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Abstract. In this paper we extend recent results of Fiorini et al. on the
extension complexity of the cut polytope and related polyhedra. We first
describe a lifting argument to show exponential extension complexity
for a number of NP-complete problems including subset-sum and three
dimensional matching. We then obtain a relationship between the ex-
tension complexity of the cut polytope of a graph and that of its graph
minors. Using this we are able to show exponential extension complexity
for the cut polytope of a large number of graphs, including those used in
quantum information and suspensions of cubic planar graphs.

1 Introduction

In formulating optimization problems as linear programs (LP), adding extra
variables can greatly reduce the size of the LP [5]. However, it has been shown
recently that for some polytopes one cannot obtain polynomial size LPs by
adding extra variables [8, 12]. In a recent paper [8], Fiorini et.al. proved such
results for the cut polytope, the traveling salesman polytope, and the stable set
polytope for the complete graph Kn. In this paper, we extend the results of
Fiorini et. al. to several other interesting polytopes. We do not claim novelty of
our techniques, in that they have been used - in particular - by Fiorini et. al.
Our motivation arises from the fact that there is a strong indication that NP-
hard problems require superpolynomial sized linear programs. We make a step
in this direction by giving a simple technique that can be used to translate NP-
completeness reductions into lower bounds for a number of interesting polytopes.
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Cut polytope and related polytopes. The cut polytope arises in many applica-
tion areas and has been extensively studied. Formal definitions of this polytope
and its relatives are given in the next section. A comprehensive compilation of
facts about the cut polytope is contained in the book by Deza and Laurent [7].
Optimization over the cut polytope is known as the max cut problem, and was
included in Karp’s original list of problems that he proved to be NP-hard. For
the complete graph with n nodes, a complete list of the facets of the cut polytope
CUT�

n is known for n ≤ 7 (see Section 30.6 of [7]), as well as many classes of
facet producing valid inequalities. The hypermetric inequalities (see Chapter 28
of [7]) are examples of such a class, and it is known that an exponential number
of them are facet inducing. Less is known about classes of facets for the cut poly-
tope of an arbitrary graph, CUT�(G). Interest in such polytopes arises because
of their application to fundamental problems in physics.

In quantum information theory, the cut polytope arises in relation to Bell
inequalities. These inequalities, a generalization of Bell’s original inequality [4],
were introduced to better understand the nonlocality of quantum physics. Bell
inequalities for two parties are inequalities valid for the cut polytope of the
complete tripartite graph K1,n,n. Avis, Imai, Ito and Sasaki [2] proposed an op-
eration named triangular elimination, which is a combination of zero-lifting and
Fourier-Motzkin elimination (see e.g. [14]) using the triangle inequality. They
proved that triangular elimination maps facet inducing inequalities of the cut
polytope of the complete graph to facet inducing inequalities of the cut poly-
tope of K1,n,n. Therefore a standard description of such polyhedra contains an
exponential number of facets.

In [1] the method was extended to obtain facets of CUT�(G) for an arbitrary
graph G from facets of CUT�

n . For most, but not all classes of graphs, CUT�(G)
has an exponential number of facets. An interesting exception are the graphs with
no K5 minor. Results of Seymour for the cut cone, extended by Barahona and
Mahjoub to the cut polytope (see Section 27.3.2 of [7]), show that the facets
in this case are just projections of triangle inequalities. It follows that the max
cut problem for a graph G on n vertices with no K5 minor can be solved in
polynomial time by optimizing over the semi-metric polytope, which has O(n3)

facets. Another way of expressing this is to say that in this case CUT�(G) has
O(n3) extension complexity, a notion that will be discussed next.

Extended formulations and extensions Even for polynomially solvable problems,
the associated polytope may have an exponential number of facets. By work-
ing in a higher dimensional space it is often possible to decrease the number of
constraints. In some cases, a polynomial increase in dimension can yield an expo-
nential decrease in the number of constraints. The previous paragraph contained
an example of this.

For NP-hard problems the notion of extended formulations also comes into
play. Even though a natural LP formulation of such a problem has exponential
size, this does not rule out a polynomial size formulation in higher dimensions.

