
Formalizing and Reasoning about Quality�

Shaull Almagor1, Udi Boker2, and Orna Kupferman1

1 The Hebrew University, Jerusalem, Israel
2 IST Austria, Klosterneuburg, Austria

Abstract. Traditional formal methods are based on a Boolean satisfaction no-
tion: a reactive system satisfies, or not, a given specification. We generalize for-
mal methods to also address the quality of systems. As an adequate specification
formalism we introduce the linear temporal logic LTL[F]. The satisfaction value
of an LTL[F] formula is a number between 0 and 1, describing the quality of
the satisfaction. The logic generalizes traditional LTL by augmenting it with a
(parameterized) set F of arbitrary functions over the interval [0, 1]. For exam-
ple, F may contain the maximum or minimum between the satisfaction values of
subformulas, their product, and their average.

The classical decision problems in formal methods, such as satisfiability, model
checking, and synthesis, are generalized to search and optimization problems
in the quantitative setting. For example, model checking asks for the quality in
which a specification is satisfied, and synthesis returns a system satisfying the
specification with the highest quality. Reasoning about quality gives rise to other
natural questions, like the distance between specifications. We formalize these
basic questions and study them for LTL[F]. By extending the automata-theoretic
approach for LTL to a setting that takes quality into an account, we are able to
solve the above problems and show that reasoning about LTL[F] has roughly the
same complexity as reasoning about traditional LTL.

1 Introduction

One of the main obstacles to the development of complex computerized systems lies in
ensuring their correctness. Efforts in this direction include temporal-logic model check-
ing – given a mathematical model of the system and a temporal-logic formula that
specifies a desired behavior of the system, decide whether the model satisfies the for-
mula, and synthesis – given a temporal-logic formula that specifies a desired behavior,
generate a system that satisfies the specification with respect to all environments [6].

Correctness is Boolean: a system can either satisfy its specification or not satisfy
it. The richness of today’s systems, however, justifies specification formalisms that are
multi-valued. The multi-valued setting arises directly in systems in which components
are multi-valued (c.f., probabilistic and weighted systems) and arises indirectly in ap-
plications where multi values are used in order to model missing, hidden, or varying
information (c.f., abstraction, query checking, and inconsistent viewpoints). As we elab-
orate below, the multi-valued setting has been an active area of research in recent years.

� This work was supported in part by the Austrian Science Fund NFN RiSE (Rigorous Systems
Engineering), by the ERC Advanced Grant QUAREM (Quantitative Reactive Modeling), and
the ERC Grant QUALITY. The full version is available at the authors’ URLs.

F.V. Fomin et al. (Eds.): ICALP 2013, Part II, LNCS 7966, pp. 15–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

16 S. Almagor, U. Boker, and O. Kupferman

No attempts, however, have been made to augment temporal logics with a quantitative
layer that would enable the specification of the relative merits of different aspects of
the specification and would enable to formalize the quality of a reactive system. Given
the growing role that temporal logic plays in planning and robotics, and the criticality
of quality in these applications [16], such an augmentation is of great importance also
beyond the use of temporal logic in system design and verification.

In this paper we suggest a framework for formalizing and reasoning about quality.
Our working assumption is that satisfying a specification is not a yes/no matter. Differ-
ent ways of satisfying a specification should induce different levels of quality, which
should be reflected in the output of the verification procedure. Consider for example the
specification G(req → Fgrant). There should be a difference between a computation
that satisfies it with grants generated soon after requests, one that satisfies it with long
waits, one that satisfies it with several grants given to a single request, one that satisfies
it vacuously (with no requests), and so on. Moreover, we may want to associate dif-
ferent levels of importance to different components of a specification, to express their
mutual influence on the quality, and to formalize the fact that we have different levels
of confidence about some of them.

Quality is a rather subjective issue. Technically, we can talk about the quality of sat-
isfaction of specifications since there are different ways to satisfy specifications. We
introduce and study the linear temporal logic LTL[F], which extends LTL with an ar-
bitrary set F of functions over [0, 1]. Using the functions in F , a specifier can formally
and easily prioritize the different ways of satisfaction. The logic LTL[F] is really a fam-
ily of logics, each parameterized by a set F ⊆ {f : [0, 1]k → [0, 1]|k ∈ �} of functions
(of arbitrary arity) over [0, 1]. For example, F may contain the min {x, y}, max {x, y},
and 1 − x functions, which are the standard quantitative analogues of the ∧, ∨, and ¬
operators. As we discuss below, such extensions to LTL have already been studied in
the context of quantitative verification [15]. The novelty of LTL[F], beyond its use in
the specification of quality, is the ability to manipulate values by arbitrary functions. For
example, F may contain the quantitative operator �λ, for λ ∈ [0, 1], that tunes down
the quality of a sub-specification. Formally, the quality of the satisfaction of the speci-
fication �λϕ is the multiplication of the quality of the satisfaction of ϕ by λ. Another
useful operator is the weighted-average function ⊕λ. There, the quality described by
the formula ϕ ⊕λ ψ is the weighted (according to λ) average between the quality of ϕ
and that of ψ. This enables the quality of the system to be an interpolation of different
aspects of it. As an example, consider the formula G(req → (grant ⊕ 3

