Matsubara, H., Weitzen-
feld, A., Zhou, C. (eds.) RoboCup 2008. LNCS, vol. 5399, pp. 259–270. Springer, Heidelberg
(2009)

4. Shafii, N., Aslani, S., Nezami, O.M., Shiry, S.: Evolution of biped walking using truncated
fourier series and particle swarm optimization. In: Baltes, J., Lagoudakis, M.G., Naruse, T.,
Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 344–354. Springer, Heidelberg
(2010)

5. Kohl, N., Stone, P.: Machine learning for fast quadrupedal locomotion. In: Proc. of the 19th
National Conf. on Artificial Intelligence, pp. 611–616 (2004)

6. Saggar, M., D’Silva, T., Kohl, N., Stone, P.: Autonomous learning of stable quadruped lo-
comotion. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006.
LNCS (LNAI), vol. 4434, pp. 98–109. Springer, Heidelberg (2007)

7. Hausknecht, M., Stone, P.: Learning powerful kicks on the aibo ERS-7: The quest for a
striker. In: Ruiz-del-Solar, J. (ed.) RoboCup 2010. LNCS, vol. 6556, pp. 254–265. Springer,
Heidelberg (2010)

8. Bernstein, N.A.: The co-ordination and regulation of movements. Pergamon Press (1967)
9. Newell, K.M., Vaillancourt, D.E.: Dimensional change in motor learning. Human Movement

Science 20(4-5), 695–715 (2001)
10. Vereijken, B., van Emmerik, R.E.A., Whiting, H.T.A., Newell, K.M.: Free(z)ing degrees of

freedom in skill acquisition. Journal of Motor Behavior 24(1), 133–142 (1992)
11. Yamamoto, T., Fujinami, T.: Hierarchical organization of the coordinative structure of the

skill of clay kneading. Human Movement Science 27(5), 812–822 (2008)
12. Matsumura, K., Yamamoto, T., Fujinami, T.: A study of samba dance using acceleration

sensors. In: Proc. of the 8th Motor Control and Human Skill Conference, pp. 5–4 (2007)
13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of the IEEE International

Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
14. Reilly, T.: Science and Soccer, Routledge (1995)

Positioning to Win: A Dynamic Role

Assignment and Formation Positioning System

Patrick MacAlpine, Francisco Barrera, and Peter Stone

Department of Computer Science, The University of Texas at Austin
{patmac,tank225,pstone}@cs.utexas.edu

Abstract. This paper presents a dynamic role assignment and forma-
tion positioning system used by the 2011 RoboCup 3D simulation league
champion UT Austin Villa. This positioning system was a key component
in allowing the team to win all 24 games it played at the competition dur-
ing which the team scored 136 goals and conceded none. The positioning
system was designed to allow for decentralized coordination among phys-
ically realistic simulated humanoid soccer playing robots in the partially
observable, non-deterministic, noisy, dynamic, and limited communica-
tion setting of the RoboCup 3D simulation league simulator. Although
the positioning system is discussed in the context of the RoboCup 3D
simulation environment, it is not domain specific and can readily be em-
ployed in other RoboCup leagues as it generalizes well to many realistic
and real-world multiagent systems.

1 Introduction

Coordinated movement among autonomous mobile robots is an important re-
search area with many applications such as search and rescue [1] and ware-
house operations [2]. The RoboCup 3D simulation competition provides an
excellent testbed for this line of research as it requires coordination among
autonomous agents in a physically realistic environment that is partially ob-
servable, non-deterministic, noisy, and dynamic. While low level skills such as
walking and kicking are vitally important for having a successful soccer playing
agent, the agents must work together as a team in order to maximize their game
performance.

One often thinks of the soccer teamwork challenge as being about where the
player with the ball should pass or dribble, but at least as important is where
the agents position themselves when they do not have the ball [3]. Positioning
the players in a formation requires the agents to coordinate with each other and
determine where each agent should position itself on the field. While there has
been considerable research done in the 2D soccer simulation domain (for example
by Stone et al. [4] and Reis et al. [5]), relatively little outside of [6] has been
published on this topic in the more physically realistic 3D soccer simulation
environment. [6], as well as related work in the RoboCup middle size league
(MSL) [7], rank positions on the field in order of importance and then iteratively
assign the closest available agent to the most important currently unassigned

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 190–201, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Positioning to Win 191

position until every agent is mapped to a target location. The work presented in
this paper differs from the mentioned previous work in the 2D and 3D simulation
and MSL RoboCup domains as it takes into account real-world concerns and
movement dynamics such as the need for avoiding collisions of robots.

In UT Austin Villa’s positioning system players’ positions are determined in
three steps. First, a full team formation is computed (Section 3); second, each
player computes the best assignment of players to role positions in this formation
according to its own view of the world (Section 4); and third, a coordination
mechanism is used to choose among all players’ suggestions (Section 4.4). In this
paper, we use the terms (player) position and (player) role interchangeably.

The remainder of the paper is organized as follows. Section 2 provides a de-
scription of the RoboCup 3D simulation domain. The formation used by UT
Austin Villa is given in Section 3. Section 4 explains how role positions are dy-
namically assigned to players. Collision avoidance is discussed in Section 5. An
evaluation of the different parts of the positioning system is given in Section 6,
and Section 7 summarizes.

2 Domain Description

The RoboCup 3D simulation environment is based on SimSpark,1 a generic phys-
ical multiagent system simulator. SimSpark uses the Open Dynamics Engine2

(ODE) library for its realistic simulation of rigid body dynamics with collision
detection and friction. ODE also provides support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

The robot agents in the simulation are homogeneous and are modeled after
the Aldebaran Nao robot,3 which has a height of about 57 cm, and a mass of
4.5 kg. The agents interact with the simulator by sending torque commands and
receiving perceptual information. Each robot has 22 degrees of freedom: six in
each leg, four in each arm, and two in the neck. In order to monitor and control
its hinge joints, an agent is equipped with joint perceptors and effectors. Joint
perceptors provide the agent with noise-free angular measurements every simu-
lation cycle (20ms), while joint effectors allow the agent to specify the torque
and direction in which to move a joint. Although there is no intentional noise
in actuation, there is slight actuation noise that results from approximations in
the physics engine and the need to constrain computations to be performed in
real-time. Visual information about the environment is given to an agent every
third simulation cycle (60ms) through noisy measurements of the distance and
angle to objects within a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well as force resistance
perceptors on the sole of each foot. Additionally, agents can communicate with
each other every other simulation cycle (40ms) by sending messages limited to
20 bytes.

1 http://simspark.sourceforge.net/
2 http://www.ode.org/
3 http://www.aldebaran-robotics.com/eng/

http://simspark.sourceforge.net/
http://www.ode.org/
http://www.aldebaran-robotics.com/eng/

192 P. MacAlpine, F. Barrera, and P. Stone

3 Formation

This section presents the formation used by UT Austin Villa during the 2011
RoboCup competition. The formation itself is not a main contribution of this
paper, but serves to set up the role assignment function discussed in Section 4
for which a precomputed formation is required.

In general, the team formation is determined by the ball position on the field.
As an example, Figure 1 depicts the different role positions of the formation and
their relative offsets when the ball is at the center of the field. The formation can
be broken up into two separate groups, an offensive and a defensive group. Within
the offensive group, the role positions on the field are determined by adding a
specific offset to the ball’s coordinates. The onBall role, assigned to the player
closest to the ball, is always based on where the ball is and is therefore never
given an offset. On either side of the ball are two forward roles, forwardRight and
forwardLeft. Directly behind the ball is a stopper role as well as two additional
roles, wingLeft and wingRight, located behind and to either side of the ball.
When the ball is near the edge of the field some of the roles’ offsets from the
ball are adjusted so as to prevent them from moving outside the field of play.

Within the defensive group there are two roles, backLeft and backRight. To
determine their positions on the field a line is calculated between the center
of the team’s own goal and the ball. Both backs are placed along this line at
specific offsets from the end line. The goalie positions itself independently of its
teammates in order to always be in the best position to dive and stop a shot
on goal. If the goalie assumes the onBall role, however, a third role is included
within the defensive group, the goalieReplacement role. A field player assigned
to the goalieReplacement role is told to stand in front of the center of the goal.

During the course of a game there are occasional stoppages in play for events
such as kickoffs, goal kicks, corner kicks, and kick-ins. When one of these events
occur UT Austin Villa adjusts its team formation and behavior to assume situ-
ational set plays which are detailed in a technical report [8].

Kicking and passing have yet to be incorporated into the team’s formation.
Instead the onBall role always dribbles the ball toward the opponent’s goal.

Fig. 1. Formation role positions

Positioning to Win 193

4 Assignment of Agents to Role Positions

Given a desired team formation, we need to map players to roles (target positions
on the field). A näıve mapping having each player permanently mapped to one
of the roles performs poorly due to the dynamic nature of the game. With such
static roles an agent assigned to a defensive role may end up out of position
and, without being able to switch roles with a teammate in a better position to
defend, allow for the opponent to have a clear path to the goal. In this section, we
present a dynamic role assignment algorithm. A role assignment algorithm can
be thought of as implementing a role assignment function, which takes as input
the state of the world, and outputs a one-to-one mapping of players to roles. We
start by defining three properties that a role assignment function must satisfy
(Section 4.1). We then construct a role assignment function that satisfies these
properties (Section 4.2). Finally, we present a dynamic programming algorithm
implementing this function (Section 4.3).

4.1 Desired Properties of a Valid Role Assignment Function

Before listing desired properties of a role assignment function we make a couple
of assumptions. The first of these is that no two agents and no two role positions
occupy the same position on the field. Secondly we assume that all agents move
toward fixed role positions along a straight line at the same constant speed. While
this assumption is not always completely accurate, the omnidirectional walk used
by the agent, and described in [9], gives a fair approximation of constant speed
movement along a straight line.

We call a role assignment function valid if it satisfies three properties:

1. Minimizing longest distance - it minimizes the maximum distance from a
player to target, with respect to all possible mappings.

2. Avoiding collisions - agents do not collide with each other as they move to
their assigned positions.

3. Dynamically consistent - a role assignment function f is dynamically con-
sistent if, given a fixed set of target positions, if f outputs a mapping m
of players to targets at time T , and the players are moving toward these
targets, f would output m for every time t > T .

The first two properties are related to the output of the role assignment function,
namely the mapping between players and positions. We would like such a map-
ping to minimize the time until all players have reached their target positions
because quickly doing so is important for strategy execution. As we assume all
players move at the same speed, we start by requiring a mapping to minimize
the maximum distance any player needs to travel. However, paths to positions
might cross each other, therefore we additionally require a mapping to guaran-
tee that when following it, there are no collisions. The third property guarantees
that once a role assignment function f outputs a mapping, f is committed to it
as long as there is no change in the target positions. This guarantee is necessary
as otherwise agents might unduly thrash between roles thus impeding progress.
In the following section we construct a valid role assignment function.

194 P. MacAlpine, F. Barrera, and P. Stone

4.2 Constructing a Valid Role Assignment Function

Let M be the set of all one-to-one mappings between players and roles. If the
number of players is n, then there are n! possible such mappings. Given a state
of the world, specifically n player positions and n target positions, let the cost
of a mapping m be the n-tuple of distances from each player to its target, sorted
in decreasing order. We can then sort all the n! possible mappings based on
their costs, where comparing two costs is done lexicographically. Sorted costs of
mappings from agents to role positions for a small example are shown in Figure 2.

Fig. 2. Lowest lexicographical cost (shown with arrows) to highest cost ordering of
mappings from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents
the cost of a single mapping.

1:
√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√
2 (A3→P3), 1 (A2→P1)

3:
√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√
5 (A2→P3), 2 (A1→P2),

√
2 (A3→P1)

5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)

6: 3 (A1→P3),
√
2 (A2→P2),

√
2 (A3→P1)

Denote the role assignment function that always outputs the mapping with the
lexicographically smallest cost as fv. Here we provide an informal proof sketch
that fv is a valid role assignment; we provide a longer, more thorough derivation
in a technical report [8].

Theorem 1. fv is a valid role assignment function.

It is trivial to see that fv minimizes the longest distance traveled by any agent
(Property 1) as the lexicographical ordering of distance tuples sorted in descend-
ing order ensures this. If two agents in a mapping are to collide (Property 2)
it can be shown, through the triangle inequality, that fv will find a lower cost
mapping as switching the two agents’ targets reduces the maximum distance
either must travel. Finally, as we assume all agents move toward their targets at
the same constant rate, the distance between any agent and target will not de-
crease any faster than the distance between an agent and the target it is assigned
to. This observation serves to preserve the lowest cost lexicographical ordering
of the chosen mapping by fv across all timesteps thereby providing dynamic
consistency (Property 3). Section 4.3 presents an algorithm that implements fv.

4.3 Dynamic Programming Algorithm for Role Assignment

In UT Austin Villa’s basic formation, presented in Section 3, there are nine
different roles for each of the nine agents on the field. The goalie always fills the

Positioning to Win 195

goalie role and the onBall role is assigned to the player closest to the ball. The
other seven roles must be mapped to the agents by fv. Additionally, when the
goalie is closest to the ball, the goalie takes on both the goalie and onBall roles
causing us to create an extra goalieReplacement role positioned right in front
of the team’s goal. When this occurs the size of the mapping increases to eight
agents mapped to eight roles. As the total number of mapping permutations is
n!, this creates the possibility of needing to evaluate 8! different mappings.

Clearly fv could be implemented using a brute force method to compare
all possible mappings. This implementation would require creating up to 8! =
40, 320 mappings, then computing the cost of each of the mappings, and finally
sorting them lexicographically to choose the smallest one. However, as our agent
acts in real time, and fv needs to be computed during a decision cycle (20ms),
a brute force method is too computationally expensive. Therefore, we present
a dynamic programming implementation shown in Algorithm 1 that is able to
compute fv within the time constraints imposed by the decision cycle’s length.

Algorithm 1. Dynamic programming implementation

1: HashMap bestRoleMap = ∅

2: Agents = {a1, ..., an}
3: Positions = {p1, ..., pn}
4: for k = 1 to n do
5: for each a in Agents do
6: S =

(
n−1
k−1

)
sets of k − 1 agents from Agents− {a}

7: for each s in S do
8: Mapping m0 = bestRoleMap[s]
9: Mapping m = (a → pk) ∪mo

10: bestRoleMap[{a} ∪ s] = mincost(m, bestRoleMap[{a} ∪ s])
11: return bestRoleMap[Agents]

Theorem 2. Let A and P be sets of n agents and positions respectively. Denote
the mapping m := fv(A,P). Let m0 be a subset of m that maps a subset of agents
A0 ⊂ A to a subset of positions P0 ⊂ P . Then m0 is also the mapping returned
by fv(A0, P0).

A key recursive property of fv that allows us to exploit dynamic programming
is expressed in Theorem 2. This property stems from the fact that if within any
subset of a mapping a lower cost mapping is found, then the cost of the complete
mapping can be reduced by augmenting the complete mapping with that of
the subset’s lower cost mapping. The savings from using dynamic programming
comes from only evaluating mappings whose subset mappings are returned by fv.
This is accomplished in Algorithm 1 by iteratively building up optimal mappings
for position sets from {p1} to {p1, ..., pn}, and using optimal mappings of k − 1
agents to positions {p1, ..., pk−1} (line 8) as a base when constructing each new
mapping of k agents to positions {p1, ..., pk} (line 9), before saving the lowest
cost mapping for the current set of k agents to positions {p1, ..., pk} (line 10).

An example of the mapping combinations evaluated in finding the optimal
mapping for three agents through the dynamic programming approach of Al-
gorithm 1 can be seen in Table 1. In this example we begin by computing the

196 P. MacAlpine, F. Barrera, and P. Stone

distance of each agent to our first role position. Next we compute the cost of all
possible mappings of agents to both the first and second role positions and save
off the lowest cost mapping of every pair of agents to the the first two positions.
We then proceed by sequentially assigning every agent to the third position and
compute the lowest cost mapping of all agents mapped to all three positions. As
all subsets of an optimal (lowest cost) mapping will themselves be optimal, we
need only evaluate mappings to all three positions which include the previously
calculated optimal mapping agent combinations for the first two positions.

Table 1. All mappings evaluated during dynamic programming using Algorithm 1
when computing an optimal mapping of agents A1, A2, and A3 to positions P1, P2,
and P3. Each column contains the mappings evaluated for the set of positions listed
at the top of the column.

{P1} {P2,P1} {P3,P2,P1}
A1→P1 A1→P2, fv(A2→P1) A1→P3, fv({A2,A3}→{P1,P2})
A2→P1 A1→P2, fv(A3→P1) A2→P3, fv({A1,A3}→{P1,P2})
A3→P1 A2→P2, fv(A1→P1) A3→P3, fv({A1,A2}→{P1,P2})

A2→P2, fv(A3→P1)
A3→P2, fv(A1→P1)
A3→P2, fv(A2→P1)

Recall that during the kth iteration of the dynamic programming process to
find a mapping for n agents, where k is the current number of positions that
agents are being mapped to, each agent is sequentially assigned to the kth po-
sition and then all possible subsets of the other n − 1 agents are assigned to
positions 1 to k− 1 based on computed optimal mappings to the first k− 1 posi-
tions from the previous iteration of the algorithm. These assignments result in a
total of

(
n−1
k−1

)
agent subset mapping combinations to be evaluated for mappings

of each agent assigned to the kth position. The total number of mappings com-
puted for each of the n agents across all n iterations of dynamic programming
is thus equivalent to the sum of the n− 1 binomial coefficients. That is,

n∑
k=1

(
n− 1

k − 1

)
=

n−1∑
k=0

(
n− 1

k

)
= 2n−1

Therefore the total number of mappings that must be evaluated using our dy-
namic programming approach is n2n−1. For n = 8 we thus only have to evaluate
1024 mappings which takes about 3.3ms for each agent to compute compared to
upwards of 50ms using a brute force approach to evaluate all possible mappings.4

4.4 Voting Coordination System

In order for agents on a team to assume correct positions on the field they all
must coordinate and agree on which mapping of agents to roles to use. If every
agent had perfect information of the locations of the ball and its teammates this
would not be a problem as each could independently calculate the optimal map-
ping to use. Agents do not have perfect information, however, and are limited to

4 As measured on an Intel Core 2 Duo CPU E8500 @3.16GHz.

Positioning to Win 197

noisy measurements of the distance and angle to objects within a restricted vi-
sion cone (120◦). Fortunately agents can share information with each other every
other simulation cycle (40ms). The bandwidth of this communication channel
is very limited, however, as only one agent may send a message at a time and
messages are limited to 20 bytes.

We utilize the agents’ limited communication bandwidth in order to coor-
dinate role mappings as follows. Each agent is given a rotating time slice to
communicate information, as in [4], which is based on the uniform number of an
agent. When it is an agent’s turn to send a message it broadcasts to its team-
mates its current position, the position of the ball, and also what it believes
the optimal mapping should be. By sending its own position and the position
of the ball, the agent provides necessary information for computing the optimal
mapping to those of its teammates for which these objects are outside of their
view cones. Sharing the optimal mapping of agents to role positions enables
synchronization between the agents, as follows.

First note that just using the last mapping received is dangerous, as it is
possible for an agent to report inconsistent mappings due to its noisy view of
the world. This can easily occur when an agent falls over and accumulates error
in its own localization. Additionally, messages from the server are occasionally
dropped or received at different times by the agents preventing accurate syn-
chronization. To help account for inconsistent information, a sliding window of
received mappings from the last n time-slots is kept by each agent where n is the
total number of agents on a team. Each of these kept messages represents a sin-
gle vote by each of the agents as to which mapping to use. The mapping chosen
is the one with the most votes or, in the case of a tie, the mapping tied for the
most votes with the most recent vote cast for it. By using a voting system, the
agents on a team are able to synchronize the mapping of agents to role positions
in the presence of occasional dropped messages or an agent reporting erroneous
data. As a test of the voting system the number of cycles all nine agents shared
a synchronized mapping of agents to roles was measured during 5 minutes of
gameplay (15,000 cycles). The agents were synchronized 100% of the time when
using the voting system compared to only 36% of the time when not using it.

5 Collision Avoidance

Although the positioning system discussed in Section 4 is designed to avoid
assigning agents to positions that might cause them to collide, external factors
outside of the system’s control, such as falls and the movement of the opposing
team’s agents, still result in occasional collisions. To minimize the potential for
these collisions the agents employ an active collision avoidance system. When
an obstacle, such as a teammate, is detected in an agent’s path the agent will
attempt to adjust its path to its target in order to maneuver around the obstacle.
This adjustment is accomplished by defining two thresholds around obstacles: a
proximity threshold at 1.25 meters and a collision threshold at .5 meters from
an obstacle. If an agent enters the proximity threshold of an obstacle it will

198 P. MacAlpine, F. Barrera, and P. Stone

adjust its course to be tangent to the obstacle thereby choosing to circle around
to the right or left of said obstacle depending on which direction will move the
agent closer to its desired target. Should the agent get so close as to enter the
collision proximity of an obstacle it must take decisive action to prevent an
otherwise imminent collision from occurring. In this case the agent combines the
corrective movement brought about by being in the proximity threshold with an
additional movement vector directly away from the obstacle. Figure 3 illustrates
the adjusted movement of an agent when attempting to avoid a collision.

Fig. 3. Collision avoidance examples where agent A is traveling to target T but wants
to avoid colliding with obstacle O. The left diagram shows how the agent’s path is
adjusted if it enters the proximity threshold of the obstacle while the right diagram
depicts the agent’s movement when entering the collision threshold. The dotted arrow
is the agent’s desired path while the solid arrow is the corrected path to avoid a collision.

6 Formation Evaluation

To test how our formation and role positioning system5 affects the team’s per-
formance we created a number of teams to play against by modifying the base
positioning system and formation of UT Austin Villa.

UT Austin Villa. Base agent using the dynamic role positioning system described
in Section 4 and formation in Section 3.

NoCollAvoid. No collision avoidance.
AllBall. No formations and every agent except for the goalie goes to the ball.
NoTeamwork. Similar to AllBall except that collision avoidance is also turned off.
NoCommunication. Agents do not communicate with each other.
Static. Each role is statically assigned to an agent based on its uniform number.
Defensive. Defensive formation in which only two agents are in the offensive group.
Offensive. Offensive formation in which all agents except for the goalie are positioned

in a close symmetric formation behind the ball.
Boxes. Field is divided into fixed boxes and each agent is dynamically assigned to a

home position in one of the boxes. Similar to system used in [4].
NearestStopper. The stopper role position is mapped to nearest agent.

5 Video demonstrating our positioning system can be found online at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

AustinVilla3DSimulationFiles/2011/html/positioning.html

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2011/html/positioning.html

Positioning to Win 199

PathCost. Agents add in the cost of needing to walk around known obstacles (using
collision avoidance from Section 5), such as the ball and agent assuming the onBall
role, when computing distances of agents to role positions.

PositiveCombo. Combination ofOffensive, PathCost, and NearestStopper attributes.

Table 2. Full game results, averaged over 100 games. Each row corresponds to an agent
with varying formation and positioning systems as described in Section 6. Entries show
the goal difference (row − column) from 10 minute games versus our base agent, using
the dynamic role positioning system described in Section 4 and formation in Section 3,
as well as the Apollo3D and CIT3D agents from the 2011 RoboCup China Open. Values
in parentheses are the standard error.

UTAustinVilla Apollo3D CIT3D
PositiveCombo 0.33 (.07) 2.16 (.11) 4.09 (.12)

Offensive 0.21 (.09) 1.80 (.12) 3.89 (.12)
AllBall 0.09 (.08) 1.69 (.13) 3.56 (.13)

PathCost 0.07 (.07) 1.27 (.11) 3.25 (.11)
NearestStopper 0.01 (.07) 1.26 (.11) 3.21 (.11)
UTAustinVilla — 1.05 (.12) 3.10 (.12)

Defensive -0.05 (.05) 0.42 (.10) 1.71 (.11)
Static -0.19 (.07) 0.81 (.13) 2.87 (.11)

NoCollAvoid -0.21 (.08) 0.82 (.12) 2.84 (.12)
NoCommunication -0.30 (.06) 0.41 (.11) 1.94 (.10)

NoTeamwork -1.10 (.11) 0.33 (.15) 2.43 (.12)
Boxes -1.38 (.11) -0.82 (.13) 1.52 (.11)

Results of UT Austin Villa playing against these modified versions of itself are
shown in Table 2. The UT Austin Villa agent is the same agent used in the 2011
competition, except for a bug fix,6 and so the data shown does not directly match
with earlier released data in [9]. Also shown in Table 2 are results of the modified
agents playing against the champion (Apollo3D) and runner-up (CIT3D) of the
2011 RoboCup China Open. These agents were chosen as reference points as they
are two of the best teams available with CIT3D and Apollo3D taking second
and third place respectively at the main RoboCup 2011 competition. The China
Open occurred after the main RoboCup event during which time both teams
improved (Apollo3D went from losing by an average of 1.83 to 1.05 goals and
CIT3D went from losing by 3.75 to 3.1 goals on average when playing 100 games
against our base agent).

Several conclusions can be made from the game data in Table 2. The first of
these is that it is really important to be aggressive and always have agents near
the ball. This finding is shown in the strong performance of the Offensive agent.
In contrast to an offensive formation, we see that a very defensive formation
used by the Defensive agent hurts performance likely because, as the saying
goes, the best defense is a good offense. The poor performance of the Boxes
agent, in which the positions on the field are somewhat static and not calculated
as relative offsets to the ball, underscores the importance of being around the
ball and adjusting positions on the field based on the current state of the game.
The likely reason for the success of offensive and aggressive formations grouped

6 A bug in collision avoidance present in the 2011 competition agent where it always
moved in the direction away from the ball to avoid collisions was fixed.

200 P. MacAlpine, F. Barrera, and P. Stone

close to the ball is because few teams in the league have managed to successfully
implement advanced passing strategies, and thus most teams primarily rely on
dribbling the ball. Should a team develop good passing skills then a spread out
formation might become useful.

The NearestStopper agent was created after noticing that the stopper role is a
very important position on the field so as to always have an agent right behind
the ball to prevent breakaways and block kicks toward the goal. Ensuring that the
stopper role is filled as quickly as possible improved performance slightly. This
result is another example of added aggression improving game performance.

Another factor in team performance that shows up in the data from Table 2 is
the importance of collision avoidance. Interestingly the AllBall agent did almost
as well as the Offensive agent even though it does not have a set formation.
While this result might come as a bit of surprise, collision avoidance causes the
AllBall agent to form a clumped up mass around the ball which is somewhat
similar to that of the Offensive agent’s formation. For the strategy of all the
agents running to the ball to work well it is imperative to have good collision
avoidance. This conclusion is evident from the poor performance of the NoTeam-
work agent where collision avoidance is turned off with everyone running to the
ball, as well as from a result in [9] where the AllBall agent lost to the base agent
by an average of .43 goals when both agents had a bug in their collision avoidance
systems. Turning off collision avoidance, but still using formations, hurts perfor-
mance as seen in the results of the NoCollAvoid agent. Additionally the Path-
Cost agent showed an improvement in gameplay by factoring in known obstacles
that need to be avoided when computing the distance required to walk to each
target.

Another noteworthy observation from the data in Table 2 is that dynamically
assigning roles is better than statically fixing them. This finding is clear in the
degradation in performance of the Static agent. It is important that the agents
are synchronized in their decision as to which mapping of agents to roles to use,
however, as is noticeable by the dip in performance of the NoCommunication
agent which does not use the voting system presented in Section 4.4 to synchro-
nize mappings. The best performing agent, that being the PositiveCombo agent,
demonstrates that the most successful agent is one which employs an aggressive
formation coupled with synchronized dynamic role switching, path planning, and
good collision avoidance. While not shown in Table 2, the PositiveCombo agent
beat the AllBall agent (which only employs collision avoidance and does not use
formations or positioning) by an average of .31 goals across 100 games with a
standard error of .09. This resulted in a record of 43 wins, 20 losses, and 37 ties
for the PositiveCombo agent against the AllBall agent.

7 Summary and Discussion

We have presented a dynamic role assignment and formation positioning system
for use with autonomous mobile robots in the RoboCup 3D simulation domain —
a physically realistic environment that is partially observable, non-deterministic,

Positioning to Win 201

noisy, and dynamic. This positioning system was a key component in UT Austin
Villa7 winning the 2011 RoboCup 3D simulation league competition.

For future work we hope to add passing to our strategy and then develop for-
mations for passing, possibly through the use of machine learning. Additionally
we intend to look into ways to compute fv more efficiently as well as explore
other potential functions for mapping agents to role positions.

Acknowledgments. This work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. Thanks especially to UT Austin Villa
2011 team members Daniel Urieli, Samuel Barrett, Shivaram Kalyanakrishnan,
Michael Quinlan, Nick Collins, Adrian Lopez-Mobilia, Art Richards, Nicolae
Ştiurcă, and Victor Vu. LARG research is supported in part by grants from the
National Science Foundation (IIS-0917122), ONR (N00014-09-1-0658), and the
Federal Highway Administration (DTFH61-07-H-00030). Patrick MacAlpine is
supported by a NDSEG fellowship.

References
1. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., Shi-

mada, S.: Robocup rescue: search and rescue in large-scale disasters as a domain for
autonomous agents research. In: Proc. of 1999 IEEE Int. Conf. on Systems, Man,
and Cybernetics (SMC), vol. 6, pp. 739–743 (1999)

2. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine 29, 9–20 (2008)

3. Kalyanakrishnan, S., Stone, P.: Learning complementary multiagent behaviors:
A case study. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.)
RoboCup 2009. LNCS, vol. 5949, pp. 153–165. Springer, Heidelberg (2010)

4. Stone, P., Veloso, M.: Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artificial Intelli-
gence 110, 241–273 (1999)

5. Reis, L.P., Lau, N., Oliveira, E.C.: Situation based strategic positioning for coordi-
nating a team of homogeneous agents. In: Hannebauer, M., Wendler, J., Pagello, E.
(eds.) Reactivity and Deliberation in MAS. LNCS (LNAI), vol. 2103, pp. 175–197.
Springer, Heidelberg (2001)

6. Chen, W., Chen, T.: Multi-robot dynamic role assignment based on path cost. In:
2011 Chinese Control and Decision Conference (CCDC), pp. 3721–3724 (2011)

7. Lau, N., Lopes, L., Corrente, G., Filipe, N.: Multi-robot team coordination through
roles, positionings and coordinated procedures. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2009), pp. 5841–5848 (2009)

8. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011 3D Simulation
Team report. Technical Report AI11-10, The Univ. of Texas at Austin, Dept. of
Computer Science, AI Laboratory (2011)

9. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011: A champion agent
in the RoboCup 3D soccer simulation competition. In: Proc. of 11th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2012) (2012)

7 More information about the UT Austin Villa team, as well as video highlights from
the 2011 competition, can be found at the team’s website:
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

Evacuation Simulation with Guidance

for Anti-disaster Planning

Masaru Okaya and Tomoichi Takahashi

Meijo University Shiogamaguchi 1-501, Tenpaku, Nagoya, Japan, 468-8502
m0930007@ccalumni.meijo-u.ac.jp, ttaka@ccmfs.meijo-u.ac.jp

http://sakura.meijo-u.ac.jp/ttakaHP/Rescue_index.html

Abstract. Crowd evacuation simulations are useful tools for analyzing
and assessing the safety of building occupants. Agent-based simulations
provide a platform for computing individual as well as and collective be-
haviors in crowds. During an evacuation, it is well known that trained
leaders or evacuation guidance play a key role in saving human lives. In
this paper, we propose an evacuation simulation system where agents are
guided by evacuation orders from authorities. The simulations captured
typical behaviors observed during crowd evacuation. For example, the
total evacuation time was reduced when most of the agents followed the
guidance, although the evacuation times of individual agents were differ-
ent. When a specific agent is involved in the movement of other agents
to a different destination, the evacuation takes a longer amount of time.
The simulation appears to depict real-life situations well, which shows
that simulations can be a useful tool to estimate evacuation situations
prior to emergency evacuation drills.

Keywords: Evacuation, Guidance, BDI model, Disaster prevention
planning.

1 Introduction

In the aftermath of Hurricane Katrina and the September 11 attacks, evacuation
simulations have been explored for their potential in decreasing the amount of
damage resulting from disasters, and in particular, saving human lives. There are
different types of evacuation behaviors, and several factors exist that might influ-
ence the amount of damage and degree of injury incurred. The Great East Japan
Earthquake that occurred on March 11, 2011, along with the resulting tsunami,
caused serious damage and injury. During this disaster, teachers guided their
students to specific locations that they thought were safe. During the evacua-
tions, some teachers were told that their destination was not safe, and therefore,
they guided their students to another location. However, in some instances, they
did not have enough time to reach their new destination.

Evacuation guidance has an important influence on evacuation behavior. Guid-
ance from well-trained leaders can facilitate efficient evacuation [1]. The evacu-
ation might suddenly change when evacuees receive different information from

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 202–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://sakura.meijo-u.ac.jp/ttakaHP/Rescue_index.html

Evacuation Simulation with Guidance for Anti-disaster Planning 203

Fig. 1. Types of disasters that can result in change in evacuation behaviors. In the
case of the WTC attacks on 9.11, many of the occupants escaped from the buildings.
In the case of the Great East Japan Earthquake and tsunami, many people moved to
a higher spot.

beliefs that they have, for example, by seeing that other evacuee groups move to
different refugees or by reading exit signs that indicate other directions. Evac-
uees must then decide whether they continue their actions or trust the new
information and change the actions. In the above example of the Great East
Japan Earthquake, the teachers changed their destination when they heard that
tsunami was coming.

In this paper, we propose an agent-based evacuation simulation system that
guidance information is announced to agents. The guidance is implemented as
communication between authorities and communication among civilians. The
remainder of this paper is organized as follows. Related works are introduced in
Section 2. Section 3 describes the architecture of the evacuation system, which
comprises the belief-desire-intention (BDI) model that represents the mental
status of the agents, and crowd behavior models in which evacuation information
is considered. The simulation scenarios and results are discussed in Sections 4
and 5. Finally, a summary is provided in Section 6.

2 Related Works

The purposes of an evacuation simulation are to assess the evacuation time and
provide important information for improving an evacuation. To assess the evacu-
ation time, a detailed analysis of the behavior during an evacuation is required.
National Institute of Standards and Technology (NIST) organized evacuation
situation of WTC disaster through interviews and questionnaires. They simu-
late the evacuation situation of WTC with EXODUS, EXIT89, Simulex and
ELVAC. Table 1 shows the issues discussed in the NIST report and comparison
to actual works [2]. These issues can be categorized according to the agent level.

2.1 Individual Agent

At this level, only the agent’s own properties affect their actions.

204 M. Okaya and T. Takahashi

Table 1. Issues of Evacuation Simulation in NIST report

Agent level Issues EXODUS EXIT89 Simulex ELVAC

Individual Individual travel speed � � � �
Physical limitation �

Interactive Psychological elements
Communication among evacuees

Social Evacuation delay * * *
Group formation
Evacuation guidance
Information seeking

*some of the issue are taken into consideration.

Individual Travel Speed Model: It is well known that congestion of human
flows occurs at emergencies. For example, when they evacuate though a
narrow space, rescue teams rushing to a building may collide against people
who are evacuating from the building, and at staircase landings where people
from the upper and lower floors merge together. Helbing et al. proposed a
particle model that can simulate these types of situations [3].

Physical Limitation: Various types of obstacles can be encountered in disaster
situations, such as debris, smoke, heat, and water. These obstacles pose a
threat to safety and prevent a smooth evacuation. The chosen evacuation
destination and route can also affect the behaviors of evacuees. In addition,
some people may stop to rest during evacuation.

2.2 Interactive Agent

At this level, their surroundings and their state of mind can affect the actions
of evacuees. They may also communicate and share information. Agent-based
simulation (ABSs) provide a platform for computing individual and collective
behaviors that occur in crowds [4]

Psychological Elements: Some people who do not begin evacuating immedi-
ately after emergencies occur may evacuate when they see others heading
for refuge or loud noises at the disaster sites can make them anxious. The
psychological status and agent knowledge on emergencies affect the choice
of actions [5]

Communication Among Evacuees: Psychological factors can also influence
the behaviors of evacuees, including their walking speed or communication
with other victims. One such communication is when a person urges others
in the area to evacuate.

2.3 Social Agent

The social agent is related to behaviors related to a social context or common
sense of their community.

Evacuation Simulation with Guidance for Anti-disaster Planning 205

Evacuation Delay: An evacuation delay occurs when evacuees perform a num-
ber of activities before they start evacuations. These activities include gath-
ering personal belongings, milling with other occupants, seeking additional
information, and calling family members or friends. These activities may
delay the start of their evacuation.

Group Formation: Guidance from well-trained leaders allows an evacuation
to flow smoothly [6]. Schools drill their students to follow the instructions of
their teachers and evacuate together. At the time of a disaster, people may
evacuate under various scenarios, and various factors in these scenarios can
result in people forming or breaking away from a group.

Evacuation Guidance: During the WTC disaster, announcements affected
the evacuation behaviors of the building occupants. Proper announcements
save lives, whereas incorrect announcements can increase the amount of dam-
age resulting from a disaster. The behaviors of occupants will be changed
how well information is gathered to a rescue headquarter and how well guid-
ance is announced.

Information Seeking: People unfamiliar with the building will want to know
how they can exit. They will look for iconic warning signs, exchange informa-
tion with people nearby, or follow other persons who appear to be evacuating.
The sensor data change the metal state, and sometime make them anxious.
The perception abilities or behavior patterns of evacuees change according
to their psychological states.

Recently, human relationship among agents has been taken into consideration in
MAS [7] [8]. Evacuation guidance that changes the behavior of agents is strongly
linked to evacuation efficiency. These behaviors are not considered enough in ex-
isting researches. In this paper, we focus on the effect of guidance on evacuation.
We assume that an evacuation simulation should be used for assessing the effec-
tiveness of evacuation guidance.

2.4 Significance of Evacuation Guidance

Methods used for receiving evacuation guidance include broadcasts, voice guid-
ance, and electric signs. Each method of communication has a different effect.
Evacuation guidance is important for following reasons. An evacuation simulator
should have the ability to take these into consideration.

Evacuation Guidance for Visitors: At a large event site, most of partici-
pants are less familiar with the place than occupants. Guidance such as
evacuation routes should be properly provided to them.

Recognition of Danger: In WTC disaster, most of occupants start to evacu-
ate after gathering personal belongings. It means that they have not noticed
the immediate crisis of the disaster. Making the danger clear changes their
psychological status, and they recognize need of immediate evacuation.

Evacuation Guidance for Efficient Evacuation: Phased evacuation, under
certain circumstances, moves occupants most at risk to a place of relative

206 M. Okaya and T. Takahashi

safety much more quickly and with less total impact upon building tenants
than full building evacuation. The phased evacuation had been carried out
during the WTC disaster.

Evacuation Guidance According to the Situations: In most cases, the
occupants of a building know the location of the evacuation site and the
escape route. Evacuation guidance is important when the situations change
or something unexpected happens, such as an evacuation route being ren-
dered impassable by rubble. The evacuees might receive differing or conflict-
ing guidance. It can be assumed that an authority knows the appropriate
evacuation routes more than a civilian during a disaster situation. Evac-
uees naturally prefer to act on information heard directly from an authority
rather than on information from messages displayed on bulletin boards. They
then have to act either on the new information or on the existing guidance.
Furthermore, there are many different types of evacuation signage used.

3 Evacuation Guidance and Behavior Models

3.1 Language Model and Loss of Data in Communication

It is assumed that evacuation guidance will be spread among evacuees. The
evacuees might tell and ask others some information. The evacuation message
contains information regarding to the evacuation destination and an appropriate
evacuation route. They may be secondhand information.

Some information broadcast over a loudspeaker might not spread to all evac-
uees by the noises of surroundings or the damaged announcement system. Dis-
asters can disable the emergency communication systems in buildings. When
an evacuee hears only a portion of the evacuation guidance, the evacuee might
misunderstand some of the contents. Rumors also belong to this type of com-
munication. Some civilians might therefore prefer to trust only information from
an authority figure. Others will trust their neighbors or heed messages sent from
their families.

3.2 BDI Model Representing Psychological Status

The evacuation guidance whether it is complete one or partial one, they change
their psychological status. The status of agents affects the behavior of their evac-
uations and it can be categorized as “awareness of danger”, “strong awareness of
danger”, or a “normal state”. The degree of awareness of danger differs among
different people. These differences influence their behaviors, such as gathering
their personal belongings or immediately fleeing the area. Belief-Desire- Inten-
tion (BDI) model is adapted to represent such behaviors.

Belief: An awareness of danger is represented as Belief in the BDI model. For
instance, the belief of an evacuee will be generated when he/she senses danger
or hears evacuation instructions. In the case of an earthquake, all agents
share the belief that a large shaking occurred. A belief in the “awareness of

Evacuation Simulation with Guidance for Anti-disaster Planning 207

danger” or “strong awareness of danger” will be generated as a response to
the mindset of an agent. Some agents who do not feel danger might do so
when they hear evacuation instructions.

Desire: Most people are in the middle of an activity when a disaster occurs.
They may have the desire to finish the activity. Of course, they may have
desire to shirk away from the risk. The agent thus has to choose a desire
when they have multiple options.

Intention: Most people are doing an activity, which they will finish in some
minutes. An agent might have intention to evacuate.

4 Evacuation Scenarios and Simulations

4.1 Prototype System and Agent Behavior Model

Figure 2 shows the architecture of our system. The agents in the left part send
their own properties to the crowd simulator at the start time and to their targets
during each sense-reason-action cycle. The target is the position according to
their intentions which is selected by their BDI models. The crowd simulator
calculates the movements of the agents using an equation. The micro simulation
step of the crowd simulation, Δτ(≈ 0.1s), is finer than the step of sense-reason-
action cycle, Δt(≈ 1s). The results of the micro-simulation are returned to every
agent along with the agent’s own position and the positions of other visible
agents.

RoboCup Rescue Simulation v.1 (RCRS) was used as the platform of our
system [9]. The RCRS was used to comprehensively simulate agent behavior
during a simulated disaster environment, and supports two types of agents: a
civilian agent and an authority agent.

Fig. 2. Architecture of BDI-based crowd evacuation system

4.2 Communication

Message Containing Guidance from an Authority. An authority provides
evacuation guidance, including information on an evacuation destination and

208 M. Okaya and T. Takahashi

an appropriate route to that location. Communication language is based on
Agent Communication Language (ACL). The messages of evacuation guidance
consist of the target person and an evacuation route. Table 2 shows evacuation
instructions in which an authority guides evacuees at 1F to R1 by way of A1 and
A2. The left column corresponds to the message that consists of target area and
evacuation route information. The right is a message without route information
and corresponds to a situation in which agents hear part of guidance.

Table 2. Evacuation guidance

complete message message with loss of data

(inform

:sender Authority

:receiver Anonymous

:time 20110311-100000

:content

(evacuation-guidance

:target-area 1F

:move A1-A2-R1

)

)

(inform

:sender Authority

:receiver Anonymous

:time 20110311-100000

:content

(evacuation-guidance

:target-area 1F

)

)

4.3 Implementation of Communication

Voice and radio were implemented as communication methods in the RCRS.
Voice communication is audible to anyone near the sender. During voice com-
munication, the distance up to which the sender can be heard is 30 m. Radio
communication is accessible to any person with a radio tuned to the same chan-
nel as the sender, allowing them to hear the message. We added a communication
protocol with evacuation guidance messages through voice communication.

5 Simulation Scenarios and Results

We simulated three scenarios including evacuation guidance. Situations in which
the agents hear a portion of evacuation guidance was simulated.

5.1 Simulation Scenarios

Figure 3 shows a building at our university. 400 people are evacuated from the
building, which has 2 stairwells and 2 exits. Table 4 shows the three scenar-
ios. Differences of scenarios are with/without evacuation guidance, agent types,
with/without loss of communication. Without the evacuation guidance, the en-
tire agent normally goes out of the front entrance because they do not know the
emergency exit. Authority agent announces evacuation guidance after 5 minutes

Evacuation Simulation with Guidance for Anti-disaster Planning 209

Table 3. Evacuation guidance: contents are different for each floors

Stair Content of evacuation guidance

1F exit

2F emergency stair [2F-1F] - emergency exit

3F stair [3F-1F] - exit

4F emergency stair [4F-1F] - emergency exit

Fig. 3. Simulation map

later with building broadcasting. Contents of the guidance differ according to
floors. Agents who are on the first and third floor use front stairway and front
entrance, agents who are on the second and fourth floor use emergency stairway
and emergency exit(Table3).

Three types of agent were implemented.

A (instant evacuation) This agent feels anxious after feeling a large shaking.
B (evacuation after tasks) This agent does not feel anxious after sensing a large

shaking. This agent evacuates after a certain activity. This agent feels anxious
when hearing the evacuation guidance.

C (emergent evacuation) This agent does not feel anxious after sensing a large
shaking. This agent does not evacuate after a certain activity. This agent
feels anxious when hearing the evacuation guidance.

Table 4. Simulation scenarios

Scenario Guidance Agent type Communication

1 � B no loss
B no loss

2 � A+B+C no loss
A+B+C no loss

3 � A+B+C loss
A+B+C loss

210 M. Okaya and T. Takahashi

Cases of loss of communication have been simulated. The rate of loss in the
guidance messages was decided according to reports of the Great East Japan
Earthquake [10]. 82 % percent of agents who hear the guidance will hear the
announcement of the guidance, and 82 % percent of the agent listen to the
evacuation route information in the guidance and recognize the danger. So 56 %
of agents start to evacuate.

5.2 Simulation Results

Figure 4 shows the simulation result of Scenario 1. Totally evacuation time in
case of scenario with guidance is shorter than that of scenario without guidance.
Furthermore, in case of evacuation with guidance, it takes 1600[s] for all agents
who used emergency exit, while it takes 900[s] for all agents who used front
entrance. It means that more efficient guidance can be considered.

Figure 5 shows comparison of simulation results of Scenario 1, 2 and 3. In
case of evacuation without the evacuation guidance of Scenario 2 and 3, some
agents who did not recognize the danger did not evacuate. In a case of Scenario
3, agents who came out of the front entrance are more than the others. It is
because that agent who did not hear the guidance decided his/her intention by
themselves. As a result of that, it took them more time evacuate than the others
who heard the guidance.

front entrance emergency exit

total

Fig. 4. Simulation result of Scenario 1. Agents who came out of each of the exit. And
total agents who exit the building.

Evacuation Simulation with Guidance for Anti-disaster Planning 211

Number of Agents:
front entrance emergency exit total

with guidance without guidance
0

100

200

300

400

a
g
e
n
ts

Evacuation time:
front entrance emergency exit total

0

250

500

750

1000

with guidance without guidance
e
v
a
cu

a
ti

o
n
 t

im
e
 [

s]

Fig. 5. Simulation result of Scenario 1, 2 and 3

6 Summary

The analysis of building evacuation has recently received an increasing amount
of attention as people are keen to assess the safety of occupants. Agent-based
simulation systems, such as RCRS, not only provide a platform for computing
individual and collective behaviors in crowds but also their communication model
supports the announcement of evacuation guidance to agents. The guidance
affect the behaviors of agents, especially the delay in evacuations are closely to
human lives.

In our system, the announcement of guidance is implemented as communica-
tion to agents. And the messages are modeled as a form of ACL. Agents who
hear the guidance partially are modeled as they receive missing messages. When
agents do not hear clearly the guidance, they behave different from ones who
hear the entire message. As a result, our system can simulate the behavior of
agents who do not follow evacuation guidance. We also use BDI model to rep-
resent the psychological status of agents. In our simulation system, the changes
of BDI states that are caused by sensor data affect their evacuation behavior at
emergencies. This makes it possible to simulate the behavior of evacuation with
guidance information.

These results demonstrate that our simulator have the ability to take these
scenarios which contains evacuation guidance into consideration and reconstruct
these situations.

212 M. Okaya and T. Takahashi

References

1. Pelechano, N.I.B.N.: Modeling crowd and trained leader behavior during building
evacuation. IEEE Computer Graphics and Applications 26(6), 80–86 (2006)

2. Kuligowski, E.D.: Review of 28 egress models. In: NIST SP 1032; Workshop on
Building Occupant Movement During Fire Emergencies (2005)

3. Kaup, D.J., Lakoba, T.I., Finkeistein, N.M.: Modifications of the helbing-molnar-
farkas-vicsek social force model for pedestrian evolution. Simulation 81(5), 339–352
(2005)

4. Thalmann, D., Musse, S.R.: Crowd Simulation. Springer (2007)
5. Pan, X.: Computational modeling of human and social behaviors for emergency

egress analysis. Ph.D. dissertation, Stanford (2006),
http://eil.stanford.edu/xpan/

6. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents
in high-density crowd simulation. In: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007,
pp. 99–108. Eurographics Association, Switzerland (2007),
http://portal.acm.org/citation.cfm?id=1272690.1272705

7. Okaya, M., Takahashil, T.: Bdi agent model based evacuation simulation. In: AA-
MAS Demo (2011)

8. Tsai, J., Tambe, M.: Escapes - evacuation simulation with children, authorities,
parents, emotions, and social comparison. In: AAMAS (2011)

9. Cameron Skinner, S.R.: The robocup rescue simulation platform. In: Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010) (2010)

10. Government of Japan, A report on the great east japan earthquake,
http://www.bousai.go.jp/jishin/chubou/higashinihon/7/index.html

(in Japanese)

http://eil.stanford.edu/xpan/
http://portal.acm.org/citation.cfm?id=1272690.1272705
http://www.bousai.go.jp/jishin/chubou/higashinihon/7/index.html

Motion Capture and Contemporary

Optimization Algorithms for Robust and Stable
Motions on Simulated Biped Robots

Andreas Seekircher, Justin Stoecker, Saminda Abeyruwan, and Ubbo Visser

University of Miami, Department of Computer Science,
1365 Memorial Drive, Coral Gables, FL, 33146 USA
{aseek,justin,saminda,visser}@cs.miami.edu

Abstract. Biped soccer robots have shown drastic improvements in
motion skills over the past few years. Still, a lot of work needs to be
done with the RoboCup Federation’s vision of 2050 in mind. One goal
is creating a workflow for quickly generating reliable motions, prefer-
ably with inexpensive and accessible hardware. Our hypothesis is that
using Microsoft’s Kinect sensor in combination with a modern optimiza-
tion algorithm can achieve this objective. We produced four complex
and inherently unstable motions and then applied three contemporary
optimization algorithms (CMA-ES, xNES, PSO) to make the motions
robust; we performed 900 experiments with these motions on a 3D sim-
ulated Nao robot with full physics. In this paper we describe the motion
mapping technique, compare the optimization algorithms, and discuss
various basis functions and their impact on the learning performance.
Our conclusion is that there is a straightforward process to achieve com-
plex and stable motions in a short period of time.

1 Introduction and Related Work

Generating motions on a humanoid robot that operates under the constraints of
physics is a time-consuming process; attempts to create even simple motions by
manually adjusting parameters are tedious and often end in failure [16]. Our idea
is to use motion capture to record and map human motions to a humanoid robot.
The immediate problem with this approach is that humans and robots do not
share motor capabilities, range of motion, dimensions, mass, and other physical
attributes. For the purposes of our experiments, we assume the dimensions and
body part masses of the human and robot are roughly equivalent; our focus is
on the range of motion. The goal of the motion processing stage is to map from
human motion space to a specific robot’s motion space.

Several systems exist that enable effective human motion tracking. Perhaps
the most familiar of these systems is marker-based optical motion capture: a user
typically wears a suit with several reflective markers that are recorded by several
overhead cameras, and the positions are triangulated. An example of motion
mapping using an optical marker system with the Nao robot is demonstrated
in [15]. One major downside to these systems is that they require large labs
with expensive equipment and software. Our motion capture experiments were

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 213–224, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

214 A. Seekircher et al.

performed with the Microsoft Kinect sensor1; while not as accurate as more
expensive platforms, we believe the Kinect provides a sufficient level of detail
and is easily accessible to researchers without the funds or space for a dedicated
motion capture lab.

Even with a system that provides low-noise tracking, a significant challenge
remains in stabilizing the robot when motors are adjusted; mapping of human
to robot joints, particularly in the legs, will often result in the robot falling
over. Kim et al. [9] produce stable whole-body motions from motion capture by
imitating a zero moment point (ZMP) trajectory of a simplified human model
and dynamically adjusting the pelvis for balance. Amor et al. [1] mention the
use of evolutionary algorithms to adjust the features of a mapped motion until
the result is stable. Grimes et al. [5] learn a nonparametric model of forward
dynamics from constrained exploration to infer actions and full-body imitation.
Many other authors do not attempt to solve the balancing problem and focus
entirely on mapping the upper body. After acquiring motions either manually
or with other methods, the mapped robot motions need further optimization in
order to achieve maximum performance and/or robustness [10].

The Covariance Matrix Adaption Evolution Strategy (CMA-ES) algorithm
[6,8] is one of the most widely used algorithms for parameter optimization. The
family of Natural Evolution Strategies (NES) [17] algorithms are an alternative
to CMA-ES in order to perform real-valued black box function optimization. For
medium size dimensions, with highly correlated parameters, the exponential NES
(xNES) [3] empirically shows significant performance compatible with CMA-
ES. Particle swarm optimizations [7] are simple and yet effective algorithms for
optimizing a wide range of functions. We use particle swarm optimization (PSO)
for both our biped walking engine [11] and as an alternative method that can
be applied to our motions.

2 Human Motion Capture

The Kinect itself does not generate motion capture (MoCap) information, but
it provides color and depth images (RGB-D) that can be used to track a user’s
body. Microsoft’s Kinect SDK2 and an open source alternative, OpenNI [13],
both implement skeletal tracking algorithms. OpenNI is a framework that pro-
vides an interface to a variety of natural interaction (NI) devices, such as vision or
audio sensors, that record motion and sound for the purpose of human-computer
interaction. Rather than directly providing implementations for all imaginable
sensors, both low-level and high-level features of the OpenNI API are enabled
by middleware packages. We chose to use OpenNI over the Kinect SDK as it
can be used with non-Windows operating systems and provides access to exist-
ing and future NI devices, such as the Xtion Pro3. The PrimeSense NITE [14]
middleware enables skeleton tracking for the Kinect sensor.

1 http://www.microsoft.com/en-us/kinectforwindows/
2 http://www.microsoft.com/en-us/kinectforwindows/develop/beta.aspx
3 http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO/

http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/develop/beta.aspx
http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO/

Motion Capture and Contemporary Optimization Algorithms 215

When OpenNI is configured to provide user tracking, data is presented as a
skeleton model that approximates the motions of a human user. This skeleton
model is defined by fifteen joints, each containing a position in sensor space;
these joints are shown in Fig. 1a. To map the OpenNI user skeleton to the
simulated Nao model, we first calculate two local coordinate systems for the
user skeleton in terms of the vectors f (forward), r (right), and u (up); one
coordinate system has the upper torso as the origin, and the second has the
lower torso as the origin. For the upper body, which is used to calculate the arm
angles: f = (l shoulder− torso)× (r shoulder− torso), r = r shoulder− neck, and
u = r × f . For the lower body orientation, which is used to calculate the leg
angles: f = (r hip − torso) × (l hip − torso), r = r hip − l hip, and u = r × f .
Finally, the f , r,u vectors for both the upper and lower body are normalized to
unit length.

torso

r_shoulder

r_elbow

r_hand

r_hip

r_knee

r_foot

head

neck

l_shoulder

l_elbow

l_hand

l_hip

l_knee

l_foot

(a)

neck_yaw

neck_pitch

r_shoulder_pitch

r_shoulder_yaw

r_arm_roll

r_arm_yaw

r_hip_yawpitch

r_hip_roll

r_hip_pitch

r_knee_pitch

r_foot_pitch

r_foot_roll

u

r f

(b)

Fig. 1. In (a), the OpenNI user skeleton model in the calibration pose. In (b), the
physical Nao model with all joints at 0 degrees rotation. Hinge joints in the Nao are
represented as cylinders through the respective rotation axis.

Once the skeleton coordinate systems are established, Euler angles are com-
puted for the joints in the Nao model. Our mapping approach uses the vectors
between skeleton joint positions to calculate the Nao joint angles; this approach
can be extended to any robot model consisting of revolute joints. Inverse kine-
matics could be used as an alternative approach to determine joint angles, al-
though it introduces a degree of unpredictability: the trajectory of intermediate
joints in a kinematic chain are not guaranteed to follow the motion of the hu-
man. Furthermore, our goal is not to position the end effectors of the robot, but
instead to ensure the relative angles of body parts are correct; a 90◦ bend in
the human’s elbow should result in a 90◦ bend in the robot’s elbow. For these
reasons, a direct calculation of the joint angles is the most appropriate. Unfor-
tunately, the Nao’s head and foot angles must be ignored, as the skeleton does
not provide enough information to determine their orientations (see Fig. 1).

Each Nao arm has four joints that apply rotation in the following order:
shoulder pitch (θs), shoulder yaw (ψs), arm roll (ϕa), arm yaw (ψa). Fig. 2
illustrates the calculation of these angles for the right arm. Using the joints of

216 A. Seekircher et al.

f vpv

r

u
r_elbow

r_shoulder
θs

ψs

vp

f

(a)

x

wp

w

v

y
r_hand

r_elbow
ψa

φa

(b)

Fig. 2. Using OpenNI skeleton joint vectors calculate to Euler angles for the Nao joints
θs = r shoulder pitch, ψs = r shoulder yaw, ϕa = r arm roll, and ψa = r arm yaw

the OpenNI skeleton, the vector from r shoulder to r elbow, v, is projected onto
the plane spanned by f and u (upper body) to get vp = f(f · v) + u(u · v).
The shoulder pitch θs = � (f ,vp), where the notation � (a,b) means the angle
between vectors a and b. The shoulder yaw ψs = � (v,vp). After the shoulder
joint angles are calculated, the arm joints are found using the same process. If the
arm has no roll, it rotates (yaw) in the plane with y = v × vp as the normal, and
v and x = y × v as basis vectors; when roll is introduced, this plane is rotated
around the v vector. The amount of roll can be found by projecting w, the
vector from r elbow to the r hand, onto the plane spanned by x and y to get
wp = x(x ·w) + y(y ·w). The roll ϕa = � (x,wp), and the yaw ψa = � (v,w).

