
Evolving Graph-Structures and Their Implicit

Computational Complexity

Daniel Leivant1 and Jean-Yves Marion2

1 Indiana University, USA
leivant@indiana.edu

2 Université de Lorraine, LORIA, France
Jean-Yves.Marion@loria.fr

Abstract. Dynamic data-structures are ubiquitous in programming,
and they use extensively underlying directed multi-graph structures, such
as labeled trees, DAGs, and objects. This paper adapts well-established
static analysis methods, namely data ramification and language-based
information flow security, to programs over such graph structures. Our
programs support the creation, deletion, and updates of both vertices
and edges, and are related to pointer machines. The main result states
that a function over graph-structures is computable in polynomial time
iff it is computed by a terminating program whose graph manipulation
is ramified, provided all edges that are both created and read in a loop
have the same label.

1 Introduction

The interplay of algorithms and data-structures has been central to both the-
oretical and practical facets of programming. A core method of this relation is
the organization of data-structures by underlying directed multi-graphs, such
as trees, DAGs, and objects, where each vertex points to a record. Such data
structures are often thought of as “dynamic”, because they are manipulated
by algorithms that modify the underlying graph, namely by creating, updating
and removing vertices and edges. Our imperative language is inspired by pointer
machines [6,10] and by abstract state machines [2].

In this work we propose a simple and effective static analysis method for
guaranteeing the feasible time-complexity of programs over many dynamic data-
structures. Most static analysis efforts have focused in recent years on program
termination and on safety and security. Our work is thus a contribution to an-
other strand of static analysis, namely computational complexity.

Static analysis of computational complexity is based on several methods,
classified broadly into descriptive ones (i.e. related to Finite Model Theory),
and applicative (i.e. identifying restrictions of programs and proof methods that
guarantee upper bounds on the complexity of computation). One of the most
fruitful applicative methods has been ramification, also referred to as tiering.
Initially this method was used for inductive data, such as words and natural
numbers, but lately the method has been applied to more general forms of data.

F.V. Fomin et al. (Eds.): ICALP 2013, Part II, LNCS 7966, pp. 349–360, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

350 D. Leivant and J.-Y. Marion

The intuition behind ramification is that programs’ execution time depends on
the nature of information flow during execution, and that such flow can be con-
strained naturally and effectively by imposing a precedence relation regulating
the information flow, e.g. from higher tier to lower tier. Here we refer to a ram-
ification that pertains to commands of our imperative language as well as to
expressions denoting graph elements.

Our main result states that a function over graph-structures is computable in
polynomial time iff it is computed by a terminating program whose graph ma-
nipulation is ramified, provided all edges that are both created and read in a loop
have the same label. This result considerably extends previous uses of ramifica-
tion in implicit computational complexity, and this extension touches on some
of the most important aspects of programming, which have been disregarded in
previous research. A simple modification of the proof gives an analogous charac-
terization of Logspace computation over graph structures.1 We thus believe that
this work is of both theoretical and practical significance. Our results raise in-
teresting questions about relations between data ramification and typed systems
for program security [12,9], where the concept of information flow is explicit.

2 Evolving Graph-Structures

2.1 Sorted Partial Structures

The framework of sorted structures is natural for the graph-structures we wish
to consider, with vertices and data treated as distinct sorts. Data might itself be
sorted, but that does not concern us here. Recall that in a sorted structure, if V
and D are sorts, then a function f is of type V→D if its domain consists of the
structure elements of sort V, and its range of elements of sort D.

The graphs we consider are essentially deterministic transition graphs: edges
are labeled (to which we refer as “actions”), and every vertex has at most one
out-edge with a given label. Such graphs are conveniently represented by partial
functions, corresponding to actions. An edge labeled f from vertex u to vertex v
is represented by the equality f (u) = v. When u has no f-labeled out-edges, we
leave f(u) undefined. To represent function partiality in the context of structures,
we post a special constant nil, assumed to lie outside the sorts (or, equivalently,
in a special singleton sort)2. We write f : V ⇀ D, and say that f is a partial
function from sort V to sort D, if f : V→(D ∪ {nil}). We write V ⇀ D for the
type of such partial functions.