4
Xgrant)). The

formula specifies the fact that we want requests to be granted immediately and the grant
to hold for two transactions. When this always holds, the satisfaction value is 1. We are
quite okay with grants that are given immediately and last for only one transaction, in
which case the satisfaction value is 3

4 , and less content when grants arrive with a delay,
in which case the satisfaction value is 1

4 .
An LTL[F] formula maps computations to a value in [0, 1]. We accordingly gen-

eralize classical decision problems, such as model checking, satisfiability, synthesis,
and equivalence, to their quantitative analogues, which are search or optimization

Formalizing and Reasoning about Quality 17

problems. For example, the equivalence problem between two LTL[F] formulasϕ1 and
ϕ2 seeks the supremum of the difference in the satisfaction values of ϕ1 and ϕ2 over all
computations. Of special interest is the extension of the synthesis problem. In conven-
tional synthesis algorithms we are given a specification to a reactive system, typically
by means of an LTL formula, and we transform it into a system that is guaranteed to
satisfy the specification with respect to all environments [23]. Little attention has been
paid to the quality of the systems that are automatically synthesized1. Current efforts
to address the quality challenge are based on enriching the game that corresponds to
synthesis to a weighted one [2,5]. Using LTL[F], we are able to embody quality within
the specification, which is very convenient.

In the Boolean setting, the automata-theoretic approach has proven to be very use-
ful in reasoning about LTL specifications. The approach is based on translating LTL
formulas to nondeterministic Büchi automata on infinite words [25]. In the quantitative
approach, it seems natural to translate formulas to weighted automata [21]. However,
these extensively-studied models are complicated and many problems become undecid-
able for them [1,17]. We show that we can use the approach taken in [15], bound the
number of possible satisfaction values of LTL[F] formulas, and use this bound in or-
der to translate LTL[F] formulas to Boolean automata. From a technical point of view,
the big challenge in our setting is to maintain the simplicity and the complexity of the
algorithms for LTL, even though the number of possible values is exponential. We do
so by restricting attention to feasible combinations of values assigned to the different
subformulas of the specification. Essentially, our translation extends the construction of
[25] by associating states of the automaton with functions that map each subformula
to a satisfaction value. Using the automata-theoretic approach, we solve the basic prob-
lems for LTL[F] within the same complexity classes as the corresponding problems in
the Boolean setting (as long as the functions in F are computable within these com-
plexity classes; otherwise, they become the computational bottleneck). Our approach
thus enjoys the fact that traditional automata-based algorithms are susceptible to well-
known optimizations and symbolic implementations. It can also be easily implemented
in existing tools.

Recall that our main contribution is the ability to address the issue of quality within
the specification formalism. While we describe it with respect to Boolean systems, we
show in Section 5 that our contribution can be generalized to reason about weighted
systems, where the values of atomic propositions are taken from [0, 1]. We also extend
LTL[F] to the branching temporal logic CTL�[F], which is the analogous extension of
CTL�, and show that we can still solve decision and search problems. Finally, we define
a fragment, LTL�, of LTL[F] for which the number of different satisfaction values is
linear in the length of the formula, leading to even simpler algorithms.

Related Work. In recent years, the quantitative setting has been an active area of re-
search, providing many works on quantitative logics and automata [9,10,12,18].

Conceptually, our work aims at formalizing quality, having a different focus from
each of the other works. Technically, the main difference between our setting and most

1 Note that we do not refer here to the challenge of generating optimal (say, in terms of state
space) systems, but rather to quality measures that refer to how the specification is satisfied.

18 S. Almagor, U. Boker, and O. Kupferman

of the other approaches is the source of quantitativeness: There, it stems from the nature
of the system, whereas in our setting it stems from the richness of the new functional
operators. For example, in multi-valued systems, the values of atomic propositions are
taken from a finite domain [4,18]. In fuzzy temporal logic [22], the atomic propositions
take values in [0, 1]. Probabilistic temporal logic is interpreted over Markov decision
processes [8,20], and in the context of real-valued signals [11], quantitativeness stems
from both time intervals and predicates over the value of atomic propositions.

Closer to our approach is [7], where CTL is augmented with discounting and
weighted-average operators. Thus, a formula has a rich satisfaction value, even on
Boolean systems. The motivation in [7] is to suggest a logic whose semantics is not
too sensitive to small perturbations in the model. Accordingly, formulas are evaluated
on weighted-system (as we do in Section 5) or on Markov-chains. We, on the other
hand, aim at specifying quality of on-going behaviors. Hence, we work with the much
stronger LTL and CTL∗ logics, and we augment them by arbitrary functions over [0, 1].

