
One-Variable Word Equations in Linear Time�

Artur Jeż1,2,��

1 Max Planck Institute für Informatik,
Campus E1 4, DE-66123 Saarbrücken, Germany

2 Institute of Computer Science, University of Wrocław,
ul. Joliot-Curie 15, PL-50383 Wrocław, Poland

aje@cs.uni.wroc.pl

Abstract. In this paper we consider word equations with one variable
(and arbitrary many appearances of it). A recent technique of recom-
pression, which is applicable to general word equations, is shown to be
suitable also in this case. While in general case it is non-deterministic,
it determinises in case of one variable and the obtained running time is
O(n) (in RAM model).
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1 Introduction

Word Equations. The problem of satisfiability of word equations was con-
sidered as one of the most intriguing in computer science. The first algorithm
for it was given by Makanin [11] and his algorithm was improved several times,
however, no essentially different approach was proposed for over two decades.

An alternative algorithm was proposed by Plandowski and Rytter [16], who
presented a very simple algorithm with a (nondeterministic) running time poly-
nomial in n and log N , where N is the length of the length-minimal solution.
However, at that time the only bound on such length followed from Makanin’s
work and it was triply exponential in n.

Soon after Plandowski showed, using novel factorisations, that N is at most
doubly exponential [14], proving that satisfiability of word equations is in NEX-
PTIME. Exploiting the interplay between factorisations and compression he im-
proved the algorithm so that it worked in PSPACE [15]. On the other hand, it is
only known that the satisfiability of word equations is NP-hard.

One Variable. Constructing a cubic algorithm for the word equations with
only one variable (and arbitrarily many appearances of it) is trivial. First non-
trivial bound was given by Obono, Goralcik and Maksimenko, who devised an
O(n log n) algorithm [13]. This was improved by Dąbrowski and Plandowski [2]
to O(n + #X log n), where #X is the number of appearances of the variable
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in the equation. The latter work assumed that alphabet Σ is finite or that it
can be identified with numbers. A general solution was presented by Laine and
Plandowski [9], who gave an O(n log #X) algorithm in a simpler model, in which
the only operation on letters is their comparison.

Recompression. Recently, the author proposed a technique of recompression
based on previous techniques of Mehlhorn et. al [12], Lohrey and Mathissen [10]
and Sakamoto [17]. This method was successfully applied to various problems
related to grammar-compressed strings [5,3,4]. Unexpectedly, this approach was
also applicable to word equations, in which case alternative proofs of many known
results were obtained [6].

The technique is based on iterative application of two replacement schemes
performed on the text t:

pair compression of ab For two different letters a, b such that substring ab
appears in t replace each of ab in t by a fresh letter c.

a’s block compression For each maximal block a�, where a is a letter and
� > 1, that appears in t, replace all a�s in t by a fresh letter a�.

In one phase, pair compression (block compression) is applied to all pairs (blocks,
respectively) that appeared at the beginning of this phase. Ideally, each letter
is compressed and so the length of t halves, in a worst-case scenario during one
phase t is still shortened by a constant factor.

The surprising property is that such a schema can be efficiently applied even
to grammar-compressed data [5,3] or to text given in an implicit way, i.e. as
a solution of a word equation [6]. In order to do so, local changes of the variables
(or nonterminals) are needed: X is replaced with a�X (or Xa�), where a� is
a prefix (suffix, respectively) of substitution for X . In this way the solution that
substitutes a�w for X is implicitly replaced with one that substitutes w.

Recompression and One-Variable Equations. As the recompression works
for general word equations, it can be applied also to restricted subclasses. In the
general case it relies on the nondeterminism, however, when restricted to one-
variable equations it determinises. A simple implementation has O(n+#X log n)
running time, see Section 3. Adding a few heuristics, data structures and applying
a more sophisticated analysis yields an O(n) running time, see Section 4.

Outline of the Algorithm. We present an algorithm for one-variable equa-
tion based on the recompression; it also provides a compact description of all
solutions of such an equation. Intuitively: when pair compression is applied, say
ab is replaced by c (assuming it can be applied), then there is a one-to-one corre-
spondence of the solutions before and after the compression, this correspondence
is simply exchange of all abs by cs and vice-versa. The same applies to the block
compression. On the other hand, the modification of X can lead to loss of so-
lutions (for technical reasons we do not consider the solution ε): when X is to
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be replaced with a�X then each solution of the form a�w has a corresponding
solution w, but solution a� is lost in the process. So before the replacement, it is
tested whether a� is a solution and if so, it is reported. The testing is performed
by on-the-fly evaluation of both sides under substitution X = a� and comparing
the obtained strings letter by letter until a mismatch is found or both strings
end.

