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Abstract. The ε-approximate degree of a Boolean function f : {−1, 1}n →
{−1, 1} is the minimum degree of a real polynomial that approximates
f to within ε in the �∞ norm. We prove several lower bounds on this
important complexity measure by explicitly constructing solutions to
the dual of an appropriate linear program. Our first result resolves the
ε-approximate degree of the two-level AND-OR tree for any constant
ε > 0. We show that this quantity is Θ(

√
n), closing a line of incremen-

tally larger lower bounds [3, 11, 21, 30, 32]. The same lower bound was
recently obtained independently by Sherstov using related techniques
[25]. Our second result gives an explicit dual polynomial that witnesses a
tight lower bound for the approximate degree of any symmetric Boolean
function, addressing a question of Špalek [34]. Our final contribution is
to reprove several Markov-type inequalities from approximation theory
by constructing explicit dual solutions to natural linear programs. These
inequalities underly the proofs of many of the best-known approximate
degree lower bounds, and have important uses throughout theoretical
computer science.

1 Introduction

Approximate degree is an important measure of the complexity of a Boolean
function. It captures whether a function can be approximated by a low-degree
polynomial with real coefficients in the �∞ norm, and it has many applications
in theoretical computer science. The study of approximate degree has enabled
progress in circuit complexity [7, 8, 19, 29], quantum computing (where it has
been used to prove lower bounds on quantum query complexity, e.g. [2, 5, 14]),
communication complexity [4, 10, 17, 27, 31, 33, 34], and computational learning
theory (where approximate degree upper bounds underly the best known algo-
rithms for PAC learning DNF formulas and agnostically learning disjunctions)
[13, 15].

In this paper, we seek to advance our understanding of this fundamental
complexity measure. We focus on proving approximate degree lower bounds
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by specifying explicit dual polynomials, which are dual solutions to a certain
linear program capturing the approximate degree of any function. These poly-
nomials act as certificates of the high approximate degree of a function. Their
construction is of interest because these dual objects have been used recently to
resolve several long-standing open problems in communication complexity (e.g.
[4,10,17,27,33,34]). See the survey of Sherstov [26] for an excellent overview of
this body of literature.

Our Contributions. Our first result resolves the approximate degree of the
function f(x) = ∧N

i=1 ∨N
j=1 xij , showing this quantity is Θ(N). Known as the

two-level AND-OR tree, f is the simplest function whose approximate degree
was not previously characterized. A series of works spanning nearly two decades
proved incrementally larger lower bounds on the approximate degree of this
function, and this question was recently re-posed by Aaronson in a tutorial at
FOCS 2008 [1]. Our proof not only yields a tight lower bound, but it specifies
an explicit dual polynomial for the high approximate degree of f , answering a
question of Špalek [34] in the affirmative.

Our second result gives an explicit dual polynomial witnessing the high ap-
proximate degree of any symmetric Boolean function, recovering a well-known
result of Paturi [22]. Our solution builds on the work of Špalek [34], who gave an
explicit dual polynomial for the OR function, and addresses an open question
from that work.

Our final contribution is to reprove several classical Markov-type inequalities
of approximation theory using simpler ideas from linear programming. These in-
equalities bound the derivative of a polynomial in terms of its degree. Combined
with the well-known symmetrization technique (see e.g. [1, 19]), Markov-type
inequalties have traditionally been the primary tool used to prove approximate
degree lower bounds on Boolean functions (e.g. [2,3,21,32]). Our proofs of these
inequalities specify explicit dual solutions to a natural linear program (that dif-
fers from the one used to prove our first two results). While these inequalities
have been known for over a century [9, 18], to the best of our knowledge our
proof technique is novel, and we believe it sheds new light on these results.