A different approach, orthogonal to ours, is to stay with Boolean satisfaction values,
while handling quantitative properties of the system, in particular ones that are based
on unbounded accumulation [3]. The main challenge in these works is the border of
decidability, whereas our technical challenge is to keep the simplicity of the algorithms
known for LTL in spite of the exponential number of satisfaction values. Nonetheless,
an interesting future research direction is to combine the two approaches.

2 Formalizing Quality

2.1 The Temporal Logic LTL[F]

The linear temporal logic LTL[F] generalizes LTL by replacing the Boolean operators
of LTL with arbitrary functions over [0, 1]. The logic is actually a family of logics, each
parameterized by a set F of functions.

Syntax. Let AP be a set of Boolean atomic propositions, and let F ⊆ {f : [0, 1]k →
[0, 1] | k ∈ �} be a set of functions over [0, 1]. Note that the functions in F may have
different arities. An LTL[F] formula is one of the following:

– True, False, or p, for p ∈ AP .
– f(ϕ1, ..., ϕk), Xϕ1, or ϕ1Uϕ2, for LTL[F] formulas ϕ1, . . . , ϕk and a function
f ∈ F .

Semantics. The semantics of LTL[F] formulas is defined with respect to (finite or infi-
nite) computations over AP . We use (2AP)∞ to denote (2AP)∗ ∪ (2AP)ω . A computa-
tion is a word π = π0, π1, . . . ∈ (2AP)∞. We use πi to denote the suffix πi, πi+1,
The semantics maps a computation π and an LTL[F] formulaϕ to the satisfaction value
of ϕ in π, denoted [[π, ϕ]]. The satisfaction value is defined inductively as described in
Table 1 below.2

2 The observant reader may be concerned by our use of max and min where sup and inf are in
order. In Lemma 1 we prove that there are only finitely many satisfaction values for a formula
ϕ, thus the semantics is well defined.

Formalizing and Reasoning about Quality 19

Table 1. The semantics of LTL[F]

Formula Satisfaction value Formula Satisfaction value

[[π, True]] 1 [[π, f(ϕ1, ..., ϕk)]] f([[π, ϕ1]], ..., [[π, ϕk]])

[[π, False]] 0 [[π,Xϕ1]] [[π1, ϕ1]]

[[π, p]]
1 if p ∈ π0

0 if p /∈ π0
[[π, ϕ1Uϕ2]] max

0≤i<|π|
{min{[[πi, ϕ2]], min

0≤j<i
[[πj , ϕ1]]}}

It is not hard to prove, by induction on the structure of the formula, that for every
computation π and formula ϕ, it holds that [[π, ϕ]] ∈ [0, 1]. We use the usual Fϕ1 =
TrueUϕ1 and Gϕ1 = ¬(TrueU(¬ϕ1)) abbreviations.

The logic LTL coincides with the logic LTL[F] for F that corresponds to the usual
Boolean operators. For simplicity, we use the common such functions as abbreviation,
as described below. In addition, we introduce notations for some useful functions. Let
x, y ∈ [0, 1]. Then,

• ¬x = 1− x • x ∨ y = max {x, y} • x ∧ y = min {x, y}
• �λx = λ · x • x⊕λ y = λ · x+ (1− λ) · y

To see that LTL indeed coincides with LTL[F] for F = {¬,∨,∧}, note that for this F ,
all formulas are mapped to {0, 1} in a way that agrees with the semantics of LTL.

Kripke Structures and Transducers. For a Kripke structure K and an LTL[F] formula
ϕ, we have that [[K, ϕ]] = min {[[π, ϕ]] : π is a computation of K}. That is, the value is
induced by the path that admits the lowest satisfaction value. 3

In the setting of open systems, the set of atomic propositions is partitioned into sets I
and O of input and output signals. An (I, O)-transducer then models the computations
generated (deterministically) by the system when it interacts with an environment that
generates finite or infinite sequences of input signals.

Example 1. Consider a scheduler that receives requests and generates grants. Consider
the LTL[F] formula G(req → F(grant ⊕ 1

2
Xgrant)) ∧ ¬(� 3

4
G¬req). The satisfaction

value of the formula is 1 if every request is eventually granted, and the grant lasts for
two consecutive steps. If a grant holds only for a single step, then the satisfaction value
is reduced to 1

2 . In addition, if there are no requests, then the satisfaction value is at
most 1

4 . This shows how we can embed vacuity tests in the formula.

