
Distributed Maintenance of Anytime Available

Spanning Trees in Dynamic Networks

Arnaud Casteigts1, Serge Chaumette1, Frédéric Guinand2, and Yoann Pigné2

1 LaBRI, University of Bordeaux, France
{arnaud.casteigts,serge.chaumette}@labri.fr

2 LITIS, University of Le Havre, France
{frederic.guinand,yoann.pigne}@univ-lehavre.fr

Abstract. We address the problem of building and maintaining a for-
est of spanning trees in highly dynamic networks, in which topological
events can occur at any time and any rate, and no stable periods can be
assumed. In these harsh environments, we strive to preserve some proper-
ties such as cycle-freeness or existence of a unique root in each fragment
regardless of the events, so as to keep these fragments functioning unin-
terruptedly to a possible extent. Our algorithm operates at a coarse-grain
level, using atomic pairwise interactions akin to population protocol or
graph relabeling systems. The algorithm relies on a perpetual alternation
of topology-induced splittings and computation-induced mergings of a for-
est of trees. Each tree in the forest hosts exactly one token (also called
root) that performs a random walk inside the tree, switching parent-
child relationships as it crosses edges. When two tokens are located on
both sides of a same edge, their trees are merged upon this edge and one
token disappears. Whenever an edge that belongs to a tree disappears,
its child endpoint regenerates a new token instantly. The main features
of this approach is that both merging and splitting are purely localized
phenomenons. This paper presents the algorithm and establishes its cor-
rectness in arbitrary dynamic networks. We also discuss aspects related
to the implementation of this general principle in fine-grain models, as
well as embryonic elements of analysis. The characterization of the algo-
rithm performance is left open, both analytically and experimentally.

1 Introduction

Spanning trees are essential components in communication networks. The avail-
ability of such structures simplifies a large number of tasks, among which broad-
casting, routing, or termination detection. From the standpoint of distributed
computing, constructing a spanning tree implies the collaboration of neighboring
nodes in order to establish selective relationships that inter-connect the whole
network without cycle.

The problem is very different in essence in static and dynamic networks. In a
static network, there is generally a distinction between the construction of a tree

J. Cichoń, M. Gȩbala, and M. Klonowski (Eds.): ADHOC-NOW 2013, LNCS 7960, pp. 99–110, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

100 A. Casteigts et al.

and its effective use, both taking place at different times. In truly dynamic net-
works (e.g. vehicular networks), the set of communication links evolves rapidly
and continuously. As a result, the trees need to be updated on a constant basis
and while they are used. Early works addressing the spanning tree problem in
dynamic graphs (see e.g. [4,10,6] and the references therein) applied strong re-
strictions on the dynamicity; namely, these works assumed the network stabilizes
eventually, or recurrently offers stable periods during which the tree can entirely
be recomputed. These assumptions are certainly appropriate in the case of oc-
casional failures or reconfigurations of the topology. But they are not reasonable
in highly dynamic scenarios like mobile ad hoc networks.

We are interested in understanding what can still be done in the harshest
dynamic context. In particular, we consider networks in which no stability period
is ever expected; no information is available about future topological events; no
restrictions apply to the rate of these events; and no contemporaneous end-to-
end connectivity is assumed (that is, we address delay-tolerant networks [8]). On
the other hand, we allow ourselves to reason at a high level of abstraction, using
a coarse-grain interaction model akin to recent population protocol models [3].
While we find the problem in this model interesting in its own right, we still
hope and believe the principles highlighted here can help subsequent effort to
make it work in finer-grain (e.g. message passing) models.

The algorithm relies on a perpetual alternation of topology-induced splittings
and computation-induced mergings of a forest of spanning trees. Each tree in the
forest hosts exactly one token (also called root) that performs a random walk
inside the tree, switching parent-child relationships as it crosses edges. When
two tokens are located on both sides of a same edge, their trees are merged
upon this edge and one token disappears. Whenever an edge that belongs to a
tree disappears, its child endpoint regenerates a new token instantly. The main
features of this approach is that both merging and splitting are purely localized
phenomenons.