2 Preliminaries

We work with Boolean functions f : {−1, 1}n → {−1, 1} under the standard
convention that 1 corresponds to logical false, and −1 corresponds to logical true.
We let ‖f‖∞ = maxx∈{−1,1} |f(x)| denote the �∞ norm of f . The ε-approximate
degree of a function f : {−1, 1}n → {−1, 1}, denoted degε(f), is the minimum
(total) degree of any real polynomial p such that ‖p−f‖∞ ≤ ε, i.e. |p(x)−f(x)| ≤
ε for all x ∈ {−1, 1}n. We use ˜deg(f) to denote deg1/3(f), and use this to refer
to the approximate degree of a function without qualification. The choice of 1/3

is arbitrary, as ˜deg(f) is related to degε(f) by a constant factor for any constant
ε ∈ (0, 1). We let ORn and ANDn denote the OR function and AND function
on n variables respectively. Define s̃gn(x) = −1 if x < 0 and 1 otherwise.
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In addition to approximate degree, block sensitivity is also an important mea-
sure of the complexity of a Boolean function. We introduce this measure because
functions with low block sensitivity are an “easy case” in the analysis of Theo-
rem 2 below. The block sensitivity bsx(f) of a Boolean function f : {−1, 1}n →
{−1, 1} at the point x is the maximum number of pairwise disjoint subsets
S1, S2, S3, · · · ⊆ {1, 2, . . . , n} such that f(x) 	= f(xS1) = f(xS2) = f(xS3) = . . .
Here, xS denotes the vector obtained from x by negating each entry whose in-
dex is in S. The block sensitivity bs(f) of f is the maximum of bsx(f) over all
x ∈ {−1, 1}n.

2.1 A Dual Characterization of Approximate Degree

For a subset S ⊂ {1, . . . , n} and x ∈ {−1, 1}n, let χS(x) =
∏

i∈S xi. Strong
LP-duality yields the following well-known dual characterization of approximate
degree (cf. [27]).

Theorem 1. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then degε(f) >
d if and only if there is a polynomial φ : {−1, 1}n → R such that

∑

x∈{−1,1}n

f(x)φ(x) > ε, (1)

∑

x∈{−1,1}n

|φ(x)| = 1, (2)

and ∑

x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d. (3)

If φ satisfies Eq. (3), we say φ has pure high degree d. We refer to any feasible
solution φ to the dual LP as a dual polynomial for f .

3 A Dual Polynomial for the AND-OR Tree

Define AND-ORM
N : {−1, 1}MN → {−1, 1} by f(x) = ∧M

i=1 ∨N
j=1 xij . AND-ORN

N

is known as the two-level AND-OR tree, and its approximate degree has resisted
characterization for close to two decades. Nisan and Szegedy proved an Ω(N1/2)

lower bound on ˜deg(AND-ORN
N ) in [21]. This was subsequently improved to

Ω(
√
N logN) by Shi [32], and improved further to Ω(N2/3) by Ambainis [3].

Most recently, Sherstov proved an Ω(N3/4) lower bound in [30], which was the
best lower bound prior to our work. The best upper bound is O(N) due to Høyer,
Mosca, and de Wolf [11], which matches our new lower bound.

By refining Sherstov’s analysis in [30], we will show that ˜deg(AND-ORM
N ) =

Ω(
√
MN), which matches an upper bound implied by a result of Sherstov [28].

In particular, this implies that the approximate degree of the two-level AND-OR
tree is Θ(N).

Theorem 2. ˜deg(AND-ORM
N ) = Θ(

√
MN).
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Independent Work by Sherstov. Independently of our work, Sherstov [25]

has discovered the same Ω(
√
MN) lower bound on ˜deg(AND-ORM

N ). Both his
proof and ours exploit the fact that the OR function has a dual polynomial with
one-sided error. Our proof proceeds by constructing an explicit dual polynomial
for AND-ORM

N , by combining a dual polynomial for ORN with a dual polynomial
for ANDM . In contrast, Sherstov mixes the primal and dual views: his proof
combines a dual polynomial for ORN with an approximating polynomial p for
AND-ORM

N to construct an approximating polynomial q for ANDM . The proof
in [25] shows that q has much lower degree than p, so the desired lower bound
on the degree of p follows from known lower bounds on the degree of q.

The proof of [25] is shorter, while our proof has the benefit of yielding an
explicit dual polynomial witnessing the lower bound.

3.1 Proof Outline

Our proof is a refinement of a result of Sherstov [30], which roughly showed
that approximate degree increases multiplicatively under function composition.
Specifically, Sherstov showed the following.

Proposition 1 ([30, Theorem 3.3]). Let F : {−1, 1}M → {−1, 1} and f :
{−1, 1}N → {−1, 1} be given functions. Then for all ε, δ > 0,

degε−4δ bs(F )(F (f, . . . , f)) ≥ degε(F ) deg1−δ(f).