2.2 The Basic Questions

In the Boolean setting, an LTL formula maps computations to {True, False}. In the
quantitative setting, an LTL[F] formula maps computations to [0, 1]. Classical deci-
sion problems, such as model checking, satisfiability, synthesis, and equivalence, are
accordingly generalized to their quantitative analogues, which are search or optimiza-
tion problems. Below we specify the basic questions with respect to LTL[F]. While the

3 Since a Kripke structure may have infinitely many computations, here too we should have
a-priori used inf , and the use of min is justified by Lemma 1.

20 S. Almagor, U. Boker, and O. Kupferman

definition here focuses on LTL[F], the questions can be asked with respect to arbitrary
quantitative specification formalism, with the expected adjustments.

– The satisfiability problem gets as input an LTL[F] formula ϕ and returns
max{[[π, ϕ]] : π is a computation}. Dually, the validity problem returns, given an
LTL[F] formula ϕ, the value min {[[π, ϕ]] : π is a computation}. 4

– The implication problem gets as input two LTL[F] formulasϕ1 and ϕ2 and returns
max {[[π, ϕ1]]− [[π, ϕ2]] : π is a computation}. The symmetric version of implica-
tion, namely the equivalence problem, gets as input two LTL[F] formulas ϕ1 and
ϕ2 and returns max {|[[π, ϕ1]]− [[π, ϕ2]]| : π is a computation}.

– The model-checking problem is extended from the Boolean setting to find, given a
system K and an LTL[F] formula ϕ, the satisfaction value [[K, ϕ]].

– The realizability problem gets as input an LTL formula over I ∪O, for sets I andO
of input and output signals, and returns max{[[T , ϕ]] : T is an (I, O)-transducer}.
The synthesis problem is then to find a transducer that attains this value.

Decision Problems. The above questions are search and optimization problems. It is
sometimes interesting to consider the decision problems they induce, when referring
to a threshold. For example, the model-checking decision-problem is to decide, given
a system K, a formula ϕ, and a threshold t, whether [[K, ϕ]] ≥ t. For some problems,
there are natural thresholds to consider. For example, in the implication problem, asking
whether max {[[π, ϕ1]]− [[π, ϕ2]] : π is a computation} ≥ 0 amounts to asking whether
for all computations π, we have that [[π, ϕ1]] ≥ [[π, ϕ2]], which indeed captures implica-
tion.

2.3 Properties of LTL[F]

Bounding the Number of Satisfaction Values. For an LTL[F] formula ϕ, let V (ϕ) =
{[[π, ϕ]] : π ∈ (2AP)∞}. That is, V (ϕ) is the set of possible satisfaction values of ϕ in
arbitrary computations. We first show that this set is finite for all LTL[F] formulas.

Lemma 1. For every LTL[F] formula ϕ, we have that |V (ϕ)| ≤ 2|ϕ|.

The good news that follows from Lemma 1 is that every LTL[F] formula has only
finitely many possible satisfaction values. This enabled us to replace the sup and inf op-
erators in the semantics by max and min. It also implies that we can point to witnesses
that exhibit the satisfaction values. However, Lemma 1 only gives an exponential bound
to the number of satisfaction values. We now show that this exponential bound is tight.

Example 2. Consider the logic LTL[{⊕}], augmenting LTL with the average function,
where for every x, y ∈ [0, 1] we have that x ⊕ y = 1

2x + 1
2y. Let n ∈ � and consider

the formula ϕn = p1 ⊕ (p2 ⊕ (p3 ⊕ (p4 ⊕ ...pn))...). The length of ϕn is in O(n) and
the nesting depth of ⊕ operators in it is n. For every computation π it holds that

[[π, ϕn]] =
1

2
[[π0, p1]] +

1

4
[[π0, p2]] + ...+

1

2n−1
[[π0, pn−1]] +

1

2n−1
[[π0, pn]].

4 Lemma 1 guarantees that max and min (rather than sup and inf) are defined.

Formalizing and Reasoning about Quality 21

Hence, every assignment π0 ⊆ {p1, ..., pn−1} to the first position in π induces a dif-
ferent satisfaction value for [[π, ϕn]], implying that there are 2n−1 different satisfaction
values for ϕn.

A Boolean Look at LTL[F]. LTL[F] provides means to generalize LTL to a quan-
titative setting. Yet, one may consider a Boolean logic defined by LTL[F] formulas
and predicates. For example, having formulas of the form ϕ1 ≥ ϕ2 or ϕ1 ≥ v, for
LTL[F] formulas ϕ1 and ϕ2, and a value v ∈ [0, 1]. It is then natural to compare the
expressiveness and succinctness of such a logic with respect to LTL.

One may observe that the role the functions in F play in LTL[F] is propositional, in
the sense that the functions do not introduce new temporal operators. We formalize this
intuition in the full version, showing that for every LTL[F] formula ϕ and predicate
P ⊆ [0, 1], there exists an LTL formula Bool (ϕ, P) equivalent to the assertion ϕ ∈ P .
Formally, we have the following.

