
Strategy Composition in Compositional Games

Marcus Gelderie�

RWTH Aachen, Lehrstuhl für Informatik 7,
Logic and Theory of Discrete Systems,

D-52056 Aachen
gelderie@automata.rwth-aachen.de

Abstract. When studying games played on finite arenas, the arena is
given explicitly, hiding the underlying structure of the arena. We study
games where the global arena is a product of several smaller, constituent
arenas. We investigate how these “global games” can be solved by playing
“component games” on the constituent arenas. To this end, we introduce
two kinds of products of arenas. Moreover, we define a suitable notion
of strategy composition and show how, for the first notion of product,
winning strategies in reachability games can be composed from winning
strategies in games on the constituent arenas. For the second kind of
product, the complexity of solving the global game shows that a general
composition theorem is equivalent to proving Pspace = Exptime.

1 Introduction

Infinite games with ω-regular winning conditions have been studied extensively
over the past decades [1–5]. This research has been most successful in establishing
results about solving ω-regular games on an “abstract” arena. A fundamental
open problem, which is of intrinsic interest in the area of automated synthesis,
is to exploit the compositional structure of an arena to derive a compositional
representation of a winning strategy. For instance, if an arena is viewed as a
product of several smaller transition systems, is it possible to lift this structure
to strategies in games on this arena?

The classical results on ω-regular games depend on the representation of a
winning strategy by an automaton. None of these results allows to transfer a
given composition of an arena into a composition of automata in such a way
that a winning strategy is implemented. Since there is no lack of methods for
composing automata (for example, the cascade product), it rather seems that
automata are too “coarse” a tool to capture this compositional structure.

We study the compositional nature of winning strategies in games played
on products of arenas. Products of arenas can be defined in a variety of ways
(see e.g. [6]). As a first step towards a compositional approach to synthesis, we
restrict ourselves to two notions, parallel and synchronized product. Our notion
of strategy composition relies on a Turing machine based model for strategy
� Supported by DFG research training group 1298, “Algorithmic Synthesis of Reactive

and Discrete-Continuous Systems” (AlgoSyn).

F.V. Fomin et al. (Eds.): ICALP 2013, Part II, LNCS 7966, pp. 263–274, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

264 M. Gelderie

representation, called a strategy machine. Using this model, we show how winning
strategies in reachability games can be composed from winning strategies in
games over the constituent factors of the overall product arena. We study the
complexity of such a composition: its size, its runtime and the computational
complexity of finding it. This entails a study of the complexity of deciding who
wins the game.

Compositionality in an arena is closely linked to a succinct representation of
that arena. Likewise, composing a winning strategy from smaller winning strate-
gies may yield a much smaller representation for that strategy. Finding succinct
transition systems from specifications was studied in [7]. The authors consider
the problem of finding a succinct representation of a model for a given CTL
formula. They show that such succinct models are unlikely to exist in general.

Transition systems which are obtained by “multiplying” smaller transition
systems have also been studied in [8]. The authors consider the problem of model
checking such systems. They show the model checking problem for such systems
to be of high complexity for various notions of behavioral specification and model
checking problem.

Strategy machines were introduced in [9] (the model has been studied in a
different setting in [10]). They allow for a broader range of criteria by which to
compare strategies. Being based on Turing machines, strategy machines allow, for
instance, to investigate the “runtime” of a strategy and to quantify and compare
“dynamic” memory (the tape content) and “static memory” (the control states).

The complexity of deciding the winner of a game has been subject to extensive
research in the case of games on an abstract arena [11–13]. These complexity
results depend on the size of the abstract arena. We investigate the complexity
of deciding the winner based on a composite representation of the arena.

Our paper is structured as follows: We first define two notions of product of
arenas, the parallel product and the synchronized product. The games we study
are played on arenas that are composed from smaller arenas using these two
operators. Having defined the notion of arena composition, we define strategy
machines and use them to introduce our notion of strategy composition. Sub-
sequently, we study reachability games. We do this separately for the parallel
product and the synchronized product. To this end, we first introduce two nat-
ural ways of defining a reachability condition on a composite arena, local and
synchronized reachability. For the parallel product we obtain a compositionality
theorem for both local and synchronized reachability. For the synchronized prod-
uct we show that deciding the game is Exptime complete. From this we deduce
that finding a general composition theorem is equivalent to showing Exptime
= Pspace.

