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Abstract. We introduce the polynomial coefficient matrix and identify
maximum rank of this matrix under variable substitution as a complexity
measure for multivariate polynomials. We use our techniques to prove
super-polynomial lower bounds against several classes of non-multilinear
arithmetic circuits. In particular, we obtain the following results :
– As our first main result, we prove that any homogeneous depth-3

circuit for computing the product of d matrices of dimension n × n
requires Ω(nd−1/2d) size. This improves the lower bounds in [9] for
d = ω(1).

– As our second main result, we show that there is an explicit poly-
nomial on n variables and degree at most n

2
for which any depth-3

circuit C of product dimension at most n
10

(dimension of the space

of affine forms feeding into each product gate) requires size 2Ω(n).
This generalizes the lower bounds against diagonal circuits proved
in [14]. Diagonal circuits are of product dimension 1.

– We prove a nΩ(log n) lower bound on the size of product-sparse for-
mulas. By definition, any multilinear formula is a product-sparse for-
mula. Thus, this result extends the known super-polynomial lower
bounds on the size of multilinear formulas [11].

– We prove a 2Ω(n) lower bound on the size of partitioned arith-
metic branching programs. This result extends the known exponen-
tial lower bound on the size of ordered arithmetic branching pro-
grams [7].

1 Introduction

Arithmetic circuits are a fundamental model of computation for polynomials.
Establishing the limitations of polynomial sized arithmetic circuits is a central
open question in the area of algebraic complexity(see [17] for a detailed sur-
vey). One of the recent surprises in the area was the result due to Agrawal and
Vinay [2] where they show that if a polynomial in n variables of degree d (linear
in n) can be computed by arithmetic circuits of size 2o(n), then it can also be
computed by depth-4 circuits of size 2o(n). The parameters of this result was fur-
ther tightened by Koiran [8]. These results explained the elusiveness of proving
lower bounds against even depth-4 circuits. For depth-3 circuits, the best known
general result (over finite fields) is an exponential lower bound due to Grigoriev
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and Karpinski [5] and Grigoriev and Razborov [4]. Over infinite fields, obtaining
such strong lower bounds is a long-standing open problem. Lower bounds for
restricted classes of depth-3 and depth-4 circuits are studied in [1,9,16] .

One class of models which has been extensively studied is when the gates are
restricted to compute multilinear polynomials. Super-polynomial lower bounds
are known for the size of multilinear formulas computing the permanent or de-
terminant polynomial [12]. However, even under this restriction proving super-
polynomial lower bounds against arbitrary multilinear arithmetic circuits is an
open problem (see [17] and references there in). The parameter identified by [11],
which showed the limitations of multilinear formulas, was the rank of a matrix
associated with the circuit - namely the partial derivatives matrix1. The method
showed that there exists a partition of variables into two sets such that the rank
of the partial derivatives matrix of any polynomial computed by the model is
upper bounded by a function of the size of the circuit. But there are explicit poly-
nomials for which the rank of the partial derivatives matrix is high. This program
has been carried out for several classes of multilinear polynomials and several
variants of multilinear circuits [3,7,10,11,12,13]. However, the partial derivatives
matrix, in the form that was studied, was known to yield lower bounds only for
multilinear circuits.

In this work, we generalize this framework to prove lower bounds against sev-
eral classes of non-multilinear arithmetic circuits. This generalization also shows
that the multilinearity restriction in the above proof strategy can possibly be
eliminated from the circuit model side. Hence it can also be seen as an approach
towards proving lower bounds against the general arithmetic circuits.

We introduce a variant of the partial derivatives matrix where the entries will
be polynomials instead of constants - which we call the polynomial coefficient
matrix. Instead of rank of the partial derivatives matrix, we analyze the max-rank
- the maximum rank of the polynomial coefficient matrix2 under any substitution
for the variables from the underlying field. We first prove how the max-rank
changes under arithmetic operations. These tools are combined to prove upper
bounds on max-rank of various restrictions of arithmetic circuits.

In [9], it was proved that any homogeneous depth-3 circuit for multiplying d
n × n matrices (Iterated Matrix Multiplication, IMMn

d ) requires Ω
(
nd−1/d!