For the legs, we observe that the hip, knee, and foot joints form a plane
in space. The hip yawpitch and hip roll angles establish the orientation of this
plane, and the hip pitch and knee pitch angles rotate the leg within this plane.
The current thigh vector (knee - hip) and tibia vector (foot - knee) can be used
to determine all angles for the leg. We initialize a lookup table to store the
hip yawpitch and hip roll angles as well as the thigh vector: forward kinematics is
used to iterate over possible combinations of these angles, and the normal vector
of the leg plane is used as the key. To retrieve the hip yawpitch and hip roll angles
during mapping, the current leg normal (the cross product of the thigh and tibia
vectors from the skeleton) is compared with normals in the lookup table. The
knee pitch is simply the angle between the thigh and tibia vectors. Finally, the
hip pitch angle is calculated as the angle between the thigh vector stored in the
lookup table and the current thigh vector.

3 Motion Optimization

The MoCap framework provides a set of traces for each motion. These motions
have variable durations, and are inherently noisy. The MoCap framework cap-
tures traces only for most of the angles, but any unknown angles (head and
foot) default to zero. The direct replay of the captured motions (synchronized to

Motion Capture and Contemporary Optimization Algorithms 217

50 Hz) causes the agent to fall, since the mapping of the human motion to the
robot does not consider physics or the masses and capabilities of the robot. The
sequences of joint angles provided by the direct mapping have to be adjusted to
obtain a stable motion. This is the main problem that we are addressing in this
section. Given some motions as input, we extended our framework to (1) con-
struct models of the motions; (2) initialize model parameters using maximum
likelihood and least squares; (3) optimize prior parameters to follow the original
motions; and (4) find joint angles that can be replayed by the robot without
falling.

3.1 Models and Initialization

A motion consists of a sequence of target angles for each joint. These sequences
consist of 50 angles per second for the joint control. Instead of adjusting these
angles directly, we create models for the movements of the joints. By approximat-
ing the given joint angles with functions, only a relatively small set of parameters
has to be optimized to achieve the correct motion on the robot.

We use linear combination of fixed nonlinear functions of the input vari-
able to build the motion model. The input variable, x = {x1, . . . , xM}, is the
the number of frames in a motion. We use a model of the form y(x, θ) =∑N−1

j=0 θjφj(x) = θTΦ(x), where φj(x) are the basis functions with φ0(x) = 1,

θ = (θ0, . . . , θN−1)
T, and Φ = (φ0, . . . , φN−1)

T. There are N total number of
parameters in the model. With the choice of suitable basis functions, we model
arbitrary nonlinearities in the input traces. Basis functions take many forms,
and we use polynomial basis functions of the form φj(x) = xj , and sigmoidal

basis functions of the form φj(x) = σ(
x−μj

s), where σ(a) is the logistic sigmoidal
function defined by σ(a) = 1

1+exp(−a) , μj fixes the location of the basis functions

in the input space, and s represents the spacial scale. Polynomial basis functions
are global functions of the input, which cause changes in one region to affect
all the other regions. On the other hand, sigmoidal basis functions are local,
and a small change to input only affect some of the nearby basis functions. The
application of global and local basis function can have a significant influence
on the optimization. The target variable, t = (t1, . . . , tM)T, of the motion is
the desired angle of a given trace. Each motion contains K traces (K = 22 in
our experiments), and each trace of the motion is fitted using the linear basis

function model. We minimize the objective function
∑M

i=1(ti − θTΦ(x))2 using
ES/PSO algorithms to find the maximum likelihood parameters.

3.2 Model Optimization

The evaluation of the models with the initial parameters provides approximately
close enough traces to the original motions. A replay of a motion with the respec-
tive model initially fails to capture the desired outcome of the original motion.
The joints are moved according to the input motion, however depending on spe-
cific robot model (e.g., the masses of body parts) it is necessary to change the
motion slightly.

218 A. Seekircher et al.

The initial optimization of the model parameters is used as a seed for the
optimization of the motion for stability on the robot. This task is an optimiza-
tion problem with two conflicting objectives. Following exactly the joint angles
provided by the MoCap does not guarantee that the outcome is the correct mo-
tion. For instance, for a kick motion the robot could fall back and kick into the
air, which might follow exactly the given joint angles. This can be avoided by
including the captured torso orientation of the human for every time step in the
motion capture data. The torso orientation of the simulated robot is provided
by the simulator as ground truth. The difference between the captured angles
and the robots torso orientation is one component of the fitness function. At the
same time the changes in the angles have to be small to make sure that the final
result is close to the captured motion, e.g., a kick motion should not be stabi-
lized by removing the actual kick from the motion. The differences between the
angles provided by the MoCap and the joint angles of the robot are the second
component of the fitness function.

We use ES/PSO algorithms again to optimize the model parameters until the
desired motion is learned. In this phase, we optimize N × L, where L < K,
parameters directly. We use the sum of the torso errors and the joint errors over
all frames of the motion as the fitness to perform real valued black box function
optimization. We have decided to optimize only the traces of the agent’s legs.
There are twelve such traces for each motion, and we directly optimize N × 12
parameters. e.g., if we commit to a polynomial model with eight parameters, we
optimize 96 parameters.

4 Experimental Setup

The experiments in section 5 have been conducted using SimSpark (based on
Spark[12]), the simulator of the RoboCup 3D Soccer Simulation League. The
simulated robot is a humanoid robot that is similar to the Nao [4]. The robot
is equipped with 21 degrees of freedom, and it receives sensor information every
cycle (50 Hz) from the server.

We use four different motions in the experiments in which the robot (1) lifts
the right leg for a few seconds (motion leg); (2) performs a simple kick motion
(motion kick); (3) leans forward and balances on one leg while stretching the
other leg back (motion balance); and (4) leans the torso to the side (motion
side). The joint motions are modeled using two different functions: polynomials
and linear weighted sigmoidal basis functions. These models are initialized by
minimizing the least squared error to the input angles. Using the initial param-
eters as a seed, the twelve leg joints are optimized by CMA-ES, xNES, and PSO
using the fitness function based on the joint and the torso error explained in 3.2.

In [16], twelve parameters were learned with a population size of 30; since
we optimize up to 96 parameters, we use a higher population size of 50 for all
optimization methods. CMA-ES and xNES start with the parameters from the
initialization of the models as the mean and a standard deviation of 0.06, which
produces a suitable amount of exploration in the beginning of the optimization.

Motion Capture and Contemporary Optimization Algorithms 219

The samples for PSO are initialized using the same mean and standard deviation.
Our PSO implementation uses the parameters proposed in [2].

For each evaluation of parameters, the robot is initialized to the pose in the
first frame of the motion. While the motion is executed using the current pa-
rameters, all torso and joint errors are added; these errors are used as the fitness
of the tested parameters. For each parameter set, the motion is executed only
once since the environment is simulated and we can expect less noise than with
a physical robot.

Learning the transition between different motions is beyond the scope of this
paper. The evaluation of a parameter set starts with a short phase during which
the robot moves all joints to the angles at frame 0 of the motion. The robot is
also moved to an initial torso position using a trainer interface of the simulator.
This way, the motion is always started from the same initial situation. At the
end of the motion, the robot keeps the joints at the angles from the last frame for
half a second. During this time, the torso and joint errors for the evaluation are
still accumulated; this prevents learning of motions that are unstable in the end
and would make the robot fall immediately after the motion is done. Learning
transitions between motions is planned as future work.

5 Experiments and Results

For the model of the first experiment, we used polynomial basis functions with
five parameters. Fig. 3a shows the joint angles of the balance motion, and Fig. 3b
shows the traces of two of the joints. The optimized motion slightly adjusts the
initial values of the parameters to obtain stable motion, and the combination of
all joint traces together needs to be stable. However, the experiments show that
often only very small changes in the joint motion provide a stable and complete
motion. In Fig. 3b the polynomial seems to be able to sufficiently approximate
the motion of the joint.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250

Frames

A
ng

le
 /

ra
d

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250

Frames

A
ng

le
 /

ra
d

(b)

Fig. 3. (a) The leg joint angles of the balance motion. (b) The motions of two leg
joints (l knee pitch and r hip pitch) during the balance motion with the corresponding
models using the initial parameters and the adjusted models of the stabilized motion.

220 A. Seekircher et al.

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

Number of evaluations

Jo
in

t &
 T

or
so

 M
S

E
CMA-ES poly5 leg

PSO poly5 leg
xNES poly5 leg

(a)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

Number of evaluations

Jo
in

t &
 T

or
so

 M
S

E

CMA-ES poly5 kick
PSO poly5 kick

xNES poly5 kick

(b)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

Number of evaluations

Jo
in

t &
 T

or
so

 M
S

E

CMA-ES poly5 balance
PSO poly5 balance

xNES poly5 balance

(c)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

Number of evaluations

Jo
in

t &
 T

or
so

 M
S

E

CMA-ES poly5 side
PSO poly5 side

xNES poly5 side

(d)

Fig. 4. The learning curves for different motions using polynomials of degree 4. The
motions for the twelve leg joints were optimized using CMA-ES, PSO and xNES. The
error is the minimum total error (joints MSE + torso angle MSE) averaged over 30
runs. The error bars represent the standard deviation over these 30 runs.

We used the same polynomial approximation to learn four different motions,
and Fig. 4 shows the average learning curves. In these experiments, both CMA-
ES and xNES quickly learn solutions, with CMA-ES finding a solution with a
slightly smaller variance. Both algorithms perform better than PSO. It is possible
that the results of PSO could be improved by tuning some internal parameters;
CMA-ES and xNES do not require this.

There is a swift learning curve for leg motion. For the kick motion, PSO yields
a very high variance, which indicates that the found motion is often unstable.
For the balance motion in Fig. 4c, CMA-ES and xNES find good solutions, but
the learning time increases. While the polynomials work for these three motions,
the algorithms could not find a stable motion for the side balance motion in
Fig. 4d. In fact, the results for the other motions are also often unsatisfactory.
Polynomials cause these motions to be very smooth. Although the errors are
often small and the motion is stable, there is a noticeable lack of detail, and
the high-degree polynomials introduce numerical instabilities. In most motions,
polynomials cause some joints to move unexpectedly towards the end.

Motion Capture and Contemporary Optimization Algorithms 221

Table 1. The errors after learning for 5 hours simulated time using polynomials with
5 parameters as models (average over 30 runs)

Motion Optimization evals min.err. avg.err. stddev torso err. joint err. success

leg CMA-ES 2989 0.009 0.016 0.004 0.006 0.009 83%
leg PSO 2987 0.006 0.058 0.154 0.049 0.009 70%
leg xNES 2990 0.013 0.017 0.003 0.007 0.010 86%

kick CMA-ES 4926 0.018 0.027 0.005 0.011 0.016 60%
kick PSO 4924 0.015 0.135 0.210 0.106 0.029 46%
kick xNES 4931 0.023 0.037 0.047 0.020 0.017 60%

balance CMA-ES 2970 0.051 0.096 0.076 0.046 0.050 60%
balance PSO 2971 0.072 0.807 0.403 0.720 0.088 13%
balance xNES 2971 0.047 0.089 0.153 0.050 0.039 60%

side CMA-ES 1816 0.432 1.351 0.466 1.203 0.149 0%
side PSO 1816 0.474 1.634 0.370 1.505 0.129 0%
side xNES 1816 0.401 1.229 0.490 1.092 0.137 0%

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400 450

Frames

A
ng

le
 /

ra
d

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400 450

Frames

A
ng

le
 /

ra
d

(b)

Fig. 5. An example joint motion (l knee pitch) of the side balance and the initial and
learned model using CMA-ES and (a) a polynomial with 8 parameters or (b) sigmoidal
basis functions with a sum of 8 parameters

Table 1 shows the error values of the experiments after five hours of simulated
time. The success rates are created by manually evaluating how many result
motions are stable and close enough to the original motion. A longer learning
time improves the success rates. However, another reason for lower success rates,
despite small average errors, is the noise in the fitness values. There is a chance
that an unstable motion gets a small error once and never works again. Averaging
the fitness over several runs could lower this noise and improve the learning, but
each evaluation would need much more time.

As an attempt to improve the learning, we ran the optimization of the side
balancemotion again using polynomials, but increased the number of parameters
to eight. It still did not find a solution. Increasing the number of degrees only
creates more instabilities. Fig. 5a shows that a reason for the unsatisfactory
performance is the global influence of parameters on the function. Changing the
first part of the motion can create completely wrong angles for the remaining
motion.

222 A. Seekircher et al.

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

Number of evaluations

Jo
in

t &
 T

or
so

 M
S

E

CMA-ES sigm8 leg
PSO sigm8 leg

xNES sigm8 leg

(a)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

Number of evaluations

Jo
in

t &
 T

or
so

 M
S

E

CMA-ES sigm8 kick
PSO sigm8 kick

xNES sigm8 kick

(b)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

Number of evaluations

Jo
in

t &
 T

or
so

 M
S

E

CMA-ES sigm8 balance
PSO sigm8 balance

xNES sigm8 balance

(c)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

Number of evaluations

Jo
in

t &
 T

or
so

 M
S

E

CMA-ES sigm8 side
PSO sigm8 side

xNES sigm8 side

(d)

Fig. 6. Using sigmoidal basis functions instead of polynomials improves the results
of the learning. The learning curves of the same experiments as in Fig. 4 are shown
(averages over 30 runs).

Table 2. Results of the optimization using sigmoidal basis functions

Motion Optimization evals min.err. avg.err. stddev torso err. joint err. success

leg CMA-ES 1781 0.011 0.016 0.004 0.007 0.008 93%
leg PSO 1782 0.005 0.051 0.149 0.044 0.007 76%
leg xNES 1782 0.012 0.042 0.086 0.027 0.014 70%

kick CMA-ES 2935 0.029 0.150 0.206 0.124 0.027 53%
kick PSO 2935 0.012 0.038 0.068 0.029 0.009 43%
kick xNES 2940 0.037 0.047 0.007 0.025 0.023 40%

balance CMA-ES 2970 0.029 0.042 0.016 0.018 0.024 93%
balance PSO 2971 0.027 0.119 0.256 0.092 0.027 73%
balance xNES 2971 0.030 0.041 0.009 0.020 0.020 76%

side CMA-ES 1816 0.041 0.099 0.060 0.073 0.026 70%
side PSO 1816 0.024 0.093 0.085 0.064 0.029 60%
side xNES 1817 0.038 0.102 0.062 0.078 0.024 40%

Since the side motion could not be learned at all and the other mo-
tions suffered from the high generalization and numerical instabilities of the
polynomials, we ran the same experiments again with the linear weighted

Motion Capture and Contemporary Optimization Algorithms 223

sigmoidal basis functions as the model. Fig. 5b shows that the local basis
functions improve the optimization. All four motions can be adjusted to be sta-
ble on the robot using this model (Fig. 6). Although the number of parameters
that are optimized has been increased from 60 to 96 (twelve joints, five or eight
parameters per model), the optimization needs less time to find solutions for the
balance motion and also works for the side balance. The average joint and torso
errors are listed in Table 2. For the balance motion the improved models yield
significantly smaller joint angle errors compared to the polynomials.

6 Conclusions and Future Work

Our hypothesis that robust and human-like motions for a biped soccer robot can
be quickly generated using inexpensive motion capture techniques with optimiza-
tion is verified. The Kinect sensor provides enough information to map complex
and initially unstable poses, such as the balancing motions. Applying modern
optimization algorithms to the mapped motions will lead to robust and stable
motions on the robot; that said, we do not make the claim that our approach will
hold for all possible motions. Nevertheless, our results are very promising, and
it shows that we have found a process that can be used to produce a number of
motions needed for humanoid soccer robots. We ran our parameter optimization
on a desktop CPU with four cores and 2.27 GHz. After running experiments
with four motions, three algorithms, two model functions with different number
of parameters and 30 runs each, we can say that the motions were mostly sta-
ble after 30 min (in average). Making use of parallel processing on a cluster of
computers can bring the entire processing time down to 10-30 min per motion,
including the motion capture.

We have observed that CMA-ES and xNES are similar in performance. Also,
the PSO algorithm shows partly smaller errors with a larger variance and it
takes longer to learn. However, a smaller error does not necessarily mean a better
motion. Sometimes parameters that created a small error once produce motions
that result in a falling robot. The influence of running a motion multiple times
for each evaluation and averaging the error needs to be evaluated in the future.
Nevertheless, the optimization using models with sigmoidal basis functions yields
good results for all three algorithms. Optimizing only the leg motions is sufficient
for the used robot model. Further experiments have shown that including the
arms yields a higher error and variance without finding better solutions.

On the motion capture end, we would like to compare our motions mapped
using the Kinect with motions captured from a Vicon optical marker system.
Some motions are particularly tricky to perform on the Kinect, such as standing
after a fall or kicking, as the skeletal tracking algorithms can be confused when
the user rotates or has an body part that is at least partially occluded. Our mo-
tion capture pipeline is written in a modular fashion to accommodate changes
to the input sensor, the mapping mechanism, and the robot model; we believe
this framework can be used to experiment with at least a few other robot mod-
els, both simulated and physical, and provide a convenient platform for quickly
creating motions on heterogeneous humanoid robots.

224 A. Seekircher et al.

References

1. Amor, H., Berger, E., Vogt, D., Jung, B.: Towards Responsive Humanoids: Learning
Interaction Models for Humanoid Robots. In: International Conference on Machine
Learning, pp. 1–4 (2011)

2. Carlisle, A., Dozier, G.: An off-the-shelf PSO. In: Proceedings of the Workshop on
Particle Swarm Optimization, pp. 1–6. Purdue School of Engineering and Technol-
ogy, IUPUI, Indianapolis (2001)

3. Glasmachers, T., Schaul, T., Schmidhuber, J.: A natural evolution strategy for
multi-objective optimization. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 627–636. Springer, Heidelberg (2010)

4. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P.,
Marnier, B., Serre, J., Maisonnier, B.: The nao humanoid: a combination of per-
formance and affordability. CoRR abs/0807.3223 (2008)

5. Grimes, D.B., Rashid, D.R., Rao, R.P.N.: Learning nonparametric models for prob-
abilistic imitation. In: Advances in Neural Information Processing Systems (NIPS).
MIT Press (2006)

6. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks 1995, vol. 4, pp. 1942–1948.
IEEE (1995)

8. Kern, S., Müller, S., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learn-
ing probability distributions in continuous evolutionary algorithms–a comparative
review. Natural Computing 3(1), 77–112 (2004)

9. Kim, S., Kim, C., You, B., Oh, S.: Stable whole-body motion generation for hu-
manoid robots to imitate human motions. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2009, pp. 2518–2524. IEEE (2009)

10. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011: A champion agent
in the RoboCup 3D soccer simulation competition. In: Proc. of 11th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2012) (June 2012)

11. Niehaus, C., Röfer, T., Laue, T.: Gait Optimization on a Humanoid Robot using
Particle Swarm Optimization (2007)

12. Obst, O., Rollmann, M., Rollmann, M.: Spark - a generic simulator for physical
multi-agent simulations. In: Computer Systems Science and Engineering (2004)

13. OpenNI organization: OpenNI User Guide (November 2010),
http://www.openni.org/documentation (last viewed February 26, 2012)

14. PrimeSense Inc.: Prime Sensor NITE 1.3 Algorithms notes (2010),
http://www.primesense.com (last viewed February 26, 2012)

15. Setapen, A., Quinlan,M., Stone, P.: Marionet: Motion acquisition for robots through
iterative online evaluative training (extended abstract). In: The Ninth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems (May 2010)

16. Urieli, D., MacAlpine, P., Kalyanakrishnan, S., Bentor, Y., Stone, P.: On optimizing
interdependent skills: A case study in simulated 3d humanoid robot soccer. In:
Tumer, K., Yolum, P., Sonenberg, L., Stone, P. (eds.) Proc. of 10th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2011), vol. 2, pp. 769–776.
IFAAMAS (May 2011)

17. Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural evolution strate-
gies. In: Proceedings of the Congress on Evolutionary Computation (CEC 2008),
Hongkong. IEEE Press (2008)

http://www.openni.org/documentation
http://www.primesense.com

A CASE Tool for Robot Behavior Development

Angeliki Topalidou-Kyniazopoulou1, Nikolaos I. Spanoudakis2,
and Michail G. Lagoudakis1

1 Department of ECE, Technical University of Crete, 73100, Chania, Greece
atop87@gmail.com, lagoudakis@intelligence.tuc.gr

2 Department of Sciences, Technical University of Crete, 73100, Chania, Greece
nikos@science.tuc.gr

Abstract. The development of high-level behavior for autonomous ro-
bots is a time-consuming task even for experts. This paper presents a
Computer-Aided Software Engineering (CASE) tool, named Kouretes
Statechart Editor (KSE), which enables the developer to easily specify
a desired robot behavior as a statechart model utilizing a variety of
base robot functionalities (vision, localization, locomotion, motion skills,
communication). A statechart is a compact platform-independent formal
model used widely in software engineering for designing software systems.
KSE adopts the Agent Systems Engineering Methodology (ASEME)
model-driven approach. Thus, KSE guides the developer through a series
of design steps within a graphical environment that leads to automatic
source code generation. We use KSE for developing the behavior of the
Nao humanoid robots of our team Kouretes competing in the Standard
Platform League of the RoboCup competition.

1 Introduction

Computer-Aided Software Engineering (CASE) tools improve productivity and
quality in software development [1]. However, they are not widely used for robot
behavior development, even in domains, such as RoboCup, where robot behavior
needs to be frequently modified. It is quite common for a RoboCup team to find
itself in a place where the code realizing the behavior of its robots needs to
be urgently modified, for example during half-time because of some unexpected
opponent strategy. The time constraints and the programmers’ stress in such
situations consist a recipe for failure. CASE tools can be really helpful in this
context, as they offer ways to make behavior development and modification
quicker and less error-prone.

Recent advances in Agent Oriented Software Engineering (AOSE), Model-
Driven Engineering (MDE), and Domain Specific Languages (DSLs) allowed us
to define a novel model-driven process for developing collaborative robot behavi-
ors [2]. This process, however, lacked the assistance of a CASE tool that would
allow the graphical editing of the behavior models. The work presented in this
paper aims to fill this gap by proposing the Kouretes Statechart Editor (KSE)
CASE tool, which enables the developer to easily specify a desired robot behavior
as a statechart model utilizing a variety of base robot functionalities (vision, local-
ization, locomotion, motion skills, communication). A statechart [3] is a compact

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 225–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

226 A. Topalidou-Kyniazopoulou, N.I. Spanoudakis, and M.G. Lagoudakis

platform-independent formal model used widely in software engineering for de-
signing software systems. KSE adopts the Agent Systems Engineering Methodo-
logy (ASEME) model-driven approach [4] and assists the developer from the ana-
lysis phase to the design and code generation phases. More specifically, KSE sup-
ports (a) the automatic generation of the initial abstract statechart model using
compact liveness formulas, (b) the graphical editing of the statechart model and
the addition of the required transition expressions, and (c) the automatic source
code generation for compilation and execution on the robot. KSE has been devel-
oped using the Eclipse Modeling Project1 technologies and has been integrated
with our Monas software architecture [5] and our Narukom communication frame-
work [6], which provide the base functionalities. KSE is used for developing the
behavior of the Aldebaran Nao humanoid robots of our team Kouretes competing
in the RoboCup Standard Platform League (SPL).

In the rest of the paper, after examining the background technologies in Sec-
tion 2, we present our ASEME-based robot behavior development method in
Section 3 and the main features of KSE, including design and implementation
choices, in Section 4. Subsequently, we present the results of a first empirical
evaluation in Section 5. Finally, we discuss our findings and related work in
Section 6 before concluding with Section 7.

2 Background

ASEME [4] supports a modular agent design approach and introduces the con-
cepts of intra- and inter- agent control. The former defines the agent’s behavior
by coordinating the different modules that implement its own capabilities, while
the latter defines the protocols that govern the coordination of the society of the
agents. ASEME applies a Model-Driven Engineering (MDE) approach to multi-
agent systems development, so that the models of a previous development phase
can be transformed to models of the next phase. The transition from one phase
to another is assisted by automatic model transformation leading from require-
ments to computer programs. The ASEME platform-independent model, which
is the output of the design phase, is a statechart, and is referred to as the Intra-
Agent Control (IAC) model. ASEME uses the models of the Agent Modeling
Language (AMOLA) [7]. The AMOLA metamodels have been formally defined
using the Eclipse Modeling Framework (EMF) of the Eclipse Modeling Project.
Eclipse technology has been employed for developing model transformations and
graphical editing tools for both models and processes.

Our communication framework, Narukom [6], is based on the publish/sub-
scribe messaging pattern [8] and supports multiple ways of communication, in-
cluding point-to-point and multicast connections. The information that needs
to be communicated between nodes (agents or activities) is formed as messages,
tagged with appropriate topics, and relayed through a message queue for delivery.
Three types of messages are supported: (i) state, which remain in the blackboard

1 The Eclipse Modeling Project provides a unified set of modeling frameworks, tooling,
and standards implementations: www.eclipse.org/modeling

www.eclipse.org/modeling

A CASE Tool for Robot Behavior Development 227

until they are replaced by a newer message of the same type, (ii) signal, which
are consumed at the first read, and (iii) data, which are time-stamped to indicate
the precise time the values they carry were acquired. We used Google Protocol
Buffers2 to facilitate the serialization of data and the structural definition of the
messages. Additionally, the blackboard paradigm [9] is utilized to provide effi-
cient access to shared information stored locally at each node and is extended to
support history queries and a mechanism that controls the information updates.

Our software architecture, Monas [5], provides an abstraction layer from the
Nao robot and allows the synthesis of complex robot software as XML-specified
Monas modules and/or statechart modules. Monas modules focus on specific
functionalities (vision, motion, etc.) and each one of them is executed indepen-
dently at any desired frequency completing a series of activities at each execu-
tion. Statechart modules are executed using a generic multi-threaded statechart
engine [5], which is built on top of existing open-source projects, provides the
required concurrency, and meets the real-time requirements of the activities on
each robot. The base functionalities utilized by a statechart can be implemented
as Monas modules and include the following: Sensors, for collecting and filter-
ing measurements from the robot sensors; RobotController, for handling external
signals on the game state; MotionController, for managing and executing robot
locomotion and special actions; Vision, for obtaining visual object observations;
Localization, for estimating the position of the robot and the ball in the field;
and HeadHandler, for managing the movements of the robot head (camera).

3 ASEME-based Behavior Development

ASEME suggests a strict hierarchical decomposition of the desired robot be-
havior into smaller activities until a level of provided base activities is met.
Each design step is supported by a formal model. These models are automati-
cally transformed when moving from one step of the design process to the next.
Briefly, the process begins with the specification of a set of liveness formulas
(analysis phase) which are converted to an initial statechart model; the state-
chart is subsequently enriched (design phase) and is converted to source code.

Liveness formulas describe and connect the activities included in the desired
behavior in a formal way, similar to regular expressions. Each formula is a rule
decomposing one activity (shown on the left side) into a number of intercon-
nected smaller activities (shown on the right side). Activities on the right side of
a formula are connected using the Gaia operators [10]. Specifically, A.B means
that activity B is executed after activity A, A* means that A is executed zero or
more times, A+ means that A is executed one or more times, A∼ means that A is
executed indefinitely (it resumes as soon as it finishes), A|B means that either
A or B is executed exclusively, A||B means that A and B are executed concur-
rently, and [A] means that A is optional. Using liveness formulas, the developer
can hierarchically decompose the desired behavior into specific activities until

2 Google’s language- and platform- independent, extensible mechanism for serializing
structured data: http://code.google.com/apis/protocolbuffers

http://code.google.com/apis/protocolbuffers

228 A. Topalidou-Kyniazopoulou, N.I. Spanoudakis, and M.G. Lagoudakis

the existing base activities are reached, however without specifying the precise
conditions under which individual activities are chosen.

The statecharts [3] are formal models that describe complex processes and
control structures using directed graphs with nodes (states) and edges (transi-
tions). Six types of nodes or states are allowed: start–states, indicating the entry
of execution in a complex state, end–states, indicating the exit of execution from
a complex state, or–states, indicating complex states with mutually exclusive
sub-states (only one sub-state is executed at each time), and–states, indicat-
ing complex states with sub-states of type or which are executed concurrently,
basic–states, indicating the execution of base activities, and condition–states,
providing the ability to make conditional transitions. The state at the highest
level (the only one without a parent) is called the root. Each transition from one
state (source) to another (target) is characterized by an expression whose syntax
follows the pattern e[c]/a, where e is the event triggering the transition, c is
the condition that needs to be satisfied for the transition to take place when e
occurs, and a is an action executed when the transition is taken. All the elements
of an expression are optional. If the expression lacks an event, the condition is
evaluated when the source state finishes execution.

The liveness2IAC tool [11] is used to transform the liveness formulas to sta-
techarts and the IAC2Monas tool [5] is used to transform the statechart auto-
matically to C++ source code adhering to the Monas architecture. With the use
of the latter, the platform-independent model (statechart) is transformed to a
platform-specific model (source code), which is subsequently cross-compiled to
produce the executable for the robot.

4 The Kouretes Statechart Editor CASE Tool

KSE is a CASE tool designed to support all steps of ASEME-based behavior
development through an intuitive graphical interface. In particular, liveness for-
mulas are given in plain text and are automatically converted to an initial sta-
techart model, where the designer can graphically add the appropriate transi-
tion expressions. The syntax of transition expressions is formally specified by
an EBNF grammar [12]. Each statechart can be associated with a source code
repository containing the base activities; in our case, a repository of Monas acti-
vities. KSE also allows the creation of statecharts from scratch (without liveness
formulas) and graphical editing and modification of any existing statechart. To
ensure that the designer will not produce an invalid statechart with respect to
Harel’s statechart language [3] and the EBNF grammar, KSE offers a validation
procedure which identifies mistakes in the statechart and warns the user. The
final statechart is automatically converted to source code which is integrated
with the associated source code repository and is cross-compiled for execution.

4.1 KSE Example

We provide a simple example to demonstrate KSE and the behavior develop-
ment process. Consider a very simple behavior, whereby a robot listening to

A CASE Tool for Robot Behavior Development 229

Fig. 1. KSE example: the generated statechart model from the liveness formula

SPL’s game controller executes the following actions, whenever it enters the
PLAYER PLAYING state: sit down when you see the ball and track it, stand up and
scan for the ball when you lose it. In any other game state, it does nothing.

The first step in creating a behavior with KSE is to describe the behavior
with liveness formulas. The two liveness formulas for this simple behavior are:

TestBehavior = (Play | NoPlay)+

Play = SitDownAndStare | StandUpAndScan

The first formula indicates that our behavior (TestBehavior) will choose one or
more times between Play and NoPlay exclusively. NoPlay is a base activity, which
handles game states different than PLAYER PLAYING, and is not analyzed further.
Play is refined in the second formula, which simply states that Play will have
to choose one of the two base activities, SitDownAndStare or StandUpAndScan,
exclusively. SitDownAndStare commands the robot to sit down and stare at the
(visible) ball, whereas StandUpAndScan commands the robot to stand up and
scan for a ball. Note that this decomposition specifies what activities are included
in the desired behavior, but gives no information on when execution will switch
from one activity to another.

As soon as the formula is provided to KSE, the initial statechart model is
generated and the user has to associate it to a source code repository, which
provides the base functionalities and in which the code of the new statechart
is going to be integrated. At this point, the user can initialize the graphical
representation (Figure 1) of the automatically created statechart model in order
to edit the transition expressions or the activities of the basic-states. Note that
each activity in the liveness formula has become a node/state in the statechart.
The yellow-color-labeled rounded rectangles indicate or-states, the green-colored
rounded rectangles basic-states, and the blue-color-labeled rounded rectangles
and-states (none in this example). A node with a circled c is a condition-state,
whereas solid black nodes correspond to start-states and circled black nodes to
end-states. The model hierarchy is preserved in the graphical node enclosures.

230 A. Topalidou-Kyniazopoulou, N.I. Spanoudakis, and M.G. Lagoudakis

Fig. 2. KSE example: the complete statechart model with all the transition expressions

An empty transition expression (inidicated by <..>) implies that no event
is required for triggering, the condition is evaluated to true, and no action is
executed. Such a transition is used to indicate default execution paths, when
all other non-empty transition conditions evaluate to false. To ensure proper
execution of the statechart, the user must define the appropriate transition ex-
pressions. In our example, we have to provide six transition expressions: when
to continue with (Play | NoPlay), when to leave (Play | NoPlay), when to
choose Play, when to choose NoPlay, when to choose SitDownAndStare, and
when to choose StandUpAndScan. These conditions take into account informa-
tion delivered by incoming messages from existing Monas modules indicating
the game state and whether the ball is visible or not. The complete statechart
with all transition expressions is shown in Figure 2. It is worth noting the loop
transition on (Play | NoPlay), which executes a timeout action (200 msec) so
that the transition to the target state can only take place at a certain frequency
enforced by the TimeoutCheck function in the condition. The same action is
taken when this state is entered the first time (transition from its start-state).

At this point, the user can validate the statechart model and generate the
source code. Classes are generated for the model, for the activity of each basic-
state, and for each transition. Additionally, if the activity of a basic-state is
not already provided, a class template will be generated in which the user must
define the corresponding functionality using conventional C++ code. The user
can edit the source code of the activity corresponding to a basic-state directly
within KSE. In this example, the user just needs to define the activities of the
three basic-states: NoPlay, SitDownAndStare, and StandUpAndScan. A sample
of the auto-generated code is shown in Figures 3 and 4. In our example, the size

A CASE Tool for Robot Behavior Development 231

#include ”TestBehavior . h”
#include ” t rans i t i onHeade r s . h”
using namespace s t a t e cha r t eng i n e ;
namespace {Statechar tReg i s t ra r<TestBehavior > : :Type temp(”TestBehavior ”) ;}
TestBehavior : : TestBehavior (Narukom∗ com) {

s t a t e c h a r t = new Statechar t (”Node TestBehavior ” , com) ;
Statechar t∗ Node 0 = s t a t e c h a r t ;
s t a t e s . push back (Node 0) ;

S ta r tS ta t e ∗ Node 0 1 = new Sta r tS ta t e (”Node 0 1” , Node 0) ; //Name : 0 . 1
s t a t e s . push back (Node 0 1) ;

. . .

Fig. 3. KSE example: an extract of the generated code for the TestBehavior statechart

#include ” a r ch i t e c t u r e / s tatechartEng ine / ICondit ion . h”
#include ”messages /AllMessagesHeader . h”
#include ” t o o l s /BehaviorConst . h”
c lass TrCond TestBehavior0 20 2 : public s t a t e cha r t eng i n e : : ICondit ion {
public :

void Use r In i t () { blk−>updateSubscr ipt ion (” behavior ” , msgentry : : SUBSCRIBE ON TOPIC) ;}
bool Eval () {

boost : : shared ptr<const GameStateMessage> var 621149599 = blk−>readState<
GameStateMessage> (” behavior ”) ;

boost : : shared ptr<const TimeoutMsg> msg= blk−>readState<TimeoutMsg>(” behavior ”) ;
return ((msg . get () !=0 && msg−>wakeup () !=”” && boost : : pos ix t ime : : f r om i s o s t r i n g

(msg−>wakeup ())<boost : : pos ix t ime : : m i c r o s e c c l o ck : : l o c a l t ime ()) && (
var 621149599 . get () !=0 && var 621149599−>p l a y e r s t a t e () !=PLAYER FINISHED)) ;

}
} ;
#include ” a r ch i t e c t u r e / s tatechartEng ine / IAct ion . h”
#include ” a r ch i t e c t u r e / s tatechartEng ine /TimoutAciton . h”
c lass TrAct ion TestBehavior0 20 2 : public s t a t e cha r t eng i n e : : TimeoutAction {

public : TrAct ion TestBehavior0 20 2 () : s t a t e cha r t eng i n e : : TimeoutAction (” behavior ”
,200) { ;}

} ;

Fig. 4. KSE example: the generated code for the loop transition on (Play | NoPlay)

of the total auto-generated code is 35.5 KB and with the user-defined activities
for the three basic-states it increases to 50.9 KB. Therefore, about 70% of the
code for this simple behavior has been automatically generated.

4.2 KSE Design and Implementation

To design and implement KSE, we chose the eclipse platform and the technolo-
gies offered by the Eclipse Modeling Project, in particular the Eclipse Modeling
Framework (EMF), the Graphical Modeling Framework (GMF), and the Xpand
language. This choice was apparent, mainly because of the fact that the ASEME
tools already used these technologies, but also because other modern CASE tools,
such as Yakindu3, are also based on them.

For creating the liveness formulas, the designer uses a simple text editor. The
liveness2IAC transformation tool transforms the liveness formulas to a statechart
instance based on the transformation templates for Gaia operators [11]. This
text-to-model transformation uses the formal definition of liveness formulas and
the Statechart metamodel defined in EMF ecore format, shown graphically in
Figure 5. According to the Statechart metamodel, a Model consists of Node,
Transition, and Variable instances. A node represents a state in the statechart
and has a name (providing a description of the state), a label (indicating its
unique position in the hierarchy), an activity (hosting a path to the source code
implementing the functionality executed when the state is active), and a type

3 A free toolkit for model-driven development of embedded systems: www.yakindu.org

www.yakindu.org

232 A. Topalidou-Kyniazopoulou, N.I. Spanoudakis, and M.G. Lagoudakis

Fig. 5. The Statechart metamodel in EMF ecore format

(indicating the type of the state: or-state, and-state, etc.). Nodes aggregate their
Children (sub-nodes) and reference their Father (parent state). Variables can be
defined by the designer and have a name and any desired data type. Transitions
have a name, one source node, one target node, and a transition expression
TE. Using the EMF representation of the ecore metamodel as Java classes, we
used the Java language to write a recursive algorithm that builds the correct
statechart by parsing the input liveness formulas.

For editing the statechart we used the GMF technology that allows to asso-
ciate the ecore metamodel elements with graphical components and dynamically
create the graphical model. GMF provides tools for the programmer to define
validation rules for the model, if any, and the relevant error or warning mes-
sages. Using the GMF API, we also implemented a copy-cut-paste functionality
for graphical views, which is not automatically supported by GMF. Thus, the
designer can use KSE to edit graphically any part of a statechart, even copying
and pasting parts from statecharts of different models.

The IAC2Monas transformation tool has been built using the Xpand lan-
guage, which is used to define the templates for the required C++ classes. These
templates are instantiated using information from the Statechart metamodel
elements, for example name, label, activity, type, and children of a node.

5 KSE Evaluation

To obtain an empirical evaluation of our CASE tool, 28 ECE undergraduate stu-
dents taking the Autonomous Agents class at the Technical University of Crete
were asked to use KSE and evaluate it in one of their laboratory sessions. The
plan of this 2-hour lab session was to go through a short tutorial on using KSE,
study a complete SPL Goalie behavior as an example (shown in Figure 6 without
the transition expressions), and finally develop their own SPL Attacker beha-
vior using KSE and the functionalities of the Goalie behavior. The predefined
functionalities were contained in a Monas source code repository. The students
worked in small teams of two or three people per team. None of them had any
prior experience with CASE tools, KSE, Monas, SPL, or RoboCup in general.
This lab session was run three times to accommodate all students in the four

A CASE Tool for Robot Behavior Development 233

Fig. 6. The statechart of the provided SPL Goalie behavior (expressions not shown)

available work stations. At the end of each lab session, a quick SPL game took
place with the four developed attackers split in two teams of two players each.

The results were in general positive for KSE as a CASE tool, but also for the
concept of ASEME-based behavior development. Both seemed to be pretty un-
derstandable, even though most students were not familiar with Agent-Oriented
Software Engineering. All student teams were able to go through the provided
material and deliver the requested SPL Attacker behavior. The great bet, won
by KSE in this evaluation, was that all student participants succeeded to create
a simple SPL robot behavior and even enjoyed watching their players in a game
without having to go through the typical lengthy training procedures required
for student members of an SPL team.

The participating students were asked to fill in an anonymous user satisfaction
questionnaire after the lab session. The total number of responders was 19. A
small sample of the user responses is shown in Table 1. The overall assessment
of KSE was positive. The main negative comment was that the long transition
expressions on the model were cluttering the view of the statechart graph. Based
on this comment, in the latest version of KSE the user can choose to hide part(s)
of each expression to improve readability of the model.

234 A. Topalidou-Kyniazopoulou, N.I. Spanoudakis, and M.G. Lagoudakis

Table 1. Summarized responses to the KSE user satisfaction questionnaire

Question Very Easy Easy Normal Difficult Very Difficult
The liveness formulas was ... to edit. 21.05% 63.16% 15.79% 0.00% 0.00%
The statechart was ... to edit. 0.00% 31.58% 57.89% 10.53% 0.00%
The navigation to the KSE menu was ... 10.53% 42.11% 47.37% 0.00% 0.00%
The use of KSE was ... in general. 0.00% 57.89% 26.32% 15.79% 0.00%

6 Related Work and Discussion

Our research revealed two CASE tools that relate most to our work, namely
XabslEditor and Yakindu. We briefly review these tools below.

The Extended Agent Behavior Specification Language (XABSL) [13,14] is
a simple text-based language for describing behaviors of autonomous agents
based on hierarchical finite state machines. XABSL was originally developed for
soccer robots behavior specification, but can be used for all kinds of autonomous
robots or virtual agents. XabslEditor4 is a text editor for XABSL, having also
the capability to represent graphically the hierarchical finite state machines that
describe the agents’ behavior. XabslEditor also provides a compiler for XABSL.

The Yakindu toolkit supports the development of both reactive, event-driven
and data flow-oriented systems with the help of finite state machines, statecharts
(according to Harel), and block diagrams. Yakindu provides graphical modeling
tools with integrated validation and simulation, which allow for the early assess-
ment of the models and offers efficient code generators for a target platform.

The main features of the KSE, XabslEditor, and Yakindu tools are sum-
marized in Table 2. KSE compares favorably with the other tools in terms of
supported features. A major advantage of KSE for the design process is the ana-
lysis tool, which enables the user to abstractly and compactly define the desired
behavior using liveness formulas. A small set of liveness formulas can lead to a
large statechart model, therefore the user can save a significant amount of time
by seeding the design through the analysis tool. As an example, the statechart of
the SPL Goalie behavior in Figure 6 was initiated by only four liveness formulas.

The user can configure KSE and choose his/her favorite text editor or pro-
gramming environment for viewing and editing activities. The default configura-
tion of KSE uses our IAC2Monas code generator for integrating statecharts into
our Monas architecture, but KSE can be reconfigured to use any desired source
code generator and any grammar for transition expressions in order to generate
code for another platform. For example, we have configured KSE to generate
code for the popular JADE agent platform using the IAC2JADE tool [15] and
a grammar assuming FIPA-ACL5 communication between the agents.

To facilitate rapid behavior updates, we have configured KSE to store all
statecharts and models within the source code repository of our Monas architec-
ture. Thus, all developed statecharts (behaviors) are available at any time and
the developer can choose, on the fly, which statechart to execute on the robot.

4 XabslEditor has been developed by Nao Team Humboldt and is freely available:
www.naoteamhumboldt.de/en/projects/xabsleditor

5 The Foundation for Intelligent Physical Agents - Agent Communication Language
Specification: www.fipa.org

www.naoteamhumboldt.de/en/projects/xabsleditor
www.fipa.org

A CASE Tool for Robot Behavior Development 235

Table 2. Feature comparison of XabslEditor, Yakindu, and KSE

Feature XabslEditor Yakindu KSE

Supported Platforms java eclipse helios linux, windows

Open Source
√

free-ware
√

Model Validation
√ √ √

Analysis Tool
√

Model Simulation
√

Multiple Editing Tabs
√ √ √

Symbol Auto-Completion
√

Graphical Editing
√ √

Reusability of Graphical Components
√

Code Generation
√ √ √

Integrated Code Editing
√ √

Customization of Code Generator
√

In general, it is important that the user-defined activities are generic enough to
be re-used in a variety of statecharts. This way, a developer can design and test
new behaviors, which do not entail the definition of new functionality, just by
editing statecharts and reusing existing functionalities.

Recently, we proposed the use of liveness formulas and statecharts also for
specifying agent interaction protocols [2]. We showed how an attack protocol
can be modeled and then inserted in the respective robot behavior. This feature
is fully supported by KSE, as the designer can define the coordinated action and
then copy and paste the relevant parts to the interacting robots’ statecharts,
thus ensuring the correct execution of the protocol. Consider, for example, the
following simple attack protocol defining three roles, two instances of center-for
and one of center : the center assumes control of the ball and then passes the ball
to one of the center-fors. The liveness formula for this protocol begins with:

attack = center || center-for || center-for

Then, in a robot’s IAC model the designer defines in a liveness formula that the
player will assume either a center or a center-for role, when attacking:

attack = center | center-for

When the statechart is generated in the second case, the designer can simply
copy the relevant states from the previously edited protocol definition statechart
and paste them over the auto-generated center and center-for basic-states.

7 Conclusion

In this paper, we presented the Kouretes Statechart Editor (KSE), a graphical
CASE tool for robot behavior development. KSE offers a number of features that
make it suitable for domains, such as RoboCup, where behavior modifications
are frequent and require quick and error-proof solutions. The KSE tool is freely
available along with other ASEME-based tutorials and tools developed by the
RoboCup SPL team Kouretes from www.kouretes.gr/aseme.

www.kouretes.gr/aseme

236 A. Topalidou-Kyniazopoulou, N.I. Spanoudakis, and M.G. Lagoudakis

Acknowledgments. The authors would like to thank Alexandros Paraschos
and all members of the Kouretes team for their valuable assistance and our
sponsor Chipita S.A.–Molto.

References

1. Baik, J., Boehm, B.: Empirical analysis of CASE tool effects on software develop-
ment effort. ACIS International Journal of Computer and Information Science 1,
1–10 (2000)

2. Paraschos, A., Spanoudakis, N.I., Lagoudakis, M.G.: Model-driven behavior speci-
fication for robotic teams. In: Proceedings of The Eighth International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), Valencia, Spain (June
2012)

3. Harel, D., Naamad, A.: The Statemate semantics of statecharts. ACM Transactions
on Software Engineering and Methodology 5, 293–333 (1996)

4. Spanoudakis, N.I., Moraitis, P.: Using ASEMEmethodology for model-driven agent
systems development. In: Weyns, D., Gleizes, M.-P. (eds.) AOSE 2010. LNCS,
vol. 6788, pp. 106–127. Springer, Heidelberg (2011)

5. Paraschos, A.: Monas: A flexible software architecture for robotic agents. Diploma
thesis, Technical University of Crete, Greece (2010)

6. Vazaios, E.: Narukom: A distributed, cross-platform, transparent communication
framework for robotic teams. Diploma thesis, Technical University of Crete, Greece
(2010)

7. Spanoudakis, N.I., Moraitis, P.: The agent modeling language (AMOLA). In:
Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253,
pp. 32–44. Springer, Heidelberg (2008)

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35, 114–131 (2003)

9. Hayes-Roth, B.: A blackboard architecture for control. Artificial Intelligence 26(3),
251–321 (1985)

10. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000)

11. Spanoudakis, N.I., Moraitis, P.: Gaia agents implementation through models trans-
formation. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009.
LNCS, vol. 5925, pp. 127–142. Springer, Heidelberg (2009)

12. ISO/IEC: Extended Backus-Naur form (EBNF). 14977 (1996)
13. Loetzsch, M., Risler, M., Jungel, M.: XABSL - a pragmatic approach to behavior

engineering. In: 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5124–5129 (October 2006)

14. Risler, M.: Behavior Control for Single and Multiple Autonomous Agents Based on
Hierarchical Finite State Machines. PhD thesis, Technische Universität Darmstadt,
Germany (2009)

15. Spanoudakis, N., Moraitis, P.: Modular JADE agents design and implementation
using ASEME. In: Proceedings of the IEEE/WIC/ACM International Conference
on Intelligent Agent Technology (IAT), Toronto, Canada (2010)

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 237–248, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Distributed Cooperative Reinforcement Learning
Method for Decision Making in Fire Brigade Teams

Abbas Abdolmaleki1,2, Mostafa Movahedi, Nuno Lau1,3, and Luís Paulo Reis2,4

1 IEETA – Institute of Electronics and Telematics Engineering of Aveiro, Portugal
2 LIACC – Artificial Intelligence and Computer Science Lab., Porto, Portugal

3 UA – University of Aveiro, Campus Universitário de Santiago, 3810 193 Aveiro, Portugal
4 EEUM - School of Engineering, University of Minho - DSI, Portugal

Campus de Azurém 4800-058 Guimarães, Portugal
{Abbas.a,nunolau}@ua.pt, mr.mos.movahedi@gmail.com,

lpreis@dsi.uminho.pt

Abstract. Decision making in complex, multi-agent and dynamic environments
such as disaster spaces is a challenging problem in Artificial Intelligence. This
research paper aims at developing distributed coordination and cooperation
method based on reinforcement learning to enable team of homogeneous,
autonomous fire fighter agents, with similar skills to accomplish complex task
allocation, with emphasis on firefighting tasks in disaster space. The main
contribution is applying reinforcement learning to solve the bottleneck caused
by dynamicity and variety of conditions in such situations as well as improving
the distributed coordination of fire fighter agent’s to extinguish fires within a
disaster zone. The proposed method increases the speed of learning; it has very
low memory usage and has a good scalability and robustness in the case that the
number of agents and complexity of task increases. The effectiveness of the
proposed method is shown through simulation results.

Keywords: RoboCup Rescue Simulation, Multi agent system, Fire Brigade,
Decision Making, Reinforcement Learning.

1 Introduction

Several authors have proposed general models for flexible coordination of agents.
However, most of the approaches either are not sufficiently reactive to perform
efficiently in real time and dynamic domains or do not provide agents with
sufficiently developed social behavior to perform intelligently as members of a team
in continuous, multi-objective and complex multi-agent environments [1]. Notable
research may be recognized in Stone’s and Veloso’s work [2] that has been applied
with success to RoboCup soccer and network routing.

In order to achieve complex behavior acquisition using machine learning methods,
Stone and Veloso [3] proposed to introduce a layered learning system with basic skills
such as “shootGoal”, “shootAway”, “dribbleBall”, and so on. Kleiner et al [4] also
proposed a multi-layered learning system for behavior acquisition of a soccer robot.

238 A. Abdolmaleki et al.

Most implementations of multi-agent coordination frameworks rely on domain
specific coordination. Some relevant exceptions may be identified however. An
example is Jennings’ joint responsibility framework [5], which is based on a joint
commitment to the team’s joint goal and was implemented in the GRATE* system. One
other approach to automated planning is discussed in hierarchical task networks (HTN)
where the dependency among actions can be given in the form of networks [6].
Regarding one possible and commonly used test bed for the framework, the Robotic
Soccer competition [7, 8, 9], the UVA Trilearn team’s coordination graphs provide a
way to parameterize a coordination structure over a continuous domain [10].

To manage coordination between agents three options are proposed in [11]:
environment partitioning, centralized direct supervision and decentralized mutual
adjustment. Among these three approaches, the decentralized approach is more
flexible but this does not necessarily provide better results. Considering Robocup
rescue simulation as another test bed, in [12] a hybrid approach is proposed to take
advantage of both centralized and decentralized approaches. In order to make a
decision about the number of ambulances which should cooperate in rescue civilian,
evolutionary reinforcement learning is utilized by [13]. In [14] a fire brigade learns to
do task allocation and how to choose the best building to extinguish to maximize the
final score. In [15] fire brigades learn how to distribute themselves within the city
using neural reinforcement learning.

The authors recently developed a reinforcement learning based model for
optimizing the task of a single fire fighter agent [16]. This model uses a reinforcement
learning method based on the Temporal Difference (TD) methodology. Temporal
difference methods update the estimated data without waiting for the final outcome,
allowing prompt reactions in complex environments like disaster spaces. In this paper
we have extended this approach and developed a distributed coordination and
cooperation method based on reinforcement learning to enable a team of
homogeneous, autonomous fire fighter agents, with similar skills to accomplish
complex allocation of tasks, with emphasis on extinguishing fires task in disaster
space. The major contribution made in this paper is to introduce a distributed
cooperative algorithm based on reinforcement learning for firefighting agents to save
a city and civilians from fire at a fire site1. It is a distributed coordination because
each agent makes its decision by itself and there is no central command. The rest of
this paper is organized as follow. In next section the problem is detailed and
assumptions are presented. In Section 3 we explain the test bed which is used to
implement and test our approach. Section 4 discusses how to design and model the
problem for applying reinforcement learning, in detail. In Section 5 details of
implementation are presented and achieved results are shown. Section 6 concludes.

2 Problem Formulation

Disaster space firefighting presents a complex task allocation problem in a very
dynamic and uncertain environment. Fire brigades are responsible for controlling fire.
The most important issue is to select and extinguish the best fire point to reduce
damage of the civilians and city. We have decomposed the firefighting task (Fig. 1)
into some important subtasks. The two most important subtasks are:

1 A fire site is an area within a neighborhood consisting of burning buildings.

 A Distributed Cooperative Reinforcement Learning Method 239

1- In which way to allocate large number of resources (Firefighters agents) to
various fire sites.

2- How allocated agents cooperate and coordinate in a decentralized way at each
site to control the fire.

In this paper we propose a solution for the second subtask which is seeking an
acceptable distributed cooperation strategy for firefighter agents to control a fire site
using reinforcement learning.

Fig. 1. Flowchart of firefighting task, the bold box is the sub-task which we have focused on in
this paper

Like humans, robots potentially work better as a team than working alone in
challenging domains. By cooperation, robots can complete the tasks faster, with more
robustness and also complete tasks which are impossible for a single robot. However
for effective cooperation, there are many difficulties in uncertain and dynamic
environments, such as the presence of noise, communication problems, resource
failures, and difficulties of mobility and computation.

Considering the aforementioned challenges we make some assumptions to present
a distributed cooperative reinforcement learning method, which are as follows:

#Assumption 1: All the agents or resources have the same knowledge of the fire
sites and fiery buildings. It means we assume that the communication between robots
is good enough to share their knowledge about the environment.

#Assumption 2: No routes are blocked, so there is no problem of mobility for agents.
#Assumption3: As firefighter agents need to refill their water tanks, we assume

there are stations from which firefighters can do so, so there is no resource failure.

In a rescue simulation, fire fighter agents must perform a sequence of actions to carry
out their firefighting task at a fire site efficiently. Each action alters the environment
and also influences their choice of the next action. The goal of the agents is to achieve
the best score at the end of the simulation. Agents should select a sequence of actions

240 A. Abdolmaleki et al

which maximizes the score
that agents don’t know a pr
using reinforcement learn
mechanism which we hav
Difference method of rein
estimates based in part on o
(bootstrapping), this metho
simulations in which an act

Unfortunately, finding
challenges are typically NP
distributed cooperative plan

Our algorithm is based on
at each possible situation. In
so that the learning task is
learning would be a table in w

3 Test Bed

RoboCup rescue simulation
has happened. The aim of cr
for humans and also fire exti
is currently a major league i
of a kernel as the main part
earthquake, fire,traffic, block
how the city changes over ti
and Fire Brigade Agents w
operation. Police Force Agen
roads. The Ambulance agen
them until they are retrieved
Fire simulator used to simu
building material, wind and
Agents is to extinguish fires
buildings which decreases th
on a cool building that build
agents navigate around on ro
computed from the quantity
When the fire brigade agent
burning buildings to extingu
environment to find an policy

Fi

.

e. Due to the limits of cognition of the agents and the f
riori the effect their action will have upon the environm
ning is a suitable method to solve this problem. T
ve used to teach the agents is based on the Tempo
forcement learning [17]. Since TD methods update th

other learned estimates, without waiting for a final outco
od is applicable for complex environments such as res
tion should be selected in each cycle.

optimal planning solution for Multi-agent syste
P-hard. The goal then, is to produce acceptable and effici
nning solutions based on reinforcement learning.
n an offline look-ahead search to find the best action to exec

this problem, first we should define proper states and acti
to find the best action for each situation. The output of
which for each possible situation there is an associated acti

is a simulation of environment of a city where an earth qu
reating this environment is to learn the best rescue strateg
inguishing tactics to be used within earthquakes in real life
in RoboCup simulation competitions. The simulation cons
t of the simulation, and some simulators which simulate
kades and civilians of the city and also a viewer which sho
ime. There are three kinds of agent: Police Force, Ambula
which are present in the simulation to perform the res
nts control the traffic in the city and open blockades of clo

nt’s duty is to locate the injured civilians and give first-aid
from collapsed buildings as well as carrying them to refug

ulate the spread of fire over buildings, taking into acco
d temperature of building. The main job of the Fire Brig
s by spraying water in its tanker (the capacity is limited)
he temperature of buildings. If fire fighter agent sprays w
ding will get water damage. Traffic simulator determines h
oads and buildings. The performance score of a simulatio

y of surviving civilians and the extent of damage to the c
ts want to extinguish fire they have to prioritize which of
uish and in which order. We have applied our method to
y for finding an action in each environmental state.

ig. 2. Rescue Simulation Environment

fact
ment,

The
oral
heir
ome
scue

ems
ient

cute
ions
the

ion.

uake
gies

fe. It
sists
the

ows
ance
scue
osed
d to
ges.
ount
gade
) on

water
how
on is
city.
f the
this

 A Distributed Cooperative Reinforcement Learning Method 241

Fig. 2 shows a screenshot of the simulation environment. It displays map of Kobe
city after an earthquake. The blue, white and red circles represent the Police force
agents, Ambulance agents and Fire brigade agents respectively. The bright and dull
green circles display healthy and hurt civilians and black circle represent the dead
civilian. The yellow, orange, dark red and black building represents level of fieriness
of a building. Yellow shows the lowest level of fieriness of a building and black
shows a burned out building. There is also a special type of buildings: the buildings
that are marked with home icon are refuges where saved civilians are taken. Black
areas on the roads represent blockades. The simulation runs for 300 time steps.