It is easy to implement the recompression so that one phase takes linear time.
The cost is distributed to explicit words between the variables, each such w is
charged O(|w|). If such w is long enough, its length decreases by a constant factor
in one phase, see Lemma 8. Thus, such cost is charged to the lost length and
sums to O(n) in total. However, this is not true when w is short (in particular,
of constant length). In this case we use the fact that there are O(log n) phases
and in each phase such cost is at most O(#X) (i.e. proportional to the number
of explicit words in total).

Using the following heuristics as well as more involved analysis the running
time can be lowered to O(n) (see Section 4 for some details):

– We save space used for problematic ‘short’ words between the variables (and
thus time needed to compress them in a phase): instead of storing multiple
copies of the same short string we store it once and have pointers to it in
the equation. Additionally we prove that those short words are substrings of
‘long’ words, which allows a bound on the sum of their lengths.

– when we compare Xw1Xw2 . . . wmX from one side of the equation with its
copy appearing on the other side, we make such a comparison in O(1) time
(using suffix arrays);

– the (Xu)m and (Xu′)m′ (under substitution for X) are compared in O(|u|+
|u′|) time instead of naive O(m · |u| + m′ · |u′|), using simple facts from
combinatorics on words.

Furthermore a more insightful analysis shows that problematic ‘short’ words in
the equation invalidate several candidate solutions. This allows a tighter estima-
tion of the time spent on testing the solutions.

Model. To perform the recompression efficiently, an algorithm for grouping
pairs is needed. When we identify the symbols in Σ with consecutive numbers,
this is done using RadixSort in linear time1. Thus, all (efficient) applications
of recompression technique make such an assumption. On the other hand, the
second of the mentioned heuristics craves checking substring equality in O(1), to
this end a suffix array [7] with a structure for answering longest common prefix
query (lcp) [8] is employed on which we use range minimum queries [1]. The last
structure needs the flexibility of the RAM model to run in O(1) time per query.
1 The RadixSort runs in time linear in number of numbers plus the universe size. Since

we introduce numbers in each phase, it might be that the latter is much larger than
the equation length. However, after each phase in linear time we can replace the
letters appearing in the equation so that they constitute an interval of numbers,
which yields that the RadixSort has indeed linear running time.
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2 Preliminaries

One-Variable Equations. Consider a word equation A = B over one variable
X , by |A| + |B| we denote its length and n is the initial length of the equation.
Without loss of generality one of A and B begins with a variable and the other
with a letter [2]: If they both begin with the same symbol (be it letter or non-
terminal), we can remove this symbol from them, without affecting the set of
solutions; if they begin with different letters, this equation clearly has no solu-
tion. The same applies to the last symbols of A and B. Thus, in the following
we assume that the equation is of the form

A0XA1 . . . AnA−1XAnA = XB1 . . . BnB−1XBnB , (1)

where Ai, Bj ∈ Σ∗ are called (explicit) words, nA (nB) denotes the number of
appearances of X in A (B, respectively). A0 (first word) is nonempty and exactly
one of AnA , BnB (last word) is nonempty. If this condition is violated for any
reason, we greedily repair by cutting letters from appropriate strings.

A substitution S assigns a string to X , we extend S to (X ∪ Σ)∗ with an
obvious meaning. A solution is a substitution such that S(A) = S(B). For an
equation A = B we are looking for a description of all its solutions. We disregard
the empty solution S(X) = ε and always assume that S(X) �= ε. In such a case
by (1) we can determine the first (last) letter of S(X) in O(1) time.

Lemma 1. Let a be the first letter of A0. If A0 ∈ a+ then S(X) ∈ a∗ for
each solution S of A = B, all such solutions can be calculated and reported in
O(|A| + |B|) time. If A0 /∈ a∗ then there is at most one solution S(X) ∈ a+, the
length of such a solution can be returned in O(|A| + |B|) time. For S(X) /∈ a+

the lengths of the a-prefixes of S(X) and A0 are the same.

A symmetric version of Lemma 1 holds for the suffix of S(X). By
SimpleSolution(a) we denote a procedure that for A0 /∈ a∗ returns the unique
� such that S(X) = a� is a solution (or nothing, if there is no such solution).