)

size. We use our techniques to improve this result in terms of the lower bound.
Our methods are completely different from [9] and this demonstrates the power
of this method beyond the reach of the original partial derivatives matrix method
due to Raz [11]. As our first main result, we prove the following.

Theorem 1. Any homogeneous depth-3 circuit for computing the product of d
matrices of dimension n× n requires Ω(nd−1/2d) size.

1 An exponential sized matrix associated with the multilinear polynomial with respect
to a partition of the variables into two sets. See Section 2 for the formal definition.

2 When it is clear from the context, we drop the matrix as well as the partition. By the
term, max-rank of a polynomial, we denote the maximum rank of the polynomial
coefficient matrix corresponding to the polynomial with respect to the partition in
the context.
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Notice that compared to the bounds in [9], our bounds are stronger when
d = ω(1). Very recently, Gupta et al. [6] studied the model of homogeneous
circuits and proved a strong lower bound parameterized by the bottom fan-in.
They studied depth-4 circuits (ΣΠΣΠ) and showed that if the fan-in of the
bottom level product gate of the circuits is t, then any homogeneous depth-4
circuit computing the permanent (and the determinant) of n× n matrices must
have size 2Ω(n

t ). In particular, this implies a 2Ω(n) lower bound for any depth-3
homogeneous circuit computing the permanent (and the determinant) of n× n
matrices (n2 variables). However, we remark that Theorem 1 is addressing the
iterated matrix multiplication polynomial and hence is not directly subsumed by
the above result. Moreover, the techniques used in [6] are substantially different
from ours.

We apply our method to depth-3 circuits where space of the affine forms
feeding into each product gate in the circuit is of limited dimension. Formally, a
depth-3 ΣΠΣ circuit C is said to be of product dimension r if for each product
gate P in C, where P = Πd

i=1Li, where Li is an affine form for each i, the
dimension of the span of the set {Li}i∈[d] is at most r. As our second main result,
we prove exponential lower bounds on the size (in fact, the top fan in) of depth-3
circuits of bounded product dimension for computing an explicit polynomial.

Theorem 2. There is an explicit polynomial on n variables and degree ≤ n
2 for

which any ΣΠΣ circuit C of product dimension at most n
10 requires size 2Ω(n).

In [14], the author studies diagonal circuits, which are depth-3 circuits where
each product gate is an exponentiation gate. Clearly, such a product gate can be
visualized as a product gate with the same affine form being fed into it multiple
times. Thus, these circuits are of product dimension 1, and our lower bound
result generalizes size lower bounds against diagonal circuits.

Note that the product dimension of a depth-3 circuit is different from the
dimension of the span of all affine forms computed at the bottom sum gates of a
ΣΠΣ circuit. It can be easily seen that, when this parameter, which we refer to
as the total dimension of the circuit, when bounded, the model non-universal.

For our next result, we generalize the model of syntactic multilinear formulas
to product-sparse formulas. We formally define product-sparse formulas and full
max-rank polynomials in Section 2. These formulas can compute non-multilinear
polynomials as well. We show the following theorem regarding this model using
our methods.

Theorem 3. Let X be a set of 2n variables and let f ∈ F[X ] be a full max-
rank polynomial. Let Φ be any (s, d)-product-sparse formula of size nε logn, for a
constant ε. If sd = o(n1/8), then f cannot be computed by Φ.

As our fourth result, we define partitioned arithmetic branching programs which
are generalizations of ordered ABPs. We prove an exponential lower bound for
partitioned ABPs extending results in [7].

Theorem 4. Let X be a set of 2n variables and F be a field. For any full max-
rank homogeneous polynomial f of degree n over X and F, the size of any par-
titioned ABP computing f must be 2Ω(n).
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2 Preliminaries

In this section, we define some of the models we study. For more detailed account
of models and the results we refer the reader to the survey [17].

An arithmetic circuit Φ over the field F and the set of variablesX = {x1, x2, . . .
, xn} is a directed acyclic graph G = (V,E). The vertices of G with in-degree
0 are called input gates and are labelled by variables in X or constants from
the field F. The vertices of G with out-degree 0 are called output gates. Rest all
vertices are referred to as internal vertices. Every internal vertex is either a plus
gate or a product gate. We will study arithmetic circuits with a single output
gate. Thus, the polynomial computed by the arithmetic circuit is the polynomial
associated with the output gate. The size of Φ is defined to be the number of
gates in Φ. For a vertex v ∈ V , we denote the set of variables that occur in the
subgraph rooted at v by Xv.

