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Abstract. Paging is a prominent problem in the field of online algo-
rithms. While in the deterministic setting there exist simple and efficient
strongly competitive algorithms, in the randomized setting a tradeoff
between competitiveness and memory is still not settled. In this paper
we address the conjecture in [2], that there exist strongly competitive
randomized paging algorithms using o(k) bookmarks, i.e. pages not in
cache that the algorithm keeps track of. We prove tighter bounds for
Equitable2 [2], showing that it requires less than k bookmarks, more
precisely ≈ 0.62k. We then give a lower bound for Equitable2 showing
that it cannot both be strongly competitive and use o(k) bookmarks. Our
main result proves the conjecture that there exist strongly competitive
paging algorithms using o(k) bookmarks. We propose an algorithm, de-
noted Partition2, which is a variant of the Partition algorithm in [3].
While Partition is unbounded in its space requirements, Partition2
uses Θ(k/ log k) bookmarks.

1 Introduction

The paging problem is defined as follows. We have a two-level memory hierarchy
consisting of a fast cache which can accommodate k pages, and a slow memory
of infinite size. The input consists of requests to pages which are processed
sequentially as follows. If the currently requested page is not in cache, a cache
miss occurs and the requested page must be brought into cache. If the cache is
full, a page must be evicted to accommodate the new one. The cost is given by
the number of misses incurred.

Online algorithms in general and paging algorithms in particular are typically
analyzed in the framework of competitive analysis [4,5]. An algorithm A is said to
have a competitive ratio of c (or c-competitive) if its cost satisfies for any input
cost(A) ≤ c · cost(OPT ) + b, where b is a constant and cost(OPT ) is the cost
of an optimal offline algorithm, i.e. an algorithm which is presented with the
input in advance and processes it optimally; for randomized algorithms, cost(A)
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is the expected cost of A. An algorithm achieving an optimal competitive ratio is
strongly competitive. For paging, an optimal offline algorithm (OPT ) evicts the
page whose next request occurs the furthest in the future [6]. For comprehensive
surveys on online algorithms in general and paging algorithms in particular, we
refer the interested reader to [7,8].

Competitive ratio has often been criticized for its pessimistic quality guar-
antees. Especially in the deterministic setting, the empirically measured per-
formance for practical algorithms is far below the theoretical guarantee of k
provided by competitive analysis [9]. This gap is significantly smaller for ran-
domized algorithms, since the best possible competitive ratio is Hk. Although
using only the quality guarantees provided by competitive analysis is a naive
way to distinguish good paging algorithms from bad ones, we have shown in [10]
that ideas from competitive analysis for randomized algorithms can be success-
fully employed to design algorithms with good performance on real-world inputs.
That is because an optimal randomized algorithm can be viewed as a collection
of reasonable deterministic algorithms, and the algorithm designer can simply
look for suitable algorithms in this collection.

Randomized paging algorithms have been well studied over the past two
decades. In [11] a lower bound of Hk on the competitive ratio of randomized
paging algorithms has been given1. Also in [11], a simple (2Hk − 1)-competitive
algorithm, denoted Mark, has been proposed. In [12] it was shown that no ran-
domized marking algorithm can achieve a competitive ratio better than (2−ε)Hk

for any ε > 0. The first strongly competitive paging algorithm, Partition, was
proposed in [3]. While it is strongly competitive, its time and space usage are in
the worst case proportional to the input size independent of the cache size, which
is hopelessly high. More recent research focused on improving these bounds, es-
pecially the space requirements. Apart from the k pages in cache, a paging
algorithm may store information about pages not in cache. In the literature,
these “extra” pages are denoted bookmarks. An Hk-competitive algorithm, de-
noted Equitable, using O(k2 log k) bookmarks was proposed in [13]. A better
version of Equitable, denoted Equitable2, improved this bound to 2k book-
marks [14]. This solved the open question in [8] that there exist Hk-competitive
paging algorithms using O(k) space. In [15] we proposed an algorithm, Online-
MIN, which further improved Equitable2 by reducing its runtime for process-
ing a page from O(k2) to O(log k/ log log k) while maintaining its space usage.
Note that Mark and most deterministic algorithms use no bookmarks.

