
On the Complexity of Verifying Regular
Properties on Flat Counter Systems�,��

Stéphane Demri2,3, Amit Kumar Dhar1, and Arnaud Sangnier1

1 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, France
2 New York University, USA

3 LSV, CNRS, France

Abstract. Among the approximation methods for the verification of
counter systems, one of them consists in model-checking their flat unfold-
ings. Unfortunately, the complexity characterization of model-checking
problems for such operational models is not always well studied except
for reachability queries or for Past LTL. In this paper, we characterize
the complexity of model-checking problems on flat counter systems for
the specification languages including first-order logic, linear mu-calculus,
infinite automata, and related formalisms. Our results span different
complexity classes (mainly from PTime to PSpace) and they apply to
languages in which arithmetical constraints on counter values are sys-
tematically allowed. As far as the proof techniques are concerned, we
provide a uniform approach that focuses on the main issues.

1 Introduction

Flat Counter Systems. Counter systems, finite-state automata equipped with
program variables (counters) interpreted over non-negative integers, are known
to be ubiquitous in formal verification. Since counter systems can actually sim-
ulate Turing machines [17], it is undecidable to check the existence of a run
satisfying a given (reachability, temporal, etc.) property. However it is possi-
ble to approximate the behavior of counter systems by looking at a subclass of
witness runs for which an analysis is feasible. A standard method consists in con-
sidering a finite union of path schemas for abstracting the whole bunch of runs,
as done in [14]. More precisely, given a finite set of transitions Δ, a path schema
is an ω-regular expression over Δ of the form L = p1(l1)

∗ · · · pk−1(lk−1)
∗pk(lk)ω

where both pi’s and li’s are paths in the control graph and moreover, the li’s
are loops. A path schema defines a set of infinite runs that respect a sequence of
transitions that belongs to L. We write Runs(c0,L) to denote such a set of runs
starting at the initial configuration c0 whereas Reach(c0,L) denotes the set of
configurations occurring in the runs of Runs(c0,L). A counter system is flattable
whenever the set of configurations reachable from c0 is equal to Reach(c0,L) for
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some finite union of path schemas L. Similarly, a flat counter system, a system
in which each control state belongs to at most one simple loop, verifies that the
set of runs from c0 is equal to Runs(c0,L) for some finite union of path schemas
L. Obviously, flat counter systems are flattable. Moreover, reachability sets of
flattable counter systems are known to be Presburger-definable, see e.g. [1,3,7].
That is why, verification of flat counter systems belongs to the core of methods
for model-checking arbitrary counter systems and it is desirable to character-
ize the computational complexity of model checking problems on this kind of
systems (see e.g. results about loops in [2]). Decidability results for verifying
safety and reachability properties on flat counter systems have been obtained
in [3,7,2]. For the verification of temporal properties, it is much more difficult to
get sharp complexity characterization. For instance, it is known that verifying
flat counter systems with CTL� enriched with arithmetical constraints is decid-
able [6] whereas it is only NP-complete with Past LTL [4] (NP-completeness
already holds with flat Kripke structures [10]).

Our Motivations. Our objectives are to provide a thorough classification of
model-checking problems on flat counter systems when linear-time properties
are considered. So far complexity is known with Past LTL [4] but even the de-
cidability status with linear μ-calculus is unknown. Herein, we wish to consider
several formalisms specifying linear-time properties (FO, linear μ-calculus, in-
finite automata) and to determine the complexity of model-checking problems
on flat counter systems. Note that FO is as expressive as Past LTL but much
more concise whereas linear μ-calculus is strictly more expressive than Past LTL,
which motivates the choice for these formalisms dealing with linear properties.

Our Contributions. We characterize the computational complexity of model-
checking problems on flat counter systems for several prominent linear-time
specification languages whose alphabets are related to atomic propositions but
also to linear constraints on counter values. We obtain the following results:

– The problem of model-checking first-order formulae on flat counter
systems is PSpace-complete (Theorem 9). Note that model-checking
classical first-order formulae over arbitrary Kripke structures is already known
to be non-elementary. However the flatness assumption allows to drop the
complexity to PSpace even though linear constraints on counter values are
used in the specification language.

– Model-checking linear μ-calculus formulae on flat counter systems
is PSpace-complete (Theorem 14). Not only linear μ-calculus is known
to be more expressive than first-order logic (or than Past LTL) but also the
decidability status of the problem on flat counter systems was open [6]. So,
we establish decidability and we provide a complexity characterization.

– Model-checking Büchi automata over flat counter systems is NP-
complete (Theorem 12).