After reviewing some relevant work in Section 2, we define the network model
and assumptions, as well as the computational model in Section 3. The algorithm
is then presented in detail and proved correct in Section 4. This presentation is
followed by a discussion regarding some important implementation choices (e.g.
priority between different rules of interaction). In Section 5, we provide prelim-
inary results on the analysis of the algorithm, which we regard as a coalescing
particle system involving random walks in trees. We conclude in Section 6 with
some perspectives.

2 Related Work

The problem of building distributed spanning trees in communication networks,
and more generally in graphs, has been extensively studied during the last three
decades and a large literature exists on the topic. It is noteworthy that the
problem was studied by different communities (self-stabilization, stochastic pro-
cesses, distributed computing) using different paradigms and terminologies (e.g.

Distributed Maintenance of Anytime Available Spanning Trees 101

token, mobile agent, random walk, legal state, stabilization time, coalescing time,
tree, forest, etc.). We review below the most relevant concepts and approaches
to solve this problem.

Self-stabilization: A system that reaches a legal state starting from an arbitrary
state is called self-stabilizing. After a fault in the system, the time required to
reach the legal state is called the stabilization time. In the context of spanning
trees in dynamic networks, topological changes are the faults, and having the
entire network covered by a single tree, or in case of partitioned networks one
tree per connected component, is the legal state. One approach to transform
a non-self-stabilizing algorithm into a self-stabilizing one, is to reset the states
of the nodes when a fault occurs, so that a new execution of the algorithm is
initiated. This approach has been considered by most self-stabilizing algorithms
proposed so far for the spanning tree problem, and an optimal-time solution was
proposed in [4] (as a coarse-grain graph algorithm, more recently transposed
into the message passing model in [6]). We refer the reader to [10] for a more
general survey on self-stabilizing spanning tree algorithms. In these works, the
algorithms assume that no additional fault occur during the stabilization period,
which is not acceptable in highly dynamic networks.

Random Walk: A random walk is a sequence of nodes such that each node in the
sequence (except the starting node) is randomly selected among the neighbors
of its predecessor. Random walks have been used to solve several problems in
distributed systems, such as leader election, voting, or spanning trees [7]. The
idea of using random walks to compute spanning trees was first proposed by
Aldous in [2], where a single random walk is considered. Anytime, the set of all
covered nodes, along with the edges from which they were visited the first time,
defines a random tree that spans the nodes already visited.

Mobile Agents: Mobile agents are entities that can travel across the network,
and perform tasks on the underlying nodes. These agents may or may not carry
their own memory, and adopt a variety of strategies to move within the network.
In [5], distributed random walks of mobile agents (called tokens in the paper)
are used. More precisely, colored tokens are annexing territories while walking
within the network. Each token builds a tree (a subtree of the global spanning
tree). When two tokens meet or when a token visits a node that have already
been visited, the two trees are merged into one. This operation is performed by a
wave propagation, which is a broadcast-based process that occurs along the edges
of the trees. The network is assumed connected and no topological changes are
allowed during the construction of the tree. Unique identifiers are also required.
A related approach was proposed in [1], where mobile colored agents (equivalent
to tokens) construct subtrees that are progressively merged into a final spanning
tree. Whenever one agent enters the region of another, the agent that have the
larger color progressively takes control of the nodes and eventually destroys the
other agent. The advantage of this gradual process is that it avoids the wave
propagation. However, unique identifiers are still required to generate the colors

102 A. Casteigts et al.

and some global information (an upper bound in the cover time of the random
walk) is needed to regenerate an agent. Finally, the approach does not tolerate
frequent topological events.

In comparison to these approaches, the one we propose does not require stable
periods or unique identifiers (nor any global information). This is, to the best of
our knowledge, the first attempt in this direction.