In a groundbreaking paper, Yannakakis [13] proved that every symmetric LP
for the Travelling Salesman Problem (TSP) has exponential size. Here, an LP
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is called symmetric if every permutation of the cities can be extended to a
permutation of all the variables of the LP that preserves the constraints of the
LP. This result refuted various claimed proofs of a polynomial time algorithm for
the TSP. In 2012 Fiorini et al. [8] proved that the max cut problem also requires
exponential size if it is to be solved as an LP. Using this result, they were able
to drop the symmetric condition, required by Yannakakis, to get a general super
polynomial bound for LP formulations of the TSP.

2 Preliminaries

We briefly review basic notions about the cut polytope and extension complexity
used in later sections. Definitions, theorems and other results for the cut poly-
tope stated in this section are from [7], which readers are referred to for more
information. We assume that readers are familiar with basic notions in convex
polytope theory such as convex polytope, facet, projection and Fourier-Motzkin
elimination. Readers are referred to a textbook [14] for details.

Throughout this paper, we use the following notation. For a graph G = (V,E)
we denote the edge between two vertices u and v by uv, and the neighbourhood
of a vertex v by NG(v). We let [n] denote the integers {1, 2, ..., n}.

2.1 Cut Polytope and Its Relatives

The cut polytope of a graph G = (V,E), denoted CUT�(G), is the convex hull
of the cut vectors δG(S) of G defined by all the subsets S ⊆ V in the |E|-
dimensional vector space R

E . The cut vector δG(S) of G defined by S ⊆ V is
a vector in R

E whose uv-coordinate is defined as follows: δuv(S) = 1 if |S ∩
{u, v}| = 1, and δuv(S) = 0 otherwise, for uv ∈ E. If G is the complete graph
Kn, we simply denote CUT�(Kn) by CUT�

n .
We now describe an important well known general class of valid inequalities

for CUT�
n (see, e.g. [7], Ch. 28).

Lemma 1. For any n ≥ 2, let b1, b2, ..., bn be any set of n integers. The following
inequality is valid for CUT�

n :
∑

1≤i<j≤n

bibjxij ≤
⌊
(
∑n

i=1 bi)
2

4

⌋
(1)

The inequality (1) is called hypermetric (respectively, of negative type) if the
integers bi can be partitioned into two subsets whose sum differs by one (re-
spectively, zero). A simple example of hypermetric inequalities are the triangle
inequalities, obtained by setting three of the bi to be +/- 1 and the others to
be zero. The most basic negative type inequality is non-negativity, obtained by
setting one bi to 1, another one to -1, and the others to zero.

For any fixed n there are an infinite number of hypermetric inequalities, but
all but a finite number are redundant. This non-trivial fact was proved by Deza,
Grishukhin and Laurent (see [7] Section 14.2) and allows us to define the hyper-
metric polytope, which we will refer to again later.
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2.2 Extended Formulations and Extensions

An extended formulation (EF) of a polytope P ⊆ R
d is a linear system

Ex+ Fy = g, y � 0 (2)

in variables (x, y) ∈ R
d+r, where E,F are real matrices with d, r columns re-

spectively, and g is a column vector, such that x ∈ P if and only if there exists
y such that (2) holds. The size of an EF is defined as its number of inequalities
in the system.

An extension of the polytope P is another polytope Q ⊆ R
e such that P is the

image of Q under a linear map. Define the size of an extension Q as the number
of facets of Q. Furthermore, define the extension complexity of P , denoted by
xc (P ), as the minimum size of any extension of P.

In this paper we make use of the machinery developed and described in Fiorini
et al. [8]. The reader is referred to the original paper for more details and proofs.
The main result of Fiorini et al. [8] that we are interested in is the following

Theorem 1 (Lower Bound Theorem). xc(CUT�
n ) � 2Ω(n).

2.3 Proving Lower Bounds for Extension Complexity

We now note two observations that are useful in translating results from one
polytope to another. Let P and Q be two polytopes. Then,

Proposition 1. If P is a projection of Q then xc (P ) � xc(Q).

Proposition 2. If P is a face of Q then xc (P ) � xc(Q).