In order to reduce the complexity of simulation process we designed and
implemented a simple rescue simulation environment according to assumption 1-3.
This system has all features we need such as a fire and traffic simulator. Our simple
rescue simulation is much faster than the official rescue simulation while maintaining
the necessary capabilities. In Fig. 3 a screen shot of the simple rescue simulation is
displayed. This environment has a fire simulator with the same algorithms of official
Rescue Simulation since it is a standard system. Burning of buildings and fire spread
is the same as the original Rescue Simulation. Also the algorithm to calculate the
health of civilians is the same as the one in misc simulator2 of Rescue Simulation.

Fig. 3. Simple rescue simulation

The learning processes of agents and test phases are performed within this
simulator and the results potentially can be used in original rescue simulation.

4 Design

This section presents necessary issues including a description of the environment, the
design of the reward function and the learning algorithm used in our approach. Finally
a proposed learning procedure for the problem is presented. But first a brief
explanation of reinforcement learning is presented.

4.1 Description of Environment

In this section we define actions for agents and possible states for environment.
First the possible actions for agents should be determined. So agents in each state

can perform one of following actions:

2 The misc simulator calculates the health of civilians within Rescue Simulation.

242 A. Abdolmaleki et al.

1- extinguishEasyestBuilding: Extinguish the building that has lowest
temperature in firesite.

2- extinguishNearestToCivilian: Extinguish the nearest fiery building to a
civilian in firesite.

3- extinguishNearestToCenter: Extinguish the fiery building in a firesite which
is closest to the center of the city.

4- extinguishNearestToMe: Extinguish the nearest building in a firesite to the
firefighter.

These four actions are the most reasonable actions that a firefighter agent can take in
different situations.

Although in Temporal Differential methods the model of the environment is not
required, it needs a clear description of the states of the model. So in this section we
describe the rescue simulation environment with some discrete and finite states. The
states of environments are modeled by the following features.

1- freeEdges: The number of edges that fire can spread from represented by
0,1,2,3 or 4. For example in Fig.3 the fire can spread only from the left side,
so the number of freeEdges is 1.

2- distanceFromCenter: The distance of nearest fiery building to the center of
city. This is low, medium or high.

3- distanceFromCivilian: The distance from the nearest fiery building to a
civilian. This is low, medium or high

4- volumeOfFieryBuildings: The total volume of fiery buildings, classified as
either veryLow, low, medium, high, veryHigh or huge.

5- IsExtinguishEasyestBuilding: If currently any firefighter is extinguishing the
easiest building (action 1) in firesite. This is True or False.

6- IsExtinguishNearestToCivilian: If currently any firefighter is extinguishing the
nearest fiery building to a civilian (action 2) in the firesite. This is True or False.

7- IsExtinguishNearestToCenter: If currently any firefighter is extinguishing the
nearest fiery building to the city center (action 2) in the firesite. This is True
or False.

8- IsextinguishNearestToMe: If currently any firefighter is extinguishing
nearest fiery building to itself (action 4). This is True or False.

The states 1 to 4 are enough to describe the environment for an agent. To allow agents
to cooperate effectively they need to know about other agents. So states 5 to 8
describe the other agents in an environment. These states give an idea to agents what
the other agents are doing at each step which provides them with a distributed
cooperation. Good communication between agents is therefore required, and this is
assumed in the problem formulation section.

There are 5×3×3×7×2×2×2×2=4320 different environmental states. These states
can describe all situations in all fiery scenarios.

The problem is to find the best action in each state that leads to best score at the
end of the simulation.

4.2 Reward Function

The reward function plays an important role in reinforcement learning as it directs the
learning process towards a solution. In a burning city, the world will never improve

 A Distributed Cooperative Reinforcement Learning Method 243

with time; hence the agent will always incur a penalty in the reward function. The fire
brigade must minimise the penalty score.

The reward function used is defined as follows:

• For each waterDamaged building (a building which is extinguished and is
damaged because of too much water) in each time step the agent receives a
reward -1.

• For each fiery building in each time step the agent receives a reward -2.
• For each burned out building in each time step the agent receives a reward -3.
• For each damaged civilian in each time step the agent takes reward HP-1000.

The HP (Health Points) of each healthy civilian is 1000 and if the building that
contains a civilian ignited, the civilians’ HP reduces over the time.

The first reward causes the fire brigade to extinguish fire without wasting water. The
second and third rewards force the fire brigade to extinguish fire as quickly as possible
and the final reward motivates the fire brigade to save civilians from fire.

4.3 Learning Algorithm

Fire brigade agents learn which of their possible actions are most valuable (leads to
the best score) for a particular environmental state. To do this, the agents are taught
by an on-policy TD control method called SARSA [17]. Reward values (Q values) of
each action in each state were updated by formula (1) considering their rewards or
penalties.

 , , , , (1)

In above equation st is previous state before taking action a, st+1 is current state after
action a, r is reward received from the environment after taking action a in previous
state and reaching the current state, a is the last executed action, Q is the Q-Table,
alpha is learning rate and gamma is discount factor.

4.4 Learning Procedure

In reinforcement learning methods rewards provide guidance to the agent. If an agent
receives high rewards it understands that it performed a useful action sequence;
conversely poor rewards suggest a poor choice of actions. If an agent earns low
rewards most of the time, convergence is poor and the best action cannot be found. In
a very complicated environment such as rescue simulation, the problem search space
is huge. In this case the agent may continually get bad rewards and so not learn the
optimum policy. To overcome this problem we carried out our learning phase step by
step. First we trained just a single agent in 24 scenarios ranging in difficulty from
easy to complicated which is explained in [16]. Then we used the obtained Q-table
(ignoring cooperation states which reference other agents) from the previous step as
the initial knowledge of four agents. Next, we started training four agents in 8
different scenarios. In each scenario the firefighters randomly use one of the obtained
Q-Tables from its previous learning scenarios as the initial knowledge to output an

244 A. Abdolmaleki et al.

improved Q-Table containing more records and which has been informed by a greater
number of states.

5 Implementation and Results

This section presents the results of using the previously explained method in
simplified rescue simulation. In this section the scalability and robustness of the
method will be discussed. We will discuss the results in three subsections. First the
learning procedure and results in training scenarios will be presented. Then the
effectiveness of the method on three test scenarios is shown. Finally we will
demonstrate the scalability of method by changing the number of agents.

5.1 Cooperative Multi-agent Learning

In order to train the firefighters, the parameters and α of the Q-Table are initially set to
0.5 and 0.7 respectively, based on trial and error. The value of e factor in the e-greedy
selection algorithm is set in each episode based on the formula 0.9 . This
formula causes agents in early episodes to favor exploration of the search space and in
later episodes to use obtained experience from previous episodes to try to converge to a
solution. First we trained just a single agent in scenarios ranging from easy to difficult
[16]. Then, in order to teach coordination between agents, 8 scenarios, each using 4
agents were simulated. In the first scenario the initial Q-Table for all agents is the Q-
Table obtained from the previous training of a single agent. In successive simulated
scenarios the initial Q-Table is the same for all agents and is chosen randomly from the
recorded Q-Tables of each agent at the end of the preceding scenario. The end condition
of each training phase for a scenario is when agents converge to a policy which does not
change for 20 episodes. This will be considered as a learned policy by agents. It was
interesting to note, that at the end of all eight scenarios, all the agents had converged to
produce the same Q-tables. Agents learn appropriate actions for each state after training
in all scenarios, because the scenarios and learning procedure have been carefully
designed so that every state is visited several times. In table 1, characteristics of training
scenarios and the result of training is presented. Score in table 1, is calculated based on
number of dead civilians and burnt out buildings.

Table 1. Main characteristics of the scenarios used for cooperative learning.and results

Scenarios FireSite Position Initialized
amount of fire

Position of
civilians related

to Firesite

Convergence
Episode

Score

Scenario1 City Center Small Surrounding 55 9.977 out of 10
Scenario2 City Center Medium Surrounding 101 8.795 out of 10
Scenario3 City Center Medium West 116 10.787 out of 11
Scenario4 City Center Medium East 128 8.611 out of 9
Scenario5 North West corner Small East and South 41 9.891 out of 10
Scenario6 North West corner Medium East and South 74 9.629 out of 10
Scenario7 North West corner Big South 73 8.973 out of 10
Scenario8 South Big Surrounding 59 11.31 out of 12

 A Distributed Cooperative Reinforcement Learning Method 245

Fig. 4. Training scenarios(6,7,8) and performance of agents on train scenario after learning as
well as convergence graphs

Fig.4 shows graphically Training scenarios and performance of agents on 3 train
scenarios after learning as well as convergence graphs. The achieved result proved
that agents after training can control fire effectively.

5.2 Evaluation in Test Scenarios

After training 4 agents in 8 different scenarios, we tested these 4 agents in 3 new
scenarios and compared the performance of these agents with agents which were
trained using a single agent approach [16]. To analyze the performance of trained
agents, the test scenarios used were more difficult than the scenarios in which the
agents were trained. Table 2 presents the test results and Figure 5 shows graphically
the performance of agents in 2 train scenarios (1 and 2). The results show the
cooperatively trained agents have much better performance than agents which were
trained in non-cooperative mode. Also, the results achieved by cooperative agents are
very good for complex scenarios, as the agents saved all civilians and controlled fire
effectively, limiting fire damaged areas. This shows that the method provided a robust
approach which can be applied in scenarios that are very different from those used in
the training phase.

TrainScenario6 TrainScenario7 TrainScenario8
In

it
ia

l t
ra

in
 m

ap
Pe

rf
or

m
an

ce
 o

f
ag

en
ts

 a
ft

er
 tr

ai
n

C
on

ve
rg

en
ce

 G
ra

ph
H

or
:s

co
re

, V
er

:C
yc

le

0

2

4

6

8

10

12

1 6 11162126313641465156616671
0

2

4

6

8

10

1 6 11162126313641465156616671
0

2

4

6

8

10

12

14

1 5 9 13172125293337 4145495357

246 A. Abdolmaleki et al.

Table 2. Results in test scenarios for cooperative and non cooperative learning approaches

Scenarios Time to complete
task

Number of burned
out buildings

Score
Max
score Without

Coord.
With

Coord.
Without
Coord.

With
Coord.

Without
Coord.

With
Coord.

Scenario 1 436 290 410 278 2.017 9.15 12

Scenario2 490 203 541 115 2.564 10.808 12
Scenario3 473 410 570 337 0.27 5.582 10

5.3 Evaluation of Scalability

To test the scalability of proposed method, we used scenarios where the number of
firefighters is different than the number of agents used in the training scenarios. The
results (presented in table 3) show that the agents can cooperate well and also that
their performance is better than firefighters trained in non-cooperative mode.

Table 3. Results in test scenarios where the number of firefighters is different than the number
of agents used in the training scenarios for cooperative and non cooperative learning
approaches

Scenarios Number
of

firefight
ers

Time to complete
task

Number of burned
out buildings

Score Max
score

Without
Coord.

With
Coord.

Without
Coord.

With
Coord.

Without
Coord.

With
Coord.

Scenario 1 7 361 246 268 167 8.221 10.257 12
Scenario2 8 292 113 160 77 10.34 11.198 12
Scenario3 8 456 294 318 112 6.76 8.788 10

Fig. 5. Results in test scenarios, Comparison of cooperative agents and non-cooperative agents
in test scenario

Test Scenario 1 Test Scenario 2

In
it

ia
l T

es
t M

ap
Pe

rf
or

m
an

ce
 o

f
co

op
er

at
iv

e
ag

en
ts

 A Distributed Cooperative Reinforcement Learning Method 247

Fig. 5. (continued)

6 Conclusions

In this paper we discussed the use of temporal difference learning to find the optimum
policy for fire extinguishing tasks of a group of firefighter agents, and results showed
that agents trained by TD exhibit a good performance at extinguishing fires. This
method has a good robustness and scalability.

Acknowledgments. The first author is supported by FCT under grant
SFRH/BD/81155/2011. This work has been partially funded by FCT Project ACORD
- Adaptative Coordination of Robotic Teams (PTDC/EIA/70695/2006).

References

1. Reis, L.P., Lau, N., Oliveira, E.C.: Situation Based Strategic Positioning for Coordinating
a Team of Homogeneous Agents. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.)
Reactivity and Deliberation in MAS. LNCS (LNAI), vol. 2103, pp. 175–197. Springer,
Heidelberg (2001)

Pe
rf

or
m

an
ce

 o
f n

on
-

co
op

er
at

iv
e

ag
en

ts
T

he
 c

om
pa

ri
so

n
of

ar
ch

iv
ed

 s
co

re
s

V
er

:S
co

re
,H

or
:C

yc
le

C
om

pa
ri

so
n

of
 b

ur
nt

ou

t b
ui

ld
in

gs
V

er
: #

 o
f

bu
rn

t o
ut

bu

il
di

ng
s

, H
or

:C
yc

le

C
om

pa
ri

so
n

of

C
iv

ili
an

´s
 H

P
V

er
: C

iv
il

ia
n´

s
H

P
, H

or
:C

yc
le

0

5

10

15

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

Score

Non-Cooperative Cooperative

0

5

10

15

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

Score

Non-Cooprative Cooprative

0

200

400

600

1 32 63 94 12
5

15
6

18
7

21
8

24
9

28
0

31
1

34
2

37
3

40
4

43
5

46
6

of Burnt out Buildings

Coopertive Non-Coopertive

0

200

400

600

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

of Burnt out Buildings

Cooprative Non-Cooprative

0

5

10

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

Civilians' HP

Non-Cooperative Cooperative

0

5

10

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

Civilians' HP

NonCooperative Cooperative

248 A. Abdolmaleki et al.

2. Stone, P., Veloso, M.: Task Decomposition, Dynamic Role Assignment, and Low-
Bandwidth Communication for Real-Time Strategic Teamwork. Artificial
Intelligence 110(2), 241–273 (1999)

3. Stone, P., Veloso, M.: Layered approach to learning client behaviors in the robocup soccer
server. Applied Artificial Intelligence 12(2-3) (1998)

4. Kleiner, A., Dietl, M., Nebel, B.: Towards a Life-Long Learning Soccer Agent. In:
Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp.
126–134. Springer, Heidelberg (2003)

5. Jennings, N.R.: Controlling Cooperative Problem Solving in Industrial Multiagent Systems
using Joint Intentions. Artificial Intelligence 75(2), 195–240 (1995)

6. Lekavý, M., Návrat, P.: Expressivity of STRIPS-Like and HTN-Like Planning. In:
Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS
(LNAI), vol. 4496, pp. 121–130. Springer, Heidelberg (2007)

7. Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.): RoboCup 2005. LNCS (LNAI),
vol. 4020. Springer, Heidelberg (2006)

8. Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.): RoboCup 2006. LNCS
(LNAI), vol. 4434. Springer, Heidelberg (2007)

9. Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.): RoboCup 2007. LNCS (LNAI),
vol. 5001. Springer, Heidelberg (2008)

10. Kok, J.R., Spaan, M.T.J., Vlassis, N.: Multi-Robot Decision Making using Coordination
Graphs. In: Proceedings of 11th International Conference on Advanced Robotics (ICAR),
Coimbra, Portugal, pp. 1124–1129 (2003)

11. Paquet, S., Bernier, N., Chaib-draa, B.: Comparison of different coordination strategies for
the roboCupRescue simulation. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004.
LNCS (LNAI), vol. 3029, pp. 987–996. Springer, Heidelberg (2004)

12. Mohammadi, Y.B., Tazari, A., Mehrandezh, M.: A new hybrid task sharing method for
cooperative multi agent systems. In: Canadian Conf. on Electrical and Computer
Engineering (May 2005)

13. Martínez, I.C., Ojeda, D., Zamora, E.A.: Ambulance decision support using evolutionary
reinforcement learning in robocup rescue simulation league. In: Lakemeyer, G., Sklar, E.,
Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 556–
563. Springer, Heidelberg (2007)

14. Paquet, S., Bernier, N., Chaib-draa, B.: From global selective perception to local selective
perception. In: AAMAS, pp. 1352–1353 (2004)

15. Amraii, S.A., Behsaz, B., Izadi, M.: S.o.s 2004: An attempt towards a multi-agent rescue
team. In: Proc. 8th RoboCup Int’l Symposium (2004)

16. Abdolmaleki, A., Movahedi, M., Salehi, S., Lau, N., Reis, L.P.: A Reinforcement Learning
Based Method for Optimizing the Process of Decision Making in Fire Brigade Agents. In:
Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 340–351. Springer,
Heidelberg (2011)

17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

Active Scene Text Recognition for a Domestic
Service Robot

José Antonio Álvarez Ruiz�, Paul Plöger, and Gerhard K. Kraetzschmar

University of Applied Sciences Bonn-Rhine-Sieg
Computer Science Department

Sankt Augustin, Germany
jose.alvarez@smail.inf.h-brs.de,

{paul.ploeger,gerhard.kraetzschmar}@h-brs.de

Abstract. We developed a scene text recognition system with active
vision capabilities, namely: auto-focus, adaptive aperture control and
auto-zoom. Our localization system is able to delimit text regions in im-
ages with complex backgrounds, and is based on an attentional cascade,
asymmetric adaboost, decision trees and Gaussian mixture models. We
think that text could become a valuable source of semantic information
for robots, and we aim to raise interest in it within the robotics com-
munity. Moreover, thanks to the robot’s pan-tilt-zoom camera and to
the active vision behaviors, the robot can use its affordances to over-
come hindrances to the performance of the perceptual task. Detrimental
conditions, such as poor illumination, blur, low resolution, etc. are very
hard to deal with once an image has been captured and can often be
prevented. We evaluated the localization algorithm on a public dataset
and one of our own with encouraging results. Furthermore, we offer an
interesting experiment in active vision, which makes us consider that ac-
tive sensing in general should be considered early on when addressing
complex perceptual problems in embodied agents.

Keywords: Scene text recognition, active vision, domestic robot, pan-
tilt, auto-zoom, auto-focus, adaptive aperture control.

1 Introduction

Beyond being a simple commodity, domestic service robots might open the doors
to a more fulfilling life to the elderly and handicapped. However, for robots to
perform assistance tasks under very complex and dynamic environments, great
robustness and flexibility are required. For example, the agents should gain in-
formation about the environment, the agent’s situation in it, and that of other
agents. For this, perceptual processes have to turn the raw sensory data into
higher-level representations. In this investigation, we work towards the acquisi-
tion of information from a source seldom exploited in robotics, text embedded in
� The Master’s degree of José Antonio Álvarez Ruiz was funded with a CONACYT-

DAAD scholarship.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 249–260, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

250 J.A. Álvarez Ruiz, P. Plöger, and G.K. Kraetzschmar

images, commonly referred as scene text. Text is a valuable source of information
because: 1) It is readily available in human made environments 2) Humans make
extensive use of it 3) It contains semantic information. In the end, text provides
us humans with the information needed to identify and compare products at
the supermarket, find our path at the airport, ordering at a restaurant, etc.
A potential application of Scene Text Recognition (STR) in robotics is product
identification, which is generally performed with some sort of appearance based
classification. However, appearance based methods suffer of an inherent lack of
generalization because the appearance of products changes over time and across
vendors. If a robot could read text written on boxes and bottles, and understand
it, it would result in a more general solution.

STR is a very challenging topic –not to be confused with traditional
Optical Character Recognition (OCR)– because scene text is known to have a
large intra-class variance in terms of font, color, layout, symbol repertoire, etc.
and the presence of background clutter. Nevertheless, advances in STR are not
only applicable in robotics, but also profitable by visually impaired and blind
humans. Therefore, we consider STR to be an important research topic and
hopefully, with this article, we raise more interest in it within the robotics com-
munity. Although we deal with a perceptual task, our approach diverts respect
to the traditional and still often applied conception in computer vision that:
sensation, perception and cognition are isolated processes previous to actuation.
Under such paradigm, commonly referred as passive vision, the perceptual sys-
tem is limited to operate using the raw data captured by the sensors “as is”.
This “sensation-followed-by-idea-followed-by-movement” lacks on “psychological
adequacy” according to [6]: “We begin not with a sensory stimulus, but with a
sensorimotor coordination... In a certain sense it is the movement which is pri-
mary, and the sensation which is secondary, the movement of the body, head,
and eye muscles determining the quality of what is experienced”. Therefore, our
robot does not obtain information by plain observation, but also by interaction
and selection of stimuli using a Pan-Tilt-Zoom (PTZ) camera, in such a way,
that the agent gains control of “what to see” and “how to see it” [13].

2 Related Work

Fibonacci search was introduced as an effective methodology for searching op-
timal focus values using the tenengrad operator in [11]. A system to optimize
focus and aperture, based on a hierarchy of artificial neural networks (ANN)
was described in [13]. In [14], a system for the extraction of low-resolution text
was developed. The system first locates text areas and then uses a PTZ camera
to capture and assemble a high-resolution mosaic of each region. The use of a
polynomial zoom model is mentioned but no details were given. Recently, [17]
developed a text localization system for a robot. That work is very relevant
because it also includes the extraction of semantic information from the text
using probabilistic models and textual web-search. [10] created a robot system
with text reading capabilities for aiding visually impaired humans in naviga-
tion tasks. The robot, equipped with a Pan-Tilt Unit (PTU), was designed to

Active Scene Text Recognition for a Domestic Service Robot 251

read room numbers using a template matcher. However, the authors placed
very strong assumptions, such as: possible characters are limited to numbers
and to A-E characters. [18, 19] developed a text localization system based on
Discrete Cosine Transform (DCT), and a text tracking system. A PTU was
used to take a panoramic capture from which text is detected. In those pub-
lications active vision is limited to the capture of a mosaic to increase the
Field of View (FOV), but no adaptive actions were performed. [4] introduced
a set of features for text discrimination. Those features are calculated from
sub-regions (blocks) embedded within the detection window that were found to
exhibit a distinctive behavior for text. Several statistical measures were
computed and combined from the blocks and used to train a
Cascade of Boosted Classifiers (CoBC) with asymmetric adaboost as stage
classifiers. [15] used a similar block layout to delimit regions from which
Histogram of Oriented Gradients (HOG) features were extracted to train the
first layers of a CoBC . The successive layers used Local Binary Patterns (LBP)
and multi-scale LBP . [16] extended their previous work in [15] to use two
Conditional Random Fields (CRF) to filter non-text connected components. An
image operator called Stroke Width Transform (SWT), which proved to be very
useful and yield better results than other STR methods was introduced in [7]. We
introduced a Connected Component (CC) based STR system in [1,3]. However,
it performs poorly on low-resolution text. Besides, being a passive STR system,
it is unable to adapt to different image acquisition conditions, which limits its
usefulness in the real-world.

3 Text Localization

Text localization, i.e. to identify and delimit image regions that contain text, is
generally the first step in STR. This task is difficult because of the large intra-
class variance of text, lack of prior-knowledge on the scale, orientation, etc. and
the presence of background clutter, which might generate similar visual stimuli as
text, e.g. windows of a building, a fence, etc. To find text regions, we pass a slid-
ing window through the image at each possible location and at different scales.
At each location and scale, a set of discriminative features are extracted from the
image inside the detection window. Then, a classifier uses the feature values to
assign a confidence score to each detection window, higher scores indicate higher
probability of text and conversely. Finally, a confidence map generated during
classification is thresholded and smoothed, and the bounding rectangle of each
remaining segment stands for a text region. Localization is a canonical example
for rare-event detection [21], in which the expected amount of content for the
positive class (text) is much smaller than for the negative class (non-text). Such
conditions, along with the number of detection windows that need to be classi-
fied, also make of text localization a difficult problem. We use a CoBC [22] with
asymmetric adaboost [21] as stage classifiers and decision trees [2, 20] of depth
two as weak learners. This particular classification framework is specially well
suited for problems with skewed class distributions. Besides, the CoBC is com-
putationally efficient in comparison to other methods because it performs the

252 J.A. Álvarez Ruiz, P. Plöger, and G.K. Kraetzschmar

Fig. 1. Example of blocks, each inner rectangle represents a block. The outer rectangles
represent the detection window.

classification in stages of increasing complexity. In the initial stages, the stage
classifiers are very simple and operate on low-dimensional feature spaces, and
still they are able to discard a large amount of the non-text detection windows.
Later stages, require of more complex classifiers operating over feature spaces
of a higher dimensionality. However, thanks to the decision tree algorithm, fea-
tures are calculated as needed, instead of pre-calculating the complete feature
vectors. Unfortunately, these concepts will not be discussed in detail due to space
constraints.

3.1 Feature Space

To train the CoBC , we used features that have been reported to perform well
in our domain. The features are extracted from sub-regions within the detec-
tion window called blocks [4]. The blocks are arranged in such way, that the
features extracted from them exhibit low entropy, see Fig. 1. A first set of fea-
tures we use, introduced in [4], is based on mean and standard deviation values
either of the intensity image, the intensity gradient magnitude or the x or y
intensity gradients; we will refer to these features as “Chen”. A second set of
features is HOG [5], having a HOG per-block as defined in [15]. Roughly, the
gradient orientations are decomposed in a set of bins. Then, each pixel within
a block, casts an orientation vote in the corresponding bin in the HOG of that
block. The contribution of each pixel is weighted by the magnitude of the gra-
dient at that location. To minimize aliasing effects, we interpolate the values
accumulated in each histogram. From now on, Chen and HOG features will be
referred as “raw”. Furthermore, the raw feature values are processed to trans-
form them into log-likelihood ratios [4]. To this end, for each raw feature and
possible combination of pairs of raw features, we estimate the conditional prob-
ability density of the text and non-text classes. In the case of feature pairs, this
process creates new features from the raw features. To model each probability
density distribution we use a Gaussian Mixture Model (GMM) trained with the
Expectation Maximization (EM) algorithm. The optimal number of components
per-mixture is estimated with the Bayesian Information Criterion (BIC) [8].

4 Active Vision Module

Images of poor quality can easily hinder the performance of a STR system,
for example, due to a loss of contrast between text and the background, or

Active Scene Text Recognition for a Domestic Service Robot 253

lack of spatial resolution for the task. To cope with this we developed three
active vision behaviors, namely: 1) Auto-focus, to prevent blur by defocus 2)
Adaptive Aperture Control (AAC), to widen the dynamic range of the capture;
both aimed to retain the contrast of the text regions by optical means, and 3)
Auto-zoom, to acquire high-resolution images. The sensory system we use con-
sists of a SONY camera model VFW-VL500 and a Directed Perception PTU
model 46-17. The sensory space we consider is formed by the parameters: pan,
tilt, zoom, aperture and focus. The active vision behaviors have three major
components, either implicitly or explicitly: 1) Quality metrics, that assign a
quantitative value to the quality of an image 2) Actuation, to change the con-
figuration of the sensory system by manipulating its electrical and mechanical
components 3) Search strategies, to explore the configuration space of the sen-
sory system and find desirable configurations.

Our active vision module has an initialization phase and a recognition phase.
In the initialization phase, the camera is prepared to localize candidate text
regions in the scene. First, we set the zoom to its minimum value to maximize
the FOV and set the focus to its maximum value to produce sharp images of
relatively distant objects. Furthermore, the AAC behavior corrects the camera
aperture according to the illumination conditions of the scene. Once the sensory
system has been set up for the scene, we store the current configuration of the
sensory system. Afterwards, we capture a frame and localize text regions in it
using the algorithm described in Sect. 3 to obtain a set of bounding rectangles of
candidate text areas; most of which correspond to real text, and eventually some
false positive regions. Finally, a priority calculated from the text confidence map
is assigned to each candidate region. During the recognition phase, the regions
are attended one by one in order of descending priority as follows. Each candidate
region is centered and zoomed-in, in order to capture a high-resolution image.
Then, the aperture is optimized again and auto-focus is executed to acquire a
sharp image. After processing each region, the sensory system is set back to the
previously stored configuration before the next candidate region is processed,
see Fig. 2.

Fig. 2. Example of active STR. From left to right: Localization results after the initial-
ization phase, centering candidate region 1 (a carton box at approximately 3 m w.r.t
the camera, the top-left candidate region), after zooming-in, after AAC and auto-focus.

4.1 Auto-focus

Real world cameras require of lenses to focus the light passing through the
aperture against the image plane, where the imaging sensor is located. However,

254 J.A. Álvarez Ruiz, P. Plöger, and G.K. Kraetzschmar

fixed lenses cannot adequately focus light coming from arbitrary distances. In
general, given a lens with a focal length f , only objects located at a distance
dout in front of the lens will produce a sharp image on a plane behind the
lens located at a distance din, called focal plane. Therefore, objects at different
distances will have different focal planes. Light rays coming form objects that
lie either closer or farther than dout will be projected as a circle of radius r
instead of a point over the focal plane. However, since the sensor resolution is
limited, if the radius of a blur circle is small enough, the defocus effects will
not be resolved by the sensor and will not be observable; this range of distances
is known as Depth of Field (DOF). Auto-focus consist thus, of changing the
distance din so that the focal plane of a certain object of interest is aligned with
the image sensor. The acquisition of focused images is desirable in STR because
text can be considered as high-spatial-frequency content, which is smoothed due
to defocus, leading thus to weak intensity gradients. To optimize the focus, we
measure the image quality using the thresholded gradient magnitude operator
(also known as tenengrad operator) defined in Eq. 1, and use Fibonacci search
to find the maximum [11].

Tenengrad(|∇I|) =
∑
x

∑
y

|∇I|(x, y) for |∇I|(x, y) > τ . (1)

Where |∇I| is the magnitude of the intensity gradient and τ is a threshold 1. For
a certain DOF , the tenengrad operator will exhibit its maximum when an object
in the Region of Interest (ROI) within that DOF is focused. Nevertheless, the
tenengrad operator can have local maximum if the ROI contains objects at
different DOFs. It is also important to know that the DOF decreases as the
magnification increases, making it harder to focus magnified objects.

4.2 Adaptive Aperture Control

The aperture controls the amount of light entering the camera, and must be set
accordingly to the the scene’s illumination and structure. Otherwise, the cap-
tured image might exhibit a narrow dynamic range and thus poor contrast. Two
extreme manifestations of this phenomena are overexposure and underexposure.
Whereas for a fixed aperture and under certain conditions, underexposure can
be corrected with the use of additional light sources, this does not occur with
overexposure. However, the opposite also holds true, if there is not enough light
in the scene, opening the aperture will not prevent underexposure on its own
unless the robot illuminates the scene. In this investigation, we use the entropy
of the intensity image as a quality measure [9] and Fibonacci search to maximize
the entropy. In the end, well illuminated images generally present a more evenly
distributed intensity histogram.

4.3 Auto-zoom

Digital cameras capture a 2D discrete approximation of a 3D continuum. The
spatial resolution with which an image region is captured, depends on the number
1 We use temporal averaging and set τ = 0 instead [11].

Active Scene Text Recognition for a Domestic Service Robot 255

of pixels in the imaging sensor and the distance between the camera and the
points in 3D space within that region. In general, low-resolution images are
challenging to deal with in computer vision, and are often found when working
in problems involving small structures2 observed from a distant viewpoint. For
this reason we implemented auto-zoom, which allows to acquire high-resolution
images of a ROI . Our auto-zoom algorithm begins by centering the ROI in
the camera frame, which is achieved through iterative correction of the camera
external orientation using a PTU . At each step, the image of the ROI becomes
a template. Then, a small pan and tilt correction towards the camera center is
performed (0.1◦ each) and the improvement in centering is measured in vertical
and horizontal direction by finding the ROI in a new capture using a cross-
correlation based template matcher. Using the x and y displacement of the ROI
respect its previous location and the pan and tilt angles, we estimate new pan
and tilt commands. The necessity for an iterative solution arises because we
assume an uncalibrated camera at this point. Later on, the zoom parameter
value that would allow a capture of the highest resolution of the ROI can be
found using Eq. 2.

zmax(z0, Rw, Rh) = Zv

(
ζM (z0)min

(
w

Rw
,
h

Rh

))
. (2)

Where z0 is the initial zoom parameter value, Rw and Rh are the width and
height of the ROI respectively, Zv is a polynomial model [14, 23] that maps
magnification factors to zoom parameter values, M is a polynomial model that
maps zoom parameter values to magnification factors, w and h are the width
and height of the image respectively, and ζ is a multiplier on the resulting mag-
nification. The optimal degree of these cubic polynomials was estimated using
BIC . The regression was performed on 32 data points obtained by recording
the corresponding zoom parameter value of 8 different magnification factors for
4 different calibration targets, where each calibration target was a black circle
printed on a white sheet of paper. For each calibration target, the camera po-
sition and orientation was first manually set so that at zoom parameter 0, the
target fits withing a square of known size overlaid in the camera images. Then,
the zoom was increased so that the calibration target fits in a larger square and
so on. The side length ratio of each of the squares respect to the smallest one
corresponds to the magnification factor. Auto-focus was performed at each step
but the focus parameter values were not used for regression.

5 Experimental Evaluation

We trained a CoBC of four stages, for which we first assembled training and
validation image collections using images of the ICDAR train dataset [12] and
hundreds of images of scenes such as parks, streets, kitchens, living-rooms, gro-
cery products, etc. obtained from the Internet. With this, we attempt to capture
2 Such as text written on a can.

256 J.A. Álvarez Ruiz, P. Plöger, and G.K. Kraetzschmar

Fig. 3. Normalized training images. On the left for the negative class, and on the right
for the positive class.

the high variability of the text and non-text classes. Afterwards, we generated
a set of normalized training and validation images for the positive and negative
classes (see Fig. 3) from which feature vectors for the training and validation ex-
amples were extracted. The normalized images have the same width and height
as the detection window (24 × 12 pixels) and resemble the detection windows
classified by the CoBC . The training datasets per-stage were formed of 3,378
examples of each class and the validation datasets contained 2,218 examples of
the positive class and 30,000 examples for the negative class. The feature space
had 7,180 dimensions, formed by 160 raw features extracted from 20 blocks,
which after being turned into log-likelihoods ratios over the individual and pair-
wise combinations of raw features produced additional 7,056 features. In order to
avoid a higher dimensionality in the data, the raw feature combinations were only
performed over features of the same kind. Finally, the confidence map threshold
and the threshold of the last stage classifier were optimized on a validation set
of images.

The localization algorithm was evaluated on the ICDAR dataset as well as on
a dataset of images of grocery products (referred as grocery images). All of the
grocery images are RGB images of 640× 480 pixels captured at a distance of 60
cm w.r.t to the camera. The performance was measured in terms of pixel-wise
precision and recall. In general, precision is defined as p = |C|

|E| , recall as r = |C|
|T |

and their harmonic mean h = 1
α/p+(1−α)/r |α = 0.5 , where C stands for the

correct detections, E for all detections, and T for the target detections accord-
ing to the ground truth. Since our method does not implement word grouping
and the ground truth consists of bounding rectangles of each word the precision
estimate will result pessimistic. Nevertheless, word grouping is very hard to real-
ize on low-resolution images and is of minimal practical use for our application.
Moreover, we compare our algorithm against the literate_pr2 3 package placed
in the public domain and available in the Robot Operating System (ROS) repos-
itories. The literate_pr2 package was used with OCR validation disabled. The
results of the evaluation are given in Table 1. Although our algorithm performed
better in both datasets, it also resulted slower than the literate_pr2 package.
We attribute this drawback to the small validation datasets used to create the
CoBC . Some localization results for our method can be seen in Fig. 4. The recall

3 The algorithm is based on [7].

Active Scene Text Recognition for a Domestic Service Robot 257

Table 1. Text localization results in terms of pixel-wise precision, recall and harmonic
mean. Complementary, the average execution time per-input image is given.

Method Dataset p r h time(s)

Presented method ICDAR 0.68 0.59 0.63 6.08
Grocery Images 0.66 0.77 0.71 1.58

literate_pr2 ICDAR 0.45 0.67 0.54 0.18
Grocery Images 0.43 0.75 0.5361 0.03

Fig. 4. Examples of the performance of our localization method on the ICDAR dataset
on top and on the grocery images at the bottom.

of our method was poor in images of the ICDAR dataset in which only one or
two characters occupy an entire image.

5.1 Adaptive Aperture Effect in the Localization Algorithm

To validate the usefulness of our active vision module, we devised an experiment
intended to resemble one of many situations a robot can face under operation in
the real-world. For this, we placed the camera at a distance of approximately 60
cm from a table in a room with normal indoor illumination. The camera sensory
system was prepared as in the initialization phase described in Sect. 4. We call
the resulting aperture initial aperture value, or reference. We observed that these
aperture values produced well illuminated images of the scene (see Fig. 5a). Then,
we turned-off the light in the room and turned-on a table lamp and made a new
capture called passive; note that the camera was still configured with the initial
aperture value (see Fig. 5b). Finally, we performed AAC to optimize the camera
aperture to the new illumination conditions and made a final capture called
active (see Fig. 5d). We repeated the same process to make a series of captures of
different products on the table. Each of the images (reference, passive and active)

258 J.A. Álvarez Ruiz, P. Plöger, and G.K. Kraetzschmar

(a) (b) (c)

(d) (e)

Fig. 5. AAC allows captures under different illumination conditions to be more con-
sistent. Fig. 5a, image captured using the initial aperture, being the table lamp off.
Fig. 5b, passive image captured with the initial aperture and the table lamp on. Fig. 5d,
active capture with the table lamp on, after executing the AAC behavior again. Fig. 5c
and Fig. 5e are the pixel-wise Euclidean distances in RGB space, between Fig. 5a and
Fig. 5b, and Fig. 5a and Fig. 5d respectively. Brighter values indicate a larger Euclidean
distance.

Active Passive Reference

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Our localization method

Aperture

pr
ec

is
io

n

Active Passive Reference

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Our localization method

Aperture

re
ca

ll

Active Passive Reference

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Our localization method

Aperture

h−
m

ea
n

Active Passive Reference

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

literate_lpr2

Aperture

pr
ec

is
io

n

Active Passive Reference

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

literate_lpr2

Aperture

re
ca

ll

Active Passive Reference

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

literate_lpr2

Aperture

h−
m

ea
n

Fig. 6. A series of captures were made following the same procedure as in Fig. 5. On top,
results of our algorithm. The literate_pr2 results are displayed at the bottom. From left
to right: pixel-wise precision, recall and harmonic-mean. The recall of both algorithms
decreases more significantly if the aperture is not adapted to the new illumination
conditions.

Active Scene Text Recognition for a Domestic Service Robot 259

were captured in 4 variants: one shot, one shot with Gaussian filtering, and
temporal average of 2 and 5 frames. Hence, the images exhibit different degrees
of noise and blur to ensure that the different results are due to illumination. The
performance of the localization algorithms in these images is depicted in Fig. 6.

6 Conclusions

In this investigation we devised and evaluated an active STR system with text
localization, auto-zoom, auto-focus and AAC capabilities. Our evaluation on a
public dataset and on a new dataset gives evidence of the performance of our
localization method. Moreover, we demonstrated how the ability to adapt to
changes in the environment is crucial to the performance of STR systems. Since
harsh acquisition conditions are often problematic in other similar tasks, we
are convinced that active vision, and active sensing in general will play a crucial
role in the development of robotics and should, whenever possible, be considered
when working on difficult classification problems. In our experience, it is more
effective to do so than to devise more complex passive perceptual systems. Fur-
ther improvements to our system include the addition of a controllable external
light source.

References

1. Álvarez Ruiz, J.A.: Learning to Discriminate Text from Synthetic Data. In: Röfer,
T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416,
pp. 270–281. Springer, Heidelberg (2012)

2. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees, 1st edn. Chapman and Hall/CRC (January 1984)

3. Breuer, T., Giorgana Macedo, G., Hartanto, R., Hochgeschwender, N., Holz, D.,
Hegger, F., Jin, Z., Müller, C., Paulus, J., Reckhaus, M., Álvarez Ruiz, J.A.,
Plöger, P., Kraetzschmar, G.: Johnny: An autonomous service robot for domes-
tic environments. Journal of Intelligent & Robotic Systems 66, 245–272 (2012),
10.1007/s10846-011-9608-y

4. Chen, X., Yuille, A.: Detecting and reading text in natural scenes. In: Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2004, June 27-July 2, vol. 2, pp. II-366–II-373 (2004)

5. Dalal, N.: Finding people in images and videos. PhD thesis, Institut National Poly-
technique de Grenoble (July 2006)

6. Dewey, J.: The reflex arc concept in psychology. Psychological Review 3(4), 357
(1896)

7. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke
width transform. In: 2010 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pp. 2963–2970 (June 2010)

8. Fraley, C., Raftery, A.E.: MCLUST version 3 for R: Normal mixture modeling and
model-based clustering. Technical Report 504, University of Washington, Depart-
ment of Statistic (2006) (revised 2009)

9. Huber, R., Nowak, C., Spatzek, B., Schreiber, D.: Adaptive aperture control for
image enhancement. In: 2003 IEEE International Workshop on Computer Archi-
tectures for Machine Perception, pp. 7–11 (May 2003)

260 J.A. Álvarez Ruiz, P. Plöger, and G.K. Kraetzschmar

10. Iwatsuka, K., Yamamoto, K., Kato, K.: Development of a guide dog system for
the blind people with character recognition ability. In: Proceedings of the 17th
International Conference on Pattern Recognition, ICPR 2004, vol. 1, pp. 453–456
(August 2004)

11. Krotkov, E.: Focusing. International Journal of Computer Vision 1, 223–237 (1987)
12. Lucas, S., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R., Ashida, K.,

Nagai, H., Okamoto, M., Yamamoto, H., et al.: ICDAR 2003 robust reading com-
petitions: entries, results, and future directions. International Journal on Document
Analysis and Recognition 7(2), 105–122 (2005)

13. Micheloni, C., Foresti, G.: Active tuning of intrinsic camera parameters. IEEE
Transactions on Automation Science and Engineering 6(4), 577–587 (2009)

14. Mirmehdi, M., Clark, P.: Extracting low resolution text with an active camera for
OCR. In: IX Spanish Symposium on Pattern Recognition and Image Processing,
pp. 43–48 (2001)

15. Pan, Y.-F., Hou, X., Liu, C.-L.: A Robust System to Detect and Localize Texts in
Natural Scene Images. In: The Eighth IAPR International Workshop on Document
Analysis Systems, pp. 35–42 (September 2008)

16. Pan, Y.-F., Hou, X., Liu, C.-L.: Text Localization in Natural Scene Images Based
on Conditional Random Field. In: 10th International Conference on Document
Analysis and Recognition, pp. 6–10 (July 2009)

17. Posner, I., Corke, P., Newman, P.: Using text-spotting to query the world. In: 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3181–3186 (October 2010)

18. Shiratori, H., Goto, H., Kobayashi, H.: An efficient text capture method for moving
robots using dct feature and text tracking. In: International Conference on Pattern
Recognition, vol. 2, pp. 1050–1053 (2006)

19. Tanaka, M., Goto, H.: Autonomous text capturing robot using improved dct fea-
ture and text tracking. In: International Conference on Document Analysis and
Recognition, vol. 2, pp. 1178–1182 (2007)

20. Therneau, T., Atkinson, E.: An introduction to recursive partitioning using the
RPART routines. Technical Report, Technical Report 61 (1997),
http://www.mayo.edu/hsr/techrpt/61.pdf

21. Viola, P.: Fast and robust classification using asymmetric adaboost and a detector
cascade. In: Advances in Neural Information Processing Systems (2002)

22. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, CVPR 2001, pp. I-511–I-518 (2001)

23. Willson, R.G.: Modeling and calibration of automated zoom lenses. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, UMI Order No. GAX94-19735
(1994)

http://www.mayo.edu/hsr/techrpt/61.pdf

Evaluation of Colour Models for Computer

Vision Using Cluster Validation Techniques

David Budden, Shannon Fenn, Alexandre Mendes, and Stephan Chalup

School of Electrical Engineering and Computer Science
Faculty of Engineering and Built Environment

The University of Newcastle, Callaghan, NSW, 2308, Australia
{david.budden,shannon.fenn}@uon.edu.au,

{alexandre.mendes,stephan.chalup}@newcastle.edu.au

Abstract. Computer vision systems frequently employ colour segmen-
tation as a step of feature extraction. This is particularly crucial in an
environment where important features are colour-coded, such as robot
soccer. This paper describes a method for determining an appropriate
colour model by measuring the compactness and separation of clus-
ters produced by the k-means algorithm. RGB, HSV, YCbCr and CIE
L*a*b* colour models are assessed for a selection of artificial and real
images, utilising an implementation of the Dunn’s-based cluster valida-
tion index. The effectiveness of the method is assessed by qualitatively
comparing the relative correctness of the segmentation to the results
of the cluster validation. Results demonstrate a significant variation in
segmentation quality among colour spaces, and that YCbCr is the best
choice for the DARwIn-OP platform tested.

Keywords: Image segmentation, colour representations, colour space
analysis, clustering, cluster validation, pattern recognition.

1 Introduction

In computer vision, a mapping from an arbitrary 3-component colour space C
to a set of colours M assigns a class label mi ∈ M to every point cj ∈ C [18]. If
each channel is represented by an n-bit value and k = |M | represents the number
of defined class labels, then

C → M, (1)

where
C = {0, 1, . . . , 2n − 1}3 and M = {m0,m1, . . . ,mk−1} . (2)

Concretely, in a colour space C, each pixel in an image is represented by a
triplet with each value representing the contribution of each component to the
overall colour of that pixel. Projecting the pixel values into the colour space
constructed by the orthogonal component axes results in a projected colour
space distribution of the original image. Points within the projected distribution

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 261–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

262 D. Budden et al.

are typically clustered about centroids, which represent the predominant colours
within the image. Therefore, in an image where the colour clusters are compact
and well separated, a clustering algorithm such as k-means [7, 12, 20] is able to
automate the process of colour segmentation. This is particularly applicable in
an environment where important features are uniquely coloured, such as robot
soccer [15]. Where computational resources are limited, the colour segmentation
process is performed off-line, with the resultant mapping represented in the form
of a 2n × 2n × 2n look-up table (LUT). This LUT can then be used for efficient,
real-time colour classification.

Many techniques exist for effective colour segmentation, including mean-shift
and mode finding clustering [4, 7, 16, 19, 20]. Unfortunately, there are no gen-
eral algorithms or colour models that are suited to all colour images [3]. In-
stead, this paper compares four common colour models: RGB [2, 3, 7, 20]; HSV
[2, 3, 7, 13, 19, 20], YCbCr [3, 13, 20] and CIE L*a*b* [3, 7, 20]) and proposes a
method to assess their suitability for unsupervised colour segmentation by mea-
suring the compactness and separation of clusters produced by the k-means
algorithm. Robot soccer is chosen as a suitable colour-coded environment for
testing the procedure [15], but it is anticipated that the procedure could be
extended to determine the optimal colour model in other equivalent scenarios.

This paper is organised as follows: Sect. 2 describes the colour models tested;
Sect. 3 describes the performance metrics used to validate the clusters obtained;
Sect. 4 describes the test images; Sect. 5 presents the computational results; and
finally, Sect. 6 and Sect. 7 provide a discussion and qualitative assessment of the
results, followed by the conclusion.

2 Colour Models

2.1 RGB

The RGB colour model is a space in which each colour is represented by a
combination of tristimuli R (red), G (green) and B (blue) [3]. Any colour can
be created by exactly one combination of these three colour bases, which are
defined according to their wavelength (700.0 nm for red, 546.1 nm for green and
435.8 nm for blue [20]). Although it is intuitive to represent colour in such a
manner, RGB suffers from sensitivity to variations in illumination due to the
high correlation of its three components [2–4, 19].

2.2 HSV

The HSV colour model separates information regarding the chrominance and
intensity values of a colour by projecting the RGB colour space onto a non-
linear chroma value H (hue), a radial saturation percentage S (saturation) and
a luminance-inspired value V (value) [3, 7, 20]. The HSV colour model is fre-
quently used for colour segmentation as the individual colour components are
independent of the image brightness [3, 16, 19], resulting in more uniform clusters

Evaluation of Colour Models 263

for similar chrominance values [16]. Among the disadvantages, the H component
is an angular value and therefore wraps around from 2π to zero, potentially re-
sulting in the splitting of clusters to opposite ends of the hue axis. Furthermore,
the nonlinear transformation results in high susceptibility to noise for low values
of V [3].

2.3 YCbCr

Similarly to HSV, YCbCr separates chrominance information into two channels
Cb (blue chroma) and Cr (red chroma), and intensity into a third channel Y
(luma) [3, 20]. The YCbCr colour space can be obtained applying the following
linear transformation to the RGB space:⎡

⎣Y ′

Cb

Cr

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114
−0.168736 − 0.331264 0.5

0.5 −0.418688 −0.081312

⎤
⎦
⎡
⎣R′

G′

B′

⎤
⎦+

⎡
⎣ 0
128
128

⎤
⎦ , (3)

where R′, G′ and B′ are 8-bit gamma-compressed colour components [20]. Al-
though much of the component correlation found in RGB is removed, it still
exists in part due to the linear nature of the transformation [3].

2.4 CIE L*a*b*

The CIE (Commission International de l’Eclairage) XYZ colour system, similarly
to RGB, defines three tristimulis X , Y and Z, which can be combined to create
any colour. Any colour can be created by linear combination of positive quantities
of each component [3, 7, 20] (unlike RGB, which requires a negative amount of
red light to be added to obtain certain colours in the blue-green range [20]).
The CIE XYZ colour space can be obtained by applying the following linear
transformation to the RGB space [20]:⎡

⎣XY
Z

⎤
⎦ =

1

0.17697

⎡
⎣ 0.49 0.31 0.20
0.17697 0.81240 0.01063
0.00 0.01 0.99

⎤
⎦
⎡
⎣RG
B

⎤
⎦ . (4)

The CIE L*a*b* (CIELAB) colour space applies nonlinear transformations to
CIE XYZ to more accurately reflect the logarithmic manner in how humans
perceive differences in chromaticity and luminance [3, 7, 20]. For a nominal
white value (Xn, Yn, Zn) (chosen as the CIE D65 standard (0.9642, 1, 0.8249)),
the L∗ (lightness) component is defined as [20]

L∗ = 116f

(
Y

Yn

)
, f(t) =

{
t1/3 , if t > δ3

t/(3δ2) + 2δ/3 , otherwise
(5)

where δ = 6/29, resulting in a value in the range [0, 100]. Similarly, a∗ and b∗

are defined as [20]

a∗ = 500

[
f

(
X

Xn

)
− f

(
Y

Yn

)]
and b∗ = 200

[
f

(
Y

Yn

)
− f

(
Z

Zn

)]
. (6)

264 D. Budden et al.

2.5 Linear Transformation Orthogonality

As the transformations from RGB to HSV and CIELAB are nonlinear, it is in-
tuitive that k-means clustering within each of these spaces will yield different
results for a given image. This is not inherently the case for the linear trans-
formation from RGB to YCbCr, therefore it should be demonstrated that the
transformation is not orthogonal (does not preserve Euclidean distance). Given
a linear transformation M , it is known from linear algebra that

σmin‖v‖ ≤ ‖Mv‖ ≤ σmax‖v‖, (7)

where σmin and σmax are the minimum and maximum singular values resulting
from the singular value decomposition of M [8]. For (3), these values are equal
to 0.4589 and 0.8039 respectively, resulting in a condition number of σmax/
σmin = 1.7518 �= 1. Therefore it can be said with confidence that k-means will
yield clusters of varying quality for every colour space described in Sect. 2.

3 Performance Metrics

The performance of a clustering algorithm within a given feature space is re-
flected in the quality of the resulting clusters in that space. The process of
evaluating the quality of a cluster is referred to as cluster validation, of which
three main categories exist [11]:

– External Criteria: Involves evaluating the clustering results based on human-
defined “expected results”, such as correctly identified colours within an
image.

– Internal Criteria: Involves evaluating the clustering results in terms of the
input data itself, by measuring values such as compactness (density of a clus-
ter, also known as intracluster similarity) and separation (distance between
clusters, also known as intercluster dissimilarity).

– Relative Criteria: Involves evaluating the clustering results in terms of its
similarity to other results produced by the same algorithm, but with different
parameter values.

This paper deals primarily with the application of internal criteria to produce
quantitative results (see Sect. 5), with a discussion of external criteria pro-
vided in Sect. 6. Many internal criteria performance metrics have been sug-
gested for assessing the validity of cluster partitions [9], including the Silhouette
method [1, 17], Dunn’s based index [1, 6, 9], Davies-Bouldin index [1, 5, 9] and
C-index [1, 9, 14]. In this paper, the Dunn’s index was chosen as most suitable for
validating cluster partitions within the colour spaces described in Sect. 1, as it
has low computational complexity and does not rely on presumptions regarding
the shape or relative sizes of clusters [9].

Evaluation of Colour Models 265

3.1 Dunn’s Index

For any partition X = X1 ∪ . . . Xi ∪ . . . Xk, with k clusters, where Xi represents
the ith cluster of such a partition, the Dunn’s index, D, is defined as [1, 6, 9]

D(X) = min
1≤i≤k

⎧⎨
⎩ min

1≤j≤k
j �=i

{
δ(Xi, Xj)

max1≤l≤k {Δ(Xl)}
}⎫⎬
⎭ , (8)

where δ(Xi, Xj) is the intercluster distance between clusters i and j; and Δ(Xl)
is the intracluster distance for cluster l. The aim of this metric is maximiseD(X),
by maximising the minimum intercluster distance δ(Xi, Xj), whilst minimising
the maximum intracluster distance. As Dunn’s index is calculated using only two
distances it is particularly susceptible to outliers [9], therefore is is important
that the distance functions δ(Xi, Xj) and Δ(Xl) be chosen in such a way as to
minimise the impact of chromatic noise.

3.2 Methods of Calculating Distances

Among the possible distance metrics, Euclidean distance was chosen to deter-
mine the distance between two sample points, as required for the intercluster
and intracluster distance calculations (discussed below). Euclidean distance was
chosen for consistency with the k-means implementation utilised.

Intercluster Distances: Several methods have been suggested for calculating
the intercluster distance between clusters Xi and Xj [1, 11], including:

– Single linkage: Shortest distance between any two objects, each belonging to
separate clusters Xi and Xj.

– Complete linkage: Greatest distance between any two objects, each belonging
to separate clusters Xi and Xj .

– Average linkage: Average distance between all pairs of points belonging to
separate clusters Xi and Xj.

– Centroid linkage: Distance between the centroids of clusters Xi and Xj.
– Average to centroids : Average distance between the centroid of cluster Xi

and all the points belonging to cluster Xj .

Of these, the average to centroids linkage was chosen as a good trade-off between
outlier sensitivity and computational complexity. For two clusters Xi and Xj

belonging to partition X , the average to centroids linkage δ(Xi, Xj) is defined
as

δ(Xi, Xj) =
1

|Xi|+ |Xj |

⎛
⎝∑

x∈Xi

d(x,CXj) +
∑
y∈Xj

d(y, CXi)

⎞
⎠ , (9)

where the cluster centroids CXi and CXj are defined as

CXi =
1

|Xi|
∑
x∈Xi

x CXj =
1

|Xj |
∑
y∈Xj

y. (10)

266 D. Budden et al.

Intracluster Distances: As with the intercluster distances, there exists several
methods of calculating the intracluster distance of a cluster Xi, including [1]:

– Complete diameter : Greatest distance between any two points belonging to
the cluster.

– Average diameter : Average distance between all pairs of points belonging to
the cluster.

– Centroid diameter : Average distance between the cluster centroid and all
points belonging to that cluster.

Of these, centroid diameter was chosen, again as a good trade-off between sen-
sitivity and complexity. For a cluster Xi belonging to partition X , the centroid
diameter Δ(Xi) is defined as

Δ(Xi) = 2

(∑
x∈Xi

d(x,CXi)

|Xi|
)
, (11)

where the cluster centroid CXi is defined as in (10).

4 Test Images

This paper utilises a series of images1, some artificially generated and some cap-
tured using the DARwIn-OP’s 2MP camera [10]. Robot soccer [15] was chosen as
an example of a colour-coded environment, where important features to be iden-
tified are assigned different colours. As not all features will be present in every vi-
sion frame, two images were selected to represent common soccer scenarios. The
first image (see Table 1, bottom-right corner) has the camera pointed towards the
ground, and contains only the field, field lines and the ball. Therefore, only three
main colours are present. The second image (see Table 2, bottom-right corner)
demonstrates the camera pointed toward the goal, adding a robot and goalposts
to the image and therefore increasing the number of main colours to five.

To understand how the system reacts to the presence of noise in an “ideal”
image, a set of artificial data was generated for each image. They consist of
homogeneous blocks of colours representative of those of the image features at
varying levels of Gaussian noise (10%, 20% and 30%, see Tables 1 and 2). As the
feature spaces for clustering are exactly the colour spaces described in Sect. 2,
the results are independent of pixel position, therefore the Gaussian noise should
have an effect similar to the introduction of a variety of coloured, unimportant
objects into actual vision frames. Common examples of such “noise” include a
cable extended over the field or a spectator watching the match.

5 Experimental Results

The experimental results are illustrated by two groups of images, containing
three and five colours respectively. k-means clustering was applied to all test

1 Available at: http://www.davidbudden.com/research/colour-model-evaluation/

Evaluation of Colour Models 267

images described in Sect. 4 in each colour space described in Sect. 2. The range
for the number of clusters for each image was chosen to be no less than the
number of features identifiable in the images, therefore the values of k tested
were chosen as k = {3, 4, . . . , 10} for the images in Table 1, and k = {5, 6, . . . , 12}
for those in Table 2.

The Dunn’s index was applied as a method of evaluating the performance
of the clustering in each colour space by calculating the compactness and sep-
aration of resultant clusters, as described in Sect. 3. The process of clustering
and validation for each image, colour space and k value was repeated 100 times
to allow for variations in performance due to the random initial placement of
the cluster centroids in the k-means algorithm. Tables 1 and 2 demonstrate the
mean values over those 100 runs, with the optimal values indicated in bold.

Table 1 demonstrates that for a small number of predominant colours and a
low level of chromatic noise, clusters within the RGB colour space are overall
more compact and separated. Additional chromatic noise resulted in better clus-
tering within the YCbCr colour space and for a larger k value, equal to four. It
should also be noted that the standard deviation values were quite low, implying
that either all 100 k-means runs converged to the same local minimum, or to
several local minima with similar Dunn’s index values.