A distinct line of research for randomized paging algorithms considers fixed
cache sizes (k = 2 and k = 3 to our best knowledge) to obtain tighter bounds
than for general k. In [16], for k = 2, a 3

2 -competitive algorithm using only one
bookmark was proposed. Still for k = 2, for randomized algorithms using no
bookmarks lower and upper bounds on the competitive ratio of 37

24 ≈ 1.5416
and ≈ 1.6514 respectively were given in [12,16]. In [14], strongly competitive
randomized paging algorithms were proposed for k = 2 and k = 3, using 1 and 2
bookmarks respectively.

1 Hk =
∑k

i=1 1/i is the kth harmonic number.
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Our Contributions. This work focuses on the number of bookmarks needed by
randomized algorithms to achieve the optimal competitive ratio of Hk. The best
previously known result is 2k [14]. In [2] it was conjectured that there exist
algorithms that use o(k) bookmarks and are Hk-competitive. We first give a
tighter analysis for Equitable2 improving the amount of bookmarks from 2k
to ≈ 0.62k, which is the first solution using less than k bookmarks. We give
a negative result showing that Equitable2 cannot be Hk-competitive and use
o(k) bookmarks. Nonetheless, we show that it can trade competitiveness for
space: if it is allowed to be (Hk+ t)-competitive, it requires k/(1+ t) bookmarks.

We propose Partition2 which is a modification of the Partition algorithm.
Partition2 improves the bookmark requirements of Partition from propor-
tional to input size to Θ(k/ log k) and thus proves the o(k) conjecture. For our
analysis we provide a constructive equivalent between the two representations of
the offset functions in [17] and [3]. Since offset functions are the key ingredient
for optimal competitive paging algorithms, this may be of independent interest.

2 Preliminaries

Offset Functions and Layer Representation. For the paging problem it is pos-
sible to track online the exact minimal cost using offset functions. For a fixed
input sequence σ and an arbitrary cache configuration C (i.e., a set of k pages),
the offset function ω assigns to C the difference between the minimal cost of
processing σ ending in configuration C and the minimal cost of processing σ.
A configuration is called valid iff ω(C) = 0. In [17] it was shown that the class
of valid configurations V determines the value of ω on any configuration C by
ω(C) = minX∈V{|C \X |}. We can assume that OPT is always in a valid con-
figuration. More precisely, if p is requested and there exists a valid configuration
containing p, then the cost of OPT is 0; otherwise OPT pays 1 to process p.

In [17] it was shown for the paging problem that the offset function can be rep-
resented as a partitioning of the pageset in k+1 disjoint sets L = (L0|L1| . . . |Lk),
denoted layers. An update rule for the layers when processing a page was also
provided. Initially, the first k pairwise distinct requested pages are stored in lay-
ers L1, . . . , Lk, one page per layer, and L0 contains the remaining pages. Upon
processing page p, let Lp be the partitioning after processing p; we have2:

– Lp = (L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

– Lp = (L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |Lk|{p}), if p ∈ Li, i > 0

This layer representation can keep track of all valid configurations. More specif-
ically, a set C of k pages is valid iff |C ∩ Li| ≤ i holds for all 0 ≤ i ≤ k [17]. For
a given L, denote by support S(L) = L1 ∪ . . . ∪ Lk. Also, a layer containing a
single page is a singleton. Let r be the smallest index such that Lr, . . . , Lk are
singletons. The pages in Lr, . . . , Lk are denoted revealed, the pages in support

2 We use the layer representation introduced in [15], which is equivalent to the ones
in [13,17].
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which are not revealed are unrevealed, and the pages in L0 are denoted Opt-miss.
OPT faults on a request to p iff p ∈ L0 and all revealed pages are (independent
of the current request) in OPT’s cache. If L has only revealed pages it is denoted
a cone and we know the content of OPT’s cache. We define the signature χ(L) as
a k-dimensional vector χ = (x1, . . . , xk), with xi = |Li| − 1 for each i = 1, . . . , k.