3 Network Model and Assumptions

We represent the network as an evolving graph G = {G1, G2, ...}, all elements
of which correspond to snapshots of the topology, and the transitions between
them bijectively reflect the occurrence of one, or several simultaneous topological
events (appearance or disappearance of edges). More elaborate variants of evolv-
ing graphs can be found in the original paper [9]. However, this basic variant is
suitable enough for our purpose.

At a given moment, the network is therefore represented by an undirected
simple graph Gi = (V,Ei), where the set of nodes V is assumed to be con-
stant, while the set of edges varies without restriction from one Gi to the next.
The temporal span of each Gi is arbitrary and in particular, it is not bounded
(whether from above or below). We do not require the existence of unique iden-
tifiers for the nodes, but we assume they are able to distinguish between their
incident edges and assign a local value to them (thus, an edge typically has two
values, one on each side). Note that in practice, especially in a wireless network,
this feature would require unique identifiers to be implemented. It is however a
weaker assumption from a theoretical standpoint. Further, it is more natural to
think of our algorithm without identifiers.

3.1 Computational Model

We consider a coarse-grain interaction model akin to population protocols [3] or
graph relabeling systems [11]. In these models a computation step is an atomic
pairwise interaction. Precisely, a computation step takes as input the state of a
pair of nodes (together with their common edge), and modifies these states ac-

cording to some rule. For example, the rule inside outside inside inside
0 0 2 1

may represent the construction of a rooted spanning tree in a static network from
some distinguished inside node. We assume in general that two interactions can
occur in parallel so long as they are disjoint (they do not imply a common node).
The way interactions are selected, that is, the scheduling, is typically not a part of
the algorithm (e.g. it can be adversarial with some constraints, or probabilistic,
or result from some finer-grain interaction). The general properties we establish
on our algorithm are insensitive to these concerns. Note that the guard of a rule
(left part) may represent two nodes in a same state. In this case, despite the
absence of unique identifiers, symmetry is broken by the application of the rule
– however, the choice of what role is played by each node is not controlled by
the algorithm (it is up to the scheduler).

Distributed Maintenance of Anytime Available Spanning Trees 103

Dealing with a dynamic graph (the usual population protocols deal with static
graphs), we consider another type of operation in addition to pairwise interac-
tion. This operation, triggered by topological events, consists in updating the
state of a node immediately after one of its edges disappears. As such, an algo-
rithm can associate reactive operations to the loss of a link.

4 The Spanning Forest Algorithm

Informally, the algorithm is based on three operations on tokens: circulation,
merging, and regeneration, which aim at maintaining exactly one token per tree.
Initially, every node forms a tree of its own and is the root of that tree (it has
the token). When two token owners interact over a common edge, their tokens
are merged into one and their common edge is added to the tree (merging rule
r1, see Figure 1 below). The parent-child relation is set accordingly. The rest of
the time, each token performs a random walk along the edges of its own tree
(circulation rule r2, see Figure 2 below) in search of new merging opportunities;
parent-child relations are flipped as the circulation proceeds, so that a node can
always tell, locally, which edge leads to the token. Whenever an edge of the tree
disappears, the node on the child side regenerates a token (regeneration rule ra,
see Figure 3 below), which re-enables its orphan tree to keep running the process.

4.1 State Space and Initialization

At any time, the state of the system is fully described by two functions: one
function for the state of the nodes λ : V → {T,N}, where T means this node
has a token, while N means it does not; and one function for the state of the
edges locally to both endpoints λ : V × Ei → {0, 1, 2}, where Ei is the current
set of edges. The domain of both functions being different and non-ambiguous
from the context, we authorize a unique symbol λ to denote them. State 0 for
an edge means it does not belong to a tree. States 1 or 2 mean it does, and the
local direction is from child to parent (state 1) or from parent to child (state 2).
Hence, an edge whose state is 1 at one end, must be in state 2 at the other end.
Notice that one bit of information is enough to encode the state of a node, and
two bits, locally at each node, are sufficient for an edge.