Table 2 shows the results for a larger number of predominant colours. YCbCr

outperforms RGB, HSV and CIELAB colour spaces in all images, irrespective
of noise level. RGB also performs quite well. The standard deviation values
are considerably higher than for three predominant colours; in particular, the
standard deviation for YCbCr (k=5) is very high. After a thorough analysis of a
repeated trial, four local optima with observed, with Dunn’s index values of 0.32
(obtained 29 times), 0.31 (35 times), 0.09 (10 times) and 0.04 (26 times). Despite
YCbCr appearing to be the best colour space, further tests with a larger number
of real images should be conducted in the future to determine the reliability of
this outcome.

Analysing Tables 1 and 2 as a whole, it can be concluded that RGB and YCbCr

demonstrate consistently better results than HSV and CIELAB, irrespective of
the the image tested. A qualitative assessment of these results is presented in
Section 6.

6 Discussion

The results in Sect. 5 demonstrate that for images with either more than three
predominant features or greater than 20% chromatic noise, k-means produced
clusters with maximum compactness and separation when performed in the
YCbCr colour space. However, for this to be an accurate measure of the colour
segmentation performance, it is crucial that the clusters correspond with the
actual set of feature colours. In order to verify how representative the clusters
found by the k-means are of the real colours in the image, a series of images are
presented in Fig. 1. As an example, the image in Table 2 contains five uniquely
coloured features - the green field, white lines, black robot, yellow goalposts and

268 D. Budden et al.

Table 1. Cluster quality evaluation using the Dunn’s index for the images with three
dominant colours. The four colour spaces were tested using four images: three artificially
created, with Gaussian noise levels of 10%, 20% and 30%; and one original image,
captured with the DARwIn-OP camera [10]. The figures represent the mean of 100
runs of the k-means algorithm; the standard deviation is indicated in parentheses.
The RGB colour space demonstrated better performance for low noise levels, whereas
YCbCr performed better for higher noise levels and the original image.

3
c
o
lo

u
r
s
-
1
0
%

n
o
is
e

3
c
o
lo

u
r
s
-
2
0
%

n
o
is
e

C
o
lo

u
r

N
u
m

b
e
r
o
f
c
lu

s
te

r
s
(k

)
N
u
m

b
e
r
o
f
c
lu

s
te

r
s
(k

)
s
p
a
c
e

3
4

5
6

7
8

9
1
0

3
4

5
6

7
8

9
1
0

R
G

B
3
.6

6
0
.5
0

0
.2
3

0
.1
6

0
.1
1

0
.1
0

0
.0
9

0
.0
8

1
.0

1
0
.5
9

0
.3
0

0
.3
2

0
.3
4

0
.3
2

0
.3
0

0
.2
9

(
0
.0

0
)

(
0
.0

0
)

(
0
.1

1
)

(
0
.1

1
)

(
0
.0

8
)

(
0
.0

6
)

(
0
.0

2
)

(
0
.0

3
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

2
)

(
0
.0

9
)

(
0
.0

9
)

(
0
.0

4
)

(
0
.0

1
)

H
S
V

0
.1
5

0
.3
8

0
.1
2

0
.2
1

0
.5
0

0
.2
4

0
.2
3

0
.1
5

0
.3
4

0
.1
7

0
.3
1

0
.2
2

0
.2
2

0
.2
3

0
.1
8

0
.1
1

(
0
.0

0
)

(
0
.0

6
)

(
0
.0

3
)

(
0
.0

1
)

(
0
.0

4
)

(
0
.0

2
)

(
0
.0

4
)

(
0
.0

8
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

8
)

(
0
.0

3
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

6
)

(
0
.0

2
)

Y
C

b
C

r
3
.0
0

0
.5
6

0
.3
9

0
.4
0

0
.2
8

0
.2
0

0
.1
6

0
.1
1

0
.8
3

0
.7
2

0
.3
5

0
.5
5

0
.3
4

0
.3
4

0
.3
4

0
.3
2

(
0
.0

0
)

(
0
.0

0
)

(
0
.2

6
)

(
0
.1

0
)

(
0
.0

6
)

(
0
.1

0
)

(
0
.1

1
)

(
0
.0

9
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

2
)

(
0
.0

7
)

(
0
.0

5
)

(
0
.0

3
)

C
IE

L
A
B

1
.1
1

0
.2
5

0
.1
8

0
.2
1

0
.2
3

0
.2
9

0
.2
2

0
.1
9

0
.3
2

0
.3
5

0
.1
9

0
.2
3

0
.2
9

0
.3
2

0
.1
9

0
.1
5

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

3
)

(
0
.0

0
)

(
0
.0

3
)

(
0
.0

6
)

(
0
.0

9
)

(
0
.0

4
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

2
)

(
0
.0

2
)

(
0
.0

0
)

3
c
o
lo
u
rs

-
1
0
%

n
o
is
e

3
c
o
lo
u
rs

-
2
0
%

n
o
is
e

3
c
o
lo

u
r
s
-
3
0
%

n
o
is
e

3
c
o
lo

u
r
s
-
O
r
ig

in
a
l
im

a
g
e

C
o
lo

u
r

N
u
m

b
e
r
o
f
c
lu

s
te

r
s
(k

)
N
u
m

b
e
r
o
f
c
lu

s
te

r
s
(k

)
s
p
a
c
e

3
4

5
6

7
8

9
1
0

3
4

5
6

7
8

9
1
0

R
G
B

0
.5
2

0
.5
8

0
.3
2

0
.4
5

0
.4
0

0
.3
8

0
.3
7

0
.3
5

0
.1
1

0
.1
1

0
.0
9

0
.0
4

0
.0
5

0
.0
5

0
.0
5

0
.0
4

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

5
)

(
0
.0

2
)

(
0
.0

2
)

(
0
.0

2
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

H
S
V

0
.3
3

0
.3
8

0
.1
8

0
.2
0

0
.2
1

0
.1
3

0
.1
4

0
.1
6

0
.1
1

0
.0
8

0
.0
6

0
.0
4

0
.0
4

0
.0
5

0
.0
5

0
.0
5

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

3
)

(
0
.0

3
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

0
)

(
0
.0

1
)

Y
C

b
C

r
0
.4
7

0
.7

5
0
.4
2

0
.5
3

0
.3
0

0
.3
2

0
.3
5

0
.4
1

0
.1
1

0
.1

2
0
.1
2

0
.0
5

0
.0
5

0
.0
5

0
.0
4

0
.0
4

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

2
)

(
0
.0

2
)

(
0
.0

3
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

C
IE

L
A
B

0
.2
6

0
.2
3

0
.2
4

0
.1
8

0
.1
8

0
.1
7

0
.1
9

0
.1
6

0
.1
0

0
.1
1

0
.0
7

0
.0
7

0
.0
7

0
.0
4

0
.0
4

0
.0
3

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

0
)

(
0
.0

3
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

2
)

(
0
.0

2
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

0
)

3
c
o
lo
u
rs

-
3
0
%

n
o
is
e

3
c
o
lo
u
rs

-
O
ri
g
in
a
l

Evaluation of Colour Models 269

Table 2. Cluster quality evaluation using the Dunn’s index for images with five domi-
nant colours. The YCbCr colour space demonstrated the best performance, irrespective
of the noise level. In addition, the optimal Dunn’s index value was obtained with k
= 5 on all four images. It should be noted that RGB also maintained a good overall
performance.

5
c
o
lo

u
r
s
-
1
0
%

n
o
is
e

5
c
o
lo

u
r
s
-
2
0
%

n
o
is
e

C
o
lo

u
r

N
u
m

b
e
r
o
f
c
lu

s
te

r
s
(k

)
N
u
m

b
e
r
o
f
c
lu

s
te

r
s
(k

)
s
p
a
c
e

5
6

7
8

9
1
0

1
1

1
2

5
6

7
8

9
1
0

1
1

1
2

R
G
B

1
.8
6

0
.5
3

0
.7
4

0
.3
2

0
.2
9

0
.2
7

0
.2
6

0
.2
6

0
.9
6

0
.5
3

0
.3
3

0
.3
3

0
.3
3

0
.3
0

0
.2
9

0
.2
8

(
0
.0

0
)

(
0
.0

0
)

(
0
.2

4
)

(
0
.1

0
)

(
0
.0

7
)

(
0
.0

6
)

(
0
.0

5
)

(
0
.0

3
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

3
)

(
0
.0

2
)

(
0
.0

7
)

(
0
.0

5
)

(
0
.0

4
)

(
0
.0

3
)

H
S
V

0
.2
1

0
.2
1

0
.4
5

0
.1
3

0
.2
0

0
.1
7

0
.1
0

0
.0
6

0
.2
8

0
.2
4

0
.1
9

0
.2
3

0
.2
2

0
.2
2

0
.1
6

0
.1
3

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

8
)

(
0
.0

2
)

(
0
.0

6
)

(
0
.0

8
)

(
0
.0

6
)

(
0
.0

2
)

(
0
.0

4
)

(
0
.0

2
)

(
0
.0

0
)

(
0
.0

3
)

(
0
.0

3
)

(
0
.0

3
)

(
0
.0

5
)

(
0
.0

4
)

Y
C

b
C

r
2
.2

3
0
.6
0

1
.0
7

0
.4
8

0
.3
3

0
.2
9

0
.2
9

0
.2
7

1
.2

2
0
.6
3

0
.4
3

0
.5
0

0
.3
3

0
.3
7

0
.3
8

0
.3
3

(
0
.0

0
)

(
0
.0

0
)

(
0
.2

5
)

(
0
.1

5
)

(
0
.0

8
)

(
0
.0

5
)

(
0
.0

5
)

(
0
.0

5
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.1

4
)

(
0
.0

7
)

(
0
.0

1
)

(
0
.0

2
)

(
0
.0

4
)

(
0
.0

6
)

C
IE

L
A
B

0
.2
4

0
.3
3

0
.2
6

0
.1
7

0
.1
8

0
.1
9

0
.1
8

0
.1
9

0
.2
0

0
.2
6

0
.2
4

0
.2
1

0
.2
2

0
.2
7

0
.2
7

0
.3
0

(
0
.0

3
)

(
0
.0

2
)

(
0
.1

6
)

(
0
.0

6
)

(
0
.0

4
)

(
0
.0

3
)

(
0
.0

4
)

(
0
.0

5
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.1

0
)

(
0
.0

5
)

(
0
.0

5
)

(
0
.0

0
)

(
0
.0

2
)

(
0
.0

1
)

5
c
o
lo
u
rs

-
1
0
%

n
o
is
e

5
c
o
lo
u
rs

-
2
0
%

n
o
is
e

5
c
o
lo

u
r
s
-
3
0
%

n
o
is
e

5
c
o
lo

u
r
s
-
O
r
ig

in
a
l
im

a
g
e

C
o
lo

u
r

N
u
m

b
e
r
o
f
c
lu

s
te

r
s
(k

)
N
u
m

b
e
r
o
f
c
lu

s
te

r
s
(k

)
s
p
a
c
e

5
6

7
8

9
1
0

1
1

1
2

5
6

7
8

9
1
0

1
1

1
2

R
G
B

0
.9
7

0
.4
7

0
.4
4

0
.4
1

0
.4
0

0
.3
8

0
.3
7

0
.3
6

0
.2
2

0
.1
0

0
.0
7

0
.0
6

0
.0
6

0
.0
7

0
.0
7

0
.0
7

(
0
.0

0
)

(
0
.0

7
)

(
0
.0

3
)

(
0
.0

4
)

(
0
.0

4
)

(
0
.0

6
)

(
0
.0

5
)

(
0
.0

5
)

(
0
.0

4
)

(
0
.0

4
)

(
0
.0

2
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

2
)

(
0
.0

3
)

(
0
.0

3
)

H
S
V

0
.3
0

0
.2
4

0
.2
6

0
.3
8

0
.3
2

0
.2
2

0
.2
1

0
.2
0

0
.1
9

0
.1
2

0
.1
2

0
.1
3

0
.0
7

0
.0
6

0
.0
6

0
.0
5

(
0
.0

0
)

(
0
.0

2
)

(
0
.0

3
)

(
0
.1

0
)

(
0
.0

4
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

4
)

(
0
.0

2
)

(
0
.0

2
)

(
0
.0

3
)

(
0
.0

3
)

Y
C

b
C

r
0
.9

9
0
.6
7

0
.8
4

0
.4
3

0
.4
2

0
.4
1

0
.4
0

0
.4
0

0
.2

5
0
.0
6

0
.0
6

0
.0
6

0
.0
7

0
.0
7

0
.0
8

0
.0
7

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

8
)

(
0
.0

8
)

(
0
.0

5
)

(
0
.0

4
)

(
0
.0

4
)

(
0
.0

4
)

(
0
.1

2
)

(
0
.0

0
)

(
0
.0

1
)

(
0
.0

2
)

(
0
.0

2
)

(
0
.0

3
)

(
0
.0

3
)

(
0
.0

3
)

C
IE

L
A
B

0
.3
4

0
.2
9

0
.3
2

0
.3
3

0
.3
1

0
.3
8

0
.4
4

0
.3
6

0
.0
7

0
.0
6

0
.0
5

0
.0
5

0
.0
5

0
.0
5

0
.0
5

0
.0
6

(
0
.0

0
)

(
0
.0

4
)

(
0
.0

0
)

(
0
.0

0
)

(
0
.0

2
)

(
0
.0

4
)

(
0
.0

2
)

(
0
.0

3
)

(
0
.0

2
)

(
0
.0

2
)

(
0
.0

1
)

(
0
.0

1
)

(
0
.0

2
)

(
0
.0

1
)

(
0
.0

2
)

(
0
.0

3
)

5
c
o
lo
u
rs

-
3
0
%

n
o
is
e

5
c
o
lo
u
rs

-
O
ri
g
in
a
l

270 D. Budden et al.

Fig. 1. Original image mapped to the corre-
sponding five clusters for each colour space. (a)
Original image; (b) 5-colour mapping using the
RGB colour space; (c) 5-colour mapping using
YCbCr ; (d) 5-colour mapping using HSV; (e) 5-
colour mapping using CIELAB. For (b-e), the
five colours represent the centroid of their respec-
tive clusters. Note the best performance for the
YCbCr space, which successfully captures red,
white, yellow and light green, with the black
colour represented as a darker shade of green.
Note also the presence of some artifacts, such
as the ball being mapped into three colours: yel-
low, light green and dark green for RGB; and two
shades of red for CIELAB. (a)

(b) (c)

(d) (e)

red ball. A correct segmentation should therefore map the pixels comprising each
of these features to a unique colour label.

The pixels in the images in Fig. 1b-e were painted with the centroid values
of the clusters that they were assigned to. However, given that 100 runs of the
k-means algorithm were executed for each configuration of image and colour
space, it is vital to determine with set of centroids was most representative of
the overall results. After analysing the results for a given configuration, it was
determined that the number of different solutions was never greater than five
- i.e. the same sets of centroids were reached several times in those 100 runs.
With that in mind, the centroid values used in each configuration depicted in
Fig. 1b-e are the solutions that occurred most frequently.

Evaluation of Colour Models 271

Table 2 suggests the YCbCr colour space allows better clustering performance
than the other three colour spaces for Fig. 1a. That assertion is confirmed by
qualitatively assessing the result of applying k-means determine the main colours
in the image (for k = 5). Fig. 1b shows that clustering in RGB failed to correctly
label the red ball, which contains pixels that belong to three different clusters
(yellow and two shades of green). In addition, it associated the field and the robot
with three separate clusters, at different levels of green. In contrast, clustering
in YCbCr (Fig. 1c) labeled each feature correctly. Figure 1d depicts the result
for HSV; it fails to identify the goal post, assigning to it the same colour of
the field. In addition, the ball contains two shades of green. Finally, Figure 1e
depicts the result for CIELAB. It identifies the ball and the robot, but fails to
identify the ball or field lines. This agreement between external and internal
cluster validation criteria supports cluster validation as an effective method for
assessing the appropriateness of a colour model for segmentation.

7 Conclusion

This work analysed the use of different colour spaces in the quality of colour
classification in a computer vision system. The application of a Dunn’s index
cluster validation technique demonstrated that the k-means algorithm produced
clusters of maximum compactness and separation in the YCbCr colour space, for
images with five uniquely coloured features. RGB, HSV and CIELAB yielded
poorer results independent of the level of chromatic noise present. For images
with three uniquely coloured features, YCbCr yielded the best results for higher
levels of chromatic noise, whereas RGB had a better performance for low levels
of noise.

The quantitative results were also qualitatively assessed by visualising the
colour segmentation for each colour model. In that case, the qualitative analy-
sis of the YCbCr results confirmed the numerical results. Correct segmentation
corresponded with higher values of the Dunn’s-based index, therefore support-
ing cluster validation as an effective technique of assessing the performance of a
colour model for segmentation within a colour-coded environment.

Future research will focus on automating the LUT generation process for
DARwIn-OP platform, allowing for efficient real-time colour image segmentation
whilst minimising the requirement for human supervision.

Acknowledgement. David Budden and Shannon Fenn would like to thank the
University of Newcastle’s Faculty of Engineering and Built Environment for the
support provided by their Summer Research Scholarship program.

References

1. Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression
data. Signal Processing 83(4), 825–833 (2003)

2. Brusey, J., Padgham, L.: Techniques for obtaining robust, real-time, colour-based
vision for robotics. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999.
LNCS (LNAI), vol. 1856, pp. 243–253. Springer, Heidelberg (2000)

272 D. Budden et al.

3. Cheng, H., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: advances and
prospects. Pattern Recognition 34(12), 2259–2281 (2001)

4. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5),
603–619 (2002)

5. Davies, D., Bouldin, D.: A cluster separation measure. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (2), 224–227 (1979)

6. Dunn, J.: Well-separated clusters and optimal fuzzy partitions. Journal of Cyber-
netics 4(1), 95–104 (1974)

7. Forsyth, D., Ponce, J.: Computer vision: a modern approach. Prentice Hall (2002)
8. Golub, G., Van Loan, C.: Matrix computations, vol. 3. Johns Hopkins University

Press (1996)
9. Günter, S., Bunke, H.: Validation indices for graph clustering. Pattern Recognition

Letters 24(8), 1107–1113 (2003)
10. Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.: Development of open hu-

manoid platform DARwIn-OP. In: 2011 Proceedings of the SICE Annual Con-
ference (SICE), pp. 2178–2181. IEEE (2011)

11. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
Journal of Intelligent Information Systems 17(2), 107–145 (2001)

12. Hartigan, J., Wong, M.: Algorithm AS 136: A k-means clustering algorithm. Jour-
nal of the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100–108
(1979)

13. Henderson, N., King, R., Chalup, S.: An automated colour calibration system using
multivariate gaussian mixtures to segment HSI colour space. In: Proceedings of the
2008 Australasian Conference on Robotics & Automation (ACRA 2008) (2008)

14. Hubert, L., Schultz, J.: Quadratic assignment as a general data analysis strategy.
British Journal of Mathematical and Statistical Psychology 29(2), 190–241 (1976)

15. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot
world cup initiative. In: Proceedings of the First International Conference on Au-
tonomous Agents, pp. 340–347. ACM (1997)

16. Park, J., Lee, G., Park, S.: Color image segmentation using adaptive mean shift
and statistical model-based methods. Computers & Mathematics with Applica-
tions 57(6), 970–980 (2009)

17. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65
(1987)

18. Sridharan, M., Stone, P.: Real-time vision on a mobile robot platform. In: 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2005), pp. 2148–2153. IEEE (2005)

19. Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using
the HSV color space for image retrieval. In: Proceedings of the 2002 International
Conference on Image Processing, vol. 2, pp. II–589. IEEE (2002)

20. Szeliski, R.: Computer vision: algorithms and applications. Springer-Verlag New
York Inc. (2010)

Using Saliency-Based Visual Attention Methods
for Achieving Illumination Invariance in Robot Soccer

F. Serhan Daniş, Tekin Meriçli, and H. Levent Akın

Department of Computer Engineering
Boğaziçi University

Istanbul, Turkey
{serhan.danis,tekin.mericli,akin}@boun.edu.tr

Abstract. In order to be able to beat the world champion human soccer team
in the year 2050, soccer playing robots will need to have very robust vision sys-
tems that can cope with drastic changes in illumination conditions. However, the
current vision systems are still brittle and they require exhaustive and repeated
color calibration procedures to perform acceptably well. In this paper, we investi-
gate the suitability of biologically inspired saliency-based visual attention models
for developing robust vision systems for soccer playing robots while focusing on
the illumination invariance aspect of the solution. The experiment results demon-
strate successful and accurate detection of the ball even when the illumination
conditions change continuously and dramatically.

1 Introduction

As the deadline for achieving the ultimate goal of RoboCup approaches, where a team
of autonomous humanoid robots is expected to play soccer on a standard soccer field
against the most recent winner of the World Cup and win the game, robustness to chang-
ing visual circumstances remains one of the biggest challenges for developing reliable
vision systems for autonomous robots. Using color segmentation as the basis of the de-
veloped vision systems still appears to be the most popular approach among the teams
of various RoboCup leagues although most of the color segmentation based techniques
are not robust against changing illumination conditions. Since the successful operation
of the robots primarily depends on the reliability of the vision system, the teams spend a
considerable amount of time for color calibration even though the games are still played
under carefully controlled illumination conditions.

Biological systems, on the other hand, are very successful in solving such problems;
therefore, they have long been the primary source of inspiration for robot vision re-
searchers. The visual attention mechanism is one of the most studied sub-systems of
biological vision. Following the visual attention phenomena, researchers aim to obtain
more efficient, intelligent, and robust artificial vision systems [1]. In alignment with
this goal, in this paper, we present the results of a primary investigation on the suitabil-
ity of saliency-based visual attention models for the robot soccer domain, focusing on
the object detection performance under continuously and drastically changing illumi-
nation conditions. Our experiments demonstrate successful detection of the ball even

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 273–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 F. Serhan Daniş, T. Meriçli, and H. Levent Akın

under extreme changes in the illumination conditions where color segmentation based
approaches fail to do so.

The rest of this paper is organized as follows. Section 2 gives an overview of the
related work in the literature. The methodology followed for this contribution is ex-
plained in Section 3, and the details of the experiments and the obtained results are
given in Section 4. Section 5 summarizes and concludes the paper while pointing out to
potential future work.

2 Related Work

One of the biggest challenges for autonomous mobile robots that perceive their en-
vironments through standard cameras is the changing illumination conditions. As a
workaround, either restricted configurations in structured domains are considered, or
specific models of segmentation and recognition that do not provide generalized so-
lutions [2] are used. Various approaches to address this challenge include describing
the problem in terms of illumination [3], surface reflectance [4], and sensor sensitiv-
ity [5]. Bayesian decision theory and hierarchical model based approaches also exist
in the literature [6, 7]. Methods that do not require domain specific tuning are shown
to be computationally less complex and more adaptive, whereas usually the opposite is
shown to be true for the classical and model based methods [2]. Illumination invariance
has been studied in the robot soccer domain as well since the overall performance of
the teams heavily depend on the successful perception of the environment [7, 8].

Visual attention-based approaches are usually used for preprocessing the visual sen-
sory data to determine the parts of the image to further process. For instance, in the
work of Rasolzadeh et al [9], the visual attention module gets executed prior to the ob-
ject detection and recognition modules to direct the head saccades and help the robot
figure out where to search for important objects. Frintrop et al proposed a similar ap-
proach [10, 11], where the regions of interest are detected using both bottom up and
top down saliency extraction followed by a fast-classifier that classifies regions for ob-
ject recognition purposes. They applied this method to the problem of detecting balls
in a robot soccer environment, and showed that this approach yields to a faster exe-
cution compared to a standard classifier and reduces the false detection rates signifi-
cantly; however, they did not investigate the problem of changing lighting conditions
thoroughly.

In a similar setup that we present in this paper, Garcia et al [12] used an attention
mechanism to detect balls in the “any ball challenge” scenario of the RoboCup Standard
Platform League (SPL), where balls of various sizes, textures, and colors are scattered
over the field and the robot is expected to detect them and score by kicking them into the
opponent goal. They used the saliency map to extract balls on the field as the regions
of the images containing the balls popped out as the “salient regions” compared to
the plain green field carpet. Their work differs from the original method of saliency
map generation by Itti et al [13] in two aspects. First, they use only the color and
intensity information and discard the other channels such as motion, orientation, and
flicker. Second, the sizes of the images are reduced using the fovea mask for compu-
tational efficiency purposes. They present a model performance improvement and a neat

Using Saliency-Based Visual Attention Methods 275

integration of the method to the SPL domain; however, they do not consider the chang-
ing illumination conditions as we investigate in detail in this paper.

3 Methodology

In this section, we present the working principles of both the saliency-based visual
attention and color segmentation and scanline based object detection methods as the
comparison of these two approaches constitute the main motivation behind this work.

3.1 Saliency-Based Visual Attention

Although primates have neuronal hardware with limited speed, they are capable of in-
terpreting complex scenes in real time. Such capability is believed to be achieved by the
selection of a subset of available visual information by higher visual areas before further
processing [14]. Inspired by the remarkable scene interpretation ability of primates and
building on a biologically plausible architecture presented by Koch and Ullman [15],
which explains human visual search strategies [16], Itti et al proposed a model of at-
tention that is based on the same working principles [13]. In this computational model
of saliency-based visual attention, the visual input (i.e. the image) is decomposed into
feature maps; primarily color, intensity, and orientation, which compete for the final
saliency map. During the saliency map generation process, the input image is first used
to generate color, intensity, and orientation layers. These different layers are used to
generate multi-scale Gaussian pyramids, which correspond to progressive low-pass fil-
tering and sub-sampling into lower resolutions. The feature maps are then obtained by
a set of linear center-surround operations and across-scale combinations of these multi-
scale pyramids. Finally, these feature maps are linearly combined to generate the final
saliency map [17–19]. This model is depicted in Fig. 1.

Fig. 1. The attention model proposed by Itti et al [13]

276 F. Serhan Daniş, T. Meriçli, and H. Levent Akın

Based on the attention model proposed by Itti et al [13], in this work, we use the
color conspicuity map (marked with the red frame in Fig. 1) to investigate whether it is
possible to detect important objects in the image even when the illumination conditions
of the environment fluctuate drastically. We also employ and test the performance of a
slightly modified version of this model, which uses wavelet low-pass pyramids instead
of Gaussian ones [20]. The steps of the saliency map generation process are explained
in detail in the following sections.

Generation of Color Conspicuity Maps. The first step is to obtain the intensity image
I by averaging the R, G, and B color channels, which we denote as matrices of the same
size as the original image. Pixel values that are smaller than 1/10 of the maximum
intensity are set to zero before further processing as it gets difficult to perceive the color
information of a pixel when its intensity value is very small. New color components,
RN, GN, BN, and Y N are then computed in terms of R, G, and B as follows.

RN = R− (G+B)/2 (1)

GB = G− (R+B)/2 (2)

BN = B− (R+G)/2 (3)

Y N = G+R−|R−G|−B (4)

Negative values of these color components are set to zero and the component pyramids
are constructed as RNk, GNk, BNk and Y Nk by either using the Gaussian low pass filter
and progressively down-scaling the image into its half size [13] or using the wavelet
low pass filter [20]. The subscript k denotes the level of the pyramid, where level 0 is
the top level color component of the size of the original image.

Obtaining the Feature Maps. Feature maps are computed using a method that is in-
spired by the working principles of the “color double-opponent cells” that were proven
to exist in the human primary visual cortex. These neurons are excited by one color in
the center of their receptive fields, and inhibited by another, while the opposite is true in
the surround. Human primary visual cortex is shown to have such spatial and chromatic
opponency for the red/green, green/red, blue/yellow, and yellow/blue color pairs [21].
Analogously, we compute the center surround differences to obtain the feature maps,
where c ∈ {2,3,4} are centers and s = c+ p are their surrounds with p ∈ {3,4}, and ∗
denotes the pyramid levels that are resized to a finer resolution, which in this work is
determined by the finest available resolution in the data.

RGc,s = |(RNc −GNc)− (RN∗
s −GN∗

s)| (5)

BYc,s = |(BNc −YNc)− (BN∗
s −YN∗

s)| (6)

While the across-scale combination step of the conspicuity map generation process in
the model of Itti et al [13] is performed by integrating all color feature maps at different
scales, the color feature maps in the work of Li et al [20] are first resized to the size

Using Saliency-Based Visual Attention Methods 277

of the original image and then squared, resulting in few redundant salient areas. At
each step of the algorithm, normalizations should also be applied on the feature maps
in order to eliminate modality-dependent amplitude differences. These two proposed
methods are identical aside from the functions used for the generation of the color
component pyramids, namely wavelet transform and Gaussian filter, and the additional
square operation used in the method proposed by Li et al.

Merging into a Saliency Map. In our experiments, we used five different saliency
maps; three of them are generated using the method proposed by Itti et al [13] (M1),
and the other two are obtained using the method proposed by Li et al [20] (M2).

Table 1. Listing of saliency maps

Map Description

M1-a Color conspicuity map from (M1)
M1-b Combination of the color and intensity conspicuity maps
M1-c Only the red-green channel of the color conspicuity map
M2-a Color conspicuity map from (M2)
M2-b Squared M2-a

The first saliency map corresponds to the color conspicuity map from M1. The sec-
ond one is the saliency map generated by equally combining the color conspicuity map
with the intensity map. Although Garcia et al [12] used the two conspicuity maps to
generate the final saliency map for detecting the balls on the field, we anticipated that
color feature channels would give better results for objects of specific colors. On the
basis of this anticipation, we used a third map that is obtained by only utilizing the red-
green (RG) channel, which made sense considering that our task is finding a red-orange
ball on a green field. The fourth map is obtained directly through M2, and the fifth one
is generated by taking the squares of the pixel values of the fourth map, with the ex-
pectation of reducing the number of redundant salient areas as reported by Li et al [20].
Table 1 summarizes the compounds of the generated maps.

3.2 Color Segmentation and Scanline Based Object Detection

Considering computational efficiency and real-time constraints of the robot soccer do-
main, it is not feasible to process each pixel of the image to find the objects of interests.
Therefore, scanlines are used to process the image in a sparse manner, hence speed-
ing up the entire process. This method is especially popular within the RoboCup SPL
community as a commercially available standard robot platform with very limited com-
putational resources need to be used for the competitions. A previously trained and
stored color table (CT) is utilized for checking the colors of the pixels that a scan-
line runs through. We utilize a Generalized Regression Neural Network (GRNN) [22]
for mapping the real color space to the pseudo-color space composed of a smaller set

278 F. Serhan Daniş, T. Meriçli, and H. Levent Akın

(a) (b)

Fig. 2. Color segmentation and scanline based object detection. The classified image looks very
clear and the important objects in the image are successfully detected when a suitable color table
is used (a); however, this approach becomes unreliable when the lighting conditions change (b).

of pseudo-colors, namely, white, green, yellow, blue, robot-blue, orange, red, and “ig-
nore”. In order to obtain the outputs of the trained GRNN in a time-efficient manner, a
look up table is constructed for all possible inputs. Y, U, and V values are used to calcu-
late the unique index and the value at that index gives the color group ID to determine
the color group of a pixel.

Regions of interest are formed by grouping the same-colored scanline segments that
are spatially adjacent and “touching” each other; that is, these segments are on two
consecutive scanlines and either of them has a start or end point within the borders of
the other one. These regions are then passed to the so called the region analyzer mod-
ule to be further filtered and processed for the detection of the ball, the field lines and
intersections of them, the goal posts, and the robots. The ball detector uses additional
star-shaped scanlines that originate from the centers of the candidate regions to find
the borders of the region and use these border points to check whether the region has
circular properties by using a voting-based circle fitting algorithm. Fig. 2(a) shows the
result of this process when the used color table matches the lighting conditions; how-
ever, this approach may fail when the lighting conditions change as shown in Fig. 2(b),
which constituted the main motivation behind this research. The objects are either not
detected at all (e.g. lines and goal posts), or the detection result is misleading (e.g.
smaller-than-actual size of the ball, which results in a farther-than-actual projected ball
location on the field).

Using Saliency-Based Visual Attention Methods 279

4 Experiments

For our experiments, we utilize the iLab Neuromorphic Vision C++ Toolkit (iNVT)
software developed and released by Itti et al [23]. The experiments are run on the
grayscale saliency maps extracted via the methods mentioned in Section 3 as well as
the raw images processed by our color classification and scanline based vision mod-
ule that utilizes previously trained color tables, which is explained in Section 3.2. We
particularly focus on the detection of the ball in the images.

4.1 The Robot Platform

We performed our initial experiments offline on the images captured from one of the
cameras of the Nao V3 humanoid robot manufactured by Aldebaran Robotics [24],
which has been used as the common robot platform of the Standard Platform League
(SPL) of RoboCup [25] since 2008. The Nao’s camera is capable of providing images
with 640×480 resolution at 30Hz; however, most teams prefer using 320×240 images
due to the processing power limitations of the robot. Our team also utilizes the images
provided in 320× 240 resolution for the competitions; therefore, in order to be able to
compare the performances of the saliency-based methods with the performance of the
color segmentation based method, we kept the image resolutions identical for the two
methods in our experiments.

4.2 Illumination Configurations

In our experiments, we use 6 different illumination configurations controlled by 3 fac-
tors. We denote these factors as fluo for the fluorescent lamps, spot for the spot lights,
and day for the daylight coming in through the windows. The combinations of these
configurations are labeled as {C1, ...,C6}. Table 2 summarizes these configurations.
Even though there are 8 possible combinations of these 3 factors, in our experiments,
we exclude the 〈¬ f luo,spot,¬dayl〉 and 〈¬ f luo,spot,dayl〉 configurations as the pres-
ence of the spot lights provides the majority of the lux value, which is covered by the
cases C5 and C6.

Table 2. Listing of the illumination configuration used in our experiments

Configuration Tuple Description Illuminance

C1 〈¬ f luo,¬spot,¬dayl〉 no lights 39 lux
C2 〈¬ f luo,¬spot,dayl〉 only daylight 134 lux
C3 〈 f luo,¬spot,¬dayl〉 only fluorescent lights 200 lux
C4 〈 f luo,¬spot,dayl〉 fluorescent lights and daylight 350 lux
C5 〈 f luo,spot,¬dayl〉 fluorescent and spot lights 908 lux
C6 〈 f luo,spot,dayl〉 all lights 1067 lux

The scene we set up for our experiments includes the essential visual elements of
the SPL; which are one red and one blue player placed in front of the yellow goal, the
field lines and the cross-shaped penalty mark, and the ball placed between the robots

280 F. Serhan Daniş, T. Meriçli, and H. Levent Akın

and the penalty mark. During our experiments, we keep the robot stationary while the
contributions of the different light sources to the environment’s illumination character-
istics are changed to generate different lighting conditions. The sample color images
from these configurations are given in Fig. 3 with the corresponding average lux values
of the environment.

Fig. 3. Scenes captured by the robot under different illumination configurations: (a) C1 - no lights,
(b) C2 - only daylight, (c) C3 - only fluorescent lights, (d) C4 - fluorescent lights and daylight, (e)
C5 - fluorescent and spot lights, and (f) C6 - all lights

4.3 Results

We used the five different saliency map generation methods listed in Table 1 in our
saliency-based experiments. Sample saliency maps for configurations C1 and C6 are
shown in Fig. 4. Ball detection is performed by trying to fit a circle to the salient regions
after performing a simple thresholding on them. The circle fit operation is considered
successful if the error value is lower than 10 pixels. Detected balls on the saliency maps
are also shown as orange circles in Fig. 4. Additionally, an error analysis is performed
by utilizing human perception as the source of the ground truth information and report-
ing the difference between the ground truth and the output of the detection algorithm.
For each image, we report a hit when the actual ball is found accurately (center and
radius errors are below 8 pixels), a false location when some other regions is confused
for the ball, and a miss when the ball is not detected at all. The left column and the
right column of Fig. 5 show the hit, false location, and miss rates obtained after running
the color segmentation based and saliency based algorithms, respectively, on 80 frames
captured under each of the six different illumination configurations.

It can be interpreted from Fig. 5(a), 5(c), and 5(e) that the color segmentation based
methods work quite well when the color table used matches the illumination condition;
however, usually even small changes in the illumination characteristics results in failure,
as also shown in Fig. 2. Although it is possible to prepare several color tables for various
illumination conditions and switch between them based on some image statistics, this
method becomes ineffective for continuously changing illumination conditions.

Using Saliency-Based Visual Attention Methods 281

(a) Configuration C1 = 〈 f luo,spot,dayl〉:
(1) original frame, saliency methods (2) I-a,
(3) I-b, (4) I-c, (5) II-a, and (6) II-b.

(b) Configuration C6 = 〈¬ f lue,¬spot,¬dayl〉:
(1) original frame, saliency methods (2) I-a,
(3) I-b, (4) I-c, (5) II-a, and (6) II-b.

Fig. 4. Sample saliency maps

In Fig. 5(b), 5(d), and 5(f), we see that using only the color channels yields bet-
ter results in general. Using the intensity map combined with the color map, which
corresponds to M1-b, results in low hit rates and high false location rates. The results
obtained with M2-a and M2-b show that M2 works well for object recognition in bright
environments; however, it performs poorly when there is not enough light. The highest
accuracy in finding the ball is achieved with M1-c.

Fig. 6 shows the mean errors between the radius reported by the color segmentation
based and the saliency based methods and the radius marked by a human as the ground
truth. Considering that Fig. 6(a) shows the consistency of only the rare occasions that
the ball is detected, saliency based methods tend to be more consistent whereas the
color segmentation based method reports inconsistent results especially for the lighting
configurations that the used color table is not trained for. The most consistent results
seem to be achieved with M1-c. In addition to the reported radius consistency analysis,
we also performed a consistency analysis for the reported center of the ball, the results
of which can be seen in Fig. 7. The color segmentation based method reports a consis-
tent center for the detected ball when a ball is found in the image; however, the biggest
problem with this method is that it usually cannot find the ball at all when there is a
mismatch between the color table and the illumination configuration (Fig. 5(e)).

Table 3 summarizes the success rates obtained when the most successful saliency
based methods M1-a and M1-c, and the color segmentation based method running with
the available color tables are applied on a dataset of 618 frames collected under contin-
uously changing illumination conditions. Perfect and near perfect hit rates are achieved
with M1-a and M1-c, respectively.

282 F. Serhan Daniş, T. Meriçli, and H. Levent Akın

39 134 200 350 908 1067

0

20

40

60

80

100

Lux values of the configurations

H
it

ra
te

 %

 CT
1

 CT
2

 CT
3

 CT
4

 CT
5

 CT
6

(a) Segmentation based hit rate

39 134 200 350 908 1067

0

20

40

60

80

100

Lux values of the configurations

H
it

ra
te

 %

 M1−a

 M1−b

 M1−c

 M2−a

 M2−b

(b) Saliency based hit rate

39 134 200 350 908 1067

0

20

40

60

80

100

Lux values of the configurations

F
al

se
 lo

ca
tio

ns
 %

 CT

1

 CT
2

 CT
3

 CT
4

 CT
5

 CT
6

(c) Segmentation based false location
rate

39 134 200 350 908 1067

0

20

40

60

80

100

Lux values of the configurations

F
al

se
 lo

ca
tio

ns
 %

 M1−a

 M1−b

 M1−c

 M2−a

 M2−b

(d) Saliency based false location rate

39 134 200 350 908 1067

0

20

40

60

80

100

Lux values of the configurations

M
is

s
ra

te
 %

 CT
1

 CT
2

 CT
3

 CT
4

 CT
5

 CT
6

(e) Segmentation based missed ball rate

39 134 200 350 908 1067

0

20

40

60

80

100

Lux values of the configurations

M
is

s
ra

te
 %

 M1−a

 M1−b

 M1−c

 M2−a

 M2−b

(f) Saliency based missed ball rate

Fig. 5. Performances of the color segmentation based (left) and saliency based methods (right)

39 134 200 350 908 1067
0

1

2

3

4

5

6

Lux values of the configurations

R
ad

iu
s

er
ro

r
ra

te
 %

 CT
1

 CT
2

 CT
3

 CT
4

 CT
5

 CT
6

(a) Color segmentation based

39 134 200 350 908 1067
0

1

2

3

4

5

6

Lux values of the configurations

R
ad

iu
s

er
ro

r
ra

te
 %

 M1−a

 M1−b

 M1−c

 M2−a

 M2−b

(b) Saliency based

Fig. 6. Radial consistency check for all methods

Using Saliency-Based Visual Attention Methods 283

39 134 200 350 908 1067
0

20

40

60

80

100

120

140

Lux values of the configurations

C
en

te
r

di
st

an
ce

 e
rr

or
 r

at
e

%

 CT
1

 CT
2

 CT
3

 CT
4

 CT
5

 CT
6

(a) Color segmentation based

39 134 200 350 908 1067
0

10

20

30

40

50

60

Lux values of the configurations

C
en

te
r

di
st

an
ce

 e
rr

or
 r

at
e

%

 M1−a

 M1−b

 M1−c

 M2−a

 M2−b

(b) Saliency based

Fig. 7. Central consistency check for all methods

Table 3. Comparison of the ball detection performances (%) of the individual color tables (CTi)
and M1-c on a dataset collected under continuously changing illumination conditions

CT1 CT2 CT3 CT4 CT5 CT6 M1-a M1-c
hit rate 13.13 10.37 89.14 90.76 8.91 2.59 100 99.68

false locations 18.48 0.49 0.16 9.24 1.94 0 0 0.32
miss rate 68.39 89.14 10.69 0 89.14 97.40 0 0

5 Conclusions and Future Work

Illumination independent robust visual perception of the environment has been one of
the biggest challenges for computer and robot vision researchers. Being capable of solv-
ing this problem almost effortlessly, biological systems have been a great source of in-
spiration for the proposed solutions thus far. In this paper, we make use of one such
biologically inspired saliency based method with some modifications to investigate its
suitability for illumination independent object detection in robot soccer domain. Our
experiments demonstrate successful and consistent detection of the ball even when the
lighting conditions of the environment change drastically, while the standard color classi-
fication based methods fail in such cases. Even though the experiments were performed
on an off-board computer as the processor of the available Nao robot platform cannot
meet the real-time requirements when executing the saliency based method, this ap-
proach can still be applicable in other leagues of RoboCup, such as the Middle Size
League, where robots equipped with more powerful computational resources are used.
Potential future work includes the development of a computationally efficient version
of this method for achieving real-time on-board computations, a complete object detec-
tion framework with additional sanity checks and filters, and testing of the method on a
moving robot in a regular robot soccer game.

Acknowledgments. This project was supported by Boğaziçi University Research Fund
project 09M105.

284 F. Serhan Daniş, T. Meriçli, and H. Levent Akın

References

1. Frintrop, S., Rome, E., Christensen, H.I.: Computational Visual Attention Systems and Their
Cognitive Foundations: A Survey. ACM Transactions on Applied Perception 7(1), 1–39
(2010)

2. Sridharan, M., Stone, P.: Color learning and illumination invariance on mobile robots: A
survey. Robotics and Autonomous Systems 57(6-7), 629–644 (2009)

3. Forsyth, D.A.: A novel algorithm for color constancy. International Journal of Computer
Vision 5(1), 5–35 (1990)

4. Klinker, G.J., Shafer, S.A., Kanade, T.: A physical approach to color image understanding.
International Journal of Computer Vision 4, 7–38 (1990)

5. Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: A simple, unifying frame-
work for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 23(11), 1209–1221 (2001)

6. Brainard, D.H., Freeman, W.T.: Bayesian color constancy. Journal of the Optical Society of
America A, Optics, Image Science, and Vision 14(7), 1393–1411 (1997)

7. Schulz, D., Fox, D.: Bayesian color estimation for adaptive vision-based robot localization.
In: IROS (2004)

8. Luan, X., Qi, W., Song, D., Chen, M., Zhu, T., Wang, L.: Illumination invariant color model
for object recognition in robot soccer. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010, Part
II. LNCS, vol. 6146, pp. 680–687. Springer, Heidelberg (2010)

9. Rasolzadeh, B., Björkmann, M., Huebner, K., Kragic, D.: An Active Vision System for De-
tecting, Fixating and Manipulating Objects in the Real World. The International Journal of
Robotics Research 29(2-3), 133–154 (2009)

10. Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed
Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006)

11. Frintrop, S., Nüchter, A., Pervölz, K., Surmann, H., Mitri, S., Hertzberg, J.: Attentive Classi-
fication. International Journal of Applied Artificial Intelligence in Engineering Systems 1(1)
(2009)

12. Garcia, J.F., Rodrı́guez, F.J., Matellán, V., Fernández, C.: Saliency map based attention con-
trol for the RoboCup SPL. In: Workshop of Physical Agents (2010)

13. Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene
Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–
1259 (1998)

14. Tsotsos, J.K., Culhane, S.M., Kei Wai, W.Y., Lai, Y., Davis, N., Nuflo, F.: Modeling visual
attention via selective tuning. Artificial Intelligence 78(1-2), 507–545 (1995)

15. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural cir-
cuitry. Human Neurobiology 4(4), 219–227 (1985)

16. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychol-
ogy 136(12), 97–136 (1980)

17. Itti, L.: Models of Bottom-Up and Top-Down Visual Attention. PhD thesis, California Insti-
tute of Technology (2000)

18. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual
attention. Vision Research 40(10-12), 1489–1506 (2000)

19. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–
1259 (2002)

20. Li, Z., Fang, T., Huo, H., Zhu, J.: Color conspicuity map based on wavelet low-pass pyramid
for popping out contours of salient objects. Optical Engineering 49(5), 050502 (2010)

Using Saliency-Based Visual Attention Methods 285

21. Engel, S., Zhang, X., Wandell, B.: Colour tuning in human visual cortex measured with
functional magnetic resonance imaging. Nature 388(6637), 68–71 (1997)

22. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural Net-
works 2(6), 568–576 (1991)

23. Itti, L., Rees, G., Tsotsos, J.K.: Models of bottom-up attention and saliency. Neurobiology
of Attention 582, 1–11 (1980)

24. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B.,
Serre, J., Maisonnier, B.: Mechatronic design of NAO humanoid. In: Proceedings of the 2009
IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 2124–2129.
IEEE Press, Piscataway (2009)

25. The RoboCup Standard Platform League, http://www.tzi.de/spl

http://www.tzi.de/spl

A Robust Place Recognition Algorithm Based

on Omnidirectional Vision for Mobile Robots

Huimin Lu, Kaihong Huang, Dan Xiong, Xun Li, and Zhiqiang Zheng

College of Mechatronics Engineering and Automation,
National University of Defense Technology, Changsha, China

{lhmnew,lixun,zqzheng}@nudt.edu.cn

Abstract. In this paper, bag-of-features, a popular and successful ap-
proach in pattern recognition community, is used to realize place recog-
nition based on omnidirectional vision for mobile robots by combining
the real-time local visual features proposed by ourselves for omnidirec-
tional vision and support vector machines. The panoramic images from
the COLD database were used to perform experiments to determine the
best algorithm parameters and the best training condition. The experi-
mental results show that the robot can realize robust place recognition
with high classification rate in real-time by using our algorithm.

1 Introduction

In recent years, along with the development of image understanding and pat-
tern recognition, visual place/scene recognition has attracted more and more re-
searchers’ interest, and many progresses have been achieved [1][2]. Place recogni-
tion can be applied to realize robot topological localization. If the nodes of topo-
logical maps are represented by the places like kitchen, corridor, and bathroom,
once these places are recognized and classified by robots, topological localization
is also realized for the robots. Besides topological localization, place recognition
is also important for solving the loop closing in visual odometry, visual SLAM
and the kidnapping problem in robot localization.

Pronobis, Caputo, Luo, et al. proposed a robust place recognition algorithm
based on SVMs classifier, combined with local visual features computed using a
Harris-Laplace detector and the SIFT descriptor in [3]. Because the number of
the local visual features in an image is not fixed, the local descriptors are used
as the input of SVMs via a match kernel. Then the classifiers can be trained
for place classification and recognition. The local visual features are used as the
input of SVMs directly, so large memory space is needed to store those features
used as support vectors. Therefore, they proposed a memory-controlled incre-
mental SVMs by combining an incremental extension of SVMs with a method
reducing the number of support vectors needed to build the decision function
without any loss in performance introducing a parameter which permits a user-
set trade-off between performance and memory in [2]. They also built up several
image databases to provide standard benchmark datasets for the development,

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 286–297, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Robust Place Recognition Algorithm Based on Omnidirectional Vision 287

evaluation and comparison of different place recognition algorithms: the INDECS
[1], the IDOL [1] and the COLD [4] database. All the images in these databases
were acquired in indoor environments and with different conditions like different
robot platforms, different lighting conditions, and different labs across Europe.
Although the COLD database includes panoramic images acquired by the om-
nidirectional vision system, only perspective images were used to perform ex-
periments to test their place recognition methods in [2][3]. The omnidirectional
vision system can provide a 360◦ view of the robot’s surrounding environment
in a single image, and it is especially suitable to be a sensor of navigation for
mobile robots in large scale environment.

In this paper, bag-of-features [5][6], a popular and successful approach in pat-
tern recognition community, is used to realize robust place recognition based on
omnidirectional vision for mobile robots by combining two novel real-time local
visual features [7] proposed by ourselves and support vector machines (SVMs)
[8]. Some researchers used or extended the bag-of-features method to realize
qualitative localization [9], global localization [10], or topological SLAM [11],
which are the most similar research with our work in this paper. Only perspec-
tive images were used in their work. Furthermore, the local visual features used
in their work can not be extracted in real-time, so their algorithms can not be
run in real-time actually.

2 Two Real-Time Local Visual Features

Local visual features have become increasingly popular in recent years, and they
have been applied very well in many computer/robot vision problems. Although
a number of algorithms have been proposed with respect to feature detectors
and feature descriptors, a common deficiency for most of the existing algorithms
is that their computation costs are usually high. This deficiency limits the actual
application of local visual features, especially in those situations with high real-
time requirements, such as robot navigation, self-localization. When local visual
features are applied to omnidirectional vision, the original algorithms should be
modified because of its special imaging character, especially in determining the
feature regions [12].

To deal with these problems, we proposed two novel real-time local visual
features for omnidirectional vision [7]. Features from Accelerated Segment Test
(FAST) [13] is used as the feature detector to detect corner features in the
panoramic image. Then we adopted the feature region determining method pro-
posed in [14] to achieve rotation invariance. Rectangular image regions surround-
ing corner features are firstly determined in the radial direction, and then rotated
to a fixed orientation, as shown in Fig. 1(a) and Fig. 2(a). Finally, local binary
pattern (LBP) [15] and center-symmetric local binary pattern (CS-LBP) [15]
are used as feature descriptors to compute vectors to describe the information of
feature regions. So two algorithms named FAST+LBP and FAST+CSLBP were
designed. FAST, LBP and CS-LBP are computationally simple, so they can be
the basis of our real-time local visual features.

288 H. Lu et al.

We performed feature matching experiments by using the panoramic images in
the COLD database to determine the best algorithm parameters and to compare
with SIFT [16]. The final FAST+LBP and FAST+CSLBP with best algorithm
parameters are shown in Fig. 1 and Fig. 2 respectively. The descriptor dimension
of FAST+LBP and FAST+CSLBP are 236 and 72. The experimental results in
[7] show that our algorithms have better performance than SIFT. The com-
putation time needed to extract all the features in an image by FAST+LBP or
FAST+CSLBP is from 5ms to 20ms, so our local visual features can be extracted
in real-time, and they can be applied to computer/robot vision tasks with high
real-time requirements like place recognition for mobile robots in this paper.
Their performance will be compared with SIFT and SURF [17] when applied to
place recognition in Section 4.2.

(a) (b) (c)

Fig. 1. The final FAST+LBP algorithm. (a) A feature region on the panoramic image.
The green points are the detected corner features. (b) The scale-up feature region. (c)
The resulting feature descriptor. The descriptor dimension is 236.

3 The Proposed Place Recognition Algorithm Based on
Omnidirectional Vision

Bag-of-features [5][6] is a popular approach in computer vision/pattern recogni-
tion community, and has been applied successfully to object recognition, video
retrieval, scene classification, etc. SVMs [8] is one of the most successful clas-
sifier learning methods in pattern recognition. In this section, we try to use
bag-of-features to achieve robust and real-time place recognition based on om-
nidirectional vision for mobile robots by combining the real-time local visual
features presented in Section 2 and SVMs. Our place recognition algorithm is
divided into two phases: the phase of off-line training and the phase of on-line
testing. The diagram of the algorithm is demonstrated in Fig. 3.

In the phase of off-line training, we assume that the number of the panoramic
images for training is m, the number of place categories is M , and the corre-
sponding place category of each image is also known. The local visual features
fi are extracted from each training image, where i = 1...

∑m
j=1 nj, and nj is the

number of the local visual features extracted from the jth training image. After
clustering these features with K-means clustering algorithm, we get clustering

A Robust Place Recognition Algorithm Based on Omnidirectional Vision 289

(a) (b) (c)

Fig. 2. The final FAST+CSLBP algorithm. (a) A feature region on the panoramic
image. The green points are the detected corner features. (b) The scale-up feature
region. (c) The resulting feature descriptor. The descriptor dimension is 72.

Fig. 3. The diagram of our place recognition algorithm based on omnidirectional vision
and local visual features

290 H. Lu et al.

centers Ci, where i = 1...k, and k is the clustering number. These clustering
centers form the visual vocabulary which is similar as the word vocabulary for
text categorization.

After the clustering is finished, each local visual feature from the training
image has also been assigned to the corresponding cluster, which means that
the feature type is obtained. A feature vector xj is computed by normalizing
the histogram constructed with the number of occurrences of each type of the
features from the visual vocabulary in the jth training image, where xj∈Rk. The
feature vector is an effective representation of the image information, and it is
named as bag of features. Then the bags of features and the corresponding place
categories of all training images are used to learn M classifiers by applying the
famous SVMs software - LIBSVM [8] according to the one-vs-all strategy.

During the training process mentioned above, the algorithm setup like the dif-
ferent local visual features, the different clustering numbers, the different kernel
functions, and the completeness of the visual vocabulary, will affect the perfor-
mance of our place recognition algorithm. We will determine the best algorithm
setup by experiments in the next section.

In the phase of on-line testing, the local visual features are extracted from
the testing panoramic image (or the image acquired on-line by the robot’s vision
system), and then each local visual feature is assigned to a feature type according
to its distances to the clustering centers by the nearest neighboring principle. The
bag of features of the testing image is computed by normalizing the histogram
constructed with the number of occurrences of each type of the features from
the visual vocabulary in the testing image. Finally, this bag of features is used
as the input of the learned M classifiers, and the outputs are the classification
results and the corresponding classification probability. The classification result
with the largest classification probability is used as the final place category.

Omnidirectional vision is used in our algorithm, and better performance in
place recognition should be achieved than those methods only using perspective
images, because omnidirectional vision can provide a 360o view of the robot’s
surrounding environment in a single image, which will be verified by the exper-
imental results in the next section.

4 The Experimental Results

In this section, we will introduce the experimental setup firstly, and then test and
analyze that how the algorithm performance will be affected by the factors like
the choice of the local visual feature, the clustering number, the kernel function,
and the training condition. Therefore, the best algorithm parameters and the
best training condition can be determined. The performance will be presented
in detail when the best parameters and the best training condition are used.
Finally the real-time performance will be discussed.

A Robust Place Recognition Algorithm Based on Omnidirectional Vision 291

4.1 Experimental Setup

COLD is a freely available database which provides a large-scale, flexible test-
ing environment for vision-based place recognition. COLD contains 76 image
sequences acquired in three different indoor environments across Europe. The
images are acquired by the same perspective and omnidirectional vision in differ-
ent rooms and under various illumination conditions. We will use the following
six sequences of the panoramic images in COLD-Saarbruecken to perform our
experiments: seq3 cloudy1, seq3 cloudy2, seq3 night1, seq3 night2, seq3 sunny1,
seq3 sunny2. The “cloudy”, “night”, and “sunny” indicate the corresponding il-
lumination conditions under which the image sequences are acquired. Four places
are included in each of these image sequences: corridor, one-person office, printer
area, and bath room. Although there are only four places, the sequences are long-
term, and over 700 panoramic images are included in each sequence. More details
about COLD can be found in [4].

4.2 The Choice of the Local Visual Feature

In this experiment, we compare the algorithm performance when using different
local visual features: FAST+LBP, FAST+CSLBP, SIFT, and SURF. The clus-
tering number was set to be 200, and linear kernel was used in SVMs. During the
experiment, we used the image sequence seq3 cloudy1, seq3 night2, seq3 sunny2
for training respectively, and then used seq3 cloudy2, seq3 night1, seq3 sunny1
for testing respectively. Because there is a certain degree of randomness in the
clustering results obtained by using K-means clustering algorithm, the training
and testing processes were run several times to get the average place classification
rate. The experimental results are shown in table 1 when different local visual
feature was chosen. We see that the overall performance is much better when
using FAST+LBP or FAST+CSLBP than using SIFT or SURF, which also vali-
dates that the discriminative power of FAST+LBP and FAST+CSLBP are good.
There is not much difference in the overall performance when using FAST+LBP
or FAST+CSLBP. However, the descriptor dimension of FAST+CSLBP is 72,
and it is much smaller than that of FAST+LBP, which causes the lower compu-
tation cost of the place recognition algorithm. So we choose FAST+CSLBP as
the local visual feature in the following experiments.

4.3 The Clustering Number

In this experiment, we compare the algorithm performance affected by different
clustering numbers. FAST+CSLBP and linear kernel were used in the algorithm.
During the experiment, we used the image sequence seq3 cloudy1 for training,
and then used seq3 cloudy2, seq3 night1, seq3 sunny1 for testing respectively.
The training and testing processes were also performed several times to get the
average place classification rate. The experimental results are shown in Fig. 4
when the clustering number was set to be 50, 100, 150, 200, 250, 300, 350 and
400. In the general trend, the algorithm performance increases as the increase of

292 H. Lu et al.

Table 1. The place classification rates when choosing different local visual feature

training
seq3 cloudy1 seq3 night2 seq3 sunny2

FAST+LBP 0.9375 0.9245 0.8216
seq3 cloudy2 FAST+CSLBP 0.9611 0.9364 0.9468
for testing SIFT 0.8168 0.7282 0.8361

SURF 0.8313 0.7255 0.7954

FAST+LBP 0.9472 0.9621 0.9149
seq3 night1 FAST+CSLBP 0.9254 0.8659 0.9470
for testing SIFT 0.8495 0.8342 0.8892

SURF 0.7225 0.7849 0.8150

FAST+LBP 0.8867 0.7238 0.7493
seq3 sunny1 FAST+CSLBP 0.8666 0.6802 0.6863
for testing SIFT 0.8083 0.7362 0.6335

SURF 0.7760 0.7711 0.7813

the clustering number, which is consistent with the research results [5] in pattern
recognition community. But the increase of the clustering number will make the
vocabulary size larger and then cause higher computation cost in the testing
process, so a compromise should be made between the classification rate and the
clustering number. In the following experiments, the clustering number will be
set to be 300 as the best parameter.