Theorem 1. For every LTL[F] formula ϕ and predicate P ⊆ [0, 1], there exists an
LTL formula Bool (ϕ, P), of length at most exponential in ϕ, such that for every com-
putation π, it holds that [[π, ϕ]] ∈ P iff π |= Bool(ϕ, P).

The translation described in the proof of Theorem 1 may involve an exponential blow-
up. We indeed conjecture that this blowup is unavoidable, implying that LTL[F], when
used as a Boolean formalism, is exponentially more succinct than LTL. Since very little
is known about lower bounds for propositional formulas, we leave it as a conjecture. We
demonstrate the succinctness with the following example.

Example 3. For k ≥ 1, let ⊕ 1
k

be the k-ary average operator. Consider the logic
LTL[{⊕ 1

k
}], for an even integer k, and consider the formula ϕk = ⊕ 1

k
(p1, . . . , pk),

for the atomic propositions p1, . . . , pk.
For every computation π, it holds that [[π, ϕk]] =

|{i: pi∈π0}|
k . Hence, [[π, ϕk]] = 1

2
iff exactly half of the atomic propositions p1, . . . , pk hold in π0. We conjecture that
the LTL formula Bool (ϕk,

1
2) must be exponential in k. Intuitively, the formula has to

refer to every subset of size k
2 . A naive implementation of this involves

(
k
k/2

)
clauses,

which is exponential in k. The question whether this can be done with a formula that is
polynomial in k is a long-standing open problem.

3 Translating LTL[F] to Automata

The automata-theoretic approach uses the theory of automata as a unifying paradigm
for system specification, verification, and synthesis [24,26]. In this section we describe
an automata-theoretic framework for reasoning about LTL[F] specifications. In order
to explain our framework, let us recall first the translation of LTL formulas to nonde-
terministic generalized Büchi automata (NGBW), as introduced in [25]. We start with
the definition of NGBWs. An NGBW is A = 〈Σ,Q,Q0, δ, α〉, where Σ is the input
alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q × Σ → 2Q

is a transition function, and α ⊆ 2Q is a set of sets of accepting states. The number of
sets in α is the index of A. A run r = r0, r1, · · · of A on a word w = w1 ·w2 · · · ∈ Σω

22 S. Almagor, U. Boker, and O. Kupferman

is an infinite sequence of states such that r0 ∈ Q0, and for every i ≥ 0, we have that
ri+1 ∈ δ(ri, wi+1). We denote by inf(r) the set of states that r visits infinitely often,
that is inf(r) = {q : ri = q for infinitely many i ∈ �}. The run r is accepting if
it visits all the sets in α infinitely often. Formally, for every set F ∈ α we have that
inf(r) ∩ F �= ∅. An automaton accepts a word if it has an accepting run on it. The
language of an automaton A, denoted L(A), is the set of words that A accepts.

In the Vardi-Wolper translation of LTL formulas to NGBWs [25], each state of the
automaton is associated with a set of formulas, and the NGBW accepts a computation
from a state q iff the computation satisfies exactly all the formulas associated with q. The
state space of the NGBW contains only states associated with maximal and consistent
sets of formulas, the transitions are defined so that requirements imposed by temporal
formulas are satisfied, and the acceptance condition is used in order to guarantee that
requirements that involve the satisfaction of eventualities are not delayed forever.

In our construction here, each state of the NGBW assigns a satisfaction value to
every subformula. Consistency then assures that the satisfaction values agree with the
functions in F . Similar adjustments are made to the transitions and the acceptance con-
dition. The construction translates an LTL[F] formula ϕ to an NGBW, while setting its
initial states according to a required predicate P ⊆ [0, 1]. We then have that for every
computation π ∈ (2AP)ω, the resulting NGBW accepts π iff [[π, ϕ]] ∈ P .

We note that a similar approach is taken in [15], where LTL formulas are interpreted
over quantitative systems. The important difference is that the values in our construction
arise from the formula and the functions it involves, whereas in [15] they are induced
by the values of the atomic propositions.

Theorem 2. Let ϕ be an LTL[F] formula and P ⊆ [0, 1] be a predicate. There exists
an NGBW Aϕ,P such that for every computation π ∈ (2AP)ω , it holds that [[π, ϕ]] ∈ P

iff Aϕ,P accepts π. Furthermore, Aϕ,P has at most 2(|ϕ|
2) states and index at most |ϕ|.

Proof. We define Aϕ,P = 〈2AP , Q, δ,Q0, α〉 as follows. Let cl(ϕ) be the set of ϕ’s
subformulas. Let Cϕ be the collection of functions g : cl(ϕ) → [0, 1] such that for
all ψ ∈ cl(ϕ), we have that g(ψ) ∈ V (ψ). For a function g ∈ Cϕ, we say that g is
consistent if for every ψ ∈ cl(ϕ), the following holds.