Initialization: Given the first graph G0 = (V,E0), we set λ(v) = T for all v ∈ V .
We also set λ(v, e) = 0 and λ(u, e) = 0 for all e = (u, v) ∈ E0. In words, every
node initially holds a token and none of the edges belong to a tree.

4.2 State Transitions

The evolution of the process is determined by two sources of events: topological
events (i.e., appearance or disappearance of an edge) and computational events
(i.e., pairwise interaction). We specify both separately. Keep in mind the prin-
ciple presented here is intended to be extremely general, and several important
questions, like priority among rules or the role played by each node in the rule,
are deliberately set aside at this point. (They are discussed shortly after.)

104 A. Casteigts et al.

Transitions Induced by Pairwise Interaction

Merging Rule: Given two nodes u and v involved in an interaction over an edge
e = (u, v), the operation is specified as follows. If λ(u) = T and λ(v) = T , then
set λ(v) = N , λ(v, e) = 1, and λ(u, e) = 2. This rule, called merging rule (r1),
can be represented graphically as shown in Figure 1.

r1 :
T T T N

Fig. 1. Merging rule (graphical representation)

Circulation Rule: Given two nodes u and v involved in an interaction over an
edge e = (u, v), the operation is specified as follows. If λ(u) = T and λ(v) = N
and λ(u, e) = 2, then set λ(u) = N , λ(v) = T , λ(v, e) = 2, and λ(u, e) = 1. This
circulation rule (r2) can be represented graphically as shown on Figure 2.

r2 :
T N N T

Fig. 2. Circulation rule (graphical representation)

Transitions Induced by Topological Events

Given two consecutive graphs Gi and Gi+1 in G, the transition from one to the
other induces the following updates on the states of the system.

Appearance of an Edge: For all e = (u, v) ∈ Ei+1\Ei, both λ(u, e) and λ(v, e)
are set to 0. In words, new edges are initialized with state 0 on both sides.

Disappearance of an Edge: For all e = (u, v) ∈ Ei\Ei+1, if λ(u, e) = 1, then set
λ(u) = T ; else if λ(v, e) = 1, then set λ(v) = T . In words, if a node loses the
edge leading to its parent, it regenerates a token immediately. This rule, called
regeneration rule (ra), can be represented graphically as shown on Figure 3.

ra :
N Toff

Fig. 3. Regeneration rule (graphical representation)

An example execution sequence of the algorithm is provided on Figure 4.

4.3 Correctness

In this Section we establish some properties of the spanning forest algorithm,
namely, that there is always exactly one root (token) in every tree, and no cycle
can possibly occur.

Distributed Maintenance of Anytime Available Spanning Trees 105

Lemma 1. At any time, there is at least one token per tree.

Proof. The lemma holds initially, when every node is the root of its own tree.
Now observe that bothmerging and circulation operations perserve this property.
Indeed, the application of r1 merges two trees but suppresses one token, while
r2 just moves a token within the underlying tree. We can thus focus on the
disappearance of edges. Whenever an edge e disappears, either e did not belong
to a tree or it did. If it did not, nothing has to be done. If it did, then this
tree is now split into two trees, one of which is left token-less. By rule ra, whose
application is immediate, a token is regenerated on the orphan side of that edge
(edge state 1). If several such edges had disappeared simultaneously, the same
mechanism would have occurred relative to each fragment. ��
Lemma 2. At any time, there is at most one token per tree.

Proof (By contradiction). The only rule leading to the creation of a token is ra.
Since the lemma holds initially, the presence of more than one token in a tree
must result from one of these events:

1. Rule ra was applied despite the existence of another token in the tree.
2. Rule ra was applied several times simultaneously in the tree.

In the first case, the contradiction stems from the fact that ra is applied on the
child endpoint of a lost edge. By construction, the token is thus on the other
side and the local subtree is token free. In the second case, the contradiction
is slightly less direct. Let v and v′ be two nodes of a same tree, both of which
have applied ra simultaneously. Three cases are possible regarding the relative
position of v and v′ in the tree:

1. (a) v is an ancestor of v′. This is impossible because the application of ra
by v′ results from the disappearance of its parent edge.