– Global model-checking is possible for all the above mentioned for-
malisms (Corollary 16).
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2 Preliminaries

2.1 Counter Systems

Counter constraints are defined below as a subclass of Presburger formulae whose
free variables are understood as counters. Such constraints are used to define
guards in counter systems but also to define arithmetical constraints in temporal
formulae. Let C = {x1, x2, . . .} be a countably infinite set of counters (variables
interpreted over non-negative integers) and AT = {p1, p2, . . .} be a countable
infinite set of propositional variables (abstract properties about program points).
We write Cn to denote the restriction of C to {x1, x2, . . . , xn}. The set of guards
g using the counters from Cn, written G(Cn), is made of Boolean combinations
of atomic guards of the form

∑n
i=0 ai · xi ∼ b where the ai’s are in Z, b ∈ N

and ∼∈ {=,≤,≥, <,>}. For g ∈ G(Cn) and a vector v ∈ N
n, we say that v

satisfies g, written v |= g, if the formula obtained by replacing each xi by v[i]
holds. For n ≥ 1, a counter system of dimension n (shortly a counter system)
S is a tuple 〈Q, Cn, Δ, l〉 where: Q is a finite set of control states, l : Q → 2AT

is a labeling function, Δ ⊆ Q × G(Cn) × Z
n × Q is a finite set of transitions

labeled by guards and updates. As usual, to a counter system S = 〈Q, Cn, Δ, l〉,
we associate a labeled transition system TS(S) = 〈C,→〉 where C = Q × N

n is
the set of configurations and →⊆ C ×Δ × C is the transition relation defined
by: 〈〈q,v〉, δ, 〈q′,v′〉〉 ∈→ (also written 〈q,v〉 δ−→ 〈q′,v′〉) iff δ = 〈q, g,u, q′〉 ∈ Δ,
v |= g and v′ = v+u. Note that in such a transition system, the counter values
are non-negative since C = Q× N

n.
Given an initial configuration c0 ∈ Q × N

n, a run ρ starting from c0 in S
is an infinite path in the associated transition system TS(S) denoted as: ρ :=

c0
δ0−→ · · · δm−1−−−→ cm

δm−−→ · · · where ci ∈ Q × N
n and δi ∈ Δ for all i ∈ N. We

say that a counter system is flat if every node in the underlying graph belongs
to at most one simple cycle (a cycle being simple if no edge is repeated twice
in it) [3,14,4]. We denote by CFS the class of flat counter systems. A Kripke
structure S can be seen as a counter system without counter and is denoted
by 〈Q,Δ, l〉 where Δ ⊆ Q × Q and l : Q → 2AT. Standard notions on counter
systems, as configuration, run or flatness, naturally apply to Kripke structures.

2.2 Model-Checking Problem

We define now our main model-checking problem on flat counter systems param-
eterized by a specification language L. First, we need to introduce the notion
of constrained alphabet whose letters should be understood as Boolean combi-
nations of atomic formulae (details follow). A constrained alphabet is a triple of
the form 〈at, agn, Σ〉 where at is a finite subset of AT, agn is a finite subset of
atomic guards from G(Cn) and Σ is a subset of 2at∪agn . The size of a constrained
alphabet is given by size(〈at, agn, Σ〉) = card(at) + card(agn) + card(Σ) where
card(X) denotes the cardinality of the set X . Of course, any standard alphabet
(finite set of letters) can be easily viewed as a constrained alphabet (by ignoring
the structure of letters). Given an infinite run ρ := 〈q0,v0〉 → 〈q1,v1〉 · · · from



On the Complexity of Verifying Regular Properties on Flat Counter Systems 165

a counter system with n counters and an ω-word over a constrained alphabet
w = a0, a1, . . . ∈ Σω, we say that ρ satisfies w, written ρ |= w, whenever for
i ≥ 0, we have p ∈ l(qi) [resp. p 
∈ l(qi)] for every p ∈ (ai∩at) [resp. p ∈ (at\ai)]
and vi |= g [resp. vi 
|= g] for every g ∈ (ai ∩ agn) [resp. g ∈ (agn \ ai)].

A specification language L over a constrained alphabet 〈at, agn, Σ〉 is a set
of specifications A, each of it defining a set L(A) of ω-words over Σ. We will
also sometimes consider specification languages over (unconstrained) standard
finite alphabets (as usually defined). We now define the model-checking problem
over flat counter systems with specification language L (written MC(L, CFS)):
it takes as input a flat counter system S, a configuration c and a specification A
from L and asks whether there is a run ρ starting at c and w ∈ Σω in L(A) such
that ρ |= w. We write ρ |= A whenever there is w ∈ L(A) such that ρ |= w.

