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Abstract. Many futuristic technologies, such as Internet of Things or
nano-communication, assume that a large number of simple devices of
very limited energy and computational power will be able to communi-
cate efficiently via wireless medium. Motivated by this, we study broad-
casting in the model of ad-hoc wireless networks of weak devices with
uniform transmission powers. We compare two settings: with and with-
out local knowledge about immediate neighborhood. In the latter set-
ting, we prove Ω(n log n)-round lower bound and develop an algorithm
matching this formula. This result could be made more accurate with
respect to network density, or more precisely, the maximum node de-
gree Δ in the communication graph. If Δ is known to the nodes, it is
possible to broadcast in O(DΔ log2 n) rounds, which is almost optimal
in the class of networks parametrized by D and Δ due to the lower
bound Ω(DΔ). In the setting with local knowledge, we design a scalable
and almost optimal algorithm accomplishing broadcast in O(D log2 n)
communication rounds, where n is the number of nodes and D is the
eccentricity of a network. This can be improved to O(D log g) if network
granularity g is known to the nodes. Our results imply that the cost of
“local communication” is a dominating component in the complexity of
wireless broadcasting by weak devices, unlike in traditional models with
non-weak devices in which well-scalable solutions can be obtained even
without local knowledge.

1 Introduction

1.1 The Model

We consider a wireless network consisting of n stations, also called nodes, de-
ployed into an Euclidean plane and communicating by a wireless medium. The
Euclidean metric on the plane is denoted dist(·, ·). Each station v has its trans-
mission power Pv, which is a positive real number. There are three fixed model
parameters: path loss α > 2, threshold β ≥ 1, and ambient noise N > 0.
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The SINR(v, u, T ) ratio, for given stations u, v and a set of (transmitting)
stations T , is defined as follows:

SINR(v, u, T ) =
Pvdist(v, u)

−α

N +
∑

w∈T \{v} Pwdist(w, u)−α
(1)

In the weak devices model considered in this work, a station u successfully receives
a message from a station v in a round if v ∈ T , u /∈ T , and:

a) Pvdist
−α(v, u) ≥ (1 + ε)βN , and

b) SINR(v, u, T ) ≥ β,

where T is the set of stations transmitting at that time and ε > 0 is a fixed
signal sensitivity parameter of the model.1

Ranges and Uniformity. The communication range rv of a station v is the ra-
dius of the ball in which a message transmitted by the station is heard, provided
no other station transmits at the same time. A network is uniform, when trans-
mission powers Pv and thus ranges of all stations rv are equal, or nonuniform
otherwise. In this paper, only uniform networks are considered, i.e., Pv = P and
r = rv = (P/(Nβ(1 + ε)))1/α. The range area of a station v is defined to be the
ball of radius r centered in v.

Communication Graph and Graph Notation. The communication graph
G(V,E), also called the reachability graph, of a given network consists of all
network nodes and edges (v, u) such that u is in the range area of v. Note that
the communication graph is symmetric for uniform networks. By a neighborhood
of a node u we mean the set (and positions) of all neighbors of u in G, i.e.,
the set {w | (w, u) ∈ E(G)}. The graph distance from v to w is equal to the
length of a shortest path from v to w in the communication graph, where the
length of a path is equal to the number of its edges. The eccentricity of a node
is the maximum graph distance from this node to any other node (note that the
eccentricity is of order of the diameter). By Δ we denote the maximum degree
of a node in the communication graph.

Synchronization. It is assumed that algorithms work synchronously in rounds,
each station can either act as a sender or as a receiver during a round. We do
not assume global clock ticking.

Carrier Sensing. We consider the model without carrier sensing, that is, a
station u has no other feedback from the wireless channel than receiving or not
receiving a message in a round t.

1 This model is motivated by the fact that it is too costly for weak devices to have
receivers doing signal acquisition continuously, c.f., [7]. Therefore, in many systems
they rather wait for an energy spike, c.f., condition (a), and once they see it, they
start sampling and correlating to synchronize and acquire a potential packet pream-
ble [19]. Once synchronized, they can detect signals, c.f., condition (b).
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Knowledge of Stations. Each station has its unique ID from the set [N ],2

whereN is polynomial in n. Stations also know their locations, and parameters n,
N . Some subroutines use the granularity g, defined as r divided by the minimum
distance between any two stations (c.f., [5]). We distinguish between networks
without local knowledge (ad hoc), where stations do not know anything about
the topology of the network, and networks with local knowledge, in which each
station knows locations and IDs of its neighbors in the communication graph.