Naturally there are many other cases where the conditions of neither of these
propositions apply and yet a lower bounding argument for one polytope can
be derived from another. However we would like to point out that these two
propositions already seem to be very powerful. In fact, out of the three lower
bounds proved by Fiorini et. al. [8] two (for TSP(n) and STAB(n)) use these
propositions, while the lower bound on the cut polytope is obtained by showing
a direct embedding of a matrix with high nonnegative rank in the slack matrix
of CUT�

n .
In the next section we will use these propositions to show superpolynomial

lower bounds on the extension complexities of polytopes associated with four
NP-hard problems.

3 Polytopes for Some NP-Hard Problems

In this section we use the method of Section 2.3 to show super polynomial
extension complexity for polytopes related to the following problems: subset sum,
3-dimensional matching and stable set for cubic planar graphs. These proofs are
derived by applying this method to standard reductions from 3SAT, which is
our starting point.
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3SAT. For any given 3SAT formula Φ with n variables in conjunctive normal
form define the polytope SAT(Φ) as the convex hull of all satisfying assignments.
That is, SAT(Φ) := conv({x ∈ [0, 1]n | Φ(x) = 1}). The following theorem and
its proof are implicit in [8], who make use of the correlation polytope.

Theorem 2. For every n there exists a 3SAT formula Φ with O(n) variables
and O(n) clauses such that xc(SAT(Φ)) � 2Ω(

√
n).

Subset Sum. The subset sum problem is a special case of the knapsack problem.
Given a set of n integers A = {a1, . . . , an} and another integer b, the subset sum
problems asks whether any subset of A sums exactly to b. Define the subset
sum polytope SUBSETSUM(A, b) as the convex hull of all characteristic vectors
of the subsets of A whose sum is exactly b. That is, SUBSETSUM(A, b) :=
conv ({x ∈ [0, 1]n | ∑n

i=1 aixi = b})
The subset sum problem then is asking whether SUBSETSUM(A, b) is empty

for a given set A and integer b. Note that this polytope is a face of the knapsack
polytope KNAPSACK(A, b) := conv ({x ∈ [0, 1]n | ∑n

i=1 aixi � b})
In this subsection we prove that the subset sum polytope (and hence the

knapsack polytope) can have superpolynomial extension complexity.

Theorem 3. For every 3SAT formula Φ with n variables and m clauses, there
exists a set of integers A(Φ) and integer b with |A| = 2n+2m such that SAT(Φ)
is the projection of SUBSETSUM(A, b).

Proof. Suppose formula Φ is defined in terms of variables x1, x2, ..., xn and
clauses C1, C2, ..., Cm. We use a standard reduction from 3SAT to subset sum
(e.g., [6], Section 34.5.5). We define A(Φ) and b as follows. Every integer in A(Φ)
as well as b is an (n + m)-digit number (in base 10). The first n bits corre-
spond to the variables and the last m bits correspond to each of the clauses.
bj = 1, if 1 � j � n and bj = 4, if n+ 1 � j � n+m.

Next we construct 2n integers vi, v
′
i for i ∈ {1, . . . , n}, and 2m integers si, s

′
i

for i ∈ {1, . . . ,m} as follows: vij = 1, if j = i or xi ∈ Cj−n and 0, otherwise,
v′ij = 1, if j = i or xi ∈ Cj−n and 0, otherwise. sij = 1, if j = n + i and 0
otherwise, s′ij = 2, if j = n+ i and 0 otherwise.

We define the set A(Φ) = {v1, . . . , vn, v′1, . . . , v′n, s1, . . . , sm, s′1, . . . , s
′
m}.

Consider the subset-sum instance with A(Φ), b as constructed above for any
3SAT instance Φ. Let S be any subset of A(Φ). If the elements of S sum exactly
to b then it is clear that for each i ∈ {1, . . . , n} exactly one of vi, v

′
i belong

to S. Furthermore, setting xi = 1 if vi ∈ S or xi = 0 if v′i ∈ S satisfies every
clause. Thus the characteristic vector of S restricted to {v1, . . . , vn} is a satisfying
assignment for the corresponding SAT formula.

Also, if Φ is satisfiable then the instance of subset sum thus created has a
solution corresponding to each satisfying assignment: Pick vi if xi = 1 or v′i
if xi = 0 in an assignment. Since the assignment is satisfying, every clause is
satisfied and so the sum of digits corresponding to each clause is at least 1.
Therefore, for a clause Cj either sj or s′j or both can be picked to ensure that
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the sum of the corresponding digits is exactly 4. Note that there is unique way
to do this.