2 Games on Composite Arenas

An arena is a directed, bipartite graph A = (V,E). The partition of A is V =
V (0)�V (1). Given v ∈ V let vE = {v′ ∈ V | (v, v′) ∈ E}. We define two operators
on arenas: the parallel product and the synchronized product. Let � = {0, 1}.

Strategy Composition in Compositional Games 265

Definition 1 (Parallel Product). Consider arenas A1, . . . ,Ak with Ai =
(Vi, Ei). The parallel product A1 ‖ · · · ‖ Ak = (V,E) is the arena given by

– V = �×∏k
i=1 Vi

– E = {((σ, v), (1 − σ, v′)
) | ∃i : vi ∈ V

(σ)
i ∧ (vi, v

′
i) ∈ Ei ∧ ∀j �= i : vj = v′j}

– V (σ) = {(b, v) ∈ V | b = σ}
Note that the parallel product again gives a bipartite arena. Note furthermore
that, given a vertex (σ, v) ∈ � ×∏

i Vi, the number of vertices vi ∈ V
(0)
i alter-

natingly increases and decreases by one along all paths starting in (σ, v). The
number of components player 0 controls in each of his moves is given by:

rank0(σ, v) = |{i | vi ∈ V
(0)
i }|+ σ

Player 1 controls rank1(σ, v) = k− rank0(σ, v)+1 components during his moves.
For every p ∈ � we have rankp(σ

′, v′) = rankp(σ, v) for all (σ′, v′) reachable
from (σ, v). If (σ, v) is clear from context, we thus simply write rankp.

· · ·

A1 A2 Ak

v1 v2 vk

x2

y2

u1

v

(a) Parallel Product: Edges are taken lo-
cally. The square player may move in, e.g.,
A1 but not in A2.

· · ·

A1 A2 Ak

v1 v2 vk

w1

x1

a

b

w2x2

y2 yk

xk

a

b b

b

a
v

(b) Synchronized Product: Where transi-
tions permit it, edges are taken globally.
The circle player may choose transitions
in A1 and A2. Ak is not affected.

Fig. 1. A vertex v in the parallel and synchronized product of (labeled) arenas
A1, . . . ,Ak. The shaded vertices define a possible successor state of v.

To define the synchronized product we use labeled arenas. A labeled arena is
a triple A = (V,Δ,Σ) with V = V (0) � V (1) and Δ ⊆ ⋃

σ∈� V
(σ) ×Σ × V (1−σ)

for some finite set Σ of letters.

Definition 2 (Synchronized Product). Consider labeled arenas A1, . . . ,Ak

with Ai = (Vi, Δi, Σi). The synchronized product A1 ⊗ · · · ⊗ Ak = (V,Σ,Δ) is
given by

– V = �×∏k
i=1 Vi

– Σ =
⋃k

i=1Σi

–
(
(σ, v), a, (1 − σ, v′)

) ∈ Δ iff for all i, whenever a ∈ Σi and vi ∈ V
(σ)
i , then

also (vi, a, v
′
i) ∈ Δi and vi = v′i otherwise.

266 M. Gelderie

Remark 1. Neither the parallel product nor the synchronized product are asso-
ciative in general. This is due to the fact that we absorb the information about
whose turn it is into the arena. We do so for technical reasons. It is nonessential
for the results.

In this paper we study ω-regular games. We assume the reader is familiar with
the elementary theory of ω-regular games. For an introduction see [4, 5]. In the
following, we recall some terminology. A game is a tuple G = (A,W, v0) =
(A,W) consisting of an arena A = (V,E) and a winning condition W ⊆ V ω and
an initial vertex v0. We always assume that there is a designated initial vertex,
even if we do not always list it explicitly. G is ω-regular if W is ω-regular.
We denote the players by player 0 and player 1. A play in G is an infinite path
π = v0v1v2 · · · through A, starting from v0. On nodes in V (0) player 0 chooses the
next vertex. Otherwise, player 1 chooses. The play is won by player 0 if π ∈ W .
We denote the winning set of player σ by W(σ) = W(σ)(G). The attractor for
player p on a set F is denoted by AttrAp (F) and defined as usual. It is the set of
vertices from which p can enforce a visit to F .

