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Abstract. The ever-growing malware threat in the cyber space calls for tech-
niques that are more effective than widely deployed signature-based detection
systems and more scalable than manual reverse engineering by forensic experts.
To counter large volumes of malware variants, machine learning techniques have
been applied recently for automated malware classification. Despite the successes
made from these efforts, we still lack a basic understanding of some key issues,
such as what features we should use and which classifiers perform well on mal-
ware data. Against this backdrop, the goal of this work is to explore discrim-
inatory features for automated malware classification. We conduct a systematic
study on the discriminative power of various types of features extracted from mal-
ware programs, and experiment with different combinations of feature selection
algorithms and classifiers. Our results not only offer insights into what features
most distinguish malware families, but also shed light on how to develop scalable
techniques for automated malware classification in practice.

1 Introduction

The sheer volume of malware has posed serious threats to the health of cyber space.
According to Symantec, as many as 286 million unique malware variants have been
witnessed in 2010 alone [35]. It is thus impossible for us to manually reverse engi-
neering every malware variant and study their malicious behaviors. Fortunately, many
of these malware variants share similar origins. According to the 2006 Microsoft Se-
curity Intelligence report [20], more than 75 percent of malware variants detected can
be categorized into as few as 25 families. If we grasp the trend of how each of these
malware families evolves, we are at an advantageous position of developing effective,
yet efficient, techniques to mitigate the tremendous malware threats.

Studying evolution of distinct malware families calls for methods that can quickly
classify a large number of malware variants into their corresponding lineages. Major AV
(Anti-Virus) companies commonly use signature-based approaches, which are known
to be error-prone. On the other hand, manually reverse engineering malware to find
their lineages requires advanced skills and is thus too time consuming to keep up with
the current pace of ever-evolving malware programs. To overcome these challenges, we
investigate machine learning techniques that learn automatically from samples labeled
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either by malware forensic experts or from consensus among major AV companies to
classify new malware variants.

Such supervised learning, however, demands discriminatory information that is rep-
resentative of malware lineages. In parlance of machine learning, this is an issue of fea-
ture selection. The motivations behind feature selection for automated malware classi-
fication are manifold. First, feature selection can relieve us from collecting unnecessary
features, some of which may be difficult to extract from malware programs. Second,
features that are found capable of accurately classifying malware families offer insights
into the key differences among malware families. This objective renders feature selec-
tion more desirable than those methods relying on dimension reduction, which projects
features into a space with little semantic meaning. Last but not least, performances of
many classification algorithms hinge on the number of features used.

Against this backdrop, the goal of this work is to explore discriminatory features
for automated malware classification. We extract various types of features from mal-
ware programs, and for each type of these features, we study its discriminative power
as well as how to select the most useful ones for automated malware classification.
As performances of feature selection and classification techniques heavily depend on
application domains, we consider various combinations of feature selection and classi-
fication methods to gain deep insights into what algorithms perform well for automated
malware classification.

Our major observations from this comprehensive study are summarized as follows.
(1) Different types of features vary significantly in their abilities in classifying malware
families. Our study has shown that features extracted from PE headers possess high dis-
criminative power in classifying malware families. This observation is encouraging as
the cost of extracting features from PE headers of executable programs is low compared
against other types of features such as those from dynamic traces. (2) For the same type
of features, we find that a small number of features are usually sufficient for a classifier
to reach its peak classification performance. This further confirms the importance of
feature selection, and suggests that an automated malware classification system could
rely on only a selected set of malware features to improve its scalability. (3) Among
the four classifiers we have tested in this study, we find that a variant of the decision
tree classifier (i.e., C4.5) performs consistently well in classifying all malware families.
The decision tree classifier is known to have scalability advantages over other classifiers
such as SVM and kNN [16], which offers hope for developing fast and scalable tools in
classifying a large number of malware variants.

2 Related Work

Malware feature extraction is a key step towards malware classification/clustering anal-
ysis. Previously, many types of malware features have been used to classify or cluster
malware instances, such as byte sequence n-gram [31,12,25], instructions in execution
traces [1], PE headers [34,26], function call graphs [8], control flow graphs [15], and
system calls [11,4,6]. Our study compares the discriminative power of different feature
types, which has not been thoroughly treated previously.

Since the initial works of Schultz et al. [31] and Kolter et al. [12], machine learning
techniques have been used in many efforts to automatically classify unknown malware
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files into different categories [25,28]. SVM, kNN and the decision tree are several most
popular classifiers used for malware classification problems [27,21]. Similar to our ef-
forts in this study, Ye et al. compared the performances of SVM, the decision tree, and
Naive Bayes in detecting whether a program is malicious or not based on the API calls
made by executable programs, and found that Naive Bayes performs the worst and the
decision tree performs slightly better than SVM [38]. Our work differs from theirs in
that we consider the problem of classifying malware into different families, and the
types of features in this work are far more diverse than what they have studied.

In contrast to malware classification that requires labeled samples for training, mal-
ware clustering automatically identifies multiple classes of malware that share similar
features in an unsupervised learning fashion [3,4,10]. Although feature selection is per-
formed for the purpose of malware classification in this work, some methodologies
used here can be applied for malware clustering as well, although feature selection for
clustering is a much harder problem due to absence of class labels [30].

3 Dataset Description

Malware Dataset. We use a dataset submitted to Offensive Computing [22] in Febuary
2011. It contains 526,179 unique malware variants collected in the wild. Using the
pefile utility [24] and the PEiD signature database (uploaded date: Feb 10, 2011)
detects that 30% of them are packed. Among all the malware variants detected to be
packed, the distribution of the top ten packers is shown in Figure 1. Armadillo and
UPX are the two most popular packers used to pack malware in the malware dataset.
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Fig. 1. Top 10 packers

AV Software Result Family name

McAfee Vundo.gen.m Vundo

NOD32 a variant of Win32/Adware.Virtumonde.NBG Virtumonde

Kaspersky Trojan.Win32.Monderb.gen Monderb

Microsoft Trojan:Win32/Vundo.BY Vundo

Symantec Packed.Generic.180 GENERIC

Fig. 2. Classification results of a malware in-
stance by five AV software

We upload all our malware variants to the VirusTotal website [36], and find that the
43 AV software vary in their capabilities in detecting malware variants in the malware
dataset. The top-performed software is AntiVir, which is able to detect almost 80% of
the malware variants; by contrast, ByteHero has detected only 4.8% of them. Among
the 43 software, the mean detection rate is 60.5% and the standard deviation is 18.2%.

