
Strong Connectivity of Wireless Sensor Networks
with Double Directional Antennae in 3D

Evangelos Kranakis1,�, Fraser MacQuarrie1,
Izabela Karennina Travizani Maffra2,��, and Oscar Morales Ponce3

1 Carleton University, School of Computer Science, Ottawa, ON K1S 5B6, Canada
2 Federal University of Minas Gerais, Computer Science Department, Brazil

3 Chalmers University, Department of Computing, S-412 96 Goeteborg, Sweden

Abstract. Using directional antennae in forming a wireless sensor network has
many advantages over omnidirectional, including improved energy efficiency, re-
duced interference, increased security, and improved routing efficiency. We pro-
pose using double (Yagi) directional antennae in 3D space: for a given spherical
angle such antennae transmit from their apex simultaneously directionally along
two diametrically opposing cones in 3D. We study the resulting network formed
by such directional sensors. We design a new algorithm to address strong con-
nectivity of the resulting network and compare its hop-stretch factor with the
three-dimensional omnidirectional model. We also obtain a lower bound on the
minimum range required to ensure strong connectivity for sensors with double
antennae. Further, we present simulation results comparing the diameter of a tra-
ditional sensor network using omnidirectional and one using directional antennae.

Keywords: Antennae, Diameter, Directional, Range, Sensor Network, Stretch
Factor, Strong Connectivity, Yagi Antenna.

1 Introduction

Most studies of wireless sensor networks (WSNs) assume that sensors employ omnidi-
rectional antennae to communicate. For sensors with identical transmission range, this
has lead to the so-called UDG (Unit Disk Graph) model (also known as protocol model)
whereby sensors are able to communicate with each other if and only if the distance be-
tween them is less than or equal to the transmission range of the two sensors. In this
paper we consider sensors in 3D and adopt a different model, where the sensors use
directional antennae. This offers many possible advantages such as: reduced energy
consumption, lowered interference, tighter security, and improved routing efficiency. In
2D, the directional antenna model originates in the work of [2]. However our work is
mainly motivated by the work in [4], which explored for the first time the use of single
directional antennae in 3D space.

More specifically, we address the orientation problem for strong connectivity and
the stretch factor problem for double directional antennae in three-dimensional space.
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Both problems are concerned with finding an orientation of the antennae. However, in
the former case we merely want to ensure the resulting network is strongly connected,
while in the latter for a given angle of the antenna we want to determine the minimum
possible range (of the antenna) so as to guarantee that a directional c-hop-spanner is
induced, for some constant c > 0. This guarantees that the length of shortest paths in
the resulting directional graph are at most c times the length of shortest paths in the
underlying sensor network of omnidirectional antennae.

Several communication models are possible depending on how sensors send (direc-
tional or omnidirectional transmissions) and receive (directional or omnidirectional re-
ceptions) messages. We adopt the model where transmissions occur directionally while
receptions occur omnidirectionally. This is the simplest and most intuitive communica-
tion model but it has the additional benefit that it simplifies and illustrates the underlying
complexity issues of the resulting directed graph.

Although our work presents mainly theoretical results, we note that directional anten-
nae have proven in real-world applications and their use is emerging in various settings
where energy, interference, security, etc, are of primary concern (see [2] and [5] for
extensive discussions and references concerning these issues). We also note that papers
such as [1,8] discuss electronic beam steering, which relies on and uses the advantages
of directional antennae in its implementation.

