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Abstract. We present a linear-time algorithm to compute a decomposi-
tion scheme for graphs G that have a set X ⊆ V (G), called a treewidth-
modulator, such that the treewidth of G − X is bounded by a constant.
Our decomposition, called a protrusion decomposition, is the cornerstone
in obtaining the following two main results. Our first result is that any
parameterized graph problem (with parameter k) that has finite integer
index and such that positive instances have a treewidth-modulator of
size O(k) admits a linear kernel on the class of H-topological-minor-free
graphs, for any fixed graph H . This result partially extends previous
meta-theorems on the existence of linear kernels on graphs of bounded
genus and H-minor-free graphs.

Let F be a fixed finite family of graphs containing at least one planar
graph. Given an n-vertex graph G and a non-negative integer k, Planar-

F-Deletion asks whether G has a set X ⊆ V (G) such that |X| � k
and G − X is H-minor-free for every H ∈ F . As our second applica-
tion, we present the first single-exponential algorithm to solve Planar-

F-Deletion. Namely, our algorithm runs in time 2O(k) · n2, which is
asymptotically optimal with respect to k. So far, single-exponential algo-
rithms were only known for special cases of the family F .

Keywords: parameterized complexity, linear kernels, algorithmic meta-
theorems, sparse graphs, single-exponential algorithms, graph minors.

1 Introduction

This work contributes to the two main areas of parameterized complexity, namely,
kernels and fixed-parameter tractable (FPT) algorithms (see, e.g., [11] for an in-
troduction). In many cases, the key ingredient in order to solve a hard graph
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problem is to find an appropriate decomposition of the input graph, which allows
to take advantage of the structure given by the graph class and/or the problem
under study. In this article we follow this paradigm and present (in Section 3) a
novel linear-time algorithm to compute a decomposition for graphs G that have a
set X ⊆ V (G), called t-treewidth-modulator, such that the treewidth of G − X is
at most some constant t−1. We then exploit this decomposition in two different
ways: to analyze the size of kernels and to obtain efficient FPT algorithms. We
would like to note that similar decompositions have already been (explicitly or
implicitly) used for obtaining polynomial kernels [1, 4, 13, 15, 18].
Linear Kernels. During the last decade, a plethora of results emerged on linear
kernels for graph-theoretic problems restricted to sparse graph classes. A cele-
brated result by Alber et al. [1] prompted an explosion of research papers on
linear kernels on planar graphs. Guo and Niedermeier [18] designed a general
framework and showed that problems that satisfy a certain “distance property”
have linear kernels on planar graphs. Bodlaender et al. [4] provided a meta-
theorem for problems to have a linear kernel on graphs of bounded genus. Fomin
et al. [15] extended these results for bidimensional problems on H-minor-free
graphs. A common feature of these meta-theorems on sparse graphs is a decom-
position scheme of the input graph that, loosely speaking, allows to deal with
each part of the decomposition independently. For instance, the approach of [18],
which is much inspired from [1], is to consider a so-called region decomposition
of the input planar graph. The key point is that in an appropriately reduced
Yes-instance, there are O(k) regions and each one has constant size, yielding
the desired linear kernel. This idea was generalized in [4] to graphs on surfaces,
where the role of regions is played by protrusions, which are graphs with small
treewidth and small boundary (see Section 2 for details). The resulting decom-
position is called protrusion decomposition. A crucial point is that while the
reduction rules of [1] are problem-dependent, those of [4] are automated, rely-
ing on a property called finite integer index (FII), which was introduced by
Bodlaender and de Fluiter [5]. Having FII essentially guarantees that “large”
protrusions of an instance can be replaced by “small” equivalent gadget graphs.
This operation is usually called the protrusion replacement rule. FII is also of
central importance to the approach of [15] on H-minor-free graphs.

