
J. Cichoń, M. Ge ̧bala, and M. Klonowski (Eds.): ADHOC-NOW 2013, LNCS 7960, pp. 111–122, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Evaluating and Bounding Operations Performance
in Heterogeneous Sensor and Actuator Networks

with Wireless Components

José Cecílio, João Costa, Pedro Martins, Nickerson Ferreira, and Pedro Furtado

University of Coimbra,
Coimbra, Portugal

{jcecilio,jpcosta,pmom,nickerson,pnf}@dei.uc.pt

Abstract. When wireless sensor networks are introduced in industrial settings,
they will be part of a much larger heterogeneous sensor and actuation network
that includes those sub-networks together with Ethernet cabled Programmable
Logic Controllers (PLCs) and control stations. Performance issues arise in such
systems. We propose mechanisms to measure, verify, control and debug
expected operation time bounds in such heterogeneous sensor and actuator
networks.

Keywords: WSAN, Heterogeneity, Operations Timing Guarantees.

1 Introduction

A sensor and actuation infrastructure is typically a heterogeneous environment,
consisting of software running on computer-boards, control stations, and multiple
networked sensors and actuators. It can be composed of multiple parts: wireless
sensor sub-networks will do the sensing and actuation over parts of the plant, and they
will be part of a much larger heterogeneous network that includes those sub-networks
together with Ethernet cabled computer-boards and control stations.

Network and control engineers deploying and putting to work such a system will
need to control and verify whether time bounds are within acceptable values. There
are many options involved, and there is the need for both planning and testing. For
instance, with the appropriate Time Division Multiple Access (TDMA) schedule, it is
possible to implement simple closed-loops within a single wireless sensor network,
with guaranteed behavior. On the other hand, it is also possible to have situations
where a closed-loop is required with sensing happening in a wireless sensor network,
decision logic in a computer, and actuation happening in another wireless sensor
network. In this case the control loop will traverse multiple, most probably non-real-
time hardware and software systems, nevertheless the control loop will still need to be
under verifiable expected time bounds.

In this paper we define measures and metrics for surveillance of expectable time
bounds and an approach for debugging, using tools and mechanisms to explore and
report problems. This surveillance can be used in any distributed system to verify

112 J. Cecílio et al.

performance compliance. Assuming that we have monitoring or closed-loop tasks
with timing requirements, this allows users to constantly monitor timing conformity.

We will also show experimental results concerning bounds and debugging tool. We
create a simulation environment where we introduce some random delays in the
messages, to demonstrate how the debugging tool works and its usability. These
practical experimental results will show the values obtained in that environment,
proving that the network and control engineers will have the adequate measures,
metrics and tools to plan and debug adequately.

The rest of the paper is organized as follows: section 2 reviews related work;
section 3 describes the heterogeneous monitoring and control architecture. It explains
the architecture components considered in this work. Section 4 defines measures and
metrics used by our approach to evaluate and bound operations performance in
heterogeneous sensor networks. Section 5 describes the addition of debugging
modules to the heterogeneous monitoring and control architecture. The debugging
node component and operation performance monitor component are described. It is
also described how the performance information is collected and processed. An
example of operation performance monitor UI is presented, which allows users to
evaluate the performance. In section 6 we define the experimental setup and section 7
shows results obtained and the conclusions. Lastly, section 8 concludes the paper.

2 Related Work

Our proposal is an approach to verify and control expected operation time bounds in a
heterogeneous system such as Sensor and Actuator Networks (SANs) with wireless
sensor sub-networks. Related work includes monitoring tools, studies on
performance, latency and delay analysis.

Monitoring is crucial to control operations performance of a sensor and actuator
network, and tools are needed to measure specific parameters of performance. These
methods are used to monitor all necessary parameters that assure that all
functionalities are working as expected.

There already exist some tools to monitor network performance in wireless sensor
networks. Sympathy [1] is a monitoring system in which sensor nodes are supplied
with specific monitoring software, and periodically send specific parameters to a sink
node. The mechanism developed is aimed at detecting and debugging failures in
sensor networks and is specifically designed to be used with data gathering
applications. All evaluation is done at the sink. When a failure occurs, Sympathy
triggers failure localization and reporting.