This shows that every vertex of the subset sum polytope SUBSETSUM(A(Φ), b)
projects to a vertex of SAT(Φ) and every vertex of SAT(Φ) can be lifted to a ver-
tex of SUBSETSUM(A(Φ), b),. The projection is defined by dropping every coor-
dinate except those corresponding to the numbers vi in the reduction described
above. The lifting is defined by the procedure in the proceeding paragraph. Hence,
SAT(Φ) is a projection of SUBSETSUM(A(Φ), b). ��

Combining the preceding two theorems we obtain the following.

Corollary 1. For every natural number n � 1, there exists an instance A, b of
the subset-sum problem with O(n) integers in A such that xc(SUBSETSUM(A, b))
� 2Ω(

√
n).

3d-Matching. Consider a hypergraph G = ([n], E), where E contains triples
for some i, j, k ∈ [n] where i, j, k are distinct. A subset E′ ⊆ E is said to be a
3-dimensional matching if all the triples in E′ are disjoint. The 3d-matching poly-
tope 3DM(G) is defined as the convex hull of the characteristic vectors of every
3d-matching of G. That is, 3DM(G) := conv({χ(E′) | E′ ⊆ E is a 3d-matching})

The 3d-matching problem asks: given a hypergraph G, does there exist a 3d-
matching that covers all vertices? This problem is known to be NP -complete
and was one of Karp’s 21 problems proved to be NP -complete [9, 11]. Note that
this problem can be solved by linear optimization over the polytope 3DM(G)
and therefore it is to be expected that 3DM(G) would not have a polynomial
size extended formulation.

Now we show that the 3d-matching polytope has superpolynomial extension
complexity in the worst case. We prove this using a standard reduction from
3SAT to 3d-Matching used in the NP-completeness proof for the later problem
(See [9]). The form of this reduction, which is very widely used, employs a gadget
for each variable along with a gadget for each clause. We omit the exact details
for the reduction here because we are only interested in the correctness of the
reduction and the variable gadget (See Figure 1).

� �

� ���

� ��� � ���

� �� �

�� ���

�� ���

�� ���

�� �� �

� ���

� ���

� ���

� �� �

	 ���

	 ���

	 ���

	 ���

Fig. 1. Gadget for a variable

In the reduction, any 3SAT formula
Φ is converted to an instance of a 3d-
matching by creating a set of hyper-
edges for every variable (See Figure
1) along with some other hyperedges
that does not concern us for our re-
sult. The crucial property that we re-
quire is the following: any satisfiable
assignment of Φ defines some (possi-
bly more than one) 3d-matching. Fur-
thermore, in any maximal matching
either only the light hyperedges or
only the dark hyperedges are picked,
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corresponding to setting the corresponding variable to, say, true or false respec-
tively. Using these facts we can prove the following:

Theorem 4. Let Φ be an instance of 3SAT and let H be the hypergraph obtained
by the reduction above. Then SAT(Φ) is the projection of a face of 3DM(H).

Proof. Let the number of hyperedges in the gadget corresponding to a vari-
able x be 2k(x). Then, the number of hyperedges picked among these hyper-
edges in any matching in H is at most k(x). Therefore, if y1, . . . , y2k(x) denote
the variables corresponding to these hyperedges in the polytope 3DM(H) then∑2k(x)

i=1 yi � k(x) is a valid inequality for 3DM(H). Consider the face F of
3DM(H) obtained by adding the equality

∑2k(x)
i=1 yi = k(x) corresponding to

each variable x appearing in Φ.
Any vertex of 3DM(H) lying in F selects either all light hyperedges or all

dark hyperedges. Therefore, projecting out all variables except one variable yi
corresponding to any fixed (arbitrarily chosen) light hyperedge for each variable
in Φ gives a valid satisfying assignment for Φ and thus a vertex of SAT(Φ).
Alternatively, any vertex of SAT(Φ) can be extended to a vertex of 3DM(H)
lying in F easily.