To study games on composite arenas, we require some additional notation.
Consider a game G = (A,W) on a composite arena A = A1 ∗ · · · ∗ Ak, with ∗ ∈
{‖,⊗}. We call A1, . . . ,Ak the constituent arenas of A. A game Gi = (Ai,Wi)
for some Wi ⊆ V ω

i is called a component game.
The winning condition W is necessarily given by means of some finite repre-

sentation. In this paper we consider mainly reachability conditions, which are
determined by a set F ⊆ V . A play π satisfies the reachability condition F if
π(i) ∈ F for some i ∈ � = {0, 1, 2, . . .}.

It is sometimes convenient to specify properties on a path in some logic. In
this paper we use LTL to express temporal properties on paths. We again assume
the reader is familiar with LTL (see [4, 5] for an introduction). We write ψUφ
for the strict until (φ is true eventually, and, until then, ψ holds).

3 Strategy Machines and Strategy Composition

Classically, strategies are represented using (usually finite) automata. Automata
are a state space view on a computational system. They abstract away from
implementation details. This comes at the price of loosing information about
important implementation aspects, such as runtime and space usage.

The abstract view of automata is sometimes coarser than required. To aug-
ment this view, in [9] strategy machines were introduced. Strategy machines are
Turing machines with three designated tapes, the IO-tape, the computation tape
and the memory tape. The semantics of a strategy machine can intuitively be
described as follows. A vertex (encoded in binary) appears on the IO-tape. The
strategy machine inspects the content of its memory tape and computes a new
vertex (using all three tapes). The content of the memory tape is updated and
the computation tape is cleared. The new vertex is written on the output tape
and the process repeats. We now recall the definition from [9]. Let �̂ = �∪{#}.

Strategy Composition in Compositional Games 267

Definition 3 (Strategy Machine). A strategy machine is a deterministic 3-
tape Turing machine M = (Q,�, �̂, qI , qO, δ) with

– a finite set Q of states
– tape alphabet �̂ and input alphabet �
– two designated states, qI , the input state and qO, the output state
– a designated IO-tape tIO
– a designated memory tape tM
– a designated computation tape tC

The partial transition function δ : Q× �̂3 ��� Q× �̂3 × {−1, 0, 1}3 satisfies

– δ(q, b) �= (qI , b
′, d) for all q ∈ Q, b, b′ ∈ �̂3 and d ∈ {−1, 0, 1}3.

– δ(qO, b) is undefined for all b ∈ �̂3.

Since the tape and input alphabets are always the same, we usually omit them
in the list of components of a strategy machine.

We sketch the semantics of a strategy machine (a formal definition can be
found in [9]). Configurations are defined as usual. An iteration of M is a sequence
of configurations beginning with an initial configuration (with state qI) and a
terminal configuration (with state qO). By definition of δ, qI and qO appear
exactly at the beginning and at the end of an iteration. The iteration beginning
in configuration c is unique (if it exists) and depends only on the input tIO(c) on
the IO-tape and on the content tM (c) of the memory tape. We write c′ for the
unique terminal configuration reachable from c and we write (c, c′) for the entire
iteration. Its length, the number of computation steps, is denoted by L(c, c′).

Strategy machines are intended to implement functions on sequences of in-
put. Let π ∈ (�∗)∞ = (�∗)∗ ∪ (�∗)ω, i.e. π(i) ∈ �∗ for all i ∈ dom(π). Let
cπ,0 = (qI , π(0), ε, ε, 0, 0, 0). We define cπ,i+1 to be the configuration which
inherits the memory tape content from the terminal configuration of the i-
th iteration and has π(i + 1) as input on the IO-tape. Formally, cπ,i+1 =
(qI , π(i + 1), tM (c′π,i), ε, 0, 0, 0). We also say that (cπ,i, c

′
π,i) and (cπ,i+1, c

′
π,i+1)

are compatible. An iteration is admissible if it is of the form (cπ,i, c
′
π,i) for some

π ∈ (�∗)ω . A sequence of iterations (c0, c
′
0)(c1, c

′
1) · · · which are compatible is

called a computation of M. Define fM(π) = tIO(c
′
π,0) · tIO(c′π,1) · · · . fM maps

strings from (�∗)∗ to (�∗)∗ (where, in our setting, elements from�∗ are encoded
vertices). We say M implements fM. We sometimes identify M with fM and
say, for instance, that M is a winning strategy.

