
S. Yamamoto (Ed.): HIMI/HCII 2013, Part I, LNCS 8016, pp. 383–392, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Framework for Quantitatively Evaluating
the Quality Requirements of Software System

Yuki Terawaki

Research Center for Computing and Multimedia Studies,
Hosei University, 3-7-2 Kajinocho, Koganei, Tokyo 184-8584, Japan

yuki.terawaki.dc@k.hosei.ac.jp

Abstract. Quality requirements (QR) are a description which indicates how
well the software’s behavior is to be executed. It is widely recognized that qual-
ity requirements are vital for the success of software systems. Therefore, to
define the quality requirements and to check the quality attributes carefully is
necessary for bringing good- quality software and ensuring quality of the ser-
vice. This paper proposes a framework that measures the quality attributes in
the requirements document such as SRS. The effectiveness of this framework
was briefly described, we discuss approach was to enrich the representative
quality corpora.

Keywords: Requirements Engineering, Quality Requirements, Non-Functional
Requirements, text-mining.

1 Introduction

Quality requirements (QR) are a description which indicates how well the software’s
behavior is to be executed. It is widely recognized that quality requirements are vital
for the success of software systems. So, it is necessary to check the quality
requirements carefully to bring good-quality software for the user and to ensure the
quality of service. However, in the requirements acquisition phase, functional
requirements are highly focused, quality requirements are not necessarily sufficiently
defined [1]. Despite the importance of QR, it is generally acknowledged that QR are
difficult to capture and specify. Several studies [2] [3] [4] [5] have identified
challenges of QR as: difficult to gather, often poorly understood, general stated
informally in a non-quantifiable manner, where should QR document, and difficulties
to get attention for QR.

To define quality requirements adequately and sufficiently, we must know how
much QR are stated in the software requirements specifications (SRS). It will make a
good base to explore ways for eliciting, representing and implementing QR. For that
purpose, this paper proposes a framework to identify where in a SRS quality require-
ments are stated and which characteristics class each requirement belongs to. The
proposed framework can analyze QR found in an SRS in terms of their volume, bal-
ance and structure. This framework can analyze the SRS written in natural language,

384 Y. Terawaki

Japanese [icons ref]. Today, it’s a fact that SRS are mostly written in natural lan-
guage. In this framework, natural language processing techniques, particularly the text
similarity detecting methods, are employed to measure the degree of quality factors in
each requirement sentence.

The paper is organized as follows. In section 2, the background and related work
are presented. In section 3, the proposed framework and the implementation of tool
are described. Section 4 introduces case studies briefly. Section 5 presents the discus-
sion. In section 6 conclusion and future works are provided.

2 The Previous Practice in Industry and Academic

Today, though software development requires quick delivery, it is not unusual for
development documents (such as SRS or Request for Proposal: RFP) to be over
several hundred pages long. As the scale of the SRS gets bigger, the structure of the
SRS becomes complicated. At present, despite of the increasing number of documents
which should be inspected, shortening of development time is desired. To respond
these demands of the present age, some templates of reader-friendly SRS have been
proposed. These templates are often recommended to write Functional Requirements
and QR separately. For example, FR and QR are to be described in separate chapters
in IEEE Std. 830-1998 [6]. Wiegers’s book [1] introduces another template adapted
from the IEEE 830, which also separates FR and NFR. Lauesen [7] said the SRS
written in industry were inspired by the IEEE830 guidelines, but when it came to the
specific requirements, they were bewildering because IEEE 830 suggested no
guidance. Moreover, Lauesen’s book introduces SRS of good example. These SRS
are not similar to IEEE 830 structure, and it is more instructive to grasp how QR’s are
distributed over the document and how they are mixed with FR or not. Particularly,
visualization of the distribution is helpful.