DiMo [2] presents a distributed and scalable solution for monitoring the nodes and
the topology, along with a redundant topology for increased robustness. The aim is to
operate in safety-critical wireless sensor networks, where all sensor nodes must be up
and functional. This tool provides two functionalities, network topology maintenance
and network health status monitoring. Monitoring is done by using observer nodes
that check the reception of heartbeats within a certain monitoring time. If not, the
observer sends a node missing message to the sink. There is always one observer for
each node. The sink is always aware of which nodes are being observed in the
network, and therefore always knows which nodes are up and running.

 Evaluating and Bounding Operations Performance 113

Our work is related to these ones in what concerns network performance
monitoring. However our approach is oriented towards high-level operations, where
we propose operation time failure detection mechanisms.

There are also some works addressing latency and delays for WSNs [3, 4, 5, 6].
These works have considered the extension of the Network Calculus methodology [7]
to WSNs. End-to-end delay bounds for real-time flows in WSNs have been studied in
[8]. The authors propose closed-form recurrent expressions for computing the worst-
case end-to-end delays, buffering and bandwidth requirements across any source-
destination path in the cluster-tree assuming error free channel. They propose and
describe a system model, an analytical methodology and software tool that permits the
worst-case dimensioning and analysis of cluster-tree WSNs.

There also exist approaches to monitor latencies and delays in distributed control
systems based on wired components. The authors of [9] and [10] show two studies on
modeling and analyzing latency and delay stability of network control systems. The
authors of [11] modeled end-to-end time delay dynamics for the internet using system
identification tools. The study in [12] presents an analytical performance evaluation of
the switched Ethernet with multiple levels from timing diagram analysis, and
experimental evaluation from an experimental testbed with a networked control
system. These works assume a wired network. However, a distributed control system
may include wireless and wired parts. Our proposed approach includes application-
level, end-to-end message losses, message delivery delays, commands delays,
specification of bounds to provide high degree of performance in all components of
the SAN (wired and wireless).

3 Heterogeneous Monitoring and Control Architecture

With the evolution and increased adoption of wireless sensor technology and
networks, and their easier and much cheaper deployment, there is a current solution to
partially replace or complement the existing infrastructure. When deployed in
industrial settings, it will build a heterogeneous sensor and actuation network. The
global network can be composed by wireless sensor networks (WSN), PLC,
computers and control stations (Fig. 1).

Fig. 1. General Architecture

114 J. Cecílio et al.

One way to try to provide operation timing guarantees is to deploy WSN sub-
networks with real-time specific algorithms that would include at least completely
pre-planned synchronous time-division mechanisms. However, sensor and actuation
infrastructures are typically heterogeneous systems. The system includes specific
software parts, some possibly offering real-time, while others do not. In that context,
deployment of sensor and actuator networks requires a high level of reliability control
concerning measures such as latencies, delays and message losses. It is important to
ensure that monitoring and control loops will still be under specified time bounds. For
instance, control engineers can specify operation time bounds to deliver the data to or
from supervision controllers.

4 Measures and Metrics

Operation timing issues in terms of monitor and closed-loops control can be
controlled with the help of two measures, which we denote as Latency and Delay of
Periodic Events.

Latency consists of the time required to travel between a source and a destination.
Sources and destinations may be any site in the distributed system. For instance, the
latency can be measured from a WSN leaf node to a sink node, or from a WSN
sensing node to a computer, control station or backend application.

Delay of Periodic Events consists of the extra time taken to receive a message
with respect to the predefined periodic reception instant.

Given the above time measures, we define metrics for sensing and control. The
metrics allow us to quantify timing behavior of monitoring and closed-loops.

Monitoring Latency – the time taken to deliver a value from sensing node to the
control station, for display or alarm computation. The following latency metrics are
therefore all considered: Acquisition latency, Transmission latency, Control Station
processing latency, End-to-end latency.

Monitoring Delay – the amount of extra time from the moment when a periodic
operation was expected to receive some data to the instant when it actually received.
When users create a monitoring task, they must specify a sensing rate. The control
station expects to receive the data at that rate, but delays may happen in the way to the
control station, therefore delays are recorded.