One of the benefits of strategy machines is the complexity measures they offer
to evaluate a strategy. We define the latency T (M) and the space requirement
S(M) of a strategy machine M as follows:

T (M) = sup
π∈(�∗)ω

sup
n∈�

L(cπ,n, c
′
π,n)

S(M) = sup
π∈(�∗)ω

sup
n∈�

|tM (cπ,n)|

Finally, the size of M is the number ‖M‖ = |Q| of its control states.

268 M. Gelderie

In modular programming subroutines are a central concept. Let us formalize
this notion. An n-template is a strategy machine M = (QM , qM,I , qM,O, δM)
with 2n distinguished states sub1, ret1, . . . , subn, retn such that δM (subi, b) is
undefined for all 1 ≤ i ≤ n and all b ∈ �̂3. Let M be an n-template and let
Si = (Qi, qi,I , qi,O, δi), 1 ≤ i ≤ n, be strategy machines. Define the strategy
machine M[S1, . . . ,Sn] = (QM �⊎

iQi, qM,I , qM,O, δ) by δ(subi, b) = δi(qi,I , b)
and δ(qi,O, b) = (reti, b, 0, 0, 0). In all other cases δ coincides with δM or δi,
whenever this makes sense. Such a machine is called a composition of S1, . . . ,Sk.

Definition 4. Let ∗ ∈ {‖,⊗} and let G = (A1 ∗ · · · ∗ Ak,W).

1. Let G1, . . . ,Gk be component games with winning strategies S1, . . . ,Sk for
player 0. A k-template M such that M[S1, . . . ,Sk] is a winning strategy in G
is called a winning composition of S1, . . . ,Sk. If M is a winning composition
of any choice S1, . . . ,Sk of winning strategies for player 0 in G1, . . . ,Gk, it
is called a winning composition of G1, . . . ,Gk.

2. A class Λ of games on composite arenas is said to admit polynomial com-
positions, if for every G = (A1 ∗ · · · ∗ Ak,W) ∈ Λ there exist compo-
nent games G1, . . . ,Gk and a polynomial sized winning composition M
of G1, . . . ,Gk such that for some choice S1, . . . ,Sk of component winning
strategies T (M[S1, . . . ,Sk]) ∈ poly(‖G‖). Such a tuple M,S1, . . . ,Sk is
called a polynomial composition.

Part of the appeal of polynomial compositions is their efficiency: By definition,
a class of games admitting polynomial compositions enables us to find strategies
with a polynomial latency (and thus a polynomial space requirement) which,
depending on G1, . . . ,Gk, have polynomial size. Note that for positionally de-
termined component games this is always the case. The converse holds for trivial
reasons. Any strategy machine M of polynomial size implementing a winning
strategy with latency bounded polynomially can trivially be seen as a polynomial
composition of any choice of machines S1, . . . ,Sk.

We elaborate a bit on the restrictions we impose in the above definition.
The requirement that all strategies in component games are interchangeable
is to ensure that we compose general component games, not specific choices of
strategies. In the definition of polynomial composition, the restriction on the size
is to avoid templates which never call their subroutines and instead implement
the entire global winning strategy on their own. Likewise, the restriction on the
latency is to avoid enabling too powerful computations during the course of a
single iteration (such as, for instance, solving the entire game every turn).

4 Games on Parallel Products

In this section we study reachability games over parallel products of arenas. If
the arena is given as a composition of smaller arenas, it is natural to also study
several compositional ways of specifying the reachability condition. Let Fi ⊆ Vi.
We study the following formalisms:

Strategy Composition in Compositional Games 269

1. local reachability, where F = Floc(F1, . . . , Fk) is the set of all v ∈ ∏
i Vi with

vi ∈ Fi for some i
2. synchronized reachability, where F = Fsync(F1, . . . , Fk) is the set of all v ∈∏

i Vi with vi ∈ Fi for every i

If F = F(F1, . . . , Fk), F ∈ {Floc,Fsync}, the set player 0 has to reach is �× F ,
i.e. the �-component does not influence the outcome of the game.

Remark 2. One might consider asynchronous reachability, where all components
Fi must be reached, but not necessarily at the same time. We omit this condition
here, because it is not expressible as a reachability condition on the composite
arena.

Theorem 1. Games of the form G = (A1 ‖ · · · ‖ Ak,Floc(F1, . . . , Fk)) admit
polynomial compositions where the component games in def. 4 can be chosen as
reachability games. In particular, component positional strategies suffice. More-
over, a polynomial composition can be computed in polynomial time.