To obtain labeled data, we take the following steps to choose malware variants for
which we are confident in their families.

Step 1: Family name identification. From the VirusTotal output, we note that the nam-
ing scheme of each AV software differs significantly. For instance, some of the classifi-
cation results of the malware with md5 bd264800202108f870d58b466a1ed315
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are shown in Figure 2. To identify the family name from the detection result, our algo-
rithm partitions the result into a list of words based on the set of separators that are used
by the AV software. Next, our algorithm removes from the list those words that are too
generic to indicate a malware family, such as ”Win32,” ”gen,” ”Trojan,” as well as num-
bers. The first word on the list is returned as the malware family name, or ”GENERIC”
is returned if the list becomes empty.

Step 2: Alias resolution. Another challenge is that different AV software use different
family names for the same malware variant [19]. Following the same example, both
McAfee and Microsoft classify it as a variant of the Vundo family, and NOD32 detects
it as one of the Virtumonde family. Kaspersky detects it as one of the Monderb
family, which is part of the bigger Monder family, and Symantec detects it as a generic
packed malware variant from which we cannot identify the malware family name.

To resolve aliases named differently by AV software, we start from a few well-known
malware family names, such as Bagle and Bifrose, and identify the AV software that
use these family names. We select those malware variants that are commonly classified
as these family names by these software, and check how another AV software classi-
fies the selected malware variants. If the majority of the malware variants are classified
as a specific family name, we obtain the alias of this malware family used by that AV
software. Due to the large variation in detection results by different AV software, we
consider only those from McAfee, Kaspersky, Microsoft, ESET (NOD32), and Syman-
tec. But the methodology developed in this study can be easily extended to incorporate
detection results from other AV software. For these five AV software, we resolve the
aliases for a few well-known malware families as shown in Table 1.

Table 1. Alias resolution and malware selection

Family McAfee Symantec Microsoft Kaspersky NOD32 Full Unpacked
Bagle Bagle Beagle Bagle Bagle Bagle 285 152

Bifrose Backdoor-CEP Bifrose Bifrose Bifrose Bifrose 2085 1677
Hupigon BackDoor-AWQ Graybird Hupigon Hupigon Hupigon 11001 4748
Koobface Koobface Koobface Koobface Koobface Koobface 439 371
Ldpinch PWS-Ldpinch Ldpinch Ldpinch Ldpinch Ldpinch 310 190

Lmir PWS-Legmir Lemir Lemir Lemir Lmir 366 181
Rbot Sdbot Spybot Rbot Rbot Rbot 2565 923
Sdbot Sdbot Sdbot Sdbot Sdbot Sdbot 629 253

Swizzor Swizzor Lop Swizzor Swizzor Swizzor 1826 1276
Vundo Vundo Vundo Vundo Monder Virtumonde 3278 2853
Zbot Zbot/PWS-Zbot Zbot Zbot Zbot Zbot 1317 1233
Zlob Puper Zlob Zlob Zlob Zlob 2747 2146

Step 3: Malware selection by majority agreement. Finally, we select a subset of mal-
ware variants from the malware dataset for which their malware families can be es-
tablished with high confidence. To this end, for each malware variant in the malware
dataset, we check the malware family in Table 1 into which each of the five AV soft-
ware classifies it. If four of them classify it into the same family, we select this malware
variant as belonging to this family. In total, we have selected 26,848 malware variants
belonging to 12 malware families, as shown in the right part of Table 1. We also show
the number of unpacked malware variants among those selected in each malware family.

Benign Executable Dataset. In addition to the malware dataset, we also have collected
a set of 597 benign executable programs. Similarly, we use the pefile utility and
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the PEiD signature database to detect the packer information. The breakdown of pack-
ers detected to pack benign executables is as follows: Armadillo (7.7%), InstallShield
(2.5%), UPX (1.7%), PECompact (0.5%), WinZip (0.34%), ASPack (0.17%), and Wise
Installer Stub (0.17%). Overall, the fraction of packers detected from benign executa-
bles (13%) is lower than that from the malware dataset (30%).

Balanced Datasets. From Table 1, we note that the number of samples varies signif-
icantly among different malware families. Let the imbalance ratio be the ratio of the
number of samples in the family with the most instances to that in the family with the
least instances. The full dataset, which contains both packed and unpacked instances,
has an imbalance ratio of 38.6, and the dataset that contains only unpacked samples has
an imbalance ratio of 31.2. As imbalanced data pose severe challenges to learning and
classification [7], we use the simple down-sampling technique to create a dataset which
contains the same number of instances from each malware family and benign executa-
bles. More specifically, in the balanced dataset, we randomly choose 150 unpacked
instances from each family, and randomly choose 150 benign executables. By contrast,
the imbalanced dataset contains all instances that are detected to be unpacked by PEiD.
The reason that we ignore packed instances is that the packing procedure of a malware
program is not representative of its true functionality, and different malware families
can use the same packer, which further complicates automated malware classification.

4 Methodology

To study the discriminative power of different types of features, we consider four widely
used classifiers: Naive Bayes, kNN, SVM, and the decision tree (we use the C4.5 deci-
sion tree in this study). In parlance of machine learning, the performance of a classifier
can be quantified with precision, recall, and F-1. Let the number of true positives, false
positives, true negatives, and false negatives be ntp, nfp, ntn and nfn, respectively,
when we use a classifier c. Then, the precision metric is defined as ntp/(ntp + nfp),
and the recall metric is ntp/(ntp + nfn). The F-1 metric is the harmonic mean of pre-
cision and recall, that is, 2ntp/(2ntp + nfp + nfn). An ideal classifier would have F-1
metric close to 1, implying that both precision and recall are close to 1.