Broadcasting Problem and Complexity Parameters. In the broadcast
problem, there is one distinguished node, called the source, which initially holds
a piece of information (also called a source message or a broadcast message).
The goal is to disseminate this message to all other nodes. The complexity
measure is the worst-case time to accomplish the broadcast task, taken over
all connected networks with specified parameters. Time, also called the round
complexity, denotes the number of communication rounds in the execution of a
protocol: from the round when the source is activated with its source message
till the broadcast task is accomplished. For the sake of complexity formulas, we
consider the following parameters: n, N , D, and g.

Messages and Initialization of Stations Other than Source. We assume
that a single message sent in the execution of any algorithm can carry the broad-
cast message and at most polynomial, in the size of the network, number of
control bits. (For the purpose of our algorithms, it is sufficient that positions of
stations on the plane are stored with accuracy requiring O(log n) bits; therefore,
we assume that each message contains the position of its sender.) A station other
than the source starts executing the broadcast protocol after the first successful
receipt of the source message; it is often called a non-spontaneous wake-up model.

1.2 Our Results

In this paper we present the first study of deterministic distributed broadcasting
in wireless networks of weak devices with uniform transmission powers, deployed
in the two dimensional Euclidean space. We distinguish between the two settings:
with and without local knowledge about the neighbors in the communication
graph. In the latter model, we developed an algorithm accomplishing broadcast
in O(n logn) rounds, which matches the lower bound (Sections 2.1 and 2.3,
resp.). Then, an algorithm accomplishing broadcast in time O(DΔ log2 n) is
presented, where D is the eccentricity of the source and Δ is the largest degree
of a node in the communication graph (Section 2.2). This algorithm is close
to the lower bound Ω(DΔ), see Section 2.3. Our solution for networks with
local knowledge works in O(D log2 n) rounds (Section 3), which provides only a
small O(log2 n) overhead over the straightforward lower bound of Ω(D), and is
faster, in the worst case, than any algorithm designed for networks without local
knowledge of eccentricity D = o(n/ logn) or maximal degree Δ = ω(1). It also
implies that the cost of learning neighborhoods by stations in wireless network

2 We denote [i] = {1, 2, . . . , i}, [i, j] = {i, i + 1, . . . , j} for i, j ∈ N.
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is much higher, by factor around min{n/D,Δ}, than the cost of broadcast itself
(i.e., broadcast performed when such neighborhoods would be provided). If the
granularity g is known, a complexity O(D log g) can be achieved by a variation
of the algorithm mentioned above.

Our results rely on novel techniques which simultaneously exploit specific
properties of conflict resolution in the SINR model (see e.g., [1]) and several
algorithmic techniques developed for a different radio network model. In par-
ticular, we show how to efficiently combine a novel SINR-based communication
technique, ensuring several simultaneous point-to-point communications inside
the range area of one station (which is unfeasible to achieve in the radio network
model), with strongly selective families and methods based on geometric grids
developed in the context of radio networks. As a result, we are able to transform
algorithms relying on the knowledge of network’s granularity into algorithms of
asymptotically similar performance (up to a log n factor) that do not require such
knowledge; this is in particular demonstrated in the leader election algorithms.

Details of some algorithms and technical proofs can be found in the full version
of the paper [13].

1.3 Previous and Related Results

To the best of our knowledge, this is the first theoretical study of the problem
of distributed deterministic broadcasting in ad hoc wireless networks of weak
devices. In what follows, we list most relevant results in the SINR-based model
and in the older, but still related, radio network model.

SINR Models. In the model of (uniform) weak devices, distributed algorithms
for building a backbone structure in O(Δ polylog n) rounds were constructed
in [11]. Unlike in our broadcast problem, in [11] it was assumed that all nodes si-
multaneously start building the backbone. That result combined with the results
of this work implicates that there is an extra cost payed for the lack of initial
synchronization. If devices are not weak (i.e., not restricted by the fact that the
signal must be sufficiently strong in order to be noticed), broadcasting can be
done in O(D log2 n), as proved in [14]. Combined with results in this paper, it
proves a complexity gap between the two models: weak and non-weak devices.