We omit the full proof due to space constraints. However, the idea is to show that
deciding the winning set can be done by deciding conditions on the components:
Player 0 wins from (σ0, v0) iff one of the following two applies

1. There exists i with vi,0 ∈ V
(0)
i and vi,0Ei ∩ Fi �= ∅.

2. |{i | vi,0 ∈ AttrAi
0 (Fi)}| ≥ rank1

The proof of this characterization gives component strategies for both players,
which can be composed to a winning strategy for the respective player in G.

Next, we consider synchronized reachability. We have:

Theorem 2. Games of the form G = (A1 ‖ · · · ‖ Ak,Fsync(F1, . . . , Fk)) ad-
mit polynomial compositions. The component games in def. 4 can be chosen as
positionally determined games. A polynomial composition can be computed in
polynomial time.

The proof idea is to characterize the winning set by considering component
games. The proof of the characterization gives polynomial compositions for both
players. The characterization is more involved than in thm. 1. We split the
problem into subcases. For space reasons, we only state the characterization for
the case rank1 = 1 and the case where both rank1 > 1 and rank0 > 1 and σ0 = 1.

Lemma 1. In thm. 2, let (σ0, v0) be such that rank1 = 1. Then player 0 wins
from (σ0, v0) iff all of the following hold:

1. for all i we have vi,0 ∈ AttrAi
0 (Fi)

2. |{i | vi,0 ∈ AttrAi
0 (Fi ∩ V (0)

i)}| ≥ k − 1

3. if σ0 = 1 and vj,0 ∈ Fj ∩ V
(1)
j for some j, then vi,0 ∈ Fi for all i �= j or

vj,0Ej ⊆ Attr
Aj

0 (Fj)

270 M. Gelderie

A polynomial winning composition for player 0 (resp. player 1) with respect
to positional strategies in component reachability (resp. safety) games can be
computed in polynomial time.

In lem. 1 the component games are also reachability games (just like in thm. 1).
In the next lemma, where rank0 > 1 and rank1 > 1, this is no longer the case.
Instead, we use games with a temporal winning condition of low complexity. We
call a game G = (A,W) a reachability game with safety constraint if W is given
by an LTL-formula ϕ = S UF with sets S, F ⊆ VA. We have:

Proposition 1. Every reachability game with safety constraint is determined
with positional strategies. Moreover, a winning strategy for both players can be
computed in time O(|VA|+ |EA|), if it exists.

For simplicity, we exclude the trivial case where the initial position is already in
Fsync(F1, . . . , Fk). We consider the case where player 1 moves first.

Lemma 2. In thm. 2, let rank0 > 1 and rank1 > 1. Then player 0 wins from
(1, v0) /∈ Fsync(F1, . . . , Fk) iff all of the following constraints are met:

1. vi,0 ∈ V
(1)
i =⇒ (vi,0 ∈ Fi ∧ ∀v′i ∈ vi,0Ei : v

′
i ∈ Fi ∨ v′iEi ∩ Fi �= ∅)

2. vi,0 ∈ V
(0)
i \ Fi =⇒ vi,0Ei ∩ Fi �= ∅

3. |{i | vi,0 ∈ W(0)
(Ai, (V

(0)
i ∪ Fi)U(V

(0)
i ∩ Fi)

)}| ≥ k − 1

A polynomial winning composition for player 0 (resp. player 1) with respect to
positional strategies in component reachability games with safety constraint can
be computed in polynomial time.

We see that in the case of synchronized reachability we have to use a stronger
notion of winning condition in the component games than we did in the global
game. What kind of component games we need depends on the initial position.

The polynomial composition in thm. 2 relies on positional winning strategies
in component games. This is closely tied to complexity in the following way:

Decision Problem (PARALLEL-REACH[F]).
Input: Arenas A1, . . . ,Ak, a vertex s = (σ0, v) ∈ �×∏k

i=1 Vi and sets Fi ⊆ Vi
Decide: s ∈ W(0) in the game G = (A1 ‖ · · · ‖ Ak,F(F1, . . . , Fk))?

Corollary 1. Let F ∈ {Floc,Fsync}. PARALLEL-REACH[F] is Ptime-complete.