Sherstov’s proof of Proposition 1 proceeds by taking a dual witness Ψ to the
high ε-approximate degree of F , and combining it with a dual witness ψ to
the high (1 − δ)-approximate degree of f to obtain a dual witness ζ for the
high (ε−4δbs(F ))-approximate degree of F (f, . . . , f). His proof proceeds in two
steps: he first shows that ζ has pure high degree at least degε(F ) deg1−δ(f), and
then he lower bounds the correlation of ζ with F (f, . . . , f). The latter step of
this analysis yields a lower bound on the correlation of ζ with F (f, . . . , f) that
deteriorates rapidly as the block sensitivity bs(F ) grows.

Proposition 1 itself does not yield a tight lower bound for ˜deg(AND-ORM
N ),

because the function ANDM has maximum block sensitivity bs(ANDM ) = M .
We address this by refining the second step of Sherstov’s analysis in the case
where F = ANDM and f = ORN . We leverage two facts. First, although the
block sensitivity of ANDM is high, it is only high at one input, namely the all-
true input. At all other inputs, ANDM has low block sensitivity and the analysis
of Proposition 1 is tight. Second, we use the fact that any dual witness to the
high approximate degree of ORN has one-sided error. Namely, if ψ(x) < 0 for
such a dual witness ψ, then we know that ψ(x) agrees in sign with ORN (x).
This property allows us to handle the all-true input to ANDM separately: we
use it to show that despite the high block-sensitivity of ANDM at the all-true
input y, this input nonetheless contributes positively to the correlation between
ζ and F (f, . . . , f).
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3.2 Proof of Thm. 2

As in Sherstov’s proof of Proposition 1, we define ζ :
({−1, 1}N)M → R by

ζ(x1, . . . , xM ) := 2MΨ(. . . , s̃gn(ψ(xi)), . . . )

M
∏

i=1

|ψ(xi)|, (4)

where Ψ and ψ are dual witnesses to the high ε-approximate degree of ANDM

and (1 − δ)-approximate degree of ORN , respectively, for suitable ε and δ, and
xi = (xi,1, . . . , xi,N ). To show that ζ is a dual witness for the fact that the

(1/3)-approximate degree of AND-ORM
N is Ω(

√
MN), it suffices to check that

ζ satisfies the conditions of Thm. 1. The only place where our analysis differs
from that of Sherstov’s is in verifying Expression (1), i.e. that

∑

(x1,...,xM)∈({−1,1}N )M

ζ(x1, . . . , xM )AND-ORM
N (x1, . . . , xM ) > 1/3. (5)

Let A1 = {x ∈ {−1, 1}N : ψ(x) ≥ 0,ORN (x) = −1} and A−1 = {x ∈ {−1, 1}N :
ψ(x) < 0,ORN (x) = 1}, so A1 ∪ A−1 is the set of all inputs x where the sign
of ψ(x) disagrees with ORN (x). Notice that

∑

x∈A1∪A−1
|ψ(x)| < δ/2 because

ψ has correlation 1 − δ with f . A sequence of manipulations found in the full
version of this paper shows that the left-hand side of (5) equals

∑

z∈{−1,1}M

Ψ(z) ·E[ANDM (. . . , yizi, . . . )], (6)

where y ∈ {−1, 1}M is a random string whose ith bit independently takes on
value −1 with probability 2

∑

x∈Azi
|ψ(x)| < δ.

All z 	= −1M can be handled as in Sherstov’s proof of Proposition 1, because
ANDM has low block sensitivity at these inputs. These inputs contribute a total
of at least ε − 4δ − |Ψ(−1M )| to Expression (6). We only need to argue that
the term corresponding to z = −1M contributes |Ψ(−1M )| to the correlation.
In the full version, we argue that any dual witness for the ORN function has
one-sided error [12]. That is, if OR(x) = 1 (i.e. if x = 1N ), then s̃gn(ψ(x)) = 1.
This implies that A−1 is empty; that is, if s̃gn(ψ(x)) = −1, then it must be
the case that ORN (x) = −1. Therefore, for z = −1M , the yi’s are all −1 with
probability 1, and hence Ey[ANDM (. . . , yizi, . . . )] = ANDM (−1M ) = −1. By
the one-sided error of any dual witness for ANDM , s̃gn(Ψ(−1M )) = −1, and thus
the term corresponding to z = −1M contributes −Ψ(z) = |Ψ(z)| to Expression
(6) as claimed. ��
Remark 1. Špalek [34] has exhibited an explicit dual witness showing that the ε-
approximate degree of both the AND function and the OR function isΩ(