Feature selection algorithms fall into three different categories. Filter methods rank
features independently and choose features with highest scores for classification. Since
features chosen by a filter method are blind to the classifier used later, they may not per-
form the best for that specific classifier. This distinguishes filter methods from wrapper
methods, which aim to choose a subset of features that perform the best under a specific
classifier. A wrapper method is usually much slower than a filter method, as for each
candidate subset of features, it has to use a specific classifier to evaluate the classifica-
tion performance. Embedded methods are another type of feature selection techniques,
which exploit sparsity by forcing weights associated with non-chosen features to be
zero. Due to execution performance concern, we do not consider wrapper methods in
this study. In the following, we introduce three filter methods, ReliefF, Chi-squared (or
χ2) and F-statistics, and two embedded methods which are L1-regularized methods.

ReliefF [14]. The ReliefF score of a feature is calculated as follows. Randomly choose
m reference instances {xi}i=1,2,...,m, and for each reference instance xi, let set Hi
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contain its k closest samples in the same class and set Mi its k closest samples in a
different class. The ReliefF score is:

R =

∑m
i=1

∑
y∈Mi

|xi − y|
∑m

i=1

∑
y∈Hi

|xi − y| , (1)

where |xi−y| denotes the distance between xi and y. We choose m = 100 and k = 20.

Chi-squared [18]. This method evaluates an individual feature with respect to the
classes. Numerical features are discretized into intervals. The χ2 score of a feature
is:

C =

m∑

i=1

K∑

k=1

(Aik − Eik)
2

Eik
, (2)

where m is the number of intervals, K the number of classes, Aik the number of
instances of class k in the i-th interval, Ri the number of instances in the i-th in-
terval, Sk the number of instances in class k, N the total number of instances, and
Eik = Ri × Sk/N .

F-Statistics [13]. The F-statistic score of a feature f is calculated as follows:

F =

∑K
k=1

nk

K−1 (μk − μ)2

1
n−K

∑K
k=1(nk − 1)σ2

k

, (3)

where K is the total number of classes, μ is the mean of all instances on feature f , and
for any class k : 1 ≤ k ≤ K , nk is the number of instances in class k, and μk and σk

are the mean and standard deviation of instances in class k on feature f , respectively.

L1-Regularized Methods [39]. Consider two-class labeled data {xi, yi}li=1, xi ∈ Rn,
and yi ∈ {1,−1}. Under the L1-regularized logistic regression model (L1-logreg),

min
w

PLR(w) = C

l∑

i=1

log(1 + e−yiw
Txi) + ||w||1, (4)

and under the L1-regularized linear SVM model (L1-SVC),

min
w

PSVM (w) = C

l∑

i=1

max(1− yiw
Txi, 0) + ||w||1, (5)

where XT is the transpose of X , and ||X ||1 is the L1-norm of X . Since the L1-norm of
the ||w|| is included in the objective functions, L1-regularized methods force sparsity
in weights in w. Only features with non-zero weights are chosen for classification.
Parameter C controls the number of non-zero features indirectly. When the number of
features chosen is predefined, we use a binary search method to find the right C that
gives the exact number of non-zero weights we want.

We use the Orange [23] software for the four classifiers and the ReliefF algorithm,
and scikit-learn [32] for the remaining feature selection algorithms. Both Orange
and scikit-learn are Python-based general-purpose machine learning software suites. To
make our results easily reproducible, we choose to use the original default settings in
these software in the experiments. In our tests, we use the five-fold cross validation
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method implemented by Orange, which randomly chooses a subset of data containing
80% of the samples for training, and the remaining 20% for testing. We also use the one-
against-all method, which builds a classifier for every malware family with samples in
this family as positive ones and all samples in all other families as negative ones.

5 Hexdump N-Gram Features

The first type of malware features are collected from outputs of the hexdump utility. We
use an n-byte sliding window to obtain all possible n-byte sequences inside a binary
program and then calculate the frequency of each n-byte sequence. These frequencies
are the hexdump n-gram features. Figure 3 depicts the F-1 measures of classification
on 1-gram hexdump features by different classifiers.

Imbalanced vs. Balanced. If we consider the imbalanced dataset (see Figure 3(1)),
one conclusion may be that malware in the Bagle family are more difficult to classify
than those in the Zbot family. In the imbalanced dataset, however, the number of Zbot
instances is 8.1 times of that in the Bagle family. If the corresponding balanced dataset
is used (see Figure 3(2)), the classification performances are comparable for the two
malware families. These observations suggest that using imbalanced datasets may lead
to a distorted conclusion that a malware family is easier to classify than another. Issues
related to imbalanced malware family datasets have also been reported in [29]. In our
later experiments, we will only consider balanced datasets.
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Fig. 3. Performances of different classifiers on 256 hexdump 1-gram features

Feature Selection of Hexdump 1-Gram Features. Even though the 256 hexdump
1-gram features are amenable to each of the classification tools, we still want to study
whether it is necessary to use all these 256 features for classification. We use the feature
selection algorithms discussed in Section 4 to choose the top n features, and use the
four classifiers to classify the malware families based on only these top features. We
vary n among 10, 50, 100, 150, 200, and 250 in our experiments. The results from the
L1-logreg feature selection algorithm are depicted in Figure 4 (1-4).