The following researches are developing the tool which detects the defect of re-
quirements. William M. Wilson et al proposed the Automated Requirements Mea-
surement (ARM) [8]. The Quality Analyzer for Requirements Specifications
(QuARS) was proposed by A. Fantechi et al [9]. These researches aim at pointing out
the inaccuracy of the requirement specification document written by natural language.
The advantage of this research over these researches is as follows. This research pro-
vides stronger support function for quality requirements. This framework gives the
evaluation criterion of quality requirements (development documents) to the author of
RS. The author of RS can focus on improving the quality requirements.

Moreover, the following researches are related to specification, classification, and
measurement of QR. Grimshaw and Draper [10] found that QR are often overlooked
and there is a lack of consensus about quality requirements. Johansson et al. found
that reliability was identified by a multitude of stakeholders to be the most important
QR[10]. Our research objective is to investigate an SRS, what kind of QR are actually
written, how they are distributed over quality characteristics as categorized in the
ISO/IEC 25010 standard. There are already some works that attempt to discern

 Framework for Quantitatively Evaluating the Quality Requirements 385

and classify QR in SRS. H. Kaiya et al. [12] calls the distribution of requirements
sentences across QR characteristics as ‘spectrum’. In Kaiya’s research, the policy of
distinguishing QR from FR is not clear, so, it is required to classify requirements
quality characteristics by hand. That implies making up the spectrum they needs key-
word-to-quality matrix. The matrix is constructed for each system by a human, al-
though there is a possibility of reusing the existing one if the application domain is the
same. Svensson et al. [13] analyzed how quality requirements are specified and which
types of requirements exist in a requirements specification from industry by manual
work. By contrast, in our approach, a text mining technique is used to filter out QR
statements from SRS, classifying them into the ISO/IEC 25010 quality characteristic
categories at same time. So, the original of our approach is to identify where in a SRS
quality requirements are stated and which characteristics class each requirement be-
longs to. We can identify how each QR characteristic scatters over the document, i.e.
how much in column and in what way.

3 Proposed Framework

3.1 Our Approach

When we manage QR, We can apply a sentence of requirements to each characteristic
of the software quality attributes of ISO/IEC 25010 and can check the requirements
for quality. However, it is difficult to evaluate correspondence with attribute and re-
quirements for a general reason. This is because some quality requirements overlap
two or more quality attributes. Also, when identifying attributes and requirements,
human judgment may change over time. Thus, it is difficult to review every quality
requirements in terms of coherent thinking. However, if the quality attributes can be
quantitatively measured, then they could potentially help the author of SRS decide if a
revision is needed. Additionally, almost all development documents are described in
natural language. If the quality requirements needed are written to the document
created to the upper process, quality can be measured at the time of the acceptance
inspection. However, it is difficult to review every quality attributes in terms of time.
These problems bring deterioration in the quality of development document and play
a role in the failure of the project. So, text-mining technique is employed.

The Requirements Process includes 4 processes. There are requirements elicitation,
evaluation, specification (documentation) and quality assurance. This process is
iteration on successive increments according to a spiral model [14]. In the
spiral process, when requirements document will become elaborate, the error of
requirements may be made. In spiral process, the revised document (SRS) can
check without spending hours using text-mining technique. The quality attributes
contained in SRS are showed quantitatively because the text mining analyzes where
quality attributes are contained, and how much. The rate of documentation of
quality attribute can be showed using the output of text mining. Thus, the quality
requirements are checked by coherent thinking. Therefore, the workload for
verification of SRS will be decreased.

386 Y. Terawaki

3.2 Overview of Framework

We propose a framework for mining QR in SRS. This framework can be use to im-
prove the quality of SRS through the requirements definition process. As criteria for
evaluating the quality requirement, the quality model of ISO/IEC25010 [15] is used.
The proposed framework can specify the statement related to quality attribute of
ISO/IEC 25010. The framework is conceptually composed of two parts. One is the
QR mining mechanism and the other is its usage in the RE process. Figure 1 shows
the conceptual diagram of this framework.

The QR mining mechanism analyzes the similarities of the quality content of a
given piece of requirements text between the similarity with a corpus of typical
requirements sentences that state the target quality characteristic such as Performance
Efficiency (PE), Compatibility (Co), Usability (U), Security (Se), etc. A detailed
discussion of the calculation method of similarity can be found in [19].