Under the SINR-based models in ad hoc setting, a few other problems were
also studied, such as deterministic data aggregation [10] and local broadcasting
[20], in which nodes have to inform only their neighbors in the correspond-
ing reachability graph. The considered setting allowed power control by algo-
rithms, in which, in order to avoid collisions, stations could transmit with any
power smaller than the maximal one. Randomized solutions for contention res-
olution [15] and local broadcasting [8] were also obtained.

There is a vast amount of work on centralized algorithms under the SINR
model. The most studied problems include connectivity, capacity maximization,
and link scheduling types of problems; for recent results and references we re-
fer the reader to the survey [9]. Multiple Access Channel properties were also
recently studied under the SINR model, c.f., [18].
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Radio Network Model. In this model, a transmitted message is successfully
heard if there are no other simultaneous transmissions from the neighbors of the
receiver in the communication graph. This model does not take into account the
real strength of the received signals, and also the signals from outside of the
close proximity. In the geometric ad hoc setting, Dessmark and Pelc [4] were the
first who studied this problem. They analyzed the impact of local knowledge,
defined as the range within which stations can discover the nearby stations.
Emek et al. [5] designed a broadcast algorithm working in time O(Dg) in Unit
Disc Graphs (UDG) radio networks with eccentricityD and granularity g. Later,
Emek et al. [6] developed a matching lower bound Ω(Dg). In the graph-based
model of radio networks, in which stations are not explicitly deployed in a metric
space, the fastest O(n log(n/D))-round deterministic algorithm was developed
by Kowalski [16], and almost matching lower bound was given by Kowalski and
Pelc [17], who also studied fast randomized solutions (in parallel with [3]). The
above results hold without assuming local knowledge. With local knowledge,
Jurdzinski and Kowalski [12] showed a lower bound Ω(

√
Dn logn) on the number

of rounds and an algorithm of complexity O(D
√
n log6 n).

1.4 Technical Preliminaries

In the broadcast problem, a round counter could be easily maintained by already
informed nodes by passing it along the network with the source message, so in all
algorithms we in fact assume having a global clock. For simplicity of analysis, we
assume that every message sent during the execution of our broadcast protocols
contains the broadcast message; in practice, further optimization of a message
content could be done in order to reduce the total number of transmitted bits in
real executions. In a given round t we say that a station v transmits c-successfully
in round t if v transmits a message in round t and this message is heard by each
station u in the Euclidean distance at most c from v. We say that a station
v transmits successfully in round t if it transmits r-successfully, i.e., each of its
neighbors in the communication graph can hear its message. Finally, v transmits
successfully to u in round t if v transmits a message and u receives this message in
round t. We say that a station that received the broadcast message is informed.

Grids. Given a parameter c > 0, we define a partition of the 2-dimensional
space into square boxes of size c × c by the grid Gc, in such a way that: all
boxes are aligned with the coordinate axes, point (0, 0) is a grid point, each box
includes its left side without the top endpoint and its bottom side without the
right endpoint and does not include its right and top sides. We say that (i, j)
are the coordinates of the box with its bottom left corner located at (c · i, c · j),
for i, j ∈ Z. A box with coordinates (i, j) ∈ Z

2 is denoted C(i, j). As observed
in [4,5], the grid Gr/

√
2 is very useful in the design of the algorithms for UDG

(unit disk graph) radio networks, where r is equal to the range of each station.
This follows from the fact that r/

√
2 is the largest parameter of a grid such that

each station in a box is in the range of every other station in that box. We fix
γ = r/

√
2 and call Gγ the pivotal grid. If not stated otherwise, our considerations
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will refer to (boxes of) Gγ . The boxes C,C′ of the pivotal grid are neighbors in
a network if there are stations v ∈ C and v′ ∈ C′ such that the edge (v, v′)
belongs to the communication graph. We define the set DIR ⊂ [−2, 2]2 such
that (d1, d2) ∈ DIR iff it is possible that boxes C(i, j) and C(i + d1, j + d2) are
neighbors.