50 100 150 200 250 300 350 400
0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

Clustering number

C
la

ss
ifi

ca
tio

n
ra

te

The classification rate with different clustering numbers in K−means

Fig. 4. The place classification rates when using different clustering number in the
algorithm

4.4 The Choice of the Kernel Function in SVMs

In this experiment, we compare the algorithm performance affected by using
different kernel functions in SVMs: linear kernel, RBF kernel, Sigmoid kernel.
FAST+CSLBP was used, and the clustering number was set to be 300 in the
algorithm. During the experiment, we used the image sequence seq3 cloudy1
for training, and then used seq3 cloudy2, seq3 night1, seq3 sunny1 for testing
respectively. The training and testing processes were also performed several times
to get the average place classification rate. The experimental results are shown

A Robust Place Recognition Algorithm Based on Omnidirectional Vision 293

in table 2. We see that there is not much difference in the overall performance
when using different kernel functions. Because linear kernel is computationally
simplest, it will be used as the best kernel function in the following experiments.

Table 2. The place classification rates when using different kernel function in the
algorithm

linear kernel RBF kernel Sigmoid kernel

seq3 cloudy2 for testing 0.9521 0.9632 0.9313

seq3 night1 for testing 0.9594 0.9477 0.9516

seq3 sunny1 for testing 0.9336 0.9475 0.9476

4.5 The Completeness of the Visual Vocabulary

In this experiment, the best algorithm parameters determined above were used,
which means that FAST+CSLBP and linear kernel were chosen, and the clus-
tering number was set to be 300. During the experiment, we used the image
sequence seq3 cloudy1, seq3 night2, seq3 sunny2 for training respectively, and
then used seq3 cloudy2, seq3 night1, seq3 sunny1 for testing respectively. The
average place classification rates were acquired to compare which image sequence
was best for training to achieve the best performance. The experimental results
are shown in table 3. We clearly see that the highest classification rate is achieved
when using the image sequence acquired under “cloudy” illumination condition
for training. The same conclusion can also be obtained from the experimental
results in Section 4.2. When the illumination condition is “night” or “sunny”,
and the robot is located in the position where the illumination is affected greatly
by the natural light, the acquired image may be less-exposed or over-exposed.
Then some local visual features cannot be extracted, which may cause that the
visual vocabulary is incomplete. The incompleteness of the visual vocabulary
will lead to the decrease of the place classification rate, which is the same as the
situation in text categorization that the incompleteness of the word vocabulary
will result in the decrease of the text categorization rate. The “cloudy” illumi-
nation is more stable than “night” and “sunny”, so the image sequence acquired
under “cloudy” illumination condition is best for training.

Furthermore, we used seq3 cloudy1, seq3 night2 and seq3 sunny2 jointly for
training, and then used seq3 cloudy2, seq3 night1, seq3 sunny1 for testing re-
spectively. The experimental results are also shown in table 3. The place classifi-
cation rates are improved when using seq3 cloudy2 and seq3 night1 for testing.
But when seq3 sunny1 is used for testing, the performance is still much worse
than that when only using seq3 cloudy1 for training. So in the following experi-
ments, seq3 cloudy1 will be used for training.

294 H. Lu et al.

Table 3. The place classification rates when different image sequences acquired under
different illumination conditions were used for training

training
seq3 cloudy1 seq3 night2 seq3 sunny2 all seqs

seq3 cloudy2 for testing 0.9296 0.9366 0.9523 0.9634

seq3 night1 for testing 0.9550 0.7190 0.9516 0.9707

seq3 sunny1 for testing 0.9380 0.5919 0.6379 0.8362

4.6 The Performance with the Best Parameters and Training
Condition

Through the experiments mentioned above, we have determined the best algo-
rithm parameters, and the illumination condition under which the best training
image sequence is acquired. In this experiment, the best parameters were used
in the algorithm. The best image sequence seq3 cloudy1 was used for training,
and seq3 cloudy2, seq3 night1, seq3 sunny1 were used for testing respectively,
so the algorithm performance can be analyzed in detail.

Because of the randomness of the clustering process, we only demonstrate
the best results after training several times. When seq3 cloudy2 was used for
testing, the detailed result of place classification is shown in table 4, where
the statistics of how many images being correctly and wrongly classified are
listed. The place classification rate is 0.9806. Some panoramic images which were
wrongly classified are shown in Fig. 5. When seq3 night1 was used for testing, the
detailed result of place classification is shown in table 5. The place classification
rate is 0.9594. Some panoramic images which were wrongly classified are shown
in Fig. 6. When seq3 sunny1 was used for testing, the detailed result of place
classification is shown in table 6. The place classification rate is 0.9429. Some
panoramic images which were wrongly classified are shown in Fig. 7.

Table 4. The detailed result of place recognition when using seq3 cloudy2 for testing

real places recognition results
↓ corridor one-person office printer area bath room

corridor 277 0 0 0

one-person office 5 106 0 0

printer area 2 0 77 0

bath room 7 0 0 246

From the experimental results, we clearly see that high place classification
rate can be achieved by using our algorithm. Most of those panoramic images
which were wrongly classified are acquired when the robot is located near the
border of two different places. Because the omnidirectional vision system can
provide a 360◦ view of the robot’s surrounding environment, when the robot is
located near the border, both of the scenes belonging to the two places will be

A Robust Place Recognition Algorithm Based on Omnidirectional Vision 295

Table 5. The detailed result of place recognition when using seq3 night1 for testing

real places recognition results
↓ corridor one-person office printer area bath room

corridor 290 11 0 1

one-person office 6 108 0 0

printer area 6 0 94 0

bath room 7 0 0 241

Table 6. The detailed result of place recognition when using seq3 sunny1 for testing

real places recognition results
↓ corridor one-person office printer area bath room

corridor 253 9 4 2

one-person office 2 95 0 0

printer area 5 0 99 0

bath room 21 0 0 263

included in the panoramic image. Furthermore, the panoramic images are not
labeled according to their content but to the position of the robot at the time of
acquisition. So in this case, the classification error cannot be completely avoided.

In comparison with the place classification results in [3], where only the per-
spective images in the COLD database were used, better performance is achieved
by our algorithm. This can be explained as follows: our method is based on om-
nidirectional vision, and the changes of the panoramic image with the different
robot’s positions are not so rapid as that of the perspective image, so omnidirec-
tional vision is more suitable for place recognition than perspective camera; our
FAST+CSLBP feature is discriminative and robust; the bag-of-features method
itself is powerful for place recognition.

(a) (b) (c)

Fig. 5. Some wrongly classified images when using seq3 cloudy2 for testing. Bath room
(a), one-person office (b), printer area (c) were wrongly classified as corridor.

4.7 The Real-Time Performance

The real-time performance is very important in the actual application for mobile
robots. Because the training process of our algorithm is off-line, only the on-
line testing process should be analyzed. In the testing process, the algorithm

296 H. Lu et al.

(a) (b) (c) (d)

Fig. 6. Some wrongly classified images when using seq3 night1 for testing. One-person
office (a), printer area (c), bath room (d) were wrongly classified as corridor. (b) Cor-
ridor was wrongly classified as one-person office.

(a) (b) (c) (d)

Fig. 7. Some wrongly classified images when using seq3 sunny1 for testing. Corridor
was wrongly classified as bath room (a), one-person office (b), and printer area (c). (d)
One-person office was wrongly classified as corridor.

consists of three parts: the extraction of local visual features, the construction of
bag of features, and place classification with SVMs. The computer is equipped
with 2.26 GHz Duo CPU and 1.0G memory. According to the experimental
results in [7], the computation time needed to extract all the local visual features
in a panoramic image by FAST+CSLBP is from 5 to 20 ms. When the best
parameters in Section 4.5 are used, the construction of bag of features and place
classification with SVMs can be finished in 10 ms. The whole place recognition
can be finished in 30 ms, so our algorithm can be run in real-time. We can clearly
see that using the real-time local visual features is very important to make our
algorithm satisfy the real-time requirement.

5 Conclusion

In this paper, the bag-of-features method is used to solve place recognition based
on omnidirectional vision for mobile robots by combining the real-time local
visual features proposed by ourselves and SVMs. The panoramic images in the
COLD database were used to perform experiments to test the affection on the
performance by different algorithm factors like the choice of the local visual
feature, the clustering number, the choice of the kernel function in SVMs, and
the completeness of the visual vocabulary. So the best algorithm parameters
and the illumination condition under which the best training image sequence
was acquired were determined, and the performance of place recognition with
these best parameters and the best training condition was analyzed in detail.

A Robust Place Recognition Algorithm Based on Omnidirectional Vision 297

The real-time performance was discussed finally. The experimental results show
that place recognition can be realized in real-time with high classification rate
by using the proposed algorithm.

References

1. Pronobis, A., Caputo, B., Jensfelt, P., Christensen, H.I.: A realistic benchmark
for visual indoor place recognition. Robotics and Autonomous Systems 58, 81–96
(2010)

2. Pronobis, A., Jie, L., Caputo, B.: The more you learn, the less you store: Memory-
controlled incremental SVM for visual place recognition. Image and Vision Com-
puting 28, 1080–1097 (2010)

3. Ullah, M.M., Pronobis, A., Caputo, B., et al.: Towards robust place recognition for
robot localization. In: Proceedings of the 2008 IEEE ICRA, pp. 530–537 (2008)

4. Pronobis, A., Caputo, B.: COLD: The Cosy Localization Database. The Interna-
tional Journal of Robotics Research 28(5), 588–594 (2009)

5. Csurka, G., Dance, C.R., Fan, L., et al.: Visual categorization with bags of key-
points. In: Proceedings of ECCV 2004 Workshop on Statistical Learning in Com-
puter Vision, pp. 59–74 (2004)

6. Sivic, J., Zisserman, A.: Video Google: A Text Retrieval Approach to Object
Matching in Videos. In: Proceedings of the 9th IEEE ICCV, pp. 1–8 (2003)

7. Lu, H., Zheng, Z.: Two novel real-time local visual features for omnidirectional
vision. Pattern Recognition 43, 3938–3949 (2010)

8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software
available at, http://www.csie.ntu.edu.tw/~cjlin/libsvm

9. Filliat, D.: A visual bag of words method for interactive qualitative localization
and mapping. In: Proceedings of the 2007 IEEE ICRA, pp. 3921–3926 (2007)

10. Fraundorfer, F., Engels, C., Nistér, D.: Topological mapping, localization and nav-
igation using image collections. In: Proceedings of the 2007 IEEE/RSJ IROS, pp.
3872–3877 (2007)

11. Cummins, M., Newman, P.: FAB-MAP: Probabilistic localization and mapping
in the space of appearance. The International Journal of Robotics Research 27,
647–665 (2008)

12. Svoboda, T., Pajdla, T.: Matching in Catadioptric Images with Appropriate Win-
dows, and Outliers Removal. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124,
pp. 733–740. Springer, Heidelberg (2001)

13. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 430–443. Springer, Heidelberg (2006)

14. Andreasson, H., Treptow, A., Duckett, T.: Self-Localization in non-stationary en-
vironments using omni-directional vision. Robotics and Autonomous Systems 55,
541–551 (2007)

15. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local
binary patterns. Pattern Recognition 42, 425–436 (2009)

16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

17. Bay, H., Ess, A., Tuytelaars, T., et al.: Speeded-Up Robust Features (SURF).
Computer Vision and Image Understanding 110, 346–359 (2008)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Ball Sensing in a Leg Like Robotic Kicker

Jonas Logghe, André Dias, José Almeida, Alfredo Martins, and Eduardo Silva

INESC TEC - INESC Technology and Science
(formerly INESC Porto) and ISEP/IPP - School
of Engineering, Polytechnic Institute of Porto

Rua Dr Antonio Bernardino de Almeida, 431, Porto, Portugal
{jonaslogghe,adias,jma,aom,eaps}@lsa.isep.ipp.pt

http://www.lsa.isep.ipp.pt

Abstract. The trend to have more cooperative play and the increase of game
dynamics in Robocup MSL League motivates the improvement of skills for ball
passing and reception. Currently the majority of the MSL teams uses ball han-
dling devices with rollers to have more precise kicks but limiting the capability
to kick a moving ball without stopping it and grabbing it. This paper addresses
the problem to receive and kick a fast moving ball without having to grab it with
a roller based ball handling device. Here, the main difficulty is the high latency
and low rate of the measurements of the ball sensing systems, based in vision
or laser scanner sensors.Our robots use a geared leg coupled to a motor that acts
simultaneously as the kicking device and low level ball sensor. This paper pro-
poses a new method to improve the capability for ball sensing in the kicker, by
combining high rate measurements from the torque and energy in the motor and
angular position of the kicker leg. The developed method endows the kicker de-
vice with an effective ball detection ability, validated in several game situations
like in an interception to a fast pass or when chasing the ball where the relative
speed from robot to ball is low. This can be used to optimize the kick instant or
by the embedded kicker control system to absorb the ball energy.

Keywords: Middle Size League, Ball sensing, Leg like Kicker.

1 Introduction

Robocup is an international project that aims to promote robotics by providing a stan-
dard problem (soccer game) as a central topic of research, with the intention of produc-
ing innovations (hardware and software) to be applied to society and industry. The ulti-
mate goal of the RoboCup project is ”By 2050, to develop a team of fully autonomous
humanoid robots that can win against the human world champion team in soccer.” [3].
To achieve this, much research has yet to be done in several areas, such as mechatronics,
perception in highly dynamic and noisy environments, intelligent control, cooperative
work, players coordination, strategies adaptation and learning, only to name a few.

To play football, some required fundamental skills are ball control and manipulation,
passing and receiving the ball, intercepting and kicking a ball.

In MSL, a lot of work has been done in this area. The kicker and ball handling
mechanisms suffered several improvements at all levels, (mechanic and electronic), in

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 298–309, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Ball Sensing in a Leg Like Robotic Kicker 299

Robocup’s past years. By 1997, the MSL robots had no kicker devices[13]. The robots
only pushed the ball around, some using a passive finger like ball handler mechanisms.
In the following years teams started to develop kicker mechanisms. Those could be
based in spring[13], pneumatic[14] and solenoid[15][9] devices. By 2002/2003 some
teams started using stronger spring[4][7] and solenoid kicker[8] devices in competi-
tions. Due to the advantage of having, in competition, a strong shot many teams started
to use similar systems. Ball handling mechanisms evolved from passive fingers to active
fingers and roller mechanisms. There was always some controversy about the usage of
active rollers. Although there were some attempts in the rules to restrict roller based
devices, namely around 2003/2004, those rules’ spirit was later on a bit distorted, lead-
ing to different rules were those devices are allowed if the ball ”rotates in its natural
direction of rotation”.

Only few research efforts were done in different types of ball handling devices. In
2003, Mu-Wallabies team presented a robot with an arm like kicker[5], and Philips team
had demonstrated some prototypes for ball stopping devices[7]. Later, some research
was done concerning ball stopping devices [11][15]. But, approaches to control the
ball without continuous robot-ball contact are more rare. In Robocup’s 2010 technical
challenge the Tech United team presented a control behavior to dribble forward the
ball with small taps[15]. And in 2011 ISePorto’s team started using only small kicks to
move forward in the field and to intercept the ball[12].

Currently several MSL teams use sophisticated mechanic roller based ball handling
devices to have more precise kicks[6], but that type of ball handling limits the capability
to kick a moving ball without stopping it and ”sucking/grabbing it”. Additionally it is
not adequate to dribble the ball in a noncontinuous contact. Having in mind the classic
definition ball dribbling: ”dribbling refers to the maneuvering of a ball around a de-
fender through short skillful taps or kicks”[10]. And the desire to have games similar to
human football games, associated to the increase of game dynamics in Robocup MSL
League, motivates a radical change in the ball manipulation skills.

For development of skills like short skillful taps or kicks, first-touch control or one-
touch play, one key problem is latency and low rate of the measurements provided by
the ball sensing systems typically used, based in vision or laser scanner sensors.

Focus on the Robocup Middle Size League, the goal of this paper is to present the
development and results of a novel ball sensing approach for a leg like kicker, developed
to enable the robot to receive, intercept and kick a fast moving ball, and pass and dribble
it forward with a similar behavior to that of a human soccer player.

The robots from ISePorto Team use a leg coupled through gears to a DC motor with
an optical encoder, that acts simultaneously as the kicking device and as a low level
ball sensor. The 2011 version of the system uses only the movement and velocity of the
kicker to detect the ball. To receive a ball the kicker is moved to a receiving position
in front of the robot, this way an incoming ball can move the kicker a certain distance.
When kicker leg is pushed back by some threshold value (A on Fig.3) and the kicker
reaches a certain velocity a kick is performed (B on Fig.3). This system suffers from
a sensitivity problem. When the robot was driving and expecting a ball, the sensing
mechanism sometimes reacted on the movement of the robot. Also it was not possible
to intercept a moving ball by chasing after it and let it hit the kicker.

300 J. Logghe et al

Fig. 1. Middle Size League Robot Fig. 2. Kicker Device

Fig. 3. kick with current detection system

The new ball sensing method presented in this paper, runs in the embedded kicker
control system and improves the capability of ball sensing in the kicker, by combining
higher rate measurements from the torque and energy in motor and angular position
of kicker leg. It provides detection events within a few milliseconds, that can be used
both in the kicker control, for ball reception or kick instant optimization, or by the robot
control applications running in the main robot computer. The information provided by
this new sensor is complementary to other available in the robot perception system, and
is used in the low level feedback and in state transitions in the embedded kicker control
system.

The outline of this paper is as follows. In section 2, the problem of low level ball
sensing is analysed in order to identify a set of game situations that must be distin-
guished by the system. Then a model of the kicker is presented. In section 4, alternative
detection methods, like: thresholds in motor current (proportional to the motor torque),
derivative of the current, and integration of current (proportional to the energy) are pro-
posed, tested and compared in simulation. Issues of the implementation of the detection
methods in the embedded kicker control system are addressed in section 5, and results
of the its application in the robots are presented in section 6. Finally, some conclusion
are drawn about the implemented method and some future improvements are proposed.

Ball Sensing in a Leg Like Robotic Kicker 301

2 Requirement Analysis

In this section, we will discuss the behavior of the kicker during a Middle Size League
in order to typify game situations that could influence the low level ball detection.

– Receiving a ball: In a human soccer game, the player receives the ball by using the
foot against the ball. During a game, this behavior (see Figure 4) occurs with high
frequency, specially if the team is performing cooperative actions by passing and
receiving the ball. The ability to sense the ball in this situation is harder when the
ball comes with lower speed.

– Robot acceleration: When accelerating, the inertia of the kicker causes it to move
in the opposite direction of the acceleration (see Figure 5). With the former detect-
ing mechanism the kicker sometimes performed a kick in this situation.

– Robot collision: Sometimes during a game the robot collides with another robot.
If this happens when the robot is in the receiving position the kicker will move as
a result of the collision (see Figure 6). This situation was analysed but is not the
priority of the new sensing mechanism.

– Chasing a ball: This situation is the hardest one to detect. When a ball is moving
with a certain velocity and the robot wants to intercept it for kicking or receiving
the ball while moving, he needs to chase the ball (see Figure 7). When the ball hits
the kicker the relative velocity of the ball to the kicker is very small, becoming hard
to detect.

Fig. 4. Receiving a ball Fig. 5. Robot acceleration

3 Kicker Model

To be able to do quick testing and understanding how the dynamics of the robot and
kicker work a model was built in Matlab/Simulink [1]. The model is based on some
equations that were derived from the schematic in Fig.8.

The first equation is the one from the electrical circuit.

V = E +R× i+
di
dt

L (1)

302 J. Logghe et al

Fig. 6. Robot collision Fig. 7. Robot chasing a ball

Fig. 8. schematic of the model

Here in R is the resistance, and L the inductance of the coil in the motor. E is the
back electromotive force that is produced by the rotating motor and i the motor current.
Equation 2 gives the relation of the back electromotive force to the velocity. KEMF is
the electromotive force constant.

E =
dθ
dt

kEMF (2)

The torque produced by the motor T is related to the current in the armature by the
torque constant kt as shown in equation 3 .

T = kt × i (3)

The torque produced by the motor is equal to the sum of all the torques that work in the
opposite direction. In this sum the first term is the inertia of the rotor J that generates
torque during a acceleration or deceleration. The second term is a torque by the damping
of the system , here in b is the damping ratio of the motor. The third term is the sum of
all the torques that are generated by the kicker system.

T =
d2θ
d2 J+

dθ
dt

b+Tl(θ) (4)

In equation 5 the sum of the torques generated by the system is presented. The first
term is the torque generated by the inertia of the kicker, gears and connecting axles.
The second term stands for the torque due to the friction and all the other influences

Ball Sensing in a Leg Like Robotic Kicker 303

that were not possible to calculate, so the c term was found by experiments. The last
term is the torque created by the gravity of the kicker when it is not in vertical position.

Tl(θ) =
d2θ
d2 Jkicker +

dθ
dt

c+Tgravity(θ)+Tload (5)

These equations resulted in a model that was tested and compared with the logs perform
in the robot. The dynamic response of the model is comparable to real values. The de-
veloped model was aggregate into a subsystem where a position PID control is applied
to. The model was originally designed to test PID settings of the kicker and not to test
detection methods, although it can be used if taken in account that the results must be
compared to reality. In this system different loads can be added in the Tload allowing to
simulate different levels of charges (different types of kicker material).

4 Ball Sensing Methods

Having in mind the identified game situations and the requirements for the ball detec-
tion method, four detection methods were tested and compared in simulation using the
developed kicker:

Peak current - The maximum current that occurs during a game situation;
Maximum derivative of the current - The current is differentiated and the maximum

value used as a sensing measurement;
Average derivative - The derivative of the current between the moment that the current

starts to rise until reaches its maximum;
Integrated current - The current is integrated from the moment it starts to rise until

reaches its maximum.

Those four methods were applied to the model for three of the 4 situations. The situation
where the robot collides with another robot is not simulated because there are many
different ways this can happen and there is not much data available to compare results
with.

Table 1. Overview of detecting methods on the model

Game situations
incoming ball acceleration chasing a ball

Detecting method

Peak current [A] 1.42 0.29 0.9
Max derivative [A/s] 131 4 82

Average derivative [A/s] 10.14 0.454 6.42
Integrated current [A.s] 0.145 0.050 0.092

On a first observation all of the applied methods could be used to detect the ball
and distinguish the different situations. But when applying the detecting methods to the
robots there are some technical limitations and problems that require a modification of
the detection methods that are detailed in next section.

304 J. Logghe et al

5 Embedded Implementation of the Sensing Methods

The kicker sensing control architecture presented in figure 9 is characterized by two
hierarchical levels of action. The lower level is implemented in a dedicated embedded
hardware responsable for acting in the following tasks:

Fig. 9. Kicker Sensing implemented Architecture

– Motion Control: this task will perform control in position of the kicker through
a proportional-integral-derivative controller based on command messages (KICK,
RCV BALL, KEEP BALL, PREPARE RCV BALL) received by the CAN proto-
col or by the ball sensing task at low level.

– Ball Sensing: based on the information received from the motor current after being
filtered and the position of the kicker this task processes the ball sensing methods by
sending to the higher level (via CAN) all relevant information (continuous values
and discrete events) and defining actions to the motion control task.

5.1 Current Filtering

When starting to monitor the current in the different situations one of the first things
that came clear was the poor quality of the current signal. Therefore it was necessary to
do some filtering on the incoming current signal.

Since the sampling frequency of the motor current can be much higher than the
frequency of the current variations by the movement of the kicker, and the frequency
of some noise sources is also higher, therefore a low-pass filter can reduce considerable
the noise amplitude. A FIR (Finit Impulse Response) filter was chosen, since it does not
require to calculate the filter output for every input like in an IIR filter (Infinite Impulse
Filter). The output of this kind of filter is the sum of the current and previous inputs
multiplied by filter coefficients. The filter structure:

[h]y(n) =
M

∑
i=0

yix(n−i) (6)

Ball Sensing in a Leg Like Robotic Kicker 305

Fig. 10. Unfiltered signal Fig. 11. Filtered signal

A downside for filtering is the delay on the filtered signal. This delay is a result of
working with previous values. The delay depends on the sampling frequency Fs and
filter order M:

delay =
M− 1
2×Fs

(7)

To design the filter the Matlab Signal Processing Tool (sptool)[2] was used. With this
tool the filter coefficients for a determined filter specification were calculated.

Initially the current sampling and ball sensing happened in the same interrupt that
was called every 1.4 ms. Considering the slope of a soft ball hitting the kicker has
a typical duration of approximately 30ms and the detection had to happen as fast as
possible, there was not much room for delay. Originally the sampling of the current
happened at the same interrupt as the algorithm for the kick detecting. This interrupt
is called every 1.4ms. So the sampling frequency is 714Hz. The first filters developed
sampled and calculated at this speed. To make a filter with the required attenuation of
the noise, the order was too high and so was the delay. To obtain a high order filter
without much delay in the filtered signal the sampling of the current was put in another
interrupt that is called every 0.14ms so the sampling frequency is 7.14KHz. The cal-
culating of the filter still happens at the original speed (714Hz). It is not necessary to
calculate it more frequently than it is used and it would consume too much time from
the cpu. In this way a 10 order filter is obtained without the cost of lots of cpu time and
delay. In Fig.11 is depicted the result of the 10th order filter that is used. The amplitude
of the noise is reduced more than 5 times, and this makes the signal much more suitable
for processing.

5.2 Applying the Detection Methods in the Embedded Control System

When applying the detection methods in the embedded control system to the robot some
issues popped up immediately that led to some changes in the methods.

In the maximum derivative method, the numeric differentiation of the current signal
is not adequate to the noise level in the current measurements. Although it work well
with the developed kicker model in simulation, it does not behave well in the noisy
measurements in the robot. This method caused a lot of false detection, even after the
current filtering, and was not used in the tests with the robot.

The integrated current method had some problems as well. When the kicker was at its
receiving position, the noise in the current signal made the integrated value reach fairly

306 J. Logghe et al

high values. To prevent this, reset conditions for the integrated value were programmed.
A first reset condition applied when the current signal is lower than a threshold value
(0.2A), is when the sign of the derivative changes. So it may be the start of a new slope
which means that a new measurement should be started, so the integrated value is reset
to zero. A second reset condition is used when the current has a value bigger or equal
to 0.2A . In this case the derivative of the kicker angle is calculated and compared to
the previous calculated value. If the sign of the derivative changes the integrated value
is reset to zero. These two reset conditions make it certain that the integrated value is
only from the last slope of the current.

6 Results

The methods previous presented were implemented in the embedded controller and
applied to the different game situations and the table 2 was obtained. When comparing
the values in table 2 there should be taken in consideration that these values are typical
values for a qualitative analysis.

Table 2. Overview of detecting with real data P=4

Game situations
incoming ball acceleration collision chasing a ball

Detecting method
Peak current[A] 1.9 1.5 1.5 1.4

Differentiation[A/s] 50 40 60 50
Integrated current[A.s] 0.058 0.058 0.046 0.115

Based on this table we can draw some conclusions about the detection methods. The
differentiation method prove to be useless in reality: all the values are in the same range
of magnitude. With the peak current method only an incoming ball can be detected.
The integrated current method is sensitive enough to sense a ball even in the chased
scenario. This is a major improvement with regards to previous implementations, so
this method is the preferred one to be further refined and explored.

To improve the detection, the PID settings of the controller that keeps the kicker
in place had to be adjusted. To better distinguish the incoming ball situation from the
acceleration situation the P setting of the controller was adjusted from P=4 to P=15.
The idea behind this is that the torque generated by the inertia of the kicker is not
influenced by the PID settings , it only depends on the acceleration. When the P action
of the controller is set firmer it will bring the kicker faster in a balanced position when
accelerating so the integrated value is reset quicker. The current will be the same as the
torque generated by the acceleration is constant. For the incoming ball scenario a higher
P-action of the controller means it will be decelerated faster when it hits the kicker so
there will be a bigger torque generated. In theory, the integrated value should stay the
same because it resembles the energy that the motor has to put into the kicker to stop
the ball. In both cases the ball has the same speed and therefore the value should be
the same. The detection methods applied to current logs of the robot with the P=15 are
given in table 3.

Ball Sensing in a Leg Like Robotic Kicker 307

Table 3. Overview of detection with real data P=4

Game situations
incoming ball acceleration collision chasing a ball

Detecting method
Peak current [A] 4 1.4 2.5 1.8

Differentiation [A/s] 140 20 110 40
Integrated current [A.s] 0.092 0.035 0.058 0.069

Fig. 12. Receiving soft ball Fig. 13. Acceleration

Fig. 14. collision with an opponent Fig. 15. Chasing a ball

Here in you can see that the integrated value of the ball hitting the kicker increase
when the P component of a PID control is higher. If we analyze the values in this table
it’s clear that the same conclusions can drawn for the peak current and for the differ-
entiation method as the former previous PID configuration. The big difference is the
integration method. For the new P both incoming ball and chasing-a-ball game situa-
tions are well distinguish from the other two non ball situations. Only a hard collision
could be misleading and therefore confused with a chasing of a ball situation. Some
logs of the different situations with the hard PID-settings are given in Fig.12 to Fig.15.
In these figures you can see the efective action of the two current integration reset con-
ditions in the different game situations.

308 J. Logghe et al

7 Conclusions and Future Work

The paper has presented the development and validation of ball sensing and detection
method that uses high rate and low latency measurements of the torque and energy
in motor as well as the angular position of the kicker leg. This is integrated in the
embedded motor control of the kicker device allowing it to detect the ball before it
starts to move away from the kicker, so that the kick instant can be optimized. A set
of game situations that must be distinguished by the system were hereby identified.
Several detection methods were proposed and tested both in simulation, with a kicker
model built for that propose, and with the robot. The current integration method, that
provides an energy like measurement, shown to be superior to the other tested methods,
is the only method that has the ability to detect an incoming ball when the robot is
standing still and when the robot chases a ball. With the higher P-value in PID the
detection value for chasing a ball is close to the one of a collision, and that could lead
to some wrong detection of the ball. For that we propose some solutions. The first
one is to use different PID settings for different situations. In the receiving ball we
can use a more hard settings and for chasing a ball use a more soft setting. Another
orthogonal solution would be to integrate information from the accelerometer of the
robot in the detection. When the robot has a collision with something this would result
in a big acceleration or deceleration. The accelerometer module is connected to the
same CAN bus where the embedded kicker control system is also connected to. When
a big deceleration or acceleration is detected the kick sensing mechanism could be
temporally shutoff and reactivated when the robot is stable again. To achieve optimal
settings more testing should be done with data collected during a game. There is still
some room for improvement with the kick itself. Presently, when the ball is detected a
kick is immediately performed. It would be better that the kicker keeps moving back
after detection and performs the kick when its position is at its maximum without losing
contact with the ball. This way the kicker would have an increased contact with the ball
during a kick, resulting in a harder kick. Another application is to develop a reception
control mode that once the ball is detected it decelerates it.

Acknowledgment. The authors acknowledge the major support given by the ISEP-
IPP Institution, by the INESC TEC, to this project. This work is financed by the
ERDF - European Regional Development Fund through the COMPETE Programme
and by National Funds through the FCT - Portuguese Foundation for Science and
Technology within project FCOMP-01-0124-FEDER-022701 and under Perception-
Driven Coordinated Multi-Robot Motion Control Project with reference PTDC/EEA-
CRO/100692/2008.

References

1. Mathworks - simulink,
http://www.mathworks.com/products/simulink/

2. Mathworks - sptool,
http://www.mathworks.com/help/toolbox/signal/ug/f0-320.html

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/help/toolbox/signal/ug/f0-320.html

Ball Sensing in a Leg Like Robotic Kicker 309

3. Robocup homepage, http://www.robocup.org/
4. Warmerdam, T.P.H., Peijnenburg, A.T.A.: Philips cft robocup team description. In: RoboCup

2002: Robot Soccer World Cup VI (2002)
5. Cameron, D., Jahshan, D., George, D.: Mu-wallabies 2003 team description. In: Polani, D.,

Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003: Robot Soccer World Cup VII
on CD, vol. 3020, XVI 767 p. Springer, Berlim (2003, 2004) ISBN: 3-540-22443-2

6. de Best, J., van de Molengraft, R., Steinbuch, M.: A novel ball handling mechanism for the
robocup middle size league. Mechatronics 21(2), 469–478 (2011)

7. Dirkx, B.: Philips cft robocup team description. In: Nardi., et al. (eds.) RoboCup 2004: Robot
Soccer World Cup VIII. LNCS (LNAI), vol. 3276. Springer, Berlim (2004)

8. Monteiro, J., Moutinho, I., Silva, P., Silva, V., Ribeiro, F., Braga, P.: Minho robot football
team for 2003. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003:
Robot Soccer World Cup VII on CD, vol. 3020, XVI 767 p. Springer, Berlim (2003, 2004)
ISBN: 3-540-22443-2

9. Janssen, R.J.M., Meessen, K.J., de Best, J.J.T.H., Bruijnen, D.J.H., Naus, G.J.L., Aan-
genent, W.H.T.M., van den Berg, R.B.M., van de Loo, H.C.T., Heldens, G.M., Vugts, R.P.A.,
Harkema, G.A., van Brakel, P.E.J., Bukkums, B.H.M., Soetens, R.P.T., Merry, R.J.E., van de
Molengraft, M.J.G., Kanters, F.M.W., Hoogendijk, R.: Tech united eindhoven team descrip-
tion 2011 (2011),
www.techunited.nl/media/files/teamdescriptionpaper2011.pdf

10. John, M., Miller, F.P., Vandome, A.F.: Dribbling. VDM Verlag Dr. Mueller e.K. (2011)
11. Hoogendijk, R.: Design of a ball handling mechanism for robocup. Master’s thesis, Technis-

che Universiteit Eindhoven (2007)
12. Dias, A., Silva, H., Almeida, C., Dias, N., Lima, L., Santos, T., Costa, I., Almeida, J., Martins,

A., Silva, E.: Iseporto robotic soccer team for robocup 2010: Improving defence and dynamic
passing. In: RoboCup, Istanbul (2011)

13. Nassiraei, A.A.F., Takemura, Y., Sanada, A., Kitazumi, Y., Ogawa, Y., Godler, I., Ishii, K.,
Miyamoto, H., Ghaderi, A.: Concept of mechatronics modular design for an autonomous
mobile soccer robot. In: Proc. Int. Symp. Computational Intelligence in Robotics and Au-
tomation, CIRA 2007, pp. 178–183 (2007)

14. Pinheiro, P., Costelha, H., Neto, G., Pires, V., Arroz, M., Vecht, B., Lima, P., Custodio, L.:
Isocrob 2004: Team description paper. In: Robocup (2004)

15. Bukkems, B.H.M., Kanters, F.M.W., Meessen, K.J., Willems, J.J.P.A., Merry, R.J.E., van de
Molengraft, M.J.G., Aangenent, W.H.T.M., de Best, J.J.T.H.: Tech united eindhoven team
description 2009 (2009),
http://www.techunited.nl/media/
files/teamdescriptionpaper2009.pdf

http://www.robocup.org/
www.techunited.nl/media/files/teamdescriptionpaper2011.pdf
http://www.techunited.nl/media/files/teamdescriptionpaper2009.pdf
http://www.techunited.nl/media/files/teamdescriptionpaper2009.pdf

Cooperative Global Tracking

Using Multiple Sensors

Roman Marchant, Pablo Guerrero, and Javier Ruiz-del-Solar

Department of Electrical Engineering,
Universidad de Chile,

Avenida Tupper 2007, Casilla 412-3, Santiago, Chile
{romarcha,pguerrer,jruizd}@ing.uchile.cl

http://www.die.uchile.cl/

Abstract. Multi-robot systems are increasingly present in nowadays
applications. In order to allow an effective decision making, a reliable
world representation is required. In a team of robots performing a given
task, it is beneficial to share information about the world. In this work, a
multi-object, multi-sensor and cooperative tracking method is proposed
for the Robocup Standard Platform League (SPL), where two teams of
humanoid robots play soccer against each other. Each robot is equipped
with two low-cost, noisy, and narrowed-field-of-view cameras and two
noisy sonar sensors. In addition, they are endowed with a wireless com-
munication hardware. The on-board computer is a low capacity process-
ing unit (x86 500[Mhz]). The proposed tracking system uses all these
hardware elements and it is distributed, in the sense that it is executed
in every robot. The proposed tracking system is validated in simulations
and in real experiments. Main results show an important improvement
on simulated and real results when tracking mobile-objects.

Keywords: Multi-robot tracking, Kalman Filter.

1 Introduction

Modeling a dynamic environment, i.e. determining the spacial location of the
objects of interest, is one of the central challenges in mobile robotics. The exis-
tence of errors in the model of the environment may lead to mistaken actions.
Therefore, the reliability of this model is of vital importance for making correct
decisions.

Multi-robot systems are increasingly present in real applications. For instance,
mining, agriculture and human-care require that multiple robots share informa-
tion in order to succeed. Due to the small portion of the environment perceived
by every robot, sharing sensory information may allow to expand largely the
accessible portion of the environment.

The here-addressed problem is the multi-robot estimation of the state of mul-
tiple objects in a dynamic environment. The focus of this work is to define a
cooperative tracking methodology and a matching algorithm. The complexity

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 310–321, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.die.uchile.cl/

Cooperative Global Tracking Using Multiple Sensors 311

of this problem depends strongly on the application being addressed, because
the environment and the robot hardware determine how hard the tracking of
multiple objects in a particular scene is. The most significant aspects of the
environment that determine the complexity of the problem are the number of
objects, their velocity variability and the size of the arena. While the robot
hardware variables that affect are the range, precision and field-of-view of the
robot sensory hardware, as well as the computational capabilities of the robot.
In addition, the precision of the robot movements are important for odometry
calculation.

In this work, a multi-object, multi-sensor and cooperative tracking method
is proposed for a Robocup Standard Platform League (SPL) environment. The
estimation of the state of mutiple objects (in this case the poses of the robots
and the ball) is of central importance in the SPL since it allows the existence
of complex behaviors such as making passes that consider the positions of the
partners and opponents, avoiding robots that are not being currently perceived.
The proposed tracking system is distributed, in the sense that it is executed in
every robot.

The main contribution of this paper is that it proposes a cooperative multi-
object, multi-sensor and high-rate tracking methodology for a real application,
were the robots have a low capacity processing unit.

This paper is organized as follows: First, in section 2, some related work is
reviewed. Then, the proposed methodology for tracking mobile objects is de-
scribed on section 3. Section 4 presents experimental results on a simulated and
a real robot. Finally, section 5 draws some conclusions and recommends future
work.

2 Related Work

In the past decades, vast works have addressed cooperative state estimation in
multi-robot systems. Those works have been implemented on a wide variety of
applications, such as UAVs [1, 2], robot soccer [3–9], water vehicles [10] and
general purpose robotics [11–13].

Regarding cooperative state estimation, it is possible to differentiate between
two main areas of research. The first one is the cooperative tracking of one
or more interesting objects in a scene [1–5, 7–9, 11–13], and the second area is
focused on improving the localization of a mobile robot by adding other robots
perceptions as inputs to the localization module [3, 6, 10].

Our work is very similar to [9], which explores deeply the areas of coordina-
tion and cooperation in multi-robot systems. Particularly on the mobile-object
cooperative-tracking area, a classical Kalman filter approach is used. Problems
such as measurement delay, distributed implementation, clock synchronization
and how external information influence local estimations are addressed in [9].
The main limitation of that system is that it is designed and tested for an omni-
directional perception which greatly simplifies the matching problem.

A similar approach is addressed by [4] and [8]. In these works, robots and
obstacles are detected using a laser range finder. On the other hand, the ball is

312 R. Marchant, P. Guerrero, and J. Ruiz-del-Solar

detected using visual perceptions. These works present the idea of multi-object
tracking using a Kalman Filter for every object on the scene, although results are
only focused on the ball tracking and no results are presented for robot tracking.
The main drawback is the use of a central computer that makes an estimation
of every robot and then sends the fused information back to all team members.

The main difference of the here-proposed global tracking methodology is that
it is designed and implemented in an humanoid robot soccer platform, were nar-
rowed field-of-view cameras are used, which reduces the number of perceptions
to any object. Furthermore, it merges the information from sonars, cameras
and other robots in a distributed manner. Another important difference is that
in this work an evaluation of the proposed methodologies, using a laser-based
ground-truth system, is presented. Moreover, a quantitative comparison between
different tracking approaches is shown.

3 Global Tracking Methodology

3.1 Framework

The methodology is designed to operate in a robot soccer environment, although
it may be generalized to other environments. Teams of soccer robots have a group
goal, therefore the chosen application exploits the need of cooperation between
robots. The teams in the SPL use Nao humanoid robots [14], which are equipped
with two noisy sonar sensors and two low cost cameras. Narrowed-field-of-view
cameras perceive objects with low frequency, therefore the sonar sensors are used
as a supporting feature when no camera perceptions are available for an object.

In robot soccer as in most common situations, a global static origin,O, may be
defined. Several objects are present and some of them may be used as landmarks
to infer the auto-localization, such as goals, lines and corners among others.

Objects may be classified depending on their pose behavior through time
relative to a fixed coordinate system [15]. Fixed objects are those whose kinematic
state (KS) is constant through time (e.g. goals, lines, corners), whereas mobile
objects have a variable KS through time. Mobile objects may be classified into
passive or active depending on the source that determines their KS variations.
Passive objects change their KS only due to actions executed by other objects
(e.g. ball). On the other hand, active-objects have KS changes determined by
their own actions. Finally, active objects may be classified into partner or non-
partner. Partner objects share information (e.g. teammates) while non-partner
robots do not (e.g. opponents). In the robot soccer application, objects move on
a two dimensional plane, and the kinematic state (KS) of an object is defined as
a vector that contains its pose, k = (x, y, θ)T . (x, y) is the position of the object
relative to O and θ is the orientation of the object relative to O.

The control software in each robot must solve a complex problem and run
in real time. Given the scarce perceptual information, the low availability of
computational resources, and the requirement of a minimum frame rate (30fps),

Cooperative Global Tracking Using Multiple Sensors 313

the image processing algorithms cannot be as complex as the state of the art
suggests. In order to achieve a high-level goal, several issues must be previ-
ously solved. Therefore, a software architecture consisting of four modules is
implemented in each robot (Actuation, Decision Making, Perception and World
Modelling). A detailed description of the here-relevant modules, Perception and
World Modelling, is presented in the following paragraphs, while the connections
between this two modules are illustrated in Fig. 1.

Perception

This module processes information coming from the sensors of the robot. The
visual-perception sub-module classifies color pixels and then groups them into
color blobs. Then, the objects are detected based on a set of rules applied to
the blobs. For every visually detected object, a Gaussian PDF, z, is generated
for the pose of every object (containing the orientation only when necessary)
relative to the observer robot. The mean of z, z, is the calculated position
using geometrical characteristics of the blobs and the 3D-pose of the camera.
The covariance matrix Σ is calculated using previously obtained statistics. The
perceived objects PDFs {Z} are partitioned into fixed {zf}, passive {zp} and
active {za} perceived objects.

The sonar-perception sub-module receives a set of up to nine measurements
per sonar. Each value represents the Euclidean distance, dri , between the ob-
server robot and an i-th unknown object candidate. An unidimensional PDF,
w, is generated for each measurement. The mean, w, is the measured distance
dri , and the variance, δ, is previously obtained by an off-line statistic analysis.
Additionally, the sonar ID wid is included for each PDF (wid = 0 for right sonar
and wid = 1 for left).

Finally, {zf}, {zp}, {za}, {w} are transmitted to the World-Modelling mod-
ule, as shown in Fig. 1.

Visual
Perceptor

Real
World

Sonar
Perceptor

Perception Module
World Modelling Module

Local Tracking

EKF Trackers

Global Tracking

EKF Trackers

Self- Localization
EKF

ith robot

To Partners

From Partners

Collaborative
Global Estimates

{zf}

{za},{zp}

{w}

fL

{kf}

{fext}

{ym}

Fig. 1. Perception and World Modelling connection details

314 R. Marchant, P. Guerrero, and J. Ruiz-del-Solar

World Modelling

This module estimates the KS of the objects in the environment using infor-
mation provided every time-step by the Perception module. Due to the noise
and possible outliers generated by the Perception module, the World-Modelling
module implements filtering and processing stages in order to achieve a precise
representation of the KS of the surrounding objects.

The KS of an object is the mean of a Gaussian PDF, which is estimated for
every object using a classical Extended Kalman Filter (EKF) as a tracker. The
state variable x is the KS k of the object. The process model, f , its variance,
R, the observational model, h, and its variance, Q, are defined for each tracker
depending on the object type and observation source.

The World-Modelling module processes each received perception in a fashion
that depends on its type. The {zf} PDFs are delivered to the local tracking
sub-module that implements a tracker for each object present in an a-priori-
known map. The predictive stage for each tracker uses the odometry of the
robot to move the estimated PDFs. The corrective stage uses the mean of zf

as an observation and Σ as the variance for a zero mean Gaussian PDF of the
observational model.

The Self-Localization sub-module uses the KS estimations of the fixed objects,
{kf} (goals, lines and corners among others), to estimate recursively a Gaussian
PDF (fL) of the current KS of the robot using an EKF-based self-localization
algorithm. This localization estimation is relative to O.

The global tracking sub-module uses {za}, {zp}, {w}, fL and the exter-
nal estimated PDFs of the other robots mobile objects, {fext}, as information
sources.

Let us define the estimated PDFs of all mobile objects generated by the global
tracking methodology as {ym}. In addition, an expression is defined for active,
{ya}, and passive, {yp}, objects. These estimations are relative to O.

Finally, the World-Modelling module transmits the estimated PDFs, relative
to O, of all mobile objects {ym} = {ya} ∪ {yp} ∪ {fL} to the Decision-Making
module and other robot’s World-Modelling module.

The tracked objects KS is estimated using the methodology detailed in the
following section.

3.2 Cooperative Global Tracking Methodology

The here-described methodology allows the tracking of multiple objects using
multi-sensor ({zp}, {za}, {w}) and cooperative {fext} information.

A filtered PDF, ym, referenced to O, is estimated for each mobile object using
an EKF as a tracker. The maximum number of trackers, N , is previously deter-
mined according to a-priori knowledge of objects on the scene. In this particular
framework, there are two types of mobile objects: Np partner and No opponent
robots, therefore N = Np +No. Initially, all trackers are deactivated and linked

Cooperative Global Tracking Using Multiple Sensors 315

to a particular object with an unique ID. They are activated or deactivated on
each time-step depending on a covariance value threshold. In every time-step,
a predictive stage is executed for each active global-tracker, the predictive stage
has no inputs since odometries are not directly received from other robots. How-
ever, Q �= 0, therefore a fixed amount of uncertainty is added over ym. Q is
approximated as a function of the tipical average velocity of the mobile objects.
If any perceptual PDF is matched to a tracker, a corrective stage is executed
(The details of the matching procedure are presented on section 3.3). But {zp},
{za}, {w} are initially referenced to the observer robot, therefore, as the infor-
mation needs to be coherent with partner estimated PDFs, a reference system
transformation to O is needed (see block diagram in Fig 2). This transformation
is applied to each perception using fL. The resulting PDFs {z′

p}, {z′
a}, {w′} are

referenced to O.
Depending on the type of perceptual PDF, a different observationalmodel func-

tion must be used on the corrective stage of the EKF. This is mainly because each
type of sensor delivers data with different dimensionality. The output of the pro-
posed methodology is the estimated KS, {km}, of present mobile objects. For each
object,km = ym, where ym is themean of the estimated PDF ym. Although sonar
measurements are generated with a higher frequency than visual perceptions, the
absence in the angle information may lead to incorrect estimations. This will af-
fect the trajectory and probably increase error because after a corrective stage of
the EKF which only uses sonar information, the state mean will only be corrected
in its radial component. This effect is presented in Fig. 3.

{za},{zp} {w} {fext}

Information Matching

EKF Corrective StageEKF Predictive
Stage

Observational
Model hpose

Update State

Update
Predicted State

Process
Model

ith Global Tracker

Global Map Update

Global Tracking

Reference System
Transformation

fL

{za’},{zp’} {w’}
{ym}

{ym}

Observational
Model hdist

{za’},{zp’} {w'}

fL

Fig. 2. Global Tracking Methodology Block-Diagram

316 R. Marchant, P. Guerrero, and J. Ruiz-del-Solar

Observer Robot
Moving Robot

Real Trajectory
Estimated Trajectory
Sonar Measurements
Last Time Seen

Fig. 3. Trajectory deformation effect produced by sonars

3.3 Matching Procedure

For every new perception, the tracker that is most likely to correspond to the re-
ceived perception is selected in order to be updated. Perceptions are treated differ-
ently depending on their type. The output of this stage is the index of the global-
tracker that best matches every input, or (-1) if the input is not associated to any
tracker. All trackers are initially deactivated and they get activated when a visual
perception or an external estimation cannot be associated to any active tracker.

Sonar Perception

When a sonar-perception PDF arrives, trackers whose state is outside the sonar
range are not considered. For those active trackers whose state is inside the sonar
range, an Euclidean distance measurement is used for deciding the index of the
tracker associated to that particular input. If all trackers are deactivated or
too far from the measurement (determined by the Euclidian distance threshold,
γ), the sonar measurement is not associated to any tracker because there is
no evidence that the measurement corresponds to an active-mobile-object. The
matching algorithm for this type of perception is presented on Algorithm 1.

Algorithm 1. Matching Algorithm for Sonars

1: Let w be a sonar source PDF relative to O
2: Let γ be the Euclidian association threshold
3: Trackers outside sonar range are filtered
4: for active trackers in sonar range do
5: Calculate tracker relative pose rP
6: Calculate Euclidean distance Dot observer-tracker
7: end for
8: if min{Dot} > γ then
9: return -1
10: else
11: return Index of minDot tracker
12: end if

Visual Perception and External Estimations
This type of data are always associated to a tracker, except when all trackers
are active and the Mahalanobis distance to each one of them is greater than

Cooperative Global Tracking Using Multiple Sensors 317

the Mahalanobis distance threshold ξ. This is usually the case when an false
detection is occasionally perceived. The matching algorithm for this type of
perception is presented on Algorithm 2.

Algorithm 2. Matching Algorithm for Visual and External Estimates

1: Let zm be a mobile-object visual source PDF relative to O
2: Let fext be an external source PDF relative to O
3: Let ξ be the Mahalanobis association threshold
4: Trackers are filtered depending on object class
5: for active trackers of interesting class do
6: if tracker is active then
7: Calculate Mahalanobis distance DMot observer-tracker
8: end if
9: end for
10: if min{DMot} > ξ then
11: if any tracker deactivated then
12: return deactivated tracker index
13: else
14: return -1
15: end if
16: else
17: return Index of minDMot tracker
18: end if

4 Experiments

4.1 Experimental Setup

This section describes simulated and real experiments conducted on a SPL robot
soccer environment. The first experiment uses a 2D simulator, which generates
a time labelled database containing noisy robot perceptions, odometries and
ground-truth data. The performance of the proposed system is evaluated on the
same database but with different parameters. The experimental setup for the first
experiment consists of five robots located on a simulated SPL soccer field. There
are two teams of robots, the blue team and the red team. Three robots belong
to the red team (RI, RII, and RIII) and two robots belong to the blue team (BI
and BII). The initial position of the robots, their IDs and their ideal trajectories
are illustrated in Fig. 4a. The idea of this experiment is that the blue robots
BI and BII perceive the red team robots, and communicate their estimations
between each other. The second experiment is executed using real robots on
a SPL soccer field. The experimental setup is simpler than the simulated one
due to operational complexity. In this experiment, the setup consists of two
robots belonging to the blue team (BI and BII) and one robot belonging to the
red team (RI). They are positioned on the field as illustrated in Fig. 4b. The
ground-truth data is provided by a laser-based ground-truth system like the
one proposed in [16], running on-line on an external computer. A time-labeled
database is generated as in the simulation experiment.

318 R. Marchant, P. Guerrero, and J. Ruiz-del-Solar

(a) Simulated Experiment (b) Real Experiment

Fig. 4. Experimental setup of robots in simulated and a real experiments

4.2 Results

The state-estimation error of the whole environment is calculated on both experi-
ments every time-step for the moving robot BI, using four different configurations:
(i) using only visual data, (ii) using visual and ultrasonic data, (iii) using cooper-
ative estimations and visual data, and (iv) using cooperative estimations, visual
and ultrasonic data. The estimated poses and expected trajectories of each tracker
in all situations are presented inFig. 5 for the simulated experiment and inFig. 7 for
the real experiment. The position error for tracker i at time k, denoted as eik, is ob-
tained by evaluating the difference between the estimated-PDFmean,μk, and the

ground-truth position, gtk. The squared error eik
2
is then calculated and normal-

ized by the arena size Asize = (600 ∗ 400)[cm2]. The normalized squared error eik
2

for tracker III is plotted in Fig. 6 for the simulated experiment and in Fig. 8 for the
real experiment. The normalized squared error is evaluated for the four different
configurations (i to iv). The level of error at time k determines if the information is
considered as useful or not. An arbitrary threshold ε, so-called decision-threshold,
has been defined for this particular application with the value (15[cm])2, ε = 0.001
in the normalized space. The value of this threshold is the half of the max diameter
of the tracked objects. A percentage of time when the information is considered
as useful is calculated for each tracker and method. A table is generated with this
values and is presented in Table 1 for the simulated experiment and in Table 2 for
the real robot experiment. Furthermore, a gray background in Figures 6 and 8 rep-
resent visually when information is useful for robot decisions.Tables 1 and 2 show
that the use of both ultrasonic and collaborative information is in all the analized
cases the most reliable choice. Using these additional sources of information , the
percentage of time in which the error is below ε grows between 20% and 40% in the
simulated experiment and around 25% in the real experiment, from the case with
only visual information. Additionally, the use of colaborative information is always
positive, almost to the extent of the best case. The utility of the sonar information
is not clear.While in table 1 it always appears to help, in table 2 it makes he results
even worse than the case with only visual information.

Cooperative Global Tracking Using Multiple Sensors 319

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

300

350

400

(a) Only visual data

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

300

350

400

(b) Visual and sonar
data

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

300

350

400

(c) Cooperative and
visual data

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

300

350

400

(d) Cooperative, vi-
sual and sonar data

Fig. 5. Results of the simulated experiment on a SPL reference system. Segmented
lines indicate the ground-truth trajectory for each red-team robot. Crosses determine
an estimated position for each time-step.

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

(a) Only visual data

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

(b) Visual and sonar
data

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

(c) Cooperative and
visual data

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

(d) Cooperative, vi-
sual and sonar data

Fig. 6. Evaluation of the simulated experiment. Normalized error of the pose estimation
of robot RI using different approaches (see subsection 4.2). Horizontal line represents
decision-threshold ε, and gray areas show when error is lower than ε

Table 1. Percentage of time when error is below ε for the simulated experiment. The
different approaches (i), (ii), (iii) and (iv) are described in subsection 4.2

(i) (ii) (iii) (iv)

Opponent 1 18% 18% 62% 62%

Opponent 2 - - 64% 64%

Opponent 3 48% 61% 67% 68%

X 22% 26% 64% 65%

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

300

350

400

(a) Only visual data

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

300

350

400

(b) Visual and sonar
data

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

300

350

400

(c) Cooperative and
visual data

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

300

350

400

(d) Cooperative, vi-
sual and sonar data

Fig. 7. Results of the real experiment on a SPL reference system. Segmented lines indi-
cate the ground-truth trajectory for moving robot RI. Crosses determine an estimated
position for each time-step.

320 R. Marchant, P. Guerrero, and J. Ruiz-del-Solar

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

(a) Only visual data

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

(b) Visual and sonar
data

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

(c) Cooperative and
visual data

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

(d) Cooperative, vi-
sual and sonar data

Fig. 8. Evaluation of the real experiment. Normalized error of the pose estimation
of robot RI using different approaches (see subsection 4.2). Horizontal line represents
decision-threshold ε, and gray areas show when error is lower than ε.

Table 2. Percentage of time when error is below ε for the real robots experiment. The
different approaches (i), (ii), (iii) and (iv) are described in subsection 4.2.

(i) (ii) (iii) (iv)

Opponent 1 45% 37% 63% 69%

5 Conclusion

A method for cooperatively tracking multiple objects using multi-sensory infor-
mation was described and tested in a multi-robot application. The results show
that the error of the kinematic state estimation of mobile objects decreases im-
portantly when using information provided by cooperative robots, and decreases
even more when using multi-sensorial information. In addition, the percentage
of time when the estimation error is lower than an acceptable decision-threshold
increases significantly (between 20% and 40% in the simulated experiment and
around 25% in the real experiment) when using cooperative and sensor fusion
techniques. As a future work, we expect to include velocity estimations to re-
duce sonar trajectory distortions and manage multiple tracker hypothesis for
each object allowing multi-modal distributions.

Acknowledgment. This research was partially supported by FONDECYT
(Chile) under Project Number 1090250.

