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Abstract. We show that the shadow vertex algorithm can be used to
compute a short path between a given pair of vertices of a polytope P =
{x ∈ R

n : Ax ≤ b} along the edges of P , where A ∈ R
m×n. Both, the

length of the path and the running time of the algorithm, are polynomial
in m, n, and a parameter 1/δ that is a measure for the flatness of the
vertices of P . For integer matrices A ∈ Z

m×n we show a connection
between δ and the largest absolute value Δ of any sub-determinant of A,
yielding a bound of O(Δ4mn4) for the length of the computed path.
This bound is expressed in the same parameter Δ as the recent non-
constructive bound of O(Δ2n4 log(nΔ)) by Bonifas et al. [1].

For the special case of totally unimodular matrices, the length of
the computed path simplifies to O(mn4), which significantly improves
the previously best known constructive bound of O(m16n3 log3(mn)) by
Dyer and Frieze [7].

1 Introduction

We consider the following problem: Given a matrix A = [a1, . . . , am]T ∈ R
m×n, a

vector b ∈ R
m, and two vertices x1 and x2 of the polytope P ={x ∈ R

n : Ax ≤ b},
find a short path from x1 to x2 along the edges of P efficiently. In this context
efficient means that the running time of the algorithm is polynomially bounded
in m, n, and the length of the path it computes. Note, that the polytope P does
not have to be bounded.

The diameter d(P ) of the polytope P is the smallest integer d that bounds the
length of the shortest path between any two vertices of P from above. The poly-
nomial Hirsch conjecture states that the diameter of P is polynomially bounded
in m and n for any matrix A and any vector b. As long as this conjecture remains
unresolved, it is unclear whether there always exists a path of polynomial length
between the given vertices x1 and x2. Moreover, even if such a path exists, it is
open whether there is an efficient algorithm to find it.

Related Work. The diameter of polytopes has been studied extensively in the
last decades. In 1957 Hirsch conjectured that the diameter of P is bounded by
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m−n for any matrix A and any vector b (see Dantzig’s seminal book about linear
programming [6]). This conjecture has been disproven by Klee and Walkup [9]
who gave an unbounded counterexample. However, it remained open for quite a
long time whether the conjecture holds for bounded polytopes. More than fourty
years later Santos [12] gave the first counterexample to this refined conjecture
showing that there are bounded polytopes P for which d(P ) ≥ (1+ε)·m for some
ε > 0. This is the best known lower bound today. On the other hand, the best
known upper bound of O(m1+log n) due to Kalai and Kleitman [8] is only quasi-
polynomial. It is still an open question whether d(P ) is always polynomially
bounded in m and n. This has only been shown for special classes of polytopes
like 0/1 polytopes, flow-polytopes, and the transportation polytope. For these
classes of polytopes bounds of m − n (Naddef [10]), O(mn log n) (Orlin [11]),
and O(m) (Brightwell et al. [3]) have been shown, respectively. On the other
hand, there are bounds on the diameter of far more general classes of polytopes
that depend polynomially on m, n, and on additional parameters. Recently,
Bonifas et al. [1] showed that the diameter of polytopes P defined by integer
matrices A is bounded by a polynomial in n and a parameter that depends
on the matrix A. They showed that d(P ) = O(Δ2n4 log(nΔ)), where Δ is the
largest absolute value of any sub-determinant of A. Although the parameter Δ
can be very large in general, this approach allows to obtain bounds for classes
of polytopes for which Δ is known to be small. For example, if the matrix A is
totally unimodular, i.e., if all sub-determinants of A are from {−1, 0, 1}, then
their bound simplifies to O(n4 logn), improving the previously best known bound
of O(m16n3 log3(mn)) by Dyer and Frieze [7].

We are not only interested in the existence of a short path between two vertices
of a polytope but we want to compute such a path efficiently. It is clear that
lower bounds for the diameter of polytopes have direct (negative) consequences
for this algorithmic problem. However, upper bounds for the diameter do not
necessarily have algorithmic consequences as they might be non-constructive.
The aforementioned bounds of Orlin, Brightwell et al., and Dyer and Frieze are
constructive, whereas the bound of Bonifas et al. is not.