In the spirit of the above results, our algorithm to compute protrusion decom-
positions allows us to prove that we can obtain (in Section 4) linear kernels on
a larger class of sparse graphs. A parameterized problem is treewidth-bounding
if Yes-instances have a t-treewidth-modulator of size O(k) for some constant t.
Our first main result is:
Theorem I. Fix a graph H . Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is treewidth-bounding and has FII.
Then Π admits a linear kernel.
It turns out that a host of problems including Treewidth-t Vertex Deletion,
Chordal Vertex Deletion, Interval Vertex Deletion, Edge Domina-

ting Set, to name a few, satisfy the conditions of our theorem. Since for any
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fixed graph H , the class of H-topological-minor-free graphs strictly contains the
class of H-minor-free graphs, our result is in fact an extension of the results of
Fomin et al. [15].
Efficient FPT algorithms. In the second part of the paper (Section 5) we
are interested in single-exponential algorithms, that is, algorithms that solve a
parameterized problem with parameter k on an n-vertex graph in time 2O(k) ·
nO(1). Let F be a finite family of graphs containing at least one planar graph. In
the Planar-F-Deletion problem, given a graph G and a non-negative integer
parameter k as input, we are asked whether G has a set X ⊆ V (G) such that
|X | � k and G − X is H-minor-free for every H ∈ F .

Note that Vertex Cover and Feedback Vertex Set correspond to the
special cases of F = {K2} and F = {K3}, respectively. Recent works have
provided, using quite different techniques, single-exponential algorithms for the
particular cases F = {K3, T2} [7, 22], F = {θc} [19], or F = {K4} [20]. The
Planar-F-Deletion problem was first stated by Fellows and Langston [12],
who proposed a non-uniform f(k) · n2-time algorithm for some function f(k),
relying on the meta-theorem of Robertson and Seymour [24]. Explicit bounds
on the function f(k) can be obtained via dynamic programming. Indeed, as the
Yes-instances of Planar-F-Deletion have treewidth O(k), using standard
dynamic programming techniques on graphs of bounded treewidth (see for in-
stance [2]), it can be seen that Planar-F-Deletion can be solved in time
22O(k log k) · n2. Recently, Fomin et al. [14] provided a 2O(k) · n log2 n-time algo-
rithm for the Planar-Connected-F-Deletion problem, which is the special
case of Planar-F-Deletion when every graph in the family F is connected.
In this paper we get rid of the connectivity assumption:
Theorem II. Planar-F-Deletion can be solved in time 2O(k) · n2.
This result unifies, generalizes, and simplifies a number of results given in [6, 8,
14, 17, 19, 20]. Besides the fact that removing the connectivity constraint is an
important theoretical step towards the general case where F may not contain
any planar graph, it turns out that many natural such families F do contain
disconnected planar graphs [10]. An important feature of our approach, in com-
parison with previous work [14, 19, 20], is that our algorithm does not use any
reduction rule. This is because if F may contain disconnected graphs, Planar-

F-Deletion has not FII for some choices of F , and then the protrusion re-
placement rule cannot be applied. A more in-depth discussion can be found in
the full version. Finally, it should also be noted that the function 2O(k) in The-
orem II is best possible assuming the Exponential Time Hypothesis (ETH), as
Vertex Cover cannot be solved in time 2o(k) · poly(n) unless the ETH fails.
Further research. Concerning our kernelization algorithms, a natural question
is whether similar results can be obtained for an even larger class of sparse graphs.
As discussed in the full version, obtaining a kernel for Treewidth-t Vertex

Deletion on graphs of bounded expansion is as hard as on general graphs, and
according to Fomin et al. [14], this problem has a kernel of size kO(t) on general
graphs, and no uniform polynomial kernel (a polynomial kernel whose degree
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does not depend on t) is known. This fact makes us suspect that our kernelization
result may settle the limit of meta-theorems about the existence of linear, or even
uniform polynomial, kernels on sparse graph classes. We would like to note that
the degree of the polynomial of the running time of our kernelization algorithm
depends linearly on the size of the excluded topological minor H . It seems that
the recent fast protrusion replacer of Fomin et al. [14] could be applied to get
rid of this dependency on H .