We also have the following corollary of thm. 1 and thm. 2:

Corollary 2. Let G = (A1 ‖ · · · ‖ Ak,F(F1, . . . , Fk)), where F ∈ {Floc,Fsync},
be a reachability game. There exists a winning strategy machine M for player 0
of size ‖M‖ ∈ poly

(∑k
i=1 ‖Ai‖

)
and latency T (M) ∈ poly

(∑k
i=1(‖Ai‖)

)
.

5 Games on Synchronized Products

In this section we investigate arenas obtained via the synchronized product. Here
the situation is quite different. We first consider the complexity of deciding the
winning region in those games:

Strategy Composition in Compositional Games 271

Decision Problem (SYNC-REACH[F]).
Input: Arenas A1, . . . ,Ak, a vertex s = (σ0, v) ∈ �×∏k

i=1 Vi and sets Fi ⊆ Vi
Decide: s ∈ W(0) in the game G = (A1 ⊗ · · · ⊗ Ak,F(F1, . . . , Fk))?

Theorem 3. Let F ∈ {Floc,Fsync}. SYNC-REACH[F] is Exptime-complete.

Proof. We only show the claim for F = Floc. The proof for F = Fsync is an
adaption of this proof.

Membership in Exptime is trivial (for instance, using a classical attractor on
an in-memory explicit graph). We therefore focus on hardness.

The main idea is to reduce the acceptance problem of an APspace-Turing-
machine. Since it is APspace, we have only polynomially many tape cells in
use. We introduce a labeled arena Ai for each cell plus one additional labeled
arena AH storing both the state of the machine and the head position. Letters
in Ai are indexed by i so that transitions may target a specific tape cell. The
tape cell is updated by having players choose a transition label aligning the head
position in AH with the index of of the cell to be updated. Since the transition
in AH cannot observe the state of Ai, the players may cheat with respect to
the content of the tape cells. The construction below introduces a mechanism to
enable players to challenge an opponent’s cheating moves and win.

Let M = (Q∃, Q∀, Γ̂ , Γ, q0, ΔM, {qF }) be a bipartite APspace-machine. We
suppose Γ̂ is the input alphabet and Γ ⊇ Γ̂ is the tape alphabet. Let Q =
Q∃ � Q∀. Suppose w ∈ Γ̂ ∗ is an input to M. We assume that M accepts with
exactly one final state qF ∈ Q∃ and that qF is never visited before termination.
We may also assume that every configuration has at least one outgoing transition.
Suppose p is a polynomial bounding the space of M.

We define p(|w|) = n automata A1, . . . ,An as follows. For every i = 1, . . . , n,
let Γi = Γ × {i}. Write γi for (γ, i) ∈ Γi. All n automata have the same al-
phabet Σ =

⋃n
i=1{vetoi} ∪ ⋃n

i=1 Γ
2
i . We define Ai = (Ai, Σ, δi) with Ai =

(Γ ∪ {⊥0,⊥1})×� where δi : Ai ×Σ ��� Ai is as follows:

δi((γ̂, σ), (γj , γ
′
j)) =

⎧
⎪⎨

⎪⎩

(γ′, 1− σ) if i = j and γ̂ = γ

(⊥σ, 1− σ) if i = j but γ̂ �= γ

(γ̂, 1− σ) if i �= j

for all j ∈ {1, . . . , k}, all γ̂ ∈ Γ , γj , γ′j ∈ Γj and all σ ∈ �. We also define

δi((⊥p, σ), (γj , γ
′
j)) = (⊥p, 1− σ)

for all j ∈ {1, . . . , k}, all p, σ ∈ � and all γj , γ′j ∈ Γj .
Furthermore, a transition labeled with vetoi is defined on all player 1 states:

δi((s, 1), vetoj) =

{
(⊥1, 0) if i = j and s = γi ∈ Γi

(s, 0) if i �= j or s = ⊥p, p ∈ �
In particular, player 0 can never play vetoi on his components. The partition of
Ai into player 0 and player 1 states is given by A(σ)

i = {(s, σ) | s ∈ Γ ∪{⊥0,⊥1}}.