– If ψ = True, then g(ψ) = 1, and if ψ = False then g(ψ) = 0.
– If ψ = p ∈ AP , then g(ψ) ∈ {0, 1}.
– If ψ = f(ψ1, . . . , ψk), then g(ψ) = f(g(ψ1), . . . , g(ψk)).

The state space Q of Aϕ,P is the set of all consistent functions in Cϕ. Then, Q0 =
{g ∈ Q : g(ϕ) ∈ P} contains all states in which the value assigned to ϕ is in P .

We now define the transition function δ. For functions g, g′ and a letter σ ∈ Σ, we
have that g′ ∈ δ(g, σ) iff the following hold.

– σ = {p ∈ AP : g(p) = 1}.
– For all Xψ1 ∈ cl(ϕ) we have g(Xψ1) = g′(ψ1).
– For all ψ1Uψ2 ∈ cl(ϕ) we have g(ψ1Uψ2) =

max {g(ψ2),min {g(ψ1), g
′(ψ1Uψ2)}}.

Finally, every formula ψ1Uψ2 contributes to α the set Fψ1Uψ2 =
{g : g(ψ2) = g(ψ1Uψ2)}.

Formalizing and Reasoning about Quality 23

Remark 1. The construction described in the proof of Theorem 2 is such that select-
ing the set of initial states allows us to specify any (propositional) condition regarding
the sub-formulas of ϕ. A simple extension of this idea allows us to consider a set of
formulas {ϕ1, ..., ϕm} = Φ and a predicate P ⊆ [0, 1]m, and to construct an NGBW
that accepts a computation π iff 〈[[π, ϕ1]], ..., [[π, ϕn]]〉 ∈ P . Indeed, the state space
of the product consists of functions that map all the formulas in Φ to their satisfac-
tion values, and we only have to choose as the initial states these functions g for which
〈g(ϕ1), ..., g(ϕn)〉 ∈ P . As we shall see in Section 4, this allows us to use the automata-
theoretic approach also in order to examine relations between the satisfaction values of
different formulas.

4 Solving the Basic Questions for LTL[F]

In this section we solve the basic questions defined in Section 2.2. We show that they
all can be solved for LTL[F] with roughly the same complexity as for LTL. When
we analyze complexity, we assume that the functions in F can be computed in a com-
plexity that is subsumed by the complexity of the problem for LTL (PSPACE, except
for 2EXPTIME for realizability), which is very reasonable. Otherwise, computing the
functions becomes the computational bottleneck. A related technical observation is that,
assuming the functions in F can be calculated in PSPACE, we can also enumerate in
PSPACE the set V (ϕ) of the possible satisfaction values of an LTL[F] formula ϕ.

The questions in the quantitative setting are basically search problems, asking for the
best or worst value. Since every LTL[F] formula may only have exponentially many
satisfaction values, one can reduce a search problem to a set of decision problems with
respect to specific thresholds, remaining in PSPACE. Combining this with the construc-
tion of NGBWs described in Theorem 2 is the key to our algorithms.

We can now describe the algorithms in detail.

Satisfiability and Validity. We start with satisfiability and solve the decision version
of the problem: given ϕ and a threshold v, decide whether there exists a computation
π such that [[π, ϕ]] ≥ v. The latter can be solved by checking the nonemptiness of the
NGBW Aϕ,P with P = [v, 1]. Since the NGBW can be constructed on-the-fly, this can
be done in PSPACE in the size of |ϕ|. The search version can be solved in PSPACE by
iterating over the set of relevant thresholds.

We proceed to validity. It is not hard to see that for all ϕ and v, we have that
∀π, [[π, ϕ]] ≥ v iff¬(∃π, [[π, ϕ]] < v). The latter can be solved by checking, in PSPACE,
the nonemptiness of the NGBW Aϕ,P with P = [0, v). Since PSPACE is closed under
complementation, we are done. In both cases, the nonemptiness algorithm can return
the witness to the nonemptiness.

Implication and Equivalence. In the Boolean setting, implication can be reduced
to validity, which is in turn reduced to satisfiability. Doing the same here is more
sophisticated, but possible: we add to F the average and negation operators. It is
not hard to verify that for every computation π, it holds that [[π, ϕ1 ⊕ 1

2
¬ϕ2]] =

1
2 ([[π, ϕ1]]− [[π, ϕ2]])+

1
2 . In particular,max{[[π, ϕ1]]− [[π, ϕ2]] : π is a computation} =

2 ·max {[[π, ϕ1 ⊕ 1
2
¬ϕ2]] : π is a computation} − 1. Thus, the problem reduces to the

24 S. Almagor, U. Boker, and O. Kupferman

satisfiability of ϕ1 ⊕ 1
2
¬ϕ2, which is solvable in PSPACE. Note that, alternatively, one

can proceed as suggested in Remark 1 and reason about the composition of the NGBWs
for ϕ1 and ϕ2. The solution to the equivalence problem is similar, by checking both di-
rections of the implication.