Concerning the Planar-F-Deletion problem, no single-exponential algo-
rithm is known when the family F does not contain any planar graph. Is it
possible to find such a family, or can it be proved that, under some complexity
assumption, a single-exponential algorithm is not possible? Very recently, a ran-
domized (Monte Carlo) constant-factor approximation algorithm for Planar-F-

Deletion has been given by Fomin et al. [14]. Finding a deterministic constant-
factor approximation remains open.

2 Preliminaries

We use standard graph-theoretic notation (see [9] and the full version for any
undefined terminology). Given a graph G, we let V (G) denote its vertex set
and E(G) its edge set. A minor of G is a graph obtained from a subgraph
of G by contracting zero or more edges. A topological minor of G is a graph
obtained from a subgraph of G by contracting zero or more edges, such that
each contracted edge has at least one endpoint with degree at most two. A
graph G is H-(topological)-minor-free if G does not contain H as a (topological)
minor.

A parameterized graph problem Π is a set of tuples (G, k), where G is a
graph and k ∈ N0. If G is a graph class, we define Π restricted to G as ΠG =
{(G, k) | (G, k) ∈ Π and G ∈ G} . A parameterized problem Π is fixed-parameter
tractable (FPT for short) if there exists an algorithm that decides instances (x, k)
in time f(k)·poly(|x|), where f is a function of k alone. A kernelization algorithm,
or just kernel, for a parameterized problem Π ⊆ Γ ∗ × N0 is an algorithm that
given (x, k) ∈ Γ ∗ × N0 outputs, in time polynomial in |x| + k, an instance
(x′, k′) ∈ Γ ∗ × N0 such that (x, k) ∈ Π if and only if (x′, k′) ∈ Π , and |x′|, k′ �
g(k), where g is some computable function. The function g is called the size of
the kernel. If g(k) = kO(1) or g(k) = O(k), we say that Π admits a polynomial
kernel and a linear kernel, respectively.

Given a graph G = (V, E), we denote a tree-decomposition of G by (T, {Wx |
x ∈ V (T )}), where T is a tree and {Wx | x ∈ V (T )} are the bags of the
decomposition. We refer the reader to Diestel’s book [9] for an introduction to
the theory of treewidth.

We restate the main definitions of the protrusion machinery developed in [4,
15]. Given a graph G = (V, E) and a set W ⊆ V , we define ∂G(W ) as the set of
vertices in W that have a neighbor in V \W . For a set W ⊆ V the neighborhood
of W is NG(W ) = ∂G(V \ W ). Superscripts and subscripts are omitted when it
is clear which graph is being referred to.
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Given a graph G, a set W ⊆ V (G) is a t-protrusion of G if |∂G(W )| � t and
tw(G[W ]) � t − 1.1 If W is a t-protrusion, the vertex set W ′ = W \ ∂G(W ) is
the restricted protrusion of W . We call ∂G(W ) the boundary and |W | the size
of the t-protrusion W of G. Given a restricted t-protrusion W ′, we denote its
extended protrusion by W ′+ = W ′ ∪ N(W ′).

A t-boundaried graph is a graph G = (V, E) with a set bd(G) (called the
boundary2 or the terminals of G) of t distinguished vertices labeled 1 through t.
Let Gt denote the class of t-boundaried graphs, with graphs from G. If W ⊆ V
is an r-protrusion in G, then we let GW be the r-boundaried graph G[W ] with
boundary ∂G(W ), where the vertices of ∂G(W ) are assigned labels 1 through r
according to their order in G. Gluing two t-boundaried graphs G1 and G2
creates the graph G1 ⊕ G2 obtained by taking the disjoint union of G1 and G2
and identifying each vertex in bd(G1) with its corresponding vertex in bd(G2),
i.e. those vertices sharing the same label.