Representation of Solutions. Consider any solution S of A = B. If |S(X)| ≤
|A0| then S(X) is a prefix of A0. When |S(X)| > |A0| then S(A) begins with
A0S(X) while S(B) begins with S(X) and thus S(X) has a period A0. Hence
S(X) = Ak

0A, where A is a prefix of A0 and k > 0. In both cases S(X) is
uniquely determined by |S(X)|, so it is enough to describe such lengths.

Each letter in the current instance of our algorithm represents some (com-
pressed) string of the input equation, we store its weight which is the length
of such a string. Furthermore, when we replace X with a�X (or Xa�) we keep
track of the weight of a�. In this way, for each solution of the current equation we
know what is the length of the corresponding solution of the original equation
and this identifies it uniquely.

Preserving Solutions. All subprocedures of the algorithm should preserve
solutions, i.e. there should be a one-to-one correspondence between solutions
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before and after the application of the subprocedure. However, as they replace
X with a�X (or Xbr), some solutions are lost in the process and so they should
be reported. We formalise these notions.

We say that a subprocedure preserves solutions when given an equation A = B
it returns A′ = B′ such that for some strings u and v

– some solutions of A = B are reported by the subprocedure,
– S is an unreported solution of A = B if and only if there is a solution S′ of

A′ = B′ such that S(X) = uS′(X)v �= uv.

By PCab→c(w) we denote the string obtained from w by replacing each ab
by c (we assume that a �= b, so this is well-defined), this corresponds to pair
compression. We say that a subprocedure properly implements pair compres-
sion for ab, if it satisfies the conditions for preserving solutions above, but with
PCab→c(S(X)) = uS′(X)v replacing S(X) = uS′(X)v. Similarly, by BCa(w) we
denote a string with maximal blocks a� replaced by a� (for each � > 1) and we
say that a subprocedure properly implements blocks compression for a letter a.

Given an equation A = B, its solution S and a pair ab ∈ Σ2 appearing in
S(A) (or S(B)) we say that this appearance is explicit, if it comes from substring
ab of A (or B, respectively); implicit, if it comes (wholly) from S(X); crossing
otherwise. A pair is crossing if it has a crossing appearance and noncrossing
otherwise. A similar notion applies to maximal blocks of as, in which case we
say that a has a crossing block or it has no crossing blocks. Alternatively, a pair
ab is crossing if b is the first letter of S(X) and aX appears in the equation or
a is the last letter of S(X) and Xb appears in the equation or a is the last and
b the first letter of S(X) and XX appears in the equation.

Unless explicitly stated, we consider crossing/noncrossing pairs ab in which
a �= b. As the first (last) letter of S(X) is the same for each S, the definition of
the crossing pair does not depend on the solution; the same applies to crossing
blocks.

When a pair ab is noncrossing, its compression is easy, as it is enough to
replace each explicit ab with a fresh letter c, we refer to this procedure as
PairCompNCr(a, b). Similarly, when no block of a has a crossing appearance,
the a’s blocks compression consists simply of replacing explicit a blocks, we call
this procedure BlockCompNCr(a).

Lemma 2. If ab is a noncrossing pair then PairCompNCr(a, b) properly imple-
ments pair compression for ab. If a has no crossing blocks, then BlockCompNCr(a)
properly implements the block compression for a.

The main idea of the recompression method is the way it deals with the crossing
pairs: imagine that ab is a crossing pair, this is because S(X) = bw and aX
appears in A = B or S(X) = wa and Xb appears in it (the remaining case, in
which S(X) = awb and XX appears in the equation is treated in the same way).
The cases are symmetric, so we deal only with the first one. To ‘uncross’ ab in
this case it is enough to ‘left-pop’ b from X : replace each X in the equation with
bX and implicitly change the solution to S(X) = w.
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Algorithm 1. Pop(a, b)
1: if b is the first letter of S(X) then
2: if SimpleSolution(b) returns 1 then � S(X) = b is a solution
3: report solution S(X) = b

4: replace each X in A = B by bX � Implicitly change S(X) = bw to S(X) = w

5: � perform symmetric actions for a

Lemma 3. Pop(a, b) preserves solutions. After it the pair ab is noncrossing.

The presented procedures are merged into PairComp(a, b) that turns crossing
pairs into noncrossing ones and then compresses them.