2.2 Graph Structures

We consider sorted partial structures with a distinguished sort V of vertices. To
account for the creation of new vertices, we also include a sort R of reserved-
vertices. For simplicity, and without loss of generality, we assume only one addi-
tional sort D, which we dub data. A graph vocabulary is a sorted vocabulary for

1 We also present extensions of our language to incorporate recursion.
2 This is a minor, but deliberate, departure from the usual ontological (i.e. Church-
style) typing of sorted structure.

Evolving Graph-Structures and Their Implicit Computational Complexity 351

these sorts, where we have just five sets of identifiers: V (the vertex constants),
D (the data constants), F (function-identifiers for labeled edges, of type V ⇀ V),
G (function-identifiers for data, of type V→D), and R (the relation-identifiers),
each of some type τ × · · · × τ , where each τ is V or D. As syntactic parameters
we use v ∈ V, d ∈ D, f ∈ F, g ∈ G, and R ∈ R.

Given a sorted vocabulary Σ as above, a Σ-structure S consists of a vertex-
universe VS which is finite, a potentially infinite reserve-universe RS , a data-
universeDS , a distinct object⊥ to interpret nil, and a sort-correct interpretation
AS for each Σ-identifier A: vS ∈ VS ; dS ∈ DS ; gS ∈ [VS → DS] (a data-
function); fS ∈ [VS ⇀ VS] (a partial function), and for a relation-identifier R, a
relation RS ⊆ τS × · · · τS . Note that we do not refer to functions over data, nor
to functions of arity > 1. Also, the fact that our graphs are edge-deterministic
is reflected in our reprensetation of edges by functions.

Our graph structures bear similarity to the struct construct in the pro-
gramming language C, and to objects (without behaviors or methods): a vertex
identifies an object, and the state of that object is given by fields that are spec-
ified by the unary function identifiers. This is why Tarjan, in defining similar
structures [11], talks about records and items rather than vertices and edges. The
restriction of a graph-structure S to the sort V of vertices can be construed as a
labeled directed multi-graph, in which there is an edge labeled by f from vertex
u to vertex v exactly when fS(u) = v. Thus the fan-out of each graph is bounded
by the number of edge-labels in Σ. Examples of graph structures abound, see
examples in Section 5. Linked-lists of data is an obvious one, of which words
(represented as linked lists of alphabet-symbols) form a special case.

2.3 Expressions

Expressions are generated from a set X of vertex-variables, a set Y of data-
variables, and the vocabulary identifiers, as follows. Equality here does not
conform strictly to the sort discipline, in that we allow equations of the form
V = nil3.

V ∈ VExpr ::= X | nil | v | f(V) where X ∈ X

D ∈ DExpr ::= Y | d | g(V) where Y ∈ Y

B ∈ BExpr ::= V = V | D = D | ¬(B) | R(E1 . . . En) where R : τn, Ei : τ

3 Imperative Programs over Graph-Structures

3.1 Programs

We refer to a skeletal imperative language, which supports pointers:

P ∈ Prg ::= X:=V | Y :=D | f(X):=V | g(X):=D | New(X)
| skip | P ;P | if (B) {P} {P} | while (B) {P}

3 Negation is useful, however, in defining commands’ semantics and dispensing with
truth constants.

352 D. Leivant and J.-Y. Marion

The boolean expression B of conditional and iterative commands is said to be
their guard. We posit that each program is given with a finite set X0 ⊂ X of
input variables.

3.2 Example: Tarjan’s Union Algorithm

The following graph-algorithm is due to Tarjan [11, p.21]. It refers to a represen-
tation of sets by linked-lists, whose initial vertex also serves as a name for the
set. The linked-list is represented by a partial-function next, and the function
parent maps each node to the head of its linked-list. The algorithm generates,
given as input two lists r, q representing disjoint sets, a list representing their
union. It successively inserts right after r’s head the entries of q; thus r is main-
tained as the name of the union.

while (q �= nil) { save := next (q) ;
parent (q) := r ; % parent and next are modi f ied
next (q) := next(r) ;
next (r) := q ;
q := save }

We shall see that our tiering method admits the program above.