If G1 is a subgraph of G with a t-boundary bd(G1), ungluing G1 from G
creates the t-boundaried graph G � G1 = G − (V (G1) \ bd(G1)) with boundary
bd(G � G1) = bd(G1), the vertices of which are assigned labels according to
their order in the graph G. Let W be a t-protrusion in G, let GW denote the
graph G[W ] with boundary bd(GW ) = ∂G(W ), and let G1 be a t-boundaried
graph. Then replacing GW by G1 corresponds to the operation (G � GW ) ⊕ G1.

An (α, t)-protrusion decomposition of a graph G is a partition P = Y0 � Y1 �
· · ·�Y� of V (G) such that: (1) for every 1 � i � �, N(Yi) ⊆ Y0; (2) max{�, |Y0|} �
α; (3) for every 1 � i � �, Yi ∪ NY0(Yi) is a t-protrusion of G. Y0 is called the
separating part of P . Hereafter, the value of t will be fixed to some constant.
When G is the input of a parameterized graph problem with parameter k, we
say that an (α, t)-protrusion decomposition of G is linear whenever α = O(k).

Let ΠG be a parameterized graph problem restricted to a class G and let
G1, G2 be two t-boundaried graphs in Gt. We say that G1 ≡Π,t G2 if there exists
a constant ΔΠ,t(G1, G2) (that depends on Π , t, and the ordered pair (G1, G2))
such that for all t-boundaried graphs G3 and for all k: (1) G1 ⊕ G3 ∈ G iff
G2 ⊕ G3 ∈ G; (2) (G1 ⊕ G3, k) ∈ Π iff (G2 ⊕ G3, k + ΔΠ,t(G1, G2)) ∈ Π . We say
that the problem ΠG has finite integer index in the class G iff for every integer t,
the equivalence relation ≡Π,t has finite index. In the case that (G1 ⊕G, k) 
∈ Π or
G1 ⊕ G 
∈ G for all G ∈ Gt, we set ΔΠ,t(G1, G2) = 0. Note that ΔΠ,t(G1, G2) =
−ΔΠ,t(G2, G1).

If a parameterized problem has FII then it can be reduced by “replacing
protrusions”, hinging on the fact that each “large” protrusion can be replaced
by a “small” gadget from the same equivalence class that behaves similar w.r.t.
to the problem at hand. Exchanging G1 by a gadget G2 changes the parameter k
by ΔΠ,t(G1, G2). Lemma 1 guarantees the existence of a set of representatives
such that the replacement operation does not increase the parameter. In the full
version we show how to find protrusions in polynomial time and how to identify
by which representative to replace a protrusion, assuming that we are given the

1 In [4], tw(G[W ]) � t, but we want the size of the bags to be at most t.
2 Usually denoted by ∂(G), but this collides with our usage of ∂.
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set of representatives, an assumption we make from now on. This makes our
algorithms in Section 4 non-uniform, as those in previous works [4, 13–15].

Lemma 1. [	] 3 Let Π be a parameterized graph problem that has FII in a
graph class G. Then for every t, there exists a finite set Rt of t-boundaried
graphs such that for each G ∈ Gt there exists G′ ∈ Rt such that G ≡Π,t G′ and
ΔΠ,t(G, G′) � 0.

For a parameterized problem Π that has FII in the class G, let Rt denote the
set of representatives as in Lemma 1. The protrusion limit of ΠG is a function
ρΠG : N → N defined as ρΠG (t) = maxG∈Rt |V (G)|. We drop the subscript when
it is clear which graph problem is being referred to. We also define ρ′(t) := ρ(2t).

Lemma 2 ([4]). [	] Let Π be a parameterized graph problem with FII in G
and let t ∈ N be a constant. For a graph G ∈ G, if one is given a t-protrusion
X ⊆ V (G) such that ρ′

ΠG (t) < |X |, then one can, in time O(|X |), find a 2t-
protrusion W such that ρ′

ΠG (t) < |W | � 2 · ρ′
ΠG (t).