Therefore, SAT(Φ) is the projection of F. ��
The number of vertices in H is O(nm) where n is the number of variables
and m the number of clauses in Φ. Considering only the 3SAT formulae with
high extension complexity, we have m = O(n). Therefore, considering only the
hypergraphs arising from such 3SAT formulae and using propositions 1 and 2,
we have that

Corollary 2. For every natural number n � 1, there exists a hypergraph H with
O(n) vertices such that xc(3DM(H)) � 2Ω(n1/4).

Stable Set for Cubic Planar Graphs. Now we show that STAB(G) can have
superpolynomial extension complexity even when G is a cubic planar graph. Our
starting point is the following result proved by Fiorini et. al. [8].

Theorem 5 ([8]). For every natural number n � 1 there exists a graph G such
that G has O(n) vertices and O(n) edges, and xc(STAB(G)) � 2Ω(

√
n).

We start with this graph and convert it into a cubic planar graph G′ with O(n2)
vertices and extension complexity at least 2Ω(

√
n).

Making a Graph Planar. For making any graph G planar without reduc-
ing the extension complexity of the associated stable set polytope, we use the
same gadget used by Garey, Johnson and Stockmeyer [10] in the proof of NP-
completeness of finding maximum stable set in planar graph. Start with any
planar drawing of G and replace every crossing with the gadget H with 22 ver-
tices shown in Figure 2 to obtain a graph G′. The following theorem shows that
STAB(G) is the projection of a face of STAB(G′).
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u1 w1

u2

w2

u1
w1

u2

w2

v1 v′1

v2

v′2

Fig. 2. Gadget to remove a crossing

Table 1. Values of sij

i\j 2 1 0
2 9 8 7
1 9 9 8
0 8 8 7

Using the face F := STAB(G′)
⋂k

i=1{x | ∑j∈VHi
xj = 9}, where k denotes

the number of gadgets itroduced in G and a proof similar to that of Theorem 1,
we have the following:

Theorem 6. Let G be a graph and let G′ be obtained from a planar embedding
of G by replacing every edge intersection with a gadget shown in Figure 2. Then,
STAB(G) is the projection of a face of STAB(G′).

Since for any graph G with O(n) edges, the number of gadgets introduced
k � O(n2), we have that the graph G′ in the above theorem has at most O(n2)
vertices and edges. Therefore we have a planar graph G′ with at most O(n2)
vertices and O(n2) edges. This together with Theorem 5, Theorem 6 and propo-
sitions 1 and 2 yields the following corollary.

Corollary 3. For every n there exists a planar graph G with O(n2) vertices and
O(n2) edges such that xc(STAB(G)) � 2Ω(

√
n).

Making a Graph Cubic. Suppose we have a graph G and we transform it
into another graph G′ by performing one of the following operations:

ReduceDegree: Replace a vertex v of G of degree δ � 4 with a cycle
Cv = (v1, v

′
1, . . . , vδ, v

′
δ) of length 2δ and connect the neighbours of v to

alternating vertices (v1, v2, . . . , vδ) of the cycle.
RemoveBridge: Replace any degree two vertex v in G by a four cycle
v1, v2, v3, v4. Let u and w be the neighbours of v in G. Then, add the edges
(u, v1) and (v3, w). Also add the edge (v2, v4) in the graph.
RemoveTerminal: Replace any vertex with degree either two or three with
a triangle. In case of degree one, attach any one vertex of the triangle to the
erstwhile neighbour.

Theorem 7. Let G be any graph and let G′ be obtained by performing any num-
ber of operation ReduceDegree, RemoveBridge, or RemoveTerminal described
above on G. Then STAB(G) is the projection of a face of STAB(G′).

Proof. Omitted. ��
If G has n vertices and m edges then first applying operation ReduceDegree until
every vertex has degree at most 3, and then applying operation RemoveBridge
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and RemoveTerminal repeatedly until no vertex of degree 0, 1 or 2 is left, pro-
duces a graph that has O(n + m) vertices and O(n + m) edges. Furthermore,
any application of the three operations do not make a planar graph non-planar.
Combining this fact with Theorem 7, Corollary 3 and propositions 1 and 2, we
have

Corollary 4. For every natural number n � 1 there exists a cubic planar graph
G with O(n) vertices and edges such that xc(STAB(G)) � 2Ω(n1/4).