√
n), for

ε = 1/14 (in fact, we generalize Špalek’s construction in the next section to any
symmetric function). It is relatively straightforward to modify his construction
to handle any constant ε ∈ (0, 1). With these dual polynomials in hand, the
dual solution ζ we construct in our proof is completely explicit. This answers a
question of Špalek [34, Section 4] in the affirmative.
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4 Dual Polynomials for Symmetric Boolean Functions

In this section, we construct a dual polynomial witnessing a tight lower bound
on the approximate degree of any symmetric function. The lower bound we
recover was first proved by Paturi [22] via a symmetrization argument combined
with the classical Markov-Bernstein inequality from approximation theory (see
Section 5). Paturi also provided a matching upper bound. Špalek [34], building
on work of Szegedy, presented a dual witness to the Ω(

√
n)-approximate degree

of the OR function and asked whether one could construct an analogous dual
polynomial for the symmetric t-threshold function [34, Section 4]. We accomplish
this in the more general case of arbitrary symmetric functions by extending the
ideas underlying Špalek’s dual polynomial for OR.

4.1 Symmetric Functions

For a vector x ∈ {−1, 1}n, let |x| = 1
2 (n− (x1 + · · ·+ xn)) denote the number of

−1’s in x. A Boolean function f : {−1, 1}n → {−1, 1} is symmetric if f(x) = f(y)
whenever |x| = |y|. That is, the value of f depends only on the number of inputs
that are set to −1.

Let [n] = {0, 1, . . . , n}. To each symmetric function f , we can associate a
unique univariate function F : [n] → {−1, 1} by taking F (|x|) = f(x). Through-
out this section, we follow the convention that lower case letters refer to multi-
variate functions, while upper case letters refer to their univariate counterparts.

We now discuss the dual characterization of approximate degree established
in Thm. 1, as it applies to symmetric functions. Following the notation in [34],
the standard inner product p · q = ∑

x∈{−1,1}n p(x)q(x) on symmetric functions
p, q induces an inner product on the associated univariate functions:

P ·Q :=
n
∑

i=0

(

n

i

)

P (i)Q(i).

We refer to this as the correlation between P and Q. Similarly, the �1-norm
‖p‖1 =

∑

x∈{−1,1}n |p(x)| induces a norm ‖P‖1 =
∑n

i=0

(

n
i

)

P (i). These defini-
tions carry over verbatim when f is real-valued instead of Boolean-valued.

If f is symmetric, we can restrict our attention to symmetric φ in the state-
ment of Thm. 1, and it becomes convenient to work with the following reformu-
lation of Thm. 1.

Corollary 1. A symmetric function f : {−1, 1}n → {−1, 1} has ε-approximate
degree greater than d iff there exists a symmetric function φ : {−1, 1}n → R with
pure high degree d such that

Φ · F
‖Φ‖1 =

φ · f
‖φ‖1 > ε.

(Here, F and Φ are the univariate function associated to f and φ, respectively).
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We clarify that the pure high degree of a multivariate polynomial φ does not
correspond to the smallest degree of a monomial in the associated univariate
function Φ. When we talk about the pure high degree of a univariate polynomial
Φ, we mean the pure high degree of its corresponding multilinear polynomial φ.
It is straightforward to check that if ψ is a multivariate polynomial of degree
n − d, then multiplying ψ by the parity function yields a univariate function
Φ(k) := Ψ(k) · (−1)k with pure high degree d.

We are now in a position to state the lower bound that we will prove in
this section. Paturi [22] completely characterized the approximate degree of a
symmetric Boolean function by the location of the layer t closest to the center
of the Boolean hypercube such that F (t− 1) 	= F (t).

Theorem 3 ([22], Theorem 4). Given a nonconstant symmetric Boolean func-
tion f with associated univariate function F , let Γ (f) = min{|2t − n − 1| :

F (t− 1) 	= F (t), 1 ≤ k ≤ n}. Then ˜deg(f) = Θ(
√

n(n− Γ (f)).

