
Noncommutativity Makes Determinants Hard�

Markus Bläser

Saarland University
mblaeser@cs.uni-saarland.de

Abstract. We consider the complexity of computing the determinant
over arbitrary finite-dimensional algebras. We first consider the case that
A is fixed. We obtain the following dichotomy: If A/ radA is noncom-
mutative, then computing the determinant over A is hard. “Hard” here
means #P-hard over fields of characteristic 0 and ModpP-hard over fields
of characteristic p > 0. If A/ radA is commutative and the underlying
field is perfect, then we can compute the determinant over A in polyno-
mial time.

We also consider the case when A is part of the input. Here the hard-
ness is closely related to the nilpotency index of the commutator ideal of
A. The commutator ideal com(A) of A is the ideal generated by all ele-
ments of the form xy−yx with x, y ∈ A. We prove that if the nilpotency
index of com(A) is linear in n, where n × n is the format of the given
matrix, then computing the determinant is hard. On the other hand, we
show the following upper bound: Assume that there is an algebra B ⊆ A
with B = A/ rad(A). (If the underlying field is perfect, then this is always
true.) The center Z(A) of A is the set of all elements that commute with
all other elements. It is a commutative subalgebra. We call an ideal J a
complete ideal of noncommuting elements if B +Z(A) + J = A. If there
is such a J with nilpotency index o(n/ log n), then we can compute the
determinant in subexponential time. Therefore, the determinant cannot
be hard in this case, assuming the counting version of the exponential
time hypothesis.

Our results answer several open questions posed by Chien et al. [4].

1 Introduction

The determinant of a matrix M = (mi,j) ∈ kn×n over some field k is given by
the well-known formula

detM =
∑

σ∈Sn

sgn(σ)m1,σ(1) · · ·mn,σ(n).

The determinant plays a central role in linear algebra. It can be efficiently com-
puted, for instance, by Gaussian elimination. In fact, there are even efficient

� Work supported by DFG grant BL 511/10-1 and by the Indo-German Max-Planck
Center for Computer Science (IMPECS). A full version is available as a preprint:
Markus Bläser, Noncommutativity makes determinants hard. Electronic Colloquium
on Computational Complexity (ECCC) 19: 142 (2012).

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 172–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Noncommutativity Makes Determinants Hard 173

algorithms when the matrix M has entries from some commutative algebra, see
[12] and the references given therein.

A related polynomial is the permanent of M , given by

perM =
∑

σ∈Sn

m1,σ(1) · · ·mn,σ(n).

If M is {0, 1}-valued, then perM is the number of perfect matchings of the
bipartite graph defined by M . While the determinant is easy over commutative
algebras, the permanent is hard already over the rationals. Valiant [15] showed
that evaluating the {0, 1}-permanent over the rationals is at least as hard as
counting the number of satisfying assignments of a formula in 3-CNF.

Since the determinant and the permanent have similar formulas, it is tempt-
ing to try to modify algorithms for the determinant and use them to compute
the permanent. Godsil and Gutman [9] used the determinant to approximate the
permanent. They designed a matrix-valued random variable. In expectation, the
square of the determinant of this random variable is the permanent. However,
the variance is huge. Karmarkar et al. [11] showed how to lower the variance by
extending the underlying field to the complex numbers. Chien et al. [6], building
upon the work by Barvinok [2], showed that if one could compute the deter-
minant of an n × n-matrix the entries of which are themselves matrices of size
cn × cn for some constant c, then there is a fully polynomial time randomized
approximation scheme for the permanent of {0, 1}-matrices. See [13] for fur-
ther results in this direction. (Of course, there is a fully polynomial randomized
approximation scheme based on Markov chains, see [10]. However, if we could
evaluate noncommutative determinants as fast as commutative ones, then we
would get much faster approximation schemes.)

Therefore, it is important to understand the complexity of the determinant
over arbitrary finite-dimensional algebras, especially over noncommutative ones,
and not only over fields or commutative algebras. The first to study this problem
was Nisan [14]. He proved an exponential lower bound for the size of an algebraic
branching program for computing the determinant over the free noncommutative
algebra k〈Xi,j〉. While the lower bound is strong, the setting is limited, because it
only applies to a restricted circuit model and only to a very “powerful” algebra.
Chien and Sinclair [5] extended these bounds to a wide range of “concrete”
algebras by analysing their polynomial identities, for instance to matrix algebras
and the Hamiltonian quaternions, albeit only in the algebraic branching program
model.

