Designing and Verifying Application Schema
by Applying Standard Element for Managing Ocean
Observation Data

Sun-Tae Kim', Lee-Kyum Kim?, and Tae-Young Lee’

! Korea Institute of Science and Technology Information Daejeon, Republic of Korea
2 Gwangju University, Gwangju, Republic of Korea
? Chonbuk National University, Jeonju, Republic of Korea
stkim@kisti.re.kr, leekyum@kwangju.ac.kr, taehyun@jbnu.ac.kr

Abstract. There is a need to study the OWL-based application schema to
ensure interoperable data exchange between ocean-related institutions, and sup-
porting researcher’s intelligent data search. In this study, the RDF vocabularies
are defined on the basis of the elements derived through element decision study
for managing scientific data in the field of ocean observation. The application
schema was verified by using the temperature profile data of CTD data ob-
served in the 'Chukchi' sea selected from the data provided by the National
Oceanographic Data Center of the US.

Keywords: Scientific Data, Observation Data, Ocean Observation Data, Appli-
cation Schema, OWL Schema, Metadata.

1 Introduction

It is necessary to establish ocean observation data as Linked Data so as to make the
data a model case (Bizer 2009) for connecting structured data on the web and to be
published. In this study, an OWL-based application schema will be designed and
verified in order to ensure interoperable data exchange between ocean-related institu-
tions and to support researchers’ intelligent data search. The determined standard
elements are defined on the basis of the elements derived through element decision
study for managing scientific data in the field of ocean observation. The higher 21
elements and the lower 173 elements which are the basis for defining vocabularies are
found in http://bit.ly/GTuSvi.

2 Designing Application Schema

2.1 Class Design

A vocabulary dictionary is established, which consists of 21 class concepts, 50 object
attributes and 92 data type attributes for the metadata standard elements in order to

S. Yamamoto (Ed.): HIMI/HCII 2013, Part II, LNCS 8017, pp. 110-[[15] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Designing and Verifying Application Schema by Applying Standard Element 111

design an application metadata schema, and to present it at http://bit.ly/uMOxkD.
Class design was carried out as follows. <owl:Class> and <rdfs:subClassOf> was
used to design the following class. @ and B define the standard elements “Institu-
tion, Person”. Each element is the lower class of the common higher element
<Agent>, and is defined with the RDF schema vocabulary, <rdfs:subClassOf>, as in
@. @ is the URI declaration for the basic Namespace used in designing RDF OWL
schema.

<rdf:-RDF

omitted...
xmlns="http:/fwww kisti.re kr/ontology/scientificdata.owl#" (D)
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">
<owl:Class TdfID="TOSHUHON"> ...ooooeeeoree e sosnsssrresresines (2)

<rdfs:subClassOf>
<owl:Class rdf ID="Agent"/>

</rdfs:subClassOf>

<lowl:Class>

<owl:Class rdf: ID="Person"> .. SRR (<)
<rdfs:subClassOf rdf: msourcef'ﬂAgeut” ®
</owl:Class>

Fig. 1. Design Agent related class

2.2 Designing Object Value-Type Attribute

<owl:ObjectProperty> and <rdfs:subPropertyOf> was used to design the following
object value type attribute.

<owl:ObjectProperty rdf:ID="hasCreator">c.cooccrrmeerunee. @
<rdfs:subPropertyOf= -
<owl:ObjectProperty rdf]I)—"ha‘sAeem"
</rdfs:subPropertyOf>
<rdfs:comment

1df datatype="xsd:string">producer</rdfs:comment>..._..._... @)
“/owl:ObjectProperty>
<1iowl:0bjectP1'opeﬂy rdf:ID="hasPublisher"> &
omitted...
</owl:ObjectProperty>

Fig. 2. Design hasAgent related object value type attribute

112 S.-T. Kim, L.-K. Kim, and T.-Y. Lee

(D and (® is to define “hasCreator, hasPublisher” as an object value type attribute
to state the producer and publisher information of the standard element <Agent>.
Each attribute is the lower attribute of the common higher attribute <hasAgent>,
and the higher element was specified with the RDF schema vocabulary,
<rdfs:subPropertyOf>, as shown in (3. @ describes that the ‘producer’ information
is stated as the value of object value type attribute hasCreator, using <rdfs:comment>
so that humans and systems can understand and process the defined attributes.