Model Checking. The complement of the problem, namely whether there exists a com-
putation π of K such that [[π, ϕ]] < v, can be solved by taking the product of the NGBW
Aϕ,(0,v] from Theorem 2 with the system K and checking for emptiness on-the-fly. As
in the Boolean case, this can be done in PSPACE. Moreover, in case the product is
not empty, the algorithm returns a witness: a computation of K that satisfies ϕ with a
low quality. We note that in the case of a single computation, motivated by multi-valued
monitoring [11], one can label the computation in a bottom-up manner, as in CTL model
checking, and the problem can be solved in polynomial time.

Realizability and Synthesis. Several algorithms are suggested in the literature for solv-
ing the LTL realizability problem [23]. Since they are all based on a translation of speci-
fications to automata, we can adopt them. Here we describe an adoption of the Safraless
algorithm of [19] and its extension to NGBWs. Given ϕ and v, the algorithm starts by
constructing the NGBW Aϕ,[0,v) and dualizing it to a universal generalized co-Büchi
automaton (UGCW) Ãϕ,[0,v). Since dualization amounts to complementation, Ãϕ,[0,v)

accepts exactly all computations π with [[π, ϕ]] ≥ v. Being universal, we can expand
Ãϕ,[0,v) to a universal tree automaton U that accepts a tree with directions in 2I and la-
bels in 2O if all its branches, which correspond to input sequences, are labeled by output
sequences such that the composition of the input and output sequences is a computa-
tion accepted by Ãϕ,[0,v). Realizability then amounts to checking the nonemptiness of
U and synthesis to finding a witness to its nonemptiness. Since ϕ only has an exponen-
tial number of satisfaction values, we can solve the realizability and synthesis search
problems by repeating this procedure for all relevant values. Since the size of Aϕ,[0,v)

is single-exponential in |ϕ|, the complexity is the same as in the Boolean case, namely
2EXPTIME-complete.

5 Beyond LTL[F]

The logic LTL[F] that we introduce and study here is a first step in our effort to in-
troduce reasoning about quality to formal methods. Future work includes stronger for-
malisms and algorithms. We distinguish between extensions that stay in the area of
LTL[F] and ones that jump to the (possibly undecidable) world of infinitely many satis-
faction values. In the latter, we include efforts to extend LTL[F] by temporal operators
in which the future is discounted, and efforts to combine LTL[F] with other qualitative
aspects of systems [3]. In this section we describe two extensions of the first class: an
extension of LTL[F] to weighted systems and to a branching-time temporal logic. We
also describe a computationally simple fragment of LTL[F].

Weighted Systems. A weighted Kripke structure is a tuple K = 〈AP, S, I, ρ, L〉, where
AP, S, I , and ρ are as in Boolean Kripke structures, and L : S → [0, 1]AP maps each
state to a weighted assignment to the atomic propositions. Thus, the valueL(s)(p) of an

Formalizing and Reasoning about Quality 25

atomic proposition p ∈ AP in a state s ∈ S is a value in [0, 1]. The semantics ofLTL[F]
with respect to a weighted computation coincides with the one for non-weighted sys-
tems, except that for an atomic proposition p, we have that [[π, p]] = L(π0)(p).

It is not hard to extend the construction of Aϕ,P , as described in the proof of Theo-
rem 2, to an alphabet WAP , where W is a set of possible values for the atomic propo-
sitions. Indeed, we only have to adjust the transitions so that there is a transition from
state g with letter σ ∈ WAP only if g agrees with σ on the values of the atomic propo-
sitions. Hence, in settings where the values for the atomic propositions are known, and
in particular model checking, the solutions to the basic questions is similar to the ones
described for LTL[F] with Boolean atomic propositions.

Formalizing Quality with Branching Temporal Logics. Formulas of LTL[F] specify on-
going behaviors of linear computations. A Kripke structure is not linear, and the way
we interpret LTL[F] formulas with respect to it is universal. In branching temporal
logic one can add universal and existential quantifiers to the syntax of the logic, and
specifications can refer to the branching nature of the system [13].

The branching temporal logic CTL�[F] extends LTL[F] by the path quantifiers E
and A. Formulas of the form Eϕ and Aϕ are referred to as state formulas and they are
interpreted over states s in the structure with the semantics [[s,Eϕ]] = max{[[π, ϕ]] :
π starts in s} and [[s,Aϕ]] = min{[[π, ϕ]] : π starts in s}.