3.3 Evolving Structures

In defining the semantics of an “uninterpreted” imperative program one refers to
structures for that program’s vocabulary, augmented with a store (i.e. environ-
ment, valuation). For programs over a Σ-structure S, a store consists then of a
function μ = μX ∪ μY , where μX : X → VS ∪ {⊥}, and μY : Y → DS . A
Σ-configuration is a pair consisting of aΣ-structure S and a store μ. We chose the
phrase configuration to stress their dynamic nature, as computation stages of an
evolving structure.

Commands of imperative languages are interpreted semantically as partial-
functions that map an initial configuration to a final one. Here we have two com-
mands whose intended semantic interpretation is to modify the structure itself. A
commandNew(X) modifies the sorts, bymoving an element ofRS to VS , and up-
dating the store to have X point to the new element. We write (S, μ)[νX] for the
resulting configuration. ThusX points to a fresh vertex.More importantly, a com-
mandof the form f(X):=V modifies the semantics of the partial-function fS , in that
fora=μ(X) andw thevalue ofV in (S, μ) (defined formallybelow), an f-edge v � u
is replaced by v�w. We write (S, μ)[f(X)←w] for the resulting interpretation.

Our structure updates are obviously related to Gurevich’s abstract sequential
machines (ASM) [2]. Gurevich divides identifiers into two classes: static iden-
tifiers, whose interpretation remains constant, and dynamic identifiers, whose
interpretation may evolve during computation. Here the only dynamic identi-
fiers are the edge functions. An ASM computation progresses through “states”,
where every state is a structure. In contrast, we refer to configurations, because
program variables play a central role in our imperative programs. Thus, the
execution of our programs progresses through configuration.

Evolving Graph-Structures and Their Implicit Computational Complexity 353

Our programming language is related, more broadly, to pointer machines. Tar-
jan [11] defined a pure reference machine, consisting of an expandable collection
of records and a finite number of registers. Pure reference machines are easily
simulated by our programs, and vice versa.

Our programs are also related to Schönhage machines [10]. Each such machine
consists of a finite control program combined with a dynamic structure (which
is essentially the same as our graph-structures). Schönhage machines are an
extension of Kolmogorov-Uspensky machines [6]. Another source of inspiration
is the work of Jones & als. on blob model of computations [3].

3.4 Semantics of Expressions

We give next the evaluation rules for Σ-expressionsE in aΣ-configuration (S, μ),
writing S, μ |= E

e⇒ a to indicate that E evaluates to element a of S.4

b ∈ V ∪ D

S, μ � b
e⇒ bS

Z ∈ X ∪ Y

S, μ � Z
e⇒ μ(Z)

S, μ � E
e⇒ a h ∈ F ∪G

S, μ � h(a)
e⇒ hS(a)

S, μ � Ei
e⇒ ai 〈a1..an〉 ∈ RS

S, μ � R(E1, . . . , En)

S, μ � Ei
e⇒ ai 〈a1..an〉 �∈ RS

S, μ � ¬R(E1, . . . , En)

3.5 Semantics of Programs

The semantics of programs is defined below:

S, μ � E
e⇒ a

S, μ � Z:=E
s

=⇒ S, μ[Z ← a] � skip
S, μ � New(X)