Selection Process. In [15] we defined a priority-based selection process on L which
is guaranteed to construct any valid configuration. Assuming that support pages
have pairwise distinct priorities, we build a hierarchy of sets C0, . . . , Ck:

– C0 = ∅
– Ci has the i pages in Ci−1 ∪ Li having the highest priorities, for all i > 0.

Note that, by definition, when constructing Ci there are i+ xi candidates and i
slots. Also, if Li is singleton we have xi = 0 and Ci = Ci−1 ∪ Li; for singleton
layers and only for singleton layers, all elements in both Ci−1 and Li make it
to Ci and we say that no competition occurs. The outcome Ck contains k pages
and is always a valid configuration.

Equitable, OnlineMin, and Forgiveness. The cache content of the Equitable
algorithms [13,14] is defined by a probability distribution over the set of valid
configurations. This distribution is achieved by OnlineMin using the previously
introduced priority-based selection process, when priorities are assigned to sup-
port pages such that each permutation of the ranks of these pages is equally
likely [15]. The cache content of OnlineMin is at all times the outcome Ck

of the selection process. Nonetheless, the resulting probability distribution on
cache configurations is the same as for Equitable [15], and in the rest of the
paper we refer to this distribution and the associated algorithm as Equitable.

Note that the support size increases only when pages in L0 are requested. As
the number of Opt-miss requests may be very large, the support size and together
with it the space usage of algorithms, such as Equitable, using it to decide
their cache content may also be arbitrarily large. To circumvent this problem,
the forgiveness mechanism is used. Intuitively, if the support size exceeds a given
threshold, then the adversary did not play optimally and we can afford to use
an approximation of the offset function with a layer representation bounded in
size.

3 Better Bounds for Equitable2

There are two Equitable algorithms, Equitable [13] and Equitable2 [14]3.
For a fixed offset function, they have the same distribution as previously intro-
duced. The difference between them is given by forgiveness mechanisms, which
are used to approximate the current offset functions. In this section we focus on
the Equitable2 algorithm using the forgiveness mechanism described in [14]

3 In [14] Equitable2 is denoted K Equitable. In this paper we use its original name.
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which works as follows. Whenever the support size reaches 3k and an Opt-miss
page is requested, the requested page is artificially inserted in L1 and processed
as a L1 page. All pages in L1 move to L0 and the support size never exceeds 3k.
We give a tighter analysis and show that using the same forgiveness the algo-
rithm uses less than k bookmarks and prove that o(k) bookmarks is not possible.
Finally, we show that it can trade competitiveness for space: if the algorithm
uses k/(1 + t) bookmarks, then it is (Hk + t)-competitive, for t ≥ 0.

To accommodate the selection process for OnlineMIN, all pages in support
have pairwise distinct priorities, such that each priority ordering of the support
pages is equally likely. We say that some page p has rank i in a set if its priority
is the i’th largest among the elements in the given set.

In [13] an elegant potential function, based only on the current offset function,
was introduced. Given the layer representation L, the potential Φ(L) is defined to
be the cost of a so-called lazy attack sequence, that is, a sequence of consecutive
requests to unrevealed pages until reaching a cone. The potential Φ is well defined
because in the case of the Equitable distribution, all lazy attack sequences have
the same overall cost for a given offset function [13].

Initially, we are in a cone and Φ = 0. Upon a request to a page p in support,
having cache miss probability pb(p), by definition we have that ΔΦ = −pb(p).
On lazy requests OPT does not fault and thus Δcost +ΔΦ = ΔcostOPT = 0.
Upon a request from L0 both Equitable and OPT have cost 1 and it was shown
that ΔΦ ≤ Hk − 1 [13,14]. We thus have:

Δcost+ΔΦ ≤ Hk ·ΔcostOPT .

If L is a cone, it is easy to verify that ΔΦ = Hk − 1 for a request in L0. If the
support size exceeds k, the difference in potential is smaller, i.e. ΔΦ < Hk − 1.
This means that the algorithm pays less than its allowed cost and thus it can
make savings, which can be tracked by a second potential function and pay for
the forgiveness step when the support is large enough. While Φ is very convenient
to use for requests in support, for arbitrary offset functions there is no known
closed form for its exact actual value or for its exact change upon a request in L0.