Recently Arvind and Srinivasan [1] showed that the noncommutative determi-
nant cannot have small circuits unless the permanent has small circuits. Finally,
Chien et al. [4] made further progress by proving the #P-hardness and ModpP-
hardness of the determinant for odd p for large classes of algebras.

The fundamental question behind these results is: Which properties of the
algebra makes the determinant hard? In this work, we prove that this is exactly
noncommutativity.



174 M. Bläser

1.1 A Crash Course on the Structure of Algebras

An associative algebra A over some field k is a k-vector space together with
a bilinear mapping · : A × A → A, the multiplication in A. Multiplication is
associative and distributes over addition. If λ ∈ k, then λ(x·y) = (λx)·y = x·(λy)
for all x, y ∈ A. We will always assume that A is finite-dimensional (as a vector
space) and contains a unit element, which we denote by 1.

A left (right, twosided) ideal of an algebra is a vector space that is closed under
multiplication with arbitrary elements of A from the left (right, both sides). If
S is a subset of A, then the left (right, twosided) ideal of A generated by S is
the intersection of all left (right, twosided) ideals that contain S. Alternatively,
it can be defined as the linear span generated by all elements xs (sy, xsy) with
x, y ∈ A and s ∈ S.

A left (right, twosided) ideal I is called nilpotent, if Is = {0} for some positive
integer s. The nilpotency index of I is the smallest s such that Is = {0}. If there
is no such s, then the index is infinite.

The sum of all nilpotent left ideals of A is a nilpotent twosided ideal, which
contains every nilpotent right ideal of A. This twosided ideal is called the rad-
ical of A and is denoted by radA. The quotient algebra A/ radA contains no
nilpotent ideals other than the zero ideal. Since A is finite dimensional, we can
alternatively define the radical of A as the intersection of all maximal twosided
ideals. An ideal is maximal if it is not contained in any other ideal and is not
equal to A.

We call an algebra A semisimple, if radA = {0}. By the above fact, A/ radA
is semisimple. An algebra A is called simple, if there are no twosided ideals in A
except the zero ideal and A itself. An algebra D is called a division algebra, if
D× = D \ {0}. Here D× is the set of all invertible elements in D. An algebra A
is called local, if A/ radA is a division algebra.

The following fundamental theorem describes the structure of semisimple al-
gebras.

Theorem 1 (Wedderburn). Every finite dimensional semisimple k-algebra is
isomorphic to a finite direct product of simple algebras. Every finite dimensional
simple k-algebra A is isomorphic to an algebra Dn×n for an integer n ≥ 1 and a
k-division algebra D. The integer n and the algebra D are uniquely determined
by A (the latter one up to isomorphism).

For an introduction to associative algebras, we recommend [8].

1.2 Our Results

First we will consider the problem when the underlying algebra A is fixed: We
are given a matrix M ∈ An×n as an input and our task is to compute detM .
We prove that the determinant over A is hard if A/ radA is noncommutative.
If A/ radA is commutative, then the problem is polynomial time computable.
That means, we get a complete dichotomy (Theorem 3). More precisely, we show
that



Noncommutativity Makes Determinants Hard 175

– computing the determinant overA is #P-hard if A/ radA is noncommutative
and the characteristic of k is 0.

– computing the determinant over A is ModpP-hard if A/ radA is noncommu-
tative and the characteristic p of k is positive.

Chien et al. show that if A/ radA is commutative and the field k is perfect,
then the determinant can be computed in polynomial time. A field is perfect if
every irreducible polynomial over k has distinct roots. Any “reasonable” field
is perfect, for instance, fields of characteristic zero are perfect, finite fields are
perfect as well as algebraically closed fields.1

Our dichotomy extends the results of Chien et al. in two ways: First it works
for arbitrary algebras A such that A/ radA is noncommutative. Chien et al.
proved this only for algebras whose semisimple part A/ radA contained at least
one matrix algebra. For instance, it did not apply to local algebras and in par-
ticular, division algebras like Hamiltonian quaternions. Second, we get Mod2P-
hardness, that is, ⊕P-hardness, over fields of characteristic 2. The proof by Chien
et al. did not work in this case.