Schedules. A (general) broadcast schedule S of length T wrtN ∈ N is a mapping
from [N ] to binary sequences of length T . A station with identifier v ∈ [N ] follows
the schedule S of length T in a fixed period of time consisting of T rounds, when
v transmits a message in round t of that period iff the position t mod T of S(v)
is equal to 1. For the tuples (i1, j1), (i2, j2) the relation (i1, j1) ≡ (i2, j2) mod d
for d ∈ N denotes that (|i1 − i2| mod d) = 0 and (|j1 − j2| mod d) = 0. A set
of stations A on the plane is δ-diluted wrt Gc, for δ ∈ N \ {0}, if for any two
stations v1, v2 ∈ A with grid coordinates (i1, j1) and (i2, j2), respectively, the
relationship (i1, j1) ≡ (i2, j2) mod d holds. We say that δ-dilution is applied
to a schedule S if each round of an execution of S is replaced with δ2 rounds
parameterized by (i, j) ∈ [0, δ− 1]2 such that a station v ∈ C(a, b) can transmit
a message only in the rounds (i, j) such that (i, j) ≡ (a, b) mod δ.

Proposition 1. For each α > 2 and ε > 0, there exists a constant d0 such that
the following properties hold. Assume that a set of n stations A is d-diluted wrt
the grid Gx, where x = γ/c, c ∈ N, c > 1 and d ≥ d0. Moreover, at most one
station from A is located in each box of Gx. Then, if all stations from A transmit
simultaneously, each of them transmits 2r

c -successfully.

Proposition 2. For each α > 2 and ε > 0, there exists a constant d satisfying
the following property. Let A be a set of stations such that minu,v∈A{dist(u, v)} =
x·
√
2, where x ≤ γ. If a station u ∈ C(i, j) for a box C(i, j) of Gx is transmitting

in a round t and no other station in any box C(i′, j′) of Gx such that max{|i−
i′|, |j − j′|} ≤ d is transmitting at that round, then v can hear the message from
u at round t.

Selective families. A family S = (S0, . . . , Ss−1) of subsets of [N ] is a (N, k)-ssf
(strongly-selective family) of length s if, for every non empty subset Z of [N ]
such that |Z| ≤ k and for every element z ∈ Z, there is a set Si in S such that
Si ∩ Z = {z}. It is known that there exists (N, k)-ssf of size O(k2 logN) for
every k ≤ N , c.f., [2]. We identify a family of sets S = (S0, . . . , Ss−1) with the
broadcast schedule S′ such that the ith bit of S′(v) is equal to 1 iff v ∈ Si.

2 Algorithms without Local Knowledge

2.1 Size Dependent Algorithm

In this section we consider networks in which a station knows only n, N , its
own ID and its coordinates in the Euclidean space. We develop an algorithm
SizeUBr, which executes repeatedly two interleaved threads.
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The first thread keeps combining stations into groups such that eventually,
for any box C of the pivotal grid, all stations located in C form one group.
Moreover, each group has the leader, and eventually each station should be aware
of (i) which group it belongs to, (ii) which station is the leader of that group,
and (iii) which stations belong to that group. Upon waking up, each station
forms a group with a single element (itself), and the groups increase gradually
by merging. The merging process builds upon the following observation. Let σ be
the smallest distance between two stations and let u, v be the closest stations.
Thus, there is at most one station in each box of the grid Gσ/

√
2. Then, if u

transmits a message and no other station in distance d · σ, for some constant d,
transmits at the same time, then v can hear that message (see Prop. 2). Using
a (N, (2d+1)2)-strongly-selective family as a broadcast schedule S on the set of
leaders of groups, c.f., [16], one can assure that such a situation occurs in each
O(logN) rounds. If u can hear v and v can hear u during such a schedule, the
groups of u and v can be merged. In order to coordinate the merging process,
we implicitly build a matching among pairs (u, v) such that u can hear v and v
can hear u during execution of S.

The second thread is supposed to guarantee that the broadcast message is
transmitted from boxes containing informed stations to their neighbors. Each
station determines its temporary ID (TID) as the rank of its ID in the set of IDs
in its group. Using these TIDs, the stations apply round-robin strategy. Thus,
if each group corresponds to all stations in the appropriate box, transmissions
are successful (see Prop. 1), and thus they guarantee that neighbors of a box
containing informed stations will also contain informed stations.