Paturi proved the upper bound non-explicitly by appealing to Jackson theo-
rems from approximation theory. He proved the lower bound by combining sym-
metrization with an appeal to the Markov-Bernstein inequality (see Section 5)
– his proof does not yield an explicit dual polynomial. We construct an explicit
dual polynomial to prove the following proposition, which is easily seen to imply
Paturi’s lower bound.

Proposition 2. Given f and F as above, let 1 ≤ t ≤ n be an integer with

F (t− 1) 	= F (t). Then ˜deg(f) = Ω(
√

t(n− t+ 1)).

Proof Outline. We start with an intuitive discussion of Špalek’s construction
of a dual polynomial for OR, with the goal of elucidating how we extend the
construction to arbitrary symmetric functions. Consider the perfect squares S =
{k2 : 0 ≤ k2 ≤ n} and the univariate polynomial

R(x) =
1

n!

∏

i∈[n]\S
(x− i).

This polynomial is supported on S, and for all k ∈ S,

(

n

k2

)

|R(k2)| =
(

n

k2

)

· 1

n!
·

∏

i∈[n]

i�=k2

|k2 − i|
∏

i∈S
i�=k2

|k2 − i| =
1

∏

i∈S
i�=k2

|k2 − i| .

Note the remarkable cancellation in the final equality. This quotient is maximized
at k = 1. In other words, the threshold point t = 1 makes the largest contribution
to the �1 mass of R. Moreover, one can check that R(0) is only a constant factor
smaller than R(1).

Špalek exploits this distribution of the �1 mass by considering the polynomial
P (x) = R(x)/(x − 2). The values of P (x) are related to R(x) by a constant
multiple for x = 0, 1, but P (k) decays as |P (k2)| ≈ |R(k2)|/k2 for larger values.
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This decay is fast enough that a constant fraction of the �1 mass of P comes
from the point P (0).1 Now P is an (n − Ω(

√
n))-degree univariate polynomial,

so we just need to show that Q(i) = (−1)iP (i) has high correlation with OR.
We can write

Q ·OR = 2Q(0)−Q · 1 = 2Q(0),

since the multilinear polynomial associated to Q has pure high degree Ω(
√
n),

and therefore has zero correlation with constant functions. Because a constant
fraction of the �1 mass of Q comes from Q(0), it follows that |Q · OR |/‖Q‖1 is
bounded below by a constant. By perhaps changing the sign of Q, we get a good
dual polynomial for OR.

A natural approach to extend Špalek’s argument to symmetric functions with
a “jump” at t is the following:

1) Find a set S with |S| = Ω(
√

t(n− t+ 1)) such that the maximum contribu-
tion to the �1 norm of R(x) = 1

n!

∏

i∈[n]\S(x− i) comes from the point x = t.
Equivalently,

(

n

j

)

|R(j)| = 1
∏

i∈S
i�=j

|j − i|

is maximized at j = t.
2) Define a polynomial P (x) = R(x)/(x − (t − 1))(x − (t + 1)). Dividing R(x)

by the factor (x− t− 1) is analogous to Špalek’s division of R(x) by (x− 2).
We also divide by (x− t+1) because we will ultimately need our polynomial
P (x) to decay faster than Špalek’s by a factor of |x− t| as x moves away from
the threshold. By dividing by both (x− t− 1) and (x− t+1), we ensure that
most of the �1 mass of P is concentrated at the points t− 1, t, t+ 1.

3) Obtain Q by multiplying P by parity, and observe that Q(t − 1) and Q(t)
have opposite signs. Since F (t− 1) and F (t) also have opposite signs, we can
ensure that both t − 1 and t contribute positive correlation. Suppose these
two points contribute a 1/2 + ε constant fraction of the �1-norm of Q. Then
even in the worst case where the remaining points all contribute negative
correlation, Q · F is still at least a 2ε fraction of ‖Q‖1 and we have a good
dual polynomial. Notice that the pure high degree of Q is |S| + 2, yielding
the desired lower bound.

In the case where t = Ω(n), we can use the set

S = {t± 4� : 0 ≤ � ≤ t/4},

yielding a remarkably clean dual polynomial for the majority function. This
partial result also gives the right intuition for general t, although the details are
somewhat more complicated and spelled out in the full version of this paper. In
general, the set S interpolates between the set for OR used by Špalek, and the
set described above for linear t. In particular, S contains all points of the form
t± 4�, plus additional points corresponding to perfect squares when t = o(n).