We consider depth restricted circuits. A ΣΠΣ circuit is a levelled depth-3
circuit with a plus gate at the top, multiplication gates at the middle level and
plus gates at the bottom level. The fan-in of the top plus gate is referred to as
top fan-in. A ΣΠΣ circuit is said to be homogeneous if the plus gate at the
bottom level compute homogeneous linear forms only.

An important restricted model of arithmetic circuits is multilinear circuits.
A polynomial f ∈ F[X ] is called multilinear if the degree of every variable in
f is at most one. An arithmetic circuit is called multilinear if the polynomial
computed at every gate is multilinear. An arithmetic circuit is called syntactic
multilinear if for every product gate v with children v1 and v2, Xv1 ∩Xv2 = φ.
An arithmetic circuit is called an arithmetic formula if the underlying undirected
graph is acyclic i.e. fan-out of every vertex is at most one.

Let Φ be a formula defined over the set of variables X and a field F. For a
product gate v in Φ with children v1 and v2, let us define the following properties:

Disjoint v is said to be disjoint if Xv1 ∩Xv2 = φ.
Sparse v is said to be s-sparse if the number of monomials in the polynomial

computed by at least one of its input gates is at most 2s.

For a node v, let us define the product-sparse depth of v to be equal to the
maximum number of non-disjoint product gates in any path from a leaf to v.

Definition 1. A formula is said to be a (s, d)-product-sparse if every product
gate v is either disjoint or s-sparse, where d is the product-sparse depth of the
root node.

Clearly, any syntactic multilinear formula is a (s, 0)-product-sparse formula for
any s. Thus, proving lower bounds for product-sparse formulas will be a strength-
ening of known results.

An Arithmetic Branching Program (ABP) B is a levelled graph G(V,E) in
which V can be partitioned into levels L0, L1, . . . , Ld such that L0 = {s} and
Ld = {t} and edges can only go between consecutive levels. s and t are called
the source and sink respectively. The weight function w assigns affine forms to
E. For a path p, extend the weight function by w(p) =

∏
e∈p w(e). B computes
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the polynomial
∑

p w(p) where p runs over all source-sink paths. B is said to
be homogeneous if all edge labels are homogeneous linear forms and naturally
computes a homogeneous polynomial. For any i, j ∈ V , Pi,j denotes all paths
from i to j in G, Xi,j denotes the variables occuring in those paths and fi,j
denotes the polynomial

∑
p∈Pi,j

w(p).

Definition 2. Let B be a homogeneous ABP over a field F and set of variables
X = {x1, x2, . . . , x2n}. B is said to be π-partitioned for a permutation π : [2n] →
[2n] if there exists an i = 2αn for some constant α such that the following
condition is satisfied, ∀v ∈ Li :

– Either, Xs,v ⊆ {xπ(1), xπ(2), . . . , xπ(n)} and |Xv,t| ≤ 2n(1− α).
– Or, Xv,t ⊆ {xπ(n+1), xπ(n+2), . . . , xπ(2n)} and |Xs,v| ≤ 2n(1− α)

We say that B is partitioned with respect to the level Li. B is said to be a
partitioned ABP if it is π-partitioned for some π : [2n] → [2n].

We now introduce the main tool used in the paper and prove its properties.
Let Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zm} be two sets of variables. Let
f ∈ F[Y, Z] be a multilinear polynomial. Define Lf to be the 2m × 2m partial
derivatives matrix as follows: for monic multilinear monomials p ∈ F[Y ], q ∈ F[Z],
define Lf (p, q) to be the coefficient of the monomial pq in f . Let us denote
the rank of Lf by rank(Lf ). We extend the partial derivatives matrix to non-
multilinear polynomials.

Definition 3 (Polynomial Coefficient Matrix). For f ∈ F[Y, Z], define Mf

to be the 2m × 2m polynomial coefficient matrix with each entry from F[Y, Z]
defined as follows. For monic multilinear monomials p and q in Y and Z respec-
tively, Mf (p, q) = G if and only if f can be uniquely written as f = pq(G) +Q,
where G,Q ∈ F[Y, Z] such that G does not contain any variable other than those
present in p and q, Q does not have any monomial m which is divisible by pq
and which contains only variables that are present in p and q.