Our Contribution. We give a constructive upper bound for the diameter of the
polytope P = {x ∈ R

n : Ax ≤ b} for arbitrary matrices A ∈ R
m×n and arbitrary

vectors b ∈ R
m.1 This bound is polynomial in m, n, and a parameter 1/δ, which

depends only on the matrix A and is a measure for the angle between edges
of the polytope P and their neighboring facets. We say that a facet F of the
polytope P is neighboring an edge e if exactly one of the endpoints of e belongs
to F . The parameter δ denotes the smallest sine of any angle between an edge
and a neighboring facet in P . If, for example, every edge is orthogonal to its
neighboring facets, then δ = 1. On the other hand, if there exists an edge that
is almost parallel to a neighboring facet, then δ ≈ 0. The formal definition of δ
is deferred to Section 4.

A well-known pivot rule for the simplex algorithm is the shadow vertex rule,
which gained attention in recent years because it has been shown to have poly-

1 Note that we do not require the polytope to be bounded.
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nomial running time in the framework of smoothed analysis [13]. We will present
a randomized variant of this pivot rule that computes a path between two given
vertices of the polytope P . We will introduce this variant in Section 2 and we
call it shadow vertex algorithm in the following.

Theorem 1. Given vertices x1 and x2 of P , the shadow vertex algorithm effi-

ciently computes an x1-x2-path on the polytope P with expected length O
(
mn2

δ2

)
.

Let us emphasize that the algorithm is very simple and its running time depends
only polynomially on m, n and the length of the path it computes.

Theorem 1 does not resolve the polynomial Hirsch conjecture as δ can be
exponentially small. Furthermore, it does not imply a good running time of the
shadow vertex method for optimizing linear programs because for the variant
considered in this paper both vertices have to be known. Contrary to this, in
the optimization problem the objective is to determine the optimal vertex. To
compare our results with the result by Bonifas et al. [1], we show that, if A is
an integer matrix, then 1

δ ≤ nΔ2, which yields the following corollary.

Corollary 2. Let A ∈ Z
m×n be an integer matrix and let b ∈ R

m be a real-valued
vector. Given vertices x1 and x2 of P , the shadow vertex algorithm efficiently
computes an x1-x2-path on the polytope P with expected length O(Δ4mn4).

This bound is worse than the bound of Bonifas et al., but it is constructive.
Furthermore, if A is a totally unimodular matrix, then Δ = 1. Hence, we obtain
the following corollary.

Corollary 3. Let A ∈ Z
m×n be a totally unimodular matrix and let b ∈ R

m be
a vector. Given vertices x1 and x2 of P , the shadow vertex algorithm efficiently
computes an x1-x2-path on the polytope P with expected length O(mn4).

This is a significant improvement upon the previously best constructive bound
of O(m16n3 log3(mn)) due to Dyer and Frieze because we can assume m ≥ n.
Otherwise, P does not have vertices and the problem is ill-posed.

Organization of the Paper. In Section 2 we describe the shadow vertex algorithm.
In Section 3 we give an outline of our analysis and present the main ideas.
After that, in Section 4, we introduce the parameter δ and discuss some of its
properties. Section 5 is devoted to the proof of Theorem 1. We omitted some
proofs due to space limitations.

2 The Shadow Vertex Algorithm

Let us first introduce some notation. For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. Let A ∈ R

m×n be an m×n-matrix and let i ∈ [m] and j ∈ [n] be
indices. With Ai,j we refer to the (m− 1)× (n− 1)-submatrix obtained from A
by removing the ith row and the jth column. We call the determinant of any
k × k-submatrix of A a sub-determinant of A of size k. By In we denote the
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n × n-identity matrix diag(1, . . . , 1) and by Om×n the m × n-zero matrix. If
n ∈ N is clear from the context, then we define vector ei to be the ith column
of In. For a vector x ∈ R

n we denote by ‖x‖ = ‖x‖2 the Euclidean norm of x
and by N (x) = 1

‖x‖ · x for x �= 0 the normalization of vector x.

2.1 Shadow Vertex Pivot Rule

Our algorithm is inspired by the shadow vertex pivot rule for the simplex al-
gorithm. Before describing our algorithm, we will briefly explain the geometric
intuition behind this pivot rule. For a complete and more formal description,
we refer the reader to [2] or [13]. Let us consider the linear program min cTx
subject to x ∈ P for some vector c ∈ R

n and assume that an initial vertex x1 of
the polytope P is known. For the sake of simplicity, we assume that there is a
unique optimal vertex x� of P that minimizes the objective function cTx. The
shadow vertex pivot rule first computes a vector w ∈ R

n such that the vertex x1

minimizes the objective function wTx subject to x ∈ P . Again for the sake of
simplicity, let us assume that the vectors c and w are linearly independent.