(b) v′ is an ancestor of v. Same argument for v.
(c) v and v′ have a common ancestor. This is again impossible because

the application of ra results from the disappearance of a parent edge,
therefore neither v nor v′ can have an ancestor at all. ��

Theorem 1. At any time, there is exactly one token per tree.

Proof. By Lemmas 1 and 2. ��
Theorem 2. At any time, the trees are cycle-free.

Proof. The property holds initially. The only way an edge can be added to a
tree is by means of applying r1, which involves two tokens. By Lemma 2, there
is at most one token per tree, thus at most one application of r1 can occur at a
time for a given tree, and the two tokens must belong to different trees. ��

4.4 Discussion

The algorithmic principle introduced here is very general. In particular, the cor-
rectness of the properties we have considered so far does not depend on the order
in which the edges are selected for interaction, nor whether some interactions
should be favored over others (e.g. r1 over r2).

106 A. Casteigts et al.

N

N

T

N

N

N

T

Topological
event

(a) State at some time

N

N

T

N

N

N

T

Some
duration

(b) An edge appeared

N

N

T

N

N

N

T

r2 (twice)

(c) Two interactions

N

N

N

N

T

T

N

Some
duration

(d) Circulation of tokens

N

N

N

N

T

T

N

r1

(e) One interaction

N

N

N

N

N

T

N

Topological
event

(f) Merging of two trees

+

N

N

N

N

N

T

N

ra
(immediate)

(g) An edge disappeared

N

T

N

N

N

T

N

Some
duration

(h) Regeneration of a token

N

T

N

N

N

T

N

r2

(i) One interaction

N

T

N

N

T

N

N

Some
duration

(j) Circulation of tokens

N

T

N

N

T

N

N

r1

(k) One interaction

N

T

N

N

N

N

N

etc.

(l) Merging of two trees

Fig. 4. A possible sequence of execution of the spanning forest algorithm

Distributed Maintenance of Anytime Available Spanning Trees 107

On the other hand, these aspects can have a tremendous impact on the ability
of the trees to merge with each other and converge towards a single tree per
connected component (remind that the network is expected to be partitioned in
general).

Priority among Rules: In general, given two neighbor nodes at a given time, there
might be more than one eligible rule. This was not the case with this algorithm,
since r1 and r2 have two incompatible guards (preconditions). However, the
matter is worth being discussed. Priority among the rules could be understood
in a weak sense, enforcing the fact that a rule should not be applied by these two
nodes if they are able to apply another rule first. Another, much stronger sense
of priority consists in forbidding a node to apply a given rule as long as another
rule is applicable with any of its neighbors.

Clearly, in the case of the spanning forest algorithm, merging should be pre-
ferred over circulation whenever possible. Enforcing strong priority would thus
come to forbid the application of r2 whenever r1 can be applied. This behavior
is expected to produce larger trees, but at the cost of a strong constraint on
the scheduler (probing the state of an entire neighborhood prior to interaction).
Without speculating on finer-grain implementations of our principle – which is
not the object of this paper – we believe a strong priority mechanism remains
somewhat natural in a wireless environment, where nodes routinely broadcast
their state to all neighbors, in particular if we assume a synchronous communi-
cation model such as LOCAL or CONGEST [12].

Role Played by Both Nodes in an Interaction: The reader may have noticed that,
in the definition of the circulation rule r2, the guard of the rule is not tested
on both sides. That is, u implicitely plays the role of the left node, and v that
of the right node. As far as the present work is concerned, we do not want to
impose a preferred way to solve this question, as it does not affect correctness.
As a suggestion, the scheduler may select edges in a directed way (with a left
node, and a right node), or the second direction systematically when an edge is
selected and the rule is not applicable in the first direction.

High-Level View of the Process: Assuming the token has equal probability to
move to each neighbor (in the tree), we can regard the circulation as a random
walk in the tree. Further, if we assume strong priority enforcement between r1
and r2, the circulation and merging processes turn into a specific variant of
coalescing random walks [7]. This point of view is the one we consider in the
next section.