Impact of classification algorithm. We have the following observations. (i) Among
all the classifiers, the decision tree performs at a high level on a consistent base; also,
having more than 10 top features does not improve the classification performance
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Fig. 4. Classification performances with hexdump features (L1-regularized logistic)
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Fig. 5. Feature selection on hexdump 2-gram features (decision tree)

significantly, irrespective of the feature selection algorithm. (ii) When the number of
chosen features is small, having more features helps the SVM classifier achieve bet-
ter classification performance. However, when the number of chosen features grows
beyond a certain threshold (e.g., 100), there is little improvement on classification per-
formance with more features. (iii) For most of the malware families, kNN performs at
a similar level as the decision tree, but for a few malware families such as Hupigon and
Rbot, the performance of kNN deteriorates as the number of selected features grows.
(iv) Naive Bayes usually does not perform as well as the other three algorithms. For
some malware families such as Swizzor, Bagle and Sdbot, the performance even dete-
riorates with the number of features selected.

Impact of feature selection algorithm. For most scenarios, the choice of feature se-
lection algorithm does not affect the classification performance much.

Figure 4(4) shows that the top ten features chosen by L1-logreg method are sufficient
for the decision tree to reach its peak classification performance on hexdump 1-gram
features. The top 10 features are 00, 40, eb, 24, 10, 89, 8b, cc, 90, and ff.

Feature Selection of Hexdump 2-Gram Features. There are 65,536 hexdump 2-gram
features, and it becomes computationally expensive to classify malware based on all
them. The feature selection results under different classifiers are shown in Figure 4
(5-8), and Figure 5 depicts the results under different feature selection algorithms.
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The key observations are as follows. (i) The decision tree performs consistently well
even with a small number (≤ 50) of features chosen by χ2, L1-logreg and L1-SVC.
Under F statistics or Relief, the performance of the decision tree becomes stable only
after more than 100 top features, as seen from Figure 5. (ii) The performance of SVM
improves as the number of features increases in classification. (iii) When kNN is used,
for some malware families, its performance is comparable to the decision tree, but for
the Rbot family, its performance even deteriorates as the number of features used for
classification increases. (iv) For Naive Bayes, its performance with hexdump 2-gram
features becomes more stable than that with hexdump 1-gram ones.

6 Disassembly Code

The next type of malware features are extracted from disassembled instructions of mal-
ware programs. Disassembly algorithms fall into two categories: linear sweeping dis-
assembly, which sequentially resolves instructions that appear in the code section, and
recursive descent disassembly, which recursively resolves code blocks that start at ad-
dresses referenced by other instructions. The standard objdump utility uses the linear
sweeping algorithm, and for recursive descent disassembly, we implement our own al-
gorithm based on libdasm [17]. Note that linear sweeping and recursive descent dis-
assembly apply different disassembly philosophies, and we do not expect that features
extracted from one method should be always “better” than the other.

6.1 Objdump

Feature Construction. A typical X86 instruction includes three components: prefix,
opcode, and operand. Examples of prefixes include repne used for repeating string
operations, cs which is used for section overriding, lock and wait which are used to
enforce atomic operations. Opcode such as mov dictates the action of the instruction,
and operand (optional) indicates the data to be operated on. Objdump outputs all three
components for each instruction. We concatenate the prefix and opcode components
and treat the combination as a feature. For instance, an instruction encoded as repne
scas %es:(%edi),%al produces a feature as repne scas. In total, we create
7259 features, and then calculate their frequencies.

The nature of linear sweeping decides that objdump may dissemble non-code por-
tions. We have seen bad outputs such as ssssssssssssssssssssssssssss,
which is a sequence of ss’s. In these cases, we may use features that are semantically
meaningless. Even worse, objdump crashes when trying to disassemble some malware
executables. Among unpacked instances, objdump can only disassemble successfully
42 Bagle and 135 Ldpinch instances. For the other families, objdump is able to disas-
semble sufficient samples to populate the balanced dataset.

Classification. The classification performances of using all objdump 1-gram features
are shown in Figure 6(1). In most cases, the decision tree and SVM perform similarly
well, but for the underrepresented Bagle family, SVM flags every instance as negative.
Naive Bayes almost always classifies a positive instance as negative, suggesting that it
is inappropriate for malware classification on all objdump 1-gram features.
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Fig. 6. Performances of classifiers on disassembly 1-gram features
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Fig. 7. Feature selection on objdump 1-gram features (L1-regularized logistic regression)

Feature Selection. As some of the 7259 features are poor, we select the most discrim-
inative ones from them for classification. Interestingly, there are no significant differ-
ences among the results from the five feature selection algorithms. Figure 7 depicts
the performances of different classifiers under a varying number of features. Consistent
with our observations from Figure 4, performance of kNN deteriorates with the number
of features for a few malware families such as Rbot and Hupigon, SVM performs better
with more features when the number of features is small, and the decision tree performs
well even with a small number of features. Interestingly, Naive Bayes performs better
with a small number of features than it does with all the objdump features, suggesting
that including all available features may not pay off for some classification algorithms.

The top ten features chosen by L1-regularized logistic regression are lea, jmp,
push, add, pushl, cmp, insl, mov, int3, and call. The int3 instruction,
one of the top features, could be used by malware authors as an anti-debugging tech-
nique to thwart reverse engineering efforts. The insl instruction, which transfers a
string from a port specified in the DX register to the memory address (in 32-bit long)
pointed to by the ES:destination index register, could be used by malware for read-
ing network traffic. We notice that these two instructions do not appear among the
top features if the code is disassembled with the recursive descent algorithm. We plot
the number of the closest bad instructions reported by objdump against the distance
that the closest bad instruction is from every int3 or insl instruction for the malware
with md5 239644e31ce940a25a8ca907feba0d19 (a variant of Bagle) and the results are
depicted in Figure 8. Many closest bad instructions are indeed close to these two in-
structions, suggesting that these two instructions are likely generated when objdump
tries to disassemble non-code portions. This is reasonable because both are single-byte
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Fig. 8. Number of closest bad instructions vs. distances from the int3 and insl instructions

instructions, which renders it more likely to be generated when disassembling non-code
portions than more complex instructions. This, again, confirms that objdumpmay pro-
duce wrong feature values due to its aggressive nature in disassembling.