In the second step, the polytope P is projected onto the plane spanned by
the vectors c and w. The resulting projection is a polygon P ′ and one can show
that the projections of both the initial vertex x1 and the optimal vertex x� are
vertices of this polygon. Additionally every edge between two vertices x and y
of P ′ corresponds to an edge of P between two vertices that are projected onto x
and y, respectively. Due to these properties a path from the projection of x1 to
the projection of x� along the edges of P ′ corresponds to a path from x1 to x�

along the edges of P .
This way, the problem of finding a path from x1 to x� on the polytope P is

reduced to finding a path between two vertices of a polygon. There are at most
two such paths and the shadow vertex pivot rule chooses the one along which
the objective cTx improves.

2.2 Our Algorithm

As described in the introduction we consider the following problem: We are given
a matrix A = [a1, . . . , am]T ∈ R

m×n, a vector b ∈ R
m, and two vertices x1, x2

of the polytope P = {x ∈ R
n : Ax ≤ b}. Our objective is to find a short path

from x1 to x2 along the edges of P .
We propose the following variant of the shadow vertex pivot rule to solve

this problem: First choose two vectors w1, w2 ∈ R
n such that x1 uniquely mini-

mizes wT
1 x subject to x ∈ P and x2 uniquely maximizes wT

2 x subject to x ∈ P .
Then project the polytope onto the plane spanned by w1 and w2 in order to
obtain a polygon P ′. Let us call the projection π. By the same arguments as for
the shadow vertex pivot rule, it follows that π(x1) and π(x2) are vertices of P ′

and that a path from π(x1) to π(x2) along the edges of P ′ can be translated into
a path from x1 to x2 along the edges of P . Hence, it suffices to compute such a
path to solve the problem. Again computing such a path is easy because P ′ is a
two-dimensional polygon.
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The vectors w1 and w2 are not uniquely determined, but they can be chosen
from cones that are determined by the vertices x1 and x2 and the polytope P .
We choose w1 and w2 randomly from these cones. A more precise description of
this algorithm is given as Algorithm 1.

Algorithm 1. Shadow Vertex Algorithm

1: Determine n linearly independent rows uT
k of A for which uT

k x1 = bk.
2: Determine n linearly independent rows vTk of A for which vTk x2 = bk.
3: Draw vectors λ, μ ∈ (0, 1]n independently and uniformly at random.
4: Set w1 = − [N (u1), . . . ,N (un)] · λ and w2 = [N (v1), . . . ,N (vn)] · μ.
5: Use the function π : x �→ (

wT
1 x,w

T
2 x

)
to project P onto the Euclidean plane and

obtain the shadow vertex polygon P ′ = π(P ).
6: Walk from π(x1) along the edges of P ′ in increasing direction of the second coor-

dinate until π(x2) is found.
7: Output the corresponding path of P .

Let us give some remarks about the algorithm above. The vectors u1, . . . , un

in Line 1 and the vectors v1, . . . , vn in Line 2 must exist because x1 and x2 are
vertices of P . The only point where our algorithm makes use of randomness is
in Line 3. By the choice of w1 and w2 in Line 4, x1 is the unique optimum of the
linear program minwT

1 x s.t. x ∈ P and x2 is the unique optimum of the linear
program maxwT

2 x s.t. x ∈ P . The former follows because for any y ∈ P with y �=
x1 there must be an index k ∈ [n] with uT

k x1 < bk. The latter follows analogously.
Note, that ‖w1‖ ≤ ∑n

k=1 λk · ‖N (uk)‖ ≤ ∑n
k=1 λk ≤ n and, similarly, ‖w2‖ ≤ n.

The shadow vertex polygon P ′ in Line 5 has several important properties: The
projections of x1 and x2 are vertices of P ′ and all edges of P ′ correspond to
projected edges of P . Hence, any path on the edges of P ′ is the projection of
a path on the edges of P . Though we call P ′ a polygon, it does not have to
be bounded. This is the case if P is unbounded in the directions w1 or −w2.
Nevertheless, there is always a path from x1 to x2 which will be found in Line 6.
For more details about the shadow vertex pivot rule and formal proofs of these
properties, we refer to the book of Borgwardt [2].