Then we turn to the case when the algebra is given as a part of the input.
Beside the matrix M , we also get a basis and the multiplication table of the
algebra A from which the entries of M are taken. It seems to be natural that
the dimension of A should be polynomial in the size of M . The setting above
subsumes the case where we have a familiy of algebras An and our task is to
compute the n×n-determinant overAn, for instance, computing the determinant
of n × n-matrices with upper triangular n× n-matrices as entries. This setting
is of interest because there could be a sequence of algebras each of which is
noncommutative but still the determinant is easy to compute. This of course is
only possible if An/ radAn is commutative, by our first result.

We give evidence that the quantity that determines the hardness is the nilpo-
tency index of the commutator ideal of A. The commutator ideal com(A) of an
algebra A is the ideal generated by all elements of the form xy−yx with x, y ∈ A.
If the commutator ideal com(A) = {0}, then A is commutative. If its nilpotency
index is finite, then A/ radA is commutative. We prove that if the nilpotency
index of the commutator ideal of A is at least linear in n, then computing the
determinant of n× n-matrices is as hard as counting the number of solutions of
a formula in 3-CNF modulo the characteristic of k.

We prove an upper bound that is a little weaker in two ways: First we need that
the nilpotency index of a somewhat larger ideal is bounded and second the upper
bound does not fully match the lower bound from the hardness result. Assume
that there is an algebra B ⊆ A with B ∼= A/ rad(A). (If the underlying field is
perfect, then this is always true.) The center Z(A) of A is the set of all elements
that commute with all other elements. It is a commutative subalgebra. We call

1 What is actually needed by Chien et al. is that there is a subalgebra B of A such
that A = B⊕radA (as vector spaces). This is true if the algebra A is separable. Over
perfect fields, every algebra is separable. Any of these implications is often called
the Wedderburn-Malcev Theorem. The existence of the algebra B is only needed for
the upper bound and not for the hardness result.



176 M. Bläser

an ideal J a complete ideal of noncommuting elements if B + Z(A) + J = A. If
there is such a J with nilpotency index r, then we can compute the determinants
of n × n-matrices over A in time nO(r). Due to space limitations, the proof of
the general case is omitted here, but can be found in the full version (see the
footnote on the first page).

Over fields of characteristic 0 this result is almost tight assuming the counting
version of the exponential time hypothesis #ETH as formulated by Dell et al. [7].
If r = o(n/ logn), then computing the determinant over A cannot be #P-hard
under #ETH.

The ideal J is a superset of com(A). It is currently not clear whether the
condition that J has nilpotency index o(n/ logn) can be replaced by com(A)
has nilpotency index o(n/ logn) in the upper bound. The main reason is that
not too much is known about the structure of the radical. See the conclusions
for some examples. In order to replace the o(n/ logn) by a tight o(n), we need
a faster algorithm, for instance with running time 2O(r) or O(

(
n
r

)
). The latter

does not seem to be completely out of reach.

2 Determinants, Permanents, and Cycle Covers

Given an n× n-matrix M = (mi,j) the entries of which belong to an algebra A,
the (Cayley) determinant of M is defined by

detM =
∑

σ∈Sn

sgn(σ)m1,σ(1) · · ·mn,σ(n). (1)

(Since A might be noncommutative, the order of multiplication makes a differ-
ence. When the order is by rows, then we get the Cayley determinant.) Similarly,
the permanent of M is defined by

perM =
∑

σ∈Sn

m1,σ(1) · · ·mn,σ(n). (2)

We can interpret the matrix M as an edge-weighted digraph on the vertex set
V = {1, . . . , n}. There is an edge from i to j if mi,j 
= 0 and the weight of this
edge is mi,j . We denote this graph by G(M). A cycle cover C of a digraph is
a subset of the edges such that every node has indegree and outdegree one in
C. C encodes a unique permutation, which maps every node i to the node j
where (i, j) is the unique edge in C leaving i. We set C(i) := j. In this way,
we can interpret C as a permutation. It is easy to see that sgn(C) = (−1)n+c

where c is the number of cycles in C. The weight of a cycle cover is the product
of the weights of the edges in C, that is, m1,C(1) · · ·mn,C(n). Again the order is
important, since the weights might not commute. For a digraph G, let CC(G)
be the set of its cycle covers. Now we can rewrite (1) and (2) as

detM =
∑

C∈CC(G(M))

sgn(C)m1,C(1) · · ·mn,C(n) (3)



Noncommutativity Makes Determinants Hard 177

and

perM =
∑

C∈CC(G(M))

m1,C(1) · · ·mn,C(n). (4)

If G is an edge-weighted digraph, we will often write detG and perG for the
determinant and permanent of its weighted adjacency matrix.