One may wonder whether there is any correlation among the top hexdump and obj-
dump features. It is noted that the same opcode can be mapped to multiple binary codes.
We find that there is noticeable correlation among the two sets of top features: seven out
of ten top opcode features extracted from objdump outputs can find their corresponding
binary codes in the top ten hexdump features.

6.2 Recursive Descent Algorithm

From the disassembled instructions of the recursive descent algorithm, we extract only
opcodes and count the frequency of each opcode as a feature. In total, we generate 360
1-gram features, much less than those from objdump. We also construct 13,819 2-gram
features, each of which is a combination of opcodes in two consecutive instructions.

Classification. Figure 6(2) shows the classification performance based on all 360 re-
cursive descent disassembly features. (i) Clearly, the decision tree outperforms all other
three classifiers in almost all the cases. When performing on a much smaller set of
recursive descent disassembly features, Naive Bayes does not perform as badly as on
objdump features. Actually when classifying the Zbot malware, it outperforms all the
other three classifiers. (ii) Our recursive descent algorithm does not crash as objdump
often does, and hence we do not have underrepresented malware families. The F-1 mea-
sure of the decision tree for classifying Bagle family can be as high as 0.8, which again
confirms the importance of class balance in classification. (iii) Although for most fam-
ilies, classification on recursive descent disassembly features performs similarly as on
objdump features, there is noticeable performance degradation for the Bifrose family.
The recursive descent algorithm is unable to discover code blocks only referenced from
indirect jumps, and this may contribute to its worse performance on the Bifrose fam-
ily, which is known to have adopted encryption and obfuscation techniques to thwart
malware analysis [5].

Feature Selection. The impact of feature selection algorithm is little. Figure 9 shows
only the classification results using the L1-logreg method. Clearly, for all four classi-
fiers, their performance becomes stable after using only a small number of features.

The top ten features chosen by L1-regularized logistic regression are sub, add,
nop, push, jmp, xor, lea, call, mov, and dec. We observe six of them also
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Fig. 9. Feature selection on recursive descent 1-gram features (L1-logreg)

appear in the top ten objdump features. Among these top features, the xor and nop
instructions are widely used by malware for obfuscation purpose. We also find there is
also noticeable correlation between the top recursive descent and hexdump features.
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Fig. 10. Performances of different classifiers on PE Header features

7 PE Header

Feature Construction. The PE header is a data structure that describes the meta infor-
mation of a PE (portable executable) file. It consists of three parts, a 4-byte magic code
(always 50 45 00 00), a 20-byte COFF header containing information such as num-
ber of sections and time date stamp, and a 224-byte optional header. The first 96 bytes of
the optional header contains information such as major operating system version, size
of code, address of entry point, etc, and the remaining 128 bytes are data directories,
providing the locations of the export, import, resource, and alternate import-binding
directories. We use pefile [24] to extract all information from the PE header of an
executable program. To construct features from a PE header, we consider two types of
information inside it: (1) Numerical: almost all fields, except characteristics fields and
image resource NameId fields; (2) Boolean: every bit of a characteristics field, whether
a DLL file is imported or not, and whether a system call in a DLL file is imported or
not. In total, we have generated 422 numerical features and 4167 boolean ones.

Classification. The classification performances on all numerical or boolean features
are shown in Figure 10. We observe that for numerical features, the decision tree al-
most always performs the best. Interestingly, performance of the Naive Bayes classifier
is comparable to the decision tree and for a few malware families (e.g., Bifrose and
Vundo), it even performs slightly better. For boolean features, Naive Bayes performs
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Fig. 11. Feature selection on PE Header features (L1-regularized logistic regression)
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Fig. 12. Comparison of feature selection algorithms on boolean features (decision tree)

the worst among all four classifiers. When working on boolean features, the decision
tree performs almost always the best, although in a few cases SVM does slightly better.

Using the decision tree on PE header numerical features, all malware families except
Rbot and Sdbot can be classified with high accuracy. This is encouraging for automated
malware classification because extracting features from PE headers has a few advan-
tages. First, it does not suffer from those aforementioned challenges associated with
disassembling binary code. Second, features from PE headers are easy to extract, and
do not require complicated tools such as IDA Pro or a virtual execution environment.

Feature Selection. Figure 11 shows the results of feature selection with the
L1-regularized logistic regression method on both numerical and boolean features. It
is clear that once the number of features selected goes beyond a certain threshold (e.g.,
100), increasing the number of features does not improve the classification performance
any more, regardless of the classifier used. This further confirms the importance of fea-
ture selection as it is unnecessary to use all features for a classifier to perform well.

We note that with only a small number of numerical features, the decision tree does
not produce classification results (see Figure 11 (4)). We have seen the same phe-
nomenon with the other feature selection algorithms. Close examination reveals that
this is due to a bug in the C4.5 decision tree implementation.

The impact of the feature selection algorithm is less prominent with numerical fea-
tures than that with boolean features. Hence, here we only show some results with the
latter. Figure 12, together with Figure 11(8), depicts the effects of the feature selection
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algorithm on classification accuracy. Clearly, the L1-regularized methods perform bet-
ter than the other algorithms in finding the most discriminative features as they take a
smaller number of top features to reach their peak classification performances.

Although PE header features overall possess strong discriminative power, Figures 11
and 12 tell us that with only the top ten features, regardless of whether they are numer-
ical or boolean, none of the classifiers performs well in distinguishing the malware
families. We thus do not show the top 10 features here.

8 Dynamic Traces

Feature Construction. We use the Intel Pin [9], a dynamic binary instrumentation tool,
to dump a five-minute execution trace for each executable program. However, not all
malware programs can finish execution successfully. To create balance among malware
families, we use 50 samples for each family in the balanced dataset. Even so, we can
only obtain dynamic traces for 46 Lmir, 46 Sdbot and 13 LdPinch samples.