Let us consider the projection P ′ = π(P ) of P to the Euclidean plane. We
denote the first coordinate by ξ and the second coordinate by η. Since w1 and w2

are chosen such that x1 and x2 are, among the points of P , optimal for the func-
tion x �→ wT

1 x and x �→ wT
2 x, respectively, the projections π(x1) and π(x2) of x1

and x2 must be the leftmost vertex and the topmost vertex of P ′, respectively.
As P ′ is a (not necessarily bounded) polygon, this implies that if we start in
vertex π(x1) and follow the edges of P ′ in direction of increasing values of η,
then we will end up in π(x2) after a finite number of steps. This is not only
true if P ′ is bounded but also if P is unbounded. Moreover, note that the slopes
of the edges of the path from π(x1) to π(x2) are positive and monotonically
decreasing.
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3 Outline of the Analysis

In the remainder of this paper we assume that the polytope P is non-degenerate,
i.e., for each vertex x of P there are exactly n indices i for which aTi x = bi. This
implies that for any edge between two vertices x and y of P there are exactly n−1
indices i for which aTi x = aTi y = bi.

From the description of the shadow vertex algorithm it is clear that the main
step in proving Theorem 1 is to bound the expected number of edges on the
path from π(x1) to π(x2) on the polygon P ′. In order to do this, we look at
the slopes of the edges on this path. As we discussed above, the sequence of
slopes is monotonically decreasing. We will show that due to the randomness in
the objective functions w1 and w2, it is even strictly decreasing with probability
one. Furthermore all slopes on this path are bounded from below by 0.

Instead of counting the edges on the path from π(x1) to π(x2) directly, we will
count the number of different slopes in the interval [0, 1] and we observe that the
expected number of slopes from the interval [0,∞) is twice the expected number
of slopes from the interval [0, 1]. In order to count the number of slopes in [0, 1],
we partition the interval [0, 1] into several small subintervals and we bound for
each of these subintervals I the expected number of slopes in I. Then we use
linearity of expectation to obtain an upper bound on the expected number of
different slopes in [0, 1], which directly translates into an upper bound on the
expected number of edges on the path from π(x1) to π(x2).

We choose the subintervals so small that, with high probability, none of them
contains more than one slope. Then, the expected number of slopes in a subinter-
val I = (t, t+ε] is approximately equal to the probability that there is a slope in
the interval I. In order to bound this probability, we use a technique reminiscent
of the principle of deferred decisions that we have already used in [5]. The main
idea is to split the random draw of the vectors w1 and w2 in the shadow vertex
algorithm into two steps. The first step reveals enough information about the
realizations of these vectors to determine the last edge e = (p̂, p�) on the path
from π(x1) to π(x2) whose slope is bigger than t. Even though e is determined
in the first step, its slope is not. We argue that there is still enough randomness
left in the second step to bound the probability that the slope of e lies in the
interval (t, t+ ε] from above, yielding Theorem 1.

We will now give some more details on how the random draw of the vectors w1

and w2 is partitioned. Let x̂ and x� be the vertices of the polytope P that
are projected onto p̂ and p�, respectively. Due to the non-degeneracy of the
polytope P , there are exactly n− 1 constraints that are tight for both x̂ and x�

and there is a unique constraint aTi x ≤ bi that is tight for x� but not for x̂. In
the first step the vector w1 is completely revealed while instead of w2 only an
element w̃2 from the ray {w2 + γ · ai : γ ≥ 0} is revealed. We then argue that
knowing w1 and w̃2 suffices to identify the edge e. The only randomness left in the
second step is the exact position of the vector w2 on the ray {w̃2 − γ · ai : γ ≥ 0},
which suffices to bound the probability that the slope of e lies in the interval
(t, t+ ε].
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Let us remark that the proof of Theorem 1 is inspired by the recent smoothed
analysis of the successive shortest path algorithm for the minimum-cost flow
problem [4]. Even though the general structure bears some similarity, the details
of our analysis are much more involved.

4 The Parameter δ

In this section we define the parameter δ that describes the flatness of the vertices
of the polytope and state some relevant properties.

Definition 4. 1. Let z1, . . . , zn ∈ R
n be linearly independent vectors and let

ϕ ∈ (0, π2 ] be the angle between zn and the hyperplane span{z1, . . . , zn−1}.
By δ̂({z1, . . . , zn−1} , zn) = sinϕ we denote the sine of angle ϕ. Moreover,

we set δ(z1, . . . , zn) = mink∈[n] δ̂({zi : i ∈ [n] \ {k}} , zk).
2. Given a matrix A = [a1, . . . , am]T ∈ R

m×n, we set

δ(A) = min {δ(ai1 , . . . , ain) : ai1 , . . . , ain linearly independent} .