Event-Based Closed-Loop Latency – the time taken from sensing node to actuator
node passing through the supervision control logic. It will be the time taken since the
value (event) happens at a sensing node to the instant when the action is performed at
the actuator node. The following latency metrics should be considered to determine
the closed-loop latency: Acquisition latency, Upstream transmission latency, Control
Station processing latency, Downstream transmission latency, Actuator processing
latency, End-to-end latency.

Periodic Closed-Loops Latency – periodic closed-loops can be associated with two
latencies: Monitoring latency and Actuation latency. The Monitoring latency can be
defined as the time taken from sensing node to the supervision control logic. The
Actuation latency corresponds to the time taken to reach an actuator. We also define

 Evaluating and Bounding Operations Performance 115

an end-to-end latency as the time from the instant when a specific value is sensed and
the moment when an actuation is done which incorporates a decision based on that
value. The following latency metrics should be considered to determine the closed-
loop latency for synchronous or periodic closed-loops: Acquisition latency; Upstream
transmission latency; Wait for the actuation instant latency; Control Station
processing latency; Downstream transmission latency; Actuator processing latency;
End-to-end latency;

Closed-Loop Delays – In periodic closed-loop operations, actuation is expected
within a specific period. However, operation delays may occur in the control station
and/or command transmission. The closed-loop delay is the excess time.

In event-based closed-loops, there can be monitoring delays. This means that a
sample expected every x time units may be delayed.

5 Addition of Debugging Modules to Monitoring and Control
Architecture

In the previous sections we defined measures and metrics useful to evaluate operation
performance. In this section we will discuss how to add debugging modules to the
monitoring and control architecture.

The architecture can be divided into two main parts: nodes and control station. To
add debugging functionalities, we need to add a Debugging Module (DM) to nodes
and a Performance Monitor Module (PMM) to the control station. The debugging
module collects information from operations in nodes, then formats and forwards
information to the Performance Monitor module. The Performance Monitor gathers
the status information coming from nodes, stores it in a database and processes it
according to bounds defined by the user.

In the next sections we describe how the Debugging module and Performance
Monitor module work.

5.1 The Debugging Module

The Debugging module (DM) stores all information concerning node operation (e.g.
execution times, battery level) and messages (e.g. messages received, messages
transmitted, transmission fails, transmission latencies). This information is stored inside
the node. It can be stored either in main memory, flash memory or other storage device.

DM is an optional module that can be activated or deactivated. It generates a
debugging report, either by request or periodically, with a configurable period.

DM has two modes of operation:

• Network debugging – the DM runs in all nodes and keeps the header
information of messages, where it adds timestamps corresponding to
arrive and departure instants. After, this information is sent periodically or
by request to the Performance Monitor (described in the next sub-section),
which is able to calculate metrics. This operation mode may be
deactivated in constrained devices, because it consumes resources such as
memory and processing time.

116 J. Cecílio et al.

• High-level operation debugging – instead of collecting, storing and
sending all information to the Performance Monitor, the DM can be
configured to only add specific timestamps to messages along the path to
the control station.

Assuming a monitoring operation in a distributed control system with WSN sub-
networks, where data messages are sent through a gateway, the DM can be configured
to add timestamps in the source node, sink node, gateway and control station. Fig. 2
illustrates nodes, gateways and a control station in that context.

The approach assumes that WSN nodes are clock synchronized. However, they
may not be synchronized with the rest of the distributed control system. Gateways,
computers and control stations are also assumed clock synchronized (e.g. the NTP
protocol can be used).

Fig. 2. Message path – example

In Fig. 2, the DM starts by adding a generation timestamp (source timestamp) in
the sensor node (Ts1). When this message is received by the sink node, it adds a new
timestamp (Ts2) and indicates to the gateway that a message is available to be written
in the serial interface. Upon receiving this indication, the gateway keeps a timestamp
that will be added to the message (Ts3), and the serial transmission starts. After
concluding the serial transmission, the gateway takes note of the current timestamp
(Ts4) and adds Ts3 and Ts4 to the message.

Upon concluding this process and after applying any necessary processing to the
message, the gateway adds another timestamp (Ts5) and transmits it to the control
station. When the message is received by the control station, it adds a timestamp
(Ts6), processes the message and adds a new timestamp (TS7), which indicates the
instant of message processing at the control station was concluded. After that, at the
control station, the Performance Monitor module (described in the next section)
receives the message and, based on the timestamps that come in the message, it is able
to calculate metrics.