We construct three types of features from it, opcode 1-gram, opcode 2-gram, and
system calls from dynamic traces. An opcode 1-gram feature corresponds to the fre-
quency of an opcode (e.g., mov and call) in the trace, and an opcode 2-gram feature to
the frequency of a combination of two consecutive opcodes in the trace. A system call
feature gives the number of times that a specific system call has been called in the trace.
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Fig. 13. Performances of different classifiers on PIN trace features

Classification. Figure 13 depicts the performances of different classifiers on the three
types of PIN trace features. It is observed that when working on opcode 1-gram and
2-gram features, classification performances of kNN, SVM, and the decision tree are
comparable. But when working on system call features, generally speaking, the decision
tree performs better than kNN, which itself outperforms SVM. On the other hand, Naive
Bayes performs poorly on all types of PIN trace features, suggesting it is not appropriate
for classifying features constructed from PIN traces. It is also noted that classification
performance for the LdPinch family is very low due to its underrepresented presence in
the evaluation dataset.

Feature Selection. Figure 14 presents the results of feature selection using the L1-
logreg method. We note that increasing the number of PIN trace features actually hurts
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the classification performance of Naive Bayes. By contrast, SVM performs better with
more PIN trace features when the number of features selected is small; when the number
of features goes beyond 100, SVM’s performance becomes indifferent to the number of
features chosen for classification. However, for both the decision tree and kNN, even
with as few as 10 features, they still perform well in malware classification.
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Fig. 14. Feature selection on PIN trace features (L1-regularized logistic regression)

0 50 100 150 200
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, Relief

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, Chi squared

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, F statistics

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized SVC

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) Relief (2) χ2 (3) F statistics (4) L1-Regularized SVC

Fig. 15. Effects of feature selection algorithms with PIN trace system call features

When working on PIN trace opcode n-gram features, the effect of feature selection
algorithm is not significant, except that F-statistics does not find the most discriminative
features as quickly as the other methods do on PIN trace 2-gram features. Figure 15,
together with Figure 14(12), compares the performances of feature selection algorithms
on system call features. Clearly, both L1-regularized methods and χ2 outperform the
other two methods in finding the best features for classification quickly.
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Table 2. Top 10 PIN trace features

1-gram add; jmp; mov; cmp; rep movsb; rep movsd; nop; and; xor; push;
2-gram nop,nop; rep movsb,rep movsb; push,mov; mov,jmp; mov,inc; inc,cmp;

jmp,jmp; mov,mov; rep movsd,rep movsd; repne scasb,repne scasb;
System strcmpi; RtlInitAnsiString; RtlEnterCriticalSection; KiFastSystemCall; RtlAllocateHeap;

RtlFreeHeap; NtSetEvent; RtlInitString; RtlNtStatusToDosError; NtPulseEvent

Table 2 lists the top ten features for each type of PIN trace features. Among the top
10 opcode 1-gram features, we find that around 5-6 features overlap with the top ten
objdump or recursive descent features. The two top features that do not appear in the
previous lists are rep movsb and rep movsd, which are used to repetitively move
byte and double word from address DS:(E)SI to address ES:(E)DI, respectively. These
two instructions could be used by malware to copy large amounts of data in memory.
The top system call features include heap related operations (RtlAllocateHeap and
RtlFreeHeap) , mutual exclusion operations (RtlEnterCriticalSection and
NtReleaseMutant), and system calls that allow rootkits to take control of functions
calls from user mode to kernel mode (KiFastSystemCall).

9 Juxtaposition

Comparison. Figure 16 compares the discriminative power of each type of features in
malware classification using the decision tree. The last column of each figure shows
the average F-1 measure over all malware families. To make the figures more readable,
we show only the results with recursive descent and PIN opcode 2-gram features, as
using 2-gram features generally performs as well as, or even better than using 1-gram
features. For hexdump, we use only the top 500 2-gram features selected by L1-logreg.
For objdump, we use its 1-gram features for comparison. Since for the PIN trace fea-
tures, the LdPinch family is severely underrepresented, we list in the following table the
average F-1 measure when the results for this family are removed when evaluating PIN
trace features (for comparison, we also show the average F-1 measures on PE header
features including results from the LdPinch family):

type PIN-2-gram PIN-SysCall PE-num (numerical) PE-bool (boolean)
F-1 0.8110 0.8494 0.8932 0.8426
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We have seen that those features extracted from PE headers possess high discrimina-
tive power for almost malware families. This is desirable because PE header informa-
tion is static, which does not require an emulated execution environment, and parsing
it does not involve issues related to disassembly. For most malware families, system
call features extracted from dynamic traces are also useful for classification. For a few
malware families such as Bifrose, Swizzor, and Vundo, using these system call features
can classify malware instances slightly better than using those PE header features. Sys-
tem call features extracted from dynamic traces are, however, more difficult to obtain.
For instance, we cannot extract PIN trace features from the same number of samples
labeled as Ldpinch malware as the other families for fair comparison (see Section 8).

Clearly, some malware families are much easier to detect than the others. For in-
stance, using any type of these features, we are able to classify a Swizzor sample with
decent accuracy (F1 measure is at least 0.85). We use IDA Pro to disassemble some
Swizzor samples and find that their disassembly code are highly similar, suggesting the
Swizzor malware author(s) did not try hard to obfuscate the code. At the other extreme,
both Rbot and Sdbot malware are more difficult to detect than the other families. PE
header numerical features and PIN trace system call features are the two types of fea-
tures that are most effective in classifying these two malware families. Even using these
features, the F-1 measures can be at most around 0.8. As the source code of Sdbot can
be found in the Internet and development of Rbot and other malware has been influ-
enced by it [33], we conjecture that this explains the difficulty of distinguishing Sdbot
and Rbot instances observed in our experiments.

PE Header Numerical Features vs. Hybrid Features. Figure 16 tells us PE header
numerical features have the most discriminative power in distinguishing malware fami-
lies. One may wonder whether we can stack up all types of features to improve accuracy
of malware classification. Pursuing the answer to this question, however, is again com-
plicated by the class imbalance issue, as for some malware families, we are not able to
obtain enough samples with hybrid features from their dynamic traces. To circumvent
this challenge, we consider the types of features that ensure that we have 150 samples
per family in the balanced dataset. They include: hexdump 1-gram, hexdump 2-gram,
PE header numerical, PE header boolean, recursive descent 1-gram, and recursive de-
scent 2-gram. For each of these feature types, we use the top 100 features selected by
the L1-regularized logistic regression method.