The value δ̂({z1, . . . , zn−1} , zn) describes how orthogonal zn is to the span
of z1, . . . , zn−1. If ϕ ≈ 0, i.e., zn is close to the span of z1, . . . , zn−1, then
δ̂({z1, . . . , zn−1} , zn) ≈ 0. On the other hand, if zn is orthogonal to z1, . . . , zn−1,

then ϕ = π
2 and δ̂({z1, . . . , zn−1} , zn) = 1. The value δ̂({z1, . . . , zn−1} , zn)

equals the distance between both faces of the parallelotope Q, given by Q =
{∑n

i=1 αi · N (zi) : αi ∈ [0, 1]}, that are parallel to span{z1, . . . , zn−1} and is
scale invariant.

The value δ(z1, . . . , zn) equals twice the inner radius rn of the parallelotope Q
and, thus, is a measure of the flatness of Q: A value δ(z1, . . . , zn) ≈ 0 implies
that Q is nearly (n − 1)-dimensional. On the other hand, if δ(z1, . . . , zn) = 1,
then the vectors z1, . . . , zn are pairwise orthogonal, that is, Q is an n-dimensional
unit cube.

The next lemma lists some useful statements concerning the parameter δ =
δ(A) including a connection to the parameters Δ1, Δn−1, and Δ introduced in
the paper of Bonifas et al. [1].

Lemma 5. Let z1, . . . , zn ∈ R
n be linearly independent vectors, let A ∈ R

m×n

be a matrix, let b ∈ R
m be a vector, and let δ = δ(A). Then, the following claims

hold true:

1. If M is the inverse of [N (z1), . . . ,N (zn)]
T, then

δ(z1, . . . , zn) =
1

maxk∈[n] ‖mk‖ ≤
√
n

maxk∈[n] ‖Mk‖ ,

where [m1, . . . ,mn] = M and [M1, . . . ,Mn] = MT.
2. If Q ∈ R

n×n is an orthogonal matrix, then δ(Qz1, . . . , Qzn) = δ(z1, . . . , zn).
3. Let y1 and y2 be two neighboring vertices of P = {x ∈ R

n : Ax ≤ b} and
let aTi be a row of A. If aTi · (y2− y1) �= 0, then |aTi · (y2− y1)| ≥ δ · ‖y2− y1‖.

4. If A is an integral matrix, then 1
δ ≤ nΔ1Δn−1 ≤ nΔ2, where Δ, Δ1, and

Δn−1 are the largest absolute values of any sub-determinant of A of arbitrary
size, of size 1, and of size n− 1, respectively.
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5 Analysis

For the proof of Theorem 1 we assume that ‖ai‖ = 1 for all i ∈ [m]. This
entails no loss of generality since normalizing the rows of matrix A (and scaling
the right-hand side b appropriately) does neither change the behavior of our
algorithm nor does it change the parameter δ = δ(A).

For given linear functions L1 and L2, we denote by π = πL1,L2 the function
π : Rn → R

2, given by π(x) = (L1(x), L2(x)). Note, that n-dimensional vectors
can be treated as linear functions. By P ′ = P ′

L1,L2
we denote the projection

π(P ) of polytope P onto the Euclidean plane, and by R = RL1,L2 we denote the
path from π(x1) to π(x2) along the edges of polygon P ′.

Our goal is to bound the expected number of edges of the path R = Rw1,w2

which is random since w1 and w2 depend on the realizations of the random
vectors λ and μ. Each edge of R corresponds to a slope in (0,∞). These slopes
are pairwise distinct with probability one (see Lemma 8). Hence, the number
of edges of R equals the number of distinct slopes of R. In order to bound the
expected number of distinct slopes we first restrict our attention to slopes in the
interval (0, 1].

Definition 6. For a real ε > 0 let Fε denote the event that there are three
pairwise distinct vertices z1, z2, z3 of P such that z1 and z3 are neighbors of z2
and such that ∣∣

∣
∣
wT

2 · (z2 − z1)

wT
1 · (z2 − z1)

− wT
2 · (z3 − z2)

wT
1 · (z3 − z2)

∣∣
∣
∣ ≤ ε .

Note that if event Fε does not occur, then all slopes of R differ by more than ε.
Particularly, all slopes are pairwise distinct. First of all we show that event Fε

is very unlikely to occur if ε is chosen sufficiently small.

Lemma 7. The probability that there are two neighboring vertices z1, z2 of P
such that |wT

1 · (z2 − z1)| ≤ ε · ‖z2 − z1‖ is bounded from above by 2mnε
δ .