1.1 Preliminaries and Notation

In this section we define several concepts and ideas that will be used in the main results.
Throughout this paper, we assume that sensors are located at points in 3D space. The
closed ball centered at the point p with radius r is denoted by B[p, r]. Given a set S of
sensors, define the Unit Ball Graph U := UBG(S) as the graph whose set of vertices
consists of S and two vertices u, v are connected by an edge if and only if d(u, v) ≤ 1.
We denote the hop distance between two sensors u and v in a graph G by dG(u, v)
(When the graph is easily understood from the context we omit the subscript G so as to
simplify notation.) Our sensor network is formed from directional antennae which re-
place corresponding omnidirectional antennae. We measure the quality of the resulting
graph of directional antennae with the stretch factor which compares the length of short-
est paths in the two kinds of graphs. If G is the graph resulting by orienting the antennae
on the set S of points, the stretch factor can be defined by τG(S) = max∀u,v∈P

dG(u,v)
dU (u,v) ,

where dG(u, v), dU (u, v) is the hop-distance between u and v in the graphs G,U , re-
spectively. To measure the stretch factor of the resulting directional graph it will be con-
venient to define the concept of k-coverage as follows (see [6]). Define a k-orientation
over a set S of sensors as the orientation of the sensors of S such that ∀s ∈ S: 1) B[s, 1]
is covered by S, and 2) ∀p ∈ B[s, 1], the shortest path from s to a sensor covering p has
length at most k− 1. This means that those sensors which are reachable by 1 hop in the
UBG(S) are still reachable by a constant number of hops k in the new orientation.

The solid angle subtended by a surface is defined as the ratio between the area of the
spherical cap and the square of the radius of the sphere of which it is part. It is usually
denoted by Ω. The apex angle of a spherical cone, denoted by 2θ, is defined as the
maximum planar angle between any two generatrices of the spherical cone.
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The apex angle 2θ and the solid angle Ω are related by the following well-known re-
lation due to Archimedes:

Ω = 2π · (1− cos θ). (1)

r
θ

r2r1r1

θ

Fig. 1. Left: Illustration of a single antenna of apex angle 2θ and radius r. Right: Illustration of a
Yagi double antenna of apex angle 2θ and radii r1 and r2.

A single antenna is modelled as a spherical cone characterized by its apex angle
(which also determines the solid angle) and its range. A (2θ, r) double antenna is mod-
elled as two spherical cones diametrically opposed, of apex angle 2θ and radii both
equal to r. A more general model, is based on the Yagi antenna, in which the op-
posing spherical cones do not necessarily have the same range, formally denoted as
(2θ, r1, r2) antenna, where r1 and r2 are the radii of the two cones of the antenna.
A three-dimensional Yagi antenna is depicted in Figure 1. Given a set of points S in
three-dimensional space that form a Unit Ball Graph U , the optimal range is defined
as the length of the longest edge of the minimum spanning tree of U and is denoted
by rMST (S). It is clear that any range lower than rMST will fail to provide a strongly
connected graph since the MST will be disconnected.

A packing problem that relates to the problems addressed in this paper is the Tammes
Radius [10], which can be described as the maximum length r of the radius of n equal
circles placed in the surface of a sphere, without overlapping and it is denoted by Rn.
Another related problem is the Kissing Number, which can be described for the three-
dimensional scenario as the maximum number of disjoint unit spheres such as every
sphere is tangent to a given unit sphere [7].

1.2 Related Work

Many advantages of networks using directional antennae have been explored, and there
are many works which examine the topological changes inherent to the use of direc-
tional antennae. A comprehensive survey can be found in [5].

A three-dimensional scenario was first adopted in [4] where a lower bound on the
solid angle necessary to ensure strong connectivity with optimal range is calculated
as 18π

5 . A proof is given showing that the problem of determining the existence of an
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orientation which achieves strong connectivity with optimal range is NP-complete for
sensors of solid angle Ω < π. An algorithm is also presented which finds such an
orientation for antennae with beam width 18

5 π ≤ Ω ≤ 4π. Finally, simulation results
are provided which show how the stretch factor of the directional model compares with
the omnidirectional model.

Other works closely related to our paper are [3] and [6]. The former presents algo-
rithms to orient directional single antennae with constant stretch factor, while the latter
deals with the connectivity problem and the stretch factor problem for double-antennae.
Unlike our work, both of these papers refer to sensors in the plane.