The main problem with implementation of these ideas is that, as long as there
are many groups inside a box, transmissions in the second thread may cause
unwanted interferences. Another problem is that the set of stations attending the
protocol changes gradually, when new stations become informed and can join the
execution of the protocol. These issues are managed by measuring the progress
of a protocol using amortized analysis. The details of the implementation and
analysis can be found in the full version of the paper.

Theorem 1. Algorithm SizeUBr performs broadcasting in each n-node net-
work in O(n log n) rounds, in the setting without local knowledge.

2.2 Degree Dependent Algorithm

In this section we present the algorithm GenBroadcast whose complexity is op-
timized with respect to maximal degree of the communication graph. The core
of this algorithm is a leader election procedure which, given a set of stations V ,
chooses exactly one station (the leader) in each box C of the pivotal grid con-
taining at least one element from V . This procedure works in O(log n · logN) =
O(log2 n) rounds and it is executed repeatedly during GenBroadcast. The set
of stations attending a particular leader election execution consists of all sta-
tions which received the broadcast message and have not been chosen leaders of
their boxes in previous executions of the leader election procedure. Moreover, at
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Algorithm 1. LeaderElection(V, n)

1: For each v ∈ V : cand(v)← true;
2: for i = 1, . . . , log n + 1 do � Elimination
3: for j, k ∈ [0, 2] do
4: Execute S twice on the set:
5: {w ∈ V | cand(w) = true and w ∈ C(j′, k′)
6: such that (j′ mod 2, k′ mod 2) = (j, k)};
7: Each w ∈ V determines and stores Xw during the first execution of S, and
8: Xv , for each v ∈ Xw, during the second execution of S;
9: for each v ∈ V do

10: u← min(Xv);
11: if Xv = ∅ or v > min(Xu ∪ {u}) then cand(v)← false; ph(v)← i;

12: For each v ∈ V : state(v)← active; � Selection
13: for i = log n, (log n)− 1, . . . , 2, 1 do
14: Vi ← GranLeaderElection({v ∈ V |
15: ph(v) = i, state(v) = active}, 1/n); � Vi – leaders
16: Each element v ∈ Vi sets state(v)← leader and
17: transmits successfully using constant dilution (see Prop. 1);
18: Simultaneously, for each v ∈ V which can hear u ∈ box(v): state(v)← passive.

the end of each execution of the leader election procedure, each leader chosen in
that execution transmits a message successfully — this can be done in a constant
number of rounds, by using d-dilution with appropriate constant d (c.f., Prop. 1).
In this way, each station receives the source message after O(DΔ log2 n) rounds.
(Note that there are at most Δ stations in a box of the pivotal grid.)

In the following, we describe the leader election algorithm — its pseudo-code
is presented as Algorithm 1. We are given a set of stations V of size at most
n. The set V is not known to stations, each station knows merely whether it
belongs to V or it does not belong to V . In the algorithm, we use (N, e)-ssf S of
size s = O(logN), where e = (2d+ 1)2 and d is the constant depending merely
on the parameters of the model, the same as in Section 2.1 (see also Prop. 2).
Let Xv, for a given execution of S be the set of stations which belong to box(v)
and v can hear them during that execution.

The following proposition combines properties of ssf with Prop. 2.

Proposition 3. For each α > 2 and ε > 0, there exists a constant k satisfying
the following property. Let W be a 3-diluted (wrt the pivotal grid) set of stations
and let C be a box of the pivotal grid. If minu,v∈C∩W = x ≤ r/n and dist(u, v) =
x for some u, v ∈ W such that box(u) = box(v) = C, then v can hear the message
from u during an execution of a (N, k)-ssf on W .