2.3 A Bunch of Specification Languages

Infinite Automata. Now let us define the specification languages BA and ABA,
respectively with nondeterministic Büchi automata and with alternating Büchi
automata. We consider here transitions labeled by Boolean combinations of
atoms from at ∪ agn. A specification A in ABA is a structure of the form
〈Q,E, q0, F 〉 where E is a finite subset of Q × B(at ∪ agn)× B

+(Q) and B
+(Q)

denotes the set of positive Boolean combinations built over Q. Specification A is
a concise representation for the alternating Büchi automaton BA = 〈Q, δ, q0, F 〉
where δ : Q × 2at∪agn → B

+(Q) and δ(q, a)
def
=

∨
〈q,ψ,ψ′〉∈E, a|=ψ ψ′. We say

that A is over the constrained alphabet 〈at, agn, Σ〉, whenever, for all edges
〈q, ψ, ψ′〉 ∈ E, ψ holds at most for letters from Σ (i.e. the transition relation
of BA belongs to Q× Σ → B

+(Q) ). We have then L(A) = L(BA) with the usual
acceptance criterion for alternating Büchi automata. The specification language
BA is defined in a similar way using Büchi automata. Hence the transition re-
lation E of A = 〈Q,E, q0, F 〉 in BA is included in Q× B(at ∪ agn)×Q and the
transition relation of the Büchi automaton BA is then included in Q×2at∪agn×Q.

Linear-Time Temporal Logics. Below, we present briefly three logical languages
that are tailored to specify runs of counter systems, namely ETL (see e.g.[25,19]),
Past LTL (see e.g. [21]) and linear μ-calculus (or μTL), see e.g. [23]. A speci-
fication in one of these logical specification languages is just a formula. The
differences with their standard versions in which models are ω-sequences of
propositional valuations are listed below: models are infinite runs of counters
systems; atomic formulae are either propositional variables in AT or atomic
guards; given an infinite run ρ := 〈q0,v0〉 → 〈q1,v1〉 · · · , we will have ρ, i |= p
def⇔ p ∈ l(qi) and ρ, i |= g

def⇔ vi |= g. The temporal operators, fixed point oper-
ators and automata-based operators are interpreted then as usual. A formula φ
built over the propositional variables in at and the atomic guards in agn defines
a language L(φ) over 〈at, agn, Σ〉 with Σ = 2at∪agn . There is no need to recall
here the syntax and semantics of ETL, Past LTL and linear μ-calculus since with
their standard definitions and with the above-mentioned differences, their vari-
ants for counter systems are defined unambiguously (see a lengthy presentation
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of Past LTL for counter systems in [4]). However, we may recall a few definitions
on-the-fly if needed. Herein the size of formulae is understood as the number of
subformulae.

Example. In adjoining figure, we present a flat counter system with two counters
and with labeling function l such that l(q3) = {p, q} and l(q5) = {p}. We would
like to characterize the set of configurations c with control state q1 such that
there is some infinite run from c for which after some position i, all future even
positions j (i.e. i ≡2 j) satisfy that p holds and the first counter is equal to the
second counter.

q1start

q2

q3

q4

q5

�, (0, 0)�, (0, 0)

�, (0, 0)

�, (−3, 0)

g′(x1, x2), (1, 0) g(x1, x2), (0, 1)

�, (0, 0)

�, (0,−2) This can be specified in linear μ-calculus using as
atomic formulae either propositional variables or
atomic guards. The corresponding formula in linear
μ-calculus is: μz1.(X(νz2.(p∧ (x1 − x2 = 0)∧XXz2)∨
Xz1). Clearly, such a position i occurs in any run
after reaching the control state q3 with the same
value for both counters. Hence, the configurations
〈q1,v〉 satisfying these properties have counter val-
ues v ∈ N

2 verifying the Presburger formula below:

∃ y (((x1 = 3y+ x2) ∧ (∀ y′ g(x2 + y′, x2 + y′) ∧ g′(x2 + y′, x2 + y′ + 1)))∨

((x2 = 2y+ x1) ∧ (∀ y′ g(x1 + y′, x1 + y′) ∧ g′(x1 + y′, x1 + y′ + 1))))

In the paper, we shall establish how to compute systematically such formulae
(even without universal quantifications) for different specification languages.