Lemma 4. PairComp(a, b) properly implements the pair compression of ab.

The number of noncrossing pairs can be large, however, applying Pop(a, b), where
b, a are the first and last letters of the S(X) reduces their number to 2.

Lemma 5. After Pop(a, b), where b, a are the first and last letters of the S(X),
the solutions are preserved and there are at most two crossing pairs.

The problems with crossing blocks are solved in a similar fashion: a has a crossing
block, if and only if aa is a crossing pair. So we ‘left-pop’ a from X until the first
letter of S(X) is different than a, we do the same with the ending letter b. This
effectively removes the whole a-prefix (b-suffix, respectively) from X : suppose
that S(X) = a�wbr, where w does not start with a nor end with b. Then we
replace each X by a�Xbr, implicitly changing the solution to S(X) = w. The
corresponding procedure is called CutPrefSuff.

Lemma 6. CutPrefSuff preserves solutions and after its application there are
no crossing blocks of letters.

BlockComp(a) compresses all blocks of a, regardless of whether it is crossing or
not, by first applying CutPrefSuff and then BlockCompNCr(a).

Lemma 7. BlockComp(a) properly implements the block compression for a be-
fore its application.

3 Main Algorithm

The following algorithm OneVar is basically a simplification of the general algo-
rithm for testing the satisfiability of word equations [6].
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Algorithm 2. OneVar reports all solutions of a given word equation
1: while |A0| > 1 do
2: Letters ← letters in A = B
3: run CutPrefSuff � There are now crossing blocks
4: for a ∈ Letters do � Compressing blocks, time O(|A| + |B)| in total
5: run BlockComp(a)
6: Pop(a, b), where a is the first and b the last letter of S(X)
7: � Now there are only two crossing pairs
8: Crossing ← list of crossing pairs, Non-Crossing ← list of noncrossing pairs
9: for each ab ∈ Non-Crossing do � Compress noncrossing pairs, O(|A| + |B)|

10: PairCompNCr(a, b)
11: for ab ∈ Crossing do � Compress the 2 crossing pairs, O(|A| + |B)|
12: PairComp(a, b)
13: TestSolution � Test solutions from a∗

We call one iteration of the main loop a phase.

Theorem 1. OneVar runs in time O(|A| + |B| + (nA + nB) log(|A| + |B|)) and
correctly reports all solutions of a word equation A = B.

The most important property of OneVar is that the explicit strings between the
variables shorten (assuming they are long enough): We say that a word Ai (Bj)
is short if it consists of at most C = 100 letters and long otherwise.

Lemma 8. If Ai (Bj) is long then its length is reduced by 1/4 in this phase; if
it is short then after the phase it still is.

If the first word is short then its length is shortened by at least 1 in a phase.

It is relatively easy to estimate the running time of one phase.

Lemma 9. One phase of OneVar can be performed in O(|A| + |B|) time.

The cost of one phase is charged towards the words A0, . . . , AnA , B1, . . . , BnB
proportionally to their lengths. Since the lengths of the long words drop by a
constant factor in each phase, in total such cost is O(n). For short words the
cost is O(1) per phase and there are O(log n) phases by Lemma 8.

4 Heuristics and Better Analysis

The main obstacle in the linear running time is the necessity of dealing with
short words, as the time spent on processing them is difficult to charge. The
improvement to linear running time is done by four major modifications:

several equations We store a system of several equations and look for a solu-
tion of such a system. This allows removal of some words from the equations.
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small solutions We identify a class of particularly simple solutions, called
small, and show that a solution is reported within O(1) phases from the
moment when it became small. In several cases of the analysis we show that
the solutions involved are small and so it is easier to charge the time spent
on testing them.

storage All words are represented by a structure of size proportional to the size
of the long words. In this way the storage space (and so also time used for
compression) decreases by a constant factor in each phase.

testing The testing procedure is modified, so that the time it spends on the
short words is reduced. We also improve the rough estimate that SimpleSo-
lution takes time proportional to |A| + |B| to an estimation that counts for
each word whether it was included in the test or not.