3 Hardness Proofs for the Permanent

#3-SAT is the following problem: Given a Boolean formula φ in 3-CNF with n
variables and m clauses, count the number of satisfying assignments. #3-SAT
is #P-complete. It even stays #P-complete if we assume that every variable
appears as often unnegated as negated. We can achieve this by adding trivial
clauses of the form x̄∨ x∨ x or x̄∨ x̄∨ x for every variable x, if neccessary. This
reduction increases the size of φ only by a constant factor. Note that thereafter,
every assignment sets as many literals to true as to false.

We first briefly review the reduction by Dell et al. [7] of #3-SAT to the
permanent, which is similar to the original construction by Valiant [15], but
simpler and nicer. (It should go into any modern textbook.) The reduction by
Dell et al. is itself derived from the reduction in [3]. Chien et al. [4] used the same
approach; however, our gadgets can handle arbitrary noncommutative algebras
and not only matrix algebras.

A given formula φ is mapped to a graph Gφ. This graph will have O(m)
edges. For every variable x, there is a selector gadget, see Figure 1 (left-hand
side). There are two ways to cover this gadget by a cycle cover, taking the left-
hand edge will correspond to setting x to zero and taking the right-hand edge
will correspond to setting x to one.

For every clause, there is a clause gadget as depicted in Figure 1 (right-hand
side). Each of the three outer edges corresponds to one literal of the clause.
Taking one of the three outer edges corresponds to setting the literal to zero.
It is easy to check that for every subset of the outer edges, except for the one
consisting of all three outer edges, there is exactly one cycle cover. Call the
graph constructed so far G′

φ. A cycle cover of G′
φ is called consistent, if the

chosen edges in the selector gadgets and the clause gadgets are consistent, that
is, whenever we chose the left-hand edge in the selector gadget for x (i.e, x = 0),
then we choose all corresponding edges in the clause gadgets in which x appears
positively and vice versa.

Fact 2. Satisfying assignments of φ and consistent cycle covers of G′
φ stand in

one-to-one correspondence.

The last step is to get rid of inconsistent cycle covers. This is done by connecting
the edge of a literal � in a clause gadget by the edge in the selector gadget
corresponding to setting � = 0 using an equality gadget, see Figure 2. The edge
of the selector gadget and the edge of the clause gadget are subdivided, let x and
z be the newly introduced vertices. These two vertices are connected as depicted



178 M. Bläser

“x = 1”“x = 0”

�̄1 �̄2

�̄3

Fig. 1. Left-hand side: The selector gadget. In all figures, edges without explicitely
stated weights have weight 1. Right-hand side: The clause gadget. In the gadget as
it is, there is a double edge between the two nodes at the bottom. The lower edge is
however subdivided when we introduce the equality gadgets.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

u′

v v′

u
−1

u u′

v v′

zx

y

Fig. 2. The equality gadget. The pair of edges (u, v) and (u′, v′) of the left-hand side,
one of them is an edge of the selector gadget and the other is the corresponding outer
edge of a clause gadget, is connected as shown on the right-hand side.

in Figure 2. Since a literal appears in several clauses, the edge of the selector
gadget is subdivided as many times.

Every consistent cycle cover of G′
φ can be extended to several cycle covers of

Gφ. If the two edges connected by a equality gadget are both taken, then we
take both path u−x−v and u′−z−v′ in Gφ. The interior vertex y is covered by
the self-loop, yielding a weight of −1. If both edges are not taken, then we take
none of the corresponding paths. There are six possibilities to cover the interior
nodes x, y, and z; four of them have weight 1, two of them have weight −1. This
sums up to 2. (The six different covers, albeit with different weights, are shown
in Figure 4.) Therefore, every consistent cycle cover is mapped to several cycle
covers with a total weight of (−1)p2q where p is the number of literals set to zero
and q is the number of literals set to one. Since we normalized φ, p = q = 3m/2.