4 Extended Formulations for CUT�(G) and Its Relatives

We use the results described in the previous section to obtain bounds on the
extension complexity of the cut polytope of graphs. We begin by reviewing the
result in [8] for CUT�

n using a direct argument that avoids introducing correlation
polytopes. For any integer n ≥ 2 consider the integers b1 = ... = bn−1 = 1 and
bn = 3− n. Let b = (b1, b2, ..., bn) be the corresponding n-vector. Inequality (1)
for this b-vector is easily seen to be of negative type and can be written as

∑

1≤i<j≤n−1

xij ≤ 1 + (n− 3)

n−1∑

i=1

xin. (3)

Lemma 2. Let S be any cut in Kn not containing vertex n and let δ(S) be its
corresponding cut vector. Then the slack of δ(S) with respect to (3) is (|S|− 1)2.

Let us label a cut S by a binary n-vector a where ai = 1 if and only if i ∈ S. Under
the conditions of the lemma we observe that the slack (|S| − 1)2 = (aT b − 1)2

since we have an = 0 and b1 = ... = bn−1 = 1. Now consider consider any
subset T of {1, 2, ..., n − 1} and set bi = 1 for i ∈ T , bn = 3 − |T | and bi = 0
otherwise. We form a 2n−1 by 2n−1 matrix M as follows. Let the rows and
columns be indexed by subsets T and S of {1, 2, ..., n − 1}, labelled by the n-
vectors a and b as just described. A straight forward application of Lemma 2
shows that M = M∗(n− 1). Hence using the fact that the non-negative rank of
a matrix is at least as large as that of any of its submatrices, we have that every
extended formulation of CUT�

n has size 2Ω(n).
Recall the hypermetric polytope, defined in Section 2.1, is the intersection

of all hypermetric inequalities. As remarked, nonnegative type inequalities are
weaker than hypermetric inequalities and so valid for this polytope. In addition
all cut vertices satisfy all hypermetric inequalities. Therefore M = M∗(n− 1) is
also a submatrix of a slack matrix for the hypermetric polytope on n points. So
this polytope also has extension complexity at least 2Ω(n).

Finally let us consider the polytope, which we denote Pn, defined by the
inequalities used to define rows of the slack matrix M above. We will show that
membership testing for Pn is co-NP-complete.

Theorem 8. Let Pn be the polytope defined as above, and let x ∈ R
n(n−1)/2.

Then it is co-NP-complete to decide if x ∈ Pn.
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Proof. Clearly if x /∈ Pn then this can be witnessed by a violated inequality of
type (3), so the problem is in co-NP.

To see the hardness we do a reduction from the clique problem: given graph
G = (V,E) on n vertices and integer k, does G have a clique of size at least k?
Since a graph has a clique of size k if and only if its suspension has a clique of
size k + 1 we can assume wlog that G is a suspension with vertex vn connected
to every other vertex.

Form a vector x as follows: xij = 1/k, if j = n, xij = 2/k, if j 
= n and ij ∈ E
and xij = −n2otherwise

Fix an integer t, 2 ≤ t ≤ n and consider a b-vector with bn = 3− t, and with
t− 1 other values of bi = 1. Without loss of generality we may assume these are
lablelled 1, 2, ..., t−1. Let T be the induced subgraph of G on these vertices. The
corresponding non-negative type inequality is:

∑

1≤i<j≤t−1

xij ≤ 1 + (t− 3)

t−1∑

i=1

xin. (4)

Suppose T is a complete subgraph. Then the left hand side minus the right hand
side of (4) is 2(t−1)(t−2)

2k − (1 + (t−3)(t−1)
k ) = t−k−1

k . This will be positive if and
only if t ≥ k + 1, in which case x violates (4). On the other hand if T is not a
complete subgraph then the left hand side of (4) is always negative and so the
inequality is satisfied. Therefore x satisfies all inequalities defining rows of M if
an only if G has no clique of size at least k. ��

Cut polytope for minors of a graph. A graph H is a minor of a graph G
if H can be obtained from G by contracting some edges, deleting some edges
and isolated vertices, and relabeling. In the introduction we noted that if an n
vertex graph G has no K5-minor then CUT�(G) has O(n3) extension complexity.
The following Lemma shows that the extension complexity of a graph G can be
bounded from below in terms of its largest clique minor.