s
=⇒ (S, μ)[νX] � skip

S, μ � X
e⇒ a S, μ � V

e⇒ b

S, μ � f(X):=V
s

=⇒ S, μ[f(a) := b] � skip

S, μ � P1
s

=⇒ S′, μ′ � P ′
1

S, μ � P1;P2
s

=⇒ S′, μ′ � P ′
1;P2

S, μ � P1
s

=⇒ S′, μ′ � skip

S, μ � P1;P2
s

=⇒ S′, μ′ � P2

S, μ � B

S, μ � if (B){P0}{P1} s
=⇒ S, μ � P0

S, μ � ¬B

S, μ � if (B){P0}{P1} s
=⇒ S, μ � P1

S, μ � B

S, μ � while(B){P} s
=⇒ S, μ � P ;while(B){P}

S, μ � ¬B

S, μ � while(B){P} s
=⇒ S, μ � skip

The phrase S, μ � P
s

=⇒ S ′, μ′ � P ′ conveys that evaluating a program
P starting with configuration (S, μ) is reduced to evaluating P ′ in configuration
(S ′, μ′); i.e., P reduces to P ′ while updating (S, μ) to (S ′, μ′).

An initial configuration is a configuration (S, μ) where μ(X) = nil for every
non-input variable X . A program P computes the partial function [[P]] with

initial configurations as input, defined by: [[P]](S, μ) = (S ′, ξ) iff S, μ � P (
s

=⇒
)∗ T , ξ � skip.

4 Here we consider equality as just another relation.

354 D. Leivant and J.-Y. Marion

3.6 Run-Time

We say that a program P runs in time t on input (S, μ), and write TimeP (S, μ) =
t, when S, μ � P (

s
=⇒)t T , ξ � skip for some (T , ξ). We take the size |S, μ| of

a configuration (S, μ) to be the number n of elements in the vertex-universe V .
Since the number of edges is bounded by n2, we disregard them here. We also
disregard the size of the data-universe, because our programs do not modify the
data present in records. A program P is running in polynomial time if there is
a k > 0 such that TimeP (S, μ) � k · |S, μ|k for all configurations (S, μ),

4 Ramifiable Programs

4.1 Tiering

Program tiering, also referred to as ramification, has been introduced in [7] and
used in restricted form already in [1]. It serves to syntactically control the run-
time of programs. Here we adapt tiering to graph-structures. The main challenge
here is the evolution of structures in course of computation. To address it, we
consider a finite lattice T = (T,,0,∨,∧), and refer to the elements of T as tiers.
However, in order to simplify soundness proofs, and without loss of generality,
we will focus on the boolean lattice T = ({0,1},�,0,∨,∧). We use lower case
Greek letters α, β as discourse parameters for tiers.

Given T, we consider T-environments (Γ ,Δ). Here Γ assigns a tier to each
variable in V, whereas Δ assigns to each function identifier f : V ⇀ V one or
several expressions of the form α→β, so that either

1. all types in Δ(f) are of the form α→α, in which case we say that f is stable
in the environment; or

2. all types in Δ(f) are of the form α→ β, with β ≺ α, and we say that f is
reducing in the environment.

A tiering assertion is a phrase of the form Γ ,Δ � V : α, where V is a vertex-
expression and (Γ ,Δ) a T-environment. The correct tiering assertions are gen-
erated by the tiering system in Figure 1.

4.2 Ramifiable Programs

Given a lattice T, a program P is T-ramifiable if there is a T-environment (Γ ,Δ)
for which Γ,Δ � P : α for some α, and such that Γ (X) = 1 for every input
variable X ∈ X0.

5 Thus, ramifiable programs can be construed as programs
decorated with tiering information.

Lemma 1 (Subject Reduction)

If S, μ � P
s

=⇒ S ′, μ′ � P ′ and Γ,Δ � P : α then Γ,Δ � P ′ : α.

Lemma 2 (Type Inference). The problem of deciding, given a program P
and a lattice T, whether P is T-ramifiable, is decidable in polynomial time.