3.1 Approximation of Φ

The key ingredient to our analysis is to get a bound for ΔΦ that is as tight
as possible on requests in L0. A tighter bound for this value implies larger
savings, which in turn means that these savings can pay earlier (i.e. for a smaller
support size) for a forgiveness step, which in the end means fewer bookmarks.
We therefore analyze ΔΦ for requests to pages in L0 when no forgiveness step is
applied. Note that Φ depends only on the signature χ = (x1, . . . , xk) of the layer
representation. We use χ = 0 for the cone signature (0|0| . . . |0) and χ = ei for
the i-th unit vector (0| . . . |xi = 1| . . . |0). If χ = 0 we have Φ = 0. Otherwise, let i
be the largest index such that xi > 0. Since all lazy attack sequences have the
same cost, we consider Φ as the cost of i consecutive requests, each of them to
a page in the (current) first layer. For the layer representation L of the current
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offset function, we let cost1(L) denote the probability of cache miss for a page p
in L1, i.e. pb(p /∈ Ck) in the selection process.

We start with the case when all layers are singletons except some layer Li.
The potential Φ for this particular case is given in Lemma 1. For some arbitrary
values i, n, and γ, where 0 < i < γ ≤ k consider the signatures χ = n·ei and χ′ =
n ·ei+eγ−1; let L and L′ be their corresponding layer representations. We define
the difference in the cost for a request in L1: f(i, n, γ) = cost1(χ

′)− cost1(χ). In
the special case γ = k it represents Δcost1 upon a request in L0. The value for
f(i, n, γ) can be computed exactly and is given in Lemma 2, and in Lemma 3 we
show that f(i, n, γ) is an upper bound on Δcost1 for a whole class of signatures.
Lemma 4 provides an identity for approximating ΔΦ for a request in L0. The
proofs for all these results are given in the full version.

Lemma 1. Let χ = n · ei be the signature of L, where n > 0 and 0 < i < k. We
have Φ(χ) = n · (Hi+n −Hn).

Lemma 2. It holds that f(i, n, γ) = 1
n+γ

∏γ−1
j=i

j
n+j .

Lemma 3. Consider a signature χ = (x1| . . . |xk), and let i be the minimal index
with xj = 0 for all j > i. Also, let χ′ = χ+eγ−1, i < γ ≤ k. For n = x1+· · ·+xi,
we have cost1(χ

′)− cost1(χ) ≤ f(i, n, γ).

Lemma 4. It holds that
∑i

j=1 f(i− j +1, 1, γ− j +1) = Hγ −Hγ−i− i
γ+1 , for

any i and γ with i < γ.

Theorem 1. For a request to a page p ∈ L0 where no forgiveness is applied,
let i be the largest index with xi > 0; i = 0 if we are in a cone. We have that:

Hk−i −H1 ≤ ΔΦ ≤ Hk −H1 − i/(k + 1).

Proof. For i = 0, in a cone we have ΔΦ = Hk − 1 by Lemma 1. If i > 0, let
L and L′, and χ and χ′ = χ + ek−1 denote the layers and their corresponding
signatures before and after the request to p respectively. We consider the cost
of a sequence of i consecutive requests p1, . . . , pi, each of these to pages in the
current L1. For each j = 1, . . . , i let χj and χ′j denote the signatures before
processing pj . After the whole sequence is processed, we have χ = 0 with Φ = 0
and χ′ = ek−i−1 with Φ′ = Hk−i −H1 by Lemma 1. We get:

ΔΦ = Hk−i −H1 +
i∑

j=1

(
cost1(χ

′j)− cost1(χ
j)
)

Since cost1(χ
′j)− cost1(χ

j) is non-negative, the left inequality holds.