If there is only one computer node and the control station, there will only be Ts1,
Ts6 and Ts7.

 Evaluating and Bounding Operations Performance 117

5.2 The Performance Monitor Module and UI

In this sub-section we describe the Performance Monitor module (PMM), which
debugs operations performance in the heterogeneous distributed system. The PMM
stores events (data messages, debug messages), latencies and delays into a database. It
collects all events when they arrive, computes metric values, classifies events with
respect to bounds, and stores the information in the database. Bounds should be
configured for the relevant metrics.

Assuming the example shown in Fig. 2, PMM collects the timestamps and
processes them it to determine partial and end-to-end latencies.

The following partial latencies are calculated:

• WSN upstream latency (Ts2 – Ts1)
• WSN to Gateway interface latency (Ts4 – Ts3)
• Middleware latency (Ts6 – Ts5)
• Control station latency (Ts7 – Ts6)
• End-to-end ((Ts2 – Ts1) + (Ts4 – Ts3) + (Ts6 – Ts5) + (Ts7 – Ts6))

After concluding all computations, PMM stores the following information in the
database: Source node id, Destination node id, Type of message, MsgSeqId,
[Timestamps], partial latencies, end-to-end latency. This information is stored for
each message, when the second operation mode of debugging is running. When the
first operation mode of the debugging component is running, a full report with link-
by-link information and end-to-end information is also stored.

The PMM user interface shows operations performance data, and alerts users when
there is a problem detected by metric exceeds bounds. Statistical information is also
shown and is updated for each event that arrives or for each timeout that occurs.

Fig. 3 shows a screenshot of PMM. We can see how many events (data messages)
arrived in-time, out-of-time (with respect to defined bounds), and the corresponding
statistical information. This interface also shows a pie chart to give an overall view of
the performance.

Fig. 3. PMM user interface Fig. 4. PMM user interface – event logger

118 J. Cecílio et al.

Fig. 4 shows the event logger of PMM. This logger shows the details on failed
events. A list of failures is shown and the user can select one of each and see all
details, including the latency in each part of the distributed control system.

When a problem is reported by the PMM, the user can explore the event properties
(e.g. delayed messages, high latencies) and find where the problem occurs. If a
problem is found and the debugging report is not available at the PMM, nodes are
requested to send their debugging report. If a node is dead, the debugging report is not
retrieved and the problem source may be due to the dead node. Otherwise, if all
reports are retrieved, the PMM is able to detect the message path and check where it
was discarded or where it took longer than expected.

PMM allows users to select one message and see all details, including the latency
in each part of the distributed control system.

6 Experimental Setup

In this experimental section we use a testbed prototype to show that our approach is
useful to monitor and debug operations performance in the whole SAN (WSN nodes,
gateways, control stations and end-user applications).

In the testbed there is a WSN sub-network, which is a planned network designed to
provide performance control, gateways (computer nodes) and control stations. Fig. 5
shows a sketch of our setup.

The WSN sub-network includes 12 TelosB nodes organized hierarchically in a 1-1-
2 tree and one sink node (composed by one TelosB node and one computer that acts
as gateway of the sub-network). The setup also includes a control station that receives
the sensor samples, monitors operations performance using bounds, and collects data
for testing the debugging approach.

Fig. 5. Setup

The control station is a computer with an Intel Pentium D, running at 3.4 GHz. It
has 2 GB of RAM and an Ethernet connection. The gateway connecting the WSN
sub-network to the cabled network is another computer with similar characteristics.

All computer nodes (gateway and control station) are connected through Ethernet
cables and GigaBit network adapters. The WSN sub-network is connected to the
gateway using the serial interface provided by TelosB nodes. That interface is
configured to operate at 460800 baud/second.

 Evaluating and Bounding Operations Performance 119

All computers run Linux OS and have specific components developed using Java
to do specific tasks. For instance, the gateway computer has a gateway software
component to read data from the serial interface and send it to the control station, and
to receive messages destined for the WSN and deliver them through the serial
interface. The control station has a software component which implements remote
configuration and performs functionalities such as monitoring and closed-loop
control.

The WSN sensor nodes run Contiki OS and generate one message per time unit
with a specified sensing rate. Each message includes data measures such as
temperature and light. GinMAC [13] is used at the MAC layer by the WSN nodes.