1 It is also necessary to check that P (2) is only a constant factor larger than P (0).
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5 A Constructive Proof of Markov-Bernstein Inequalities

The Markov-Bernstein inequality for polynomials with real coefficients asserts
that

p′(x) ≤ min

{

n√
1− x2

, n2

}

‖p‖[−1,1], x ∈ (−1, 1)

for every real polynomial of degree at most n. Here, and in what follows,

‖p‖[−1,1] := sup
y∈[−1,1]

|p(y)|.

This inequality has found numerous uses in theoretical computer science, es-
pecially in conjunction with symmetrization as a method for bounding the ε-
approximate degree of various functions (e.g. [2, 8, 13, 16, 21, 22, 27]).

We prove a number of important special cases of this inequality based on linear
programming duality. Our proofs are constructive in that we exhibit explicit
dual solutions to a linear program bounding the derivative of a constrained
polynomial.

The special cases of the Markov-Bernstein inequality that we prove are suffi-
cient for many applications in theoretical computer science. The dual solutions
we exhibit are remarkably clean, and we believe that they shed new light on
these classical inequalities.

5.1 Proving the Markov-Bernstein Inequality at x = 0

The following linear program with uncountably many constraints captures the
problem of finding a polynomial p(x) = cnx

n + cn−1x
n−1 + · · ·+ c1x + c0 with

real-valued coefficients that maximizes |p′(0)| subject to the constraint that
‖p‖[−1,1] ≤ 1. Below the variables are c0, . . . cn, and there is a constraint for
every x ∈ [−1, 1].

max c1
such that

∑n
i=0 cix

i ≤ 1, ∀x ∈ [−1, 1]
−∑n

i=0 cix
i ≤ 1, ∀x ∈ [−1, 1]

We will actually upper bound the value of the following LP, which is obtained
from the above by throwing away all but finitely many constraints. Not coin-
cidentally, the constraints that we keep are those that are tight for the primal
solution corresponding to the Chebyshev polynomials of the first kind. Through-
out this section, we refer to this LP as Primal.

max c1
such that

∑n
i=0 cix

i ≤ 1, ∀x = cos(kπ/n), k ∈ {0, 2, . . . , n− 1}
−∑n

i=0 cix
i ≤ 1, ∀x = cos(kπ/n), k ∈ {1, 3, . . . , n}

The dual to Primal can be written as
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min
∑n

i=0 yi
such that Ay = e

yj ≥ 0 ∀j ∈ {0, . . . , n}

where Aij = (−1)j cosi(jπ/n) and e = (0, 1, 0, 0, 0, . . . , 0)T . We refer to this
linear program as Dual.

Our goal is to prove that Primal has value at most n. For odd n, it is well-
known that this value is achieved by the coefficients of (−1)(n−1)/2Tn(x), the
degree n Chebyshev polynomial of the first kind. Our knowledge of this primal-
optimal solution informed our search for a dual-optimal solution, but our proof
makes no explicit reference to the Chebyshev polynomials, and we do not need to
invoke strong LP duality; weak duality suffices. Our arguments rely on a number
of trigonometric identities that can all be established by elementary methods.

Proposition 3. Let n = 2m+ 1 be odd. Define the (n+ 1)× (n+ 1) matrix A
by Aij = (−1)j+m cosi(jπ/n) for 0 ≤ i, j ≤ n. Then

y =
1

n
(1/2, sec2(π/n), sec2(2π/n), . . . , sec2((n− 1)π/n), 1/2)T

is the unique solution to Ay = e1, where e1 = (0, 1, 0, 0, . . . , 0)T .

Note that y is clearly nonnegative, and thus is the unique feasible solution for
Dual. Therefore it is the dual-optimal solution, and as the entries of y sum to
n, it exactly recovers the Markov-Bernstein inequality at x = 0:

Corollary 2. Let p be a polynomial of degree n = 2m + 1 with ‖p‖[−1,1] ≤ 1.
Then p′(0) ≤ n.

While we have recovered the Markov-Bernstein inequality only for odd-degree
polynomials at zero, a simple “shift-and-scale” argument recovers the asymptotic
bound for any x bounded away from the endpoints {−1, 1}.