Now we bound cost1(χ
′j)− cost1(χ

j) using Lemma 3. Before processing page

pj we have xj
i−j+1 > 0, xj

l = 0 for all indices l > i− j + 1 and χ′j = χj + eγ−1

with γ = k− j + 1 . Denoting nj = xj
1 + · · ·+ xj

i−j+1, and using the fact that f

is decreasing in n, nj > 0 for all j ≤ i, and the result in Lemma 4, we get:

ΔΦ ≤
i∑

j=1

f(i−j+1, nj, k−j+1)+Hk−i−H1 ≤ Hk−Hk−i− i

k + 1
+Hk−i−H1 .
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3.2 Competitiveness and Bookmarks

Having obtained a tighter bound on ΔΦ for requests in L0, we get improved
savings using a second potential Ψ . To define Ψ(L), we first introduce the concept
of chopped signature. For some signature χ = (x1| . . . |xk), let i be the largest
index such that xi > 0. The chopped signature corresponding to χ is χ =
(x1| . . . |xk), where xi = xi − 1 and xj = xj for all j 	= i. If we are in a cone

and χ = 0 we define χ = χ. We define Ψ as Ψ(L) = 1
k+1

∑k−1
i=1 i · xi. Note that

Ψ(L) = 0 if χ = 0 or χ = ei and otherwise we have Ψ(L) > 0.

Fact 1. For a request to page p ∈ Li, i > 0, we have ΔΨ = − 1
k+1

∑k−1
j=i xj .

To prove that Equitable2 is Hk-competitive, it suffices to show that for each
request cost+ Φ+ Ψ ≤ Hk · costOPT , as both Φ and Ψ are non-negative.

Lemma 5. If no forgiveness is done then Δcost+ΔΦ+ΔΨ ≤ Hk ·ΔcostOPT .

Proof. We first analyze the case for a request p ∈ Li, with i > 0. We have
Δcost +ΔΦ = 0 by the definition of Φ and ΔcostOPT = 0. By Fact 1 ΔΨ ≤ 0
and we are done. For requests to pages in L0, both the algorithm and OPT incur
a cost of one, and thus Δcost = 1 and ΔcostOPT = 1. It remains to show that
ΔΨ +ΔΦ ≤ Hk − 1. We analyze separately the case when we are in a cone. In
this case, by definition ΔΨ = 0, and by Lemma 1 we obtain ΔΦ = Hk−1. In the
following we assume we are not in a cone upon the L0 request. Let i be the largest
index with xi 	= 0. By the update rule, we get that x′

k−1 = xk−1+1 and x′
j = xj

for all j 	= k − 1. For the chopped signature χ′ this implies x′
j = xj for all j 	= i

and x′
i = xi+1, because i 	= k as Lk is always singleton. It followsΔΨ = i/(k+1).

On the other hand we have by Theorem 1 that ΔΦ ≤ Hk −H1 − i/(k + 1).

Theorem 2. Equitable2 is Hk-competitive and uses 2 +
√
5−1
2 · k bookmarks.

Proof. If the support size reaches the threshold k + x, i.e. x bookmarks, we
apply upon a request from L0 the forgiveness mechanism from [14]. Recall that
we move the requested page artificially into L1, and then we process it as if it
was requested from L1. We have Δcost = 1 and ΔcostOPT = 0. Like in [14], we
need to prove that 1+ΔΦ+ΔΨ ≤ 0. Denote by χ the current signature, and let
x =

∑k
i=1 xi be the number of bookmarks used by the algorithm. We have that

ΔΦ = −cost1(χ). We get that 1 +ΔΦ is the probability that a page in L1 is in
the algorithm’s cache, which by the selection process of OnlineMin is at most
k/|S| = k/(x+k). Using the result in Fact 1 and the fact that

∑k−1
j=1 xj = x− 1,

we need to ensure that: k
x+k − x−1

k+1 ≤ 0 . Solving this inequality, we get x is

at most
√
5−1
2 k + 2. Therefore, Equitable2 needs only

√
5−1
2 k + 2 ≈ 0.62k

bookmarks. The cases where no forgiveness occurs are covered by Lemma 5.

In Theorem 3 and Theorem 4 we show that Equitable2 cannot be both Hk-
competitive and use o(k) bookmarks, but that it can trade competitiveness for
bookmarks. The proofs of these results are provided in the full version.



764 G. Moruz and A. Negoescu

Theorem 3. If Equitable2 uses t ≤ k/4 bookmarks, it is not Hk-competitive.

Theorem 4. There exist implementations of Equitable2 that use k/(1 + c)
bookmarks and are (Hk + c)-competitive, for k > 1 and c ≥ 1.