5 Recall that each program is assumed given with a set X0 of input variables.

Evolving Graph-Structures and Their Implicit Computational Complexity 355

Γ,Δ � c : α

Γ (X) = α

Γ,Δ � X : α

α→β ∈ Δ(f) Γ,Δ � V : α

Γ,Δ � f(V) : β

Γ,Δ � Vi : α

Γ,Δ � R(V1, . . . , Vn) : α

Γ ,Δ � Vi : α

Γ ,Δ � V0 = V1 : α

Fig. 1. Tiering rules for vertex and boolean expressions

Γ,Δ � X : α Γ,Δ � V : α

Γ,Δ � X :=V : α

Γ,Δ � f(X) : α Γ,Δ � V : α

Γ,Δ � f(X):=V : α

Γ,Δ � X : 0

Γ,Δ � New(X) : 0

Γ,Δ � B : α Γ,Δ � P : α
0 ≺ α

Γ,Δ � while(B){P} : α

Γ,Δ � skip : 0

Γ,Δ � P : α Γ,Δ � P ′ : β

Γ,Δ � P ′ ; P ′ : α ∨ β

Γ,Δ � B : α Γ,Δ � Pi : α

Γ,Δ � if (B){P0}{P1} : α

Γ,Δ � P : β

Γ,Δ � P : α
(β � α)

Fig. 2. Tiering rules for programs

Proof. We associate with each vertex-variable X a “tier-variable” αX , and with
each function f ∈ F two variables αf and βf , with the intent that αf → βf

is a possible tiering of f. The typing rules for tiers give rise to a set of linear
constraints on these tier-variables, a problem which is poly-time decidable.

4.3 Stationary and Tightly-Modifying Loops

We say that a function identifier f is probed in P if it occurs in P either in some
assignment X := V or in the guard of a loop or a branching command. For
example, f is probed in X := f(V), as well as in if (f(X) �= nil){P}{P ′}. The
identifier f is modified in P if it occurs in an assignment f(X) := V in P .

Fix a lattice T, and a T-environment (Γ ,Δ). By the tiering rules, if a loop
while(B){P} is of tier α then Γ,Δ � B : α. We say that the loop is stationary
if no f ∈ F of type α→α is modified therein. The loop above is tightly-modifying
if it has modified function-identifiers of type α→α, but at most one of those is
also probed. In other words, all edges that are both created and read in a loop
have the same label. For instance, in Example 3.2 above, next is both modified
and probed, but parent is modified without being probed. Thus the loop, with
its obvious tiering environment, is tightly-modifying.6

6 Note that next and parent are of type 1→ 1, and all variables are of tier 1. Set
union can be iterated because the result r is of tier 1, unlike in most other works.

356 D. Leivant and J.-Y. Marion

4.4 Main Characterization Theorem

Given a lattice T and Γ ,Δ � P : α, we say that (Γ ,Δ) is a tight ramification of
P if Γ is an initial tiering, and each loop of P is stationary or tightly-modifying.
We say that P is tightly-ramifiable if it has a tight T-ramification (Γ ,Δ), with
Γ initial, for some non-trivial T.

Theorem 1. A function over graph-structures is computable in polynomial time
iff it is computed by a terminating and tightly-ramifiable program.

The Theorem follows from the Soundness Lemma 6 and the Completeness Propo-
sition 1 below.

5 Examples of Ramified Programs

Tree insertion. The program below inserts the tree T into the binary search
tree whose root is pointed-to by x. The input variables are x and T .

i f (x1 = ni l)
{x1 :=T:1 ;} % then c l au s e
{ % else c l au s e
while ((x1 �= ni l) and (key (T1) �= key(x1)))
{ i f (key(T1) < key(x1)) {p1 :=x1 ; x1 := l e f t (x1)1}

{p1 :=x1 ; x1 := right (x1)1} } :1 ;
i f (key (T1) < key(p1)) { l e f t (p1) := T1 :1}

{ right (p1):= T1 :1}
Note that neither left nor right is modified in the loop, so the loop is stationary.

Copying lists. Here we use New to copy a list, where the copy is in reverse
order. Note that the source list is of tier 1 while the copy is of tier 0.

y0 = ni l : 0 ;
while (x1 �= ni l)

{ z0 :=y0 :0 ; New(y0) ; suc (y0):= z0 :0 ;
x1 := suc (x1) : 1 } :1

The loop is stationary, because the updated occurrence of suc is of type 0→0.