3 Constructing Protrusion Decompositions

We present our algorithm to compute protrusion decompositions. Algorithm 1
marks the bags of a tree-decomposition of an input graph G that comes equipped
with a t-treewidth-modulator X ⊆ V (G). Our algorithm also takes an additional
integer parameter r, which depends on the graph class to which G belongs and
the precise problem one might want to solve (see Sections 4 and 5 for details).

Note that an optimal tree-decomposition of every connected component C of
G − X such that |NX(C)| � r can be computed in time linear in n = |V (G)|
using the algorithm of Bodlaender [3]. In the full version we sketch how the
Large-subgraph marking step can be implemented using standard dynamic pro-
gramming techniques. It is quite easy to see that Algorithm 1 runs in linear
time.

Lemma 3. [	] Let Y0 be the set of vertices computed by Algorithm 1. Every
connected component C of G − Y0 satisfies |NX(C)| < r and |NY0(C)| < r + 2t,
and thus forms a restricted protrusion.

Given a graph G and a subset S ⊆ V (G), we define a cluster of G − S as a max-
imal collection of connected components of G − S with the same neighborhood
in S. Note that the set of all clusters of G − S induces a partition of the set of
connected components of G − S, which can be easily found in linear time if G
and S are given. By Lemma 3 and using the fact that tw(G − X) � t − 1, the
following proposition follows.

Proposition 1. Let r, t be two positive integers, let G be a graph and X ⊆ V (G)
such that tw(G − X) � t − 1, let Y0 ⊆ V (G) be the output of Algorithm 1 with
input (G, X, r), and let Y1, . . . , Y� be the set of all clusters of G − Y0. Then
P := Y0 � Y1 � · · · � Y� is a (max{�, |Y0|}, 2t + r)-protrusion decomposition of G.
3 The proofs of the results marked with ‘[�]’ can be found in [CoRR, abs/1207.0835].

http://arxiv.org/abs/1207.0835
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Algorithm 1: Bag marking algorithm

Input: A graph G, a subset X ⊆ V (G) such that tw(G − X) � t − 1, and an
integer r > 0.

Set M ← ∅ as the set of marked bags;
Compute an optimal rooted tree-decomposition TC = (TC , BC) of every
connected component C of G − X such that |NX (C)| � r;
Repeat the following loop for every rooted tree-decomposition TC ;
while TC contains an unprocessed bag do

Let B be an unprocessed bag at the farthest distance from the root of TC ;
[LCA marking step]
if B is the LCA of two marked bags of M then

M ← M ∪ {B} and remove the vertices of B from every bag of TC ;

[Large-subgraph marking step]
else if GB contains a connected component CB such that |NX (CB)| � r
then

M ← M ∪ {B} and remove the vertices of B from every bag of TC ;

Bag B is now processed;

return Y0 = X ∪ V (M);

In other words, each cluster of G−Y0 is a restricted (2t+r)-protrusion. Note that
Proposition 1 neither bounds � nor |Y0|. In the sequel, we will use Algorithm 1
and Proposition 1 to give explicit bounds on � and |Y0|, in order to achieve our
two main results.

4 Linear Kernels on Graphs Excluding a Topological
Minor

In this section we prove our first main result (Theorem I). We then state a
number of concrete problems that satisfy the structural constraints imposed by
this theorem and discuss these constraints in the context of previous work in this
area. With the protrusion machinery of Section 2 at hand, we can now describe
the protrusion reduction rule. In the following, we will drop the subscript from
the protrusion limit functions ρΠ and ρ′

Π .