2.3 Designing Data Value Type Attribute

The following details of design show definition of data value type attributes by using
<owl:DatatypeProperty> and <rdfs:subPropertyOf>. (D and (5 defines data value
type attributes corresponding to the standard elements “uniformTitle, alternateTitle”.
Each of them is the lower attribute of the common higher attribute <title>, and is de-
fined by using the RDF schema vocabulary, <rdfs:subPropertyOf>, as shown in Q.
@ represents the higher attribute.

@ and © applies “rdfs:domain, rdf:resource” of the RDF schema to represent the
attribute so as to define resources that the defined data value type attribute can have as
a domain. (D uses the owl:cardinality attribute to define a restriction of the number of
the title attribute appearances, which means that classes, such as ScientificData that
uses the title attribute, can be stated by using the title attribute only once.

<owl:DatatypeProperty rdf:ID="uniformTitle">cc.ooorrrrr...... @
<rdfs:domain rdf-resource="#ScientificData"/> @
<rdfs:subPropertyOf> . OO €
<owl:DatatypeProperty rdeD="r1t1e" = I ()
</rdfs:subPropertyOf>
</owl:DatatypeProperty>
<owl:DatatypeProperty
rdf:ID="alternateTitle"™cccceceoveecesersrrssrsrsrrsrsessmsserrsrersess e ®
<rdfs:subPropertyOf rdfiresource="#title"/>
<rdfs:domain rdf:resource="#ScientificData"/> ©
</owl:DatatypeProperty>
COWLRESHICHON™ ... e s @
<owl:onProperty rdf:resource="#title"/>
<owl:cardinality
rdf:datatype="xsd:nonNegativeInteger">1</owl:cardinality>

Fig. 3. Design Title related data value type attribute

Designing and Verifying Application Schema by Applying Standard Element 113

3 Verifying Selected Element

To verify the OWL application schema, the test for creation of RDF document which
follows the schema was conducted. The test dataset, the temperature profile data of
CTD data observed in the 'Chukchi' sea selected from the data provided by the
National Oceanographic Data Center of the US, were used. All about 10,189 records
were collected.

The shape of the collected data is as below. @ is about the platform at which ob-

servation was conducted. (2 is about the institute which is chare of data creation. 3
is about the project name which supply the fund for observation. @ is about the
depth of the deployment. (5 is about start datatime and end datatime of the observa-
tion. ® is about latitude and longitude at which observation was taken. (7) is about
bottom depth of the sea. is about number of records which a dataset has. 9 is
about recording interval. In this example, the observation was taken place per 1 hour.
is about the records. In this example, the data were collected per 60 minutes which
consists of 8774 records.

@ Platform: moored buoy
@ Institute: University of Alaska/Institute of Marine Sciences

@ Project Name: CHUKCHI24

@ Deployed Depth: 55 Meters

(& Start Date/Time: 25-sep-1993 03:00:00
End Date/Time: 25-sep-1994 16:00:00

(® Latitude: 710323 N
Longitude: 159 3180 W

(@ Bottom Depth: 75 Meters

& Number of Records: 8774

@ Recording Interval: 60 Minutes

no. Date Time Depth Temp. Cond. Sal. SigmaT

336 25-sep-1993 03:00:00 55.0 52198 301902 31.0109 24.4306 w
337 25-sep-1993 04:00:00 55.0 53319 302183 30.9390 244214 | @
338 25-sep-1993 05:00:00 55.0 52659 30.2401 31.0247 24.4965

339 25-sep-1993 06:00:00 55.0 50859 30.1215 31.0571 24.5416

Fig. 4. The example of ocean observation data

The figure 4 is showing the procedure of RDF document creation. The crawler
ingest the data from the NOAA web site. It collected the data and build the database,
simultaneously made a log file as shown below in (D, @ and (3 process. Instance
generator read the records from the database as in @ process and create RDF docu-
ment which follow the Turtle format as in (3. It makes a log file also as Crowler as

in ©G.