3 Constrained Path Schemas

In [4] we introduced minimal path schemas for flat counter systems. Now, we
introduce constrained path schemas that are more abstract than path schemas.
A constrained path schema cps is a pair 〈p1(l1)∗ · · · pk−1(lk−1)

∗pk(lk)ω , φ(x1,
. . . , xk−1)〉 where the first component is an ω-regular expression over a con-
strained alphabet 〈at, agn, Σ〉 with pi, li’s in Σ∗, and φ(x1, . . . , xk−1) ∈ G(Ck−1).
Each constrained path schema defines a language L(cps) ⊆ Σω given by L(cps)

def
=

{p1(l1)n1 · · · pk−1(lk−1)
nk−1pk(lk)

ω : φ(n1, . . . , nk−1) holds true}. The size of
cps, written size(cps), is equal to 2k+len(p1l1 · · · pk−1lk−1pklk)+size(φ(x1, . . . ,
xk−1)). Observe that in general constrained path schemas are defined under con-
strained alphabet and so will the associated specifications unless stated
otherwise.

Let us consider below the three decision problems on constrained path schemas
that are useful in the rest of the paper. Consistency problem checks whether
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L(cps) is non-empty. It amounts to verify the satisfiability status of the second
component. Let us recall the result below.

Theorem 1. [20] There are polynomials pol1(·), pol2(·) and pol3(·) such
that for every guard g, say in G(Cn), of size N , we have (I) there exist B ⊆
[0, 2pol1(N)]n and P1, . . . ,Pα ∈ [0, 2pol1(N)]n with α ≤ 2pol2(N) such that for ev-
ery y ∈ N

n, y |= g iff there are b ∈ B and a ∈ N
α such that y = b + a[1]P1 +

· · ·+ a[α]Pα; (II) if g is satisfiable, then there is y ∈ [0, 2pol3(N)]n s.t. y |= g.

Consequently, the consistency problem is NP-complete (the hardness being ob-
tained by reducing SAT). The intersection non-emptiness problem, clearly re-
lated to model-checking problem, takes as input a constrained path schema
cps and a specification A ∈ L and asks whether L(cps) ∩ L(A) 
= ∅. Typi-
cally, for several specification languages L, we establish the existence of a com-
putable map fL (at most exponential) such that whenever L(cps) ∩ L(A) 
= ∅
there is p1(l1)n1 · · · pk−1(lk−1)

nk−1pk(lk)
ω belonging to the intersection and for

which each ni is bounded by fL(A, cps). This motivates the introduction of the
membership problem for L that takes as input a constrained path schema cps,
a specification A ∈ L and n1, . . . , nk−1 ∈ N and checks whether p1(l1)n1 · · ·
pk−1(lk−1)

nk−1pk(lk)
ω ∈ L(A). Here the ni’s are understood to be encoded in

binary and we do not require them to satisfy the constraint of the path schema.
Since constrained path schemas are abstractions of path schemas used in [4],

from this work we can show that runs from flat counter systems can be repre-
sented by a finite set of constrained path schemas as stated below.

Theorem 2. Let at be a finite set of atomic propositions, agn be a finite set of
atomic guards from G(Cn), S be a flat counter system whose atomic propositions
and atomic guards are from at∪agn and c0 = 〈q0, v0〉 be an initial configuration.
One can construct in exponential time a set X of constrained path schemas
s.t.: (I) Each constrained path schema cps in X has an alphabet of the form
〈at, agn, Σ〉 (Σ may vary) and cps is of polynomial size. (II) Checking whether a
constrained path schema belongs to X can be done in polynomial time. (III) For
every run ρ from c0, there is a constrained path schema cps in X and w ∈ L(cps)
such that ρ |= w. (IV) For every constrained path schema cps in X and for every
w ∈ L(cps), there is a run ρ from c0 such that ρ |= w.

In order to take advantage of Theorem 2 for the verification of flat counter sys-
tems, we need to introduce an additional property: L has the nice subalphabet
property iff for all specifications A ∈ L over 〈at, agn, Σ〉 and for all constrained
alphabets 〈at, agn, Σ′〉, one can build a specification A′ over 〈at, agn, Σ′〉 in poly-
nomial time in the sizes of A and 〈at, agn, Σ′〉 such that L(A) ∩ (Σ′)ω = L(A′).
We need this property to build from A and a constraint path schema over
〈at, agn, Σ′〉, the specification A′. This property will also be used to transform a
specification over 〈at, agn, Σ〉 into a specification over the finite alphabet Σ′.

Lemma 3. BA, ABA, μTL, ETL, Past LTL have the nice subalphabet property.

The abstract Algorithm 1 which performs the following steps (1) to (3) takes as
input S, a configuration c0 and A ∈ L and solves MC(L, CFS): (1) Guess cps
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over 〈at, agn, Σ′〉 in X ; (2) Build A′ such that L(A) ∩ (Σ′)ω = L(A′); (3) Return
L(cps) ∩ L(A′) 
= ∅. Thanks to Theorem 2, the first guess can be performed
in polynomial time and with the nice subalphabet property, we can build A′ in
polynomial time too. This allows us to conclude the following lemma which is a
consequence of the correctness of the above algorithm (see [5]).