6 Soundness of Programs for Feasibility: Run-Time
Analysis

We show next that every tightly-ramified program computes a PTime function
over configurations. The proof is based on the following observations, which we
articulate more precisely below. First, if we start with a configuration where no
vertex is assigned to variables of different tiers, then all configurations obtained in
the course of computation have that property. We are thus assured that vertices
can be ramified unambiguously.

Evolving Graph-Structures and Their Implicit Computational Complexity 357

The tiering rules imply that a program P of tier 0 cannot have loops, and
is therefore evaluated in � |P | steps. At the same time, the value of a variable
of tier 1 depends only on vertices of tier 1. This implies, as we shall see, that
the number of iterations of a given loop must be bounded by the number of
possible configurations that may be generated by its body. Our restriction to
tightly-modifying ramification guarantees that the number is polynomial.

6.1 Non-interference

Lemma 3 (Confinement). Let (Γ,Δ) be an environment. If Γ,Δ � P : 0,
then Γ (X) = 0 for every variable X assigned-to in P .

The proof is a straightforward structural induction. Note also that a program P
of tier 0 cannot have a loop, and is thus evaluated within |P | steps.

We say that a vertex-tiering Γ is compatible with a store μ if Γ (X) �= Γ (X ′)
implies μ(X) �= μ(X ′) for all X,X ′ ∈ X. We say that Γ is an initial tiering if
Γ (X) is 1 for X initial (i.e. X ∈ X0), and 0 otherwise. Thus an initial tiering is
always compatible with an initial store.

Lemma 4. Suppose that Γ ,Δ � P : α and S, μ |= P
s

=⇒ S ′, μ′ |= P ′.
If μ is compatible with Γ then so is μ′.

The proof is straightforward by structural induction on P .
We show next that tiering, when compatible with the initial configuration,

guarantees the non-interference of lower-tiered values in the run-time of higher-
tiered programs. A similar effect of tiering, albeit simpler, was observed already
in [7]. This is also similar to the security-related properties considered in [12].
Non-interference can also be rendered algebraically, as in [8].

The (Γ ,Δ)-collapse of a configuration (S, μ) is the configuration (SΔ, μΓ),
where μΓ (X) = μ(X) if Γ (X) = 1, and μΓ (X) is undefined otherwise; whereas
SΔ is the structure identical to S except that each f for which (1→1) �∈ Δ(f)
is interpreted as ∅. Thus (SΔ, μΓ) disregards vertices that are not not reachable
from some variable of tier 1 using edges of type (1→1).

The next lemma states that a program’s output vertices in tier 1 do not
depend on vertices in tier 0, nor on edges that do not have tier 1→1.

Lemma 5. Suppose Γ ,Δ � P : α, and S, μ |= P
s

=⇒ S ′, μ′ |= P ′. There
is a configuration (S ′′, μ′′) such that SΔ, μΓ |= P

s
=⇒ S ′′, μ′′ |= P ′, and

(S ′′Δ, μ′′Γ) = (S ′Δ, μ′Γ).

The proof is straightforward by structural induction on programs.

6.2 Polynomial Bounds

(Soundness)
Lemma 6. Assume that Γ ,Δ � P : α, where P is tightly-modifying. There is a
k > 0 such that for every graph-structure S and every store μ compatible with
Γ , if S, μ |= P

s
=⇒ S ′, μ′ |= P ′, then S, μ |= P (

s
=⇒)t S ′, μ′ |= P ′ for some

t < k + |S|k.

358 D. Leivant and J.-Y. Marion

In proving Lemma 6 we will use the following combinatorial observation. Let
G be a digraph of out-degree 1. We say that a set of vertices C generates G if
every vertex in G is reachable by a path starting at C. The following lemma
provides a polynomial, albeit crude, upper bound on the number of digraphs
with k generators.

Lemma 7. The number (up to isomorphism) of digraphs with n vertices, and a

generator of size k, is � n2k2

.

Proof. A connected digraph of out-degree 1 must consist of a loop of vertices,
with incoming linear spikes. If there are just k generators, then there are at most
k such spikes. There are at most k entry points on the loop to choose for these
spikes, and each spike is of size � n. So there are at most nk×nk non-isomorphic
connected graphs with a generator of size k.