1.3 Outline and Results of the Paper

In Section 2, we show how to orient a single antenna, when the solid angle Ω is greater
than 2π. In Section 3, we show how to orient a double-antenna and show that the solid
angle Ω for which it is possible to attain connectivity with optimal range is bounded
below by Ω ≥ 25

13π. In both sections, the orientations are achieved with constant stretch
factor.

Table 1. Summary of results

Solid Angle Antenna Antenna Radius Stretch Factor Proof

Ω ≥ 2π Single max(1, 2 sin θ) 2 Theorem 1

2π ≤ Ω < 18π
5

Single rMST (S) ·
√

Ω·(4π−Ω)

π
N/A [4]

Ω ≥ 18π
5

Single rMST (S) N/A [4]

Ω ≥ 25π
13

Double rMST (both) N/A Theorem 2

π ≤ Ω < 2π Double 4·sin(π
4
+ θ) and 2 4 Theorem 3

In Section 4, we present the results of our simulation, which evaluated how the use
of directional double-antenna impacts the diameter of the resulting graph, compared to
the original UBG. Table 1 summarizes our results, along with other existing results.

2 Orienting Single Antennae with Constant Stretch Factor

In this section we show how to orient small groups of sensors with apex angle 2θ ≥ π,
so as to form a strongly connected directed graph with constant stretch factor.

Using [6][Lemmas 4 and 6] and the results presented in [4], it is possible to derive
the following lemmas, for the three-dimensional case.

Lemma 1. Given two sensors u, v, in three-dimensional space, with apex angle 2θ >
π, if the Euclidean distance between them is δ, there exists a 2-orientation of u and v
with transmission range max{1, δ,

√
1 + δ2 − 2δ cos(2θ)}.
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Proof. Orient each antenna in such a way that the straight line which connects u and v
contains one edge of the apex angle of v, and vice-versa, one orientation being clock-
wise and the other one counterclockwise. The farthest point which lies in B[u, 1] must
be covered by v is at a distance d equal to

√
1 + δ2 − 2δ cos(2θ) (by the law of cosines),

or equal to δ, in the case of large values of 2θ. Furthermore, in the case of δ < 1 and
large values of 2θ, the distance d might be less than 1, but u and v need to cover points
which are within a distance of 1 from itself and are not covered by the other node. There-
fore, a range r = max{1, δ,

√
1 + δ2 − 2δ cos(2θ)} is required to ensure that B[u, 1]

and B[v, 1] are covered. As u covers v directly, and vice-versa, this is a 2-orientation.

Lemma 2. Given a set S of n≥ 3 sensors in three-dimensional space, with apex angle
2θ > π. Suppose there exists s ∈ S such that the maximum distance between s and
every other sensor in S is δ. If all the sensors in S \ {s} are contained within a solid
spherical sector centered at s with apex angle 2θ, then there is a 2-orientation of S with
transmission range r = max{1, δ,

√
1 + δ2 − 2δ cos(2θ)}.

Proof. Consider sensor s and any sensor t ∈ S \ {s}. Due to Lemma 1, there is a 2-
orientation of s and t with range max{1, δ,

√
1 + δ2 − 2δ cos(2θ)}. Assume that t is on

the edge of the apex angle of the spherical sector containing all the sensors x ∈ S \{s},
i.e, t forms an angle of at least 2π − 2θ with another sensor u ∈ S \ {s}, such that the
spherical sector defined by t, u is empty. Since all the sensors x ∈ S \ {s} exist in a
spherical sector of apex angle 2θ, t certainly exists.

Therefore, there is an orientation of s and t so that they form a 2-orientation, and so
that s covers every sensor x ∈ S \ {s}. Each of the other sensors x can be oriented to
cover s and the portion of B[x, 1] not covered by s. By the law of cosines, the farthest
point from s which is covered by it is at a distance max{δ,

√
1 + δ2 − 2δ cos(2θ)}.

Therefore, this is the range required to coverB[x, 1]. The resulting orientation is strongly
connected and any sensor can be reached in 2 hops, which means it is a 2-orientation.