There are also cycle covers that do not cover equality gadget consistently.
This can either mean that the path u − x − v is taken but not u′ − z − v′ or
that we enter the gadget via u but leave it via v′. One can prove that all cycle
covers in which at least one equality gadget is not covered consistently sum up to
zero. Altogether, we get that perGφ = (−2)3m/2 ·#3-SAT(φ), where #3-SAT(φ)
denotes the number of satisfying assignments of φ.

4 Hardness of the Noncommutative Determinant

We adapt the construction of the previous section to the determinant over non-
commutative algebras. Note that now every cycle cover C is weighted by sgn(C)



Noncommutativity Makes Determinants Hard 179

and the order in which the edge weights are multiplied is important. The selec-
tor gadgets stay the same. The clause gadgets stay almost the same, the only
difference is that one edge gets weight −1 as is done by Chien et al. [4]. As be-
fore, for every proper subset of the outer edges, there is one cycle cover covering
the clause gadget. The new −1 weight compensates the fact that some covers
contain an odd number of cycles and some an even number. Let again G′

φ denote
the resulting graph. Consistent cycle covers of G′

φ with sign stand in one-to-one
correspondance with satisfying assignments of φ.

Note that since we are now working over some noncommutative algebra, the
order of the vertices can be important: Up to now, we used only edge weights 1
or −1. Therefore, the order of the vertices does not matter so far.

The structure of the equality gadgets also stays the same, but we use different
weights. To construct the weights, we use the following lemma.

Lemma 1. Let A be an associative algebra. A/ radA is noncommutative if and
only if there are invertible i, j ∈ A such that 1− iji−1j−1 is not nilpotent.

Proof. Assume that A/ radA is noncommutative and let A/ radA = A1×· · ·×At

be its decomposition into simple algebras as given by Wedderburn’s Theorem.
One of these factors, say A1, is either a matrix algebra of the form Bs×s with B
being a division algebra and s ≥ 2 or a noncommutative division algebra D. In
the first case A1 = Bs×s, set

i′ =

⎛

⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . . 0

0 0 0 . . . 1

⎞

⎟⎟⎟⎟⎟⎠
and j′ =

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...
...
...
. . . 0

0 0 0 . . . 1

⎞

⎟⎟⎟⎟⎟⎠

It is easy to check that

i′j′ − j′i′ =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 −1 0 . . . 0
0 0 0 . . . 0
...

...
...
. . . 0

0 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
.

(i′j′ − j′i′)2 is idempotent in A1 and therefore i′j′ − j′i′ cannot be nilpotent. In
the second case A1 = D, we choose i′ and j′ to be noncommuting elements in
D. i′j′− j′i′ is nonzero and therefore invertible in A1, as D is a division algebra.
The elements i = (i′, 1, . . . , 1) and j = (j′, 1, . . . , 1) are invertible in A/ radA
and can be lifted to invertible elements of A. ij− ji = (i′j′ − j′i′, 0, . . . , 0) is not
nilpotent. We have

1− iji−1j−1 = −(ij − ji) · i−1j−1,



180 M. Bläser

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

i

i−1

j−1

j

k

k′

Fig. 3. The modified equality gadget. i and j are the elements constructed in the proof
of Lemma 1, k = ij, and k′ = i−1j−1. The edges between x and y have weight i and
i−1, between y and z weights j and j−1, and between z and x weights k′ and k.

which is not nilpotent, either.2

For the converse direction, note that 1− iji−1j−1 /∈ radA, since 1− iji−1j−1

is not nilpotent. Therefore the image of 1 − iji−1j−1 in A/ radA under the
canonical projection is nonzero and thus, A/ radA is not commutative. �

Let A be an algebra such that A/ radA is noncommutative. Choose i and j as
constructed above. Let k = ij. The edges of the equality gadget get weights as
depicted in Figure 3. The three new vertices x, y, and z of each gadget appear
consecutively in the order x, y, z in the ordering of all the vertices. Besides this,
the ordering of the new vertices can be arbitrary. Let Gφ denote the resulting
graph.