Also, with only k generating vertices we can have at most k connected com-
ponents. In sum there are at most (n2k)k = n2k2

non-isomorphic graphs of size
n with k generators.

Proof of Lemma 6. We proceed by structural induction on P . The only non-
trivial observations are as follows. For program composition, we use the Com-
patibility Lemma 4.

The crucial case is, of course, where P is of the form while(B)Q. Say
X1, . . . , Xm are the vertex-variables in B. The tiering rules require that B, and
therefore X1, . . . , Xm, are all of tier 1.

If Q updates only edges that are not probed in P (including the guard B),
then neither the execution of Q nor the evaluation of B is affected, that is
all configurations in the computation have the same vertices of tier 1, with no
change in edges that affect the execution of P , by Lemma 5. Thus the truth of B
in each invocation of Q is determined by the combinations of values assigned to
X1, . . . , Xm, while the structural changes caused byQ do not affect the execution
of Q in subsequent invocations. Since we assume that P terminates, it follows
that the combinations of values for X1, . . . , Xm must be all different. If n is the
number of vertices of tier 1, then n � |S|, and there are nm such combinations.
By IH Q terminates in PTime, and therefore so does P .

SupposeQ does update edges that are probed in P . Since P is assumed tightly-
modifying, all such updates are for the same f ∈ F. Let C be the set of initial
values of variables occurring in P (including X1 . . .Xm and possibly others).
Let U be the set of vertices reachable from C by some path of tier 1 (i.e. using
edges labels by h ∈ F assigned 1→ 1 by Δfrom C vertices). By Lemma 5, the
execution of P , including all iterated invocations of B and Q, has only vertices
in U as value of tier 1. Moreover, U is generated by C, whose size is fixed by
the syntax of P . It follows, by Lemma 7, that the number of such configurations
is polynomial in the size of U , which in turns in bounded by the size |S| of the
vertex-universe of the structure S. ��

Evolving Graph-Structures and Their Implicit Computational Complexity 359

7 Completeness of Tightly-Ramifiable Programs for
Feasibility

Proposition 1. Every polynomial-time function on graph-structures is com-
putable by a terminating and tightly-ramifiable program.

Proof. Suppose f is a unary function on graph-structures, which is computed
by a Turing machine M over alphabet Σ, modulo some canonical coding of
graph structures by strings. Assume that M operates in time k · nk. We posit
that M uses a read-only input tape, and a work-tape. We simulate M by a
tightly-ramifiable program Γ ,Δ � P : 1 over graph-structures, as follows. The
structures considered simulate each of the two tapes by a double-linked list of
records, with the three fields left, right, and val, returning two pointers and an
alphabet letter, respectively. We take our data constants to include each σ ∈ Σ.
The input-tape is assigned tier 1, and the work-tape tier 0. Initially the work-
tape is empty, and new cells are progressively created by using the command
New at tier 0. The machine’s yield-relation between configurations is simulated
at tier 0 by nested conditionals. Finally, we include in our simulation a clock,
consisting of k nested loops, as in the following nesting of two loops:

u1 := head1 : 1 // head is a pointer to the input tape;
while (u1 �= ni l)

{ v1 :=head1 : 1 ;
while (v1 �= ni l)
{ v1 := suc (v1) : 1 ;

Trans i t i on funct ion i s here: 0 }: 1
u1 := suc (u1) : 1 } : 1

8 Characterization of Log-Space Languages

Hofmann and Schöpp [4] introduced pure pointer programs based on a uniform
iterator forall, and related them to computation in logarithmic space. Our pro-
grams differ from these in supporting modification of the structure, in the guises
of vertex creation and edge displacement and deletion. Moreover, our programs
are based on a looping construct that treats individually each vertex of the
structure.