7 Testing Bounds and the Performance Monitoring Tool

To exercise the use of bounds and debugging, we created a monitoring operation and
introduced a “liar” node which injects 10 ms of delay in the first of every two
consecutive messages that travel through it. Using the setup shown in Fig. 5, we will
replace node 3 by the “liar” node (Fig. 6).

Fig. 6. Setup with “liar” node

Moreover, to simulate some losses in the network, we changed the node 4
configuration to consecutively send one message and discard the next message. This
allows us to simulate 50% of message losses.

Fig. 7 and Fig. 8 show the results concerning message delays. Fig. 7 reports values
concerning delay without the “liar” node, while Fig. 8 reports delays after
replacement of node 3 by the “liar” node.

Fig. 7. Message delay without “liar” node

120 J. Cecílio et al.

From Fig. 7 we can co
station, in average, within 0

After introducing our “
hours, we obtained the char
5 increased. These nodes s
the “liar” node, which is
consecutive messages incre

Using the PM proposed
delay. Assuming that each
maximum delay of 10 ms, w

Fi

Fig. 9 shows the percent
according to a delay boun
message is considered lost)

From Fig. 9 we conclu
bound, but 6.8% are deliver
expected:

• Messages lost –

one in every tw

with the result o
• Messages out o

4 sends only h
Concerning nod

2*12

1

3*12

1 + m

6.8% out of bou
• Messages in tim

from the total n

losses and out o

onclude that consecutive messages arrive at the con
0.5 to 2 ms. This value can grow up to a maximum of 8 m
“liar” node and running the monitoring operation for
rt of Fig. 8. This figure shows that the delay of nodes 4
send their messages to the control station passing throu
node 3. In this case, we can see that the delay of t

eased, in average, to 12 ms, and up to a maximum of 20
in this paper, we can also define bounds for the mess

h message should arrive at the control station withi
we can define a delay bound and analyse the results.

ig. 8. Message delay with “liar” node

tage of messages classified as in-time, out-of-time and l
nd of 10 ms and lost timeout of 1s (the timeout whe
.

ude that 88.6% of the messages are delivered within
red out of bounds and 4.5% are lost. These numbers are

– there are 12 nodes sending data messages, node 4 f

wo messages. That results in
2*12

1
 losses, which agr

of 4.5% losses that was obtained.
of bound – there are 12 nodes sending data messages, n
half of its messages and half of them arrive delay
de 5, half of its messages arrive delayed. That results

messages out of bound, which agrees with the result

und that was obtained.
me – 88.6% of messages are delivered in time, that res
umber of expected received messages minus the numbe

of bound 













 ++−

2*12

1

3*12

1

2*12

1
1 .

ntrol
ms.

r 24
and
ugh
two
ms.

sage
in a

lost,
en a

the
e as

fails

rees

node
yed.
s in

t of

ults
er of

Fig. 9. M

The user can also explor
problem occurred. For inst
as the one in Fig. 10, which

From Fig. 10 we can con
in Fig. 9. It is losing 50% o

Fig. 10 also shows that t
further debugging allows th
where it took longer than ex

For instance, if we explo
messages sent by that node
of node 3 (our “liar” node),
2 ms for node 3 sending me

Fig. 10. Messag

8 Conclusion

In order to make sensor a
contexts with constraints s
approaches to help a user t
in those SANs. This is esp
components, where it is ver

Evaluating and Bounding Operations Performance

Message classification according delay bound

re event properties (in this case, delays) and find where
ance, the user interface includes per node evaluation s

h shows which node(s) is failing.
nclude that node 4 is responsible for the losses represen
f the messages, as expected.
the delay bound is not met by nodes 4 and 5. In this ca
he user to identify the path of each message and to ch
xpected.
ore the path and delay parts of node 5, we can conclude t
e are waiting, in average, 10 ms in the transmission qu
, which is greater than the expected average delay value
essages to the control station seen in Fig. 7.

ge classification according to delay bounds per node

and actuator networks (SANs) more reliable in pract
such as latencies and delay bounds, there is a need
to correctly evaluate and debug the performance proble
pecially true in heterogeneous systems with non real-ti
ry important to determine where and why problems occ

121

the
uch

nted

ase,
heck

that
ueue
e of

tical
for

ems
ime
cur.