In Kaiya et al.’s work [12], keywords are used to link requirements with quality
attributes. In comparison our approach is not keyword-based but based on text
similarity metrics using an associative search engine. It is more suitable to our purpose
than a keyword-based approach, because it is not affected strongly by a particular
choice of keywords.

Fig. 1. Conceptual diagram of QR Mining Framework

Regarding the usage in the RE process, the output of tool can contribute to different
phases of the RE process cycle. For example:

• Documentation phase: As unfinished requirements documents can be analyzed in
this framework, findings obtained from QR mining can be used to give a feedback
when writing an SRS. The authors of SRS can find the redundant description and
the overlapping statements more effectively and quickly by using the output of
tool.

 Framework for Quantitatively Evaluating the Quality Requirements 387

• Quality Assurance phase: Probably, the most natural usage of QR mining is in the
phase of evaluation. When the SRS is completed and passed to a quality assurance
team for reviewing, the output of the QR mining will be informative in analyzing
and improving the SRS. And in inspection process [20] the output of the QR min-
ing helps inspectors examine the work product to identify possible defects.

3.3 Tool

We developed a tool QRMiner that supports the proposed framework. This tool was
developed as a CUI application by using Java programming language and shell
scripts. The Japanese morphological analyzer Sen [16] is employed for morphological
analysis. The Japanese WordNet [18] is used to add Synonyms and extracted through
a method that first acquires a lower level of the word group against the original words
and then acquires the sum of the sets of each upper level word group. For the Quality-
to-term matrix file creation and search operations, GETA associative engine is
employed [21]. GETA, an acronym for “Generic Engine for Transposable
Association”, is an efficient tool that accepts a group of queries in text and returns
highly related documents from the designated repository in their relevance order. It is
open to public use. Such as mkw command, a part of GETA commands are provided
only as the C library, so we developed an execute format to wrap the I/O for the
connection by using the Java program and standard I/O. A detailed discussion of the
tool can be found in [22], [19], [23].

4 Case Studies

This case study presents the results of analysis of SRS that collected from the public
sector of universities and governments. After an early analysis of the SRS, a paper
[19] was presented at conference. This paper extends our previous report on findings
with more description of the SRS and account of idea of future works.

4.1 Overview

Total of nine SRS’s are analyzed, which are consists of two groups; six are systems
for universities and three are for governments. The nine SRS was analyzed by
QRMiner and manually by the three experts. Moreover, to evaluate the usefulness
of QRMiner quantitatively, we calculated the precision and recall between the
results by QRMiner and those decided by the human experts for all the SRS. Precision
and recall in total are 0.60 and 0.62, which is not so bad, the evaluation of the tool in
terms of precision and recall was satisfactory. The followings are findings of the pre-
vious study [19].

QR structure: The QRMiner can show the structure of SRS. As noted before chap-
ter of this paper, a well-structured SRS, where QR and FR are written in separate
chapters. When they are mixed apparently randomly, the SRS commonly have got the
following problems.

388 Y. Terawaki

Fig. 2. Structure of QRMiner

Redundancy: The QRMiner output detects the same quality requirements in the early
part and also in the later part of the document. Inspecting those parts manually, it was
suggested that they are rather redundant and had better be merged in one place.

• Overloading: The QRMiner detects that some sentences are found to have multiple
QR overloaded within. By inspection, it was suggested to divide the sentence to
enhance the readability.

Fig. 3. Distriburion of quality characteristics over the whole document

 Framework for Quantitatively Evaluating the Quality Requirements 389

Fig. 4. Result of QRMiner

4.2 Difference between University and Government Systems

As regarding the evaluation of precision and recall, there is no particular difference
found between the university systems and the government systems. However, the SRS
that we used have distinct characteristics of “ Request for Proposal (RFP)”. The SRS
that the public sector wrote have some features.