These differences notwithstanding, our characterization of PTime can be mod-
ified to a characterization of log-space, by restricting the syntax of ramifiable-
programs. Say that a program P over graph-structures is a jumping-program if
it uses no edge update. Jones [5] showed that a simple cons-free imperative pro-
gramming languageWhile\Ro accepts precisely the languages decidable by Tur-
ing machines in logarithmic space. Since our jumping-programs can be rephrased
in While\Ro they too accept only log-space languages (where input strings are
represented as linked lists). Conversely, the store used by a jumping-program is
essentially of size k · log(n) + log(Q), where n is the size of the vertex-universe,
Q the size of the data-universe, and k the number of variables. Consequently,
we have:

360 D. Leivant and J.-Y. Marion

Theorem 2. A language is accepted by a jumping-program iff it is decidable in
Logspace.

9 Adding Recursion

It is not hard to augment our programing language with recursion. Here is a
procedure that recursively searches for a path from vertex v to w.7

Proc search (v1 ,w1))
{ i f (v=w)1 return t rue: 1 ;
v i s i t e d (v) = true: 1 ;
f o r a l l t1 in AdjList (v) % L i s t o f ad jacency nodes o f t
{ i f (v i s i t e d (t)1=f a l s e)

i f (s earch (t ,w)1=true) return t rue: 1 ;}
return f a l s e : 1 ;}

A restricted form of recursion is linear recursion, where at most one recursive
call is allowed in the definition of a recursive procedure. Moreover, we suppose
that each function body is stationary or tightly-modifying.

Theorem 3. On its domain of computation, a tightly-ramifiable program with
linear recursive calls is computable in polynomial time.

References

1. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity 2, 97–110 (1992)

2. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic 1(1), 77–111 (2000)

3. Hartmann, L., Jones, N.D., Simonsen, J.G., Vrist, S.B.: Programming in biomolec-
ular computation: Programs, self-interpretation and visualisation. Sci. Ann. Comp.
Sci. 21(1), 73–106 (2011)

4. Hofmann, M., Schöpp, U.: Pure pointer programs with iteration. ACM Trans.
Comput. Log. 11(4) (2010)

5. Jones, N.D.: Logspace and ptime characterized by programming languages. Theor.
Comput. Sci. 228(1-2), 151–174 (1999)

6. Kolmogorov, A.N., Uspensky, V.: On the definition of an algorithm. Uspekhi Mat.
Naut. 13(4) (1958)

7. Leivant, D.: Predicative recurrence and computational complexity I: Word recur-
rence and poly-time. In: Feasible Mathematics II. Birkhauser-Boston (1994)

8. Marion, J.-Y.: A type system for complexity flow analysis. In: LICS (2011)
9. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.

Secur. 17, 517–548 (2009)
10. Schönhage, A.: Storage modification machines. SIAM J. Comp. 9(3), 490–508

(1980)
11. Tarjan, R.E.: Reference machines require non-linear time to maintain disjoint sets.

In: STOC 1977, pp. 18–29. ACM (1977)
12. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.

Journal of Computer Security 4(2/3), 167–188 (1996)

7 The construct forall X in R(u), which is “blind,” in the sense that it does not
depend on node ordering. As a result, no function identifier is probed except visited.

	Evolving Graph-Structures and Their Implicit Computational Complexity
	1 Introduction
	2 Evolving Graph-Structures
	2.1 Sorted Partial Structures
	2.2 Graph Structures
	2.3 Expressions

	3 Imperative Programs over Graph-Structures
	3.1 Programs
	3.2 Example: Tarjan’s Union Algorithm
	3.3 Evolving Structures
	3.4 Semantics of Expressions
	3.5 Semantics of Programs
	3.6 Run-Time

	4 Ramifiable Programs
	4.1 Tiering
	4.2 Ramifiable Programs
	4.3 Stationary and Tightly-Modifying Loops
	4.4 Main Characterization Theorem

	5 Examples of Ramified Programs
	6 Soundness of Programs for Feasibility: Run-Time Analysis
	6.1 Non-interference
	6.2 Polynomial Bounds

	7 Completeness of Tightly-Ramifiable Programs for Feasibility
	8 Characterization of Log-Space Languages
	9 Adding Recursion
	References