Following [6][Lemmas 4 and 6], paper [6] presents the theorem which creates a con-
nected graph with stretch factor τG(S) ≤ 2. The three-dimensional version uses the
same ideas, since the lemmas are adaptable to three dimensions, as well as the algo-
rithm for finding the convex hull, which is used in the proof.

Theorem 1. Given a a set of sensors S in three-dimensional space, each with one di-
rectional antenna of apex angle 2θ ≥ π and let U(S) = UBG(S). Then there exists an
antenna orientation of S with range max {1, 2 sin(θ)} which creates a directed spanner
Gθ with stretch factor τGθ

≤ 2.

Proof. Define C(G) as the set of the vertices from the union of the convex hulls of
all connected components of a graph G. Let Q be a hierarchical structure defined as
follows: Q0(V0, E0) = U(S) and Qk+1(Vk+1, Ek+1) = Qk[Vk − C(Qk)]. In other
words, at each iteration the components of the convex hull of each connected component
are taken away, which means that every iteration is a proper subset of the previous one.
Using this hierarchical structure, it is possible to prove by induction that an orientation
can be found for the unit ball graphU(S) on S. This is done by maintaining the invariant
that in each iteration every sensor is either locally convex or oriented.
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Definition 1 (Local convexity). A sensor s is locally convex in a graph G if it is a
member of the convex hull of the set of s and its 1-hop neighbours in G.

Throughout the proof we will use the term convex interchangeably to mean locally
convex. Since all sensors have apex angles 2θ ≥ π, if a sensor s is convex, it is possible
to orient s so that it covers all its neighbours in G. Consider now the iteration Qi such
that Qi−1 �= ∅ and Qi = ∅, i.e., the first iteration in which we get an empty set. Since Qi

is empty, Qi−1 must have only convex sensors - so the invariant holds immediately. The
iteration Qi−2 is the first which may contain sensors which are not convex. We must
orient these non-convex sensors in order to satisfy the invariant. We do so as follows:
each non-convex sensor t requests to orient with one of its neighbours in C(Qi−2) (t
must have at least one such neighbour, otherwise it would have been non-convex in
Qi−1)). Now, for each sensor in C(Qi−2), there are three possibilities:

– No request to orient is received.
– A single request to orient is received: The convex sensor and the requestor orient

themselves according to Lemma 1, forming a 2-orientation.
– Multiple requests to orient are received: The convex sensor and all requestors orient

themselves according to Lemma 2, also forming a 2-orientation.

(a) Q0(V,E) and C(Q0) (b) After the con-
vex hull is peeled
off.

Fig. 2. One iteration of the construction of Q for a given UBG(V ). C(Q0) is denoted by hollow
points.

Consider now any iteration Qk. Assuming Qk+1 has a valid orientation, the sensors
in Qk either are convex, already oriented, or can be oriented as explained above, which
creates a valid orientation for Qk. As a valid orientation for the basis case Qi−1 was
already shown, then by induction there is a valid orientation Gθ(S) for Q0 = U(S).
The way this orientation was constructed always guaranteed that a sensor can reach one
of its neighbours in U(S) in at most 2 hops. As proved in [6][Lemma 1], when groups
are merged, this property still holds. So, Gθ(S) is a connected graph, with τGθ

≤ 2.
The detailed algorithm is as follows.
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Algorithm 1. Orienting sensors with single antenna when apex angle is greater than π.
Q0 ← UBG(S)
i← 0
while Qi �= Qi+1 do � Will actually happen when they are empty sets

Qi+1 ← Qi[Vk − C(Qk)] � Peel off the convex hull of previous iteration
end while
for all q ∈ Q do

for all sensors ∈ q do
if sensor is convex then

continue
else

request to orient(sensor) � Sensor requests to orient with one of its neighbours
end if

end for
for all sensors ∈ q do

if sensor was requested to orient then
orient(sensor) � Orient according to Lemmas (1) or (2)

end if
end for

end for

The pseudocode for this orientation is given in Algorithm 1. The proof of Theorem 1
is now complete.