Observe that we can write, f =
∑

p,q
Mf (p, q)pq and for a multilinear polynomial

f , Mf is same as Lf . For any function S : Y ∪Z → F, let us denote by Mf |S the
matrix obtained by substituting each variable x by S(x) at each entry in Mf .
Let us define max-rank(Mf ) = max

S:Y ∪Z→F

{rank(Mf |S)}. The following proposi-

tion bounds the max-rank of the matrix (similar bounds on the rank of partial
derivatives matrix for some cases have been proved in [13]). We defer the proof
to the full version of the paper.

Proposition 1. Let f, g ∈ F[Y, Z], h ∈ F[Y ] and w ∈ F [Z].

1.1 If f contains variables Y ′ ⊆ Y and Z ′ ⊆ Z only, then max-rank(Mf) ≤ 2a

where a = min{|Y ′|, |Z ′|}.
1.2 max-rank(Mf+g) ≤ max-rank(Mf) + max-rank(Mg).
1.3 Let Y1, Y2 ⊆ Y and Z1, Z2 ⊆ Z such that Y1 ∩ Y2 = φ and Z1 ∩ Z2 = φ.

If f ∈ F[Y1, Z1] and g ∈ F[Y2, Z2], then max-rank(Mfg) = max-rank(Mf ) ·
max-rank(Mg).
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1.4 max-rank(Mfh) ≤ max-rank(Mf ) and max-rank(Mfw) ≤ max-rank(Mf ).
1.5 If g is a linear form, then max-rank(Mfg) ≤ 2 ·max-rank(Mf ).
1.6 If g can be expressed as

∑

i∈[r]

hiwi where hi ∈ F[Y ] and wi ∈ F[Z], then

max-rank(Mfg) ≤ r ·max-rank(Mf ).
1.7 If g has r monomials, then max-rank(Mfg) ≤ r ·max-rank(Mf ).

Full Rank Polynomials: Let X = {x1, · · · , x2n}, Y = {y1, · · · , yn} and Z =
{z1, · · · , zn} be sets of variables and f ∈ F[X ]. f is said to be a full rank poly-
nomial if for any partition A : X → Y ∪ Z, rank(LfA) = 2n, where fA is the
polynomial obtained from f after substituting every variable x by A(x). We say
that f is a full max-rank polynomial if max-rank(MfA) = 2n for any partition
A. Any full rank polynomial is also a full max-rank polynomial. Many full rank
polynomials have been studied in the literature [7,11,12].

3 Lower Bounds against Homogeneous Depth-3 Circuits

Let Φ be a homogeneous ΣΠΣ circuit with top fan-in k defined over the set

of variables X and field F computing a homogeneous polynomial f =
k∑

i=1

Pi,

where Pi =
deg(Pi)∏

j=1

li,j , each li,j is a linear form and deg(Pi) is the fan-in of

the ith multiplication gate. For a partition A : X → Y ∪ Z, denote by ΦA the
circuit obtained after replacing every variable x by A(x) and the corresponding
polynomial by fA. We prove the following upper bound on the max-rank(MfA).

Lemma 1. Let Φ be a homogeneous ΣΠΣ circuit as defined above and the de-
gree of f be d. Then, for any partition A : X → Y ∪Z, max-rank(MfA) ≤ k ·2d.
Proof. Let us denote by lAi,j and PA

i the polynomials obtained after substitution
of x by A(x) in the polynomials li,j and Pi respectively.
Since each li,j is a homogeneous linear form, a multiplication gate Pi computes
a homogeneous polynomial of degree deg(Pi). Thus if deg(Pi) 	= d then the mul-
tiplication gate Pi does not contribute any monomial in the output polynomial
f . Hence, it can be assumed without loss of generality that deg(Pi) = d for all
i ∈ [k].

Since li,j is a homogeneous linear form, max-rank(MlAi,j
) ≤ 2. Thus, using

Proposition 1.5,∀i ∈ [k] : max-rank(MPA
i
) ≤ 2d. Hence, using Proposition 1.2,

max-rank(MfA) ≤ ∑
i∈[k] max-rank(MPA

i
) ≤ k · 2d.