The leader election algorithm consists of two stages. The first stage gradually
eliminates elements from the set of candidates for the leaders of boxes in con-
secutive executions of the ssf S in the first for loop. Therefore, we call this stage
Elimination. Let phase l of Elimination stage denote the executions of S for
i = l. Each station v “eliminated” in phase l has assigned the value ph(v) = l.
Let V (l) = {v | ph(v) > l} and VC(l) = {v | ph(v) > l and box(v) = C} for l ∈ N



640 T. Jurdzinski, D.R. Kowalski, and G. Stachowiak

and C being a box of the pivotal grid. That is, VC(l) is the set of stations from
C which are not eliminated until phase l. The key property of the sets VC(l) is
that |VC(l + 1)| ≤ |VC(l)|/2 and the granularity of VC(l

�
C) is smaller than n for

each box C and l ∈ N, where l�C is the largest l ∈ N such that VC(l) is not empty.
Therefore, we can choose the leader of each box C by applying (simultaneously
in each box) the granularity dependent leader election algorithm GranLeader-
Election, described later in Section 3.2 on the set VC(l

�
C) and with upper bound

n on granularity. Note that we can elect the leaders in O(logN) = O(log n)
rounds in this way. However, the stations in C do not necessary know the value
of l�C . Therefore, the second stage (called Selection) applies the granularity de-
pendent leader election on V (logn), V (logn− 1), V (logn− 2) and so on. When
the leader of a box C is chosen, all stations in C become silent (state passive
in line 18), i.e., they do not attend the following executions of GranLeaderElec-
tion. It is important that a station becomes silent after the leader of its box is
chosen, since granularity of VC(i) might be larger than n for i < l�C . Activity
of stations from such a box C for i < l�C during the Selection stage could cause
large interferences preventing other boxes from electing leaders.

Recall that each leader broadcasts successfully at the end of the execution of
LeaderElection in which it is elected. If each station attends consecutive leader
election executions until it becomes a leader in its box, the broadcasting message
is transmitted from a box C to all its neighbors in O(Δ log2 n) rounds, since there
are at most Δ station in each box of the pivotal grid. Therefore, we obtain a
GeneralBroadcast algorithm providing the following result.

Theorem 2. Algorithm GeneralBroadcast completes broadcast in O(DΔ log2 n)
rounds in any network without local knowledge.

2.3 Lower Bounds

Theorem 3. There exist: (i) an infinite family of n-node networks requiring
Ω(n logn) rounds to accomplish deterministic broadcast, and (ii) for every DΔ =
O(n), an infinite family of n-node networks of diameter D and maximum degree
Δ requiring Ω(DΔ) rounds to accomplish deterministic broadcast.

Proof (Sketch). We describe a family of networks F such that broadcasting
requires time Ω(D logN). By Li we denote the set of stations in distance i
from the source in the communication graph. Each element of F is formed as a
sequential composition ofD networks V1, . . . , VD of eccentricity 3 each, such that:

– the source s is connected with two nodes v1, v2 in L1 with arbitrary IDs and
fixed positions;

– v1, v2 are connected with w, the only element of L2, and satisfy the condition:

P · dist(v1, w)−α = P · dist(v2, w)−α −N/2 . (2)

Sequential composition of networks V1, . . . , VD stands for identifying the element
w of network component Vi with the source s of network component Vi+1.
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Note that if v1 and v2 transmit simultaneously in a network component Vi,
the message is not received by w. Using simple counting argument, one can force
such choice of IDs of v1 and v2 that Ω(logN) rounds are necessary until a round
in which exactly one of v1, v2 transmits successfully a message to w under the
SINR model of weak devices. Since D = Θ(n) in the above construction and
logn = Θ(logN), the bound Ω(n logN) holds.

The above proof can be extended to obtain lower bounds Ω(DΔ), by consid-
ering the following class of network components Vi: the source s, located in the
origin point (0, 0), is the only element of L0; L1 consists of Δ nodes v0, . . . , vΔ−1,
where the position of vi is (γ · i

Δ , γ) for 0 ≤ i ≤ Δ − 1; and L2 contains only

one node wj with coordinates (γ · j
Δ , γ + r), i.e., wj can receive a message only

from vj . 	


This result can also be transformed to the case of randomized algorithms. We
sketch an idea of these transformations by considering networks from the family
F described in the proof of Theorem 3. Recall that each element of the layer L1

should transmit as the only element of L1 in order to guarantee that the only
element of L2 is informed, regardless of its location. However, by simple counting
arguments, the expectation of the number of steps after which some of elements
of L1 transmit as the only one is Ω(log n) or Ω(Δ), respectively.

3 Algorithms for Networks with Local Knowledge

In this section we assume that each station knows n, N as well as IDs and
locations of all stations in its range area. We start with presenting a generic al-
gorithmic scheme. Next, we describe an algorithm for networks with additionally
known granularity bound g. Finally we provide a solution for the general setting
when granularity g is not known in advance.