3 Orienting Double Antennae

In this section, we will show a lower bound on the solid angle of the antennae for which
connectivity can be achieved with optimal range. An algorithm will also be presented
for orienting double antennae with constant stretch factor.

Theorem 2. Given a set S of points in three-dimensional space and a spherical angle
Ω ≥ 25π

13 , there exists a polynomial time algorithm that computes a strong orientation of
three-dimensional double-antennae of spherical sector with solid angle Ω and having
optimal range.

Proof. Consider a Euclidean minimum spanning tree (MST) T of S, in which rMST (S)
is its longest edge. It will be determined how to orient the antennae at each point p ∈ S.

Let Bp be the sphere centered at each point p, with the minimum radius rp such
that all the neighbours of p in T are covered. This implies that rp ≤ rMST (S). For
each neighbour u of p in T , let u′ and u′′ be the intersection points of Bp with the
straight line containing the segment defined by u and p. Let NBp(p) be the set of points
projected on the surface of Bp. The maximum degree of a Euclidean MST is in general
bounded by the Kissing Number, which means that in three dimensions it is bounded
by 12. Since p has maximum degree 12 in T , |NBp(p)| ≤ 24.

Let DTp be the Delaunay Triangulation of NBp(p) (in 3D) on the surface of Bp. The
number of triangles of a complete triangulation of n points on a sphere is 2n− 4. This
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θ

u′

u′′

p

u

Fig. 3. Projections of three of the neighbours of p that form the greatest triangle. The projections
of neighbours u, u′ and u′′, are highlighted.

can be proved easily by induction on the number n of points. Since n ≤ 24 this gives at
most 2·24−4 = 44 triangles. By the way the points were projected on Bp, we know that
for each triangle there is a symmetric and identical triangle diammetrically opposed to
it. Consider the two largest opposing triangles, tp and t′p (a tie can be broken arbitrarily).
Orient the antennae at p with range rp in such a way that the circles circumscribed to
tp and to t′p are the only part not covered. This can be easily achieved by orienting each
antenna towards the normal line to the straight line containing the centers of tp and t′p,
that passes through the center of Bp.

To prove the lower bound on the solid angle at each point p, observe that, by the
pigeonhole principle, the radius of the circumscribed circles of the greatest triangles
will have length at least equal to the Tammes’ Radius R44 [10] and the planar angle
θ at the center of the sphere Bp is at least arcsin(R44). From [9], we find the optimal
value for 2θ: 2θ = 31.9834230◦. Therefore, the solid angle of the antennae can be
calculated, using Archimedes’ Equation as follows: Ω = 2π − 2π(1 − cos(θ)) =
2π(1 − (1 − cos(θ))) = 2π · cos(θ) < 25

13π, where the last inequality is obtained after
numerical calculation. It is easy to see that the resulting transmission graph is strongly
connected, since T is connected and all edges of T are covered by exactly two antennae
at opposite endpoints. This completes the proof of Theorem 2.

Next we study the necessary range to orient the network with constant stretch factor.
The algorithm consists of maximally partitioning the vertices of the graph into triples,
in such a way that at least one vertex is a neighbour of the other two in the UBG. After
this step, it is necessary to determine the necessary range to orient the vertices in the
triples to cover each other, as well as to cover vertices that are not part of any triple.

Lemma 3. When maximally partiotioning the set of vertices of the UBG, the vertices
which are not part of any triple are at distance at most 2 of the closest triple.

Proof. Assume there is a vertex v which is at distance greater than 2. As the UBG is
connected, there must be two more unmatched vertices, w and x that would connect
v to the closest triple in the UBG. But if those exist, they could form a triple and the
partition would not be maximal. Then, by contradiction, it is evident that v must be at
distance of at most 2.
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Next it will be shown that with infinite range, it is possible to orient antennae in each
triple to cover the whole space.

Lemma 4. Consider three points A, B, C in the space, forming a triangle. Three iden-
tical double antennae of apex angle 2θ ≥ π/2 and infinite range can be oriented so as
to cover the whole space.