In [9], it was proved that any homogeneous ΣΠΣ circuit for multiplying d n×n
matrices requires Ω(nd−1/d!) size. We prove a better lower bound using our
techniques. Formally, let X1, X2, . . . , Xd be disjoint sets of variables of size n2

each, withX = ∪i∈[d]X
i. The variables inX i will be denoted by xi

jk for j, k ∈ [n].

We will be looking at the problem of multiplying d n×n matrices A1, A2, . . . , Ad
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where (j, k)th entry of matrix Ai, denoted by Ai
jk, is defined to be equal xi

jk for
all i ∈ [d] and j, k ∈ [n]. The output polynomial, that we are interested in, is the
(1, 1)th entry of

∏
i∈[d] A

i denoted by f . We also refer to f by IMMn
d . f is clearly

a homogeneous multilinear polynomial of degree d. Moreover, any monomial in
f contains one variable each from the sets X1, X2, . . . , Xd.

We first prove an important lemma below.

Lemma 2. For the polynomial f as defined above, there exists a bijective par-
tition B : X → Y ∪ Z such that max-rank(MfB ) = nd−1.

Proof. We fix some notations first. For i < j, let us denote the set {i, i+1, . . . , j}
by [i, j]. Let us also denote the pair ((k, i), (k + 1, j)) by eijk for any i, j, k.
Construct a directed graph G(V,E) on the set of vertices V = [0, d]× [1, n] and
consisting of edges E = {eijk | k ∈ [0, d− 1], i, j ∈ [1, n]}. Note that the edges
eijk and ejik are two distinct edges for fixed values of i, j, k when i 	= j. Let us
also define a weight function w : E → X such that w(eijk) = xk+1

ij .
It is easy to observe that the above graph encodes the matrices A1, A2, . . . , Ad.

The weights on the edges are the variables in the matrices. For example, a
variable xk+1

ij in the matrix Ak+1 is the weight of the edge eijk. Let us denote
the set of paths in G from the vertex (0, 1) to the vertex (d, 1) by P . Let us
extend the weight function and define w(p) =

∏
e∈p w(e) for any p ∈ P . Since,

all paths in P are of length equal to d, the weights corresponding to each of
these paths are monomials of degree d.

Let us define the partition B : X → Y ∪ Z as follows: all the variables
in odd numbered matrices are assigned variables in Y and all the variables in
even numbered matrices are assigned variables in Z. Let us denote the variable
assigned by B to x2k−1

ij by y2k−1
ij and the variable assigned to x2k

ij by z2kij .
It follows from the matrix multiplication properties that for any path p ∈ P ,

the monomial w(p) is a monomial in the output polynomial. Each such path is
uniquely specified once we specify the odd steps in the path. Now, specifying
odd steps in the path corresponds to specifying a variable from each of the odd
numbered matrices. To count number of such ways, let us first consider the case
when d is even. There are d/2 odd numbered matrices and we have n2 ways to
choose a variable from each of these d/2 matrices except for the first matrix for
which we can only choose a variable from the 1st row since our output polynomial
is the (1, 1)th entry. Thus, there are nd−1 number of ways to specify one variable
each from the odd numbered matrices, the number of such paths is also nd−1.
We get the same count for the case when d is odd using a similar argument.
Since once the odd steps are chosen, there is only one way to choose the even
steps, all these nd−1 monomials give rise to non-zero entries in different rows and
columns in the matrix MfB . Hence, the matrix is an identity block of dimension
nd−1 upto a permutation of rows and columns and thus it has rank nd−1.

Theorem 5. Any homogeneous ΣΠΣ circuit for computing the product of d
n× n matrices requires Ω(nd−1/2d) size.
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Proof. Let Φ be a homogeneousΣΠΣ circuit computing f . Then, using Lemma 1,
for any partition A, max-rank(MfA) ≤ k ·2d. From Lemma 2, we know that there
exists a partition B such that max-rank(MfB ) = nd−1. Hence, k ≥ nd−1/2d.