Lemma 4. If L has the nice subalphabet property and its intersection non-
emptiness problem is in NP[resp. PSpace], then MC(L, CFS) is in NP[resp.
PSpace]

We know that the membership problem for Past LTL is in PTime and the inter-
section non-emptiness problem is in NP (as a consequence of [4, Theorem 3]). By
Lemma 4, we are able to conclude the main result from [4]: MC(PastLTL, CFS)
is in NP. This is not surprising at all since in this paper we present a general
method for different specification languages that rests on Theorem 2 (a conse-
quence of technical developments from [4]).

4 Taming First-Order Logic and Flat Counter Systems

In this section, we consider first-order logic as a specification language. By
Kamp’s Theorem, first-order logic has the same expressive power as Past LTL
and hence model-checking first-order logic over flat counter systems is decid-
able too [4]. However this does not provide us an optimal upper bound for the
model-checking problem. In fact, it is known that the satisfiability problem for
first-order logic formulae is non-elementary and consequently the translation into
Past LTL leads to a significant blow-up in the size of the formula.

4.1 First-Order Logic in a Nutshell

For defining first-order logic formulae, we consider a countably infinite set of
variables Z and a finite (unconstrained) alphabet Σ. The syntax of first-order
logic over atomic propositions FOΣ is then given by the following grammar:
φ ::= a(z) | S(z, z′) | z < z′ | z = z′ | ¬φ | φ ∧ φ′ | ∃z φ(z) where a ∈ Σ and
z, z′ ∈ Z. For a formula φ, we will denote by free(φ) its set of free variables de-
fined as usual. A formula with no free variable is called a sentence. As usual,
we define the quantifier height qh(φ) of a formula φ as the maximum nesting
depth of the operators ∃ in φ. Models for FOΣ are ω-words over the alphabet
Σ and variables are interpreted by positions in the word. A position assignment
is a partial function f : Z → N. Given a model w ∈ Σω, a FOΣ formula φ and
a position assignment f such that f(z) ∈ N for every variable z ∈ free(φ), the
satisfaction relation |=f is defined as usual. Given a FOΣ sentence φ, we write
w |= φ when w |=f φ for an arbitrary position assignment f . The language of
ω-words w over Σ associated to a sentence φ is then L(φ) = {w ∈ Σω | w |= φ}.
For n ∈ N, we define the equivalence relation ≈n between ω-words over Σ as:
w ≈n w′ when for every sentence φ with qh(φ) ≤ n, w |= φ iff w′ |= φ.
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FO on CS. FO formulae interpreted over infinite runs of counter systems are
defined as FO formulae over a finite alphabet except that atomic formulae of the
form a(z) are replaced by atomic formulae of the form p(z) or g(z) where p is
an atomic formula or g is an atomic guard from G(Cn). Hence, a formula φ built
over atomic formulae from a finite set at of atomic propositions and from a finite
set agn of atomic guards from G(Cn) defines a specification for the constrained
alphabet 〈at, atn, 2at∪agn〉. Note that the alphabet can be of exponential size in
the size of φ and p(z) actually corresponds to a disjunction

∨
p∈a a(z).

Lemma 5. FO has the nice subalphabet property.

We have taken time to properly define first-order logic for counter systems (whose
models are runs of counter systems, see also Section 2.2) but below, we will
mainly operate with FOΣ over a standard (unconstrained) alphabet. Let us
state our first result about FOΣ which allows us to bound the number of times
each loop is taken in a constrained path schema in order to satisfy a formula.
We provide a stuttering theorem equivalent for FOΣ formulas as is done in [4]
for PLTL and in [12] for LTL. The lengthy proof of Theorem 6 uses Ehrenfeuch-
Fraïssé game (see [5]).

Theorem 6 (Stuttering Theorem). Let w = w1s
Mw2, w

′ = w1s
M+1w2 ∈ Σω

such that N ≥ 1, M > 2N+1 and s ∈ Σ+. Then w ≈N w′.

4.2 Model-Checking Flat Counter Systems with FO

Let us characterize the complexity of MC(FO, CFS). First, we will state the
complexity of the intersection non-emptiness problem. Given a constrained path
schema cps and a FO sentence ψ, Theorem 1 provides two polynomials pol1 and
pol2 to represent succinctly the solutions of the guard in cps. Theorem 6 allows
us to bound the number of times loops are visited. Consequently, we can compute
a value fFO(ψ, cps) exponential in the size of ψ and cps, as explained earlier,
which allows us to find a witness for the intersection non-emptiness problem
where each loop is taken a number of times smaller than fFO(ψ, cps).