Proof. Consider the greatest angle of the triangle to be α. The orientation will depend
on the value of α.

A

B

C

(a) α ≤ 2θ

B

A

C

(b) α > 2θ

Fig. 4. Orientation of three double antennae with infinite range

(i) α ≤ 2θ: Without loss of generality assume that BC is horizontal and A is above
BC. Orient the antennae at as depicted in Figure 4(a) so that the antennae cover
all three-dimensional subspace delimited by the triangle and its projections which
are normal to the paper. It is easy to see that all the 3-dimensional space is covered.

(ii) α > 2θ: Without loss of generality, assume that AB is the second smallest edge in
the triangle, AB is horizontal and C is above AB. Orient the antennae as depicted
in Figure 4(b), so that the one antenna wedge of the apex angle of C is vertical and
the wedge of the apex angle of the antennae at A and B are on AB. To prove the
orientation covers the “whole space”, observe that the antennae at A and B only
leave uncovered the 3-dimensional subspace below the plane containing AB, that
is normal to the paper. However, the antenna at C covers this subspace.

Lemma 5. Let A,B,C be three points in the 3-dimensional space, such that d(A,B) ≤
1 and d(A,C) ≤ 1. Assume that π

2 ≤ 2θ ≤ π. We can orient three (2θ, r, 2)-double an-
tennae of apex angle 2θ at A,B,C so that every point at distance at most two from one
of these points is covered by at least one of the three antennae, where r ≤ 4· sin(π4 +θ).

Proof. Consider the balls B[A, 2], B[B, 2], B[C, 2], of radius 2 centered at A, B and C,
respectively. Let D = B[A, 2] ∪ B[B, 2] ∪ B[C, 2]. Observe that each antenna covers
one spherical sector of angle π ≤ Ω ≤ 2π, relating to θ as described in Archimedes’
Equation, with range two. It remains to prove that a range r ≤ 4·sin(π4 + θ) is sufficient
to cover the remaining area. Two cases are to be considered:
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(i) α ≤ 2θ: Observe that the area of D that A covers is at most at distance three. Let
us assume, without loss of generality, that |AB| ≤ |AC|. Therefore, ∠(BCA) ≤
∠(CBA) ≤ π − 2θ. Hence, we only need to consider the case for C. Let P the
farthest point of C in the coverage area D. Observe that ∠(PBC) = (π − 2θ) +

∠(CBA). Therefore, a range of 4 sin(∠(PBC)
2 ) is always sufficient to cover D,

since |BC| ≤ 2 and |BP | = 2.
(ii) α > 2θ: From the orientation of Lemma 4, α = ∠(BAC) is the largest angle and

β = ∠(CBA) is the smallest angle in the triangle. Therefore, β ≤ π−2θ
2 . Observe

that the farthest point of D that A covers is at distance three. Then, consider the
farthest points P and Q in D from B and the farthest point R in D from C.
Since the wedge of the apex angle of the antenna in C is vertical, ∠(BCP ) =
π/2+β ≤ π−θ. Moreover,∠(QCB) = 2π−((2θ+∠(BCP )) ≤ 3π/2−2θ and
∠(CBR) = (π−2θ)+β ≤ 3

2 (π−2θ). It is possible to determine algebraically that
∠(CBR) ≤ ∠(BCP ) ≤ ∠(QCB). Also, |BQ| ≤ 4· sin(3π4 −θ) = 4·sin(π4 +θ),
since |BC| = 2 and |CQ| = 2. The lemma follows, since 4· sin(π − 2θ) ≤
4·sin(π4 + θ), for π/4 ≤ θ ≤ π/2.

It is possible to orient the set of points that form a connected UBG(P ).

Theorem 3. Given π
2 ≤ 2θ ≤ π, there is an algorithm which for any connected

UBG(P ) on a set P of points in the space, orients (2θ, 4·sin(π4 +θ), 2)-double antenna
so that the resulting graph is also connected and has stretch factor four. Furthermore,
it can be done in linear time.