Lemma 3. Let G be a graph and let H be obtained by deleting an edge of G,
or deleting a vertex of G, or contracting an edge of G, Then, xc(CUT�(G)) �
xc(CUT�(H)).

Proof. Omitted. ��
Therefore, we get the following theorem that can be proved by induction over a
sequence of minor-producing steps.

Theorem 9. Let G be a graph and H be a minor of G. Then, xc(CUT�(G)) �
xc(CUT�(H)).

Using the above theorem together with the result of [8] that the extension com-
plexity of CUT�(Kn) is at least 2Ω(n) we get the following result.

Corollary 5. The extension complexity of CUT�(G) for a graph G with a Kn

minor is at least 2Ω(n).
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Using Theorem 9 and the fact that Kn+1 is a minor of K1,n,n we can immediately
prove that the Bell inequality polytopes mentioned in the introduction have
exponential complexity.

Corollary 6. The extension complexity of CUT�(K1,n,n) is at least 2Ω(n).

Cut Polytope for K6 minor-free graphs. Let G = (V,E) be any graph with
V = {1, . . . , n}. Consider the suspension G′ of G obtained by adding an extra
vertex labelled 0 with edges to all vertices V .

Theorem 10. Let G = (V,E) be a graph and let G′ be a suspension over G.

Then STAB(G) is the projection of a face of CUT�(G′).

Proof. The polytope STAB(G) is defined over variables xi corresponding to each
of the vertex i ∈ V whereas the polytope CUT�(G′) is defined over the variables
xij for i, j ∈ {0, . . . , n}.

Any cut vertex C of CUT�(G′) defines sets S, S such that xij = 1 if and only
if i ∈ S, j ∈ S. We may assume that 0 ∈ S by interchanging S and S if necessary.
For every edge e = (k, l) in G consider an inequality he := {x0k +x0l−xkl � 0}.
It is clear that he is a valid inequality for CUT�(G′) for all edges e in G.
Furthermore, he is tight for a cut vector in G′ if and only if either k, l do not lie
in the same cut set or k, l both lie in the cut set containing 0. Therefore consider
the face F := CUT�(G′)

⋂
(i,j)∈E{x0i + x0j − xij = 0}.

Each vertex in F can be projected to a valid stable set in G by projecting
onto the variables x01, x02, . . . , x0n. Furthermore, every stable set S in G can
be extended to a cut vector for G′ by taking the cut vector corresponding to
S, S ∪ {0}. Therefore, STAB(G) is the projection of a face of CUT�(G′). ��

Using this theorem it is easy to show the existence of graphs with a linear
number of edges that do not have K6 as a minor and yet have a high extension
complexity. In fact we get a slightly sharper result.

Theorem 11. For every n � 2 there exists a graph G which is a suspension of
a planar graph and for which xc(CUT�(G)) � 2Ω(n1/4).

Proof. Consider a planar graph G = (V,E) with n vertices for which xc(STAB(G))

� 2Ω(n1/4). Corollary 3 guarantees the existence of such a graph for every n. Then
the suspension overG has n+1 vertices and a linear number of edges. The theorem
then follows by applying Theorem 10 together with Propositions 1 and 2. ��

The above theorem provides a sharp contrast for the complexity of the cut
polytope for graphs in terms of their minors. As noted in the introduction, for
any K5 minor-free graph G with n vertices CUT�(G) has an extension of size
O(n3) whereas the above result shows that there are K6 minor free graphs whose
cut polytope has superpolynomial extension complexity.
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5 Concluding Remarks

We have a given a simple polyhedral procedure for proving lower bounds on the
extension complexity of a polytope. Using this procedure and some standard NP-
completeness reductions we were able to prove lower bounds on the extension
complexity of various well known combinatorial polytopes. For the cut polytope
in particular, we are able to draw a sharp line, in terms of minors, for when this
complexity becomes super polynomial.

Nevertheless the procedure is not completely ‘automatic’ in the sense that any
NP-completeness reduction of a certain type, say using gadgets, automatically
gives a result on the extension complexity of related polytopes. This would seem
to be a very promising line of future research.
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