Reduction Rule 1 (Protrusion reduction rule). Let ΠG denote a param-
eterized graph problem restricted to some graph class G, let (G, k) ∈ ΠG be a
Yes-instance of ΠG, and let t ∈ N be a constant. Suppose that W ′ ⊆ V (G) is a
t-protrusion of G such that |W ′| > ρ′(t). Let W ⊆ V (G) be a 2t-protrusion of G
such that ρ′(t) < |W | � 2 · ρ′(t), obtained as described in Lemma 2. We let GW

denote the 2t-boundaried graph G[W ] with boundary bd(GW ) = ∂G(W ). Let fur-
ther G1 ∈ R2t be the representative of GW for the equivalence relation ≡Π,|∂(W )|
as defined in Lemma 1. The protrusion reduction rule (for boundary size t) is
the following: Reduce (G, k) to (G′, k′) = (G � GW ⊕ G1, k − ΔΠ,2t(G1, GW )).
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By Lemma 1, the parameter in the new instance does not increase. The safety
of the above reduction rule is shown in the full version. Note that if (G, k) is
reduced w.r.t. the protrusion reduction rule with boundary size β, then for all
t � β, every t-protrusion W of G has size at most ρ′(t).

Definition 1 (Treewidth-bounding). A parameterized graph problem ΠG is
called (s, t)-treewidth-bounding for a function s : N → N and a constant t if
for all (G, k) ∈ Π there exists X ⊆ V (G) (the treewidth-modulator) such that
|X | � s(k) and tw(G − X) � t − 1. We call ΠG treewidth-bounding on a graph
class G if this condition holds under the restriction that G ∈ G. We call s the
treewidth-modulator size and t the treewidth bound of the problem ΠG.

We assume in the following that the problem ΠG at hand is (s, t)-treewidth-
bounding. Note that in general s, t depend on ΠG and G.

We first prove a slight generalization of Theorem I which highlights all the
key ingredients required. To this end, we define the constriction operation, which
essentially shrinks paths into edges.

Definition 2 (Constriction). Let G be a graph and let P be a set of paths in
G such that for each P ∈ P we have (1) the endpoints of P are not connected
by an edge in G; and (2) for all P ′ ∈ P, with P ′ 
= P , V (P ) ∩ V (P ′) has
at most one vertex, which must also be an endpoint of both paths. We define
the constriction of G under P, denoted by G|P , as the graph H obtained by
connecting the endpoints of each P ∈ P by an edge and then removing all inner
vertices of P .

We say that H is a d-constriction of G if there exists G′ ⊆ G and a set of paths
P in G′ such that d = maxP ∈P |P | and H = G′|P . Given graph classes G, H
and some integer d � 2, we say that G d-constricts into H if for every G ∈ G,
every possible d-constriction H of G is contained in the class H. For the case
that G = H we say that G is closed under d-constrictions. We will call H the
witness class, as the proof of Theorem 1 works by taking an input graph G and
constricting it into some witness graph H whose properties will yield the desired
bound on |G|. We let ω(G) denote the size of a largest clique in G and #ω(G)
the total number of cliques in G (not necessarily maximal ones).

Theorem 1. [	] Let G, H be graph classes closed under taking subgraphs such
that G d-constricts into H for a fixed constant d ∈ N. Assume that H has the
property that there exist functions fE , f#ω : N → N and a constant ωH (depend-
ing only on H) such that for each graph H ∈ H the following conditions hold:

|E(H)| � fE(|H |), #ω(H) � f#ω(|H |), and ω(H) < ωH.

Let Π be a parameterized graph problem that has FII and is (s, t)-treewidth-
bounding, both on the graph class G. Define xk := s(k) + 2t · fE(s(k)). Then any
reduced instance (G, k) ∈ Π has a protrusion decomposition V (G) = Y0 � Y1 �
· · · � Y� such that: (1) |Y0| � xk; (2) |Yi| � ρ′(2t + ωH) for 1 � i � �; and (3)
� � f#ω(xk) + xk + 1. Hence Π restricted to G admits kernels of size at most
xk + (f#ω(xk) + xk + 1)ρ′(2t + ωH).
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Theorem 1 directly implies the following, using the fact that H-topological-minor-
free graphs are ε-degenerate.