3.1 Generic Algorithmic Scheme

In the first round the source sends the broadcast message. Then, we repeat the
generic procedure Inter-Box-Bdcst, whose ith repetition is aimed at transmitting
the broadcast message from boxes of the pivotal grid containing at least one sta-
tion that has received the broadcast message in the previous execution of Inter-
Box-Bdcst (or from the source) to boxes which are their neighbors. The specific
implementation of procedure Inter-Box-Bdcst depends on the considered setting.

Each station v is in state s(v), which may be equal to one of the follow-
ing three values: asleep, active, or idle. At the beginning, the source sends the
source message and all stations of its box in the pivotal grid set their states to
active, while all the remaining stations are in the asleep state. The states of sta-
tions change only at the end of Inter-Box-Bdcst, according to the following rules:

Rule 1: All stations in state active change their state to idle.
Rule 2: A station u changes its state from asleep to active if it has received the
broadcast message from a station v in the current execution of Inter-Box-Bdcst
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such that either v was in state active or v belongs to the same box of the pivotal
grid as u. That is, let C be a box of the pivotal grid, let u ∈ C be in state
asleep at the beginning of Inter-Box-Bdcst. The only possibility that u receives
a message and it does not change its state from asleep to active at the end of
Inter-Box-Bdcst is that each message received by u is sent by a station v which
is in state asleep when it sends the message and v �∈ C.
The intended properties of an execution of Inter-Box-Bdcst are:

(I) For each box C of the pivotal grid, states of all stations in C are equal.
(P) The broadcast message is (successfully) sent from each box C containing

stations in state active to all stations located in boxes which are neighbors
of C.

The following proposition easily follows from the above stated properties.

Proposition 4. If (I) and (P) are satisfied, the source message is transmitted
to the whole network in O(D · T ) rounds, where T is the number of rounds in a
single execution of Inter-Box-Bdcst.

3.2 A Granularity-Dependent Algorithm

First, we develop a broadcasting algorithm with known granularity g of a net-
work. The main ingredient of this protocol is a leader election algorithm, called
GranLeaderElection(A, g), which, given a set of stations A chooses the leader in
each box of the pivotal grid containing stations from A (at the beginning, each
station knows only whether it belongs to A or not). The idea of the leader elec-
tion procedure is as follows. Granularity g implies that each station is the leader
of a box of Gx, where x = γ/h for h = min(2i | 2i ≥ g). Then, leaders of boxes
of G2ix are chosen among leaders of boxes of G2i−1x for i = 1, 2, . . . , �log h in
constant number of rounds with help of Prop. 1. Thus, leaders in boxes of the
pivotal grid can be chosen in O(log g) rounds.

Given the above (local) leader election procedure, the procedure Inter-Box-
Bdcst is implemented as follows. For each direction (d1, d2) ∈ DIR, the leaders
are elected in all boxes among station in state active which have neighbors in the
direction (d1, d2). Then, these leaders send messages successfully using dilution
(see Prop. 1). Moreover, since each station knows all stations in its box, the
station with smallest ID among newly informed in each box sends the broadcast
message which is delivered to all stations from its box. In this way, the procedure
Inter-Box-Bdcst satisfying the invariants (I) and (P) working in time O(log g) is
obtained which gives the broadcasting algorithm working in time O(D log g).

Theorem 4. Algorithm GranUBr accomplishes broadcast in any n-node net-
work of diameter D and granularity g in O(D log g), in the setting with local
knowledge.
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3.3 General Algorithm

In this section we develop Algorithm DiamUBr, which also builds on the generic
scheme from Section 3.1. Procedure Inter-Box-Bdcst required by the generic al-
gorithm is implemented as in Section 3.2, the only difference is that GranLeader-
Election with complexity O(log g) is replaced with the procedure LeaderElection
from Section 2.2 (Alg. 1). By Prop. 4, and by the round complexity O(log2 n) of
algorithm LeaderElection, we obtain the following result.

Theorem 5. Algorithm DiamUBr completes broadcast in any n-node network
of diameter D in O(D log2 n) rounds, in the setting with local knowledge.
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