Figure 17 depicts the classification results based on these features. As a baseline,
we also show the classification results using the top 150 PE header numerical features.
We do not show the results from Naive Bayes in order to not overcrowd the plots. We
observe that for the decision tree classifier, using hybrid features does not affect its
performance significantly. From Figure 17, we find that its performance with hybrid
features is very close to that when using only the PE header numerical features. For
the other two classifiers, they both perform better with hybrid features in most cases.
Moreover, since the decision tree is the top performer in most scenarios, none of the
malware families can be detected with a much higher accuracy using the hybrid features
than using only the PE header numerical features. This suggests that for those malware
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families difficult to classify, such as Rbot and Sdbot, it is not sufficient to rely on only
those types of features included in the hybrid case for improving their detection rates.

More Samples per Family, Fewer Families. One may wonder whether our down-
sampling scheme used to balance different malware families leads to biased conclu-
sions. To verify this, we create a different dataset, which includes samples from only
six malware families, Bifrose, Hupigon, Swizzor, Vundo, Zbot, and Zlob.
For static analysis features, we use 500 unpacked samples per family, and for dynamic
analysis features (i.e., features collected from PIN traces), we use 300 samples per fam-
ily. It is noted that we exclude the Rbot family although it contains 923 unpacked
samples (see Table 1). This is because for the Rbot family, only 99 unpacked samples
successfully generate PIN execution traces. Figure 18 shows the comparison results
with the new dataset. Due to fewer families used, the new classification performance is
better than that when 12 families are considered. The key observation is that our conclu-
sions drawn previously still hold. For instance, the numerical features extracted from
PE headers possess the highest discriminative power. Next to it are boolean features
extracted from PE headers and features obtained from PIN execution traces.

10 Discussion

Practical Implications. We hope that our results from this study offer a baseline to
compare against for future malware research. When we look for new powerful features
to distinguish malware families accurately, we need to check whether they indeed per-
form better than existing known malware features, particularly when it is a prohibitive
process to collect these new features. One interesting observation from this study is
that information contained in PE headers possesses high discriminative power in distin-
guishing the 12 malware families. When we identify a new malware family, although
PE header features may not always be indicative of its lineage, we can study them as an
early step, given the low cost of obtaining such information. This process can be auto-
mated through some feature selection techniques, such as the L1-regularized methods.

Malware programs contain humongous information we can leverage for automated
malware classification. One may want to build a computationally powerful classifier
that is able to process all available information in hope of optimizing classification
accuracy. Such an approach may not work well, as even for the same type of features,
including all features may not boost the classification performance for some classifiers.
Due to this fact of more-is-not-always-better, it is important to evaluate the sensitivity
of classifiers to the number of features used in automated malware classification.

Rethinking Ground Truth Data. One biggest hurdle for malware research is how
to obtain ground truth data. This study relies on the ground truth data we can obtain
through consensus among AV software. Our observations made from this work, such as
the high discriminative power of PE header information and system calls invoked in dy-
namic execution, hold true when we build a classifier that distinguishes the 12 malware
families in the midst of some benign programs. In practice, we will encounter samples
that do not belong to these 12 families. For the purpose of cross validation, we examine
another well-known labeled malware dataset, which has been used in [4]. This dataset
contains 2,658 malware variants, among which 2,332 are detected to be unpacked by
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PEiD. The authors use a reference clustering technique to cluster them into 84 mal-
ware families. We, however, notice that the sizes of the clusters in this labeled malware
dataset are highly skewed and except the top three clusters, the others contain only a
few samples. Hence, this dataset is inappropriate for validating our conclusions here.
We welcome the community to use other labeled datasets to verify our observations.

Revisiting Methodology. This study reveals that L1-regularized methods, a type of
embedded methods, perform consistently well in feature selection. The is because filter
methods rank individual features only independently, and hence, a group of features
that are highly ranked individually may not achieve good discrimination performance
collectively due to their correlation. By contrast, L1-regularized methods aim to find a
subset of features that minimize the loss functions collectively.

Our study has tested only four widely used classifiers, and shown that a variant of
decision tree performs well in automated malware classification. There may be other
classifiers that perform better than these four. For instance, we can apply ensemble of
classifiers (e.g., AdaBoost) to further improve the classification accuracy. Even for the
four classifiers considered, we can further tune the parameters to achieve better perfor-
mance. Even though conducting an exhaustive comparison of different classifiers is out
of the scope of this work, our observation that the decision tree classifier can achieve
good classification performance on a consistent basis, as well as the fact that decision
tree has scalability advantages over other classifiers, suggests that practical deployment
of automated malware classification should take it into serious consideration.

It is noted that as discriminatory as features extracted from PE headers are, they
cannot fully replace other types of features, particularly those from dynamic analysis.
For instance, more complicated dynamic malware behavior analysis, such as that done
by Anubis [2], could produce powerful features for automated malware classification.
However, the classification methodology adopted in this study, which assumes features
represented as vectors of numerical or boolean values, may not fully reveal the dis-
criminative power of features extracted from Anubis analysis. For instance, string-level
information produced by Anubis, such as locations and names of files created, read, or
written by a malware instance, which could be useful for malware classification, cannot
be easily incorporated into our analysis framework. Due to these concerns, we leave
detailed analysis of features from Anubis analysis as our future work.