5 Preliminary Analysis

In this section, we study the question of how frequent the mergings are. We only
provide preliminary results and some thoughts about the complete analysis of
this process (which is far beyond the scope of this paper). Hence, we characterize

108 A. Casteigts et al.

the number of token moves expected in a stationary regime, before a merging
occurs between two given trees in a static context. This value is given as a
function of their size and the number of edges connecting them (called bridges).

5.1 Random Walks in Trees

For the sake of analysis (and with loss of generality), we look at the process
of merging and circulating tokens as a system of particles that perform random
walks in trees and coalesce whenever they meet. Here, the concept of meeting be-
tween two particles is defined with a special meaning. Indeed, in most coalescing
particle systems, two particles are said to meet if they happen to be located at a
same node, whereas in our case, they meet if they are located at both endpoints
of a same edge (remind that the tokens cannot travel beyond their trees).

5.2 Bridges

Given two different trees T1 and T2, there may be some edges whose endpoints lie
in T1 on one side, and T2 on the other side – we call such edges bridges. Figure 5
shows an example of two trees that share four bridges.

A B

C

D

E

F
GT1 T2

Fig. 5. Example of two trees sharing four bridges (dashed lines)

As discussed in Paragraph 4.4, the enforcement of a strong notion of priority
between merging and circulation allows one to assume that if two tokens are
located on a same bridge, then merging occurs. (This is at least true in the
case of two trees, which is the one addressed here.) Hence, the probability that
merging occurs is that of having both tokens located at a same bridge.

Let us denote by Bridges(T1, T2) the set of edges (u, v) such that u ∈ ET1

and v ∈ ET2 . The probability that T1 and T2 merge at a given time is equal to:

Pmerge(T1,T2) =
∑

(u,v)∈Bridges(T1,T2)

P [λ(u)=T∧λ(v)=T]. (1)

5.3 Probability of Being Located at a Node

In a stationary regime, the probability for a token to be located at a given node
v in a graph G (tree or not) is a well-known result in random walk theory, which
only depends on the ratio between the degree of v, dG(v), and the sum of all
degrees in G.

Distributed Maintenance of Anytime Available Spanning Trees 109

In a tree T , the probability a node v hosts the token is thus

P (λ(v) = T) =
dT (v)

2|ET |
(2)

where |ET | is the size of T . Keep in mind this value corresponds to the stationary
regime (when the probabilities no more depend on the initial configuration).

5.4 Expected Merging Time in the Stationary Regime

We are interested in the mean number of steps (token moves) required to merge
the two trees, assuming the walks are in a stationary regime. Moreover, as trees
are bipartite graphs, if both tokens move synchronously it may happen, depend-
ing on their initial position, that they never meet. Thus, we assume here that
the moves are asynchronous (i.e., one at a time). Equations 1 and 2 allow us to
state that the probability for two trees T1 and T2 to merge at any step is

Pmerge(T1, T2) =
∑

{(u,v)∈Bridges(T1,T2)}

dT1(u)

2|ET1 |
× dT2(v)

2|ET2 |
(3)

which in turn gives the expected merging time in number of steps,
as Emerge(T1, T2) = Pmerge(T1, T2)−1.

However limited, a quick look at these results teaches us some preliminary
facts. First, the merging time of two trees of size n in which the nodes degrees d

are fairly distributed is in O(n2

nbBridges·d2). The d
2 term could actually be omitted

if we consider that degrees are bounded by some constant (a fair assumption in

most wireless networks). Whence a time of O(n2

nbBridges) steps. Whether this time
is linear or quadratic in the sizes of the trees depends on the number of bridges
(e.g. merging time is linear if the number of bridges is in O(n); it is quadratic if
that number is constant; etc.). That in turn, depends on the networking scenario
which is considered, and in particular, what mobility model is used.