114

S.-T. Kim, L.-K. Kim, and T.-Y. Lee

RDF in Turtle Format

Bprefix cdfe:
Bprefix xad:
Bprefix cdf:
Bprefix :

$0D00001

tabstract "Temperature profile were colle
:beginningbateTime "13530324"7 :
rendingDaceTime "199608037 »
rpublicationDateTime "20000103"
idesaription =
ihasbepesiter :Peracn 0000001 ;

thashgent :Institution 0000001 ;
:hasBeginninglocation :Coverage 0000001 ;

{Coverage_00000D01
rdf:cype :Cowverage
tuest "-168.35457
reasr "-157,3719"
toprth "71.41087 ;
tsouth "65,4656" .

<heep: /S vww . wd o 2000/01,
<heep: S vl oegf 2001/ XN

<http:/fwww.wd . ocg/ 1555/02,
Instance & NOAA Sessspsmne

<http:ffvww. kisti.re.kefon

\Generator

- Log file ° " Databas

Fig. 5. The procedure of RDF Document Creation

" Log file :

The following shows an RDF document of 'ttl type' created with the instance crea-

tor and an RDF document of RDF/XML type created by using the RDF verifier and a
converter provided at 'http://www.rdfabout.com/".

Verify ttl type
@prefix: <http://www Jastire kr/onfology/scientificdata#>.
:5D0000999

:title "Chlorophyll data collected by the research vessels ... May -
September 2002 "

‘beginningDateTime "20020414" ;

‘hasBeginningLocation :Coverage 0000999 ;

‘hasSource :Source 0000999 1, :Source 0000999 2;
:Coverage 0000999

rdf:type :Coverage :

west "-77.76" ; :east"-65.5": :morth "-65.12";
<omutted...>

Verify RDE/XML type
<rdf:Description
rdf:about="http://www kisti.re.kr/ontology/sd#SD0000999">
<sd:title>
Chlorophyll data collected by the research vessels ... May -
September 2002
</sd:title>
<sd:hasBeginningLocation>
<sd:Coverage
rdf:about="http://www kisti.re.kr/ontology/sd#Coverage_0000999"=
<sd:west>-77.76</sd:west> <sd:east>-63.5</sd:east>
<sd:north>-65.12</sd:north>
</sd:Coverage>

Fig. 6. Design Agent related class

Designing and Verifying Application Schema by Applying Standard Element 115

The above test demonstrated that the RDF document for applying the OWL-based
application metadata profile designed in this study was successfully created by using
the data provided by the National Oceanographic Data Center of the US (NODC) as
input.

4 Conclusion

In this study, the OWL-based metadata application schema was designed by using the
metadata standard element for managing and using ocean observation data. The appli-
cation schema was verified for the data provided by the NODC. The data of the
NODC actually used was verified. We also proved that the selected metadata element
and the application schema were actually applicable without modification. When
NODC's metadata elements were tested and compared with the metadata elements
selected in this study, all CDT data could be described by these elements like
'SourceName', 'Project’, 'DeployedDepth', 'Dataltem’, 'Timelnterval', 'BottomDepth',
'ObservationLocation' etc. And each application schema also described without miss-
ing elements.

Therefore, derived metadata standard elements for the ocean observation field are
judged to be full of significance and expected to be utilized for metadata management
and practical use in the field of ocean observations. The application schema proposed
in this study will be useful for managing and using metadata involved in ocean
observation.

Acknowledgment. This essay is a modified version and summary of a graduate
school thesis, Chonbuk National University (February 2, 2012).

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Special Issue on
Linked Data. International Journal on Semantic Web and Information Systems, IJSWIS
(2011)

2. Kim, S.: A Study on Extraction and Design of Standardized Elements on Metadata for
Ocean Observational Data. Chonbuk National University (2012)

3. Kanzaki, M.: Semantic Web No Tame No RDF/OWL NYUMON. Hongrung Publishing
Company (2005)

	Designing and Verifying Application Schema by Applying Standard Element for Managing Ocean
Observation Data
	1 Introduction
	2 Designing Application Schema
	2.1 Class Design
	2.2 Designing Object V Value-Type Attribute
	2.3 Designing Data Val lue Type Attribute

	3 Verifying Select ted Element
	4 Conclusion
	References