Lemma 7. Let cps be a constrained path schema and ψ be a FOΣ sentence.
Then L(cps) ∩ L(ψ) is non-empty iff there is an ω-word in L(cps) ∩ L(ψ) in
which each loop is taken at most 2(qh(ψ)+2)+pol1(size(cps))+pol2(size(cps)) times.

Hence fFO(ψ, cps) has the value 2(qh(ψ)+2)+(pol1+pol2)(size(cps)). Furthermore
checking whether L(cps) ∩ L(ψ) is non-empty amounts to guess some n ∈
[0, 2(qh(ψ)+2)+pol1(size(cps))+pol2(size(cps))]k−1 and verify whether w = p1(l1)

n[1]

· · · pk−1(lk−1)
n[k−1]pk(lk)

ω ∈ L(cps) ∩ L(ψ). Checking if w ∈ L(cps) can be
done in polynomial time in (qh(ψ)+2)+pol1(size(cps))+pol2(size(cps)) (and
therefore in polynomial time in size(ψ) + size(cps)) since this amounts to ver-
ify whether n |= φ. Checking whether w ∈ L(ψ) can be done in exponential
space in size(ψ)+ size(cps) by using [15, Proposition 4.2]. Hence, this leads to a
nondeterministic exponential space decision procedure for the intersection non-
emptiness problem but it is possible to get down to nondeterministic polynomial
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space using the succinct representation of constrained path schema as stated by
Lemma 8 below for which the lower bound is deduced by the fact that model-
checking ultimately periodic words with first-order logic is PSpace-hard [15].

Lemma 8. Membership problem with FOΣ is PSpace-complete.

Note that the membership problem for FO is for unconstrained alphabet, but due
to the nice subalphabet property of FO, the same holds for constrained alphabet
since given a FO formula over 〈at, agn, Σ〉, we can build in polynomial time a
FO formula over 〈at, agn, Σ′〉 from which we can build also in polynomial time
a formula of FOΣ′ (where Σ′ is for instance the alphabet labeling a constrained
path schema). We can now state the main results concerning FO.

Theorem 9. (I) The intersection non-emptiness problem with FO is PSpace-
complete. (II) MC(FO, CFS) is PSpace-complete. (III) Model-checking flat
Kripke structures with FO is PSpace-complete.

Proof. (I) is a consequence of Lemma 7 and Lemma 8. We obtain (II) from (I)
by applying Lemma 4 and Lemma 5. (III) is obtained by observing that flat
Kripke structures form a subclass of flat counter systems. To obtain the lower
bound, we use that model-checking ultimately periodic words with first-order
logic is PSpace-hard [15]. ��

5 Taming Linear μ-calculus and Other Languages

We now consider several specification languages defining ω-regular properties
on atomic propositions and arithmetical constraints. First, we deal with BA by
establishing Theorem 10 and then deduce results for ABA, ETL and μTL.

Theorem 10. Let B = 〈Q, Σ, q0, Δ, F 〉 be a Büchi automaton (with standard
definition) and cps = 〈p1(l1)∗ · · · pk−1(lk−1)

∗pk(lk)ω, φ(x1, . . . , xk−1)〉 be a con-
strained path schema over Σ. We have L(cps) ∩ L(B) 
= ∅ iff there exists y ∈
[0, 2pol1(size(cps))+2.card(Q)k×2pol1(size(cps))+pol2(size(cps))]k−1 such that p1(l1)y[1]
. . . pk−1(lk−1)

y[k−1]pkl
ω
k ∈ L(B) ∩ L(cps) (pol1 and pol2 are from Theorem 1).

Theorem 10 can be viewed as a pumping lemma involving an automaton and
semilinear sets. Thanks to it we obtain an exponential bound for the map fBA so
that fBA(B, cps) = 2pol1(size(cps))+2.card(Q)size(cps)×2pol1(size(cps))+pol2(size(cps)).
So checking L(cps) ∩ L(B) 
= ∅ amounts to guess some n ∈ [0, 2pol1(size(cps)) +
2.card(Q)size(cps)×2pol1(size(cps))+pol2(size(cps))]k−1 and to verify whether the word
w = p1(l1)

n[1] · · · pk−1(lk−1)
n[k−1]pk(lk)

ω ∈ L(cps) ∩ L(B). Checking whether
w ∈ L(cps) can be done in polynomial time in size(B) + size(cps) since this
amounts to check n |= φ. Checking whether w ∈ L(B) can be also done in poly-
nomial time by using the results from [15]. Indeed, w can be encoded in polyno-
mial time as a pair of straight-line programs and by [15, Corollary 5.4] this can
be done in polynomial time. So, the membership problem for Büchi automata
is in PTime. By using that BA has the nice subalphabet property and that we
can create a polynomial size Büchi automata from a given BA specification and
cps, we get the following result.
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Lemma 11. The intersection non-emptiness problem with BA is NP-complete.