Proof. Let T be any partition of the UBG with a maximal number of triples in such
a way that the triangle defined by the three sensors has at least two edges of length at
most one. This partition can be constructed in linear time, by selecting a node which
is not yet in the partition and then trying to select two of its neighbours in a such a
way that the criteria mentioned before is met. For any triangle T in T , the antennae
is oriented as shown in Lemma 5. For each sensor, the antenna covering an internal
angle of the triangle have radius 4·sin(π4 + θ), while the opposite antenna have range
2. The remaining sensors, which are not in a triple, must be oriented towards its nearest
triangle, which will be at distance at most two.

Let G be the directed spanner induced by the antennae. It is easy to see that it will
be strongly connected, by the way the orientations are done. It remains to prove that for
each edge u, v there is a directed path P from u to v and also a directed path from v
to u of hop-length no more than 4 hops. Let T and T ′ be two differente triangles in the
partition T . We consider three cases, depending on the location of sensors u and v:

(i) u, v ∈ T : Then |P | ≤ 2 and |P ′| ≤ 2;
(ii) u ∈ T and v ∈ T ′: Since d(u, v) ≤ 1, v is in the coverage area of the triangle T .

Therefore, v is reachable by u in at most three hops, which means |P | ≤ 3. An
analogous argument shows that |P ′| ≤ 3;

(iii) At least one of u and v is not unmatched, i.e., is not in any triangle of the partition.
Assume without loss of genreality that u is unmatched. Observe that there exists
a triangle T ∈ T at distance at most two from u. Otherwise, T would not be
maximal. Therefore, u can reach v through T in at most four hops, i.e., |P | ≤ 4.
Similarly, we can prove that |P ′| ≤ 4.
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4 Simulation Results

In this section we use simulation results to analyze how replacing omnidirectional an-
tennae with directional antennae in three-dimensional space impacts the diameter of
the graph. The diameter D(G) of a graph G is defined as the length of the maximum
shortest path between any two nodes of the graph. For each simulation, a random set
of points S was generated and the corresponding UBG was constructed. If the UBG
was not connected, the set of points was discarded and a new one was generated, until
a connected UBG was obtained. A directed spanner of S was constructed using the al-
gorithm from Theorem 3. The construction of the triples was executed in a greedy and
random manner.

Fig. 5. Left: Boxplot comparing the Euclidean diameter of the UBG and the directed spanner,
when varying the number of nodes. Right: Comparison of the hop diameter of the UBG and the
directed spanner, when varying the number of nodes.

Fig. 6. Left: Boxplot comparing the Euclidean diameter of the UBG and the directed spanner,
when varying the number of nodes. Right: Comparison of the hop diameter of the UBG and the
directed spanner, when varying the apex angle.

We compared the hop-diameter of both graphs, as well as the Euclidean diameter.
In the first simulation, the apex angle 2θ was fixed to π

2 and the number of nodes n
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varied from 400 to 1000, in increments of 100. For each n, the simulation ran 30 times.
Figure 5 shows the results. In the second simulation, the number of nodes was fixed to
500 and the apex angle varied from π

2 to π in increments of π
10 . The simulation was

run 30 times for each angle. Figure 6 shows the results. Both simulations show that the
diameter of the directed spanner is in general smaller than the one of the UBG, with
the hop-diameter of the directed spanner being half the diameter of the UBG. This
advantage is most probably due to the increased range of communication present in the
directed spanner.

5 Conclusion

We discussed how to orient single and doube antennae in three-dimensional space, and
also observed with the simulations that the diameter of the directed spanner resulting
by the use of directional antenna is in general smaller then the one of the original UBG.
Several questions remain open. In addition to improving our results for single as well as
double antennae (Table 1), another interesting question is concerned with how to orient
sensors in three-dimensional space when each sensor is equipped with k antennae, 1 <
k ≤ 12, as well as what the trade-offs between angle and range would be in these cases.
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