Theorem 2. [	] Fix a graph H and let GH be the class of H-topological-minor-
free graphs. Let Π be a parameterized graph-theoretic problem that has FII and
is (sΠ,GH , tΠ,GH )-treewidth-bounding on the class GH . Then Π admits a kernel
of size O(sΠ,GH (k)).

Theorem I is now just a consequence of the special case for which the treewidth-
bound is linear. We present concrete problems that are affected by our result.

Corollary 1. The following problems are linearly treewidth-bounding and have
FII on GH and hence admit linear kernels on GH : Vertex Cover

4; Clus-

ter Vertex Deletion
4; Feedback Vertex Set; Chordal Vertex Dele-

tion; Interval and Proper Interval Vertex Deletion; Cograph

Vertex Deletion; Edge Dominating Set.

Theorem I requires problems to be treewidth-bounding, at first glance, a quite
strong restriction. However, the property of being treewidth-bounding appears
implicitly or explicitly in previous work on linear kernels on sparse graphs [4,15].

5 Single-Exponential Algorithm for Planar-F-Deletion

This section is devoted to the single-exponential algorithm for the Planar-

F-Deletion problem. Let henceforth Hp be some fixed (connected or discon-
nected) arbitrary planar graph in the family F , and let r := |V (Hp)|. First of
all, using iterative compression, we reduce the problem to obtaining a single-
exponential algorithm for the Disjoint Planar-F-Deletion problem, which
is defined as follows: given a graph G and a subset of vertices X ⊆ V (G) such
that G − X is H-minor-free for every H ∈ F , compute a set X̃ ⊆ V (G) disjoint
from X such that |X̃| < |X | and G− X̃ is H-minor-free for every H ∈ F , if such
a set exists. The parameter is k = |X |.

The input set X is called the initial solution and the set X̃ the alternative so-
lution. Let tF be a constant (depending on the family F) such that tw(G − X) �
tF − 1 (note that such a constant exists by Robertson and Seymour [23]). The fol-
lowing lemma relies on the fact that being F -minor-free is a hereditary property
with respect to induced subgraphs. For a proof, see for instance [6, 19–21].

Lemma 4. If the parameterized Disjoint Planar-F-Deletion problem can
be solved in time ck · p(n), where c is a constant and p(n) is a polynomial in n,
then the Planar-F-Deletion problem can be solved in time (c + 1)k · p(n) · n.

To solve Disjoint Planar-F-Deletion, we first construct a protrusion decom-
position using Algorithm 1 with input (G, X, r). But it turns out that the set Y0

4 Listed for completeness; these problems have a kernel with a linear number of vertices
on general graphs.
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output by Algorithm 1 does not define a linear protrusion decomposition of G,
which is crucial for our purposes. To circumvent this problem, our strategy is to
guess the intersection I of the alternative solution X̃ with the set Y0. As a result,
we obtain Proposition 2, which is fundamental in order to prove Theorem II.

Proposition 2 (Linear protrusion decomposition). Let (G, X, k) be a Yes-
instance of the Disjoint Planar-F-Deletion problem. There exists a 2O(k) ·n-
time algorithm that identifies a set I ⊆ V (G) of size at most k and a (O(k), 2tF +
r)-protrusion decomposition P = Y0 �Y1 �· · ·�Y� of G−I such that: (1) X ⊆ Y0;
and (2) there exists a set X ′ ⊆ V (G)\Y0 of size at most k −|I| such that G− X̃,
with X̃ = X ′ ∪ I, is H-minor-free for every graph H ∈ F .

Towards the proof of Proposition 2, we need the following ingredient.

Proposition 3 (Thomason [25], Fomin, Oum, and Thilikos [16]). There
is a constant α < 0.320 such that every n-vertex graph with no Kr-minor has at
most (αr

√
log r) · n edges. There is a constant μ < 11.355 such that, for r > 2,

every n-vertex graph with no Kr-minor has at most 2μr log log r · n cliques.

For the sake of simplicity, let henceforth αr := αr
√

log r and μr := 2μr log log r.
For each guessed set I ⊆ Y0, we denote GI := G − I.