Corollary 3. Let p be a polynomial of degree n with ‖p‖[−1,1] ≤ 1. Then for any

x0 ∈ (−1, 1), |p′(x0)| ≤ n+1
1−|x0|‖p‖[−1,1]. In particular, for any constant ε ∈ (0, 1),

‖p′‖[−1+ε,1−ε] = O(n)‖p‖[−1,1].

We remark that the full Markov-Bernstein inequality guarantees that |p′(x)| ≤
n√

1−x2
‖p‖[−1,1], which has quadratically better dependence on the distance from

x to ±1. However, for x bounded away from ±1 our bound is asymptotically
tight and sufficient for many applications in theoretical computer science, such
as proving that the approximate degree of the Majority function on n variables
is Ω(n). Moreover, we can recover the Markov-Bernstein inequality near ±1 by
considering a different linear program. We omit the details from this extended
abstract for brevity.
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6 Conclusion

The approximate degree is a fundamental measure of the complexity of a Boolean
function, with pervasive applications throughout theoretical computer science.
We have sought to advance our understanding of this complexity measure by
resolving the approximate degree of the AND-OR tree, and reproving old lower
bounds through the construction of explicit dual witnesses. Nonetheless, few
general results on approximate degree are known, and our understanding of
the approximate degree of fundamental classes of functions remains incomplete.
For example, the approximate degree of AC0 remains open [2, 6], as does the
approximate degree of approximate majority (see [20, Page 11]).2

Resolving these open questions may require moving beyond traditional sym-
metrization-based arguments, which transform a polynomial p on n variables

into a polynomial q on m < n variables in such a way that ˜deg(q) ≤ ˜deg(p),

before obtaining a lower bound on ˜deg(q). Symmetrization necessarily “throws
away” information about p; in contrast, the method of constructing dual poly-
nomials appears to be a very powerful and complete way of reasoning about
approximate degree. Can progress be made on these open problems by directly
constructing good dual polynomials?
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System Sci. 68(2), 303–318 (2004)

16. Klivans, A.R., Sherstov, A.A.: Lower bounds for agnostic learning via approximate
rank. Computational Complexity 19(4), 581–604 (2010)

17. Lee, T., Shraibman, A.: Disjointness is hard in the multi-party number-on-
the-forehead model. In: Proc. of the Conference on Computational Complexity,
pp. 81–91 (2008)

18. Markov, V.: On functions which deviate least from zero in a given interval, St.
Petersburg (1892) (Russian)

19. Minsky, M.L., Papert, S.A.: Perceptions: An Introduction to Computational Ge-
ometry. MIT Press, Cambridge (1969)

20. Open problems in analysis of Boolean functions. Compiled for the Simons Sympo-
sium. CoRR, abs/1204.6447, February 5-11 (2012)

21. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials.
Computational Complexity 4, 301–313 (1994)

22. Paturi, R.: On the degree of polynomials that approximate symmetric Boolean
functions (Preliminary Version). In: Proc. of the Symp. on Theory of Computing
(STOC), pp. 468–474 (1992)

23. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
New York (1986)

24. Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions.
Computational Complexity 18(2), 219–247 (2009)

25. Sherstov, A.A.: Approximating the AND-OR tree. Electronic Colloquium on Com-
putational Complexity (ECCC) 20(023) (2013)

26. Sherstov, A.A.: Communication lower bounds using dual polynomials. Bulletin of
the EATCS 95, 59–93 (2008)

27. Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000
(2011)

28. Sherstov, A.A.: Making polynomials robust to noise. In: Proceedings of Symp.
Theory of Computing, pp. 747–758 (2012)

29. Sherstov, A.A.: Separating AC0 from depth-2 majority circuits. SIAM Journal on
Computing 28(6), 2113–2129 (2009)

30. Sherstov, A.A.: The intersection of two halfspaces has high threshold degree. In:
Proc. of Foundations of Computer Science (FOCS), pp. 343–362 (2009); To appear
in SIAM J. Comput. (special issue for FOCS 2009)

31. Sherstov, A.A.: The multiparty communication complexity of set disjointness. In:
Proceedings of Symp. Theory of Computing, pp. 525–548 (2012)

32. Shi, Y.: Approximating linear restrictions of Boolean functions. Manuscript (2002),
http://web.eecs.umich.edu/~shiyy/mypapers/linear02-j.ps

33. Shi, Y., Zhu, Y.: Quantum communication complexity of block-composed functions.
Quantum Information & Computation 9(5), 444–460 (2009)
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