Now, by Lemma 3, Lemma 4 and Lemma 11, we get the result below for which
the lower bound is obtained from an easy reduction of SAT.

Theorem 12. MC(BA, CFS) is NP-complete.

We are now ready to deal with ABA, ETL and linear μ-calculus. A language
L has the nice BA property iff for every specification A from L, we can build a
Büchi automaton BA such that L(A) = L(BA), each state of BA is of polynomial
size, it can be checked if a state is initial [resp. accepting] in polynomial space
and the transition relation can be decided in polynomial space too. So, given a
language L having the nice BA property, a constrained path schema cps and
a specification in A ∈ L, if L(cps) ∩ L(A) is non-empty, then there is an ω-
word in L(cps) ∩ L(A) such that each loop is taken at most a number of times
bounded by fBA(BA, cps). So fL(A, cps) is obviously bounded by fBA(BA, cps).
Hence, checking whether L(cps)∩L(A) is non-empty amounts to guess some n ∈
[0, fL(A, cps)]k−1 and check whether w = p1(l1)

n[1] · · · pk−1(lk−1)
n[k−1]pk(lk)

ω ∈
L(cps) ∩ L(A). Checking whether w ∈ L(cps) can be done in polynomial time
in size(A) + size(cps) since this amounts to check n |= φ. Checking whether
w ∈ L(A) can be done in nondeterministic polynomial space by reading w while
guessing an accepting run for BA. Actually, one guesses a state q from BA and
check whether the prefix p1(l1)

n[1] · · · pk−1(lk−1)
n[k−1]pk can reach it and then

nonemptiness between (lk)
ω and the Büchi automaton BqA in which q is an initial

state is checked. Again, this can be done in nondeterministic polynomial space
thanks to the nice BA property. We obtain the lemma below.

Lemma 13. Membership problem and intersection non-emptiness problem for
L having the nice BA property are in PSpace.

Let us recall consequences of results from the literature. ETL has the nice BA
property by [24], linear μ-calculus has the nice BA property by [23] and ABA
has the nice BA property by [18]. Note that the results for ETL and ABA can
be also obtained thanks to translations into linear μ-calculus. By Lemma 13,
Lemma 4 and the above-mentioned results, we obtain the following results.

Theorem 14. MC(ABA, CFS), MC(ETL, CFS) and MC(μTL, CFS) are in
PSpace.

Note that for obtaining the PSpace upper bound, we use the same procedure for
all the logics. Using that the emptiness problem for finite alternating automata
over a single letter alphabet is PSpace-hard [8], we are also able to get lower
bounds.

Theorem 15. (I) The intersection non-emptiness problem for ABA [resp. μTL]
is PSpace-hard. (II) MC(ABA, CFS) and MC(μTL, CFS) are PSpace-hard.

According to the proof of Theorem 15 (see [5]), PSpace-hardness already holds
for a fixed Kripke structure, that is actually a simple path schema. Hence, for lin-
ear μ-caluclus, there is a complexity gap between model-checking unconstrained
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path schemas with two loops (in UP∩co-UP [9]) and model-checking uncon-
strained path schemas (Kripke structures) made of a single loop, which is in
contrast to Past LTL for which model-checking unconstrained path schemas
with a bounded number of loops is in PTime [4, Theorem 9].

As an additional corollary, we can solve the global model-checking problem
with existential Presburger formulae. The global model-checking consists in char-
acterizing the set of initial configurations from which there exists a run satisfying
a given specification. We knew that Presburger formulae exist for global model-
checking [6] for Past LTL (and therefore for FO) but we can conclude that they
are structurally simple and we provide an alternative proof. Moreover, the ques-
tion has been open for μTL since the decidability status of MC(μTL, CFS) has
been only resolved in the present work.

Corollary 16. Let L be a specification language among FO, BA, ABA, ETL or
μTL. Given a flat counter system S, a control state q and a specification A in
L, one can effectively build an existential Presburger formula φ(z1, . . . , zn) such
that for all v ∈ N

n. v |= φ iff there is a run ρ starting at 〈q, v〉 verifying ρ |= A.