Lemma 8. The probability of event Fε tends to 0 for ε → 0.

Let p �= π(x2) be a vertex of R. We call the slope s of the edge incident to p
to the right of p the slope of p. As a convention, we set the slope of π(x2) to 0
which is smaller than the slope of any other vertex p of R.

Let t ≥ 0 be an arbitrary real, let p̂ be the right-most vertex of R whose
slope is larger than t, and let p� be the right neighbor of p̂. Let x̂ and x� be the
neighboring vertices of P with π(x̂) = p̂ and π(x�) = p�. Now let i = i(x�, x̂) ∈
[m] be the index for which aTi x

� = bi and for which x̂ is the (unique) neighbor x
of x� for which aTi x < bi. This index is unique due to the non-degeneracy of the
polytope P . For an arbitrary real γ ≥ 0 we consider the vector w̃2 = w2 + γ · ai.
Lemma 9. Let π̃ = πw1,w̃2 and let R̃ = Rw1,w̃2 be the path from π̃(x1) to π̃(x2)

in the projection P̃ ′ = P ′
w1,w̃2

of polytope P . Furthermore, let p̃� be the left-most

vertex of R̃ whose slope does not exceed t. Then, p̃� = π̃(x�).
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Let us reformulate the statement of Lemma 9 as follows: The vertex p̃� is defined
for the path R̃ of polygon P̃ ′ with the same rules as used to define the vertex p�

of the original path R of polygon P ′. Even though R and R̃ can be very different
in shape, both vertices, p� and p̃�, correspond to the same solution x� in the
polytope P , that is, p� = π(x�) and p̃� = π̃(x�). Let us remark that Lemma 9 is
a significant generalization of Lemma 4.3 of [4].

Proof. We consider a linear auxiliary function w̄2 : R
n → R, given by w̄2(x) =

w̃T
2 x − γ · bi. The paths R̄ = Rw1,w̄2 and R̃ are identical except for a shift by

−γ · bi in the second coordinate because for π̄ = πw1,w̄2 we obtain

π̄(x) = (wT
1 x, w̃

T
2 x− γ · bi) = (wT

1 x, w̃
T
2 x)− (0, γ · bi) = π̃(x) − (0, γ · bi)

for all x ∈ R
n. Consequently, the slopes of R̄ and R̃ are exactly the same.

Let x ∈ P be an arbitrary point from the polytope P . Then, w̃T
2 x = wT

2 x +
γ · aTi x ≤ wT

2 x + γ · bi. The inequality is due to γ ≥ 0 and aTi x ≤ bi for all
x ∈ P . Equality holds, among others, for x = x� due to the choice of ai. Hence,
for all points x ∈ P the two-dimensional points π(x) and π̄(x) agree in the first
coordinate while the second coordinate of π(x) is at least the second coordinate
of π̄(x) as w̄2(x) = w̃T

2 x − γ · bi ≤ wT
2 x. Additionally, we have π(x�) = π̄(x�).

Thus, path R̄ is below path R but they meet at point p� = π(x�). Hence, the
slope of R̄ to the left (right) of p� is at least (at most) the slope of R to the left
(right) of p� which is greater than (at most) t. Consequently, p� is the left-most
vertex of R̄ whose slope does not exceed t. Since R̄ and R̃ are identical up to
a shift of −(0, γ · bi), π̃(x�) is the left-most vertex of R̃ whose slope does not
exceed t, i.e., π̃(x�) = p̃�. �

Lemma 9 holds for any vector w̃2 on the ray �r = {w2 + γ · ai : γ ≥ 0}. As
‖w2‖ ≤ n (see Section 2.2), we have w2 ∈ [−n, n]n. Hence, ray �r intersects the
boundary of [−n, n]n in a unique point z. We choose w̃2 = w̃2(w2, i) := z and
obtain the following result.

Corollary 10. Let π̃ = πw1,w̃2(w2,i) and let p̃� be the left-most vertex of path

R̃ = Rw1,w̃2(w2,i) whose slope does not exceed t. Then, p̃� = π̃(x�).

Note, that Corollary 10 only holds for the right choice of index i = i(x�, x̂). The
vector w̃2(w2, i) is defined for any vector w2 ∈ [−n, n]n and any index i ∈ [m].
In the remainder, index i is an arbitrary index from [m].

We can now define the following event that is parameterized in i, t, and a real
ε > 0 and that depends on w1 and w2.