It is an arms race between malware authors and cyber defenders. The theme of this
study is to study the discriminative power of malware features, and even though some
features of malware are highly indicative of their lineages, it is possible that malware
authors manipulate these features to confuse automated malware classification. Robust-
ness of features is an important issue [37], and we can imagine that for some feature
types, such as PE header information, could be more easily manipulated than others
such as the system calls invoked in dynamic execution. An automated malware classi-
fier can combine multiple feature types extracted from malware programs to improve
its robustness. Moreover, building an automated malware classification system should
be a dynamic process, and if we witness new malware samples in which some features
are manipulated to confuse classification, we should update the automated malware
classification system by incorporating these new samples into the training dataset.



60 G. Yan, N. Brown, and D. Kong

Acknowledgment. We acknowledge discussions with Daniel Quist, Marian Anghel,
and Tanmoy Bhattacharya, and are grateful to Christopher Kruegel and Paolo M. Com-
paretti for the labeled dataset used in [4].

References

1. Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware detection using
dynamic analysis. Journal of Computer Virology 7(4), 247–258 (2011)

2. http://anubis.iseclab.org/
3. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated

classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A.
(eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

4. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based
malware clustering. In: NDSS 2009 (2009)

5. http://www.sophos.com/en-us/threat-center/threat-analyses/
viruses-and-spyware/Troj Bifrose-ZI/detailed-analysis.aspx

6. Canali, D., Lanzi, A., Balzarotti, D., Christoderescu, M., Kruegel, C., Kirda, E.: A quantita-
tive study of accuracy in system call-based malware detection. In: ISSTA (2012)

7. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transactions on Knowledge and
Data Engineering 21 (2009)

8. Hu, X., Chiueh, T.-C., Shin, K.G.: Large-scale malware indexing using function-call graphs.
In: CCS 2009 (2009)

9. http://www.pintool.org/
10. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for scalable

triage and semantic analysis. In: Proceedings of ACM CCS 2011 (2011)
11. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and

efficient malware detection at the end host. In: USENIX Security 2009 (2009)
12. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild.

Journal of Maching Learning Research 7, 2721–2744 (2006)
13. Kong, D., Ding, C., Huang, H., Zhao, H.: Multi-label relieff and f-statistic feature selections

for image annotation. In: IEEE CVPR 2012 (2012)
14. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: Bergadano, F., De

Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)
15. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection

using structural information of executables. In: Valdes, A., Zamboni, D. (eds.) RAID 2005.
LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

16. Li, Y.: Building a Decision Cluster Classification Model by a Clustering Algorithm to Clas-
sify Large High Dimensional Data with Multiple Classes. PhD thesis, The Hong Kong Poly-
technic University (2010)

17. http://code.google.com/p/libdasm/
18. Liu, H., Li, J., Wong, L.: A comparative study on feature selection and classification methods

using gene expression profiles and proteomic patterns. Genome Informatics 13 (2002)
19. Maggi, F., Bellini, A., Salvaneschi, G., Zanero, S.: Finding non-trivial malware naming in-

consistencies. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS, vol. 7093, pp. 144–
159. Springer, Heidelberg (2011)

20. Microsoft security intelligence report (January-June 2006)
21. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware

classification using binary texture analysis and dynamic analysis. In: ACM AISec 2011
(2011)

22. http://www.offensivecomputing.net/ (accessed in March 2012)

http://anubis.iseclab.org/
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~Bifrose-ZI/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~Bifrose-ZI/detailed-analysis.aspx
http://www.pintool.org/
http://code.google.com/p/libdasm/
http://www.offensivecomputing.net/


Exploring Discriminatory Features for Automated Malware Classification 61

23. http://orange.biolab.si/
24. http://code.google.com/p/pefile/
25. Perdisci, R., Lanzi, A., Lee, W.: Mcboost: Boosting scalability in malware collection and

analysis using statistical classification of executables. In: ACSAC 2008 (2008)
26. Raman, K.: Selecting features to classify malware. In: Proc. of InfoSec Southwest (2012)
27. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of drive-by-

download attacks. In: ACSAC 2010 (2010)
28. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using

machine learning. J. Comput. Secur. 19(4), 639–668 (2011)
29. Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H., van

Steen, M.: Prudent practices for designing malware experiments: Status quo and outlook. In:
IEEE Symposium on Security and Privacy (May 2012)

30. Roth, V., Lange, T.: Feature selection in clustering problems. In: NIPS 2004. MIT Press,
Cambridge (2004)

31. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection of new
malicious executables. In: Proc. of IEEE Symposium on Security and Privacy (2001)

32. http://scikit-learn.org/
33. http://www.honeynet.org/node/53
34. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner: Mining structural information

to detect malicious executables in realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 121–141. Springer, Heidelberg (2009)

35. http://www.symantec.com/about/news/release/
article.jsp?prid=20110404 03

36. https://www.virustotal.com/
37. Yang, C., Harkreader, R.C., Gu, G.: Die free or live hard? Empirical evaluation and new

design for fighting evolving twitter spammers. In: Sommer, R., Balzarotti, D., Maier, G.
(eds.) RAID 2011. LNCS, vol. 6961, pp. 318–337. Springer, Heidelberg (2011)

38. Ye, Y., Wang, D., Li, T., Ye, D., Jiang, Q.: An intelligent pe-malware detection system based
on association mining. Journal in Computer Virology (2008)

39. Yu, H.-F., Huang, F.-L., Lin, C.-J.: Dual coordinate descent methods for logistic regression
and maximum entropy models. Machine Learning 85(1-2), 41–75 (2011)

http://orange.biolab.si/
http://code.google.com/p/pefile/
http://scikit-learn.org/
http://www.honeynet.org/node/53
http://www.symantec.com/about/news/release/article.jsp?prid=20110404_03
http://www.symantec.com/about/news/release/article.jsp?prid=20110404_03
https://www.virustotal.com/

	Exploring Discriminatory Features for AutomatedMalware Classification
	1Introduction
	2Related Work
	3Dataset Description
	4Methodology
	5Hexdump N-Gram Features
	6Disassembly Code
	6.1Objdump
	6.2Recursive Descent Algorithm

	7PE Header
	8Dynamic Traces
	9Juxtaposition
	10Discussion
	References