It is worth noting that there exists a depth-2 circuit of size nd−1 computing
IMMn

d polynomial. As observed in Lemma 2, there are nd−1 monomials in the
IMMn

d polynomial. Hence, the sum of monomials representation for IMMn
d will

have top fan-in equal to nd−1. We remark that when the number of matrices is
a constant, the upper and lower bounds for IMMn

d polynomial asymptotically
match.

4 Lower Bounds against Depth-3 Circuits of Bounded
Product Dimension

If a depth-3 circuit is not homogeneous, the fan-in of a product gate can be
arbitrarily larger than the degree of the polynomial being computed. Hence the
techniques in the previous section fails to give non-trivial size lower bounds. In
this section, we study depth-3 circuits with bounded product dimension - where
the affine forms feeding into every product gate are from a linear vector space
of small dimension and prove exponential size lower bounds for such circuits.

We will first prove an upper bound on the max-rank of the polynomial co-
efficient matrix for the polynomial computed by a depth-3 circuit of product
dimension r, parameterized by r. Let C be a ΣΠΣ circuit of product dimen-
sion r and top fan in k. Let P j be the product gates in C for j ∈ [k], given
by P j = Πs

i=1L
j
i . Without loss of generality, let us assume that the vectors

Lj
1, L

j
2, . . . , L

j
r form a basis for the span of {Lj

1, L
j
2, . . . , L

j
s}. Let lji be the homo-

geneous part of Lj
i for each i. So, clearly the set {lji }i∈[r′] spans the set {lji }i∈[s],

where r′ ≤ r. To simplify the notation, we will refer to r′ as r. In the following
presentation, we will always use d to refer to the degree of the homogeneous
polynomial computed by the circuit under consideration. Now, let us express
each lji as a linear combination of {lji }i∈[r]. Let us expand the product P j into

a sum of product of homogeneous linear forms coming from {lji }i∈r. Let P
j
d be

the slice of P j of degree exactly d, for each j ∈ [k].

Observation 6. Let Cd = Σi∈[k]P
i
d. If C computes a homogeneous polynomial

of degree d, then Cd computes the same polynomial.

Proof. We know that, C = Σi∈[k]P
i. Now, writing each product gate as a sum of

product of homogeneous linear forms as described in the paragraph above, we get
C = Σi∈[k]Σj∈[d]P

i
j . Now, equating the degree d parts of the polynomial in both

sides of the equality, we obtain Cd = Σi∈[k]P
i
d. If C computes a homogeneous

polynomial of degree d, C = Cd and the lemma follows.

We know that for each P j
d = ΣiΠ

d
u=1lαiu where αiu ∈ [r] and j ∈ [k]. We now

use the following lemma to simplify the inner product terms Πd
u=1lαiu in the

expression for P j
d .
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Lemma 3. ([15]) Any monomial of degree d can be written as a linear combi-
nation of dth power of some 2d linear forms. Further, each of the 2d linear forms
in the expression corresponds to Σx∈Sx for a subset S of [d].

By applying to each product term Πd
u=1lαiu in P j

d , we obtain the following:

Lemma 4. If P j
d = ΣiΠ

d
u=1lαiu where αiu ∈ [r], then P j

d = Σv
q=1cqLq

d for

some homogeneous linear forms Lq, constants cq and v ≤ (
d+r
r

)
.

Proof. Consider any product term in the sum of products expansion P j
d as de-

scribed, say S = Πd
u=1lαiu . From Lemma 3, we know that S can be written as

S = Σ2d

t=1Lt
d, where for every subset U of [d], there is a β ∈ [2d] such that

Lβ = Σu∈U lαiu . In general, each Lt can be written as Lt = Σi∈[r]γili for non-
negative integers γi satisfying Σi∈[r]γi ≤ d. Now, each of the product terms in

P j
d can be expanded in a similar fashion into dth powers of linear forms, each

from the set {Σi∈[r]γili : γi ∈ Z
≥0 ∧ Σi∈[r]γi ≤ d}. The number of distinct such

linear forms is at most
(
d+r
r

)
. Hence, the lemma follows.

We now bound the max-rank of the power of a homogeneous linear form which
in turn will give us a bound for P j

d due to the subadditivity of max-rank.

Lemma 5. Given a linear form l and any positive integer t, the max-rank of lt

is at most t+ 1 for any partition of the set X of variables into Y and Z.