4 Partition

In this section we prove the conjecture in [14] that there exists a strongly com-
petitive paging algorithm using o(k) bookmarks. We propose a variation of the
Partition algorithm [3], denoted Partition2, using Θ(k/ log k) bookmarks.
We also give a simple lower bound showing that for any Hk-competitive random-
ized paging algorithm, the number of pages having non-zero probability of being
in cache is at least k + k/Hk. This leads to a lower bound of k/Hk bookmarks
for all algorithms which store all non-zero probability pages, i.e. representation
of the approximated offset function, and have a deterministic forgiveness step.
Note that this bound holds for all known Hk-competitive algorithms.

4.1 Partition

We give a brief description of the Partition algorithm in [3]. A crucial difference
compared to Equitable is that while the distribution of the cache configurations
depends only on the current offset function for Equitable, Partition uses
a more detailed representation of the offset function, which we denote in the
following set-partition. It partitions the whole pageset into a sequence of disjoint
sets Sα, Sα+1, . . . , Sβ−1, Sβ and each set Si with i < β has a label ki. Initially
β = α + 1, Sβ contains the first k pairwise distinct pages, the remaining pages
are in Sα, and kα = 0. Throughout the computation Sβ contains all revealed
pages and Sα all Opt-miss pages. The set-partition is updated as follows:

– if p ∈ Sα: Sα = Sα \ {p}, Sβ+1 = {p}, kβ = k − 1, and β = β + 1.
– if p ∈ Si, with α < i < β: Si = Si \ {p}, Sβ = Sβ ∪ {p}, and kj = kj − 1,

(i ≤ j < β). Additionally, if there are labels which become zero, let j be the
largest index such that kj = 0; we set Sj = Sα ∪ · · · ∪ Sj and α = j.

– if p ∈ Sβ : nothing changes

In [3] it was shown that the following invariants on the labels hold: kα = 0 and
ki > 0 for all i > 0; kβ−1 = k − |Sβ |. Furthermore, it holds at all times that
ki = (ki−1 + |Si|) − 1. The probability distribution of the cache content can be
described as the outcome of the following selection process on the set-partition:

– Cα = ∅
– For α < i < β choose p uniformly at random from Ci−1 ∪ Si and then set

Ci = (Ci−1 ∪ Si) \ {p}
– Cβ = Cβ−1 ∪ Sβ .

Note that, whereas for the selection process of OnlineMIN it holds that |Ci| = i
(0 ≤ i ≤ k), for Partition we have that |Cj | = kj (α ≤ j ≤ β − 1).
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Lemma 6 ([3, Lemma 3]). If p is requested from Si, where α < i < β, the
probability that p is not in the cache of Partition is at most

∑
i≤j<β

1
kj+1 .

Apart from obeying the probability distribution, Partition must satisfy two
constraints: it must not evict pages upon a cache hit and it must not evict more
than one page upon a cache miss. For any set Ci, the membership of a page to Ci
is encoded with a marking system on pages as follows. If a page is in set Si, where
α < i < β, it has either no mark or a series of marks i, i+1, . . . , j− 1, j. If p has
no mark then p /∈ Ci and otherwise it is in the selection sets Ci, Ci+1, . . . , Cj−1, Cj .
The cache of Partition is at all times Cβ , with |Cβ | = k. For a page p ∈ Si it
suffices to store the value mp of the highest mark or i− 1 if p has no mark.

Initially there are only the two sets Sα and Sβ and thus no marks. If the
requested page p ∈ Sβ nothing changes. If p ∈ Sα first the set-partition is
updated, where β is increased by 1 and we have to determine Cβ−1. A page q is
chosen uniformly at random from the k elements Cβ−2∪Sβ−1 (the cache content
before the request), and this element is the only one not receiving a β− 1 mark.
The page q is replaced in the cache by the requested page p. We now turn to
the case p ∈ Si, where α < i < β. If p is in cache then mp = β − 1 and we are
done. Otherwise let j ≤ β − 1 be the lowest index such that p /∈ Cj. We choose
uniformly at random a page q ∈ Cj and set mp = mq and mq = j − 1, i.e. p
steals the marks of q. We repeat this until mp = β− 1. The page which loses its
β − 1 mark is replaced in cache by p. Afterwards the set-partition is updated.