122 J. Cecílio et al.

The introduction of wireless sensor networks into industrial sites has created one
heterogeneity case in which it is important to be able to track and debug problems.

We proposed an approach to monitor and debug latency and delay problems. The
approach collects information on every part of the paths followed by messages and also
on delays, and it combines detailed link-level information with timing information to
allow users to track where the problems occurred and why. The approach also classifies
messages according to bounds and provides feedback about how many messages arrived
at the control station in-time or out-of-time. Our experimental results consisted in
injecting timing failures into a testbed and showing that the approach allowed the users to
detect the problems and track them until they reach the originator of the problem. Future
work will consist in providing automated detailed problem tracking reports.

References

1. Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sympathy for the
Sensor Network Debugger. Presented at ACM Sensys (2005)

2. Meier, A., Motani, M., Siquan, H., Künzli, S.: DiMo: Distributed Node Monitoring in
Wireless Sensor Networks. Presented at 11th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2008), Vancouver (2008)

3. Koubaa, A., Alves, M., Tovar, E.: Modeling and Worst-Case Dimensioning of Cluster-
Tree Wireless Sensor Networks. In: 27th IEEE International RealTime Systems
Symposium, RTSS 2006, pp. 412–421 (2006)

4. Lenzini, L., Martorini, L., Mingozzi, E., Stea, G.: Tight end-to-end per-flow delay bounds in
FIFO multiplexing sink-tree networks. Performance Evaluation 63(9-10), 956–987 (2006)

5. Roedig, U., Gollan, N., Schmitt, J.: Validating the Sensor Network Calculus by
Simulations. In: Network 2006 (2006)

6. Schmitt, J., Zdarsky, F., Roedig, U.: Sensor Network Calculus with Multiple Sinks. In:
Proceedings of IFIP NETWORKING 2006 Workshop on Performance Control in Wireless
Sensor Networks, pp. 6–13 (2006)

7. Thiran, P., Le Boudec, J.-Y. (eds.): Network Calculus. LNCS, vol. 2050. Springer, Heidelberg
(2001), http://ica1www.epfl.ch/PS_files/netCalBookv4.pdf

8. Jurcik, P., Severino, R., Koubaa, A., Alves, M., Tovar, E.: Real-Time Communications
Over Cluster-Tree Sensor Networks with Mobile Sink Behaviour. In: 14th IEEE
International Conference on Embedded and RealTime Computing Systems and
Applications, pp. 401–412 (2008)

9. Sato, K., Nakada, H., Sato, Y.: Variable rate speech coding and network delay analysis for
universal transport network. In: Seventh Annual Joint Conference of the IEEE Computer and
Communcations Societies Networks Evolution or Revolution, IEEE INFOCOM (1988)

10. Wu, J., Deng, F.Q., Gao, J.: Modeling and stability of long random delay networked
control systems. In: International Conference on Machine Learning and Cybernetics,
vol. 2, pp. 947–952 (2005)

11. Kamrani, E., Mehraban, M.H.: Modeling Internet Delay Dynamics Using System Identification.
In: IEEE International Conference on Industrial Technology, pp. 716–721 (2006)

12. Lee, S., Lee, K., Lee, M., Harashima, F.: Integration of mobile vehicles for automated
material handling using Profibus and IEEE 802.11 networks. IEEE Transactions on
Industrial Electronics (2002)

13. Suriyachai, P., Brown, J., Roedig, U.: Time-Critical Data Delivery in Wireless Sensor
Networks. In: Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione, A. (eds.) DCOSS 2010.
LNCS, vol. 6131, pp. 216–229. Springer, Heidelberg (2010)

	Evaluating and Bounding Operations Performance in Heterogeneous Sensor and Actuator Networks with Wireless Components
	1 Introduction
	2
Related Work
	3 Heterogeneous Monitoring and Control Architecture
	4 Measures and Metrics
	5 Addition of Debugging Modules to Monitoring and Control
Architecture
	5.1 The Debugging Module
	5.2 The Performance Monitor Module and UI

	6 Experimental Setup
	7 Testing Bounds and the Performance Monitoring Tool
	8 Conclusion
	References