Proof. Partition the linear form l into two parts, l = ly + lz, where ly consists of
all variables in l from the set Y and lz consists of the variables which come from
the set Z. By the binomial theorem, lt = Σt

i=0

(
t
i

)
liyl

t−i
z . Now, liy is a polynomial

just in Y variables and hence its max-rank can be bounded above by 1, and
multiplication by lt−i

z does not increase the max-rank any further, by Proposi-
tion 1.4. Hence, the max-rank of each term in the sum is at most 1 and there
are at most t + 1 terms, so, by using the subadditivity of max-rank, we get an
upper bound of t+ 1 on the max-rank of the sum.

The following lemma gives an upper bound on the max-rank of P j
d and follows

from Lemma 4, Lemma 5 and the subadditivity of max-rank.

Lemma 6. The max-rank of P j
d is at most (d+1)

(
d+r
r

)
for any partition of the

set X of variables into Y and Z.

Now we are ready to prove the theorem.

Theorem 7. There is an explicit polynomial in n variables and degree n
2 for

which any ΣΠΣ circuit C of product dimension at most n
10 requires size 2Ω(n).

Proof. We describe the explicit polynomial Q(X) first. Fix an equal sized parti-
tion A ofX into Y and Z. Order all subsets of Y and Z of size exactly n

4 in any or-

der, say S1, S2, . . . , Sw and T1, T2, . . . , Tw, where w =
(n

2
n
4

)
. Let us define the poly-

nomial QA(Y, Z) for the partition A as follows: QA(Y, Z) = Σw
i=1Πy∈SiΠz∈Tiyz.
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We obtain the polynomial Q(X) by replacing variables in Y and Z in QA(Y, Z)
by A−1(Y ) and A−1(Z) respectively.

Now we prove the size lower bound. The polynomial coefficient matrix of Q
with respect to the partition Y and Z is simply the diagonal submatrix, and the

rank is at least
(n

2
n
4

) ≥ 2
n
2√
n
. Since C computes the polynomial, the top fan in k

should be at least
2
n
2√
n

(d+r
r )(d+1)

. For d = n
2 , and r = n

10 , we have a lower bound of

2cn, for a constant c > 0.

5 Lower Bounds against Product-Sparse Formulas

Let Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zm}. Let Φ be a (s, d)-product-
sparse formula defined over the field F and the variables Y ∪ Z. For a node
v, let us denote by Φv the sub-circuit rooted at v, and denote by Yv and Zv,
the set of variables in Y and Z that appear in Φv respectively. Let us define,
a(v) = min{|Yv|, |Zv|} and b(v) = (|Yv| + |Zv|)/2. We say that a node v is k-
unbalanced if b(v)− a(v) ≥ k. Let γ be a simple path from a leaf to the node v.
We say that γ is k-unbalanced if it contains at least one k-unbalanced node. We
say that γ is central if for every u, u1 on the path γ such that there is an edge
from u1 to u in Φ, b(u) ≤ 2b(u1). v is said to be k-weak if every central path
that reaches v is k-unbalanced.

We prove that if v is k-weak then the max-rank of the matrix Mv can be
bounded. The proof goes via induction on |Φv| and follows the same outline as
that of [12]. It only differs in the case of non-disjoint product gates which we
include in full detail below. The proofs of the rest of cases is easy to see.

Lemma 7. Let Φ be a (s, d)-product-sparse formula over the set of variables
Y ∪ Z, and let v be a node in Φ. Denote the product-sparse depth of v by d(v).
If v is k-weak, max-rank(Mv) ≤ 2s·d(v) · |Φv| · 2b(v)−k/2 .

Proof. Consider the case when v is a s-sparse product gate with children v1 and
v2. Without loss of generality it can be assumed that v is not disjoint.