Definition 11. For an index i ∈ [m] and a real t ≥ 0 let p̃� be the left-most
vertex of R̃ = Rw1,w̃2(w2,i) whose slope does not exceed t and let y� be the cor-
responding vertex of P . For a real ε > 0 we denote by Ei,t,ε the event that the

conditions (1) aTi y
� = bi and (2)

wT
2 (ŷ−y�)

wT
1 (ŷ−y�)

∈ (t, t+ ε], where ŷ is the neighbor y

of y� for which aTi y < bi, are met. Note, that the vertex ŷ always exists and that
it is unique since the polytope P is non-degenerate.
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Let us remark that the vertices y� and ŷ, which depend on the index i, equal x�

and x̂ if we choose i = i(x�, x̂). In general, this is not the case.
Observe that all possible realizations of w2 from L := {w2 + x · ai : x ∈ R} are

mapped to the same vector w̃2(w2, i). Consequently, if w1 is fixed and if we only
consider realizations of μ for which w2 ∈ L, then vertex p̃� and, hence, vertex y�

from Definition 11 are already determined. However, since w2 is not completely
specified, we have some randomness left for event Ei,t,ε to occur. This allows us
to bound the probability of event Ei,t,ε from above (see proof of Lemma 13).
The next lemma shows why this probability matters.

Lemma 12. For reals t ≥ 0 and ε > 0 let At,ε denote the event that the path
R = Rw1,w2 has a slope in (t, t+ ε]. Then, At,ε ⊆

⋃m
i=1 Ei,t,ε.

Lemma 13. For reals t ≥ 0 and ε > 0 the probability of event At,ε is bounded

by Pr [At,ε] ≤ 4mn2ε
δ2 .

Proof. Due to Lemma 12 it suffices to show Pr [Ei,t,ε] ≤ 1
m · 4mn2ε

δ2 = 4n2ε
δ2 . We

apply the principle of deferred decisions and assume that vector λ ∈ (0, 1]n is not
random anymore, but arbitrarily fixed. Thus, vector w1 is already fixed. Now we
extend the normalized vector ai to an orthonormal basis {q1, . . . , qn−1, ai} of Rn

and consider the random vector (Y1, . . . , Yn−1, Z)T = QTw2 given by the matrix
vector product of the transpose of the orthogonal matrix Q = [q1, . . . , qn−1, ai]
and the vector w2 = [v1, . . . , vn]·μ. For fixed values y1, . . . , yn−1 let us consider all
realizations of μ such that (Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then, w2 is fixed up

to the ray w2(Z) = Q·(y1, . . . , yn−1, Z)T =
∑n−1

j=1 yj ·qj+Z ·ai = w+Z ·ai for w =
∑n−1

j=1 yj · qj . All realizations of w2(Z) that are under consideration are mapped
to the same value w̃2 by the function w2 �→ w̃2(w2, i), i.e., w̃2(w2(Z), i) = w̃2

for any possible realization of Z. In other words, if w2 = w2(Z) is specified up
to this ray, then the path Rw1,w̃2(w2,i) and, hence, the vectors y� and ŷ used for
the definition of event Ei,t,ε, are already determined.

Let us only consider the case that the first condition of event Ei,t,ε is fulfilled.
Otherwise, event Ei,t,ε cannot occur. Thus, event Ei,t,ε occurs iff

(t, t+ ε] � wT
2 · (ŷ − y�)

wT
1 · (ŷ − y�)

=
wT · (ŷ − y�)

wT
1 · (ŷ − y�)

︸ ︷︷ ︸
=:α

+Z · a
T
i · (ŷ − y�)

wT
1 · (ŷ − y�)

︸ ︷︷ ︸
=:β

.

The next step in this proof will be to show that the inequality |β| ≥ δ
n is

necessary for event Ei,t,ε to happen. For the sake of simplicity let us assume
that ‖ŷ − y�‖ = 1 since β is invariant under scaling. If event Ei,t,ε occurs, then
aTi y

� = bi, ŷ is a neighbor of y�, and aTi ŷ �= bi. That is, by Lemma 5, Claim 3
we obtain |aTi · (ŷ − y�)| ≥ δ · ‖ŷ − y�‖ = δ and, hence,

|β| =
∣
∣
∣
∣
aTi · (ŷ − y�)

wT
1 · (ŷ − y�)

∣
∣
∣
∣ ≥

δ

|wT
1 · (ŷ − y�)| ≥

δ

‖w1‖ · ‖ŷ − y�)‖ ≥ δ

n · 1 .
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Summarizing the previous observations we can state that if event Ei,t,ε occurs,
then |β| ≥ δ

n and α+ Z · β ∈ (t, t+ ε] ⊆ [t− ε, t+ ε]. Hence,

Z ∈
[
t− α

β
− ε

|β| ,
t− α

β
+

ε

|β|
]
⊆

[
t− α

β
− ε

δ
n

,
t− α

β
+

ε
δ
n

]

=: I(y1, . . . , yn−1) .