Now we analyse what happens with a consistent cycle cover C of G′
φ when

moving over to Gφ, see Figure 4. Note that consistent cycle covers of G′
φ have

the same sign. If both paths in the equality gadget are taken, then we cover y
by the self-loop. This adds one cycle to the cycle cover, which toggles the sign.
If both paths are not taken, then there are six cycles covers. Two of them, have
one cycle and signed weights3 −ijk′ = −iji−1j−1 and −ki−1j−1 = −iji−1j−1.
Three of them have two cycles and signed weights ii−1 = 1, jj−1 = 1, and
kk′ = iji−1j−1. Finally, there is one cycle cover with three cycles and signed
weight −1. The total signed weight contribution is 1−iji−1j−1. Doing this for all
equality gadgets, we get that every consistent cycle cover of G′

φ can be extended
to consistent cycle covers of Gφ with total signed weight

(−1)3m/2(1− iji−1j−1)3m/2.

Recall that we normalized φ such that every assignment sets 3m/2 literals to
true and 3m/2 literals to false. Since 1− iji−1j−1 is not nilpotent, this weight
is nonzero.

2 To not fall into the same trap as a STOC’12 referee, please note that this is not
true in general. Here this holds because of the choice of i′ and j′. Either A1 is a
noncommutative division algebra or A1 is a matrix algebra. In the first case, being
nonzero already means invertible. In the second case, note that −(ij− ji) · i−1j−1 is
a matrix with an invertible 2×2-matrix in the upper left corner and zeros elsewhere.

3 The term signed weight also includes the change of sign induced by the parity change
of the cycles.



Noncommutativity Makes Determinants Hard 181

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

k

i

i−1

j−1

j
i

j

k′

j−1

k

i−1

k′

Fig. 4. First row: The one possible configuration if both edges are taken. Second row:
The six possible configurations if none of the edges is taken.

It remains to analyse what happens with cycle covers of Gφ which are not con-
sistent, that is, in which at least one equality gadget is not covered consistently.
We will define an involution I without fixed points on the set of all inconsistent
cycle covers of Gφ such that the weight of C and I(C) cancel each other. From
this it follows that the total contribution of the inconsistent cycle covers is zero.
To define I, take an inconsistent cycle cover. We order the equality gadgets ar-
bitrarily. Let C be an inconsistent cycle cover and consider the first inconsistent
equality gadget. Then either C uses the path u − x − v in this gadget but not
u′ − z − v′ or it enters the gadget via u and leaves it via v′. (The cases where
u′ − z − v′ is used but not u− x− v or the gadget is entered via u′ and left via
v are symmetric.) Figure 5 shows how I pairs inconsistent cycle covers.

In the first case, C and I(C) only differ in how y and z are covered. On the
lefthand side, we use two cycles of weight 1, on the righthand side we use one
cycle of weight jj−1 = 1. So the weights of the cycle covers are the same, but
the signs differ, since the cycle cover on the lefthand side has one cycle more.
(In the symmetric case, we get two cycles of weight 1 versus one cycle of weight
ii−1 = 1.)

In the second case, we either use one edge of weight k and cover y by a cycle
of weight 1 (lefthand side), or we use two edges of weight i and j. Since k = ij,
the weight of both covers is the same, but again the signs differ, since the second
cover has one cycle more. (In the symmetric case, we have one edge with weight
k′ = i−1j−1 and one additional cycle or two edges with weight i−1j−1.)

This finishs the proof that the contribution of the inconsistent cycle covers is
0.

Altogether, we get that

det(G) = (−1)3m/2(1− iji−1j−1)3m/2#3-SAT(φ). (5)

Note that (−1)3m/2(1− iji−1j−1)3m/2 is a fixed nonzero element of A multiplied
by the scalar #3-SAT(φ).

Theorem 3. Let k be a field of characteristic p. Let A be an associative algebra
over k.



182 M. Bläser

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

j−1

j

k

i
j

Fig. 5. The involution I . I maps the configuration on the left-hand side to the corre-
sponding configuration on the right-hand side and vice versa.

1. If A/ radA is noncommutative, then evaluating the determinant over A is
#P-hard if p = 0 and ModpP-hard otherwise.

2. If A/ radA is commutative and k is perfect, then the determinant over A
can be evaluated in polynomial time.

Proof. The first part immediately follows from (5), since (−1)3m/2(1 −
iji−1j−1)3m/2 is a nonzero element of A by the choice of i and j. Note that
if p > 0, then we get #3-SAT(φ), which is a scalar from k, only modulo p.