Let us suppose that the product-sparse depth of v is d. Without loss of gen-
erality, assume that v2 computes a sparse polynomial having at most 2s number
of monomials. Thus using Proposition 1.7, max-rank(Mv) ≤ 2s ·max-rank(Mv1)
Clearly, product-sparse depth of v1 is at most d − 1. Consider the following
cases: Case 1 : If b(v) ≤ 2b(v1), then v1 is also k-weak. Therefore, by induction
hypothesis, max-rank(Mv1) ≤ 2s(d−1) · |Φv1 | ·2b(v1)−k/2 ≤ 2s(d−1) · |Φv | ·2b(v)−k/2.
Thus, max-rank(Mv) ≤ 2sd · |Φv| · 2b(v)−k/2. Case 2 : If b(v) > 2b(v1), then
b(v1) < b(v)/2 < b(v) − k/2 since b(v) ≥ k. Therefore using Proposition 1.1,
max-rank(Mv1) ≤ 2a(v1) ≤ 2b(v1) < 2b(v)−k/2. Therefore, max-rank(Mv) ≤
2s · 2b(v)−k/2 ≤ 2sd · |Φv| · 2b(v)−k/2 .

Now, to prove a lower bound for (s, d)-product-sparse formulas computing a full
max-rank polynomial, we only need to show that there exists a partition that
makes the formula k-weak with suitable values of s, d and k.
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In [11], Raz proved that for syntactic multilinear formulas of size at most
nε logn, where ε is a small enough universal constant, there exists such a partition
that makes the formula k-weak for k = n1/8. We observe that this result also
holds for product-sparse formulas, the proof given in [11] is not specific to just
syntactic multilinear formulas and holds for any arithmetic formula. With above
lemma, the following theorem is easy to derive.

Theorem 8. Let X be a set of 2n variables and let f ∈ F[X ] be a full max-
rank polynomial. Let Φ be any (s, d)-product-sparse formula of size nε logn for a
constant ε (same as in [11]). If sd = o(n1/8), then f cannot be computed by Φ.

6 Lower Bounds against Partitioned Arithmetic
Branching Programs

In the preliminaries section, we defined partitioned arithmetic branching pro-
grams which are a generalization of ordered ABPs. By definition, any polynomial
computed by a partitioned ABP is homogenous. In [7], a full rank homogenous
polynomial was constructed. Thus, to prove lower bounds for partitioned ABP,
we only need to upper bound the max-rank of the polynomial coefficient ma-
trix for any polynomial being computed by a partitioned ABP. Now we prove
such an upper bound and use it to prove exponential lower bound on the size of
partitioned ABPs, thus extending result in [7].

Theorem 9. Let X be a set of 2n variables and F be a field. For any full max-
rank homogenous polynomial f of degree n over X and F, the size of any parti-
tioned ABP computing f must be 2Ω(n).

Proof. Let B be a π-partitioned ABP computing f for a permutation π : [2n] →
[2n]. Let L0, L1, . . . , Ln be the levels of B. Consider any partition A that assigns
all n y-variables to {xπ(1), xπ(2), . . . , xπ(n)} and all n z-variables to {xπ(n+1),
xπ(n+2), . . . , xπ(2n)}. Let us denote by fA the polynomial obtained from f after
substituting each variable x by A(x). Let B is partitioned with respect to the
level Li for i = 2αn. We can write, f = fst =

∑
v∈Li

fs,vfv,t . Consider a node
v ∈ Li. By definition, there are following two cases:
Case 1: Xs,v ⊆ {xπ(1), xπ(2), . . . , xπ(n)} and |Xv,t| ≤ 2n(1−α). Thus, fA

s,v ∈ F[Y ].
Hence, using Proposition 1.4 and 1.1,
max-rank(MfA

s,vf
A
v,t
) ≤ max-rank(MfA

v,t
) ≤ 2|Xv,t|/2 ≤ 2n(1−α)

Case 2: Xv,t ⊆ {xπ(n+1), xπ(n+2), . . . , xπ(2n)} and |Xs,v| ≤ 2n(1 − α). Thus,
fA
v,t ∈ F[Z]. Hence, again using Proposition 1.4 and 1.1,

max-rank(MfA
s,vf

A
v,t
) ≤ max-rank(MfA

s,v
) ≤ 2|Xs,v|/2 ≤ 2n(1−α) Thus, in

any case, max-rank(MfA
s,vf

A
v,t
) ≤ 2n(1−α) for all v ∈ Li. Using Proposition 1.2,

max-rank(MfA) ≤ |Li| · 2n(1−α). Since f is a full max-rank polynomial, we get
|Li| ≥ 2αn.
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