Several Equations. We store several equations and look for substitutions that
simultaneously satisfy all of them. Hence we have a collection Ai = Bi of equa-
tions, for i = 1, . . . , m, each of them is of the form (1). This system is obtained
by replacing one equation A′

iA′′
i = B′

iB′′
i with equivalent two equations A′

i = B′
i

and A′′
i = B′′

i .
Each of the equations Ai = Bi in the system specifies the first and last letter

of the solution, length of the a-prefix and suffix etc., exactly in the same way
as it does for a single equation. However, it is enough to use only one of them,
say A1 = B1, as if there is any conflict then there is no solution at all. The
consistency is not checked, simply when we find out about inconsistency, we
terminate immediately. We say that Ai (Bj) is first or last if it is in any of the
stored equations.

All operations on a single equation from previous sections (popping letters,
cutting prefixes/suffixes, pair/block compression, etc.) generalise to a system of
equations and they preserve their properties and running times, with the length
of a single equation |A| + |B| replaced by a sum of lengths of all equations∑m

i=1 |Ai| + |Bi|.

Small Solutions. We say that a word w represented as w = w1w�
2w3 (where �

is arbitrary) is almost periodic, with period size |w2| and side size |w1w3| (note
that several such representations may exist, we use this notion for a particu-
lar representation that is clear from the context). A substitution S is small, if
S(X) = (w)kv, where w, v are almost periodic, with period size at most C and
side size at most 6C.

Lemma 10. Suppose that S is a small solution. There is a constant c such that
within c phases the corresponding solution is reported by OneVar.

Storing. While the long words are stored exactly as they used to, the short
words are stored more efficiently: we keep a table of short words and equations
point to the table of short words instead of storing them. We say that such
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a representation is succinct and its size is the sum of lengths of words stored in
it. Note that we do not include the size of the equation.

The correctness of such an approach is guaranteed by the fact that equality
of two explicit words is not changed by OneVar, which is shown by a simple
induction.

Lemma 11. Consider any words A and B in the input equation. Suppose that
during OneVar they were transformed to A′ = B′, none of which is a first nor
last word. Then A = B if and only if A′ = B′.

Hence, to perform the compression it is enough to read the succinct representa-
tion without looking at the whole equation. In particular, the compression (both
pair and block) can be performed in time proportional to the size of the succinct
representation.

Lemma 12. The compression in one phase of OneVar can be performed in time
linear in size of the succinct representation.

Ideally, we want to show that the succinct representation has size proportional
to the length of long words. In this way its size would decrease by a constant
factor in each phase and thus be O(n) in total. In reality, we are quite close
to this: the words stored in the tables are of two types: normal and overdue.
The normal words are substrings of the long words or A2

0 and consequently the
sum of their sizes is proportional to the size of the long words. A word becomes
overdue if at the beginning of the phase it is not a substring of a long word or
A2

0. It might be that it becomes a substring of such a word later, it does not stop
to be an overdue word in such a case. The new overdue words can be identified
in linear time using standard operations on a suffix array for a concatenation of
long and short strings appearing in the equations.

Lemma 13. In time proportional to the sum of sizes of the long words plus the
number of overdue words we can identify the new overdue words.

The overdue words can be removed from the equations in O(1) phases after
becoming overdue. This is shown by a serious of lemmata.

We say that for a substitution S the word A is arranged against itself if each
A in S(A) coming from explicit Ai = A corresponds to Bj = A at the same
positions in S(B) (and symmetrically, for the sides of the equation exchanged).

Lemma 14. Consider a word A in a phase in which it becomes overdue and a
solution S. Then either S is small or A is arranged against itself.

The proof is rather easy: we consider the Ai = A that is not arranged against
some Bj = A in S(A) = S(B). Since by definition it also cannot be arranged
against a subword of a long word, case inspection gives that one of the S(X)
preceding or succeeding Ai overlaps with some other S(X), yielding that S(X)
is periodical. Furthermore, this period has length at most |Ai| ≤ C, hence S(X)
is small.
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Due to Lemmata 10 and 14 the overdue words can be removed in O(1) phases
after their introduction: suppose that A becomes an overdue word in phase
�. Any solution, in which an overdue word A is not arranged against another
copy of A is small and so it is reported after O(1) phases. Then an equation
A′

iXAXA′′
i = B′

iXAXB′′
i , where A′

i and B′
i do not have A as a word, is equivalent

to two equations A′
i = B′

i and A′′
i = B′′

i and this procedure can be applied
recursively to A′′

i = B′′
i . This removes all copies of A from the system.

Lemma 15. Consider the set of overdue words introduced in phase �. Then in
phase � + c (for some constant c) we can remove all words A from equations.
The obtained set of equations has the same set of solutions. The time spend on
removal of overdue words, over the whole run of OneVar, is O(n).