6 Conclusion

We characterized the complexity of MC(L, CFS) for prominent linear-time spec-
ification languages L whose letters are made of atomic propositions and linear
constraints. We proved the PSpace-completeness of the problem with linear μ-
calculus (decidability was open), for alternating Büchi automata and also for
FO. When specifications are expressed with Büchi automata, the problem is
shown NP-complete. Global model-checking is also possible on flat counter sys-
tems with such specification languages. Even though the core of our work relies
on small solutions of quantifier-free Presburger formulae, stuttering properties,
automata-based approach and on-the-fly algorithms, our approach is designed to
be generic. Not only this witnesses the robustness of our method but our com-
plexity characterization justifies further why verification of flat counter systems
can be at the core of methods for model-checking counter systems. Our main
results are in the table below with useful comparisons (‘Ult. periodic KS’ stands
for ultimately periodic Kripke structures namely a path followed by a loop).

Flat counter systems Kripke struct. Flat Kripke struct. Ult. periodic KS

μTL PSpace-C (Thm. 14) PSpace-C [23] PSpace-C (Thm. 14) in UP∩co-UP [16]
ABA PSpace-C (Thm. 14) PSpace-C PSpace-C (Thm. 14) in PTime (see e.g. [11, p. 3])
ETL in PSpace (Thm. 14) PSpace-C [21] in PSpace [21] in PTime (see e.g. [19,11])
BA NP-C (Thm.12) in PTime in PTime in PTime
FO PSpace-C (Thm. 9) Non-el. [22] PSpace-C (Thm. 9) PSpace-C [15]

Past LTL NP-C [4] PSpace-C [21] NP-C [10,4] PTime [13]



On the Complexity of Verifying Regular Properties on Flat Counter Systems 173

References
1. Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis,

Université de Liège (1998)
2. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.

In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010)

3. Comon, H., Jurski, Y.: Multiple counter automata, safety analysis and PA. In: Vardi,
M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)

4. Demri, S., Dhar, A.K., Sangnier, A.: Taming Past LTL and Flat Counter Sys-
tems. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI),
vol. 7364, pp. 179–193. Springer, Heidelberg (2012)

5. Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying regular prop-
erties on flat counter systems (2013), http://arxiv.org/abs/1304.6301

6. Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking CTL∗ over
flat Presburger counter systems. JANCL 20(4), 313–344 (2010)

7. Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

8. Jančar, P., Sawa, Z.: A note on emptiness for alternating finite automata with a
one-letter alphabet. IPL 104(5), 164–167 (2007)

9. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. IPL 68(3),
119–124 (1998)

10. Kuhtz, L., Finkbeiner, B.: Weak kripke structures and LTL. In: Katoen, J.-P.,
König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 419–433. Springer, Heidel-
berg (2011)

11. Kupferman, O., Vardi, M.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(3), 408–429 (2001)

12. Kučera, A., Strejček, J.: The stuttering principle revisited. Acta Informatica 41(7-
8), 415–434 (2005)

13. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past.
In: LICS 2002, pp. 383–392. IEEE (2002)

14. Leroux, J., Sutre, G.: Flat counter systems are everywhere! In: Peled, D.A., Tsay,
Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)

15. Markey, N., Schnoebelen, P.: Model checking a path. In: Amadio, R.M., Lugiez, D.
(eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)

16. Markey, N., Schnoebelen, P.: Mu-calculus path checking. IPL 97(6) (2006)
17. Minsky, M.: Computation, Finite and Infinite Machines. Prentice Hall (1967)
18. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theor. Comput.

Sci. 32, 321–330 (1984)
19. Piterman, N.: Extending temporal logic with ω-automata. Master’s thesis, The

Weizmann Institute of Science (2000)
20. Pottier, L.: Minimal Solutions of Linear Diophantine Systems: Bounds and Algo-

rithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 162–173. Springer,
Heidelberg (1991)

21. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic.
JACM 32(3), 733–749 (1985)

22. Stockmeyer, L.J.: The complexity of decision problems in automata and logic. PhD
thesis, MIT (1974)

23. Vardi, M.: A temporal fixpoint calculus. In: POPL 1988, pp. 250–259. ACM (1988)
24. Vardi, M., Wolper, P.: Reasoning about infinite computations. I&C 115 (1994)
25. Wolper, P.: Temporal logic can be more expressive. I&C 56, 72–99 (1983)

http://arxiv.org/abs/1304.6301

	On the Complexity of Verifying Regular Properties on Flat Counter Systems
	1 Introduction
	2 Preliminaries
	2.1 Counter Systems
	2.2 Model-Checking Problem
	2.3 A Bunch of Specification Languages

	3 Constrained Path Schemas
	4 Taming First-Order Logic and Flat Counter Systems
	4.1 First-Order Logic in a Nutshell
	4.2 Model-Checking Flat Counter Systems with FO

	5 Taming Linear μ-calculus and Other Languages
	6 Conclusion
	References