References

1. Wheeler, M., Schrick, B., Whitacre, W., Campbell, M., Rysdyk, R., Wise, R.:
Cooperative tracking of moving targets by a team of autonomous uavs. In: 2006
IEEE/AIAA 25th Digital Avionics Systems Conference, pp. 1–9 (October 2006)

2. Campbell, M., Whitacre, W.: Cooperative tracking using vision measurements on
seascan uavs. IEEE Transactions on Control Systems Technology 15(4), 613–626
(2007)

3. Cánovas, J.P., LeBlanc, K., Saffiotti, A.: Robust multi-robot object localization
using fuzzy logic. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J.
(eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 247–261. Springer, Heidelberg
(2005)

Cooperative Global Tracking Using Multiple Sensors 321

4. Dietl, M., Gutmann, J.-S., Nebel, B.: CS freiburg: Global view by cooperative
sensing. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS
(LNAI), vol. 2377, pp. 133–143. Springer, Heidelberg (2002)

5. Karol, A., Williams, M.-A.: Distributed sensor fusion for object tracking. In:
Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS
(LNAI), vol. 4020, pp. 504–511. Springer, Heidelberg (2006)

6. Liu, Z., Zhao, M., Shi, Z., Xu, W.: Multi-robot cooperative localization through
collaborative visual object tracking. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert,
F. (eds.) RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 41–52. Springer, Heidelberg
(2008)

7. Nisticò, W., Hebbel, M., Kerkhof, T., Zarges, C.: Cooperative visual tracking
in a team of autonomous mobile robots. In: Lakemeyer, G., Sklar, E., Sorrenti,
D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 146–157.
Springer, Heidelberg (2007)

8. Silva, J., Lau, N., Rodrigues, J., Azevedo, J., Neves, A.: Sensor and information
fusion applied to a robotic soccer team. In: Baltes, J., Lagoudakis, M.G., Naruse,
T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 366–377. Springer,
Heidelberg (2010)

9. Pagello, E., D’Angelo, A., Menegatti, E.: Cooperation issues and distributed sens-
ing for multirobot systems. Proceedings of the IEEE 94(7), 1370–1383 (2006)

10. Moratuwage, M., Wijesoma, W., Kalyan, B., Patrikalakis, N., Moghadam, P.: Col-
laborative multi-vehicle localization and mapping in high clutter environments.
In: 2010 11th International Conference on Control Automation Robotics Vision
(ICARCV), pp. 1422–1427 (2010)

11. Schmitt, T., Hanek, R., Beetz, M., Buck, S., Radig, B.: Cooperative probabilistic
state estimation for vision-based autonomous mobile robots. IEEE Transactions
on Robotics and Automation 18(5), 670–684 (2002)

12. Dietl, M., Gutmann, J.-S., Nebel, B.: Cooperative sensing in dynamic environ-
ments. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, vol. 3, pp. 1706–1713 (2001)

13. Shuqin, L., Le, Z., Xiaohua, Y.: Design and implementation of multi-robot coop-
erative tracking. In: 2010 14th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pp. 490–494 (April 2010)

14. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P.,
Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of nao humanoid. In:
IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 769–
774 (2009)

15. Coltin, B., Liemhetcharat, S., Meriç Andli, C., Tay, J., Veloso, M.: Multi-humanoid
world modeling in standard platform robot soccer. In: 2010 10th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids), pp. 424–429 (2010)

16. Marchant, R., Guerrero, P., del Solar, J.R.: A portable ground-truth system based
on a laser sensor. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup
2011. LNCS, vol. 7416, pp. 234–245. Springer, Heidelberg (2012)

Implementing a Real-Time Hough Transform

on a Mobile Robot

John Morrison, Eric Chown, and Bill Silver

Bowdoin College

Abstract. Robotic vision is a challenging problem due both to the un-
certain nature of real-world environments and the computational con-
straints of mobile platforms. Many standard computer vision algorithms
have high computational requirements and are often seen as unsuitable
for use in an embedded system such as the Aldebaran Nao. Many cur-
rent approaches use fragile algorithms and reduced resolutions to achieve
a low processing latency. We implement the Hough Transform, a stan-
dard line detection algorithm, for real-time use in the RoboCup Stan-
dard Platform League. Using assembly language instructions to expose
the processor’s full potential, this project implements a real-time Hough
transform for line detection on 320x240 pixel images.

1 Introduction

The primary source of perceptual information for the robots in the RoboCup
Standard Platform League (SPL) [6] is their camera, forcing real-time vision
processing to become a topic of intense research and development. The SPL en-
vironment and platform offer a particular set of constraints which challenge any
potential vision system, such as a relatively slow (by desktop standards) pro-
cessor, a narrow field of view, unpredictable images, partially obscured objects,
and limited processing time per frame. The output of the vision system is the
foundation for higher level cognition and skilled soccer playing.

The current state of the art in RoboCup vision systems, mostly based on color
segmentation and color run-length encoding, is ad-hoc and tied tightly to the
RoboCup environment. The methods described by the top competitors in the
league [3,9,8] for identifying object shapes in the image are largely collections
of hand coded heuristics for what defines a “goal post” or a “line” as a human
would describe it. Domain information about the specific objects in question is,
of course, required for reliable detection, but the goal of this project is to show
that general pattern recognition techniques are a viable option for SPL vision
systems.

Computer vision research has produced many pattern recognition algorithms
which are more reliable, more robust, and more general than these hand designed
region building heuristics. Unforunately, there has not been sufficient research
yet to optimize these algorithms for the SPL. This is why teams in have been
hesitant to use them in competition.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 322–331, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Implementing a Real-Time Hough Transform on a Mobile Robot 323

To put the performance requirements of a real-time vision system in context,
consider that with a 640x480 YUV 422 image, there are 614,400 values to be
processed. So, allocating 20 ms for vision processing there are only 32 nanosec-
onds of processing time available per value. With a 500 MHz processor, like the
Nao’s Geode, that means there are only 16 machine cycles available per value.
For comparison, a single integer divide can take 24 cycles, and one floating point
arctangent can take up to 354 cycles [1]. It is with these constraints in mind that
this project was undertaken.

The first step of the new vision processing is edge detection. Edge detection
provides the points of interest which will be used in the Hough transform for
line detection. After the edge detection, the edge points are processed with the
Hough transform. The Hough transform works through a voting mechanism. It
tallies the “votes” of each edge point for a particular set of possible lines in the
image. The voting mechanism makes the algorithm robust, yet straightforward.

This project aims to establish the Hough transform as a reliable and applicable
vision algorithm for the embedded RoboCup Nao platform. The Hough trans-
form has been used infrequently [8, 128] in work by other teams, but when it was,
it was often in a limited or prohibitively slow manner. The Hough transform is
an algorithm which suits the highly uncertain RoboCup environment well, and,
when properly implemented, is also acceptable for full image processing on an
embedded platform.

We seek a general algorithm for pragmatic reasons. General vision algorithms
are robust in various circumstances and can be re-purposed and reused in new
situations. Many current SPL vision systems tightly integrate the steps of object
detection. When the rules change, or the environment is altered, the ad-hoc
system can require extensive revising to be adapted. A good general algorithm
will be easily adaptable. The current SPL vision solutions maintain high frame
rates by skipping lots of pixels, sampling the images down to paltry 160x120 or
below. This loss of resolution degrades accuracy and can cause mis-detections
because of insufficient visual evidence.

2 Assembly Language

In order to achieve the desired real-time efficiency of this project, we wrote
the majority of the code for this project in x86 assembly language. Assembly
language can sometimes be the only way to truly squeeze every bit of efficiency
from a CPU. It lets the programmer use the ideal instruction mix for the task,
a job a compiler can sometimes struggle to do.

In addition, modern architectures have vector processing instructions which
have no easily accessible and embeddable C/C++ equivalent. The vector pro-
cessing units, known as Single Instruction Multiple Data (SIMD) units, are ca-
pable of operating simultaneously on multiple pieces of data, often with special
instructions capable of performing complex operations with a single instruction.

324 J. Morrison, E. Chown, and B. Silver

The Geode LX processor can operate the x86MMX instruction set which uses 64-
bit registers to operate on multiple 1, 2, or 4 byte values with a single instruction.
We make extensive use of vector instructions throughout this project.

3 Edge Detection

Edge detection, as applied here, is the process of finding points of significant and
rapid change in the intensity of one or more channels of an image. The physical
boundaries between objects on the field cause brightness discontinuities which
are captured in an image and are largely independent of lighting, viewpoint,
and camera settings. This makes edge points a more reliable measure for object
detection than the brightness values themselves.

To strike a balance between computational requirements and accuracy, we
chose to use the Sobel operator [5] in the edge detection process. It requires
only a single pass over the image, but performs very well as an edge detector.
The Sobel Operator is applied to the image’s Y channel. Edges in the Y channel
provide good boundaries of field lines across lighting conditions.

3.1 Sobel Operator

To detect the edges in images, we first calculate the gradient at every pixel in an
image by convolving the image’s Y channel with the Sobel operator [5, 147]. The
Sobel operator is a pair of kernels as depicted in Table 1, which approximate the
(x, y) components of gradient. The magnitudes in x and y are used to compute
a magnitude and direction of the gradient vector at each pixel.

To run the Sobel edge detector in real-time with
Table 1. x,y Sobel Kernels

(a) Gx⎡
⎣−1 0 +1
−2 0 +2
−1 0 +1

⎤
⎦

(b) Gy⎡
⎣−1 −2 −1

0 0 0
+1 +2 +1

⎤
⎦

the computational constraints of the Nao, the oper-
ation needs to be optimized significantly. The Sobel
operator is an ideal candidate for SIMD instruc-
tions. Gx and Gy are calculated independently at
each pixel. By hand coding in x86 assembly lan-
guage and using the MMX instructions, we were
able to calculate four pixels’ gradients in parallel,
resulting in a significant speed increase.

As processor speeds increase, memory accesses and memory bandwidth be-
come a limiting factor in high performance computations. The 3DNow! instruc-
tion set provides the prefetch instruction to help lower the memory bottleneck.
By bringing soon to be accessed memory into the fastest cache, the programmer
can remove some waiting for I/O. By prefetching two rows below the current pixel
during the Sobel operator execution, we reduced cache miss penalties. When a
new row is accessed, it is already in the L1 cache because the 64 KB L1 cache
is large enough for more than four rows of pixels.

Implementing a Real-Time Hough Transform on a Mobile Robot 325

(a) The color segmented
image

(b) Edge detection on the
entire image

(c) Edge detection only per-
formed below the field hori-
zon

Fig. 1. Reducing edges with the field horizon

3.2 Edge Peak Detection

Once the gradient magnitude and direction is calculated at each pixel, the gra-
dient values need to be compared to each other to find the actual edge points
in the image. The edges are found by locating the peaks in the gradient map,
the points of greatest change, which are the desired output of the edge detector.
The goal of the peak detection phase is to also ensure that only one edge point
is found for each real edge point in the image.

Using the gradient direction, an asymmetric peak test is then applied in the
gradient direction to all remaining candidate points. The peak test determines if
the candidate edge point’s gradient magnitude is greater than that of the pixel
in the opposite direction of the candidate’s gradient, and greater than or equal
to the magnitude of the pixel in its gradient direction.

Once a pixel passes the asymmetric peak test, it is labeled an edge peak and
its location in the image, along with its gradient direction, are appended to the
list of previously found edge peaks. The final list of edge peaks is then sent to
the Hough transform to be processed further.

A significant limiting factor in peak detection computation time is the angle
calculation. Floating-point calculations are slow and provide more accuracy than
needed for our purposes. To remove this bottleneck, we chose to replace the
floating point angles with eight-bit binary angles. An eight-bit binary number
represents the range 0-255, so a radian angle t can be computed as an eight-
bit binary angle with the formula tint = tradian ∗ 128

π . These binary angles are
accurate to 1.41 degrees.

The machine level floating point arctangent function is also too slow, taking
up to 354 machine cycles [1]. By precomputing an arctangent lookup table, we
removed the costly arctangent function call. The table was indexed by the result
of

Gy

Gx
. According to the Geode LX Databook, an integer divide of 2 byte-long

values can take up to 16 machine cycles, while an integer multiply of similar
length values only takes 3 cycles [1]. To take advantage of this, we precomputed
another lookup table of 1

Gx
, indexed on Gx.

326 J. Morrison, E. Chown, and B. Silver

The power of using assembly language comes in the ability of the programmer
to exploit every corner of a machine’s instruction set. The x86 instruction set
is large and has evolved over time to accommodate many different needs and
applications. The advantage of the x86 instruction set’s breadth is that it has
many optimization opportunities, but they can be hard for a compiler to use.
The author of the code has the best idea what the code is intended to do, and
the circumstances it will encounter, so he can choose the best instruction mix to
accomplish that task. That power has great rewards in the edge detection phase
of this project.

4 Hough Transform

The Hough transform was patented in 1962 as a “method and means for recog-
nizing complex patterns in photographs” [4], specifically straight lines, from a
set of points. The transform has also since been generalized to find any param-
eterizable general pattern, [2] but we will only use it here for line finding.

The Hough transform has many properties which make it suitable for line
finding in RoboCup. The field lines in RoboCup are uniform, straight lines but
are often occluded. The Hough transform deals well with occlusion through the
voting mechanism [5]. A line which is partially covered by a ball, or a robot, will
still be recognized as crossing through the body of the robot. This is necessary
for RoboCup vision as other robots are often obstructing lines.

Without specific attention paid to its implementation, the Hough transform
can be memory and processor intensive [8,5] which has limited its adoption in
the league in the past. Specific attention was paid during this project to memory
access patterns and computation ordering during the Hough voting procedure.

4.1 Voting

The first step in the Hough transform is marking the Hough accumulator space
for every peak found during the edge detection. Looping through the list of
edge peaks, we increment the {r, θ} accumulator bins which correspond to each
possible line which could pass through that edge peak.

A basic implementation of the transform would increment the bin for every
line that could possibly pass through that line. For a single edge peak, over 256
bins would need to be incremented, at least one per angle. Filling so many bins
would quickly overwhelm a real-time system. An image with 2,000 edge peaks
would have to fill many more than 512,000 (and experimentally, likely more than
1,000,000) bins.

However, the gradient angle provides sufficient information to limit that search
to within a small error range. The gradient direction approximation computed in
previous steps is approximately equal, within an error margin, to the angle of the
line, so we can limit the marking in the Hough space to angles which are within
a predetermined error margin of the gradient angle. The error margin needed
is small, ±5 was found sufficient for this project. Thus, instead of incrementing

Implementing a Real-Time Hough Transform on a Mobile Robot 327

bins for 256 angles, only bins corresponding to 10 different angles, representing
a span of approximately 14 degrees, are incremented.

While limiting the span of Hough bins to mark is a significant improvement
in running time, it is not significant enough, and there is still more time to
be recovered. Thus far all the algorithms and implementations have operated
sequentially in a single pipeline using only basic integer instructions. The Geode
actually has two hardware pipelines, an integer unit (IU) and a floating point
unit (FPU). The FPU handles MMX instructions, as well, reusing its 64-bit
registers for SIMD commands. With its dual pipelines, the Geode is capable of
executing an integer instruction and an MMX instruction every clock tick.

With this in mind, we redesigned the Hough voting procedure to intersperse
MMX and integer instructions. By injecting a mix of instructions into the pro-
cessor, we are able to interleave computations and significantly decrease the
necessary run time of the routine.

We set up two pipelines which run simultaneously and communicate using a
pair of ping-pong buffers:

1. MMX/FP Unit: The MMX registers compute the locations in memory
to be incremented.

2. Integer Unit: The IU increments the Hough bins at the locations computed
by the MMX pipeline.

After the voting is complete, we smooth theTable 2. 2x2 Boxcar Kernel[
1 1
1 1

] Hough Space to reduce the noise. The smooth-
ing is completed with a 2x2 “boxcar” ker-
nel, as seen in Table 2. The kernel is applied
to each bin in the accumulator by averaging

each bin with the bins to the right, to the right and below, and below it. This
helps to smooth noise in the Hough space due to errant edge peaks. The box-
car is simple, fast, in place, and can be implemented effeciently using MMX
instructions.

After the Hough space has been filled, the bins with the highest values must be
found. First the Hough space is scanned for bins with a non-zero value. During
the smoothing step, we subtracted a fixed noise threshold and clamped the value
at zero. Once a bin with a positive value is found, the eight bins surrounding it
are compared with the current bin. If the current bin has a value greater than
its eight surrounding bins, it is marked as a peak and added to the end of a list
of peaks. Its r and t indices, along with its “score,” the value of its accumulator
bin, are recorded.

5 Results

The Hough transform based line finder presented here is a step forward from the
region and heuristic based approaches that are the current state of the art in the
SPL. From edge detection through line pairing, this field line detection system

328 J. Morrison, E. Chown, and B. Silver

is straight forward and effective. The entire system has only three parameters:
the edge detection noise threshold, the Hough angle spread parameter, and the
Hough noise threshold. Compared with the ad-hoc color based systems, which
contain dozens of different parameters, the new system is more robust and does
not require significant calibration.

(a) Hough line detection with a good color
table

(b) Hough line detection with a poor color
table

Fig. 2. New line detection does not depend on color calibration

C++ ASM
0

10

20

30

40

50

60

70

24.55

4.75

44.15

6.65

Avg. Hough
Avg. Edges

T
im

e
 (

m
s)

Fig. 3. Average Full Image Line Detection Run Time

The new field line detection system using assembly language coded routines is
fast. Compared with a C++ implementation of the same algorithm, it will run
significantly faster while producing similar results. Differences between the two
implementations come from floating point rounding and a small difference in gra-
dient angle calculations between the implementations. When compared across a
test set of 15 images with varying composition, the assembly version averages a
factor of six improvement over the C++ version. Figure 3 compares the aver-
age run times over entire images (without the field horizon limiting mentioned in

Implementing a Real-Time Hough Transform on a Mobile Robot 329

Section 3.1), breaking each version down into the edge detection and Hough
transform steps. The C++ version averages a run time of 68.7 milliseconds per
image, whereas the assembly version averages 11.4 milliseconds.

This project’s goal is to build a Hough transform suitable for use in a robotic
system running at 30 frames per second. At 30 frames per second, all the pro-
cessing for each frame must occur in under 33 milliseconds, including not only
vision, but also motion and behavior processing. A line finding system running
at more than 15 milliseconds was decided to be unacceptable, as it left too little
time for remaining processing. As such, the 11.4 millisecond average run time is
acceptable for use in a real-time RoboCup SPL vision system.

0

2

4

6

8

10

12

14

16

18

2.2

15.7

ASM
C++

T
im

e
 (

m
s)

Fig. 4. Average Sobel Operator Run Times

5.1 Edge Detection Performance

The edge detection step benefits the most from the transition to assembly lan-
guage using the MMX instructions. A speedup factor of seven is achieved in the
switch. As the Sobel operator is applied to every pixel in the image, the C++
and assembly raw timing values can be compared.

The combination of SIMD instructions and memory prefetching to improve
cache hits yields a significant improvement. Memory access time is effectively cut
to zero, leaving only computational time as a constraint. The SIMD instructions
help to reduce even that by operating on multiple values simultaneously.

5.2 Hough Transform Performance

The Hough voting routine, as measured in these experiments, is shown to be an
acceptable real-time vision algorithm for RoboCup. The C++ version is indeed
too slow for real-time use, as the busier images cause it to take over 100 millisec-
onds to complete. This is over three times the desired frame rate, so it is clearly

330 J. Morrison, E. Chown, and B. Silver

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

120

ASM
C++

Number of edge peaks

T
m

e
 (

m
s)

Fig. 5. Average Hough Voting Run Time

not acceptable. The assembly version, however, takes under nine milliseconds,
or one tenth of the time to complete on a similar number of edge points. This is
a considerable speed up, given that there is no loss of accuracy between the two
versions.

The Hough space smoothing routine is a simple operation involving four sums
and a subtraction. The assembly version developed here runs over twice as fast
as the C++ version. The output of GCC for this code, even using -mmmx, which
allows the compiler to use MMX instructions, does not use MMX instructions
and is thus limited to operating on one bin at a time. Efficient compiler genera-
tion of SIMD code is difficult [7] and programmers cannot rely on a compiler to
generate any code in particular.

6 Conclusion and Future Work

In the future, the generality of edge detection and shape detection could be
extended to the RoboCup goal posts and the ball. These objects are currently
detected with color blobbing and present similar opportunities for improvements.
A circular Hough transform would be possible with the ball, removing the de-
pendency on color calibration to see the most important object in RoboCup
vision. The orange ball presents a strong contrast to the green carpet in the V
channel and presents a good opportunity to move slowly away from color cali-
brated information. The SPL plans to switch away from the orange ball to other
styles of ball where the predetermined color is not important. A more general
approach to ball detection would be helpful here.

The argument can be made that with faster processors there will be no need to
implement solutions like this, but that argument falls apart when other changes
are considered. For instance, doubling the dimensions of an image quadruples the
pixel count. Higher resolution cameras can quickly overwhelm faster processors.
A faster frame rate, higher accuracy demands, or even just more complex objects
demand more processing efficiency and power than a faster processor can provide
alone. Speed and necessity will always be an issue, so in order to move away from
engineered solutions, efficient implementations of general purpose algorithms are
necessary.

Implementing a Real-Time Hough Transform on a Mobile Robot 331

The transition to general image processing algorithms will improve vision
processing robustness in changing environments, and is a necessary transition for
the advancement of the sport of robot soccer. By replacing the color segmented
and run-length encoding based system with a system using the Hough transform
to identify field lines, we have taken a first step towards gaining independence
from calibration and manual tuning. This will lead to increased productivity
for the roboticist, as they do not have to spend so long calibrating the robot
to new situations, and increased performance on the robot, as it can deal with
fluctuations within its environment.

We have shown that general vision algorithms can still perform in this real-
time environment and are a suitable replacement for the engineered solutions
the SPL has typically used. Commonly held beliefs that the Hough transform
is too slow for RoboCup are here shown to be baseless. A well designed system
can be both robust and fast.

Also, computer scientists often shun hand written assembly as adding need-
less complexity and non-portability when optimizing compilers are available. As
the results here show, an experienced programmer designing a complex system
can still beat a compiler by making full use of the processor’s architecture and
instruction set in ways a compiler may not be able. The compiler’s non-use of
SIMD instructions is a great example. It is hard in a high level language such as
C or C++ to instruct a compiler that it can make use of vector instructions for
a certain complex task. By writing it oneself, a programmer can achieve optimal
performance from the application.

References

1. Advanced Micro Devices, Inc., One AMD Place, Sunnyvale, CA 94088. AMD
GeodeTMLX Processors Data Book

2. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes*. Pat-
tern Recognition 13(2), 111–122 (1981)

3. Hermans, T., Strom, J., Slavov, G., Morrison, J., Lawrence, A., Krob, E., Chown,
E.: Northern Bites 2009 Team Report (2009)

4. Hough, P.: Method and Means for Recognizing Complex Patterns (1962)
5. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill Science/Engi-

neering/Math. (1995)
6. RoboCup Standard Platform League, http://www.tzi.de/spl
7. Leupers, R.: Code selection for media processors with SIMD instructions. In: Pro-

ceedings of the Conference on Design, Automation and Test in Europe, DATE 2000,
pp. 4–8. ACM, New York (2000); ACM ID: 343679

8. Ratter, A., Claridge, D., Hengst, B., Hall, B., White, B., Vance, B., Nguyen, H.,
Ashar, J., Robinson, S., Zhu, Y.: rUNSWift Team Report 2010 (2010)

9. Röfer, T., Müller, J., Laue, T.: B-Human Team Report and Code Release 2010
(October 2010)

http://www.tzi.de/spl

Extending Virtual Robots

towards RoboCup Soccer Simulation and @Home

Sander van Noort and Arnoud Visser

Universiteit van Amsterdam, Science Park 904, Amsterdam, The Netherlands

Abstract. The RoboCup is an initiative to promote the development
of robotics in a social relevant way. The competition consists of several
leagues and it would be beneficial if developments in one league could
be reused in other leagues. This paper describes the development of a
simulation model for a humanoid robot inside USARSim, which could
be the basis of synergy between the Rescue Simulation, Soccer Simula-
tion and @Home League. USARSim is an existing 3D simulator based
on the Unreal Engine, which provides facilities for good quality render-
ing, physics simulation, networking, a highly versatile scripting language
and a powerful visual editor. This simulator is now extended with the
dynamics of a walking robot and validated for the humanoid robot Nao.
On this basis many other robotic applications as benchmarked in the
RoboCup initiative become possible.

Keywords: simulation, multiple kinematic chains, dynamics.

1 Introduction

Robotic simulation is essential in developing control and perception algorithms
for robotics applications. Simulation creates the environment with known cir-
cumstances, which allows rapid prototyping of applications, behaviors, scenar-
ios, and many other high-level tasks. Robot simulators have been always used
in developing complex applications, and the choice of a simulator depends on
the specific tasks we are interested in simulating. Yet, the level of realism of a
simulator is also important in this choice.

A 3D simulator for mobile robots must also correctly simulate the dynamics
of the robots and of the objects in the environment, thus allowing for a correct
evaluation of robot behaviors in the environment. Moreover, real-time simula-
tion is important in order to correctly model interactions among the robots and
between the robots and the environment. Since simulation accuracy is computa-
tionally demanding, it is often necessarily an approximation to obtain real-time
performance [1].

In this paper the focus is on the humanoid Nao robot, which is selected by
the RoboCup organization as the standard platform for the Soccer competition.
In addition, this robot is also used in the @Home competition [2,3] (see Fig. 1).

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 332–343, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Extending Virtual Robots towards RoboCup Soccer Simulation and @Home 333

Fig. 1. Configuration of a humanoid robot on a wheeled platform in USARSim, as
used in the RoboCup @Home [2]

This robot is widely used in many research institutes around the globe. The Nao
contains several kinematic chains (legs, arms, head), which means that its model
can be the basis of other robots with multiple kinematic chains.

A model is described to replicate the dynamics of the Nao robot in USARSim
[4]; an existing 3D simulator based on the Unreal Engine. Inside USARSim robots
are simulated on the sensor and actuator level, making a transparent migration
of code between real robots and their simulated counterparts possible. USARSim
is an open source project, available on sourceforge1. It includes a powerful editor
to create worlds and allows experiments, benchmarks and competition scenarios
to be set up easily.

2 Related Work

There are many robotic simulator platforms available. The first legged robot de-
veloped inside USARSim was the Aibo [5]. The first humanoid robot developed
inside USARSim was the Robovie-M [6], developed by the Artisti Humanoid
team. Both models were developed on basis of the Unreal Engine 2 / Karma
Physics engine. With this engine four Aibo’s or two Robovie-M could be simu-
lated before the framerate dropped below an acceptable level. Currently USAR-
Sim is based on Unreal Engine 3 / NVidia PhysX. The latter physics engine is
more focused on parallelization to make optimal usage of modern cpu’s.

Inside the RoboCup @Home League simulation are sparsely used [2,3,7,8,9,10].
Teams typically use older simulation environments, such as Gazebo [7,8] or
Carmen [9]. Another possibility is to use a commercial package like Webbots
[10]. Essential for this League is to be able to use innovative robot and sensor

1 http://usarsim.sourceforge.net

334 S. van Noort and A. Visser

combinations, a rich environment with a wide variety of shapes and textures,
natural lighting, support of the Kinect and preferably a ROS interface. USARSim
fulfills all those prerequisites [11].

SimSpark2 is the official 3D RoboCup simulator and is primarily made for this
goal. The simulator is open source and freely available. It uses a client-server
architecture, where agents (i.e. robot controllers) are the clients that communi-
cate with the simulation server. A limited number of robots (mainly the Nao)
are supported, although it is made easy to add new robots with rsg files that
describe the physical representation of a robot.

Fig. 2. Screenshot of SimSpark, the simulator used in the Soccer Simulation League

SimSpark always starts a football simulation, including a soccer field, game
states and referee. The robots are controlled using a custom protocol, not the
native interface of the Nao.

3 Simulation Model

The RoboCup version of the Nao (H21 model) has 21 joints, resulting in 21
degrees of freedom (DOF). There is also an academic version with 25 degrees of
freedom, which has 2 additional DOF in each hand.

The movement of each joint can be described by a rigid body equation[12]. The
first step is to definition of unconstrained motion as described in equation (1).
This equation contains four vectors, it takes both the spatial information x(t),
R(t) and the linear and angular momentum P (t), L(t) into account. F (t) and
τ(t) are external forces and the input to solve this equation. The linear and
angular speed v(t), ω(t) can be derived from the linear and angular momentum
when the total mass M and the inertia tensor I(t) of a rigid body is known.

2 http://simspark.sourceforge.net

Extending Virtual Robots towards RoboCup Soccer Simulation and @Home 335

d

dt
Y (t) =

d

dt

⎡
⎢⎢⎣
x(t)
R(t)
P (t)
L(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v(t)
ω(t)∗R(t)

F (t)
τ(t)

⎤
⎥⎥⎦ (1)

The inertia tensor I(t) is time dependent, but can be calculated from the inertia
tensor Ibody in body space, which is a fixed property, by taking the orientation
of the body into account I(t) = R(t)IbodyR(t)T .[

v(t) = P (t)
M , ω(t) = I(t)L(t)

]T
(2)

The next step is to take contacts into account. When the rigid body encounters
a contact it imposes a constraint on the movement.

Two different types of contacts can be distinguished. The first is a contact
caused by bumping into another rigid body or into the world. The other type of
contact is caused by having a joint defined between two rigid bodies which are
part of the robot.

3.1 Joint Definition and Convention

As said in the previous section, a joint connects two rigid bodies and limits the
movement in some way. The type of movement limitation results in different
types of joints, like a rotational joint, translational joint (also called prismatic
joint), spherical joint, screw joint, etc.

A rotational joint, also called revolute joint, is as the name suggests capable of
rotating around an axis. This type of joint allows one degree of freedom (DOF)
between the two rigid bodies, namely the range of motion around the specified
axis. In case of this type of joint the motion is usually also limited to a specified
range around the axis.

It is important how the relative position and orientation of the frames is char-
acterized. A commonly used convention to describe this is the Denavit Hartenberg
(DH) notation. This convention uses homogeneous transformation matrices to
describe the relative positions of the frames (coordinate systems). This conven-
tion is used in USARSim. A full description can found in the book Robotics,
chapter 2.2.10, by K.S Fu et al.[13].

The Denavit Hartenberg representation is visualized in figure 3. Red lines
show the z axes (motion axis) of the joints, while the yellow and green lines
show respectively the y and x axes of the joints. The middle blue line shows the
start z axis. The other blue lines represent the end points of the five joint chains.
Each transformation is represented by a translation / rotation matrix.

3.2 Shape Definition

The shape of the robot is needed to detect collisions between parts of the robot.
To define the shape of each part use can be made of the representations of the

336 S. van Noort and A. Visser

Fig. 3. Visualization of joints according to the Denavit Hartenberg convention. Red
lines show the z axes, yellow the y axes and green the x axes of the joints.

Unreal Engine. Two collision representations are relevant for simulations of robot
in USARSim. The first collision representation is intended for static meshes in
Unreal Engine. Static meshes are a type of meshes that are not dynamic. This
name does not imply they cannot move or interact with the world. The advanced
option for static meshes is to check collisions per polygon against the static mesh
3D model itself and is potentially expensive to use. There is also a (simplified)
collision hull option, but this option is not used for robots inside USARSim.
Additionally there is a collision representation which is intended for skeletal
meshes in the Unreal Engine. Skeletal meshes are used for game characters, not
for USARSim robots.

The second collision representation is intended for PhysX and is created in
the same way as the advanced static mesh version. The PhysX collision model
is used in the physics simulation. However sensors will usually involve collision
detection with the first representation. For example a simulated sonar sensor
uses Unreal Engine tracing to detect objects in the world, which uses the Unreal
Engine collision model. Both representations are needed for a realistic simulation
of a robot. Care has been taken (as can be seen in Fig. 4) to keep both repre-
sentations equivalent for the Nao robot. Both the link and shape representation
are described in more detail in [1].

Extending Virtual Robots towards RoboCup Soccer Simulation and @Home 337

Fig. 4. The left picture shows the PhysX collision model, the right picture the Unreal
Engine collision model

4 Experiments

The experiments are divided into two categories; experiments which check gen-
eral properties for constrained rigid body motion and experiments that are di-
rectly related to the proposed Nao model. The basic experiments for constrained
rigid body motion are described in an earlier paper [1]. Here we concentrate on
the possible applications.

4.1 Advanced Experiments

In this section experiments are done with the simulated and real Nao. The results
of these experiments are compared to see how close they resemble each other.
The experiments all consist of the combined movement of multiple joints. A more
simple version of this experiment would be the movement of a single joint (for
instance turning the head). Such simple experiments are performed and show
close correspondence. The more advanced experiments are more interesting in
the sense that they show sometimes unexpected results due to the interaction
of the constraints in between joints. Alternative advanced experiments would
the Tai Chi balance (demonstrated in [1]) and collisions between two robots
(demonstrated in [5]).

Walking. Realistic walking comparable to the walking behavior of the real Nao
is crucial in a humanoid simulation. During a RoboCup match a robot will have
to walk a large part of the time.

For this experiment several walking and turning tests were done for the sim-
ulated and real Nao using the included walk engine of the Nao provided by

338 S. van Noort and A. Visser

Aldebaran. This walk engine uses a simple dynamic model inspired by work of
Kajita et al.[14] and is solved using Quadratic programming [15]. When walking
at full speed it can reach a velocity of 9.52cm/s and 42deg/s when turning.

In this test the Nao was set to do a single full step with the left leg. The joint
angles of the real and simulated Nao were recorded and compared.

Fig. 5 shows the average joint angles of the LKneePitch joint (i.e. the left knee)
with standard deviation over ten recordings of the real and simulated Nao. The
standard deviation for the real Nao is lower than the simulated Nao. The same
behavior is also seen for the standard deviations of the other joints.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

10

20

30

40

50

60

Seconds

D
eg

re
es Real

Simulated
Difference

Fig. 5. Average joint angles with standard deviation of the LKneePitch joint while
executing a single step. Joint angles were averaged over ten runs for the real (red)
and simulated (green) Nao. The blue line shows the difference between the joint angles
trajectories.

More walking experiments (including walking multiple steps straight and in
circles) are described in [1].

Kicking. Another motion is a kick of a ball with the right leg. The motion
was performed ten times for both the real as simulated Nao robot. The recorded
joint angles were averaged and the standard deviation was computed.

Figure 6 shows the average joint angles of the RAnkleRoll joint with the
standard deviation and the difference between the average joint angles. This
joint is interesting because the joint angles trajectory is not the same. During
the kick motion the RAnkleRoll joint is told to move to 10 degrees in half a
second and stay at 10 degrees for the remaining part of the motion.

The angles trajectory shows not much difference in moving towards 10 de-
grees, although the standard deviation of the real Nao angles is higher than the
simulated Nao angles. However when staying at 10 degrees the real Nao joint is
not able to maintain this angle around 1.5 second. In this case the Nao fails to
reproduce the behavior of the real joints because we did not include the restric-
tions of the collision hull of this particular joint in our model3. The joint angle
range of this joint is limited by the movements of the AnklePitch joint. Around

3 http://www.aldebaran-robotics.com/documentation/

nao/hardware/kinematics/nao-joints-33.html

http://www.aldebaran-robotics.com/documentation/nao/hardware/kinematics/nao-joints-33.html
http://www.aldebaran-robotics.com/documentation/nao/hardware/kinematics/nao-joints-33.html

Extending Virtual Robots towards RoboCup Soccer Simulation and @Home 339

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−5

0

5

10

Seconds

D
eg

re
es

Real
Simulated
Difference

Fig. 6. Joint angles and standard deviation of the RAnkleRoll joint while executing
a kick motion. Results were averaged over ten runs. The red line shows the angles
trajectory of the real Nao, while the green line shows the same for the simulated Nao.
The blue line shows the difference between the two angle trajectories.

1.5 second the RAnklePitch joint moves from around -30 degrees to -60 degrees.
At this joint angle the RAnkleRoll becomes limited to a range of between -6 and
3 degrees.

5 Full Application Experiment

To test how well the performance is for real applications, the source code of the
Dutch Nao Team[16] has been tested with USARSim.

This application not only involves walking around, but also perception of the
ball and dedicated behaviors like kicks and standing up.

To test real applications an intermediate program has been created, Usar-
NaoQi, which works as a proxy server, converting NaoQi messages in USARSim
messages and vice versa. NaoQi is the framework provided by Aldebaran and
allows the user to control the Nao in various programming languages (C++,
Python, C# or Urbi).

The source code of the Dutch Nao Team is written in Python, and could
be directly applied. The code was fully functional, the robots could standup,
position themselves on the field, locate the ball and kick the ball. The only
observed difference is in the approach of the ball; the Dutch Nao Team code
makes a number of small steps to get in a good position behind the ball. In
simulation those steps are too small; the Nao needs too much time to position
itself.

The experiment was performed by putting a number of Nao robots in the simu-
lated RoboCup environment. The average frames per second (FPS) was recorded
for two different scenarios. In the first scenario the Nao is simply standing and
doing nothing. In the second scenario we executed the Nao with robot controller
from the Dutch Nao Team. The controller was set in play mode. In this mode
the Nao will walk around scanning for the ball.

340 S. van Noort and A. Visser

The experiment was performed on a computer with an Intel iCore 7 920
processor and an AMD Radeon HD 6850 graphics card. USARSim was used in
combination with the UDK December build 2011. UsarNaoQi was set to use a
time step of 10ms; the Naos in USARSim sent status updates at a rate of 100
times per seconds (joint angle updates).

Without any Naos the scene is rendered at a FPS of 320. With one and two
Naos the FPS drops to around 110 and 55 respectively, which is enough for
running a decent simulation. With three Naos the FPS drops to 30, which is still
acceptable. With four Naos the simulation frame rate drops to 10 FPS, resulting
in incorrect movements.

Fig. 7. Four Naos in action with the physics statistics displayed

To find the performance bottlenecks in the simulation various profiler tools
provided by UDK are used (PhysX statistics and UnrealScript code profiler).
Using these tools reveals that when simulating four Naos half of the frame time
is spent in the physics. The remaining part of the time goes to the sonar sensor
(tracing), receiving and processing messages in the bot connection with the con-
troller, sending the current status to the controller (joint angles) and updating
the current joint angles.

6 Discussion

Sensors. The experiments are limited to the motion of the simulated Nao caused
by the movement of the joints. However the Nao is equipped with a wide range of
sensors (as discussed in the introduction). The different sensors like the cameras,
bumpers, sonars and inertial unit also contribute to the behavior of the Nao.
More research is needed specifically aimed at these sensors. For example the Nao

Extending Virtual Robots towards RoboCup Soccer Simulation and @Home 341

is equipped with two cameras. Although the camera sensors obviously function, it
is not possible to say much about the correct working of these cameras without
validation. Figure 8 shows an example of the problems you encounter when
simulating a camera. The sensitivity of the camera of the different Nao versions
results in a different camera image. Such differences would need to be modeled
to simulate a camera properly. Although Unreal Engine already offers excellent
rendering options, the current implementation in USARSim limits the simulation
of the camera to simply capturing the image and sending it without modification.

Fig. 8. Camera image of Nao 3.3 vs 4.0 (Courtesy Aldebaran Robotics)

Servo motor. Another interesting research option is to extend the simulator
with a more realistic servo motor and gears simulation, as used in the MoToFlex
simulator[17]. In a physics engine a common way to control the joints of a robot
is to set the desired joint angles and leave it to the physics engine to satisfy the
constraints between the links (as described in this paper). This approach is not
the most realistic way to drive a joint and the method seen in the MoToFlex
simulator[17] could improve the behavior of the joints.

Scaling issues. Due several design choices it is not possible to scale up to high
number of simulated Nao robots. Scaling up the number of Naos is important
for simulating a RoboCup scenario. The goal of the RoboCup competition is to
play a real football match with 22 Naos. Part of the reason why the simulation
cannot scale up to this number of Naos is due the choice of the collision model,
the physics timing step and possible overhead of message parsing and other
sonar sensor. Scaling of the number of Naos could be improved by simplifying
the collision model by using more simple shapes (spheres, boxes) and lowering
the Physics timestep settings. The same could be applied to the message parsing
(moving the code from Unreal Script to C for example) and the sonar sensor
(using less traces to determine the sonar distance).

Extending to other legged robots. One of the goals was to make a generic model
that could be applied to other limb typed robots, like the ABB Frida or a spi-
der like robot. The collision tools of Unreal Engine allows to quickly create varies

342 S. van Noort and A. Visser

collision shapes, varying from simple models (boxes, spheres) to complex convex
models, possible based on the visual shape of the robot.

This model can easily be applied to other robots with multiple kinematic
chains as shown in figure 9.

(a) A spiderlike robot (b) A two arm manupulator robot

Fig. 9. Example of robots with multiple kinematic chains

7 Conclusion

In this paper we demonstrated that the simulation of the Nao in USARSim
resembles reality quite closely. Our current model is usable in practice on the
condition that one keeps in mind the limits of the method; like the walking
behavior and the scaling issues with the number of Naos. The combination of
Unreal/USARSim provides several advantages over other robot simulators. The
simulation is at such a level that transparent migration of code between real
robots and their simulated counterparts is possible. In this paper this is demon-
strated with an intermediate program, UsarNaoQi, which enables access to the
simulated robot with its native interface. Using this interface several experiments
have been performed with both the real and simulated robot. The model devel-
oped for this humanoid robot demonstrates that robots with complex dynamics
could be realistically modeled inside USARSim, which could be the basis of the
introduction of other models of complex robots into USARSim like two-arm
manipulators and/or service robots.

References

1. van Noort, S., Visser, A.: Validation of the dynamics of an humanoid robot in usar-
sim. In: Proceedings of the Performance Metrics for Intelligent Systems Workshop
(PerMIS 2012) (March 2012)

2. van Elteren, T., Neculoiu, P., Oost, C., Shantia, A., Snijders, R., van der Wal,
E., van der Zant, T.: Borg - the robocup@home team of the university of gronin-
gen - team description paper. In: Proc. CD of the 15th RoboCup International
Symposium (July 2011)

Extending Virtual Robots towards RoboCup Soccer Simulation and @Home 343

3. Dessimoz, J.D., Gauthey, P.F.: Rh6-y toward a cooperating robot for home appli-
cations. In: Proc. CD of the 15th RoboCup International Symposium (July 2011)

4. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot sim-
ulator for research and education. In: Proceedings of the International Conference
on Robotics and Automation (ICRA 2007), pp. 1400–1405 (2007)

5. Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D simulator of multiple legged robots
based on uSARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T.
(eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg
(2007)

6. Greggio, N., Menegatti, E., Silvestri, G., Pagello, E.: Simulation of Small Humanoid
Robots for Soccer Domain. Journal of the Franklin Institute 346(5), 500–519 (2009)

7. Lunenburg, J., Clephas, T., Dirkx, N., Willems, B., Elfring, J., Sandee, J., van de
Molengraft, M.: Tech united eindhoven team description 2011. In: Proc. CD of the
15th RoboCup International Symposium (July 2011)

8. Alenyà, G., Tellez, R.: The reem@iri 2012 robocup@home team description. In:
Proc. CD of the 16th RoboCup International Symposium (June 2012)

9. del Solar, J.R., Correa, M., Lee-Ferng, J., Hevia-Koch, P., Parra, I., Mascar,
M.: Uchile homebreakers 2010 team description paper. In: Proc. CD of the 14th
RoboCup International Symposium (June 2010)

10. Lallee, S., Lise Jouen, A., Petit, M., Madden, C., Boucher, J.D., Weitzenfeld, A.,
Dominey, P.F.: Cooperative human robot interaction with the nao humanoid: Tech-
nical description paper for the radical dudes. In: Proc. CD of the 15th RoboCup
International Symposium (July 2011)

11. Balakirsky, S., Kootbally, Z.: USARSim/ROS: a combined framework for robot
control and simulation. In: Proceedings of the ASME 2012 International Sympo-
sium On Flexible Automation (ISFA 2012) (June 2012)

12. Baraff, D.: An introduction to physically based modeling: rigid body simulation I
- unconstrained rigid body dynamics. SIGGRAPH Course Notes (1997)

13. Fu, K., Gonzalez, R., Lee, C.: Robotics: control, sensing, vision, and intelligence.
McGraw-Hill (1987)

14. Kajita, S., Tani, K.: Experimental study of biped dynamic walking. IEEE Control
Systems Magazine 16(1), 13–19 (1996)

15. Wieber, P.: Trajectory free linear model predictive control for stable walking in the
presence of strong perturbations. In: Proceedings of the International Conference
on Humanoid Robots, pp. 137–142 (2006)

16. Verschoor, C., et al.: Dutch nao team - code release 2011 and technical report 2011,
Universiteit van Amsterdam (October 2011) (published online)

17. Urbann, O., Kerner, S., Tasse, S.: Rigid and soft body simulation featuring realistic
walk behaviour. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup
2011. LNCS, vol. 7416, pp. 126–136. Springer, Heidelberg (2012)

A Survey about Faults of Robots Used in RoboCup

Gerald Steinbauer

Institute for Software Technology
Graz University of Technology, Graz, Austria

steinbauer@ist.tugraz.at

Abstract. Faults that occur in an autonomous robot system negatively affect its
dependability. The aim of truly dependable and autonomous systems requires
that one has to deal with these faults in some way. In order to be able to do
this efficiently one has to have information on the nature of these faults. Very few
studies on this topic have been conducted so far. In this paper we present results of
a survey on faults of autonomous robots we conducted in the context of RoboCup.
The major contribution of this paper is twofold. First we present an adapted fault
taxonomy suitable for autonomous robots. Second we give information on the
nature, the relevance and impact of faults in robot systems that are beneficial for
researcher dealing with fault mitigation and management in autonomous systems.

1 Introduction

A major goal of research in Robotics and Artificial Intelligence is to develop truly au-
tonomous robots that are able to assist humans in exhausting or repetitive tasks or in
dangerous environments. Examples include factories, mining, search and rescue mis-
sions and space exploration. In such application domains dependability plays a major
role because autonomous robots must not endanger people sharing common space, face
unexpected situations or allow no human intervention in the case of problem. In the
context of autonomous robots dependability is strongly coupled with fault mitigation.

Autonomous robots in academia and industry frequently show faults or undesired
behaviors. This is caused by physical faults in the robot’s hardware, bugs in the robot’s
software, unreliable algorithms or unexpected situations not considered during devel-
opment. A lot of research has been conducted to develop automated methods for fault-
tolerance, diagnosis and repair to be able to cope with these problems. Such methods
improved the reliability of robots but still we see a large fraction of robots used in
academia or industry fail due to the reasons mentioned above.

Although, the topics of dependability are very important surprisingly there are few
founded publications and studies about the reliability of autonomous robots and the
relation between faults, counter-measures and dependability. Such work either quali-
tative or quantitative seems yet to be extremely interesting for all autonomous robots
researchers and developers. So far we have only few information about what the com-
mon types of faults and problems are. Therefore, no answer can be given to the question
what issue tackled had the most positive impact on robot system faults. It might be nice
if one has a method that allows a robot to automatically cope with a particular type of
fault. If this type of fault, though, occurs once a year in one particular robot the methods
has very limited impact on the general reliability of autonomous robots.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 344–355, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Survey about Faults of Robots Used in RoboCup 345

Based on the above observations we investigated the question: What are the common,
probable and most critical faults and malfunctions of autonomous robots? In order
to give a first founded answer RoboCup is an ideal environment. RoboCup is one of
the leading initiatives to foster research and development in Artificial Intelligence and
Robotics [1]. In RoboCup a large number of different research robots are used that
demonstrate a wide variety of system architectures and properties. Moreover, the tasks
and environments used in the RoboCup competitions are dynamic and complex and
ask for non-trivial solutions. In order to be able to identify the common and therefore
interesting faults to deal with we initiated a survey on robot faults in RoboCup. In the
survey groups participating in different RoboCup leagues had been asked to describe
their robot systems, the type and frequency of faults their systems suffer from and the
impact of these faults on the mission success.

This primarily qualitative survey provides information about the properties of faults
of robots used in RoboCup. It can be used to derive common activities and processes
to improve the robot’s reliability and to guide research into promising directions. For
sure this survey is also interesting for researchers and developers outside the RoboCup
community as the robots and techniques used in RoboCup are state of the art and similar
robots are used in other fields of research and industry as well.

2 Definitions and Related Work

In this section we give basic definitions that are used throughout the remainder of the
paper.

A failure is an event that occurs when the delivered service deviates from correct
service. An error is that part of the system state that can cause a subsequent failure. A
fault is the adjudged or hypothesized cause of an error.

For the current survey on faults of robots used in RoboCup we adapt the fault tax-
onomy of [2]. Our taxonomy shown in Figure 1 is more suitable for this particular
domain. The category hardware comprises all faults related to physical faults of the

Manipulators

Sensors

Plattform

Controller

Hardware

Low Level

Decision Making

Software

Localization and Mapping

Perception

Behavior Execution

Decision Making

Perception

Behavior Execution

Algorithms

Faults

Environment

Interaction

Humans

Agents and Robots

Fig. 1. Fault taxonomy used in current survey

346 G. Steinbauer

robot’s equipment. Design and implementation faults of the robot’s software systems
fall in the group software. The category algorithms aggregates problems of methods and
algorithms based on its nature. Here we distinguish between a faulty implementation of
an algorithm and shortcomings of the algorithm itself. In the category interaction we
group problems that arise from uncertainties in the interaction with the environment
(perception and acting), other agents and humans.

Furthermore, we use several attributes to classify faults and their properties. Some
of them are reused from the literature others are newly defined or clarified. The used
attributes are: (1) relevance of a fault for different robot systems, (2) relation to condi-
tion and events in the environment, (3) relation to symptoms (failures), (4) impact to the
mission’s success and (5) frequency of the occurrence of a fault.

We choose the fault categories and attributes based on our experience in research for
fault diagnosis and repair [3,4]. Basically we found out that classical faults in hardware
and software are not sufficient explanations for undesired behavior of an autonomous
robot, e.g., the non-determinism of actions in the real world has a big influence on
dependability. Moreover, much researcher work on advanced solutions to handle par-
ticular faults but ignore the question whether the fault is very much relevant. Therefore,
information on the properties of faults such as impact is important.

As mentioned in the introduction there is few literature and studies on faults of au-
tonomous robot systems. One of the few examples is [2] where the authors did a quali-
tative and quantitative study on faults of robots and their impact in the search and rescue
domain. Moreover, probabilities were given for how likely it is that parts fail. In [5] the
authors presented an autonomous tour guide robot and described its continuous oper-
ation for five month. The authors reported a Mean Time Between Failures (MTBF) of
around 4.6 hours of the robot system and noted that most of the failures were caused by
software components. This is one of the few long-term studies.

Intuitively one may assume that robot systems having abilities to automatically re-
cover from faults will show a higher dependability. The authors of [6] showed that a
team of robots with cooperative repair capabilities has a better chance to complete a
cooperative mission. Research on automated recovery from faults in the context of au-
tonomous robots systems is a very active field. The techniques comprise automated de-
tection, identification and repair of faults. If the former two techniques are combined we
refer to it as diagnosis. Diagnosis and repair techniques are quite heterogeneous in their
properties (qualitative, quantitative or hybrid) and are able to cope with a wide range of
faults (hardware, software or knowledge). In [7] the authors showed how particle filter
can be used to detect faults in the mobility unit of a planetary rover. Many approaches
like [8] specifically addressed the diagnosis of sensing and/or actuator faults. In [3] the
authors presented a framework for detection and repair of faults in the control system
of autonomous robots. The framework was based on qualitative model-based diagnosis.

To improve the dependability of autonomous systems a number of approaches have
been proposed to handle unexpected situations caused by the environment. For instance
there is a lot of work in the area of planning and execution monitoring to handle ex-
ecution faults and unexpected external events. Example architectures are LAAS [9],
CLARAty [10] and the Livingstone architecture by Williams and colleagues [11].

A Survey about Faults of Robots Used in RoboCup 347

3 Investigated RoboCup Leagues

The robot platforms, the methods and the task used in RoboCup resemble to a high
extent what is used and done around the world in Robotics and AI labs. In order to
have access to a wide variety of robots we included the following leagues in our study:
Middle Size, Rescue Robot and RoboCup@Home.

In the Middle Size League (MSL) two teams of up to six autonomous robots each
play soccer against each other [12]. This league is the one that approximates real soccer
best in terms of speed of the game and size of field (18 m width). The used robots have
only some size and weight restrictions and move with a speed of up to 5 m/s. No exter-
nal sensors or interventions are allowed. Research challenges in this league comprise
methods for controlling a robot at high speed, localization and navigation with sparse
landmarks or machine learning for behaviors like dribbling and team coordination.

The Rescue Robot League (RRL) [13] provides a testbed for robots in the urban
search and rescue domain. The goal is to develop robots that are able to explore hazard
sites after disasters like earth quakes or chemical accidents without endangering first
responders. In the competition teams have to explore a given arena built of standard test
modules such as ramps, step fields or stairs. The two major tasks are to localize trapped
victims and to build a map of the arena. Research challenges comprise mechanical
design of robust agile robot platforms, simultaneous localization and mapping (SLAM),
exploration strategies or object recognition for victims and hazard material signs.

In the RoboCup@Home League (@Home) [14] service robots for office and home
environments are developed. The test bed is an apartment with common parts such
as a kitchen, a bed room or a living room. During the competition the robots have to
autonomously perform several predefined tests such as to guide a guest to a particular
place, find a given object or recognize persons. These resemble simple useful tasks
in daily life. Moreover, teams can show individual achievements like newly integrated
sensors or special capabilities of their robot in a free challenge. Research challenges
comprise safe navigation in indoor environments, grasping and manipulation of objects,
human-robot interaction (HRI) or object and face recognition.

4 Survey and Data Collection

4.1 Information about Fault and the Questionnaire

The aim of our work is to get a qualitative estimation which parts of robot systems are
affected by faults, what the root causes are, what the symptoms (failures) caused are
and what their impact and frequency is. These parameters very much matters for the
design and implementation of fault diagnosis and repair approaches.

In order to collect the data needed to answer the above questions we divide the survey
into nine main categories:1

1. general information on the groups and their hardware and software
2. the robot platform and related faults

1 The full questionnaire, the full data set of the survey and further interpretations of the data are
publicly available at http:\\www.ist.tugraz.at/rfs.

348 G. Steinbauer

3. the robot’s sensors and related faults
4. the robot’s manipulators and related faults
5. the robot’s control hardware and related faults
6. the robot’s software and related faults
7. the used algorithms and related faults
8. off-line and on-line measures to deal with faults
9. research focus and general feedback

The questions in categories 1 and 9 provide general context information about the used
robots and the research groups involved. Category 8 collects information about fault
mitigation strategies already used in the field. The aim of the questions in the categories
2 to 7 is to collect broad feedback on possible faults in various robot subsystems and
their impact. Therefore, these categories are further divided in five standard blocks:

1. how much are the related parts affected by faults
2. what are the dominant root causes for faults
3. how much fault are correlated with root causes
4. what are dominant symptoms (failures) caused
5. what is the impact of faults on the mission success rate
6. what is the frequency of particular faults

For instance the related parts of the robot’s platform comprise among others wheels,
tracks, motors, motor drivers or batteries. Root causes comprise physical problems such
as wear or damage, connection or configuration problems or environmental conditions.
Symptoms related to faults comprise immobility, power failures, unpredictable behavior
or missing data. The selection has been done based on our experience in the construction
of autonomous robots, the participation in RoboCup and the daily lab work as well.

The impact of faults is categorized as not critical, repairable/compensable or termi-
nal. The frequency of faults are categorized as never, sporadic, regularly or frequently.
These categories are related to the schedule of the RoboCup competition. Repairable
denotes faults that can be repaired during a mission or game while terminal denotes
faults that lead to an abortion of a mission or robots not able to take part in a game
anymore. frequently means that a fault occurs in each mission or game at least once.

The questions about the relevance of faults and how much parts are affected by faults
had to be answered by integers from 0 (not relevant or affected) to 5 (very much relevant
or affected). For the correlation of faults to causes matrices were used where the entries
represented a particular correlation and could be checked during answering.

4.2 Data Collection Process

The data collection process was conducted as on-line survey using a renowned commer-
cial survey platform. We invited 68 research groups from 21 countries that participated
in the last years in the RoboCup world championship or a major regional competition
to complete the survey. 16 of these groups participated in Middle Size, 22 in Rescue
Robot and 30 in RoboCup@Home. The survey was available on-line from August to
November 2010. We received 25 responses to the invitation. This represents a good
number of 36,7 % of the invited groups. Due to incomplete submissions we incorporate
only 17 responses (25 % of the invited groups) in our survey. 6 responses came from

A Survey about Faults of Robots Used in RoboCup 349

the Middle Size, 5 from the Rescue Robot and 6 from the RoboCup@Home league. A
response rate of 25 % of useful responses is above the usual rates in surveys and can
be explained by the compact group of researchers participating in RoboCup and the
interest in empirical data.

5 Results and Interpretation

5.1 General Information

We start with general information about the used robot systems. Table 1 left shows an
overview of the used robot platforms. Nearly 80 % of the research groups use custom-
built robot. This fact, though, is not equally true for all application areas. While groups
in MSL and RRL mainly use custom-built robot platforms, @Home groups use com-
mercially available platforms to a high extent. For the locomotion of the robot platform
mainly differential drives (35 % of the groups), omni-directional drives (35 %), skid
drives (25 %) or tracks and flippers (18 %) are used. Please note that some groups use
more than one platform or locomotion type.

Table 1. Robot platforms (left) and sensors (right) used by teams in the different RoboCup
leagues. Some teams use multiple platform types. Number of teams.

Platform MSL RRL @Home Overall
% # % # % # %

Pioneer/GuiaBot 0 0 1 20,0 2 33,33 3 17,65
Telemax 0 0 0,33 6,7 0 0 1 5,88
Madilda 0 0 0,33 6,7 0 0 1 5,88
Volksbot 0 0 0 0 1 16,67 1 5,88
other commercial 0 0 0 0 2 33,33 2 11,76
custom-built 6 100 4,34 86,6 1 16,67 12 70,59

sum 6 100 5 100 6 100 17 100

Sensor MSL RRL @Home Overall
% # % # % # %

Odometry/Encoder 6 100 5 100 5 83,3 16 94,1
Directed Camera 3 50 4 80 4 66,7 11 64,7
Hokuyo LRF 0 0 4 80 5 83,3 9 52,9
Omni-Camera 6 100 1 20 0 0 7 41,2
Sick LRF 0 0 0 0 5 83,3 5 29,4
Compass 2 33,3 3 60 0 0 5 29,4
IMU 1 16,7 3 60 0 0 4 23,5

Table 1 right shows an overview of sensors used on the robot systems. Some of them
as odometry and directed cameras are commonly used in all domains. Others are used
frequently in particular domains such as the light-weighted Hokuyo Laser Range Finder
(LRF) (only RRL and @Home) or omni-directional cameras (mainly MSL). Specific
sensors such as gas sensors are used very seldom for special purposes only.