Let Bi,t,ε denote the event that Z falls into the interval I(Y1, . . . , Yn−1) of length
2nε
δ . We showed that Ei,t,ε ⊆ Bi,t,ε. Consequently,

Pr [Ei,t,ε] ≤ Pr [Bi,t,ε] ≤
2n · 2nε

δ

δ(QTv1, . . . , QTvn)
≤ 4n2ε

δ2
,

where the second inequality is due to first claim of Theorem 15: By definition,
we have (Y1, . . . , Yn−1, Z)T = QTw2 = QT · [v1, . . . , vn] ·μ = [QTv1, . . . , Q

Tvn] ·μ.
The third inequality stems from δ(QTv1, . . . , Q

Tvn) = δ(v1, . . . , vn) ≥ δ, where
the equality is due to the orthogonality of Q (Claim 2 of Lemma 5). �

Lemma 14. Let Y be the number of slopes of R = Rw1,w2 that lie in the interval

(0, 1]. Then, E [Y ] ≤ 4mn2

δ2 .

Proof (Theorem 1). Lemma 14 bounds only the expected number of edges on
the path R that have a slope in the interval (0, 1]. However, the lemma can also
be used to bound the expected number of edges whose slope is larger than 1.
For this, one only needs to exchange the order of the objective functions wT

1 x
and wT

2 x in the projection π. Then any edge with a slope of s > 0 becomes an
edge with slope 1

s . Due to the symmetry in the choice of w1 and w2, Lemma 14
can also be applied to bound the expected number of edges whose slope lies
in (0, 1] for this modified projection, which are exactly the edges whose original
slope lies in [1,∞).

Formally we can argue as follows. Consider the vertices x′
1 = x2 and x′

2 = x1,
the directions w′

1 = −w2 and w′
2 = −w1, and the projection π′ = πw′

1,w
′
2
,

yielding a path R′ from π′(x′
1) to π′(x′

2). Let X be the number of slopes of R
and let Y and Y ′ be the number of slopes of R and of R′, respectively, that
lie in the interval (0, 1]. The paths R and R′ are identical except for the linear
transformation (x, y) �→ (−y,−x). Consequently, s is a slope of R if and only
if 1

s is a slope of R′ and, hence, X ≤ Y + Y ′. One might expect equality here
but in the unlikely case that R contains an edge with slope equal to 1 we have
X = Y + Y ′ − 1. The expectation of Y is given by Lemma 14. Since this result
holds for any two vertices x1 and x2 it also holds for x′

1 and x′
2. Note, that w

′
1

and w′
2 have exactly the same distribution as the directions the shadow vertex

algorithm computes for x′
1 and x′

2. Therefore, Lemma 14 can also be applied to

bound E [Y ′] and we obtain E [X ] ≤ E [Y ] +E [Y ′] = 8mn2

δ2 . �
The proof of Corollary 2 follows from Theorem 1 and Claim 4 of Lemma 5.
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6 Some Probability Theory

The following theorem is a variant of Theorem 35 from [5]. The two differences
are as follows: In [5] arbitrary densities are considered. We only consider uniform
distributions. On the other hand, instead of considering matrices with entries
from {−1, 0, 1} we consider real-valued square matrices. This is why the results
from [5] cannot be applied directly.

Theorem 15. Let X1, . . . , Xn be independent random variables uniformly dis-
tributed on (0, 1], let A = [a1, . . . , an] ∈ R

n×n be an invertible matrix, let
(Y1, . . . , Yn−1, Z)T = A ·(X1, . . . , Xn)

T be the linear combinations of X1, . . . , Xn

given by A, and let I : Rn−1 → {[x, x+ ε] : x ∈ R} be a function mapping a tu-
ple (y1, . . . , yn−1) to an interval I(y1, . . . , yn−1) of length ε. Then the probability
that Z lies in the interval I(Y1, . . . , Yn−1) can be bounded by

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2nε

δ(a1, . . . , an) ·mink∈[n] ‖ak‖ .
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