4.2 Partition2

Partition2 is a variant of Partition which uses (deterministic) forgiveness
to reduce the space usage from arbitrarily high bookmarks to O(k/ log k) book-
marks. A lower bound is provided which shows that this bound is asymptotically
optimal for algorithms using deterministic forgiveness. Unlike previous works,
when a forgiveness step must be applied, we distinguish between two cases and
apply two distinct forgiveness rules accordingly. The first of them is the same
one used by Equitable2 and covers only a single request, and the second one is
a forgiveness phase which spans consecutive requests. To apply the forgiveness
step of Equitable2, we provide an embedding of the set-partition into the layer
representation of the offset function. Based on this embedding, we give a simple
potential function which depends only on the signature of the offset function.

Layer Embedding. We provide an embedding of the set-partition into the layer
representation of the offset functions, as used by Equitable. The layers become
ordered sets and contain pages and set identifiers, the latter of which we visualize
by . The initialization does not change and no set identifiers are present. The
update rule changes mainly for the case p ∈ L0:

Lk−1 = (Lk−1, Lk, ), Lk = {p}.
In the case p ∈ Li, upon the merge operation Li−1 ∪Li \ {p}, we remove p from
Li and concatenate Li−1 with Li without removing any set identifier. Upon
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merging L1 into L0 we delete all set identifiers from the resulting layer L0. The
following fact follows inductively.

Fact 2. For Li, with i > 0 and |Li| = 1+xi, it holds that Li contains exactly xi

set identifiers. Moreover, if xi > 0 then the last element in Li is a set identifier.

We describe how to obtain the sets of the set-representation. Let j be maximal
such that xj > 1. We have Sβ = Lj+1 ∪ · · · ∪ Lk and Sα = L0. A set Sα+j ,
where 1 < j < β − α consists of all pages between the (j − 1)-th and the j-
th set identifier; for j = 1, Sα+1 consists of all support pages until the first set
identifier. We say that each set Sα+j , 0 < j < β−α, is represented by the j’th set
identifier. As long as no pages are moved into Sα, the correspondence between the
layer representation and the set-partition follows immediately from the update
rules. Otherwise, by Lemma 7 and noticing that each Li with xi > 0 ends in
a set delimiter, we obtain that p is in L1 and moreover the pages moved to Sα

correspond to L1 \ {p}.
Lemma 7. Let Sa, Sa+1, . . . , Sb be the sets whose identifiers are in layer Li,
i ≥ 0. We have kb = i, ka+j ≥ i for 0 ≤ j < b− a.

Proof. Due to space limitations, the proof is provided in the full version.

Lemma 8. If p is requested from Li, where i > 0, the probability that p is not
in the cache of Partition is at most

∑
j≥i

xj

j+1 .

Proof. If p ∈ Sβ , then it is in a revealed layer Li and thus xj = 0 for all
j ≥ i and the result holds. Let Si∗ be the set with p ∈ Si∗ , α < i∗ < β.
Then by Lemma 6 we have the probability bounded by

∑
i∗≤j∗<β

1
kj∗+1 . All sets

S∗
j , where i∗ ≤ j∗ < β have their identifier in some layer Lj with j ≥ i and

using Lemma 7 we obtain 1
kj∗+1 ≤ 1

j+1 . Since each layer Lj contains exactly xj

identifiers the statement follows.

Forgiveness. Forgiveness is applied when the support size reaches a threshold
of k + 3t (we define t later) and a page in L0 is requested. Depending on the
support we have two kinds of forgiveness: regular forgiveness and an extreme
forgiveness mode. The regular forgiveness is applied if |L1|+ · · ·+ |Lt| > 2t and
is an adaptation of the forgiveness step of Equitable2. If a page p is requested
from L0 (equivalent to Sα), we first identify a page q satisfying that q ∈ Sα+1∩L1.
Note that there always exists such a page, since kα+1 ≥ 1 and |S1| = k1 +1 and
at least one of them is in L1. We move q to L0 and replace it, together with
its marks, by p. Then we perform the set-partition and mark update where p is
requested from Sα+1. We stress that in terms of the layer representation (used
by e.g. Equitable), we replace the requested page with an existing page in L1,
and replacing q ∈ L1 by p and requesting p leads to the same offset function
when the forgiveness step in [14] is applied. This has a cost of 1 for Partition
and a cost of 0 for OPT. The support size decreases by |L1| − 1 ≥ 0.