Further used hardware components are manipulators. All groups except one from
RRL and @Home use such devices. The most common types are the Katana robotics
arm and custom-built solutions.

Notebooks are used as central control unit by over 60 % of the groups. Industrial PCs
follow with 23,5 %. The major interfaces to hardware used are USB (by 88,2 % of the
groups), RS232 and Ethernet (64,7 % respectively) and IEEE139a (52,9 %).

5.2 Robot Platform

We continue with results about faults of the robot platforms. Table 2 left depicts the
feedback to which extent the various parts are affected by faults. Columns 2 to 7 shows

350 G. Steinbauer

Table 2. Ranking of parts of the robot platform affected by faults (left) and the relevance of
causes (right)

Platform Part Ranking (0 .. not affected. 5 .. much affected)
0 1 2 3 4 5 avg.

%

Batteries 29,4 11,8 41,2 5,9 11,8 0 1,59
Motor Drivers 33,3 20,0 26,7 6,7 13,3 0 1,47
Controller Boards 29,4 41,2 11,8 5,9 11,8 0 1,29
Tracks 62,5 0 12,5 12,5 0 12,5 1,25
Motors 46,7 33,3 0 0 20,0 0 1,13
Gears 66,7 6,7 13,3 0 13,3 0 0,87
Wheels 68,8 6,3 12,5 6,3 6,3 0 0,75
Flipper 75,0 12,5 0 0 0 12,5 0,75
Chassis 75,0 18,8 0 0 0 6,3 0,5

Causes Ranking (0 .. not relevant. 5 .. much relevant)
0 1 2 3 4 5 avg.

%

Connectors 11,8 5,9 23,5 17,6 23,5 17,6 2,88
Communication 17,6 17,6 23,5 17,6 11,8 11,8 2,24
Physical Impact 31,5 12,5 25,0 12,5 6,3 12,5 1,88
Wear 35,3 5,9 29,4 17,6 5,9 5,9 1,71
Vibration 29,4 17,6 23,5 17,6 11,8 0 1,65
Damage 23,5 41,2 11,8 11,8 5,9 5,9 1,53
Configuration 35,3 23,5 23,5 5,9 5,9 5,9 1,41
Temperature (Overheat) 52,9 5,9 11,8 11,8 11,8 5,9 1,41
Short Circuits 37,5 25,0 18,8 12,5 0 6,3 1,31
Environmental Conditions 76,5 5,9 11,8 5,9 0 0 0,47

the fraction of groups that assigned the corresponding scores (row 2) to various faults
(column 1). Column 8 depicts the average score. It shows that batteries and motor driver
are the primarily affected parts. An average score of 1,59 and 1,47 shows that these parts
are moderately affected. Anyhow, some parts like tracks or flippers got individual high
scores showing that some groups have serious problems with faults in these parts.

Furthermore, we were interested in the primary causes for faults in the robot plat-
forms. Table 2 right depicts the relevance of different causes. The major causes for
faults of robot platforms are problems with connectors (average score of 2,88) and com-
munication problems (e.g., protocol or transmission, score 2,24). Moreover, we asked
for the relation of faults and causes. According to the response connector problems are
major causes for faults of batteries (40 %), controller boards (43 %) and motor drivers
(42 %). The numbers reflects the fraction of groups that see a relation between causes
and faults. Another prominent cause is wear with relation to faults of gears (75 %) and
batteries (50 %).

Another interesting aspect is to which symptoms (failures) the different faults lead.
Usually the correlation between symptoms and root cause is not obvious. With the same
relevance score of 0 to 5 the major symptoms are immobility (average score of 3,12),
unpredictable behavior (2,67) and reduced controllability (2,56).

Finally, we asked for feedback on the impact and frequency of faults of parts of robot
platforms. Faults of batteries, motors and controller boards are the main reason for a
termination of missions. Most of the other faults were mainly classified as repairable.
Faults of batteries and motor drivers occur sporadic to regularly. The other faults occur
never to sporadic.

5.3 Sensors

We used the same set of questions and scores for feedback on sensors used by the
groups. According to their feedback the major sensors affected by faults are Hokuyo
LRF (average score of 1,78), Swiss rangers (1,25), directed cameras (1,23) and sonars
(1,2). IMUs (score 0,6) and odometry (0,65) are the most reliable sensors.

The most relevant causes for sensors faults are connectors (average score of 2,73),
configuration problems (2,54) and communication problems (2,5). The most significant
relation between sensor faults and causes exist between the Hokuyo LFR and config-
uration problems (43 %) as well as physical impact (43 %). More than 50 % of the
groups mentioned a relation between most of the sensors and connector problems.

A Survey about Faults of Robots Used in RoboCup 351

The major symptoms (failures) caused by sensor faults are that the sensor delivers no
data (average score of 3,76) and wrong or corrupted data (2,47). An unstable data rate
is a minor symptom (0,75). According to the responses faults of Sick LRF are terminal
to the mission while most of the other faults are repairable. Faults of directed cameras
and sonar occur regularly while most other faults are classified as sporadic.

5.4 Manipulators

Manipulators seem to be sensitive parts. They received a high average score of 3,09
for being affected by faults. The leading causes for faults are physical impact (average
score of 3,7), damage (3,42), communication problems (2,17) and connectors (2,0).
Major symptoms (failures) are problems with the kinematics (average score of 2,88), the
precision (2,55) and the payload (2,33). Faults of manipulators have also high impact on
the mission success as 45,4 % of the groups classified them as terminal. Nevertheless,
over 70 % of the groups classified manipulator problems as sporadic.

5.5 Control System

This section only concerns control system’s hardware such as computer and notebooks.
The major causes for faults of the control system are connectors (average score of 2,24
out of 5,0), configuration problems (2,0), communication problems (2,0) and vibrations
(1,36). The most prominent symptom of control system faults is that peripheral func-
tions (e.g. particular ports) are missing or non-functional (average score of 2,88). This
symptom is followed by the fact that the system does not boot (1,71), hangs (1,6) or
crashes (1,6). Most of the symptoms such as the system does not boot, reboots or hangs
were classified by over 50 % of the groups as terminal. The responses show that most
problems with the control hardware are serious but occur only sporadically. But one
third of the groups replied that missing functionality occurs regularly.

5.6 Robot Software

This section concerns software engineering aspects of the robot control software. We
asked for faults of 13 major software parts such as computer vision, self-localization,
low-level drivers, decision making, inter-process communication or behavior execution.

According to the feedback computer vision (average score of 2,06), behavior execu-
tion (2,0), inter-robot communication (1,85) and low-level device drivers (OS depen-
dent, e.g., USB stack, 1,76) are the most affected software parts.

Table 3 left shows the relevance of causes for faults in the software. The major causes
are configuration problems (average score of 2,56), performance leaks (i.e., miss of
deadlines, 1,88), memory leaks (1,31) and access violations (1,19). Mutual exclusions
(score of 0,64) and overflows (0,57) play only a minor role as causes.

Of particular interest is the relation of causes to faults within the software. About
30 to 70 % of the groups report a relation between configuration problems and failures
in different parts of the software. Performance leaks are named as cause for faults in
object tracking (60 %), computer vision (54 %) and inter-robot communication (50 %).

352 G. Steinbauer

Table 3. Ranking the relevance of causes for robot software faults (left) and algorithms used
affected by faults (right)

Causes Ranking (0 .. not relevant. 5 denotes much relevant.)
0 1 2 3 4 5 avg.

%

Configuration 12,5 12,5 18,8 37,5 0 18,8 2,56
Performance Leaks 25,0 18,8 31,5 0 18,8 6,31 1,88
Memory Leaks 31,3 25,0 25,0 18,8 0 0 1,31
Access Violation 18,8 50,0 2,0 6,3 0 0 1,19
Race Conditions 60,0 26,7 6,7 0 6,7 0 0,67
Mutual Exclusions 78,8 0 14,3 0 0 0 7,1 0,64
Overflows 64,3 21,4 7,1 7,1 0 0 0,57

Algorithm Ranking (0 .. not affected. 5 .. much affected)
0 1 2 3 4 5 avg.

%

Decision Making - State Machine 0 33,3 33,3 0 0 33,3 2,67
Object Recognition 2D 0 28,6 21,4 28,6 14,3 7,1 2,50
Feature Extraction 7,7 23,1 30,8 23,1 7,7 7,7 2,23
Mapping 3D 0 60,0 0 20,0 20,0 0 2,00
Mapping 2D 0 69,2 0 15,4 0 15,4 1,92
Classification 0 55,6 11,1 22,2 11,1 0 1,89
Path Planning 7,7 53,8 23,1 0 7,7 7,7 1,69
Path Execution 0 66,7 8,3 16,7 8,3 0 1,67
Self-Localization - Sample Based 21,4 28,6 21,4 21,4 7,1 0 1,64

Object Recognition 3D 0 25,0 25,0 25,0 0 25,0 2,75
Reasoning/Planning - Logic Based 0 33,3 33,3 0 33,3 0 2,33
Reasoning/Planning - Probability Based 0 50,0 50,0 0 0 0 1,50
On-Line Machine Learning 33,3 0 66,7 0 0 0 1,33
Self-Localization - Classical Filter 33,3 33,3 33,3 0 0 0 1,00
Decision Making - Fuzzy Logic 0 100,0 0 0 0 0 1,00
Knowledge Base 50,0 25,0 25,0 0 0 0 0,75

The feedback on the relevance of symptoms (failures) caused by software faults
shows that the most prominent symptom is unpredicted behavior (average score of
3,00) followed by limited functionality (2,69) and crashes (1,94). While most faults
of the robot software are classified as repairable (by 40 to 70 % of the groups) prob-
lems with OS-related low-level drivers (50,0 %), embedded software in actuators and
sensors (46,2 %) and self-localization (37,5 %) are classified mainly as terminal to mis-
sions. Moreover, the occurrence of most faults is classified as never and sporadic. Only
object tracking (by 30,8 % of the groups), low-level drivers (28,6 %) and computer
vision (21,4 %) are classified as regularly.

5.7 Algorithms

Table 3 right shows the feedback on how much various algorithms are affected by faults.
Please note that the table is divided into two parts. The algorithms of the upper section
are commonly used and we thus got a significant number of replies. The algorithms in
the lower section are less common and we thus got only a few replies (2 to 4). Please
note that this question regards the algorithm itself rather than its implementation.

The most affected commonly used algorithms are decision making with state ma-
chines (average score of 2,67), object recognition in 2D (2,50) and feature extraction
(2,00). The upper section of the table clearly shows that these algorithms get higher
average score. Even the lowest score of 1,64 for sample-based self-localization is sig-
nificantly higher than the lower scores for the hardware. These observations lead to the
interpretation that algorithms are in general more affected by faults than hardware.

The most relevant cause for faults in algorithms is high computational demands (i.e.,
missing deadlines). It got an average score of 2,8 out of 5. It is followed by uncertain
estimations (2,43), false positives (2,33) and wrong estimations (2,21).

Counting how often groups report causal relations between symptoms (failures) and
a particular algorithm sample-based self-localization was named as the most affected
algorithm (34 reported relations to some cause) followed by 2D mapping (25) and 2D
object recognition (23). Please note that one group may report several causes for a prob-
lem of a single algorithm. Configuration problems were most often reported as cause

A Survey about Faults of Robots Used in RoboCup 353

for failures (36 reported relations to some algorithm) followed by wrong estimations
(34) and missed computation deadlines (27).

Most of the problems of algorithms were mainly classified as repairable. But prob-
lems with decision making using state machines were classified by 50 % of the groups
as terminal to the mission. It is followed by plan execution (36,4 %) and 2D mapping
(33,3 %). Most of the faults of algorithms occur sporadically. Only 2D object recogni-
tion was reported by 45,5 % of the groups as regular problem. Decision making with
state machine was reported by 12,5 % of the groups as frequent problem. Please note
that classifications of algorithms founded only on 1 to 3 responses were omitted.

5.8 Fault Mitigation Techniques

For this part of the survey we asked about techniques the groups already use to mitigate
faults. The questions were divided into techniques that are used off-line prior to the
mission or on-line during the mission and into techniques for hardware or software.
This section is quite important as it returns information about the state of the art in
applied fault mitigation that in turn is close related to dependability.

Table 4 right shows the numbers of groups using particular off-line techniques to
mitigate faults in the hardware. The most used technique is testing (used by 76,5 % of
the groups) followed by preventive maintaining used by 52,8 % of the groups. Advanced
techniques such as finite element method are not used.

Table 4. Groups using off-line techniques to handle hardware faults (left) and on-line techniques
to mitigate software faults (right)

Technique groups use it
%

Test Process 13 76,5
Preventive Maintenance 9 52,9
Simulation 5 29,4
Special Design Process 4 23,5
Special Implementation Process 4 23,5
Redundant Design 3 17,6
Iterative Design Process 1 5,9
None 1 5,9
Finite Element Method (FEM) 0 0

Technique groups use it
%

Process Monitoring 13 76,5
Watchdog 10 58,8
Activity Monitoring 10 58,8
Plausibility Check of Results 7 41,2
Automated Diagnosis 5 29,54
Automated Repair 4 23,5
Automated Reconfiguration 2 11,8
Fault Detection and Isolation (FDI) 1 5,9
Automated Degradation/Adaptation 0 0
None 0 0

Major technique used on-line to deal with hardware faults are watchdogs used by
76,5 % of the groups. It is followed by automated diagnosis used by 29,4 % of the
groups. Major techniques used off-line to mitigate software faults are testing (88,2 %
of the groups) followed by simulation (76,5 %) and special design processes (47,1 %).

Table 4 left shows the numbers of groups using particular on-line techniques to mit-
igate faults in the software. It shows that mainly monitoring techniques such process
monitoring (by 76,5 % of the groups), watchdogs (58,8 %) and activity monitoring
(58,8 %) are used. An interesting aspect is that every group takes measures to deal
with these on-line problems suggesting that there is a certain level of awareness to the
problems.

Based on additional feedback of the groups using automated diagnosis most groups
use some heuristics to check if particular sensors or actuators works correctly and sim-
ply reset the device by a command or even a power down/up cycle. One group uses

354 G. Steinbauer

additional sensors to validate results of the self-localization and reinitialize it in case.
One group uses an logical framework to reason about undesired states of components
or the high-level control and to issue repair actions, e.g., recalibration of an arm [15].

6 Conclusion and Future Work

In this paper we motivated, that in order to maintain a certain level of dependability of
autonomous robot systems it is important to identify and to deal with faults of the sys-
tem. In order to point out which faults of the system are more relevant in terms of their
frequency and impact on mission success we adapted a fault taxonomy used for remote
controlled robots towards autonomous robots. Moreover, we designed and conduct a
survey about the nature of faults in the context of RoboCup. We sent the survey to 68 re-
search groups around the world participating in RoboCup regularly. 17 responses were
included in our study. The survey comprised the following parts: information about
used hardware and software, hardware faults , software faults, and faults of algorithms
as well as used counter-measures. The result of the survey is a database about the nature
of faults occurring in autonomous robots. All data are publicly available on the survey
website for use by other groups (see http://www.ist.tugraz.at/rfs).

We now summarize some of the major observation we can draw from the collected
information. Faults in sensors have a similar frequency of occurrence as faults in the
robot platforms but their negative impact on the success rate of the mission is much
higher. Surprisingly, rather simple causes like connector problems causing hardware
failures were reported very often. Therefore, one conclusion is that a high fraction of
problems can already be mitigated by better engineering.

The involved groups reported that algorithms are in general more affected by faults
than hardware. Basically the awareness of the research groups to the problem of de-
pendability and faults is fortunately quite high. Almost all groups use some techniques
to mitigate faults in the robot’s hardware and software. Nevertheless, mostly straight
forward techniques such as watchdogs or monitoring are used. But the fault properties
and the interaction of symptoms and faults ask for advanced fault management.

Failures of algorithms caused by missed deadlines were reported by several of the
involved groups. Therefore, any-time or at least predictable algorithms seem to be a
promising research direction. Moreover, configuration seems to be a major problem and
suggests further research in the direction of configuration management. Furthermore,
faults related to the properties of algorithms received high relevance scores asking for
more research into the direction of evaluation and validation of algorithms.

The survey provides a first qualitative overview on the nature of faults in the RoboCup
context. We are convinced that these observations give information useful for develop-
ers and researchers in the area of autonomous robot systems in general. For instance
researcher may use the information to concentrate on subsets of fault with high im-
pact on dependability or use discovered symptom-cause relationships to improve their
diagnosis models.

In future work we will enhance the survey as for example questions concerning fault
mitigation techniques have to be more specific. We plan to conduct the revised survey
again in RoboCup and other domains to collect more information to be able to pro-
vide significant quantitative results in the future. Moreover, the integration of data from

A Survey about Faults of Robots Used in RoboCup 355

industry is of particular interest. Our vision is that the survey will form a basis for a
broader evaluation and classification of faults in robot systems.

Acknowledgment. We like to heartily thank all teams from the RoboCup Middle Size,
Robot Rescue and RoboCup@Home leagues who actively took part of this survey. The
work has been partly funded by the Austrian Science Fund (FWF) by grant P22690.

References

1. Visser, U., Burkard, H.: RoboCup: 10 Years of Achivements and Future Challenges. AI Mag-
azine 28(2) (2007)

2. Carlson, J., Murphy, R.R.: How UGVs Physically Fail in the Field. IEEE Transactions on
Robotics 21, 423–437 (2005)

3. Steinbauer, G., Mörth, M., Wotawa, F.: Real-time diagnosis and repair of faults of robot
control software. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005.
LNCS (LNAI), vol. 4020, pp. 13–23. Springer, Heidelberg (2006)

4. Brandstötter, M., Hofbaur, M., Steinbauer, G., Wotawa, F.: Model-based fault diagnosis and
reconfiguration of robot drives. In: IEEE Conference on Intelligent Robots and Systems
(IROS), San Diego, CA, USA (2007)

5. Tomatis, N., Terrien, G., Piguet, R., Burnier, D., Bouabdallah, S., Arras, K.O., Siegwart, R.:
Designing a Secure and Robust Mobile Interacting Robot for the Long Term. In: Proc. IEEE
International Conference on Robotics and Automation (ICRA), Taipei, Taiwan (2003)

6. Bererton, C., Khosla, P.: An analysis of cooperative repair capabilities in a team of robots.
In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation
(ICRA), vol. 1, pp. 476–482 (May 2002)

7. Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis. Robotics & Au-
tomation Magazine 11(2), 56–66 (2004)

8. Long, M., Murphy, R., Parker, L.L.: Distributed multi-agent diagnosis and recovery from
sensor failures. In: Int. Conference on Intelligent Robots and Systems (IROS) (2003)

9. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for autonomy.
Intenational Journal of Robotics Research 17, 315–337 (1998)

10. Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D., Petras, R., Das, H.: CLARAty: Coupled Layer
Architecture for Robotic Autonomy. Technical report, NASA - JPL (2000)

11. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote Agent: to boldly go where no
AI system has gone before. Artificial Intelligence 103(1-2), 5–47 (1998)

12. Lauer, M., Riedmiller, M.: Participating in Autonomous Robot Competitions: Experiences
from a Robot Soccer team. In: IJCAI 2009 Workshop on Competitions in Artificial Intelli-
gence and Robotics, Pasadena, CA, USA (2009)

13. Kleiner, A., Dornhege, C.: Real-time localization and elevation mapping within urban search
and rescue scenarios: Field Reports. Journal of Field Robotics 24, 723–745 (2007)

14. Wisspeintner, T., van der Zant, T., Iocchi, L., Schiffer, S.: RoboCup@home: Scientific Com-
petition and Benchmarking for Domestic Service Robots. Interaction Studies. Special Issue
on Robots in the Wild 10(3), 392–426 (2009)

15. Schiffer, S., Wortmann, A., Lakemeyer, G.: Self-Maintenance for Autonomous Robots con-
trolled by ReadyLog. In: Proceedings of the 7th IARP Workshop on Technical Challenges
for Dependable Robots in Human Environments, Toulouse, France, pp. 101–107 (2010)

Real-Time Training of Team Soccer Behaviors

Keith Sullivan and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030 USA

{ksulliv2,sean}@cs.gmu.edu

Abstract. Training robot or agent behaviors by example is an attractive
alternative to directly coding them. However training complex behav-
iors can be challenging, particularly when it involves interactive behav-
iors involving multiple agents. We present a novel hierarchical learning
from demonstration system which can be used to train both single-agent
and scalable cooperative multiagent behaviors. The methodology applies
manual task decomposition to break the complex training problem into
simpler parts, then solves the problem by iteratively training each part.
We discuss our application of this method to multiagent problems in
the humanoid RoboCup competition, and apply the technique to the
keepaway soccer problem in the RoboCup Soccer Simulator.

1 Introduction

In this paper we describe a Learning from Demonstration (LfD) system called
Hierarchical Training of Agent Behaviors, or HiTAB, and its application to prob-
lems in RoboCup. In LfD, an agent learns a behavior in real-time based on
provided examples from a human demonstrator, usually through teleoperation
of the agent. The goal of HiTAB is to learn complex stateful behaviors in the
form of hierarchical finite-state automata (HFA), in real time, based on a small
number of samples provided by a demonstrator. HiTAB can be applied both to
single-agent training and to command hierarchies of arbitrarily large swarms of
agents. We have used HiTAB to train humanoid robots, a team of differential-
drive robots, and a variety of virtual agents, up to thousands of agents at a time,
on many different problems.

The distinguishing feature of (single-agent) HiTAB is its approach to learning
behaviors based on a small number of samples, which in turn enables rapid
training in areas, such as behavior-based robotics, where samples are sparse.
HiTAB achieves this through manual task decomposition, breaking a complex
joint finite-state automaton into a hierarchy of much smaller automata to be
iteratively learned and composed. Though HiTAB uses standard classification
techniques to learn these automata, the resulting learned automata are often
very simple, indeed trivial. This is exactly the goal: simple automata in turn
define a low-dimensional space which can be learned with a small number of
samples.

All machine learning methods combine some degree of automated machine
induction and human domain knowledge. At the very least, a human is choos-
ing an appropriate representation and bias. HiTAB lies at the far end of the

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 356–367, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Real-Time Training of Team Soccer Behaviors 357

induction/knowledge tradeoff. By manually decomposing the problem into a
hierarchy of subproblems, the experimenter is defining the automaton’s gen-
eral architecture: HiTAB’s machine learning is filling in the gaps. This puts
HiTAB somewhere between machine learning and outright programming by
demonstration.

In 2011 we applied HiTAB to train a humanoid kid-sized robot soccer behav-
ior the night before the RoboCup competition, then fielded it in the competi-
tion alongside hardcoded robot behaviors. Our ultimate goal is to train all the
top-level behaviors in our robot soccer team while at the competition.

In this paper we demonstrate another application of HiTAB to the Robocup
domain: the keepaway problem in simulated soccer, using the RoboCup Soccer
Simulator. In this problem, a group of keepers must collectively pass the ball
amongst one another so as to prevent another team, the takers, from acquiring it.
This problem requires the experimenter to train a homogeneous but interactive
behavior among three agents.

The rest of this paper is organized as follows. We first discuss related work,
then detail how HiTAB works in the single-agent case (for details on the multi-
agent/swarm case, see [28]). We then discuss our prior and current attempts in
the RoboCup Kid-Size Humanoid league. Then, we show how HiTAB may be
applied to the keepaway problem in the RoboCup Soccer Simulator.

2 Related Work

Learning from Demonstration is a method to train agents by having a human
demonstrator perform actions for the agent [1,2]. Since the agent is given the
proper action to perform in a given situation, LfD is, broadly speaking, a super-
vised learning problem, though authors often use reinforcement learning, with
a reward signal based on how closely a learned solution matches a trajectory
shown by the demonstrator [7,19]. A variation of LfD, called imitation learning,
attempts to mimic a demonstrator’s actual actions (as a human) rather than
observe the demonstrator teleoperate the robot [14,15].

The LfD literature may be divided into two categories: those which learn
plans [22,31] and those which learn (usually stateless) policies [3,19] (for stateful
examples see [8,13]). In most cases, the plan literature builds sparse machines
describing occasional changes in behavior, whereas many, but not all, policy
methods learn fine-grained changes in action, such as might be found in trajec-
tory planning or control. The crucial difference between the two is that a plan
learner may receive a new sample only when the user occasionally specifies a
new behavior to perform; whereas trajectory policy learners may be inundated
with samples with every slight modification or course correction. This in turn
has an impact on the difficulty of learning: plan methods must often deal with
an extreme sparsity in samples. Our work lies in the plan method category.

Like our own work discussed here, a number of other authors construct com-
plex behaviors via scaffolding: breaking the task into smaller, easier to learn
pieces and combining these smaller tasks to form complex behaviors [16,25,27].

358 K. Sullivan and S. Luke

Our approach requires manual decomposition and reassembly, but this is not the
only approach. Instead of the demonstrator specifying how to combine simpler
behaviors, the idea of behavior fusion has the agent learn how to automatically
combine simple behaviors into more complex behaviors [20,21]. Closely related
is the notion of automatic task decomposition which determines how to break
complex behavior into simpler components [9,10].

Our work is distinguished in its application to both single- and multi-agent
scenarios. Though in this paper we focus largely on single-agent learning, it
is done in a collective environment. Multiagent learning from demonstration is
a very difficult problem because of the gulf which exists between the desired
emergent macrophenomena and the per-agent microbehaviors which give rise to
them. This is particularly problematic for supervised learners, because in or-
der to learn in a supervised fashion each agent must receive the correct action
as a microbehavior: but the experimenter does not know what microbehaviors
should be done to achieve the desired macrophenomenon, and parallel control of
large numbers of agents is also difficult. As a result the vast majority of multi-
agent research has focused on reward-based techniques (reinforcement learning,
evolutionary computation, etc.) rather than supervised learning [23]. Of those
supervised learning methods used, most fall into the category of agent modeling,
where agents learn about each other rather than a task given by a demonstrator.
Still, there has been some work in multiagent LfD. Chernova et al. use confidence
estimation to train multiple robots individually and rely on emergent multirobot
behavior to accomplish the task [5,6]. A similar approach was used to train Sony
AIBO robots to play soccer [4,11,12].

3 Hierarchical Training with a Single Agent

HiTAB’s basic model consists of hierarchical finite-state automata. Each state in
a HiTAB automaton corresponds to an agent behavior: and when in a given state,
the agent performs the associated behavior. Behaviors may be either atomic
behaviors hard-coded in the agent, or may themselves be other finite-state au-
tomata. Every automaton begins in its Start state, a blank state which immedi-
ately transitions to some other state. Automata may also have flag states, such
as the Done state, which raises a flag indicating that the automaton believes it
is done, then transitions to the Start state. Flag states allow parent automata
to detect completion of sub-behaviors as if they were sensor features.

Transitions between states are controlled by transition functions which map
the current state and feature vector to a new state. HiTAB’s states are fixed
(they are the current behaviors in its library), but it learns a transition function
for every state in the automaton.

Learning the transition function is a classification task where the class labels
are the individual states and attributes are the environmental features. While
many classification algorithms are applicable, HiTAB at present uses a version of
the C4.5 decision tree algorithm [24] with probabilistic leaf nodes. Decision trees
nicely handle different types of data (e.g., continuous, toroidal, and categorical

Real-Time Training of Team Soccer Behaviors 359

data), and do not require scaling of features relative to one another. Additionally,
many agent tasks can be approximated by rectangular partitions of the feature
space, which makes them a good target for decision trees. Leaf nodes in deci-
sion trees traditionally deterministically compute the class using the plurality of
examples which reach that leaf. HiTAB instead uses a probability distribution
over the classes appearing at a leaf node.

The motivation behind HiTAB was to develop a LfD system which could
rapidly train complex, stateful agent behaviors in real time. As mentioned be-
fore, training complex agent behaviors typically requires many samples. HiTAB
employs task decomposition to reduce the number of samples necessary to pro-
duce a detailed behavior. It does this in various ways:

– Behaviors (which take the form of finite-state automata) are organized into
a hierarchy, allowing the operator to decompose a large joint behavior into
many simpler behaviors which are trained independently, then reused in
different situations by higher-level trained behaviors.

– Each behavior may be trained solely in the context of features and lower-
level behaviors relevant to it. In contrast, training a single large behavior
would require the joint of all basic behaviors and features, resulting in a
much higher dimensional learning space. This results in dramatic savings:
typically decomposition allows the dimensionality, and corresponding need
for samples, to decrease from exponential to polynomial sizes.

– Behaviors and sensor features are parameterizable. Thus an operator may
train a behavior such as go to X, and later reuse it as go to the ball or go to
the nearest wall, etc.

– Incorrectly trained behaviors may be retrained without having to retrain the
entire top-level joint behavior.

Running HiTAB. An automaton starts in its Start state. Each timestep, while
in state St, the automaton first queries the transition function to determine the
next state St+1, transitions to this new state, and if St �= St+1, stops performing
St’s behavior and starts performing St+1’s behavior. It then performs one pulse
of the state’s underlying behavior: if the behavior is an atomic behavior such as
“go forward”, this might result in a single step forward. If the behavior is itself
an HFA, this results in recursively performing the aforementioned transition and
pulsing procedure on the underlying automaton.

Training with HiTAB. To begin training an automaton, the operator first selects
the features to be used as attributes for the automaton’s transition classifiers.
Training then iterates between a training mode and a testing mode.

In the training mode, the demonstrator is in control. Each time the demon-
strator directs the agent to perform a new behavior, the agent begins performing
it, and also records a tuple 〈St, �ft, St+1〉 which stores the current feature vector,
along with the previous and new states. If state St+1 has a behavior designed
to be executed exactly once, then no additional examples are recorded. Other-
wise, a useful default example is stored of the form 〈St+1, �ft, St+1〉. This helps

360 K. Sullivan and S. Luke

HiTAB’s classifier realize that St+1 should be continuously performed unless, as
indicated by a further example, the situation changes again.1

Ultimately the demonstrator switches to the testing mode, which causes the
transition functions to be built from the collected examples. For a given state
Si, HiTAB reduces all examples of the form 〈Si, �ft, Sj〉 to samples of the form

〈�ft, Sj〉 which are input to the classifier (�ft are the features and Sj are the
labels). The resulting classifier defines the transition function for outgoing edges
from Si.

The agent then starts following the learned behavior autonomously. If the
demonstrator observes the agent performing an incorrect behavior, he may step
in and switch the agent back to training mode to collect additional examples.

Ultimately the trained behavior is saved to the behavior library. To do this,
HiTAB first trims unused states and features. In addition, any parameterized
behaviors and features are bound to a target (e.g., “nearest obstacle”), or to a
parameter of the automaton itself. After saving to the library, the behavior may
be used as a state in a higher-level automaton to be learned at a later time.

Formal Model. The HFA is at the heart of HiTAB. An automaton is a tuple
〈S,B, F, T,G〉 ∈ H defined as follows:

– S = {S1, . . . , Sn} is the set of states in the automaton. Included is one special
state, the Start state S0, and zero or more flag states (such as Done). Exactly
one state is active at a time, designated St. The purpose of a flag state is
simply to raise a flag in the automaton to indicate that the automaton
believes that some condition is now true. Flags in an automaton appear as
optional features in its parent automaton.

– B = {B1, . . . , Bk} is the set of basic behaviors. Each state is associated with
either a basic behavior or another automaton from H, though recursion is
not permitted.

– F = {f1, . . . , fm} is the set of observable features in the environment. At
any given time each feature has a numerical value. The collective values of
F at time t is the environment’s feature vector �ft = 〈f1, ..., fm〉.

– T = �ft × S → S is the transition function which maps the current state St

and the current feature vector �ft to a new state St+1.
– Optional free variables (parameters) G = {G1, . . . , Gn} for basic behav-

iors and features generalize the model: each behavior Bi and feature fi are
replaced as Bi(G1, . . . , Gn) and fi(G1, . . . , Gn). The evaluation of the tran-
sition function and the execution of behaviors are based on ground instances
of the free variables. For example, rather than have a behavior called go to
the ball, we can create a behavior called goTo(A), where A is left unspeci-
fied. Similarly, a feature might be defined not as distance to the ball but as

1 Default examples are distinguished in HiTAB’s decision tree mechanism: if the deci-
sion tree is choosing to place its pivot between a default example and a non-default
example, the pivot is placed immediately adjacent to the non-default example. This
differs from the normal case, where the pivot is placed exactly half-way between the
two examples.

Real-Time Training of Team Soccer Behaviors 361

distanceTo(B). If such a behavior or feature is used in an automaton, either
its parameter must be bound to a specific target (such as “the ball” or “the
nearest obstacle”), or it must be bound to some higher-level parent of the
automaton itself. Thus HFAs may themselves be parameterized.

4 Training Teams of Agents

We have applied HiTAB in three ways to train teams or swarms of agents to
perform group behaviors:

1. A single agent behavior is trained in isolation, then distributed to multiple
agents. The behavior does not require agent interaction and can be essentially
done in parallel.

2. A homogeneous behavior is trained to be used by multiple coordinated
agents. For example, the agents learn to form ranks, or work together to
capture a prey. Because the behavior must interact with other agents, this
kind of training can be challenging. In lieu of training multiple agents simul-
taneously, we have taken a new approach, which we call behavior bootstrap-
ping. Here, we train an agent to perform a rudimentary version of the desired
behavior in the context of do-nothing teammates. We then distribute this
rudimentary behavior to the teammates, then train the agent on a slightly
more capable behavior in the context of teammates performing the rudi-
mentary behavior. We then distribute the slightly more capable behavior to
the teammates, and train an even more capable behavior, and so on, until
the desired sophisticated behavior is achieved. This approach is only really
effective with a relatively small number of agents.

3. A collection of coordinated homogeneous behaviors are trained among a
swarm of a (potentially very large) number of agents. The way this is done
is by organizing the swarm into a command hierarchy: small groups of agents
are assigned a commander (a virtual agent); then small groups of comman-
ders are assigned a commander, and so on until the whole swarm is structured
as a tree. We use HiTAB to train commanders in essentially the same way as
real (leaf node) agents are trained. A commander’s atomic behaviors corre-
spond to the learned top-level behaviors of its subordinate agents, and when
it begins to perform an atomic behavior it directs its subordinates to all be-
gin performing the equivalent top-level behavior. The resulting hierarchical
command structure strikes a mid-ground between a fully distributed swarm
and a fully centralized one.

Examples of the third approach may be found in [28]. Because the number of
agents is small (three teammates), in this paper we concentrate on the first two
approaches, and particularly on the novel use of behavior bootstrapping to train
three agents in concert.

We note that these methods, or at least the last two, fall under the multiagent
learning subcategory defined in [23] as team learning, whereby a single learner is

362 K. Sullivan and S. Luke

used at any particular time to train a team of agents. This is in contrast to con-
current learning, where multiple learners are simultaneously operating. Further,
we note that the group behaviors described above are all homogeneous. However
ultimately we aim to be able to train heterogeneous or mixed homogeneous and
heterogeneous behaviors in large numbers of agents.

5 Team Robot Training of Humanoids at RoboCup

The goal of HiTAB is to allow real-time training of behaviors fast enough that
it can be done in the field and on-the-fly by an operator. This has been demon-
strated in previous work [18,29] for virtual agents, a single differential-drive
robot, and a humanoid robot. But it had never been tested in a real-world chal-
lenge scenario. Thus as a proof of concept we fielded HiTAB-trained robots in
RoboCup 2011.

Since 2009, we have competed in the RoboCup Kid-sized Humanoid League
with the RoboPatriots [30]. Our humanoid robots have top-level behaviors in the
form of hard-coded hierarchical finite-state automata. Such behaviors include
locating the ball, servoing and approaching the ball, aligning with the goal,
kicking and reattempting kicks, and so on.

On the soccer field the night before the 2011 competition, we deleted one
of the hard-coded behaviors (servoing and approaching the ball) and trained a
behavior in its place. We did this by directly teleoperating the humanoid on the
field. We then saved out the trained behavior, and during the competition, the
robots loaded this behavior from a file and used it in an interpreter along side
the remaining hard-coded behaviors.

This behavior was not complex: it was meant as a proof of concept. However,
the learned behavior worked perfectly. After discussions with colleagues at the
competition, we have come to the conclusion that, to the best of our knowledge,
this is the first time a team at RoboCup has used a behavior taught to the robots
on the field at the competition itself.

For RoboCup 2012, our goal is to train most, if not all, of the top-level be-
haviors on the field at the competition. In essence, we will attempt to teach the
team how to play soccer the night before the competition.

6 Team Robot Training of Keepaway Soccer

In preparation for the RoboCup 2012 humanoid goal, we applied HiTAB to the
task of simulated soccer keepaway in the RoboCup Soccer Simulator. In the
keepaway problem, a team of keepers tries to maintain possession for as long as
possible from a team of takers. The two teams compete in a bounded area (in
our case, a 20m × 20m box) within a regular soccer field in the RoboCup Soccer
Simulator. In our version of keepaway, the agents have 360 degree and infinite
view and cannot collide with the ball. We did not permit our keepers to dribble.

The keepaway problem presents several challenges. First, its limited inter-
agent communication requires agents to learn independently, but the resulting

Real-Time Training of Team Soccer Behaviors 363

GoSlow

GoMedium

GoFast

Stop

Pass

TurnToBall

ApproachBall

ControlBall

GotoBall

GetOpen Start

Done

Stop Start

distance to ball ≤ 1.6

distance to ball ≤ 3.3

distance to ball ≤ 1.1

always

distance to ball > 1.8

distance to ball > 3.4

distance to ball > 6.6

always

angle to ball ≤ ±3angle to ball ≥ ±3

Start

always

always

distance to closest taker ≤ 5.5

can kick ballcannot kick ball

always

Start

I am the closest
teammember to

the ball

otherwise

doneI was yelled at

ApproachBall

GotoBall

ControlBall

Keepaway

Fig. 1. Four automata trained for the Keepaway Problem. In each case, the automa-
ton begins in Start. The Done behavior does nothing but raises a done flag in the
automaton’s parent, which is detected by the done feature (compare ControlBall with
Keepaway). Real-valued numbers shown are the result of the training examples pro-
vided.

behaviors require coordination. Second, keepaway (and soccer in general) has a
large state space. Third, the RoboCup Soccer Simulator injects random noise in
agents’ actions and sensors.

In this example we used HiTAB plus behavior bootstrapping to learn coor-
dinated behaviors among the three agents. We first manually decomposed the
keeper behaviors into a structure similar to Stone et al [26]. The keepers were
provided with the following hard-coded behaviors: GoFast, GoMedium, GoSlow,
Stop, Pass, GetOpen, and TurnToBall.

– The GoFast, GoMedium, and GoSlow functions moved the keeper straight
ahead at velocities of 100, 90, and 75 respectively.

– The Pass function kicked the ball to the “most open” teammate. Openness
was defined by determining the maximum angle subtended by the vector
between the passer and receiver, and the vector between the passer and the
closest taker. Kick strength accounted for friction and was proportional to

364 K. Sullivan and S. Luke

the distance between the passer and receiver2. The passer would then yell
to the receiver to inform him of the incoming ball.

– GetOpen moved the keeper away from its teammates via a simple potential
field, but constrained to be within 10 meters of the center of the box.

– TurnToBall rotated the keeper to directly face the ball.

The features we used were: DistanceTo(X), DirectionTo(X), IWasYelledAt, Bal-
lIsKickable, and ATeammateIsCloserToBall, where X could be set to either the
ball, the closest keeper, or closest taker. The binary features IWasYelledAt, Bal-
lIsKickable and ATeammateIsCloserToBall were true when a yell message was
received (from a passer), the ball was within kicking range, or another keeper
was closer to the ball, respectively, and were false otherwise.

Given these basic behaviors and features, we trained four automata in the
following order, as shown in Figure 1:

1. ApproachBall: A P-Controller in automaton form, based on GoFast,
GoMedium, GoSlow, Stop, and DistanceTo(ball). This automaton attempted
to move the agent until it was within kicking distance of the ball location.

2. GotoBall: Iterated between ApproachBall and TurnToBall, using the angle
to ball. This automaton attempted to servo on the ball location, and did not
require state.

3. ControlBall: Used the GotoBall, Stop, and Pass behaviors, the optional
Done state, and the DistanceTo(Closest Taker) and BallIsKickable features.
This automaton servoed on the ball, waited until a taker was sufficiently
close, then passed the ball, plus some error handling.

4. Keepaway: The top-level automaton, used GetOpen and ControlBall, plus
three features: ATeammateIsCloserToBall, IWasYelledAt, and Done. This
automaton would initially either get open or take control of the ball depend-
ing on whether the agent was initially closest to the ball. It then iterated
between the GetOpen and ControlBall behaviors depending on whether the
agent believed it was in control of the ball at any given time.

Keepaway was notable in that it was trained via a simple form of behavioral
bootstrapping. We began by training a single agent to either go to ControlBall
or GetOpen when started. We then distributed this behavior to all the agents.
We next restarted the game, which caused one agent to go to ControlBall while
the others went to GetOpen. We further trained the ball-controlling agent to
pass the ball and then get open, and then copied that behavior to all agents.
After restarting again, we trained a single open agent to transition to ControlBall
when yelled at, and distributed the final version of the behavior.

7 Experiments

We ran our learned keepaway behaviors for 200 episodes. An episode ended when
the takers gained possession of the ball, or when the ball was kicked out of the

2 The exact kick strength computation followed the U Texas Austin code used in
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/.

http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/

Real-Time Training of Team Soccer Behaviors 365

Table 1. Number of data points to train the final behaviors, and an approximation of
the total time to train the final behaviors.

Behavior Number of Examples Time to Train (minutes)

ApproachBall 18 10
GotoBall 10 10

ControlBall 11 45
Keepaway 10 90

keepaway box. The takers were from [26], but running at one quarter the speed
of the original. All experiments were conducted using the MASON multiagent
simulation package [17] (running HiTAB) plus the RoboCup Soccer Simulator.

Our trained keepers maintained possession for an average of 14.6 ± 0.87 sec-
onds, and completed an average of 3.8 passes per episode. We were able to train
the behaviors to play successfully: but obviously they will require more tweaking
to keep the ball away from the takers for a longer duration.

We also wanted to examine how quickly behaviors could be trained using
HiTAB. Table 1 shows the length of time spent actually training the agents
(including collecting the samples and constructing the HFA), and the number
of examples collected for the final trained model. Typically, the demonstrator
required several iterations to train the final behavior due to demonstrator error
or experimentation with different ways of achieving the desired behavior (and
thus different automata structures). Keepaway took longer to train due to the
behavioral bootstrapping involved. In particular, the majority of the time was
spent determining how to manage the system such that two agents were in the
correct configuration to collect appropriate data: inability to manipulate the
agents was largely a GUI issue which can be remedied in the future.

We believe the experiments show HiTAB’s ability to train a complex multi-
agent behavior in a reasonable timeframe, and without requiring a significant
amount of data. Based on these results, we think our goal to train the RoboPa-
triot soccer behavior in Mexico City is viable.

8 Conclusions and Future Work

This paper demonstrated a supervised learning from demonstration system ca-
pable of training complex behaviors in a multiagent problem domain in real
time. Our system, HiTAB, achieves this through manual behavior decomposi-
tion, per-sub-behavior feature reduction, and machine learning through classifi-
cation. HiTAB’s purpose is to do learning on a very small number of samples. Its
use of behavior decomposition places us on the far end of what may be reason-
ably called machine learning, and very close to explicit programing by example.
Multiagent supervised training (as opposed to user modeling) is unusual, and
HiTAB is nearly unique in tackling this problem.

The primary difficulties we encountered in adapting HiTAB for the soccer
keepaway problem centered on representation: HiTAB employs classification

366 K. Sullivan and S. Luke

rather than regression, yet many of the behaviors in the robot soccer domain
benefit from regression. For example, the GetOpen behavior computed the direc-
tion to go based on a potential field, which HiTAB could not easily do. Intelligent
interception would also benefit from regression, as was originally demonstrated
in [27]. It is reasonable to use HiTAB to train higher-level behaviors composed
from lower-level behaviors which were either hard-coded or developed through
another learning technique (such as a regression technique). Finally, our ulti-
mate goal is to develop HiTAB towards heterogeneous multiagent behaviors. In
the keepaway problem there is little need for heterogeneity: but in the Robocup
Humanoid leagues it is plausible for all three robots to be heterogeneous, ei-
ther by differences in capability (goalies) or simply behavior (a forward versus a
midfielder).

References

1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and Autonomous Systems 57, 469–483 (2009)

2. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: Fisher, D.H.
(ed.) Proceedings of International Conference on Machine Learning (ICML), pp.
12–20. Morgan Kaufmann (1997)

3. Bentivegna, D.C., Atkeson, C.G., Cheng, G.: Learning tasks from observation and
practice. Robotics and Autonomous Systems 47(2-3), 163–169 (2004)

4. Browning, B., Xu, L., Veloso, M.: Skill acquisition and use for a dynamically-
balancing soccer robot. In: Proceedings of the American Association of Artificial
Intelligence (AAAI), pp. 599–604 (2004)

5. Chernova, S.: Confidence-based Robot Policy Learning from Demonstration. Ph.D.
thesis, Carnegie Mellon University (2009)

6. Chernova, S., Veloso, M.: Confidence-based multi-robot learning from demonstra-
tion. International Journal of Social Robotics 2, 195–215 (2010)

7. Coates, A., Abbeel, P., Ng, A.Y.: Apprenticeship learning for helicopter control.
Communications of the ACM 52(7), 97–105 (2009)

8. Dixon, K., Khosla, P.K.: Learning by observation with mobile robots: A compu-
tational approach. In: Proceedings of IEEE International Conference on Robotics
and Automation (ICRA) (2004)

9. Eyharabide, V., Amandi, A.: Automatic task model generation for interface agent
development. Inteligencia Artificial 9(26), 49–57 (2005)

10. Garland, A.: Learning hierarchical task models by demonstration. Tech. Rep. TR-
2001-03, Mitsubishi Electric Research Laboratories (2001)

11. Grollman, D., Jenkins, O.: Dogged learning for robots. In: Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), pp. 2483–2488.
IEEE (2007)

12. Grollman, D.H., Jenkins, O.C.: Can we learn finite state machine robot controllers
from interactive demonstration? In: Sigaud, O., Peters, J. (eds.) FromMotor Learn-
ing to Interaction Learning in Robots. SCI, vol. 264, pp. 407–430. Springer, Hei-
delberg (2010)

13. Hovland, G., Sikka, P., McCarragher, B.: Skill acquisition from human demonstra-
tion using a hidden markov model. In: Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2706–2711. IEEE (1996)

Real-Time Training of Team Soccer Behaviors 367

14. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynam-
ical systems in humanoid robots. In: Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), pp. 1398–1403 (2002)

15. Jenkins, O., Mataric, M., Weber, S.: Primitive-based movement classification for
humanoid imitation. In: Proceedings of the IEEE-RAS International Conference
on Humanoid Robotics (Humanoids) (2000)

16. Lockerd, A., Breazeal, C.: Tutelage and socially guided robot learning. In: Proceed-
ings of IEEE International Conference on Intelligent Robots and Systems (IROS),
vol. 4, pp. 3475–3480. IEEE (2004)

17. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-
agent simulation environment. Simulation 81(7), 517–527 (2005)

18. Luke, S., Ziparo, V.: Learn to behave! rapid training of behavior automata. In:
Grześ, M., Taylor, M. (eds.) Proceedings of Adaptive and Learning Agents Work-
shop at AAMAS 2010, pp. 61–68 (2010)

19. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: Learn-
ing from demonstration and adaptation of biped locomotion. Robotics and Au-
tonomous Systems 47(2-3), 79–91 (2004)

20. Nicolescu, M., Jenkins, O., Olenderski, A.: Behavior fusion estimation for robot
learning from demonstration. In: Proceedings of Workshop on Distributed Intelli-
gent Systems: Collective Intelligence and Its Applications. IEEE Computer Society
(2006)

21. Nicolescu, M., Jenkins, O., Stanhope, A.: Fusing robot behaviors for human-level
tasks. In: Proceedings of the International Conference on Development and Learn-
ing (ICDL), pp. 76–81. IEEE (2007)

22. Nicolescu, M.N.: A Framework for Learning from Demonstration, Generalization
and Practice in Human-Robot Domains. Ph.D. thesis, University of Southern Cal-
ifornia (2003)

23. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

24. Quinlan, J.R.: C4.5: Programs for Machine Learning, 1st edn. Morgan Kaufmann
Series in Machine Learning. Morgan Kaufmann (January 1993)

25. Saunders, J., Nehaniv, C., Dautenhahn, K.: Teaching robots by molding behavior
and scaffolding the environment. In: Proceedings of the ACM/IEEE International
Conference on Human-Robot Interaction (HRI) (2006)

26. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup-soccer
keepaway. Adaptive Behavior 13(3), 165–188 (2005)

27. Stone, P., Veloso, M.: Layered learning and flexible teamwork in robocup simulation
agents. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS
(LNAI), vol. 1856, pp. 495–508. Springer, Heidelberg (2000)

28. Sullivan, K., Luke, S.: Learning from demonstration with swarm hierarchies. In:
Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS) (2012)

29. Sullivan, K., Luke, S., Ziparo, V.A.: Hierarchical learning from demonstration on
humanoid robots. In: Proceedings of the Humanoid Robots Learning from Inter-
action Workshop at Humanoids (2010)

30. Sullivan, K., Russell, K., Andrea, K., Stout, B., Luke, S.: RoboPatriots: George Ma-
son University 2012 RoboCup team. In: Proceedings of the 2012 RoboCup Work-
shop (2012)

31. Veeraraghavan, H., Veloso, M.M.: Learning task specific plans through sound and
visually interpretable demonstrations. In: Proceedings of IEEE International Con-
ference on Intelligent Robots and Systems (IROS), pp. 2599–2604. IEEE (2008)

SLAM in the Dynamic Context

of Robot Soccer Games

Stefan Tasse, Matthias Hofmann, and Oliver Urbann

Robotics Research Institute
Section Information Technology

TU Dortmund University
44221 Dortmund, Germany

Abstract. This paper evaluates the benefits of modeling the dynamic
environment of robot soccer games as a SLAM problem. Moving objects
such as other robots and the ball are not only tracked individually, but
modeled in a full state and used for localization at the same time. This is
described as an implementation of an efficient system capable of running
in real time on limited platforms such as the humanoid robot Nao, and
the system’s benefit is evaluated using real world experiments.

1 Introduction

For an autonomous robot, knowing its location and the current state of the envi-
ronment is essential as it represents the basis for planning and reactive behavior.
Generally, this task may involve different aspects: Localization in known envi-
ronments, mapping previously unknown environments, and tracking dynamic
elements therein. In most common literature [1], those aspects are handled sep-
arately. Either a robot is only expected to localize in a known structured envi-
ronment, leaving a choice among many existing solutions which mostly differ in
their suitability for different kinds of uncertainties occurring during the robot’s
operation, or no prior knowledge exists at all as assumed in simultaneous lo-
calization and mapping (SLAM) scenarios, which represents the other extreme.
Dynamic elements are generally ignored in both cases, either handled as noise
or explicitly filtered out [2,3].

Real world applications, however, always consist of a mixture of all those as-
pects. Many features in the robot’s area of operations will be known beforehand,
either from floor plans for indoor, or aerial photographs for outdoor scenarios,
or from previous mapping efforts or other given specifications. On the other
hand, such a priori information rarely covers all features which are of interest
for the localization task. Some might even be occluded due to recent changes
in the environment. Incorporating new information into a robot’s internal map
can therefore often improve its ability to localize precisely. Similarly, it can be
shown that explicitly incorporating dynamic features into the system improves
the estimation quality, both for the tracking result and the localization [4].

In the course of this paper the modeling of the full state in dynamic situations
will be covered. Section 2 gives an analysis and a brief overview over related work.

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 368–379, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SLAM in the Dynamic Context of Robot Soccer Games 369

Section 3 describes the actual implementation of such a system with the practical
approximations necessary to reduce the problem’s complexity to a point where
it is applicable in real-time on limited embedded platforms, specifically on the
Nao V3.3 robot. An evaluation is given in section 4 in the robot soccer context
of the RoboCup Standard Platform League (SPL), and the paper is concluded
in Section 5.

2 Modeling

This section addresses the different aspects of the problem in the context of
a team of cooperating autonomous agents acting in highly dynamic competi-
tive environments, therefore settling certain design choices as the basis for the
implementation of the system described in section 3.

2.1 Localization and Robot-Centric Tracking

The computational complexity of common filtering approaches naturally in-
creases with the state’s dimensionality. Separating the estimation of the robot’s
own position and that of the positions of other surrounding elements is therefore
motivated from a performance standpoint. Moreover, tracking dynamic objects
by stationary observers is a widely explored problem. Those are the main rea-
sons why the tracking problem for autonomous robots is commonly done in a
robot-centric local coordinate system.

The modeling of the localization and tracking aspects as a unified global esti-
mation problem, however, has some advantages compared to simple tracking in
robot-centric local coordinates. The latter necessitates the update of all tracked
objects with odometry data, which e.g. for humanoid robots can be extremely un-
reliable. Those propagate nearly uncorrected into infrequently observed targets,
leading to significant drift. At the same time, the separate robot pose estimation
already corrected part of the odometry’s errors and prevented the same drift in
its estimate. This motivates the advantage of modeling dynamic objects in global
reference systems. Additionally, information about tracked objects can be ben-
eficial for the localization when modeled in a unified state. Even if the objects’
motion uncertainty prevents their use for accurate localization, shared informa-
tion about those objects among a team of agents might still resolve multi-modal
or symmetrically ambiguous localization states.

This leads to a heterogeneous system which has some resemblance to the
SLAM problem, since new features are mapped and used for localization at the
same time. In previous literature pure localization and the full SLAM problem
have been mostly separated. Only recent publications began exploring the in-
termediate between those extremes by incorporating a-priori information into
systems otherwise formulated as SLAM, e.g. in [5] where a SLAM approach is
augmented by a-priori information in form of aerial images. Moving objects are
just considered to be obstructive in normal SLAM algorithms and either handled
as noise [2] or tracked in separate model to be filtered out of the SLAM input,
therefore without any direct positive effect on the SLAM output [3].

370 S. Tasse, M. Hofmann, and O. Urbann

An alternative system providing the same characteristics as the one proposed
here has already been published in [4]. It describes an adaptation of the Fast-
SLAM concept to include a-priori information as well as newly mapped static
and dynamic features with different degrees of uncertainty in their recognition
processes and motion models. The approach presented here differs from the one
in [4] in its vast use of Kalman filters in all different stages of the system, whereas
the latter integrates the SLAM aspects by use of a Rao-Blackwellized particle
filter. Notably, the system presented here can run in real-time on a Nao robot in
parallel to all other modules necessary to participate in RoboCup SPL games.

2.2 Heterogeneous Information Sources

As stated so far, the proposed system should use information about previously
known and previously unknown, static and dynamic features, and incorporate
all those into a coherent estimate of both the robot’s own positions as well as the
potentially dynamic states of the other objects. This obviously implies various
different, and more importantly, heterogeneous information sources.

Distinctions can be made according to the characteristics of each feature,
whether it can be used for localization directly or needs to be mapped, too, either
as a static but previously unknown feature or a dynamic one including motion
updates. A features associated uncertainty can vary both with respect to the
reliability and precision of its observation and the inherent predictability of its
motion model. Simple in-animated objects for example may just follow physical
equations of motion. Other autonomous agents on the other hand may change
their intention and action unpredictably, while being harder to measure reliably
due to their more complex shape, varying silhouette and changing backgrounds.

Each such distinction offers the possibility to apply approximations without
losing too much precision in the estimation result. A more thorough analysis
on the implication for those heterogeneous information sources and possible ap-
proximations can be found in [4]. In the implementation described in this paper,
only a subset of those is employed.

The most relevant approximation in the context of this paper is the aggre-
gation of measurements to build local short-term models of each observation
type, thereby decreasing the uncertainty associated with the observed target and
allowing to filter false positives. Once sufficiently recognized such a short-term
model can be forwarded to the central estimation system as a meta-measurement
and deleted from the temporary local model. The deletion of such models is im-
portant to preserve the independence assumption between consecutive measure-
ments which is important for the Bayes filter concept. Insufficiently validated
local hypotheses on the other hand can be pruned away without effecting a
negative influence on the system’s estimate. The short life span of those local
models, e.g. below one second, prevents odometry errors to accumulate, but of-
ten allows the integration for example of a series of image processing results to
obtain superior measurement quality.

SLAM in the Dynamic Context of Robot Soccer Games 371

2.3 Distributed Modeling

The sharing of information among a team of autonomous agents is especially
desirable in cases where single robots have a very limited field of view and when
occlusion frequently occurs. The distribution of information can be done with two
conceptually different approaches. One approach can be classified as bottom-up
and distributes measurements between robots, which are subsequently handled
by common sensor fusion techniques. This is for example done in [6] and [7]. The
top-down approach as applied in [8] and [9] consists of merging the individual
robots’ world maps. The prerequisite for such map merging is that all poses
of participating robots need to be known, either in a consistent global coordi-
nate frame or relative to each other. A common implementation in exploration
scenarios is with uniquely identifiable robots which initiate map merging when
observing each other, or when all robots are confidently localized in the global
reference frame.

This latter approach would exclude poorly localized robots from map merging,
however, those might also profit from the shared information, even specifically
to resolve their poor localization in case of symmetries. If the measurements
are distributed among robots, basically only each sending robot needs to be
localized successfully in a global reference frame. An additional advantage is the
computational and architectural simplicity of observation distribution compared
to map merging, especially if observations are already aggregated in temporary
local models as described in section 2.2, which in case of reliable localization can
be distributed at the same time when used for the local integration into the global
world model. Note that this approach does not guarantee a globally consistent
model among all robots, since insufficiently localized robots do not send out
information and therefore integrate more (but potentially also more unreliable)
knowledge. The difference between the models of well localized robots however
can be minimized by globally scheduling the exchange and integration phases of
the observation distribution [4].