A deeper look is required to understand the behavior of this process. We
expect it to be quite difficult to analyze in the general case. Not only the algo-
rithm involves much more than two trees in general, but it is intended to run over
highly dynamic topologies, where splittings and mergings occur concurrently. In
fact, the metric of interest might be different than convergence time, since the
merging process is never expected to converge. A better metric here could be
the average number of trees per connected component in a stationary regime.

6 Conclusion

This paper proposed a new mechanism for building and maintaining a forest
of spanning trees in highly dynamic networks. The originality of the approach
is that the construction is a perpetual ongoing process that takes place at the
same time as the trees are used. The principle is very general and relies on token
circulation techniques that turns splittings and mergings of the trees into purely

110 A. Casteigts et al.

localized phenomenons. After presenting the algorithm using a coarse grain in-
teraction model, we provided some preliminary observations on the analysis of
the corresponding process, regarded for the occasion as a system of coalescing
random walks. A deeper analysis of this process is still far from reach, and we
expect it to be technically challenging in the general case. As the process is never
expected to converge, completion time is not the most relevant metric here (how-
ever its characterization in a static and connected context might already be very
insightful). Characterizing the average number of trees per connected component
in the stationary regime seems to be the relevant metric.

Besides analysis, an avenue of research is to transpose the algorithm into
finer-grain communication models. We believe this can be done, at least in syn-
chronous message passing models. Finally, de-randomizing the way tokens circu-
late (e.g. using Propp machine-like mechanisms) may lower the cover time, and
possibly, speed-up the merging process. These questions are open.

References

1. Abbas, S., Mosbah, M., Zemmari, A.: Distributed computation of a spanning tree
in a dynamic graph by mobile agents. In: Proc. of IEEE Int. Conference on Engi-
neering of Intelligent Systems (ICEIS), pp. 1–6 (2006)

2. Aldous, D.J.: The random walk construction of uniform spanning trees and uniform
labelled trees. SIAM J. Discret. Math. 3(4), 450–465 (1990)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

4. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time opti-
mal self-stabilizing synchronization. In: Proc. of the 25th ACM Symp. on Theory
of Computing (STOC), New York, USA, pp. 652–661 (1993)

5. Baala, H., Flauzac, O., Gaber, J., Bui, M., El-Ghazawi, T.: A self-stabilizing dis-
tributed algorithm for spanning tree construction in wireless ad hoc networks.
Journal of Parallel and Distributed Computing 63, 97–104 (2003)

6. Burman, J., Kutten, S.: Time optimal asynchronous self-stabilizing spanning tree.
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 92–107. Springer, Heidelberg
(2007)

7. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing random walks and voting
on graphs. In: Proc. of the 31st ACM Symp. on Principles of Distributed Comput-
ing (PODC), pp. 47–56 (2012)

8. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proc.
of Int. Conf. on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM), pp. 27–34 (2003)

9. Ferreira, A.: Building a reference combinatorial model for MANETs. IEEE Net-
work 18(5), 24–29 (2004)

10. Gaertner, F.C.: A Survey of Self-Stabilizing Spanning-Tree Construction Algo-
rithms. Technical report, EPFL (2003)

11. Litovsky, I., Métivier, Y., Sopena, E.: Graph relabelling systems and distributed
algorithms. In: Handbook of Graph Grammars and Computing by Graph Trans-
formation, vol. III, pp. 1–56. World Scientific Publishing (1999)

12. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-
trial and Applied Mathematics (2000)

	Distributed Maintenance of Anytime Available Spanning Trees in Dynamic Networks
	1Introduction
	2Related Work
	3Network Model and Assumptions
	3.1Computational Model

	4The Spanning Forest Algorithm
	4.1State Space and Initialization
	4.2State Transitions
	4.3Correctness
	4.4Discussion

	5Preliminary Analysis
	5.1Random Walks in Trees
	5.2Bridges
	5.3Probability of Being Located at a Node
	5.4Expected Merging Time in the Stationary Regime

	6Conclusion
	References