The second part follows from the fact that there is an algorithm with running
time nO(d) for this problem, where d is the dimension of A [4]. Note that A is
fixed, so d is a constant. �

5 Algebras as Part of the Input

If the algebra is part of the input, we have the following results. The proof can
be found in the full version.

Theorem 4. Let k be a field of characteristic p and A be an associative algebra
over k.

1. If the nilpotency index of the commutator ideal of A is Ω(n), then evaluating
the determinant over A is #P-hard if p = 0 and ModpP-hard otherwise,
where A is part of the input.

2. If there is a complete ideal of noncommutaing elements J with nilpotency
index o(n/ logn), then the determinant over A can be computed in subexpo-
nential time over perfect fields.

6 Conclusions

It is an interesting question whether the smallest ideal J can be much larger
than com(A) and how much their nilpotency indices can differ. There seems
to be no general answer, mainly because there is no analogue of Wedderburn’s



Noncommutativity Makes Determinants Hard 183

theorem for the radical. For the algebra of upper triangular matrices, we have
J = com(A) = rad(A). For the free noncommutative algebra k〈x, y, z〉 modulo
the ideal of all monomials of degree d and the relations that make x commute
with y and z, we have rad(A) � J � com(A) for any J . More precisely, radA is
generated by x, y, and z, J is generated by y and z, and com(A) is generated by
yz− zy. In our upper bound, we can take the minimum over all complete ideals
J of noncommuting elements. Is there an easy characterisation of the best J?

Acknowledgement. I would like to thank Prahladh Harsha for drawing my
attention to this problem.

References

1. Arvind, V., Srinivasan, S.: On the hardness of the noncommutative determinant.
In: Proc. 42nd ACM Symp. on Theory of Comput (STOC), pp. 677–686 (2010)

2. Barvinok, A.: Polynomial time algorithms to approximate permanents and
mixed discriminants within a simply exponential factor. Random Struct. Algo-
rithms 14(1), 29–61 (1999)

3. Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Arge, L., Cachin, C.,
Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812.
Springer, Heidelberg (2007)

4. Chien, S., Harsha, P., Sinclair, A., Srinivasan, S.: Almost settling the hardness of
noncommutative determinant. In: Proc. 43rd ACM Symp. on Theory of Comput
(STOC), pp. 499–508 (2011)

5. Chien, S., Sinclair, A.: Algebras with polynomial identities and computing the
determinant. J. Comput. Sys. Sci. 67(2), 263–290 (2003)

6. Chien, S., Rasmussen, L., Sinclair, A.: Clifford algebras and approximating the
permanent. J. Comput. Sys. Sci. 67(2), 263–290 (2003)

7. Dell, H., Husfeldt, T., Wahlén, M.: Exponential Time Complexity of the Permanent
and the Tutte Polynomial. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 426–437.
Springer, Heidelberg (2010)

8. Drozd, Y.A., Kirichenko, V.V.: Finite dimensional algebras. Springer (1994)
9. Godsil, C.D., Gutman, I.: On the matching polynomial of a graph. In: Lovász, L.,

Sós, V.T. (eds.) Algebraic Methods in Graph Theory, vol. 1, pp. 241–249. North-
Holland (1981)

10. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697
(2004)

11. Kamarkar, N., Karp, R.M., Lipton, R.J., Lovász, L., Luby, M.: A Monte-Carlo
algorithm for estimating the permanent. SIAM J. Comput. 22(2), 284–293 (1993)

12. Mahajan, M., Vinay, V.: Determinant: Old algorithms and new insights. SIAM J.
Discrete Math. 12(4), 474–490 (1999)

13. Moore, C., Russell, A.: Approximating the permanent via nonabelian determinants,
arXiv:0906.1702 (2009)

14. Nisan, N.: Lower bounds for noncommutative computation. In: Proc. 23rd ACM
Symp. on Theory of Comput. (STOC), pp. 410–418 (1991)

15. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput.
Sci. 8, 189–201 (1979)


	Noncommutativity Makes Determinants Hard
	1 Introduction
	1.1 A Crash Course on the Structure of Algebras
	1.2 Our Results

	2 Determinants, Permanents, and Cycle Covers
	3 Hardness Proofs for the Permanent
	4 Hardness of the Noncommutative Determinant
	5 Algebras as Part of the Input
	6 Conclusions
	References