272 M. Gelderie

Next, we define AH with states AH = (Q × {1, . . . , n}) � {C, (�, 0), (⊥, 0)},
where A

(0)
H = {(q, h) | q ∈ Q∃} ∪ {(�, 0), (⊥, 0)} and A

(1)
H = {(q, h) | q ∈

Q∀} ∪ {C}. The alphabet of this automaton is again Σ (as defined above). Its
transition relation ΔH is defined by
(
(q, h), (γj , γ

′
j), (q

′, h′)
) ∈ ΔH ⇐⇒ h = j ∧ (q, γ, q′, γ′, d) ∈ ΔM ∧ h′ = h+ d

Note that “illegal” transitions are impossible. The players can only cheat with
respect to the content of the h-th tape cell. Also, no transition labeled with vetoi
for any i is possible from a state (q, h). In addition, we now have the following
transitions:

(
(qF , h), (γi, γ

′
i), C

) ∈ ΔH for all i, h ∈ {1, . . . , k}, γ, γ′ ∈ Γ

(C, vetoi, (⊥, 0)) ∈ ΔH for all i ∈ {1, . . . , k}
(
C, (γi, γ

′
i), (�, 0)

) ∈ ΔH for all i ∈ {1, . . . , k}, γ, γ′ ∈ Γ

Suppose q0 ∈ Q∃. The play begins in position
(
(q0, 1, 0), (#1, 0), . . . , (#n, 0)

)
,

where #i ∈ Γi is the blank symbol of M. Player 0 moves (i.e. picks a letter) at
all states in which AH is in a state from Q∃, player 1 if it is in a state from Q∀.
This is ensured by the definition of the transition function δi, which guarantees
that each component changes from a σ-state to a (1 − σ)-state in every round.
The states (⊥, 0) and (�, 0) in AH are 0-states without outgoing transitions.
The set player 0 tries to reach is Floc({(�, 0)}, {(⊥1, 0)}, . . . , {(⊥1, 0)}).

We now show the correctness of the above construction. If M accepts w, then
player 0 has a winning strategy in the reachability game on the configuration
graph of M on w. If player 1 does not cheat and player 0 plays according to his
strategy, the play will finally reach a state ((qF , h), x1, . . . , xn) with xi �= (⊥p, 0)
for all p ∈ � and i ∈ {1, . . . , n}. Recall that qF ∈ Q∃. Now player 0 must
move to C. Unless player 0 cheats (which is clearly a suboptimal choice at this
point), this implies that every component i moves from xi = (γi, 0) to (γi, 1)
by the definition of δi. Player 1 can play vetoi for some i. However, since the
i-th component is in state (γi, 1) for some γi ∈ Γi, we have that this results in
the i-th component making a transition to state (⊥1, 0). Thus player 0 wins. If
player 1 plays (γi, γ′i) for some i, the play reaches (�, 0) and thus player 0 wins.
If player 1 made an illegal transition at some point in the play, then for some i,
the state of Ai loops between (⊥1, 0) and (⊥1, 1) from that point onwards and,
again, player 0 wins.

Conversely, if M rejects w, then player 1 has a winning strategy in the safety
game on the configuration graph of M on w. This implies that, unless player 0
uses an illegal transition, the play never reaches state qF . On the other hand, if
player 0 does make an illegal transition, one component, say i, changes to state
(⊥0, 1) and remains in {(⊥0, σ) | σ ∈ �} from this point onwards. If the play
ever reaches qF after that, and thereafter reaches C, player 1 can play vetoi
moving AH into state (⊥, 0). Component i is in state (⊥0, 1) when AH is in
C whereby Ai never reaches state (⊥1, 0). Since player 1 never has to make an
illegal transition, no component j is in a state (⊥1, 0). Hence player 0 loses. ��

Strategy Composition in Compositional Games 273

The high complexity of SYNC-REACH[F] for F ∈ {Floc,Fsync} prohibits poly-
nomially computable polynomial compositions for reachability games on syn-
chronous arenas (with local or synchronized reachability conditions). Indeed,
finding such compositions would amount to showing Exptime = Ptime. What
can we do differently in order to succeed?

In order to find a winning composition of polynomial size one might sus-
pect that more complex component games are necessary. In this event, finding
strategies in the the component games would be more difficult, sparing us the
complexity dilemma. Unfortunately, this turns out to be false.

Remark 3. In the reduction above, the constituent arenas are of size ≤ c for some
constant c ∈ � (essentially the size of some APspace Turing machine M de-
ciding an Exptime-complete problem). Thus, more complex winning conditions
on those arenas will not increase the complexity of finding winning strategies.