This allows to bound the time spent on compression.

Lemma 16. The running time of OneVar, except for time used to test the so-
lutions, is O(n).

Testing. SimpleSolution checks whether S is a solution by comparing S(Ai) and
S(Bi) letter by letter, replacing X with a� on the fly. We say that in such a case
a letter b in S(Ai) is tested against the corresponding letter in S(Bi).

Suppose that for a substitution S a letter from Ai is tested against a letter
from S(XBj) (there is some asymmetry regarding Ais and Bjs in the definition,
this is a technical detail without an importance). We say that this test is:

protected if at least one of Ai, Ai+1, Bj , Bj+1 is long
failed if Ai, Ai+1, Bj and Bj+1 are short and a mismathch for S is found till

the end of Ai+1 or Bj+1;
aligned if Ai = Bj and Ai+1 = Bj+1, all of them are short and the first letter

of Ai is tested against the first letter of Bj ;
misaligned if all of Ai, Ai+1, Bj, Bj+1 are short, Ai+1 �= Ai or Bj+1 �= Bj and

this is not an aligned test;
periodical if Ai+1 = Ai, Bj+1 = Bj , all of them are short and this is not an

aligned test.

It is easy to show by case inspection that each test is of one of those type. We
calculate the cost of each type of tests separately. For failed tests note that there
are constantly many of them in each of the O(log n) phases.

Lemma 17. The number of all failed tests is O(log n).

For protected tests, we charge the cost of the protected test to the long word
and only O(|A|) such tests can be charged to one long word A in a phase. On
the other hand, each long word is shortened by a constant factor in a phase and
so this cost can be charged to those removed letters and thus the total cost of
those tests (over the whole run of OneVar) is O(n).
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Lemma 18. In one phase the number of protected tests is proportional to the
length of long words. Thus there are O(n) such tests in total.
In case of the misaligned tests, consider the phase in which the last of Ai+1, Ai,
Bj+1, Bj becomes short. We show that the corresponding solution S′ is small
in this phase and so by Lemma 10 it is reported within O(1) following phases.
The proof is quite technical, it follows a general idea of Lemma 14: we show that
S(X) overlaps with itself and so it has a period. A closer inspection proves that
this period is almost periodical.

The cost of the misaligned test is charged to the last word among Ai, Ai+1,
Bj , Bj+1 that became short, say, Bj and only O(1) such tests are charged to
this Bj (over the whole run of OneVar). Hence there are O(n) misaligned tests.
Lemma 19. There are O(n) misaligned tests during the whole run of OneVar.
Consider the maximal set of consecutive aligned tests, they correspond to com-
parison of AiXAi+1 . . . Ai+kX and BjXBj+1 . . . Bj+kX , where Ai+� = Bj+� for
� = 0, . . . , k. Then the next test is either misaligned, protected or failed, so if the
cost of all those aligned tests can be bounded by O(1), they can be associated
with the succeeding test. Note that instead of performing the aligned tests (by
comparing letters), it is enough to identify the maximal (syntactically) equal
substrings of the equation. From Lemma 11 it follows that this corresponds to
the (syntactical) equality of substrings in the original equation. We identify such
substrings in O(1) per substring using a suffix array constructed for the input
equation.
Lemma 20. The total cost of aligned tests is O(n).
For the periodical tests we apply a similar charging strategy. Suppose that we
are to test the equality of (suffix of) S((AiX)�) and (prefix of) S(X(BjX)k).
Firstly, it is easy to show that the next test is either misaligned, protected or
failed. Secondly, if |Ai| = |Bj | then the test for Ai+�′ and Bj+� for 0 < �′ ≤ � is
the same as for Ai and Bj and so they can be all skipped. If |Ai| > |Bj | then
the common part of S((AiX)�) and S(X(BjX)k) have periods |S(AiX)| and
|S(BjX)| and consequently has a period |Ai| − |Bj | ≤ C. So to test the equality
of S((AiX)�) and (prefix of) S(X(BjX)k) it is enough to test first common
|Ai| − |Bj | letters and check whether both S(AiX) and S(BjX) have period
|Ai| − |Bj |.
Lemma 21. Performing all periodical tests takes in total O(n) time
This yields that the total time of testing is linear.
Lemma 22. The time spent on testing solutions during OneVar is O(n).
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