Lemma 5. [	] If (G, X, k) is a Yes-instance of the Disjoint Planar-F-Deletion

problem, then the set Y0 = V (M) ∪ X of vertices returned by Algorithm 1 has size
at most k + 2tF · (1 + αr) · k.

Lemma 6. [	] If (GI , Y0\I, k−|I|) is a Yes-instance of the Disjoint Planar-F-

Deletion problem, then the number of clusters of GI −Y0 is at most (5tFαrμr) ·k,
where Y0 is the set of vertices returned by Algorithm 1.

We are now ready to prove Proposition 2.

Proof (of Proposition 2). By Lemma 5, we can compute in linear time a set Y0
of O(k) vertices containing X such that every cluster of G − Y0 is a restricted
(2tF + r)-protrusion. If (G, X, k) is a Yes-instance of the Disjoint Planar-F-

Deletion problem, then there exists a set X̃ of size at most |X | and disjoint from
X such that G− X̃ does not contain any graph H ∈ F as a minor. Branching on
every possible subset of Y0 \X , one can guess the intersection I of X̃ with Y0 \X .
By Lemma 5, the branching degree is 2O(k). As (G, X, k) is a Yes-instance, for
at least one of the guessed subsets I, the instance (GI , Y0 \ I, k − |I|) is a Yes-
instance of the Disjoint Planar-F-Deletion problem. Now, by Lemma 6,
the partition P = (Y0 \ I) � Y1 � · · · � Y�, where {Y1, . . . , Y�} is the set of clusters
of GI − Y0, is an (O(k), r + 2tF)-protrusion decomposition of GI .

By Proposition 2, we can focus on solving Disjoint Planar-F-Deletion in
single-exponential time when a linear protrusion decomposition is given. To that
aim, we define an equivalence relation on subsets of vertices of each restricted
protrusion Yi. The key observation is that each of these equivalence relations
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defines finitely many equivalence classes such that any partial solution lying on
Yi can be replaced with one of the representatives while preserving the feasi-
bility. This basically follows from the finite index of MSO-definable properties
(see, e.g., [5]). Then, we use a decomposability property of the solution, namely,
that there always exists a solution which is formed by the union of one repre-
sentative per restricted protrusion. Finally, in order to make the algorithm fully
constructive and uniform on the family F , we use classic arguments from tree
automaton theory, such as the method of test sets. All details can be found in
the full version.

Proposition 4. [	] Let (G, Y0, k) be an instance of Disjoint Planar-F-

Deletion and let P = Y0 � Y1 � · · · � Y� be an (α, β)-protrusion decomposi-
tion of G, for some constant β. There exists an O(2� · n)-time algorithm which
computes a solution X̃ ⊆ V (G) \ Y0 of size at most k if it exists, or correctly
decides that there is no such solution.

We finally have all the ingredients to piece everything together.

Proof (of Theorem II). Lemma 4 states that Planar-F-Deletion can be re-
duced to Disjoint Planar-F-Deletion so that the former is single-exponential
time solvable provided that the latter is, and the degree of the polynomial
function in n increases by one. We now proceed to solve Disjoint Planar-F-

Deletion in time 2O(k) · n. Given an instance (G, X, k) of Disjoint Planar-

F-Deletion, we apply Proposition 2 to either correctly decide that (G, X, k) is
a No-instance, or identify in time 2O(k) · n a set I ⊆ V (G) of size at most k and
a (O(k), 2tF + r)-protrusion decomposition P = Y0 � Y1 � · · · � Y� of G − I, with
X ⊆ Y0, such that there exists a set X ′ ⊆ V (G) \ Y0 of size at most k − |I| such
that G − X̃, with X̃ = X ′ ∪ I, is H-minor-free for every graph H ∈ F . Finally,
using Proposition 4 we can solve the instance (GI , Y0 \I, k −|I|) in time 2O(k) ·n.
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