1. The requestor does not have much technical knowledge. The requestor often gets a
suggestion from competitor several times, and then the requestor perfects the SRS
through the suggestion.

2. The requirements are not only for software but integrated with those for hardware
and includes rules for administration of system.

3. The upper limit budget is determined but usually hidden to the tenders. A proposal
with cost estimation under the budget limit and with high values will obtain the
contract.

5 Discussion

This research concentrates on analyzing QR. The proposed framework in terms of
precision and recall is satisfactory. However, such as SRS for procurement, when the
SRS that mentioned chapter 4.2 are treated, it is required to have a point of view.

5.1 Aspect of Procurement

The software requirements specifications are often referred to as the information
system procurement specifications or specification requirements for information
system procurement at universities or government agencies. This means requirements
specifications are made on the essential basis. When you aim to accomplish quality
improvement on requirements specification made in universities or government

390 Y. Terawaki

agencies, it is desirable to focus on not only system requirements characteristics but
also analyzing requirements comprehensively. The requirements related to system are
specifically as follows;

─ Handling of Precondition or reference for software /system structure
─ Service agreement among software providers and contractors
─ Handling of indeterminate requirements before completing an order

5.2 System Requirements Categorization and Service Level Agreement

It is required to increase the quality representative corpora to accumulate sentences, to
deal with problems above with the proposed framework in this study.

ISO/IEC25030 [24] and ISO20000-2 are helpful to increase the quality representa-
tive corpora.

This tool registers corpus sentences according to ISO/IEC25010. ISO/IEC25010 is
an international standard stated in system and software product quality requirements
and evaluation (SQuaRE) series. The SQuaRE series consist of some standards. For
example, ISO/IEC25030 describes that a system consists of number of interacting
elements and they can be defined and categorized in different ways. And it defines
classes of requirements. ISO/IEC 25010 deal with the gray part (Σφάλμα! Το αρχείο
προέλευσης της αναφοράς δεν βρέθηκε.) of classes for requirements. It is efficient
to accumulate corpus sentences according to ISO/IEC25030 to manage any require-
ments connected to Precaution for operation, system running, and maintenance
conditions.

ISO/IEC2000-2 is a standard guideline for concluding Service Level Agreement.
There are 20 items listed. When you accumulate corpus sentences connected to sup-
port system and scope of work, for example, emergency contact during any trouble
occurrence, job commission to system engineers who is continuously presence.

Fig. 5. System requiremens categorisation (ISO/IEC 25030)

 Framework for Quantitatively Evaluating the Quality Requirements 391

Lately, in Japan, the basic guideline for procurement of information systems and
handling of government procurement of information systems were established. There
exists the improvement we found with this case, and assistance with this framework
that correspond with the government basic guideline. Therefore, this framework can
make a contribution to improve the quality of requirement specification by enhancing
corpus sentences with using ISO/IEC25030 and ISO/IEC2000-2.

6 Conclusion and Future Work

We propose a QR mining framework and developed a tool QRMiner that supports the
framework. The effectiveness of this framework was briefly described, we discuss
approach was to enrich the representative quality corpora. We will prepare
representative corpora by hand using ISO/IEC25030 and ISO/IEC2000-2. Another
different approach is the use of a learning mechanism. However, in our first attempt
will be to collect more documents and to extend the scope of target system types. In
near future, we may find a better way of a learning mechanism.

References

1. Wiegers, K.E.: Software Requirements. Microsft Press (2003)
2. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software

Engineering. Kluwer Academic Publishers (2000)
3. Berntsson Svensson, R., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt, R.:

Quality Requirements in Industrial Practice – an extended interview study at eleven com-
panies. IEEE Transaction on Software Engineering (2011) (in print)

4. Borg, A., Yong, A., Carlshamre, P., Sandahl, K.: The Bad Conscience of Requirements
Engineering: An Investigation in Real-world Treatment of Non-functional Requirements.
In: Third Conference on Software Engineering Research and Practice in Sweden (SERPS
2003), Lund, Sweden (2003)