Another possibility is to loosen the notion of a polynomial composition. Recall
that a winning composition M of strategies S1, . . . ,Sk is a polynomial winning
composition if M[S1, . . . ,Sk] has polynomial latency and M has polynomial
size. We now loosen this requirement as follows: A winning composition M is a
poly-space composition if M is of polynomial size and the space requirement of
M[S1, . . . ,Sk] is polynomial.

Lemma 3. Let G = (A1 ⊗ · · · ⊗ Ak,F(F1, . . . , Fk)), where F ∈ {Floc,Fsync}.
Given G, a strategy machine M with polynomial space requirement implementing
a strategy for player 0 in G from position p0 = (σ0, v0), and sets F1, . . . , Fk it is
decidable in Pspace whether or not M implements a winning strategy from p0.

The proof uses APtime = Pspace to verify that there is an M-consistent loop
which does not visit F = F(F1, . . . , Fk) and can be reached without visiting F .

Theorem 4. The class of reachability games over synchronized products admits
poly-space compositions iff Pspace = Exptime.

Proof. Clearly Pspace = Exptime implies that a strategy machine with a poly-
nomial space requirement can compute the next move in some attractor strategy
in the course of a single iteration.

Conversely, if the class admits poly-space compositions, there always exists a
polynomial sized winning strategy with a polynomial space requirement (assum-
ing the component games are bounded by some constant, cf. Rem. 3) for player
0 (if he wins). Hence, the following NPspace procedure is correct: We guess
a strategy machine of polynomial size and verify in Pspace if it implements a
winning strategy. By Savitch’s theorem, Pspace = NPspace. ��

6 Conclusion

We studied the relation between the compositional nature of an arena and the
structure of a winning strategy. To this end we introduced two kinds of prod-
ucts on arenas, the parallel and the synchronized product. We defined a notion

274 M. Gelderie

of strategy composition which relies on strategy machines. This notion of com-
position allows to translate winning strategies in component games to winning
strategies in the global game. We proved such a composition theorem for the
class of reachability games on parallel products. We also showed why a similar
result holds on synchronized products iff Exptime = Pspace.

The results of this paper carry through to Büchi games with only minor
modifications. We also have results on the case where the reachability condition
is given explicitly (instead of as a sequence of k sets). For future research we want
to consider more complex winning conditions, such as parity and weak parity.
Also, we want to treat different ways of modeling the composite game from
constituent arenas, addressing notions of composition from the field of process
algebra and formal verification.

Acknowledgments. I would like to thank the anonymous reviewers for many
helpful suggestions, both for the presentation and for future research.

References

1. Büchi, J.R., Landweber, L.H.: Solving Sequential Conditions by Finite-State
Strategies. Trans. of the AMS 138, 295–311 (1969)

2. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Ap-
plied Logic 65(2), 149–184 (1993)

3. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)

4. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata logics, and infinite games: a
guide to current research. Springer, New York (2002)

5. Löding, C.: Infinite games and automata theory. In: Apt, K.R., Grädel, E. (eds.)
Lectures in Game Theory for Computer Scientists. Cambridge U. P. (2011)

6. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
7. Fearnley, J., Peled, D., Schewe, S.: Synthesis of succinct systems. In: Chakraborty,

S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 208–222. Springer,
Heidelberg (2012)

8. Harel, D., Kupferman, O., Vardi, M.Y.: On the complexity of verifying concurrent
transition systems. Inf. Comput. 173(2), 143–161 (2002)

9. Gelderie, M.: Strategy machines and their complexity. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 431–442. Springer,
Heidelberg (2012)

10. Goldin, D.Q., Smolka, S.A., Wegner, P.: Turing machines, transition systems, and
interaction. Electr. Notes Theor. Comput. Sci. 52(1), 120–136 (2001)

11. Hunter, P., Dawar, A.: Complexity bounds for regular games (extended ab-
stract). In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 495–506. Springer, Heidelberg (2005)

12. Dawar, A., Horn, F., Hunter, P.: Complexity Bounds for Muller Games. Theoretical
Computer Science (2011) (submitted)

13. Horn, F.: Explicit Muller Games are PTIME. In: FSTTCS, pp. 235–243 (2008)

	Strategy Composition in Compositional Games
	1 Introduction
	2 Games on Composite Arenas
	3 Strategy Machines and Strategy Composition
	4 Games on Parallel Products
	5 Games on Synchronized Products
	6 Conclusion
	References