In [14], the authors describe a general technique for extending the scope of LTL
model-checking algorithms to CTL�. The idea is to repeatedly consider an innermost
state subformula, view it as an (existentially or universally quantified) LTL formula,
apply LTL model checking in order to evaluate it in all states, and add a fresh atomic
proposition that replaces this subformula and holds in exactly these states that satisfy
it. This idea, together with our ability to model check systems with weighted atomic
propositions, can be used also for model checking CTL�[F].

More challenging is the handling of the other basic problems. There, the solution in-
volves a translation ofCTL�[F] formulas to tree automata. Since the automata-theoretic
approach for CTL� has the Vardi-Wolper construction at its heart, this is possible.

The Fragment LTL� of LTL[F]. In the proof of Lemma 1, we have seen that a formula
may take exponentially many satisfaction values. The proof crucially relies on the fact
that the value of a function is a function of all its inputs. However, in the case of unary
functions, or indeed functions that do not take many possible values, this bound can be
lowered. Such an interesting fragment is the logic LTL� = LTL[{�λ,��λ}λ∈[0,1] ∪
{∨,¬}], with the functions �λ(x) = λ · x and ��λ(x) = λ · x+ (1− λ)/2.

This fragment is interesting in two aspects. First, computationally, an LTL� formula
has only polynomially many satisfaction values. Moreover, for a predicate of the form
P = [v, 1] (resp. P = (v, 1]), the LTL formula Bool (ϕ, P) can be shown to be of
linear length in |ϕ|. This implies that solving threshold-problems for LTL� formulas
can be done with tools that work with LTL with no additional complexity. Second,
philosophically, an interesting question that arises when formalizing quality regards

26 S. Almagor, U. Boker, and O. Kupferman

how the lack of quality in a component should be viewed. With quality between 0 and 1,
we have that 1 stands for “good”, 0 for “bad”, and 1

2 for “not good and not bad”. While
the �λ operator enables us to reduce the quality towards “badness”, the ��λ operator
enables us to do so towards “ambivalence”.

References

1. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted automata? In: Bul-
tan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Heidelberg
(2011)

2. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Synthesis
through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

3. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with
accumulative values. In: 26th LICS, pp. 43–52 (2011)

4. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J., Karhumäki,
J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 281–293. Springer,
Heidelberg (2004)

5. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative Synthe-
sis for Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 243–259. Springer, Heidelberg (2011)

6. Clarke, E., Henzinger, T.A., Veith, H.: Handbook of Model Checking. Elsvier (2013)
7. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking

discounted temporal properties. TCS 345(1), 139–170 (2005)
8. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov pro-

cesses. TCS 318(3), 323–354 (2004)
9. Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics over words and trees. Funda-

menta Informaticae 84(3-4), 305–327 (2008)
10. Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting.

TCS 410(37), 3481–3494 (2009)
11. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On Temporal Logic

and Signal Processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 92–106. Springer, Heidelberg (2012)

12. Droste, M., Werner, K., Heiko, V.: Handbook of Weighted Automata. Springer (2009)
13. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On branching versus linear

time. Journal of the ACM 33(1), 151–178 (1986)
14. Emerson, E.A., Lei, C.L.: Modalities for model checking: Branching time logic strikes back.

In: Proc. 12th POPL, pp. 84–96 (1985)
15. Faella, M., Legay, A., Stoelinga, M.: Model Checking Quantitative Linear Time Logic.

TCS 220(3), 61–77 (2008)
16. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-Logic-Based Reactive Mission and

Motion Planning. IEEE Trans. on Robotics 25(6), 1370–1381 (2009)
17. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring

is undecidable. International Journal of Algebra and Computation 4(3), 405–425 (1994)
18. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.

LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)
19. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th FOCS, pp. 531–540

(2005)

Formalizing and Reasoning about Quality 27

20. Kwiatkowska, M.Z.: Quantitative verification: models techniques and tools. In: FSE,
pp. 449–458 (2007)

21. Mohri, M.: Finite-state transducers in language and speech processing. Computational Lin-
guistics 23(2), 269–311 (1997)

22. Moon, S., Lee, K.H., Lee, D.: Fuzzy branching temporal logic. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B 34(2), 1045–1055 (2004)

23. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc.16th POPL, pp. 179–190
(1989)

24. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science,
pp. 133–191 (1990)

25. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proc. 1st LICS, pp. 332–344 (1986)

26. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I&C 115(1), 1–37 (1994)

	Formalizing and Reasoning about Quality
	1
Introduction
	2
Formalizing Quality
	2.1 The Temporal Logic LTL[F]

	2.2
The Basic Questions
	2.3 Properties of LTL[F]

	3 Translating LTL[F] to Automata

	4 Solving the Basic Questions for LTL[F]

	5 BeyondLTL[F]

	References