The extreme forgiveness mode is applied if |L1| + · · ·+ |Lt| ≤ 2t. We simply
apply regular forgiveness for any page request in L0 starting with the current
one. This extreme forgiveness mode ends when reaching a cone.
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Competitive Ratio. We use Partition with the forgiveness rule for t = 
 k
ln k �

from the previous paragraph if k > 10 and denote the resulting algorithm Par-
tition2. For k ≤ 10 we use the regular forgiveness if the support size reaches 2k.

Theorem 5. Partition2 uses Θ( k
log k ) bookmarks and is Hk-competitive.

Proof. The space bound follows from the fact that the support size never exceeds
k + 3t for k > 10, where t = 
 k

ln k �. It remains to show that Partition2 is still
Hk-competitive. We use the following potential function on the layer embedding:

Φ =

k−1∑

j=1

xj · (Hj+1 − 1) .

We denote by cost the cost of Partition2 and by OPT the cost of the optimal
offline algorithm. We have to show that cost ≤ Hk ·OPT holds after each request.
In all cases except the extreme forgiveness we show that the following holds
before and after each request: Φ+cost ≤ Hk ·OPT . This leads to cost ≤ Hk ·OPT
since Φ ≥ 0. When applying the extreme forgiveness we assume that the potential
inequality holds before the phase and show that it holds at the end of the phase,
but not necessarily during the phase. For requests during the phase we argue
directly that it always holds cost ≤ Hk · OPT .

Let p be the requested page. If p ∈ L0 without forgiveness, ΔOPT = 1 and
xk−1 increases by 1, which implies that ΔΦ+Δcost = Hk − 1 + 1 = 1 ·Hk. If p
is from some layer Li, where 0 < i ≤ k, we use the bound on the cache miss
probability from Lemma 8

ΔΦ+Δcost ≤ −
∑

j≥i

xj

j + 1
+
∑

j≥i

xj

j + 1
≤ 0 ≤ Hk ·ΔOPT.

Now we analyze the cases where forgiveness occurs for k > 10. Assume that
|L1|+ · · ·+ |Lt| ≥ 2t+1 which implies that x1+ · · ·+xt ≥ t+1. We perform just
one forgiveness step, yielding Δcost = 1 and ΔOPT = 0. We show ΔΦ ≤ −1:

ΔΦ = −
k−1∑

j=1

xj

j + 1
≤ −

t∑

j=1

xj

t+ 1
= − t+ 1

t+ 1
= −1.

Now assume that xt+1+ · · ·+xk−1 ≥ 2t. Before we start the extreme forgiveness

mode, we have that Φ ≥ ∑k−1
j=t+1 xj(Hj+1−1) ≥ 2t(Ht+2−1). For t = 
 k

lnk � and
Hx ≥ lnx we obtain: Φ ≥ 2k

lnk (ln k − ln ln k − 1) ≥ k, if k > 10. Right before the
phase starts we have cost+ Φ ≤ Hk · OPT , where Φ ≥ k which is equivalent to
cost ≤ Hk ·OPT − k. Reaching the next cone implies at most k − 1 unrevealed
requests and thus the cost during this phase is bounded by k − 1. This implies
that cost ≤ Hk · OPT holds. Since in a cone Φ = 0 we also have at the end of
the phase the invariant cost+ Φ ≤ Hk · OPT .

For the case k ≤ 10 the analysis of the extreme forgiveness does not hold. In
this case we use only the regular forgiveness step if we have k bookmarks. Using
x1 + · · ·+ xk−1 = k the same argument as before leads to ΔΦ ≤ −1.
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Lemma 9. For any Hk-competitive algorithm A there exists an input such that
the maximal number of pages with non-zero probability of being in A’s cache is
at lest k + k/Hk.

Proof. Due to space limitations, the proof is provided in the full version.
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