5. Chung, L., do Prado Leite, J.C.S.: On Non-Functional Requirements in software engineer-
ing. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling:
Foundations and Applications. LNCS, vol. 5600, pp. 363–379. Springer, Heidelberg
(2009)

6. IEEE, Recommended practice for software requirements specifications, IEEE, Tech. Rep.,
IEEE Std830-1998 (1998)

7. Lauesen, S.: Software Requirements styles and Techniques. Addison-Wesley (2002)
8. Wilson, W.M., et al.: Automated Analysis of Requirement Specifications. In: Proceedings

of the International Conference on Software Engineering ICSE 1997, pp. 161–171 (1997)
9. Fantechi, A., et al.: Application of Linguistic Techniques for Use Case Analysis. In: Pro-

ceedings of the IEEE Joint International Conference on Requirements Engineering,
pp. 157–164 (2002)

10. Grimshaw, D., Drapper, G.W.: Non-functional requirements analysis: Deficiencies in
structured methods. Information and Software Technology 43, 629–634 (2001)

11. Johansson, E., Wesslen, A., Bratthall, L., Host, M.: The importance of quality require-
ments in software platform development –a survey. In: Proceedings of the 34th Annual
Hawaii International Conference on System Sciences (2001)

392 Y. Terawaki

12. Kaiya, H., Sato, T., Osada, A., Kitazawa, N., Kaijiri, K.: Toward quality requirements
analysis based on domain specific quality spectrum. In: SAC 2008 Proceedings of the 2008
ACM Symposium on Applied Computing (2008)

13. Olsson, T., Sevenssion, R.B., Regnell, B.: Non-functional requirements metrics in practice
– an empirical document analysis. In: Workshop on Measuring Requirements for Project
and Product Success (2007) (a full version is to appear in the Information and Software
Technology)

14. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. John
Wiley & Sons Ltd. (1997)

15. ISO/IEC, ISO/IEC 25010 Systems and software engineering- Systems and software Quali-
ty Requirements and Evaluation (SQuaRE) -System and software quality models (2011)

16. Sen (December 2010), http://ultimania.org/sen/
17. GETA (December 2010), http://geta.ex.nii.ac.jp/e/index.html
18. 日本語 WordNet (December 2010),

http://nlpwww.nict.go.jp/wn-ja/index.en.html
19. Terawaki, Y., Tamai, T.: A Framework for Mining Quality Requirements in Software Re-

quirements Specifications. In: The International Symposium on Requirements Engineering
(RE) (submitted)

20. Fagan, M.: Design and Code Inspections to Reduce Errors in Program Development. IBM
Systems Journal 15(3), 182–211 (1976)

21. Takano, A.: Association computation for information access. In: Grieser, G., Tanaka, Y.,
Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 33–44. Springer, Heidelberg
(2003)

22. Terawaki, Y.: Supporting of Requirements Elicitation for Ensuring Services of Information
Systems Used for Education. In: Smith, M.J., Salvendy, G. (eds.) HCII 2011, Part I.
LNCS, vol. 6771, pp. 58–65. Springer, Heidelberg (2011)

23. Terawaki, Y., Tamai, T.: A practical approach to Quality Requirements Handling in Soft-
ware Systems Development. In: The Eighth International Conference on Systems, ICONS
2013, pp. 160–163 (2013)

24. ISO/IEC, ISO/IEC 25030 Software engineering – Software product Quality Requirements
and Evaluation (SQuaRE) – Quality requirements, 1 edn. (2007)

	Framework for Quantitatively Evaluating
the Quality Requirements of Software System
	1 Introduction
	2 The Previous Practice in Industry and Academic
	3 Proposed Framework
	3.1 Our Approach
	3.2 Overview of Framework
	3.3 Tool

	4 Case Studies
	4.1 Overview
	4.2 Difference between University and Government Systems

	5 Discussion
	5.1 Aspect of Procurement
	5.2 System Requirements Categorization and Service Level Agreement

	6 Conclusion and Future Work
	References