3 Implementation

The objective now is the realization of the demands specified in section 2, namely
to model the robot’s surrounding environment in one unified model using the
information of a whole team of robots as input. This is hardly possible to imple-
ment as a real-time system on an embedded platform without applying measures
to decrease the computational complexity. The presented approach consists of
three stages, which will be covered in the following sections. The first stage han-
dles the static map information to realize most (but not all) of the localization
problem, and is based on an algorithm which can perform as a very efficient
stand-alone localization [10]. Parallel to this runs a stage performing local per-
cept aggregation according to the temporary short-term models described in
section 2.2. Finally section 3.3 presents the integration of local and distributed
perceptions into a consistent global world model.

372 S. Tasse, M. Hofmann, and O. Urbann

In the following, each observation of a feature is represented by the two angles
z = (α1, α2)

T describing the direction in which the feature has been detected,
and a third angle α3 in case the feature has an identifiable orientation relative
to the robot coordinate system. This is visualized in figure 1.

Fig. 1. Measurement of a feature expressed in horizon aligned observation angles

3.1 Multi-model Kalman Localization

In contrary to the system described in [4], which is based on a particle filter
localization, the approach presented here bases on a multi-hypothesis Unscented
Kalman Filter (UKF) localization which has been presented in [10]. This utilizes
an approach to Gaussian mixture filtering which combines the accuracy of the
Kalman filter and the robustness of particle filters without sacrificing computa-
tional efficiency. This is done by pointing out similarities to particle filtering with
an extremely low number of particles, and bypassing critical approximations in
common Gaussian mixture algorithms.

Applying known techniques from both fields in a new combination results in a
multi-hypotheses Kalman filter which is superior to common Kalman filters in its
ability of fast re-localization in kidnapped robot scenarios and its representation
of multi-modal belief distributions, and which outperforms particle filters in
localization accuracy and computational efficiency. The output of this system
is a set of robot pose hypotheses with corresponding covariances and likelihood
estimations. If this is used as a separate localization module, the most likely
hypothesis can be considered as the localization’s result, and used as an input
for behavior decisions or further planning.

To use this in the context of a unified world model it is necessary to keep
track of the history of each hypothesis’ origin for fusion and spawning of new
hypotheses, and the change of the likelihoods among the set of hypotheses, which
corresponds to a re-localization event for example with a kidnapped robot or
after temporary localization loss caused by extreme odometry errors or collisions.
Otherwise each estimate’s change can be considered as a pre-filtered input for
the global estimation system. This input bears the characteristics, on the one
hand, of partially corrected odometry data, and on the other hand that one of
buffered and pre-processed sensor data. In addition to this, integration of further

SLAM in the Dynamic Context of Robot Soccer Games 373

information, including the communicated observations of other robots, can affect
the pose estimates, so those changes need to be fed back into the localization
module. The following sections will address the integration into the global model
and the stochastic soundness of this.

3.2 Local Percept Aggregation

When building upon the UKF localization described above, the full state can not
be factorized as in FastSLAM, but needs to be expressed as a joint probability
function, as in the EKF-SLAM solution. The increase of estimation complexity
by the high-dimensional state is countered by aggregation of some of the image
processing results into temporary percept-buffers as motivated in section 2.2
with the aforementioned advantages.

This is applied to full extend to the dynamic features, i.e. the ball and other
robots in a robot soccer scenario. Measurements of robots or the ball consist
of two angles z = (α1, α2)

T as described above. The estimated state consists
of a 2-dimensional spacial component and a corresponding velocity component:
μ = (x, y, vx, vy)

T . For the spacial component of the state μ′ = (x, y)T and the
height of the robot’s camera r, equations 1 and 2 can be used to calculate the
sensor model in form of the observation matrix H as in equation 3. Note that
the velocity is not observable by processing a single camera image.

hα1(μ) = atan2(r, |μ′|) (1)

hα2(μ) = atan2(y, x) (2)

H =

(
− rx

|μ′|3+r2|μ′| − ry
|μ′|3+r2|μ′| 0 0

− y
x2+y2

x
x2+y2 0 0

)
(3)

For objects which are simply governed by the physical laws of motion, instead of
being motorized or controlled, the motion model for the control update consists
of a continuous motion slowed down by a friction factor k =

Ffriction

m as the force
generated by the friction divided by the mass of the object. Since the state is
modeled in local coordinates, the robot’s own motion, given by the translational
and rotational odometry (δx, δy, δθ), also transforms the local estimate. This
results in the following time update for the velocity vector:

vt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

=:V︷ ︸︸ ︷(
1 +

kΔt

|vt−1|
)
Ω(−δθ) vt−1 for |vt−1| ≥ |kΔt|

(
0 0
0 0

)
vt−1 else .

(4)

where Ω(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
is the rotation around α. The full time update

therefore predicts the state μt−1 according to equation 5.

374 S. Tasse, M. Hofmann, and O. Urbann

μt = g(μt−1) =

(
Ω(−δθ) ΔtΩ(−δθ)

0 V

)
μt−1 −

⎛
⎜⎜⎝
δx
δy
0
0

⎞
⎟⎟⎠ (5)

This results in the Jacobi matrix G for the process update as the partial deriva-
tives of x,y,vx and vy at (xt−1, yt−1, vx,t−1, vy,t−1):

G =

(
Ω(−δθ) ΔtΩ(−δθ)

0 M

)
(6)

M =

⎧⎪⎨
⎪⎩
(

∂gvx
∂vx

∂gvx
∂vy

∂gvy
∂vx

∂gvy
∂vy

)
if |vt−1| ≥ |kΔt|

Ω(−δθ) else

(7)

with

∂gvx
∂vx

=

(
1 +

k Δt

|v|
)
cos(−δθ) − k Δt vx (cos(−δθ)vx − sin(−δθ)vy)

|v|3 (8)

∂gvx
∂vy

= −
(
1 +

k Δt

|v|
)
sin(−δθ) − k Δt vy (cos(−δθ)vx − sin(−δθ)vy)

|v|3 (9)

∂gvy
∂vx

=

(
1 +

k Δt

|v|
)
sin(−δθ) − k Δt vx (sin(−δθ)vx + cos(−δθ)vy)

|v|3 (10)

∂gvy
∂vy

=

(
1 +

k Δt

|v|
)
cos(−δθ) − k Δt vy (sin(−δθ)vx + cos(−δθ)vy)

|v|3 . (11)

Thus local models of dynamic objects in the robot’s environment can be modeled
using separate Kalman filters. In case of the unpredictability of the motion of
autonomous robots it is possible to neglect the estimation of their velocity and
apply high process noise instead.

The separate localization module described in section 3.1, in itself also a buffer
integrating information from static, known world features into a localization be-
lief model, is used analogically to those percept-buffers, but the state is not
deleted periodically after forwarding the belief to the SLAM part of the algo-
rithm. This localization reflects part of the SLAM state, and changes to this part
of the SLAM state are fed back into the localization module’s state. Thus the
virtual localization measurements used to update the SLAM state are basically
the innovation introduced by new static feature observations. Therefore those
measurements are still conditionally independent from previous measurements
given the current belief state, so the Markov assumption is not violated.

3.3 Local and Distributed Knowledge Integration

The state of the full model of the robot’s environment consists of its own pose
p0 = (p0,x, p0,y, p0,θ)

T , the poses of all cooperating robots (pi = (pi,x, pi,y, pi,θ)
T

SLAM in the Dynamic Context of Robot Soccer Games 375

with i ∈ 1, ..., n), and the states of the dynamic objects. While only a small
subset of cooperating robots or other elements are observed at the same time
and modeled according to section 3.2 in each time interval, they remain part
of the full model also during time intervals where these are not observed. It
is possible to dynamically shrink or expand the state vector if new unknown
robots are observed. Alternatively a separate mechanism could keep track of
active and inactive slots in the state vector by using time-to-live counters. This
latter approach has been chosen here to prevent frequent rescaling of both the
state vector and its covariance matrix.

The integration of the locally accumulated and the distributed information
into the model will be done in the process and sensor update. The own pose and
those of cooperating robots can be updated with the pose changes propagated
from the individual localization modules relative to the pose used for the last
update. The ball is updated using a motion model similar to the one in equa-
tion 5, but without the odometry related rotations due to the local coordinate
system. Other autonomous agents can either be updated according to the latest
velocity estimations, or just using an identity and appropriately high process
noise following the reasoning proposed in section 2.2.

The sensor update consists of two different kinds of observations. If a robot,
either the local robot itself or any of the communicating robots in the team,
has made observations of static world elements which have been used to update
the separate localization estimate in the first stage (cp. section 3.1), then this
absolute pose estimate is used as a direct measurement of the corresponding
pose in the state vector, i.e. the measurement Jacobian is an identity in the
corresponding submatrix.

The other case is the observation of a dynamic feature by one of the robots in
the team. If the observed dynamic feature is a robot (without further identified
characteristics such as team markers etc.), this dynamic object may either be
any of other robots in the team, or one of a number of non-cooperating other
robots in the environment. In this case, the maximum likelihood correspondence
will be chosen to be updated, or a new model will be inserted or activated if
the other choices are too unlikely. The corresponding expected observation is
in a robot-relative euclidean coordinate system, since this is the format of the
local models distributed as aggregated percepts. It is expressed as a function
of the observed object’s model (mx,my,mvx ,mvy) and its observer’s pose pi,
with i = 0 for local observations and i ∈ 1, ..., n communicated ones, which are
otherwise not distinguished any further.

The observation model is given by equations 12 and 13

hmx,my (pi) = Ω(−pi,θ)
[
(mx,my)

T − (pi,x, pi,y)
T
]

(12)

hmvx ,mvy
(pi) = Ω(−pi,θ)

(
mvx ,mvy

)T
(13)

from which the corresponding entries in the measurement Jacobian can be calcu-
lated as in equation 14, with cθ and sθ short for cos pi,θ and sin pi,θ, respectively.

376 S. Tasse, M. Hofmann, and O. Urbann

⎛
⎜⎜⎜⎜⎜⎝

∂hmx

∂mx

∂hmx

∂my

∂hmx

∂mvx

∂hmx

∂mvy

∂hmx

∂pi,x

∂hmx

∂pi,y

∂hmx

∂pi,θ

∂hmy

∂mx

∂hmy

∂my

∂hmy

∂mvx

∂hmy

∂mvy

∂hmy

∂pi,x

∂hmy

∂pi,y

∂hmy

∂pi,θ

∂hmvx

∂mx

∂hmvx

∂my

∂hmvx

∂mvx

∂hmvx

∂mvy

∂hmvx

∂pi,x

∂hmvx

∂pi,y

∂hmvx

∂pi,θ

∂hmvy

∂mx

∂hmvy

∂my

∂hmvy

∂mvx

∂hmvy

∂mvy

∂hmvy

∂pi,x

∂hmvy

∂pi,y

∂hmvy

∂pi,θ

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

cθ sθ 0 0 −cθ −sθ −(mx − pi,x) · sθ + (my − pi,y) · cθ
−sθ cθ 0 0 sθ −cθ −(mx − pi,x) · cθ − (my − pi,y) · sθ
0 0 cθ sθ 0 0 −mvx · sθ +mvy · cθ
0 0 −sθ cθ 0 0 −mvx · cθ −mvy · sθ

⎞
⎟⎟⎠ (14)

Re-localization events can be handled by resetting the corresponding state vari-
ables and removing the covariances, i.e. setting all entries in the covariance
matrix in the rows and columns to zero. If such a previous mis-localization by
a team member resulted in modeled false positives, those will stay as isolated
features in the state for some time and will be deleted or inactivated after a
certain time without observation. This serves as a self-repair routine to remove
clutter from the environmental model, and to prevent the growth of the state by
the accumulation of models of such elements. The same is done if two models of
unknown features are decided to correspond to the same origin after a series of
observations, so that the information needs to be fused into the first model and
the seconds needs to be deactivated. Alternatively it would be possible to keep
multiple environment models for each localization hypothesis, as done in [4].

4 Evaluation

The modeling process is complex and incorporates a multitude of different infor-
mation, so that a step by step illustration of the working principle is not prac-
tical. To evaluate the presented approach, a simulated situation first illustrates
the theoretical possibilities and the qualitative effect in section 4.1, followed by
a quantitative analysis in soccer games using experiments with real robots in
section 4.2. Both setups use an SPL scenario as specified by the 2011 rules.

4.1 Qualitative Demonstration

Figure 2 illustrates a simple scenario in a simulated environment. The robots in a
team share their information for distributed cooperative modeling. Figure 2(b)
shows the resulting model with 2D covariance ellipses extracted from the full
state. In the following, one robot looks down and does not see any static field
features any more, and both he and the ball are teleported to another location
on the field (see figure 3). The use of distributed percepts and the modeling of
the own pose together with the ones of other robots and the ball position and
velocity allows the robot to not only correct its position, but also its orientation.

SLAM in the Dynamic Context of Robot Soccer Games 377

(a) Setup of the robots on the field. (b) World model generated from local
and distributed information.

Fig. 2. Scenario with a team of robots looking around and sharing perception infor-
mation to cooperatively model their environment

(a) Scenario after teleportation of ball and
downwards-looking robot.

(b) World model generated from local
and distributed information.

Fig. 3. Following the situation in figure 2, one robot looks down and only sees the ball
but no landmarks, and he and the ball are teleported. The shared information however
still allows for a correction of both position and orientation of the robot.

This simple experiment shows the potential usefulness of such a combined
modeling of a robot’s dynamic environment and its pose in it. RoboCup SPL
games contain periods where robots are chasing the ball, approaching it for pre-
cise positioning to shoot at the goal, or even dribbling it. During those periods
odometry errors are integrated into the robot’s localization if not countered by
frequently looking up at static field features to correct the robot’s pose estima-
tion. If looking at the ball also allows the correction of those odometry errors,
especially the orientation, this is expected to be a clear advantage.

4.2 Quantitative Performance Evaluation

The artificial situation created in the previous section just serves as an example
of how localization benefits may be gained. To allow a quantitative evaluation
of the approach’s performance, the perceptions of a robot have been recorded
during normal game situations with real robots on a regular SPL field. Those

378 S. Tasse, M. Hofmann, and O. Urbann

perceptions include the proprioception, i.e. odometry, orientation and joint an-
gle information, exteroception, i.e. perceptions of objects by means of image
processing, as well as the distributed local models of other cooperating robots
running the same code, and ground truth information provided by a camera
system mounted above the field.

This set of input information is then processed by two different module con-
figurations. One is the configuration described in section 3. The second uses
the same localization but a simpler module for cooperative tracking of dynamic
objects without any feedback into the localization, and has been used to win
the second place at RoboCup 2011. This experiment is not set up to show that
the localization works, since both solutions are based on the same competitive
solution for the localization problem with all features described in [10], but to
evaluate the additional benefit gained by unified modeling of the full state.

A first evaluation of several recorded situations did not show any conclu-
sive results, meaning the positive and negative effects of the full state modeling
equaled out most of the time, in a low percentage of cases the full system even
showed a slightly decreased localization quality. Closer evaluation showed that
the currently used visual robot recognition provides too much uncertainty or
even uncorrected systematical errors, such as in the distance estimation, to be
beneficial for the localization.

A second configuration of the system, which ignores the robot perceptions for
the modeling of the robot’s own position, but still uses the much more precise ball
perceptions, showed the expected results. As can be seen in the representative
extract visualized in figure 4, the proposed system provides beneficial information
for the robot’s own localization most of the time. A direct comparison of the
localization quality of both systems shows that the robot pose translation errors
for the full system model are below 25 cm in 83% of the time, and only 72% of the
time for the unassisted underlying localization module, and the average errors
over the whole experiment are 166mm compared to 213mm. However, note that
with this second configuration of the system, in the teleportation experiment the
robot’s orientation could not be recovered as easily as described in section 4.1.

Fig. 4. Difference of translation errors of the two described systems. Negative values
mean larger errors of the unassisted localization compared to modeling the full state.

SLAM in the Dynamic Context of Robot Soccer Games 379

5 Conclusion

This paper presents the advantages of modeling the full environment state es-
timation as compared to only localizing in said environment. A competitive
stand-alone localization module is extended to perform as a full state model,
and the additional gain in localization performance is evaluated both in a simu-
lated situation as well as in several real world experiments with multiple robots
and ground truth provided by an external camera system. While the robot per-
ception in the current vision system is not good enough to benefit from using
temporary opponent models as additional features for localization, usage of the
ball as a dynamic feature significantly improves the localization quality.

An additional advantage of estimating the full state in a cooperative modeling
approach is the existence of a single model which contains all information in a
globally consistent way. This renders the switching between local tracking of the
ball and a global team ball model obsolete, for example, and therefore simplifies
behavior specification.

References

1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). MIT Press (2005)

2. Hähnel, D., Schulz, D., Burgard, W.: Map building with mobile robots in populated
environments. In: Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2002)

3. Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: Tracking multiple moving objects
with a mobile robot. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 1, p. 371 (2001)

4. Czarnetzki, S., Rohde, C.: Handling heterogeneous information sources for multi-
robot sensor fusion. In: Proceedings of the 2010 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI 2010), Salt Lake
City, Utah, pp. 133–138 (September 2010)

5. Kümmerle, R., Steder, B., Dornhege, C., Kleiner, A., Grisetti, G., Burgard, W.:
Large scale graph-based SLAM using aerial images as prior information. In: Pro-
ceedings of Robotics: Science and Systems (RSS), Seattle, WA, USA (June 2009)

6. Stroupe, A., Matrin, M., Balch, T.: Distributed sensor fusion for object position
estimation by multi-robot systems. In: Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA 2001) (2001)

7. Dietl, M., Gutmann, J.S., Nebel, B.: Cooperative Sensing in Dynamic Environ-
ments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1706–1713 (2001)

8. Howard, A.: Multi-robot simultaneous localization and mapping using particle fil-
ters. The International Journal of Robotics Research 25(12), 1243–1256 (2006)

9. Zhou, X.S., Roumeliotis, S.I.: Multi-robot SLAM with unknown initial correspon-
dence: The robot rendezvous case. In: Proceedings of IEEE International Conference
on Intelligent Robots and Systems (IROS), Beijing, China, pp. 1785–1792 (2006)

10. Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient multi-hypotheses un-
scented kalman filtering for robust localization. In: Röfer, T., Mayer, N.M., Savage,
J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 222–233. Springer, Hei-
delberg (2012)

On Sensor Model Design Choices

for Humanoid Robot Localization

Stefan Tasse, Matthias Hofmann, and Oliver Urbann

Robotics Research Institute
Section Information Technology

TU Dortmund University
44221 Dortmund, Germany

Abstract. The development of estimation systems based on Kalman fil-
ters requires several design choices. Among others, these are the methods
used for linearization, coordinate systems for measurement representa-
tions, and approximations such as how to handle multiple simultaneous
observations per time step. This paper evaluates these different choices
with respect to their influence on the system’s estimation quality and
points out simple yet effective solutions. Camera-based localization for
a humanoid robot is chosen as an example application and the localiza-
tion benefit of different approaches is evaluated using real and simulated
feature perceptions.

1 Introduction

Localization is essential for mobile robots. When facing the task of designing
a localization algorithm for an autonomous robot, one may pick from a vast
number of different approaches. While there exist many different strategies such
as multi-angulation methods [1] or constraint based localization [2], most al-
gorithms follow the concepts of recursive Bayesian filtering [3]. The two main
representatives of this category are Kalman and particle filters. Gutmann and
Fox state the common impression that “Markov localization is more robust than
Kalman filtering while the latter can be more accurate than the former” in [4].
An additional argument for particle filtering is the easy representation of multi-
modal belief states. However, Gaussian mixtures allow the same for Kalman
filters, and recently such multiple model Kalman filters have been applied with
great success even on robot platforms with very limited resources [5,6], allowing
superior localization quality and robustness to comparable particle filters, but
at lower computational costs in case of [6].

Kalman filters have been applied in many tasks and are covered extensively in
literature. Designing a Kalman filter for localization is therefore not a significant
challenge. However, this filter will often not perform to its full potential. The im-
plementation process presents several design choices, some of which are discussed
frequently, while others are generally neglected or only mentioned briefly. Spe-
cialized references such as [7] as well as the most standard books [3,8] leave the
impression that the most important decision is whether to address the system’s

X. Chen et al. (Eds.): RoboCup 2012, LNAI 7500, pp. 380–390, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Sensor Model Design Choices for Humanoid Robot Localization 381

non-linearity by Taylor series expansion such as in the Extended Kalman filter
(EKF) or by use of the Unscented transform as in the Unscented Kalman filter
(UKF). This will be addressed only briefly in Section 2. Other influences will be
discussed in the course of this paper in Section 3 and 4. Those may seem trivial
at first and their importance not obvious, but their significant influence on the
outcome will be shown for the example of localization for a humanoid robot. As
such, it is this paper’s main contribution to point out simple design choices which
will lead to significant localization quality improvement with minimal effort.

2 Addressing Non-linearity by Taylor Series Expansion
or Unscented Transform

The Kalman filter in its original form is optimal for systems which fulfill a num-
ber of assumptions, such as only involvement of zero mean Gaussian noise and
a known and linear system to model. This is rarely given for practical appli-
cations, since most systems of interest are non-linear in one aspect or another.
The Kalman concept is popular and successful nonetheless, which is due to the
possibility to linearize the non-linear models around the current estimate. This
provides a decent enough approximation to allow the tracking.

In general, two different concepts are commonly used: the Extended and the
Unscented Kalman filter. The Extended Kalman filter employs a Taylor series
for linearization, which in effects means to simply substitute Jacobi matrices for
the linear transformations in the original Kalman filter equations. This method
is and has been widely used for the last four decades. See [3] for further details.
Of course the linearization may result in different approximation qualities of
the uncertainty propagation, depending on each individual use case. Further
limitations of this approach arise in cases of discontinuous systems or such with
singularities. Additionally, it is often perceived by developers that “calculating
Jacobian matrices can be a very difficult and error-prone process” [7] due to
the manual derivation of the Jacobians and possible translation errors in their
subsequent conversion to code.

The Unscented Kalman filter offers a different approach to estimate the differ-
ent expectations necessary to apply the standard Kalman equations, namely the
predictions of state and observation and the cross-covariance between the two.
This is done by deterministically sampling the state space around the current
mean and covariance, applying the non-linear transformation to those sigma
points, and then recovering the transformed mean and covariance. Significant
improvements of applying the unscented transformation compared to analytical
linearization have been shown in [7].

Those findings have led to the impression that choosing an Unscented Kalman
filter instead of an Extended Kalman filter will be a major source of improvement
in most systems, and that this will be the main design choice in developing an
estimation system for a given application. In the course of this paper we will
show that much easier alterations may have much bigger effects.

382 S. Tasse, M. Hofmann, and O. Urbann

3 Measurement Coordinate System Choices

To illustrate the effect of measurement coordinate system choices, we assume
as an example application the problem of estimating the localization of a hu-
manoid robot, so the state to be estimated is the robot’s pose x = (px, py, pθ)

T .
The robot perceives point features on the ground around it, e.g. by means of
processing images recorded by one or several cameras mounted in its head. Each
point feature corresponds to a landmark with known global position l = (lxly)

T .
Those expected and actual perceptions, z and z respectively, can by expressed in
different coordinate systems, each of which may be used to formulate the sensor
model of the Kalman filter.

In the following, let

Ω(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(1)

be the rotation around α and (lx, ly) the global coordinates of a known landmark
which is part of the robot’s map of the environment. The time index t is omitted
in all following equations for the sake of simplicity.

3.1 Measurements in Cartesian Coordinates

As the localization problem is expressed as an orientation and a position in global
Cartesian coordinates, a first intuitive choice is to express a measurement on
the ground around the robot in robot-centric Cartesian coordinates as shown in
Figure 1. The sensor model to calculate the expected measurement z = (zx, zy)

T

for the current robot pose x = (px, py, pθ)
T and a correspondence to the land-

mark with known global position l = (lxly)
T is then given in Equation 2 and the

corresponding Jacobi matrix in Equation 3.

z =

(
zx
zy

)
= h(x, l) = Ω(−pθ) ·

[(
lx
ly

)
−
(
px
py

)]
(2)

Fig. 1. Observation given in euclidean coordinates

On Sensor Model Design Choices for Humanoid Robot Localization 383

H =
∂h(x, l)

∂x
=

(
∂zx
∂px

∂zx
∂py

∂zx
∂pθ

∂zy
∂px

∂zy
∂py

∂zy
∂pθ

)
(3)

=

(− cospθ − sin pθ −(lx − px) sin pθ + (ly − py) cos pθ
sinpθ − cos pθ −(lx − px) cos pθ − (ly − py) sin pθ

)

3.2 Measurements in Cylindrical Coordinates

Measurements can also be expressed in cylindrical coordinates, i.e. range
and bearing, to indicate the distance and direction of the observed feature
(cf. Figure 2).

Fig. 2. Observation given as range and bearing

This is often the first choice of those familiar with laser scanners or devel-
opers of robot-centric path planning algorithms. In this case, the Sensor model
function and Jacobi matrix are given by Equation 4 and 5, respectively, with the
abbreviation d2 = (lx − px)

2 + (ly − py)
2.

z =

(
zr
zb

)
= h(x, l) =

(√
(lx − px)2 + (ly − py)2

atan2(ly − py, lx − px)− pθ

)
(4)

H =
∂h(x, l)

∂x
=

(
∂zr
∂px

∂zr
∂py

∂zr
∂pθ

∂zb
∂px

∂zb
∂py

∂zb
∂pθ

)
(5)

=

(
(−lx + px)d

−1 (−ly + py)d
−1 0

(ly − py)d
−2 (−lx + px)d

−2 −1

)

3.3 Measurements in Spherical Coordinates

A third coordinate system choice is given by using the vertical and horizontal
angles α1 and α2 as indicated in Figure 3. While the meaning of the vertical

384 S. Tasse, M. Hofmann, and O. Urbann

Fig. 3. Observation given in angular coordinates

angle may not be intuitive for any direct further use, this is the coordinate
system which is closest to the actual perception process in this example. With
the same abbreviation of d2 = (lx − px)

2 + (ly − py)
2 as used above and the

height of the camera hcamera, the sensor model function and Jacobi matrix are
given in Equation 6 and 7.

z =

(
zα1

zα2

)
= h(x, l, hcamera) (6)

=

(
atan2(hcamera,

√
(lx − px)2 + (ly − py)2)

atan2(ly − py, lx − px)− pθ

)

H =
∂h(x, l)

∂x
=

(
∂zα1

∂px

∂zα1

∂py

∂zα1

∂pθ
∂zα2

∂px

∂zα2

∂py

∂zα2

∂pθ

)
(7)

=

(
hcamera(lx−px)
d(h2

camera+d2)
hcamera(ly−py)
d(h2

camera+d2) 0

(ly − py)d
−2 (−lx + px)d

−2 −1

)

3.4 Experimental Comparison

Two experiments are set up to compare the effects of the sensor model design
choices described so far.

Simulated Perception. A simulation is set up to test the correctness of the
implementation and the conformity with related work’s results. Localization al-
gorithms are used with the above mentioned different linearization and coor-
dinate system choices and parametrized using fixed measurement covariances,

On Sensor Model Design Choices for Humanoid Robot Localization 385

which were chosen to be optimal for each approach separately. This simula-
tion assumes a humanoid robot with noisy odometry and a perception process
which measures randomly distributed landmarks with unique correspondences
and contains errors mainly from the cameras unknown orientation, i.e. the errors
originate from normally distributed noise in the spherical coordinate system. As
expected, Figure 4 shows the localization to be best using this spherical repre-
sentation. Furthermore, the classical example of transforming between spheri-
cal/cylindrical and Cartesian coordinates is handled much better by the UKF
than by the EKF as predicted for example by [7].

Fig. 4. Comparison between localization quality using different linearization
approaches and sensor model coordinate systems with simulated perceptions

Real Perception Process on the Nao. To evaluate the impact on a real
system, observations are recorded using a Nao, a humanoid robot which is 58 cm
tall and equipped with two cameras in its head with non-overlapping fields of
view. The environment is a robot soccer field as used in the Standard Platform
League. Any ambiguous observations are associated with maximum likelihood
correspondences based on the true robot position. The perception process also
produces sporadic false positives. Those sets of observations and correspondences
together with artificially generated odometry errors serve as input for all differ-
ent configurations, whereas each generated set is processed by all approaches so
that the random component in the input presents no source of bias. Note that
these localization results will not diverge due to the usual problem of wrong cor-
respondence choices once the position estimate contains a certain error, as this
experiment is set up to test the sensor models, not the correctness of correspon-
dence choices. The odometry errors contain white noise and a drift component,
as this is the usual behavior of real Nao robots which are worn out or even heated
up slightly asymmetrically.

386 S. Tasse, M. Hofmann, and O. Urbann

An important factor for each algorithm is its parametrization. All different
approaches in this experiment use the same motion update and the same process
noise, which is chosen to be a certain amount above the artificially generated
white noise component to compensate the drift. In common applications the
measurement noise magnitudes are normally constants which are part of the
parametrization and subject to a tuning process by the developer. Here, they are
optimized separately for the approaches using a randomly picked measurement
subset which is not used for the following evaluation afterwards. Thus each
approach is performing with the parametrization which empirically provides the
least squared localization errors.

Fig. 5. Comparison between localization quality using different linearization
approaches and sensor model coordinate systems with real observations recorded on a
Nao

Figure 5 shows the distribution of the sums of localization errors for 1000 sets
of measurements and odometry errors. It can be seen that the effect of the coor-
dinate system choice is in general more significant than the distinction between
Extended or Unscented Kalman filter. These real world results mostly verify the
tendency of the assumptions in the simulated experiments, but also show dis-
crepancies for example in the results using Cartesian coordinates. This implies
that the underlying process is not fully described by assuming only normally dis-
tributed angular errors in the camera orientation. Expressing the measurement
in spherical coordinates, which is intuitively the closest to the underlying pro-
cess of perception, still clearly outperforms the other coordinate systems’ sensor
models. To use these results as a basis for development recommendations, the
EKF/UKF choice is clearly second to the angular coordinate representation of
the robot’s measurements.

On Sensor Model Design Choices for Humanoid Robot Localization 387

3.5 Hybrid Modifications

The empirical results above raise the question if already implemented systems
which did not use the spherical coordinate system for the sensor model design
can still make use of this information. One possibility is to adapt the measure-
ment noise covariance matrix to better reflect the properties of the perception
process, e.g. to scale the uncertainty depending on the distance of the observed
feature. This has not led to any significant improvements in case of the Carte-
sian representation, for which more complex modification would be necessary to
adapt it to reflect the spherical coordinate system’s properties. The cylindrical
representation however offers an easy improvement.

Both the cylindrical and the spherical coordinate system already share the
horizontal angle; they only differ in distance against vertical angle. Applying
the knowledge that errors in the distance mainly result from variations in said
vertical angle, it is possible to derive an appropriate scaling factor β for the
distance measurement’s uncertainty.

zr =
hcamera

sin zα1

(8)

∂zr
∂zα1

= −hcamera

sin2 zα1

· cos zα1 (9)

β ∝ hcamera

sin2 atan2(hcamera, zr)
· cos atan2(hcamera, zr) (10)

Equation 8 gives the relation between range observation zr and vertical angle zα1

and Equation 9 denotes their partial derivative. Therefore, using the first rows
of Equation 6 and 4, the scaling factor β in Equation 10 can be derived. Scaling
the (newly tuned) expected range error with β or the corresponding entry in the
measurement covariance matrix with β2 results in the hybrid localization ap-
proach with cylindrical coordinates and distance scaled measurement covariance
in Figure 6 and 7. While this one presents a significant improvement over the
cylindrical coordinates with constant measurement covariance and comes close
to the approach in spherical coordinates, the latter one is still superior.

4 Multiple Simultaneous Measurements

Practical Kalman implementations rarely go by the theory of one motion update
and one sensor update per time step. Instead there are usually many time steps
in which no observation is made, so the sensor update is omitted. In other
time steps, several observations are made at once, i.e. several different features
are detected in the same time step. The common implementation is usually to
execute several consecutive sensor updates. The quality of this approximation
however depends on the perception process by which those features have been
observed.

388 S. Tasse, M. Hofmann, and O. Urbann

Fig. 6. Comparison between localization quality using different linearization
approaches and sensor model coordinate systems with simulated perceptions

Fig. 7. Comparison between localization quality using different linearization
approaches and sensor model coordinate systems with real observations recorded on a
Nao

Now consider 2-dimensional feature observations as described above, each with
a separate measurement covariance as in Equation 11.

C =

(
s21 0
0 s22

)
(11)

The stochastically correct sensor update for n detected features would be to
execute a single 2n-dimensional measurement update instead of n separate 2-
dimensional updates. In case the different measurements are stochastically in-
dependent of each other, i.e. all off-diagonal inter-feature entries of the 2n× 2n
measurement covariance are zero, then a single 2n-dimensional measurement
update is approximated well by n 2-dimensional updates.

On Sensor Model Design Choices for Humanoid Robot Localization 389

If multiple measurements originate from the same perception source and are
correlated, then this simple approximation neglects potentially useful informa-
tion and consequently looses in approximation quality. Taking a humanoid robot
with camera based perception again as in Section 3.4, multiple observations orig-
inate from the processing of a single camera image and it stands to reason that
the main source of measurement error is the inaccurately estimated camera ori-
entation due to the walking motion. Such simultaneous measurements would
therefore contain nearly the same angular errors. Assuming a spherical coordi-
nate representation for the measurements as described in Section 3.3, the result-
ing covariance for 2 simultaneous observations is given in Equation 12 with γ
close to 1, while γ = 0 would neglect any dependence between both observations.

C′ =
(

C γC
γC C

)
(12)

Figure 8 shows evaluations with simulated test runs consisting exclusively of
multiple observations per time step, and illustrates the differences in local-
ization quality for iterative execution of 2-dimensional sensor updates, for 2n-
dimensional updates which neglect the covariance (i.e. with γ = 0), and for 2n-
dimensional updates with full covariances as in Equation 12. All sensor updates
in this example utilize spherical coordinate representations for the observations.
As expected, the multiple 2-dimensional updates are an appropriate approxima-
tion as long as the separate measurements are independent. When observations
are correlated, then significant benefits can be drawn from the information en-
coded in the full covariance matrix. Note that some Unscented Kalman filter
implementations may become unstable for a γ too close to 1, as C′ will still be a

Fig. 8. Comparison between different methods to handle multiple measurements at
one time step

390 S. Tasse, M. Hofmann, and O. Urbann

valid covariance matrix and therefore positive semi-definite, but very close to not
being positive definite any more, which will cause the frequently used Cholesky
decomposition to become numerically instable.

5 Conclusion

This paper gives an overview about common design choices which researchers
face when developing localization algorithms based on Kalman filters. The most
prominent choice between the Extended and Unscented Kalman filter is widely
discussed in common literature, but this is by far overrated, which has been
illustrated in the previous sections using the example application of camera-
based humanoid robot localization. The choice of the measurement’s coordinate
system representation is mostly disregarded in most publications as well as in
common educational books, but provides a simple way to improve localization
quality. The same holds for the correct handling of simultaneous observations
originating from processing the same camera image.

As such, this paper provides the means for a better understanding of differ-
ent approximations’ impacts when applying Kalman filters, and presents simple
guidelines to develop optimal solutions for localization and tracking systems.

References

1. Betke, M., Gurvits, L.: Mobile robot localization using landmarks. IEEE Transac-
tions on Robotics and Automation 13(2), 251–263 (1997)

2. Göhring, D., Mellmann, H., Burkhard, H.D.: Constraint based world modeling in
mobile robotics. In: Proc. IEEE International Conference on Robotics and Automa-
tion, ICRA 2009, pp. 2538–2543 (2009)

3. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press (2005)

4. Gutmann, J.S., Fox, D.: An Experimental Comparison of Localization Methods con-
tinued. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 1, pp. 454–459 (2002)

5. Quinlan, M.J., Middleton, R.H.: Multiple Model Kalman Filters: A Localization
Technique for RoboCup Soccer. In: Baltes, J., Lagoudakis, M.G., Naruse, T.,
Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 276–287. Springer, Hei-
delberg (2010)

6. Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient multi-hypotheses un-
scented kalman filtering for robust localization. In: Röfer, T., Mayer, N.M., Savage,
J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 222–233. Springer, Hei-
delberg (2012)

7. Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proceedings
of the IEEE 92(3), 401–422 (2004)

8. Siegwart, R., Nourbakhsh, I.: Introduction to autonomous mobile robots. Intelligent
Robotics and Autonomous Agents. The MIT Press (2004)

Keyword Index

A

active vision 249
adaptive aperture control

249
agent-oriented software engineering 233
approximation quality 389
assembly 322-326, 328-331
auto-focus 249, 253, 254, 259
auto-zoom 249, 253-255, 259

B

bag-of-features 286, 287, 288, 295, 296
Ball sensing 298
BDI model 202, 203, 206, 211

C

CHARLI 59-63
cluster validation 261, 264, 271
clustering 261, 262, 264, 266, 267, 271
colour space analysis 261
computer vision 322
computer-aided software engineering

225, 226
coordination 106, 107-116

D

Dec-POMDP 130-134, 136, 139
decision making 237
dependability 344, 346, 353, 354
diagnosis 344, 346, 347, 353, 354
dialogue understanding 166, 167, 176
disaster prevention planning 202,
domestic robots 166, 167, 177

E

evacuation 202-206, 208-211
exploration 106-116

F

Festo 48, 49
fire brigade 237, 238, 340, 341, 343
formation 190-194, 198-200

G

genetic algorithms 130-135
guidance 202, 203, 205-211

H

high-level planning 130
Hough transform 323, 327, 329-331
human-robot interaction 94, 95, 104,

154
humanoid 59, 64, 89, 90, 93, 178, 180,

182, 187, 188, 213, 218, 223

I

illumination invariance 273, 274
image segmentation 261, 271
infrastructure competition 20, 24-26

K

Kalman filter 38, 41, 380-382, 386, 389

L

linear segment with parabolic blend 55
local visual feature 286-291, 293, 296
localization 118-120, 122, 380-382,

384-390
Logistics League 48, 49, 52, 57, 58

M

material flow 57
MAXQ-OP 141, 142, 144, 146, 147,

149-153

392 Keyword Index

mobile manipulation 94-97, 104
model-driven engineering 225, 226
modelling 313, 314
motion capture 213, 214, 218, 223
motion learning 213, 214
multi-robot collaboration 48
multiagent systems 13
multiple kinematic chains 332,

333, 342

N

navigation 118, 128

O

object detection 273-275, 277, 283
object recognition 71, 73
obstacle avoidance 69
omnidirectional vision 286-288, 290,

294-296
optimization 178-181, 183-185,

187, 188

P

pan-tilt 249, 250
pattern recognition 261
people detection 154, 155,

159-162, 164
place recognition 286-291, 296
positioning 190, 191, 197-201

R

reinforcement learning 237-243
RGB-D 154, 155
role assignment 190, 192-194, 200

S

scene text recognition 249, 250
search and rescue 106-109, 116
service robots 94,96,101
SLAM 368-370, 373, 374
state estimation 311, 318, 320
synchronization and desynchronization

178-180, 185, 187, 188

T

task planning 166, 167, 171, 176
throwing 178, 179, 182, 184-188
trajectory generation 55
tree search 14-16

V

vision 119
visual attention 273-275

Y

youBot 66, 67, 71, 74

Z

ZMP 63

Author Index

Abdolmaleki, Abbas 237
Abeyruwan, Saminda 213
Akın, H. Levent 130, 273
Akiyama, Hidehisa 13
Alcaraz-Jiménez, Juan José 1
Almeida, José 298
Amigoni, Francesco 20, 106
Anderson, Peter 118
Asada, Minoru 178
Aşık, Okan 130

Badami, Ishrat 94
Bai, Aijun 141
Barrera, Francisco 190
Barrett, Samuel 36
Basilico, Nicola 106
Behnke, Sven 1, 89, 94
Brunner, Sebastian 48
Budden, David 261

Chalup, Stephan 261
Chen, Xiaoping 141, 166
Chown, Eric 322
Collins, Nick 77

Daniş, F. Serhan 273
Denz, Sebastian 48
Dias, André 298
Droeschel, David 94

El Menuawy, Kamal 65

Fenn, Shannon 261
Fregin, Andreas 65

Gaa, Johannes 65
Genter, Katie 36
Gräve, Kathrin 94
Guerrero, Pablo 310

He, Yuchen 36
Hegger, Frederik 154
Hengst, Bernhard 118
Hester, Todd 36
Hochgeschwender, Nico 154

Hofmann, Matthias 368, 380
Holz, Dirk 94
Hong, Dennis W. 59
Hopkins, Mike 59
Horii, Takato 178
Huang, Kaihong 286

Jentzsch, Sören 48
Ji, Jianmin 166
Jin, Guoqiang 166

Kaczor, Daniel 65
Kawai, Yuji 178
Khandelwal, Piyush 36
Knabe, Coleman 59
Kollmitz, Marina 65
Kotlarski, Jens 65
Kraetzschmar, Gerhard K. 154, 249

Lagoudakis, Michail G. 225
Lau, Nuno 237
Leibold, Stefan 65
Li, Xun 286
Logghe, Jonas 298
Lopez-Mobilia, Adrian 77
Lu, Huimin 286
Luke, Sean 356

MacAlpine, Patrick 77, 190
Marchant, Roman 310
Mart́ınez-Barberá, Humberto 1
Martins, Alfredo 298
Mauelshagen, Malte 89
McElhone, Manus 94
Menashe, Jacob 36
Mendes, Alexandre 261
Meriçli, Tekin 273
Missura, Marcell 1, 89
Mori, Hiroki 178
Morrison, John 322
Movahedi, Mostafa 237
Munske, Benjamin 65
Münstermann, Cedrick 89

394 Author Index

Nagai, Yukie 178
Nakashima, Tomoharu 13
Nieuwenhuisen, Matthias 94

Okaya, Masaru 202
Oshima, Yuji 178

Park, Jihoon 178
Ploeger, Paul G. 154
Plöger, Paul 249
Popp, Eduard 65

Quattrini Li, Alberto 106

Reis, Lúıs Paulo 237
Riedel, Sebastian 48
Ruiz, José Antonio Álvarez 249
Ruiz-del-Solar, Javier 310

Schreiber, Michael 89, 94
Schwarz, Max 94
Seekircher, Andreas 213
Silva, Eduardo 298
Silver, Bill 322
Sowmya, Arcot 118
Spanoudakis, Nikolaos I. 225
Steinbauer, Gerald 344

Stoecker, Justin 213
Stone, Peter 36, 77, 190
Stückler, Jörg 94
Sui, Zhiqiang 166
Sullivan, Keith 356

Takahashi, Tomoichi 202
Takuma, Takashi 178
Tanaka, Kazuaki 178
Tasse, Stefan 368, 380
Topalidou-Kyniazopoulou, Angeliki 225
Tsushima, Masatoshi 20

Urbann, Oliver 368, 380

van Noort, Sander 332
Visser, Arnoud 20, 332
Visser, Ubbo 213

Wu, Feng 141

Xie, Jiongkun 166
Xiong, Dan 286

Yusmanthia, Yongki 118

Zheng, Zhiqiang 286

	Preface
	Organization
	Table of Contents
	Best Paper Award
	Lateral Disturbance Rejection for the Nao Robot
	1 Introduction
	2 Related Work
	3 Walking Pattern Generation
	4 Balance Control
	4.1 Angular Velocity Control
	4.2 Step Timing Control

	5 Experimental Results
	6 Conclusions
	References

	Champion Teams
	HELIOS2012: RoboCup 2012 Soccer Simulation 2D League Champion
	1 Introduction
	2 Online Multiagent Planning Using Tree Search
	2.1 Framework for Searching Action Sequence
	2.2 Experiments

	3 Decreasing Oscillations in Multiagent Planning
	3.1 Modified Evaluation Function Model
	3.2 Experiments

	4 RoboCup 2012 Soccer Simulation 2D League Results
	5 Conclusion
	References

	RoboCup 2012 Rescue Simulation League Winners
	1 Introduction
	2 Virtual Robot Competition Winner Team PoAReT
	2.1 System Architecture
	2.2 Discussion on Competition Results

	3 Infrastructure CompetitionWinner Team UvA Rescue
	3.1 The Context
	3.2 ElevationMapping Method
	3.3 Elevation Mapping Results
	3.4 Summary

	4 Agent CompetitionWinner Team Ri-one
	4.1 Models
	4.2 Agent Skills
	4.3 RoboCup 2012 Rescue Simulation League Agent Competition Results

	5 Conclusion
	References

	UT Austin Villa 2012: Standard Platform League World Champions
	1 Introduction
	2 Software Architecture
	3 Vision
	3.1 Dual Cameras
	3.2 Color Tables and Analysis

	4 Localization
	5 Motion
	5.1 Walk Engine
	5.2 Kick Engine

	6 Behavior and Strategy
	7 Competition
	8 Conclusion
	References

	TUMsBendingUnits from TU Munich: RoboCup 2012 Logistics League Champions
	1 Introduction
	2 TUMsBendingUnits: System Overview
	2.1 Robot Hardware
	2.2 Software Architecture
	2.3 Task Planning and Execution
	2.4 Visual Perception
	2.5 Motion Planning and Execution

	3 Conclusion
	References

	Team CHARLI: RoboCup 2012 Humanoid AdultSize League Winner
	1 Introduction
	2 Design and Fabrication Considerations
	2.1 Spine
	2.2 Speaker
	2.3 Mechanical Structure
	2.4 Covers

	3 Mechanical Platform Upgrades
	4 Codebase Upgrades
	4.1 Custom Walking Controller
	4.2 Gameplay Module

	5 Conclusions
	References

	RoboCup@Work LeagueWinners 2012
	1 Introduction
	2 Hard– and Software
	3 RoboCup@Work Tests
	3.1 Basic Navigation Test
	3.2 Basic Manipulation Test
	3.3 Open Challenge

	4 Conclusion and Future Work
	References

	UT Austin Villa: RoboCup 2012 3D Simulation League Champions
	1 Introduction
	2 Domain Description
	3 Optimization of the Get Up Routine
	3.1 Fall Detection and Get Up Motion
	3.2 Optimization Process
	3.3 Optimization Results

	4 Kicking
	4.1 Fixed Pose Keyframe Kicks
	4.2 Inverse Kinematics Based Kicks
	4.3 Kick Positioning
	4.4 Optimization Process
	4.5 Optimization Results

	5 Dynamic Positioning
	6 Tournament Results and Analysis
	7 Conclusion
	References

	RoboCup 2012 Best Humanoid Award Winner NimbRo TeenSize
	1 Introduction
	2 Mechatronic Design of NimbRo TeenSize Robots
	3 Perception
	4 Behavior Control
	5 Conclusions
	References

	NimbRo@Home: Winning Team of the RoboCup@HOme Competition 2012
	1 Introduction
	2 Design of the RoboCup@Home Competition 2012
	2.1 Overview
	2.2 Tests and Skills

	3 Hardware Design
	4 Mobile Manipulation
	4.1 Motion Control
	4.2 Indoor Navigation
	4.3 Grasping Objects from Planar Surfaces
	4.4 Object Recognition
	4.5 Motion Planning in Complex Scenes
	4.6 Object Modelling and Pose Tracking

	5 Human-Robot Interaction
	5.1 Intuitive Direct Human-Robot Interaction
	5.2 Convenient Remote User Interfaces

	6 Competition Results at RoboCup 2012
	7 Conclusion
	References

	Accepted Papers
	How Much Worth Is Coordination of Mobile Robots for Exploration in Search and Rescue?�
	1 Introduction
	2 Coordinated Multirobot Exploration
	3 The Search and Rescue Setting
	3.1 The Simulation Environment and the Robot Controller
	3.2 Exploration Strategies
	3.3 Coordination Methods

	4 Experimental Results
	5 Conclusion
	References

	Robot Localisation Using Natural Landmarks
	1 Introduction
	2 Background
	3 1DSURF
	3.1 Application to Natural Landmark Recognition

	4 Experimental Results
	4.1 Classification Experiment
	4.2 Field Experiment

	5 Evaluation and Conclusion
	References

	Solving Multi-agent Decision Problems Modeledas Dec-POMDP: A Robot Soccer Case Study
	1 Introduction
	2 Related Work
	3 Solving Problems Modeled as Decentralized Markov Decision Processes
	3.1 Dec-POMDP Policies and Finite State Controllers
	3.2 Genetic Algorithms
	3.3 The GA-FSC Algorithm
	3.4 Robot Soccer Dec-POMDPModel

	4 Experiments and Results
	4.1 Genetic Algorithm
	4.2 Fitness Calculation
	4.3 Evaluation of DEC-POMDP Policies

	5 Conclusions
	References

	Towards a Principled Solution to Simulated Robot Soccer
	1 Introduction
	2 Background
	2.1 RoboCup Soccer Simulation 2D
	2.2 MAXQ Hierarchical Decomposition

	3 Online Planning with MAXQ
	3.1 Overview of MAXQ-OP
	3.2 Task Evaluation over Hierarchy
	3.3 Completion Function Approximation
	3.4 Heuristic Search in Action Space

	4 Implementation in RoboCup 2D
	4.1 RoboCup 2D as an MDP
	4.2 Solution with MAXQ-OP

	5 Empirical Evaluation
	6 Conclusions
	References

	People Detection in 3d Point Clouds Using Local Surface Normals
	1 Introduction
	2 People Detection Using Local Surface Normals
	2.1 Preprocessing
	2.2 Top-Down Segmentation
	2.3 Classification of 3d Clusters
	2.4 Bottom-Up Segmentation

	3 Experimental Evaluation
	3.1 Experiment Objectives
	3.2 Experiment Results

	4 Conclusion
	References

	Simulation Competitions on Domestic Robots
	1 Introduction
	2 A Simulation Platform for Task Planning and Dialogue Understanding of Domestic Robots
	3 Early Competitions
	4 The 4th and 5th Competition
	5 Discussion
	6 Conclusion
	References

	Throwing Skill Optimization through Synchronizationand Desynchronization of Degree of Freedom
	1 Introduction
	2 Heuristic Exploration through Synchronization andDesynchronization
	2.1 Synchronization and Desynchronization
	2.2 OptimizationMethod

	3 Throwing Parametrization
	4 Experimental Setting
	5 Result
	5.1 Number of Trials and Throwing Performance
	5.2 Objective Function

	6 Discussion
	6.1 Necessity of Optimization in RealWorld
	6.2 Synchronization and Desynchronization in Human Skilled Behaviors
	6.3 Possibility of Application to other Skills

	7 Conclusion
	References

	Positioning to Win: A Dynamic Role Assignment and Formation Positioning System
	1 Introduction
	2 Domain Description
	3 Formation
	4 Assignment of Agents to Role Positions
	4.1 Desired Properties of a Valid Role Assignment Function
	4.2 Constructing a Valid Role Assignment Function
	4.3 Dynamic Programming Algorithm for Role Assignment
	4.4 Voting Coordination System

	5 Collision Avoidance
	6 Formation Evaluation
	7 Summary and Discussion
	References

	Evacuation Simulation with Guidance for Anti-diaster Planning
	1 Introduction
	2 Related Works
	2.1 Individual Agent
	2.2 Interactive Agent
	2.3 Social Agent
	2.4 Significance of Evacuation Guidance

	3 Evacuation Guidance and Behavior Models
	3.1 Language Model and Loss of Data in Communication
	3.2 BDI Model Representing Psychological Status

	4 Evacuation Scenarios and Simulations
	4.1 Prototype System and Agent Behavior Model
	4.2 Communication
	4.3 Implementation of Communication

	5 Simulation Scenarios and Results
	5.1 Simulation Scenarios
	5.2 Simulation Results

	6 Summary
	References

	Motion Capture and Contemporary Optimization Algorithms for Robust and Stable Motions on Simulated Biped Robots
	1 Introduction and Related Work
	2 Human Motion Capture
	3 Motion Optimization
	3.1 Models and Initialization
	3.2 Model Optimization

	4 Experimental Setup
	5 Experiments and Results
	6 Conclusions and Future Work
	References

	A CASE Tool for Robot Behavior Development
	1 Introduction
	2 Background
	3 ASEME-based Behavior Development
	4 The Kouretes Statechart Editor CASE Tool
	4.1 KSE Example
	4.2 KSE Design and Implementation

	5 KSE Evaluation
	6 Related Work and Discussion
	7 Conclusion
	References

	A Distributed Cooperative Reinforcement Learning Method for Decision Making in Fire Brigade Teams
	1 Introduction
	2 Problem Formulation
	3 Test Bed
	4 Design
	4.1 Description of Environment
	4.2 Reward Function
	4.3 Learning Algorithm
	4.4 Learning Procedure

	5 Implementation and Results
	5.1 Cooperative Multi-agent Learning
	5.2 Evaluation in Test Scenarios
	5.3 Evaluation of Scalability

	6 Conclusions
	References

	Active Scene Text Recognition for a Domestic Service Robot
	1 Introduction
	2 Related Work
	3 Text Localization
	3.1 Feature Space

	4 Active Vision Module
	4.1 Auto-focus
	4.2 Adaptive Aperture Control
	4.3 Auto-zoom

	5 Experimental Evaluation
	5.1 Adaptive Aperture Effect in the Localization Algorithm

	6 Conclusions
	References

	Evaluation of Colour Models for Computer Vision Using Cluster Validation Techniques
	1 Introduction
	2 Colour Models
	2.1 RGB
	2.2 HSV
	2.3 YCbCr
	2.4 CIE L*a*b*
	2.5 Linear Transformation Orthogonality

	3 PerformanceMetrics
	3.1 Dunn’s Index
	3.2 Methods of Calculating Distances

	4 TestImages
	5 Experimental Results
	6 Discussion
	7 Conclusion
	References

	Using Saliency-Based Visual Attention Methodsfor Achieving Illumination Invariance in Robot Soccer
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Saliency-Based Visual Attention
	3.2 Color Segmentation and Scanline Based Object Detection

	4 Experiments
	4.1 The Robot Platform
	4.2 Illumination Configurations
	4.3 Results

	5 Conclusions and Future Work
	References

	A Robust Place Recognition Algorithm Based on Omnidirectional Vision for Mobile Robots
	1 Introduction
	2 Two Real-Time Local Visual Features
	3 The Proposed Place Recognition Algorithm Based on Omnidirectional Vision
	4 TheExperimentalResults
	4.1 Experimental Setup
	4.2 The Choice of the Local Visual Feature
	4.3 The Clustering Number
	4.4 The Choice of the Kernel Function in SVMs
	4.5 The Completeness of the Visual Vocabulary
	4.6 The Performance with the Best Parameters and Training
	4.7 The Real-Time Performance

	5 Conclusion
	References

	Ball Sensing in a Leg Like Robotic Kicker
	1 Introduction
	2 Requirement Analysis
	3 KickerModel
	4 Ball Sensing Methods
	5 Embedded Implementation of the Sensing Methods
	5.1 Current Filtering
	5.2 Applying the Detection Methods in the Embedded Control System

	6 Results
	7 Conclusions and Future Work
	References

	Cooperative Global Tracking Using Multiple Sensors
	1 Introduction
	2 Related Work
	3 Global Tracking Methodology
	3.1 Framework
	3.2 Cooperative Global Tracking Methodology
	3.3 Matching Procedure

	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	Implementing a Real-Time Hough Transform on a Mobile Robot
	1 Introduction
	2 Assembly Language
	3 Edge Detection
	3.1 Sobel Operator
	3.2 Edge Peak Detection

	4 Hough Transform
	4.1 Voting

	5 Results
	5.1 Edge Detection Performance
	5.2 Hough Transform Performance

	6 Conclusion and Future Work
	References

	Extending Virtual Robots towards RoboCup Soccer Simulation and @Home
	1 Introduction
	2 Related Work
	3 Simulation Model
	3.1 Joint Definition and Convention
	3.2 Shape Definition

	4 Experiments
	4.1 Advanced Experiments

	5 Full Application Experiment
	6 Discussion
	7 Conclusion
	References

	A Survey about Faults of Robots Used in RoboCup
	1 Introduction
	2 Definitions and Related Work
	3 Investigated RoboCup Leagues
	4 Survey and Data Collection
	4.1 Information about Fault and the Questionnaire
	4.2 Data Collection Process

	5 Results and Interpretation
	5.1 General Information
	5.2 Robot Platform
	5.3 Sensors
	5.4 Manipulators
	5.5 Control System
	5.6 Robot Software
	5.7 Algorithms
	5.8 FaultMitigation Techniques

	6 Conclusion and Future Work
	References

	Real-Time Training of Team Soccer Behaviors
	1 Introduction
	2 Related Work
	3 Hierarchical Training with a Single Agent
	4 Training Teams of Agents
	5 Team Robot Training of Humanoids at RoboCup
	6 Team Robot Training of Keepaway Soccer
	7 Experiments
	8 Conclusions and Future Work
	References

	SLAM in the Dynamic Context of Robot Soccer Games
	1 Introduction
	2 Modeling
	2.1 Localization and Robot-Centric Tracking
	2.2 Heterogeneous Information Sources
	2.3 Distributed Modeling

	3 Implementation
	3.1 Multi-model Kalman Localization
	3.2 Local Percept Aggregation
	3.3 Local and Distributed Knowledge Integration

	4 Evaluation
	4.1 Qualitative Demonstration
	4.2 Quantitative Performance Evaluation

	5 Conclusion
	References

	On Sensor Model Design Choices for Humanoid Robot Localization
	1 Introduction
	2 Addressing Non-linearity by Taylor Series Expansion or Unscented Transform
	3 Measurement Coordinate System Choices
	3.1 Measurements in Cartesian Coordinates
	3.2 Measurements in Cylindrical Coordinates
	3.3 Measurements in Spherical Coordinates
	3.4 Experimental Comparison
	3.5 Hybrid Modifications

	4 Multiple Simultaneous Measurements
	5 Conclusion
	References

	Keyword Index
	Author Index

